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SUMMARY

We propose a simple adjustment for profile likelihoods. The aim of the adjustment is to
alleviate some of the problems inherent in the use of profile likelihoods, such as bias, incon-
sistency and overoptimistic variance estimates. The adjustment is applied to the profile log-
likelihood score function at each parameter value so that its mean is zero and its variance is
the negative expected derivative matrix of the adjusted score function. For cases in which
explicit calculation of the adjustments is difficult, we give two methods to simplify their
computation: an ‘automatic’ simulation method that requires as input only the profile log-
likelihood and its first few derivatives; first-order asymptotic expressions. Some examples
are provided and a comparison is made with the conditional profile log-likelihood of Cox
and Reid.

Keywords: ASYMPTOTIC THEORY; BOOTSTRAP; NUISANCE PARAMETERS; PROFILE
LIKELIHOOD; SCORE FUNCTION

1. INTRODUCTION

Inference in the presence of nuisance parameters is a widely encountered and difficult
problem, particularly for a frequency-based theory of inference. Probably the
simplest approach is to maximize out the nuisance parameters for fixed values of the
parameters of interest and to construct the so-called profile likelihood. The profile
likelihood is then treated as an ordinary likelihood function for estimation and infer-
ence about the parameters of interest. Unfortunately, with large numbers of nuisance
parameters, this procedure can produce inefficient or even inconsistent estimates. A
simple example in which these phenomena occur is the ‘many normal means’ problem
where we observe Y;;, Y;,, each independent and normally distributed with means ;
and variance o2, for i=1,2,...,n. The variance ¢2 is taken as the parameter of
interest. In this case the maximizer of the profile likelihood (also the global maximum
likelihood estimate) 62 has expectation 02/2 and is inconsistent. The reason is that the
bias of the usual maximum likelihood estimate of variance accumulates across the
data pairs.

An integrated likelihood (Kalbfleisch and Sprott, 1970) can be obtained if one is
willing to specify a joint prior distribution for the parameters, or at least a conditional
prior distribution for the nuisance parameters given the parameters of interest. In the
absence of prior information, however, this is difficult to do in an ‘objective’ way.

In some special problems, marginal or conditional likelihoods can be constructed
from which valid inferences can be made (see, for example, Cox and Hinkley (1974)).
For example, in the many normal means problem, a marginal likelihood based on the
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sample variances can be derived, and this likelihood has its maximum at 262, the
unbiased estimate of 2. Such problems are relatively rare, however, and hence there is
aneed for a more general approach. Two recent advances in this area are the modified
profile likelihood (Barndorff-Nielsen, 1986) and the closely related conditional pro-
filelikelihood (Cox and Reid, 1987). Both of these modifications attempt to adjust the
profile likelihood for nuisance parameters. They correct the inconsistency of the pro-
file likelihood in some problems (like the problem above) and automatically make
‘degrees of freedom’ adjustments in normal theory cases where accepted answers are
available for comparison. As a result, the likelihood ratio statistic derived from the
modified or conditional profile likelihood seems to be more nearly approximated by a
x? distribution (when there is a single parameter of interest) than is that derived from
the profile likelihood. The construction of these likelihoods beyond simple cases is an
open question, however. '

In this paper we propose an alternative simpler approach to this problem. Our goal
is to adjust the profile log-likelihood so that the mean of the score function is zero and
the variance of the score function equals its negative expected derivative matrix. In the
terminology of Godambe (1960) and Lindsay (1982), our goal is to adjust the profile
log-likelihood score function so that it is unbiased and information unbiased. The
hopeis that, by making these adjustments, the asymptotic behaviour of the quantities
derived from the likelihood (e.g. its maximizer, information matrix and confidence
sets) will be improved. However, as we state in Section 6, we have no strong argument
to support this claim. In addition, like the profile likelihood, our adjusted profile
likelihood is not a likelihood in the usual sense and hence does not correspond to
densities of observable events.

We discuss both exact and approximate methods for the calculation of the adjust-
ments. The exact calculation is achieved, in principle at least, through a simulation or
‘parametric bootstrap’ process in which the moments of the profile log-likelihood
score function are estimated by parametric bootstrap sampling. The moments are
computed at each value of the parameter of interest, with the restricted maximum
likelihood estimate used for the nuisance parameters. The estimated moments are
then used to centre and rescale the profile log-likelihood score function. The approxi-
mate adjustment uses first-order asymptotic expressions for the cumulants of the
derivatives of the profile log-likelihood score function.

The adjusted log-likelihood is given by the integral of the adjusted score function.
The result, which we call the ‘adjusted profile log-likelihood’ (/,, (¥)), is parameteriza-
tion invariant and, in the examples that we discuss, seems to correct the profile log-
likelihood in a similar manner to the modified and conditional profile log-likelihoods.
All that is required for the exact computation of /,, is a routine for calculating the pro-
file log-likelihood and its first two derivatives, and a routine for sampling from the
estimated probability model. Thus the method can be applied to complex models in an
‘automatic’ way. However, of the order of 1000 profile log-likelihoods need to be
computed and hence the workload could be prohibitive in some problems. In addi-
tion, if no explicit form exists for the profile log-likelihood (and this is not
uncommon) the computational challenge might be substantial. We have not yet
tackled such a case.

In Section 2 we introduce notation and define the conditional and modified profile
log-likelihoods. Section 3 defines the adjusted profile log-likelihood and gives the
bootstrap algorithm for its estimation. Section 4 discusses the first-order approxima-
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tions and Section 5 contains some examples. In Section 6 we discuss some heuristic
justifications for the procedure.

2. PROFILE LIKELIHOOD AND SOME MODIFICATIONS

In this section we establish some notation and review the modified and conditional
profile likelihoods. We begin with a random n sample of d vectors %'=(Y;,...,Y,),
each Y; independently and identically distributed with density fy(y, ). The param-
eter 6 can be partitioned as 8 = (¥, A\) where ¥ = (¥, ..., ¥,) is the parameter of
interest and A = (A, . . ., A,) is the nuisance parameter. The log-likelihood is denoted
by /(0).

Denote by 8 = (¢, \) the overall maximum likelihood estimate. Let /, denote the
maximum likelihood estimate of y for fixed A\ and similarly 7\,,,. The profile log-
likelihood for ¥ is defined by

L) =1, Ny).

Log-likelihoods are defined only up to additive functions of the data, but since we
shall be dealing solely with its derivatives there is no need to make this definition more
precise.

For the single parameter of interest case (r = 1) the conditional profile log-
likelihood (Cox and Reid, 1987) is defined by

lcp(‘p) = l(\[/9 ’}\w) - % lOg{det nj)\)\(‘p’ ’}\\l/)}

where j (¥, 7\‘,) is the observed information per observation for the A components.
This definition requires that ¥ and \ be orthogonal in the sense defined by Cox and
Reid, i.e. E(—3%l/90y dN\;) =0for j=1,2,...,p. Thisis one of several similar defini-
tions given by Cox and Reid; it corresponds to their expression (10) and is probably
the most easily computable definition of all. The interpretation of the correction term
in /., (¥) is that it penalizes values of y for which the information about X is relatively
large. The derivation of /,,(¥) uses a double-conditioning argument as well as several
approximations with error O,(n-!), including Barndorff-Nielsen’s (1983) formula
for the distribution of the maximum likelihood estimator. A simple alternative deriva-
tion can be derived via Bayesian arguments (Sweeting, 1987; R. Kass, personal com-
munication). Given orthogonal parameters ¥ and A, if independent priors are
assumed, then the ratio of the marginal posterior for y to the prior for y equals
exp /., (V) to order n-1. This result holds regardless of the prior assumed for A.

The modified profile log-likelihood (Barndorff-Nielsen, 1986) is defined by

L @) = I(Y, Ny) — 1 log{det nj (¥, \,)} + log{det(d \,/7d \)}

This definition does not require the orthogonality of ¥ and A; the last term on the
right-hand side can be thought of as a correction for non-orthogonality.

3. SIMPLE ADJUSTMENT
Denote the score function derived from the profile log-likelihood by

2,

UW) = 3y p(¥).
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A basic property of regular maximum likelihood score functions is that their mean is
zero, and their variance is minus their expected derivative matrix, expectations being
computed at the true parameter value. Since we are interested in the profile log-
likelihood, we seek to adjust U(y) so that these properties hold when expectations and
derivatives are computed at (¥, A;) rather than at the true parameter point. For
simplicity we consider the single parameter of interest ( = 1) case here; we give details
of the general case later in this section.
Consider functions m(y) and w(y) and let

W) = {UW) - mW)}w).
Then we require
E,x, OW)=0 (1)
vary 3, (TW) = —Ey 5, % Tw) @

for all v, the subscripts indicating that expectations are computed under (¢, N).
Solving for m(y) and w(y), we find

m(¢) =E, ; U)

Wi = [~ Eu, 35 b+ 55 o) / var, 5, (UW)).

Finally, let

Vo
L =| O a, &)

the ‘adjusted profile log-likelihood’ for y. The exponential of this function will be
called the ‘adjusted profile likelihood’.
The required ingredients for the computation of /,,(¥) are

92
E, L and — m

gz b ) a¢ W)
All these involve expectations with respect to fy(y, (¢, 7\‘,)). Sometimes these
expectations can be computed analytically, as in several of the simple examples given
later, but in general we must resort to Monte Carlo simulation. The algorithm for
computing /,,(¥) is as follows.

(@ Compute /,(¥) and 8, = (¥, \,).
(b) For each value ¥ over a grid
(i) sample B times from fy.(y, 0¢), let I¥(¥) and u}(¥) be the profile log-
likelihood and score function from the Jth bootstrap sample,

mW)=E, 5, UW),  var, s (UG,

(i) let
@) =3 W WVB, L@ = Za—l*(w)/
2 VB, gt ek
(wr @)~ m@)y

W) = [ 2w+ mw/)} / >

Yz P Y B
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(¢) Set

¥
@)= | (o - mowo a.

In the next section we derive a first-order approximation to m(y). This approxima-
tion is reasonably simple and may be satisfactorily accurate in many problems.

The problem of setting confidence limits for y, treating A as a nuisance param-
eter, is invariant under non-singular transformations that preserve y, namely
0—0'=’', N\'), where

V=9, N=g ), @)
where g(-, ¥) is invertible for each fixed y. The profile log-likelihood /,(Y) is also
invariant under this group of transformations. Hence the adjusted profile log-
likelihood is invariant. The main implication of this result is that confidence regions
based on /,(¥) are unaffected by the parameterization of A, in contrast with equation
(8) of Cox and Reid (1987) which requires orthogonality. However, orthogonality is
often convenient for the computations, as will be seen in some of the examples.

If m(y) = 0, the maximizer ¥ of /,,(¥) equals the maximum likelihood estimate v,
i.e. the procedure may reshape but does not shift /,(y)) when E,, A U®W)=0forall y.
In contrast, if m(y) # 0then /,,(¥) may differ in locatlon from/ (¢) evenif w(y) = 1.

If Y has r > 1 components, then the adjusted profile log-hkehhood can be
generalized in a straightforward manner although its computation will be more costly.
Wetake U(y) = w(y) {UW) - m(t,b)} where U(y), U(¥) and m(y) are column vectors
W), =©0/0¥;)1,(¥)), and w(¥) is an r x r matrix. The conditions determining
m(y) and w(y) are the same as equations (1) and (2), except that they now involve
r x 1 vectors and r x r matrices respectively. The solutions are

my)=E, 5, UW)

02
W) = vary, s WO [ =y, 55 b + 3o m)]
To compute these in general we would need to simulate over a grid in 7~-dimensional

space.

One additional difficulty that occurs only in the multiparameter case is that in
general dU,/0y* # dU,/3y". Consequently, in general there is no function /,,(¥)
having gradient vector U,.

Remark 1. Our present implementation of the algorithm treats only the r=1
case. We use a grid of 40 equally spaced ¥ values and B = 25 bootstrap samples at each
of these values. First differences are used to estimate the derivative of m(y), and a
trapezoid rule is used to estimate the final integral. Programming was done in the new
S language (Becker et al., 1988). A typical computation of /,,(y) took about 20 son a
SUN 3/160 computer. A Fortran implementation would run considerably faster.

Remark 2. 1t is interesting to examine why the expectation of the profile log-
likelihood is not zero in general, and similarly why the variance of the score does not
equal minus the expected derivative of the prefile log-likelihood score. Consider a log-
likelihood

19) = 2. 1og fv(»; 0).
1
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Let

f5(7,6) =1f[ F1(7a 6).

Then the usual proof of E,d/(6)/90 = 0 goes as follows (see, for example, Silvey
(1975)).

£, 20 _ [0 f0(5,0) ay
/) 50, 0
= ,0)d
| £k iy 50 0) @

d
= 'g%f?/(y, 0) dy

d
= %Sf?/(y, 0) dy

-9,
30

= 0.

Sufficient regularity is assumed to allow the 1nterchange in the second to last step.
Now if /() is instead a profile log-likelihood, i.e. /(6) = I({, )\‘,), then the expression
corresponding to the second line of the proof is

S 0/0y) fsO*, W, )
fo(y*, (¥, N}))

where we have introduced the asterisk notation to indicate quantities that involve the
arguments of 1ntegrat10n y,*. As can be seen, the necessary cancellation does not
occur. The point is that )\‘p is a function of the data and this brlngs in a new source of
randomness into the expectation. A similar phenomenon occurs in the usual proof of
vary(31(0)/360) = — Ey(3%1(6)/362).

fo(y*, (¥, N)) dy*

3.1. Example 1: Many Normal Means
In this problem we observe n data pairs (Y}, Y;,) witheach Y;; 1ndependently distri-
buted N(u;, 62), 02 being the parameter of interest. The proflle log-llkehhood is

1,(62) = —n log ¢? — 52/2?

where 52 = Z7(y;; — ¥i2)?/2. The maximum of /,(¢?) is s2/2n, an inconsistent estimate
with expectation ¢2/2. The modified profile log-likelihood is easily derived as

Ip(02) = — (n/2) log 02 — 52/20?

which is identical with the conditional profile log-likelihood. The marginal log-
likelihood of s also equals /,,,(¢2). The maximum of /;,;,(02) is s2/n which is unbiased
and consistent.

Because of the simple nature of this problem, we can carry out the exact adjust-
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ments exactly. The adjustments turn out to be m(g2) = —n/202, w(o2) = 1 and thus
l,5(g?) agrees with the marginal log-likelihood as well.

4. FIRST-ORDER APPROXIMATION FOR ADJUSTMENTS

The derivatives of /,(¥) may be written in terms of the derivatives of /(y, \) at the
true parameter point as follows.

al, @ 5
B o
a/ 2 . 1 03 <
=30 T TN e (T

Under the usual regularity conditions in which the joint maximum likelihood estimate
is consistent, the first three terms in this expansion are O,(n!2), O,(n"/?) and O,(1).
The remainder terms are O,(n~12). The first term has mean zero but the remaining
two terms have expectation O(1) under the same regularity conditions.

In calculating the bias correction it is most convenient to use index notation
explicitly. The components of y are denoted by y” and the derivatives of / with respect
to ¢ are denoted by

2
U= 531‘9 Us= a—l
¢r a‘pr a‘ps

The components of \ are denoted by N/, N/, . . ., and the derivatives with respect to
A are

K oo =P
N’ Y7 N oN " 8y N

etc. For the cumulants of these derivatives we use the notation of McCullagh (1987),
chapter 7. Thus

U-=

k,=EU)=0, k;=E(U) =0,
Kps = E(Urs) = —Kr,ss Kri = E((]n) = _COV((]I" (]1)9
kr,ij = cov(U,, U;)

etc. In addition «*/ denotes the matrix inverse of «; ;.
From equation (7.10) of McCullagh (1987) we have

N, — N = ki Uj + ki kb1 Uy, — k) Uy + 3605 U U + O (n=1). ©)

The sample size does not appear explicitly here but is incorporated into the random
variables and the cumulants. Thus «; ;= O(n), «>/ = O(n~') and

KiTk = bV DI kK g = O(n~2).

On substituting equation (6) into equation (5) and taking expectations, we find

a/ 1 T .
E( - ) = — 3 (ke ij — K kb k1)K — 3Ky, i = K kK )6+ O (T)

oy
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The leading terms are both O(1). Details of the derivation are given in Appendix A.

The first-order bias correction (7) is remarkably simple. First it involves only the
first derivative with respect to ¢ and the first two derivatives with respect to A. Inter-
mediate calculations leading to equation (7) did involve third derivatives as in equa-
tion (6), but these were subsequently eliminated using Bartlett’s identities. There is a
formal similarity between equation (7) and the expression for the bias of the
maximum likelihood estimate given in McCullagh (1987), p. 209, although the latter
has no explicit recognition of nuisance parameters.

It is easy to give a simple description of the components of equation (7) using the
following random variables:

V,=U, - BiU;= U, - &, k"1 U,
Qu = (/i(]jKi’ja ®
Q; = (Uy — «;;)«i = Uy chJ + rank (k7).

Thus V, is the residual ¢ derivative after linear regression on the A derivatives; Qy; is
the quadratic score statistic for A and Q, is a linear function of the second derivatives
with respect to A. In terms of these we have

5(5)

The expectations are computed at the true parameter point (¥, A) and hence the biasis
a function of both parameters, not just ¥ alone. In practice these quantities are com-
puted at (¥, Ay).

Of the three statistics listed in equation (8) only V,and Q,, are invariant with respect
to mappings of the form (4): Q, is not invariant. However, cov(V,, Q,) is invariant, so
that equation (9) is an invariant expression for the first-order bias.

A further simplification can be made in the special case of exponential family
models. For the remainder of this section, we suppose that, for each fixed y, the log-
likelihood for A is a full exponential family model in which the dimension of the
sufficient statistic equals the dimension of A. In that case it is possible to reparam-
eterize \ so that Uj; is a constant. The required parameterization is called the
canonical parameterization. It follows then that Q, = 0. Hence the required first-
order bias correction reduces to

—%COV(Vn Q) - % cov(V;, Qi) + O(n~1)

1 _ )]
= —5cov(V, Qi+ @)+ O(n?).

E(:‘l;,) =- %COV(V,, On)- (10)

It is not necessary here that the joint likelihood should be of the exponential family
type: see example 8 later.

The variance adjustment is more complicated: we only give the first-order expres-
sion for a full exponential family. The covariance of the profile log-likelihood score is

al, 9l e
ov <6¢p’ , a—;y) = K5 — 3Kr i j Ks k1 KPKKDT+ O(n-Y). - an
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The first term is O(n) and the second term is O(1). This derivation is similar to that for
the mean adjustment and is not given here.

Now k. s = cov(V,, ¥;) which equals the residual covariance of 61/8¢' after linear
regression on (3l/dN, a8l/dNJ,...). Interestingly, expression (11) is the residual
covariance of dl/dy" after quadratic regression on (3//3N, 3l/9N/, . . .). Hence to this

order
ov (i’v— O, ) < K
oy, Y,

i.e. the difference is non-positive definite.
For a single parameter of interest and a single nuisance parameter we have

2 3
=5 (2 9B) _gp (%)
o Bx,b N N

The numerator of the variance correction is given by

a (adl,
E{ ¢ <a¢’ br)} = Kr,s — ;KI‘SIKjkIKI ijI 2Krlesk1Klejl+O(n-1) (12)
where b,= — 3k, k", the (simplified) first-order bias expression for the full
exponential family case. The first term in equation (12) is O(n) and the remaining
terms are O(1). For a single parameter of interest, we can put all this together easily
and we find that the adjusted score function has the form

0w =(1- %) (5 ) +o0r

- A oy
al 621 ’ A (13)
=—2 _p+ — )+ -1
a‘pr - 6¢ (Kr s A2> Op(n )

where A, = x,s,x,k,lc’lx’”and A, =1 2Ke i Ks, ke, 1KP K KD,

5. FURTHER EXAMPLES

5.1. Example 2: Normal Variance, Mean Unknown
The problem of normal variance and mean unknown is similar to the many normal
means problem, except that the differences between the various likelihoods disappear
asymptotically because the number of nuisance parameters remains fixed. Given a
sample y;, s, . . . ¥, from N(u, 02), the profile log-likelihood is

I,(0?) = — (n/2) log 0% — 5%/20?

where 52 = 27(y; — ¥)?. Its maximum occurs at 62 = s2/n. The modified and condi-
tional profile log-likelihoods replace the 7 in the first term by n — 1 and thus correct
the bias in 2. They are also equal to the marginal likelihood for s2 and to the condi-
tional log-likelihood given y. It is easily shown that /,,(¥) equals /.;,(02) and /,,(0?) as
in example 1. As an example of the invariance of /,;, suppose that we use A = . + ¢2in
place of the complementary (orthogonal) parameter p. Then the profile log-likelihood
I,(0?) is unchanged, and the mean and variance of the profile log-likelihood score
statlstlc a function only of s2 ~ ¢2x2, are also unchanged.
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The first-order approximations are straightforward to work out. Since d//d¢2 and
dl/9pu are uncorrelated, we have V = d//d0? using the notation in equations (8).
Further, 3%//du? = constant, so that equation (10) gives

— 3 cov(V, Q) = —1/2¢2

Also, the components of the variance correction in equation (13) are A; =0 and
A, = 1/202. The adjusted profile log-likelihood derivative is then

%_{_L__n—l _ (n—1)s?

do2 202 202 204

which gives the same adjusted log-likelihood as before.

5.2. Example 3: Normal Mean, Variance Unknown
The profile log-likelihood in the problem of normal mean and variance unknown
is —(n/2)log(s?/n) — n/2, where s?=X}(y;—p)>. The conditional profile log-
likelihood is

—{(n—2)/2} log(s,f/n) —n/2— % log(n/2).

The corresponding likelihood ratio statistics are n log{l + n(y — u)*/s?} and
(n —2)log{1 + n(y — n)*/s?}, both monotone functions of the usual ¢-statistic. It is
easily checked that the conditional profile log-likelihood ratio statistic has the correct
scaling in the sense that its mean equals 1 + O(n~2) as opposed to 1 + O(n-?!) for the
profile log-likelihood ratio statistic.
Now E U(u) =0,
n2 T'(n—2)/2) n2 1
ar(U =— = — ,
vl = 32 — T2y~ o n—2

and E 9%/,(n)/9u? = n/o?. Hence the adjusted profile log-likelihood /,,(u) approxi-
mately equals the conditional profile log-likelihood.

Remark 3. It is interesting to consider whether we could use some other log-
likelihood (instead of the profile log-likelihood) as the basis for deriving an adjusted
log-likelihood. We might want to do this in cases where the profile log-likelihood is
difficult to compute. An obvious candidate to use in place of the profile log-likelihood
isl(y, >\), i.e. to fix A at its overall maximizing value. The simplest problem in which

)\‘,, varies with ¢ (so that /,(¥) # I(¥, \)) is probably the normal means problem of
example 3. Carrying through the adjustment procedure with /({, \) in place of /, ()
gives

2

2sz’

not equal to the marginal log-likelihood given earlier. Perhaps some other approxi-
mate profile log-likelihood would produce better results, but we have not investigated
this further.

lpy(¥)=— 3 log 52 —

5.3. Example 4: Weighted Normal Mean
Suppose that we have g independent normal samples, with variance o7 and n;
observations in the jth sample. The parameter of interest is the common mean p. Let
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y; and S; be the sample mean and residual sum of squares from the jth sample. The
profile log-likelihood for u is

L nm -
b(w) =2 — S} log{s; + m;(3; - w)}.
1

The conditional profile log-likelihood (given in Cox and Reid (1987)) replaces the first
n;in this expression by n; — 2. The score function from the profile log-likelihood is

i} 2 Vi—w

Up)=2,1; = .

T S+ (3 — p)?

The mean of U(yp) is zero; this implies that the estimate derived from /,,(u) will be the
same -as the maximum likelihood estimate g, which is not true in general for the
maximizer of /,, in this problem. The variance correction factor can be shown to be
approximately equal to

L] n
Z ojz /Z af(nj— 2)
Thus, when the 7;s and the o7s are equal, the adjusted profile log-likelihood approxi-
mately equals the conditional profile likelihood. Otherwise they are different.

We consider an example with g = 4, sample sizes 3, 4, 7 and 15, and standard devia-
tions 1, 2, 5 and 8. Fig. 1 shows a typical result from a data set generated from this

° 7 cﬁpea
ccap ﬁa
c a ¢
cc a a
¢ aa P pca
N - c a
c
c aa p cd
g ccaa a
£ p PCa
$ A c? a
= < c& p [
8 ga c a
) Ss P p a
ea c 2
p a
? 1 as c a
ac P P a
c ¢ a
P c a
° 8
T T T T
-4 -2 0 2
u

Fig. 1. 2{log-likelihood — max(log-likelihood)} for log-likelihoods in the weighted normal means
problem: p, profile log-likelihood; c, conditional profile log-likelihood; a, adjusted profile log-
likelihood
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model. The ‘p’ represents the profile log-likelihood /,, the ‘c’ the conditional profile
log-likelihood /., and the ‘a’ the adjusted profile log-likelihood /,,. Both /., and /,, are
wider than /,, to account for the estimation of the variances. To investigate further,
we ran a small simulation. For each of 1000 samples we computed the quantities
| w(0) — w(0)|, w(0) denoting the true log-likelihood ratio statistic obtained by
setting the variances equal to their true values and #(0) the log-likelihood statistic
from either /,, /., or /,,. The quartiles of this quantity for /, were (0.12, 0.45, 1.53), for
/5 (0.10, 0.33, 0.90) and for /,,(0.09, 0.32, 0.87). The Monte Carlo standard error was
about 0.03. We see that both the conditional and the adjusted profile log-likelihoods
produce a log-likelihood ratio statistic that is considerably closer to the true log-
likelihood ratio statistic than is that from the profile log-likelihood. Fig. 2 displays the
various log-likelihood ratio statistics plotted against the true log-likelihood ratio
statistic, for the first 200 simulations. The profile log-likelihood ratio statistic is often
too large, a problem alleviated to some extent by the adjusted and conditional profile
log-likelihoods.

5.4. Example 5: Gamma Distribution
The parameter of interest is the shape parameter y; calculations are most con-
veniently carried out by taking A = EY as the complementary parameter, A being
orthogonal to ¥ (Cox and Reid (1987), section 3.2). Then the density of Y is

(A) Vv yvlexp(—¥y/N)
¥ r'e) '
A, = for all . The profile log-likelihood is

L) =nylogy—nylogy+ @y —1) > logy,—ny —nlogT(¥).
1

prof log-lik ratio
-10
adj prof log-lik ratio
-10
cond prof log-lik ratio
-10

15
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-20
20

-6 -4 -2 0 -6 -4 -2 0 6 -4 2 0

(a) true log-lik ratio (b) true log-lik ratio (c) true log-lik ratio

Fig. 2. Plots of log-likelihood ratios derived from (a) /,, (b) /,, and (c) /,, versus the true log-likélihood
ratio, for the many normal means problem: , 45° line
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The conditional profile log-likelihood is

ley() = [,() — 3 log ¥

If we use the standard approximation I''(k)/T'(k) = log k — 1/2k, then it can be
shown that m(y) = 1/2y, w(¥) = 1 and thus /,,(¥) = /,(¥). The term % log Y can be
viewed as a ‘one degree of freedom’ adjustment, analogous to the normal variance
problem (Cox and Reid (1987), section 4.2.3; McCullagh and Nelder (1983)).

5.5. Example 6: Binary Matched Pairs
Assume that we have n pairs (Y}, Y;;), with Y;; equal to zero or unity, and the
success probabilities ;, 7, satisfy

loglt ™ = x,',
logit Ty = )\,- + ¢.

The log-odds ratio ¢ is the parameter of interest and the \;s are nuisance parameters.
Let a, b, ¢ and d denote the number of pairs of the form (0, 0), (0, 1), (1,0)and (1, 1)
respectively, with @ + b + ¢ + d = n. The standard conditional log-likelihood for this
problem is formed by conditioning on Y;; + Y}, and is given by

I.(W)=cy —(b+c)log(l +expy).

Only pairs of the form (1, 0) and (0, 1) enter the conditional log-likelihood. The pro-
file log-likelihood is

L) =3(c— b)Y — (b +c)log[{1 +exp(¥/2)}{1 + exp(—¥/2)}].

Barndorff-Nielsen (1986) gives a formula for the modified profile log-likelihood
whena=50=0:

lnp(W) = %(c — b)Yy —3(b +c)log{exp(y/4) + exp(—y/4)}.

The adjustment factors for the computation of /,,(¥) can be worked out analy-
tically and involve cumbersome expressions. For small y the following expressions
can be derived:

alggp) =22y - Y oy,

alzpiw) Sboey. % + O "
al,,;/fxﬁ) _b ; €y- % + OY2);

A A

Thus both /,,(¥) and /,,,(¥) adjust the maximum likelihood estimate in the correct
direction, but only half of the way.
The approximate bias correction is equal to
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_ (1 — my) woi(1 — ) (my; — )
1 {mu(1 — m,) + mu(l — ) }?

and when this is evaluated at N\, we obtain

_1 exp(—¥/2) _ _exp(y/2)
7 @9 {1 Texp(—v/2) 1+ exp(wz)}'

For small ¢ this gives the same expression as d/,,(¥)/dy in equations (14).

To compare the log-likelihoods we consider an example. Suppose thata =0, b =0,
¢ =13 andd = 7. Then the maximizing values of /.(¥), [,(¥), In,(¥) and /,,(¥) are 0.62,
1.22, 0.82 and 0.83 respectively. Fig. 3 displays the various log-likelihoods.

5.6. Example 7: Exponential Regression
Suppose that we observe Y|, Y,,... Y, from the exponential distribution with
mean A exp(— ¥z;), the regression slope y being of interest. Following Cox and Reid
(1987), section 4.2.2, we assume that X z;=0 which implies that ¥ and A\ are
orthogonal. The profile log-likelihood is

L)) = —nlog D y;exp(¥z;).
1
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Fig. 3. 2{log-likelihood — max(log-likelihood)} for log-likelihoods in the matched pairs example: p,
profile log-likelihood; c, conditional log-likelihood; m, modified profile log-likelihood; a, adjusted
profile log-likelihood; the modified and adjusted log-likelihoods are very close and are much closer to the
correct conditional log-likelihood than is the profile log-likelihood
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The conditional profile log-likelihood replaces » by n — 1 while the modified profile
likelihood replaces n by n — 2. As a result, all three log-likelihoods produce the same
estimate but /,(¥) and /,,(¥) make one and two degree of freedom adjustments
(respectively) to the estimate of its precision. A simple calculation shows that
EU®WY) = 0, E{UW)}? = X1z},

E@/3y?),(0) = — {n/(n + 1)} i z7,
1

all expectations taken with respect to parameters (Y, 7\\,). Thus [,(¥) =
{n/(n+ 1)} I,(¥), and we find that /,,(¥) adjusts /,(y) by a lesser amount than do /., (/)
and /,,,(¥). However, the factors differ by O(n~2) while the factors themselves are of
size O(n—Y).

5.7. Example 8: Normal Covariance Function Estimation
Suppose that Y ~ N,{XB, Z(y)} where ¥ is the parameter of interest and 3 is a
nuisance parameter. The profile log-likelihood for  is

l(¥) = — 7 log(det 2) ~  0o(R)
where
O,R)=YTE-1Y - YT IX(XTZ-1X)-1XT3-1Y
is an invariant function of the residual vector
R={I-X(XTZ- 1 X)"1XTX-11Y.
The marginal log-likelihood based on any set of contrasts or residuals R is
h(¥) = — 4 log(det 3) — £ log{det(XTZ-1X)} - 1 O,(R),
which differs from the profile log-likelihood through the bias correction term
— 3 log{det(XTZ-1.X)}.
The derivatives of the full log-likelihood are

al
= XTS-1(Y —
38 XT3-1(Y - XB)
al D
agr =~ 15— (V5= XEB(Y' =~ Xi6*) T By} DY,

where 2% are the components of 2, 2;; are the components of the inverse and
DV =93%i/ayr.

The exact corrections are difficult to derive but the first-order expressions are fairly
simple to derive. For each fixed ¢, this is a full exponential family model. Hence
application of equation (10) gives

E(gé’) ~ —DI{S-1X(XTE-1X)- 1 XTE1},

1 0
o 1 XT -1 .
> og{det(XTX-1X)}
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Thus the first-order bias-corrected profile log-likelihood is
L) — 3 log{det(XTZ-1X)},

which is identical with the marginal log-likelihood of the residual vector R, also called
the restricted log-likelihood for ¢ (Harville, 1974, 1977).

5.8. Example 9: Comparison of Two Binomial Probabilities
Suppose that Y, ~ B(m,, ), Y, ~ B(m,, m,) are independent random variables
with

logit 71, =N + ¢,
logit m, = A.
The full log-likelihood is
YiIAN+Y) + 3N — m; log{l + exp(\ + ¥)} — m, log(1 + exp N\)

and the derivatives are

al
w=.l’1—mlexl30\+¢)/{1+CXP()\+¢)}=J’1—M1
o

aN Yi— 1+ — po.

The maximum likelihood estimate \,, satisfies
S Oma— &
Bim= ),
pia(my — fr)

where
Ay = () = m; exp( N +¥)/{1 + exp( 7‘¢ +¥)},

and similarly for f,(¥).
From the calculations in Section 4 we find that the first-order expectation of 3//dy
evaluated at A, is

al, o303
< oy ) @Grodpr ™
when o} = m;7; (1 — m,) and similarly for ¢3. Thus the bias-corrected log-likelihood
derivative is

=)+ (7t — 1) (15)

@1+ 33y
with 61 = m; #,(1 — #,). We now show that expression (15) is approximately equal to
the derivative of the conditional log-likelihood for Y, | Y ..
The derivative of the conditional log-likelihood is
al,

oy

=)1— ﬂc(‘//)
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where p.(¥), the conditional mean of Y, given Y, satisfies

#c(¢){m2 —J. + /"c(‘//)} + KZ(‘L) =
. = e WHm — p @)} + k2 ()

with k,(¥) = var(Y| Y). Thus, for small  and for large m, and m,,
pe(¥) = fiy + K9/ (my + my) + O(Y?)

Kk, = 0203%/(0% + 03)

and
2 .2
A 0103 al
- [ i — — =-—-F|—2 .
I"'c(lp) K1 (0'% + 0'%)2 (7r1 7rZ) (a‘p)

In other words, the first-order bias correction approximates the conditional log-
likelihood derivative.

5.9. Example 10: Ratio of Normal Means
For the ratio of normal means we observe that Y, ~ _#(n,, 1/n), Y, ~ _#(n,, 1/n)
and we would like to make inferences about y = 7,/7,. The radius A = V(% + 53) is
orthogonal to . The profile log-likelihood is

lp(‘p) =

_ n
2(1 + y¢2?)

We could argue that this is a reasonable log-likelihood because the corresponding log-
likelihood ratio statistic is the square of the Euclidean distance between (y,, y,) and
the level curve C, = {(n;, 12); n2/n; = ¥}. This distance is easily seen to be distributed
A0, 1) and thus the log-likelihood ratio statistic is exactly x?. The likelihood
intervals also agree with those derived by Fieller (1954) and Creasy (1954).

We can easily check that /,,(¥) = /,(¥), i.e. that the correction term is zero. How-
ever, A = logvV(n? + 72) (say) is also orthogonal to y and results in a conditional pro-
file log-likelihood that is different from /,(y), by a term of magnitude Oy(n~1). A
fairly cumbersome calculation shows that £ {d/,()/dy'} = 0 and the variance correc-
tion is w(¥) = 1 + O(n-1'). However, the likelihood ratio statistic from l,,(¥) can be
shown to differ from that of /,(¥) by only O,(n-!). Kalbfleisch and Sprott (1970) dis-
cuss some other likelihoods for this problem.

Uy — )%

6. JUSTIFICATION OF ADJUSTED PROFILE LIKELIHOOD

One justification for the adjusted profile likelihood can be found in the theory of
optimal estimating equations. In particular, unbiasedness of the estimating equation
essentially guarantees consistency, and the condition on the derivative matrix guaran-
tees asymptotic optimality within a limited class of estimating functions. For further
details we refer the reader to Godambe (1960), Godambe and Thompson (1974),
Lindsay (1982) and Godambe and Heyde (1987).

A more obvious heuristic justification for this procedure is that the resulting score
statistic for ¢ would have approximately the appropriate mean and variance, which is
important for establishing large sample results for maximum likelihood estimates and
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the likelihood ratio test. Hence we argue that the centring of the profile log-likelihood
score function should improve the consistency of the maximizer of the likelihood,
while the rescaling should improve the second-derivative approximation to its
variance and the chi-square approximation to the distribution of the log-likelihood
ratio statistic. We have no strong argument for this claim, but only the following
heuristics.

In more detail, the construction of the adjusted profile log-likelihood is based on
the requirements

—~

Ey, U =0, (16)

vary,», (OW) = - By, % oW a7

for all ¢, where U®Y)={U (xﬁ) m(y)}/w{). To study further whether these
requirements are reasonable, it is useful to consider two separate cases: problems for
which the maximum likelihood estimate ¥ is inconsistent and problems for which it is
consistent. Throughout let (¥, Ao) denote the true values of the parameters.

In inconsistent cases, E‘, r (070¥)[,(¥) # 0 and requirement (16) attempts to
correct it. However, requlrement (16) ensures that the expectation of the score with
respect to parameters (¢, N), rather than (Y, o), is zero. Thus for ¥ (the maximizer
of /,,(¥)) to be consistent, we need either )\¢ — Ao or that the moments in require-
ments (16) and (17) do not depend on A. If either of these holds, requirement (17)
ensures that the log-likelihood is calibrated correctly in the sense described in Section
3. Typically, however, the first of these conditions will not be satisfied, since in cases
when ) is inconsistent the dimension of A tends to infinity. An example is the many
normal means problems in which the estimates of the pairwise means are not con-
sistent. However, the second condition will be satisfied when /,,() corresponds to a
marginal log-likelihood for . This is the case in the many normal means problem.
Beyond this, it seems difficult to Justlfy l,(¥) in inconsistent cases. For example the
consistency of ¥ in the matched pairs example is an open question.

In cases for which ¢ is consistent it is of interest to compare the adjusted profile
log-likelihood with the conditional profile likelihood of Cox and Reid. We are able to
make this comparison only in the special case of exponential family canonical param-
eters. In Section 4 we showed that in that case the bias correction for the score is
b, =— K, i, j k4. Now the profile log-likelihood correction given by Cox and Reid is

3 log{det nju (¥, X))} (18)

where jy, is the observed Fisher information per observation for the A components. It
is easy to show that the derivative of expression (18) is b,. Hence examination of equa-
tion (13) reveals that the adjusted profile log-likelihood score differs from the condi-
tional profile likelihood score by the additional O(1) term

A al,
Krs — A2 a‘//r '
This expression is zero in the normal and Poisson cases, but not in general.
It is interesting that the adjusted profile log-likelihood, like the conditional profile

log-likelihood, seems automatically to make the Bartlett adjustments in the Gaussian
problems considered earlier. We have not investigated whether Bartlett adjustments
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might improve the x? approximation to the distribution of the log-likelihood ratio
statistic from /,,(y).
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APPENDIX A: DERIVATION OF ASYMPTOTIC APPROXIMATION FOR MEAN
ADJUSTMENT

The Taylor expansion for the profile log-likelihood about the true parameter point is

L) =1, \) = sup [(¥, M)

al 1 34
= —_ 2
l(¢,>\)+a)\( >‘)+2a>\2(>“‘ A2+
Differentiation with respect to y gives

al, i) <

7 wl(l//, A y)

al *l . 1 0 . i) 2 N
=—t+t——=— (N N+m—= (AN, =N+ ...+— s y) —2.

Under the usual regularity conditions for large n, the first three terms are O, (n'/?), O,(n'’?) and
O,(1) respectively. The first term has zero mean but the remaining two have mean 0(1) if )‘w is

a con51stent estimate of A.
Using index notation with r denoting components of Y and i, j, k, . . . denoting components

of Nand \,, we have
al,
W—U+U()\' N) + U (N = N)(W = M) +.

N are the components of A, not the components of the overall maximum likelihood estimate.
The expansion for N/ — N/ in terms of log-likelihood derivatives is

)\ )\'—K’/U+K’ ijl( ik — jk)(jl KukU Uk

where k; ; are the components of the Fisher information for A with y fixed and «*/ are the com-
ponents of the inverse matrix. On substituting these into the expansion for d/,/3y" we find

i,
a\b’ r ri

The expectation of this expression is

“U + kb Ik (Uy — k) Uy + %Kijk(jj U} + %(Jrijxi'kKjJUk(jI + O, (n~172).

al
p _ . i) j ok, 1 _
E(th’ = Ky ;KM + Kk T gy 3 KKK+ zx,,,x hi+ 0(n=1?)

— _ k, 1 i,j 4 L _ k| i Jj
= (Kri,j K kK "li,j)"""' Z(Krij K kK K/ij)"' ’.
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On using the third-order Bartlett identity

Krij= —Kri,j = Krij = Kpi, j = Kpjis

we obtain finally

al
Pl ~ _1 i ij L i, j
E( = = 3Ky i~ Kk Ky )T — 3 (K — Ky KR K ) K

ayr
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