Conditional prediction intervals for linear regression

Peter McCullagh

Department of Statistics University of Chicago

ICMLA, Florida, December 2009

Outline

- The prediction problem
 - Linear regression model
 - The Gosset measure
 - Prediction without priors
- 2 Empirical studies
- Oetails and summary

The prediction problem

```
Training set consists of specimens/units/objects/instances... u_1, \ldots, u_n Feature values: x_1 = x(u_1), \ldots, x_n = x(u_n) Class/label/response: Y_1 = Y(u_1), \ldots, Y_n = Y(u_n)
```

Test set consists of further specimens/units/objects u_{n+1}, \ldots with feature values x_{n+1}, x_{n+2}, \ldots observed

Problem:

Predict the value $Y(u_{n+1})$ based on data and x_{n+1} Prediction means a prediction interval [L, U] such that $P(Y_{n+1} \in [L, U] \mid \mathcal{K}_n) = 1 - \epsilon$ $\mid \mathcal{K}_n$ means conditional on the data

The linear regression model

```
x_1, x_2, \ldots fixed arbitrary sequence of vectors in \mathcal{R}^k \xi_1, \xi_2, \ldots are iid with cts distn P on \mathcal{R} Y_n = \beta' x_n + \sigma \xi_n (real-valued label or class of unit n) P_{\beta,\sigma} associated distribution on (\mathcal{R}^\infty, \mathcal{F})
```

$$\mathcal{G}$$
 is the group $g=(a,b)$ of transformations $g\colon \mathcal{R}^\infty \to \mathcal{R}^\infty$ $g\colon (y_1,y_2,\ldots) \mapsto (a'x_1+by_1,a'x_2+by_2,\ldots)$ $a\in \mathcal{R}^k,\ b>0$

Events:
$$\mathcal{F}$$
: Borel sets in \mathcal{R}^{∞} \mathcal{F}_n events generated by Y_1, \dots, Y_n $\mathcal{K} \subset \mathcal{F}$: \mathcal{G} -invariant Borel sets $\mathcal{K}_n = \mathcal{K} \cap \mathcal{F}_n$

Remark: All measures $P_{\beta,\sigma}$ coincide on \mathcal{K} .

The Gosset measure

Given the training data $(x_1, y_1), \ldots, (x_n, y_n)$ Given any equivariant estimator $(\tilde{\beta}(y), \tilde{\sigma}(y))$ $z = (z_1, z_2, \ldots) = gy = (a'x_1 + by_1, a'x_2 + by_2, \ldots)$ $\tilde{\beta}(z_1, \ldots, z_n) = a + b\tilde{\beta}(y_1, \ldots, y_n) = a + b\tilde{\beta}(y)$ $\tilde{\sigma}(z_1, \ldots, z_n) = b\tilde{\sigma}(y_1, \ldots, y_n) = b\tilde{\sigma}(y)$

Configuration statistic: $[\tilde{g}(y)]^{-1}(y_1, y_2, ...)$

$$\nu(y_1, y_2, \ldots) = \left(\frac{y_1 - \tilde{\beta}'(y)x_1}{\tilde{\sigma}(y)}, \ldots, \frac{y_n - \tilde{\beta}'(y)x_n}{\tilde{\sigma}(y)}, \ldots, \right)$$

as an infinite sequence

- (i) The mapping ν is \mathcal{K} -measurable and $\mathcal{K} = \sigma(\nu)$
- (ii) The distribution of $\nu(Y_1, Y_2, ...)$ does not depend on (β, σ)
- (iii) The Gosset measure $G(A) = P_{\beta\sigma}(\nu^{-1}(A))$ $A \in \mathcal{F}$

Prediction without priors

Fix significance level $\alpha > 0$ Prediction interval $\Gamma(y) = [L(y), U(y)]$ where $L \colon \mathcal{R}^n \to \mathcal{R}$ $\operatorname{err}^{\Gamma} = \{ Y_{n+1} \not\in \Gamma(Y_1, \dots, Y_n) \}$ Γ is \mathcal{K}_n -valid if $P_{\beta, \sigma}(\operatorname{err} \mid \mathcal{K}_n) = \alpha$ for all (β, σ)

There exists a Gosset predictor Γ such that

$$G(Y_{n+1} \not\in \Gamma(y) \mid \mathcal{F}_n) = \alpha$$
Define $\Gamma' = [\tilde{g}(y)] \cdot \Gamma([\tilde{g}(y)]^{-1}y)$

$$\Gamma'(y_1, \dots, y_n) = \tilde{\sigma}_y \Gamma\left(\frac{y_1 - \tilde{\beta}_y' x_1}{\tilde{\sigma}_y}, \dots \frac{y_n - \tilde{\beta}_y' x_n}{\tilde{\sigma}_y}\right) + \tilde{\beta}_y' x_{n+1}$$

Proposition 1: The interval Γ' is \mathcal{K}_n -valid Proposition 2: The event $\{Y_{n+1} \not\in \Gamma'\}$ is in \mathcal{K} There exists a unique symmetric \mathcal{K}_n -valid predictor

Computation of the predictor

Choose an equivariant estimator $\tilde{\beta}(y)$, $\tilde{\sigma}(y)$ Let $\nu(Y_1, Y_2, \ldots) = (Z_1, Z_2, \ldots)$ The conditional density of $\tilde{\beta}$, $\tilde{\sigma}$ is proportional to

$$f(\tilde{\beta}, \tilde{\sigma} | z_1, \dots, z_n) \propto \tilde{\sigma}^{n-k-1} p(\tilde{\beta}' x_1 + \tilde{\sigma} z_1) \cdots p(\tilde{\beta}' x_n + \tilde{\sigma} z_n)$$

$$f(z_{n+1} | z_1, \dots, z_n) = \int f(z_{n+1} | \beta, \sigma(z_{n+1} | \tilde{\beta}, \tilde{\sigma}) \times f(\tilde{\beta}, \tilde{\sigma} | z_1, \dots, z_n) d(\tilde{\beta}, \tilde{\sigma})$$

Use MCMC to compute the predictive distribution

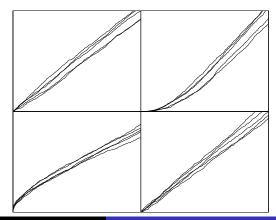
Calibration studies

Error distributions: Gaussian, Laplace, t_4, \ldots

Calibration plots of error rate against $0 < \alpha < 0.2$

Top right: Laplace prediction interval for Gaussian data

Lower left:



Miscellaneous details

The Gaussian case:

coincides exactly with the Student-t prediction interval

Role of the estimator:

All equivariant estimators yield identical predictions

Markov chain implementation:

Consult paper for details....

Calibration and online prediction:

