
An algorithm for a decomposition of weighted digraphs

— with applications to life cycle analysis in ecology∗

L. Sun† M. Wang ‡§

Abstract

In the analysis of organism life cycles in ecology, comparisons of life cycles between species
or between different types of life cycles within species are frequently conducted. In matrix
population models, partitioning of the elasticity matrix is used to quantify the separate con-
tributions of different life cycles to the population growth rate. Such partition is equivalent
to a decomposition of the life cycle graph of the population. A graph theoretic spanning tree
method to carry out the decomposition was formalized by Wardle [Ecology 79(7), 2539-2549
(1998)]. However there are difficulties in realizing a suitable decomposition for complex life his-
tories using the spanning-tree method. One of the problems is the occurrence of life cycles that
contain contradictory directions that defy biological interpretation. We propose an algorithmic
approach for decomposing a directed, weighted graph. The graph is to be decomposed into
two parts. The first part is a set of simple cycles that contain no contradictory directions and
that consist of edges of equal weight. The second part of the decomposition is a subgraph in
which no such simple cycles are obtainable. When applied to life cycle analysis in ecology, the
proposed method will guarantee a complete decomposition of the life cycle graph into individual
life cycles containing no contradictory directions.

Keywords Weighted digraph · Graph decomposition algorithm · Spanning tree · Life cycle
analysis · Loop analysis

1 Introduction

The goal of this study is to develop a graph theoretic algorithmic approach that decomposes
weighted digraphs and provides a useful method in life cycle analysis in population ecology. To
evaluate the importance of different life histories, comparisons of life cycles between species or
between different types of life cycles within species are frequently conducted. This comparison is
particularly useful in the study of trade-offs between different components of fitness and reproduc-
tion or in evaluating distinct history tactics among individuals. Matrix population models have
been used widely for modeling biological populations and the analysis of life cycles [3]. A pop-
ulation projection matrix is essentially a type of transition matrix for Markov processes (see the
description in Sect. 4.1). The dominant eigenvalue λ of the population projection matrix gives the

∗The original publication in the Journal of Mathematical Biology is available at http://spingerlink.com
†Department of Mathematics, Beijing Institute of Technology, Beijing, China.
‡Corresponding author. Department of Statistics, The University of Chicago, 5734 S. University ave., Eckhart

Hall, Room 106, Chicago, IL 60637, USA. email: meiwang@galton.uchicago.edu
§Although the research described in this article has been funded in part by the United States Environmental

Protection Agency through STAR cooperative agreement R-82940201-0 to the University of Chicago, it has not been
subjected to the Agency’s required peer and policy review and therefore does not necessarily reflect the views of the
Agency and no official endorsement should be inferred.

1

long-term growth rate of the population. The corresponding elasticity matrix consists of elements
that represent the proportional sensitivity of λ with respect to the elements in the population
projection matrix. The total elasticity (i.e. the sum of all elements of the elasticity matrix) is
1, or 100%. Partitioning of the elasticity matrix is used to quantify the separate contributions of
different life cycles to the population growth rate [6]. This method is called loop analysis, because
the components of the decomposition correspond to loops in the life cycle graph.

A life cycle graph is a graphical description of the life cycles of a population. The nodes (a.k.a.
vertices, points) of the graph represent the life stages, the directed line (a.k.a. arc, edge) from node
j to node i indicates that an individual in stage j at time t can contribute individuals to stage i
at time t + 1, i.e., the (i, j)th element in the population matrix is not zero. Therefore, there is a
correspondence between a population projection matrix of n life stages and a life cycle graph of n
nodes, where directed arcs connecting the nodes correspond to non-zero elements in the projection
matrix (see examples in Sect. 4.4). Furthermore, each directed arc can be assigned a weight. In
loop analysis, the weight for the directed arc from node j to node i is the (i, j)th element in the
elasticity matrix. The life cycle graph of the population can be decomposed into a set of loops
(closed paths or cycles) that correspond to life history pathways followed by individuals in the
population. Each loop is given equal weights of elasticities on every arc in the loop (details given in
Sects. 4.3 and 4.4). The sum of the weights of all loops is 100% — the sum of all elasticities. There
is a biological explanation for the decomposition: the decomposition illustrates and quantifies the
contributions of different life cycles of individuals to the growth rate of the population [3, 6, 13].

The decomposition of life cycle graphs can be done by inspection if the number of nodes (life
stages) is small (≤ 4). For general purposes, a spanning tree method was summarized and illustrated
by Wardle [13]. The spanning tree method is a systematic approach. Starting with a base tree that
has all n nodes connected by n− 1 edges and contains no loops, loops are formed by adding edges
to the base tree one at a time. The spanning tree method will produce a set of independent cycles
(see Example 4.1).

In practice, using the spanning tree method may lead to two problems. First, for moderately
complicated graphs, it is often hard or impossible to find a tree that spans a set of cycles containing
no contradictory directions. It is clear that cycles containing contradictory directions do not rep-
resent life cycles of individual organisms, thus defying biological interpretation [13]. Second, each
tree spans a fixed set of cycles; a pair of cycles that may be interesting for comparison purposes
might not show up in the same set of cycles. One could modify the situation by combining nodes
to reduce the complexity of the graph, but the modification is often limited and not satisfactory.

We propose an algorithmic approach to decompose connected, non-negatively weighted directed
graphs. Applying our method to loop analysis in population ecology, one obtains a set of indepen-
dent cycles containing no contradictory directions. The decomposition is not unique. In applications
such as life cycle analysis, important, meaningful cycles can be given higher priority to be selected
by the algorithm.

Section 2 provides the graph theory terminology, the proposed algorithm and the proofs of corol-
laries relevant to the algorithm. Section 3 uses three simple, hypothetical examples to illustrate the
algorithm. Section 4 discusses the applications to life cycle analysis, with two examples of complex
life cycle graphs. Conclusions are discussed in Sect. 5. Details of the matrix decompositions of the
two examples in Sect. 4 are given in the appendix.

2

2 The Algorithmic approach

2.1 Terminology

A directed graph or digraph G can be described as G = (V,E), where V = {v1, v2, · · · , vn} is the set
of vertices or nodes of the graph G, E = {eij = (vi, vj), 1 ≤ i, j ≤ n} is the set of directed edges or
arcs of G that consists of ordered pairs of vertices of G. |E(G)| denotes the total number of edges
of the graph G. A weighted digraph (G,w) is a digraph G with a numerical weight assigned to
each directed edge. Such weighted digraph has a matrix representation (see illustrative examples
in Sect. 3):

from vertices
v1 v2 · · · vn

to

v1

v2
...

vn

w11 w12 · · · w1n

w21 w22 · · · w2n
...

...
...

...
wn1 wn2 · · · wnn

where wij is the weight of the directed edge from vertex vj to vertex vi. Notice that the transpose
of the above matrix might be more customary in some mathematical fields. The notation used here
is more conventional in applications in population biology.

A cycle (according to [7], [1]) or a simple cycle (according to Carré [2]) is a closed trajectory
of a sequence of edges in G that connects nodes vi1 , vi2 , · · · , vik , vi1 consecutively, where vi1 , · · · , vik

are distinct. A graph G is called connected if any two of its vertices are linked by connected edges,
i.e. by a path ([5]) in G.

In this paper, we consider connected digraphs with n < ∞ vertices and non-negative weights
(wij ≥ 0, for all i, j = 1, 2, · · · , n) on all edges. We develop an algorithm that decomposes a
weighted digraph into a set of simple cycles, which contain no contradictory directions and are of
equal weights on every edge in each cycle, and a remaining subgraph on which no such cycles are
obtainable.

2.2 The algorithm

The decomposition method can be described by the following steps:

1. Start with a connected digraph G with |E(G)| directed, weighted edges.

2. Consider a possible simple cycle that starts and ends at a specific node. Extract a simple
cycle without contradictory directions from G by searching among all possible simple cycles
without contradictory directions with the given ending node.

This step can be illustrated by the following search for a simple cycle that starts and ends at
a node, say, v1, under the condition that weight wi,1 > 0 for some i 6= 1 (i.e. there is at least
one edge from v1), and w1,j > 0 for some j 6= 1 (there is at least one edge going to v1).

(a) Search through the rest nodes v2, · · · , vn. Choose the first i1 such that wi1,1 > 0 (edge
v1 → vi1 exists).

3

(b) If w1,i1 > 0 (edge vi1 → v1 exists), the selection is completed: the cycle selected is
v1 → vi1 → v1. Else search through the rest nodes {v2, · · · , vn} \ vi1 (i.e. all nodes but
vi1). Choose the first i2 such that wi2,i1 > 0. (If wj,i1 = 0, ∀j (i.e. for all j), go back to
Step 1 to choose another i1 such that wi1,1 > 0, then proceed.)

(c) If w1,i2 > 0, the selection is completed: the cycle selected is v1 → vi1 → vi2 → v1.
Else repeat step 2: search through {v2, · · · , vn} \ {vi1 , vi2}, choose the first i3 such that
wi3,i2 > 0, . . . and see if w1,i3 > 0, etc. (If wj,i2 = 0, ∀j, go back to Step 2 to choose
another i2 such that wi2,i1 > 0, then proceed.)

(d) If the cycle can not be completed for all j such that wj,1 > 0, there are no simple cycles
starting and ending at v1.

3. Once a simple cycle L1 is obtained, each edge will be assigned the same weight that is the
least edge weight among all edges of L1.

4. G has decomposed to G = G1 ∪ L1, and |E(G1)| < |E(G)|.
Here the union of weighted digraphs corresponds to the element-wise matrix addition of the
weight matrices of the graphs:

(
wG

ij

)
n×n

=
(
wG1

ij

)
n×n

+
(
wL1

ij

)
n×n

where wG
ij , w

G1
ij and wL1

ij are the edge weights of graphs G,G1 and L1 respectively.

5. Repeat the above steps on G1 and get a new simple cycle L2 in G1.

6. At the end of this procedure,

G = Gr

⋃ (
r⋃

i=1

Li

)

where Li’s are simple cycles without contradictory directions, Gr is a subgraph of G with no
such cycles obtainable.

2.3 Corollaries

There are two immediate corollaries on the properties of the decomposition. The corollaries are
related to the concept of flow conservation described in the following definition.

Definition (the Flow Conservation Condition)

A weighted digraph satisfies the Flow Conservation Condition if ∀i,
n∑

j=1

wij =
n∑

j=1

wji (1)

where n is the number of nodes in G.

The above definition is equivalent to the definitions in Carré [2] and Jungnickel [7] with the
point of view of networks and flows. If wij is treated as the amount of flow of some substance from
node j to node i, then

∑
j wij is the total amount flowing into node i,

∑
j wji is the total amount

4

flowing out of node i. The flow conservation condition asserts equal amounts of inflow and outflow
at each node. The term “balanced” is used in [1] for individual vertices satisfying Condition (1),
and the term “circulation” in [1] is essentially equivalent to the definition of the flow conservation
condition under a more general setting that involves costs and path lengths.

Corollary 2.1 If G satisfies the flow conservation condition, then the remainder graph Gr = Ø
(the empty set).

Proof The idea behind the proof is straight forward. Each cycle in the decomposition satisfies
the flow conservation condition. The flow conservation condition is additive. Thus the remainder
graph Gr must also satisfy the condition, and since Gr contains no cycles, it must be empty. The
details follow and may appear cumbersome with all the subscripts, superscripts and summations.

The corollary comes from the following two facts:

(i) Any simple cycle L of G with equal edge weight satisfies the flow conservation condition (1)
at every node vi ∈ G.

Assume that L has path vi1 → vi2 → · · · → vik → vi1 , where im,m = 1, 2, · · · , k, are distinct,
and each edge of L is of equal weight w. Let wL

ij denote the edge weight for the weighted
digraph L. Then for any vertex vi ∈ G,

∑

j

wL
ij =

wL
im,im−1

= w = wL
im+1,im

=
∑

j wL
ji if the vertex vi = vim∈ L

0 =
∑

j wL
ji if the vertex vi 6∈ L

where we use the convention that im−1 = ik if im = i1, im+1 = i1 if im = ik and wL
ij = 0

if the corresponding directed edge is not in L. The sums are over all vj ∈ G. Notice that
the equation still holds if the sums are over vj ∈ L. In another word, the flow conservation
condition is satisfied by L with respect to G as well as with respect to L.

(ii) G \ L satisfies the flow conservation condition (1) at every node vi ∈ G.

Let wij be the edge weight for G, w′ij be the edge weight for G \ L, wL
ij = w be the edge

weight for L. From the above, for any vertex vi ∈ G,

∑

j

w′ij =

∑
jwij−w =

∑
j wji−w =

∑
jw

′
ji if the vertex vi = vim∈ L

∑
j wij =

∑
j wji =

∑
j w′ji if the vertex vi 6∈ L

Consequently from the above facts (i) and (ii), Gr = G \⋃r
i=1 L satisfies the flow conservation

condition.

Let wGr
ij denote the edge weight for the reminder graph Gr. By definition, Gr contains no simple

cycles, particularly no one-cycles, or self-loops, of the form vi ↔ vi. That is, wGr
ii = 0,∀i. Also Gr

contains no 2-cycles vi → vj → vi, which implies wGr
ij = 0 if wGr

ji 6= 0.

We claim that wGr
ij ≡ 0. Assume instead that there is at least one wGr

ij > 0 on Gr. Let

wo = wGr
r2,r1

= min
i6=j
{wGr

ij : wGr
ij > 0}

5

be the smallest non-zero weight on Gr, where wo = wr2,r1 means that the directed edge from vertex
vr1 to vertex vr2 6= vr1 is of weight wo. Since Gr satisfies the flow conservation condition at vertex
vr2 ,

∑

j

wGr
j,r2

=
∑

j

wGr
r2,j ≥ wGr

r2,r1
= wo > 0.

There must be a vertex vr3 such that wGr
r3,r2

≥ wo > 0, i.e., there is an edge with weight wGr
r3,r2

from
vertex vr2 to vertex vr3 , and vr1 , vr2 , vr3 are distinct because Gr contains no more simple cycles. At
vertex vr3 , Gr satisfies the flow conservation condition,

∑

j

wGr
j,r3

=
∑

j

wGr
r3,j ≥ wGr

r3,r2
≥ wo > 0

and so on. Because there are no simple cycles of any length in Gr, this procedure would construct
a path vr1 → vr2 → · · · → vrm ended at a vertex vrm for some m > 1 with < n edges in the path.
This implies

∑

j

wGr
j,rm

= 0 6=
∑

j

wGr
rm,j ≥ wGr

rm,rm−1
≥ wo > 0

The conservation condition could not be satisfied at the end vertex vrm . This is a contradiction.
Therefore there must be wGr

ij ≡ 0. Consequently Gr = Ø. This completes the proof of Corollary
2.1.

Corollary 2.2 For the remainder graph Gr, all eigenvalues of its weight matrix
(
wGr

ij

)
n×n

are
zero.

Proof Consider the nontrivial case Gr 6= Ø. An eigenvalue λ of
(
wGr

ij

)
n×n

makes the corresponding

characteristic function zero, i.e., det
{

λIn −
(
wGr

ij

)
n×n

}
= 0, where In is the identity matrix of

order n. Consider an expansion of the characteristic function

det

{
λIn −

(
wGr

ij

)
n×n

}
= λn + c1λ

n−1 + c2λ
n−2 + · · ·+ cn

with

c1 = wGr
11 + wGr

22 + · · ·+ wGr
nn

c2 = −
∑

ş
i1 i2
j1 j2

ť
∈Sn

sign

(
i1 i2
j1 j2

)
wGr

i1,j1
wGr

i2,j2

c3 = −
∑

ş
i1 i2 i3
j1 j2 j3

ť
∈Sn

sign

(
i1 i2 i3
j1 j2 j3

)
wGr

i1,j1
wGr

i2,j2
wGr

i3,j3

...

cn = −
∑

ş
i1 i2 · · · in
j1 j2 · · · jn

ť
∈Sn

sign

(
i1 i2 · · · in
j1 j2 · · · jn

)
wGr

i1,j1
wGr

i2,j2
· · ·wGr

in,jn

6

where Sn is the symmetric group of order n, its element
(

i1 i2 · · · in
j1 j2 · · · jn

)
∈ Sn

is a permutation of ordered arrangement of integers {1 2 3 · · · n} from {i1 i2 i3 · · · in} to
{j1 j2 j3 · · · jn}. The notation

(
i1 i2 · · · ik
j1 j2 · · · jk

)
∈ Sn, 1 < k < n

denotes a subset permutation of k of the n integers {1 2 3 · · · n} from {i1 i2 · · · ik} to {j1 j2 · · · jk},
while the other n− k integers {1 2 3 · · · n} \ {i1 i2 · · · ik} remain unchanged. A switch of exactly
two integers (· · · i · · · i′ · · ·

· · · i′ · · · i · · ·
)

is considered as one move in Sn. The sign of a permutation is −1 if the number of moves needed
to complete the permutation is odd, +1 otherwise.

Since there are no simple cycles in Gr, there are no one-cycles, or self-loops vi ↔ vi. Therefore

wGr
ii ≡ 0 ∀i = 1, · · ·n

which implies
c1 = 0.

Consequently, if

∃ im = jm, 1 ≤ m ≤ k in
(

i1 i2 · · · ik
j1 j2 · · · jk

)
, 1 < k ≤ n

then the corresponding term
wGr

i1,j1
wGr

i2,j2
· · ·wGr

ik,jk
= 0.

For k = 2, the above implies that the terms in c2 must have the form

c2 = −
∑

ş
i1 i2
i2 i1

ť
∈Sn

sign

(
i1 i2
i2 i1

)
wGr

i1,i2
wGr

i2,i1

since the terms wGr
i1,i2

wGr
i2,i1

corresponding to permutations

(
i1 i2
i1 i2

)

are zero. Furthermore, there are no two-cycles vi1 → vi2 → vi1 in Gr, thus

wGr
i1,i2

wGr
i2,i1
≡ 0 ∀i1, i2 = 1, · · · , n

which implies
c2 = 0.

7

And consequently, if
∃ im = jm′ , im′ = jm, 1 ≤ m,m′ ≤ k

in (
i1 · · · im · · · im′ · · · ik
j1 · · · jm · · · jm′ · · · jk

)
, 1 < k ≤ n

then the corresponding term

wGr
i1,j1
· · ·wGr

im,jm
· · ·wGr

im′ ,jm′
· · ·wGr

ik,jk
= wGr

i1,j1
· · ·wGr

im,jm
· · ·wGr

jm,im
· · ·wGr

ik,jk
= 0.

The same argument on k-cycles gives

wGr
i1,ik

wGr
ik,ik−1

· · ·wGr
i2,i1
≡ 0

for k = 3, 4, · · · , n, which implies

ck = 0, ∀k = 3, 4, · · · , n.

Therefore the characteristic function

λn + c1λ
n−1 + c2λ

n−2 + · · ·+ cn = λn = 0
=⇒ λ = 0.

This completes the proof of Corollary 2.2.

3 Illustrative examples

In this section, three simple, hypothetical examples are used to illustrate the properties of the
algorithm and the decomposition. The numbers used are for illustration convenience, they do not
correspond to realistic population dynamics situations.

Example 3.1 — A simple decomposition with non-empty remainder graph

Consider the weighted digraph in Fig. 1.

1 2 3

15

1526

12

 213 18

Figure 1: Example 3.1, original graph G

The corresponding matrix of directed weights is

from

8

[1] [2] [3]

to
[1]
[2]
[3]

13 12 15
26 18 0
0 15 2

 = G

We begin by searching for simple cycles starting from the node 1.

• Start with node 1, find a positive cycle in G containing node 1. We get L1 = {1→ 2→ 1}.
• Take the smallest edge weight wG

12 = 12 in the selected cycle as the weight for all edges of L1.

• Remove the cycle L1 from the graph G. The remaining graph G1 is shown in Fig. 2.

1 2 3

15

15

 213 18

14

Figure 2: Example 3.1, subgraph G1

• Start with node 1, find another cycle in G1 containing node 1. We get L2 = {1→ 2→ 3→ 1}.
• Take the smallest edge weight wG1

21 = 14 in the cycle L2 as the weight for all edges in the
cycle.

• Remove the cycle L2 from the graph G1. The remaining graph G2 is shown in Fig. 3.

1 2 3

 213 18

1

1

Figure 3: Example 3.1, subgraph G2

• The remaining graph G2 contains three self-loops, or one-cycles. Remove the self-loops L3, L4

and L5 from G2. The remaining graph G5 is shown in Fig. 4.

• G5 contains no cycles. The original graph is decomposed into 5 cycles and a remainder graph
G5.

G = G5

⋃ (
5⋃

i=1

Li

)

9

1 2 3

1

1

Figure 4: Example 3.1, remainder graph G5

• The decomposition steps can be written in terms of a decomposition of the corresponding
matrix. To remove L1 from G,

G =

13 12 15
26 18 0
0 15 2

 =

0 12 0
12 0 0
0 0 0

 +

13 0 15
14 18 0
0 15 2

 = L1 + G1

To remove L2 from G1,

13 12 15
26 18 0
0 15 2

 =

0 12 0
12 0 0
0 0 0

 +

0 0 14
14 0 0
0 14 0

 +

13 1
0 18 0
0 1 2

To complete the decomposition,

G =

13 12 15
26 18 0
0 15 2

 =

0 12 0
12 0 0
0 0 0

 +

0 0 14
14 0 0
0 14 0

 +

13 0 0
0 0 0
0 0 0

+

0 0 0
0 18 0
0 0 0

 +

0 0 0
0 0 0
0 0 2

 +

0 0 1
0 0 0
0 1 0

G = {1→ 2→ 1}
⋃
{1→ 2→ 3→ 1}

⋃
{self loops}

⋃
G5

Notice that, the corresponding characteristic function of the remainder graph Gr = G5 is

det

λ 0 −1
0 λ 0
0 −1 λ

 = λ3

All eigenvalues of Gr are zero.

Example 3.2 — Non-uniqueness of the decomposition

10

1 2 3

12

 213 18

11

Figure 5: Example 3.2, subgraph G1

Consider the same weighted digraph G in Fig. 1 of Example 3.1. This time we extract the
3-cycle {1→ 2→ 3→ 1} first. The first remaining graph G1 is in Fig. 5.

Notice that the edge weight for the cycle {1→ 2→ 3→ 1} is 15 instead of 14 as in Example
3.1. Next we extract the two-cycle {1→ 2→ 1}. The edge weight for the cycle is 11 instead of 12
as in Example 3.1. The remaining subgraph G2 is in Fig. 6.

1 2 3

 213 18

 1

Figure 6: Example 3.2, subgraph G2

Removing the self loops will end up with an acyclic graph G5 (Fig. 7).

1 2 3

 1

Figure 7: Example 3.2, remainder graph G5

The corresponding matrix decomposition is

13 12 15
26 18 0
0 15 2

 =

0 0 15
15 0 0
0 15 0

 +

0 11 0
11 0 0
0 0 0

 +

13 0 0
0 0 0
0 0 0

+

0 0 0
0 18 0
0 0 0

 +

0 0 0
0 0 0
0 0 2

 +

0 1 0
0 0 0
0 0 0

This alternative decomposition can be written as

G = {1→ 2→ 3→ 1}
⋃
{1→ 2→ 1}

⋃
{self loops}

⋃
G5

The decomposition results in the same set of cycles as in the previous example, but the edge
weights are different. Although the remainder graph here is different from the remainder graph in

11

the previous example, its characteristic function is

det

λ −1 0
0 λ 0
0 0 λ

 = λ3

Again all eigenvalues of Gr are zero.

Example 3.3 — A complete decomposition into cycles

Consider the weighted digraph in Fig. 8.

1 2 3

15

1526

 213 18

11

Figure 8: Example 3.3, original graph G

This is the graph in Example 3.1 with weight wG
12 = 11 instead of 12. However this modified

graph satisfies the flow conservation condition

3∑

j=1

wij =
3∑

j=1

wji, ∀i = 1, 2, 3

This can be seen more clearly from the row and column sums of the corresponding matrix:

row sum

13 11 15
26 18 0
0 15 2

39
44
17

column sum 39 44 17

The decomposition will be complete, i.e. Gr = Ø, the empty graph. The matrix decomposition
can be written as

G =

13 12 15
26 18 0
0 15 2

 =

0 11 0
11 0 0
0 0 0

 +

0 0 15
15 0 0
0 15 0

 +

13 0 0
0 18 0
0 0 2

The graph is decomposed into five cycles:

G = {1→ 2→ 1}
⋃
{1→ 2→ 3→ 1}

⋃
{self loops}

In this example, the decompositions are the same whether one starts from the long cycle {1→ 2→ 3→ 1}
or from the short cycle {1→ 2→ 1}.

12

4 Applications in life cycle analysis

In this section, we apply the proposed method to life cycle analysis, more specifically loop analysis,
in population dynamics studies.

4.1 Matrix population models

In the analysis of population structures and population dynamics, matrix population models have
been used on a wide range of species. A typical population projection matrix is of the form

N(t + 1) =

N1(t + 1)
N2(t + 1)

...
Nn(t + 1)

 =

a11 a12 · · · a1n

a21 a22 · · · a2n
...

... · · · ...
an1 an2 · · · ann

N1(t)
N2(t)

...
Nn(t)

 = A N(t)

where n is the number of life cycle stages and Ni(t) is the number of individuals of the population
in stage i at time t. The stages are phases in the life cycle, such as age and size, identified as
potentially having high impact on the population growth rate. The projection matrix element aij

is the contribution of individuals in stage j at time t to the population in stage i at time t + 1, i.e.,
the proportion of stage j individuals that survive and grow into stage i plus the rate of successful
birth by stage j individuals into stage i from time t to time t + 1. Based on Perron-Frobenius
theory and its variations ([3]) on non-negative, irreducible and primitive matrices, the matrix A
has a dominating eigenvalue (i.e., one of largest norm) λ > 0. Biologically, λ is the long term
growth rate of the population.

4.2 Sensitivity and elasticity matrices

The matrix elements aij are composed of life cycle parameters such as survival rate, growth rate
and birth rate of individuals in a stage. The impact of life cycle parameters on the population
growth rate can be analyzed via the sensitivity matrix S = (sij)n×n , sij = ∂λ

∂aij
and the elasticity

matrix E = (eij)n×n , eij = ∂ ln λ
∂ ln aij

evaluated at the long term population rate. The analysis is
particularly useful in demographic analysis ([10], [11], [12]). The relationship between S and E is
eij = λ

aij
sij . Elasticities are also called proportional sensitivities. The total elasticity (the sum of

the elements in E) is one, or 100%. In addition, elasticity is conserved at each stage:

n∑

j=1

eij =
n∑

j=1

eji ∀i = 1, · · · , n,

i.e., the elasticity matrix satisfies the flow conservation condition. In life cycle analysis, elasticity
can be viewed as a conservative quantity that “flows” through the life cycle graph. When the
population life cycle graph decomposes into different cycles that represent life paths followed by
different individual organisms (as in loop analysis described in the section below), the total elasticity
of each cycle represents the proportional sensitivity of the population growth rate λ to the particular
life path. In other words, elasticities can be used to describe the relative contribution of alternative
life paths to variations in total population growth rate λ.

13

4.3 Loop analysis

Loop analysis is a type of sensitivity analysis for demographic models. For example, Fig. 8 in
Example 3.3 can be viewed as a graphical representation of a demographic model — a life cycle
graph. The nodes {1, 2, 3} may represent three life stages, e.g., {baby, youth, adult}, or {small,
medium, large}. The edges represent directed transitions between stages. A population projection
matrix describes the transition rate between stages. Loop analysis, or life cycle analysis, focuses
on the life cycles, their fates, and their contributions to total population growth rate. Life cycles
(simple cycles in graph theory), such as {1→ 2→ 3→ 1} and {1→ 2→ 1}, are called loops. Each
life cycle is a path followed by some individuals in the population. In loop analysis, the weights of
the directed edges in the life cycle graph are the elasticity values. To conduct loop analysis, the life
cycle graph is decomposed into a set of loops. Loop elasticity is defined as the sum of the weights of
the edges in the loop. Since elasticity matrix satisfies the flow conservation condition, biologically,
loop elasticity of a life cycle can be interpreted as the proportional sensitivity of the population
growth rate to the life cycle. The flow conservation condition also implies that loop elasticities are
additive. The total elasticity of all loops sums to 100%. Loop elasticities of different life cycles can
be used to compare the relative contributions of the various life cycles to changes in the population
growth rate.

A graph theoretic spanning-tree method can be used to decompose the life cycle graph into a
set of loops. The method was formulated and illustrated by Wardle [13] with detail and clarity.
Wardle also pointed out problems in using the spanning tree method. Primarily, it may be hard or
impossible to avoid loops containing contradictory directions when decomposing complex life cycle
graphs. The following examples present such situations and illustrate our proposed decomposition
method.

4.4 Examples

Example 4.1 — A classic example (teasel Dipsacus sylvestris)

This example was used in Wardle [13] to illustrate loops with contradictory directions. Wardle
also proposed methods to deal with such loops. The life cycle graph (Fig. 9) is reproduced based
on the version in [13], originally from Werner [14], Werner and Caswell [15], Caswell and Werner
[4] and later reanalyzed by Caswell [3].

1

2

3

4 6

5

 1

2

3

4

5

6

1

2

3

4

5

6

Figure 9: Example 4.1, the life cycle graph G and two spanning trees

Dipsacus sylvestris is a monocarpic (bearing fruit but once, and dying after fructification),

14

perennial plant. In the life cycle graph, the stages 1-6 represent: first year dormant seeds, second
year dormant seeds, small rosettes, medium rosettes, large rosettes, and flowering individuals. The
weights of the directed edges are the elasticities (not shown in the figure). The original elasticity
matrix (×100) is

stage (1) (2) (3) (4) (5) (6) row sum

(1) 0 0 0 0 0 6.594 6.594
(2) 0.025 0 0 0 0 0 0.025
(3) 0.079 0.025 0.015 0 0 0.151 0.270
(4) 0.750 0 0.256 2.773 0 23.270 27.049
(5) 5.740 0 0 19.120 2.272 4.454 31.586
(6) 0 0 0 5.157 29.310 0 34.467

column sum 6.594 0.025 0.271 27.050 31.582 34.469 99.991

(2)

The life cycle graph is complicated. There are no known spanning trees that can produce a set
of loops containing no contradictory directions. Wardle [13] selected a set that contains one loop
with contradictory directions, using the first spanning tree 2⇒ 3⇒ 4⇒ 5⇒ 6⇒ 1.

A spanning tree of a graph is an acyclic subgraph connecting all n nodes in the original graph.
Notice that a spanning tree always consists of n−1 edges. Two possible spanning trees are depicted
in Fig. 9. The co-tree consists of the |E(G)| − (n− 1) edges not used by the spanning tree, where
|E(G)| is the total number of edges in the original graph G.

A loop is formed by adding an edge from the co-tree to the spanning tree. For example, adding
the edge 1→ 3 to the first spanning tree produces the loop {1→ 3⇒ 4⇒ 5⇒ 6⇒ 1}, where
double arrows represent edges in the spanning tree and the single arrow is the edge from the co-
tree. The weight of the edge from the co-tree is the characteristic elasticity of the loop. The loop
elasticity is the characteristic elasticity multiplied by the length of the loop. Therefore, the loop
{1→ 3⇒ 4⇒ 5⇒ 6⇒ 1} has characteristic elasticity 0.079 and loop elasticity 0.079×5 = 0.395.

Each spanning tree uniquely determines a set of independent loops because each loop contains
a unique edge from the co-tree. The problematic loop for the first tree occurs when the edge 4→ 6
is added to the tree. The loop formed is

{4⇒ 5⇒ 6← 4} (3)

The loop contains contradictory directions. There are no biological interpretations for such loops.
No individuals in the population follow the path of the loop as a life cycle. Other spanning trees for
this example do not avoid producing loops with contradictory directions. Wardle proposed three
methods to handle the problem after the set of loops is produced.

To use our proposed algorithm to decompose the life cycle graph (Fig. 9), we start with the
elasticity matrix. Theoretically, the elasticity matrix should satisfy the flow conservation condition.
However, in the given elasticity matrix (2), the flow conservation condition is only approximately
satisfied because of rounding errors. We modify the elements (3,6), (4,6) and (5,6) slightly to obtain
a matrix that satisfies the flow conservation condition:

15

stage (1) (2) (3) (4) (5) (6) row sum

(1) 0 0 0 0 0 6.594 6.594
(2) 0.025 0 0 0 0 0 0.025
(3) 0.079 0.025 0.015 0 0 0.152 0.271
(4) 0.750 0 0.256 2.773 0 23.271 27.050
(5) 5.740 0 0 19.120 2.272 4.450 31.582
(6) 0 0 0 5.157 29.310 0 34.467

column sum 6.594 0.025 0.271 27.050 31.582 34.467 99.989

(4)

The difference between different modifications is usually negligible as long as sufficient significant
digits are left untouched. The elasticities in (4) are assigned as the weights of the directed edges
in the life cycle graph of Fig. 9. Using the proposed algorithm, we decompose the graph into a set
of loops with no contradictory directions (Table 1).

Table 1: Example 4.1 loops, the removed edges of each loop, characteristic elasticities and loop
elasticities

grp simple cycle removed min weight loop weight sum
(loop) edge of char. loop

min wgt elasticity elasticity

(a) L1={1→ 2→ 3→ 4→ 5→ 6→1} (2,1) 0.025 0.150 0.150
(b) L2 ={1→ 3→ 4→ 5→ 6→ 1} (3,1) 0.079 0.395 20.615

L3 = {1→ 4→ 5→ 6→ 1} (4,1) 0.750 3.000
L4 = {1→ 5→ 6→ 1} (5,1) 5.740 17.220

(c) L5 = {3→ 4→ 5→ 6→ 3} (4,3) 0.152 0.608 0.608
(d) L6 = {4→ 5→ 6→ 4} (5,4) 18.114 54.342 54.342
(e) L7 = {4→ 6→ 4} (6,4) 5.157 10.314 19.214

L8 = {5→ 6→ 5} (6,5),(5,6) 4.450 8.900

(f) L9 = {3↔ 3} (3,3) 0.015 0.015 5.060
L10 = {4↔ 4} (4,4) 2.773 2.773
L11 = {5↔ 5} (5,5) 2.272 2.272

total 99.989 99.989

The step by step decomposition of the elasticity matrix (5) is in the Appendix. The total
number of loops is 11 = edges − nodes + 1 = 11 − 6 + 1, which equals the nullity of the life cycle
graph G of Fig. 9. Table 1 exhibits one set of loops listed in the order searched. The loops can
be further grouped ([13]) to represent plants that are: (a) with two years in seed bank; (b) with
one year in seed bank; (c) quadrennials; (d) triennials; (e) biennials; and (f) with delays at rosette
stages. Different search orders could produce different loops. Here the loops with starting stage
1 were given higher priorities. Search order does not affect the loop elasticities of the self-loops
L9, L10, L11. Notice that the loop L7 can not be produced by the first spanning tree in Fig. 9. In
one of the methods (Method C) proposed by Wardle [13] to handle the loop with contradictory
directions, loop (3) was changed into L7, the loop elasticity of another loop (corresponding to L6)
was adjusted accordingly to keep total elasticity unchanged. Other than small differences due to
our adjustment of the rounding errors in the elasticity matrix, the set of loops listed in the above
table is consistent with the set of modified loops obtained in [13] by Method C.

16

Example 4.2 – A new challenge

The life cycle graph in Fig. 10 based on a model for a population of kelp (Alaria Nana, [8])
motivated the development of the proposed decomposition method.

1 3 5

2 4 6

Figure 10: Example 4.2 life cycle graph

Stages 1, 3, 5 represent slow growers with sizes small, medium and large, and 2, 4, 6 represent
fast growers with sizes small, medium and large. Dotted lines indicate reproductions. The model is
inspired by the research of Pfister and Stevens [8] and is developed further in [9]. In this example, we
focus on the mathematical issues in the decomposition, using an elasticity matrix based on one set
of estimated parameters. For readability, the following matrix consists of elements of the elasticity
matrix multiplied by 1,000. Routine modification has been applied to the matrix to preserve the
flow conservation condition.

stage (1) (2) (3) (4) (5) (6) row sum

(1) 79 21 2 1 12 10 125
(2) 34 74 2 2 16 15 143
(3) 9 14 22 20 0 0 65
(4) 3 34 14 25 0 0 76
(5) 0 0 15 12 190 99 316
(6) 0 0 10 16 98 152 276

column sum 125 143 65 76 316 276 1001

(5)

For the life cycle graph in Fig. 10, the number of independent loops equals the nullity 23 = 28−6+1.
There are considerable difficulties in using the spanning tree method to produce a set of loops. The
following trees

1 ⇒ 3 ⇒ 5
⇓
2 ⇒ 4 ⇒ 6

(6)

and

1 ⇒ 3 ⇒ 5
⇑
2 ⇒ 4 ⇒ 6

(7)

17

produce several pairs of loops that are biologically interesting, such as {1⇒ 3⇒ 5→ 1} and
{2⇒ 4⇒ 6→ 2}, representing life cycles of individuals with a definite growth status. However
each set spanned by the trees (6) or (7) contains ten loops with contradictory directions. The
spanning tree

2⇒ 3⇒ 4⇒ 5⇒ 6⇒ 1

produces fewer loops (four) with contradictory directions. However many loops of biological interest
do not show up in this set, and the number of loops with contradictory directions are still too
numerous to be handled by the modification method in [13]. Other spanning trees considered are
inferior in terms of the production of many loops with contradictory directions and the inability to
obtain pairs of loops of biological interest.

Combining stages is another way to handle loops with contradictory directions. We also consid-
ered combining stages 1 and 2, or stages 5 and 6. Certain spanning trees can produce a few pairs
of loops of moderate interest. However, loops with contradictory directions spring up persistently.

Using the proposed method, we obtain a set of loops with no contradictory directions. Also,
pairs of loops (e.g., L1 and L2, L3 and L4) that are biologically interesting appear in the same set
(Table 2).

Table 2: Example 4.2 loops, the removed edges of each loop, characteristic elasticities and loop
elasticities

simple cycle removed edge minimum weight loop weight
(loop) of min weight characteristic loop

elasticity elasticity
L1 = {1→ 3→ 1} (1,3) 2 4
L2 = {2→ 4→ 2} (2,4) 2 4
L3 = {1→ 3→ 5→ 1} (3,1) 7 21
L4 = {2→ 4→ 6→ 2} (2,6) 15 45
L5 = {1→ 4→ 6→ 1} (6,4) 1 3
L6 = {1→ 4→ 5→ 1} (1,4) 2 6
L7 = {1→ 2→ 3→ 5→ 1} (1,5) 3 12
L8 = {1→ 2→ 3→ 6→ 1} (1,6) 9 36
L9 = {1→ 2→ 4→ 1} (1,4) 1 3
L10 = {2→ 3→ 5→ 2} (3,2) 2 6
L11 = {2→ 4→ 5→ 2} (4,5) 10 30
L12 = {2→ 4→ 3→ 5→ 2} (5,3) 3 12
L13 ={2→ 4→ 3→ 6→ 5→ 2} (2,5) 1 5
L14 = {2→ 4→ 3→ 2} (4,2) 2 6
L15 = {1 2} (1,2) 21 42
L16 = {3 4} (4,3) 14 28
L17 = {5 6} (6,5) 98 196
L18 = {1↔ 1} (1,1) 79 79
L19 = {2↔ 2} (2,2) 74 74
L20 = {3↔ 3} (3,3) 22 22
L21 = {4↔ 4} (4,4) 25 25
L22 = {5↔ 5} (5,5) 190 190
L23 = {6↔ 6} (6,6) 152 152
total 1001

18

Since the data and parameter estimates used here are intermediate results from a work in
progress [9], we restrain our comments to mathematically relevant matters. The loops are inde-
pendent. The total number of loops in the set is 23, which equals the nullity of the graph. The
decomposition gives priorities to loops of interest (L1 — L4) and loops started at stages 1 and
2. Corollary 2.1 asserts the complete decomposition of the matrix, regardless of loop selections.
This set of loops can not be produced from any spanning tree. The decomposition of the elasticity
matrix (5) is similar to that of Example 4.1. Details of the decomposition are in the Appendix.

5 Conclusion

5.1 Biological implications

In the study of population dynamics, loop analysis has been used for comparing the relative im-
portance of different life paths to the population growth rate. An essential step of loop analysis is
to decompose the life cycle graph of the population into a set of life cycles followed by individuals
in the population. A graph theoretic spanning tree method has been used to provide a systematic
approach to the decomposition. The method provides a set of loops with elasticities summing to
1. However there are difficulties in realizing a suitable decomposition for complex life histories
using the spanning tree method. One of the problems is the occurrence of life cycles that contain
contradictory directions, caused by the existence of two or more pairs of life stages with reversions
(e.g., the life stage pairs 4 5 and 5 6 in Example 4.1, and the pairs 2 3, 2 4 and
3 4 in Example 4.2). Cycles with contradictory directions are unavoidable for some complex life
cycle graphs: there may not exist any tree that spans a set of cycles containing no contradictory
directions. There is no biological interpretation for such cycles, since a cycle with contradictory di-
rections generally can not represent the life path followed by individual organisms. Ad hoc method
to modify or eliminate cycles with contradictory directions have not been satisfactory. The pro-
posed algorithm guarantees a complete decomposition of a population life cycle graph into a set
of life cycles that do not contain contradictory directions. As in the spanning tree method, the
decomposition is generally not unique, and thus important, meaningful life cycles should be given
higher priority for selection by the algorithm.

5.2 The algorithm and its properties

We propose an algorithmic searching procedure for decomposing a directed, weighted graph. This
proposed approach can be viewed as the spanning tree method reversed. In the spanning tree
method, arcs are successively added to a basic tree, corresponding to adding edges to an acyclic
graph containing all nodes. The method presented here starts with the whole graph, removing (at
least) one edge at a time. Both methods yield a set of independent cycles.

If the original full graph satisfies the flow conservation condition, then our method guarantees
that the remaining graph still satisfies the condition after each removal of a simple cycle with no
contradictory directions, as shown in corollaries 2.1 and 2.2. Therefore the graph can be completely
decomposed into such simple cycles. In applications to life cycle analysis, this property ensures
that an elasticity matrix will be decomposed into a complete set of loops with no contradictory
directions, as illustrated in examples 4.1 and 4.2, thereby resolving a standing problem in loop
analysis.

The proposed decomposition is generally not unique, just as different spanning trees produce
different sets of cycles. The interests of the subject matter should dominate the order and selection
of cycles. Important, meaningful cycles should be given higher priority during the decomposition.

19

The number of simple cycles in a decomposition of a life cycle graph is at most

the number of edges − the number of stages + 1

because the cycles in a decomposition are independent. The complexity of the search procedure
for one simple cycle with no contradictory directions is O(|E(G)|), where |E(G)| is the number of
the edges of the graph G. For the decomposition of the entire graph into a set of such cycles and
a remaining graph, the complexity is O(|E(G)|2). In other words, the complexity increases rapidly
with |E(G)|. The algorithm may not be suitable for graphs with very large |E(G)|. In practice, we
typically look for one set of cycles instead of obtaining all possible decompositions.

Acknowledgments. We thank C. Pfister for presenting the challenge of conducting loop analysis
for the matrix (5), for kindly allowing us to use her parameter estimates in Example 4.2, and for
many conversations that helped us to focus on the biological questions to be answered. We thank
the editor for his valuable, constructive suggestions.

6 Appendix

6.1 The decomposition of G in (4)

G =

0 0 0 0 0 6.594
0.025 0 0 0 0 0
0.079 0.025 0.015 0 0 0.152
0.750 0 0.256 2.773 0 23.271
5.740 0 0 19.120 2.272 4.450

0 0 0 5.157 29.310 0

=

0 0 0 0 0 6.569
0 0 0 0 0 0

0.079 0 0.015 0 0 0.152
0.750 0 0.231 2.773 0 23.271
5.740 0 0 19.095 2.272 4.450

0 0 0 5.157 29.285 0

+

0 0 0 0 0 .025
.025 0 0 0 0 0

0 .025 0 0 0 0
0 0 .025 0 0 0
0 0 0 .025 0 0
0 0 0 0 .025 0

= G1

⋃
L1 (= {1→2→3→4→5→6→1})

G1 =

0 0 0 0 0 6.490
0 0 0 0 0 0
0 0 0.015 0 0 0.152

0.750 0 0.152 2.773 0 23.271
5.740 0 0 19.016 2.272 4.450

0 0 0 5.157 29.206 0

+

0 0 0 0 0 0.079
0 0 0 0 0 0

0.079 0 0 0 0 0
0 0 0.079 0 0 0
0 0 0 0.079 0 0
0 0 0 0 0.079 0

= G2

⋃
L2 (= {1→ 3→ 4→ 5→ 6→ 1})

G2 =

0 0 0 0 0 5.740
0 0 0 0 0 0
0 0 0.015 0 0 0.152
0 0 0.152 2.773 0 23.271

5.740 0 0 18.266 2.272 4.450
0 0 0 5.157 28.456 0

+

0 0 0 0 0 0.750
0 0 0 0 0 0
0 0 0 0 0 0

0.750 0 0 0 0 0
0 0 0 0.750 0 0
0 0 0 0 0.750 0

20

= G3

⋃
L3 (= {1→4→5→6→1})

G3 =

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0.015 0 0 0.152
0 0 0.152 2.773 0 23.271
0 0 0 18.266 2.272 4.450
0 0 0 5.157 22.716 0

+

0 0 0 0 0 5.740
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

5.740 0 0 0 0 0
0 0 0 0 5.740 0

= G4

⋃
L4 (= {1→5→6→1})

We have exhausted all cycles started from stages 1 and 2.

G4 =

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0.015 0 0 0
0 0 0 2.773 0 23.271
0 0 0 18.114 2.272 4.450
0 0 0 5.157 22.564 0

+

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0.152
0 0 0.152 0 0 0
0 0 0 0.152 0 0
0 0 0 0 0.152 0

= G5

⋃
L5 (= {3→4→5→6→3})

G5 =

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0.015 0 0 0
0 0 0 2.773 0 5.157
0 0 0 0 2.272 4.450
0 0 0 5.157 4.450 0

+

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 18.114
0 0 0 18.114 0 0
0 0 0 0 18.114 0

= G6

⋃
L6 (= {4→ 5→ 6→ 4})

G6 =

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0.015 0 0 0
0 0 0 2.773 0 0
0 0 0 0 2.272 4.450
0 0 0 0 4.450 0

+

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 5.157
0 0 0 0 0 0
0 0 0 5.157 0 0

= G7

⋃
L7 (= {4→ 6→ 4})

G7 =

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0.015 0 0 0
0 0 0 2.773 0 0
0 0 0 0 2.272 0
0 0 0 0 0 0

+

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 4.450
0 0 0 0 4.450 0

= G8

⋃
L8 (= {5→ 6→ 5})

21

where G8 consists of three self-loops:

G8 = L9

⋃
L10

⋃
L11 = {3 3}

⋃
{4 4}

⋃
{5 5}

Therefore G is decomposed completely into 11 loops:

G =
11⋃

i=1

Li

6.2 The decomposition of G in (5)

G =

79 21 2 1 12 10
34 74 2 2 16 15
9 14 22 20 0 0
3 34 14 25 0 0
0 0 15 12 190 99
0 0 10 16 98 152

=

79 21 0 1 12 10
34 74 2 2 16 15
7 14 22 20 0 0
3 34 14 25 0 0
0 0 15 12 190 99
0 0 10 16 98 152

+

0 0 2 0 0 0
0 0 0 0 0 0
2 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

= G1

⋃
L1(= {1→ 3→ 1})

Subtracting the loop L1, the remaining graph G1 can be decomposed as

G1 =

79 21 0 1 12 10
34 74 2 2 16 15
7 14 22 20 0 0
3 34 14 25 0 0
0 0 15 12 190 99
0 0 10 16 98 152

=

79 21 0 1 12 10
34 74 2 0 16 15
7 14 22 20 0 0
3 32 14 25 0 0
0 0 15 12 190 99
0 0 10 16 98 152

+

0 0 0 0 0 0
0 0 0 2 0 0
0 0 0 0 0 0
0 2 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

= G2

⋃
L2(= {2→ 4→ 2})

Subtracting the loop L2, the remaining graph G2 can be decomposed as

G2 =

79 21 0 1 12 10
34 74 2 0 16 15
7 14 22 20 0 0
3 32 14 25 0 0
0 0 15 12 190 99
0 0 10 16 98 152

=

79 21 0 1 5 10
34 74 2 0 16 15
0 14 22 20 0 0
3 32 14 25 0 0
0 0 8 12 190 99
0 0 10 16 98 152

+

0 0 0 0 7 0
0 0 0 0 0 0
7 0 0 0 0 0
0 0 0 0 0 0
0 0 7 0 0 0
0 0 0 0 0 0

= G3

⋃
L3(= {1→3→5→1})

Subtracting the loop L3, the remaining graph G3 can be decomposed as

G3 =

79 21 0 1 5 10
34 74 2 0 16 15
0 14 22 20 0 0
3 32 14 25 0 0
0 0 8 12 190 99
0 0 10 16 98 152

=

79 21 0 1 5 10
34 74 2 0 16 0
0 14 22 20 0 0
3 17 14 25 0 0
0 0 8 12 190 99
0 0 10 1 98 152

+

0 0 0 0 0 0
0 0 0 0 0 15
0 0 0 0 0 0
0 15 0 0 0 0
0 0 0 0 0 0
0 0 0 15 0 0

= G4

⋃
L4(= {2→4→6→2})

22

We have obtained the most desirable loops that track slow growers and fast growers. Now subtract-
ing the loop L4, the remaining graph G4 can be decomposed in possibly different ways. Consider

G4 =

79 21 0 1 5 10
34 74 2 0 16 0
0 14 22 20 0 0
3 17 14 25 0 0
0 0 8 12 190 99
0 0 10 1 98 152

=

79 21 0 1 5 9
34 74 2 0 16 0
0 14 22 20 0 0
2 17 14 25 0 0
0 0 8 12 190 99
0 0 10 0 98 152

+

0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0

= G5

⋃
L5(= {1→ 4→ 6→ 1})

G5 =

79 21 0 1 5 9
34 74 2 0 16 0
0 14 22 20 0 0
2 17 14 25 0 0
0 0 8 12 190 99
0 0 10 0 98 152

=

79 21 0 1 3 9
34 74 2 0 16 0
0 14 22 20 0 0
0 17 14 25 0 0
0 0 8 10 190 99
0 0 10 0 98 152

+

0 0 0 0 2 0
0 0 0 0 0 0
0 0 0 0 0 0
2 0 0 0 0 0
0 0 0 2 0 0
0 0 0 0 0 0

G6

⋃
L6(= {1→4→5→1})

Further,

G6 =

79 21 0 1 3 9
34 74 2 0 16 0
0 14 22 20 0 0
0 17 14 25 0 0
0 0 8 10 190 99
0 0 10 0 98 152

=

79 21 0 1 0 9
31 74 2 0 16 0
0 11 22 20 0 0
0 17 14 25 0 0
0 0 5 10 190 99
0 0 10 0 98 152

+

0 0 0 0 3 0
3 0 0 0 0 0
0 3 0 0 0 0
0 0 0 0 0 0
0 0 3 0 0 0
0 0 0 0 0 0

= G7

⋃
L7(= {1→2→3→5→1})

where

G7 =

79 21 0 1 0 9
31 74 2 0 16 0
0 11 22 20 0 0
0 17 14 25 0 0
0 0 5 10 190 99
0 0 10 0 98 152

=

79 21 0 1 0 0
22 74 2 0 16 0
0 2 22 20 0 0
0 17 14 25 0 0
0 0 5 10 190 99
0 0 1 0 98 152

+

0 0 0 0 0 9
9 0 0 0 0 0
0 9 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 9 0 0 0

G8

⋃
L8(= {1→2→3→6→1})wwÄ

79 21 0 0 0 0
21 74 2 0 16 0
0 2 22 20 0 0
0 16 14 25 0 0
0 0 5 10 190 99
0 0 1 0 98 152

+

0 0 0 1 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

G9

⋃
L9(= {1→ 2→ 4→ 1})

23

Now there are no more loops starting at state 1. Consider

G9 =

79 21 0 0 0 0
21 74 2 0 16 0
0 2 22 20 0 0
0 16 14 25 0 0
0 0 5 10 190 99
0 0 1 0 98 152

=

79 21 0 0 0 0
21 74 2 0 14 0
0 0 22 20 0 0
0 16 14 25 0 0
0 0 3 10 190 99
0 0 1 0 98 152

+

0 0 0 0 0 0
0 0 0 0 2 0
0 2 0 0 0 0
0 0 0 0 0 0
0 0 2 0 0 0
0 0 0 0 0 0

= G10

⋃
L10(= {2→ 3→ 5→ 2})

G10 =

79 21 0 0 0 0
21 74 2 0 4 0
0 0 22 20 0 0
0 6 14 25 0 0
0 0 3 0 190 99
0 0 1 0 98 152

+

0 0 0 0 0 0
0 0 0 0 10 0
0 0 0 0 0 0
0 10 0 0 0 0
0 0 0 10 0 0
0 0 0 0 0 0

= G11

⋃
L11 = ({2→ 4→ 5→ 2})

G11 =

79 21 0 0 0 0
21 74 2 0 1 0
0 0 22 17 0 0
0 3 14 25 0 0
0 0 0 0 190 99
0 0 1 0 98 152

+

0 0 0 0 0 0
0 0 0 0 3 0
0 0 0 3 0 0
0 3 0 0 0 0
0 0 3 0 0 0
0 0 0 0 0 0

= G12

⋃
L12(= {2→ 4→ 3→ 5→ 2})

G12 =

79 21 0 0 0 0
21 74 2 0 0 0
0 0 22 16 0 0
0 2 14 25 0 0
0 0 0 0 190 98
0 0 0 0 98 152

+

0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 1 0 0 0

= G13

⋃
L13(= {2→ 4→ 3→ 6→ 5→ 2})

G13 =

79 21 0 0 0 0
21 74 0 0 0 0
0 0 22 14 0 0
0 0 14 25 0 0
0 0 0 0 190 99
0 0 0 0 98 152

+

0 0 0 0 0 0
0 0 2 0 0 0
0 0 0 2 0 0
0 2 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

= G14

⋃
L14(= {2→ 4→ 3→ 2})

24

We have exhausted all life cycles started from and grown out of stages 1 and 2. Now

G14 =

0 21 0 0 0 0
21 0 0 0 0 0
0 0 0 14 0 0
0 0 14 0 0 0
0 0 0 0 0 98
0 0 0 0 98 0

+

79 0 0 0 0 0
0 74 0 0 0 0
0 0 22 0 0 0
0 0 0 25 0 0
0 0 0 0 190 0
0 0 0 0 0 152

= L15 ∪ L16 ∪ L17

⋃
L18 ∪ L19 ∪ L20 ∪ L21 ∪ L22 ∪ L23

= {1 2} ∪ {3 4} ∪ {5 6} ⋃
6 self loops

Therefore G is decomposed completely into 23 loops:

G =
23⋃

i=1

Li

References

[1] Bang-Jensen, J. and Gutin, G.: Digraphs: Theory, Algorithms and Applications. Springer,
New York. (2001).

[2] Carré, B.: Graphs and Networks. Clarendon Press, Oxford, UK. (1979).

[3] Caswell, H.: Matrix Population Models: construction, analysis, and interpretation, 2nd ed .
Sinauer, Sunderland, Massachusetts, USA. (2001).

[4] Caswell, H. and Werner, P. A.: Transient behavior and life history analysis of teasel (Dipsacus
sylvestris Huds.) Ecology 59: 53-66. (1978)

[5] Diestel, R.: Graphs Theory, 2nd ed. Springer, New York. (2000).

[6] van Groenendael, J. de Kroon, H, Kalisz, S. and Tuljapurkar, S.: Loop analysis: evaluating
life history pathways in population projection matrices. Ecology 75, 2410-2415. (1994).

[7] Jungnickel, D.: Graphs, Networks and Algorithms. Springer, New York. (1999).

[8] Pfister, C. A. and Stevens, F. R.: Individual variation and environmental stochasticity: impli-
cations for matrix model predictions. Ecology 84. 496-510. (2003).

[9] Pfister, C. A. and Wang, M.: Beyond size: matrix projection models for populations where
size is an incomplete descriptor. Ecology 86. 2673-2683. (2005).

[10] Shea, K., Rees, M. and Wood, S.N.: Trade-offs, elasticities and the comparative method. J. of
Ecology 82. 951-957. (1994).

[11] Silvertown, J., Franco, M. and McConway, K.: A demographic interpretation of Grime’s tri-
angle. Functional Ecology 6. 130-136. (1992).

[12] van Tienderen, P. H.: Life cycle trade-offs in matrix population models. Ecology 76 (8).
2482-2489. (1995).

25

[13] Wardle, G. M.: A graph theory approach to demographic loop analysis. Ecology 79 (7). 2539-
2549. (1998).

[14] Werner, P. A.: Predictions of fate rosette size in teasel (Dipsacus fullonum L.). Oecologia 20,
197-201. (1975).

[15] Werner, P. A. and Caswell, H.: Population growth rates and age vs. stage distribution models
for teasel (Dipsacus sylvestris Huds.) Ecology 58, 1103-1111. (1977).

26

