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Example 1

1.1 Healing of surgical wounds

The data shown in Table 1.1 were obtained in an experiment by Dr. George
Huang of the Department of Surgery at the University of Chicago, the purpose
of which was to investigate the effect of hyperbaric O2 treatment on the healing
of surgical wounds in diabetic rats. (Diabetics, both human and animal, tend
to have more complications following surgery than non-diabetics, and these rats
made the ultimate murine sacrifice by serving as the surgical model for diabetic
effects in humans.) Thirty rats were first given a drug that has the effect of
destroying the pancreas, with the goal of making the rats diabetic. All the rats
underwent surgery, during which an incision was made along the entire length
of the back. This was immediately sewn up with surgical staples, and the rats
were returned to their cages.

The treatment group of fifteen rats was subjected to hyperbaric O2 treat-
ment, i.e., a 100% O2 environment at two atmospheres pressure, for ninety
minutes per day following surgery. The control group also received O2 treat-
ment for 90 minutes daily, but at normal atmospheric pressure. Six rats had
glucose levels that were deemed too low to be considered diabetic, and were
excluded from the experiment. (You may assume initially that these exclusions
are unrelated to the O2 treatment.) After a 24 day recuperation period, the
24 rats still participating in the experiment were sacrificed, i.e., killed. Strips
of skin were taken from five sites labelled A–E on each rat, each site cross-
ing the surgical scar in a right angle. The strips were put on a tensiometer,
stretched to the breaking point, and the energy required to break the speci-
men was recorded. Unfortunately some specimens slipped out of the clamps for
reasons unconnected with the strength of the specimen, and in such cases no
observation could be made: the unmeasured specimens are indicated by -- in
the table. Rats 1–14 received the hyperbaric treatment: rats 15–24 were the
controls.

Handling by humans is known to be stressful for rats, and stress is associ-
ated with poor health and shorter lifetimes. The experiment was designed to
ensure that treated and control rats were handled in a similar manner through-
out the experiment, so that any observed differences between the groups could
confidently be attributed to treatment rather than to differences in the way
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Table 1.1: Strength of skin specimens 24 days after surgery

Site on the back: anterior to caudal

Rat A B C D E Mean

1† 3.8300 7.3788 44.353 19.555 -- 18.779
2 27.861 29.974 15.470 23.455 -- 24.190
3 56.996 60.960 20.306 -- 28.123 41.596
4 -- 38.043 68.080 42.425 30.335 44.721
5 16.276 -- 59.033 73.891 -- 49.733
6 38.267 33.702 35.558 44.598 32.678 39.961
7 9.0384 11.259 27.121 31.984 -- 19.851
8 16.728 27.590 13.238 12.139 6.3865 15.216
9 11.866 27.983 26.226 15.594 19.225 20.179

10 23.352 34.790 27.556 35.883 22.848 28.888
11 16.444 31.928 21.495 15.590 7.0750 18.506
12 23.342 46.313 33.810 15.686 -- 29.788
13 15.267 14.452 10.635 22.156 6.8062 13.863
14 21.732 20.746 12.293 17.295 10.301 16.473

15† 82.508 13.645 49.187 -- 53.432 49.693
16 -- 45.919 63.090 68.137 36.500 53.412
17 80.147 29.943 71.928 -- 46.609 57.157
18 31.938 -- 36.211 49.815 44.468 40.608
19 15.453 31.384 27.127 27.961 9.9035 22.366
20 21.183 27.429 20.058 -- -- 22.890
21 20.445 12.532 15.661 28.694 -- 19.333
22 16.928 59.579 29.407 18.626 8.8352 26.675
23 35.631 21.613 23.155 42.379 16.203 27.796
24 20.523 24.621 16.292 -- 18.680 20.029

Mean 27.534 29.627 31.970 31.888 23.436 29.126

†Rats 1–14 are hyperbaric O2-treated; 15–24 are the controls.
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that the rats were handled. Hence, the control rats were inserted daily into the
hyperbaric chamber so that they might experience the same stress levels as the
treated rats.

The main objective is to determine whether or not hyperbaric O2 treatment
has an effect on the healing of surgical wounds, and if so, whether the effect
depends on the position of the wound on the back. It was anticipated that
the oxygen effect would be beneficial, or at least not detrimental, for healing,
and that the site effects would be negligible. Confidence intervals or posterior
distributions for the size of any such effects are a part of the answer.

1.2 An elementary analysis

It is unclear whether in fact the treatment was assigned to the rats by objective
randomization, but it is reasonable to proceed as if this were the case. In
principle, this is a completely randomized design with no blocking. Each rat-
site pair is one observational unit, and each rat is one experimental unit, so each
experimental unit consists of five observational units. The distinction between
observational units and experimental units is crucial in the design, in the analysis
and in the interpretation of results.

If there were no missing values, the analysis would be relatively straightfor-
ward, so we first illustrate the reasoning behind the simpler analysis. First, the
observations are strictly positive strength measurements having a moderately
large dynamic range from 3.8 to 82.5, so a log transformation is more or less
automatic. Normality of residuals is important, but it is not nearly so impor-
tant as additivity assumptions that are made in a typical linear model—in this
case additivity of rat effects, site effects and treatment effects. So it is arguably
misleading in most instances to point to either marginal histograms or residual
plots as the principal reason for transformation.

To each experimental unit there corresponds an average response, giving
14 values for O2-treated rats, and ten values for control rats. In the absence
of missing components, the site effects contribute equally to rat averages, so
the averages are not contaminated by additive differences that may be present
among sites. The sample means for control and treated rats are 3.372 and 3.113
on the log scale, the sample variances are 0.174 and 0.200 respectively, and the
pooled variance is

9× 0.174 + 13× 0.200

22
= 0.189

on 22 degrees of freedom. This analysis, which is based on the rat averages,
leads to an estimated treatment effect

average for treated rats− average for control rats = −0.259

with standard error
√

0.189(1/10 + 1/14) = 0.180. The estimated effect is only
1.4 standard deviations from the null value of zero, and the deviation is in the
direction not anticipated. The conclusion from this analysis is that there is no
evidence of a treatment effect—positive or negative.
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This elementary arithmetic analysis is standard for a design that is complete
with no missing observational units. It is open to criticism in this setting because
the comparison may be unfair if site effects are appreciable and the pattern of
missing treated units is substantially different from the pattern for controls. For
example, site D is missing for 40% of the control rats, but only for 7% of treated
rats. If the response at site D were appreciably different from the other sites,
the pattern of missing units would create a bias in the treatment comparison.
However, the site averages on the log scale

3.093, 3.263, 3.317, 3.326, 2.928,

show little indication of appreciable differences or a strong trend, so the preced-
ing analysis appears reasonably sound. Nonetheless, it is only natural to ask
for a more definitive analysis taking into account the possibility of additive site
effects.

1.3 Two incorrect analyses

One way to adjust for site effects is to fit a simple linear Gaussian model in
which site and treatment effects are additive on the log scale:

E(Yis) = β0 + βt(i) + βs; var(Yis) = σ2, (1.1)

where s is the site, and t(i) is the treatment indicator for rat i. The least-
squares treatment-effect estimate is −0.298 with standard error 0.119, which is
computed from the residual sum of squares of 34.30 on 98 degrees of freedom.
According to this analysis, the treatment estimate is 2.5 standard errors away
from its null value, a magnitude that is sufficient to make a case for publication
in certain scientific journals, even if its direction is opposite to expected.

Although the error in this analysis may seem obvious, the glib partial de-
scription in (1.1) is extremely common in the scientific literature. Very often,
the model is stated additively in the form

Yis = β0 + βt(i) + βs + εis.

Implicitly or explicitly, the errors εis are assumed to be independent Gaussian
with constant variance. Failure to account for correlations between different
observations on the same experimental unit has little effect on the point estimate
of the treatment effect, but it has a more substantial effect on the variance
estimate.

It is good to bear in mind that there cannot be more degrees of freedom
for the estimation of treatment contrasts than there are experimental units in
the design. This design has 24 experimental units split into two subsets, so
there cannot be more than 22 degrees of freedom for the estimation of inter-
unit experimental variability. Thus, failure to mention covariances in the linear
model specification, and the claim of 98 degrees of freedom are two red-flag
indicators of gross statistical transgressions.
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One way to adjust for rat-to-rat variability is to include an additive rat effect:

E(Yis) = β0 + βt(i) + βs + γi; var(Yis) = σ2.

For example, this model can be fitted in R using the commands

fit <- lm(log(y)~site+treat+rat); anova(fit)

The ANOVA function reports a very substantial F -ratio of 10.45 for treatment,
with a p-value of 0.2%. However, the treatment effect estimate is only −0.600±
0.33, and the p-value is a more modest 7%. We will not attempt here to explain
this apparent contradiction because the displayed code points to a serious lack of
understanding of linear algebra, geometry and orthogonal projections. Neither
part of the code or the computation is appropriate, and the fitted model is not
suited for its intended purpose.

1.4 Model formulae

In discussions concerning least-squares coefficients and statistical model formu-
lae, it is good to remember that each term in a linear-model formula is first and
foremost a vector subspace of Rn, where n is the number or set of observational
units. In this context, the operator + denotes the span of subspaces, not a vector
sum.

Each subspace associated with a factor has a natural basis consisting of one
indicator vector for each factor level. However, certain statistical questions are
concerned with the subspace, in which case statistical conclusions are, or should
be, unaffected by the choice of basis: see Exercise 1.8. For example, site,
treat and rat are subspaces of dimensions 5, 2 and 24 respectively, which
is the number of levels of the factor that occur in the design. Every factor
subspace includes the one-dimensional subspace 1 of constant vectors, which
is the sum of the indicator vectors. In most situations, the intersection of a
pair of factor subspaces such as site and rat, or site and treat, is precisely
this one-dimensional subspace. However, the fact that treatment is assigned to
rats means that treat is a subspace of rat, so site+treat+rat = site+rat.
Treatment effects are said to be confounded with rat effects.

Numerical linear-algebra algorithms detect this confounding, and they re-
solve it by by picking the most convenient subset of the basis vectors on offer.
This subset is invariably rather arbitrary, which explains part of the problem in
the paragraph at the end of the preceding section. As a result, the numbers re-
ported there are statistically uninteresting, and they are potentially misleading
if the algebraic issues are not fully understood.

Each subspace associated with a block factor such as rat also has a natural
indicator basis. Since each rat is one experimental unit, it is implicit that the
associated effects are not entirely arbitrary, but are judged a priori to be sta-
tistically exchangeable. In a sense, randomization guarantees exchangeability
of effects. The effects referred to in this setting are the coefficients of the basis
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vectors, and specifically the coefficients of the indicator basis for the experimen-
tal units, so the indicator basis for the subspace rat is not on an equal footing
with any other basis. The exchangeability argument does not apply with equal
force to a classification factor such as site.

For the most part, these remarks are unaffected by replication or by the
pattern of missing components in the design.

1.5 A more appropriate formal analysis

The default Gaussian model for the log-transformed measurements Yis incorpo-
rates site and treatment effects additively as follows:

E(Yis) = βs + βt(i); cov(Yis, Yjt) = σ2
0δijδst + σ2

1δij , (1.2)

where δij is the Kronecker symbol for equality of subscripts. Computationally
speaking, treat and site are two classification factors, which determine sub-
spaces of dimensions two and five respectively, whereas rat is encoded as a block
factor or symmetric indicator matrix rat(is, jt) = δij with coefficient σ2

1 . The
overall covariance matrix in (1.2) is invariant with respect to permutation of
rats and permutation of sites, but, unlike (1.1), it is not invariant with respect
to arbitrary permutation of observational units.

Expression (1.2) is equivalent to the vector statement Y ∼ Nn(µ,Σ) in
which µ belongs to the subspace site+treat, and Σ belongs to the convex cone
spanned by the identity and rat as a block factor. The equivalent expression
in terms of additive effects and random variables is

Yis = βs + βt(i) + (σ1εi + σ0εis)

in which all effects contributing to variances and covariances are in parentheses.
Independence of components is not to be taken for granted, so is necessary to
state explicitly that the rat effects ε1, . . . , ε24 are independent and identically
distributed, and are independent of the 120 standard Gaussian residual effects
εis, which are also mutually independent.

All told, there are five site parameters, one treatment parameter, and two
variance components whose estimates are σ̂2

0 = 0.211 and σ̂2
1 = 0.148. Observa-

tions on distinct rats are independent, but the covariance between observations
at different sites on the same rat is σ2

1 , and the correlation is σ2
1/(σ

2
0 + σ2

1),
which is estimated as 0.41.

In standard software, the site and treatment parameters are estimated by
weighted least squares using the inverse of the fitted covariance matrix as
weights. The treatment effect estimate, which is automatically adjusted for
additive site effects, is −0.294 with standard error 0.184. In the absence of
missing values, the null distribution of the ratio is t22, so the observed effect
corresponds to a two-sided p-value of about 12%. The likelihood-ratio statistic
of 2.51 on one degree of freedom gives an essentially identical conclusion. To be
clear, this is the version recommended in section 17.3–17.4: see exercise 1.14.
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The less recommended version using ordinary maximum likelihood is typically
somewhat larger—2.62 in this instance.

The code shown in exercise 1.7 reports fitted anterior-to-caudal site effects

0.000, 0.158, 0.181, 0.260,−0.271.

The standard errors of pairwise site contrasts are 0.14–0.15, so it appears that
skin from the caudal site is appreciably weaker than that from other sites. The
REML log likelihood ratio statistic for site effects is 13.92, which is beyond
the 99th percentile of the limiting null distribution, which is χ2

4. Although
they appear to be non-zero, the site effects are not sufficiently large to change
appreciably the conclusions reached by the more elementary analysis based on
rat averages.

It is mathematically possible that treatment could have an effect on either
the mean or on the variance or on both, but the standard default formulation
assumes that treatment affects only the mean of the distribution. Such an as-
sumption can easily be checked by including two different variance components,
one for treated rats and one for the controls. For these data, there is absolutely
no evidence of an effect of treatment on variances.

1.6 Further issues for consideration

1.6.1 Exclusions

Six rats that were deemed non-diabetic on the basis of post-baseline glucose
measurements were excluded from the main analysis. For the main goal of
this study, this exclusion was judged to be scientifically reasonable on the basis
of an argument that implies that the probability of exclusion is unrelated to
treatment. However, the excluded rats consisted of five controls and only one
treated rat. How extreme is that allocation relative to expectation? Does it
suggest that treated rats are less likely to be excluded than the controls? If so,
treatment may have an effect of an entirely different nature.

Given that six rats were excluded, the null distribution of the number of
excluded controls is central hypergeometric(

6
y

)(
24

15− y

) / (
30
15

)
;

the numerical values are 0.8, 7.6, 24.1, 34.9, 24.1, 7.6, 0.8 in percentages for y =
0, . . . , 6. The probability of an allocation at least as extreme as that observed is
8.4% in each tail. Exclusions and other departures from protocol must always
be described and included as a part of the discussion. The imbalance in this
study is greater than we might have wished for, but it is not sufficiently extreme
to imply a systematic bias.

1.6.2 Missing components

What are the reasons for certain components to be missing?
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1.6.3 Back-transformation

The analysis was done on the log scale. How should the conclusions be reported?

1.7 Exercises

1.1 To compute the control and treatment averages, the R command

tapply(log(y), treat, mean)

returns the pair of averages 3.360, 3.085, which is not the pair reported in the
text. The alternative log-scale computation

tapply(tapply(log(y), rat, mean), trt, mean)

tapply(tapply(log(y), rat, mean), trt, var)

returns the numbers 3.372, 3.113 for means, and 0.174, 0.200 for variances. Un-
der what circumstances do the two mean calculations return the same pair of
averages? Explain the difference between the factors trt and treat.

1.2 In the balanced case with no missing cells, the standard analysis first
reduces the data to 24 rat averages Ȳi., the treatment and control averages
ȲT , ȲC , and the overall average Ȳ... The sum of squares for treatment effects is

SST = 70Ȳ 2
T + 50Ȳ 2

C − 120Ȳ 2
.. = (ȲT − ȲC)2 5× 10× 14

24
.

The total sum of squares for rats splits into two orthogonal parts

5
∑
i

(Ȳi. − Ȳ..)
2 = SST + SSR,

which are independent on one and 22 degrees of freedom respectively. If treat-
ment effects are null, the mean squares SST /1 and SSR /22 have the same
expected value, and the mean-square ratio

F =
SST /1

SSR /22

is distributed as F1,22. Simulate a complete design with additive effects, and
check that the two terms shown above agree with parts of the decomposition
reported by anova(lm(y~site+treat+rat)).

1.3 The F -ratio reported by anova(...) for treatment effects is not the ratio
shown above. At least one is misleading for this design. Which one? Explain
your reasoning.

1.4 For the model (1.2), verify that the R commands

reg_fit <- regress(log(y)~site+treat, ~rat)

lme_fit <- lmer(log(y)~site+treat+(1|rat))

return the same parameter estimates in a slightly different format.
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1.5 The sub-model with zero rat variance can be fitted by omitting the relevant
term from the model formula in either syntax. The conventional log likelihood
ratio statistic is twice the increase in log likelihood for the larger model relative
to the sub-model. Check that these functions report different numbers for the
log likelihood, but they return the same log likelihood ratio. Report the value.
(Recall that the log likelihood is defined up to an arbitrary additive constant,
which may depend on the response or the design matrix.)

1.6 REML, or residual maximum likelihood, is the standard method for the
estimation of variance components: see chapter 17 for details. Both regress()

and lmer() allow other options, but both use REML as the default. However,
lmer() constrains the coefficients to be positive, whereas regress() allows neg-
ative coefficients unless otherwise requested. If σ̂2

1 > 0, both functions should
report the same values for all coefficients; otherwise if the unconstrained max-
imum occurs at a negative value, there will be differences both in the fitted
variance components and in the regression coefficients.

For regular problems in which the null model is not a boundary subset, the
null distribution of the conventional log likelihood ratio statistic is distributed
asymptotically as χ2

1. Assuming that the unconstrained version is regular with
fitted coefficients approximately unbiased, what is the asymptotic distribution
of the log likelihood ratio statistic for the constrained problem? Using this null
distribution, report the tail p-value for the hypothesis of zero rat variance.

1.7 In the balanced case with no missing cells, show that the REML likelihood-
ratio statistic for treatment effects is

LLR = (n− 1) log
(
1 + F/(n− 2)

)
,

where n = 24 is the number of rats, and F is the treatment-to-rat mean-square
ratio shown in exercise 1.2. Compute the F -value and the associated tail prob-
ability for LLR = 2.51 and LLR = 3.86. Comment briefly on the relevance of
this calculation for the calibration of likelihood-ratio statistics in the present
setting.

1.8 A quantitative factor x with four equally-spaced levels 0, 1, 2, 3 may be
coded using either the indicator basis e0, e1, e2, e3 (such that er(i) = I(xi = r))
or the polynomial basis x0, x1, x2, x3 (with x0 = 1, x1 = x). Show that, if
every level occurs with equal frequency in the design, the polynomials 1, z =
2x − 3, (z2 − 5)/4, (5z3 − 41z)/12 are orthogonal with respect to the standard
inner product in Rn. Show that the components of the 4 × 4 transformation
matrix that expresses this polynomial basis in terms of the indicator basis are
all integers.

1.9 Use polynomials up to degree four to re-parameterize the site effects, and
repeat the fitting procedure for (1.2) using the unnormalized orthogonal poly-
nomial basis. Check that the treatment effect estimate and its standard error
are unaffected by site re-parameterization. What effect does the change of basis
have on the log likelihood?
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1.10 How can we be assured that the log transformation is really needed or
substantially beneficial? (Chapter 18).

1.11 Extend the model (1.2) so that it contains one variance component for
treated rats and another for untreated rats. Show your code for fitting the
extended model, report the two fitted variance components, and the REML
likelihood ratio statistic for comparison with the simpler model.

1.12 Parameter estimates reported in section 1.5 were computed using the
code in exercise 1.4. Following recommendations in section 17.5, the likelihood
ratio statistic for treatment effects was computed using the code

K <- model.matrix(~site)

fit0 <- regress(log(y)~site, ~rat)

fit1 <- regress(log(y)~treat+site, ~rat, kernel=K)

llr <- 2*(fit1$llik - fit0$llik)

Modify this code to obtain the likelihood-ratio statistic for site effects.

1.13 It is mathematically possible that treatment could have a positive effect
at some sites and a negative effect at other sites, so that the average over sites is
negligible. Investigate this possibility by computing the appropriate likelihood
ratio statistic.

1.14 Let Y be an n × m array of random variables with zero mean and co-
variance matrix

cov(Yir, Yjs) = σ2
0δijδrs + σ2

1δij + σ2
2δrs + σ2

3

for some non-negative coefficients σ2
0 , . . . , σ

2
3 . Show that the covariance matrix is

invariant with respect to the product group consisting of n! permutations applied
to rows and m! permutations applied to columns. In other words, show that
the n ×m matrix whose (i, s)-component is Yσ(i),τ(s), has the same covariance
matrix as Y .

1.15 For an n×m array, show that the four quadratic forms, mnȲ 2
..,

Row SS : m
∑
i

(Ȳi. − Ȳ..)
2;

Col SS : n
∑
r

(Ȳ.r − Ȳ..)
2;

Resid SS :
∑
ir

(Yir − Ȳi. − Ȳ.r + Ȳ..)
2,

are invariant with respect to row and column permutations. Here, Yi. is the ith
row total, and Ȳi. is the row average.

1.16 Each of these quadratic forms is non-negative definite. In each case,
the expected value is a non-negative linear combination of the four variance
components, in which the coefficient of σ2

0 is the rank of the quadratic form.
Find the expected value of each quadratic form as a linear combination of the
four variance components.
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1.17 The set of linear functionals Rnm → R is called the dual vector space; it
has dimension mn. Show that the column and row totals Y 7→ Y.r and Y 7→ Yi.
are linear functionals, and that they are linearly independent. Show that the
subspace spanned by {Y.1, . . . , Y.m} is closed with respect to row and column
permutations. What is its dimension? Show that the subspace spanned by Ȳ..,
and the subspace spanned by {Ȳ.1 − Ȳ.., . . . , Ȳ.m − Ȳ..} are both closed with
respect to row and column permutations. What are their dimensions?

1.18 The space of quadratic forms in the n ×m array Y is a vector space of
dimension mn(mn− 1)/2. Exhibit a basis. Show that the four quadratic forms
in Exercise 1.3 are invariant with respect to row and column permutations.
Deduce that every invariant quadratic form is a linear combination of these
four.
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Example 2

2.1 Efficiency of chain saws

This example, taken from Bliss (1970, p. 440–441), is a description of an ex-
periment by Zehnder, Weber and Linder (1951) which was designed to compare
the performance of different brands of chain saw. The design is elegant and
carefully controlled, but it is moderately complicated in structure, and it repays
careful study.

The woodcutting efficiencies of three brands of saw were compared in a frac-
tional factorial design using six cutting teams, three species of softwood (spruce,
pine and larch) both with bark and without bark. The response variable is the
time in minutes taken to complete a designated cutting task. The fractional
factorial is embedded in a 6× 6 Latin square whose columns correspond to six
teams of workmen covering the range from experienced woodcutters to seasonal
labourers. The letters correspond to six distinct saws, where A,D are duplicates
of brand 1, B,E are duplicates of brand 2, and C,F are duplicates of brand 3.
Table 2.1 shows the design and the response in standard readable format, which
can be rearranged in spreadsheet format if needed.

To clarify matters for subsequent discussion, the design consists of 12 spruce
logs, 12 pine logs, and 12 larch logs. All logs are presumed to be approximately
equal in length and diameter, so the task demands a fixed number of cuts. Six
spruce logs, six pine logs, and six larch logs were selected uniformly at random
for de-barking. Each row of the table is one species/bark combination. The
assignment of teams to logs is done uniformly at random subject to the condition
that each team is required to cut one log of each species/bark combination. The
assignment of saws to logs is done uniformly at random subject to the Latin-
square condition that each team gets to use each saw exactly once, and each
saw is used exactly once for each species/bark combination.

2.2 Covariate and treatment factors

Each observational unit is an ordered pair consisting of one log and one saw, so
the units available at the outset may be arranged in a 36×6 array of (log, saw)-
pairs. However, each measurement is destructive of the log, so it is necessary

15
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Team

Species Bark I II III IV V VI

spruce no 6.4 F 10.9 E 9.8 D 7.5 B 4.6 A 4.9 C
pine no 6.8 B 6.2 C 7.9 E 6.0 A 4.0 D 4.2 F
larch no 12.7 E 13.4 A 12.5 B 7.3 C 6.1 F 7.4 D
spruce yes 8.8 C 10.2 D 12.5 A 8.6 F 6.1 E 5.6 B
pine yes 7.4 D 10.0 B 8.3 F 6.4 E 4.3 C 5.6 A
larch yes 13.1 A 12.0 F 12.0 C 11.3 D 6.1 B 9.7 E

Table 2.1: Time in minutes taken by six teams to complete a woodcutting task
using one of six available saws A–F. From Bliss (1970) with one correction in
row 1, col 6.

to choose a subset or subsample of 36 observational units, one from each row.
The Latin square design also calls for six units from each column or saw.

Despite the restrictions, the observational units are log-saw pairs arranged in
a 36×6 array. Recall that a covariate is an intrinsic property of the observational
units, as opposed to a treatment which is, or may be, assigned to the units. By
definition, each marginal component log and saw is a covariate. In addition,
brand is a covariate or classification factor, which is an property the saws, and
species is also a covariate, which is a property of the logs; the design consists of
two saws of each brand, and twelve logs of each species.

By contrast, team is a treatment that is assigned by the investigator to each
of the 36 selected units only. In the description as given, debarking is also a
treatment that is assigned to the logs. However, if the logs were initially segre-
gated by bark status, it could plausibly be argued that no random assignment
has occurred, in which case bark is a covariate or classification factor.

Regardless of its status, bark is a Boolean function [36] → {0, 1} on logs
such that six logs of each species are debarked, and six are left intact. There are
9243 functions of this type. If bark is a treatment factor assigned by random-
ization, it is a random variable selected according to some specified distribution
from the indicated set of 9243 functions. In most instances, the randomization
distribution is uniform on functions having the desired balance.

Algebraically, team is a function from the 36 selected units into the set of
teams; statistically, it is a random function chosen uniformly from a subset of
such functions satisfying certain Latin-square constraints. Restricted random-
ization can be rather complicated, so this aspect is omitted from discussion
here.

Each of the recorded factors

log, species, bark, saw, brand, team,

is a function on the sample units. The number of levels is 36, 3, 2, 6, 3, 6
respectively. In general, the way in which a covariate such as species, saw or
brand is accommodated in a statistical analysis or formal model is not the same
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as the way in which a treatment is accommodated. Consider a particular unit
u, a (log, saw) pair, which happens to be of the type (larch, brand 3). The
model associates with u a probability distribution for the response-treatment
pair; the treatment components are determined by randomization and are not
independent. Hence, the model associates with u a conditional distribution
Pu(· | T ), one distribution on R for every treatment level that has positive
probability of being assigned to u. It does not associate with u a [non-trivial]
probability distribution for each species or for each brand because the species
and the brand are both properties of u that are recorded at baseline.

2.3 Goals of statistical analysis

The chief purpose of the study is to compare the relative efficiencies of the
three brands of saw, i.e., to compare one brand with another. There are 12
observations for each brand, and the sample averages are 8.78, 8.55 and 7.42
in minutes, or 2.10, 2.11 and 1.95 in log minutes, so brand 3 appears to be the
most efficient. The main statistical challenge is to come up with a reasonable
assessment of the standard error for brand contrasts. Is it better to do the
analysis on the time scale or on the log scale? If we do the analysis on the log
scale, how do we report effects on the time scale? Regardless of which scale is
used, how do we calculate a standard error for brand effects?

In addition to brand effects, we can also investigate the effect of de-barking.
The sample averages with and without bark are 8.80 and 7.70 minutes, or 2.13
and 1.97 on the log scale, so de-barking appears to reduce the cutting time
by about 12–15%. How do we compute a standard error? Is the reduction
approximately the same for each saw brand?

In addition to brand and de-barking effects, we can also investigate differ-
ences between the three species. There are 12 observations for each species, and
the average cutting times for spruce, pine and larch are 8.03, 6.42 and 10.30
minutes respectively, or 2.04, 1.82 and 2.29 on the log scale. Larch, one of the
few deciduous conifers, is evidently substantially harder or tougher than the
other two. Regardless of whether we use the log scale or the time scale for
averages, how do we calculate an honest standard error for species contrasts?
Do we compute the standard error for each species contrast in the same way
that we compute the standard error for brand contrasts?

Detailed answers to all of these questions are given in subsequent sections.
At this stage, we provide brief answers to some of the questions without offering
a detailed rationale.

First, the response is a time in minutes as measured by a stopwatch; ordi-
narily, the appropriate scale for analysis of temporal measurements by linear
methods is the log scale. For some, this is obvious and needs no support; others
may demand a formal justification (section 18.2). Research workers from an
engineering background are accustomed to using logs to the base 10 without
comment, but natural logs are used throughout these notes. On the log scale,
the effects of bark, species, brand and team are additive, which implies that
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they are multiplicative on the time scale. An analysis on the log scale does
not imply that the conclusions must be reported on the same scale. Thus, in
reporting point estimates of effects, we say that de-barking reduces the cutting
time by 12–15%, not that de-barking reduces the cutting time by 1.1 minutes.
For the particular task in the experiment, both statements are equally true, but,
as an isolated statement, one is more sensible than the other. A more careful
statement might emphasize that the de-barking reduction applies to the mean
of the distribution. Likewise for species contrasts and brand contrasts.

Second, the estimated spruce versus larch contrast is a difference of average
cutting times for two disjoint subsets of 12 observations each, the variance is
σ2(1/12 + 1/12), and the standard error has the form

s
√

1/12 + 1/12

for some suitable estimator s2 of σ2. The estimated brand 3 versus brand 1
contrast is also a difference of averages of two disjoint subsets of 12 observations
each, but the variance formula is entirely different and the estimated standard
error is about 30% larger than that of the spruce/larch contrast. Why so? The
reasons for this difference are subtle, but they are also fundamental and easily
overlooked.

The difference is a consequence of the experimental design as described in
the third paragraph of this section, rather than a consequence of any parametric
or nonparametric model. The crux of the matter is that 36 logs are used in the
design, but only six saws. It is one thing to make a statement about the relative
efficiencies of two specific saws, C versus A; it is different matter to make a
statement about the relative efficiencies of two brands, brand 3 versus brand 1.
For a statement of the latter type, or a statement about spruce versus larch, the
observed specimens must be typical for the brand or species. But the design
includes 12 specimens of each species, and only two specimens of each brand.

The use of the two-sample variance formula σ2(1/12 + 1/12) for the spruce
versus larch contrast does not imply that the set of cutting times for spruce
and the set of cutting times for larch are assumed to be independent. They
are not independent, and they are not assumed to be so, even conditionally on
the design. Nonetheless, the two-sample formula makes good use of orthogonal-
ity, additivity and balance associated with the Latin square, so the analogous
formula would not necessarily be appropriate in a less carefully designed exper-
iment.

2.4 Formal models

Apart from the indicator for distinct logs, which is in 1–1 correspondence with
sample units, the factors available in this design are as follows:

species, bark, saw.id, brand, team

In addition, row in the Latin square is equivalent to species:bark, and col is
equivalent to saw.id. As always, each term that occurs in a linear model signi-
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fies a vector subspace of Rn, and the additive operator denotes the vector span,
not the vector sum. Thus, the statement that row is equivalent to species:bark
is intended as a statement about vector spaces, not a statement about indi-
cator vectors or basis vectors. Every factor also determines a partition of the
observational units into disjoint subsets, labelled or unlabelled, so the equiva-
lence of factorial model-formula terms could equally well be be interpreted as a
statement about induced partitions.

It is instructive to examine the output from the standard linear Gaussian
model for log(time), in which the mean response lies in the subspace

E(Y ) ∈ X = species+bark+brand+team,

the variances are constant and the covariances are zero. Note that the Latin-
square column factor saw.id does not occur in this model. By assumption,
two observations on the same saw are independent, and they are identically
distributed if the two logs are of the same species and bark status.

The standard model is contrasted with one in which saw.id occurs as a block
factor in the variance

E(Y ) ∈ X ; cov(Yir, Yjs) = σ2
0δijδrs + σ2

1δrs.

Once again, duplicates of the same brand have the same one-dimensional marginal
distribution, all observations have the same variance σ2

0 + σ2
1 , observations on

different saws are independent, but observations on the same saw are positively
correlated.

The least-squares estimates for both models can be computed from

fit0 <- regress(log(time)~species+bark+brand+team)

fit1 <- regress(log(time)~species+bark+brand+team, ~saw_id)

Ordinarily, the regression parameter estimates for these two models should be
similar but not identical. Because of the balanced design, they are identical, but
the standard errors are different, some a little smaller, others appreciably larger.
Despite the fact that the mean square for brand replicates is not significantly
larger than the mean square for residuals, the argument for a zero between-
replicate variance is not compelling. Accordingly, the second version is preferred.
On the other hand, additivity for species and bark effects is plausible on the log
scale. Both models assume additivity for species and bark effects, which can be
tested in the usual way.

If team effects were not a primary focus, they could reasonably be regarded
as independent and identically distributed, in which case, the fitted model is
obtained by using team as a block factor rather than a treatment factor

regress(log(time)~species+bark+brand, ~saw_id+team)

Because of orthogonality, the fitted values and standard errors for species and
bark contrasts are exactly the same, whether team effects are fixed constants
contributing to the mean or iid random variables contributing to the covariances.
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2.5 REML and likelihood ratios

All of the models described above assume that the effects of species and de-
barking are additive on the log scale. How do we compute a likelihood ratio
statistic for testing additivity in a situation where the model contains more than
one variance component? For various reasons, this is a technically complicated
question and there is at least one technically incorrect answer. But there is one
answer that is both mathematically natural and technically correct, which is
the one given by Welham and Thompson (1998): see chapter 17 for a detailed
analysis. The answer that is recommended in the lmer() literature, which is
to abandon REML and use ordinary maximum likelihood, may be technically
defensible, but it is not the most natural for this setting.

The Welham-Thompson likelihood-ratio statistic on two degrees of freedom
for testing the null hypothesis of additivity can be computed as follows:

K <- model.matrix(~species+bark+team+brand)

fit0 <- regress(log(time)~species+bark+team+brand, ~saw_id, kernel=K)

fit1 <- regress(log(time)~species*bark+team+brand, ~saw_id, kernel=K)

2*(fit1$llik - fit0$llik) # 1.591

The kernel is a subspace of the observation space, which determines the likeli-
hood criterion that is used for estimation purposes. For a valid likelihood-ratio
statistic, it is essential that the kernel subspaces be the same for both fits. The
kernel shown above is the REML default for the first fit, but it is not the default
for the second. If we choose to follow the advice in the lmer() literature, we
must adjust the argument to kernel=0 in both regress() expressions, giving
a likelihood-ratio statistic of 2.17 in place of 1.59. Although the difference is
numerically not negligible, the asymptotic null distribution is χ2

2, for which the
95th percentile is 6.0, so neither statistic indicates a departure from additivity.

If team is removed from the mean model but included as a block factor
in the variance, the two likelihood-ratio statistics are 1.59 and 1.81 respec-
tively. In that case, the kernel subspace for the Welham-Thompson statistic is
species+bark+brand, which is the mean-value subspace under the null model.

2.6 Summary of conclusions

2.7 An open-ended counterfactual

The first sample unit was log number one paired with saw F; it was spruce with
no bark, and was assigned to team I. The cutting time was 6.4 minutes. What
would the cutting time have been if the same log had been paired with saw E
and assigned to team II?

Before jumping to an answer, it is best to ask whether the question as
phrased admits an answer. After all, the premiss of the question is that this
particular log be cut by saw E when in fact it was cut by saw F. Bear in mind
that the constraint that each log can be cut only once into 8′ lengths is more a
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matter of everyday practice in the lumber industry than a matter of physics or
mathematics or even joinery. Although it would take some time, effort, expense
and a water-tolerant glue, a cut log could be reassembled by butt-end gluing.
With subsequent cuts offset by four inches or thereabouts, interference from
previous cutting activity could be kept to negligible levels.

If an answer is deemed possible, is it most naturally given as a real number
or as a probability distribution? If the answer is a probability distribution, it is
presumably a conditional distribution given the data. In that case, the answer
must come from a stochastic model that admits a joint distribution of cutting
times for multiple cuts by different saws on the same log. The fact that we
have not observed multiple cuts of this sort makes the problem all the more
challenging, but it does not necessarily make it impossible.

2.8 Exercises

2.1 Suppose that intact logs are numbered 1:36, and that species is the
species factor. Write code in R that picks uniformly at random a subset of
six logs of each species for debarking, and stores the information as a Boolean
treatment factor. Explain where the number 924 = 3× 4× 7× 11 comes from.

2.2 The R commands

anova(lm(log(y)~row+team+saw_id));

anova(lm(log(y)~species*bark+team+brand+saw_id))

are designed to decompose the total sum of squares additively into components
associated with certain subspaces, which are mutually orthogonal for this design.
Explain how to compute the row sum of squares on five degrees of freedom
directly from the six row averages

1.943, 1.737, 2.243, 2.129, 1.910, 2.341.

Arrange these six numbers in a 3 × 2 table, and explain the computation of
the sums of squares for species, bark, and species:bark from this table of
numbers.

2.3 Use the averages for the six saws A–F

2.122, 2.060, 1.975, 2.070, 2.156, 1.920

to compute the brand sum of squares on two degrees of freedom, the saw repli-
cate sum of squares on three degrees of freedom, and the F -ratio (ratio of mean
squares). Why is this two-part decomposition structurally different from the
three-part decomposition in the preceding exercise?

2.4 Use the method described by Welham and Thompson (1998) to compute
the REML likelihood-ratio statistic for comparing the two linear models

X0 = species+bark+team, X1 = species+bark+team+brand
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in the setting where saw.id occurs as a variance component. You may use R
code as follows:

fit0 <- regress(log(y)~species+bark+team, ~saw_id)

K <- model.matrix(~species+bark+team)

fit1 <- regress(log(y)~species+bark+team+brand, ~saw_id, kernel=K)

c(fit1$llik, fit0$llik, fit1$llik-fit0$llik)

2.5 In the simple linear model setting with µ ∈ X and Σ ∝ In, show that the
maximum value of the log likelihood is const− n log ‖QY ‖, where Q = I − P is
the orthogonal projection with kernel X , and the constant is independent of X .

2.6 In the simple linear model setting, the F -ratio for testing the hypothesis
µ ∈ X0 versus µ ∈ X1 is the ratio of mean squares

F =
‖Q0Y ‖2 − ‖Q1Y ‖2

‖Q1Y ‖2
n− p1

p1 − p0
,

where X0 ⊂ X1, and pr = dim(Xr). Using the expression in the preceding
exercise, show that the log likelihood ratio statistic is a monotone increasing
function of F :

2Λ = m log

(
1 +

(p1 − p0)F

n− p1

)
.

where m = dim(Rn/X0) = n − p0 for the Welham-Thompson statistic, and
m = n for the ordinary likelihood-ratio statistic.

2.7 Check that the F -ratio for brand differences is in approximate agreement
with the Welham-Thompson REML statistic computed in exercise 2.15. Explain
why you need m = 6− 1 rather than m = 36− 9 in this comparison.

2.8 Express the random-effects models from the previous section in lmer()

syntax, and check that the parameter estimates agree with regress() output.



Example 3

3.1 Drosophila mating preferences

This project concerns the experimental design and the data analysis in the
paper titled Commensal bacteria play a role in mating preference of Drosophila
Melanogaster, published in 2010 by Sharon et al. in Proceedings of the National
Academy of Sciences, vol 107, No. 46, 20052–20056. The experimental design
and the goals are straightforward in principle: do female flies have a preference
for male flies that have been fed on the same diet rather than flies that have been
fed a different diet? Some of the finer experimental details are crucial for model
formulation, analysis and interpretation, but are easy to miss in a superficial
reading. Partial information on the design and analysis is given below, so you
are encouraged to read the paper for yourself for additional background.

Table 3.1 Drosophila mating counts

Type of cross

Gen CxC CxS SxC SxS

2 12 8 9 16
6 10 5 9 10
7 17 9 9 15
9 8 7 7 9

10 18 13 5 12
11 12 5 7 14
13 14 9 8 12
15 18 9 7 15
16 14 5 5 10
17 31 22 12 27
20 23 13 10 20
21 13 7 5 14
26 30 19 12 21
31 9 7 3 10
37 20 14 11 17

111 18 11 7 16
112 16 11 8 15
113 22 13 8 13

Two breeding populations of geneti-
cally identical fruit flies were raised sep-
arately for roughly forty generations on
one of two diets, here denoted by C (corn-
molasses-yeast) and S (starch). At cer-
tain stages, flies destined for experimen-
tation (test matings) were removed from
the breeding populations and raised for
one intermediate generation on the stan-
dard CMY diet before testing. Thus the
testing for generation six was done on the
offspring, so generation six is really 6+1:
see Fig. 1 of the paper. Tests were done
for selected generations from two to 37.
The table of mating counts shown on the
right, is implicit in the authors’ Fig. 2.
It is not given explicitly in the published
paper or in the supplementary online ma-
terials, but was provided by the authors
on request. It contains five columns of
data, generation number, followed by the
mating counts for the four types, CxC,

23
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Figure 3.1: Sexual isolation index plotted against generation number.

CxS, SxC, SxS. Here SxC denotes matings of male flies whose parents were
raised on diet S with females whose parents were raised on diet C. Matings of
types CxC and SxS are called homogamic; the other types are heterogamic.

The experimental set-up consisted of a number of mating wells, from 20 to
70, with four flies in each well, one male and one female of each dietary type.
Over a one-hour period, each mating was noted, and the totals for each type
were recorded. The number of mating wells was not reported for the first three
generations, but the values reported for subsequent generations were 24, 39, 20,
24, 36, 23, 70, 46, 24, 45, 23, 48, 48, 48, 48. The last three rows of data are
taken from a parallel experiment run under a similar protocol, so the mating
probabilities are expected to be similar, but the generation numbers should be
ignored.

3.2 Initial analyses

3.2.1 Assortative mating

The main summary of the experimental data is given in the authors’ Fig. 2,
which is a barplot of the estimated sexual isolation index (SII) for each of 15
generations. It is similar in style to Fig. 3.1, which also includes the additional
three generations. The sexual isolation index is defined as the difference phom−
phet = 2phom − 1 between the probability of a homogamic mating and the
probability of a heterogamic mating. The reported values are the empirical
relative frequencies observed in each generation. Random mating, or absence
of assortative mating, implies phom = 1/2 or SII = 0. Under the assumption
of binomial sampling, the estimate p̂hom has variance phom(1− phom)/n, so the



3.2. INITIAL ANALYSES 25

observed isolation index has variance 4phomphet/n, or (1−SII2)/n which reduces
to 1/n in the absence of assortative mating.

The height of each bar in Fig. 3.1 is the estimated sexual isolation index
for that generation, and the whisker length is one binomial standard error,
i.e., ±

√
(1 − SII2)/n. The horizontal line at SII = 0.27 is the overall average

estimated from the pooled data. Superficially, at least, all of these calculations
seem quite standard statistically. However, there are both statistical and non-
statistical reasons to have a closer look at the design and the analysis.

3.2.2 Initial questions and exercises

1. What are commensal bacteria?

2. A trained observer can distinguish male from female fruit flies. But flies
raised on diet C are genetically and morphologically indistinguishable from
flies raised on diet S. How did the authors determine the diet type of a
mating pair?

3. Wing vibration appears to be an important part of the Drosophila courtship
ritual. What are the implications for experimental design? Are there ways
in which the design could be improved in this respect?

4. The Bernoulli model and the binomial distribution are used at various
points in the authors’ analyses, either explicitly or implicitly. In the
context of this experiment, what assumptions are required to justify the
Bernoulli model?

5. Since the segregation index starts off at zero for generation zero, one might
expect the value to increase slowly over generations. Is there any evidence
for this, or can it reasonably be taken as constant after 1–2 generations?
Construct a suitable test statistic, explain how it addresses the question,
and indicate what conclusion is warranted.

6. Are the data consistent with the assumption of independence of mating
events in successive generations? Compute a relevant statistic and explain
what it tells you.

7. All analyses in the paper are essentially unaffected by switching sexes,
which is mathematically fair and even-handed. However, after mating, a
female fruit fly is no longer receptive to courtship. By contrast, a male fly
may mate a second time if a receptive female is available. Discuss briefly
how sexual asymmetry might affect the design or the analysis. You may
assume that each well contains four flies, each courtship/mating event
lasts up to 10 minutes, the observation period lasts about 40–60 minutes,
whereas the female refractory period lasts about 24 hours.

8. Pearson statistic for testing homogeneity of relative frequencies for each
generation has an approximate chi-squared distribution on 3× 17 degrees
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of freedom under standard assumptions. How accurate is this null distri-
butional approximation when applied to Table 3.1. Compute the permu-
tation distribution by simulation, using random matching to keep the row
and column totals fixed, and compare the histogram of simulated values
with the χ2

51 density.

3.3 Refractory effects

3.3.1 More detailed data

Table 3.2, which was subsequently provided by the authors, contains a more
detailed description of the mating events in each generation. For each mating
well, either zero, one or two matings may occur during the observation period.
In single-mating wells, the mating is one of four types cc, cs, sc or ss, of which
two are homogamic and two heterogamic; in double-mating wells, the female
refractory period constrains the set of mating combinations to four, cc.ss, cs.sc,
cc.cs and sc.ss, of which one is double homogamic, one is double heterogamic,
and two are mixed. The order in which the matings occur is not reported in
the table and is not considered here. The combination cc.cs implies that the
c-male mated with both females, while the s-male did not participate. The
combination sc.ss implies that the s-male mated with both females, while the
c-male did not participate or was rejected. The other combinations do not occur
because of the refractory constraint. A female that has already mated does not
mate a second time within about 24 hours. Each courtship ritual and mating
takes approximately 10–12 minutes, so the observation period of 40–60 minutes
is sufficient for one male to copulate with both females if they are receptive.

It is important to observe the fundamental difference between the two ver-
sions of the Drosophila data. The objects that are counted in Table 3.1 are
matings, which are of four types; the objects that are counted in Table 3.2 are
wells of various types, one type for each column. In the first case, each obser-
vational unit is a mating, and the response is the mating type; in the second
case, each observational unit is a well, and the response is one of nine types.
From a statistical standpoint, it is natural to regard the activity in one well as
a multinomial event with nine activity classes that are disjoint and exhaustive,
at least in the biological sense. It is also natural to regard flies as exchangeable
modulo their sex and diet type, so that events in distinct wells may be taken
as independent with identical distributions for all wells in the same generation.
Those assumptions justify the reduction of the data to the counts in Table 3.2
as the sufficient statistic. Provided that the activity in one well is independent
of that in other wells, each row is an independent multinomial random variable.

Biologically speaking, the multinomial parameters need not be constant from
one generation to the next. Apart from the possibility of a monotone increasing
segregation index, there are more mundane reasons for distributional hetero-
geneity that may be related to experimental procedure. One possibility is that
the inclination to mate may depend on temperature and other environmental
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Table 3.2. Number of wells having matings of each type

Single matings Double matings Null Total
Gen cc cs sc ss cc.ss cs.sc cc.cs sc.ss – wells

2 1 1 0 1 11 6 0 3 0 23
6 1 0 2 1 7 5 0 2 0 18
7 2 1 0 3 9 4 4 5 4 32
9 1 2 3 3 5 3 2 1 4 24

10 3 3 0 2 10 5 5 0 9 37
11 2 1 2 1 8 1 2 4 2 23
13 1 0 0 0 11 7 2 1 2 24
15 2 1 2 2 11 3 5 2 8 36
16 2 0 2 1 9 3 2 0 3 22
17 0 8 3 7 18 6 9 1 17 69
20 8 4 4 4 8 3 5 0 9 45
21 1 2 0 2 11 4 1 1 2 24
26 2 1 2 1 17 7 11 3 3 47
31 3 2 0 6 4 3 2 0 3 23
37 5 1 3 7 9 7 6 1 9 48

111 2 2 1 1 12 4 4 2 14 42
112 5 2 2 7 7 5 4 1 15 48
113 9 3 1 3 10 7 3 0 10 46

factors that vary with the season, and hence are not constant from one gen-
eration to the next. Another very real possibility is that the period set aside
for observation is not quite constant from generation to generation, in which
case the fraction of null-mating wells is expected to be be greater for shorter
observation periods. Likewise, for purely mechanical reasons, the fraction of
double-mating wells is likely to be low for shorter observation periods.

In principle, each column in Table 3.1 is derivable as a specific linear com-
bination of the columns in Table 3.2. Each linear combination has three unit
coefficients and six zeros. For example, the CxS column is the sum of columns cs,
cs.sc and cc.cs, while the SxC column is the sum of sc, cs.sc and sc.ss. Both com-
binations include cs.sc. This linear projection structure implies that the counts
in one row of Table 3.1 are correlated in a non-multinomial way, which invali-
dates the distributional assumptions on which the paper is based. In practice,
there are a few discrepancies between the two tables, which is not uncommon
in laboratory work. Unless otherwise specified, all subsequent analyses in this
chapter use the data in Table 3.2.

3.3.2 Follow-up analyses

Given that the main focus is on the excess of homogamic over heterogamic mat-
ings, how should we analyze the new version of the data for evidence bearing
on the issue of commensally-related assortative mating? Assuming for the mo-
ment that there is sufficient homogeneity across generations, it is natural first
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to examine the aggregate counts or column totals, which are as follows:

cc cs sc ss cc.ss cs.sc cc.cs sc.ss null
50 34 27 52 177 83 67 27 114

Among all events in 163 single-mating wells, 102 are homogamic and 61 het-
erogamic, so the homogamic sample fraction is 0.626 and the standard error is
0.038. If mating events occurred non-preferentially according to the Bernoulli-
1/2 model, we should expect about 81.5±6.4 homogamic and the same number
of heterogamic matings, so the observed value is a little more than 3.2 standard
deviations away from the non-preferential null. Equivalently, the SII index is
0.251 with standard error

√
(1/163) computed under the Bernoulli-1/2 model,

and the ratio is 0.251
√

(163) = 3.2. Three or more standard deviations is usually
regarded as moderately strong evidence against the null, so even if we restrict
attention to single-mating wells, the evidence for assortative mating is clearly
established.

In the double-mating wells, 448 matings out of 708 are homogamic, so the
homogamic fraction is 0.633. To obtain a standard error for the sample fraction,
the four totals (Y1, Y2, Y3, Y4) are regarded as multinomial with index Y. = 354,
parameter vector π, and covariance matrix

(
diag(π) − ππ′

)
Y.. The number

of homogamic matings is the linear combination 2Y1 + Y3 + Y4, the number
of heterogamic matings is 2Y2 + Y3 + Y4, and the total number of matings is
2Y. = 708. The variance of the linear combination is a quadratic form in the
multinomial covariances, whose estimate is 235.04, so the standard error of the
homogamic fraction in the sample is

√
235.04/708 = 0.022. The observed value

is six standard errors away from the null, so once again the evidence strongly
supports assortative mating.

For a slightly different version of the preceding argument, the difference
between the number of homogamic and heterogamic matings is 2Y1−2Y2, which
does not involve the mixed-well counts Y3 or Y4. Arguably, the mixed-event
wells are uninformative for testing. The null hypothesis of no assortative mating
implies that Y1 has the same distribution as Y2, so it is possible in this setting to
construct an exact binomial test by conditioning on the total Y1 +Y2. However,
the estimate of the segregation index is not independent of the mixed double-
mating well counts.

In this case, the estimates obtained from the two sources 0.626± 0.038 and
0.633 ± 0.022 are in good agreement with one another. The standard error of
the difference is the square root of 0.0382 + 0.0222, which is 0.044, whereas the
observed difference is only 0.007. A similar analysis on the SII scale gives an
equivalent answer. The estimates may be pooled or combined in the standard
manner with weights inversely proportional to variances.

3.3.3 Lexis dispersion

The Lexis dispersion statistic, which is the ratio of Pearson’s chi-squared statis-
tic to its degrees of freedom, is a natural gauge of variation in a contingency
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table in which the reference value of unity is the expected value under homoge-
neous multinomial sampling. For the four single-mating columns in Table 3.2
the value is is 48.4/51, and for the four double-mating columns the value is
50.95/51. As we had hoped, both are satisfactorily close to unity, so there is no
evidence of inter-generational inhomogeneity in mating behaviour for either the
single-mating wells or the double-mating wells.

For the 18 × 2 matrix whose columns are the tallies for single- and double-
mating wells in each generation, the Lexis dispersion statistic is 48.2/17 = 2.83.
We conclude that there is substantial heterogeneity in the fraction of single-
versus double-mating wells in successive generations. This type of inhomogene-
ity does not invalidate the analyses proposed in the preceding section or those
in subsequent sections. As mentioned earlier, it could easily be attributed to
environmental variation or to incidental variation in experimental counting pro-
cedure.

3.3.4 Is under-dispersion possible?

The dispersion index for Table 3.1 is 19.14/51 = 0.37, which shows clearly
that the counts in that table are substantially under-dispersed. Over-dispersion
is common in experimental and observational work, while under-dispersion is
rare, so statisticians are naturally on the lookout for phenomena that give rise
to under-dispersion. The main explanation for under-dispersion in this instance
appears to lie in the experimental design with four flies per mating well and its
interaction with the female refractory effect.

This section offers an analysis of whether the under-dispersion that is ob-
served in Table 3.1 should be expected on the basis of its derivation from Ta-
ble 3.2. The analysis is done under the following ‘multinomial assumption’,
which seems mathematically natural for this setting.

1. Given the vector m1 of single-mating well counts in each generation, the
18× 4 table T1 consisting of the first four columns of Table 3.2 has inde-
pendent multinomial rows, and the probability vector π1 is constant across
generations.

2. Given the vector m2 of double-mating well counts in each generation, the
18 × 4 table T2 consisting of the columns 5–8 of Table 3.2 has indepen-
dent multinomial rows, and the probability vector π2 is constant across
generations.

3. The tables T1 and T2 are conditionally independent given m1,m2.

Although homogeneity across generations is an important component, we refer
to these collectively as ‘the multinomial assumption’.

Let L be the matrix that converts double-mating well counts into mating
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counts of four types:

L =

cc cs sc ss
cc.ss 1 0 0 1
cs.sc 0 1 1 0
cc.cs 1 1 0 0
sc.ss 0 0 1 1

so that T = T1 + T2L counts total matings of each type in each generation.
Discrepancies between Table 3.1 and T have already been noted, but are not
the focus of this analysis. By assumption, the rows of this table are independent.
The expected mating count for generation i is the linear combination m1,iπ1 +
m2,iL

′π2 of multinomial vectors. However, even if 2π1 = L′π2, the distribution
of T is not multinomial, so Pearson’s statistic does not have its standard χ2-
reference distribution. The question to be addressed is whether it is possible
under the multinomial assumption for the 18× 4 table T to be under-dispersed
relative to the multinomial, and to what extent.

The question can be addressed in a variety of ways, either analytically or by
simulation. For a partial analytical solution, the mean vector and covariance
matrix of the ith row of T are

µi = E(Ti) =m1,iπ1 +m2,iL
′π2 = (m1,i + 2m2,i)π,

Σi = cov(Ti) =m1,iV (π1) +m2,iL
′V (π2)L,

where V (π) = diag(π)−ππ′ is the 4×4 multinomial covariance matrix. Pearson’s
statistic is the quadratic form

X2 =
∑
i,j

(Yij − µ̂ij)2

µ̂ij

whose expected value is approximately

18∑
i=1

tr
(
Σ̂i diag(µ̂−1

i )
)
.

Using the natural moment estimates for the vectors π1, π2 and π, the estimated
mean of X2 is 39.39. For a more accurate approximation, we should multiply
by 17/18 to account for parameter estimation. This gives E(X2) ' 37.2, so the
appropriate null reference level for the Lexis dispersion index is 39.39×17/(18×
51) = 0.73. The conclusion from this analysis is that under-dispersion is not
only possible but also expected in this situation.

A more accurate estimate of the null distribution of Pearson’s statistic can
be obtained by simulation along the lines of section 3.4. First generate two
conditionally independent hypergeometric tables having the same marginal to-
tals as T1 and T2, combine them into a single table as in T1 + T2L, and then
compute the Pearson statistic. The conclusion from 5000 simulations is that
the null mean is 37.2 and the variance is approximately 76.8. Relative to this
distribution, the observed value X2(T ) = 24.1 falls just below the 5% point;
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Figure 3.2: Scatterplot of homogamic mating fractions for 18 generations

the observed value for Table 3.1 is 19.1, which is below the 1% point. The
conclusion is that under-dispersion is expected, though not quite to the extent
observed in T or in Table 3.1.

3.3.5 Independence

One fundamental assumption in all of the foregoing analyses is that activities
occurring in distinct wells must be independent. Ordinarily, the assumption
of independence seems so obvious experimentally that it cannot be called into
question. After all, distinct wells contain distinct flies whose activities cannot
possibly be coordinated. But science rightly demands that assumptions be
checked where possible, and the design of this experiment with the data in
Table 3.2 provide a rare opportunity to check the independence assumption—at
least in part.

Flies in single-mating wells are necessarily distinct from flies in double-
mating wells, so in the absence of inter-well communication, we must expect
all activity in single-mating wells to be independent of all activity in double-
mating wells. This is part of the third component of the multinomial assumption
in the preceding section. In particular, we must expect the homogamic fraction
in single-mating wells to be statistically independent of the homogamic fraction
in double-mating wells. Any failure of independence in this form must have
far-reaching consequences for Drosophila experimentation. To paraphrase Lord
Denning’s notorious judgement in 1980, the possibility of coordinated mating ac-
tivities in distinct wells is such an appalling vista that every sensible Drosophila
experimentalist would say ‘It cannot be right...’.

Each generation furnishes a pair of homogamic fractions, one for single-
mating wells and one for double-mating wells. Figure 3.2 is a scatterplot of the
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18 pairs, one pair for each generation. Contrary to expectation, it shows not
only that homogamic fractions in the same generation are correlated, but also
that the correlation is negative (r = −0.64). The null distribution of sample
correlations is symmetric about zero with a standard deviation of about 0.23,
so the observed correlation is far removed from the bulk of the null distribution.
Hypergeometric simulation by random matching points to a left tail p-value of
approximately one in 850, which is equivalent to three standard deviations from
expectation on the standard normal scale. In other words, the hypothesis of
independence of events in disjoint wells is firmly rejected by these data.

The correlations indicated by Fig. 3.3 are synchronous in time; there is no
suggestion that the homogamic fractions in one generation are correlated with
homogamic fractions in previous or subsequent generations. Inter-well commu-
nication is one potential explanation for synchronous correlations. Drosophila
courtship rituals are not silent, so sound leakage may be possible. Pheromonal
leakage may be more likely. However, in order to achieve the observed nega-
tive correlation, the communication must be anti-symmetric or conspiratorial,
so it is unlikely that leakage alone could suffice. On balance, therefore, it seems
safe to rule out inter-well communication as a likely explanation. However, no
satisfactory alternative has yet been suggested.

The phenomenon analyzed in section 3.3.4 accounts for an under-dispersion
factor of 0.73. Negative correlation has an additional and potentially greater
effect on the variance of linear combinations (1 − r = 0.36), and this appears
to be the main reason for the extreme under-dispersion seen in Table 3.1. For
example, the marginal table of homogamic versus heterogamic counts derived
from Table 3.1 has a dispersion factor of 4.29/17 = 0.25, which matches nicely
with the product 0.73(1− r) = 0.26.

The sample correlation reported above is weighted harmonically with weights
wt satisfying w−1

t = m−1
1,t +m−1

2,t for generation t, and the points in Fig. 3.2 are
enlarged in areal proportion. Either m1,t = 0 or m2,t = 0 implies wt = 0, which
is the main reason for choosing harmonic weights. Some weighting is needed to
accommodate the different sample sizes, and this harmonic weighting may not
be optimal, but the correlation value is not especially sensitive to the choice of
weights.

3.4 Technical points

3.4.1 Hypergeometric simulation by random matching

A two-way contingency table is a rectangular array Y whose components Yij
are non-negative integers. Usually, Yij is the number of observational units for
which one attribute or factor is equal to i and a second attribute is equal to j.
Thus, the table is indexed by attribute values. Let mi = Yi. be the ith row
total, and let sj = Y.j be the jth column total so that m. = s. = Y.. is the
overall total. A random table is said to have the hypergeometric distribution if
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the joint distribution is

pr(Y = y) =

∏
i yi.!

∏
j y.j !

y..!
∏
ij yij !

.

The row and column totals are arbitrary fixed positive integers, so the proba-
bility mass function is inversely proportional to

∏
ij yij !.

If Y has the hypergeometric distribution, so also does the transposed array.
If Y is a random matrix whose rows Yi are independent multinomial vectors,
Yi ∼ M(mi, π), which are homogeneous in the sense that they have the same
multinomial probability vector, then the conditional distribution given the col-
umn totals is hypergeometric.

One way to simulate a hypergeometric random table having given row and
column totals is by random matching of the components of two n-component
vectors. Suppose that row has mr components equal to r, and col has sj
components equal to j, with

∑
mr =

∑
sj = n. Random matching permutes

the components of row uniformly at random, does the same for col, and then
tabulates or counts the ordered pairs (r, j) thus generated. Distributionally
speaking, it is necessary only to permute one of the vectors as follows:

RHG <- function(rowsum, colsum){

# rowsum and colsum are integer vectors having the same sum

row <- rep(1:length(rowsum), rowsum)

col <- rep(1:length(colsum), colsum)[order(runif(sum(colsum)))]

table(row, col)

}

To simulate the null distribution of Pearson’s statistic or any other statistic
such as the deviance, we compute the statistic for each table thus generated,
and report the histogram. The analysis near the end of section 3.3.4 calls for two
independent hypergeometric tables T1, T2, followed by Pearson’s statistic com-
puted on the linear combination T1+T2L. The analysis in section 3.3.5 also calls
for the same pair of independent hypergeometric tables followed by a symmetric
correlation statistic R(·, ·) computed as a function of the pair (T1, T2L).

3.4.2 Pearson’s statistic

Pearson’s statistic is a quadratic form in residuals, X2 = (Y − µ)′Σ−1(Y −
µ), which is a scalar measure of variability in the response relative to a given
reference distribution whose mean vector and covariance matrix are µ and Σ.
In most cases, the mean vector is estimated from the data, and Σ is a function
of µ.

For counted data in the form of a contingency table, the reference distri-
bution is usually Poisson or binomial with independent components, or multi-
nomial with independent rows. In all of these cases, the algebraic form is the
same,

X2 =
∑
i

(Yi − µ̂i)2

µ̂i
,
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where µ̂i is the fitted mean value. In the binomial case, the sum extends over
both response classes—failure and success—so that the net contribution from a
binomial pair (Yi,0, Yi,1) ∼ B(mi, πi) for which µ̂i,0 = miπ̂i and µ̂i,1 = mi(1−π̂i)
is

(Yi,0 − µ̂i,0)2

µ̂i,0
+

(Yi,1 − µ̂i,1)2

µ̂i,1
=

(Yi,0 −miπ̂i)
2

miπ̂i(1− π̂i)
.

The Poisson form of Pearson’s statistic differs from the binomial form only
in the variance function, Σ = diag(µ) for the Poisson covariance; and Σ =
diag(miπ(1− π)) for the binomial. But the Poisson form covers both provided
that we sum over both successes and failures.

The sampling distribution of the statistic depends on the distribution of Y
and on the degrees of freedom used up in the estimation of µ. Exact moments
are available in a few special cases, all of them null in a suitable sense. For a
single multinomial Y ∼ M(m,π) with k classes and given probability vector,
we have

E(X2) = k − 1,

var(X2) = 2(k − 1)
m− 1

m
+

1

m

∑
π−1
j − k

2/m.

The third cumulant is given in McCullagh and Nelder (1989, p. 169). The
asymptotic distribution for large m is χ2

k−1.
For an r× c contingency table that is distributed according to the hyperge-

ometric distribution with strictly positive row and column totals, the Haldane-
Dawson formulae give the exact mean and variance. The mean does not depend
on the row or column totals, but only on the overall total:

E(X2) = (r − 1)(c− 1)m/(m− 1).

The variance of X2 depends on the sum of reciprocals of the row and column
totals: see McCullagh and Nelder (1989, p. 244).

Despite warnings given freely by over-cautious computer software, the χ2
(r−1)(c−1)

approximation is quite accurate even for a large sparse table such as the 12×12
birth-death table where the average cell count is only 2.4. Even for Bortke-
witsch’s horsekick fatality data for 14 Prussian army corps over 20 years (An-
drews and Herzberg, 1985, 17–18), where the mean is only 0.7 fatalities per
corps per year, the χ2

247 approximation is reasonably good in the upper tail.
The left tail is not so good. In that instance, the Haldane-Dawson values for
the mean and variance are 248.3 and 419.8, so the variance-to-mean ratio is
only 1.69 as opposed to 2.0 for the χ2 approximation. The moment-matching
approximation 0.85χ2

294 is quite accurate in both tails.
Pearson’s statistic has a role to play in the analysis of counted data, mainly

as a metric for relative dispersion. Over the past 70 years, various authors
have pointed out its inferential limitations, and have sought to modify and
strengthen it in various ways (Yates, 1949; Cochran, 1954; and Armitage, 1955).
Its deficiencies for significance testing are entirely unrelated to the adequacy
of the χ2 or other distributional approximation. The discussion in this section
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focuses on its use as a dispersion index; it is not intended as an endorsement of its
widespread use in applications as a test for independence or lack of association.

3.5 Further Drosophila project

The paper Sex-specific responses to sexual familiarity, and the role of olfaction
in Drosophila by Tan, Løvlie, Greenway, Goodwin, Pizzari and Wigby, which
was published in Proceedings of the Royal Society, Series B (2013), discusses a
number of experiments that were designed to investigate the mating preferences
of fruit flies. The main focus is on the courtship behaviour of males, and specif-
ically whether males preferentially court novel females over familiar females.
A directly familiar female is the previous mate, and a phenotypically familiar
female is a sister of the previous mate. According to the abstract

...we show that male and female Drosophila melanogaster respond
to the direct and phenotypic sexual familiarity of potential mates in
fundamentally different ways. We exposed a single focal male or fe-
male to two potential partners. In the first experiment, one potential
partner was novel (not previously encountered) and one was directly
familiar (their previous mate); in the second experiment, one poten-
tial partner was novel (unrelated, and from a different environment
from the previous mate) and one was phenotypically familiar (from
the same family and rearing environment as the previous mate). We
found that males preferentially courted novel females over directly
or phenotypically familiar females. By contrast, females displayed a
weak preference for directly and phenotypically familiar males over
novel males.

As it turns out, the statistical analysis in the original paper is seriously
deficient in a number of ways. In a 2014 correction note, the authors remark

... the statistical models we used for analysing male courtship be-
haviour did not take into account temporal correlations in courtship
events within males. Consequently, the variance in courtship events
was higher than predicted by the model, and the excess dispersion
could potentially result in errors in conclusions. This highlights the
general potential for high-frequency sampling of behaviours to give
rise to high temporal correlations of event counts within a dataset,
and the importance of correcting dispersion factors when analysing
this type of data.

In other words, the courtship activity for one male was recorded on multiple
occasions over a short period, and the sequence of records was analyzed as
if the activities on successive occasions were independent events measured on
unrelated flies.

There is nothing intrinsically wrong with high-frequency sampling provided
that the statistical analysis accommodates the inevitable serial correlation in a
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satisfactory way. If the activity of the focal male were recorded at 24 frames
per second, we may mark each frame in which courtship is directed at the novel
female by the label ’N’ and those in which it is directed at the familiar female
by the label ’F’. While it may be reasonable to treat a single marked frame as
a Bernoulli random variable, it is obviously unreasonable to treat the sequence
of frames as a Bernoulli sequence with independent components. For the same
reason, it is unreasonable to treat the number of ‘N’ frames as a Poisson or
binomial variable. This statement may be obvious at a sampling rate of 24
frames per second, but it applies equally at a sampling rate of one per minute
or one per hour. Doubling the frame rate doubles the computational burden,
but has a negligible effect on information pertaining to sexual preferences.

One possibility for analysis is to reduce the frame sequence to the fraction
of time spent in each activity, and to regard these temporal fractions as a com-
positional response in the sense of Aitchison (19??).

The data for three of these experiments are available in the files

eyedat <- read.table("CoolEyeColorArchive.dat", header=TRUE)

paintdat <- read.table("CoolPaintArchive.dat", header=TRUE)

decapdat <- read.table("PhenoMaleDecapArchive.dat", header=TRUE)

Additional information is available in the file Coolidge.R. Other data files are
available online.

3.6 References

Much of the analysis in section 3.3 is based on an unpublished report by Dan
Yekuteli, which was provided by the author.

3.7 Exercises

3.1 Use the normal approximation to the binomial to compute the probability
that the horizontal line in Fig. 3.1 intersects all 18 whiskers at ±1 standard
deviations. Devise a better approximation by simulation that takes account of
the fact that the SII index has been computed from the same data.

3.2 Is the total number of matings in Table 3.1 related to the number of mating
wells? Is the pattern of variation different for the experiments reported in the
last three rows? Explain how you address such questions.

3.3 For the experiment giving rise to the data in Table 3.2, an algebraically
natural assumption is that the allowable double matings occur as a Poisson pro-
cess at a rate proportional to the product of the single-mating rates. It is also
natural—physically if not mathematically—to allow separate factors for single
and double wells, and a reduced rate for wells in which one male does double
duty. Formulate this statement as a Poisson log-linear model or four-class multi-
nomial model, and check whether the data are in compliance with the product
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assumption. For this exercise, the multinomial assumption in section 3.3.4 may
be used. (The computation for this question may involve the entire table, but
parameter estimates and other conclusions must be a function of the column
totals only. Why so?)

3.4 Hypergeometric simulation in section 3.3.5 implies a symmetric null dis-
tribution with standard deviation 0.23 for the weighted sample correlation of
homogamic pairs. One suggested alternative to random matching is to generate
the null distribution by randomly permuting the vector (π2,i,m2,i) of double-
mating homogamic fractions, keeping the sample-size attached to each fraction.
Check that random permutation of generations also gives a symmetric null dis-
tribution with standard deviation at least 10% larger than the hypergeometric
null. Which of these null distributions is the relevant one to use as a reference
in this setting? Explain your reasoning.

3.5 The file ...birth-death.R contains the data compiled by Phillips and
Feldman (1973) on the month of birth and the month of death of 348 ‘famous
Americans’. Investigate whether the month of death is or is not independent
of the month of birth. The data are given as a 12 × 12 table of event counts.
(This is not a generic contingency table because the row labels and the column
labels are not only the same, but also cyclically ordered. Both aspects of the
structure are relevant to the question posed, and both should be exploited in
your analysis.)

3.6 The advice sometimes given for the validity of the χ2 approximation to
the null distribution of Pearson’s statistic is that the minimum expected value
should exceed a suitable threshold, usually in the range 3–5. However, the mean
count for the birth-death table is 2.42, so the expected count in every cell falls
below the threshold. Compute the null distribution of Pearson’s statistic by
hypergeometric simulation. Plot the density histogram of simulated values, and
superimpose on it the χ2

121 density function. (This is intended as a computa-
tional exercise only. It is not a suggestion for data analysis aimed to address
the question posed by Phillips and Feldman.)

3.7 Check the calculations reported in the last paragraph of section 3.4.2 for
Bortkewitsch’s horsekick data. Compute the row and column totals, and sim-
ulate the null distribution of X2 by random matching. Superimpose the χ2

247

density on a histogram of the simulated values. Find two numbers a, b such
that the first two moments of aχ2

b coincide with the Haldane-Dawson moments.
Superimpose this scaled chi-squared density on your histogram. (The intent of
this exercise is solely to provide insight into distributional approximation. It
should not be read as an endorsement for data analysis.)
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Example 4

4.1 Plant growth: data description

The file PlantGrowth.dat contains the heights in mm. of 70 Arabidopsis plants
measured every four days from day 29 to day 69 following the planting of seeds.
The ultimate heights range from 19mm to 40mm, and most heights are recorded
to the nearest millimetre.

The cumulative number of plants brearded was zero up to and including
day 29, eight by day 33, 40 by day 37, and all 70 by day 41. Thus, sprouted
plants were first recorded on day 33, and all plants had appeared by day 41. Or,
to put it more accurately perhaps, no additional plants emerged after day 1. By
day 65 or earlier, the growth was complete; for each plant, the height recorded
on day 69 was the same as the height on day 65.

Plant age is most naturally measured from its birth at brearding rather than
the date on which seed was planted. In this experiment, all seeds were planted
on the same date, but the date of brearding varies from plant to plant. The
brearding date is deemed to be the last date on which the height was recorded
as zero rather than the first date on which the height was positive. In other
words, eight plants were deemed to be born on day 29, 32 on day 33, and so on.

The typical growth trajectory for Arabidopsis begins at zero on day 0, reach-
ing a plateau whose height varies from plant to plant. Regardless of the ultimate
height, the semi-maximum height is attained in about 13 days, which is fairly
constant from plant to plant. By inspection of the graphs in Fig. 4.1, it appears
that the standard Arabidopsis growth trajectory is roughly h(t) ∝ t2/(τ2 + t2).
This is sometimes referred to as ‘inverse quadratic’ because the inverse height
is a linear function of inverse squared time, 1/h(t) = β0 + τ2/t2. The pa-
rameterization is such that h(τ) = 1

2h(∞), so τ is the semi-max age, which is
approximately 13 days.

The growth trajectories are plotted against calendar time in the top panel
of Fig. 4.1, and against plant age in the lower panel. The graphs give the
impression that the number of plants is no more than 30, but there are in fact
69 distinct growth trajectories for 70 plants. The illusion is caused in part by
heights being rounded to 1mm, so that, at any given time, there are usually
fewer than 20 distinct heights.

Two strains of plant are included in the study, the first 40 called ‘cis’ and
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Figure 4.1: Heights in mm of 70 Arabidopsis plants of two strains, plotted
against calendar time in panel 1, and against age in panel 3 (lower left). Lower
right panel shows the fitted mean functions (dashed lines) together with the
best linear predictor (solid lines) of plant height for each strain.

the remaining 30 labelled ‘108’. One goal of this project is to compare the
two strains and to assess the significance of the observed differences. The time
series plot for all plants in Fig. 4.1 reveals that both types have similar growth
trajectories, but that the ultimate height of the ‘108’strain is about 40% greater
than the ‘cis’ strain. The age-specific ratio of sample mean heights ‘108’/‘cis’
for plants aged 4–32 days is

Age in days 4 8 12 16 20 24 28 32
108/cis ratio 1.06 1.39 1.37 1.36 1.42 1.44 1.43 1.42

which is remarkably constant from day 8 onwards.

4.2 Growth curve models

The growth curve for plant i is modelled as a random function ηi(t) whose value
at age zero is, in principle at least, exactly zero, and whose temporal trajectory
is continuous. In the analyses that follow, s(i) is the strain of plant i, the mean
trajectory is βs(i)h(t) with h(0) = 0 and h(∞) = 1, so that the plateau levels
β0, β1 depend on the strain, and the ratio of means is constant over time. The
observation Y (t) = η(t) + ε(t) is contaminated by measurement error, which is
assumed to have mean zero with constant variance σ2

0 , and to be independent
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for all times t > 0 and all plants. The error distribution for values reported as
zero need not be the same as the error distribution for positive measured values.

Brownian motion (BM) starting from zero at time t = 0 is a continuous
random function with covariance function cov(B(t), B(t′)) = min(t, t′). We are
thus led initially to consider the additive Gaussian model with moments

E(Yi(t)) = βs(i)h(t),

cov(Yi(t), Yj(t
′)) = σ2

0δijδt,t′ + σ2
1K(t, t′) + σ2

2δijK(t, t′) (4.3)

where K(t, t′) = min(t, t′) for the Brownian-motion model.
This formulation is incompatible with baseline information available at plant-

ing, which consists solely of two covariates, date and strain. Two deviations
are noted. First, the units at planting are seeds, not plants. Second, it is most
unlikely that every seed germinates, so the set of germinated plants is a ran-
dom subset of planted seeds, which is not available at planting. This implies
that plant_id is not a baseline factor nor is the germination date a baseline
covariate. Formulation (4.3) with plants as observational units and t represent-
ing plant age, is compatible with baseline taken to be the plant-specific date of
brearding. Nonetheless, as the discussion in the preceding section shows, the
determination of that date is slightly inaccurate.

One objection sometimes raised to Brownian motion as a model for a growth
curve is that it is not suficiently smooth—in fact nowhere differentiable. If a
compelling argument could be made that physical growth is a differentiable func-
tion, one would have to reconsider the Brownian-motion model, perhaps replac-
ing it with a smoother random function or a family of random functions having
varying degrees of smoothness. But in the absence of a compelling demonstra-
tion of differentiability, the lack of differentiability of BM is not a strong ar-
gument against its use for growth curves. The Brownian motion component of
the model can be replaced by any continuous random function deemed suitable,
such as fractional Brownian motion (FBM), and the data can be permitted to
discriminate among these. Despite the perception that physical growth curves
are smooth in time, trajectories smoother than BM are firmly rejected by the
data in favour of rougher trajectories. See variation (iii) below.

Leaving aside the measurement error component, the growth-curve model
(4.3) has two additional variance components, one Brownian motion with volatil-
ity coefficient σ1 that is common to all plants regardless of strain, and another
with coefficient σ2 that is plant-specific and independent for each plant. In other
words, for t > 0 the measured value on plant i is a sum of one non-random term
and three independent random processes

Yi(t) = βs(i)h(t) + εit + σ1η0(t) + σ2ηi(t), (4.4)

where η0, η1, . . . , η70 are independent and identically distributed Brownian tra-
jectories starting from zero at time zero. In this model, the variances

var(Yi(t)) = σ2
0 + (σ2

1 + σ2
2)t

var(Yi(t)− Yj(t)) = 2σ2
0 + 2σ2

2t
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are both increasing linear functions of plant age.
In (4.3), the average height at age t of a very large number of plants of

strain s is βsh(t) +σ1η0(t). This infinite average is not a deterministic function
of t; it is a Gaussian process with mean βsh(t) and covariance σ2

1K(t, t′). That
is to say, σ1η0(t) is the deviation of βsh(t) from the mean trajectory averaged
over infinitely many plants of strain s. From the fitted model, the estimated, or
predicted, plant height trajectory E(Yi∗(t) | data) for a new plant i∗ is shown
for both strains in the fourth panel of Fig. 1. Each fitted trajectory is the sum
of the fitted mean β̂sh(t) plus the conditional expected value of σ1η0(t) given
the data. The latter term E(η0(t) | data) is linear in the data; as a function of t
it is a C∞-spline with knots at observation times, i.e., continuous at all points
and differentiable at all non-observation times.

Only the 628 response values at strictly positive plant ages are included
in the likelihood computations, the heights at t ≤ 0 being exactly zero by
construction. For the mean model, τ̂ = 12.842 days is used throughout. The
three variance-components estimated by maximum residual likelihood are

parameter estimate S.E.
σ2

0 1.040 0.151
σ2

1 0.066 0.042
σ2

2 0.432 0.052

with asymptotic standard errors as indicated. Asymptotic standard errors of
variance components are worth reporting, but are often less reliable as indicators
of significance than standard errors of regression coefficients. The first coeffi-
cient implies that the standard deviation of the measurement error is around
1mm, which is about right for laboratory measurements of plant height. The
small value of σ2

1 implies that h(t) is a close approximation to the mean tra-
jectory averaged over plants, and the relatively large standard error suggests
that this term may be unnecessary. Nevertheless, the reduced model with only
two variance components is demonstrably inferior: the increase in residual log
likelihood is 13.78, i.e., the likelihood ratio chi-squared statistic is 27.56 on one
degree of freedom. In this instance, the comparison of σ̂2

1 with its asymptotic
standard error gives a misleading impression of the significance of that term.

The regression parameters governing the mean, τ included if necessary, are
estimated by weighted least squares. For the 70 plants in this study, the plateau
estimates in mm for the two strains are as follows:

strain coefficient S.E.
cis 28.35 1.76
108 40.13 1.92

108− cis 11.86 0.99

Although this is a two-sample comparative design, the variance of the 108/cis-
contrast estimate is substantially less than the sum of the two variances.

The Box-Tidwell method has been used here for the calculation of standard
errors to make allowance for the estimation of τ . (The unadjusted standard
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errors are 1.54, 1.58 and 0.90 respectively.) The parametric bootstrap is a
viable alternative. This analysis makes it plain that the difference between the
ultimate heights of the two strains is not zero.

4.3 Technical points

Non-linear mean model with variance components
The inverse quadratic model for the mean growth curve

µit = E(Yit) = βs(i)t
2/(τ2 + t2)

has three parameters to be estimated, the two asymptote heights β0, β1 and the
temporal scale parameter τ . Two options for the estimation of parameters are
available as follows.

The most straightforward option is to use ordinary maximum likelihood (not
REML) for the estimation of all parameters jointly. Since the model for fixed τ
is linear in β, this can be done by computing the profile likelihood for a range
of τ values, say 12 ≤ τ ≤ 14 in suitably small steps, and using the kernel=0

option in regress() as follows.

h <- age^2/(tau^2 + age^2)

fit0 <- regress(y~h:strain-1, ~BM+BMP, kernel=0)

fit0$llik

Although all ages used in the computation are strictly positive, the model for-
mula is such that the mean height at age zero is exactly zero. We find that the
log likelihood is maximized at τ̂ ' 12.782. A plot of the profile log likelihood
values against τ can be used to generate an approximate confidence interval if
needed: the 95% limits are approximately (11.7, 14.2) days.

A follow-up step is needed in order for the standard errors of the β-coefficients
to be computed correctly from the Fisher information. To compensate for the
estimation of τ , the derivative of the mean vector with respect to τ at τ̂ must
be included as an additional covariate, as decribed by Box and Tidwell (197?)

deriv <- -2*tau * fit$fitted * h / age^2

fit0a <- regress(y~deriv+h:strain-1, ~BM+BMP, kernel=0)

It is a property of maximum likelihood estimators for exponential-family mod-
els that the residual vector y − µ̂ is orthogonal to the tangent space of the
mean model (with respect to the natural inner product Σ̂−1). Consequently,
the coefficient of deriv at τ̂ is exactly zero by construction, and all other coeffi-
cients β, σ2 are unaffected. The ordinary maximum-likelihood estimates of the
variance components are (1.0467, 0.0497, 0.4283), the plateau coefficients are
(28.293, 40.042) mm, and the standard error of the difference is 0.975. In this
instance, the unadjusted standard error is 0.941, so the effect of the adjustment
is not great.

The second method is closer in spirit to REML, where the variance com-
ponents are estimated from the residual likelihood, i.e., the marginal likelihood
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based on the residuals. The mean-value model has a three-dimensional tangent
space at τ ,

Xτ = span{∂µ/∂β0, ∂µ/∂β1, ∂µ/∂τ} = span{hS0, hS1,deriv}

where Sr is the indicator vector for strain r. The aim is to find τ̂ such that Xτ ,
is orthogonal to the residual vector. The only difference between this procedure
and maximum likelihood is that the variance components, which determine the
inner product matrix, are estimated by maximizing the residual likelihood rather
than the full likelihood. If we fix τ , h and deriv as before, the command

fit0b <- regress(y~deriv+h:strain-1, ~BM+BMP)

uses the default kernel K = Xτ in the estimation of the variance components
using REML, and τ = 12.842 is such that the coefficient of deriv is zero. The
estimated variance components are (1.0400, 0.0659, 0.4319), the plateau coeffi-
cients are (28.353, 40.138), and the standard error of the difference is 0.988.

When an iterative function such as regress() is used repeatedly in a loop
as above, the overall efficiency can be substantially improved by supplying the
previously-computed vector of variance components

fit0 <- regress(y~..., ~BM+BMP, start=fit0$sigma)

Estimated variance components may be negative provided that the combined
matrix is positive definite. The argument pos=c(0,1,1) can be used to force
positivity on selected coefficients.

Fitted and predicted values
The mean functions for the two strains are β0h(t) and β1h(t), and the fitted

curves with βs replaced by β̂s are shown as dashed lines in the lower right panel
of Fig. 1. The fitted mean is not to be confused with the predicted growth curve
for an extra-sample plant i∗ of strain s, which is deemed to have a response

Yi∗(t) = βsh(t) + σ1η0(t) + σ2ηi∗(t) + εi∗t.

Although this new plant is not one of those observed in the experiment, its
growth trajectory is not independent of the sample responses because the co-
variances

ρt(i, t
′) = cov(Yi∗(t), Yi(t

′)) = σ2
1 cov(η0(t), η0(t′)) = σ2

1K(t, t′)

are not all zero. The conditional distribution given the data is Gaussian with
conditional mean

E(Yi∗(t) | data) = βsh(t) + ρ′tW (y − µ) (4.5)

where ρt is the n-component vector of covariances, µ is the n-component vec-
tor of means, and W = Σ−1 is the inverse covariance matrix of the response
values for the sampled plants. The fitted conditional distribution, or the fitted
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Figure 4.2: Fitted mean growth curves (dashed lines) and best linear predictors
(solid lines) of plant height for two strains, using an inverse linear model for
the mean trajectory and Brownian motion for the deviations. Sample average
heights at each age are indicated by dots.
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predictive distribution, has a mean β̂sh(t) + ρ̂′tŴ (y − µ̂), called the best linear
predictor (BLUP). This is shown as a pair of solid curves in the lower right
panel in Fig. 1, one curve for each strain.

If we had taken the plant age to be two days rather than four at the time of
the first positive measurement, and h(t) = t/(τ + t) to be linear at the origin
rather than quadratic, the graphs of fitted means and best linear predictors
would look rather different: see Fig. 2. Even with the reduced two-day offset
for the origin, the inverse linear function is less satisfactory as a description
of the growth curve than the inverse quadratic, so the variance coefficient σ2

1

needs to be increased by a factor of roughly 7.3 to compensate for the larger
deviations. Using log likelihood for model comparison, the inverse linear model
is decisively rejected. Despite the less satisfactory fit, the best linear predictor
for the inverse linear model (shown as the pair of solid lines in Fig. 2) is not
appreciably different from the best linear predictor for the inverse quadratic
model in Fig. 1. The maximum difference is approximately one millimetre (or
3%) at age 40 days. The difference between fitted means is much larger.

In certain areas of application such as animal breeding, the chief goal is to
make predictions about the meat or milk production of the future progeny of
a specific individual bull. This bull is not an extra-sample individual, but one
of those experimental animals whose previous progeny have been observed and
measured. Such predictions are seldom called for in plant studies. Nevertheless,
from a probabilistic viewpoint, the procedure is no different. If i∗ is one of the
sampled plants and t is an arbitrary time point, the covariance of Yi∗(t) and
Yi(t

′) is

ρi∗t = σ2
1K(t, t′) + σ2

2δi,i∗K(t, t′),

which involves two of the three variance components. The conditional expected
value (4.5) then yields an interpolated curve for each plant.

4.4 Modelling strategies

1. Choice of temporal origin. The distinction between calendar time and
plant age is fundamental. The decision to measure plant age relative to
the time of brearding is crucial, and has a greater effect on conclusions
than any subsequent choice.

2. Selection of a characteristic mean curve. The mean curve must pass
through the origin at age zero, so a logistic function et/(1 + et) cannot
be used. The graphs in Fig. 4.1 suggest an inverse quadratic curve, which
may or may not be appropriate for other plants.

3. Use of a non-stationary covariance model. Plant growth curves are in-
trinsically non-stationary because they are tied to the origin at age zero.
Animal growth curves using weight in place of height are not similarly
constrained.
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4. Brownian motion. It seems reasonable that every growth curve should be
continuous. It seems reasonable also to model the response as a sum of
the actual height plus measurement error, thereby making a distinction
between plant height and the measurements made at a finite set of selected
times. The particular choice (BM) is not crucial, and can be improved by
FBM. It is also possible to mix these by using FBM for the plant-specific
deviation, and BM for the common deviation, or vice-versa.

5. Positivity. Plant heights are necessarily positive at all positive ages,
whereas any Gaussian model puts positive probability on negative heights.
This is one of those compromises, some major, some minor, that are fre-
quently needed in applied work.

6. Response transformation, usually y 7→ log(y), is an option that must al-
ways be considered. The log transformation might be reasonable for an-
imal growth curves, but it was rejected here because of the role of zero
height in determining the age origin.

7. Limiting behaviour. Plants do not grow indefinitely or live for ever, so the
capacity of the growth model for prediction is limited to the life span of a
typical plant.

8. Other issues. The emphasis on growth curves overlooks the possibility that
the two strains may differ in other ways. In fact, the average brearding
time for strain ‘108’ is two days less than the time for strain ‘cis’, with a
standard deviation of 0.43 days. No single summary tells the whole story.

4.5 Miscellaneous R functions

The following is a list of various R functions used in the construction of covari-
ance matrices, and in the fitting of variance-components models.

BM <- outer(age, age, "pmin") (BM covariance matrix)

FBM <- outer(age^p, age^p, "+") - abs(outer(age, age, "-"))^p

Plant <- outer(plant, plant, "==") (plant block factor)

BMP <- BM * Plant (component-wise matrix multiplication)

FBMP <- FBM * Plant (iid FBM for each plant)

mht0 <- tapply(height[strain==0], age[strain==0], mean)

mht1 <- tapply(height[strain==1], age[strain==1], mean)

tapply(brearded, strain, mean)

L <- t(chol(FBM)) (Choleski factorization)

fit <- regress(y~h:strain-1, ~BM+FBMP, kernel=0)

Computer files

PlantGrowth.dat PlantGrowth.R
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4.6 Exercises

4.1 In the inverse quadratic model, the height of plant i at age t is Gaussian
with mean βs(i)h(t) whose limit as t→∞ is βs(i). What is the variance of the
ultimate height of plant i?

4.2 For the inverse linear model in which brearding is deemed to have occurred
two days prior to the first positive measurement, estimate τ together with the
plateau coefficients. Obtain the standard error for the estimated limiting differ-
ence of mean heights for the two strains.

4.3 The Brownian motion component of the model can be replaced with frac-
tional Brownian motion with parameter 0 < ν < 1, whose covariance function
is

cov(Y (s), Y (t)) = s2ν + t2ν − |s− t|2ν ,

where s, t ≥ 0. The index ν is called the Hurst coefficient, and ν = 1/2 is
ordinary Brownian motion. Show that the fit of the plant growth model can be
appreciably improved by taking ν ' 1/4.

4.4 Bearing in mind that the heights are measured to the nearest millimetre,
comment briefly on the magnitude of the estimated variance components for the
FBM model.

4.5 In the fractional Brownian model with ν < 1/2, the temporal increments
for non-overlapping intervals are negatively correlated. Suggest a plausible
mechanism that could lead to negative correlation.

4.6 For 1000 equally spaced t-values in (0, 10] compute the FBM covariance
matrixK and its Choleski factorizationK = L′L. (If t = 0 is included, K is rank
deficient, and the factorization may fail.) Thence compute Y = L′Z, where the
components of Z are independent and identically distributed standard Gaussian,
and plot the FBM sample path, Yt against t. Repeat this exercise for various
values of ν in (0, 1) and comment on the nature of FBM as a function of the
Hurst coefficient.

4.7 Several plants reach their plateau well before the end of the observation
period. How is the analysis affected if repeated values are removed from the
end of each series?

4.8 Explain the Box-Tidwell method.

4.9 Investigate the relation between brearding date and ultimate plant height.
Is it the case that early-sprouting plants tend to be taller than late-sprouting
plants?



Example 5

5.1 Evolution of lice on captive pigeons

5.1.1 Backround

Understanding the mechanisms responsible for the origin of new species is a
fundamental topic in evolutionary biology that has been the focus of numerous
experiments and much speculation dating back at least to Darwin, who argued
that differential natural selection in a range of environments leads to reproduc-
tive isolation and thence, eventually, to the formation of new species. Chapter 3
is concerned with speciation induced by differential diets over approximately 40
generations of Drosophila. This chapter considers another experiment on the
same theme, but with a different system and different environmental pressures.

The paper Rapid experimental evolution of reproductive isolation from a
single natural population published by Villa et al. (PNAS 2019) is concerned
with reproductive isolation developing in response to body-size evolution in
isolated lineages of pigeon lice. Each lineage evolved over 60 generations on a
different host pigeon. Half of the hosts were normal-sized captive feral pigeons,
the other half were giant runts.

To establish their claim, the authors must show evidence of two phenom-
ena: first that louse size evolves rapidly in giant runt hosts relative to that in
captive feral hosts, and second that differential louse size induces sexual isola-
tion. The evidence for both of these phenomena is essentially statistical. The
mechanism by which size differences lead to reproductive isolation is important
from an evolutionary standpoint, but this chapter deals only with size evolu-
tion, i.e., whether systematic louse-size changes are detectable in a 60-generation
span. Our concern is not so much with the evolutionary implications of the au-
thors’ findings, but with the experimental design, the data analysis, and the
inferences that follow. The goal is solely to examine the data for evidence of
systematic body-size changes in response to host size.

5.1.2 Experimental design

The following synopsis of experimental procedure is taken directly from Villa
et al. (2019). Before the start of the experiment, resident lice on all experimental
pigeons were eradicated by housing the birds in low-humidity conditions for
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at least ten weeks. According to the authors, this procedure kills both lice
and eggs, while avoiding residues from insecticides. To begin the experiment,
800 lice taken from wild-caught feral pigeons were transferred to 32 lice-free
experimental pigeons, 25 lice per host. Half of the experimental hosts were
captive feral pigeons; the other half were giant runts, a domesticated breed that
is threefold larger than feral pigeons. Pigeons were housed in eight aviaries, each
aviary containing four birds of the same breed. Every six months, a random
sample of lice from each bird was removed, photographed, and returned to the
host. The sex, body length, metathorax width, and head width of each louse
was recorded.

One aspect of this design is different from that in chapter 3. After measure-
ments were made, the lice were returned to their host. This was done in order to
minimize the effect of measurement on the host-parasite system. Otherwise, the
act of measurement would reduce the resident population, and introduce insta-
bility in the lineage, which is not desirable. In the design in chapter 3, the flies
removed for experimental purposes were reared separately for one generation on
a standard diet, so it was not possible to return them to the main breeding line.
However, the breeding lines were more tightly controlled, so plans could be made
in advance to accommodate the numbers needed in any particular generation.

As always in situations of this sort, the phrase ‘random sample of lice from
each bird’ must be treated with caution, particularly with regard to size mea-
surements. Larger lice are more visible than smaller specimens, so it would be
naive to expect the random sample to behave like a simple random sample of
the resident lice on a given bird. Nonetheless, size-biased sampling need not be
a serious concern for this experiment provided that it affects all birds equally.

5.1.3 Deconstruction of the experimental design

Since each measurement is made on one louse, it is evident that each observa-
tional unit is either one louse or one louse on one occasion, while the response Yu
is a point in the state space, which is {M,F} × R3. Since a louse generation is
approximately 24–25 days, and measurement occasions are six months apart, we
can be sure that no louse was measured on more than one occasion. While there
is no practical distinction between louse and louse-occasion as the observational
unit, as a matter of principle the ordered pair is the correct choice.

The lice are arranged in 32 lineages, one lineage to each bird. Thus lineage
and bird are equivalent as block factors, and aviary is a coarser partition or
block factor with eight levels. With respect to birds, host or breed is a binary
classification factor.

The baseline is the time at which de-lousing was complete, and the exper-
iment was ready to commence with new lice lineages on captive birds. The
paper mentions randomization only incidentally in the ‘Materials and Methods’
section, and the reference there is a little ambiguous, but two crucial choices ap-
pear to have been made at baseline. First, the 800 initial lice were partitioned
into 32 lineages with 25 founders for each lineage. Second, each lineage was
associated with a particular bird. Regardless of the biological and mechanical
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constraints in the laboratory, it seems reasonable and mathematically natural
to regard each of these steps as the outcome of an independent uniform random-
ization scheme. Since the objective is to study selective pressure, host size is the
principal treatment. If the randomization was done in two steps as indicated,
treatment is assigned to lineages in step two, in which case each lineage serves
as one experimental unit.

By definition, a covariate is a pre-baseline variable, and it appears that there
is only one. Measurement occasion or time is a function on the observational
units, which is a quantitative factor. However, as indicated in the preceding
paragraph, lineage could be regarded as a pre-baseline block factor, and it should
certainly be used as the experimental unit to assess variability of the treatment
effect estimate.

In addition to time and lineage, pre-baseline vital measurements including
louse sex are available on the 800 founder lice. All pre-baseline variables are
available for use as covariates as if the values were fixed and non-random, and
initial response values are no different in that respect from any other pre-baseline
measurements. Randomization ensures that the distribution of initial values is
the same for all treatment groups, so the initial response values are uninforma-
tive for treatment effects. Generally speaking, when the response is a time series
or temporal process, it is more convenient and mathematically more natural to
treat initial response measurements as an integral part of the response process.
A crucial point is that the probability model for the response at t = 0 must
be consistent with the randomization: see sections 5.2.3, 5.2.5 and 11.4.5. The
joint distribution implies a conditional distribution, which is available if needed
for purposes of estimation or prediction.

The paper does not discuss how birds were assigned to aviaries, but it seems
reasonable to regard that too as the outcome of a balanced randomization ap-
plied to birds, subject to restrictions mentioned earlier. We presume here that
birds were quarantined in their aviaries during de-lousing, in which case aviary
is a pre-baseline block factor. Since all birds in one aviary are of the same breed,
a strong argument can be made that aviary is the experimental unit, not lineage
as stated earlier. Both seem to be relevant. Whether they are pre-baseline or
immediately post-baseline, time, lineage, aviary, and treatment are available for
purposes of analysis and model construction.

Apart from the founders, louse sex is a post-baseline variable, and thus one
of four components in the response. Genetic theory leads one to expect the sex
ratio should steady at 50:50, and post-baseline counts in Table 5.3 confirm this.
But the same table also shows that the baseline F:M ratio is 464:336, which is
significantly in excess of 50:50.

Each lineage was associated with a particular pigeon at baseline, which
means that lineage and pigeon are equivalent as block factors. A subsequent
remark in the paper shows that this statement is not quite correct. When a bird
died during the experiment, all lice from the dead bird were transferred to a new
parasite-free bird of the same type. Thus, one lineage could span two or more
birds. Unfortunately the data file does not indicate when deaths might have
occurred, so we have no way to check the effect on lineages of host transfers.
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5.2 Data analysis

5.2.1 Role of tables and graphs

However it is measured, the response of evolutionary interest is louse size. To
keep matters as simple as reasonably possible, we focus on the single response,
body length. Since we plan to use additive decompositions, the log transform is
more or less automatic, so Yu is the log body length for louse u. However, the
range of variation in all size measurements is only a few percent of the average,
so the log transformation has little effect on conclusions.

The purpose of a table or graph is to advance the narrative thread by drawing
attention to the most important patterns or features in the data such as the
nature and direction of various effects. It is natural enough to emphasize the
effects of scientific interest—but not at the cost of misleading the reader. Every
table or graph invites the question ‘What is the point of this table?’ or ‘What
feature does this graph illustrate?’. If the answer is not clearly apparent, the
narrative is not advanced, and the reader is likely to be confused. Generally
speaking, the data analyst examines numerous tables and graphs. Only the
most useful of these are retained for presentation.

Table 5.1. Average log body length (in µm) of lice on two pigeon hosts

Time in months
Sex Host 0 6 12 18 24 30 36 42 48

F Feral 7.883 7.883 7.883 7.874 7.866 7.886 7.880 7.872 7.864
F G.R. 7.885 7.894 7.882 7.882 7.882 7.895 7.894 7.899 7.886
M Feral 7.720 7.716 7.705 7.700 7.702 7.712 7.709 7.713 7.700
M G.R. 7.720 7.718 7.717 7.716 7.713 7.723 7.726 7.731 7.720

Differences ×100: Giant runt − Feral

F G−F 0.2 0.1 −0.1 0.8 1.7 0.9 1.4 2.6 2.2
M G−F 0.0 0.2 1.2 1.7 1.1 1.1 1.7 1.8 2.0

The first four rows of Table 5.1 show the average log body length of all lice
measured on each occasion. Most impressive is the stability of body length for
both louse sexes over 60 generations. If anything, there is a slight decrease in
length for lice on both hosts, with a slightly greater decrease for captive feral
pigeons.

The numbers in Table 5.1 are accurate to three decimal places or four decimal
digits, but the first three digits are essentially constant at 7.88 for females and
7.72 for females, so we say that there are only 1–2 significant decimal digits.
Usually, one is not enough to gauge accurately the statistical variation in the
process. However, we have chosen to leave the table in its present form to
emphasize how tiny are the size differences between lice on the two hosts.

The sex difference 7.88− 7.72 = 0.16 means that female lice are about 16%
longer than males. The last two rows show that the mean difference for hosts
tends to increase over time, reaching around 2% for both sexes after 48 months.
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Figure 5.1: Average body sizes of lice for two hosts over time

It is remarkable that such a small size difference could have a detectable effect
on sexual coupling.

The first panel of Figure 5.1 shows a plot of the same data with sexes com-
bined. Automatic centering and re-scaling of the y-axis has the effect of ex-
aggerating the variation and the magnitude of the divergence between the two
groups. In other words, that which is emphasized by the table of averages is
eliminated by the plot.

The remaining panels show similar plots for the head width, the metathorax
width, and the first principal component, which is a roughly equally-weighted
positive linear combination of the three standardized size variables. For all size
variables, the temporal trajectory for louse size on giant runts is surprisingly
similar to that for feral pigeons, and lice on giant runts are larger on average than
those on feral pigeons. Apart from the uniform decrease in all size measurements
in the initial and final intervals, no clear temporal trend is visible.

Ideally, it would be good to show error bars for every point. But size mea-
surements for different lice on one pigeon are not independent, so honest error
assessment is not straightforward. On balance, it is better to show no error bars
than to show the naive default based on independence, which is misleading in
this setting: contrast Fig. 5.2 with the table at the end of section 5.5.

5.2.2 Trends in mean squares

Table 5.1 and Fig. 5.1 illustrate temporal trends in average body size. To get
a comparable impression of trends in variance, it is helpful to compute mean-
squares associated with louse sex, host size, aviary, lineage and residuals at each
of the nine time points.
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Table 5.2. Trends in mean squares and variance components ×105

Time t in months

MS 0 6 12 18 24 30 36 42 48

Host 12 340 190 996 1095 690 1024 3448 1506
Aviary 290 204 408 575 493 333 324 528 350
Lineage 83 85 85 94 87 80 100 79 152
Residual 111 52 60 68 56 52 56 57 64

Variance-component estimates (×105)

σ̂2
aviary 2.1 3.2 10.7 10.4 9.5 6.5 6.7 10.6 6.6
σ̂2

lineage −1.1 2.8 3.3 3.8 2.8 2.2 5.5 0.3 12.1

σ̂2
resid 111.3 53.1 59.4 67.3 56.9 52.5 56.1 58.4 63.3

The dominant mean square is that for louse sex which starts off at 5.25 at
baseline, drops to half that value at six months and decreases slowly to 1.64 at
48 months. For the other factors, the mean squares are shown in the top half
of Table 5.2, together with the REML variance components for aviary, lineage
and residual in the second half. For this fit, host and sex were eliminated as
fixed effects, so the mean-squared residual does not coincide exactly with σ̂2

0 .
Some of the following points are accommodated in subsequent analyses, but

others are merely noted.

1. The residual variability at baseline is twice that on all subsequent occa-
sions. One plausible explanation is that founder lice collected from wild
pigeons are more variable in size than those resident on captive pigeons.

2. The lineage mean square is remarkably constant from baseline onwards.
Relative to the residual mean square, it is below expectation at baseline,
but not significantly so. After baseline, it is uniformly larger than the
residual mean square, but not by a large factor.

3. The host mean square at baseline seems artificially low. There is strong
evidence in the data, for example in the sex ratios, that the randomization
scheme was more complicated that that depicted in the preceding section,
so this may be a consequence of an effort to balance the randomization.

4. The between-aviary mean square at baseline is a little larger than expected
from uniform random assignment: the F -ratio is 2.6, which is is at the
upper 1.6% point of the reference null distribution.

5. Variance-component estimates on few degrees of freedom, such as those
for aviary and lineage, have notoriously high variances.

The main issue to be addressed at this point is the size of the aviary mean
square at baseline, and whether the mean square provides sufficient probative
evidence to cast doubt on the randomization or to declare it inadequate or
biased. The question is not whether the initial lice were labelled 1–800 and lots
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drawn to determine which lice would be assigned to which birds, but whether the
laboratory procedures actually employed are a reasonable facsimile of objective
randomization. The only evidence before the court is shown in Table 5.1.

One traditional view is that the aviary mean square is selected for attention
as the largest of three or four, so the p-value, or measure of extremity, is closer
to 5%. That calculation tells us something, but it does not answer directly the
question of interest to the court: ‘Given the data, what is the probability that
the allocation to aviaries was biased?’ From another viewpoint in which sparse-
ness prevails at odds level ρ, the odds against aviary bias given the mean-square
ratio F = 2.6 on 6, 367 degrees of freedom are approximately ρζ6(2.6), where
ζ6(2.6) = 3.81. This calculation uses a modification for F -ratios of the sparsity
argument in McCullagh and Polson (2018). The strength of the evidence is such
that the initial presumption of innocence with probability 1/(1 + ρ) is changed
to 1/(1 + ρζ6(2.6)). For ρ = 0.1, which is not a strong prior presumption for
this setting, the probability of a no aviary bias is changed by the evidence from
0.91 to 1/1.38 = 0.72. So we take note and proceed with caution, giving the
randomization a provisional pass. This point is revisited in section 5.4.2.

5.2.3 Initial values and factorial subspaces

If host size has an effect on louse size, it is an evolutionary development, so the
effect is not immediate. Thus, treatment and time are the principal covariates
whose effects are to be studied. In addition, the body length for C. columbae
male lice is approximately 85% of that for females, so louse sex must also be
taken into consideration. The effects of lineage and aviary are assumed to be
additive random variables with independent and identically distributed com-
ponents for each pigeon and each aviary respectively. Since their effects are
additive zero-mean random variables, lineage and aviary do not contribute to
the mean-value subspace.

Setting the two block factors aside temporarily, the factors treatment or host
size, time and sex are to be taken into account. If we proceed to use factorial
models in the naive manner, we may begin with all three main effects and
check which interactions are needed. Or we may follow the authors’ practice
in their Tables S2–S5, which is to report the coefficients in the full three-factor
interaction model. Both approaches are technically incorrect. Fitting either
of the suggested models is a pointless exercise that serves only to confuse the
narrative thread for this experiment.

The problem with the naive application of factorial models to this design
lies in the role of time, and the fact that t = 0 corresponds to the experimental
baseline. If Yut denotes the log body length of louse u at time t, the additive
main-effects model for the conditional mean given sex and host has the form

E(Yut | s, h) = β0 + β1t+ β2s(u) + β3h(u),

in which h(u) is a code for the host size, and s(u) is the louse sex. At baseline,
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the additive model implies

E(Yu0 | s, h) = β0 + β2s(u) + β3h(u),

with three coefficients to be estimated. The presumption of randomization,
which is that lice are assigned to hosts independently of their size, implies
β3 = 0. Thus, randomization contradicts both the additive model and any
other factorial model that contains it as a subspace.

Whether or not randomization was explicitly employed in this experiment,
it is reasonable to imagine or suppose that the initial assignment of lice was
effectively randomized. Randomization has implications. The use of a model
that contradicts those implications is a source for confusion; the use of a model
that conforms with randomization is strongly advised.

The phenomenon described here—of time in relation to treatment and initial
values—is not new. A simple example is given in Exercise 3.11 of McCullagh
and Nelder (1987).

Only the most cynical reader would seriously consider the possibility that the
researchers had deliberately assigned the lice differentially to hosts or to aviaries
in an inappropriate manner. However, there might well be sound biological
arguments for balancing the design in certain ways or for favouring females
in the establishment of lineages. Deviations of this sort are normal practice,
but they should be reported. Nonetheless, unintentional biased assignment can
occur, so it is routine in many areas of application to check whether the baseline
values are in conformity with randomization. That can be done here. While
there is no indication of bias in Fig. 5.1, randomization implies that the mean
squares for aviary, lineage and residual have the same expected value at baseline.
However, the aviary-to-residual mean-square ratio in Table 5.2 is 2.61, which
falls near the upper 98.5 percentile of the null distribution. This is not proof
positive of bias, but it is a little troubling and calls for an explanation.

5.2.4 A simple variance-components model

The following linear models address directly the question that is of principal
interest to an evolutionary biologist. Without straying from linearity in time,
the null and alternative may be formulated as linear subspaces.

H0 : E(Yut) = β0 + β1t+ β2s(u); (5.1)

HA : E(Yut) = β0 + βh(u)t+ β2s(u). (5.2)

The model formulae time+sex and host:time+sex generate basis vectors for the
two subspaces whose dimensions are three and four respectively. The alternative
model has two linear trends in time, one for captive feral hosts h(u) = 0, and
one for giant runts h(u) = 1.

For covariances, we start out following the authors’ suggestion with three
variance components

cov(Yu, Yu′) = σ2
0δu,u′ + σ2

1δl,l′ + σ2
2δa,a′ , (5.3)
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where l, l′ and a, a′ are the lineages and aviaries respectively. This is a linear
combination of three identity matrices, one on the lice, one on the lineages or
pigeons with 32 blocks, and one on the aviaries with eight blocks. It is usually
justified either by appeal to exchangeability based on recorded similarities of
observational units, or, if that argument fails to convince, by appeal to random-
ization. Although neither argument carries weight in this instance, computation
is cheap so we proceed.

For the log body length, the REML variance components in (5.3) paired
with (5.2) are

lice σ̂2
0 78.19× 10−5,

lineages σ̂2
1 1.84× 10−5,

aviaries σ̂2
2 1.40× 10−5.

Both the lineage and aviary variance components are small relative to the
between-lice variance. Despite that, there is no compelling reason to declare
them null simply because they are small. The fitted slope coefficients (×104)
for the two pigeon breeds are

Parameter Estimate s.e.
Feral:time −2.23 0.53
Giant:time 1.37 0.38
Difference 3.60 0.63

This analysis appears to provide reasonably strong evidence that lice transferred
to captive feral pigeons decrease in size over time, and moderately strong evi-
dence that lice transferred to giant runts increase in size over time. However, the
analysis is based on linearity in time, which seems implausible given Fig. 5.1,
and a covariance structure (5.3) that is both inadequate for the data and in
conflict with randomization.

5.2.5 Conformity with randomization

Randomization implies that the body-size measurements at t = 0 are exchange-
able with respect to some group of permutations, here assumed to be large
enough that the responses for every pair of lice have the same joint distribution
regardless of whether they are assigned to the same pigeon, to different pigeons
in the same aviary or to different pigeons in different aviaries. Unfortunately,
randomization implies σ1 = σ2 = 0 in (5.3).

Ever since the pioneering work of Edwards and Cavalli-Sforza (1963, 1964),
Brownian motion has been the standard probabilistic model for the neutral evo-
lution of a quantitative trait (Felsenstein, 2004, chapter 23). The conflict with
randomization can be fixed only by introducing non-stationary temporal pro-
cesses for the lineage and aviary effects, and the most natural way to incorporate
Brownian motion is as follows:

cov(Yu, Yu′) = σ2
0δu,u′ + σ2

1K(t, t′) δl,l′ + σ2
2K(t, t′)δa,a′ + σ2

3K(t, t′). (5.4)
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The Brownian covariance function K(t, t′) = min(t, t′) is positive semi-definite,
and K(0, 0) = 0 ensures conformity with randomization. Environmental selec-
tive pressure exerts a genetic drift, and the mean model (5.2) contains one drift
parameter for each host, so the differential drift is the treatment effect.

The rationale for (5.4) is as follows. The louse population as a whole evolves
as a Brownian motion with volatility σ3; each aviary evolves independently as
a Brownian motion with volatility σ2; and each lineage evolves independently
as a Brownian motion with volatility σ1. For the duration of this experiment,
each louse belongs to the system, a lineage and an aviary, and the value for the
louse is the sum of these three processes plus white noise. All three processes
are neutral or drift-free. Drifts associated with host size occur in (5.2).

The REML log likelihood achieved by this Brownian modification exceeds
that for (5.3) by approximately 57.9 units, and all four fitted coefficients are
positive. Although these models are not nested, the difference is huge enough
to leave no doubt that (5.3) is totally inadequate for these data.

The effect of these temporal correlations on the fitted regression coefficients is
small but not negligible; their effect on standard errors is an eight-fold increase.
The fitted slope coefficients (×104) for the two pigeon breeds are

Parameter Estimate s.e.
Feral:time −4.22 4.1
Giant:time 0.33 4.1
Difference 4.55 3.3

The conclusion from this analysis is the essence of simplicity: the data are
entirely consistent with neutral evolution of louse size on both hosts.

Apart from the Brownian contribution, Table 5.2 shows that the baseline
variance is substantially larger than the residual variance on subsequent occa-
sions. This observation suggests that (5.4) is not adequate on its own, and
must be supplemented by an additional diagonal matrix for baseline observa-
tions. This differential baseline variance leads to a further 64.7-unit increase in
the REML criterion. However its effect on conclusions is almost negligible; for
comparison, the fitted coefficients (×104) are as follows:

Parameter Estimate s.e.
Feral:time −4.39 4.3
Giant:time 0.30 4.1
Difference 4.69 3.6

The conclusion regarding neutrality of evolution is unaffected. The apparent
evidence for a differential trend in the analysis at the end of section 5.2.4 is a
consequence of a demonstrably inadequate variance assumption.

Brownian motion in (5.4) does a reasonable job of describing the temporal
dependence, but the fit can be improved by using a low-index fractional Brown-
ian motion. However, this and other modifications discussed in section 5.4 and
exercises 5.24–5.25 have only a small effect on drift estimates.
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Figure 5.2: PC1 mean difference ‘giant runt - feral’ versus time

5.3 Critique of published claims

Villa et al. base their conclusions on the first principal component as a combined
measure of overall louse size. Since the first principal component is essentially
the standardized sum or average of the three size variables, this much is fine.
The sample averages for each host are plotted in the fourth panel of Fig. 5.1,
which shows that the divergence between the two mean trajectories is not ap-
preciably greater than the temporal variability of any single trajectory. This is
a disappointing conclusion for a four-year experiment, and not appealing as a
headline story.

However, Villa et al. choose to emphasize the divergence over the variability
by plotting the PC1 mean difference (giant runts minus controls) as a function
of time in their Fig. 1C. A version of their plot is shown in Fig. 5.2, and is to
be contrasted with the fourth panel of Fig. 5.1.

The plot symbol on the horizontal line in Fig. 1C or Fig. 5.2 is explicitly
associated with controls. Error bars attached to zero are not mentioned in
captions or in text. The visual impression of remarkable temporal stability of
louse size on feral pigeons contrasts starkly with the rapid increase for lineages on
giant runts. The plot title and the scale on the y-axis confirm those impressions,
which are in line with the authors’ conclusion Lineages of lice transferred to
different sized pigeons rapidly evolved differences in size. In my opinion, Fig. 1C
or Fig. 5.2 gives a grossly misleading impression of stability for feral pigeons
contrasted with a substantial trend for giant runts. In fact, Table 5.1 shows
that louse body-size changes are no more than 2% over the entire period.

Taking correlations into account, the error bars for the non-zero line in
Fig. 1C or Fig. 5.2 are too small by a factor increasing from about 1.0 to 7.0,
and roughly proportional to time.

Tables S2–S5 in the Appendix to their paper report regression coefficients
and their standard errors for the full factorial model with (5.3) as the covari-
ance structure. These tables are cited in the Results and Discussion section to
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support the chief claim: Over the course of 4 y, lice on giant runts increased
in size, relative to lice on feral pigeon controls (Fig. 1C and SI Appendix, Ta-
bles S2–S5). It is unclear which coefficients are meant to justify this claim,
but the coefficient of host:time in the PC1 analysis is reported with a t-ratio of
3.15. Overlooked in this computational blizzard is the fact that both the fit-
ted mean and the fitted covariance contradict the randomization. In addition,
the covariance assumption is non-standard for an evolutionary process, and is
demonstrably inadequate for the task.

The formal analysis of the first principal component by linear Gaussian mod-
els follows the lines of section 5.2.5. Although the scale of the PC1-response is
very different from that of the body length, the need for the Brownian-motion
component is abundantly clear, as is the additional baseline variance. When
these covariances are accommodated, the slope estimates and their standard
errors are

Parameter Estimate s.e.
Feral:time −0.0126 0.033
Giant:time 0.0016 0.033
Difference 0.0142 0.013

Nothing in this PC1 analysis points to a departure from neutral evolution of lice
on either host. In conclusion, the evolutionary divergence described by Villa et
al. may well exist on some time scale, but the evidence for it is not to be found
in their data.

5.4 Further remarks

5.4.1 Role of louse sex

The variables host and lineage are treatment factors generated immediately
post-baseline by randomization, and having a known distribution. For the 800
lineage founders, louse sex is a a pre-baseline variable; for the remaining lice,
sex is a random variable not generated by randomization, and not recorded
immediately post-baseline. One can speculate on the joint distribution, but in
principle, the sex ratio for giant runts might not be the same as the sex ratio for
controls. Thus, (5.1) and (5.2) are models for the conditional mean while (5.3)
and (5.4) are models for the conditional covariance—given host and lineage plus
the entire sex-configuration for all sampled lice.

Regardless of covariance assumptions, the interpretation in (5.2) of βh as
‘the effect of treatment’ must be considered in the light of the fact that any
additive effect possibly attributable to an effect of treatment on sex has been
eliminated. Although not intermediate in the temporal sense, sex is not dissim-
ilar mathematically to an intermediate response. It is possible that treatment
could have an effect on the intermediate response, in which case the coefficients
βh in the conditional mean describe only one part of the treatment effect.

In the context of this experiment, no effect of treatment on sex is anticipated.
Any effect that might be present is most likely to be a sampling artifact of little
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Table 5.3. Louse counts by host, sex and time

Time in months

Host Sex 0 6 12 18 24 30 36 42 48

Feral F 231 67 39 57 38 56 23 55 19
M 169 73 44 50 37 55 31 49 22

Giant runt F 233 95 104 105 102 104 105 105 96
M 167 102 95 92 98 97 91 95 104

or no evolutionary interest. Nonetheless, it is not difficult to examine the sex
distribution at baseline and post-baseline for both treatment groups. Table 5.3
shows the louse counts by time, host and sex.

The post-baseline total count is quite constant at 200 for giant runts, but is
much more variable for captive feral pigeons. The first is presumably a design
target. We are left to wonder why the the control group does not have a similar
target. Nevertheless, this is not a serious criticism. In both treatment groups,
females account for 58% of lice at baseline, but close to 50% thereafter. As
anticipated, there is little evidence of a difference in sex ratio between groups.
If anything, the difference between the ratios is below expectation at nearly
every time point.

The Poisson log-linear model time:(host+sex) is equivalent to the statement
that host and sex are independent at each time point, or equivalently, that the
sex ratio is the same for both pigeon breeds, but not necessarily 50:50. The
residual deviance of 2.8 on nine degrees of freedom falls at the lower third per-
centile (0.03) of the null distribution, which shows that sample log odds ratios
are uniformly closer to constant than the Poisson model predicts. Certainly,
there is no suggestion of a treatment effect on sex ratios. Apart from the imbal-
ance at baseline, the subsequent ratios are close to 50:50, so we can regard the
sex indicator post-baseline as a Bernoulli process independent of treatment.

5.4.2 Persistence of initial patterns

One unintended consequence of the Brownian covariance model (5.4) is that
baseline values are independent of all subsequent values. This is a strong as-
sumption. It is not implied by randomization, and it is not necessarily a prop-
erty that we could confidently expect to be supported by detailed examination
of the data. Without contradicting the randomization, it is possible to in-
troduce temporal correlations between baseline and non-baseline values by a
simple modification such as replacing the last term in (5.4) with the shifted
Brownian covariance min(t − τ, t′ − τ) for some τ ≤ 0. For reasons that are
explained in chapter 17, the REML criterion is independent of τ , so this par-
ticular modification has no effect on fitted values, on prediction or inference for
contrasts. In fact, this covariance term could be replaced with the stationary
version −|t− t′|/2.

The analysis of variance for baseline values already casts doubt on the fair-
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ness of the randomization with respect to aviaries, so it is natural to check
for correlations between initial and subsequent values associated with the same
aviary. Does the pattern of louse size differences among aviaries at baseline
persist in subsequent generations? The question is concerned with persistence
of aviary patterns, so fairness of the randomization is not presumed.

One way to introduce persistent initial patterns is to replace the aviary
term in (5.4) with independent shifted Brownian motions, one per aviary. The
covariance contribution is then

σ2
2δa,a′ min(t− τ, t′ − τ),

with a single temporal shift τ ≤ 0 to be estimated from the data using the REML
criterion. One boundary point τ = 0 coincides with (5.4), and the other limit
τ → −∞ implies a constant aviary effect as in (5.3). For τ < 0, this modification
implies positive correlations within aviaries at baseline, which is a size pattern
that contradicts our understanding of randomization. The interpretation is that,
by accident or by design, some aviaries start out with larger lice than others,
and the initial pattern leaves an imprint on the subsequent evolution.

For the PC1 variable, the profile REML log likelihood values for τ at zero,
τ̂ = −2.6 and −∞ are 0.0, 11.5 and −18.5, showing that the constant aviary
effect is decisively rejected by the data. It appears from this analysis that the
initial aviary pattern for PC1 is non-zero and that it persists in the subsequent
evolution. The particular temporal offset may be pure coincidence, but τ̂ =
−2.6 months is a very close approximation to the de-lousing quarantine period
during which the pigeons had to be housed somewhere.

5.4.3 Observational units

Consider the statement near the beginning of section 5.1.3: ‘since each mea-
surement is made on one louse, it is evident that each observational unit is one
louse...’. The premiss—that each measurement is made on one louse—is indis-
putable. Nevertheless, a conclusion that is obvious literally, is not necessarily
true mathematically in the sense of the definition.

According to the definition, the observational units are the objects, or points
in the domain, on which the response is defined as a stochastic process. Thus,
each observational unit exists at baseline, not necessarily as a physical object,
but as a non-random mathematical entity. For the models in section 5.2, with
louse-time pairs as observational units, there is no birth or death, and no evolv-
ing finite population—only a fixed, arbitrarily large, set of lice in each lineage.
In this mathematical framework, the lice are in 1–1 correspondence with the
natural numbers, they live indefinitely in the product space, and their vital
statistics are random variables recorderd in the state space. To each louse there
corresponds a stochastic process, so the value for each louse evolves over time,
but the population itself is fixed and arbitrarily large in every lineage.

It would be wrong to say that the Gaussian model is incorrect or that its
flaws are fatal, but its shortcomings for this application are clear enough. If
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the application calls for a finite randomly-evolving lineage, a more complicated
mathematical structure is required. The remarkable thing is not that this Gaus-
sian model is exquisitely tailored to this evolutionary process, but that a generic
model that is missing the defining aspects of life, namely birth and death, should
have anything useful to contribute at all.

Certainly, the lice do not exist in the physical sense at baseline. But lineages
are established at baseline, and it is the lineages that evolve. They evolve
randomly in two senses—in their composition as a finite set of lice, and in their
values or features. If both aspects are important for a given application, a more
complicated model is needed in which the observational units are lineage-time
pairs. The state space for one measurement on one louse is S = {M,F} × R3;
the state space for one observational unit is the set of finite subsets of S. One
finite subset of S is a complete description of the population size and the vital
statistics of the residents at time t. The transitions from one finite subset to
another are limited by birth, death and continuity in time.

A general process of the type described in the preceding paragraph is a
complicated mathematical structure, and we make no effort to develop a general
theory here. But there are simple versions that are essentially equivalent to
imposing a pure birth-death process independently as a cohort restriction on
the domain of a Gaussian process. The distribution of the values thus generated
coincides with the Gaussian model in section 5.2, and none of the subsequent
analyses are affected. For that setting, birth and death are immaterial.

The possibility that individual louse values or body-sizes might be related
to the sample size or lineage size from which they come has not been considered
up to this point, in part because such a dependence is not possible under the
models in section 5.2. The notion that a sample can be extended indefinitely
from a sub-sample such that the sub-sample values remain unchanged, is usually
understood in applied work as an obvious fact. The possibility that the obvious
fact might fail is “such an appalling vista that every sensible person would say
‘It cannot be right...”’. But, just as it turned out a decade after Lord Denning’s
notorious judgement in 1980, from which this quote is taken, the appalling
vista is not sufficient probative evidence to establish its alternative as fact.
Failure also strikes at the heart of the most cherished notion in probability and
applied statistics, which is the ‘obvious fact’ of distributional consistency for
sub-samples as formulated by Kolmogorov (1934). If lice are the observational
units for this process, consistency implies that the distribution for individuals
is unrelated to the size of the sample from which they are taken. Fortunately,
variability of sample sizes provides a weak check to test that implication.

Each of the 32 × 9 lineage-time pairs provides one sample, of which 15 are
empty. The louse counts range from zero to 44, they are highly variable, and
they tend to decrease over time. One lineage appears to go extinct at 30 months.
The safest and the simplest way to test for a dependence on sample size is to
include sample size as an additional ‘covariate’ in (5.2), retaining (5.4) for co-
variances. For both log body length and PC1, the fitted coefficient is negative
and approximately one half of the standard error. This analysis offers no evi-
dence of a sample-size dependence, which provides a little reassurance that the
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earlier analysis with louse as the observational unit is reasonably sound.

If some birds preened more vigorously or more thoroughly than others, and
larger or older lice were preferentially removed by preening, the more assiduous
preeners would then host fewer and smaller lice. Differential preening could lead
to a dependence of mean louse size on lineage size or on sample size, in which
case the test in the preceding paragraph is a reasonable check.

5.5 Follow-up

5.5.1 New design information

Given the severity of the discrepancy between the conclusions presented above
and those published by Villa et al. (2019), it seemed only appropriate to send
a copy of sections 5.1–5.4 to the authors for comment. I contacted the lead
author in early December 2020. Scott Villa, responded immediately, and later
at the beginning of February 2021 offering further details about the experimental
design, and challenging the conclusions on several points.

The randomization was carried out according to an elaborate protocol, which
involved dislodging the CO2-anesthetized lice over a custom-made 10× 14 glass
grid, generating a random grid number as the starting point for collection of
specimens, and placing lice sequentially and cyclically in vials labelled 1–32 until
each vial contained 25+ lice. It was designed to avoid unintentional biases, and
it appeared to be adequate for the task.

The following summary of key design points that had previously been par-
tially or totally misunderstood is taken from Villa’s reply.

1. At time zero, 1600+ lice were collected from wild feral pigeons. No
size measurements were made on the sub-sample of 800 founder lice that
were transferred to captive birds. A second sample of 800 lice was pho-
tographed, measured, and frozen for subsequent genetic analysis.

2. The 800 founder lice were assigned to hosts at random, 25 per bird. Each
founding population consisted of 13–14 females and 11–12 males with a
deliberate female bias to ensure that a lineage would be established on
every host.

3. The 800 lice measured at time zero did not contribute to the breeding pop-
ulation; their assignment to lineages was randomized, but purely virtual.
The virtual sample had the same sex-ratio as the founders.

4. After baseline, the lice that were measured at 6-month intervals were
frozen thereafter to use for genomic analyses of the populations over time.
Throughout the experiment (months 6–48), the adult and immature lice
that were removed but not photographed were immediately placed back
on birds, thus ensuring stability of the lineages over time.
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In light of the revised information, certain statements in the ‘Materials and
Methods’ section of the published paper seem ambiguous or oddly phrased, for
example,

We transferred 800 lice from wild caught feral pigeons to 16 giant
runt pigeons and 16 feral pigeon controls (25 lice per bird). At this
time (Time 0), we also randomly sampled 800 lice from the source
population on wild caught feral pigeons and measured their body size.

This remark suggests, correctly as it turns out, that the measured lice and the
founder lice might be disjoint subsets. But that thought was dispelled by an
earlier remark Once photographed, the live lice were returned to their respective
host, which now turns out to be incorrect.

To learn about a natural host-parasite system, the scientist must manipulate
the system to some extent. But as the degree of interference increases, the more
is learned about the interference and the less about the natural system. The
strong approving remark in the second paragraph of section 5.1.2 about the
necessity of returning all lice to their host seems entirely correct as a matter of
principle, if only to reduce interference and to minimize the possibility of lineage
extinction. Regrettably, it seems now that photographed lice were not returned,
perhaps because photography is damaging or destructive. Whether that degree
of interference is acceptable or excessive is a matter of biological judgement best
left to subject-matter experts, not a matter on which statistical expertise carries
weight. As always, the over-riding concern is that the experiment be reported
as it was conducted.

5.5.2 Modifications to analyses

At this point we accept the new design information, and ask what effect it has on
the appropriateness of the analyses already performed, and what modifications
are required.

Consider first the information that the association of time-zero measure-
ments with lineages is virtual. This fact implies that the information content is
unchanged if time-zero values are permuted in any manner that preserves sexes,
while non-baseline values stay put. A baseline permutation that preserves sexes
is one in which males are permuted with other males, females with other females,
and non-baseline individuals are fixed. This set of permutations is a sub-group
of size 464!× 336! in the larger group of size 3105!.

Any credible analysis that accommodates the virtual randomization must be
invariant with respect to this group of permutations; similar remarks apply to
numerical conclusions regarding temporal trends, variance components or other
effects. The authors’ block-factor assumption (5.3) applies to baseline and non-
baseline values, so it contradicts baseline exchangeability, virtual or otherwise.
The numerical values reported in their supplementary tables S1–S5 are also not
invariant.

Non-virtual baseline exchangeability as discussed in section 5.2.5 implies that
the marginal distribution of the initial 800 measurements is invariant with re-
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spect to sex-preserving permutation. Virtual exchangeability is a much stronger
condition because it implies also that the joint distribution of all 3105 measure-
ments is invariant. Neither condition implies independence of initial and sub-
sequent values, but virtual exchangeability implies that the dependence must
be of a trivial type, which is ignorable in practice. The Brownian model (5.4)
implies cov(Yu, Yu′) = 0 for any pair u 6= u′ such that t(u) = 0 or t(u′) = 0.
Together with (5.2), it also satisfies the virtual exchangeability condition. By
contrast, the standard random-effects model (5.3) having independent and iden-
tically distributed lineage effects that are constant in time, does not satisfy even
the weaker exchangeability condition. It is also incompatible with the discussion
in section 5.4.2.

The Brownian-motion model is in line with the standard genetic theory
for trait evolution, and is compatible with virtual randomization as described
above. Thus the conclusions as stated at the end of section 5.3 are confirmed.
Average size differences between the two hosts shown in Table 5.1 are less than
2% and are compatible with neutral evolution in both hosts. The sex-adjusted
PC1 mean differences GR − F at each non-zero time point are very similar
to the unadjusted differences displayed in Fig. 5.2, but the correctly-computed
standard errors tell a very different story.

Table 5.4. PC1 mean differences Giant Runt− Feral by time

Time in months

0 6 12 18 24 30 36 42 48

Diff 0.000 −0.114 0.111 0.464 0.496 0.316 0.251 0.494 0.750
s.e. 0.00 0.24 0.33 0.40 0.46 0.51 0.56 0.60 0.65
Ratio 0.00 −0.48 0.34 1.16 1.09 0.62 0.45 0.82 1.16

Both the differences and the standard errors in this table are computed from a
fitted Gaussian model, in which the temporal trend, previously modelled as a
zero-mean random effect with covariance σ2

3(t ∧ t′) in (5.4), is replaced with a
non-random term in the mean. The moments are

E(Yu) = β0 + β1s(u) + γh(t), (5.5)

cov(Yu, Yu′) = σ2
0δu,u′ + σ2

1δl,l′(t ∧ t′) + σ2
2δa,a′(t ∧ t′) + σ2

3δuu′It=0. (5.6)

The mean subspace includes an additive constant for sex, and a host-dependent
temporal trend γh(t). The factorial model formula

sex + as.factor(time):host

generates a subspace of dimension 1 + 9 × 2 = 19, but the randomization con-
straint implies γ0(0) = γ1(0), which reduces the dimension by one. The fitted
differences γ̂1(t) − γ̂0(t) are shown in the table, together with standard errors
as estimated by REML and weighted least squares. They are automatically
sex-adjusted, so they are not exactly the same as the sample differences shown
in Fig. 5.2.
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If the randomization constraint is ignored, the fitted difference is non-zero
for t = 0. All estimates and standard errors throughout the table are altered,
but only slightly.

At no time does the observed difference reach much above one standard
error, so claims for rapid divergence are not supported by this analysis or by any
modifications that include non-trivial temporal dependence: see Exercise 5.24.
The same applies to the overall estimate of linear temporal trend, which is
0.0142 per month with standard error 0.013. Comparable analyses for body
length and other size measurements point to similar conclusions.

It is possible to satisfy the randomization constraint by restricting the block
factor terms in (5.3) to post-baseline times only. But Brownian motion implies
a non-trivial temporal correlation, and is a much better fit than the restricted
block factor. The implication is that the evidence for non-trivial temporal cor-
relation is very strong (see Exercises 5.24 and 5.25). Every modified analysis
that takes account of such correlations leads to very similar conclusions. This
analysis does not imply that divergent evolution does not exist on some time
scale. But it is safe to say that no evidence for it exists in these data.

5.5.3 Further remarks

According to the reply by Scott Villa, the sex ratio of lice at baseline was
intentionally biased towards females, with 13–14 females and 11–12 males as
founders for each lineage. Following the initial seeding, male and female lice
were sampled in approximately equal numbers, so information on the evolution
of the sex ratio over time is not available. In light of this information, much of
the speculation in section 5.4.1 is not relevant.

Villa also takes issue with a remark in section 5.2.1 that the overall change
in body size is surprisingly small, which suggests that changes of this magnitude
(< 2%) cannot be biologically significant. His counter-claim is that body size
changes on this scale are biologically relevant for this species, as the effect on
mating behavior shows (Villa et al. 2019, Figs 2–5).

The coefficient of variation of body length for female lice within aviaries
is very stable at 2.4%–2.6% from six months onwards; the value for males is
equally stable at 2.2%–2.4%. These numbers represent natural variability of
body length within freely breeding populations, which is approximately 2.4%.
The mean differences between hosts are shown in Table 5.1; they are almost
uniformly less than 2%.

What are the implications for mating? The root mean square size discrep-
ancy between a random pair from the same aviary is approximately

√
2× 2.42, or

3.4%, so the distribution of F−M -size differences is approximately N(411, 832).
A 2% increase in mean size for females implies that the distribution of size dif-
ferences for mixed hosts is N(411 + 50, 832). If size discrepancy is the chief
determinant of sexual compatibility, and incompatibility is rare in each popula-
tion, a mean difference of 0.6 standard deviations is not sufficient to make the
incompatible fraction large in the mixed population.
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The two movies provided by Villa et al. (2019) illustrate size discrepancies
of 1.8 and −2.6 standard deviations, so their relevance at the 0.6σ-scale is not
immediately apparent. In the absence of a detailed morphological explanation,
it is difficult to accept the authors’ claim that body size changes on this scale
(∼0.6σ) are biologically important for any species.

5.6 Exercises

5.1 According to the standard definition in section ??, two observational units
u, u′ belong to the same experimental unit if the treatment assignment proba-
bilities given the baseline configuration satisfy P (Tu = Tu′) = 1. Section 5.1.3
makes the argument that each louse is one observational unit, and that each
lineage is one experimental unit. But the author subsequently pivots to aviary
as the experimental unit, hedging his bets by stating that ‘both seem to be rel-
evant’. Discuss the arguments pro and con of louse-lineage versus louse-aviary
versus lineage-aviary as the observational-experimental units. In connection
with the models in section 5.2, what are the substantive implications of one
choice versus another?

5.2 According to Villa et al.,

Pigeons combat feather lice by removing them with their beaks dur-
ing regular bouts of preening. Columbicola columbae, a parasite of
feral pigeons, avoids preening by hiding in spaces between adjacent
feather barbs; preening selects for C. columbae small enough to fit
between the barbs. Preening also exerts selection on traits critical
for locomotion on the host.

In light of this information, comment on the remark in section 5.1.3 ... size-
biased sampling need not be a serious concern for this experiment provided that
it affects all birds equally.

5.3 Download the data, compute the averages at each time point for the two
pigeon breeds, and reconstruct the plots in Fig. 5.1 and Fig. 5.2.

5.4 The coefficient of variation is the standard-deviation-to-mean ratio, which
is often reported as a percentage. For body length or other size variables, the
coefficient of variation is essentially the same as the standard deviation of the
log-transformed variable. Compute the coefficient of variation of body length
separately for male and female lice on each occasion, and report this as a table
of percentages. What patterns do you see in this table for males versus females
or baseline versus non-baseline?

5.5 Use anova(...) to re-compute the mean squares in Table 5.2. Use
Bartlett’s statistic to test the hypothesis that the residual mean squares have
the same expected value at all time points. What assumptions are needed to
justify the null distribution?
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5.6 For the model (5.3), what is the expected value of the within-lineage mean
square at time t? For the Brownian-motion model (5.4), show that the variance
of Yu increases linearly with time. What is the expected value of the within-
lineage mean square?

5.7 Use lmer(...) to fit the variance-components model (5.3) to the log body
length with (5.2) as the mean-value subspace. Report the two slopes, the slope
difference, and the three standard errors.

5.8 Explain why (5.3) is in conflict with randomization.

5.9 Compute the four covariance matrices V0, . . . , V3 that occur in (5.4). Let
Q be the ordinary least-squares projection with kernel (5.2). Compute the four
quadratic forms Y ′Q′VrQY and their expected values as a linear function of the
four variance components. Hence or otherwise, obtain initial estimates.

5.10 Use regress(...) to compute the REML estimate of the variance com-
ponents in (5.4). Hence obtain the estimated slopes, their difference, and the
standard errors for all three.

5.11 For n = 100 points t1, . . . , tn equally spaced in the interval (0, 48), com-
pute the matrix

Σij = δij + θ(ti ∧ tj)

for small values of θ, say 0 ≤ θ ≤ 0.02. Find the maximum-likelihood estimate
of β in the linear model Y ∼ Nn(α + βt, Σ) with Σ known, and plot the

variance of β̂ as a function of θ. Comment on the effect of the Brownian-motion
component.

5.12 Regress the 32 × 9 lineage-time averages (for PC1) against sample size
using sample size as weights. You should find a statistically significant posi-
tive coefficient a little larger than 0.01. Explain why the conclusions from this
exercise are so different from those at the end of section 5.4.2.

5.13 In Table S2 of their Appendix, Villa et al. fit the eight-dimensional
factorial model host:sex:time to the first principal component values on 3096 lice.
Show that this is equivalent to fitting four separate linear regressions E(Yu) =
α + βtu, with one intercept and one slope for each of the disjoint subgroups,
Fer.F, Fer.M, Gr.F, Gr.M. Feral and female are the reference levels, so sexu = 1
is the indicator vector for males. Deduce that the host:time coefficient is equal
to the slope difference βGr.F − βFer.F restricted to female lice. The fitted value
is 0.009. What is the fitted slope difference for male lice?

5.14 The sex coefficient in Table S2 is −2.437. Which combination of the four
α-values in the previous exercise does this correspond to?

5.15 The host coefficient in Table S2 is 0.449 with standard error 0.159. What
does this imply about the average or expected baseline values for the four sub-
groups?
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5.16 For the model with persistent aviary patterns described at the end of
section 5.4.2, compute and plot the REML profile log likelihood for τ in the range
0.5 ≤ τ ≤ 24. Use PC1 as the response, and (5.2) for the mean-value subspace.
The covariance should be a linear combination of five matrices, one each for the
identity matrix and the identity restricted to baseline, two Brownian-motion
product matrices as in (5.4), and one τ -shifted B-M product matrix. Ten to
twelve points equally spaced on the log scale should suffice for plotting.

5.17 Use the profile log likelihood plot in the previous exercise to obtain a
nominal 95% confidence interval for τ .

5.18 Distributional invariance. Consider a simplified version of the louse
model in which there are 16 feral and 16 giant runt pigeons, no sex differences
between lice, and no correlations among measurements. Two lice are associated
with each bird at baseline, and two at each subsequent time t = 1, . . . , 7 for a
total of 512 observations. Each louse u is associated with a host type h(u), feral
or giant runt, and the joint distribution is Gaussian with moments

E(Yu) = β0 + βh(u)tu; cov(Yu, Yu′) = σ2δu,u′ .

A baseline permutation is a 1–1 mapping u 7→ τ(u) such that t(u) > 0 implies
τ(u) = u. Distributional invariance means that the permuted vector Y τ with
components Y τu = Yτ(u) has the same distribution as Y . Show that the joint dis-
tribution is invariant with respect to baseline permutations. Note that h(τ(u))
is not necessarily equal to h(u).

5.19 Procedural invariance. Consider a sample of 512 observations generated
according to the model in the previous exercise. The estimation procedure is in-
variant if β̂(Y ) = β̂(Y τ ) and σ̂(Y ) = σ̂(Y τ ) for every baseline permutation. Is it
necessarily the case that distributional invariance implies procedural invariance?
Explain why least-squares and maximum-likelihood are invariant procedures.

5.20 Consider the following statement taken from section 5.5. Any credible
analysis that accommodates the virtual randomization must be invariant with
respect to the same group, and similar remarks apply to numerical conclusions
regarding temporal trends, variance components or other effects. Invariance in
this setting means that each distribution in the model is exchangeable, or invari-
ant with respect to sex-preserving baseline permutations. This is a demanding
standard, and it is possible that subsequent statements in that same section
may not live up to it. Show that the model-formula Host:as.factor(Time),
which is related to Table 5.4, corresponds to a set of vectors, some of which are
not group-invariant. Investigate the implications, particularly for time zero.

5.21 According to the text in section 5.5, Virtual randomization requires the
time-zero average for feral hosts to be the same as that for giant runts, but the
temporal trends are otherwise unconstrained. It appears that the model ma-
trix spanning this subspace is not constructible using factorial model formulae.
Explain how to construct the desired matrix including a constant additive sex



5.6. EXERCISES 71

effect. What is its rank? Fit the model as described in the text following Ta-
ble 5.4. Include independent Brownian motions for aviaries and lineages, plus
an additional baseline error term with independent and identically distributed
components.

5.22 Use the fitted model from the previous exercise to compute the linear
trend coefficient ∑

t(γ̂1(t)− γ̂0(t))∑
t2

and its standard error. You should find both numbers in the range 0.013–0.015
per month, similar to, but not exactly the same as those reported in the text.

5.23 The model in the previous two exercises has a baseline variance that
is larger than the non-baseline residual variance. What is the ratio of fitted
variances?

5.24 The fact that measured lice were not returned to their hosts is an inter-
ference in the system that may reduce or eliminate temporal correlations that
would otherwise be expected. One mathematically viable covariance model that
is in line with virtual randomization, replaces each occurrence of t ∧ t′ in (5.6)
with the rank-one Boolean product matrix (t > 0)(t′ > 0), so that the only
non-zero temporal correlations are those associated with lineage and aviary as
strictly post-baseline block factors. Fit this modified block-factor model to the
PC1 response with (5.5) for the mean subspace. Which model fits better? Is
the log likelihood difference small or large? An informal comparison suffices at
this point.

5.25 Construct two versions of Table 5.4, one based on the modified block-
factor model, and one based on the combined variance model that includes both.
Comment on any major discrepancy or difference in conclusions based on the
various models.

5.26 What was the matter that Lord Denning refused to accept in his 1980
appeals-court judgement when he referred so melodramatically to the ‘appalling
vista that every sensible person would reject’? And why was this phenomenon
so abhorrent to him?
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Example 6

6.1 A meteorological temperature series

The UK Meteorological Office, maintains the longest continuous instrumental
temperature record in the world. According to the MET office website,

These daily and monthly temperatures are representative of a roughly
triangular area of the United Kingdom enclosed by Lancashire, Lon-
don and Bristol. The monthly series, which begins in 1659, is the
longest available instrumental record of temperature in the world.
The daily mean-temperature series begins in 1772.

Here we examine the Central England daily temperature series, from January 1,
1772 to Dec 31, 2019. The series length is 90 580 days over 248 years.

The data in tenths of a degree Celsius can be downloaded from the address

https://www.metoffice.gov.uk/hadobs/hadcet/cetdl1772on.dat

The values for each year are arranged in a 31 × 12 array, one column for each
month and one row for each day in standard Gregorian format. Non-existent
days are padded with the placeholder ‘value’ −999. For present purposes, we
assume that the data have been rearranged in standard data-frame format with
one row for each of n = 90 580 days. Each column is one variable. Apart from
temp and day, it may be convenient to include the first and second-order annual
harmonics

c(t) = cos(2πt/τ), s(t) = sin(2πt/τ); c(2t) = cos(4πt/τ), s(2t) = sin(4πt/τ),

where t is time measured in days counted from Jan 1, 1772, and τ = 365.2425
is the mean number of days in one Gregorian year.

As is often the case with very extensive data, much can be learned from sim-
ple graphs and other summaries without resorting to formal stochastic models.
We first examine the nature of the annual seasonal cycle.
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Figure 6.1: Mean temperature and volatility by day of the year.

6.2 Seasonal cycles

6.2.1 Means and variances

The average temperature for each date in the year is computed by associating
with each day a calendar date, either the Gregorian calendar date or some
version thereof. In the Gregorian system, each date is an integer in the range 0–
365, beginning with Jan. 1 coded as zero. February 28 and March 1 are coded as
58 and 60 respectively, whether these are consecutive days or not. For present
purposes, it suffices to code day as sequential integers 0:(n − 1), where n =
90 580, and to use the mathematical calendar date date <- trunc(day%%tau),
which is an integer in the range 0–365. Whatever version of the calendar is
used, the average for each date is computed as follows:

dailymeantemp <- tapply(temp, date, "mean")

Our mathematical dates do not correspond exactly with the Gregorian calendar
date, mostly because the leap day is intercalated at the end of December rather
than at the end of February. Thus, each calendar date 0–364 occurs 248 times,
and these dates are always consecutive days, whereas the leap date occurs only
60 times, so date 0 follows 365 in leap years and 364 in non-leap years. Similar
remarks apply to date number 59 (Feb. 29) in the Gregorian system. Wherever
the leap date is intercalated, a minor discontinuity may be introduced, as can
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Figure 6.2: Mean temperature and volatility by day of the year in consecutive
62-year blocks

be seen in the volatility series in Figure 6.1. If the Gregorian date is used, the
discontinuity at Dec. 31/Jan 1 disappears, but does not reappear at Feb. 29.

Neither the mean series nor the volatility series is adequately described by
a first-order harmonic function, which is a linear combination of the three ba-
sis vectors 1, c(t), s(t), but both are reasonably well described by second-order
harmonic functions. The fitted harmonics shown in Fig. 6.1 were computed by
ordinary least squares,

fit <- lm(dailymeantemp~c1+s1+c2+s2)

which is perfectly adequate for graphical purposes, but technically sub-optimal
because of serial correlation. Note that all vectors at this stage, including the
harmonic functions, are functions of the date, so each vector has 366 compo-
nents. The leap date could be given reduced weight in the analysis, but this
has not been done here. Alternatively, the leap date could be omitted, with a
corresponding modification in the harmonic functions.

Apart from the discontinuity at the leap day (Dec 32), which results in a spike
in volatility, there is a curious anomaly of reduced temperature volatility around
April 5–9. The depression in volatility is spread over several days, and is evident
also in plots using Gregorian dates. Whatever its cause—social, ecclesiastical or
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meteorological—the volatility plots in Fig. 6.2 show that the phenomenon has
persisted for over 200 years.

Figure 6.2 is the same as Fig. 6.1 except that the period has been split
into four non-overlapping blocks of 62 years in order that long-term trends
and variations in the annual cycle might be revealed. To simplify cross-block
comparisons, the plotting scales are fixed for each block, and the second-order
harmonic is also fixed to serve as a historical reference.

It is evident that there has been no major shift in the seasonal cycle over this
period. However, winter temperatures, particularly in January, have risen by
several degrees throughout this period, and that increase began even in the 19th
century. The low summer and autumn temperatures in the late 19th century are
well known and are often attributed to volcanic effects such as the Krakatowa
eruption in 1883. However, the lowest annual mean in this series occurs in
1879, four years before the eruption, and the expected volcanic effects are not
readily apparent in the annual averages for the decade that follows: see Fig. 6.4.
Other than the winter increase, the annual pattern in the early 20th century
is remarkably close to that in the early 19th century. The phenomenon that
stands out in Fig. 6.2 is the uniformly high temperature throughout the year in
the most recent period. Only on 35 dates do the daily averages for 1958–2019
fall below the historical reference curve.

6.2.2 Skewness and kurtosis

Fisher’s k-statistics of order 2–4 for a sample of n observations are

(n− 1) k2,n(x) =
∑

(xi − x̄n)2,

(n− 1)
↓2
k3,n(x) = n

∑
(xi − x̄n)3,

(n− 1)
↓3
k4,n(x) = n(n+ 1)

∑
(xi − x̄n)4 − 3(n− 1)3k2

2,n(x),

where n↓r = n(n − 1) · · · (n − r + 1) is the descending factorial, and kr,n is
defined for n ≥ r only. For an iid sample, the expected values are the population
cumulants E(kr,n) = κr, which are zero for r ≥ 3 in Gaussian samples. The

third and fourth standardized k-statistics are k3/k
3/2
2 and k4/k

2
2, which are

invariant with respect to affine transformation xi 7→ a+ bxi with b > 0. Thus,
the fact that the temperature is recorded in ◦C rather than ◦F has no effect on
the standardized values. These statistics are frequently used to gauge departures
from normality. Here we are looking at cumulant variations as a periodic annual
time series.

The standardized values are plotted by calendar date in Fig. 6.3, so each
skewness and kurtosis coefficient is computed using 248 replicate temperature
values for every non-leap date, or 60 for the leap date. The average skewness
is close to zero, but there is a distinct sinusoidal cycle with a summer maxi-
mum, which is in phase with the mean temperature cycle. Winter temperatures
are skewed negatively, summer values positively. The kurtosis values are more
widely scattered with no clear pattern, but summer values are slightly larger on
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Figure 6.3: Skewness and kurtosis of temperatures by date.

average than those in other months. Two thirds of the k4-values are negative,
indicating that tails are shorter than Gaussian. The sinusoidal trend in the
skewness plot is clear evidence of non-normality, but that is not an adequate
reason to abandon methods of analysis based on linear decompositions.

It is worthwhile recalling the inheritance property of sample statistics kr,n,
and more general U -statistics, computed for sub-samples of various sizes. Let
[N ] be the population and S ⊂ [N ] a sample of size n ≤ N ; let Y [S] be the
sample temperatures and kr,n(Y [S]) the sample statistic. Given the population
statistic kr,N ≡ kr,N (Y [N ]), the average over samples of size n satisfies

ave
S⊂[N ]

kr,n(Y [S]) = kr,N (Y [N ]).

Thus, given that the variance for April 7 is low relative to April 1 or April 12
in the population of 248 years, we should expect the same to hold on average
for simple random samples or simple random partitions. Although a sequential
block of 62 years is not a simple random sample, it may behave as such in the
absence of serial correlation, in which case the depression seen for April 5–9
variances in successive 62-year blocks in Fig. 6.2 is expected and not a surprise.

This inheritance argument does not apply to the standardized skewness or
standardized kurtosis, which are not U -statistics. Nevertheless, an approximate
version of inheritance does hold.
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Figure 6.4: Mean temperature and volatility over 248 consecutive years, with
record highs and lows indicated.

6.3 Annual statistics

6.3.1 Means and variances

The top panel of Fig. 6.4 shows the annual average temperature for each year
over the 248-year period. Post-1790 record lows and record highs are indi-
cated: year t is a record high if Yt = max{Y1, . . . , Yt}, and a record low if
Yt = min{Y1, . . . , Yt}. The record lows occur in 1814 and 1879, the record highs
in 1834, 1921, 1949, 1990, 1999, 2006 and 2014. By visual inspection, the mean
trend is constant up to about 1900, increasing slowly to about 1950, and more
rapidly thereafter. The maximum-likelihood cubic-spline fit has been superim-
posed as a summary of the mean trend. Computational details are given in the
following section.

The second panel of Fig. 6.4 is similar to the first, except that it shows
the within-year standard deviation measured as the deviation from the second-
order harmonic fit. The harmonic term is removed so that the effect of seasonal
variation is kept to a minimum. Post 1790 record lows and highs are highlighted;
the lows occur in 1790, 1832 and 1951, the highs in 1795 and 1947. The trend
in volatility is downwards as indicated by the cubic spline fit, but it is not
significantly non-linear over this period.

Changes in meteorological technology over the centuries must have an effect
on variability of measurements, but this effect seems unlikely to be large for
temperature measurements. Temperatures are well calibrated relative to the
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freezing and boiling points of water, so the effects of technological innovation
on measurements of annual average temperatures are likely to be small, if not
entirely negligible.

6.3.2 Variance of block averages

The focus in this section is on the behaviour of block averages Ȳt:t+h for con-
tiguous blocks of length h. To eliminate seasonal variation, we restrict attention
to blocks whose length is an integer number of years. In the following table,
the sample averages for 5000 blocks of length h years or 365.25h days were ob-
tained, and the sample variance of these block averages was computed. Blocks
were sampled uniformly at random, not necessarily starting on Jan 1. Standard
theory for finite samples tells us that, in the absence of correlation, the sample
variance of the averages should be proportional to (1− f)/h, where f = h/248
is the sampling fraction and 1− f is the finite-population correction factor. Ac-
cordingly, the second line reports the corrected variance of the block averages,
with Ch = 1/(1− f).

Block length in years

h 4 8 16 32 64 128

Ch var(Ȳh) 0.213 0.158 0.133 0.087 0.058 0.036
h× Ch var(Ȳh) 0.853 1.261 2.130 2.778 3.719 4.624
h1/2 × Ch var(Ȳh) 0.427 0.446 0.533 0.491 0.465 0.409

The standard theory for uncorrelated values also applies asymptotically to
block averages from a stationary processes provided that the correlations decay
at a sufficiently fast rate. For a short-range dependent process the product
hCh var(Ȳh) shown in the middle line should be approximately constant in h,
at least for large h. However, this product is clearly increasing as a function
of the block size. The third line suggests that h1/2Ch var(Ȳh) is approximately
constant, and hence that the variance of block averages behaves inversely as the
square root of the block size rather than O(h−1). This phenomenon is known
as long-range dependence. The behaviour observed here for block averages
is consistent with the assertion that the covariance function does not have a
finite integral. It is incompatible with short-range dependence such as e−|s| or
P (s)e−|s| for any polynomial P , or any of the finite-range Matérn models.

6.3.3 Variogram at short and long lags

The variogram of a stationary process at lag h is the expected value of the
squared difference |Yt − Yt+h|2, which is non-negative and symmetric in h. If
the process has a covariance function K(|t− t′|), the variogram is

γh = E
(
|Yt − Yt+h|2

)
= 2K(0)− 2K(h) = 2σ2

(
1− ρ(h)

)
,

where ρ(h) is the autocorrelation at lag h, and σ2 is the variance. The semi-
variogram is one half the variogram, and ρ(h) is the autocorrelation function.
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Figure 6.5: Empirical log variogram of temperatures split into short, medium
and long lags. A least-squares fitted curve for short and medium lags taken
together is shown in the top two panels. For the longer lags, the least-squares
straight line with slope 0.20–0.25 per millennium is shown.

The empirical variogram is the average squared difference of sample values

γ̃h =
1

n− h

n−h∑
t=1

(Yt − Yt+h)2.

If the process has a non-constant mean, but is otherwise stationary, the residuals
are used instead. The empirical variogram provides a decomposition of the total
sum of squares by lags:

1

n

n∑
h=1

(n− h)γ̃h =
∑

(Yi − Ȳ )2.

However, it is not an orthogonal decomposition.
Figure 6.5 shows the log variogram split by short, medium and long lags.

All plots are based on residuals after eliminating first and second-order seasonal
harmonics. The first panel shows the typical monotone increase for lags 1–30
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days; the second panel is re-scaled to show a similar, but less steep, increase
for lags of 30–365 days. A particular curve fitted by non-linear least-squares is
superimposed on the log variogram, the same curve−0.02+log(1−K∗(h/10.9) in
both panels. Details concerning the SD-1/2 covariance function K∗ are given in
Section ?; the behahiour for large h in excess of about 5 is 4K∗(h) ' 1.25h−3/2−
h−2. Overall, the fitted curve tracks the observed values quite well over lags
1 ≤ h ≤ 365 measured in days, but it is essentially constant after about 12–18
months. The standardized variogram and the autocorrelations implied by the
fitted curve for lags up to one week are as follows:

h 1 2 3 4 5 6 7
γ̃(h)/(2s2) 0.220 0.425 0.559 0.648 0.711 0.755 0.788
γ̂(h)/(2σ̂2) 0.224 0.441 0.572 0.658 0.718 0.761 0.794

ρ̂h 0.776 0.559 0.428 0.342 0.282 0.239 0.206

For lags 2 ≤ h ≤ 4, the SD-1/2 autocorrelations satisfy ρ̂h < ρ̂h1 , the inequality
being reversed for h > 4.

The third and fourth panels show the behaviour for very long lags in the
range 1–120 years. The third panel is restricted to lags that are an integer mul-
tiple of one year, so that the sequence of values is not affected by the elimination
of seasonal cycles. This graph indicates that the log variogram increases at the
rate 0.25 units per millennium

log γ̂(h) = const + 0.25h/1000

over the range 1 ≤ h ≤ 120 years. The fourth panel shows lags that are integer
multiples of one month over the same range. The least-squares fitted line in this
case is a little flatter with slope 0.20 units per millennium. Neither scatterplot
suggests a substantial deviation from linearity over the range 1 ≤ h ≤ 120 years.

It is striking that the SD-1/2 variogram curve γ(h) = σ2
0−σ2

1K
∗(h/λ), which

fits the empirical variogram reasonably well for lags up to and well beyond one
year, has a finite limit γ(∞) = σ2

0 , and thus fails completely to capture the non-
constant behaviour of the variogram at very long lags. Although the long-range
trend is difficult to deny, the implied annual increase is almost imperceptible
and is comparable to the width of one plotting symbol in the second panel.

6.4 Stochastic models for the seasonal cycle

6.4.1 Structure of observational units

The observational units in a time series are the time points at which measure-
ments are made. Usually, there are no replicate measurements at the same time.
In this instance, each day is one observational unit, the observational units are
completely ordered and are associated with the natural numbers, i.e., equally
spaced points on the real line. In the absence of further structure, we have at
our disposal only one fundamental covariate, which is time measured in days
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beginning at an arbitrary point, which is taken to be zero for Jan 1, 1772. There
is, however, one crucial piece of additional information, which is the length of
the Gregorian year, τ = 365.2425 days. From this we arrive at the first-order
harmonics,

c(t) = cos(2πt/τ), s(t) = sin(2πt/τ)

whose period is one calendar year. The kth-order harmonics c(kt), s(kt) have a
period of 1/k years. These are the only plausible functions that are available for
use as covariates in the model for the mean temperature. One crucial property
of harmonics is that the subspace spanned by each pair c(t), s(t) is closed with
respect to temporal translation:

span{cos(t), sin(t)} = span{cos(t+ h), sin(t+ h)}

for each displacement h, and the same holds for the pair c(kt), s(kt). The space
Hk of harmonics of degree ≤ k is a vector space of dimension 2k + 1, in which
H0 = 1 is the space of constant functions.

The Fourier basis vectors c(kt), s(kt) are exactly orthogonal in the continu-
ous setting as functions on (0, 2π), and they are exactly orthogonal in certain
uniformly-spaced discrete-time settings. In the present discrete setting, they
are not quite orthogonal because of the leap-year complication, but this effect
is very small.

6.4.2 Seasonal structure

The fitted second-order harmonic shown in Fig. 6.1 is a reasonably accurate
description of the seasonal pattern in mean temperature. Although the devia-
tions from this curve are small, they are far from independent, as the following
analysis demonstrates.

The additional structure on observational units comes not in the form of
covariates, but in the form of relationships between pairs of observational units
(t, t′). The most obvious relationship is the Euclidean metric |t − t′| on the
real line, but there are also at least three periodic semi-metrics that are more
natural for the description of seasonal cycles:

χ(t, t′) =
τ

π
sin
(π|t− t′|

τ

)
,

`(t, t′) = min{t− t′, t′ − t},
d(t, t′) = (t− t′)

(
τ − (t− t′)

)
/τ.

The first two are respectively the chordal distance and the arc length on the
annual circle whose perimeter is τ . In all three expressions, t, t′ are understood
as points in the space R (mod τ), with addition modulo τ , so that 0 ≤ t−t′ < τ
and t′−t = τ−(t−t′) are complementary arc lengths. With this understanding,
it can be verified that d is a metric. For each metric, the maximum values τ/π,
τ/2 and τ/4 occur at diametrically opposite points t− t′ = τ/2.

For most statistical work, d and χ are essentially equivalent: see Exer-
cises 6.10–13.
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6.4.3 Continuous periodic processes

For each λ > 0, the function K(t, t′) = exp(−χ(t, t′)/λ) is positive definite
on [0, τ), and also stationary and positive semi-definite on the real line with
period τ . The Gaussian random function η ∼ GP(0,K) is periodic and continu-
ous, and is reasonably well suited as a statistical description of the temperature
deviations from the seasonal harmonic in Fig. 6.1. For fixed λ, the Gaussian
model in which µ = E(Y ) belongs to the space of harmonics of degree two, and
cov(Y ) = σ2

0In + σ2
1K, is linear in the parameters. The model can be fitted

using the R command

fit <- regress(dailymeantemp~c1+s1+c2+s2, ~K)

In this discrete computational setting, τ = 366, or 365 if the leap day is dropped,
and K is a symmetric matrix of the same order. The identity matrix, or nugget
effect, is included by default, so there are two variance components and five
regression coefficients to be estimated. As it happens, the nugget variance
estimate is zero, or even slightly negative if not constrained. The maximized
log likelihood plotted against λ has a maximum at λ̂ ' 4.3 days, and the fitted
variance coefficients are σ̂2

0 = 0, σ̂2
1 = 3.62. The log likelihood is distinctly non-

quadratic in λ, but it is approximately quadratic in λ−1 with a finite long-range
limit as λ→∞.

The positivity constraint is enforced either through the optional argument
pos=c(1,1) or, in this instance, by nugget omission identity=FALSE. The
residual log likelihood for the covariance model σ2

0In+σ2
1K exceeds that for the

iid sub model with σ2
1 = 0 by 167 units, leaving no doubt about strength of the

residual serial correlation.

If the arc length is substituted for chordal distance, the resulting process is
essentially an autoregressive process of order one, but with a periodic constraint.
The dependence is local and confined to a few days, so there is little difference
between the chordal and arc-length models.

The quadratic metric is closely related to the Brownian-bridge process: see
Exercise 6.??.

6.5 Estimation of secular trend

6.5.1 Gaussian estimation and prediction

Suppose that Y = (Y0, Y1) is a pair of random vectors that are jointly Gaussian
with moments

E(Y ) =

(
µ0

µ1

)
, cov(Y ) =

(
Σ00 Σ01

Σ10 Σ11

)
in partitioned-matrix form. Then each marginal distributions is Gaussian Y0 ∼
N(µ0,Σ00), and Y1 ∼ N(µ1,Σ11). The conditional distribution of Y1 given Y0
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is also Gaussian. The mean is linear in Y0 and the variance is constant. If Σ00

is invertible, the moments are

E(Y1 | Y0) = µ1 + Σ10Σ−1
00 (Y0 − µ0),

cov(Y1 | Y0) = Σ11 − Σ10Σ−1
00 Σ01.

In statistical applications of this formula for estimation and prediction, Y0 is the
observation vector, and Y1 is an unobserved random variable—the long-range
secular trend. Usually, maximum-likelihood estimates are used for all unknown
parameters as needed.

6.5.2 Application to trend estimation

The series of annual averages is modelled as the sum Y (t) = η(t) + ε(t) of
two independent Gaussian processes in which the components of ε are inde-
pendent and identically distributed with mean zero. The secular trend is a
smooth random function whose covariance function exhibits long-range depen-
dence. Intuitively, a long-range secular trend conjures up an image of a smooth
function in time, so the choice for K ∝ cov(η) must force a specific degree of
smoothness on the function η. Typically, the mean of η is constant or linear
µ(t) = β0 + β1t, but more general expressions are also possible if the circum-
stances require it. The statistical goal is to estimate the secular trend by com-
puting the conditional expectation E

(
η(·) | data

)
, which is called the Bayes

estimator. When maximum-likelihood estimates of the fitted parameters are
inserted, this is known as the empirical Bayes estimator. In other types of
application, the conditional expected value is sometimes called the best linear
predictor or the Kriging estimate.

It is worth emphasizing that continuity requires η(·) to be defined at all
points in R, even though the process Y is observed or recorded only at a finite
set of points. The conditional expected value E(η(s) | data) is linear in the
observations; its behaviour as a function of s is a linear combination of covari-
ances K(s, ti) = cov(η(s), Y (ti)) for observation times t1, . . . , tn. In practice,
the degree of smoothness of K on the diagonal is crucial.

6.5.3 Matérn models

For the present illustration, we choose the Matérn covariance function with
index ν

K(t, t′) = xνKν(x),

where Kν is the Bessel function of order ν > 0, and x = |t − t′|/λ is the stan-
dardized temporal difference. The exponential covariance function corresponds
to ν = 1/2, and in this case λ log 2 is the range at which the serial correlation in
η is reduced by half. The index range ν ≥ 1/2 guarantees continuity of η(·) as a
random function, ν ≥ 1 guarantees continuity of first derivatives, and ν ≥ 3/2
guarantees continuity of second derivatives. For computational illustration, we
set ν = 3/2 and λ = 1000 (in units of years). The large value of λ means not
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only that serial correlation persists well beyond the observation period but also
that the behaviour of η is governed by the behaviour of K near the diagonal.

nu <- 3/2; lambda <- 1000; x <- abs(outer(yr, yr, "-"))/lambda;

K <- x^nu * besselK(x, nu); diag(K) <- 2^(nu-1)*gamma(nu)

fit <- regress(annualmean~yr, ~K)

blp <- fit$fitted + fit$sigma[2]*K %*% fit$W %*% (annualmean-fit$fitted)

lines(yr, blp)

In the formula for the conditional expectation, fit$fitted is the fitted mean
vector β̂0 + β̂1t with 248 components, fit$W is the fitted inverse covariance
matrix for the observations, fit$sigma is the vector of fitted variance compo-
nents, and fit$sigma[2]*K is the matrix of covariances cov(η(t), Y (t′)) for t, t′

among the observation points. If we wish to make predictions beyond the range
of observation times, say to 2020 or 2021, it is necessary to extend the vector of
fitted means and the matrix of covariances in the obvious way.

6.5.4 Statistical tests and likelihood ratios

The fitted variance components are σ̂2 = (0.316, 151.6), and the log likelihood
ratio statistic for testing the linear sub-model σ2

η = 0 against this alternative is
2(16.14−8.46) = 15.36 on one degree of freedom. Note that the null hypothesis
sub-model is not stationary, but the mean trend is constrained to be linear in
time. Using the standard asymptotic approximation for the distribution of the
likelihood-ratio statistic, the tail probability is less than 10−4, so the evidence
for non-linearity and/or long-range correlation is fairly strong.

If we wish to test the hypothesis of no trend versus a continuous non-linear
trend, we could proceed computationally as follows:

nu <- 1/2; lambda <- 1000; x <- abs(outer(yr, yr, "-"))/lambda;

K <- x^nu * besselK(x, nu); diag(K) <- 2^(nu-1)*gamma(nu)

fit0 <- regress(annualmean~1)

fit1 <- regress(annualmean~1, ~K)

2*(fit1$llik - fit0$llik) # LLR=71.68

To be clear, the null hypothesis of no trend is interpreted here as iid Gaussian
observations, and it is this hypothesis that is decisively rejected by the likeli-
hood ratio statistic of 71.68. However, this interpretation of the null hypothesis
is arguably unfair because short-term correlation between consecutive annual
averages seems inevitable, and no trend is not the same as no correlation.

The difficulty here is that it is unclear statistically what is implied by the
null-hypothesis phrase ‘no long-term trend’. After all, the Gaussian process
with constant mean and covariance σ2

0In + σ2
1K is temporally stationary. The

last snippet of code generates a test statistic that is sensitive to long-range
correlation, which is arguably indistinguishable from long-term trend.
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6.5.5 Rough paths versus smooth paths

To appreciate the effect of the Bessel index, it is worthwhile computing and
plotting the Bayes estimate for the fitted mode shown above with ν = 1/2.
For ν = 3/2 the conditional mean is piecewise cubic—a cubic spline which has
at least two continuous derivatives at all points. For ν = 1/2 the conditional
mean is piecewise linear—a linear spline with a knot at each observation. The
linear spline is constrained only by continuity; the cubic spline is constrained
by continuity of two derivatives, so it is less flexible and much smoother in
appearance. Intermediate values such as ν = 1 have Bayes estimates that are
intermediate in appearance.

In the majority of applications of this sort, the likelihood function is close
to constant in ν, but also slowly decreasing. In other words, the data are
relatively uninformative about smoothness of η, but there is a slight preference
for rougher trajectories. For visual extrapolation, however, a smooth curve is a
more compelling image and tells a more convincing story than a rough curve.
Continuity of second derivatives seems about right, and ν = 3/2 is a reasonable
compromise for a graphical summary.

In principle, the range parameter λ can also be estimated by maximum
likelihood, but for most practical work the value is effectively infinite, in which
case the limit process may used directly. In both examples, we have used λ =
1000 for illustration, but the maximum is achieved in the long-range limit.
Details of the limit process, also called the cubic spline model, are given in
chapter ?. The first snippet of code shown above is satisfactory for ν ≤ 3/2,
but it is not recommended for ν > 3/2 if λ is large. The second snippet with
constant mean is satisfactory for ν ≤ 1/2, but is not recommended for ν > 1/2
if λ is large.

6.5.6 Smooth and ultra-smooth paths

The Matérn covariance function is convenient in many ways, but it is not es-
sential to the argument. An alternative strategy for accommodating long-range
trends is to use an inverse-polynomial covariance function of the form 1/(1+x2),
where x = |t−t′|/λ. Each realization of this process is an infinitely differentiable
function, so the conditional expected value E(η | data) is also a C∞-function.
Unlike the Matérn process, the long-range limit of the inverse-quadratic process
is not well-behaved. Consequently, it is necessary to fix a finite range or to
estimate the range, and λ̂ ' 99 years is the value suggested by the sequence
of annual averages. The conditional expected-value curve is not appreciably
different from the cubic spline shown in Fig. 6.4.

The ‘Gaussian’ covariance function exp(−|t − t′|2/λ) also gives rise to C∞

trajectories. Usually this choice is not recommended for applied work because
the ultra-smooth trajectories give rise to ultra-smooth, non-local, predictions
whose apparent accuracy may be misleading. In addition, the long-range limit
is not well-behaved as a process, so a finite range is needed for computation.
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6.6 Exercises

6.1 Given the variance components, the Bayes estimate of the secular trend is
a linear combination of the fitted mean vector and the fitted residual

µ̃ = PY + LΣ−1QY,

where PY and QY are independent Gaussian vectors. Use this representation
to approximate cov(µ̃).

6.2 The U.K. Met Office maintains a longer record of monthly average and
annual average temperatures for Central England from 1659 onwards in the file

https://www.metoffice.gov.uk/hadobs/hadcet/cetml1659on.dat

Check the format, download the data, and plot the annual average temperature
as a time series. For the annual mean data up to Dec 31 of the past year, fit the
Matérn model with ν = 3/2 and range λ = 1000 as described in section ?, and
plot the Bayes estimate of the secular trend. Repeat the calculation for ν = 1
and range λ = 1000, and superimpose the two Bayes estimates. Comment
briefly on the shape of the fitted curves prior to 1772.

6.3 For the cubic and quadratic models described in the preceding exercise,
compute the predicted temperature for next year, i.e., the conditional distribu-
tion of the mean temperature for next year given the series of annual averages up
to December 31 of the past year. The two models should give slightly different
predictive distributions.

6.4 A variety of other smoothing techniques can be employed to illustrate
long-term secular trends. Pick your favourite kernel density smoother, apply it
to the temperature series, and compare the fitted curve with the Bayes estimates
described above.

6.5 Compute the annual average temperatures for the years 1772–2019, and
duplicate the first plot in Fig. 2.4. Include the Bayes estimate of the long-term
secular trend up to 2025 using the Matérn covariance function with ν = 3/2
and range λ = 1000 years. Compute the pointwise standard deviation of the
Bayes estimate, and include the 95% prediction interval on your plot.

6.6 The U.K. Met Office site https://www.metoffice.gov.uk/ keeps long-
term weather records—temperature, rainfall, and so on—for a range of stations
in Great Britain and Northern Ireland. Monthly rainfall totals for Oxford from
1853 are available in the file

/pub/data/weather/uk/climate/stationdata/oxforddata.txt

Check the format, download the data, and plot the monthly average rainfall
as a seasonal series. Take note of the units of measurement, and include this
information on the graph.
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6.7 This exercise is concerned with two versions of the Bayes estimate of the
seasonal rainfall component, where it is required to compute E(ηm | data) for
each of 12 months. As usual, χ is the chordal distance as measured on the clock
whose perimeter is 12 units, and month is a factor having 12 levels. In computer
notation, the code for fitting the two models is as follows, where K = const−χ
is positive-definite of order n× n and rank 12:

fit0 <- regress(rain~1, ~month)

fit1 <- regress(rain~1, ~K)

Positive definiteness is not required for computation so the constant is immate-
rial, but K is positive definite if the constant exceeds 2τ/π2 = 24/π2. Compute
the Bayes estimate of monthly means for each model and superimpose these
points on the plot of monthly averages.

6.8 For the Oxford rainfall data up to Dec 2019, the first Bayes estimate in
the preceding exercise is a flat 10% shrinkage of monthly averages towards the
annual average; the second Bayes estimate is different. For example, the average
rainfall for September is 55.6mm, which is slightly above the overall average
of 54.7, so the first Bayes estimate is 55.5mm. The second Bayes estimate
is 57.5mm. Explain this phenomenon—why the September component, which
is already above the annual average, is shifted even further from the overall
average.

6.9 Let (εk, ε
′
k)k≥0 be independent and identically distributed standard Gaus-

sian variables. For real coefficients σk, show that the random function

η(t) =

∞∑
k=0

σkεk cos(kt) + σkε
′
k sin(kt)

is stationary with covariance

cov
(
η(t), η(t′)

)
=

∞∑
k=0

σ2
k cos

(
k(t− t′)

)
provided that the series converges in a suitable sense.

6.10 Verify the following trigonometric integral for integer k:∫ 2π

0

sin(x/2) cos(kx) dx=
−4

4k2 − 1
.

Hence find the coefficients λk in the Fourier expansion of the function

2/π − sin(x/2) =

∞∑
k=0

λk cos(kx)

for 0 ≤ x < 2π, and show that they are all positive.
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6.11 In this exercise, χ is the chordal metric on the unit circle. From the
results of the preceding exercise, show that 4/π − χ(t, t′) is positive definite on
[0, 2π). Use the Choleski decomposition to simulate and plot a random function
having this covariance function as follows:

n <- 1000; t <- (1:n)*2*pi/n; chi <- 2*abs(sin(outer(t, t, "-")/2))

eta <- t(chol(4/pi - chi)) %*% rnorm(n)

plot(t, eta, type="l")

6.12 Show that the quadratic function

2π2

3
− x
(
2π − x

)
on [0, 2π) has Fourier cosine coefficients 4π/k2 for k ≥ 1. Hence or otherwise,
investigate the function

K(t, t′) =
2π2

3
− |t− t′|

(
2π − |t− t′|

)
as a candidate covariance function for a process on [0, 2π), and by extension to
a stationary periodic process on the real line. Plot a simulation of the process
on [0, 4π), and verify continuity.

6.13 Suppose that η ∼ GP(0,K), with K as defined in the preceding exercise.
The tied-down process ζ(t) = η(t)−η(0) is periodic and zero at integer multiples
of 2π. Find its covariance function, and investigate its connection with the
classical Brownian bridge.

6.14 Simulate and plot a random function η(·) on (0, 2π) whose covariance
is π/2 − `(t, t′), where `(·) is the arc-length metric. This function is less well
behaved than the chordal function because half of its Fourier coefficients are
zero, so the simulation code must be modified to accommodate singularities.
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Example 7

7.1 Frequency-domain analyses

7.1.1 Fourier transformation

A time series is, in the first instance, a function t 7→ Y (t) on time points,
either t ∈ R for a continuous-time process, or t ∈ Z for a discrete-time process.
Most meteorological processes exist in continuous time, but are recorded in
discrete time, either as noontime values, daily totals, daily averages or daily
maxima. Similar remarks apply to plant and animal growth curves, personal
health as a time series, and most business series and economic series. For
statistical purposes, either in modelling or analysis, it is helpful to proceed as
if the process exists in continuous time but is observed discretely at a finite
collection of time points. Growth curves and personal health series are typically
recorded at a small collection of irregularly-spaced time points. The methods
of analysis described in this section are most suitable for a long series that is
observed at a large collection of equally-spaced time points.

Let Y (t) be the value recorded at time t = 1, . . . , n, so that the recording
period is an interval of length n in suitable time units. Frequency is measured
in cycles per recording interval, and the focus is on Fourier frequencies, which
correspond to an integer number of cycles. The discrete Fourier transformation
ω 7→ Ŷ (ω) at frequency ω is a complex number

Ŷ (ω) =

n∑
t=1

e2πiωt/nYt,

so that Ŷ (0) = Ŷ (n) = Y. is the total, which is real in most applications. For
integer frequencies 0 ≤ ω ≤ n, the real and imaginary parts are the linear
combinations

Ŷ (1) =
∑
t

cos(2πt/n)Yt + i
∑
t

sin(2πt/n)Yt,

Ŷ (ω) =
∑
t

cos(2πωt/n)Yt + i
∑
t

sin(2πωt/n)Yt.
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For real Y , the Fourier coefficients satisfy the aliasing identity

Ŷ (n− ω) =

n∑
t=1

e2πit(n−ω)/nYt =

n∑
t=1

e−2πitω/nYt = Ŷ (ω).

so that Ŷ (ω) and Ŷ (n−ω) is a complex-conjugate pair. Thus, Ŷ (0) = Ŷ (n) = Y.
is real, and if n = 2m is even, the middle value Ŷ (m) is also real.

7.1.2 Anova decomposition by frequency

If we set aside the zero-frequency component, and split the non-redundant com-
ponents into real and imaginary parts, the Fourier transformation Ŷ = FY is
a linear transformation Rn → Rn−1. The cosine and sine components of the
Fourier matrix for frequency ω are the real and imaginary parts of roots of unity:

F
(c)
ω,t = cos(2πωt/n); F

(s)
ω,t = sin(2πωt/n).

The identity F1 = 0 defines the kernel subspace, the rows are mutually orthog-
onal n-vectors, FF ′ = (n/2)In−1 is the identity of order n − 1, and 2F ′F/n =
In − Jn/n is the orthogonal projection in Rn with kernel 1. The projection
matrix 2FF ′/n can be expressed as a sum of b(n − 1)/2c rank-2 projection
matrices, Pω, one for each frequency, plus an additional rank-1 matrix for fre-
quency n/2 if n is even. The net result is that the total sum of squares has an
analysis-of-variance decomposition by frequencies

∑
t

(Yt − Ȳ.)
2 =

bn/2c∑
ω=1

‖PωY ‖2 =
1

n

n−1∑
ω=1

|Ŷω|2.

The last expression includes both conjugates Ŷω, Ŷn−ω, so the sum of squares
for frequency 1 ≤ ω < n/2 is

‖PωY ‖2 = 2|Ŷω|2/n

on two degrees of freedom. As a function of ω, this is called the sample power
spectrum, or the power spectrum.

7.2 Temperature spectrum

7.2.1 Spectral plots

The Central England daily temperature series for 248 years has a length of 90580
days. The analysis and interpretation are easier if the observation period is an
integer number of years, so the partial year at the end is not included in the
analysis. Harmonics associated with the annual cycle are expected to have large
amplitudes, so it is helpful for plotting purposes to separate out the seasonal
frequencies (integer multiples of 248) from the rest.
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Figure 7.1: Log power spectrum for the Central England temperature series
separated by seasonal and non-seasonal frequencies.
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The first panel of Fig. 7.1 is a scatterplot of log |Ŷω|2 against frequency,
which has been re-coded in units of cycles per year rather than cycles per ob-
servation period of 248 years. Seasonal frequencies have been excluded, partly
because the annual and biannual coefficients are so large. The general trend is
quite clear for the mean, but the high variability and density of points tends
to obscure matters. Ordinarily, we should expect ‖PωY ‖2 to be approximately
exponentially distributed, in which case log ‖PωY ‖2 should have constant vari-
ance, π2/6 ' 1.282, and the distribution should be skewed to the left. The plot
is reasonably consistent with those expectations.

In the middle panel, the squared Fourier components ‖PωY ‖2 have been
averaged in consecutive non-overlapping frequency blocks, and the log aver-
ages are plotted against average frequency, again coded in cycles per year. In
this manner, the variability is much reduced, so the trend in mean becomes
clearly delineated. Note that the goal here is to estimate the spectrum, which
is E(|Ŷω|2) as a function of ω, so all averaging takes place on that scale, not on
the log scale.

Finally, the log spectrum for seasonal frequencies is shown in the third panel
with the non-seasonal cubic spline superimposed for comparison. Apart from
the first and second harmonics, the variation or energy at other seasonal frequen-
cies decreases with frequency in conformity with the decrease observed in the
second panel for non-seasonal frequencies. Certainly the variation at seasonal
frequencies above three per year is not greater on average than the variation at
neighbouring non-seasonal frequencies. The distinction between seasonal and
non-seasonal seems to matter only for the first two annual harmonics.

These spectrum plots tends to emphasize the variation at higher frequencies,
on the order of 20–150 cycles per year. However, it is the behaviour of the
spectrum at low frequencies and the limiting behaviour as ω → 0 that is crucial
for understanding long-range behaviour of temperatures. To clarify the picture,
and to give greater emphasis to lower frequencies, Fig. 7.2 consists of the same
points as the middle panel in Fig. 7.1, but the values are plotted against the
square root of the frequency. To a first order of approximation, the log spectrum
in linear in ω1/2 over the bulk of the frequency range.

7.2.2 A parametric spectral model

According to the theory discussed in the next section, the transformed coeffi-
cients |Ŷ (ω)|2 for non-seasonal frequencies are approximately independent expo-
nential random variables. With this in mind, it is natural to fit a two-component
additive spectral model

E|Ŷω|2 = nσ2
0 + nσ2

1 exp(−|2πλω|1/2)

with three non-negative parameters σ0, σ1, λ to be estimated. Aggregation by
frequency blocks is helpful for plotting, but it is not needed for fitting this model,
which, for fixed λ, is a gamma-type generalized linear model with unit disper-
sion. Additivity on the power-spectrum scale rather than on the log scale is nat-
ural if the temperature series is to be regarded as the sum Y (t) = σ0ε(t)+σ1η(t)
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Figure 7.2: Log power spectrum plotted against ω1/2. The solid line is the
additive GLM spectral fit E|Ŷ (ω)|2 ∝ 1 + 391 exp(−|0.219ω|1/2).

of independent processes. Typically, ε is white noise, and η is an indepen-
dent serially-correlated process whose sample paths are continuous in a suitable
sense—either continuous with probability one or mean-square continuous. The
spectral density proposed here decays sufficiently fast at high frequencies that
η has continuous derivatives of all orders.

With ω measured in cycles per year, the fitted exponential model is

K̂(ω) = nσ̂2
0 + nσ̂2

1 exp(−|2πλ̂ω|1/2),

where λ̂ = 0.0347 years, or 12.67 days, σ̂1/σ̂0 = 19.8 for the volatility ratio,
and σ̂0 = 0.62 for the nugget standard deviation in degrees Celsius. Note
that he second component is formally the characteristic function of the α-stable
distribution for α = 1/2, so the associated covariance function is the density of
that distribution.

The additive gamma model fits the non-seasonal power spectrum reasonably
well, but it is not perfect. Small systematic deviations are apparent in Fig. 7.2
at low frequencies, and there is approximately 3% excess dispersion relative to
the exponential distribution. In other words, the variance of the standardized
spectral coefficients |Ŷω|2/K̂ω is 1.032, while the exponential model predicts unit
variance. This is a very small deviation in absolute terms, but, with 45 108 non-
seasonal Fourier frequencies, a 3% deviation in variance is moderately unlikely.

In the residual plots shown in Fig. 7.3, the 3% deviation is too small to be
noticed. Overall, the residual distribution seems to match the extreme-value
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superimposed.

distribution very closely. The mean of the log residuals is −0.584, and the
variance is 1.661 versus the theoretical values −γ = −0.577 (Euler’s constant),
and σ2 = π2/6 = 1.645.

On the negative side, the ratios of the squared Fourier coefficients to the
fitted values for the ten lowest frequencies are

19.67, 4.44, 9.19, 4.40, 2.15, 0.73, 4.28, 0.55, 0.36, 2.99,

and the next largest ratio is 11.3, which occurs at one of the highest frequen-
cies. Despite the apparent success of this parametric model for the bulk of the
frequency range, these low-frequency values are not consistent with the fitted
model, which predicts independent standard exponential values. The expected
value of the largest of n standard exponentials is approximately log(n) ' 10.7,
and the standard deviation is approximately π/

√
6 ' 1.3. Given that it was

so selected, the second-largest ratio is entirely consistent with the fitted model,
but the first 4–5 Fourier coefficients are not.

The behaviour of the low-frequency Fourier coefficients is strongly tied to the
behaviour of the covariance function or variogram at the longest lags. Bearing
in mind the variogram phenomenon observed in the third and fourth panels
of Fig. 6.5, which is compatible with a slow random walk or an autoregressive
process with semi-range λ on the order of one millennium, it is natural to look
for a corresponding phenomenon in the Fourier domain. The corresponding
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phenomenon is an additive spectral component proportional to 1/(1 + λ2ω2),
which is essentially a multiple of ω−2. Inclusion of the inverse-square frequency
as a further covariate the spectral model reduces the deviance by 52+ units,
which is a substantial improvement to the fit, showing conclusively that the
slow linear trend seen in the variogram plots is a real phenomenon and not a
statistical artifact.

7.3 Stationary temporal processes

7.3.1 Stationarity

This section is concerned with real-valued processes that are defined pointwise
on the domain, and specifically with stationary Gaussian processes on the real
line. The first part of the statement means that to each point t in the domain
there corresponds a value Y (t), which is a real number. First-order stationarity
implies that for each pair of points t, t + h in the domain the values Y (t) and
Y (t+ h) have the same distribution. For a time series, the domain is either the
integers or the real line, and translation implies that the domain is a group acting
on itself by addition. More generally, stationarity implies that for each ordered
n-configuration t = (t1, . . . , tn) and each h-translate t+h = (t1 +h, . . . , tn+h),
the values

Y [t] =
(
Y (t1), . . . , Y (tn)

)
and Y [t + h] =

(
Y (t1 + h), . . . , Y (tn + h)

)
have the same joint distribution in Rn.

The focus is on Gaussian processes, which are defined by the mean function
µ(t) = E(Y (t)) and the covariance function K(t, t′) = cov

(
Y (t), Y (t′)

)
, which is

a symmetric positive semi-definite function on the domain. Stationarity implies
that the mean is constant, µ(t) = µ(0), and that K(t, t′) = K(|t− t′|) is a func-
tion of the temporal separation. For example, e−|t−t

′| is the covariance function
for the standard first-order autoregressive process, and (1 + |t− t′|)e−|t−t′| is a
related covariance function in the Matérn class.

The restriction to processes defined pointwise is not vacuous because there
exist temporal processes that are not defined pointwise. For example, standard
white noise is a zero-mean Gaussian process defined on domain subsets such
that cov(Y (A), Y (B)) = Λ(A ∩ B) < ∞ is the Lebesgue measure of the inter-
section. The distribution is invariant with respect to translation, so the process
is certainly stationary. However, the pointwise definition of stationarity is not
satisfied because Y (t) is not defined for such processes. If we attempt to define
Y (t) as a limit over subsets converging to {t}, then Y (t) = 0; if we regard Y (A)
as an integral of Y (t) over A then Y (t) cannot have finite variance. Neither of
these implications is satisfactory.

The definition of stationarity given above is to be read conditionally as
follows. If Y is defined pointwise, then Y is stationary if and only if, for every
positive integer n, every n-configuration t, and every h ∈ R, the random variable
Y [t + h] has the same distribution as Y [t].
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For the more general definition of stationarity, the process is defined on an
index set consisting of points or subsets or measures on the domain. Thus,
the domain need not coincide with the index set of the process. To consider
stationarity, the domain (Z or R or C or R2) is necessarily a group, and the index
set is closed under domain translation. The process is first-order stationary
if, for each object A in the index set, and for each point h in the domain,
the value Y (A) has the same distribution as the value Y (A + h) taken on the
h-translated object. Strict stationarity is defined in the same way for joint
distributions. According to this definition, it is possible to make sense of the
statement that −|t−t′| is the covariance function for a Gaussian process or time
series, sometimes called a generalized process because the index set does not
coincide with the domain. Likewise for the functions −|t− t′|1/2 and − log |t−
t′|. Moreover, these processes are strictly stationary. This definition paves
the way to consider other group actions such as rigid motions or Euclidean
congruences or similarity transformations, which are associated with isotropy
and self-similarity.

7.3.2 Spectral density

7.3.3 Visualization of trajectories

To understand what the SD-1/2 process with spectral density exp(−ω1/2) looks
like, i.e., how a typical trajectory behaves as a function, it is helpful to compute,
simulate and plot. The first step is to compute the covariance function by
inversion of the spectral density. In general, this is a non-trivial computational
exercise. Fortunately, this spectral density is a special case of the characteristic
function of the α-stable class. The series expansion for the density (Feller 1971,
vol II, p. 582) can be simplified for α = 1/2. We remark only that K is strictly
positive, and monotone as a function of temporal separation. It is infinitely
differentiable at all points on the real line, but it is not complex-analytic in
any neighbourhood of the origin. Accuracy to two or three significant decimal
digits suffices for graphical representation of the covariance function, but at
least eight-digit accuracy is needed to simulate trajectories.

Four covariance functions are shown in Fig. 7.4. At first glance, the differ-
ences among them appear to be slight: all four are continuous, symmetric and
are equal at the origin and at ±1. The behaviour in a neighbourhood of the ori-
gin is an important characteristic, which is shown in 5x-magnified form on the
right of each panel. The Matérn functions have zero, one and two derivatives
at the origin, whereas the fourth has infinitely many. The first, 1 − |x| + o(x),
is easy to see by inspection, but the others are not, even in magnified form: the
approximate behaviour for ν = 1 is 1 + x2 log |x|/2− 0.31x2 + o(x2), so the first
derivative is zero and the second does not exist. The behaviour in the tail is
the characteristic that distinguishes long-range dependent processes from short-
range. Once again, this is easier to see in hindsight than in foresight—especially
if zero has not been included for visual reference in the graph.

All four curves in Fig. 7.4 are non-negative and have have finite integrals,
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Figure 7.4: Four covariance functions standardized to have unit variance and
lag-one autocorrelation e−1. The fourth is a multiple of the α-stable density
function for α = 1/2.

so each is proportional to a symmetric probability distribution on the real line.
The integrals are 2.0, 1.89, 1.86 and 4.58 respectively, or more generally, 2λ, πλ,
4λ and πλ/2 for the scaled versions. The first Matérn covariance is a multiple of
the Laplace density; the SD-1/2 covariance is a multiple of the α-stable density
for α = 1/2.

Given computer code for the covariance function, the covariance matrix Σ
for the process at 1000 points may be computed, followed by simulation of a
1000-component Gaussian variable Y ∼ N(0,Σ). These are the values of the
process at the selected points in the domain. Special cases can be simulated
more efficiently, but this straightforward recipe suffices for present purposes.
Each of the curves in Fig. 7.5 is plotted using the values (x, Y (x)) at 1000
equally-spaced points in the interval (0, 10).

To establish a ‘normal range’ of patterns, Fig. 7.5 shows the trajectories of
three Matérn processes in the ‘typical’ index range, plus the SD-1/2 process.
Each family has a variance parameter and a range parameter, both of which
are strictly positive real numbers. For purposes of comparison, each covari-
ance function is scaled to have unit variance, and the same lag-one autocorrela-
tion e−1 = 0.368, which matches the standard order-one autoregressive process
shown in the top panel. Each of the Matérn processes has a distinct character,
with continuous derivatives of order zero, one and two for ν = 0.5, ν = 1.0 and
ν = 1.5 respectively. Visually speaking, the differences among these three are
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Figure 7.5: A comparison of trajectories of four stationary continuous-time
processes, three in the Matérn class, and one specified by its spectral density

e−|ω|
1/2

. The standard Matérn covariance function is Kν(x) = ‖x‖νKν(‖x‖);
special cases include K1/2(x) = e−‖x‖ and K3/2(x) = (1 + ‖x‖)e−‖x‖. The

spectral density is 1/(1 + ω2)ν+1/2. For visual comparison over the interval
(0, 10), all four processes are standardized to have unit variance and the same
lag-one autocorrelation.
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concerned with the degree of smoothness, which is a local property. The SD-1/2
process has its own distinct character. It has continuous derivatives of all orders
so it is smoother than any Matérn process, even those with ν > 3/2. However,
its medium-range oscillations are distinctly more pronounced, and somewhat
similar to those of the AR1 process (ν = 1/2).

In addition, although it is hard to point to visual consequences in the trajec-
tories, the long-range autocorrelation of the SD-1/2 process is algebraic of order
|x− x′|−3/2, whereas the long-range Matérn correlations decay faster than any
polynomial. As a result, the lag 5–10 autocorrelations are sizable 0.073–0.031
for the SD-1/2 process, but negligible for all Matérn processes and decreasing as
a function of ν. Long-range dependence appears to be universal for processes in
nature, both for time series and for spatial processes. For such applications, we
should bear in mind that each finite-range Matérn covariance has exponentially-
decreasing tails whereas the SD-1/2 covariance has regularly-varying tails of or-
der |x − x′|−3/2. All four covariance functions have finite integrals, so all four
processes are short-range dependent. On the other hand, each Matérn process
has a well-behaved infinite-range limit, whereas the SD-1/2 process does not.

Algebraic, or inverse-polynomial, decay of autocorrelations is known as long-
range dependence. One consequence is that the sample average over the interval
(0, t)

Ȳ(0,t) = t−1

∫ t

0

Y (s) ds or Ȳ1:t = t−1
t∑

s=1

Ys,

has a variance that tends to zero as t → ∞ at a slower rate than O(t−1). The
rate is O(t−1) for short-range dependent series, including every Matérn process,
but only O(t−1/2) for the SD-1/2 process. Empirically, we find that the variance
of the temperature average over randomly-sampled blocks of h successive years
is as follows:

Block length in years

h 4 8 16 32 64 128

Ch var(Ȳh) 0.213 0.158 0.133 0.087 0.058 0.036
h1/2Ch var(Ȳh) 0.427 0.446 0.533 0.491 0.465 0.409
hCh var(Ȳh) 0.853 1.261 2.130 2.778 3.719 4.624

In this table var(Ȳh) is the sample variance of 5000 randomly-sampled block
averages. The factor C−1

h = 1 − h/248, which is the average overlap between
pairs of blocks of length h, is a finite-population bias-correction factor for sample
overlap. Whole-year blocks were used to eliminate the effect of seasonal cycles.
It is apparent from the table that var(Ȳh) ∝ h−1/2 is the dominant term for the
variance of block averages, at least up to h ' 128 years.

7.3.4 Fourier transform

When the circumstances permit it, i,e., when a series is recorded over a large
number of equally-spaced points, the advantages of working in the frequency
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domain are considerable. For a stationary series with covariance function K,
Whittle (19??) shows that the Fourier coefficients are approximately Gaussian
and approximately independent for large n, with moments

E
(
Ŷ (ω)Ŷ (ω′)

)
=

{
nK̂(2πω/n) +O(1) ω = ω′,

O(1) ω 6= ω′,

where K̂ is the spectral density of K. Using this approximation, we may
treat the frequencies as observational units, and the Fourier coefficients as in-
dependent complex-Gaussian observations. In the standard technical sense, the
squared moduli |Ŷ (ω)|2 are sufficient for the spectral density. To accommodate
the seasonal cycle in the present application, it is necessary either to restrict
attention to non-seasonal frequencies or to eliminate the first few seasonal har-
monics.

7.4 Exercises

7.1 Let Y1, . . . , Yn be independent and identically distributed standard expo-
nential variables, and let 0 ≤ Y(1) ≤ Y(2) ≤ · · · ≤ Y(n) be the order statistics.
Show that Y(1) ≥ t if and only if Yi ≥ t for 1 ≤ i ≤ n, and deduce that nY(1)

is exponentially distributed with unit mean. Hence or otherwise, show that the
increments (n − r)(Y(r+1) − Y(r)) are independent and identically distributed.
Find the mean and variance of the maximum Y(n), with asymptotic values for
large n.

7.2 Use fft() to compute the Fourier coefficients for the temperature se-
ries on a whole number of years, identify and remove the frequencies that are
seasonal, average the power-spectrum values in successive non-overlapping fre-
quency blocks of a suitable size, and plot the log averages against the square
root of the frequency in cycles per year.

7.3 For the non-seasonal frequencies, use glm() to fit the additive exponential
model

E(|Ŷ (ω)|2) = β0 + β1 exp(−|2πλω|1/2)

for various values of λ in the range 7–14 days or 0.02–0.04 years. In this set-
ting, the distributional family is Gamma, the link is identity, and the dispersion
parameter is one. Plot the residual deviance against λ to find the maximum-
likelihood estimate. Check that the fitted coefficients are non-negative. Su-
perimpose the fitted curve on the graph of log-block-averages in the previous
exercise. Plot the standardized residuals (log-ratio of observed to fitted) against
frequency, and comment on any departures that are evident.

7.4 Include the inverse-square frequency as an additional covariate in the expo-
nential model for the power spectrum. In principle, this means re-computing λ̂.
Compute the Wilks statistic, which is the reduction in deviance or twice the
increase in log likelihood. Also compute on the Wald statistic, which is the
squared ratio of the ω−2-coefficient to its standard error as given by the inverse



7.4. EXERCISES 103

Fisher information matrix. Recall that the dispersion parameter is one, which is
not the default in summary(). Standard asymptotic theory for large sample sizes
tells us that the difference between these two statistics is op(1), i.e., that the
difference tends to zero as n→∞, and also that the null distribution is χ2

1 for
both. In this setting the sample size is the number of non-seasonal frequencies.
Comment on any discrepancy between theory and practice in this instance, and
provide an explanation.

7.5 Ordinarily, Wald’s likelihood ratio statistic is essentially the same as Wilks’s
statistic, which in one-parameter problems, is the squared ratio of the estimate
to its standard error. But there are exceptional cases where a substantial dis-
crepancy may occur, and variance-components models provide good examples.
In order to understand the source of the discrepancy, simulate data with simple
structure as follows:

set.seed(3142); n <- 1000; x <- 1:n

rx2 <- 1/x^2; beta <- c(1,20);

X <- cbind(1, rx2); mu <- as.vector(X%*%beta)

y <- -log(runif(n))*mu

The null hypothesis is that µ ∝ 1 is constant, and the alternative is that µ = Xβ
for some β with non-negative components. Test this hypothesis using Wilks’s
likelihood ratio statistic, and also using the Wald statistic. Recall the exponen-
tial assumption, which implies that the dispersion parameter is one.

7.6 If you used the function glm(y~rx2, family=Gamma(link=identity) in
the preceding exercise, you may have experienced a failure to converge. Write
your own Newton-Raphson function with steps on the log scale, which forces
the β-components to be strictly positive. As part of this exercise, you will need
to compute the Fisher information matrix, t(X/mu^2) %*% X for β. Report the
value of Iβ at the null hypothesis β̂0 and also at β̂. What does this tell you
about the Wald-Wilks discrepancy?

7.7 For 0 < α ≤ 2, the α-stable distribution on the real line is symmetric
with characteristic function e−|ω|

α

. For the sub-range 0 < α < 1, Feller (1971,
eqn. 6.5) gives the series expansion for the density

p(t;α) = < i

πt

∞∑
k=0

(−1)k+1 Γ(kα+ 1)

k!
t−kαe−πikα/2

which is convergent for t > 0. The goal of this exercise is to simplify the density
for α = 1/2 by splitting the sum into four parts according to k (mod 4). Show
that one of the four parts is zero, that the odd parts may be combined into a
multiple of t−3/2 sin(1/(4t) + π/4), and that the remaining part is O(t−2) as
t→∞.

7.8 From the cosine integral
∫

cos(ωt)e−|ω|
α

dω, deduce that the α-stable den-
sity has a Taylor series at the origin which begins

log p(t; 1/2) = const− 60t2 +O(t4).
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Find the general term in this expansion and deduce the radius of convergence.



Example 8

8.1 Out of Africa

This chapter is concerned with the linguistic hypothesis and the data analysis in
the paper Phonemic diversity supports a serial founder effect model of language
expansion from Africa published by Q.D. Atkinson in Science (15 April 2011).
It is recommended that you read the paper and the supplementary material,
which are available at

http://www.sciencemag.org/content/332/6027/346.full.pdf

The data and supplementary files can be found at .../OOAdir/
Like the genetic thesis for human migration and evolution, the ‘out-of-Africa’

thesis for linguistic diversity holds that language evolved somewhere in Africa,
and diffused from there to Asia, Europe and elsewhere as populations split and
migrated. Since the genetic and linguistic diversity of a population is intrinsi-
cally related to its size, a small migrating subset carries less diversity than the
population from which it originated. Accordingly, a subpopulation that splits
and migrates carries less diversity than the descendants of the ancestral popula-
tion that remains. Although tones and sounds are continuously gained and lost
in all languages, the loss is supposedly higher for small migrating founder pop-
ulations than for the ancestral population. In this way, the diversity of sounds
becomes progressively reduced as the distance from the origin increases.

Atkinson’s paper is concerned with the hypothesis that human language
developed in a single location and spread from there by migration. He aims
to test that hypothesis by examining the relationship between the diversity of
sounds in 504 extant languages and their geographic distance from a putative
origin in Africa or elsewhere, taking account of speaker population size.

8.2 Phoneme inventory

The data on which Atkinson bases his analysis is a list of 504 languages from
various parts of the world. The list of languages is not exhaustive, nor is it
close to geographically uniform with respect to current population density. The
diversity measure is not a measure of variability of sounds in the ordinary sta-
tistical sense, nor is it an inventory or list of sounds, but simply the number of
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distinct phonemes that the language employs. There are three distinct values
for vowel inventory, three for tone inventory, five for consonant inventory, and
40 for total phoneme inventory. In principle, inventories should be all be non-
negative integers, but the values have been standardized or normalized in an
unspecified way. The sample means are close to zero, and the sample variances
for the three phoneme constituents are close to one.

Data on phoneme inventory size were taken from the World Atlas of Lan-
guage Structures, (WALS). The file OOAdir/S1.dat contains the main part of
Anderson’s data, which is the list of 504 languages together with the following
twelve variables

1. Lname Language name: text, e.g. Abkhaz, Aikan??, B? c©t? c©, . . ., Zuni

2. WALS three character code, e.g. abk, aik, bet,...

3. Fam Language Family: text, e.g. Arawakan, Indo-European, Sino-Tibetan,...

4. Lat Latitude as a decimal number, e.g. −12.67

5. Long Longitude as a decimal number, e.g. −60.67 (meaning 60◦ 40′W)

6. Nvd Normalized vowel diversity based on WALS feature No. 2

7. Ncd Normalized consonant diversity based on WALS feature No. 1

8. Ntd Normalized tone diversity based on WALS feature No. 13

9. Tnpd Total normalized phoneme diversity

10. Iso ISO codes (one or more three-character codes)

11. Popn Estimated speaker population: integer 1–873 014 298

12. Dbo Distance in km. from Atkinson’s best-fit origin

Regardless of its geographical range, each language is associated with a sin-
gle point on the sphere, which is not necessarily the geographic centroid of
the speaker domain. International languages such as English, Spanish and
French are associated with their ancestral capitals. For example, English is
Indo-European and is located at latitude 52.0, longitude 0.0; the speaker pop-
ulation 309M is dominated by parts of the former empire. Spanish is located
at 40.0N, 4.0W with a population size 322M most of whom are in Latin Amer-
ica; Mandarin is located at 34.0N, 110.0E, with a population of 873M. The
guiding principle for inclusion is not evident. Among European languages, Al-
banian, Basque, Catalan, Breton, Romansch and Saami are included, but not
Portuguese (178M), Italian (60M), Dutch (22M), Ukranian (37M), Belarusian,
Slovak, Slovene, Serbian or Croatian.

For whatever reason, phoneme values are rounded and normalized. In ad-
dition, the number of distinct values for each variable is very limited. For
example, English, French, German and Korean have exactly the same diversity
profile (1.39, 0.12,−0.77), which is shared by Turkish and 21 other languages;
The values in the file are reported to seven or eight decimal digits. Donegal
Irish shares its consonant-dominant diversity profile (−0.48, 1.80, 0.18) with 13
other languages including Kwakw’ala, Lezgian and Saami.
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8.3 Distances

The languages were partitioned into six continental groups, Africa, Europe,
Asia, Oceania, N.Amer, and S.Amer. These coincide closely with the geographic
continents, but not exactly so: Malagasy, the national language of Madagascar,
belongs to Oceania, not Africa.

For his analyses, Atkinson used great circle distances between points x, x′

for pairs of languages belonging to the same continental group. Otherwise,
for languages in different continental groups, distances were measured for the
shortest path passing through certain choke points (supplementary material,
Fig. S8). For example, the shortest linguistic path from Europe to N. America
consists of three great-circle arcs passing through Istanbul and the Bering Strait.
The great-circle distance from Aghem = (10.0,6.67) in the Congo to Malagasy

= (47.0,-20.0) in Madagascar is 5014 km, but since the latter belongs to
region 4, the linguistic distance through Cairo and Phnom Penh is 18475 km.

The R-executable file OOAdir/S1.R contains the following commands:

S1 <- read.csv(file="OOAdir/S1.dat")

S4 <- read.csv(file="OOAdir/S4.dat", header=FALSE)

The same file also contains the coded list lregion of 504 linguistic groups,
the geocoordinates of a small number of major cities including the choke
points chokes, some code for geographic plotting, and functions for computing
distances, as follows.

1. gcdist(x1, x2) great circle distance in km:
gcdist(Aghem, Malagasy) = 5013.585

gcdist(Paris, Chicago) = 6651.991

The format used here for geocoordinates is x=(long, lat) in decimal
degrees.

2. chokedist(x1, x2, r1, r2) linguistic distance:
chokedist(Aghem, Malagasy, 1, 4) = 18474.65

chokedist(Paris, Chicago, 2, 5) = 15761.26

3. vdist(Dublin, 2) a list of 504 linguistic distances from Dublin=(-6.25,

53.33), regarded as a member of linguistic region 2. For great-circle
distances, use vdist(Dublin, 0). (The 504 language coordinates are
assumed to be in S1$Long, S1$Lat.)

8.4 Maps and scatterplots

The file OOAdir/S1.R also contains standard R code for plotting world maps
and subsets thereof, using ggplot2 and rgeos (references ???). For illustration,
Fig. 8.1 shows the location of the African and European languages used in the
analysis. The African languages are heavily concentrated in equatorial Africa,
roughly 10◦S to 15◦N. Among the eleven African countries south of 10◦S, only
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Figure 8.6: Geographic distribution of African and European languages in
Atkinson’s sample.
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Figure 8.7: Total phoneme diversity plotted against the distance from the best-
fitting origin as reported by Atkinson at 9.5◦E, 1.25◦S

four—Angola, Botswana, Namibia and South Africa— are represented, and
Botswana has four or five. Madagascar is represented by Malagasy, whose roots
are non-African. Similar anomalies are evident in the European sample.

The putative linguistic origin is a geo-coordinate point x0 for which total
phoneme diversity for language i satisfies

E
(
Tnpdi

)
= β0 + β1‖xi − x0‖,

where, ‖xi − x0‖ is the linguistic distance between the origin and the geo-
coordinate of language i. The least-squares criterion is thus∑

i

(
Tnpdi − β0 − β1‖xi − x0‖

)2
which is to be minimized with respect to the four parameters β0, β1 plus the two
components of x0. Atkinson reports the best-fitting origin at 1.25◦S, 9.30◦E in
West Africa: see Fig. 8.4.

Support for Atkinson’s thesis, that phoneme diversity—or more correctly
phoneme inventory—decreases with distance from the origin is best illustrated
by the scatter plot of total phoneme diversity against distance from the best-
fitting origin. The least-squares fitted line, which is superimposed in Fig. 8.2,
has a definite negative slope.

What the scatterplot Fig. 8.2 fails to show is that all of the distances up
to 4.5 units are in Africa, many of those in the interval 5.5–8.5 are in Europe,
most of those in the interval 5.5–13.5 are in Asia, and so on. Consequently, it
is natural to plot each continental group separately, which is done in Fig. 8.3.
This exercise reveals that the relation between distance and phoneme inventory
is negative chiefly in Africa. The negative least-squares slope for Oceania is
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Figure 8.8: Total phoneme diversity plotted against the distance from the best-
fitting origin for each of the six linguistic groups separately

almost entirely due to the single point (Malagasy), which has high leverage
on account of its remoteness, and a low phoneme inventory. For each of the
other linguistic groups, the relation between inventory and distance is either
negligible or positive. While the aggregate scatterplot in Fig. 8.1 seems to
support Atkinson’s thesis, the disaggregated continent-by-continent plots paint
a different picture. This is an instance of Simpson’s paradox for continuous data,
with positive slopes on most continental subsets, but a negative slope overall.

8.5 Point estimates and confidence regions

8.5.1 Simple version

If we buy into the out-of-Africa linguistic theory, it is natural to seek a region
of plausible origins of language. In order to do this, it is necessary to know
something about the statistical properties of the observations that are available.
Independence of components is certainly not a reasonable assumption for this
setting, but it is the easiest place to start, and it suffices to illustrate the method
in its simplest form. For illustration, we assume that total phoneme inventory
is related to population size and distance to the origin as follows

E
(
Tnpdi

)
= β0 + β1‖xi − x0‖+ β2 log(Popni),

where ‖x− x0‖ denotes the linguistic distance. Given the range of speaker
populations, linearity in log population size seems more reasonable than linearity
in population size, which is in agreement with Atkinson’s principal analysis. For



8.5. POINT ESTIMATES AND CONFIDENCE REGIONS 111

30°S

20°S

10°S

0°

10°N

20°N

30°N

40°N

10°W 0° 10°E 20°E 30°E 40°E 50°E
Longitude

La
titu
de

Confidence regions (80% and 95%) for language origin

Figure 8.9: Point estimate and confidence regions (80% and 95%) for the lan-
guage origin, assuming independent observations. The RSS values for the three
coastal marked points are 143.4, 143.1 and 143.0 in west-to-east order.

the moment, we assume also that the components are independent with constant
variance σ2.

For arbitrary fixed origin, the model is linear in the remaining three regres-
sion parameters, so the least-squares estimates can be obtained in the standard
way. Denote by RSS(x) the residual sum of squares on n − 3 = 501 degrees of
freedom for fixed x. The point x̂ that minimizes the residual sum of squares
is the non-linear least-squares estimate. For these data, the minimum over the
rectangular grid that covers Africa occurs at the south west corner, near 17◦W,
35◦S in the south Atlantic. However, the RSS function varies little through-
out the bight of Africa, and is almost constant along the coast from Liberia to
Cape Town. For this exercise, we restrict the parameter space to terra firma.
The minimum over continental Africa occurs on the coast near the border be-
tween Angola and Namibia, roughly at 12◦E, 17◦S as indicated in Fig. 8.4, with
RSS = 143.02. By the narrowest of margins, Atkinson’s fitted point on the
Congo coast appears to be a local minimum with RSS = 143.07.

The standard recipe for the formation of a confidence set in non-linear
least-squares problems uses a selected contour of the restricted residual sum
of squares function function RSS(x) as the boundary. The residual mean square
s2 = RSS(x̂)/(n−5) serves as the variance estimate, which is distributed approx-
imately as σ2χ2

n−5 under the stated assumptions. Moreover, s2 is distributed
approximately independently of the difference RSS(x0)− RSS(x̂), which is dis-
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tributed as σ2χ2
2—on two degrees of freedom because the parameter space for x

is locally a two-dimensional manifold. Thus, the mean-square ratio (RSS(x) −
RSS(x̂))/(2s2) is distributed according to Fisher’s F2,n−5 distribution. Accord-
ingly, the region {

x :
RSS(x)− RSS(x̂)

s2
≤ 2F2,n−5,α

}
is a 1 − α confidence region for the linguistic origin. For α = 0.05, the F -
percentile is 3.01, so the right hand side is a little over 6.0. Atkinson uses a
factor of four (BIC units) in place of six at this point, which gives only 86%
coverage. Four BIC units is the 95% coverage factor for one degree of freedom,
not for two.

Fig. 8.4 shows best-fitting origin at the Angolan-Namibian border, together
with the 80% and 95% confidence regions computed according to the above
formula. The 95% region includes most of western and southern Africa. If
the unrestricted maximum had been used, confidence regions at low confidence
levels would cover water only, which is a difficult case for a linguist to make.
However, the unrestricted 95% confidence region matches reasonably closely the
restricted 80% region.

Shortcomings

The preceding analysis overlooks the fact that one of the regularity conditions
fails. The restricted maximum occurs at a 1D-boundary point on the coast, so
the local 2D manifold argument fails. If the linguistic hypothesis also stated that
the origin must be a coastal point, the 1D argument would naturally prevail.
But that is not a part of the thesis, so it seems preferable to use the more
conservative 2D allowance. An alternative option is to resort to simulation—
but that is not an easy answer nor a satisfactory answer. In any event, there
are more consequential effects that have so far been ignored.

8.5.2 Accommodating correlations

In statistical modelling, the difference between two means E(Yi)−E(Yj) is as-
sociated with the difference xi−xj between their recorded covariates: µi−µj =
(xi−xj)′β. The difference between two covariances cov(Yi, Yi′) and cov(Yj , Yj′)
is associated with the difference Ri,i′ − Rj,j′) between their recorded relation-
ships, usually but not necessarily in a linear manner: Σii′ − Σj,j′ = (Rii′ −
Rj,j′)

′τ , where τ is a list of variance components.

For the current setting, the available covariates are the population size, con-
tinental group and the geographic location i 7→ xi. A relationship is a function
on pairs of observational units, and the most obviously relevant relationships
are inter-point distance (i, j) 7→ ‖xi − xj‖ and language family (i, j) 7→ Fij as
a Boolean matrix such that Fij = 1 if i, j belong to the same family, and zero
otherwise. These are both symmetric n× n matrices, so it is only natural that
they should occur in the specification of the response covariance matrix. For
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this project, we consider only the simplest additive model such that

cov(Yi, Yj) = σ2
0δij + σ2

1Fij + σ2
2e
−‖xi−xj‖/λ,

depending on three variance components and one range parameter λ. As it
happens, linguistic distance is a little more effective than great circle distance,
and for that choice the fitted range is λ̂ ' 820km. The linguistic family effect
is not negligible, but the distance effect dominates. There are also linguistic
sub-families, whose effects are not taken into account in this analysis.

The likelihood-based nominal 95% confidence region is the set of all candi-
date source points whose log likelihood is sufficiently high compared with the
maximum, i.e.,

{x : 2l(x̂)− 2l(x) ≤ χ2
2,0.95}.

Here l(x) denotes the profile log likelihood maximized over all other parameters.
For the model suggested here, the 95% confidence region includes all of Africa
except for a portion of lower Egypt; the 99% region also includes the Levant
(Israel, Syria, Turkey, Jordan, Iraq) and all of Europe except for Russia and the
Caucasus.

Generally speaking, failure to accommodate correlations has the effect of
making the data seem more informative than they are, so the resulting confi-
dence intervals are unrealistically narrow. Thus, it is no surprise that Fig. 8.4
is misleading in its portrayal of the strength of information in the data.

Three points of clarification

The code used for computing the log likelihood for one candidate point x0

belonging to linguistic region lregn has two parts:

ldist <- vdist(x0, lregn) # vector of distances from x0

fit <- regress(Tnpd~ldist+log(Popn), ~Fam+V, data=S1)

Here S1$Fam is the linguistic family coded as a factor, and V is a matrix with
components Vij = exp(−‖xi − xj‖/λ), which do not depend on x0. As it stands,
this code is both computationally inefficient and technically incorrect on two
counts. The efficiency can be improved substantially by including the optional
argument start=fit$sigma, which makes the previously-computed variance
components available as the starting point for iteration.

The first technical issue is that the default likelihood function that is maxi-
mized by regress() is the REML likelihood for the observation Y in the space
Rn/X of residuals modulo the subspace X of mean values. Ultimately, our goal
is to compute a likelihood ratio for one candidate center versus another, and
the problem with the code as shown is that the mean-value subspace for one
candidate point is not the same as the mean-value subspace for another can-
didate. The REML log likelihoods are not comparable as log likelihoods. In
order for this to be done correctly, it is necessary to use the optional argument
kernel=K to over-ride the default kernel. While K=0 and K=1 are valid zero
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and one-dimensional options, the more natural choice is the two-dimensional
intersection subspace K <- model.matrix(~log(Popn), data=S1).

The second technical issue is that the log likelihood for a given x0 should
also be maximized over λ, which is a substantial computational overhead. For
simplicity in the analysis described above, λ = 820km has been treated as a
known constant.

Shortcomings

An essential part of the Out-of-Africa thesis is that if x0 is the linguistic origin,
the regression coefficient of phoneme inventory on the linguistic distance vector
‖xi − x0‖ must be negative. However, one piece of information (negativity)
has not been used at any point in the analysis, and sign constraints have not
been enforced in likelihood calculations—either by Atkinson or by me. For the
rough calculations in the preceding section, the candidate points considered
were restricted to existing linguistic centers in each region. In some cases,
the weighted least-squares regression coefficient was positive. The fraction of
negative coefficients varies considerably depending on which continental region
x0 belongs to:

Region(x0) Africa Europe Asia Oceania N.Amer S.Amer
Negative fraction 1.0 1.0 1.0 0.87 0.05 0.00

Imposition of negativity constraints has no effect for candidate centers in Africa,
Europe an Asia, but it must decrease the likelihood for some centers elsewhere.
Given that the emphasis has been on Africa as the most plausible location,
failure to impose the negativity constraint has a negligible effect on conclusions.

8.6 Matters for further consideration

8.6.1 Phoneme inventory as response

Suppose that it were possible to extract from the WALS database, the actual
phoneme inventory of each language rather than the phoneme count. This state-
ment implies a finite master list of m phonemes together with a Boolean variable
Y : [m]→ {0, 1} for each language indicating the subset of the master list that
occurs in the given language. The phonemes may be labelled by type, vowel,
consonant or tone, but the problem is already difficult enough without this
added complication.

Without altering notation, we may regard the phoneme inventory Yi for
language i either as a Boolean vector or as a subset Yi ⊂ [m] of the master list.
Thus Yi is the inventory for language i, the usual component-wise product YiYj is
the inventory common to a pair of languages, and the k-fold product Yi1 · · ·Yik
is the inventory common to a specific subset of k languages.

Setting aside the complication of phoneme type, it is mathematically natural
to ask for an analysis that is invariant with respect to re-labelling of phonemes
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in the master list. That condition implies an analysis that depends only on
phoneme inventory counts

i 7→ #Yi, (i, j) 7→ #(YiYj), (i, j, k) 7→ #(YiYjYk)

and so on. The analyses presented in this chapter use only the n-vector of
first-order counts. But inventory data also provide symmetric n×n matrices of
second-order counts, symmetric tensors of third-order counts, and so on.

Geography and distance are essential components in the Out-of-Africa hy-
pothesis. What bearing does the hypothesis have on data collected in inventory
format? Each language i is associated with a geographical location xi; each pair
may be associated with a pair of points {xi, xj}, with a line segment (xi, xj) or
with a weighted centroid; each triple may be associated with a set of points, the
convex hull of those points, or with their centroid, and so on. How is distance
to be measured for singletons, pairs, triples and so on? How are the questions
to be formulated statistically? Given answers to these questions, how might the
analysis proceed to estimate relevant parameters and to check whether the data
are consistent with the hypothesis?

8.6.2 Vowels, consonants and tones

If it is taken at face value, the Out-of-Africa hypothesis applies equally to vow-
els, to consonants and to tones. Is the evidence from these three sources con-
sistent? This is something that can be checked by analyzing the three variables
separately. We leave it as an exercise for the reader.

8.6.3 Granularity

In our analysis, we have ignored the fact that phoneme inventory variables are
discrete, with only a few distinct values. What effect does granularity have on
conclusions derived from a Gaussian model?

8.7 Exercises

8.1 Use the table() function to extract the distinct values for vowel diversity,
consonant diversity, tone diversity and total phoneme diversity. What does this
tell you?

8.2 Use the function cov(cbind(S1[...])) to compute the sample covariance
matrix of the four phoneme inventory variables. What does this tell you?

8.3 Use the function qr(cbind(S1[...]))$rank to deduce that total phoneme
diversity is a linear combination of the three constituents. Find the coefficient
vector.

8.4 The function vdist(x0, 1) returns a list of linguistic distances from the
designated point x0 in linguistic region 1 to each of the 504 language locations.
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Show that Atkinson’s distance variable S1$Dbo implies that his best-fitting ori-
gin lies somewhere in the box 9–10◦E, 1–2◦S. Find the point and locate it on a
map.

8.5 Assuming the Out-of-Africa hypothesis, total phoneme inventory necessar-
ily depends not just on distance to the origin but also on the speaker population
size. By minimizing the residual sum of squares over continental Africa, find
the best-fitting origin under the linearity assumption

E
(
Tnpdi

)
= β0 + β1‖xi − x0‖+ β2 log(popni).

You should not assume that the best-fitting origin lies in or near the box 9–10◦E,
1–2◦S.

8.6



Example 9

9.1 Effects of atmospheric warming

9.1.1 The experiment

This project concerns an experiment conducted at two sites in Minnesota over
the period 2009–11 to determine the effects of climate warming on photosynthe-
sis in juvenile trees of 11 different species. The following excerpt is taken from
the data archive:

To test how climate warming and variation in soil moisture supply
will jointly influence photosynthesis of southern boreal forest tree
species we measured gas exchange rates of 11 species in an open-
air warming experiment at two sites in northern Minnesota, USA.
The experiment ran for three years and used juveniles of 11 temper-
ate and boreal tree species under ambient and seasonally warmed
(+3.4◦C above- and below-ground) conditions. We measured in situ
light-saturated net photosynthesis (Anet) and leaf diffusive conduc-
tance (gs) on numerous days across the three growing seasons. Soil
and plant temperatures and soil moisture were continuously mea-
sured from sensor arrays.

Details of the experimental design, the site preparation, the species selected, the
variables measured, and so on, are provided in the paper by Reich et al (2018)
https://www.nature.com/articles/s41586-018-0582-4.

The two sites are roughly 100 miles apart, each site consisting of 12 plots
arranged in three blocks of four. Each plot is a circular area, roughly three
metres in diameter, which is adequate for 30–40 juvenile specimens. Plots in
the same block are sufficiently far apart that the treatment applied to one plot
is judged to have negligible effect on neighbouring plots. Several specimens of
each species were planted in each plot. The heat treatment was applied to plots
during the growing season only. On 50 days, roughly 15–18 days per year from
mid-June till late September, measurements were made on trees in several plots.
For administrative reasons, all measurements on one day occurred at the same
site. On these days, soil water content was recorded for each plot together with
several measurements (photosynthesis, conductance, vapour pressure gradient,
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temperature,...) on selected trees in each plot. Each photosynthesis and vapour-
pressure measurement was made on a single leaf.

9.1.2 The data

Details concerning the variables recorded are provided at the archive

https : //portal.edirepository.org/nis/metadataviewer?packageid = edi.229.2

For present purposes, the file

.../borealwarming.csv

consists of a 2049 × 18 spreadsheet containing the data to be used for this
exercise. Each row consists of several measurements on one leaf on one day.
This file differs slightly from the archived data.

The questions that follow are intended as a guide for analysis in an exam-
ination setting. You should first read he Nature paper and then answer the
questions as asked. But you are not restricted to the points mentioned below;
you are free to examine the data in any way you please, so your approach might
not follow the path suggested.

1. Before any trees were planted, a grid of underground electrical cables
was laid down at a depth of 15 cm in each plot, with sufficiently small
separation that the heating effect could be deemed uniform. The cables
in the treated plots were used as heating elements. What was the purpose
of the cables in the control plots?

2. Use the data to reproduce the authors’ plots in Fig. 1 and Fig. 2 in a
similar format. Show your code for Fig. 1. What, if anything, do these
plots tell you about the effect of elevated temperature on deciduous versus
coniferous trees?

3. Soil water content is expected to vary from day to day with the most
recent weather and from plot to plot depending on the topography, for
example, exposure, topsoil depth, drainage capacity of the sub-soil, and
so on. You are asked to examine the effect of treatment on the soil water
content taking appropriate account of such variations. You may assume
initially that the treatment effect is constant over sites and over years. For
purposes of this analysis, you may set aside missing response values and
ignore all leaf-specific variables.

Justify your selection of terms in a suitable linear Gaussian model with
soil water content as response. Explain how you fitted the model, and
show the parameter estimates with standard errors.

4. You should have found a small negative treatment effect in the preced-
ing question. Is the treatment effect constant across sites as assumed in
part 3? Is it is constant across years? Explain how you might address
these questions, and report your answers.
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5. This question is concerned with the red-oak subset of the data, which is
coded as level queru for the factor species. You are asked to analyze
the relation between photosynthesis (Asat) and other non-leaf variables
including warming treatment and soil water content. Your analysis should
accommodate block, plot and temporal effects as needed. Give a brief
summary of the conclusions reached on the basis of the fitted model.

9.2 Further effects of atmospheric warming

9.2.1 The second experiment

9.3 The plight of the bumble bee
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Example 10

10.1 Factors affecting female fulmar fitness

The northern fulmar Fulmarus glacialis is a seabird found mainly off the coasts
of Iceland, the British Isles and parts of Norway. Fulmars have a life expectancy
of 30–40 years, and some may live up to 60 years. They have a long adolescence
and commence breeding at around 7–12 years of age. Adults are monogamous,
they form long-term pair bonds, and they return to the same nest site year after
year. Breeding begins in May; a single egg is laid and incubated by both parents
for about 50 days. The chick is brooded for about two weeks and fully fledged
after about three weeks.

A survey of the Eynhallow fulmar colony in the Orkney Islands was started
in 1951 by Robert Carrick and George Dunnet; the data for this exercise concern
the breeding record of 428 adult female birds for the period from 1958 to 1995.
They were provided by Steven Orzack in 2006. A few of the birds were active
breeders when first observed, but most were observed annually from their first
attempts at breeding until 1995 or the bird’s presumed death. No single bird
was alive for the entire period of observation. Further details concerning the
Eynhallow population can be found in the 2011 paper Static and dynamic ex-
pression of life history traits in the northern fulmar Fulmarus glaciali by Orzack,
Steiner, Tuljapurkar and Thompson (Oikos 120: 369–380).

The record for each year shows whether the bird laid an egg, and if so,
whether the egg hatched, and, if hatched, whether the chick fledged, which is the
event of primary interest. The data are presented in the file .../Fulmar-1.dat

as a matrix in which each row corresponds to a bird, the first column is the bird
identifier and the next 38 columns give the reproductive event observed for that
bird during each of the 38 years of the study. The code for reproductive events
is:

0: no reproductive event observed;

2: egg laid;

3: egg hatched;

4: chick successfully fledged (event of primary interest).

From a statistician’s point of view, the code-zero description is annoyingly
ambiguous. If “not observed” refers to the bird, then a reproductive event could
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have occurred at Eynhallow or elsewhere without being observed or recorded. If
“not observed” refers to the egg, it implies that the female was observed and did
not lay an egg, i.e., “bird observed but no egg laid”. The information content of
these interpretations is quite different. Given what we know about the fulmar
life span, it is clear that some zero codes are meant to be interpreted in the
second sense. However, it appears that others are meant to be interpreted in
the first sense. How can we tell which is which?

The potential for ambiguity in the coding is at least as much a matter of
ornithology as it is a matter of logic and semantics. It is the ornithologist’s
interpretation that must prevail, so the statistician is obliged to defer—if only
provisionally, reluctantly and with skepticism. Since the goal is to study re-
productive success, the ornithologist is interested primarily in sexually mature
birds, and female sexual maturity is deemed to be attained when the bird lays
her first egg. The annual record for bird 215 for the years ’58–’95 occupies one
row in the file Fulmar-1.dat as follows:

0, 4, 2, 3, 0, 4, 4, 4, 3, 4, 4, 4, 4, 0, 2, 2, 0, 4, 4, 4, 2, 3, 2, 4, 4, 3, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

According to S. Orzack, this sequence means that the bird reached maturity in
1959, and remained reproductively active for 26 years. Following this interpre-
tation, the first nonzero code for each bird is deemed to occur in its first year of
breeding, and the last nonzero code occurs either in the last year of life or in the
last year of the study. Each intermediate zero is interpreted as “bird observed
but no egg laid”.

To help with subsequent computations, the observations have been rear-
ranged into a four-column spreadsheet format in the file Fulmar-2.dat in which
each row shows the breeding record for one adult bird in one year. The records
are arranged chronologically, and the birds are coded sequentially 1–428 in col-
umn 1, which is not the same as the bird code in Fulmar-1.dat. The second
column is the year, the third is the bird’s presumed reproductive age, and the
fourth is the code for the reproductive event. For each bird, years before the
first and after the last nonzero event are excluded. There are 3790 such records.

10.2 Suggestions for analysis

Initially, at least, we suggest that you work with the data as coded, treating the
coded value as a quantitative response. Simple questions may be addressed by
computing and plotting marginal means as appropriate, and we strongly suggest
that you do not attempt to fit any statistical model without first examining a
range of plots or tables.

1. Eliminate leading and trailing zeros from the record for each bird in
Fulmar-1.dat, and check that your reconstruction is in agreement with
Fulmar-2.dat.

2. Compute the annual average reproductive score, and plot this as a time
series. What is special about the year that has the maximum average
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Figure 10.1: Average reproductive score versus age in the top panel, and reverse
age coded backwards in time in the lower panel. Points are scaled to reflect
sample size.

reproductive score? Is there an overall temporal trend? Is there any
evidence of serial correlation? What formal statistical techniques can you
bring to bear on these questions?

3. Use the function tapply(...) to compute the average reproductive score
as a function of breeding age, and examine the scatterplot. This plot, the
top panel of Fig. 10.1, shows that fulmars are much more successful in
their first breeding year than they are in subsequent years. Suggest two
explanations contributing to this unexpected anomaly.

4. Compute the average reproductive score as a function of breeding age
counted backwards from last recorded breeding year, and examine the
scatterplot of averages versus reverse breeding age. Comment on features
that this plot has in common with averages in forward time.

5. The paper by Orzack et al. (2011) is concerned in part with senescence
of reproduction and the biology of aging. Do age and experience of the
female contribute positively or negatively to reproductive success? With
this goal in mind, fit a linear Gaussian model for the scored responses
(that is, 0, 2, 3, 4). Apart from reproductive age, your model should
accommodate variations associated with calendar year, the bird identifier,
and any anomalies that could reasonably be attributed to censoring or
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sampling bias. Is the trend with age positive, negative or zero? Compute
a suitable regression coefficient and its standard error.

6. One way to accommodate the anomalies seen in Fig. 10.1 is to include
two additive indicator vectors, one for first breeding year and one for last
breeding year. Another way is to restrict the analysis to the subset of
years that are not known to be the first or last breeding year for that bird.
This subset includes eight breeding birds in 1958, 55 in 1995 and 3039
others. Discuss the pros and cons of analysis by elimination of records
versus analysis by inclusion of initial and terminal effects.

7. Is there any evidence to suggest that some birds are consistently more
successful breeders than others? Explain.

8. It is expected that weather variations in Orkney might make some years
more favourable for breeding than others. Comment on the magnitude of
the year-to-year variation versus bird-to-bird variation.

9. Carry out whatever diagnostic procedures you deem appropriate to assess
the appropriateness of the model you fit in part 5. Describe your results.
Discuss what impact any deviations you find from your assumed model
might have on your inferences.

10. Dichotomize the responses in some appropriate fashion and use logistic
regression to study which factors have an effect on reproductive success.
Figure 10.1 points to a bias coming from initial and final records for each
bird. Discuss ways to accommodate, reduce or eliminate this source of
bias. Again carry out any diagnostics you consider appropriate to assess
the validity of the model.

11. Provide a one-paragraph summary of your findings that would be suitable
for an ornithologist with a modest statistical background. Compare your
findings with those of Orzack et al. (2011).

12. The information in Fig. 10.1 could have been presented using a boxplot.
Why do you think the sequence of averages was chosen in preference to a
sequence of boxes?

13. The problem with the analysis in part 5 is that the observed scores are so
far from normally distributed that the conclusions derived from a Gaussian
model cannot be trusted. Whether or not you agree with this sentiment,
suggest a remedy, implement it, and comment on how much or how little
the conclusions are altered.

10.3 Further references

Dunnett (1991) gives a concise historical account of the background, initiation
and development of the study of fulmars at Eynhallow.



Chapter 11

Basic concepts

11.1 Stochastic process

11.1.1 Process

Probabilistic reasoning is the foundation of theoretical and applied statistics,
and the fundamental concept that provides the basis for probabilistic reasoning
is the notion of a process, and specifically a stochastic process. A process is
nothing more than a function Y : U → S from a domain or index set U into
another set S called the state space: to each point or object u ∈ U , the function
Y associates a point Y (u) or Yu in the state space. A stochastic process is a
probabilistic description of a random function U → S.

The domain for a Markov chain or a time series is either the integers or the
natural numbers; the domain for a continuous-time temporal process is the real
line R; the domain for a spatial process may be the real plane or the complex
plane, or possibly Rd. The domain for a planar point process is not [the set
of points in] the plane but the set of Borel subsets of the plane. Likewise, the
domain for planar white noise is not R2, but the set of Borel subsets.

In a setting such as an agricultural field trial, the domain for the yield process
is usually described loosely as the set of plots; this description is adequate for the
field, but it is interpreted mathematically as the set of planar Borel subsets. The
domain for a simple clinical trial for a COVID-19 vaccine is usually described
loosely as the set of patients; this is interpreted to mean all eligible patients
whether or not they were recruited and observed in the AstraZeneca trial. The
domain for a study of speciation or sexual compatibility of fruit flies is the
set of male-female pairs—again meaning all possible pairs having the genetic
characteristics of interest. The domain for a competition experiment such as
a chess or tennis tournament is the set of ordered pairs of competitors—again
meaning all pairs whether or not they met in Wimbledon.

In each case, the state space is a set such as {0, 1}, R or R2, as a measurable
space with Borel events. Depending on the setting, the response function may
have context-specific properties, such as anti-symmetry Yi,j = 1−Yj,i in the case
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of a pairwise competition, or additivity Y (A ∪ B) = Y (A) + Y (B) for disjoint
plots in a field experiment.

In applied statistics, U is frequently called the set of observational units, and
Y is called the outcome or response. A sample is a finite subset S ⊂ U , and the
observation is the restriction Y [S] of the process to the sample.

11.1.2 Probability

A stochastic process, is nothing more than a probabilistic description of the
function Y : U → S as a random variable or a collection of random variables
{Yu : u ∈ U}. To each event A ⊂ SU the stochastic description associates
a number 0 ≤ P (A) ≤ 1, satisfying the rules of probability. Probability im-
plies expectations, means, variances and so on. Given a sample S ⊂ U and
an observation point y ∈ SS , the process associates a conditional probability
0 ≤ P (A | Y [S] = y) ≤ 1. This implies conditional expectations, conditional
variances and so on.

The simplest processes have independent components. In other words, to
each u ∈ U there corresponds a probability distribution Pu on the state space.
Independence means that for any sample (u1, . . . , un) consisting of n distinct
units, the joint distribution of Yu1

, . . . , Yun satisfies

Pu1,...,un(A1 × · · · ×An) = Pu1
(A1)× · · · × Pun(An)

for arbitrary events Ar ⊂ S. All generalized linear models have independent
components, which are usually not identically distributed because different units
may have different covariate values. By general agreement in applied work,
Pu may depend only on covariates, so xu = xu′ implies Pu = Pu′ .

Gaussian processes having independent and identically distributed compo-
nents are the building blocks for more general processes such as those encoun-
tered in Examples 1 and 2. More general spatial and temporal processes are
used throughout the examples.

11.1.3 Consistency

The dismissive phrase nothing more than a probabilistic description of the func-
tion..., which occurs at the beginning of the previous section, grossly underrates
the difficulty of the assigned task. To understand the difficulty, consider a lon-
gitudinal design in which a given subject may be observed at an arbitrary finite
collection of time points t ⊂ R with t1 < t2 < · · · < tk. With all covariates
fixed, it is necessary to specify for each k ≥ 1 and each t, the k-dimensional
joint distribution Pt(·) on Sk. Since the event (Y1, Y4) ∈ A × A′ is the same
as the event (Y1, Y2, Y4) ∈ A × S × A′, these distributional specifications are
subject to logical consistency conditions such as

P1,4(A×A′) = P1,2,4(A× S ×A′)
= P1,2.5,4(A× S ×A′) = P1,2,3,4(A× S2 ×A′).
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Without consistency, alternative ways of computing the probability of a given
event give different answers. Kolmogorov consistency is the mathematical glue
that holds it all together, and makes statistical activities such as prediction
possible.

Consistent specifications are not easy to find, and a formulation that looks
plausible may well be self-contradictory. In a longitudinal setting where the
response is real-valued and Gaussian, it may seem safe and natural to construct
the joint distribution as a product of one-dimensional conditional distributions
given past observations. This means specifying the conditional mean and the
conditional variance given past observations—both times and values. If the joint
distribution is to be Gaussian, the mean must be linear, and the variance con-
stant, as a function of past values. However, the dependence on past observation
times must also be specified, and this is not linear. It may be feasible to spec-
ify a continuous-time process sequentially and consistently if it is Markovian;
otherwise a sequential specification is most unlikely to be consistent.

Apart from Kolmogorov consistency, other forms of consistency or inconsis-
tency sometimes arise in statistical work. Example 5, illustrates a probability
model that is incompatible with randomization.

Self-consistency is an important consideration, but not necessarily a domi-
nant part of the story. On the one hand, a consistent specification is not nec-
essarily well-suited to a given task. On the other hand, statistical conclusions
derived from an inconsistent specification are not necessarily dangerous or dis-
astrously wrong. It all depends on the nature of the inconsistency. Nonetheless,
incompatibilities and self-contradictory specifications are strongly discouraged.

11.1.4 Statistical model

A statistical model is a non-empty set of stochastic processes {Pθ : θ ∈ Θ} on
the same state space. It is indexed by points θ in the parameter space. Oper-
ationally speaking, to each parameter point θ there corresponds a function Pθ,
and Pθ(A) is the probability of the event A in the process associated with θ.
For example, N(µ, σ2) ≡ N(µ,σ2) denotes the normal distribution on R, and, by
extension, the process whose components are independent and identically dis-
tributed. Thus, N(0,1)(−1, 1) ' 0.683 is the probability assigned to the interval
(−1, 1) ⊂ R, and N(0,1)((−1, 1)18) ' 0.68318 ' 1/964 is the probability assigned
to the event in R18 that the first 18 components in an iid sequence are all less
than one in absolute value.

Every distribution on a given space can be extended automatically to an iid
sequence on the product space. However, this extension is not always natural or
relevant. Most of the processes considered in this book do not have identically
distributed components, and most do not have independent components, so the
extension alluded to on the previous paragraph is not one that should be taken
for granted.
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11.2 Basics of Experimental design

11.2.1 Baseline

Every experiment and every observational study has a temporal component.
The baseline is the temporal origin or reference point marking the beginning of
the study. Mathematically speaking, the baseline is a point at which the obser-
vational units u ∈ U have been assembled, together with all of the information
about them that is needed to specify the probability of arbitrary outcomes. All
statistical inferences are based on probabilities, and the probability model is
said to be registered at baseline.

Generally speaking, the units available for study are not homogeneous. The
baseline information records sex, age, and, in principle anything else that is
available at baseline that can reasonably be deemed to have a bearing on out-
come probabilities. In practice, a certain restraint or professional judgement
is needed to decide what is likely to be relevant and what is not. In a field
experiment, the geometric layout of the plots is ordinarily part of the registered
baseline information, and is almost always relevant in that it affects outcome
probabilities. Information about crop, treatment and yield in the previous sea-
son is sometimes available and might be judged relevant if the new plots were
well-aligned with the previous plots. In a clinical trial with human patients, eth-
nic background might be relevant as a block factor, but the number of letters
in the patient’s name is unlikely to be considered relevant for clinical outcomes.

For a randomized study, randomization occurs at or immediately after base-
line. The randomization protocol is registered at baseline, but the randomiza-
tion outcome is not. Model specification begins with randomization probabil-
ities p(t) = pr(T = t) for each treatment assignment vector t = (ti)i∈S , also
called the treatment factor. Even if one assignment list is a permutation of
the other, two assignment vectors t, t′ may have, and usually do have, differ-
ent probabilities depending on baseline information such as covariate or block
structure. Most commonly, the randomization is balanced with each treatment
level occurring with equal frequency in each block.

Since the probability model is registered at baseline, i.e., pre-randomization,
the model specifies the joint distribution for treatment T and response Y . The
joint distribution implies a marginal distribution for treatment assignments,
and a conditional distribution t 7→ F (· | T ), which associates with each as-
signment vector t a conditional distribution for the response. Randomization
subsequently produces a particular treatment configuration, and nearly every
subsequent probability computation uses that value. In general, the conditional
probability F (A | T = t) of the event Y ∈ A may depend on any and all reg-
istered baseline information. Every variable measured post-baseline, such as T ,
is regarded as the outcome of a random process, and, as such, is formally a part
of the response.

Baseline need not mean a fixed point in calendar time. In studies of cell
development, the baseline would ordinarily be set at a key developmental stage
such as fertilization, which is a point in calendar time that may vary from cell
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to cell. Similar remarks apply to clinical trials where the baseline is usually set
at recruitment, which varies from one patient to another on the calendar scale.

11.2.2 Observational unit

The observational units are the objects u ∈ U on which variables are defined
and measurements may be made. Usually measurements are made only on a
small subset of observational units (the sample), so the phrase measurements
may be made does not imply that measurements have been made or that plans
are afoot to make such measurements.

The statistical universe almost always includes infinitely many extra-sample
units, notional or otherwise, for which probabilistic prediction may be required.
Sometimes each unit is a physical object such as a plot, a patient, a rat, a
tree, or a M-F pair of fruit flies. Sometimes the units are less tangible, such as
time points or time intervals for an economic series, or spatio-temporal points
or intervals for a meteorological variable such as temperature or rainfall. Very
often, the set of observational units is a Cartesian product set such as

{mice} × {front, rear} × {left, right} × {day0, day1, day2}

which contains 12 observational units for each mouse. As an index set, time is
structured cyclically in a similar way:

{clock times} × {?? days} or {365 calendar dates} × {?? years}

The index set may be stuctured in other ways such as pupils within classrooms
within schools, which is a nested or hierachical structure defined by one or more
relationships R(u, u′) on the units.

11.2.3 Population

The population U is the set of observational units, which is typically infinite; the
sample is the finite subset of observational units that occurs in the study. Where
necessary, the sample may be extended to include units for which observations
are unavailable but response predictions are requested. In a meteorological
context, the observational units are all points in the plane or sphere, or points
in the spatio-temporal product space, so the population is uncountably infinite.
For a spatial process, the units may be either points in the plane, or subsets
of the plane, or less tangible objects such as signed measures on the plane or
planar contrasts. The sample is the finite set of points at which measurements
(sample values) are planned or available or desired.

The mathematical population is the index set on which the response (yield,
health, weather,...) is defined as a stochastic process. As is often the case
in mathematics, the mathematical index set is made sufficiently large that it
encompasses every conceivable situation that might arise, and many more be-
sides. For a clinical trial in which the experimental units are human patients,
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the mathematical index set need not be finite, and in fact the mathematical sub-
set of units having a specific sex, age and body-mass-index may also be infinite.
A non-mathematician might object to the fact that the mathematical index set
contains more points than there are real physical or biological entities, or atoms
in the universe. Such objections are not to be entertained seriously; they are
on a par with rejecting the real number system for engineering or accounting
purposes on the grounds that it contains infinitely many ‘useless’ values that
are not needed for billing purposes.

A non-trivial stochastic theory requires the sample to be a proper subset
of the population, but it does not require U to be infinite. There are bona
fide applications that call for a finite population, so we do not insist that all
populations be infinite. However, we shall not encounter such applications in
these notes.

Statistical colloquialisms. When one talks of a ‘Normal population’ or a
‘Cauchy sample’, the reference is not to the population or sample per se, but to
the population values or sample values or their distribution, usually understood
to have independent values for distinct units.

11.2.4 Biological populations

Every biological population evolves by a process of birth and death. Tomorrow’s
population is not the same as today’s population or yesterday’s population, but
all three are finite. Mathematically speaking, the population is said to be locally
finite in time. It is immaterial whether the entire population is globally finite
or globally infinite. What is important is that only the current population is
accessible or available for sample inclusion.

For some short-term social policy matters, voting and other political activ-
ities, the relevant population for inference is determined by democratic princi-
ples. Only the current population has a vote, so past and future generations are
not counted in the population. Such populations are finite.

For medical and pharmaceutical studies, it is preferable to take a broader
view, particularly if there are any plans to use the drug or therapy for future
patients. However, this broader perspective means that not all individuals in
the population are accessible and available for inclusion in a sample today.

In a clinical trial for a Covid-19 vaccine, the units available for recruitment
are individuals who are alive and of a suitable age at the crucial time. It
appears that the Covid-relevant population is finite. However, there are at
least two reasons to reject the finiteness argument. The first is that the current
population is very large. It is difficult to put a precise figure on on it, say 7.5–8.0
billion, and it is even more difficult to explain why this number is biologically
or mathematically relevant for the assessment of drug safety or efficacy. The
second argument is that the Covid-19 relevant population is not restricted to the
present, but also includes at least one future generation. Given that some units
are inaccessible, it is sufficient to take U to be infinite, so that the mathematical
set is large enough to accommodate every conceivable demand, even beyond
what is epidemiologically plausible.
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11.2.5 Samples and sub-samples

The sample S ⊂ U is the finite subset of observational units on which the
response and other variables is recorded. Technically, S is a finite ordered list
of units, usually but not necessarily distinct, and the recorded response Y [S] is
the list of Y -values for u ∈ S in the same order.

To be clear, the word ‘sample’ in these notes denotes a finite ordered subset
of units. It does not imply a random sample, let alone a simple random sample.
Two samples consisting of the same units taken in a different order are different,
but statistically equivalent for most purposes.

In settings where prediction or interpolation is involved, it is necessary to
consider an extended sample S′, which includes S as a sub-sample. Each u ∈
S′ \ S is called an extra-sample unit. Only the restriction Y [S] is actually
observed. Prediction refers to the conditional distribution of Y [S′] given Y [S];
point prediction refers to the conditional expected value.

11.2.6 Illustrations

In the discussion of Example 1, it was asserted that each observational unit is
a site on a rat, i.e., a (rat, site) pair, and the response is a real number, i.e., the
state space is the real numbers. However, one could argue that each rat is one
observational unit, and the state space is R5. At first glance, these appear to
be equivalent.

What makes one choice more appropriate than the other is the nature of the
five observations on each rat. If these were five otherwise unrelated variables
such as pulse rate, temperature, weight and blood pressure, each rat would be
one observational unit, and the state space would be R5. However, the observa-
tion consists of one biological variable measured at five sites. Although we do
not necessarily expect the five measurements on one rat to be exchangeable or
even to have the same expectation, the nature of the observation process—using
the same instrument for each site—confers additional symmetry.

For one rat, either choice leads to a response distribution on R5. The dif-
ference is that the second version has more natural symmetries than the first.
These symmetries arise from notionally permuting the units in various ways.
For example, the model used in Example 1 has equal variances for all sites, and
equal covariances for each pair of sites, which comes implicitly from assumptions
about permuting sites. If we choose the rat as the observational unit, there is no
possibility to permute sites, so these symmetries do not emerge as a consequence
of permutation of units.

In Example 3, each observational unit was taken initially to be a mating
event. But this was subsequently shown to be inappropriate for the design,
and misleading for the analysis. Instead, it was deemed preferable to take one
mating well as the observational unit.

For the daily temperature series, each observational unit for the analysis in
Chapter 6 is a point in calendar time, consisting of a year and a date within the
year. Date is a number in the range 1–365 having cyclic structure, i.e., a real
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number with addition modulo 365.
For the frequency analysis in Chapter 7, each observational unit is a Fourier

frequency. These also come with harmonic structure such that frequency ω is
associated with its harmonics {ω, 2ω, . . .}.

In Examples 1–7, one observational units is (i) a site on a rat; (ii) a (log,
saw) or (log, team) pair; (iii) a mating well; (iv) a (plant, date) pair; (v) a
louse; (vi) a point in calendar time; (vii) a frequency; (viii) a language. The
population is some set of observational units, and there is usually little reason
to restrict the mathematical population to a finite set. Many of these are all
relatively straightforward from the definition given, but it is clear in several
instances that other choices are possible.

11.3 Response and other variables

11.3.1 Variable

A variable is a function on the observational units, both sample units and extra-
sample units. Everyday examples include ‘weight in kg.’, ‘atmospheric pressure
in cm. Hg.’, and ‘length in cubits’. In principle, the variable name includes
the physical units of measurement so that the value xi ≡ x(i) of the variable x
for unit i is a number, not an expression such as ‘184.5 cm’. Mathematically
speaking, weight in kg. and weight in lbs are different variables; in practice,
descriptive terms such as weight, height and temperature are used flexibly in
everyday speech without specified units. Flexibility is good, but ambiguity can
be costly—such as the loss by NASA in 1999 of a Mars orbiter at a cost of
$125M because of a mix-up of distance units by Lockheed-Martin.

Qualitative variables include sex taking values in {M, F}; or occupation
taking values in a suitable set of occupations. This set of values or levels must
be exhaustive, so one of the values may be ‘none of the above’.

Operations: If u, v are two variables, the ordered pair (u, v) is also a variable:
the value of (u, v) for unit i is (u, v)(i) = (ui, vi), which is a point in the Cartesian
product space. Each variable is defined on the population and recorded on the
sample.

Feature is a synonym for variable or attribute—a function on the units. The
feature vector takes values in the feature space.

In certain settings, the response on one unit is a vector, and each feature
is one component; the primary response is a class or characteristic of the unit,
and the goal is to classify each unit by computing the conditional distribution
over the set of classes given the features.

11.3.2 Quantitative variable

A real-valued function on the observational units is called a quantitative variable.
More generally, a quantitative variable is a function taking values in a vector
space. Dose (of fertilizer or medication in suitable units) is a typical quantitative
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variable whose values are non-negative. Blood pressure (systolic, diastolic) in
mm. Hg. is a quantitative variable taking values in R2. This statement means
that every realizable value of blood pressure can be found somewhere in R2; it
does not mean that every point in R2 is realizable as a blood-pressure value for
a live human subject. Values that are in conflict with hydrostatic and hydraulic
theories are deliberately not excluded by the definition.

Operations: If x, z are two quantitative variables taking values in the same
vector space, so also is the linear combination 3x + 4z. If x, z are real-valued
variables, so also is the unit-wise products xz. Consequently x2, z3 and other
monomials such as x2z are also quantitative variables.

11.3.3 Qualitative variable

A qualitative variable, also called a classification factor, is a function on the
observational units taking values in a finite or countable set, called the factor
levels. Examples include sex, occupation, socioeconomic class, and variables
such as genetic variant with values ‘wild type’ and ‘mutant’. Often, one level
is designated as a reference level. A qualitative variable is sometimes called an
attribute or a feature.

Ordered pairs: If u is the qualitative variable representing COVID vaccine
with four levels Pfizer, Moderna, AstraZeneca, Janssen, and v is the dose count
with three integer values {0, 1, 2}, the product set contains twelve ordered pairs
that are mathematically distinct. Operationally, however, the four pairs asso-
ciated with zero dose are not distinguishable, so the number of distinguishable
ordered pairs is only nine.

11.3.4 External variable

Any variable measured post-baseline is regarded as a random variable whose
probability distribution is specified at baseline. The randomization outcome
becomes available post-baseline, so it is a component of the response in the
sense that its distribution is specified at baseline. Usually, the randomization
outcome is not of scientific interest in itself, so the focus of the investigation lies
elsewhere.

Apart from the randomization, there may be other post-baseline variables
that are relevant and must be considered, but are not themselves of scientific in-
terest. An external or endogenous variable is one that is usually not independent
of the primary response, but whose temporal evolution is independent of the
primary response. For a definition of independent evolution, see section 11.2.10.
Independent evolution is an asymmetric relation between two temporal pro-
cesses, so this concept arises primarily in longitudinal designs or in time series
analysis. Louse sex in Example 5 is a simple example of a post-baseline variable
that is external in the sense of the definition.
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11.3.5 Response

The response, usually denoted by Y , is the variable of primary interest, the vari-
able that is measured or recorded on the sample units, e.g., yield in kg. per unit
area, or time to failure in a reliability study, or stage of disease, or severity of
pain, or death in a 5-year period following surgery. There may be secondary or
intermediate response variables such as compliance with protocol in a pharma-
ceutical trial, which are also part of the response. Synonyms and euphemisms
include yield, outcome and end point.

In statistical work, the response is regarded as the realized value of a random
variable, or process u 7→ Yu taking values in the state space Yu ∈ S. For an
observational study, the distribution is denoted by F ; for a randomized study
F (·, t) is the joint distribution of the response and treatment assignment.

To be clear, the response is not some conceptualized or notional variable that
we would like to measure but are unable to measure on the sample units. By
definition, the response is the variable that is actually measured on the sampled
units, i.e., the value recorded by a blood pressure instrument or a treadmill task
at a particular time, or by a questionnaire for a psychiatric evaluation, not some
notional ‘true’ state of health. Likewise, the probability model is a probability
distribution for the process corresponding to the variable measured, including
the procedure or instrument used to measure it.

Many of the stochastic models considered in these notes are built from sim-
pler processes, for example, by addition of a smooth process plus white noise,
or by using a latent smooth process as the intensity for a Bernoulli process
or Poisson process. Some authors are then inclined to refer to the unobserved
smooth process as the ‘true value’, suggesting that the observation is the false
or corrupted value. Provided that the descriptive term ‘true value’ is under-
stood in the non-pejorative pure-mathematical sense, this terminology causes
no difficulty. But it can lead to linguistic awkwardness in instances where the
true state of health is normal even after the patient has died.

11.3.6 Covariate

A covariate x is a baseline function on the observational units that is used in a
probability model to permit the outcome distribution for one unit to differ from
that of another unit. Ordinarily, if xi = xj , the events Yi ∈ A and Yj ∈ A are
presumed to have the same probability; otherwise, if xi 6= xj , the probabilities
may be different. For this to make operational sense, the covariate must be
registered at baseline. Typical examples include patient age, sex of mouse, type
of soil or soil pH (pre-planting).

If the set of observational units is a Cartesian product set U = U0×U1, each
marginal component u 7→ u0 or u 7→ u1 is a baseline variable. In Example 1,
each unit u is a (rat, site) pair, so the function u 7→ site(u) is a covariate. The
function u 7→ rat(u) is also a baseline variable, but it is used as a block factor.
In Example 5, each observational unit (louse) is associated with an ordered pair
(aviaryu, timeu), so aviary and time are baseline variables.
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Operationally, a covariate is used in a randomized experiment to reduce
‘unexplained’ variation and thereby to increase the precision of treatment effect
estimates. In an analysis of variance, the total sum of squares for the response
is partitioned into various parts, one part associated with registered covariates
and block factors, a second part associated with treatment, the remainder being
‘unexplained’ or residual variation. The part associated with covariates and
block factors, the between-blocks variation, is said to be ‘eliminated’, and the
more variation that can be eliminated, the less there is to contaminate the
estimates of treatment contrasts. A covariate or block factor is said to be
effective for this purpose if the associated mean square is substantially larger
than the mean squared residual. This means that the response variation within
blocks, the intra-block mean square, should be appreciably smaller than the
response variation between blocks, the inter-block mean square.

In practice, it may be acceptable to fudge matters by using as a covariate,
a variable measured post-baseline before the effect of treatment has had time
to develop, or an external variable whose temporal evolution is known to be
independent of treatment assignment for the system under study. Louse sex
in Example 5 is a simple, uncontroversial, example of a post-baseline variable,
which is not statistically independent of the response (louse size), but whose
evolution is ‘known to be’ independent of both treatment assignment and louse
size.

At a minimum, it is necessary first to check that the variable in question
is indeed unrelated to treatment assignment; otherwise its use as a covariate
could be counterproductive. It is well to remember that while measurement pre-
baseline is strong positive evidence that no statistical dependence on treatment
assignment exists, the most that can be expected of a post-baseline measurement
is absence of evidence. For a variable of dubious status, absence of evidence
is considerably better than its complement, but it does not provide the same
positive assurance as evidence of absence. A concomitant variable of this sort is
not counted as a covariate in these notes. It is formally regarded as a component
of the response whose dependence on treatment assignment is to be specified
as a part of the statistical model. The dependence may be null, but that alone
does not give it the status of a covariate.

As always, a probability model F allows us to compute whatever conditional
distribution is needed for inferential purposes. That includes the conditional
distribution given any concomitant or intermediate outcome or the conditional
distribution of health values given that the patient is alive, or the conditional
distribution of the cholesterol level given that the patient has complied with
the protocol, or even the probability of compliance given the cholesterol level.
Whether these are the relevant distributions for the purpose at hand is an
entirely different matter to be determined by the user.

11.3.7 Treatment

Treament is a function T : sample units → levels taking values in the set of
treatment levels. Treatment is not a covariate because it is not a property of
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the observational units that is registered at baseline; it is an intervention that
changes the status quo for the sampled units only. Usually, treatment is a
random variable whose value is the outcome of a randomization scheme. The
components of T for distinct observational units, or even for distinct experimen-
tal units, are usually identically distributed, but seldom independent.

In computational work, the observed treatment configuration (Tu)u∈S is
called the treatment factor. Although T is defined only for sample units, we
must bear in mind that the sample can always be extended indefinitely, at least
in principle, so the restriction to S is not a major part of the distinction be-
tween a classification factor and a treatment factor. The important distinction
is that a pre-baseline variable is a property of the units, whereas treatment level
is assigned to units at baseline.

11.3.8 Relationship

A relationship is a function on pairs of units that may be used in the statis-
tical model to distinguish the joint outcome distribution for one pair of units
versus another pair. For this to be feasible, the values must be registered at
baseline. If each unit is a point in a metric space, or is associated with such a
point, the metric d(u, u′) is a non-negative symmetric relationship among them.
Experimental units are defined by a Boolean relationship: E(u, u′) = 1 if u, u′

belong to the same experimental unit. Other examples include genetic, familial,
neighbour, and adjacency relationships.

Ordinarily, the relationship is defined on the population and recorded for the
sample pre-baseline. In Example 5, however, Aviary is a block factor generated
by randomization, and defined on the sample. Since the randomization may
have been accomplished in two waves that were not necessarily synchronous, it
is difficult to say whether this block factor is pre-baseline or post-baseline.

11.3.9 Block factor

A block factor is a Boolean function on pairs of observational units that is re-
flexive, symmetric and transitive—an equivalence relation registered at baseline.
Each block factor (such as the experimental unit factor) partitions the set of
observational units into disjoint non-empty subsets called blocks. The identity
function on U is a block factor whose blocks are all singletons; at the other
extreme, the function J such that Ju,u′ = 1 for every pair, has exactly one
block.

To each variable or factor x there corresponds a block factor B defined by

Bij = 1 if and only if x(i) = x(j).

Regardless of how the information is stored in an electronic device, the chief
mathematical difference between B and x is that the x-blocks are labelled by
x-levels, whereas the blocks of B are unlabelled. The x-block x−1(x(1)) = {j ∈
S : x(j) = x(1)}, i.e., the subset of sample units having the same x-value as
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unit 1, has the label x(1). Since the blocks of B are unlabelled, a block factor
has no reference level or reference block.

At the risk of over-simplification, covariates typically occur in the model for
the mean response; block factors and other relationships occur in the model for
covariances.

11.3.10 Independent evolution

Let the response be a two-component temporal process, so that (Zt, Yt) is the
value at time t. For notational simplicity, time is discrete. Independent evolu-
tion is an asymmetric relation between the two processes. We say that Z evolves
independently of Y if, for each t, future Z-values are conditionally independent
of past Y -values given past Z-values. In particular, for every t,

Zt ⊥⊥ Y (t−1) | Z(t−1) (11.1)

where Y (t) = Y [. . . , t] is the restriction to past values.
Independent evolution does not imply that the two processes are statisti-

cally independent, nor does it imply that Y evolves independently of Z. It is
an asymmetric relationship between temporal processes, which simplifies the
sequential factorization of the joint density

p(zt, yt | Z(t−1), Y (t−1)) = p(zt | Z(t−1), Y (t−1)) p(yt | Z(t), Y (t−1))

= p(zt | Z(t−1))× p(yt | Z(t), Y (t−1)).

When the focus is on Y as the primary response, an auxiliary process satisfying
(11.1) is sometimes called external or exogenous.

In circumstances where Z is exogenous, the evolution of Y may be governed
by synchronous Z-values only, in which case we have

Yt ⊥⊥ Z(t−1) | Zt, Y (t−1) (11.2)

in addition to (11.1). The joint density then factors as

p(z(T ))×
T∏
t=1

p(yt | Zt, Y (t−1)),

where the focus is usually on the second factor.
The much stronger conditional independence condition

Yt ⊥⊥ Z(t−1), Y (t−1) | Zt (11.3)

severely limits the nature of the temporal dependence in Y . In this case the
second factor in the joint density simplifies further to

p(y | Z) =
∏
t

p(yt | Zt).
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The occurrence of Z is similar to the occurrence of a covariate, as if Z were
recorded at baseline.

Example 5 shows that pigeon lice are sexually dimorphic, so size and sex are
strongly dependent. Nonetheless, louse sex is a good example of a post-baseline
variable that evolves according to Mendelian laws, independently of the main
response (louse size). It is also clear on general grounds that only synchronous
sex-values matter, so (11.2) is satisfied. However, Brownian evolution processes
do not satisfy the stronger condition (11.3), so the simpler density factorization
fails.

The health of an asthmatic patient may depend on recent local weather, but
the evolution of weather patterns is, to an adequate approximation, independent
of the health of patients. It is obvious in this setting that only local weather
patterns matter, and recent is more important than not-so-recent, but it is less
obvious that only synchronous weather matters, so (11.2) is dubious. Certainly,
one would not expect (11.3) to hold for values measured at moderate to high
frequency. Similar remarks could be made regarding investors in the stock
market.

11.4 Comparative studies

11.4.1 Randomization

The randomization scheme is a probabilistic protocol for the assignment of
treatment levels to sample units, often uniformly at random subject to design
constraints. For a completely randomized design with 12 sample units and four
treatment levels, a balanced randomization scheme is a function T : [12] → [4]
(from sample units to treatment levels) chosen [uniformly] at random from the
set of 12!/(3!4) = 369600 functions having treatment blocks T−1(1), . . . , T−1(4)
of equal size. In the randomized blocks setting, each sample unit is an experi-
mental unit.

Usually, the randomization probabilities depend on the block structure and
covariate configuration occurring in the sample units. For a typical randomized
blocks design, the joint probability that the pair (u, u′) is assigned treatment
levels (t, t′) depends on whether the units belong to the same block or to different
blocks. More generally, the probability pr(u 7→ t;S) that treatment level t is
assigned to unit u may depend not only on xu but also on xu′ for all other
units u′ ∈ S. Unless otherwise specified, we assume in these notes that the
assignment probabilities pr(u 7→ t;S) > 0 are strictly positive for every unit
and every treatment level. For an exception in which the menu of treatment
options may be covariate-restricted, see Example 2.6.

In cases where the components of t are independent, the randomization prob-
ability pr(Tu = tu) may depend on baseline covariates or classification variables
such as sex. For example, a two-level treatment may be assigned in the ratio
1:2 for males and 2:1 for females. Ordinarily, a deliberately unbalanced design
of this sort causes no problems in the analysis, except perhaps for a reduction
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in efficiency. But there is one important exception to this rule. Randomiza-
tion probabilities are invariably assumed to be independent of initial values; see
section 11.4.5.

11.4.2 Experimental unit

The experimental units are the objects to which treatment is assigned, i.e., two
distinct experimental units may be assigned different treatment levels. Or,
to say the same thing in a different way, two distinct experimental units are
assigned different treatment levels with strictly positive probability. Each ex-
perimental unit consists of one or more observational units, e.g., one mouse
consisting of four legs, or one classroom consisting of 20–40 students in the
preceding example.

Two observational units u, u′ belong to the same experimental unit if the
randomization scheme necessarily assigns them to the same treatment level. In
mathematical terms, R(u, u′) = 1 if and only if T (u) = T (u′) with probability
one. By construction, R is an equivalence relation, which partitions the sample
units into disjoint blocks. Each block of R is one experimental unit.

A/B testing: This phrase, which originates in commercial internet activity,
refers to a treatment having two levels A, B, which may be connected with
options for on-screen presentation of internet search results. Each search is an
observational unit, the response being click/no click. The experimental units
may be searches or users or IP addresses, depending on the circumstances.

11.4.3 Covariate and treatment effects

In standard probability language, the phrase ‘X is independent of Y ’ is not a
statement about the random variables as measurable functions or the pair of
outcomes (Xu, Yu) as numerical values for a particular unit, as it is a statement
about probabilities: the joint probability for each product event (X,Y ) ∈ A×B
is multiplicative. Likewise, when we talk of a statistical effect in a context such
as ‘the effect of treatment on longevity’ or ‘the effect of variety on yield’, the
effect referred to is not a numerical difference of two survival times or two yields,
but a difference of two probabilities or a difference between two probability
distributions.

For example, if the probability model asserts that the yield in kg/Ha on
plot u is distributed as N(µ, σ2) for variety I and N(µ, 2σ2) for variety II,
the effect of variety (II versus I) is implicitly to double the yield variance. The
effect of variety on [the probability of] a particular event Yu ∈ A is the difference
N(A;µ, 2σ2)−N(A;µ, σ2) between two conditional probabilities, which depends
on both parameters. Similar remarks apply to the effect on linear and non-linear
functionals such as means, medians or quartiles of the yield distribution.

Apart from treatment effects, there are other effects of a different nature,
such as the difference in survival distributions for males versus females, or the
effect of aging on mobility or cognitive function. These are covariate effects.
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Every treatment effect in these notes is modelled as a group action on probability
distributions, which is not necessarily the case for covariate effects.

The effect of a 10-year age gap on the probability of event A is the difference
between two probabilities Pu(A) and Pu′(A) for two units such that age(u′) =
age(u) + 10; this covariate difference implies u 6= u′. The effect of treatment on
the probability of A is the difference between conditional probabilities Pu(A |
T = 1) and Pu′(A | T = 0) for two units having the same covariate value.
Although no unit receives more than one treatment, this difference is defined
and can be evaluated for u = u′. However, x(u) = x(u′) plus exchangeability
implies

Pu(A | T = 0) = Pu′(A | T = 0) and Pu(A | T = 1) = Pu′(A | T = 1),

so the treatment effect is the same for every pair such that x(u) = x(u′), whether
u = u′ or not.

11.4.4 Additivity

Additivity refers to additivity of effects associated with classification factors,
block factors and treatment factors. For a two-factor model with factors A,B,
the mean response is additive if

E(Yu) = αA(u) + βB(u).

For non-Gaussian responses, and even for Gaussian models, it may be necessary
first to apply a transformation to achieve additivity. For example, if Yu ∼
Ber(πu) is a Bernoulli variable, the logistic model

logitE(Yu) = αA(u) + βB(u)

exhibits additivity on the logistic scale.
Additivity usually refers to the mean model, but it can can also refer to

random-effects models. For example if A is a treatment factor and B is a block
factor, the Gaussian model

Y ∼ Nn(αA(u), σ
2
0In + σ2

1B)

exhibits additive treatment and block effects. If the effects are not additive,
i.e., if the treatment effect for one level of B is different from the treatment
effect at some other level, we say that interaction is present. Interaction and
non-additivity are effectively synonymous terms; synergy is also used for non-
additivity, particularly if the treatment effect is boosted by an increase in the
level of the second variable.

11.4.5 Initial values

Every variable that is recorded at baseline is available for use as a covariate
that modifies the distribution of the process being studied. If the response is a
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vital variable such as blood pressure in a study of hypertension, the value varies
over time and the initial value is invariably recorded at baseline. The present
discussion makes a distinction between the initial value Yi0 of the process being
studied, and other baseline variables such as sex, age, weight, marital status,
and so on, whether these are constant in time or not. Treatment assignment is
randomized according to a declared protocol, and the goal is to study its effect
on blood pressure after six months.

Assume for simplicity that observations are made at exactly two points in
time, the same time points t = 0 and t = 1 for every subject. The simplest
Gaussian framework, which assumes independent responses for distinct patients,
admits two slightly different ways of handling initial values. The simplest way
is to regard the initial value as a covariate on an equal footing with all others.
In the absence of interaction, the conditional expected value given treatment is
assumed to be linear:

E(Y1 | x, t, Y0) = Xβ + Y0ρ+ tτ. (11.4)

Ordinary least squares is used to estimate the treatment effect τ on the assump-
tion of conditional independence and constant conditional variance. If we take
the response to be the change in blood pressure, the expression becomes

E(Y1 − Y0 | x, t, Y0) = Xβ + Y0(ρ− 1) + tτ. (11.5)

Whether we opt to work with the final value or the difference as response, both
versions yield the same point estimate and standard error for the treatment
effect. Ordinarily, we should expect the correlation ρ to be large and positive, say
ρ ' 0.75, so the coefficient in the second version should be small and negative.
Leaving aside the possibility for interactions such as unequal effects for males
and females, this is a reasonably accurate description of recommended practice
(Senn, ????).

The second method, which is illustrated for a more complex setting in sec-
tion 5.2.3, is to regard each response pair (Yi0, Yi1) as bivariate Gaussian with
variances σ2

0 , σ
2
1 , correlation ρ, and to consider the natural linear model for a

bivariate response. Under the assumption made at the end of section 11.4.1,
randomization implies no treatment effect at baseline, so the two mean vectors
are

E(Y0 | x, t) = Xβ0; E(Y1 | x, t) = Xβ1 + tτ, (11.6)

where β0 is the regression coefficient for variables measured synchronously, and
β1 is the coefficient for asynchronous variables. The second part implies

E(Yi1 | x, t, Y0) = x′iβ1 + τti + γ(Yi0 − x′iβ0) = x′i(β1 − γβ0) + γYi0 + τti,

with γ = ρσ1/σ0. Provided that the constraint −1 ≤ ρ ≤ 1 is overlooked, this
is equivalent to (11.4) with β = β1 − γβ0 and γ in place of ρ.

The terminology and notation leading to (11.4) and (11.5) imply σ1 = σ2,
and this assumption (local stationarity) distinguishes the initial value from other
baseline variables. If equality of variances is assumed, the covariance matrix in
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(11.6) is a linear combination of the identity and the block matrix for pairs. In
that case, the REML estimate of τ is not the same as the ordinary least squares
estimate in (11.4). If equality of variances is not assumed, the covariance matrix
in (11.6) is a linear combination of two diagonal matrices and one block matrix
for pairs. For that case, the point estimate of τ is the same as the ordinary least
squares estimate in (11.4), but the standard error as computed by REML is not
the same as the least-squares standard error.

The following numerical example illustrates the magnitude of the differences
in a sample of 12 patients:

y0 4.06 7.63 5.89 4.33 7.74 5.35 2.75 5.60 4.76 6.76 6.87 5.13
y1 2.19 5.84 4.86 1.45 7.05 5.85 2.54 6.53 4.68 5.56 5.79 3.29
t 0 0 0 0 0 0 1 1 1 1 1 1

The three Gaussian models described above produce the following estimates for
the treatment effect. In each case, the standard REML procedure was used for
the estimation of variances and covariances.

τ̂ s.e.(τ̂) s2

(11.4): OLS 0.7259 0.6671 1.2912
(11.6): σ0 = σ1 0.6084 0.5885 1.1621
(11.6): σ0 6= σ1 0.7259 0.6224 1.0391

The final column is the estimate of the conditional variance var(Y1 | Y0), either
computed directly from the residual mean square, or computed indirectly as a
function of the fitted 2× 2 covariance matrix.

Even if the response process is stationary, so that σ0 = σ1 is satisfied, the
initial value is commonly used to determine patient eligibility. In such cases,
the response process for eligible patients is not expected to be stationary; the
regression phenomenon implies that the mean is not constant, and the variance
may be expected to increase over time. For this setting, ordinary least squares
based on (11.4) is fully efficient.

Apart from efficiency, computational convenience is the real reason for pre-
ferring (11.4) over the bivariate model (11.6). For a longitudinal study where
each patient is measured at several points post-baseline, the principled approach
of modelling the entire temporal process for each subject is greatly preferred.
If it is needed, the conditional distribution given baseline values can be derived
from the covariance function of the process.

In general, the only condition on treatment assignment probabilities is that
they be fully specified as part of the protocol. Thus, treatment assignment prob-
abilities may depend on any and all baseline covariates, including block factors.
While it might not be efficient to do so, it is entirely legitimate for treatment
levels to be assigned in the ratio 1:2 for males and 2:1 for females, However,
(11.6) implies explicitly that Y0 is independent of t, at least componentwise
given x, and this assumption is implicit in (11.4). In this respect, the initial
value is not treated on an equal footing with other baseline variables.
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11.4.6 Design

The word design refers to the arrangement of the sample units by blocks, by
covariates, and by restrictions on treatment assignment. Very often, it is help-
ful to distinguish between two aspects of the design, the structure of the units,
meaning relationships among them, and the treatment structure, which is im-
posed on them. In a crossover design, where the same physical object occurs
as a distinct experimental unit on several successive occasions, the structure of
the units includes not only the temporal sequence, but also a block factor whose
blocks are the distinct physical objects. In a field experiment, the structure of
the units includes the geometric shape of each plot, their physical arrangement
in space, and the width of access paths or guard strips separating neighbouring
plots.

11.4.7 Replication

Replication means repeating the experiment independently for different experi-
mental units under essentially identical circumstances in order to gauge the vari-
ation in response distribution. Independence is crucial. In an animal-behaviour
study, it is easy to partition a one-hour observation interval into six consecu-
tive ten-minute intervals, and to report behaviour counts for each interval. The
number of animals, or pairs of animals, is unchanged, but the number of obser-
vations is immediately increased by a factor of six. Although the experimental
settings may stay the same for each sub-interval, these values, sometimes called
pseudo-replicates, are not independent. For a good example of an incorrect anal-
ysis for pseudo-replicates, see the Drosophila courtship experiment reported in
section 3.5.

11.4.8 Independence

In the simplest class of statistical models, the responses on distinct observa-
tional units are assumed to be distributed independently given the treatment
assignment, i.e., Y (u1), . . . , Y (un) are independent given t; In more complicated
situations such as agricultural field experiments or crossover designs or studies
involving infectious diseases, the responses on distinct observational or exper-
imental units cannot reasonably be assumed to be conditionally independent
given the treatment. For example, geographic or temporal or familial rela-
tionships may induce correlations that are detectable in the data and must be
accommodated in the probability model. Most of the examples illustrated in
this book exhibit non-trivial correlations.

As a general rule, lack of independence is not a serious problem provided that
it is recognized, and steps are taken to make accommodations in the analysis.
Ordinarily, this means that block factors and other relevant relationships are
recorded at baseline and used in the model to accommodate correlations.
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11.4.9 Interference

If the response Yu for one experimental unit is statistically independent of the
treatment applied to other units, we say there is no interference, or no pairwise
interference. Lack of interference is a conditional independence assumption
Yu ⊥⊥ t | tu; it does not imply independence of components, nor does indepen-
dence imply lack of interference.

Unless the experiment is deliberately designed to study it, interference is
best avoided by design. A typical field experiment uses guard strips to sepa-
rate adjacent plots; guard strips reduce interference from root competition and
fertilizer seepage, but they seldom eliminate spatial correlation.

The more general definition of no interference Y [U ′] ⊥⊥ t | t[U ′] for each
U ′ ⊂ U requires the distribution of each restriction Y [U ′] to depend only on
the treatment restricted to U ′. Independence and lack of interference are not
so much statements of fact or fiction as they are mathematical restrictions on
probability distributions. But both have implications for model formulation and
analysis.

11.4.10 State space

In a statistical model, the response is regarded as a random variable, a function
u 7→ Y (u) on the observational or experimental units taking values in the state
space S, (often the real numbers). In certain settings, particularly in observa-
tional studies where all variables are regarded as responses on an equal footing,
the synonym feature space may be used. Usually the feature space is Rk for
some fixed k.

It is important that the state space contain a point for every possible response-
related post-baseline event that could possibly be recorded. In a pharmaceuti-
cal trial for cholesterol reduction, individual patients give informed consent and
agree to abide by the protocol. However, subsequent participation is ultimately
voluntary, and not all patients comply by taking their medications on the pre-
scribed schedule. If it is recorded, compliance or the degree of compliance is a
response variable, and failure to comply is one component of the response. The
probability model is a probability distribution on the state space, which spec-
ifies the compliance probability, the conditional distribution given compliance,
and the probability of compliance given the cholesterol levels past and future.

In all cases, the state space is a fixed measurable set, the same set for every
unit, either observational unit or experimental unit, regardless of covariates.
However, this restriction may lead to mathematical contortions. Consider an
animal breeding study where each experimental unit is a family, and the response
is measured on individual family members (offspring only) at age six weeks.
Suppose that family size x is a covariate recorded at baseline, in which case the
response Yu for a family of size x(u) is a point in Rx(u). The variation of the state
space from one experimental unit to another depending on the covariate x(u)
appears to violate the definition of state space as a fixed set. But this violation
is a mathematical illusion. We can simply re-define the state space to be the
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disjoint union S = ∪k≥0Rk, and construct the probability distribution on S in
such a way that all of the probability mass for unit u resides in the component
x(u) of the state space,

pr(Yu ∈ Rk) =

{
1 x(u) = k
0 otherwise.

Note that x is not a random variable, so we have not written this as a conditional
probability statement.

If the measurements were weights at birth rather than later at six weeks, the
baseline would necessarily have to be pre-natal, implying that family size X is
a part of the response, not a covariate recorded at baseline. In that setting the
response Y is a random variable taking values in S, and the response distribution
F determines the distribution of X by pr(X = k) = F (Rk) (including k = 0).
The conditional distribution given X is a function that associates with each
integer k ≥ 0 a probability distribution F (· | X = k) such that F (Rk | X =
k) = 1.

11.4.11 Censoring and state-space evolution

In a study of survival times following surgery, each patient is one unit, and the
response Yu > 0 is, prima facie at least, a point in R+, the positive real line.
Only the most persnickety mathematician would bother to add a point at infinity
to cover the remote possibility of immortality, which cannot be ruled out solely

on mathematical grounds. However, the response Y
(t)
u as it exists today or at

the time of analysis, say t = 1273 days post-recruitment, is either a failure time
in the interval t− = (0, t], or a not-yet-failure corresponding to the ‘point’ t+,
which is required to exist as a point in the state space for today. In other words,
S(t) = t− ∪ {t+}, the union of a bounded interval and a topologically isolated
‘point’ exceeding each number in the interval. The limit S(∞) = R+ ∪ {∞}
differs from R+ by one isolated point that exceeds every real number.

To say the same thing in another way, the state space is a filtration, which
evolves as an increasing σ-field in calendar time.

Every probability distribution F on S(∞) is determined by its hazard mea-
sure Λ on R+ and its survivor function F (t+) = exp

(
−Λ(t−)

)
, which is de-

creasing as a function of t. If the total hazard Λ(R+) is finite, the atom of
immortality F ({∞}) = exp(−Λ(R+)) is strictly positive; otherwise the atom is
zero. With respect to the state of information at time t, the probability density
at y ∈ S(t) is Λ(dy) exp

(
−Λ(y−)

)
for 0 < y ≤ t, and exp

(
−Λ(y−)

)
for y = t+.

In particular, if Λ is proportional to Lebesgue measure on R+, the density is
λe−λs ds for 0 < s ≤ t with an atom e−λt at t+.

Being alive at the time of analysis is one unavoidable form of censoring. In
practice, some patients disappear off the radar screen at a certain point t > 0,
and their subsequent survival beyond that time cannot be ascertained. These
also are typically regarded as censored at the last time they were known to be
alive.
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11.4.12 Longitudinal study

In a longitudinal study, also called a panel study, each physical unit is measured
at a sequence of time points. Growth studies, of plants or of animals, are of this
type, the response Y (i, t) being height or weight of unit i at time t. Usually the
design calls for measurements to be made at regular intervals, but in practice the
intervals tend to be irregular to some degree, particularly for studies involving
human subjects.

A typical longitudinal design has a large number of subjects measured on a
relatively small number of occasions. The first of these measurements is made
at or pre-baseline. If the experiment has a randomized treatment assignment,
the first measurement is ordinarily pre-randomization before the treatment is
decided, and certainly before it can have had an effect. In the modelling and
analysis, it may be necessary to include a null treatment level to denote pre-
randomization status; this level is in addition to the control and active post-
baseline levels.

11.4.13 Cemetery state

A situation arises in geriatric and other medical studies where, beginning at
recruitment, measurements on physical or mental capacity are made annually
on patients—but only while they are alive. All patients ultimately die, and
the number ki of measurements on patient i is a major part of the response,
which is closely connected with survival time. In this setting, each patient
may be regarded as an observational unit, in which case the response Yi =
(Yi(0), . . . , Yi(ki−1)) is a point in the state space ∪k≥0Rk implying death before
time ki. Alternatively, if each patient-time combination is regarded as one
observational unit, it is necessary to add to the real numbers an absorbing
state, such that Yi(t) = [ implies that patient i is dead at time t. The state
space for one observational unit is R∪{[}; the state space for one experimental
unit (patient) is S(∞) = (R∪{[})∞, each sequence [-padded on the right where
needed.

As always, the state space at calendar time s includes only those events
observed or observable up to that time; the state space is censored by the
calendar, not by the death of patients.

11.5 Non-comparative studies

11.5.1 Examples

An experiment designed to measure the speed of light in vacuo is not compara-
tive; the goal is not to estimate the ratio of the speed in vacuo relative to that
in some other medium, but to estimate the absolute speed in km/s for a partic-
ular medium. A survey whose goal is to estimate the prevalence of COVID-19
antibodies in Santa Clara County in April 2020 is not comparative; the goal is
not to estimate the prevalence in Santa Clara relative to that in San Mateo, but
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to estimate the absolute prevalence as a percentage of the county population.
An opinion poll with the aim of predicting the outcome of a plebiscite or general
election is not comparative; the goal is to predict the outcome of the election
on a particular day.

The avoidance of bias or systematic errors is important in all branches of
science, but it is especially important in non-comparative studies. The next few
sections consider the effect of response heterogeneity in a stratified population,
finite or infinite.

11.5.2 Stratified population

A function x : U → [k] taking values in the finite set [k] = {1, . . . , k} determines
a partition of the units into k disjoint subsets, U1, . . . ,Uk called strata or blocks:

Ur = {u : x(u) = r}.

In general, U may be finite or infinite; if U is not finite, at least one stratum is
also not finite. In practice, if U is infinite, all of the strata are also infinite.

For current-population sampling applications, U is finite; to a close approxi-
mation x is known from the preceding census, so the strata sizes are also known
in the same sense. Every classification variable such as sex determines a strati-
fication; every pair of variables such as (sex, location) determines a finer strat-
ification, and so on. For example, location might have levels rural, suburban,
urban. The classification variables that are available for survey-sampling are
mostly restricted to those recorded in the census.

11.5.3 Heterogeneity

Heterogeneity means that the distribution of response values in one stratum is
not the same as the distribution in another stratum, or at least similarity is
not to be assumed. The implication, ironically, is that the values within each
stratum can be taken as exchangeable—infinitely exchangeable in the case of
infinite strata, or finitely exchangeable otherwise. Exchangeability is either an
explicit assumption, or it is forced as a consequence of random sampling.

11.5.4 Random sample

A simple random sample of size n taken from a finite population of size N is
a random subset uniformly selected from the set of all subsets of size n. More
correctly, a simple random sample is a function ϕ chosen uniformly at random
from the set of 1–1 functions [n]→ [N ]. The sample (ϕ1, . . . , ϕn) is an ordered
subset consisting of n distinct units taken from the population, and the sample
value is (Yϕ(1), . . . , Yϕ(n)).

Operationally speaking, we first arrange the population units 1, . . . , N in
uniform random order σ(1), . . . , σ(N) by a uniform random permutation σ.
By definition, the permuted values (Yσ(1), . . . , Yσ(N)) are finitely exchangeable
in the usual sense that the distribution is unaffected by permutation. The
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leading subset ϕ = (σ(1), . . . , σ(n)) is a simple random sample, and the sample
value is (Yσ(1), . . . , Yσ(n)). In other words, a simple random sample is a fixed
sample taken from the randomized population. Simple random sampling is the
guarantor of exchangeability.

11.5.5 Stratified random sample

A stratified random sample with sizes n1, . . . , nk consists of k simple random
samples, one independent sample from each stratum.

11.5.6 Accessibility

It is possible to select a finite random sample from an infinite population. But
simple random sampling and stratified sampling are possible only for finite pop-
ulations. In practice, any form of random sampling is feasible only for the
sub-population that is currently accessible. For example, a population consist-
ing of a lineage of breeding flies that evolves in time is only partly accessible in
any bounded temporal window.

11.5.7 Population averages

The mean for stratum r

µr = E
(
Yu : x(u) = r

)
is either a finite average if Ur is finite, or a distributional mean of exchange-
able random variables otherwise. In a finite or infinite population with strata
fractions (π1, . . . , πk) adding to one, the weighted linear combination

µπ = π1µ1 + · · ·+ πkµk

is called the population average.

In the case of a locally finite population consisting of Nt = #Ut units at
time t, Nr(t) is the stratum total, πr(t) = Nr(t)/Nt is the stratum fraction,
and the democratic average µπ(t) =

∑
u∈Ut Yu/Nt is the arithmetic mean in the

current population.

11.5.8 Target of estimation I

In a stratified population, the target of estimation is usually the stratum mean
vector µ = (µ1, . . . , µk). However, there are various applications, particularly
related to marketing, opinion polling and voting, where the democratic average
plays an outsize role. In the run-up to a crucial plebiscite such as the Brexit
referendum, the democratic average of voter preferences looms so large that
between-stratum variation is of little consequence.
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11.5.9 Inverse probability weighting

Consider a stratified population consisting of 12m voters, 5m urban, 4m subur-
ban and 3m rural. In a stratified random sample in Oct 2020, 500 voters out of
1000 declared that they would vote for candidate T; the breakdown by strata
was as follows.

Urban Suburban Rural Total
Stratum size 5m 4m 3m 12m

π 5/12 4/12 3/12 1
Sample size 400 300 300 1000
Candidate T 110 140 250 500

ȳ 0.275 0.467 0.833 0.500

Note that the stratum relative proportions 5m:4m:3m are close to the sample
fractions 4:3:3, but not exactly the same. The stratum averages for this sample
are ȳ = (0.275, 0.467, 0.833), and the population-weighted linear combination of
stratum averages is

µ̂π = 0.275× 5/12 + 0.467× 4/12 + 0.833× 3/12 = 0.4785

which is less than the equally-weighted poll average 500/1000.
The preceding calculation is an instance of a weighted linear combination of

sample values,

µ̂π =
∑
i∈S

wiYi

/∑
i∈S

wi,

where the weights are inversely proportional to the first-order sample inclusion
probabilities (Horvitz and Thompson, 194?). Each urban voter has a sample
inclusion probability 400/5m, so wi = 5/400; each suburban voter has inclusion
probability 300/4m, so wi = 4/300; and each rural voter has inclusion proba-
bility 300/3m, so wi = 3/300. The sum of these weights is 12, and the linear
combination is displayed in the preceding paragraph.

11.5.10 Target of estimation II

The calculation illustrated in the preceding section is as obvious as it is un-
controversial. It is obvious as a matter of arithmetic, and it is uncontroversial
because of the political setting used for its illustration. But inverse-probability
weighting is not something to be taken for granted in other settings that might
appear superficially similar.

Consider the COVID-19 antibody prevalence study for Santa Clara County
in April 2020. The main controversy in the Stanford study centered correctly
on the false-positive rate of the antibody test, which was of a magnitude similar
to the reported prevalence. See the online blog by Gelman (????). For present
purposes, we set that matter aside and suppose optimistically that the false-
positive rate is zero.
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Suppose that a similar set of numbers—suitably scaled to represent plausible
prevalences—had arisen in the COVID-19 antibody prevalence study.

Urban Suburban Rural Total
Stratum size 0.5m 0.4m 0.3m 1.2m

π 5/12 4/12 3/12 1
Sample size 400 300 300 1000

Antibody cases 4 8 13 25
ȳ 0.010 0.027 0.043 0.050

Would it be appropriate to use the same weighted procedure

µ̂π = 0.010× 5/12 + 0.027× 4/12 + 0.043× 3/12 = 0.024

and report only the county-wide antibody prevalence at 2.4%? I should hope
not!

The crucial difference is not the numbers but the setting. For the political
poll, the current-population average is the natural target mandated by demo-
cratic principles and supported by the force of law. In the epidemiological
setting, the democratic average or prevalence is a natural summary, but it does
not carry an equivalent epidemiological or legal mandate. Nor is it necessarily
the most interesting summary or the most striking feature to emerge from such
a study. In the table shown above, the observed prevalence in the rural com-
munity is more than four times that in the urban community. Admittedly, the
case numbers are small, so the ratio in the population might not be so extreme.
But a risk ratio or prevalence ratio as large as 3–4 calls out for an explanation,
and that finding could be more interesting epidemiologically than the particular
value of the county-wide prevalence.

The main point is that the overwhelming focus on prevalence is a distraction
that has the potential to divert attention away from features that are epidemio-
logically more interesting. Any epidemiologist who reported only the prevalence
of 2.4% would be derelict in his duty to draw attention to the extreme variation
in rates for urban versus rural communities. To conclude, inverse-probability
weighting is satisfactory as a summary statistic for a stratified population in
two circumstances only: either the democratic average is mandated by law; or
the degree of heterogeneity is moderate. In the latter case, the choice of weights
matters little.

11.5.11 DATE

Consider a randomized-blocks design in which block r is a finite sample from
stratum r. Treatment is assigned by randomization within each block, and
the sample mean difference Tr for block r is a natural estimate of the effect of
treatment for units in stratum r. The weighted linear combination

Tπ = π1T1 + · · ·+ πkTk

is called the democratic average treatment effect (DATE).
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For the present discussion, it is immaterial whether the strata are finite or
infinite. The response is a random process Y that is exchangeable within strata
only. Each block of the design is a sample Ur ⊂ Ur from that stratum. It is
immaterial whether the sample is random or fixed; but if it is random, it must
be independent of Y .

The remarks in the previous section are meant to draw attention to the
limitations of every combination of this sort in a situation where there is ap-
preciable between-stratum inhomogeneity. At worst, an excessive emphasis on
DATE could conceal a qualitative interaction where the treatment effect for
males is the same as that for females, but opposite in sign. It is a strategic error
of judgement to disregard inter-stratum heterogeneity and to focus attention
solely on a particular average. A combined estimate is a reasonable summary
only if the inter-stratum heterogeneity is acceptably small.

11.6 Statistical pprinciples

11.6.1 Guiding principles

11.6.2 Likelihood principle

The likelihood principle is concerned with parametric inferences, i.e., inferential
statements or conclusions about the parameter given the data. Suppose that
the response density is f(·; θ). Two points y(1), y(2) in the observation space
give rise to the same likelihood function if the density ratio f(y(1), θ)/f(y(2), θ)
is constant in θ. According to the weak version of the likelihood principle,
two points that determine the same likelihood function must lead to identical
conclusions about θ.

The likelihood principle is confined to statements about parameters. It says
nothing about other sorts of inferences involving statements about the obser-
vation space. In particular, y(1) and y(2) do not ordinarily lead to identical
predictions.

The principle can be illustrated by two observations on a Bernoulli sequence
Yi ∼ Ber(θ). For a sample of size n = 20, the density function and the likelihood
function are

f(y; θ) = θs(1− θ)20−s,

where the number of successes s = y. is the sufficient statistic. Suppose that
the two sequences are

y(1) = (0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1)

y(2) = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1).

Both sequences have s = 10, so the likelihood functions are equal. Accord-
ing to the weak likelihood principle, both observations must lead to the same
conclusion about θ.
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From the present viewpoint, it is immaterial whether we adopt a Bayesian-
type beta-binomial model or we attempt to construct a confidence interval.
Neither inferential approach would be satisfactory given either sequence.

11.6.3 Lesson of the likelihood principle

The premiss of the likelihood principle is that the statistician buys into the
Bernoulli model exactly as stated, with no probabilistic reserve in the form of
an opt-out clause to cover buyer’s remorse. The lesson of experience is sim-
ply to avoid being sandbagged. The likelihood principle is not rejected, but a
cautious applied statistician invariably adopts the stated model provisionally,
with adequate reserves to cover mistakes, misunderstandings or unanticipated
events. To do otherwise would be a serious error of professional judgement.

In effect, a consulting statistician using the Bernoulli model proceeds as fol-
lows. With probability 0.65 the sequence is Bernoulli with constant parameter θ;
with probability 0.10 the sequence is Bernoulli with non-constant parameter;
with probability 0.10, the sequence has some temporal dependence, possibly
Markov; with probability 0.10, the design has some other feature that might
lead in a different direction. The weights shown here may be varied to match
the incidental information relevant to the context, but their sum is strictly less
than one. After observing either sequence y(1) or y(2) the first weight component
is drastically reduced.
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Probability distributions

12.1 Exchangeable processes

12.1.1 Unconditional exchangeability

Recall that a process with state space S associates with each sample S con-
sisting of finitely many distinct units taken in a specified order, a probability
distribution PS on the observation space SS . Thus PS(A) is the probability of
the event

(Yu1
, . . . , Yun) ∈ A.

The process is said to be unconditionally exchangeable if two samples of the same
size have the same joint distribution. In other words, the process is exchangeable
if #S = #S′ = n implies PS(A) = PS′(A) for every event A ⊂ Sn. In particular,
two samples consisting of the same distinct units taken in different orders have
the same distribution. In that case, the n-dimensional joint distribution is
usually denoted by Pn.

Unconditional exchangeability is a very demanding property that is seldom
satisfied in scientific work, where experiments are almost invariably comparative.
The goal is usually to study differences between one distribution Pu and another
Pu′ that are related to covariate effects or treatment effects for pairs such that
x(u) 6= x(u′). Nonetheless, a version of exchangeability is needed in order
to make progress in situations where inhomogeneities associated with baseline
covariates are anticipated.

12.1.2 Regression processes

Let u 7→ xu be a covariate defined as a function U → X for every unit in the
population. It is assumed implicitly that the only baseline relations are the
identity function δu,u′ , which tells us whether or not two units are the same,
and the one-block constant function Ju,u′ = 1 for all pairs.

To each sample S there corresponds a covariate configuration x[S], which
is usually encoded as a model matrix X whose rows are indexed by units u ∈

153



154 CHAPTER 12. PROBABILITY DISTRIBUTIONS

S. The manner in which dose levels or classification factors are encoded is
immaterial. The process is said to be regression-exchangeable if two samples of
distinct units having the same covariate configuration automatically have the
same joint distribution. In other words, x[S] = x[S′] implies PS = PS′ .

This form of exchangeability is usually taken for granted in applied work, so
much so that it is rarely judged to be worth even a brief comment. For instance,
the great majority of generalized linear models are regression-exchangeable in
this sense.

Planar white noise and Poisson processes are less obvious examples. In
both cases, each unit is a planar subset and the covariate xu = Λ(u) is pla-
nar Lebesgue measure. For any collection of disjoint subsets, the white-noise
values Y (u) are independent zero-mean Gaussian variables with variance xu.
The Poisson-process values are independent Poisson variables with mean xu.
Disjointness of subsets is not part of either definition; it is needed here only to
comply with the assumption that there are no relationships among the units
other than the identity.

12.1.3 Block-exchangeability

Recall that a block factor is an equivalence relation B : U2 → {0, 1} on the
units, which partitions the population into disjoint non-empty subsets called
blocks. The restriction of B to a finite sample S consisting of n distinct units is
a symmetric binary matrix of order n, which partitions the sample into disjoint
blocks. If the units are arranged in suitable order, B[S] is block-diagonal.

The process is said to be block-exchangeable if two samples having the same
block structure also have the same response distribution, i.e., B[S] = B[S′]
implies PS = PS′ . For samples of size one, B[S] = B[S′] is automatic, so all
one-dimensional distributions are equal. For samples of size two with u1 6= u2,
either B(u1, u2) = 0 or B(u1, u2) = 1, so there are two distinct two-dimensional
distributions.

A Gaussian process is block-exchangeable if and only if the mean vector is
constant µ ∈ 1, and the covariance matrix for a sample S is a non-negative
linear combination of the three matrices

cov(Y [S]) = σ2
0In + σ2

1B[S] + σ2
2Jn,

where Jn(u, u′) = 1. In particular, E(Yu) = E(Yu′) for every pair, regardless of
the block sizes, and the covariances are also independent of the block sizes.

The block-exchangeability assumption that PS depends only on B[S] is most
natural if all population blocks are equal in size, which usually means infinite.
If some or all of the population blocks are finite we can associate with each
unit u the number x(u), which is the size of the block in the population to
which u belongs. When this is done, x is a covariate, and the implications
of exchangeability are drastically different because PS may depend on x[S] in
addition to B[S].
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12.1.4 Stationarity

Let U = R be the index set. No covariates are registered, and the temporal
difference R(t, t′) = t′ − t is the only registered relationship. The restriction of
R to a sample is a square matrixR[S] of signed temporal differences; two samples
are called congruent or structurally equivalent if R[S] = R[S′]. Congruence is
an equivalence relation on samples, denoted by S ∼= S′; in this setting, it implies
S′ = S + h for some real number h.

A process with distributions PS is said to be stationary, or invariant with
respect to temporal translation, if S ∼= S′ implies PS = PS′ . In particular,
stationarity implies that all singletons have the same distribution Yt ∼ Yt′ .

Any transformation of R, such as the absolute value R+, is also a relationship
on the units; R+ is said to be a coarser relationship than R because the partition
defined by R is a sub-partition, or a finer partition, of that defined by R+. In
particular, R+(t, t′) = R+(t′, t) is symmetric whereas R is not. If R+[S] =
R+[S′] implies PS = PS′ , the process is not only stationary but also reversible.

12.1.5 Exchangeability

The general principle of exchangeability is easy to understand and straightfor-
ward to state. Two samples are said to be congruent if they have the same
structure; this is understood broadly to include not only covariates but also
pairwise and higher-order relationships among units. Congruence, denoted by
S ∼= S′, is an equivalence relation among samples. It implies that the samples
are of equal size, S = (u1, . . . , un) and S′ = (u′1, . . . , u

′
n); it implies that the co-

variate values are equal x(ui) = x(u′i); it implies that all pairwise relationships
are equal R(ui, uj) = R(u′i, u

′
j), and so on. In particular, ui = uj if and only if

u′i = u′j .
Exchangeability is nothing more than the statement that congruent samples

are required to have the same response distribution, i.e., S ∼= S′ implies PS =
PS′ . For singletons, x(u) = x(u′) implies Pu = Pu′ ; for pairs

(
x(u1), x(u2)

)
=(

x(u′1), x(u′2)
)

and R(u1, u2) = R(u′1, u
′
2) together imply Pu1,u2

= Pu′1,u′2 .
Exchangeability is not a statement of biological, medical or scientific fact.

It is a mathematical statement of equity or equality, corresponding roughly to
fairness or or even-handedness, which implies that probabilistic statements are
based only on facts that are registered at baseline. By supposition, all relevant
facts are encoded in x. Without a symmetry condition of this sort, conveniently
selected alternative facts are no less compelling than recorded facts. Such a
world view may be acceptable in politics, but it is an impediment to progress
in science.

12.1.6 Axiomatic point

Block exchangeability is defined in section 12.1.3 by the statement B[S] = B[S′]
implies PS = PS′ . This matrix equality B[S] = B[S′] makes sense only if both
samples are ordered, which is the convention adopted throughout these notes
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although it is not the standard statistical convention. However, if B(u, u′) = 1
and u 6= u′, the ordered samples S = (u, u) and S′ = (u, u′) satisfy B[S] = B[S′].
Despite the statement, block exchangeability does not imply (Yu, Yu′) ∼ (Yu, Yu)
for pairs belonging to the same block. Why not?

In the first paragraph of section 12.1.3, the samples were required to consist
of distinct units, so the difficulty was eliminated by this restriction. The real
reason for the restriction is a more fundamental consequence of standard set
theory, namely that the identity function is axiomatically a registered relation-
ship for every set. Structural equivalence of samples implies both I[S] = I[S′]
for the identity, and B[S] = B[S′] for the block factor. In the case of a regres-
sion process, structural equivalence implies I[S] = I[S′] and x[S] = x[S′]. With
this understanding the restriction to distinct units in section 12.1.1–12.1.3 is
not needed.

12.1.7 Block randomization

Let B be a given partition of the finite set [n] into blocks, and let G be the
group of permutations that preserves the partition. In other words, G is the set
of permutations σ : [n]→ [n] such that Bσ(i),σ(j) = Bi,j .

To any vector y = (y1, . . . , yn) in Sn there corresponds a randomized vector
Y = yσ whose components Y = (yσ(1), . . . , yσ(n)) are obtained by composing the
given vector with a random permutation σ uniformly distributed over the group.
Randomization defines a process with state space S and finite index set [n]. By
definition, for each τ ∈ G, the group product στ is also uniformly distributed,
so the permuted random vector Y τ = yστ has the same distribution as Y . The
distribution is invariant with respect to the natural sub-group of permutations
associated with the block factor.

If all blocks of B are of equal size, the distribution of Y is block-exchangeable
in the sense of section 12.1.3. Otherwise, if there are blocks of different sizes, Y is
not block-exchangeable. For example, if n = 7, and B = 1|2|34|567 is a partition
into four blocks, the group contains 2×2×6 = 24 elements. Block randomization
implies Y1 ∼ Y2 because the transposition 1↔2 is a group element; it also implies
Y3 ∼ Y4 and Y5 ∼ Y6 ∼ Y7 for similar reasons. But it does not imply Y1 ∼ Y3

or Y3 ∼ Y5 because there is no group element such that σ(1) = 3 or σ(3) = 5.

12.2 Families with independent components

12.2.1 Parametric models

A parametric statistical model associates with each parameter point θ ∈ Θ a
probability distribution Pθ. In general, a distribution is a process which asso-
ciates with each sample S ⊂ U a probability distribution Pθ,S on the observation
space SS . If the process has independent components, the description can be
simplified to a great extent by focusing on the one-dimensional marginal distri-
butions.
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The following examples illustrate a range of possibilities.

12.2.2 IID model I

The parameter space is the set of probability distributions defined on the state
space, say S = R with Borel subsets. In other words, the sequence Yu for u ∈ U
has independent and identically distributed components Yu ∼ θ.

Properties of a statistical model are often gauged by their behaviour un-
der the action of a suitable group or semi-group of measurable transforma-
tions g : S → S. If Y1, . . . are independent and identically distributed with
distribution θ ∈ Θ, then the transformed variables g(Y1), g(Y2), . . . are indepen-
dent and identically distributed with parameter gθ ∈ Θ, where

gθ(A) = Pθ(gY ∈ A) = Pθ(Y ∈ g−1A) = θ(g−1A)

for A ⊂ S. Since Θ is the set of Borel distributions on S, the transformed distri-
bution is simply another point θ′ = gθ in the same parameter space. Provided
that g is invertible, the two specifications

Y1, Y2, . . .
iid∼ θ, and gY1, gY2, . . .

iid∼ gθ

are mathematically equivalent. Equivalence, or equi-variance, implies that any
inferential statement about θ after observing y must be tied to inferential state-
ments about gθ after observing gy.

To each observation point y = (y1, . . . , yn) there corresponds an empirical
distribution function

θ̂(A; y) = n−1
n∑
i=1

δyi(A) = n−1#{i ∈ [n] : yi ∈ A}.

The function y 7→ θ̂(y) is equi-variant in the sense that θ̂(gy) = gθ̂(y). The
transformation y 7→ gy acts component-wise Sn → Sn, while θ 7→ gθ is the
induced transformation on distributions on S. For invertible transformations,
this means θ̂(y) = g−1θ̂(gy). The empirical distribution is sometimes called the
nonparametric maximum-likelihood estimate, or the bootstrap estimate.

12.2.3 IID model II

The parameter space is the set of Gaussian distributions on the real line. Since
the Gaussian distribution is determined by its mean and variance, this statement
means one of the following:

Θ = R2; Pθ =N(θ1, θ
2
2);

Θ = R× (0,∞); Pθ =N(θ1, θ
2
2);

Θ = R2; Pθ =N(θ1, e
θ2).

Given a parameter point θ, the components are independent and identically
distributed Yu ∼ Pθ on the real line.
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The three versions are not mathematically equivalent. In version one, the
two distinct points (θ1,±θ2) define the same distribution, so the parameter is
not identifiable. In addition, the boundary subset of Dirac distributions N(θ1, 0)
is included in the first version, but not in the other two. Versions two and three
are equivalent in the sense that they contain the same set of non-degenerate
distributions. For the most part, differences of this sort are not of great impor-
tance, and are usually overlooked in applications.

All three versions are affine equi-variant in the sense that Yu ∼ Pθ implies
gYu ∼ Pgθ for affine transformations y 7→ gy = g0 + g1y with g1 > 0. The
induced transformation on the parameter space is group composition

(θ1, θ2) 7→ (g0 + g1θ1, g2θ2)

for versions one and two, and

(θ1, θ2) 7→ (g0 + g1θ1, θ2 + 2 log |g2|)

in the third version where θ2 is the log variance.
For a sample of size n ≥ 2 and an observation y ∈ Rn, the usual estimate of

the parameters for version 1 or 2 is

θ̂1 = ȳn; θ̂2
2 = s2

n =
∑

(yi − ȳn)2/(n− 1).

This estimator is affine equivariant in the sense that θ̂(gy) = gθ̂(y) for affine
transformations y 7→ gy acting component-wise. For this purpose, the divisor
n− 1 could be replaced by n. Similar remarks with minor modifications apply
to version 3.

The Cauchy distribution C(θ) with median θ1 and probable error |θ2| has a
density

|θ2| dy
π |y − θ|2

,

where θ = θ1 + iθ2 is a complex number, and |y − θ|2 is the squared modulus.
Apart from the specific formulae for parameter estimates, all of the preceding
remarks apply equally to the Cauchy family and every symmetric location-scale
family on the real line.

12.3 Non-i.d. models

12.3.1 Classification factor

We consider a simple model for a process in which each individual is classified as
male or female. All values are independent, and they are identically distributed
for individuals of the same sex. Each model is defined by a parameter space Θ,
a function θ 7→ Pθ for males, i.e., for all u such that x(u) = M , and a function
θ 7→ Qθ for all u such that x(u) = F . The symbol R+ may be interpreted as
either the set of non-negative numbers or the set of strictly positive numbers.
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Table 12.1 Parameterization of statistical models for a classification factor

θ Θ Pθ Qθ Eqv?

(i) (π0, π1) (0, 1)2 Ber(π0) Ber(π1) X
(ii) (µ0, µ1, σ) R2 × R+ N(µ0, σ

2) N(µ1, σ
2) X

(iii) (µ, σ0, σ1) R× R2
+ N(µ, σ2

0) N(µ, σ2
1) X

(iv) (µ0, µ1, σ0, σ1) R2 × R2
+ N(µ0, σ

2
0) N(µ1, σ

2
1) X

(v) (µ0, µ1, σ) R2 × R+ N(µ0, σ
2) N(µ1, 2σ

2)
(vi) (µ0, µ1, σ0, σ1) R2 × R2

+ N(µ0, σ
2
0) C(µ1, σ1)

(vii) (θ0, θ1) D(R)×D(R) θ0 θ1 X

In the first model, the values are independent Bernoulli with success rates π0

for males and π1 for females. The parameter space may be extended to include
the boundary points if so desired. There is nothing exceptional in this or in
the second model, which is Gaussian with sex-dependent mean and constant
variance. The third model has a similar structure with constant mean and a
sex-dependent variance, while both parameters are sex-dependent in the fourth
model. In (vii), the distributions are arbitrary; Yu ∼ θ0 for males and Yu ∼ θ1

for females.

Most readers whose experience lies in applied work would blanch at the
penultimate suggestion in which male values are Gaussian while female values
are distributed as Cauchy. The reasons for this have nothing to do with Cauchy
versus Gauss as individuals, or with male variability versus female variability,
or with the suitability of this model for any specific application. Instead, they
are anchored in the well-established legal principle of ‘equality under the law’, a
desire to avoid overt bias related to visible factors such as race, sex and religion
that are, by common agreement, incidental under law.

One mathematical statement of those principles is equi-variance under label-
switching. In the present setting, the permutation σ that transposes M with
F also switches P with Q. Equi-variance means that to each transposition of
factor labels there corresponds a permutation of parameter components such
that Pθ(A) = Qσθ(A) for every event A. All of the models listed above are
equi-variant except for (v) and (vi).

Equi-variance does not imply that the distribution for males is the same as
the distribution for females, but it does imply that the set of distributions under
consideration is the same for both. Each sex gets to pick one distribution from
the same set, so there is equality of opportunity in that sense. However, the
Gaussian model in the fifth row of Table 12.1 shows that equality of the sets
{Pθ : θ ∈ Θ} and {Qθ : θ ∈ Θ} is not sufficient for equi-variance.

Equi-variance is not a fundamental principle on a par with Kolmogorov con-
sistency for a stochastic process. It is not even on a par with the principle of
exchangeability for individuals having the same covariate value. Equi-variance
is reasonably compelling in many circumstances and is a natural default for
any factor whose levels are unordered or otherwise unstructured. For example,
occupation is a classification factor, but the set of levels is not devoid of struc-
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Table 12.2 Examples of statistical models for a treatment factor

Θ0 G gθ Pθ Pgθ

(i) θ ∈ R R θ + g Ber
(

eθ

1+eθ

)
Ber
(

eθ+g

1+eθ+g

)
(ii) θ ∈ R R θ + g Ber(Φ(θ)) Ber(Φ(θ + g))

(iii) (µ, σ) R (µ+ g, σ) N(µ, σ2) N(µ+ g, σ2)
(iv) (µ, σ) R (µ, σeg) N(µ, σ2) N(µ, σ2e2g)
(v) (µ, σ) R2 (µ+ g1, σe

g2) N(µ, σ2) N(µ+ g1, σ
2e2g2)

(vi) (µ, σ) Aff(R) (g0 + g1µ, σg1) N(µ, σ2) N(g0 + g1µ, σ
2g2

1)

(vii) P(R) Bic θ ◦ g−1 θ θg−1

ture. In a survey with limited options, one level might be none of the above.
Equi-variance is a mathematical solution to the problem of avoiding a form of
bias associated with sexist or racist elements in the model.

12.3.2 Treatment factor

A treatment factor and a classification factor are accommodated in a statistical
model in very different ways. The distinction is seldom emphasized and it is
often not readily apparent. We begin by assuming homogeneity in the sense
that no covariate is defined on the units. The first step is to specify the set
of reference-level distributions Pθ : θ ∈ Θ0, each of which is interpreted as a
conditional distribution given T = 0

P (Yu ∈ A | T = 0; θ) = Pθ(A).

Treatment has an effect, so the second step focuses on the set of possible treat-
ment effects g ∈ G, and on how each reference-level distribution is modulated by
those effects. Each treatment modulation is an action on the parameter space
θ 7→ gθ which sends Pθ to Pgθ. The interpretation of the action by g is as follows:
If the conditional distribution given T = 0 is Pθ, and g is the treatment effect,
the conditional distribution given T = 1 shall be Pgθ. To make sense of this, it
is necessary that G be a group acting on Θ0; the group identity corresponds to
a null treatment effect.

The overall parameter space is the product set Θ0 × G. By definition of
group action, each transformation g : Θ0 → Θ0 is invertible, so gΘ0 = Θ0.
Thus, whatever the treatment effect may be, the set of conditional distributions
given T = 1 is the same as the set of distributions given T = 0. Since the
action is a group homomorphism, it is immaterial which level of T is used as the
reference level. This condition immediately excludes the fifth and sixth models
in Table 12.1 as possibilities for modelling a treatment effect.

For this setting, where there is a single treatment factor and no covariate, the
Bernoulli logistic and probit models, are equivalent, and both are equivalent to
the Bernoulli model in Table 12.1. The distributions are in 1–1 correspondence,
and the only differences are in the parameterizations.
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In the first three Gaussian models, the group acts additively on the param-
eter, sending (µ, log σ) to (µ + g, log σ) in example (iii), to (µ, g + log σ) in
example (iv), and (µ + g1, g2 + log σ) in example (v). Each is a reparameteri-
zation of one of the Gaussian models listed in Table 12.1. Examples three and
four are different reparameterizations of the same set of distributions. They are
equivalent in exactly the same sense that the two Bernoulli models are equiva-
lent.

In the fourth Gaussian model, θ = (µ, σ) and (g0, g1) are two points in the
group of affine transformations R→ R, and gθ is the group composition, which
is not additive, i.e., gθ 6= θg. The treatment effect is equivalent in distribution to
the state-space transformation Y 7→ gY , so that gY ∼ N(g0 +g1µ, σ

2g2
1) = Pgθ.

Most of the treatment effects exhibited in Table 12.2 are not induced by an
action on the state space.

In the last example, Θ0 is the set of probability distributions on the real
line, so the control distribution is an arbitrary distribution defined on Borel
subsets. For this setting, the treatment effect can be modelled using any group
acting on distributions, whether it is finite-dimensional or infinite-dimensional.
The suggestion G = Bic(R), meaning bi-continuous transformations R → R
having an inverse that is also continuous, is topologically natural. But there are
many other possibilities such as the group of Borel-measurable transformations
preserving Lebesgue measure. Regardless of the group, the product set Θ0 × G
is not in 1–1 correspondence with the product set P(R) × P(R) in Table 12.1,
so this pair of models is not equivalent for any group.

The group of transformations on distributions may be induced by a trans-
formation S → S on the state space. The set of bi-continuous transformations
provides an example of that type, as does N(µ, σ2) 7→ N(µ + g, σ2), which is
induced by translation. However, the Bernoulli state space is S = {0, 1} and
the group G = R does not act on S, so neither Bernoulli transformation is asso-
ciated with a transformation S → S. The second and third Gaussian examples
are also not associated with a state-space transformation.

12.3.3 Classification factor plus treatment

Let x : U → [k] be a k-level classification factor, so that xu is the class of unit u.
We assume that the levels are unordered and otherwise unstructured. For the
logistic version of the Bernoulli model, the parameter space Θ0 consists of k real
numbers θ1, . . . , θk, where

logitPθ(Yu = 1 | Tu = 0) = θx(u).

is the conditional log odds of success for unit u, and for every unit in this
class. The treatment effect is a group action on the space Θ0 = Rk, which
sends θ to gθ. In the absence of additional structure (such as an inner product)
there are two principal options for the group and its action; either G = R and
gθ = (θ1 + g, . . . , θk + g) or G = Rk and gθ = (θ1 + g1, . . . , θk + gk).
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The first option means that

logitPθ(Yu = 1 | Tu = 1) = θx(u) + g,

so the conditional odds of success for unit u satisfy

log

(
odds(Yu = 1 | Tu = 1)

odds(Yu = 1 | Tu = 0)

)
= g.

By this odds-ratio yardstick, the effect of treatment is the same number g for
unit in every class. No interaction between treatment and the class means that
the treatment effect on some specified scale is the same for every class, so this
group action implies no interaction on the logistic scale.

The second option means that g ∈ Rk acts additively

logitPθ(Yu = 1 | Tu = 1) = θx(u) + gx(u),

so the conditional odds of success for unit u satisfy

log

(
odds(Yu = 1 | Tu = 1)

odds(Yu = 1 | Tu = 0)

)
= gx(u).

Unless g ∈ 1k ⊂ Rk, the effect of treatment as measured by the odds ratio
is different for each class. This group action implies interaction on the logistic
scale. Generally speaking, no interaction on the logistic scale implies interaction
on the probit scale, and vice-versa.

12.3.4 Quantitative covariate plus treatment

If a quantitative covariate x : U → X is defined on the units, the baseline pa-
rameter is a function x 7→ θ(x) from X into some space such as R or R2, and
Θ0 is a suitable set of such functions on which the treatment group acts. The
statement that x is a quantitative covariate implies that X is a vector space and
that the topology is relevant, so each function x 7→ θ(x) in Θ0 is required to
be continuous. Ordinarily, Θ0 contains the one-dimensional space of constant
functions plus the k-dimensional space of linear functionals, where k = dim(X ).

For both Bernoulli models in Table 12.2, θ(x) is the logit or probit value,
which is a real number. In thelogistic version with a constant treatment effect,
an individual u whose covariate value is xu, has log odds of success either θ(xu)
if T = 0, or θ(xu) + g if T = 1. In the probit version, θ(xu) and θ(xu) + g are
the values on the probit scale. Other link functions such as the complementary
log-log operate in the same way. In general, the treatment effect is a group
action, θ(x) 7→ θ(x) + g(x) by addition of functions.

In a setting where Θ0 contains the k+1-dimensional space of affine function-
als θ(x) = θ0 + θ1(x), the simplest options available to accommodate treatment
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effects with or without interaction are the following:

logitPθ(Yu = 1 | Tu = 0) = θ(xu)

logitPθ(Yu = 1 | Tu = 1) = θ(xu) + g0

logitPθ(Yu = 1 | Tu = 1) = θ(xu) + g1(xu)

logitPθ(Yu = 1 | Tu = 1) = θ(xu) + g0 + g1(xu).

Here g0 ∈ R, and g1 is a linear functional X → R, so g1(0) = 0. The third
version implies that treatment has no effect on the set of units for which xu =
0. This situation is not common, but it does occur if x represents time, and
x = 0 is the baseline either immediately pre-treatment, or immediately post-
treatment before the treatment has had time to take effect. For an illustration,
see Example 5.

It is crucial that the space of functions Θ0 be closed under the group. For
example, if X is a vector space and every θ ∈ Θ0 is a linear functional X → R,
then x 7→ θ(x) + g sends zero to g, which is not a linear functional on X .
The standard choices for statistical practice are either the space Θ0 = 1 of
constant functions on X , or the space of affine functions X → R, not the
space of linear functionals. Other options include the space of inhomogeneous
polynomial functions of degree ≤ k.

12.4 Examples of treatment effects

12.4.1 Simple Gaussian model without interaction

Let Dn be the space of Gaussian distributions Nn(µ,Σ) indexed by µ ∈ Rn and
Σ in the space of positive-definite n×n matrices. The outcome of randomization
is a treatment assignment vector T ∈ Rn with components in {0, 1}. The joint
distribution of T is known, and specified in the protocol.

Given T = t, the effect of treatment is an action Dn → Dn on distributions
by some group G of treatment effects. In the simplest case, G = R, and the
action is additive on the mean

Nn(µ,Σ)
g7−→ Nn(µ+ tg,Σ), (12.1)

keeping the covariances fixed.
Consider a standard linear model that is typical of what might be encoun-

tered in a scientific experiment, where i 7→ xi is the covariate, and (i, j) 7→ Vij
is a non-identity relation that is also positive semi-definite. In the absence of
treatment, i.e., if t = 0, the response distribution is some point in the subset
Θ0 ⊂ Pn

N(Xβ, σ2
0In + σ2

1V )

indexed by β ∈ Rp, with two variance components σ2
0 , σ

2
1 > 0. Given T = t, the

group action generates an orbit

O(t) = {Nn(Xβ + tg, σ2
0In + σ2

1V ) : g ∈ G}
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consisting of Gaussian distributions indexed by β ∈ Rp, g ∈ R, plus σ2
0 , σ

2
1 >

0. Provided that span(X) includes the one-dimensional subspace of constant
functions, the complementary treatment vectors t and t̄ = 1 − t generate the
same orbit.

This is the standard Gaussian model for a treatment effect that is constant
and additive for all units, regardless of the covariate value. In general, however,
the treatment effect need not be additive on the mean; moreover, if it is additive
it need not be the same constant for every unit.

12.4.2 Additive interaction

Loosely speaking, interaction means that the effect of treatment for one unit is
not the same as the effect for another unit. In order for this to be the case, we
must have x(u) 6= x(u′), so the treatment action depends on x. In the simplest
setting, x is binary, G = R2, and the group action (12.1) becomes

Nn(µ,Σ)
g7−→ Nn(µ+ tg0 + t·xg1,Σ). (12.2)

For units at the reference level such that xu = 0, the treatment effect is an
additive increase in the mean by g0; for units such that xu = 1, the treatment
effect is additive by g0 + g1. The difference g1 is called the interaction.

In (5.2), the treatment effect is a differential drift, whose magnitude is di-
rectly proportional to time-since-baseline. That means that the action of the
group element g ∈ R is an additive function of the product g× time. The effect
on the mean is not the same for every unit. Nonetheless, G = R, so it is not
entirely clear whether this should be counted as interaction.

A similar effect can be generated artificially by restriction of (12.2) to the
one-dimensional sub-group g0 = g1.

12.4.3 Dispersion effects

Let Dn be the space of Gaussian distributions Nn(µ,Σ) on the observation space
Rn. We regard Rn as a Hilbert space with inner product W = Σ−1. To each
subspace X there corresponds a W -orthogonal projection PX whose image is X ,
and complementary orthogonal projection QX . Both depend on Σ.

Given the treatment assignment vector T = t, the effect of treatment is an
action Dn → Dn on Gaussian distributions by the additive group G = R as
follows:

N(µ,Σ)
g7−→ Nn

(
µ, QtΣ + egPtΣ

)
. (12.3)

In this setting, Pt is the W -orthogonal projection onto the subspace span(1n, t),
or, equivalently, span(t, t̄), which is ordinarily two-dimensional. The action on
the parameter space leaves µ fixed, and sends Σ to g(Σ) = QtΣ + egPtΣ For
fixed t, the map Σ 7→ g(Σ) is a group action on positive definite matrices in the
sense that g = 0 is the identity transformation, and composition

Dn
g−→ Dn

g′−→ Dn
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satisfies g′(g(Σ)) = (g′+g)(Σ). In general, the orthogonal projection Pt depends
on Σ, but it is constant on orbits.

In typical applications involving dispersion effects, the null model has Σ ∝
In, and either µ ∈ 1n or µ = Xβ belonging to span(X). Then PtΣ Thus,
treatment has a multiplicative effect on variances, but no effect on means.

It is possible to enlarge the group and to combine this group action with
either (12.1) or (12.2).

12.4.4 Binary models with correlation

The maximal parameter space for the standard logistic model with Gaussian
random effects, consists of ordered pairs θ = (α,Σ) with α ∈ Rn and Σ positive
definite of order n. Let Dn = {Pθ : θ ∈ Θ} be the set of distributions on {0, 1}n
such that Pθ(y) is the Gaussian integral

Pθ(y) =

∫
Rn

n∏
i=1

e(αi+ηi)yi

1 + eαi+ηi
φΣ(η) dη,

where φΣ(η) ∝ exp(−η′Σ−1η/2) is the normal density on Rn with covariance Σ.

Examples of group actions associated with a treatment assignment t are

(α,Σ)
g7−→ (α+ gt, Σ),

(α,Σ)
g7−→ (α, QtΣ + egPtΣ),

(α,Σ)
(g0,g1)7−→ (α+ g0t, QtΣ + eg1PtΣ),

(α,Σ)
g7−→ (α+ gt, QtΣ + egPtΣ).

The last example shows that not all group actions are equally interesting or
practically useful.

12.4.5 Survival models

One further example may help to illustrate the options available for group action
on distributions. Let Θ0 be the set of non-negative measures on R+ = (0,∞).
To each θ ∈ Θ0 there corresponds a probability distribution on S = R+ ∪ {∞}
defined by the survivor function

Pθ(Y > t) = exp
(
−θ((0, t])

)
which implies Pθ(Y > 0) = 1 and Pθ(Y = ∞) = e−θ(R

+). A distribution on
S is called a survival distribution; every distribution P on R+ is regarded as
a survival distribution such that P ({∞}) = 0. In this setting, θ is called the
hazard measure, and the set of survival distributions is in 1–1 correspondence
with hazard measures on R+.
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Hazard multiplication

Consider now the group G = R+ of positive scalars acting on Θ0 by scalar
multiplication

θ(dt)
g7−→ g × θ(dt).

Each group element is a treatment effect, which is an invertible transformation
g : Θ0 → Θ0, or equivalently Pθ 7→ Pgθ, by scalar multiplication of the hazard
measure. In the absence of covariates, the parameter space is Θ0 × G.

The proportional-hazards model states that each individual has a conditional
hazard given treatment, one for T = 0 and one for T = 1; if g > 0 is the
treatment effect, the two hazard measures are θu(dt) and gθu(dt). As always,
these are subject to exchangeability: x(u) = x(u′) implies θu = θu′ .

The group does not act transitively on the parameter space, which means
that there is more than one orbit—infinitely many in fact. For example, the
subset θ(dt) ∝ Λ(dt) consisting of measures having a constant strictly positive
density with respect to Lebesgue measure is an orbit, corresponding to the set
of exponential distributions. For each real α, the subset θ(dt) ∝ Λ(dt)tα is an
orbit, and the union of such orbits for α > −1 is the family associated with
the set of Weibull distributions. For α < −1 each orbit consists of measures
that have finite total mass; these do not correspond to Weibull distributions.
The distribution Pθ on S exists, but Pθ({∞}) = e−θ(R

+) > 0 implies that the
restriction to R+ is not a probability distribution.

Temporal dilation

Consider now the group G = R+ of positive scalars acting on the space of
hazard measures by the usual rules for the transformation of distributions by
temporal dilation. For present purposes, dilation means that (gθ)(A) = θ(gA)
for A ⊂ R+. Each group element is a treatment effect, which is an invertible
transformation g : Θ0 → Θ0, or equivalently Pθ 7→ Pgθ, by scalar dilation, either
of the hazard measure or the distribution itself.

The accelerated-failure model states that each individual has a conditional
hazard given treatment, one for T = 0 and one for T = 1; if g > 0 is the
treatment effect, the two hazard densities are θ′u(t) and gθ′u(gt). As always,
these are subject to exchangeability: x(u) = x(u′) implies θu = θu′ .

Non-constant hazard multiplication

The group actions illustrated above are the ones most commonly encountered in
survival analysis. It is evident that there are many other possibilities for group
action, most of which have limited potential for applied work, either because
they are implausible in one way or another, or because they lead to intractable
computations. Nonetheless, it may be helpful to describe a few. In the first
two examples, the group is R2 with addition, and the action on hazards is
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Table 12.3. Seven examples of class-plus-treatment survival models

Male Female

C T C T G Eqv?

(i) θ gθ θ gθ R+ X
(ii) θ gθ θ g−1θ R+

(iii) θ g1θ θ g2θ R+ × R+

(iv) θ1 gθ1 θ2 gθ2 R+ X
(v) θ1 gθ1 θ2 2gθ2 R+ NA
(vi) θ1 g1θ1 θ2 g2θ2 R+ × R+ X
(vii) θ1 g1θ1 θ2 g1g2θ2 R+ × R+ X

multiplicative but not constant

θ(dt)
g7−→ eg1+g2t θ(dt)

θ(dt)
g7−→ eg1+g2 log(t) θ(dt).

Exponentiation is used to convert the additive group R or R2 into the multi-
plicative group R+ or R+ × R+.

There are numerous variations on this theme in which Θ0 is replaced with
some subset that is closed under the group. Ordinarily, the group action should
be chosen to be compatible with temporal dilation.

Classification factor plus treatment

Let x be a binary classification factor such as sex. Exchangeability plus inde-
pendence implies that the values are independent and identically distributed for
each sex. Suppose that the hazard measure for males in the control group is
a point θ ∈ ΘM . The effect of treatment on males is an action ΘM → ΘM in
which the group element g ∈ G sends Pθ to Pgθ. Thus, θ and gθ both belong
to ΘM . The first two columns of Table 12.3 illustrate this action for males, while
columns 3–4 illustrate a similar action for females. In each case, ΘM = ΘF is
the same set of hazard measures, which is closed under scalar multiplication.

Example (v) is not a group action or group homomorphism because the
group identity g = 1 is not associated with the identity map Θ→ Θ on hazard
measures. The set of treatment effects, i.e., the set of maps (θ1, θ2) 7→ (gθ1, 2gθ2)
in (v), does not have a null element or identity map corresponding to no effect.
This is strictly forbidden. Example (ii) is quirky, but it is a group action, and
it is equi-variant.

Equivariance for males and females implies not only that ΘM = ΘF , but
also that the effect of treatment is the same action either by the same group or
by a second copy of the same group. If the treatment effect is an action by the
same group element, we say that there is no interaction. Otherwise, the effect
is sex-dependent.

In the case of the proportional-hazards model, the two hazard measures for
males are θ and gθ. In the absence of interaction, G = R+ and the two hazards



168 CHAPTER 12. PROBABILITY DISTRIBUTIONS

for females are θ′, gθ′ with the same proportionality constant. If interaction is
present, the group G = R+×R+ consists of pairs (g, g′) in which g is the hazard
multiplier for males and g′ is the multiplier for females.

12.5 Exercises

12.1 Let t be the treatment assignment vector, and let Bt be the associated
block factor, i.e., Bt(i, j) = 1 if ti = tj and zero otherwise. For g ∈ R, consider
the transformations

Σ
g7−→ Σ + g2Bt

for Σ in the space of positive definite matrices. Discuss whether these trans-
forms determine a group action or group homomorphism (preserving identity
and composition). If not, is it a semi-group homomorphism in a suitable sense?
Maybe after changing g2 to eg or |g| to maintain positivity?

12.2 This exercise is concerned with a possible action of the additive group of
real numbers on the space of positive definite matrices of order n. Let X ⊂ Rn
be a given subspace. To each Σ and W = Σ−1 there corresponds a W -orthogonal
projection PW whose image is X , and a complementary projectionQW = I−PX .
In matrix notation, PW = X(X ′WX)−1X ′W depends on Σ. For g ∈ R, show
that the transformations

Σ
g7−→ QWΣ + egPWΣ = Σ + (eg − 1)X(X ′Σ−1X)−1X ′

determine a group homomorphism by linear transformations on the space of
positive-definite matrices.

12.3 Let t be the treatment assignment vector, and let PW be theW -orthogonal
projection onto the subspace span(1, t). Show that the transformation

Nn(µ,Σ)
g7−→ Nn(µ+ g0t, QXΣ + eg1PWΣ)

is an action of the additive group R2 on the space of Gaussian distributions.
Describe the orbit of the distribution Nn(1, In).

12.4 Under what conditions does the treatment model in the preceding exer-
cise satisfy the lack of interference condition?



Chapter 13

Gaussian distributions

13.1 Real Gaussian distribution

13.1.1 Density and moments

The standard Gaussian distribution has a density

Φ(dy) = φ(y) dy =
1√
2π
e−y

2/2 dy

with respect to Lebesgue measure on the real line. It is symmetric with finite
moments of all orders. The moment generating function is

M0(t) =

∫
etyφ(y) dy = et

2/2 =

∞∑
r=0

µrt
r/r!,

from which the odd moments are zero, and the even moments are

µ2r =
(2r)!

2r r!
= 1 · 3 · · · (2r − 1).

The cumulant generating function is

K0(t) = logM0(t) =
∑

κrt
r/r! = t2/2,

so all of the cumulants are zero except for the variance κ2 = 1.
If ε is a standard normal variable, and (µ, σ) is any pair of real numbers

with σ > 0, the affine transformation Y = µ + σε is distributed according to
the Gaussian distribution with mean µ and variance σ2. The density function
of the transformed variable at y is

1

σ
φ
(y − µ

σ

)
=

1

σ
√

2π
e−(y−µ)2/(2σ2).
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The moment and cumulant generating functions are

Mµ,σ(t) =E(etY ) = etµE(etσε) = etµ+t2σ2/2

Kµ,σ(t) = logMµ,σ(t) = tµ+ t2σ2/2.

The mean is µ, the variance is κ2 = σ2, and all other cumulants are zero.
For x > 0, the ratio of the right tail probability 1−Φ(x) to the density φ(x)

is called Mills’s ratio. The asymptotic expansion is

1− Φ(x)

φ(x)
=

1

x
− 1

x3
+O(x−5).

This stands in sharp contrast with heavy-tailed distributions for which the cor-
responding ratio is increasing in x; in the case of the Cauchy distribution the
ratio is asymptotically x.

13.1.2 Gaussian distribution on Rn

Let X = (X1, . . . , Xn) be a random vector in Rn whose components are in-
dependent and identically distributed N(0, 1) variables. Independence implies
that the joint density function with respect to Lebesgue measure at x ∈ Rn is
the product of the marginal density functions, which is

Φn(dx) = φn(x) dx = (2π)−n/2e−‖x‖
2/2 dx,

where ‖x‖2 = x2
1 + · · ·+ x2

n is the standard Euclidean squared norm.
This is called the standard normal distribution on Rn, and is denoted by

Nn(0, In). The joint moment generating function is the product of the marginal
generating functions

M0(t) =

∫
Rn
et1x1+···+tnxnφn(x) dx = e‖t‖

2/2,

and the cumulant generating function is ‖t‖2/2, which is quadratic and radially
symmetric as a function of t. All of the joint cumulants are zero except for the
variances, which are cov(Xi, Xj) = δij , i.e., one for i = j and zero otherwise.

Let L be a linear transformation Rn → Rn, so that the matrix L is of order
n×n. The moment generating function of the transformed variable Y = LX is

E
(
et
′Y
)

=

∫
Rn
et
′Lxφn(x) dx = M0(L′t) = e‖L

′t‖2/2,

so the cumulant generating function ‖L′t‖2/2 = t′LL′t/2 is quadratic in t but
not radially symmetric. All of the cumulants are zero except for the variances
and covariances, which are the components of the matrix

Σ = cov(Y ) = cov(LX) = LL′,
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which is symmetric and positive semi-definite. The random variable Y has the
normal distribution in Rn with mean zero and covariance Σ, which is denoted
by Nn(0,Σ).

If L is invertible, the covariance matrix Σ = LL′ is also invertible with
inverse W = L′−1L−1. In that case, the Jacobian of the transformation is the
absolute value of the determinant of the transform matrix

dy = |det(L)| dx = det1/2(Σ) dx.

The joint density of the transformed variable is

(2π)−n/2|W |1/2e−y
′Wy/2 dy, (13.1)

which is the density at y of the Gaussian distribution Nn(0,Σ).
In general, the linear transformation L need not be invertible. In that case

the subspaces Im(L) = Im(Σ) and ker(L′) = ker(Σ) are complementary of
dimensions n − k and k respectively, and are also orthogonal with respect to
the standard inner product in Rn. With probability one, Y = LX belongs to
Im(Σ), so the distribution Nn(0,Σ) necessarily puts mass one on this subspace.
If k > 0, the distribution Nn(0,Σ) is singular and does not have a density with
respect to Lebesgue measure on Rn.

The translation Y 7→ Y + µ sends the distribution Nn(0,Σ) to Nn(µ,Σ),
which is supported on the coset, or affine subspace, µ + Im(Σ). The cumulant
generating function is t′µ+ t′Σt/2, so the mean vector is µ and the covariance
matrix is Σ. If Σ is invertible, then Im(Σ) = Rn, and the distribution has a
density

(2π)−n/2|W |1/2e−(y−µ)′W (y−µ)/2 dy. (13.2)

13.2 Complex Gaussian distribution

13.2.1 One-dimensional distribution

The one-dimensional Gaussian distribution on the complex plane is nothing
more than a two-dimensional Gaussian distribution on R2 that is also rotation-
ally symmetric. The zero-mean complex Gaussian distribution with variance σ2

has a density

φ(z) =
e−|z|

2/σ2

πσ2

with respect to two-dimensional Lebesgue measure. The real part and the imag-
inary part of Z ∼ CN(0, 1) are independent zero-mean real gaussian variables
with variance σ2/2 each. The argument of Z is uniformly distributed on [0, 2π),
and independent of ‖Z‖2, which is exponentially distributed with mean σ2.

Rotational symmetry implies not only that E(Z) = 0 but also that complex
powers satisfy E(Zk) = 0 = E(Z̄k) for every integer k ≥ 1. The only non-zero
integer moments are E(‖Z‖2k) = k!σ2k in which Z and Z̄ occur an equal number
of times in the product. The kth order cumulant is cumk(‖Z‖2) = (k − 1)!σ2k.
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13.2.2 Gaussian distribution on Cn

Let ε1, . . . , εn be independent and identically distributed CN(0, 1) random vari-
ables, so that the joint density is

π−n
n∏
r=1

e−|εr|
2

= π−ne−ε
∗ε = π−ne‖ε‖

2

with respect to 2n-dimensional Lebesgue measure. Let Z = Lε, where L is a full-
rank complex matrix of order n, and let Σ = LL∗ be positive-definite Hermitian.
The derivative matrix of the linear transformation L : Cn → Cn is L, but the
Jacobian of the linear transformation R2n → R2n is det(LL∗) = det(Σ). Thus,
the density of the transformed vector is

π−n det(Σ)−1e−z
∗Σ−1z

with respect to 2n-dimensional Lebesgue measure at z ∈ Cn. This distribution
is denoted by Z ∼ CNn(0,Σ), where E(ZZ∗) = E(Lεε∗L∗) = LL∗ = Σ.

As a reminder, Hermitian symmetry means that the real part of Σ is sym-
metric, and the imaginary part is anti-symmetric or skew-symmetric. Thus the
conjugate is equal to the transpose Σ̄ = Σ′, while Σ̄′ = Σ∗ = Σ. Strict positive
definiteness means that every Hermitian quadratic form ξ∗Σξ in complex vec-
tors is strictly positive unless ξ = 0. If Σ is strictly positive definite, so also is
the complex conjugate matrix Σ̄, and the real part <(Σ).

The conjugate vector is distributed as CN(0, Σ̄), and the unit complex mul-
tiple eiθZ has the same distribution as Z. The one-dimensional marginal dis-
tribution of Z1 is complex Gaussian with variance Σ11, and the marginal dis-
tribution of Zi1 , . . . , Zik is complex Gaussian with covariance Σ[i, i] restricted
to rows i = {i1, . . . , ik}, and the same columns. Note that the restriction is ap-
plied to the rows and columns of Σ, not to the rows and columns of the precision
matrix Σ−1.

Exercises 13.1–13.3 show that the Hermitian matrix Σ = Σ0 + iΣ1 can be
associated with a 2n× 2n real symmetric matrix in such a way that the pair of
real vectors <(Z),=(Z) is jointly Gaussian with covariance

cov

(
<(Z)
=(Z)

)
=

(
Σ0 Σ1

Σ′1 Σ0

)
.

where Σ′1 = −Σ1. Any pair of identically distributed real Gaussian vectors X,Y
defines a complex Gaussian vector Z = X+iY if and only if the cross-covariances
are anti-symmetric, cov(X,Y ) = − cov(Y,X).

13.2.3 Moments

Rotational symmetry with respect to complex unit scalar multiplication means
that E(Zr) = E(eiθZr) is necessarily zero. Likewise the product moment
E(ZrZs) = E(e2iθZrZs) is also zero. The only non-zero second-order moments
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are cov(Zr, Z̄s) = Σrs. More generally, the only non-zero moments of degree 2k
are those in which conjugated and non-conjugated components occur in equal
number, such as the product Zi1 · · ·Zik Z̄j1 · · · Z̄jk .

The evaluation of Gaussian moments is a classical problem dating back to
Isserlis (1918), in the case of real vectors. In the case of complex Gaussian
vectors, the product moment is related to Wick’s theorem (Wick, 1950), to
Boson point processes (McCullagh and Møller, 2006), and to Feynman diagrams.
The complex case is a little simpler than the real case, and the product moment
is as follows. To each permutation π : [k]→ [k] there corresponds a 1–1 matching
ir 7→ jπ(r) of conjugated with non-conjugated components. Each matching gives
rise to a product of k covariances

E(Zi1 · · ·Zik Z̄j1 · · · Z̄jk) =
∑
π

k∏
r=1

Σir,jπ(r)
= per(Σ[i, j]),

which is the permanent of the i × j sub-matrix. Note that rows or columns
may be repeated, so that E(|Z1|2k) = Σk11 k!, which are the moments of the
exponential distribution. The permanent is the same as the determinant except
that all k! terms in the permutation expansion have coefficient +1.

Complex-valued random variables seldom occur in experimental research ex-
cept in the setting of Fourier transformation for time series, as in Example 6.
They are not used in the remainder of this chapter, but they do also arise in con-
nection with stationary Gaussian processes, particularly space-time processes in
chapter 14.

13.3 Gaussian Hilbert space

13.3.1 Euclidean structure

It is often convenient to associate with the Gaussian distribution Nn(0,Σ) or
Nn(µ,Σ) a vector space having very specific geometric properties that match the
second moments of the distribution. In doing so, the mean vector is ignored, so
‘second moments’ refers to variances and covariances. For simplicity, we assume
that Σ = W−1 is invertible, so the domain or support of the distribution is
the entire vector space Rn. The Euclidean geometric properties (length, angle,
orthogonality,...) are generated by the specific inner product 〈x, y〉 =

∑
wijxiyj

matching the norm in the exponent of the density (13.1) or (13.2). This inner-
product space H = (Rn, 〈·, ·〉) is called the Gaussian Hilbert space. Apart from
minor modifications of notation, the algebra for complex Gaussian spaces is
essentially the same as that for real vector spaces, so the notation here uses real
vector spaces.

The geometry associated with H is a special case of the geometry associated
with the Rao-Fisher-information metric generated by a parametric model. In
particular, the linear model Y ∼ Nn(Xβ,Σ) determines a subspace X ⊂ H,

and a linear transformation Y 7→ β̂ that sends Y to the weighted least-squares
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coefficient vector β̂ = (X ′WX)−1X ′WY in Rp. This linear transformation
also sends the distribution Nn(Xβ,Σ) on Rn to Np

(
β, (X ′WX)−1

)
, so it is a

transformation H → Hp, where Hp is p-dimensional Euclidean space with inner

product matrix X ′WX. The transformation Hp → X ⊂ H that sends β̂ to

µ̂ = Xβ̂ is in fact a Euclidean isometry, so the geometric and distributional
properties of β̂ ∈ Hp mirror exactly those of the orthogonal projection µ̂ =
PY ∈ X ⊂ H.

The main reasons for endowing the domain with Euclidean structure are as
follows:

1. Orthogonality of subspaces is associated with independence of random
variables;

2. The orthogonal projection having a given image is associated with maximum-
likelihoodF and weighted least squares;

3. The orthogonal projection having a given kernel is associated with a num-
ber of statistically distinct operations such as least-squares residual, pre-
diction, interpolation, smoothing and Kriging;

4. Cochran’s theorem and much of the distribution-theory associated with
linear regression and analysis of variance become more transparent.

13.3.2 Cautionary remarks

From the vantage of linear algebra, it is natural to specify the inner product
directly through the inner-product matrix W , which is symmetric and strictly
positive definite. The inner product in the dual space of linear functionals is
the matrix inverse, Σ = W−1.

The order of operations in statistical work is ordinarily reversed. A Gaus-
sian process is defined by its covariance function, which is naturally subject to
restrictions such as stationarity, isotropy, or exchangeability, depending on the
structure of its domain. Consequently, the matrix Σ, which is the restriction
of the covariance function to the sample points, is specified first. The inverse
matrix then determines the inner product inH for the particular sample selected.

For a process sampled at points u1, . . . , un in some domain U , the matrix
component Σij = cov(Y (ui), Y (uj)) depends on ui, uj only, and is independent
of the configuration of the remaining sample points. By contrast wij depends
on the entire configuration of sampled points. For example, if the process is
stationary on the plane, U = R2, and ui − uj = ui′ − uj′ implies Σij = Σi′j′ .
But this does not imply wij = wi′j′ .

Despite the substantial advantages listed in the preceding section, it is good
to be aware of one additional limitation of associating a specific geometry with
the Gaussian distribution. In statistical work it is often necessary to compare
two candidate distributions on the same observation space, for example by com-
puting the likelihood ratio. For example, the candidate distributions might be
Nn(0,Σ0) and Nn(0,Σ1) for two given matrices. To compute a likelihood ratio,
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it is essential to compare candidate distributions on the same space, so it could
be a serious mistake to associate with each distribution its own geometry.

13.3.3 Projections

Specification by image

Let X be any matrix of order n × p whose columns span the subspace X ⊂ H
of dimension p. The transformation P : H → H whose matrix representation is

P = X(X ′WX)−1X ′W (13.3)

has the following properties.

1. P 2 = P ;

2. For each x ∈ H, Px belongs to X ;

3. For each x ∈ X , Px = x;

4. For each x, y ∈ H, 〈x, Py〉 = 〈Px, y〉.

The first of these, called idempotence, is the definition of a projection, orthogo-
nal or otherwise. The second says that the image of P is a subspace of X ; The
third says that P acts as the identity on X , so Im(P ) contains X ; the second
and third together imply Im(P ) = X . The fourth is the self-adjointness condi-
tion, which implies that Im(P ) and ker(P ) are orthogonal subspaces in H. It
follows that P is the orthogonal projection H → H whose image is X , and the
complementary transformation Q = In − P is the orthogonal projection whose
kernel is X .

Properties 1–3 hold for any strictly positive definite matrix W whether or
not it coincides with the inner product in H. In particular, P0 = X(X ′X)−1X ′

is a projection with image X , and Q0 = In−P0 is the complementary projection
with kernel X , but neither projection is orthogonal in H.

If L is p× p of full rank, then the matrices X and XL span the same space.
If we replace X with XL in the definition of P , we obtain the same projection;
likewise for P0. In other words, P and P0 are independent of the vectors selected
to span the image subspace.

These are the most familiar versions of projection matrices that arise in
statistical work, where the projection is usually targeted to have a particular
image. But it is occasionally convenient to specify a projection directly by a
linear transformation matrix having the desired kernel.

Specification by kernel

Let K ⊂ H be a given subspace of dimension k, and let K : H → Rn−p be any
matrix of order n− k × n with kernel K. Then the matrix

Q† = ΣK ′(KΣK ′)−1K (13.4)
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satisfies Q†Q† = Q†, so Q† is a projection H → H. It is easily verified that
ker(Q†) = K. Symmetry of WQ† implies self-adjointness, so Q† is the orthog-
onal projection with kernel K. In particular, if we choose the matrix K so
that K = X , uniqueness implies that Q† coincides with Q = In − P as defined
in (13.3). This identity is by no means obvious from the matrix algebra alone.

Self-adjointness identity

Let P be any orthogonal projection H → H such as (13.3) or (13.4). Idem-
potence implies P 2 = P , and self-adjointness implies that WP = P ′W is a
symmetric matrix. It follows that P ′WP = WP = P ′W is symmetric and
positive semi-definite.

Mixed products

By definition, two projections such that Im(P0) ⊆ Im(P1) satisfy P1P0 = P0. If
both projections have the same image, then

P1P0 = P0; P0P1 = P1;

i.e., the first or rightmost projection prevails in the product. Mixed products
having nested kernels exhibit the opposite behaviour; ker(Q0) ⊆ ker(Q1) implies
Q1Q0 = Q1 in which the last, or leftmost, projection prevails.

In statistical work related to linear models, two linear transformations T, T ′

having the same kernel are statistically equivalent in the sense that there exists
linear transformations L,L′ such that T = LT ′ and T ′ = L′T . One can be
obtained from the other by a linear transformation; for projections, L = T and
L′ = T ′.

Trace and rank

Let P be any linear projection, not necessarily an orthogonal projectionH → H.
The idempotence condition P 2 = P means that the eigenvalues of P satisfy
λ2 = λ, which implies that λ is either zero or one. Consequently, the trace of P ,
which is the sum of the eigenvalues, is equal to the rank of P or the dimension
of the image space.

Rank degeneracy

Suppose that Y ∼ Nn(0,Σ), where Σ has rank n−p. Let K : Rn → Rn−p be any
linear transformation whose kernel coincides with the kernel of Σ, i.e,. ker(K) =
ker(Σ) = X . This means that K is a matrix of order n− p× n and rank n− p.
With respect to the standard inner product in Rn, Im(K ′) is complementary
and orthogonal to ker(K). Symmetry of Σ implies Im(K ′) = Im(Σ).

The relevant Gaussian Hilbert space associated with Nn(0,Σ) is either the
subspace Im(Σ), or the quotient space Rn/X . In either case, the dimension



13.3. GAUSSIAN HILBERT SPACE 177

is n − p. For either representation of H, the inner product is a positive semi-
definite quadratic form 〈x, y〉 = x′Wy in for x, y ∈ Rn, where W is the n × n
symmetric matrix

W = K ′(KΣK ′)−1K, (13.5)

which has the same image and kernel as Σ. Evidently, WΣK ′ = K ′ so WΣ
is the identity on Im(K ′) = Im(Σ), and WΣ is zero on ker(Σ), so WΣ is a
projection. Symmetry of WΣW = W implies that WΣ is self-adjoint, so WΣ is
the orthogonal projection H → H whose image is Im(Σ), i.e., WΣ is the identity
H → H.

The preceding algebra has another interpretation that is related to incom-
plete Gaussian distributions in which Nn(0,Σ;X ) is a Gaussian distribution
on the quotient space Rn/X . In other words, Nn(0,Σ;X ) is the restriction of
Nn(0,Σ) to Borel subsets A ⊂ Rn such that A + X = A. In this situation,
it is necessary only that Σ be positive definite on X -contrasts, which means
that KΣK ′ is strictly positive definite. Two covariance matrices such that
KΣ1K

′ = KΣ2K
′ are equivalent on X -contrasts, and determine the same dis-

tribution on Rn/X . In that case, the matrix W in (13.5) serves as the inner
product in H.

For a simple example of the latter, floating Brownian motion is a generalized
Gaussian process on the real line whose covariance function is −|u − u′|. For
any collection of points u1, . . . , un in R, the matrix whose components are Σij =
−|ui − uj | is symmetric but clearly not positive definite or even semi-definite.
However, if we take X = 1, the subspace of constant functions, and ker(K) = 1,
it can be shown that KΣK ′ is positive definite. We say that −|u−u′| is positive-
definite on simple contrasts.

The Dirac difference measure δu(·) − δu′(·) is an example of an elementary
contrast, and the process takes a value Y (δu − δu′), conventionally written as
an increment Y (u)− Y (u′), which is distributed as Gaussian with variance

(1,−1)
(

0 −|u− u′|
−|u− u′| 0

)(
1
−1

)
= 2|u− u′|.

Despite the notation, Y (u) or Y (δu) in isolation is not a Gaussian variable with
finite variance. Provided that the phrase is understood informally as a limit, it is
seldom misleading to regard Y (u) as Gaussian with ‘infinite’ variance. Floating
Brownian motion is not defined pointwise, but it is stationary on its domain of
contrasts. Standard Brownian motion

B(u) = Y (u)− Y (0) ∼ N(0, 2|u|)

is defined pointwise for u ∈ R, but is not stationary. Realizations of either
process are everywhere continuous but nowhere differentiable.

13.3.4 Dual space of linear combinations

Let Y = (Y1, . . . , Yn) be a random vector distributed as Nn(0,Σ) on Rn, where
Σ is invertible. To each coefficient vector α = (α1, . . . , αn) there corresponds a
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linear combination
Y (α) = α1Y1 + · · ·+ αnYn.

Instead of indexing Y by the points i ∈ [n], the preceding notation suggests
that we use the space of linear combinations as an extended index set. Strictly
speaking, this extension is unnecessary and superfluous. As a linear functional,
the extension Y (3α+ 4β) = 3Y (α) + 4Y (β) is linear and additive, so all values
are determined by the values on any basis.

The covariance of two linear combinations is bilinear:

cov
(
Y (α), Y (β)

)
= 〈α, β〉 =

∑
αiβjΣij .

The Hilbert space H∗ consisting of coefficient vectors, or linear functionals,
with this inner product is the dual of H. By definition, it is restricted to
coefficient vectors α such that the linear combination Y (α) has finite variance
‖α‖2 < ∞. The dual space arises most prominently in problems of prediction
and computation of conditional distributions for spatial and temporal processes.

An observation on the process consists of a finite sample {x1, . . . , xn} of
sites plus the site values Y (x1), . . . , Y (xn). The observation values serve as
basis elements in the observation space H, while the sample points serve as
basis elements for the dual space of linear combinations α ∈ H∗0. As a process,
the space of samples is embedded in a larger Hilbert space H∗ ⊃ H∗0 associated
with extended samples. For any β ∈ H∗, the conditional distribution of Y (β)
given the sample values {Y (α) : α ∈ H∗0} is Gaussian with moments

Y (β) | Y [H∗0] ∼ N
(
Y (Pβ), ‖Qβ‖

)
(13.6)

where P is the orthogonal projection H∗ → H∗ with image H∗0, and Q is the
complementary projection.

13.4 Statistical interpretations

13.4.1 Canonical norm

In this section, H is the Hilbert space associated with the distribution Nn(0,Σ).
For simplicity of exposition, W = Σ−1 is invertible and dim(H) = n.

The squared norm of a vector x ∈ H is ‖x‖2 = x′Wx. For Y ∼ N0,Σ),
the distribution of the scalar random variable ‖Y ‖2, can be obtained from its
moment generating function

E
(
et‖Y ‖

2)
= (2π)−n/2|W |1/2

∫
H
ety
′Wy−y′Wy/2 dy

= (2π)−n/2|W |1/2
∫
H
e(1−2t)‖y‖2/2 dy = (1− 2t)−n/2

provided that t < 1/2. The moment generating function of the χ2
1-distribution

is (1 − 2t)−1/2, so Y ′WY is distributed as χ2
n, which is the distribution of the

sum Z2
1 + · · ·+ Z2

n of squares of n independent standard Gaussian variables.
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The χ2 density function is available in closed form, but is not especially
important for either theory or applications. The cumulant generating function
−n log(1 − 2t)/2 implies that the rth cumulant is κr = n (r − 1)!2r−1. All
cumulants are proportional to n, the mean and variance are n and 2n, and the
central limit theorem implies χ2

n ' N(n, 2n) for large n. For numerical work, the
cumulative distribution function is available in R using the syntax pchisq(x,

df=n), and simulated variables are available using rchisq(..., df=n).

13.4.2 Independence

Two orthogonal projections P,Q : H → H are said to be mutually orthogonal if
PQ = QP = 0, so the projections (13.3) and (13.4) are both complementary
and mutually orthogonal. Orthogonality of projections implies that the random
vectors PY,QY are independent. This can be verified directly from the matrix
forms (13.3) or (13.4), which satisfy

PΣP ′ = PΣ; QΣQ′ = QΣ; and PΣQ′ = PQΣ = 0.

More directly, the joint moment generating function

E
(
et
′
1PY+t′2QY

)
= e(t′1P+t′2Q)Σ(P ′t1+Q′t2)/2 = et

′
1PΣP ′t1+t′2QΣQ′t2

is the product of the marginal generating functions.

Cochran’s theorem

Let P1, . . . , Pk be orthogonal projections H → H that are (i) mutually orthog-
onal in the sense PrPs = 0 for r 6= s, and (ii) complementary in the sense
P1 + · · ·+Pk = In. Since the rank and trace are equal, complementarity implies
n1 + · · · + nk = n, where nr = tr(Pr) = rank(Pr). Then, for every Y ∈ H, we
have the linear and Pythagorean identities

Y = P1Y + · · ·+ PkY ;

‖Y ‖2 = ‖P1Y ‖2 + · · ·+ ‖PkY ‖2.

By an obvious extension of the argument given above for Y ∼ Nn(0, σ2V ),
the projected random variables PrY ∼ N(0, σ2PrV ) are mutually independent,
and ‖PrY ‖2 ∼ σ2χ2

nr are also mutually independent. In the iterature on analysis
of variance, this distributional decomposition is known as Cochran’s theorem,
or the Fisher-Cochran theorem.

For r 6= s, the ratio of mean squares

‖PrY ‖2/nr
‖PsY ‖2/ns

is distributed independently of σ according to Fisher’s F distribution Fnr,ns .
The decomposition can be stated in an alternative way in terms of a sequence

of strictly nested subspaces

0 = X0 ⊂ X1 ⊂ · · · ⊂ Xk ⊂ Xk+1 = H
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of dimensions 0 < n1 < n2 < nk < n. Let Pr be the orthogonal projection onto
Xr so that PrPs = Pr∧s, and QrQs = Qr∨s for the complementary projections.
Then the increments (∆P )r = Pr −Pr−1 = Qr−1−Qr are mutually orthogonal
projections satisfying the conditions for Cochran’s theorem. In particular, if
Y ∼ N(Xβ, σ2V ) satisfies the standard linear model assumption with non-zero
mean such that X1 = span(X), and X2 = span(X,Z) is any proper subspace
of H containing X as a proper subspace, then

‖Q1Y ‖2 = ‖Q1 −Q2)Y ‖2 + ‖Q2Y ‖2

is a decomposition of the residual sum of squares into independent σ2χ2 com-
ponents. Consequently, the ratio of mean squares

F =
‖(Q1 −Q2)Y ‖2/(n2 − n1)

‖Q2Y ‖2/(n− n2)

is distributed according to the F distribution.

13.4.3 Prediction and conditional expectation

Let Y ∼ Nn(0,Σ) on Rn, and let Z = KY be any linear transformation whose
kernel is K. Then the conditional expectation given Z is E(Y | Z) = QY , where
Q is the orthogonal projection H → H whose kernel is K. If K has full rank,
the matrix form (13.4) makes it clear that the conditional expected value

QY = ΣK ′(KΣK ′)−1KY = ΣK ′(KΣK ′)−1Z

is indeed a function of the observation Z.
If we write Y = PY +QY as the sum of complementary orthogonal projec-

tions, the proof is trivial because KQ = K and Z = KQY is independent of
PY . Consequently,

E(Y | Z) =E(PY +QY | KQY ) = QY ;

cov(Y | Z) = cov(PY +QY | QY ) = cov(PY ) = PΣ. (13.7)

Thus, the conditional distribution of Y given Z is N(QY,PΣ). These equations
are dual to (13.6).

In standard probability terminology, prediction calls for the conditional dis-
tribution given the σ-field generated by the observation as a measurable trans-
formation. By definition, the σ-field generated by a linear transformation with
kernel K ⊂ Rn is the Borel σ-field in Rn/K, i.e., all Borel subsets A ⊂ Rn such
that A + K = A. In that probabilistic sense, all linear transformations having
the same kernel are equivalent.

Partitioned matrix representation

In applied work, it is often the case that Y : U → R is a function on the units,
and the observation Z = Y [U0] is the restriction of Y to a sub-sample U0 ⊂ U
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of size n − k. For that setting, it is convenient and computationally efficient
to use partitioned-matrix notation in which Y0 = Y [U0], and Y1 = Y [Ū0] is the
restriction to the complementary subsample:

Y =

[
Y0

Y1

]
; K = [In−k : 0]; Σ =

[
Σ00 Σ01

Σ10 Σ11

]
; Σ−1 =

[
W00 W01

W10 W11

]
;

Q =

[
In−k 0

Σ10Σ−1
00 0

]
; P =

[
0 0

−Σ10Σ−1
00 Ik

]
; PΣ =

[
0 0
0 Σ11 − Σ10Σ−1

00 Σ01

]
.

The conditional distribution of Y1 given Y0 is Gaussian with moments

E(Y1 | Y0) = (QY )1 = Σ10Σ−1
00 Y0;

cov(Y1 | Y0) = (PΣ)11 = Σ11 − Σ10Σ−1
00 Σ01 = W−1

11 .

This component-wise version of the conditional distribution speaks directly
to the goal of predicting the values for extra-sample units, and it is computa-
tionally more efficient than (13.7) because it sets aside obvious degeneracies.
But it does so at the cost of obscuring a crucial aspect of the geometry, namely
that Gaussian point prediction is an orthogonal projection.

In applied work, the situation is typically a little more complicated because
µ = E(Y ) is never zero, in which case the conditional mean is

E(Y1 | Y0) = µ1 + Σ10Σ−1
00 (Y0 − µ0).

In practice, unknown parameters must be estimated before this can be com-
puted.

Example: exchangeable Gaussian process

A zero-mean exchangeable Gaussian process has finite-dimensional distributions

Y [n] ∼ N
(
0, Σn = σ2

0In + σ2
1Jn
)
,

where Jn(i, j) = 1 is the n×n matrix whose components are all one. The inverse
matrix is

Σ−1
n = σ−2

0

(
In −

θ

1 + nθ
Jn

)
,

where θ = σ2
1/σ

2
0 is the variance-component ratio.

Regardless of the variance parameters, Pn = Jn/n is the orthogonal pro-
jection onto the subspace 1n of constant functions, and Qn = In − Jn is the
complementary orthogonal projection. Thus, the projected random vectors

PnY ∼N(0, n−1JnΣ) = N
(
0, (σ2

0/n+ σ2
1)Jn

)
QnY ∼N(0, QnΣ) = N

(
0, σ2

0Qn
)

are independent. To avoid confusion in statistical work where the covariance
matrix is not completely known, it is best to fix the inner product in H rather
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than having a parameter-dependent inner product: see the cautionary remarks
in section 13.2.2. Most statistical work involving exchangeable or partially ex-
changeable processes uses the standard invariant inner product

∑
xiyi. With

this understanding, the squared norms

‖PnY ‖2 = nȲ 2
n ∼ (σ2

0 + nσ2
1)χ2

1,

‖QnY ‖2 = (n− 1)s2
n ∼ σ2

0χ
2
n−1

are independent χ2 random variables with scale factors as indicated. Much of
analysis of variance for balanced designs is based on extensions of this result to
partially exchangeable arrays.

For n ≥ 1, the partitioned-matrix formulae in the preceding subsection imply
that the conditional distribution of Yn+1, . . . , Yn+m given Y [n] is exchangeable
Gaussian with moments

E(Y [n+ 1:m] | Y [n]) =
nθȲn

1 + nθ
1m,

cov(Y [n+ 1:m] | Y [n]) = σ2
0Im + σ2

1Jm/(1 + nθ).

The same partitioned-matrix formulae also imply that the the conditional dis-
tribution of the average (Yn+1 + · · · + Yn+m)/m given Y [n] is Gaussian with
moments

E
(
Ȳn+1:m | Y [n]

)
=

nθȲn
1 + nθ

,

var
(
Ȳn+1:m | Y [n]

)
= σ2

0/m+ σ2
1/(1 + nθ).

This conditional distribution has a limit as m → ∞ for fixed n, implying that
the infinite average is a conditionally non-degenerate random variable such that

Ȳ∞ ∼ N
( nθȲn

1 + nθ
,

σ2
0θ

1 + nθ

)
.

The limit θ → ∞ gives Ȳ∞ − Ȳn ∼ N(0, σ2
0/n). For n ≥ 2, the internally-

standardized ratio √
n (Ȳ∞ − Ȳn)

sn
∼ tn−1,

is distributed as Student’s t on n− 1 degrees of freedom.

13.4.4 Eddington’s formula

Scalar signal estimation

Given a random signal X ∼ P and an observation Y = X + ε contaminated by
independent additive Gaussian noise, how do we estimate the signal? This ver-
sion of the signal estimation problem was first posed in 1926 by the Astronomer
Royal, Sir Frank Watson Dyson, in connection with parallax resolution problems
in astronomical observations made at Greenwich.
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In the astronomical setting, there is a large number of independent signals,
all identically distributed according to some unknown signal distribution p, and
the parallaxes Yi = Xi+ εi are contaminated by independent additive Gaussian
error with known variance. It is feasible to estimate the marginal density by
smoothing, but it is not obvious how to estimate the signal distribution or how
to adjust the observation to account for measurement error. Eddington provided
a simple and elegant solution.

If the signal density is p(·), and the noise is standard Gaussian, the joint
density of (Y,X) is p(x)φ(y − x), and the marginal density is

m(y) =

∫
p(x)φ(y − x) dx = φ(y)

∫
R
p(x)e−x

2/2+xy dx.

Thus the density ratio m(y)/φ(y) is the Laplace transform of the function

p(x)e−x
2/2. In addition, p(x)e−x

2/2φ(0)/m(0) is a probability density whose
cumulant-generating function is log

(
m(y)/φ(y)

)
. However it is phrased, the

goal of signal estimation is to compute the conditional expected value of the
signal given the data.

E(etX | Y ) =

∫
etxp(x)φ(y − x) dx

/
m(y)

=
φ(y)

m(y)

∫
e−x

2/2+xy+txp(x) dx

=
m(y + t)

φ(y + t)

/
m(y)

φ(y)
;

E(X | Y ) =
d

dt
log

(
m(y + t)

φ(y + t)

)
t=0

=
d

dy
log

(
m(y)

φ(y)

)
= y +

m′(y)

m(y)
.

Eddington’s solution was the additive adjustment σ2m′(y)/m(y), scaled for the
observation variance. Higher-order derivatives are the higher-order cumulants
of the conditional distribution.

Dyson started out with a table or histogram of parallaxes of stars measured
at Greenwich, from which he estimated the marginal density by smoothing.
Knowing the observation variance from replicates, he estimated the adjustment
and reported the adjusted values. He also noted that if the signal distribution
happens to be normal, the correction reduces to −yσ2/(σ2 + σ2

x). Dyson’s
observed parallax distribution was strongly skewed in the positive direction, so
his signal distribution was far from normal.

Eddington’s formula is remarkable for two reasons. The most obvious is that
it depends only on the marginal density of the observations. Less obvious is the
fact that if the signals are restricted to an interval, say −1 ≤ x ≤ 2 or x > 0,
then E(X | Y ) also lies in the interval. This aspect was crucial for Dyson’s
task because parallaxes are positive even if some observations are negative, and
Dyson was understandably reluctant to report a negative value.
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Isotropic vector signal estimation

Eddington’s formula applies also to vector signals X ∈ Rd contaminated by
additive Gaussian noise ε ∼ Nd(0,Σ). The conditional mean given Y = X + ε
is then

E(X | Y ) = Σ
d

dy
log

(
m(y)

φ(y)

)
= y + Σm′(y)/m(y),

where φ is the density of Nd(0,Σ), and m′(y) is the gradient vector.
For the vector formula to be useful in practical work, it is usually necessary to

make further simplifying assumptions. Rotational symmetry for both the signal
and the noise is usually the most natural. In that case ε ∼ N(0, Id), the signal
density satisfies p(σx) = p(x) for each orthogonal transformation σ : Rd → Rd,
and m(σy) = m(y) is also rotationally symmetric. The conditional expectation
H(y) = E(X | Y = y) then satisfies the commutativity condition

H(σy) = σH(y),

which means that the transformation y 7→ H(y) is radial. The direction is
retained, so the unit vectors y/‖y‖ and H(y)/‖H(y)‖ are equal. Ordinarily, the
modification to the norm is shrinkage towards the origin, but not necessarily so:
see Exercise 13.10.

Isotropic matrix reconstruction

Suppose that the signal X is a random matrix of order n × p, and that the
components of ε are independent standard normal. Suppose also that the signal
distribution is rotationally symmetric in the sense that the density is invari-
ant with respect to left and right orthogonal transformation. In other words,
p(σxτ) = p(x) for all orthogonal matrices σ of order n and τ of order p. Since
ε is rotationally symmetric, the convolution is also rotationally symmetric in
the same sense, and the conditional expectation is equi-variant in the sense
H(σyτ) = σH(y)τ . Equi-variance implies that H acts only on the singular
values; rotational symmetry ensures that the left and right singular vectors are
retained in the reconstruction.

Although the conditional expectation y 7→ H(y) is an action on singular val-
ues, the transformation does not necessarily act component-wise, nor is it neces-
sarily a shrinkage. Under certain sparsity assumptions, it is possible to be more
specific about the nature of the transformation, which is a shrinkage towards
the origin applied component-wise to the singular values: see section 15.5.3.

13.4.5 Linear regression

Let X ⊂ Rn be a subspace of dimension p spanned by the columns of the
given matrix X of order n× p, let V be a given strictly positive definite matrix
with inverse W = V −1, and let H be the Euclidean space with inner product
〈x, y〉 = x′Wy.



13.4. STATISTICAL INTERPRETATIONS 185

Linear regression refers to the family of Gaussian distributions on Rn

{Nn(µ, σ2V ) | µ = Xβ ∈ X , σ > 0}

indexed by β ∈ Rp and σ > 0. For geometrical purposes, we want to regard
each of these as a distribution on the same Hilbert space, so we choose the
given matrix W = V −1 rather than Σ−1 in order that all operations in H be
computable.

We now suppose that, for some unspecified parameter point (β, σ2), an ob-
servation Y ∼ Nn(Xβ, σ2V ) is generated and the value y ∈ H is observed. To
estimate the parameter, we use the log likelihood function, which is the log
density

l(β, σ2; y) = − 1
2‖y −Xβ‖

2/σ2 − n log σ + const.

So far as the regression parameter is concerned, maximization of the log like-
lihood is equivalent to minimizing the Euclidean squared distance ‖y −Xβ‖2
over points µ = Xβ in X . Regardless of σ2, the minimum over X occurs at the
Euclidean projection

µ̂ = Xβ̂ = Py = X(X ′WX)−1X ′Wy,

and the minimum value achieved is the residual quadratic form ‖(I − P )y‖2 =
‖Qy‖2.

The projection PY and its complement QY are independent Gaussian ran-
dom vectors with distributions

PY ∼ N(Xβ, σ2PV ), QY ∼ N(0, σ2QV ).

It follows from section 13.4.1 that ‖QY ‖2/σ2 is distributed as χ2
n−p, i.e., the

weighted residual sum of squares ‖QY ‖2 is distributed as σ2χ2
n−p. The conven-

tional estimate of σ2 is the mean-squared residual

s2 = ‖Qy‖2/(n− p),

which is unbiased and strictly larger than the maximum-likelihood estimate
‖Qy‖2/n.

Statistical computer packages invariably report the least-squares coefficient
vector β̂ = (X ′WX)−1X ′Wy together with the standard errors, which are the
square roots of the diagonal components of the matrix

cov(β̂) = s2(X ′WX)−1.

13.4.6 Linear regression and prediction

Exercises 13.1–13.5 give an outline of the argument for combining linear regres-
sion with prediction. The parametric family Y ∼ N(Xβ, σ2V ) on H = (Rn,W )
determines a parametric family on the observation space, which is the image of a
linear transformation K : Rn → Rn−k. The regression parameter is estimated by
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weighted least squares based on the observation Z ∼ Nn−k(KXβ, σ2KVK ′), or
equivalently, based on QY ∼ Nn(QXβ, σ2QV ), where Q is the orthogonal pro-
jection having the same kernel. Identifiability requires p = rank(KX) ≤ n−k, in
which case the composite transformation L : Y 7→ QY 7→ µ̂ is a linear projection
H → H.

The conditional distribution of Y given Z = KY is the same as the condi-
tional distribution of the sum PY + QY given QY . Independence of PY and
QY implies that the conditional distribution is

Nn(QY + Pµ, σ2PV ).

The least squares estimate is obtained by parameter substitution

Nn(QY + Pµ̂, s2PV ) = N(QY + L0Y, σ
2PV ), (13.8)

with σ2 replaced by s2 if needed.
The transformation Y 7→ µ̂ = LY is a linear projection whose image is X

and whose kernel includes K. These are arbitrary non-overlapping subspaces so
L is not orthogonal in H. It is the sum of two transformations L1 = QL, which
is the orthogonal projection with image QX , and L0 = PL which is nilpotent,
i.e., L2

0 = 0, because LP = 0.

Notation for component-wise transformation

If the observation is a component-wise restriction of Y , it is convenient and
efficient to express (13.8) in partitioned matrix notation such that K = [In−k, 0],
KY = Y0 and KX = X0, in which case

QY =

(
Y0

V10V
−1
00 Y0

)
, P µ̂ =

(
0

µ̂1 − V10V
−1
00 µ̂0

)
,

(PV )11 = V11 − V10V
−1
00 V01 = W−1

11 .

The least-squares estimate is β̂ = (X ′0V
−1
00 X0)−1X ′0V

−1
00 Y0, giving the fitted

mean with components µ̂0 = X0β̂ and µ̂1 = X1β̂. Given Y0, the predictive
distribution for Y1 has moments

µ̂1 + V10V
−1
00 (Y0 − µ̂0) and σ2W−1

11 ,

with σ2 replaced by s2 where needed. The predictive mean in this setting goes
by various names—best linear predictor, fiducial predictor, Kriging estimate,
smoothing spline—depending on the area of application.

Fiducial prediction

The least-squares predictive distribution (13.8) associates with each observation
point z = Ky in Rn−k a probability distribution on Rn. It assigns probability
one to the k-dimensional coset

y +K = Qy +K = {y ∈ Rn | Ky = z}, (13.9)
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which is the subset of points that are consistent with the observed value.
Any distribution defined on Borel subsets of Rn can be restricted to a sub-

σ-field if the need arises. In the linear-model setting Nn(Xβ, σ2V ) with X =
span(X), an event A ⊂ Rn is said to be translation-invariant if A+X = A. For
historical reasons, the invariant events are also called fiducial events; the set of
fiducial events is the Borel σ-field B(Rn/X ).

According to the fiducial argument, the set of distributions Nn(Xβ, σ2V )
indexed by β ∈ Rp for fixed σ is interpreted as a single distribution Nn(0, σ2V )
on fiducial events. For this purpose, two Gaussian distributions Nn(µ0,Σ0)
and Nn(µ1,Σ1) are equivalent modulo X , if, for any linear transformation T
whose kernel includes X , Tµ0 = Tµ1 and TΣ0T

′ = TΣ1T
′. In particular,

ker(QX ) = X implies that the distributions Nn(Xβ, V ) and Nn(0, QXV ) are
fiducially equivalent. Thus, a single fiducial distribution has multiple covariance-
matrix representations in Rn.

Fiducially speaking, the response distribution is Nn(0, σ2QXV ), the obser-
vation is a linear transformation Q† with kernel X +K, and (13.7) implies that
the conditional distribution given the observation is

Nn
(
Q†Y, σ2(QX −Q†)QXV

)
=Nn

(
Q†Y, σ2(QX −Q†)V

)
∼=Nn

(
Q†Y + µ̂, σ2(P † − PX )V

)
∼=Nn

(
Q†Y + µ̂, σ2PKV

)
.

The predictive distribution is restricted to fiducial events in Rn, and these var-
ious expressions are equivalent when restricted to B(Rn/X ). For example, the
addition of µ̂ to the mean has no effect. The last expression is the [fiducal
restriction of the] least-squares predictive distribution.

13.5 Additivity

13.5.1 1DOFNA algorithm

One degree of freedom for non-additivity is a technique introduced by Tukey
(1949) to check the adequacy of the linear model Y ∼ N(Xβ, σ2V ) by testing for
deviations from additivity and/or linearity. Tukey was particularly concerned
with additivity assumptions for factorial models used in randomized-blocks and
Latin-square designs, but the technique is valid more broadly for simple linear
regression and multiple linear regression.

The computational procedure goes as follows. First compute the least-
squares fitted vector µ̂ = Xβ̂ = PY together with the residual sum of squares
‖Y − µ̂‖2 on n − p degrees of freedom. Second, compute the derived vector z
with components zi = µ̂2

i . Third, fit the extended linear model including both
X and z, i.e., E(Y ) = Xβ + zγ, and compute the least-squares fitted vector
µ̂1 = P1Y by projection onto the subspace spanned by X and z.

The reduction in residual sum of squares ‖QY ‖2−‖Q1Y ‖2 is the one degree of
freedom for non-additivity. According to Tukey, the null distribution is exactly
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σ2χ2
1, and the mean-square ratio

F =
‖QY ‖2 − ‖Q1Y ‖2

‖Q1Y ‖2/(n− p− 1)
(13.10)

is distributed exactly as F1,n−p−1 if the null assumption Y ∼ N(Xβ, σ2V ) is
correct. The 1DOFNA F -ratio provides an exact test of the null model, large
values being interpreted as evidence of non-additivity. Alternatively, the least-
squares coefficient of z can be used in the standard manner

T = γ̂/ s.e.(γ̂),

and the value compared with the null distribution tn−p−1. As always, T 2 = F ,
so the two approaches are effectively equivalent. If the F -ratio is large, the
remedy suggested is to transform the response Y 7→ Y λ, and Tukey’s suggested
power transform is λ = 1− 2γ̂Ȳ .

13.5.2 1DOFNA theory

Although this description is entirely satisfactory as a computational procedure,
the notation is misleading because the transformation that sends u to P1u is
neither a projection H → H nor a linear transformation. It does not satisfy
P1(u + v) = P1u + P1v for vectors u, v ∈ H, nor does it satisfy P 2

1 = P1.
Hence, Tukey’s claim is not an immediate consequence of earlier remarks such
as Cochran’s theorem (section 13.3.2), which is concerned exclusively with linear
transformations and orthogonal projections.

A correct argument proceeds as follows. First, the projected random vec-
tors PY and QY are independent, so the conditional distribution of QY given
µ̂ = PY is N(0, σ2QV ), and the conditional distribution of QY given z is also
Nn(0, σ2QV ). It follows that γ = 0 if the null model holds. Given µ̂, least-
squares estimate of γ is the regression coefficient of the residuals on z—or more
correctly on Qz—which is conditionally linear

γ̂ = (z′WQz)−1z′WQY,

and the conditional distribution given µ̂ is N(0, σ2(z′WQz)−1). Given µ̂, the
residual vector is split additively into two orthogonal parts

QY = Qzγ̂ +Q(Y − zγ̂) = Qz(z′WQz)−1z′WQY +Q1Y.

The residual sum of squares also splits into two parts

‖QY ‖2 = γ′(z′WQz)γ + ‖Q1Y ‖2 = Y ′WQz(z′WQz)−1z′WQY + Y ′WQ1Y.

According to section 13.3.2, these are conditionally independent given µ̂ with
distributions σ2χ2

1 and σ2χ2
n−p−1 respectively. Thus, Tukey’s distributional

assertions are upheld conditionally on µ̂, and therefore unconditionally.
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13.5.3 Scope and rationale

Apart from the condition p ≤ n − 2, which is needed to ensure Q1 6= 0, one
additional condition related to the algebraic properties of the subspace X is
needed. A subspace X ⊂ Rn is said to be a commutative ring if, for each pair of
vectors u, v ∈ X , the component-wise product uv = vu also belongs to X . If X
happens to be a ring, then µ̂ ∈ X implies z = µ̂2 ∈ X , so that Qz = 0. Thus, if
X is a ring under multiplication, no degree of freedom for non-additivity exists.

In the factorial-model setting with non-nested block or treatment factors
A,B,C, . . ., each of the factorial subspaces

0, 1, A, B, C, AB, AC, BC, ABC

is also a commutative ring that is closed under multiplication. (Here, AB is the
subspace denoted by either A:B or A*B in R notation.) In order for the 1DOFNA
to be non-trivial, it is necessary that X not be a ring—in other words the set of
points x ∈ X such that x2 ∈ X must have measure zero. Apart from degenerate
designs having completely aliased factors, the 1DOFNA is non-trivial for every
other factorial subspace such as A+ B or AB + C or AB + BC, that includes
a non-trivial + operator. Note that 1 + A is the same as A and A+B+A*B is the
same as AB, both of which are rings.

In the case of simple linear regression with E(Yi) = β0 +β1xi for a quantita-
tive variable x, the constructed variable µ̂2 is a quadratic function of x. Provided
that the design contains at least three distinct x-values, the vectors 1, x, x2 are
linearly independent. With probability one β̂1 6= 0, in which case the vectors
1, x, µ̂2 are also linearly independent. For that setting, the 1DOFNA is equiv-
alent to the one degree of freedom for non-linearity, and specifically quadratic
deviations from linearity.

Provided that the constructed variable is a function of µ̂, any component-
wise non-linear transformation such as zi = exp(µ̂i), or any non-component-wise
transformation H → H, may be used in the algorithm. Subject to the condition
z 6∈ X mentioned above, the distributional argument leading to the conclusion
that the 1DOFNA F -ratio is distributed as F1,n−p−1 is unaffected by the choice
of transformation. For X 6= 1, the neighbour average zi = avej∈nb(i) µ̂j is an
example of a linear non-component-wise transformation H → H that might
arise in a spatial or graphical setting.

Note that the word transformation is used above in two distinct senses that
are algebraically distinct. First, every statistical vector is a function U → R on
the units, and component-wise transformation g : R → R refers to composition

y 7→ gy on the left as illustrated by the diagram U
y−→ R g−→ R. Component-

wise transformation exploits the fact that RU is a commutative ring. Second,
every statistical vector is also a point y ∈ H, and a typical linear transformation
H → H such as y 7→ µ̂ or y 7→ Qy does not act component-wise.
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13.6 Exercises

13.1 Show that the set of 2n× 2n real matrices of the form(
A B
−B A

)
is closed under matrix addition and multiplication. Show also that the ‘linear’
mapping into the space of complex n× n matrices(

A B
−B A

)
7→ A+ iB

is an isomorphism preserving addition and multiplication.

13.2 Let A + iB be a full-rank Hermitian matrix of order n. Show that the
inverse matrix C + iD is also Hermitian and satisfies the pair of equations

AD +BC = 0; AC −BD = In.

Deduce that the 2n× 2n real symmetric matrices(
A B
−B A

)
and

(
C D
−D C

)
are mutual inverses. What does this matrix isomorphism imply about the rela-
tion between complex Gaussian vectors and real Gaussian vectors?

13.3 By writing the complex vector z and the Hermitian matrix Γ as a linear
combination of real and imaginary parts, show that the Hermitian quadratic
form z∗Γz reduces to the following linear combination of real quadratic forms:

(x′ − iy′)Γ0(x+ iy) + i(x′ − iy′)Γ1(x+ iy) = x′Γ0x+ y′Γ0y + y′Γ1x− x′Γ1y.

Hence deduce that the real and imaginary parts of Z ∼ CN(0,Σ) are iden-
tically distributed Gaussian vectors N(0,Σ0) with covariances cov(X,Y ) =
− cov(Y,X) = Σ1.

Gaussian linear prediction: The next five exercises are concerned with esti-
mation and prediction in the Gaussian linear model Y ∼ Nn(µ = Xβ, σ2V ) in
which the observation is the linear transformation Z = KY . The matrices X of
order n× p, K of order n− k × n, and V of order n× n are given, while β, σ2

are parameters to be estimated. All three matrices are of full rank, the product
KX has rank p ≤ n − k, while the Hilbert space H with inner-product matrix
W = V −1 determines the geometry.

13.4 Show that the maximum-likelihood estimate of β satisfies

[X ′K ′(KVK ′)−1KX]β̂ = X ′K ′(KVK ′)−1Z = X ′WQY,

where Q : H → H is the orthogonal projection with kernel ker(K).
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13.5 Deduce that the linear transformation Y 7→ LY = µ̂ = Xβ̂ is a projection
H → H, but not an orthogonal projection unless QX = X .

13.6 Deduce that the composite linear transformation Y 7→ L1Y = Qµ̂ is is
also a projection, and that it is the orthogonal projection whose image is the
p-dimensional subspace QX .

13.7 For the complementary projection P = In−Q whose image is K, deduce
that the composite linear transformation Y 7→ L0Y = Pµ̂ is nilpotent, i.e.,
that L2

0 = 0. What does nilpotence imply about the image and kernel of L0?
Construct the multiplication table for L0, L1.

13.8 Show that the least-squares estimate of the conditional distribution of Y
given Z is

Nn
(
QY + Pµ̂, s2PV

)
for some scalar s2. Show that that the least-squares estimate is singular and
is supported on the k-dimensional coset QY +K. Explain why self-consistency
requires KQ = K.

13.9 Show that the zero-mean exchangeable Gaussian process in section 13.3.3
with covariances

cov(Yr, Ys) = σ2
0δrs + σ2

1 ,

has a dynamic or sequential representation beginning with Y0 = 0 followed by

Yn+1 =
nθȲn

1 + nθ
+ σ0

√
1 + θ/(1 + nθ) εn+1

for n ≥ 0. Here θ = σ2
1/σ

2
0 is the variance ratio, and ε1, . . . are independent

standard normal variables.

13.10 Suppose that X is uniformly distributed on the surface of the unit
sphere in Rd, and that Y ∼ N(X,σ2Id) is observed. Show that Eddington’s
formula reduces to the projection E(X | Y ) = Y/‖Y ‖.

13.11 Suppose that X is uniformly distributed on the interior of the unit
sphere in Rd, and that Y ∼ N(X,σ2Id) is observed. Show that Eddington’s
formula is a radial shrinkage so that E(X | Y ) has norm strictly less than one.
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Chapter 14

Space-time processes

14.1 Gaussian processes

Let U be an arbitrary index set, here identified with the domain. A Gaussian
process associates with each u in the domain a random variable Zu in such
a way that for each sample U = {u1, . . . , un}, the random variable Z[U ] =
(Zu1

, . . . , Zun) has a Gaussian distribution. It should be noted that the sample
points are taken in a specific order, so U is an n-tuple of points from the domain,
and the components of Z are taken in the same order. If U contains repeats, say
U = (u1, u1, u2), then the first two components of Z[U ] are necessarily identical.

As a function on the index set, Z may be real-valued or complex-valued or
Rk-valued or Ck-valued. This chapter focuses entirely on scalar processes, either
real-valued or complex-valued, so Z is a function U → R or a function U → C
into the space of scalars. Since the complex numbers are in 1–1 correspondence
with ordered pairs of reals, every complex-valued process Z = X + iY is also a
R2-valued process (X,Y ). Any reader who has made it this far has every right
to ask why, in a book that professes to be concerned with scientific applications
of statistical ideas, we should concern ourselves with a complex-valued process
when a R2-valued process would serve the same purpose. However, there is a
legitimate reason, which is central to the theme of this chapter. For reasons dis-
cussed below, an arbitrary R2-valued Gaussian process (X,Y ) is not a complex
Gaussian process in the algebraic sense. The algebra of the complex numbers
is not irrelevant in the real world.

A Gaussian process is determined by its mean function µ(·) and its co-
variance function K(·, ·). In the case of a real-valued process, µ is a function
U → R, and K is a symmetric function U ×U → R that is also positive definite.
In the case of a complex-valued process, µ is a function U → C, and K is a
positive-definite Hermitian function U × U → C. Hermitian symmetry means
that K(u, u′) is the complex conjugate of K(u′, u), so K is real and positive on
the diagonal. The mean function is µ(u) = E(Zu); the covariance function is
K(u, u′) = cov(Zu, Zu′) for a real-valued process, and K(u, u′) = cov(Zu, Z̄u′)

193
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for a complex-valued process. On the finite subset U = (u1, . . . , un), the co-
variance matrix of Z[U ] is the finite restriction of K to ordered pairs (ui, uj).
Positive definiteness means that the Hermitian form ξ∗Kξ is non-negative for
every complex n-vector ξ, and every finite restriction of K.

This chapter is concerned exclusively with variances and covariances, so
µ(u) = 0 throughout. In the case of a real-valued process the covariance function

K(u, u′) = cov
(
Z(u), Z(u′)

)
= cov

(
Z(u′), Z(u)

)
= K(u′, u)

is necessarily real and symmetric. In the case of a complex-valued process
Zu = Xu + iYu is a pair of real-valued Gaussian processes with covariance
functions KX and KY respectively. For each pair of points u, u′, not necessarily
distinct, there are two [linearly independent] complex products and four real
products whose means are as follows:

E(ZuZu′) =E(XuXu′ − YuYu′) + iE(XuYu′ +Xu′Yu)

=KX(u, u′)−KY (u, u′) + i
(
KXY (u, u′) +KXY (u′, u)

)
= 0;

E(ZuZ̄u′) =E(XuXu′ + YuYu′)− iE(XuYu′ −Xu′Yu)

=KX(u, u′) +KY (u, u′)− i
(
KXY (u, u′)−KXY (u′, u)

)
= K(u, u′).

The first equation is the condition for a pair of real-valued Gaussian processes
X,Y to determine a complex Gaussian process in the algebraic sense. The zero
real part implies KX = KY , so the real and imaginary parts of Z are two
processes having the same distribution. The imaginary part of the first equa-
tion implies that the cross-covariances satisfy the mysterious skew-symmetry
condition

cov(Yu′ , Xu) = cov(Xu, Yu′) = − cov(Xu′ , Yu) = − cov(Yu, Xu′).

As a consequence, all non-zero second moments of the complex-valued Gaussian
process are encapsulated in the conjugated second moments cov(Zu, Z̄u′) =
K(u, u′).

It is apparent from the preceding paragraph that if X,Y are independent real
Gaussian processes having the same distribution with covariance function K/2,
then Z = X + iY is a complex Gaussian process whose covariance K is real
and symmetric. In that sense, the only interesting complex Gaussian process
are those whose covariance function has a non-zero imaginary part.

In most instances, U is a topological space such as the real line, the plane,
the sphere or the torus, so the continuity or degree of smoothness of the function
u 7→ Z(u) is of considerable interest. In principle, it is possible for the degree
of smoothness to vary throughout the domain, in either a random manner or in
a predetermined manner. But the processes described here are all well-behaved
in the sense that they have the same behaviour throughout the domain.
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14.2 Stationarity and isotropy

14.2.1 Definitions

Stationarity and isotropy are properties of a process that are associated with
a group action on the domain. Stationarity is a symmetry or distributional
invariance under domain translation; isotropy is an invariance under rotation
or orthogonal transformation. For translation to make sense, the domain is
necessarily a vector space or an affine space; for orthogonal transformation to
make sense, the domain is necessarily a Euclidean space.

A stochastic process Z with domain U is said to be stationary if the following
properties hold:

1. The domain is a vector space, either Rd or Cd for some d ≥ 0;

2. Each g ∈ U acts on the domain by addition, sending u to u+ g;

3. The action on the domain sends the original process to Zg(u) = Z(u+ g)
by composition, which is a translation by −g;

4. The process is stationary if each Zg has the same distribution as Z.

Since the group acts transitively on the domain, stationarity implies that each
Zu has the same distribution as Z0, i.e., all one-dimensional marginal distribu-
tions are equal. Since differences are invariant under translation, stationarity
implies that (Zu, Zu′) has the same joint distribution as (Zv, Zv′) whenever
u−u′ = v−v′. Stationarity does not imply that the pair (Zu, Zu′) has the same
distribution as the reverse pair (Zu′ , Zu).

Isotropy has a similar meaning in relation to a different group acting on the
domain, which is necessarily a Euclidean space with an inner product:

1. The domain is Euclidean space, either Rd or Cd for some d ≥ 0;

2. The orthogonal group [with positive determinant] acts on the domain,
sending u to gu;

3. The action on the domain sends the original process to Zg(u) = Z(gu) by
composition, which is a [reverse] rotation;

4. The process is isotropic if each Zg has the same distribution as Z.

Sometimes it is necessary to ask for clarification whether the full orthogonal
group, including reflections, is intended. Sometimes the domain may be a proper
subset of Euclidean space on which the group acts, for example, the unit circle
or the unit disk in the complex plane or the unit sphere in R3.

Ordinarily in applied work, the domain has no natural origin, so it is better
described as an affine space. In such applications isotropy is not a natural
requirement on its own, but the group of proper Euclidean motions (translation
plus rotation) is very natural. Depending on the setting, reflections may or may
not be included.
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A zero-mean complex Gaussian process is stationary if and only if K(u, u′) =
G(u − u′) for some function G such that G(−u) = Ḡ(u). In the case of a
real Gaussian process, G is real, and therefore symmetric. A zero-mean com-
plex Gaussian process is stationary and isotropic if and only if K(u, u′) =
G(‖u− u′‖) for some real-valued function G. Each function G is necessarily
positive definite.

It follows that every stationary isotropic complex Gaussian process Z =
X+ iY is a pair of independent isotropic real Gaussian processes X ∼ Y having
the same distribution. Conversely, a pair (X,Y ) 7→ X + iY of independent and
identically distributed stationary isotropic real-valued Gaussian processes deter-
mines a complex Gaussian process. The situation for stationary non-isotropic
processes is different.

14.3 Stationary Gaussian time series

14.3.1 Spectral representation

Any process whose domain is the set of real numbers is called a time series;
points in the domain are denoted by t.

The Hermitian function

Kω(t, t′) = eiω(t−t′),

which is the Hermitian outer product ξξ∗ of the vector ξ(t) = eiωt with itself,
is positive definite of rank one. Accordingly, if µ is a non-negative measure on
frequencies, the convex combination

Kµ(t, t′) =

∫ ∞
−∞

eiω(t−t′) dµ(ω)

is positive definite Hermitian. As a function of t − t′, it is necessarily the
covariance of a stationary Gaussian time series. Moreover, every stationary
Gaussian process has an associated spectral measure.

In the algebra that follows it is helpful to split the spectral measure into
symmetric and skew-symmetric parts µ = µsym + µalt as follows:

2µsym(A) = µ(A) + µ(−A) (14.1)

2µalt(A) = µ(A)− µ(−A). (14.2)

The symmetric part is non-negative. The alternating part is a signed measure
such that −1 ≤ (dµalt/dµsym)(ω) ≤ 1 for every ω. If we write t for the temporal
difference, the result of this decomposition of the measure is

Kµ(t) =

∫ ∞
−∞

cos(ωt) dµsym(ω) + i

∫ ∞
−∞

sin(ωt) dµalt(ω)

=Ksym
µ (t) + iKalt

µ (t),
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which is a decomposition of K into real and imaginary parts. Every pair of
symmetric and alternating measures such that |µalt| ≤ µsym gives rise to a
positive definite Hermitian function, and vice-versa.

14.3.2 Matérn class

Let ν > 0 be a fixed index, and −1 ≤ a ≤ 1 a given constant. The Matérn
spectral measure is symmetric with density

dµsym(ω) =
dω

(1 + ω2)ν+1/2
,

so the Matérn covariance function is real and symmetric. To a certain extent,
the choice of µalt is arbitrary, but one choice that pairs well is

dµalt(ω) =
dω

(1 + ω2)ν+1/2
× 2bω

1 + ω2
.

The condition −1 ≤ b ≤ 1 implies that the skew factor 2bw/(1 + w2) lies
in [−1, 1], so |µalt| ≤ µsym. Other possibilities for the skew factor include
aω/(1 + ω2)1/2.

For the spectral measures shown above, the covariance function is propor-
tional to

Kµ(t) = |t|νKν(|t|)
(
1 + ibt/(ν + 1/2)

)
, (14.3)

where Kν is the Bessel function of order ν. For a derivation of the real part, see
Stein (1999, section 2.10) or Exercises 14.1–14.5. In applications, t is replaced
with t/ρ for some temporal range ρ.

14.4 Stationary spatial process

14.4.1 Spectral decomposition

We assume in this section that the domain is Rd for some d ≥ 1. In most
examples, the domain is also assumed to be Euclidean with an inner product
and a norm, so that the orthogonal group may act on it. To distinguish space
from time, particularly in the case d = 1, points in the domain are called sites
and are denoted by x.

The frequency vector ω = (ω1, . . . , ωd) is a linear functional on the domain,
so that the scalar product ωx ≡ ω′x is the value at x. The Hermitian function

Kω(x, x′) = eiω(x−x′),

which is the Hermitian outer product ξξ∗ of the function ξ(x) = eiωx with itself,
is positive definite of rank one. For each non-negative measure µ on frequencies,
the convex combination

Kµ(x, x′) =

∫ ∞
−∞

eiω(x−x′) dµ(ω)
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is positive definite Hermitian. As a function of x − x′, it is necessarily the co-
variance of a stationary Gaussian process. Moreover, every stationary Gaussian
process has an associated spectral measure.

We decompose the measure into symmetric and alternating parts as defined
in (14.1), so that

−1 ≤ dµalt

dµsym
(ω) = − dµalt

dµsym
(−ω) ≤ 1.

Since µsym is even and µalt is odd, the associated covariance function is

Kµ(x) =

∫ ∞
−∞

cos(ωx) dµsym(ω) + i

∫ ∞
−∞

sin(ωx) dµalt(ω)

=Ksym
µ (x) + iKalt

µ (x),

where x is the spatial difference vector for two sites. By constructionKsym
µ (−x) =

Ksym
µ (x) is even, whereas Kalt

µ (−x) = −Kalt
µ (x) is odd.

For a simple illustrative example, the first-order Taylor expansion about
a = 0 of the shifted Matérn measure

dω

(1 + ‖x− a‖2)d/2+ν
=

dω

(1 + ‖a‖2 + ‖ω‖2 − 2aω)d/2+ν

=
dω

(1 + ‖ω‖2)d/2+ν
+

(d/2 + ν)2aω dω

(1 + ‖ω‖2)d/2+ν+1
+ o(‖a‖)

is a µsym + µalt decomposition in which µsym is also orthogonally invariant.

14.4.2 Matérn spatial class

For general ν > 0, the Matérn spectral measure on Rd is finite and radially
symmetric with density

dµsym(ω) =
Γ(ν + d/2) dω

πd/2(1 + ‖ω‖2)ν+d/2
. (14.4)

The Matérn covariance function ‖x‖νKν(‖x‖) is real symmetric, and the asso-
ciated Gaussian process is isotropic in Rd.

To a certain extent, the choice of µalt is arbitrary, but there is one mathe-
matically natural choice

dµalt(ω) = dµsym(ω)× 2aω

1 + ‖ω‖2
,

where aω is the scalar product of Euclidean vectors. The skew perturbation
is the stereographic projection from the unit sphere in Rd+1 into Rd of the
spherical harmonic of degree one having polar vector a ∈ Rd in the equatorial
plane. The polar condition ‖a‖ ≤ 1 is required for positivity of the density on
the sphere, so |µalt| ≤ µsym.
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The covariance function for the symmetric spectral measure is the standard
Matérn function

Mν(‖x− x′‖) ∝ ‖x− x′‖νKν(‖x− x′‖),

where Kν is the Bessel function of order ν. The Matérn model is isotropic
with strictly positive covariances at every distance. For the spectral measure
µsym + µalt, the covariance function is

Mν(‖x− x′‖)
(
1 + ia(x− x′)/(ν + d/2)

)
. (14.5)

In addition to the index and the range parameter which is not shown, this
covariance also depend linearly on the polar vector.

The effect of the polar asymmetry in (14.5) can be understood from the
covariance of sums with spatial differences

cov
(
Z(x) + Z(x′), Z̄(x)− Z̄(x′)

)
= 2Mν(‖x− x′‖) ia(x′ − x)

ν + d/2

so that the absolute covariance is maximized by spatial differences x′−x in the
polar direction.

Domain restriction

The reason for choosing the dimension-dependent power in the denominator
of (14.4) is partly to guarantee integrability, but that reason is not sufficient
to explain this particular choice. The real reason is that the index ν + d/2
ensures that the measures µsym,d for different spaces are mutually compatible
in the sense that µsym,d+1(A×R) = µsym,d(A) for every d and arbitrary subsets
A ⊂ Rd. See Exercises 14.3–14.5.

Compatibility of spectral measures is more a matter of convenience than
logical necessity. It implies that if Z is a Matérn process with index ν on Rd+1,
the restriction of Z to a lower-dimensional affine subspace is also a Matérn
process having the same index and range parameter.

The situation for µalt and the covariance function (14.5) is more complicated
because the effect on the polar vector of the subspace restriction must also be
taken into account. Since a acts as a linear functional on the domain, it is
natural to associate with each subspace restriction the corresponding orthogonal
projection. As they are written, the measures µalt,d are not mutually compatible
in that sense. Compatibility is restored if we set a finite maximum for d and
replace a with a′ = a/(ν + d/2). Otherwise, we can regard a as an infinitesimal
generator for a perturbation; see section 14.6.3.

14.4.3 Illustration by simulation

Figures 14.1 shows two independent simulations of the zero-mean complex-
valued Gaussian process using the isotropic Matérn covariance function with
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index ν = 1. At each point x in the 50 × 50 grid, the arrow shows the magni-
tude and direction of the field Z(x) at that point. In fact, the plotted value is
not Z(x) but the deviation of Z(x) from the sample average. This was done in
order to reduce visual clutter and to focus attention on spatial variability.

This process with ν = 1 is relatively smooth with one continuous spatial
derivative (a 2× 2 partial derivative matrix), so that streamlines can be traced
visually. Both simulations are on a 10 × 10 grid, with range parameter ρ = 5
in the first and ρ = 1 in the second. The large range parameter means that
the most distant pairs are moderately highly correlated with correlation 0.14.
In the second plot, the distant pairs are essentially independent. The first plot
can be viewed as a five-fold magnification of a part of the second process.

The simulations for ν = 0.5 in Fig. 14.2 are in the same format. They are
considerably rougher, and the streamlines more ragged. The correlation for the
most distant pairs in the first plot is 0.06.

In the isotropic case, the covariance function is real, which means that the
real and imaginary components of the field are independent and identically
distributed. In that respect, the visual impression may be misleading.

Four relatively smooth anisotropic zero-mean processes are illustrated in
Fig. 14.3–14.4. These have covariance function (14.5) with ν = 1. The range
parameter is ρ = 1, so the values at more distant points are essentially inde-
pendent. The polar vector is the unit vector (cos θ, sin θ) with arguments θ =
0, π/6, π/3, π/2. The nature of the anisotropy is not easy to discern from simu-
lations.

14.5 Covariance products

14.5.1 Hadamard product

Let Z = (Z1, . . . , Zn) and W = (W1, . . . , Zn) be zero-mean independent Gaus-
sian vectors in Cn with covariance matrices K and C respectively. Then the
covariances of the products are

cov(ZrWr, Zs,Ws) = 0; cov(ZrWr, Z̄s, W̄s) = KrsCrs.

The non-zero covariance is the component-wise product of the two covariance
matrices. In the case of real-valued random variables, where there is no distinc-
tion between Z and Z̄, the conjugated version prevails even if the distributions
are non-Gaussian.

The preceding derivation is the simplest proof of Schur’s product theorem,
which states that the Hadamard product of positive-definite matrices is itself
positive definite. The most immediate consequence for Gaussian processes is
that the functional product K(x, x′)C(x, x′) of two covariance functions on the
same space is also a covariance function. In particular, C = K implies that the
squared function K2(x, x′) is positive-definite Hermitian, and C = K̄ implies
that the squared modulus |K|2(x, x′) is real symmetric and positive-definite.
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Figure 14.1: Two simulations of an isotropic complex Gaussian field
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Figure 14.2: Two simulations of an isotropic complex Gaussian field
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Figure 14.3: Two anisotropic Gaussian fields, one with θ = 0 and one with
θ = π/6
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Figure 14.4: Two anisotropic Gaussian fields, one with θ = π/3 and one with
θ = π/2
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As an example, suppose that C and K are skew-Matern covariances (14.5),
with polar vectors a and b respectively. The product is

M2
ν (‖x− x′‖)

(
1 +

ia(x− x′)
ν + d/2

)(
1 +

ib(x− x′)
ν + d/2

)
,

which is positive-definite Hermitian on Rd. The real part of the product is
symmetric and positive definite:

M2
ν (‖x− x′‖)

(
1− Q(x− x′)

(ν + d/2)2

)
, (14.6)

where x 7→ Q(x) is a rank-one quadratic form in x whose singular value ‖a‖×‖b‖
is less than one. The singular vectors are the unit polar vectors a/‖a‖ and b/‖b‖.
Since a non-negative linear combination of positive-definite functions is positive
definite, it follows that (14.6) is positive definite for every quadratic form Q
whose nuclear norm satisfies ‖Q‖∗ ≤ 1. The nuclear norm is the sum of the
singular values.

In the rank-one case, the trace of Q is
∑
aibi, which is the scalar product of

the polar vectors. Thus, if the polar vectors come in mutually orthogonal pairs,
Q is trace-free, which means that x 7→ Q(x) is a spherical harmonic of degree
two.

14.5.2 Separable products and tensor products

Let K(u, u′) be a positive definite function on U , and C(v, v′) a positive definite
function on V. Let the eigenvalues and eigenfunctions of K be {λi, ξi(u)}, so
that

∫
U K(u, u′)ξi(u

′) du = λiξi(u). Likewise, on V, let the eigenvalues and
vectors of C be {ρj , ζj(v)}.

The product space U ×V consists of ordered pairs (u, v), and the covariance
product

K2((u, v), (u′, v′)) = K(u, u′)C(v, v′) (14.7)

is a natural candidate for a covariance function on the product space. An
elementary calculation shows that ξi(u)ζj(v) is an eigenfunction of the product:∫
K(u, u′)C(v, v′)ξi(u

′)ζj(v
′) du′ dv′ =

∫
U
K(u, u′)ξi(u

′) du′
∫
V
C(v, v′)ζj(v

′) dv′

= λiρj ξi(u)ζj(v).

Thus, the eigenvalues of the product are the products of the eigenvalues. Hence
the covariance product is positive definite on the product space, and the rank
of the product is the product of the ranks.

One important special case occurs when the spaces U and V are equal. The
covariance product (14.7) restricted to the diagonal of U×U is nothing more than
the Hadamard product of two covariance functions on U . Positive definiteness
follows trivially from the definition.
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A covariance function on the product space is said to be separable if it is
expressible as a single product, as in (14.7). A statistical covariance model
is said to be separable if each covariance function in the model is separable.
For example, the space-time covariance model consisting of the infinite set of
covariance functions

{σ2e−|t−t
′|/λKµ(x, x′) : σ2, λ, ν > 0; ‖a‖ ≤ 1}

for Kµ in (14.5), is space-time separable.
A tensor product is a linear combination of pairwise products taken from

two basis sets, say K0,K1 on U and C0, C1, C2 on V, and the tensor product
space is the set of all such combinations. Most statistical applications employ
tensor products in this form as models for covariances, with constraints on the
coefficients to ensure positive definiteness. A tensor product is typically not
separable.

The matrix formed by restriction of the separable product to a finite product
grid is the Kronecker product of the marginal restrictions, and the inverse of a
Kronecker product is the Kronecker product of the inverses. This fact makes
for enormous simplification of statistical calculations related to Gaussian esti-
mation and prediction, and that computational simplicity is the chief attraction
of separable covariance models.

Separable covariances have a deservedly poor reputation in applied work
for several reasons including the following. Suppose that a spatio-temporal
Gaussian process Z is observed at a collection of sites x1, . . . , xn at times t1 <
· · · < tk, and it is required to predict the values at the same sites at a later
time tk+1. Suppose that the covariance function is given and separable. Then
the conditional expected value of Z(xi, tk+1) given the data is a linear function
of previous values for this site only. See exercises 14.?–? for an outline of a
proof. In other words, separability implies that values observed at other nearby
sites are irrelevant for prediction in this regular grid-like sampling scheme. This
consequence of separability is unacceptable for almost any naturally-occurring
process.

14.6 Real spatio-temporal process

14.6.1 Covariance products

The simplest way to construct a positive-definite covariance on a product space
is to begin with a covariance function or set of covariance functions on each
space, and to use tensor products. Usually a single product is not sufficient for
applied work. Elementary examples can be found in (5.4).

For purposes of illustration, we use the temporal family (14.3) and the spatial
family (14.5) with the same index. Writing x and t in place of x− x′ and t− t′,
the outer product is

Mν(‖x‖)
(
1 + iax/(ν + d/2)

)
×Mν(t)

(
1 + ibt/(ν + 1/2)

)
, (14.8)
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where −1 ≤ b ≤ 1 is a scalar. This product splits into four sub-products, two
real and two imaginary:

Mν(‖x‖)Mν(t);

Mν(‖x‖)Mν(t)× iax/(ν + d/2);

Mν(‖x‖)Mν(t)× ibt/(ν + 1/2);

Mν(‖x‖)Mν(t)×−ax bt/((ν + 1/2)(ν + d/2)). (14.9)

For a real spatio-temporal process, the two imaginary terms can be discarded.
We are left with a linear combination of the two real products,

Mν(‖x‖)Mν(t)

(
1− ax bt

(ν + 1/2)(ν + d/2)

)
. (14.10)

Only the first of these is positive definite. Nevertheless, the linear combination
is positive definite for all ‖a‖ ≤ 1.

The complex temporal process associated with (14.3) is stationary but not
reversible. The complex spatial process associated with (14.5) is stationary, but
the polar parameter implies a specific directional asymmetry. By contrast, the
real space-time process with covariance (14.10) is spatially isotropic at every
time, and it is temporally reversible at every site. However, the space-time
process is neither isotropic nor time-reversible. The fourth product in (14.9)
is the interaction of one temporal asymmetry with one spatial asymmetry. It
implies that the real Gaussian process with covariance (14.10) has the same
distribution as the time-reversed process with polar vector −a.

Since b is a real number, it can be ignored or absorbed into other factors. The
product (14.9) is linear in x1, . . . , xk with coefficients proportional to the polar
coefficients a1, . . . , ak. It can therefore be expressed as a linear combination of
k similar terms, with coefficients to be estimated from the data.

14.6.2 Travelling wave

Any continuous group acting on the spatial domain g : x 7→ gx can be made to
act on the space-time product space, either in a trivial way (x, t) 7→ (gx, t) or
in a non-trivial way. The simplest non-trivial action is that of a wave travelling
with constant velocity g ∈ Rd, so that the group action (x, t) 7→ (x− gt, t) is a
spatial shift proportional to time. Such a transformation on the domain induces
a transformation on the process, sending Z(x, t) to W (x, t) = Z(x − gt, t) by
composition. Positive-definiteness of the composite covariance function follows
automatically from the definition.

If the original process Z has a separable covariance function K(x, x′)C(t, t′),
the transformed covariance function

cov
(
W (x, t), W̄ (x′, t′)

)
= cov

(
Z(x− gt, t), Z̄(x′ − gt′, t′)

)
=K(x− gt, x′ − gt′)C(t, t′)
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is a K×C product, but it is not a space-time separable product. At time t, the
process has a random spatial profile whose covariance function is

cov
(
W (x, t), W̄ (x′, t)

)
= K(x− gt, x′ − gt)C(t, t).

Assuming that K and C are both stationary, the spatial profile is a Gaussian
process with covariance K(x−x′)C(0), which is stationary in space and constant
in time. Although the spatial distribution is constant in time, the profile itself
is not static unless the spatial factor is constant C(t) = C(0).

As a specific example consider a complex-valued Matérn process in Rd with
polar vector a and covariance function (14.5). The covariance function for the
associated wave travelling at velocity v is

Mν(‖x− x′ − v(t− t′)‖)
(

1 +
ia(x− x′ − v(t− t′)

ν + d/2

)
. (14.11)

Using the temporal covariance (14.3) with b = 1, and writing x, t in place of
x− x′ and t− t′, the four components of the product are obtained by replacing
x with x− vt in (14.10):

Mν(‖x− vt‖)Mν(t); (14.12)

Mν(‖x− vt‖)Mν(t)× ia(x− vt)/(ν + d/2);

Mν(‖x− vt‖)Mν(t)× it/(ν + 1/2);

Mν(‖x− vt‖)Mν(t)× −axt+ avt2

(ν + 1/2)(ν + d/2)
. (14.13)

Since we are interested in real-valued spatio-temporal processes, we focus on
the two real parts whose sum is automatically positive definite. Note that ax is
the scalar product of the polar vector with the spatial displacement x, and av
is the scalar product with the velocity vector.

For application to fluid dynamics, other groups may be relevant, in particular
the group of rigid Euclidean motions in Rd, which allows the wave to rotate as it
travels. It is convenient to illustrate the idea for d = 2 by regarding R2 ∼= C as
the spatial domain, so that the group element g = (θ, v) acts as a rigid Euclidean
motion on the space-time domain by

g : (x, t) 7→ (eiθtx− vt, t).

The group element has two components, θ ∈ [0, 2π) or R (mod 2π), and v ∈ C.
The covariance function for the transformed process is obtained by substituting
eiθtx − vt for x − vt in (14.11) and (14.9). If the polar vector a is also taken
as a complex number, ax is the real part of the complex product ax̄, not the
product of complex numbers.

The concept of a flowing compressible fluid is of central importance in partial
differential-equation models governing atmospheric physics and fluid mechanics
more generally. Matter, heat and electrical particles are transferred by fluid
flow, a phenomenon known as advection. It is only natural to think of v as an
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advection vector in (14.11). This mechanical portrayal conveys a vivid image
but the picture may be seriously misleading. Although some waves do travel
in a fluid, there is no essential connection between the fluid velocity and the
wave velocity. As the following example demonstrates, the wave velocity may
be substantially greater than the fluid velocity—and not necessarily in the same
direction.

14.6.3 Perturbation theory

One way to understand the skew-symmetric contribution in section 14.4 is to
view the parameter a (or a/(ν+d/2)) as a small perturbation of the Matérn spec-
tral measure µsym. In that case, we can approximate (14.5) by a perturbation
generated by the group element eiax acting on the process. As always, x 7→ ax
is the scalar product of vectors in Rd. In other words, if Z is an isotropic process
with covariance Mν(‖x− x′‖), the covariance of the non-isotropic perturbation
W (x) = eiaxZ(x) is

cov
(
W (x), W̄ (x′)

)
=Mν(‖x− x′‖)eia(x−x′)

=Mν(‖x− x′‖)
(
1 + ia(x− x′) + o(‖a‖)

)
.

By construction, this function is positive definite for all vectors a; it is an
approximation to (14.5) only for small a.

If we also regard the temporal covariance (14.3) as a multiplicative per-
turbation with parameter b, we arrive at a multiplicative perturbation of the
covariance product in the form

eia(x−x′)+ib(t−t′) = eia(x−vt−(x′−vt′)),

with v ∈ Rd as velocity vector and b = −av as the scalar product. The
perturbation-theory covariance function

Mν(‖x− x′‖)Mν(t− t′)eia(x−vt−(x′−vt′))

has some of the characteristics of a travelling wave, but it is not the same as
(14.11).

14.7 Summer cloud cover in Illinois

Figure 14.5 illustrates the fractional cloud cover on a 15 × 15 grid of points
in central Illinois with 0.2 degrees separation in latitude and longitude, which
implies 17.0×22.2 km cells. Successive panels show the cloud cover at 30-minute
intervals from 6.00am to noon on June 9, 1998.

Solar irradiance is measured by a geostationary satellite, and fractional cloud
cover is the complement of the ratio of solar irradiance relative to the clear-
sky maximum at that time and location. The value lies between zero and
one. On this day, the average fractional cloud cover was 35%. Cloud cover is
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Figure 14.5: Fractional cloud cover on a 15 × 15 spatial grid in central Illinois
in half-hour intervals from 6.00am to 11.30am on June 9, 1998

the primary variable that limits the production of solar energy. Its evolution
throughout the day is of commercial interest for short-term prediction of solar
electrical generating capacity, so that alternative sources may be brought online
if needed.

For this illustration, only the first 2.5 hours of data from 6.00am to 8.30am
are used for parameter estimation and model fitting. This corresponds to the
top six panels in Fig. 14.5. The process appears to be relatively smooth in space
and in time, so we use the Matérn model (14.10) with ν = 1 for both space and
time. Two range parameters, ρ0 for time in minutes, and ρ1 for distance in
km. are also needed, so t is replaced by t/ρ0 and x by x/ρ1. The isotropic sub-
model has a = 0. The maximally anisotropic model takes b = 1 and advection
a = (cos θ, sin θ) as a unit vector in the east and north directions respectively.

For both the isotropic and the anisotropic covariance models, the mean frac-
tional cloud cover is taken to be linear in both space and time. This may be
adequate for short-term prediction, but it is not recommended for long-term
prediction or extrapolation beyond the spatial domain. As always, a nugget
term is included in the covariance model. The fitted range parameters for the
isotropic model are 32.5 minutes and 27.0 km, while the variance components
are 0.0219 for the identity matrix and 0.0283 for the Matérn product covariance.
For the anisotropic model (14.10) using the unit vector a = (cos θ, sin θ) with

θ̂ = 3.01, the fitted range parameters are 32.0 minutes and 26.0 km, while the
variance components are 0.0215 and 0.0276.

The REML log likelihood for the fitted anisotropic model is 11.23 units
higher than that for the isotropic model. Since the anisotropic model has two
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Table 14.1. Summary of fitted parameters for four space-time models

Parameter Isotropic (14.10) (14.12) +(14.13)

Spatial range (km) 27.0 26.0 35.0 35.5
Temporal range (min) 32.5 32.0 61.0 62.0
Nugget variance 0.0219 0.0215 0.0240 0.0238
Matérn variance 0.0283 0.0276 0.028 0.0298
Wave speed (km/min) 0.0 0.0 0.70 0.70
Wave direction θ — — 0.033 0.00
Polar norm ‖a‖ 0.0 1.0 0.0 0.67
Polar direction φ — 3.01 — 0.63

Log likelihood 4.724 15.954 23.522 24.920
RMSE 9.00am 0.140 0.131

Table 14.1: Summary of fitted parameters for four space-time models

additional parameters, both ‖a‖ and θ, the likelihood-ratio test statistic is nomi-
nally on two degrees of freedom. In fact, ‖â‖ = 1 on the boundary, which slightly
complicates the null distribution theory. Nevertheless, the observed likelihood-
ratio test statistic of 22.46 leaves no doubt about the existence of space-time
anisotropy for the cloud-cover process. Whether the formulation (14.10) cap-
tures adequately the full extent of anisotropy is another matter. Most likely,
the polar vector could not be expected to remain constant from one day to the
next.

Table 14.1 shows the fitted parameters for four spatial models, all including a
nugget effect. Each of the anisotropic models is a substantial improvement over
the isotropic Matérn product. The simplest travelling wave model (14.12) is the
most effective; the additional polar anisotropy in (14.9) does not substantially
improve the fit.

In both travelling-wave models, the estimated wave velocity is approximately
0.7 km/min, or 42 km/hr, or 26 mph from the east. However, that particular
June morning was calm and humid, with light and variable winds averaging
four mph. In such circumstances, a wave travelling at 42 km/hr in any direction
might be attributed to changes in temperature or pressure, but it cannot be
attributed to atmospheric advection.

The large value of the nugget variance relative to the spatio-temporal vari-
ance implies that even the best predictor has a substantial variance. The nugget
standard error is a lower bound for the root mean square prediction error, and
the fitted values are 0.148 for the isotropic model, and 0.147 for the anisotropic
model (14.10). The empirical one-step-ahead root mean square prediction error
averaged over 225 sites for 9.00am are 0.140 for the isotropic model and 0.131
for the anisotropic model (14.10).
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14.8 More on Gaussian processes

14.8.1 White noise

An alert reader may have noticed that the definition of a Gaussian process in
section 14.1, and the definitions of stationarity and isotropy in sections 14.2–
3, are not sufficiently broad to include the simplest non-trivial Gaussian pro-
cesses on the real line or on the plane. On an arbitrary domain with mea-
sure Λ, white noise is a zero-mean Gaussian process indexed by subsets such
that, cov(W (A),W (B)) = Λ(A ∩B). The process takes independent values on
disjoint sets, and variances are determined by the intensity measure. If Λ is
Lebesgue measure on the real line or Rd, which is the standard choice for those
domains, the process is both stationary and isotropic. The notation here and
subsequently in this section presumes that the process is real-valued.

The earlier definition is inadequate because it assumes that the domain and
the index set are one and the same set. This is sufficient for processes defined
pointwise, but it is not sufficient to cover many of the generalized or intrinsic
processes that occur in applied work. For planar white noise, the domain is
D = R2 or C, but the index set U is the set of Borel subsets in the domain.
More correctly, U is the proper subset consisting of Borel sets of finite Λ-measure.
The definition of stationarity offered in section 14.2.1 is not applicable to white
noise because it presumes that W (x) exists.

Stationarity and isotropy refer to a group acting on the domain x 7→ gx
either by translation or rotation. There is a natural induced action on the index
set A 7→ gA, which is a rigid Euclidean motion of subsets. With an appropriate
modification to distinguish between the domain and the index set, white-noise
with intensity Λ is stationary or isotropic if the measure is invariant under this
action.

Every process Z that is defined pointwise and is continuous on the domain
can be extended by integration to an additive process W on domain subsets

W (A) =

∫
A

Z(x) dΛ(x).

Additivity for disjoint subsets means W (A ∪B) = W (A) +W (B). The covari-
ance function K(x, x′) of Z is the covariance density of W

cov
(
W (A),W (B)

)
=

∫
A×B

K(x, x′) dΛ(x) dΛ(x′).

White noise is not a continuous process and does not have a covariance density.
However, cov(W (A),W (B)) = Λ(A∩B) means that there is a covariance mea-
sure, which is the Dirac-type singular measure Λ(·) concentrated on the diagonal
in D2.

The extension to subsets is a half-way house that suffices for a few purposes,
but it is not adequate for mathematical work, which requires all variances to be
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finite, and it is not entirely adequate even for applied work. Consider, for ex-
ample, the additive planar process defined for regular planar subsets as follows:

cov(W (A),W (B)
)

=

{
Λ1(∂A ∩ ∂B), Int(A) ⊂ Int(B) or Int(B) ⊂ Int(A);
−Λ1(∂A ∩ ∂B), Int(A) ∩ Int(B) = ∅.

Regular means that each planar subset A has a well-defined interior Int(A), and
a one-dimensional boundary ∂A of finite length Λ1(∂A). Additivity implies that
the variance for more general regions is the boundary length, and the covariance
for two regions is the total signed length of the common boundary.

It is not clear from the preceding description how we are meant to deal with a
subset having an irregular boundary or an empty interior, so this specification is
not entirely satisfactory. It is also unclear whether a covariance measure exists.
The more satisfactory way to study such processes is to abandon subsets and to
use a suitable Hilbert space as the index set. Planar white noise is associated
with the space of square-integrable functions f : R2 → R; a subset is nothing
more than its indicator function. The process described above is associated
with functions such that the norm of the derivative vector is square-integrable∫
‖f ′(x)‖2 dΛ(x) <∞.

14.8.2 Limit processes

This section deals with questions of two types, the first related to limits of
Gaussian processes, the second related to prediction and limits of conditional
distributions.

Two families of processes are used to illustrate the development. Both are
indexed by a single parameter θ > 0, and the limit refers to θ → ∞. The first
is an exchangeable Gaussian process in which the covariance function is

cov(Zi, Zj) = δij + θ, (14.14)

which means that the covariance matrx of Z[n] is In + θJn. The second is a
Matérn-1/2 process defined pointwise on Rd with covariance function

cov
(
Z(x), Z(x′)

)
= θe−‖x−x

′‖/θ. (14.15)

Here, θ is the range parameter, and the limit θ → ∞ addresses long-range
dependence. Inessential scalar multiples, which would almost always occur in
applied work, are disregarded.

Each question gives rise to a number of subsidiary questions along the fol-
lowing lines:

1. Does the limit process exist? (N). If not, does any limit process exist? (Y).
If a non-trivial limit exists, exhibit the index set, the covariance function,
and so on.

2. For fixed n, is there an invertible normalization that produces a limit
distribution? (Y).
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3. What is the conditional distribution of Z(x0) given Z(x1), . . . , Z(xn)?
Does the conditional distribution have a limit as θ →∞? (Y).

4. Can the limiting conditional distribution be obtained from the limit pro-
cess? (N). Can the limiting conditional distribution be obtained from the
limit in part 2? (Y).

5. Can the best linear predictor (BLP) of Zn+1 be obtained from the limit
process? (Y). Can the conditional expected value of Zn+1 given Z[n] be
computed from the limit process? (N).

The two examples are generic, so the answers indicated in parentheses apply
equally to both.

Existence of a limit process

In the first example Z1 ∼ N(0, 1 + θ), and in the second Z(x) ∼ N(0, θ).
Neither sequence of distributions has a limit as θ → ∞, so the answer to the
first question is negative. On the other hand, Zi−Zj ∼ N(0, 2) for i 6= j, while
Z(x)− Z(x′) has variance

2θ − 2θe−‖x−x
′‖/θ = 2‖x− x′‖+O(θ−1).

Both limits exist and the distributions are Gaussian. More generally, for n ≥ 1
and any coefficient vector α = (α1, . . . , αn) whose components add to zero,
the linear combination

∑
αjZj is Gaussian with variance ‖α‖2 =

∑
α2
j , inde-

pendent of θ. In the case of the Matérn model,
∑
αjZ(xj) is Gaussian with

variance α′Dα+O(θ−1), where Dij = −‖xi − xj‖ is the n×n matrix of negative
Euclidean distances. In both cases the limit exists for arbitrary contrasts.

The easiest way to characterize the preceding limit is to use the vector space
of contrasts as the index set. For ease of exposition, suppose that the set of
points under consideration is fixed and finite, so that a contrast α ∈ 10

n is a
vector whose components add to zero. The value at contrast α is W (α) =
α1Z1 + · · ·+ αnZn for (14.14), or

∑
αrZ(xr) in the case of the Matérn model.

The limiting covariance of two contrasts is the Hilbert-space inner product

cov
(
W (α),W (β)

)
= 〈α, β〉 =

{ ∑
r αrβr (14.14);

−
∑
r,s αrβs‖xr − xs‖ (14.15).

The Hilbert space H∗n has dimension n − 1, but it is exhibited here as the
subspace 10

n of contrasts in a vector space of dimension n. Consequently, the
inner-product matrix is of order n, and is not unique. For the first example, we
could use either the identity matrix of order n or In − Jn/n.

Since every n-contrast is also a (n + 1)-contrast whose last component is
zero, the Hilbert-space H∗n of n-contrasts is a subspace of H∗n+1. Kolmogorov
consistency is automatic, but is equivalent to the statement that the restriction
or insertion H∗n ↪→ H∗n+1 is an isometry. In effect, H∗∞ includes all of the finite-
dimensional spaces as subspaces. In fact, the restriction to contrasts determines
a consistent process, not only in the limit, but for every θ.
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An equivalent way of saying the same thing is that the process for finite θ
is defined conventionally for finite samples as a probability distribution Pn,θ
on the space B(Rn) of Borel subsets in Rn. For any event A ⊂ Rn such that
A + 1n = A, the value assigned by Pn,θ to A has a limit Pn,∞(A), which a
Gaussian probability. These translation-invariant events A ∈ B(Rn/1n) are the
only events to which the limit process assigns a probability. Thus, the non-trivial
limit is obtained by restriction of the σ-field.

Existence of a limit distribution

In all examples of the type under consideration, the covariance matrix of Z[n]
is

cov(Z[n]) = θJn + Σ +O(θ−1) (14.16)

where Σ is independent of θ and is also positive definite on contrasts. For the
Matérn example, Σ is the matrix with components −‖xi − xj‖.

Let P = Jn/n and Q = In − P be complementary projections, so that

cov

(
θ−1/2PZ
QZ

)
=

(
Jn + PΣP/θ PΣQ/θ1/2

QΣP/θ1/2 QΣQ

)
→
(
Jn 0
0 QΣQ

)
.

Consequently, the vector W = θ−1/2PZ +QZ with components

Wi = θ−1/2Z̄n + (Zi − Z̄n)

has a Gaussian limit distribution with covariance matrix Jn + QΣQ′. For
each n ≥ 1, the transformation Z[n] 7→W is invertible, so the answer to part 2
is affirmative.

Note that W ∈ Rn is not the restriction of the corresponding transformation
in Rn+1, so there is no W -process associated with these transformations. The
existence of a limit distribution for every n does not imply the existence of a
limit process.

Limit of conditional distributions

The conditional distribution of Z(x0) given Z(x1, . . . , Z(xn) is Gaussian, so it
is necessary only to compute the conditional mean and variance, and to observe
the behaviour as θ → ∞. For the exchangeable model, the conditional mean
and variance are

E
(
Zn+1 | Z[n]

)
=

nθZ̄n
1 + nθ

, var
(
Zn+1 | Z[n]

)
=

1 + (n+ 1)θ

1 + nθ
,

so the limit of the conditional distributions is N(Z̄n, 1).
For the spatial model, the calculations for finite θ are a little more com-

plicated, so it is necessary to take limits as the calculation progresses. Let
L = θ−1/2L0 + L1 be the matrix of a linear transformation in Rn+1

L0 =

(
Pn 0
0 0

)
, L1 =

(
Qn 0
−1n/n 1

)
,
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where Pn and Qn = In − Pn are the complementary projections denoted by
P,Q in the preceding section. From the representation (14.16), the covariance
matrix of W = LZ has a limit, which is the sum of two mutually orthogonal
matrices

cov(LZ) = θLJn+1L
′ + LΣL′ +O(θ−1)

=

(
Jn 0
0 0

)
+ L1ΣL′1 +O(θ−1).

For each n, it follows that θ−1/2Z̄n has a standard normal limit as θ →∞, and
is asymptotically independent of every contrast Zi− Z̄n, not only for i ≤ n, but
also for i = n+ 1. Thus, the limiting conditional mean satisfies

E(Zn+1 − Z̄n | Z[n]) =

n∑
r=1

βrZr, (14.17)

E(Zn+1 | Z[n]) = Z̄n +

n∑
r=1

βrZr, (14.18)

where β is the orthogonal projection H∗n+1 → H∗n of the coeffficient vector
(−1n/n, 1) associated with the contrast Zn+1 − Z̄n. The linear combination
(14.18), which is not a contrast, is often called the best linear predictor (BLP).
The limiting conditional variance is the reciprocal of the last diagonal component
of (L1ΣL′1)−1.

Conditional distributions for the limit process

The situation regarding conditional distributions for the limit process is different
in a fundamental but subtle way. The joint distribution for any set of contrasts
is determined by the Hilbert-space inner product. In particular, the conditional
distribution of the contrast Zn+1− Z̄n given the σ-field generated by Z1, . . . , Zn
is Gaussian with mean (14.17) and variance as described above. However, the
limit process is defined on contrasts only, so the σ-field generated by Z1, . . . , Zn
is the σ-field generated by contrasts, which means that the coefficient vector β in
(14.17) is a contrast in H∗n. The limit process does not admit either Zn+1 or Z̄n
as a Gaussian variable, so the crucial statement that Zn+1 − Z̄n is independent
of Z̄n is either meaningless or mathematically trivial. In either case, the fiducial
leap from (14.17) to (14.18) requires a σ-field extension, which cannot follow
from the limit process alone.

Limit process as a Markov kernel

The limit process with probabilities defined on the σ-field generated by con-
trasts has a certain mathematical elegance—brutal and minimalist. But the
σ-field restriction is a price too steep for any applied statistician interested in
probabilistic prediction. Is there a way out, a way that retains the elegance of
contrasts at a more affordable price? The answer, we hope, is yes.
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A Markov kernel is a function that associates with each µ ∈ R a Gaussian
process Z such that, for each contrast α ∈ 10

n, the increment or linear functional∑
αrZr has the same distribution as that in the limit process. There is no σ-field

restriction.

14.9 Exercises

14.1 By making the transformation u = 1/(1 + x2) and converting to a beta-
type integral on (0, 1), show that

2

∫ ∞
0

xd−1 dx

(1 + x2)ν+d/2
= B(ν, d/2) =

Γ(ν) Γ(d/2)

Γ(ν + d/2)
,

where B(·, ·) is the beta function for strictly positive arguments.

14.2 The Matérn spectral measure on the real line is proportional to the sym-
metric type IV distribution in the Pearson class, which is also equivalent to the
Student t family (Pearson type VII). For ν > −1/2, show that the standardized
version

M1(dω) =
Γ(ν + 1/2) dω

π1/2(1 + ω2)ν+1/2

has positive density, but the total mass is finite only for ν > 0.

14.3 By transforming to spherical polar coordinates in Rd, show that∫
Rd

dω

(1 + ‖ω‖2)ν+d/2
= Ad−1

∫ ∞
0

xd−1 dx

(1 + x2)ν+d/2
,

where Ad−1 = 2πd/2/Γ(d/2) is the surface area of the unit sphere in Rd. For
ν > −d/2, deduce that the Matérn measure on Rd

Md(dω) =
Γ(ν + d/2) dω

πd/2 (1 + ‖ω‖2)ν+d/2
.

has finite mass if and only if ν > 0. Show that the total mass is a constant
independent of the dimension of the space.

14.4 For fixed ν > 0, show that the Matérn measures are mutually consistent
in the sense that Md+1(A× R) = Md(A) for all d ≥ 0 and subsets A ⊂ Rd. In
other words, show that Md is the marginal distribution of Md+1 after integrating
out the last component. For ν > −1, show that the Matérn measures are
mutually consistent in the sense that Md+1(A× R) = Md(A) for all d ≥ 2.

14.5 Consistency and finiteness together imply that the normalized Matérn
measures define a real-valued process X1, X2, . . . in which Mn/Γ(ν) is the joint
distribution of the finite sequence X[n] = (X1, . . . , Xn). This process—a special
case of the Gosset process—is not only exchangeable but also orthogonally in-
variant for every n. Show that the conditional distribution of Xn+1 given X[n]
is Student t, with a certain location parameter, scale parameter and degrees of
freedom. To what extent is finiteness needed in the construction of the process?
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14.6 For the Matérn process, show that the sequence of partial averages X̄n

has a limit X̄∞ = limn→∞ X̄n. For n ≥ 2, what can you say about the condi-
tional distribution of X̄∞ given X[n]? Consider separately the cases ν = 0 and
ν > 0.

14.7 One definition of the Bessel-K function is the integral∫ ∞
0

cos(ωt) dω

(1 + ω2)ν+1/2
=

√
π

2νΓ(ν + 1/2)
× |t|νKν(t).

Deduce that Kν(·) is symmetric and that

lim
t→0
|t|νKν(|t|) = 2ν−1 Γ(ν).

14.8 For any linear functional x : Rd → R, show that∫
Rd

cos(ωx) dω

(1 + ‖ω‖2)ν+d/2
= I(ν + 1/2, d− 1)

∫
R

cos(w‖x‖) dw
(1 + w2)ν+1/2

=
πd/2

2ν−1Γ(ν + d/2)
× ‖x‖νKν(‖x‖),

where I(ν, d) = πd/2Γ(ν)/Γ(ν + d/2).

14.9 Use integration by parts to show that∫ ∞
−∞

ω sin(tω) dω

(1 + ω2)ν+3/2
=

t

2ν + 1

∫ ∞
−∞

cos(tω) dω

(1 + ω2)ν+1/2
,

=

√
π

2ν−1Γ(ν + 1/2)
× t

2ν + 2
|t|νKν(t).

Hence deduce that, for any pair of linear functionals v, x : Rd → R,∫
Rd

ωv sin(ωx) dω

(1 + ‖ω‖2)ν+d/2+1
=

πd/2

2ν−1Γ(ν + d/2)
× vx

2ν + 1
‖x‖νKν(‖x‖),

where vx denotes the scalar product.

14.10 This exercise is concerned with stereographic projection from the unit
sphere in Rd+1 onto the equatorial plane Rd. Latitude on the sphere is measured
by the polar angle θ, starting from zero at the north pole, through θ = π/2 at
the equator up to θ = π at the south pole. Every point on the sphere is a pair
z = (e sin θ, cos θ) where e is a unit equatorial vector. The stereographic image
of z is the point

ω = e cot(θ/2) = e cos(θ/2)/ sin(θ/2),

so that the southern hemisphere is projected into the unit ball, and the northern
hemisphere to its complement in Rd. Deduce that the stereographic image of
the uniform spherical distribution is

Γ(d)

πd/2Γ(d/2)

dω

(1 + ‖ω‖2)d

on the equatorial plane.
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14.11 Points near the north pole are transformed stereographically to high
frequencies, and points near the south pole to low frequencies. For ν > d/2, the
weighted distribution with density proportional to

| sin(θ/2)|2ν−d

reduces the mass on northern latitudes and increases that on southern lati-
tudes, maintaining radial symmetry. Show that the stereographic image of the
weighted distribution is inversely proportional to (1 + ‖ω‖2)ν+d/2. Find the
normalizing constants for both distributions.

14.12 For the special case d = 2, we may regard R2 ∼= C, so that ω is a complex
number and e is a unit complex number. Show that the weighted spherical
distribution with weight proportional to the degree k harmonic perturbation

1 + <(aēk) sink θ

is transformed to

Γ(d)

πd/2Γ(d/2)

dω

(1 + ‖ω‖2)d
×
(

1 +
2<(aω̄k)

(1 + |ω|2)k

)
and is positive for |a| ≤ 1.

14.13 Consider a fixed tessellation of the plane into a countable set of polyg-
onal cells A1, . . ., and let 0 ≤ `ij < ∞ be the length of the common boundary
∂Ai∩∂Aj . Associate with each ordered pair of regions (i, j) a Gaussian random
variable

εij = −εji ∼ N(0, `ij)

with iid signs independent of |ε|. If all boundary lengths `i. are finite, the
row sums W (Ai) = εi. define a Gaussian process indexed by cells. Find the
covariances cov(W (Ai), W̄ (Aj)) for i = i and i 6= j.

14.14 In the setting of the previous exercise, let W = Lε, where L is a Boolean
matrix. Show that W is a process defined on general planar regions and that it
coincides with the process described at the end of section 14.8.1.
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Chapter 15

Likelihood

15.1 Introduction

15.1.1 Non-Bayesian model

A non-Bayesian statistical model is a set of processes or a set of probability dis-
tributions {Pθ} on the sample space indexed by the points θ in the parameter
space Θ. According to the standard paradigm, Nature chooses a point θ∗ and
generates the process {Y (x) : x ∈ D} on some domain according to the distri-
bution Pθ∗ . The observer chooses a fixed design or sample x = {x1, . . . , xn} and
observes or measures the sample values Y [x]. The data consists of the design
points x, the values Y [x] ∈ Rn, and any other recorded baseline information.

Before the model can be used for inference, it is necessary to estimate the
parameter from the data. The point estimator is a function θ̂n : Rn → Θ from
the observation space into the parameter space, defined for every adequately
large design. The numerical value θ̂n(Y ) determines a process Pθ̂, called the
fitted process or bootstrap process, which serves as our best guess about what
Nature might have been up to. If the goal is parametric inference, it is essential
to quantify the estimation error, i.e., to quantify the magnitude of the difference
θ̂n − θ∗ in some suitable sense. If the goal is not parametric, for example, the
prediction of future values, it is necessary to compute the fitted conditional
distribution

Pn+m,θ̂(A | Y [x])

for events A ⊂ Rn+m. In either case, the inferential goal requires not only a
point estimate of the parameter, bu also some measure of its uncertainty and
the effect of uncertainty on inferences.

The estimation step is sometimes called ‘learning’ in computer-science cir-
cles. But the parameter value is never learned with the certainty that that
word implies; it is only estimated with error, which might be small or large. A
large error in estimation does not necessarily lead to a large error in prediction.
Generally speaking, parameters that are difficult to estimate have little effect

221
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on single-point predictions that are local in a suitable sense.

In all cases considered in this book, Θ is a smooth manifold—at least locally
near most points. There may be boundary points or or points of singularity.
We say that the model is finite-dimensional if the dimension dim(Θ) = p is
finite. Otherwise the model is infinite-dimensional. The phrase non-parametric
model is sometimes used in the literature as a synonym for infinite-dimensional
parametric model. In these notes, parametric inference is meant literally in
the sense of inferences about θ∗ ∈ Θ whether the dimension is finite or infinite;
nonparametric inference refers to inferential goals that are beyond the parameter
space.

Although infinite-dimensional problems occur as exercises, the focus here
is on finite-dimensional models. There is an intermediate class of problems
in which the space Θ ≡ Θn is design-dependent or sample-size dependent, with
finite dimension pn dependent on n. Very often, dimension-dependent spaces are
used as an artificial mathematical device to gauge the effect of ‘many parameters’
on the behaviour of the estimation procedure in extreme situations. Every model
considered in this book is a family of processes. Although the parameter space
may be infinite-dimensional, it is fixed and independent of the design.

The emphasis in this chapter is on normal behaviour of models and estimates,
not on anomalies. Typically, we assume that the model is identifiable, which
means that

θ 6= θ′ =⇒ Pθ 6= Pθ′ .

In other words, different parameter values correspond to distinct processes.
Identifiability does not necessarily imply Pn,θ 6= Pn,θ′ for small samples, say
n = 1 or n = 2. Nor does it imply that θ is estimable from the data, even for
large n. Identifiability is not a strong condition, nor is it an essential condition:
see the mixture problem in Exercise 15.1.

15.1.2 Bayesian resolution

A Bayesian model has all of the ingredients listed in the preceding section—
plus one other. The additional feature is a probability distribution π(·) on the
parameter space. The non-Bayesian model is generally portrayed as a stochas-
tic formulation whose appropriateness in a given application is widely agreed,
whereas no broad consensus is expected regarding the choice of π(·). One is
said to be objective and the other subjective. These adjectives are not only
provocative and unhelpful, but also devoid of mathematical content.

The net effect of the prior is that a Bayesian model is either (i) a single
distribution π(dθ)Pθ,n(·) on the product space Θ× Rn; or (ii) a single mixture
process Pπ(·) =

∫
Pθ(·)π(dθ). In principle, the reduction to a mixture is a huge

simplification because the estimation step is by-passed, the model comprises a
single process, and the ambiguity about the choice of process for prediction is
eliminated. Even for problems of parametric inference, it is usually possible in
principle to by-pass the parameter space entirely by re-phrasing the target as a
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tail event associated with a limit statistic, for example by computing Pπ(Ȳ∞ ∈
A | Y [x]) or Pπ(θ̂∞ ∈ A | Y [x]).

In practice, two difficulties must be overcome before we can confidently take
advantage of the Bayesian solution. The first is to select a suitable prior distribu-
tion and, more importantly, to convince the reader that this prior is appropriate
for the problem. The Bayes resolution calls for a single prior distribution se-
lected to represent the information available a priori. In practice, it is often
better to depart from the paradigm by considering a sequence of distributions
πν for ν > 0 such that the available information corresponds either to the limit
ν → 0 or to the asymptote in which ν is small but strictly positive.

Absence of information may be represented by a sequence of distributions
such that πν(A) → 0 at rate ρν > 0 on bounded subsets in such a way that
ρ−1
ν πν(dx) has a finite non-zero limit. The limit is a measure, sometimes termed

‘improper’ because it is not a probability distribution. However, for sufficiently
large samples, the conditional distribution given the data may have a limit
that is satisfactory for inference. Usually it depends on the limit measure, but
is otherwise independent of the sequence. At the other end of the spectrum,
strong information such as sparsity corresponds to a sequence that tends to the
Dirac measure in a suitably regular way that permits limits for a certain class
of integrals; (McCullagh and Polson, 2018).

These limit recipes are reasonably satisfactory for stylized problems in low-
dimensional parameter spaces. For high-dimensional spaces, assumptions of
independence for selected components are not to be taken lightly because their
effect on conclusions may be substantial.

The second problem, perhaps less of an obstacle today than in the recent
past, is to manage the computations. Posterior distributions can often be ap-
proximated by simulation in various ways, for example, using Markov-chain
Monte Carlo. Bayesian computation is not a focus of this book, so we do not
make sweeping recommendations regarding the choice of prior or now to manage
the computation.

15.2 Likelihood function

15.2.1 Definition

In the simplest setting where the response distribution has a density Pθ(dy) =
pθ(y) dy, the density pθ(y) as a function of θ for fixed y is the likelihood function.
The function pθ(y) is the density of the probability relative to Lebesgue measure.
For present purposes, there is nothing special about Lebesgue measure, so the
likelihood function is the density ratio relative to an arbitrary fixed density.
For example, if zero is a point in the parameter space, we could adopt L(θ) =
pθ(y)/p0(y) as the likelihood function provided that p0(y) is strictly positive
throughout the space. The important point to remember is that only likelihood
ratios pθ(y)/pθ′(y) are well defined. Even in that case, it is necessary to handle
points of zero density and points of infinite density with care.
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On the technical side, we assume that there is a dominating measure that
covers all distributions in the model. Usually this is Lebesgue measure or count-
ing measure. But in some settings such as survival models, the measure has a
discrete part associated with censored values, and a continuous part associated
with failure times.

The likelihood function is a fundamental object for statistical estimation and
inference. For parametric Bayes tasks, the likelihood function is the ratio of the
posterior distribution to the prior on Θ:

Pπ(dθ | Y ) ∝ L(θ; y)π(dθ).

Its non-Bayesian role is a little more complicated, but it is equally fundamental.
Mostly it is used for point estimation and interval estimation.

15.2.2 Bartlett identities

The likelihood is a function L(θ; y) of the parameter θ and the data y, and the
same applies to the log likelihood l(θ; y) = logL(θ; y). Since the likelihood is
defined up to an arbitrary multiplicative factor that is constant in θ, the log
likelihood is defined up to an arbitrary additive term that is constant in θ.

The Bayesian goal is to compute the conditional probability of some spec-
ified inferential event given the data, and in that calculation y is regarded as
a fixed constant. However, frequentist properties of estimators are connected
with the statistical behaviour of log likelihood derivatives and related proce-
dures for fixed θ as a function of the random variable whose distribution is Pθ.
The Bartlett identities are fundamental for deriving large-sample asymptotic
distributions in regular problems. To keep notation digestible, we pretend that
θ is a scalar, so that each log likelihood derivative is also a scalar. Results
for vector-valued parameters are obtained by replacing scalars with vectors or
matrices as appropriate.

The first two log likelihood derivatives are

U1(θ; y) = dl(θ; y)/dθ; U2(θ; y) = d2l(θ; y)/dθ2.

The Bartlett identities are connected with the moments of these and higher-
order derivatives. The first identity follows from the constancy of the integral∫
pθ(y) dy as a function of θ.

0 =
∂

∂θ

∫
pθ(y) dy

=

∫
∂pθ(y)

∂θ
dy

=

∫
∂ log pθ(y)

∂θ
pθ(y) dy

=E
(
U1(θ;Y ); θ

)
.

The first step in this derivation is to switch the order of differentiation with
respect to θ and integration over the observation space. This step requires a
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regularity condition, which fails if the support of Pθ is parameter-dependent.
Regularity conditions must be taught by faculty and learned by students, if
only to demonstrate mastery of Fubini’s theorem, but they almost never fail in
practical work. In the last expression θ occurs twice, the first to indicate the
differentiation point, the second to indicate that the parameter of the distri-
bution Y ∼ Pθ is the same as the point at which the derivative is computed.
The random variable U1(θ;Y ) does not have zero mean under the distribution
Y ∼ Pθ∗ .

The second identity, which follows from the second derivative of the proba-
bility integral, establishes the role of the Fisher information matrix

0 =
∂2

∂θ2

∫
pθ(y) dy,

=
∂

∂θ

∫
∂ log pθ(y)

∂θ
pθ(y) dy,

=

∫ (
∂2 log pθ(y)

∂θ2
+
(∂ log pθ(y)

∂θ

)2
)
pθ(y) dy,

=E
(
U2(θ;Y ); θ

)
+ E

(
U2

1 (θ;Y ); θ
)
.

The final expression implies that the variance of the first derivative is the neg-
ative expected value of the second derivative, which is called the Fisher infor-
mation matrix:

I(θ) = −E
(
U2(θ;Y ); θ

)
= cov

(
U1(θ;Y ); θ

)
.

It follows that I(θ) > 0, and, for vector parameters, that I(θ) is positive definite.

15.2.3 Implications for estimation

Regularity conditions for statistical work are of two types, those that can be
checked or verified and those that cannot. Fubini-type conditions permitting
the interchange of sample-space integration with parameter-space differentiation
are verifiable. Conditions regarding the smoothness of functions or topological
adequacy of the parameter space are also verifiable. Statistical models that
occur in applied work are usually field-tested and are seldom in violation of
verifiable conditions.

Asymptotic conditions holding in the large-sample limit are a different mat-
ter. Much of the theory of statistical estimation uses asymptotic theory as a
device for distributional approximation. For simple processes having indepen-
dent and identically distributed components, the only route to infinity is ‘more
independent copies of the same’. For more general spatial or temporal processes,
or processes involving covariates, the routes to infinity are more numerous. By
their nature, asymptotic conditions are not verifiable in any finite sample be-
cause any finite design can be embedded into a sequence of larger designs in
countless ways. The question to be asked is not whether the given design is
part of a particular sequence but whether one conceptual design sequence pro-
vides a better distributional approximation than another.
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The motivation for large-sample theory is most straightforward for indepen-
dent and identically distributed sequences. Such sequences seldom occur naked
in applied work, so the iid theory is not directly relevant. However, the crucial
parts of the theory carry over with relatively minor modification to models hav-
ing independent observations. Additional conditions are needed for asymptotic
regularity in specialized models for genetics, time series and spatial processes.
The count of individual numbers or observations or rows in a data file may be
impressive, but that does not necessarily translate into an impressive quantity
of information.

In a setting where the components of the response are independent, or con-
ditionally independent given treatment, the log likelihood is a sum of n inde-
pendent contributions, and the same applies to the log likelihood derivatives.
In particular, the total Fisher information I.(θ) =

∑
Ii(θ) is the sum of positive

contributions coming from individual components. The first derivative at θ∗ is
the sum of independent random variables, U1, . . . , Un, having zero mean and
finite variances Ii(θ) < ∞. Provided that n is large and that no small subset
of components dominates the contribution to the total Fisher information, the
central limit theorem implies that the first derivative at θ∗ is approximately
normally distributed

U.(θ
∗) ∼ N

(
0, I.(θ

∗)
)

under the distribution Pθ∗ . Assuming that the maximum is a stationary point,
Taylor approximation in a neighbourhood of θ∗ gives

0 = U.(θ̂) = U.(θ
∗)− I.(θ∗)(θ̂ − θ∗) +Op(1).

To first order in the sample size, this implies

θ̂ − θ∗ ' I−1
. (θ∗)U.(θ

∗) ∼ N
(
0, I−1

. (θ∗)
)

(15.1)

in which the uncomputable I.(θ
∗) may be replaced with the computable I.(θ̂).

Probability calculations using this asymptotic approximation have error of or-
der O(n−1/2) in the sample size. However, the error can often be reduced to
acceptable levels by parameter transformation. More accurate approximations
using bias corrections and Edgeworth series are available in the literature.

The linear approximation (15.1) is often is re-packaged as a computational

algorithm, which generates from a starting point θ̂0 a parameter sequence sat-
isfying

θ̂r+1 = θ̂r + I−1
. (θ̂r)U.(θ̂r). (15.2)

If this sequence converges, it converges to a stationary point of the log likelihood,
which is a local maximum and usually the global maximum. Technically, the
sequence (15.2) is not Newton-Raphson because it uses the Fisher information or

expected second derivative at θ̂r, which is not usually the same as the observed
second derivative at that point.
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15.2.4 Likelihood-ratio statistic I

Taylor expansion of the log likelihood function about θ∗ including terms up to
degree two in θ̂ − θ∗ gives

l(θ̂; y)− l(θ∗; y) = U.(θ
∗)(θ∗ − θ̂)− 1

2I.(θ
∗)(θ∗ − θ̂)2 + · · · .

For models having independent ad identically distributed components, the first
derivative is Op(n

1/2), while second and higher-order derivatives are Op(n). As
a result, both terms shown are formally Op(1) while the error term is Op(n

−1/2).
Under suitable asymptotic conditions, these asymptotic orders also hold more
broadly for generalized linear models and many models having temporal or
spatial correlation.

Using the one-step approximation (15.1) for the parameter estimate, the
likelihood-ratio statistic satisfies

2l(θ̂; y)− 2l(θ∗; y) =U.(θ
∗)I−1

. (θ∗)U.(θ
∗) +Op(n

−1/2),

=U.(θ
∗)I−1

. (θ̂)U.(θ
∗) +Op(n

−1/2),

= (θ̂ − θ∗)I.(θ̂)(θ̂ − θ∗) +Op(n
−1/2).

The first and second versions are positive definite quadratic forms in the vec-
tor of first derivatives at the true or hypothesized parameter point; the third
is a quadratic form in the parameter space. The likelihood ratio statistic is
invariant under smooth reparameterization, and that property is inherited by
the first quadratic form shown, which is called the Rao statistic, or Fisher-Rao
statistic. The third version, called the Wilks statistic, is not invariant under
reparameterization. Invariance is desirable in applied work, but perhaps not
absolutely essential.

The central limit approximation for the distribution of log likelihood deriva-
tives implies that all three versions of the likelihood-ratio statistic are first-order
equivalent, and that the limit distribution is χ2

p in all cases. They are not
second-order equivalent, either in power or in distribution. A more refined anal-
ysis taking account of higher-order terms shows that the expected value of the
likelihood-ratio statistic is p(1 + b(θ)/n), and that the asymptotic distribution
is (1 + b(θ)/n)χ2

p with error O(n−2). The use of the Bartlett correction factor
greatly improves the accuracy of the χ2

p approximation. This adjustment holds
for regular problems with continuous distributions.

15.2.5 Profile likelihood

Most parametric models that occur in applied work make a distinction between
parameters of interest and other parameters, loosely called nuisance parameters.
Despite the nomenclature, nuisance parameters are essential for satisfactory
inferences.

The parameter of interest is defined by a differentiable function T : Θ→ Θ′

from the parameter space of dimension p into a manifold of dimension q ≤ p.
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We suppose without loss of generality that this mapping is onto, i.e., TΘ = Θ′.
To each τ ∈ Θ′ there corresponds a sub-manifold of dimension p− q

Θτ = {θ : T (θ) = τ} ⊂ Θ.

All points in Θτ are similar in the sense that they have the same value of the
parameter of interest; differences are associated with nuisance parameters. By
construction, the sub-manifolds are disjoint and exhaustive in Θ; they form a
partition or a foliation of the parameter space.

The profile likelihood for τ is the maximum achieved on Θτ :

lp(τ ; y) = max
θ∈Θτ

l(θ; y) = l(θ̂τ ; y).

To first order in the sample size, the profile likelihood behaves like an ordinary
likelihood function. For example, the first derivative has mean of order O(n−1),
which is not zero but is small enough to permit the standard asymptotic ar-
gument to proceed. Likewise, the expected value of the second derivative is
not exactly the variance of the first, but the difference is small enough that it
does not affect first-order asymptotic approximations under standard regularity
conditions. Consequently, the subset consisting of parameter values achieving
near-maximum likelihood

{τ ∈ Θ′ : 2l(θ̂; y)− 2l(θ̂τ ; y) ≤ χ2
q,1−α}

is an approximate 1− α-confidence subset for the parameter of interest.

15.2.6 Two worked examples

Example 1: Treatment effect estimation

The standard Gaussian model for a completely randomized design has three
parameters θ = (µ0, µ1, σ

2), two means and one variance σ2 > 0, so Θ has
dimension three. The log likelihood function is

l(θ; y) = −n0(ȳ0 − µ0)2

2σ2
− n1(ȳ1 − µ1)2

2σ2
− (n− 2)s2

2σ2
− n log σ

in standard notation for sample sizes n0, n1, sample means ȳ0, ȳ1, and pooled
sample variance s2. The treatment effect is the difference T (θ) = µ1 − µ0,
and the focus of the analysis is primarily on that parameter. The profile log
likelihood for the treatment effect is the maximum value achieved on the subset
Θτ ⊂ Θ

Θτ = {θ : µ1 − µ0 = τ}; l(θ̂τ ; y) = max
θ∈Θτ

l(θ; y).
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Usually the maximum for fixed τ must be computed numerically, but it can be
evaluated explicitly in this instance:

µ̂0 =
(
n0ȳ0 + n1ȳ1 − n1τ

)
/n;

µ̂1 =
(
n0ȳ0 + n0τ + n1ȳ1

)
/n = µ̂0 + τ ;

nσ̂2 = (n− 2)s2 + n0(ȳ0 − µ̂0)2 + n1(ȳ1 − µ̂1)2;

l(θ̂τ ; y) = n
2 log(σ̂2) + const

= n
2 log

(
(n− 2)s2 + n0(ȳ0 − µ̂0)2 + n1(ȳ1 − µ̂1)2

)
+ const′

= n
2 log

(
(n− 2)s2 + n0n1(ȳ0 − ȳ1 + τ)2/n

)
+ const′.

The partially maximized likelihood function is called the profile likelihood for
the parameter of interest. By construction, the overall maximum occurs at the
ordinary maximum of the likelihood, τ̂ = ȳ1 − ȳ0 in this example.

Asymptotically, the profile log likelihood has all of the essential properties of
a log likelihood function. For example, an approximate level-α likelihood-based
confidence interval can be obtained in the standard manner

{τ : 2l(θ̂; y)− 2l(θ̂τ ; y) ≤ χ2
1,1−α}. (15.3)

In this example, it is possible to construct the standard exact confidence interval
for τ using the ratio

tτ =

√
n0n1

n

Ȳ0 − Ȳ1 + τ

s
,

which has the Student t distribution on n − 2 degrees of freedom. The exact
coverage of the likelihood-based interval can be inferred from the fact that the
likelihood-ratio statistic n log

(
1 + t2τ/(n− 2)

)
is monotone in t2τ .

Example 2: Inference for the LD90

Suppose that the response of unit i to dose x is a Bernoulli variable with pa-
rameter π(x) satisfying the linear logistic model

logitπ(x) = θ0 + θ1x, (15.4)

with independent responses for distinct units. The goal is to estimate the dose
τ for which π(τ) = 0.9, the so-called lethal dose 90%. The LD90 is a non-linear
function of the parameters

logit(0.9) = log(9) = θ0 + θ1τ ;

τ =
(
log(9)− θ0

)
/θ1,

so we take T (θ) =
(
log(9) − θ0

)
/θ1. To compute the profile likelihood for τ , it

is necessary to fit the logistic model (15.4) by maximizing over the parameter
subset

Θτ = {(θ0, θ1) : T (θ) = τ} = {(log(9)− τθ1, θ1) : θ1 ∈ R}.
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In other words, we aim to fit the one-parameter sub-model

logitπ(x) = log(9)− τθ1 + θ1x = log(9) + θ1(x− τ)

for arbitrary but fixed τ . This is not a linear logistic model in the strict technical
sense, but most computer packages have the option to cater for an offset, which
is the constant log(9) in this setting. The likelihood-based confidence region for
τ is the set of values for which the likelihood is sufficiently large in the sense
of (15.3).

If we replace the linear logistic model (15.4) with a linear Gaussian model and
ask for the x-value that makes the mean response zero, the goal is the abscissa
or parameter ratio τ = −θ0/θ1. Fieller’s method is tailored for problems of this
sort. However, the likelihood-ratio statistic is a function of the standardized
ratio on which Fieller’s method is based, so the two approaches are essentially
identical.

One point to note is that a likelihood-based confidence set is not necessarily
an interval. Equivariance under reparameterization makes this unavoidable.
For instance, if the likelihood-based confidence set for τ = θ0/θ1 is a bounded
interval containing zero, the confidence set for 1/τ is necessarily an ‘interval’
containing ±∞ but not zero. In both the linear logistic and Gaussian cases,
the likelihood-based confidence set is either an interval or the complement of an
interval, or possibly the whole space.

15.3 Generalized linear models

15.4 Linear Gaussian models

15.5 Mixture models

15.5.1 Two-component mixtures

Let ψ0 and ψ1 be the density functions of two distributions on the real line.
Both densities are assumed to be strictly positive, so the density ratio ζ(y) =
ψ1(y)/ψ0(y) is finite, as is the inverse ratio. The mixture model refers to the
family of distributions

ψθ(y) = (1− θ)ψ0(y) + θψ1(y),

which is a convex set indexed by the mixture parameter 0 ≤ θ ≤ 1.
According to the standard statistical paradigm, the observations Y1, . . . , Yn

are independent and identically distributed as ψθ for some unknown parameter
value. Statistically speaking, the estimation and testing problems are regular
if 0 < θ < 1; in such circumstances, the standard asymptotic approximations
hold for the distribution of θ̂ and for the likelihood-ratio statistic. Otherwise, if
θ = 0 or θ = 1 on the boundary, the problem is non-regular; standard asymptotic
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approximations cannot be relied upon for either the distribution of θ̂ or of the
likelihood-ratio statistic.

Given the observation y = (y1, . . . , yn), the log likelihood function for θ is

l(θ; y) =
∑

log(ψθ(yi)) =
∑

log(1− θ + θζ(yi)) + const(y).

To understand the behaviour as a function of θ, we examine the derivatives

l′(θ; y) =
∑
i

ζ(yi)− 1

1− θ + θζ(yi)
;

l′′(θ; y) =−
∑
i

(
ζ(yi)− 1

1− θ + θζ(yi)

)2

< 0.

If all of the observation points satisfy ψ0(yi) = ψ1(yi), then ζ(yi) = 1 for each i,
and the log likelihood is constant in θ. Otherwise, the second derivative is
everywhere strictly negative, implying concavity. Every stationary point is a
global maximum, and there is at most one such point in (0, 1).

At the left end-point l′(0; y) =
∑
ζ(yi) − n; if the derivative at zero is

negative, i.e., if
∑
ζ(yi) ≤ n, the maximum occurs at θ̂ = 0. At the right end-

point l′(1; y) = n−
∑

1/ζ(yi). If the derivative is positive, i.e., if
∑

1/ζ(yi) ≤ n,

the maximum occurs at θ̂ = 1. The likelihood function has a maximum in the
interior of the interval if and only if

∑
ζ(yi) > n and

∑
1/ζ(yi) > n. In that

case, the maximum can be computed by a straightforward Newton-Raphson
iteration.

For 0 < θ̂ < 1, the condition l′(θ̂; y) = 0 implies∑ ζ(yi)

1− θ̂ + θ̂ζ(yi)
=
∑ 1

1− θ̂ + θ̂ζ(yi)
= n,

which can be viewed as a self-consistency condition. If we associate with each i
the class-I assignment probability

θ̂(yi) =
θ̂ζ(yi)

1− θ̂ + θ̂ζ(yi)
= pr(i 7→ class I | Y ),

then θ̂ = n−1
∑
θ̂(yi) is the sample mean of the assignment probabilities.

15.5.2 Likelihood-ratio statistic

For likelihood-ratio statistics it is convenient to take ψ0 as the reference point.
Relative to that point, the maximized likelihood ratio statistic is

l(θ̂; y)− l(0; y) =
∑

log
(
1− θ̂ + θ̂ζ(yi)

)
.

In particular, the likelihood-ratio statistic is zero if θ̂ = 0, i.e., if
∑
ζ(yi) ≤ n.
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If we regard ψ0 as the null hypothesis, it must be understood that θ = 0 is a
boundary point, and that the standard asymptotic theory may fail—and indeed
it does fail spectacularly. For the null distribution theory, the observations
are independent with distribution ψ0. An elementary computation shows that
if Y ∼ ψ0, the random variable ζ(Y ) = ψ1(Y )/ψ0(Y ) is non-negative with
mean one. Thus, by the law of large numbers, n−1

∑
ζ(Yi)→ 1. In addition, if

ζ(Y ) has finite variance, the central limit theorem implies asymptotic normality,
so that the event

∑
ζ(Yi) ≤ n occurs with limiting probability one half. In those

cases, the null distribution of θ̂ has an atom of 1/2 at the origin, and the same
goes for the likelihood-ratio statistic. This sort of behaviour is non-standard,
but it is classical for boundary-point problems.

For the more usual sorts of mixtures that occur in practical applications,
ζ(Y ) does not have finite variance. In those cases, the convergence of the average
n−1

∑
ζ(Yi)→ 1 does not imply that the event n−1

∑
ζ(Yi) ≤ 1 has a limiting

probability or that the limit is one half. As an example, if ψ0 is standard normal,
and ψ1 is Cauchy, the random variable ζ(Y ) has a density whose tail behaviour
is O(z−2 log(z)−3/2). The mean is one, but there are no finite moments beyond
the first. The limit distribution appears from simulation to be such that

n−1
n∑
i=1

ζ(Yi) = 1− const

log log n
+

ε

log n log log n
,

where ε is a random variable in the Landau class (stable with α = β = 1). The
event

∑
ζ(Yi) > n is equivalent in the limit to ε > const × log n. Since the

Landau density has an inverse-square right tail, the probability is O(1/ log n).
Every mixture model in which ψ1 is symmetric with inverse-square tails gives

the same limit. For other distributions having sub-Gaussian tails such as e−|y|,
the same limit is approached at a possibly different rate. In all such cases, the
limiting null distribution for θ̂ and the likelihood-ratio statistic are degenerate at
zero. This is not standard asymptotic behaviour for boundary-point problems.

15.5.3 Sparse signal detection

Given a random signal X ∼ P and an observation Y = X + ε contaminated
by additive independent Gaussian noise, how do we estimate the signal? The
non-sparse signal estimation problem was first posed by F. Dyson in 1926. Ed-
dington’s solution, which is described in section 13.4.4, depends only on the
marginal density m(y) of the observation. The sparse version of the problem is
discussed by Johnstone and Silverman (200?). For simplicity, we assume here
that ε is standard normal.

A signal X ∼ P is said to be sparse if its distribution is symmetric and most
of the mass is concentrated at or near the origin. In that case, the sparsity rate
ρ is defined by the integral

1− ρ =

∫
e−x

2/2p(x) dx.
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The statement that ρ is small is to be interpreted a mathematical code or
convention, which implies a formal limit ρ → 0 even if that is not explicitly
stated. The reason for focusing on the sparsity rate as opposed to the null
atom P (X = 0) is that the null atom may be zero; more crucially, ρ is a
mixture fraction that is identifiable from observations whereas the null atom is
not. Subsequent conclusions depend only on the sparsity rate, which is strictly
smaller than the probability of a non-null signal.

Under regularity conditions given in McCullagh and Polson (2018), the
marginal density is a Gaussian mixture

m(y) = φ(y)
(
1− ρ+ ρζ(y)

)
+ o(ρ),

where ζ is a symmetric non-negative convex function satisfying ζ(0) = 0. In
practice, ρ must first be estimated from the data.

The essence of the matter is that all sparse scale families having similar tail
behaviour give rise to the same zeta function. The horseshoe family with density
log(1 + y−2)/(2π) has the same inverse-square tail behaviour as the Cauchy
family, and the zeta function for both satisfies ζ ′′(y) = exp(y2/2). This implies
ζ(y) =

∑
r≥1 µ2r−2y

2r/(2r)!, where µ2r = 1 · 3 · · · (2r − 1) is the 2rth standard
Gaussian moment. It is possible to make an elaborate argument for one over
the other, but such arguments are futile because the marginal distributions are
indistinguishable to first order.

Eddington’s signal-estimation formula reduces to

E(Xi | Y ) =
ρζ ′(yi)

1− ρ+ ρζ(yi)
+ o(ρ)

E(X2
i | Y ) =

ρζ ′′(yi)

1− ρ+ ρζ(yi)
+ o(ρ).

In addition, the signal identification or conditional exceedance probability for
threshold ε > 0 is formally the same as E(|Xi|0 | Y ):

P (|Xi| > ε | Y ) =
ρζ(yi)

1− ρ+ ρζ(yi)
+ o(1).

For a given suitably low but strictly positive threshold, the exceedance prob-
ability is approximately independent of the threshold (McCullagh and Polson,
2018), and ζ(y) is interpretable as the posterior-to-prior odds ratio, also called
the Bayes factor. For example, if ρ = 0.05 and y = 3.5, the inverse-square
zeta value is ζ(y) = 55.3 and the exceedance probability is 0.74. Provided that
below-threshold signals are counted as null or false, there is a close formal con-
nection with the concept of false discovery rate, and particularly with the local
false discovery rate (Benjamini and Hochberg, 199?; Efron, 200?).

In the great majority of sparse signal identification and detection formula-
tions the second component of the mixture ψ2(y) = φ(y)ζ(y) has heavy tails.
The tails are governed by the signal distribution, which may be either Laplace-
type e−|y| or Cauchy-like with regularly varying tails. In all such models, the
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asymptotic null distribution of ρ̂ and of the likelihood-ratio statistic is is degen-
erate at zero. However, a very small signal little larger than ρ ' log(n)/n is
enough to change the calculus for signal detection, at least in the Cauchy case.

15.6 Inferential compromises

15.6.1 The dictatorial compromise

The fundamental difficulty with the non-Bayesian model {Pθ : θ ∈ Θ} for infer-
ential purposes is that it contains more than one stochastic process. Which one,
if any, are we to use for prediction? The Bayesian paradigm resolves the diffi-
culty by compromise, which—however reasonable it may be and however little
its effect on conclusions may be—is ultimately dictatorial. That compromise
consists of a prior distribution or mixture π(dθ) so that the set {Pθ} is replaced
with the single mixture Pπ =

∫
Pθ π(dθ). Prediction is straightforward.

For parametric inference, the event θ ∈ A is identified with the set of se-
quences y ∈ R∞ such that θ̂(y) = limn→∞ θ̂n(y[n]) exists and belongs to A. In
that way, the conditional probability of the event θ ∈ A given Y [n] is computable
as a tail event

Pπ(θ ∈ A | Y [n]) = Pπ(θ̂(y) ∈ A | Y [n]).

Any consistent estimator can be used in place of θ̂n, so this description is not
tied in any way to maximum likelihood.

15.6.2 The one-time democrat

Consider a standard non-Bayesian model consisting of processes Pθ, with finite-
dimensional distributions Pn,θ on Rn. Maximum-likelihood estimation offers
two ways to generate a new process that is related to the family. The first of
these is the standard parametric bootstrap, or parametric simulation.

Bootstrap process: Given a observation point y ∈ Rm, and the corre-
sponding point θ̂ = θ̂m(y) in Θ, the entire family {Pθ} is replaced with the
maximum-likelihood representative P̂ = Pθ̂. The finite-dimensional distribu-

tions are P̂n = Pn,θ̂ on Rn. In particular, if each Pθ defines a process with
independent components, the bootstrap representative is also a process whose
components are conditionally independent given θ̂n.

15.6.3 The sequential democrat

The maximum-likelihood process (MLP) operates in a different manner and
exhibits fundamentally different behaviour, which is analogous to the behaviour
of a Polya urn. Every process Pθ determines a Markov kernel, which associates
with each n ≥ 0 and each point y ∈ Rn, a conditional distribution

Qn1,θ(dyn+1; y) = Pn+1,θ(dyn+1 | Y [n] = y)
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on R. The finite-dimensional joint density is the product of such kernels

Pn,θ(dy) = Q1,θ(dy1)Q2,θ(dy2; y[1]) · · ·Qn,θ(dyn; y[n− 1]).

The conditional distribution given Y [m] is a truncated kernel product

Qm+1,θ(dym+1; y[m])Qm+2,θ(dym+2; y[m+ 1]) · · ·Qm+n(dym+n,θ; y[m+ n− 1]).

In the maximum-likelihood process, each transition kernel Qn+1,θ(dyn+1; y) is
replaced with the maximum-likelihood estimate

Q̂n+1(dyn+1; y) = Qn+1,θ̂n(y)(dyn+1; y).

This makes sense only for n sufficiently large that θ̂n = θ̂n(y[n]) exists. Given
an initial sequence y[m], the distribution of successive values in the MLP is
defined by the kernel product

Qm+1,θ̂m
(dym+1; y[m])×Qm+2,θ̂m+1

(dym+2; y[m+ 1])× · · ·

in which the maximum-likelihood point is updated at each stage.
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15.8 Exercises

15.1 Maximum-likelihood for mixtures: Let ψ0(·), . . . , ψk(·) be given proba-
bility density functions on R, and let

mθ(y) = θ0ψ0(y) + · · ·+ θkψk(y)

be a k+1-component mixture with non-negative weights adding to one. Suppose
that Y1, . . . , Yn are independent and identically distributed with density mθ,
assumed to be strictly positive for θ strictly positive. Under what conditions is
the mixture model with iid observations identifiable? Show that the maximum-
likelihood estimator satisfies the condition

n∑
i=1

ψr(yi)

m̂(yi)
≤ n,

with equality for every r such that θ̂r > 0. Discuss the ‘almost-true’ claim that
m̂ exists and is unique for every n ≥ 1 and every y ∈ Rn, even if the model is
not identifiable.



236 CHAPTER 15. LIKELIHOOD

15.2 Let ψ0(y) = e−y
2/2/
√

2π be the standard normal density. Assume that
Y1, . . . , Yn are independent standard normal. Show that the random variables
Xi = ψ1(Yi)/ψ0(Yi) have unit mean, and hence, by the law of large numbers,
that the sample average tends to one as n→∞.

15.3 If the claim made in the last paragraph of section 15.5.2 is to be be-
lieved, the re-scaled limit distribution of X̄n does not have a mean. Discuss this
apparent contradiction.

15.4 Consider the two-component mixture with ψ0 standard normal, and ψ1

standard Cauchy. The null hypothesis is all Gaussian, i.e., θ = (1, 0). Show

that θ̂1 > 0 if and only if X̄n > 1. By simulation or otherwise, show that
P0(X̄n > 1) → 0 as n → ∞. What is the effect of changing the Cauchy scale
parameter?

15.5 Show that the random variables Xi = ψ1(Yi)/ψ0(Yi) in the preceding
exercise have a density whose tail behaviour is 1/f(x) ∼ x2 log(x)3/2 as x→∞.

15.6 Explain why the observation P0(X̄n > 1) → 0 as n → ∞ deduced from
simulations does not conflict with the law of large numbers X̄n → 1.

15.7 Consider the two-component mixture with ψ0 standard normal and ψ1

standard Laplace, or double exponential. Investigate the behaviour of P0(X̄n >
1) as a function of n for large n. What is the effect of changing the scale
parameter? What do these calculations this imply about the null distribution
of the likelihood-ratio statistic?

15.8 Sparse signal detection. Suppose that the observation Y = X + ε is the
sum of a signal X plus independent Gaussian noise ε ∼ N(0, 1). For any signal
distribution X ∼ Pν , the sparsity rate is defined by the integral

ρ =

∫
(1− e−x

2/2)Pν(dx).

Suppose that the signal is distributed according to the Dirac-Cauchy mixture
Pν(dx) = (1− ν)δ0(dx) + νC(dx) in which the null atom 1− ν is the null-signal
rate. Find the sparsity rate corresponding to 5% non-zero signals.

15.9 For the setting of the previous exercise, show that Y is distributed ac-
cording to the mixture with density

m(y) = (1− ρ)φ(y) + ρψ(y) + o(ρ) = φ(y)
(
1− ρ+ ρζ(y)

)
+ o(ρ)

where ψ(·) is a probability density, ζ(y) = ψ(y)/φ(y) is the density ratio, and
ζ(0) = 0. Fill in the details needed to express ζ(·) or ψ(·) as a function of the
family Pν .

15.10 Suppose that Y1, . . . , Yn are independent and identically distributed
with density m(y). Ignoring the error term, show that the maximum-likelihood
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estimate of the mixture fraction is zero if
∑
ζ(yi) ≤ n, one if

∑
1/ζ(yi) ≤ n,

and otherwise is a point 0 < ρ̂ < 1 satisfying∑ ζ(yi)− 1

1− ρ̂+ ρ̂ζ(yi)
= 0.

Hence or otherwise deduce that the maximum-likelihood estimate of the mixture
satisfies the self-consistency condition∑ ψ(yi)

m̂(yi)
=
∑ φ(yi)

m̂(yi)
= n.

In what sense does this equation imply self-consistency?

15.11 A sequence εν → 0 such that Pν(|X| < εν) → 1 as ν → 0 is called a
signal negligibility threshold. Show that the conditional probability of a non-
negligible signal is

Pν(|X| > εν | Y ) =
ρζ(y)

1− ρ+ ρζ(y)
+ o(1),

which implies that the ‘true discovery rate’ is essentially independent of the
threshold.

15.12 What does the preceding equation imply about the fraction of non-
negligible signals among sites in the sample such that |Yi| ≥ 3?

15.13 Let κ0 = ρζ(y)/(1 − ρ + ρζ(y)) be the exceedance probability, and let

κr be the rth derivative of log(1− ρ + ρζ(y)). For ζ(y) ' ey
2/2/y2 for large y,

show that Eddington’s formulae give

E(X | Y ) ' κ0

(
y2 − 2)/|y|, var(X | Y ) ' κ0(1− κ0)(y2 − 3) + κ2

0

for large y. Discuss the implications for mean shrinkage and variance inflation.

15.14 For 1 ≤ i ≤ k, suppose Yi = αi + εi, where ε1, . . . , εk are independent
standard normal variables, and α1, . . . , αk are exchangeable and independent
of ε. Let F be the joint distribution of α. The goal of this exercise is to find an
estimator of F as a function of the observation y ∈ Rk. Ideally the estimator
should be the maximum-likelihood estimator or an approximation thereof within
a set of distributions having some natural symmetry. In the candidate estimators
listed below, λ and s are unspecified scalars, δx(·) is the Dirac measure at x,
Mk is the set of functions [k] → [k], Sk ⊂ Mk is the set of permutations, and
τy is the composition (τy)i = yτ(i).

F̂0(·) =
1

k!

∑
τ∈Sk

δλτy(·);

F̂1(·) =
1

kk

∑
τ∈Mk

δλτy(·);

F̂2(·) =Nk(1ȳ, s2Ik).



238 CHAPTER 15. LIKELIHOOD

Show that F̂0 and F̂1 are both exchangeable with the same marginal distribution,
and that F̂1 also has independent components. For λ = 1, these are called the
permutation estimator and the bootstrap estimator respectively.



Chapter 16

Parametric models
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Chapter 17

Residual likelihood

17.1 Background

Residual maximum likelihood (REML) is a technique proposed by Patterson and
Thompson (1971) for estimating variances and variance components in a linear
Gaussian model in which the observation y ∈ Rn is regarded as a realization
of the Gaussian random vector Y ∼ Nn(Xβ,Σ). The model matrix, or design
matrix, X is of order n× p and known, with image subspace X = span(X). In
the simplest version of the covariance model, the matrix is expressed as a linear
combination of given symmetric non-negative definite matrices

Σ = σ2
1V1 + · · ·+ σ2

kVk (17.1)

with non-negative coefficients σ2
1 , . . . , σ

2
k to be estimated. These coefficients are

called variance components; the space of matrices determined by (17.1) is the
convex cone spanned by the given matrices. Usually V1 is the identity matrix
of order n; the remaining matrices are typically block factors or other known
relationships among the observational units.

In other settings, the model for Σ may not be linear in all parameters, but
partial linearity is fairly common, as is linearity after transformation. In a
spatial or time-series setting, the variance model may be a combination such as

cov(Ys, Yt) = σ2
0δs−t + σ2

1e
−λ|s−t|

which is linear for fixed λ. On the other hand, a Gaussian graphical model is an
additive specification for the inverse covariance matrix. The simplest version is

Σ−1 = τ0In + τ1G,

where G ⊂ [n]2 is the graph incidence matrix, and the coefficients are subject
to positive-definiteness conditions. Usually, this means τ0 > 0 and τ1 ≤ 0.

Residual likelihood differs from ordinary likelihood in that it uses only the
residuals R = LY , where L is any linear transformation such that

ker(L) = X = {Xβ : β ∈ Rp}.

241
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By focusing on the residuals, the regression parameters are eliminated from the
distribution

R ∼ Nn(LXβ, LΣL′) = Nn(0, LΣL′).

It is crucial that R be observable, which means that L is a fixed linear trans-
formation independent of all parameters. Under (17.1), the residual covariance
matrix LΣL′ is a linear combination of the matrices LVrL

′, so the residual like-
lihood is a function of the variance components only. Ordinarily, the matrices
LVrL

′ are non-zero and linearly independent, which implies that the variance-
components are identifiable from the residuals. After estimating the variance
components by maximizing the residual likelihood, the second step is to compute

Σ̂ =

k∑
r=1

σ̂2
rVr,

its inverse Ŵ = Σ̂−1, and the weighted least squares estimate of β

β̂ = (X ′ŴX)−1X ′ŴY. (17.2)

The covariance matrix of β̂ is then reported as (X ′ŴX)−1.

17.2 Simple linear regression

In a simple linear regression model with a single variance component, the co-
variance matrix is Σ = σ2V , where V is known and strictly positive definite. It
is convenient in this setting to take W = V −1 as the inner-product matrix, so
that PX = X(X ′WX)−1X ′W and Q = I−P are complementary W -orthogonal
projections. Then WQ and QV are both known and symmetric. The model
for the residual QY ∼ N(0, σ2QV ) has only a single parameter. For this full
exponential-family setting, the quadratic form ‖QY ‖2 = Y ′WQY is minimal
sufficient, and the REML estimate is obtained by equating the observed value
‖Qy‖2 to its expected value:

‖Qy‖2 = E(Y ′WQY ; σ̂2) = σ̂2 tr(VWQ) = σ̂2 tr(Q).

Since Q is a projection with rank tr(Q) = n− p, the REML estimate reduces to
the standard unbiased estimator that is universally recommended and used in
all computer packages

σ̂2 = y′WQy/(n− p).

Note that the REML estimate is strictly larger than the ordinary maximum-
likelihood estimator which is y′WQy/n. The lesson here is that REML, not
ML, is the norm for variance estimation.
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17.3 The REML likelihood

17.3.1 Projections

For the development in this section, K is a matrix of order n×k, whose columns
span a subspace K of dimension k, and T is a complementary matrix of order
n × (n − k) such that T ′K = 0. In other words, the linear transformation
T ′ : Rn → Rn−k satisfies ker(T ′) = K. For the moment, the relation between K
and X is left unspecified, but K = 0, K = X and K ⊂ X are the most important
special cases.

The observation space Rn is regarded as a real inner-product space with
inner product matrix W = Σ−1. For most purposes, W can be replaced with
any proportional matrix, as was done in section 1.2. Consider the three n × n
matrices:

P = K(K ′WK)−1K ′W ; Q = I − P ; A = ΣT (T ′ΣT )−1T ′. (17.3)

It is readily checked that P 2 = P , Q2 = Q and A2 = A, so all three are idempo-
tent, and thus linear projections Rn → Rn. They are also self-adjoint, meaning
that WP , WQ and WA are symmetric, which implies they are orthogonal pro-
jections. In addition, x ∈ K implies T ′x = 0, which implies Ax = 0, and hence
K ⊂ ker(A). Finally, Ax = 0 implies T ′Ax = 0, which implies T ′x = 0, which
implies x ∈ K, and hence ker(A) ⊂ K. Thus, A is the orthogonal projection with
kernel K, and Q is also the orthogonal projection with kernel K. Uniqueness
implies A = Q and I −A = P .

17.3.2 Determinants

Now consider the partitioned matrix H = [T,K], which is invertible of order n,
and the related matrix

H ′ΣH =

(
T ′ΣT T ′ΣK
K ′ΣT K ′ΣK

)
.

The condition T ′K = 0 implies that H ′H is block-diagonal with determinant
det(H ′H) = det(T ′T ) det(K ′K), and hence that

det(H ′ΣH) = det(H ′H) det(Σ) = det(T ′T ) det(K ′K) det(Σ).

Using the standard formula for the determinant of a partitioned matrix, we find

det(H ′ΣH) = det(T ′ΣT ) det(K ′ΣK −K ′ΣT (T ′ΣT )−1T ′ΣK)

= det(T ′ΣT ) det
(
K ′[Σ− T (T ′ΣT )−1T ′Σ]K

)
= det(T ′ΣT ) det(K ′(I −A)ΣK) from (17.3)

= det(T ′ΣT ) det(K ′K(K ′WK)−1K ′WΣK)

det(T ′T ) det(K ′K) det(Σ) = det(T ′ΣT ) det2(K ′K)/det(K ′WK)

det(T ′T )

det(T ′ΣT )
=

det(K ′K)

det(K ′WK) det(Σ)
.



244 CHAPTER 17. RESIDUAL LIKELIHOOD

For REML applications where the kernel in specified by K, the determinantal
term in the marginal likelihood is the expression on the right.

17.3.3 Marginal likelihood with arbitrary kernel

For any linear transformation such as T ′ having kernel K, the linear transfor-
mation Y 7→ T ′Y is called a residual modulo K. All transformations having the
given kernel determine the same likelihood function. The marginal log likelihood
based on the linear transformation T ′Y ∼ N(T ′µ, T ′ΣT ) is

l = − 1
2 (y − µ)′T (T ′ΣT )−1T ′(y − µ)− 1

2 log det(T ′ΣT ) + const.

In this setting, l is a function on the parameter space, and the additive constant
may be any function that is constant on the parameter space. It is convenient
here to take a particular constant, namely 1

2 log det(T ′T ) plus any function of y.
This choice ensures that, for every invertible matrix L of order n− k, the linear
transformations T ′ and LT ′ produce identical versions of the log likelihood.
With this choice, the marginal log likelihood based on the residuals modulo K
is one half of

2l=−(y − µ)′WA(y − µ) + log det(T ′T )− log det(T ′ΣT )

=−(y − µ)′WQ(y − µ)− log det(Σ)

− log det(K ′WK) + log det(K ′K), (17.4)

where Q is the orthogonal projection with kernel K, and K is any matrix whose
columns span K.

In applications where X is the model subspace, the most common choice is
K = X , but expression (17.4) is valid for all subspaces, and K ⊂ X arises in
the computation of likelihood-ratio statistics. The ordinary log likelihood with
kernel K = 0 is obtained by setting K = 0. The standard REML likelihood has
K = X and K = X so that µ ∈ X implies Qµ = 0:

2l = −y′WQy − log det(Σ)− log det(X ′WX) + log det(X ′X). (17.5)

Formulae (17.4) and (17.5) may be used directly in computer software. The
constant term log det(K ′K) is included to ensure that the log likelihood depends
on the kernel subspace, not on the particular choice of basis vectors.

For general-purpose software, these formulae are not recommended because
the marginal likelihood requires only that T ′ΣT be positive definite, which is
a weaker condition than positive-definiteness for Σ. Marginal likelihood mod-
ulo a suitable kernel may be used for fitting generalized Gaussian processes,
sometimes called intrinsic processes, that are defined by a generalized covari-
ance function, which is not positive definite in the normal sense, but for which
T ′KT is positive definite. For example, if i 7→ zi is a quantitative covariate
taking values in Rk, the matrix Σij = −‖zi − zj‖ is positive definite in the Eu-
clidean space Rn/1, which is the space of residuals modulo the one-dimensional
subspace of constant functions.
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17.3.4 Likelihood ratios

A likelihood ratio at E is the ratio of probabilities assigned to the event E by
two probability measures:

LRθ′,θ(E) =
Pθ′(E)

Pθ(E)
.

A maximized likelihood ratio is a similar expression

supθ∈Θ1
Pθ(E)

supθ∈Θ0
Pθ(E)

in which the numerator and denominator are maximized over the respective
parameter spaces. It is crucial that all probability measures be defined on
the same σ-field and that event in the numerator be the same as the event
in the denominator; otherwise the ratio is not a fair comparison. In fact, the
event is always an observation or singleton event, which is best regarded as an
infinitesimal event, and commonly denoted by E = dy. Operationally speaking,
dy is the limiting ε-ball B(y, ε) centered at the observation point y ∈ Rn, and
the likelihood ratio is the density ratio at y.

In the case of marginal likelihood, however, the event E ⊂ Rn is necessarily
an event in the σ-field generated by the linear transformation T ′ into the Borel
space Rn−k. The induced σ-field in Rn is the class of residual events, which
are the Borel subsets of Rn such that E + K = E. In other words, a residual
is a point in the quotient space Rn/K, and each residual event E is a union of
translates of K, i.e., a union of K-cosets. The residual event, E = B(y, ε)+K, is
the union of K-cosets that intersect the ball. This is, of course a Borel subset in
the space of residuals modulo K. A residual likelihood ratio statistic modulo K
is thus a ratio of the form

supθ∈Θ1
Pθ(dy +K)

supθ∈Θ0
Pθ(dy +K)

in which the limiting event B(y, ε) +K is the observed residual. A ratio such as

supθ∈Θ1
Pθ(dy +K1)

supθ∈Θ0
Pθ(dy +K0)

is not a likelihood ratio unless K0 = K1.

17.4 Computation

17.4.1 Software options

By default, the function lmer(...) estimates the variance components by
maximizing the residual log likelihood (17.5). As a follow-up, it reports the
weighted least squares estimate (17.2) of the regression coefficients. The square



246 CHAPTER 17. RESIDUAL LIKELIHOOD

roots of the diagonal components of the inverse Fisher information (X ′ŴX)−1

serve as standard errors. The optional argument REML=FALSE is a cop-out,
which overrides the default, and reverts to ordinary maximum likelihood instead.
This option produces a valid likelihood ratio statistic, which is not the one
recommended by Welham and Thompson (1997) or by the writer. Maximum
likelihood with K = 0 is not recommended because the variance estimates have
a multiplicative bias of order O(p/n), whose effect is sometimes not negligible.

The function regress(y~X, ~block+V, kernel=K) has a three-part syn-
tax, permitting greater flexibility, in which the setting for kernel determines
the method of estimation. The first part is a standard model-formula for the
mean-value subspace X ; the second part, which may be empty or missing, is
a simple model formula for the covariances. Each term in the second part is
either a symmetric matrix or a factor; each factor is converted internally into
a block matrix by outer(fac, fac, "=="), and Σ̂ is a linear combination of
these matrices. The identity matrix is included by default as the first element
in the list. The set of matrices must be linearly independent as vectors in
Rn2

. For the third part, the default is K = X , i.e., REML, not K = 0. The
log likelihood value reported by regress(...)$llik is the maximized log likeli-
hood (17.4), using whatever kernel is specified or implied. The zero-dimensional
and one-dimensional options kernel=0 and kernel=1 are permitted but not rec-
ommended.

17.4.2 Likelihood-ratios

To compute a likelihood ratio, we need a null model and an alternative model,
preferably nested. It is essential that both models be fitted based on the same
information or data, i.e., that the same kernel be used in both.

For the comparison of mean-values H0 : µ ∈ X0 versus H1 : µ ∈ X1 ⊃ X0 as
alternative, residual likelihood may be used in the following manner:

X0 <- model.matrix(~mf0); X1 <- model.matrix(~mf1)

fit0 <- regress(y~mf0, ~block+V, kernel=X0); # default kernel

fit1 <- regress(y~mf1, ~block+V, kernel=X0); # default over-ridden

2*(fit1$llik - fit0$llik);

Here, mf0 and mf1 denote the model formulae for X0 and X1 respectively. The
space of covariance matrices is fixed but arbitrary, and block+V is used solely
for illustration.

Welham and Thompson (1997) recommend setting the kernel equal to the
null subspace, i.e., K = X0 ⊂ X1, which is the computation illustrated above.
Provided that K is fixed, X0 ⊂ X1 and µ ∈ X0, the log likelihood ratio is
distributed approximately as χ2 on dim(X1 + K) − dim(X0 + K) degrees of
freedom, which simplifies for K ⊆ X0 to q = dim(X1) − dim(X0) independent
of the kernel. The numerical value of the likelihood-ratio statistic for K ⊆ X0

depends on the kernel, but the first-order asymptotic approximation to the null
distribution is χ2

q, which is independent of K. The choice K = X0 is thought
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to be optimal in the sense of power, and in the sense of accuracy of the χ2

distributional approximation.
The option kernel=0 is permitted but not encouraged; it implies ordinary

maximum likelihood, and is equivalent to the REML=FALSE option in lmer(). The
option kernel = X1 is also allowed; this option produces a valid likelihood ratio
statistic that is exactly zero. Why? Because the hypothesis concerns µ ∈ X1,
and the residuals modulo X1 contain no information about the parameter.

For the comparison of two nested models having the same mean-value sub-
space, the REML default option is recommended:

fit0 <- regress(y~mf0, ~block);

fit1 <- regress(y~mf0, ~block+site);

2*(fit1$llik - fit0$llik);

summary(fit1)

Ordinarily, the one-dimensional subspace of constant functions is a subspace of
X , while block and site are factors having at least two levels. Every factor
that occurs in a covariance model is converted internally into a block factor or
equivalence matrix

Vb <- outer(block, block, "==") Vs <- outer(site, site, "=="),

so the first model specifies a linear combination of V1 = In and V2 = block as a
block factor, while the second specifies a linear combination of three matrices.
Positivity of coefficients is not automatically enforced. Provided that the third
coefficient is not restricted to be positive, the asymptotic null distribution is χ2

1.
To force positivity for the site variance component, the code may be modified
as follows:

fit0 <- regress(y~mf0, ~block);

fit1 <- regress(y~mf0, ~block+site, pos=c(0,0,1), start=c(fit0$sigma, 1));

2*(fit1$llik - fit0$llik);

summary(fit1)

The asymptotic null distribution is a 50% mixture 0.5δ0 + 0.5χ2
1.

17.4.3 Testing for interaction

Consider an experimental design consisting of three physical sites, one northern
one southern and one western, separated by a considerable distance that is
sufficient to affect the local climate. Each site consists of four blocks of six
plots, all of which are outdoors. Each plot is assigned by randomization to
one of two treatment levels, which are constant in time. On 127 days over a
two-year period, measurements are made on one plant in certain designated
plots. By construction, there is one treatment factor; site is regarded as a
classification factor. block is a factor with 12 levels, while plot has 72 levels;
both are naturally regarded as block factors. The levels of the remaining factor
day have a temporal component, which may be important for certain purposes,
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but the temporal aspect is ignored in the initial discussion, which is concerned
with treatment by site interaction. Is the treatment effect constant over sites?

The simplest null model includes additive independent and identically dis-
tributed random effects for observations in the same block, additional additive
random effects for observations in the same plot, and independent additive ef-
fects for observations on the same day. The simplest models with and without
interaction are specified implicitly as follows:

X0 <- model.matrix(~site+treat);

fit0 <- regress(y~site+treat, ~block+plot+day);

fit1a <- regress(y~site*treat, ~block+plot+day, kernel=X0);

fit1b <- regress(y~site*treat, ~block+plot+day, start=fit1a$sigma);

2*(fit1a$llik - fit0$llik); summary(fit1b)

The treat×site interaction space has dimension two, so the null distribution
of the likelihood ratio statistic is χ2

2. The parameter estimates reported by
fit1a and fit1b should be very similar, but not identical. If the number of
observations is large, it is helpful to supply an initial value for the iteration, as il-
lustrated for fit1b above. Note that fit1b uses the default kernel site*treat,
so fit1b$llik is not comparable with fit0$llik.

It may happen that the response has a temporal component that is contin-
uous in time, as opposed to the process implied by the inclusion of day as a
block factor above, in which the daily contributions are independent and identi-
cally distributed. One simple option is to assume that the temporal component
behaves like free Brownian motion, with generalized covariance function pro-
portional to −|t − t′|. Free Brownian motion has independent increments on
non-overlapping intervals; it is a stationary process in the sense that the distri-
bution of increments are constant in time.

dayv <- as.numeric(paste(day)); BM <- -abs(outer(dayv, dayv, "-"))

X0 <- model.matrix(~site+treat);

fit0 <- regress(y~site+treat, ~block+plot+BM);

fit1a <- regress(y~site*treat, ~block+plot+ BM, kernel=X0);

fit1b <- regress(y~site*treat, ~block+plot+BM, start=fit1a$sigma);

2*(fit1a$llik - fit0$llik); summary(fit1b)

It is essential in this script that the kernel subspace include the constant func-
tions. The option kernel=1 is acceptable; kernel=0 is not acceptable, and may
produce an error message.

17.4.4 Singular models

There are various ways in which singularities may arise in a variance-components
model. Consider, for example, a design in which each subject is one experimen-
tal unit, and several response measurements of the same type are made on each
individual. See project 1 in which up to five measurements are made at differ-
ent sites on each rat. Then subject is a partition of the experimental units,
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which is a sub-partition of treatment. Ordinarily, the covariance model con-
tains subject as a block factor with independent and identically distributed
effects, and the model for the mean contains the treatment factor. This model
is non-singular, and the computation should be straightforward. However, if
the exchangeability assumption for subject effects is dropped, and the effects
are included additively in the mean model, the subspace spanned by subject

includes the subspace spanned by treatment. As a consequence, treatment
effects are not identifiable, i.e., they are confounded with subject effects..

A different sort of singularity arises when a factor such as block is included
both in the model for the mean and in the model for covariances. While the
software may complain about singularities or lack of identifiability, it is feasible
to examine this situation analytically. The model is technically identifiable in
the sense that distinct parameter values give rise to distinct probability distribu-
tions. However, the likelihood function achieves its maximum on the boundary
of the space at which block has a zero coefficient in the covariance model. In
other words, the factor in the mean model trumps the block factor in the co-
variance model. The model can thus be fitted by dropping the block factor from
the covariances.

17.5 Numerical example

17.6 Exercises

17.1 Consider a balanced block design having m blocks each consisting of
b observational units, and let B be the associated block factor as a Boolean
matrix of order n = mb. The three-parameter Gaussian model with moments

µ ∈ 1n, Σ = σ2(In + θB),

is parameterized by two scalars µ, σ > 0 and one additional parameter. For the
purposes of this exercise θ > −1/b is not necessarily positive, but Σ is positive
definite. In addition, the residual refers to any linear transformation, such as
Yij − Ȳ.., whose kernel is 1 ⊂ Rn.

Let Yij be the observation for unit j in block i. Show that the within- and
between- quadratic forms

SSW =
∑
ij

(Yij − Ȳi.)2, SSB = b
∑
i

(Ȳi. − Ȳ..)
2,

are independent with distributions σ2χ2
n−m and σ2(1 + bθ)χ2

m−1 respectively.
Hence deduce that, if θ = 0, the mean-square ratio

F =
SSB /(m− 1)

SSW /(n−m)

is distributed according to Fisher’s Fm−1,n−m distribution.
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17.2 For the balanced block design in the preceding exercise, show that the im-
plied distribution for residuals is a two-parameter full exponential-family model
with canonical sufficient statistic SSW ,SSB . Hence deduce that the [residual]
maximum-likelihood estimate satisfies

σ̂2 = SSW /(n−m), 1 + bθ̂ = F.

Show also that the sub-model with θ = 0 is a one-parameter exponential family
model with sufficient statistic SSB + SSW .

17.3 For the balanced block design, show that the log determinant is

log det(Σ) = n log(σ2) +m log(1 + bθ).

Show that the ML estimate satisfies 1 + bθ̂ = (m− 1)F/m. Hence deduce that
the ordinary log likelihood ratio statistic for testing θ = 0 is

log det Σ̂0 − log det Σ̂1 = n log

(
n−m+ (m− 1)F

n

)
−m log

(
(m− 1)F

m

)
,

while the REML statistic is

(n− 1) log

(
1 +

(m− 1)(F − 1)

n− 1

)
− (m− 1) logF.

What does this expression tell you about the null distribution of the REML
likelihood-ratio statistic?

17.4 Show that the REML estimate with positivity constraint satisfies 1+bθ̂ =
max(F, 1). What is the REML estimate for the second component? Express
the constrained REML likelihood-ratio statistic as a function of F , and compute
the atom at the origin.

17.5 The following exercise is concerned with the distribution of the likelihood-
ratio statistic in a ‘fixed-effects’ model for a balanced design, where Σ = σ2In,
and either µ ∈ 1n under the null hypothesis or µ ∈ span(B) under the alter-
native. The meaning of the term ‘residual’ is unchanged, and the F -statistic in
exercise 17.2 is also unchanged.

Show that the residual log likelihood-ratio statistic for testing µ ∈ 1 versus
µ ∈ span(B) is

(n− 1) log

(
1 +

(m− 1)F

n−m

)
.

By simulation or otherwise, show also that the null expected value exceeds that
of χ2

m−1 by the approximate multiplicative factor

1 + 1
2 (m+ 1)/(n−m).

This is a particular instance of the Bartlett correction factor.
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17.6 The null hypothesis being tested in exercise 17.5 is the same as that in
exercise 17.3, but the alternatives are different: one implies exchangeability of
block effects, the other does not. Discuss the implications of the fact that one
statistic is strictly increasing as a function of F , whereas the other is strictly
decreasing for F < 1 and strictly increasing for F > 1.

17.7 Positive definiteness of a function Rd×Rd → R means that,F for integer
n ≥ 1 and each finite collection of points x = {x1, . . . , xn}, the n × n matrix
K[x,x] with components

Kij = K(xi, xj)

is positive definite.
Let x be a point in real Euclidean space Rd. For each λ > 0, the function

K(x, x′) = e−λ‖x−x
′‖

is the covariance function for an autoregressive process of order 1 if d = 1, also
called the Ornstein-Uhlenbeck process for general d. Show that K is positive
definite.
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Chapter 18

Response transformation

18.1 Likelihood for Gaussian models

In applied work, it is frequently advantageous to transform the observations
prior to fitting a linear Gaussian model. Invariably, this means that the state
space for each observation Yi ∈ S is an open real interval such as S = (0,∞)
or S = (0, 1) or S = R. A transformation g : S → R is identified and applied
component-wise to the vector Y ∈ Rn in the hope that the transformed variable
gY might be approximately normally distributed with mean µ ∈ X , and covari-
ance Σ belonging to some family of covariance matrices such as those described
in chapter ?. According to this scenario, the joint density of the observation Y
at the point y ∈ Sn is

(2π)−n/2|Σ|−1/2e−(gy−µ)′Σ−1(gy−µ)/2
n∏
i=1

|g′(yi)|

provided that g is 1–1 differentiable with a differentiable inverse, i.e., a diffeo-
morphism S → R. To specify the likelihood function, it is necessary to identify
the set of transformations g ∈ G under consideration, plus the mean-value space
X = span(X) and the space Θ of covariance matrices. To be clear, these mo-
ment spaces are moment spaces for the transformed variable gY , not for Y . As
a function on G × X ×Θ, this density is the likelihood function.

It is helpful at this stage to insert two additional technical conditions. First,
the space 1 of constant n-vectors is a subspace of X ; this is not required in the
theory of linear models, but it is universal in applied work and it is needed at
certain points in the argument that follows. Second, the space of covariance
matrices is a cone, i.e., Σ ∈ Θ implies τΣ ∈ Θ for every scalar multiple τ > 0.
Both conditions are mathematically essential but relatively benign; the cone
need not be convex. The cone condition extends to Σ−1 and ensures that the
maximum-likelihood estimate µ̂g, Σ̂g for fixed g satisfies

(gy − µ̂g)′Σ̂−1
g (gy − µ̂g) = n.

253
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As a consequence, the profile log likelihood for the transformation g ∈ G is

lp(g) = − 1
2 log det(Σ̂g) +

n∑
i=1

log |g′(yi)|. (18.1)

Finally, for all scalars a, b 6= 0, the cone condition and 1 ⊂ X imply lp(a +
bg; y) = lp(g; y), so that the profile likelihood is invariant with respect to affine
composition. In other words, the transformations y 7→ g(y) and y 7→ a+bg(y) are
equivalent for this comparison: gY ∼ N(µ,Σ) implies a+bgY ∼ N(a+bµ, b2Σ),
and vice-versa.

The preceding analysis assumes that the maximum-likelihood estimate µ̂g, Σ̂g
exists. Existence and uniqueness cannot be guaranteed in general, but failure
is rare in practice provided that p < n and the residual space is adequate to
estimate all variance components.

18.2 Box-Cox transformation

18.2.1 Power transformation

One very natural option is to choose a simple parametric family such as the
family of power transformations (Box and Cox, 1964). Provided that 1 ⊂ X
and all observations are strictly positive, the transformation (0,∞) → R may
be taken in the form y 7→ (yλ − 1)/λ for some scalar λ, with the limit λ → 0
corresponding to the log function. The derivative yλ−1 is strictly positive, so
the profile log likelihood for λ is

lp(λ; y) = − 1
2 log det(Σ̂λ) + (λ− 1)

n∑
i=1

log yi (18.2)

provided that the maximum-likelihood estimate Σ̂λ exists. It is a straightfor-
ward exercise to plot lp(λ) against λ to check whether there is a clear maximum
in the range of interest, which is typically −1 ≤ λ ≤ 1. A large value of the
likelihood-ratio statistic 2lp(λ̂)− 2lp(1) indicates a need for transformation.

The profile log likelihood is meant to be used only as a rough guide. In prac-
tice, the only transformations that are ordinarily considered for linear statistical
analysis are (i) the logarithm if the response scale is strictly positive with a well-
defined origin, and effects are expected to be multiplicative; (ii) the identity if
treatment effects are expected to be additive on the given scale; (iii) occasion-
ally the reciprocal, square root or cube root if there is a reasonable justification
based on the physical units of measurement. For example, if the observation is
a volume, an argument might be made for the cube-root; if the observation is a
time or duration, conversion by reciprocals to the rate scale or frequency scale
might make sense. But additivity of effects on such scales is usually dubious, so
the log transformation is the preferred choice for most physical variables such
as mass, volume, length, time, or ratios such as speed, density, miles per gallon,
and so on. Under no circumstances should the reported analysis be done on the

scale Y λ̂, where λ̂ is the maximum-likelihood estimate from (18.2).
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18.2.2 Re-scaled power transformation

Let τ > 0, and let y 7→ τ(yλ − 1)/λ be the re-scaled power transformation
applied component-wise on the transformed scale. The Jacobian is τn

∏
yλ−1
i ,

so the log Jacobian is

log J = n(λ− 1) log ẏ + n log τ,

where ẏ is the geometric mean of the observations. As a numerical device, it is
sometimes helpful to set the scale parameter to τ = ẏ1−λ so that the Jacobian is
one. With this choice, the profile likelihood reduces to the determinantal term
in (18.2).

The preceding discussion refers to re-scaling g 7→ τg by composition on the
left, i.e., by multiplication after power transformation. Composition on the right
g 7→ gτ refers to the effect of re-scaling y 7→ τy before power transformation:

left : y
g7−→ g(y)

τ7−→ τg(y)

right : y
τ7−→ g(y)

g7−→ g(τy).

Composition on the right sends g(·) to g(τ ·), which is an affine transformation
of g(·):

g(τy) = τλg(y) +
τλ − 1

λ
= τλg(y) + const.

The assumption 1 ⊂ X , and the cone condition on covariance matrices, are
sufficient to ensure that likelihood-based conclusions are unaffected by scalar
composition on the right. Invariance is absolutely essential in applied work,
where the choice of physical units—inches versus centimetres or minutes versus
seconds—is quite arbitrary.

The purpose of re-scaling on the left is not to modify the power transforma-
tion in a substantive way, but to simplify the computation. Nonetheless, the
argument in the first paragraph could easily be misconstrued as a statement
that the modified power transformation

yi 7→
yλi

λẏλ−1
or yi 7→

yλi − 1

λẏλ−1

has Jacobian equal to one. As they are written above, these transformations do
not act component-wise. The first transformation satisfies g(τy) = τg(y), but
the Jacobian J = |λ|−1 is discontinuous at λ = 0. For the second transforma-
tion, the Jacobian

J =
1

λ
+
λ− 1

nλ

∑
y−λi

is continuous at λ = 0, but there do not exist constants a, b such that g(τy) =
a+bg(y). A modified power transformation satisfying both conditions—g(τy) =
τg(y) and continuity in λ—is described in Exercise 18.7. None of these modifica-
tions has a parameter-independent Jacobian, so the Jacobian cannot be ignored
in likelihood calculations.
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Team

Species Bark I II III IV V VI

spruce no 6.4 F 10.9 E 9.8 D 7.5 B 4.6 A 4.1 C
pine no 6.8 B 6.2 C 7.9 E 6.0 A 4.0 D 4.2 F
larch no 12.7 E 13.4 A 12.5 B 7.3 C 6.1 F 7.4 D
spruce yes 8.8 C 10.2 D 12.5 A 8.6 F 6.1 E 5.6 B
pine yes 7.4 D 10.0 B 8.3 F 6.4 E 4.3 C 5.6 A
larch yes 13.1 A 12.0 F 12.0 C 11.3 D 6.1 B 9.7 E

Table 18.1: Time in minutes taken by six teams to complete a woodcutting task
using one of six available saws A–F.

18.2.3 Worked example

This example is taken from Bliss (1970, p. 440–441). The woodcutting efficien-
cies of three brands of saw were compared in a fractional factorial design using
six cutting teams, three species of softwood (spruce, pine and larch) both with
bark and without bark. The response variable is the time in minutes taken to
complete the designated cutting task. The fractional factorial is embedded in a
6 × 6 Latin square whose columns correspond to six teams of workmen cover-
ing the range from experienced woodcutters to seasonal labourers. The letters
correspond to six distinct saws, where A,D are duplicates of brand 1, B,E are
duplicates of brand 2, and C,F are duplicates of brand 3.

Bearing in mind that the chief purpose of transformation is not so much to
induce normality, but to achieve additivity of effects, two Gaussian models were
selected as targets. In the first version, the mean of the transformed variable
is additive in the four factors species+bark+team+saw.id, while the variances
are constant, and the covariances are zero. This is a rank-14 sub-model of the
standard Latin-square model, which has rank 16. The transformation model has
two additional parameters, σ2 and λ, making 16 total. In the second version,
the mean is additive in the three factors species+bark+saw.brand, which is a
subspace of dimension 6, while there are two additional variance components
team+saw.id, making a total of ten parameters. Both profile log likelihoods for
λ in Fig 18.1 have their maxima near λ̂ = −0.34; both 95% confidence intervals
include λ = 0, but the identity is excluded. The conclusion is that the effects
on the time scale are approximately multiplicative, so taking logs is the natural
remedy, as indicated by Bliss. Most experienced statisticians would transform
instinctively to the log scale on the grounds that additive effects on the time
scale are less plausible than multiplicative effects.

As it happens, the variation between duplicate saws is small, but brand
three is about 15% more efficient than the others. Mean cutting times are in
the ratios 1.28:1.00:0.80 for larch:spruce:pine, with an additional factor of 1.14
for bark. There is substantial variation among the teams.

A crucial point in the computation of log likelihoods for Gaussian trans-
formation models is that REML, or residual log likelihood, must not be used
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Figure 18.1: Log likelihood for the transformation parameter λ for two linear
models.
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Figure 18.2: Log likelihood for the transformation parameter λ for two linear
models.
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under any circumstances. REML calculations are based on the residuals in
Rn−p, whereas the Jacobian is the determinant of a transformation Rn → Rn.
These are not compatible; the power transformation does not act on residuals.
As a function of λ the residual likelihood criterion is not a likelihood in the
conventional Radon-Nikodym sense. If the REML criterion were used with the
Jacobian as in (18.2), the plots shown in Fig. 18.1 would look substantially
different. Details are discussed in the next section.

Figure 18.1 indicates that a 1−α confidence interval for the transformation
parameter may be obtained by the likelihood-ratio formula

{λ : l(λ̂; y)− l(λ; y) ≥ 1
2χ

2
1,α},

which is based on large-sample distribution theory: For α = 0.05, the cutoff
allowance 1.92 = 1.962/2 is indicated on the log likelihood plot. In the present
setting, the effective sample size is the residual degrees of freedom, which is 36−
14 = 22. Given that we are interested only in whether the interval includes zero,
the asymptotic approximation is reasonably adequate. However, the coverage
level can be improved appreciably by replacing the 1

2χ
2
1 threshold with the

threshold based on Fisher’s F -ratio,

n

2
log

(
1 +

F1,n−p−1,α

n− p− 1

)
,

which is the exact threshold for 1 − α-coverage in the setting of nested linear
models. The 95% F -threshold for n = 36 and p = 14 is 3.37, which is also shown
in Fig. 18.1 for comparison. The greater allowance produces a wider interval,
but does not materially alter the conclusion or subsequent analysis.

An analysis-of-variance decomposition on the log scale shows that the inter-
actions species.bark and bark.brand are negligible. Bark removal reduces the
mean log cutting time by an estimated 0.152± 0.031 units for each species and
each brand, so the cutting-time distribution is reduced multiplicatively by about
14%.

Notice that the effect of treatment is not to modify the response as a random
variable Y 7→ Y + τ , but to modify the distribution. Mathematically speaking,
the treatment parameter is a real number τ whose effect for linear Gaussian
models is ordinarily the transformation

N(µ, σ2)
τ7−→ N(µ+ τ, σ2)

from the set of Gaussian distributions into itself. The distinction between a
sample-space transformation and a distributional transformation is more clear-
cut for a Poisson or Bernoulli or beta model in which

Po(µ)
τ7−→Po(µeτ ),

Ber
( eη

1 + eη

)
τ7−→Ber

( eη+τ

1 + eη+τ

)
,

Beta(α, β)
τ7−→Beta

(
αeτ/2, βe−τ/2

)
,
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are homomorphisms from R (as a group) into a group of transformations on
Poisson or Bernoulli or beta distributions. In the Gaussian case, the action on
probability distributions is induced by the additive transformation Y 7→ Y +τ on
the observation space. But there is no comparable sample-space transformation
{0, 1} → {0, 1} for the Bernoulli model, or R+ → R+ for the Poisson model, or
(0, 1)→ (0, 1) for the beta model.

To express the rationale in more concrete terms, suppose that the response
distribution for one control unit is F belonging to a given class F , and that
the treatment effect is a real number τ . Then the response distribution for a
comparable treated unit is τF , also belonging to the same set F . In general,
the response distribution for control unit u depends on the covariate xu, so
not all controls have the same distribution. Whatever the control distribution
F ∈ F may be, the distribution for a comparable treated unit u′ having the
same covariate xu = xu′ is τF . Thus (F, τF ) is not simply a fixed pair of
distributions in F , but τ is a function F → F . Group action implies that
τ : F → F is invertible; the inverse is −τ .

In addition to the logit model, probit and complementary log-log models
also determine group actions on Bernoulli distributions; the identity-link model
does not. Crowder’s (19??) beta regression model is a group action on beta
distributions,

(α, β)
τ7−→
(
α(α+ β)eτ

αeτ + β
,
β(α+ β)

αeτ + β

)
,

in which the treatment effect is multiplicative on the ratio: α/β 7→ eτα/β. In
the first version of the beta model, the product αβ is invariant, and in the
second, the sum is invariant. Note that Y ∼ Beta(α, β) implies Ȳ = 1− Y is
distributed as Beta(β, α), with transposition of components. Both beta exam-
ples are consistent in the sense that, the distribution obtained from (α, β) with
transposition followed by τ is the same as the that obtained by −τ followed by
transposition.

If we fit the standard additive model team+species+bark+brand, the esti-
mate reported for the brand 3 versus brand 1 contrast is −0.1484 with standard
error 0.040 on 25 degrees of freedom, suggesting fairly strongly that brand 3
is more efficient than brand 1. This analysis is potentially misleading because,
with only six distinct saws, there cannot be more than five degrees of freedom
for the estimation of between-saw variability. The situation for the bark con-
trast is markedly different because there are 36 logs. The natural analysis based
on the design associates with each saw an independent additive random effect,
so that the six saw averages

saw A B C D E F
mean 2.122 2.060 1.975 2.070 2.156 1.920

are independent with equal variance to be estimated from the three replicate
pairs. This reduction to saw averages does not affect the point estimate for any
brand contrast, but it reduces the degrees of freedom to three, and it increases
the standard error of each pairwise brand contrast to 0.050. The net effect is
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to decrease the F -ratio for brand effects from F2,25 = 9.98 to F2,3 = 6.38. The
preferred Gaussian model is one that incorporates independent and identically
distributed additive effects for replicate saws. Admittedly, the variance compo-
nent for replicate saws is not very large, but the fact that only six saws were
used in the design is decisive.

18.2.4 Transformation and residual likelihood

If the transformation under consideration can be regarded as an invertible trans-
formation on residuals, the residual likelihood modulo the subpace X may be
used in place of (18.2). A transformation g : Rn → Rn may be regarded as a
transformation on residuals if and only if each coset y + X has an image that
is either a coset or a subset of a coset. In that case, g induces a transformation
Rn/X → Rn/X on residuals, which is assumed to be measurable with respect to
the Borel subsets of Rn/X . For example, a linear transformation g : Rn → Rn
induces a transformation on residuals if and only if gX ⊂ X . Unfortunately, a
component-wise non-linear transformation does not induce a measurable trans-
formation on residuals except for trivial cases such as X = 0 and X = Rn.
Even X = 1 fails. Thus, residual likelihood is not available as an option for the
comparison of response transformations.

To see why and how a naive version of REML fails, we compare the standard
log likelihood with a REML-style criterion first proposed by Shi and Tsai (2002)
and subsequently by Gurka, Edwards, Muller and Kupper (2006). For the
power-transformation model gY ∼ N(Xβ,Σ), the two criteria are

l=− 1
2 (gy − µ)′Σ−1(gy − µ)− 1

2 log det Σ + (λ− 1)
∑

log(yi),

l† = l(µ,Σ, λ)− 1
2 log det(X ′WX) + 1

2 log det(X ′X),

where W = Σ−1. Here, gy = yλ/λ for y > 0 is the component-wise power
transformation, so that the log Jacobian is (λ − 1)

∑
log(yi). In either case,

maximization over the space of mean-vectors µ ∈ X gives µ̂ = P (gy), the W -
orthogonal projection of the transformed vector. The profile criteria are

l(Σ, λ; y) =− 1
2 gy

′WQgy − 1
2 log det Σ + (λ− 1)

∑
log(yi),

l†(Σ, λ; y) = l(Σ, λ; y)− 1
2 log det(X ′WX) + log det(X ′X).

Suppose that two statisticians are asked to examine the same data, which
is concerned with vehicle fuel economy. Statistician I analyzes the consumption
rates in miles per gallon, and statistician II in kilometres per litre, so the pairs

of numbers differ by a constant multiple: y
(1)
i = τy

(2)
i with τ ' 2.8. For

each λ, the transformed values differ by a parameter-dependent factor τλ, the
associated variance matrices satisfy Σ(1) = τ2λΣ(2), and the inverse matrices
satisfy W (1) = τ−2λW (2). As we should expect, the log likelihood function is
scale-invariant in the sense that, the two versions differ by an additive constant

l(τ2λΣ, λ; τy) = l(Σ, λ; y)− n log(τ).
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Invariance with respect to scalar multiplication means that two statisticians
analyzing the same data on different scales must arrive at the same conclusion
regarding the transformation parameter. By contrast, the two versions of the
modified criterion differ linearly in λ:

l†(τ2λΣ, λ; τy) = l†(Σ, λ; y)− n log(τ) + λp log(τ),

where p = dim(X ). Lack of invariance means that two statisticians using l† as
the selection criterion are liable to arrive at contradictory conclusions for λ. For
the continuity-modified transformation gy = (yλ − 1)/λ, the analysis is slightly
more complicated, but the conclusions are essentially the same provided that
1 ⊂ X .

The extreme example X = In and X = Rn is not of practical interest because
Q = 0 implies that the residual is identically zero. But it suffices to show that l†

is a non-trivial function of the observations, and thus not a function of residuals.
With X = In the three determinantal terms vanish, leaving

l†(Σ, λ; y) = (λ− 1)
∑

log(yi).

In the absence of information, constancy in Σ is correct, but linearity in λ is
misleading. The slope is positive if the geometric mean observation is greater
than one, and negative otherwise, so scale conversion can change the slope from
positive to negative or vice-versa.

18.3 Quantile-matching transformation

18.3.1 Likelihood function

In certain ‘big-data’ settings such as the analysis of micro-array gene-expression
data, transformation to a marginal reference distribution is sometimes recom-
mended as a way to reduce the impact of unwanted structural effects. Quantile
matching is a strictly monotone transformation h = G−1 ◦ F , which is defined
by a domain distribution F and a target distribution G. Both distribution func-
tions are assumed to be strictly monotone and differentiable. Quantile matching
is applied component-wise to the data, and transforms Y ∼ F into hY ∼ G.
The empirical version, denoted by h̃, transforms the finite set {y1, . . . , yn} into
specific quantiles of G:

h : y 7−→ F (y) 7−→ G−1
(
F (y)

)
h̃ : y 7−→ F̃n(y) 7−→ G−1

(
F̃n(y)

)
.

For the specific requirements of this section, F̃ is a strictly monotone continu-
ously differentiable function satisfying 0 < F̃ (t) < 1. At each observation point
y ∈ {y1, . . . , yn}, the value is the average of the left and right limits of the
empirical distribution function

F̃n(y) = 1
2 F̂n(y−) + 1

2 F̂n(y+).
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Elsewhere in the domain, F̃n(t) is subject to differentiability and strict mono-
tonicity, but, apart from the sample points, the values are otherwise unspecified.
The numbers F̃ (y1), . . . , F̃ (yn) are the uniform sample quantiles in (0, 1), and
the target G-quantiles are the transformed values

qi:n = h̃(yi) = G−1(F̃ (yi)),

taken with multiplicity in ascending order. If there are no ties, the uniform
quantiles are the numbers (2i− 1)/2n for 1 ≤ i ≤ n.

The Jacobian of the transformation h : Rn → Rn is the product of the deriva-
tives at the domain points

n∏
i=1

h′(yi) =

n∏
i=1

F ′(yi)

g(h(yi))
,

so the log Jacobian and its empirical version are∑
logF ′(yi)−

∑
log g(h(yi)) and

∑
log F̃ ′(yi)−

∑
log g(qi:n),

where g = G′ is the target density. The last term is a quadrature sum, which is
an approximation to the entropy integral

J̃(G) = n−1
∑

log g(qi:n) =

∫
log g(x) dG(x) +O(n−1).

From (18.1), the profile log likelihood function for the quantile-matching
transformation h̃ is

− 1
2 log det Σ̂h +

∑
i

log F̃ ′(yi)−
∑

log g(qi:n), (18.3)

where Σ̂h is the maximum-likelihood estimate after transformation. However,
the derivatives F̃ ′(y) are not readily available, so the log likelihood (18.3) is not
computable.

Now consider two quantile-matching transformations, which are defined by
their target distributions G0, G1. From (18.3), the profile log likelihood ratio of
G1 to G0, is

− 1
2 log det(Σ̂1Σ̂−1

0 )− n J̃(G1) + n J̃(G0), (18.4)

If n is sufficiently large, the quadrature sums J̃(G0) and J̃(G1) can be replaced
with the corresponding integrals. The quadrature errors are typically O(n−1)
for both J(G0) and J(G1), but if the distributions are contiguous or similar,
the quadrature error for the difference is o(n−1), and thus negligible for present
purposes.
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fig2a.pdf

Figure 18.3: Log likelihood for α in the quantile function (18.5)

18.3.2 Simulated example

As an illustration, we simulate data from a row-column design with independent
and identically distributed additive row and column effects as follows:

nrows <- 50; ncols <- 30; n <- nrows*ncols

row <- gl(nrows, 1, n); col <- gl(ncols, nrows, n)

set.seed(3142)

mu <- rcauchy(nrows)[as.numeric(row)] + rcauchy(ncols)[as.numeric(col)]

y <- 5 + mu + rnorm(n); hist(y, nclass=50)

The histogram in Figure 18.2 is reasonably symmetric but markedly non-Gaussian.
The percentile-matching model is determined by the subspace X = row+col,

the covariance specification Σ ∝ In, plus the quantile function q : (0, 1) → R,
which we take to be of the form

q(p) = pα/α− (1− p)α/α (18.5)

for some real number α. The limit α → 0 is the logistic model. In practice,
it suffices to focus on the range −1 < α < 1, or some subset thereof. We now
compute the profile log likelihood for a range of parameter values as follows:

pc <- (rank(y) - 1/2)/n

alpha <- seq(-0.25, 0.5, 0.05); llik <- rep(0, along=alpha)

for(i in 1:length(alpha)){

a <- alpha[i]

if(a==0) gy <- log(pc/(1-pc)) else gy <- (pc^a - (1-pc)^a)/a

fit <- lm(gy~row+col)

s2 <- sum(fit$resid^2)/n

llik[i] <- -n*log(s2)/2 + sum(log(pc^(a-1) + (1-pc)^(a-1)))

}

The next step is to plot the log likelihood as a function of α. The set of quantile
functions does not include the Gaussian or probit function, so the log likelihood
is computed separately and indicated on the plot. Ordinarily, Gaussian quantile
matching is quite effective, but Fig. 18.2 shows that, for these data, the logistic
quantile-matching function with α = 0 works appreciably better.

Since the response values were generated additively according to the Gaus-
sian model, the optimal transformation in this setting is linear or affine. But the
identity and other linear transformations are not among the options accessible
by quantile matching, which is a function of the rank vector only. Nonethe-
less, among the transformations considered, the correlation matrix shows that
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the quantile transformation for α̂ = −0.05 is maximally correlated with the
optimum:

Correlations with quantile-transformed variables

α̂ logistic Gaussian t7

Identity 0.927 0.917 0.888 0.919

The quantiles of the Student t family provide a viable alternative to (18.5).
The optimum, t7 in this instance, is better than Gaussian, and approximately
as effective as logistic matching.

In the preceding analysis, the likelihood is determined by the mean model
X = row+col and the covariance model Σ ∝ In. One reasonable variation in
the present setting is to use an additive Gaussian random-effects model for gY
with X = 1, and Σ a linear combination of the block matrices In, row and col.
For a balanced design such as this, maximum-likelihood estimates of all four
parameters are available in closed form, so the computations are not onerous.
The profile log likelihood plot for α looks much the same as Fig. 18.2 except that
all log likelihood values are reduced by approximately 250 units. The reduction
is not constant in α, but the variation is insufficient to change the conclusion in
a material way.

18.4 Exercises

18.1 Let Y be a non-negative random variable with cumulants κr such that
κr/κ

r
1 = O(ρr−1) as ρ→ 0. In other word, the scale-free variable Z = Y/κ1 has

variance ρ = κ2/κ
2
1, which is the squared coefficient of variation of Y , and the

higher-order scale-free cumulants are O(ρr−1). Show that the cumulants of the
power-transformed variable are

E(Zλ) = 1 +
(λ− 1)κ2

2κ2
1

+ o(ρ);

var(Zλ) =
κ2

κ2
1

+ o(ρ);

cum3(Zλ) =
κ3

κ3
1

+ 3(λ− 1)
κ2

2

κ2
1

+ o(ρ2).

Hence deduce that the approximate symmetry-inducing power transformation
is λ̂ = 1− κ1κ3/(3κ

2
2).

18.2 Wilson-Hilferty transformation: Show that the rth cumulant of the ex-
ponential distribution is κr = κ1(r− 1)!, and hence that Y 1/3 is approximately
symmetrically distributed.

18.3 Show that the rth cumulant of the Poisson distribution is κr = κ1, and
hence that Y 2/3 is approximately symmetrically distributed.
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18.4 Show that the transformation Rn → Rn defined by

ū 7→ ū+ const, ui − ū 7→ λ(ui − ū)

is linear and invertible with Jacobian J = |λ|n−1. Here, ū is the mean of the
components of the vector u ∈ Rn, and λ is a non-zero constant.

18.5 Consider the non-component-wise transformation

yi 7→
yλi

λẏλ−1

where ẏ is the geometric mean of the components of y ∈ Rn+. Using the result
of the previous exercise, show that the modified transformation is invertible
Rn+ → Rn+ with Jacobian J = |λ|−1.

18.6 As a function of λ, show that the the transformation Rn+ → Rn

(gy)i =
yλi − 1

λẏλ−1

is continuous at λ = 0, and that the Jacobian is the absolute value of

1

λ
+
λ− 1

nλ

∑
y−λi .

Find the limits for λ = 0,±1. Discuss the implications regarding invertibility?
For τ > 0, show that g(τy) is not expressible in the form a + bg(y) for any
constants a, b depending on τ, λ.

18.7 For τ > 0, show that the modified transformation Rn+ → Rn

(gy)i = ẏ +
yλi − ẏλ

λẏλ−1

is continuous at λ = 0 and satisfies g(τy) = τg(y). What are the implications
for statistical applications? Show that the Jacobian is

1

λ
+
λ− 1

nλ
ẏλ
∑

y−λi ,

which is positive, and that the limits for λ→ 0 and λ→ 1 are equal.

18.8 For which values of α is the transformation

gα(x) =
(− log(1− x))α

α
− (− log(x))α

α

differentiable and strictly monotone (0, 1)→ R?

18.9 For the simulated data in the section 18.?, compute and plot the profile
log likelihood for the preceding family of transformations as a function of α in
a suitable range that includes the maximum. Comment on any unusual aspects
of the likelihood function.

18.10 Repeat the preceding exercise taking X = 1, and Σ a linear combination
of the block matrices In, row and col.
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Chapter 19

Missing values

19.1 Pattern of missing components

19.1.1 Complementary subsets and subspaces

In a typical units-by-variables setting, the ‘complete’ observation is a function
Y : NJ → R, where NJ = [N ]× [J ] is the product set. The pattern of recorded
components is a subset r ⊂ NJ , and the pattern of missing components is
the complementary subset r̄. These subsets are identified with their indicator
functions r : NJ → {0, 1} and r̄ = 1−r, so the observation consists of the mask r
together with the component-wise product Yobs = (r, r ·Y ). The complementary
unobserved part is Ymis = (r̄, r̄ ·Y ). Either Yobs or Ymis determines the mask r,
while the sum Yobs + Ymis = (NJ, Y ) determines only Y , not the mask.

In general, Yobs(i, j) = 0 implies either Yi,j = 0 or ri,j = 0. If Yi,j = 0 is not
physically possible, or if it is an event of probability zero, then Yobs(i, j) = 0
implies ri,j = 0, in which case there is no ambiguity in writing Yobs = r ·Y and
Ymis = r̄ ·Y .

No distinction is made in the notation between a subset r ⊂ NJ and its
indicator function or indicator vector. But, in general, a set or subset consists
of elements, while a vector or matrix has components, which are the coefficients
with respect to the indicator basis, one indicator function for each element
in NJ .

To each subset r ⊂ NJ there corresponds a vector subspace Rr ⊂ RNJ :

Rr = {r ·v : v ∈ RNJ} = {x ∈ RNJ : r̄ ·x = 0}

where 0 is the zero vector in RNJ . The masking function Y 7→ r ·Y is a linear
transformation RNJ → RNJ , in fact the unique linear projection with image Rr
and kernel Rr̄. The condition x ∈ Rr implies that each component x(i, j) is a
real number and that x(i, j) = 0 for (i, j) 6∈ r. Evidently, dim(Rr) = #r is equal
to the number of elements in the set r, or the number of non-zero components
in the indicator matrix r.

267
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Let W be a vector space, and let U, V be complementary subspaces. Com-
plementary in W means (i) U ∩V = 0, i.e., the intersection is the zero subspace,
and (ii) span(U, V ) = U + V = W . Condition (ii) implies that each vector
x ∈ W can be decomposed as a sum x = u + v with u ∈ U and v ∈ V , and
condition (i) implies that this decomposition is unique. Equivalently, to each
x ∈W there corresponds an ordered pair x 7→ (u, v) with u ∈ U and v ∈ V such
that x = u+v. If U, V are complementary in W , we write W = U⊕V , meaning
that W is the direct sum of subspaces. Thus W = U ⊕ V implies W = U + V
and U ∩ V = 0.

For the setting under discussion here, where r ⊂ NJ , and the subspaces are
defined component-wise by U = Rr and V = Rr̄, the projections onto U and V
are u = r ·x and v = r̄ ·x respectively. These projections are complementary
but not necessarily orthogonal because no inner product has been specified.

19.1.2 Probability distributions

Let r ⊂ NJ be a fixed subset, let U = Rr, V = Rr̄ be complementary subspaces,
and let P be a probability distribution with density p(x) at x ∈ RNJ . The linear
projection x 7→ r ·x has kernel V , and A × V = A + V is the inverse image of
A ⊂ U , so the marginal distribution Pr on U is such that

Pr(A) = P (A× V )

for each Borel subset A ⊂ U . Since x 7→ (u, v) is a linear transformation with
Jacobian one (a coordinate permutation), the marginal density at u is

pr(u) du = P (du× V ) = du

∫
v∈V

p(u, v) dv.

If Y is a random variable distributed as P , the marginal variable or masked
variable r ·Y is distributed as Pr( ·) on the subspace U .

To make a connection with the notation typically used in the literature on
missing data, r̄ is a mask concealing part of the response Ymis = r̄ ·Y , the
values Yobs = r ·Y are recorded on r, and both Yobs, Ymis are regarded as N × J
matrices. In this setting r ⊂ NJ is an arbitrary subset, and the transformation
from ordered pairs to ordered pairs (r, Y ) 7→ (Yobs, Ymis) is one-to-one. If (u, v)
are complementary vectors in RNJ in the sense that the support subsets

r = Iu = {(i, j) : ui,j 6= 0} and Iv = {(i, j) : vi,j 6= 0}

are complementary in NJ , the inverse transformation is (u, v) 7→ (Iu, u+ v) on
ordered pairs. Thus, when we say that Yobs is the observation, it is assumed im-
plicitly that Yobs(i, j) = 0 if and only if r(i, j) = 0, which is true with probability
one if Y is continuously distributed. Otherwise, it is necessary to distinguish
these possibilities by introducing a distinct symbol such as ∗ or 0∗ for censored
components, r = Iu6=0∗ , and so on. In arithmetic operations, 0∗ behaves as zero.

In the computational literature, a different convention is employed in which
the elements of NJ are implicitly stored in a specific order, and the components
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of every matrix such as Y or r are listed in parallel. Then Y[r] ≡ Y [r] is the
restriction of Y to r ⊂ NJ , which is a list {Yi,j : (i, j) ∈ r} consisting of #r
numbers presented in the same relative order without gaps. In other words, Y[r]

is not a set or a matrix, but an ordered list of real numbers in the same relative
order as the elements of r ⊂ NJ . A simple example with N = 4 and J = 3
illustrates the idea:

Y =


1.2 3.6 2.7
3.1 2.2 3.7
4.3 0.7 1.9
4.7 0.0 2.1

 , r =


0 1 1
1 0 0
0 0 1
0 1 0

 , Yobs = r ·Y =


0∗ 3.6 2.7
3.1 0∗ 0∗

0∗ 0∗ 1.9
0∗ 0.0 0∗


Y[r] = Y [r] = (3.1, 3.6, 0.0, 2.7, 1.9).

Note that (r ·Y )(4, 1) = 0∗ implies r(4, 1) = 0, whereas (r ·Y )(4, 2) = 0.0 implies
Y (4, 2) = 0.0 and r(4, 2) = 1.

The expression for Y[r] presumes that the elements of NJ are stored column-
wise. If the elements of NJ are stored row-wise, we have

Y ′[r] = (3.6, 2.7, 3.1, 1.9, 0.0),

which is the same set but a different vector. Matrix transposition changes the
implicit storage order, so that Y ′[r] ≡ Y

′[r′].

For any given r ⊂ NJ , the matrix representation Yobs = r ·Y the list rep-
resentation Y[r] and the transposed list Y ′[r] are equivalent in the sense that
any one may be computed from the other. For fixed r, the random variables
Yobs

∼= Y[r]
∼= Y ′[r] are equivalent in the sense that they determine the same

σ-field. The situation for variable or random r ⊂ NJ is entirely different, so the
distinction between Yobs, Y[r] and Y ′[r] as random variables is not a matter of
stylistic preference, but a matter of informational content. The notation implies
correctly that Yobs is the information recorded, and Yobs determines both Y[r]

and Y ′[r] and also r, but Y[r] without r does not determine either Y ′[r] or Yobs.

19.1.3 Random masking and MAR

Let P be the joint distribution of the pair (R, Y ). The missing-value mechanism
is the conditional distribution

q(r, y) = P (R = r | Y = y),

which is a family of of probability distributions on subsets of NJ , one distri-
bution for each point y ∈ RNJ . In this context, ‘all y ∈ RNJ ’ is understood in
the almost-all P sense, in essence all y at which the marginal distribution has
positive density. The missing-value mechanism is said to be missing at random
(MAR) if

q(r, y) = q(r, y + r̄ ·x) (19.1)
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for all r ⊂ NJ and all real matrices x, y. In particular, x = −y gives q(r, y) =
q(r, r ·y). This is the strong MAR condition (Rubin, 1976), also called MAAR,
which can be expressed equivalently in the form

q(r, y) = q(r, y′) (19.2)

for all r ⊂ NJ and all pairs y, y′ such that r ·y = r ·y′, or, equivalently, for all
pairs y, y′ such that y[r] = y′[r].

If (19.1) is satisfied for a particular subset, for example r = NJ or r = ∅,
we say that the masking distribution is MAR at r. Condition (19.1) is null
for r = NJ , so every distribution is automatically MAR at NJ . At the other
extreme, the distribution is MAR at the empty set if and only if the event R = ∅
is independent of the random variable Y .

Consider a family of distributions Pθ differing only in their Y -marginal dis-
tributions pθ(y), so that the joint density at (r, y) is of the form pθ(y) q(r, y).
The MAR condition is a restriction on the conditional distribution given Y , so
each distribution in the family is MAR if q satisfies (19.1).

Example 1: Optional stopping 1. Let Y = (Y0, Y1, . . .) be a real-valued process
in discrete time, and let B ⊂ R be a subset of the state space such that the first
exit time T (Y ) = min{t ≥ 0 : Yt 6∈ B} is finite with probability one. The values
Yobs = (Y0, . . . , YT ) are observed, so R = [0, T ] and R̄ = [T + 1,∞]. Note that
the observed sequence contains at least one value YT ∈ B̄ with T ≥ 0, so R is
not empty.

It is helpful in the first instance to consider a specific case with B = [0,∞)
and a specific sequence

y = (0.0, 0.5, 0.7,−0.4, 0.3, . . .)

with y0 = 0.0 ∈ B and T (y) = 3. Then pr(R = r | Y = y) = 1 for r = [0, 3]
and zero for all other values. Moreover, if y′ is any other sequence such that
y′[r] = y[r] are equal on r, then pr(R = r | Y = y′) is also equal to one for
r = [0, 3] and zero otherwise. Thus, the MAR condition is satisfied for this
y-sequence, and all other sequences having at least one negative component.

Example 2: Optional stopping 2. Consider the same set-up as in the preceding
example except that the value YT on exit from B is not recorded. Thus, R =
[0, T − 1] if T ≥ 1 and R = ∅ otherwise. For the particular sequence y shown
above, r = {0, 1, 2} and y′ = (0, 0.5, 0.7, 0.4,−0.3, . . .) we have y[r] = y′[r] but
q(r, y) = 1 whereas q(r, y′) = 0. The MAR condition fails unless B is such that
R = ∅ with probability one,

Example 3: Deterministic censoring. Let B ⊂ R be given, and let Ri,j = 1 if
Yi,j 6∈ B, and zero otherwise. In other words, components of Y are censored if
they belong to B, so Yobs(i, j) = Yi,j if Yi,j ∈ B, and Yobs(i, j) = 0∗ otherwise.
Let r ⊂ NJ be given. The MAR condition (1’) is satisfied if, q(r, y) = q(r, y′) for
each pair of matrices y, y′ that are equal on r. In particular, q(∅, y) = q(∅, y′) for
all pairs implies that the event R = ∅ must be independent of Y . By definition,
R = ∅ if and only if Y ∈ BNJ , so the MAR condition is satisfied only if the event
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Y ∈ BNJ is independent of itself, i.e., pr(Y ∈ BNJ) is either zero or one. A
similar argument shows that the marginal event Yi,j ∈ B must be independent
of Yi,j . In other words, the MAR condition is not satisfied unless the censoring
set is trivial.

Example 4: Let α > 0, let Y = (Y0, Y1, Y2) be a random permutation of (0, 1, 2),
and R a random subset of [3] = {0, 1, 2} such that

qα(r, y) =

∏
i∈r(α+ yi)

(α+ 1)(α+ 2)(α+ 3)
. (2)

The empty product is defined to be one, so that R is empty with probability
1/(α+ 1)

↑3
, independently of Y . Since qα(r, y) = qα(r, r ·y) depends only on

the component-wise product, the MAR condition is satisfied for every r and
every y having positive probability. Equivalently, y[r] = y′[r] implies q(r, y) =
q(r, y′), satisfying (1′).

Example 3 suffices to illustrate the difference between Yobs and Y[r]. Suppose
Y[r] = 2, implying R ⊂ [3] is a singleton. The pair (Y[r], R) determines Yobs, and
the possible values are (2, ∗, ∗), (∗, 2, ∗) and (∗, ∗, 2). These occur with equal
probability if the marginal distribution of Y is uniform on the six permutations.

MAR is a property of a joint probability distribution, which depends only
on the conditional distribution given Y . In the case of a family of probability
distributions such as example 3, it is possible that some members satisfy the
MAR condition and other not. If each distribution satisfies the MAR condition,
we say that the family or statistical model is MAR.

19.1.4 Conditional independence

Let X,Y, Z be random variables defined on the same probability space. If the
joint distribution is such that

pr(X ∈ A, Y ∈ B | Z) = pr(X ∈ A | Z) pr(Y ∈ B | Z)

then the events X ∈ A and Y ∈ B are conditionally independent given Z. If this
condition holds for all events A and B, then the conditional distribution given Z
factors as a product of conditional distributions. The random variables X and
Y are said to be conditionally independent given Z. (Here A ⊂ X is an event
in the image space of X, B is an event in the image of Y , so, by definition, the
inverse images X−1A and Y −1B are events in the original probability space.)
Conditional independence is denoted by X ⊥⊥ Y | Z or Y ⊥⊥ X | Z.

Density factorization: Suppose that the joint density at (x, y, z) can be fac-
tored as

p(x, y, z) = q1(x, z) q2(y, z) q3(z).

Then, for any z such that q3(z) > 0, the conditional density of (X,Y ) given
Z = z is proportional to the product

p(x, y | Z = z) ∝ q1(x, z) q2(y, z),
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implying that X,Y are conditionally independent given Z = z. Although it
is invariably taken for granted, it is worth stating explicitly that p must be
the joint density with respect to some product measure on the product space.
Otherwise, conditional independence does not follow.

19.1.5 Sufficiency and equality of conditional distributions

The literature on missing values is replete with statements of the general type

P (X ∈ A | Y ) = P (X ∈ A | Z) (19.3)

involving equality of conditional distributions given two statistics. The con-
ditional distribution given Y associates with each point y in the image of
Y , a probability distribution Q( · ; y) on X , while the conditional distribution
given Z associates with each point z in the image of Z a second distribution
Q′(·; z) on X . The preceding statement says that these distributions are equal,
i.e., Q(A; y) = Q′(A; z) for all pairs (y, z) in the image of (Y,Z), and all events
A ∈ σ(X) generated by X.

The conditional distributions are equal if X ⊥⊥ Y and X ⊥⊥ Z; the stronger
condition X ⊥⊥ (Y, Z) is not necessary. Apart from this trivial case, the condi-
tional distributions may be equal if Z = T (Y ) is a function of Y or vice-versa,
in which case the value z = T (y) suffices to compute the conditional probability
P (X ∈ A | Y = y).

Suppose now that Z = T (Y ), i.e., the σ-field generated by Z is a subfield
of that generated by Y . Suppose also that (19.3) holds for each event A ⊂ X .
Then,

pr(X ∈ A, Y ∈ B | Z) = pr(X ∈ A | Y, Z) pr(Y ∈ B | Z)

= pr(X ∈ A | Y ) pr(Y ∈ B | Z)

= pr(X ∈ A | Z) pr(Y ∈ B | Z),

implying X ⊥⊥ Y | Z. The second line follows from the fact that Z is a function
of Y , i.e., σ(Y,Z) = σ(Y ), and the third line from the hypothesis (19.3). This
conclusion is intuitively obvious, and is closely related to the notion of statistical
sufficiency for parameter estimation. It is important that Z be a function of Y
alone, not a function of (X,Y ).

19.1.6 Conditional independence and mistaken identities

Let R ⊂ NJ be a random subset whose conditional distribution satisfies (1). It
follows from the definition that Y = Yobs + Ymis is the sum of two complemen-
tary random matrices, so the ordered pair (Yobs, Ymis) determines Y . But, with
probability one if Y is continuously distributed,

R = {(i, j) ∈ NJ : Yobs(i, j) 6= 0}

is the indicator function for Yobs 6= 0, so the ordered pair determines R. In other
words, the ordered pair (Yobs, Ymis) is equivalent to the ordered pair (R, Y ) in
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the sense that they have the same information content: as random variables,
they generate the same σ-field of events. Although it is commonplace to write
Y = (Yobs, Ymis), rather than Y = Yobs+Ymis, such expressions demonstrate only
how easy it is to compose a logically false mathematical statement.

It is also commonplace to write Y = (Y[r], Y[r̄]) as an ordered pair of random
vectors or two lists of random length. This statement is false in both directions.
On the one hand, Y does not determine either Y[r] or the number of components;
on the other hand, the ordered pair determines Y[r] and #R = #Y[r], but
Y does not. The ordered pair determines the concatenated list cat(Y[r], Y[r̄]),
which is a straight list of JN real numbers that may be formatted as a matrix,
matrix(c(Y1, Y0), N, J). But this matrix is not to be confused with Y .

Abuse of notation is common throughout mathematics, and is essentially
unavoidable in the statistics literature. Overloading is the most common benign
abuse, in which a symbol such as r does double duty as a subset r ⊂ NJ
and a function NJ → {0, 1}. In factorial models, it is well understood that
a classification or treatment factor A does quadruple duty as (i) a function
A : [n]→ A from the observational units into the factor levels; (ii) the associated
list of levels as a spreadsheet column; (iii) the vector subspace A ⊂ Rn induced

by composition [n]
A→ A f→ R; (iv) a set of basis vectors spanning the subspace.

Such overloading is difficult to avoid, and seldom causes confusion. But it
may lead to confusion in unusual circumstances when a function such as r is
also regarded as a matrix, which may subsequently be transposed, so that the
matrices r and r′ are two representations of the same subset.

The identification of Y with either (Yobs, Ymis) or (Y[r̄], Y[r]) is not so much
an abuse of notation as an error of logic. One consequence is that the MAR
condition is sometimes expressed incorrectly in the form

pr(R = r | Y ) = pr(R = r | (Yobs, Ymis)) = pr(R = r | Yobs).

The first equality is a consequence of the false equivalence Y ∼= (Yobs, Ymis).
The second part asserting that pr(R = r | Yobs = yobs, Ymis = ymis) is equal to
pr(R = r | Yobs = yobs), is a true statement implying that R ⊥⊥ (Yobs, Ymis) | Yobs,
which is also true. But the statement is true only because both distributions
are degenerate at the point r = Iy

obs
6=0. In summary, the second equality is

an identity holding for all [continuous] distributions by virtue of degeneracy,
while the first equality is essentially always false, even if R, Y are independent.
Neither part has any connection with MAR.

Sometimes an alternative definition of MAR is offered along the following
lines:

pr(R = r | Y ) = pr(R = r | (Y[r], Y[r̄])) = pr(R = r | Y[r]). (19.4)

The first equality, which is false in most circumstances, is a consequence of
the mistaken identity Y ∼= (Y[r̄], Y[r]). Since Y[r] determines the number of
components recorded #R = #Y[r], the middle distribution implies that #R is
degenerate even if the distribution of #R given Y is not degenerate. The second
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part of (19.4), which is not trivial by reason of degeneracy, implies

R ⊥⊥ Y | Y[r] or R ⊥⊥ Y[r̄] | Y[r], (19.5)

a conditional independence statement that follows from (19.3) under the mis-
taken identity Y ∼= (Y[r̄], Y[r]). It may come as a surprise that this conditional
independence statement is often put forward as the definition of MAR, even
though it is entirely unrelated to MAR, it is not satisfied in most instances of
MAR, and it is demonstrably false in Example 4.

Example 5: (continuation of Example 4). Let the marginal distribution of Y
be uniform on permutations of (0, 1, 2). Given the restriction Y [R] = Y(1) =
2, the random subset R ⊂ [3] is a singleton whose conditional distribution is
independent of α and uniform on singletons in [3]. The joint distribution given
Y[r] = 2 is shown below together with the marginal distribution of R given
Y[r] = 2.

r ⊂ {0, 1, 2}

(y0, y1, y2) ∅ 0 1 2 01 02 12 012

(0, 1, 2) 0 0 0 1/6 0 0 0 0
(0, 2, 1) 0 0 1/6 0 0 0 0 0
(1, 0, 2) 0 0 0 1/6 0 0 0 0
(1, 2, 0) 0 0 1/6 0 0 0 0 0
(2, 0, 1) 0 1/6 0 0 0 0 0 0
(2, 1, 0) 0 1/6 0 0 0 0 0 0

p(R = r | Y[r] = 2) 0 1/3 1/3 1/3 0 0 0 0

Although the strong MAR condition is satisfied, the example demonstrates that

pr(R = r | Y ) and pr(R = r | Y[r])

are different, contradicting (19.4). It is evident also that R and Y are not
conditionally independent given Y[r] = 2, which is a counterexample to (19.5).

19.1.7 Likelihood and MAR

Let Pθ be a family of distributions on RNJ × {0, 1}NJ indexed by θ ∈ Θ such
that the density at (y, r) is

q(r, y) p(y; θ).

In other words, the marginal density of Y at y is p(y; θ), and the conditional
distributon of R given Y does not depend on the parameter.

Given a fixed subset r ⊂ NJ , each point y may be decomposed as y = (u, v)
with u = r ·y and v = r̄·y belonging to complementary subspaces. By definition,
the marginal density of r ·Y at u is

pr(u; θ) =

∫
V

p(u+ v; θ) dv.
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If, however, the sampling scheme is such that R = r is the outcome of selective
random sampling with distribution (8), the marginal density of Yobs = R ·Y at
the point (r, u) is

p∗r(u; θ) =

∫
V

q(r, u+ v) p(u+ v; θ) dv. (19.6)

Here r ⊂ NJ is an arbitrary subset, u = r ·y is a matrix in U = Rr whose
non-zero components determine r, and the two distributions are such that∫

Rr
pr(u; θ) = 1∑

r⊂NJ

∫
Rr
p∗r(u; θ) du= 1.

If the MAR condition is satisfied at r, i.e., q(r, u+ v) = q(r, u), the integral
in (19.6) simplifies to

p∗r(u; θ) = q(r, u)

∫
V

p(u+ v; θ) dv = q(r, u) pr(u; θ),

which implies equality of ratios

p∗r(u; θ)

p∗r(u; θ′)
=

pr(u; θ)

pr(u; θ′)
.

Consequently, the likelihood for θ based on the observation Yobs with selectively
sampled components is the same as the likelihood for θ computed incorrectly
from the marginal distribution (19.6) as if the sampled components were fixed
at r in advance.

The MAR condition is not related to independence or conditional indepen-
dence, and it does not imply that the conditional distribution of Yobs given
R = r is the same as the distribution of r ·Y .
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Chapter 20

Presentations and reports

20.1 Coaching tips I

The first eight of these tips are concerned with technical aspects of statistical
reports. The last four are concerned with English usage, style and semantics.

1. Length: Reports should be no longer than necessary. A short report that
makes the salient points is preferable to a long rambling philosophical
essay, even if the longer essay makes the same points somewhere along the
way. Above all, have compassion for the reader (and grader).

2. Graphs and plots: A plot either of the raw data or of the residuals is
almost always essential at some point in the analysis. Not all plots are
helpful or especially interesting. Although you should indicate what plots
were made, it is generally not necessary to include in the report a copy of
all plots made and all analyses performed. If necessary for examination
purposes, extra plots and lengthy analyses can be included in an appendix.

3. Executive summary: All major conclusions should be stated at the begin-
ning in a summary intended for a scientifically literate reader who is not
a statistician. Technical terms associated with the context of the problem
are unavoidable, but technical statistical terms should so far as possible
be avoided. One page is the upper limit. Remember, few readers progress
beyond the summary. It is up to the author to state the conclusions early
in as persuasive a manner as possible if the reader is to be convinced.

4. Statistical analyses: Following the summary, the report should describe
the models fitted, the tests performed, and how these support the conclu-
sions. The relevance of the models to the context under study is important.
Technical statistical terms are acceptable here only if they are essential to
support the conclusions.

5. Model specification: Statistical models are used by statisticians, com-
puter scientists, engineers, quantitative sociologists, biostatisticans and
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epidemiologists, and even by research workers in literature, law and the
humanities. The term does not necessarily mean the same thing to all
users. Some users think that a statistical model is an equation beginning
with y = and ending in . . . + ε. Others are of the opinion that a statis-
tical model is a syntactical expression such as ~A+x+... containing the
symbol ∼, or more generally any machine-learning algorithm that is coded
in R. A professional statistician knows that a statistical model is a non-
empty set whose elements are probability distributions on the observation
space, usually Rn.

A model specification calls for a statement indicating which distributions
are included in the set and which are excluded. Parameter estimation
calls for an estimation method, usually maximum likelihood, but very
frequently in a modified form such as REML. Maximum likelihood calls for
an algorithm, preferably one that is efficient and coded in readily accessible
software. Software syntax is important, but an estimation method is not
an algorithm, and an algorithm is not a model specification.

A model may be specified indirectly by offering a description of how a
random draw Y ∼ Pθ may be generated from an arbitrary distribution Pθ
in the model. GLMs are usually specified in this manner by a three-step
procedure:

η = Xθ; πi = eηi/(1 + eηi); Yi ∼ Ber(πi); (indep.)

A great many Gaussian models may be generated by adding several in-
dependent Gaussian processes, each associated with a different factor or
interaction. For example

Yit = αi + η0(t) + ηi(t) + εit

as a sum of four independent zero-mean processes, can be matched up
with the direct specification of the covariance function

cov(Yit, Yi′,t′) = δij +K0(t, t′) +K1(t, t′)δij + δijδt,t′

provided that α has iid standard normal components, and the other three
components are distributed as indicated.

6. Numerical precision: Adequate numerical precision is important, but or-
dinarily two significant digits are sufficient for standard errors. Parameter
estimates should always be given with standard errors, or standard errors
of differences in the case of factor levels. It is often sufficient to say that
the standard error is 9–15%, or the standard error of pairwise differences
is 0.35–0.45, if the range is not excessive. Parameter estimates should be
accurate to 10% of a standard error. By convention, p-values are given
as a percentage: rarely is there a need for more than two significant dig-
its. The listing of excessively many uninformative digits in estimates and
standard errors betrays a lack of statistical sense, and will be penalized.
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7. Computer output: While it is necessary to demonstrate that you have mas-
tered the computer system or statistical package, tailoring the computer
output to the problem at hand is always necessary if only to demonstrate
that you are the computer driver not the computer slave. (i) From the
computer-generated analysis-of variance table, list only the parts that are
relevant to your analysis. It is your job as statistician and expert to judge
what is relevant and what is not. (ii) If the model matrix is non-standard
and cannot be generated by a model formula, as for example the additive
skew-symmetric formula E(Yij) = αi − αj , you need to explain what the
structure of the matrix is. (iii) Do not quote a p-value without stating the
hypothesis under test and how the value supports the stated conclusion.
(iv) Parameters have a physical interpretation: do not pass up the oppor-

tunity to remind the reader what the physical interpretation of β̂ = 0.684
is in the context of the problem.

8. Physical units: Physical variables, unlike mathematical variables, always
have units such as ‘length in mm.,’ ‘temperature in ◦K,’ ‘mm. Hg.,’ ‘age
in months,’ or ‘depth in fathoms.’ If you lose sight of the units your
conclusions are liable to be ridiculous. For a published example, see p. 105
in Andrews and Herzberg (1985) where, despite the fact that Adelaide
borders on the Australian desert, its annual rainfall is given as 1530 mm.,
or an astonishing 60 in.

9. Grammar and style: Reports should be logically organized and written in
grammatical English. In particular, each sentence should have one, and
only one, main verb. Poor logical organization betrays a confused mind,
and poor sentence structure indicates a lack of attention to detail.

10. Clarity and word usage: It is good to cultivate an awareness of grammar
and word usage. Accurate word usage is important insofar as inaccurate
or careless usage sows confusion; good grammar is important insofar as
poor grammar betrays faulty logic.

For example, some native English speakers who are employed as commen-
tators at sports events seem not to understand the difference between the
verbs substitute and replace. These words are also important in mathe-
matics. Viewers are likely to be confused when a talking head recommends
at the end of the first quarter that the starting quarterback be substituted!
For the correct usage in the active voice, the coach may substitute a bench
player for a starter or he may replace the starter with a substitute from the
bench. In the passive voice, an active player may be replaced, in which case
a bench player is substituted. To declare that an active player has been
substituted on account of injury is to put the focus on the destination,
implying that the coach’s job is to ensure that the bench is well-supplied
with injured players! Unnintended, perhaps, but possibly accurate.

In a similar vein with relevance to genetics, the upstream region of a gene
may be rich in certain motifs, meaning that those motifs are abundant in
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the upstream region. The upstream region is enriched with motifs, but
the motifs themselves are neither rich nor enriched anywhere. One could
say that coal is abundant in Wyoming and fruit is plentiful in Florida, but
coal is not enriched in Wyoming nor is fruit rich in Florida.

use versus usage: The line What’s the use of crying? from the song Smile
by Nat King Cole is a rhetorical query about the utility or futility of the
act. Similarly, the phrase cocaine use refers to the act—its utility, its
benefits or its prevalence. By contrast, the title Modern English Usage of
Fowler’s celebrated book refers to the manner in which the language is spo-
ken or written, e.g., imaginatively, in long convoluted sentences, with flair,
grammatically, clichéed, and so on. In the same vein, the phrase cocaine
usage refers to the manner of ingestion. As a statistical factors, cocaine
usage has levels snorting, smoking, injection and other; cocaine use

has levels never, infrequent, occasional and regular.

Verbs for computational activities: Author A writes I created a proportional-
hazards model with covariates...; author B writes I ran a p-h model on the
data...; author C writes I fitted the p-h model...; author D writes I trained
the p-h model...; author E writes The p-h model was trained...; author F
writes I learned the p-h model.... The proportional-hazards model is a
set of probability distributions for survival times. Credit for its creation
goes to Cox (1972), not to author A. Generally speaking, one runs com-
puter code for an algorithm that is designed to pick the distribution that
best fits the data. This activity is called model-fitting—or learning in CS
circles. In a sense, the computer or the algorithm learns the best-fitting
distribution, possibly using data from a training subsample, and shares
that wisdom with the user. Grammatically speaking, if the p-h model is
trained on the data, and learns from it, it would be more accurate for
author F to write The data taught the proportional-hazards model..., or
perhaps, I used the data to teach the proportional-hazards model..., but
the semantic anomaly would then be too plain.

11. Appropriate adjectives: Some computational tasks are easy, while other
are hard; some algorithms are efficient for the task while other are ineffi-
cient. Likewise for a software implementation of an algorithm. Simulation
is easy for some distributions, less so for others. Maximum-likelihood esti-
mation for some models admits a computationally efficient algorithm, not
so for other models.

A task may be easy or it may be hard, but it is neither efficient nor
inefficient. A model as a set of probability distributions may be finite or
infinite, finite-dimensional or infinite-dimensional; it may be suited to the
task or it may not, but it is neither easy nor hard, efficient nor inefficient.

12. Verb tense: Reports should be written in the present tense. If you wish
to refer to a past event, by all means use the past tense; likewise for
future events. If you switch from from one tense to another mid-paragraph
readers will notice, and if a good reason is not apparent, the result will
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be confusion. It is best to keep the bulk of your report in the present
tense, including references to later sections: An open-air experiment was
conducted during the period 2012–2015; the data from that experiment
were analyzed and conclusions are presented in sections 4–5.

Present tense: Anthropogenic emissions lead to global climate warming.
Past tense: Anthropogenic emissions led to global climate warming. Past
perfect tense: Anthropogenic emissions have led to global climate warming.
Both versions of the past tense, but particularly the first, suggest (prob-
ably incorrectly) that anthropogenic emissions no longer have the effect
that they had in the past. That incorrect implication may be deliberate if
the writer is a White-House hack seeking to justify the U.S. exodus from
the Paris Accord, but it is a distraction for the discerning reader. Future
tense: Anthropogenic emissions will lead to global climate warming. The
future tense suggests that emissions did not have this effect in the past.

13. Numbers in text: Small integers 0–10 or 0–12 are usually spelled out when
they occur in text. A 34−1 design has 27 observational units indexed by
four factors with three levels each. Zero is one of the dose levels.

14. Quantities; number, amount, volume: a great number of tired tourists,
diving dolphins, ornery kangaroos, football supporters...; amount of cash
in low denominations, amount of food, alcohol, etc.; volume of crude oil,
undelivered mail, mining sludge, ripe tomatoes, cheap alcohol...; mass of
water, mass of humanity.

20.2 Coaching tips II

These remarks are the instructor’s responses following a Statistics consulting
presentation by students on 17 April, 2018. The experiment was done on mice,
and the design was factorial with three factors; the observations were cell counts,
all large integers.

1. Transformation: In applications of this sort where the observation is a cell
count, or any large count of objects, it is much more natural for treatment
effects to be multiplicative than additive. Why so? If the mean cell count
for controls in the three genotypes are 1000, 2000, 3000, and the treatment
effect is −0.69, or a 50% reduction, the cell means for treated mice in the
same genotype classes will be 500, 1000, 1500. So the average reduction
is 1000. An additive model with an additive reduction of 1000 will have
treatment means 0000, 1000, 2000 for the three groups. Usually, this sort
of thing—no cells at all in one group—is very implausible; negative counts
are even less likely. So the conclusion is that the log scale should be the
first option for analysis, the go-to choice, but not necessarily the final
choice.

2. Experimental units versus observational units: In this experiment, the
observational units are mice, and all responses are measured post-mortem.
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However, all mice in one litter have the same genotype and were given the
same treatment. This is a classic distinction. It is not possible in this
design for two mice in the same litter to be given different treatments.
Accordingly, the mice are the observational units, and the litters are the
experimental units, i.e., each litter is one experimental unit. It is one of the
few universally-agreed rules of experimental design and analysis that you
cannot have more degrees of freedom for the estimation of treatment-effect
variances than there are experimental units available for analysis (27 in
this case). One way to proceed is to reduce each litter to the litter average,
and to do the standard factorial decomposition on the litter averages. My
preference is to average the counts and then take the log, but you could
take logs first and then average. The operations are not commutative.

3. Random effects: The use of litter averages is not ideal because litters vary
in size, probably from one to six or thereabouts. A linear analysis weighted
by litter size is not correct either—that weighting is too extreme. A better
option is to use a random-effects model in which each litter is associated
with an independent additive Gaussian variable with constant variance
independent of litter size. Since each random effect is associated with the
contribution of one experimental unit, the question of significance testing
for a zero between-litter variance is not something that arises naturally.
There is simply no reason to expect zero additional variance per experi-
mental unit, so the litter effect must be retained whether it is statistically
significant or not. Remember that it is the experimental units that gov-
ern the degrees of freedom for treatment-effect estimation: the number of
observational units is entirely irrelevant, even if infinite.

4. Model selection: In this design, there are three factors 3 × 2 × 2, where
genotype is a three-level classification factor. Ordinarily, in the analysis
of a factorial design, the main effects of all three factors will be retained
in the ‘final model’, regardless of significance. This is sound scientific
practice, and there are many reasons for it. Comparability with other
studies of the same phenomenon in similar or different circumstances is
paramount. For three factors, regardless of the number of levels for each,
there are only 9 factorial subspaces that include all three main effects,

A+B + C, A ∗B + C, . . . , A ∗B +B ∗ C, . . . , A ∗B ∗ C.

Of these, only about five are likely to be seriously contemplated: A+B+C
(additivity, no interactions), A ∗ B + C, A + B ∗ C, B + A ∗ C (one
interaction only, but additivity for the other), A∗B∗C (no additivity any-
where). The lesson: whatever you learned in class about model selection
in regression is not relevant here. Subset selection is not such a big issue in
most scientific work involving factorial designs, and standard covariate se-
lection algorithms are an outright menace in this setting. However, if you
are using a random-effects model, as you ought, you do need to be careful
to use a proper likelihood-ratio statistic (NOT REML) for the comparison
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of two nested factorial models. This is one of the few instances where a
technical measure-theoretic issue impinges on statistical methodology. If
you are unsure about the technicality, just ask.

5. Coding of factors: Unless the factor levels are ordered or have additional
structure, the fitted model should be independent of the coding. For ex-
ample a factor with two levels coded ”M” and ”F” might represent sex—or
it might represent parent. In one case the ”F” level stands for ’Female’
in the other case it stands for ’Father’. It is clearly unacceptable for the
fitting or selection procedure to depend on the letter or character string
used to represent each level. Each factorial model is a vector subspace;
although the labelling of the basis vectors must depend on the coding, the
subspace itself is invariant with respect to coding. The coding determines
the basis vectors but not the subspace. The factorial models are essen-
tially the only subspaces that have this property, which is most naturally
expressed in terms of algebraic representation theory. A model-selection
procedure that is code-dependent is a plague to be avoided.

6. Graphs and tables: A graph is helpful for presentation only if it illustrates
an important effect clearly. A graph of residuals may be helpful for model
checking, and may be mentioned in presentation, but it is seldom included
as part of the report. In most factorial designs, whether balanced or
otherwise, one-way and two-way tables of averages are often useful as a
partial summary of conclusions.

7. Higher-order interactions: How do you present the conclusions compre-
hensibly if high-order interaction is present? If the additive model is a
satisfactory fit, you can report estimates of main effect contrasts in the
usual way—pooling higher-order interaction sums of squares to obtain an
estimate of variance. There is little need to encourage bad scientific be-
haviour by giving undue emphasis on p-values, but you should report the
degrees of freedom of the variance estimate, particularly if it is small. If,
as appears to be the case here, there is a high-order interaction, it is best
to partition the units into sub-classes by genotype, and to report the treat-
ment effects separately, but in parallel, for each genotype. Since there are
four treatment combinations for each genotype, you can report the three
contrasts with some reference level. Show these numbers in a 3× 4 table,
one row per genotype with standard errors but absolutely no p-values.

8. Rules-of-thumb for summary statistical tables:

(a) Report effect estimates and standard errors only. Ratios are OK. No
asterisks please!

(b) Always label the effects in an informative way so that the reference
level for each factor is clear.

(c) Always report the reference level of each factor with zero as the esti-
mate.
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(d) Always report the variance-component estimates.

(e) Estimates and regression coefficients: four significant decimal digits
maximum.

(f) Standard errors: three significant digits maximum.

(g) F -ratios: two digits maximum.

(h) p-values: best avoided completely, but two digits maximum as a per-
cent if absolutely needed.

(i) If you must report a p-value, be sure to state the null hypothesis
being tested.

9. Baseline: Baseline refers to a point in time just prior to randomization and
treatment assignment. Notionally, the probability model for the outcomes
is registered at baseline, so all information needed to determine outcome
probabilities (including the randomization outcome) must be revealed at
that time. Any variable recorded at or pre-baseline is called a baseline
variable. A block factor is an example of a baseline variable. Age at
recruitment in a clinical trial is a baseline variable.

10. Covariate: A covariate is a function on the units that is known in advance
and recorded pre-baseline for the in-sample units. Typical covariates in a
clinical trial include age, sex, and medical history. In the case of a vital
response variable such as blood pressure, cholesterol or blood serum level,
the baseline value is usually recorded as part of the recruitment interview.
As such, the initial response and other baseline variables may be used to
determine eligibility for inclusion in the study, particularly if the study
focuses on high-risk patients. Thus, the baseline response value is, or may
be treated as, a covariate, which is regarded as fixed in the probability
model.

11. Treatment assignment: Treatment assignment is determined by random-
ization at baseline. Usually the treatment is not assigned independently
to experimental units, but is subject to design conditions such as balance
and equi-replication within blocks. In general, the treatment assignment
probabilities, most obviously the joint probabilities for two or more obser-
vational units, may depend on block sizes, covariates and other baseline
variables. The treatment assignment vector is technically a random vari-
able, not a covariate or baseline variable.

12. Response: Many studies have multiple responses per observational unit,
for example birth weight and gestational period in a study of the effect
of certain interventions in a medical setting. For such a setting, each
observational/experimental unit i is a mother/baby, and the response i 7→
(ti, wi) is bivariate. Treatment (e.g., folic acid supplement) may have
an effect on the baby’s weight at birth; it may also have an effect on the
probability of a premature birth. So there are at least two treatment effects
to be considered. The effect of treatment on birth weight is ordinarily
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defined as the difference of average weights or log-weights; the effect of
treatment on gestational period is defined likewise. But, in general, the
full story is the effect of treatment on the joint distribution: gestational
period and birth weight are strongly correlated. To estimate the effect
of treatment on birth weight, it is not legitimate to include gestational
period as a ‘covariate’ in the one-dimensional model for birth weight.
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Chapter 21

Question and answer

21.1 Scientific investigations

21.1.1 Observational unit

Q1. Who made the world?
A1. God made the world.

Q2. Was it an experiment?
A2. We have every reason to believe so. It is the best explanation we have for

the current state of pestilence and political chaos.

Q3. Where did He start?
A3. If it was an experiment, He started at the baseline.

Q4. What is the baseline?
A4. A point in time prior to all experience—the most recent point in time prior

to the revelation of protocols and the implementation of randomization.

Q5. Does anything exist before the baseline?
A5. Yes, every scientific investigation has a protocol—written or unwritten.

Q6. What is the protocol?
A6. The protocol is a declaration of purpose, timeline, strategy and tactics.

Q7. Tell me about the individual parts.
A7. The purpose is the phenomenon to be investigated, the response and the

target population. Strategy tactics and timeline refer to the study design,
the sample, and the measurement process.

Q8. What is the target population?
A8. The target population is the set of observational units.

Q9. Does the population exist pre-baseline.
A9. The observational units are declared pre-baseline, so they must exist.

287
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Q10. What does it mean for something to exist?
A10. Existence means occurrence as a feature or component in the mathematics

as declared in the protocol.

Q11. Does mathematical existence have any connection with reality?
A11. Assuming that we can agree on the meaning of reality, everything of interest

that exists in reality, and every relevant event that could possibly occur
in reality, must have a counterpart in the mathematics. Reality in that
counterpart sense is a subset of mathematics.

Q12. Isn’t that asking a lot from mathematics?
A12. Yes and no. The phrase ‘everything of interest’ implies compartmentaliza-

tion or restriction to objects and events that are considered relevant to the
investigation.

Q13. What objects and events are relevant to God’s experiment?
A13. Only God can answer that. There are claims that His protocols has been

revealed, but I haven’t read them.

Q14. Is every observational unit a physical object?
A14. Every observational unit is a mathematical object, which may or may not

correspond to a physical object.

Q15. Tell me more about that.
A15. The NW3 weather station near Hampstead is a physical object of sorts,

but the observational units in a meteorological series are site-time pairs. A
data analyst is usually content to represent the sample by certain floating-
point pairs of numbers in an electronic computer. But the mathematical
system contains uncountably many units that cannot be represented in an
electronic computer.

Q16. How many observational units are there?
A16. Usually the number in the population is infinite. But the sample is always

finite.

Q17. So the sample is a finite random subset of the population?
A17. Finite, yes.

Q18. And random?
A18. The status of the sample as a fixed subset or a random subset is part of

what is revealed implicitly or explicitly by the protocol.

Q19. Can you give me an example.
A19. The protocol identifies the baseline, the population of interest, the sam-

ple or sampling scheme, and the response variable. Suppose the baseline is
Dec 31, 1899. The protol declaration daily noon temperature at Kew, Green-
wich and Hampstead, Jan 1, 1900 to Dec 31, 2020 identifies the response
and the sample points as a fixed finite set.
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Q20. And the population?
A20. Usually it is not necessary to be persnickety about the population, so any

larger space-time domain suffices. In the absence of a compelling argument
to the contrary, the entire space-time product set serves as the population.

Q21. Didn’t you say that the population must exist at baseline? Does Jan 8,
2022 exist at baseline?

A21. Yes, I did. And yes, the ordered pair (Kew, Jan 8, 2022) exists today just
as it did in AD 1899. But I did not say that every unit must be accessible
or observable immediately after baseline.

Q22. The space-time product set is uncountable in both dimensions. Isn’t that
excessive and unnecessarily extensive for statistical work?

A22. Maybe so, but imperialism is inscribed in the DNA of mathematics. Be-
sides, if you restrict the population, you forego the opportunity to make
inferences about the disenfranchised parts.

21.1.2 Clinical trials

Q1. What is the role of the protocol for a clinical trial?
A1. Patient eligibility is one crucial protocol declaration.

Q2. And what are the implications of eligibility criteria?
A2. The population consists of all eligible patients—patients who were eligible

yesterday, patients who are eligible today, and most certainly those who
will be eligible tomorrow. The recruitment scheme for patients is also part
of the protocol. Of necessity, the sample is a subset of patients who are
eligible today. Usually the sample is also restricted geographically.

Q3. What’s the point of including dead folk?
A3. Why not? They don’t charge for service or rent.

Q4. Why include patients who are not yet born?
A4. If you are interested only in the current population, so be it. That’s OK

for short-term planners and short-sighted politicians. If a goal is to say
something about the effect of a COVID vaccine or global warming, you
may wish to cast the net liberally by including future generations.

Q5. What hope is there of saying anything useful about the effect of a vaccine
on future generations?

A5. The purpose of casting a wide net is not to say something useful about
future generations, but to be in a position to say anything at all. Similarly
for patients who have the misfortune to be foreigners or aliens.

Q6. Patients in a clinical trial are usually recruited sequentially as they present
themselves at the medical centre. Is a sequentially-recruited sample fixed
or random?

A6. That appears to be a philosophically complicated question, but, ... (reaching
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into his pocket), here is a sample of six pennies. Is it a fixed subset of all
pennies or a random subset?

Q7. It’s obviously a random subset.
A7. And if I say that it is a fixed subset, can anyone prove otherwise?

Q8. Perhaps not, but I would not believe you.
A8. And you might well be right to be skeptical. But the question is meaningless

without mathematical context. It can be answered only as a mathematical
question.

Q9. So how do you formulate sequential recruitment mathematically?
A9. First, you must retain in the mathematics anything that is essential for the

context. All else can and must be discarded. One obvious difficulty is that
there is no master-list of eligible patients—not even a comprehensive list of
patients who are eligible today. So either you pretend that there is a master
list, or you figure out a way to cope without it.

Q10. How does your mathematics cope without a master-list?
A10. One solution is to record eligible patients as a point process by date of

presentation—with follow-up to monitor disease progress. The sample is
the subset that presents at a given medical centre in a given time window.

Q11. So, is such a sample fixed or random?
A11. Well, the window is fixed, but the sample as a set of time points is random

and locally finite.

Q12. And what about the patients? Can they be a random sample?
A12. That’s complicated because there is no master-list that can be identified as

the set of eligible patients. There is only a window and a set of presentation
times, which we use to label patients in the sample.

Q13. So, what is it? Fixed or random?
A13. It is neither a fixed subset nor a random subset because there is no concept

in the mathematics of a population of patients. Disease occurrence is a
process and recruitment is a process.

Q14. That doesn’t seem to fit in with the general framework.
A14. Maybe so. The recruitment process is a marked point process that is

observed in a fixed temporal window. Each patient has his own baseline,
which is the time of recruitment. The marks, which include age and sex
plus current and future health, are random variables. However, any marks
that are revealed at recruitment are pre-baseline values. That includes the
sample size or window length. In my opinion, the point-process sample is
best treated as a fixed subset of an infinite population.

Q15. Only patients who have access to a qualified physician are included in your
description of the population. What about those who are eligible but do
not have access, either for reasons of geography or economics?

A15. Whether the sample is fixed or random, it can usually be guaranteed
that there are units in the population that have zero probability of being
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included in the sample. If the outcome (the effect of COVID vaccine) were
very different depending on geography or economics, we would certainly
want to know. Practically speaking, it is best to recruit broadly and to
record adequate baseline information.

Q16. I want to revisit a remark that you made earlier about mathematicians
being imperialistic in outlook. Could you elaborate on that?

A16. Far be it from me to say anything derogatory about mathematicians or
statisticians, either individually or as a group. I did say that mathematics
was imperialistic in outlook.

Q17. That sounds like criticism to me. What do you mean by it?
A17. I may have said it in a cynical tone of voice, but I meant it in a positive and

approving way. Mathematics has always been imperialistic, and it should
be imperialistic. When Pythagoras discovered his theorem, he declared it
to be a universal truth holding not only for Greek triangles but also for
Egyptian and Assyrian triangles as well. That sort of imperialism is good.
Maybe catholic (καθoλικoς) or universal would be a better word.

Q18. It is hard to see the relevance of catholicism to applied statistics.
A18. On the contrary. Random samples and finite-population models for clinical

trials are a case in point. There is nothing mathematically wrong with a
finite population if that is your universe. But the philosophy is all bad. It
is democratic, short-sighted and inward-looking.

Q19. How so?
A19. To arrange matters so that every individual in the population has strictly

positive inclusion probability is an undeniable democratic idea. But it comes
at enormous cost to subsequent generations who are not accessible today,
and must be excluded. It is also contrary to the spirit of scientific catholi-
cism, which recoils at restrictions. I would go further to say that any medical
statistician who restricts the population to the current generation is math-
ematically derelict in his or her duty of care to subsequent generations.

Q20. But surely the finiteness assumption can’t make much difference to proce-
dures and conclusions.

A20. It absolutely makes a difference to conclusions because, if you don’t admit
that the next generation exists in your population, you forego the opportu-
nity to say anything about the effect of treatment tomorrow.

Q21. What reason is there to say that the effect of treatment today must be the
same as the effect tomorrow?

A21. I do not claim that the effect is constant over generations. But I do insist
on the right to make that comparison. As do you, apparently. If you were
to conclude that today’s data are irrelevant for tomorrow’s patients, that
would be fine by me. But if you don’t admit the existence of tomorrow, you
can’t even say that.

Q22. But medical recommendations are seldom explicitly time-constrained.
A22. True enough. In that case your actions imply that today’s data are rele-
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vant, and that the effect is constant or neatly so. Horvitz-Thompson sam-
pling theory with positive inclusion probabilities implies the opposite.

Q23. So, how does philosophy affect procedures?
A23. Mathematically speaking, you can’t have it both ways. If you want to say

something about the effect of treatment in the future, you must have future
generations in the population. If you insist on a finite population with a
random sample and strictly positive sample-inclusion probabilities, future
generations must be excluded, and you forego the opportunity to address
the critical question. I’m a statistical catholic, so you know where I stand.

21.1.3 Agricultural field trials

Q1. Can you say a little about agricultural field trials?
A1. By comparison with clinical trials, field trials are very simple.

Q2. How so?
A2. Each observational unit is a plot in the field. The protocol specifies the

varieties or cultivars to be tested by growing on the sample, which consists
of 36 plots situated at the western end of Hoos field. That’s all there is to
it. No recruitment or random sampling of plots. Only random assignment
of varieties to plots in the sample.

Q3. My impression was that random samples were the norm in all statistical
work. Wouldn’t it be better to use a random sample of plots from several
fields?

A3. Try that on the farm manager! But you might make a case for a more
extensive design replicated in several distant blocks differing in soil com-
position or weather pattern. A variety that performs well at Rothamsted
might fare poorly in Rotherham or Rothesay.

Q4. I have an image of each sample unit as a rectangular plot, all sample plots be-
ing neatly arranged by rows and columns separated by access paths. What
does the population of ‘all plots’ look like.

A4. The population is a family of planar subsets.

Q5. Are they all the same size and shape?
A5. Not at all. It is not necessary to include all planar subsets, but a mathe-

matician instinctively aims to include all Borel subsets. That’s a big set,
big enough for most purposes, but maybe not big enough for all purposes.
The units in a long-term field experiment also have a temporal component.

Q6. That seems far too big. Besides, plots cannot overlap.
A6. A catholic statistician must always think big. If the response is yield, there

is no concern about overlap: yield is an additive set function.

Q7. But you cannot have different treatments on overlapping plots.
A7. That’s a good reason for picking a sample of non-overlapping plots.
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Q8. If your sample of plots is a non-random subset, where does the probability
come from?

A8. Probability comes from the mathematical framework that is implicit or
explicit in the protocol. Exchangeability gives rise to probabilities. Ran-
domization also gives rise to probabilities.

Q9. What is the role of randomization analysis?
A9. Randomization is usually associated with the uniform distribution on a finite

group acting on the sample units. Re-randomization enables you to generate
new ‘pseudo-samples’ having the same distribution as the original. For
any non-invariant statistic, you can compute its randomization distribution.
This is a useful way to determine where the observed treatment effect occurs
in the spectrum of treatments effects to be expected under randomization.

Q10. So the set of units in the randomization analysis is the finite sample of
plots?

A10. Certainly the sample is finite.

Q11. Isn’t the randomization population the same as the sample?
A11. In a purely arithmetical sense, yes!

Q12. Is there any other sense?
A12. There must always be a wider statistical sense.

Q13. To what end?
A13. Presumably you want to say something about the likely effect of treatment

on other plots of a similar type in the population.

Q14. Couldn’t you just take the finite-population estimate, patch it together
with the randomization distribution or bootstrap distribution, and apply
that to other plots.

A14. If you had no principles or concerns about mathematical honesty, you
could do whatever you liked.

Q15. Isn’t that what every statistician does? Are we all dishonest?
A15. It is true that many statisticians do exactly that—and very often it is the

right thing to do.

Q16. So what’s the problem?
A16. The problem is one of honesty in mathematics. If you refuse to acknowledge

extra-sample plots, the statement about treatment effect is meaningless. If
you acknowledge their existence you have to establish a connection between
yields on the in-sample plots and yields on extra-sample plots. That step
requires an assumption such as exchangeability.

Q17. In that case, what is the role of randomization analysis?
A17. Randomization analyses and bootstrap analyses are logically sound and

useful statistical tools. On its own—restricted to the finite sample of plots—
randomization is a basis for arithmetic and distribution-theory. It is not
otherwise a basis for statistical inference.
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21.1.4 Covariates

Q1. Apart from the observational units, what else exists before the baseline?
A1. Covariates are recorded pre-baseline.

Q2. What is a covariate?
A2. A variable recorded pre-baseline.

Q3. What is a variable?
A3. A variable is a function on the observational units.

Q4. What types of covariate are there?
A4. Qualitative variables or classification factors, and quantitative variables

such as age or calendar date or spatial position.

Q5. Are there any other types of covariate?
A5. Yes, relationships can also be recorded at baseline.

Q6. What is a relationship?
A6. A relationship is a function on pairs of observational units.

Q7. Can you give examples.
A7. A block factor is an equivalence relation; there are also genetic relationships,

familial relationships, temporal relationships and metric relationships.

Q8. What is a metric relationship?
A8. A metric is a symmetric non-negative function on pairs that satisfies the

triangle inequality.

Q9. Are any covariates recorded post-baseline?
A9. No. Every post-baseline variable is a random outcome subject to the rules

of probability.

Q10. What happens at baseline?
A10. The protocol is announced, units are assembled, treatment is assigned by

randomization, and nature or Tyche takes over.

Q11. Who is Tyche?
A11. Tyche is the Greek goddess of chance—Fortuna to the Romans.

Q12. Is treatment a covariate?
A12. No, it is not.

Q13. Why not?
A13. Treatment is the outcome of randomization as specified by protocol.

Q14. Is treatment assigned independently to units in the sample?
A14. Not necessarily. A balanced design has non-independent assignments.

Q15. Is the treatment assignment distribution the same for every unit?
A15. Not necessarily. In principle, the treatment assignment probability may

vary from one covariate sub-group to another as specified by protocol. But
this practice is not common and is not encouraged.



21.1. SCIENTIFIC INVESTIGATIONS 295

Q16. What is the purpose of randomized treatment assignment?
A16. Randomization is a panacea. It has many purposes.

Q17. Tell me one specific purpose.
A17. Concealment of treatment assignment promotes integrity in human trials.

Q18. Can you elaborate?
A18. Where human subjects are involved, the integrity of the experiment is

at risk if the treatment assignment is revealed prematurely, either to the
patient or to the physician. Concealment helps to limit the possibilities for
subverting the design.

Q19. Any other purposes?
A19. To see if God is paying attention.

Q20. What has God got to do with it?
A20. Concealment means that treatment assignment is known only to the con-

trolling statistician, who must pay attention to events as they unfold.

Q21. Any other purpose?
A21. To help convince skeptics by levelling the playing field for treatment com-

parisons.

Q22. Tell me about the role of exchangeability?
A22. Exchangeability is the fundamental axiom of statistical modelling.

Q23. What does exchangeability imply?
A23. It implies that two units having the same covariate value must have the

same response distribution. Implicitly or explicitly, that’s usually part of
the protocol.

Q24. Is exchangeability a mathematical theorem?
A24. No, it is an axiom of applied statistics. You can think of it as a bill of

rights or a guarantee of equality under the law. If two units are to have
different response distributions, there needs to be a demonstrable reason for
that difference.

Q25. What is the purpose of a covariate in a randomized study?
A25. There are three inter-related purposes.

(i) to accommodate sub-group effects (sex, age,...);
(ii) to improve precision of the treatment estimate;
(iii) to check for interaction.

Q1. What is the baseline for a matched-pairs design?
A1. The time when the units are assembled or declared, just pre-randomization.

Q2. What covariates are available in the matched-pairs design?
A2. In the simplest setting, only the block factor indicating the pairs.

Q3. What was the baseline for the hypertension study?
A3. Jan 1 when the patients were first measured to determine eligibility.
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Q4. Was that pre-randomization?
A4. Yes. Eligibility precedes randomization.

Q5. What covariates are available in the hypertension study?
A5. The block factor and the initial values.

Q6. Which is the correct method of analysis?
A6. ANCOVA with adjustment for initial values.

21.1.5 The effect of treatment

Q1. I’ve read that each patient in a randomized trial has two potential outcomes
or counterfactual responses, only one of which can be recorded. Is that
correct?

A1. Yes, in the sense that only one response is observed per patient. Otherwise,
no.

Q2. Where do counterfactuals fit in?
A2. Anything relevant that exists in reality must have a counterpart in the

mathematics; some things that do not exist in reality may occur in the
mathematics. Existence in that sense is a question of mathematical style
and taste. Counterfactuals are employed by many authors, and for those
authors they exist. But they are not needed, and they do not exist in these
notes.

Q3. If it is simply a matter of mathematical style, what is there to argue about?
A3. If the conclusions are the same either way, we can only argue about style.

That’s plenty.

Q4. You’ve argued that treatment is a random variable and not a covariate.
What are the implications of that distinction?

A4. To be clear, it is the vector of treatment assignments that is random. Each
patient or observational unit has a joint treatment-response distribution,
which implies a conditional distribution given the treatment.

Q5. What is a conditional distribution?
A5. A conditional distribution associates with each treatment level a probability

distribution on the state space. In effect, each patient has one joint and two
conditional distributions, one for control and one for active treatment. Two
distributions, one response.

Q6. How does this viewpoint fit in with counterfactuals?
A6. The most extreme counterfactual framework associates with each patient

two real numbers, a C-value and a T-value so that the conditional distribu-
tion is degenerate at one or other point.

Q7. So the two points of view coincide if all conditional distributions are degen-
erate?

A7. Up to a point. Exchangeability is a fundamental assumption, and degener-
acy is hard to reconcile with exchangeability.
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Q8. What is exchangeability?
A8. Exchangeability in these notes means that two units having the same base-

line covariate value, also have the same response distribution.

Q9. In what way does exchangeability contradict degeneracy?
A9. Pick two units having the same covariate value, and suppose they get the

same treatment. Degeneracy plus exchangeability implies that they must
have exactly the same response, which will certainly not happen for all such
pairs.

Q10. So you have to abandon one or the other?
A10. You have to abandon something. I prefer to keep exchangeability and

abandon degeneracy.

Q11. But that’s not the only escape route, is it?
A11. Regrettably, no. You could compromise by considering a less extreme

model for counterfactuals with non-degenerate distributions. Or, if com-
promise is not part of your vocabulary, you could take the anarchist route.

Q12. I like the sound of that. What is the anarchist route?
A12. The anarchist argues that covariate values are so numerous that no pairs

exist having the same value. The exchangeability argument is then demol-
ished by fiat.

Q13. What options does that leave?
A13. Very few, and none that are palatable, which explains the pejorative label.

Q14. How do you address the anarchist?
A14. It is hard to engage with the anarchist, so I address only the argument. If

you look at it as a mathematical statement, you can include in the popu-
lation infinitely many duplicate units for each covariate value, so the state-
ment is obviously false.

Q15. Does that take care of the argument.
A15. Not quite, I’m afraid. Any continuously-varying covariate such as age

or height has non-countably many values, but no anarchist would consider
those to be counter-examples capable of undermining exchangeability. The
more damaging examples occur in so-called personalized medical studies,
where each patient starts off with an entire DNA sequence as a covariate.

Q16. What makes the second more damaging than the first?
A16. Topology, I suppose. In the first case, you might be persuaded that the

response distribution varies continuously with age or height. But it hard to
make a similar argument for continuity on the space of DNA sequences.

Q17. Can anything useful be done in that setting.
A17. That’s complicated. It all depends on what you mean by ‘useful’ and ‘that

setting’.

Q18. What other means is there of escape from anarchy?
A18. The option of ignoring the covariate entirely is always available.
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Q19. That sounds defeatist and contrary to catholic dogma, isn’t it.
A19. It goes against the grain, but the avoidance of chaos is also a virtue. Re-

member that every unit in the population has a unique identifier, but you’re
not expected to include that as a covariate. Decisions must always be made
about the relevance of various pieces of information, the vast majority of
which is discarded. So if you are given information so voluminous that you
have no idea how to use, you can simply decline it. You might subsequently
learn how to use it. That’s called progress.

Q20. Let’s move back to treatment. What do you mean by the effect of treat-
ment?

A20. The effect of treatment is to modify the response distribution by group
action. The effect is to change the control distribution for each patient to
the corresponding active distribution.

Q21. What do you mean by the treatment effect?
A21. The treatment effect is a specific group element, a parameter if you like.

Q22. Is the effect of treatment the same for everyone?
A22. Yes, in the sense that it is the same group action on distributions. But

no, the particular group element need not be the same for everyone. It may
vary from one covariate subset to another; in (5.2), the treatment effect is
linear in time.

Q23. If the treatment effect is not the same for everyone, should we report the
average treatment effect?

A23. The question presumes that the group is closed under averages, which is
not necessarily the case. If the treatment effect for males is not the same as
that for females, it would be better to report one effect for each sex. Same
for population subsets determined by any covariate.


