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SUMMARY

Linkage analysis is a powerful technique by which genes may be mapped to chromo-
:ome regions. It is based on observation of the pattern of inheritance relative to known
markers of the traits that the genes cause. Creation of the initial marker map is also
by linkage analysis. Most linkage analyses rely on the assumption of no interference
NI, although this assumption is known to be grossly violated in nearly all organisms
studied. We consider the much weaker assumption of no chromatid interference (NCI\.
and in the three-locus case, we characterize the maximum likelihood estimates of order
and recombination probabilities under NCI. We show that in the case of three loci with
complete recombination data, the estimation of their linear order along the chromosome

by maximum likelihood under NI gives the same estimate of order as under the con-

siderably more general assumption of NCI, in the case when the NI estimate is unique.
When the NT estimate is not unique, the set of NI estimates contains the set of NCI
estimates. Speed. McPeek. and Evans showed that estimation of order by maximum
likelihood under NI with complete data is consistent for any number of loci, even when
interference is present. as long as NCI holds. Here we establish a nonasymptotic resuit
for ordering three loci under the false assumption of NI. We show that the result does

not hold for four or more loci.

1. Introduction.

1.1 Recombination and Interference. Genetic mapping involves ordering a set of genetic loci on
a chromosome and finding genetic distances between them. One way this may be done is through

analysis of data on meiotic recombination among the loci. A recombination between two loci is said
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"o occur when the a_eles or versions of the loci inherited by an offspring from its parent were inher-
:ted from different zrandparents. Meiotic recombination between loci on the same chromosome is
selieved to be the result of Crossing over between nonsister chromatids during the pachytene phase

=1 meiosis. .\ recombdination will occur if a particular chromatid passed on in meiosis was involved

‘1 an odd number o: crossovers between two loci.

[t is important to keep in mind that crossing over takes place in the four-stranded state. when
ach chromosome ras duplicated to form two sister chromatids. and all four chromatids are lined
1D in a tight bundie. ('rossovers occur along the four-strand bundle. with each crossover involving
only two of the four chromatids, one from each of the sister pairs. We refer to the occurrence of
crossovers along the bundle of four chromatids as the chiasma process. Any given chromatid will be
involved in some subset of the crossovers of the full chiasma process. The occurrence of crossovers

along a given chromatid will be referred to as the CTOSSOVEr process.

[n linkage anaivsis. two assumptions are commonly made about the occurrence of crossovers.
First. it is assumed -hat the chiasma process is a (possibly inhomogeneous| Poisson process. \'io-
-ation of this assumotion is known as chiasma interference. Second. it is assumed that each pair
of non-sister chromatids is equally likely to be involved in a crossover. independent of which were
involved in other crossovers. This assumption is equivalent to specifving that the crossover process
s obtained from the chiasma process by independently deleting each point with chance 1/2. Viola-
tion of this assumption is known as chromatid interference. and the assumption itself is referred to
i3 no chromatid interference (NCI). This pair of assumptions specifies a model for the occurrence
of crossovers known as the no-interference (NI) model. Deviation from this model is known as

.nterference. which encompasses both chiasma interference and chromatid interference.
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The phenomenon of interference was first detected in Drosopnila by Sturtevant (1915) and
Muller (1916) and is well-documented in a wide range of organisms. Although it may be difficult to
distinguish between chiasma and chromatid interference in many cases. the existence of chiasma in-
terference has been well-established in experimental organisms (see e.g. Mortimer and Fogel 1974).
There is little consistent evidence for strong chromatid interference | Zhao, McPeek. Speed 1995).
In the most general model we consider, the no-chromatid interference (NCI) model, we permit an

arbitrary amount of chiasma interference, but assume no chromatid interference.

[.2 Recombination Data. Complete recombination data, the type of data considered here, arises
in breeding experiments with organisms such as fruit flies, mice, or tomatoes. In contrast, the rule
in human studies is incomplete data, which are much more difficult to analyize and are not dis-

cussed here.

Suppose there are m loci under study. In complete recombination data, for each meiosis consid-
ered. the parent will have rwo distinguishable alleles, or differing versions of DNA. at each locus.
one inherited from the grandmother and one from the grandfather. The offspring will inherit from
the parent one allele at each locus. Some of these alleles will be of grandmaternal and some of
grandpaternal origin, due to recombination. In complete recombination data, there are 2™ possible
outcomes of meiosis, corresponding to grandmaternal or grandpaternal inheritance at each of the m
loci. Note that each outcome has a complementary outcome which is assumed equally probable and
therefore equivalent in terms of recombination. namely the one in which all the grandmaternal and
grandpaternal alleles are switched. Therefore. there are 2™~! possible recombination outcomes,

and the number of times each occurs out of a total of » meioses would be recorded. Fach possi-



ble recombination event is assumed to occur with fixed probability. independently across meioses.

Thus. complete recombination data are muitinomial.

[Zthe m loci are ordered on a chromosome. we let /; denote the interval between loci j and j + 1.
Welet ¢ = (21,...,2m—1)sz; =0or 1. j = I....,m — 1, denote the event of a recombination in each
interval /; for which z; = 1, and no recombination in each interval [; for which z; = 0. Then each
of the 2™~! possible recombination outcomes would correspond to one of the 2™~! possible z’s.

Changing the order of the loci permutes the z's relative to the observed recombination outcomes.

1.3 The No-Chromatid Interference Model. The NCI model is a multinomial model in which the
muitinomial probabilities satisfy a set of constraints that depends on the order of the loci. Assume
an order for the loci. Recall that event r occurs when the crossover process of a given chromatid
results in an odd number of crossove‘rs in each of the intervals [; for which r;, = 1 and an even
number of crossovers in each of the intervals I; for which z; = 0. A set of related events will be
denoted y = (y1,...,ym-1)s ¥y = 0or 1. j = 1,...,m— 1. y is the event that the chiasma process
has at least one crossover in each of the intervals I; for which y; = | and no crossovers in each of
the intervals [; for which y; = 0. We let p, denote the probability of the event x and ¢, denote
the probability of the event y. The assumption of NCI gives a correspondence between these two

sets of probabilities (Speed, McPeek. and Evans 1992: see also Weinstein 1936). namely
1
(1) pr= > T for all z
y:12y>r
and inverting,

g = 2'x Y (=)EWp forally,
ril>r>y

where. for example, y-1 = Z}“:‘ll y;»and 1 > y > 2 means 1 > y; > z; for all j. Since the ¢,’s
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must all be nonnegative. we have the constraints

Z (=1)F=¥ly >0 for all y.

ril2zr>y

Speed. McPeek. and Evans (1992) showed that these constraints on the multinomial p's are neces-
sary and sufficient for them to be compatible with at least one simple point process model for the
chiasma process under the assumption of NCI. Thus. they characterize the general NCI model. In
the language of the point process literature. the NCI constraints are equivalent to the requirement
that the avoidance function for the chiasma point process be completely monotone on the set of

intervals with endpoints in the set of m loci (see. e.g. Daley and Vere-Jones (1988) pp. 215-219).

Maximum likelihood estimation of multinomial probabilities under quasi-order restrictions is
known to be solved by isotonic regression with equal weights, that is, the constrained maximum
likelihood estimate is the closest point, in terms of Euclidean distance, in constraint space to the
unconstrained estimate (see e.g. Barlow et al. 1972). Similarly, maximum likelihood estimation
of normal means under homogeneous linear constraints is also solved by isotonic regression with
equal weights (Raubertas and Lee 1986). In the case of the NCI constraints, since the p,’s sum to
L. elimination of the redundant parameter results in a set of inhomogeneous inequalities. 1o which
the above literature does not apply. In fact. isotonic regression with equal weights does not vield
the maximum likelihood estimate (MLE) in this case. The constrained MLEs of the p,'s may be
easily approximated numerically by parametrizing the likelihood in terms of the g,’s, thinking of
the knowledge of the observed events z as being incomplete data. the knowledge of the unobserved
events y as being complete data, and applving the EM algorithm of Dempster, Laird. and Rubin

(1977). In what follows. exact calculations of the MLEs are made for the case m = 3.

Note that under the assumption of NCI. the chance of recombination across an interval in-
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creases monotonicaily as the interval is enlarged, with an upper bound of % This is clear from the
two-locus versior of (1), due to Mather (1935): p1 = .5q;. Here. ¢; must increase as the interval is
widened. and ¢; ~as an upper bound of 1. It is this property of the recombination probability that
underlies genetic mapping: if chance of recombination increases with distance, then recombination

data provide information on order and distances between markers.

1.4 The No-Interference Model. The NI model is a special case of NCI in which the chiasma
process is assumed to be Poisson (not necessarily homogeneous). The parameters in the model
would then be t%e nonhomogeneous Poisson intensity function A; and the positions of the loci.
Ly, ..., Ly, all reiztive to some origin. These are not actually identifiable. One conventional set of

identifiable parameters is dy, ..., d,,_; where

L
d; = .5></ .

Known as the genetic distance associated with interval ;. d; is the expected number of crossovers
in the crossover process in interval ;. The other conventional set of identifiable parameters is
01,y Om_1, where §; = (1 — exp(—2d;))/2 is the chance of recombination in interval I;. Tor the NI

model,

pr=J]67(1- 61"

L.5 Estimation. For either model. order is estimated by maximizing the likelihood under each

order and choosing the order whose maximized likelihood is highest. In terms of the p,'s. the

log-likelihood for a particular order is, up to an additive constant, y _a,log(ps), where r =

(T1y-s&m-1), . = 0 or 1, and a, is the number of times the event z occurs in the data out



of a total of n meioses. Recail that the vector r associated with a given observed recombination
event changes depending on the order assumed. and so the probabilities associated with the ob-
served cell counts are subject to different constraints under different orders. The log-likelihood
would then be maximized over the unknown parameters subject to the NCI constraints imposed
under the assumed order. In the case of the NI model, the MLEs of the unknown parameters under

a given order can easily be written down explicitly, namely

8; = min( Z ar/n,1/2).

Tizi=1

In what follows. we first derive explicitly the MLEs of the p,’s in the NCI model under any
given order when the number of loci m = 3. We then compare the maximized likelihoods under
the three different orders to obtain the MLE (or MLEs) of order under the NCI model. Finally,
we compare these order estimates to those that we obtain for the much simpler NI model. The NI
model is known to be consistent for the estimation of order by maximum likelihood even when an
arbitrary amount of interference is actually present. under the assumption of NCI (Speed, McPeek,
and Evans 1992). Our complementary non-asyvmptotic result is that in the three-locus case. the
MLE of order under the NI model is actually identical to that under the NCI model when there
is a finite amount of data and when the MLE is unique. When the MLE is not unique, the set
of maximum likelihood orders under the NI model contains the set of maximum likelihood orders

under the NCI model. We give a counterexample for the case m = 1.

2. Maximum Likelihood Estimation of Recombination Parameters for Three-Locus
NCI Model. Suppose we have three marker loci, A, B, and C. Assume we observe the recom-

bination outcomes of n meioses. which can be summarized as in TABLE 1. with a+b+c+d=n > 0.
9



Insert TABLE 1 about here]

Let the putative order of the three loci be A-B-C. Under the assumption of NCI, we derive
the MLEs of the recombination parameters P = (P11, P10, Po1, Poo), Where p;; is the probability of
| recombinations in interval A-B and j recombinations in interval B-C in a given meiosis. Under
NCIL (e,b,c,d) are multinomial(n.p), with p satisfying the following constraints in addition to the

constraint that they sum to 1:

L0<py

| p]

- p11 < min(pg, po1)

[}

. Pro+ po1 < 1/2.

Note that these conditions imply max(pio. po1) < poo-

LEMMA 1. Assume a+d > Oand b+¢ > 0 (see REMARKS below). Then the MLE of
'P11- P10s pors Poo) under the NCT model. when the data are as given in TABLE 1. with putative

order A-B-C is as follows:
L. Ifa<band a <candb+c<n/2 then the MLE (p11, pro, Po1s oo) = (a.b.c.d) x n~!
2. If b+ ¢ > n/2, then the MLE lies in the region (pio + por = 1/2):

(a) if also ab < cd and ac < bd. then the MLE is (a/(a+d).b/(b+c),c/(b+c).d/(a+d))x27L.
(b) ifalso b < c and ac > bd and a+b < e+d. then the MLE is (a+b, a+b. c+d. c4+d)x (2n)"1.

(c) ifalsoc < band ab > cd and a+c < b+d. then the MLE is (atc,b+d.at+c.b+d)x(2n)"L.

10



di if also ac > bd and ab > e¢d and a +b > c+d and a + ¢ > b + d. then the MLE is

(295282520

3. Ifb<aand b<candb+c<n/2 then the MLE lies in the region (p11 = pio):

a

if also ¢ < d and a + b < 2¢, then the MLE is ((a+6)/2,(a+b)/2,c,d)x n71.

'b

ifalso a+b > 2cand a+b+c < 3n/4, then the MLE is ((a +b+c¢)/3.(a+b+c)/3.(a +
b+¢)/3,d) x n-L.

(c) ifalso ¢ > d and a + b < ¢ + d, then the MLE is (a + b,a+ b,c+d.c + d) x (2n)~".
'd)yifalsofe > dora+b> 2cJand a+ b+ ¢ > 3n/4 and a+ b > ¢ + d. then the MLE is

(+294.25..25..25).

4. The solution for ¢ < a and ¢ < band b+ ¢ < n/2 is similar. Interchange b and ¢ and p;p and

Po1 in case 3.

PROOF. See appendix Al.

REMARKS. If @ + d = 0, then the MLEs of pyg and po; are b/(2n) and c¢/(2n). respectively,
while py; and pgo do not have unique MLEs. Likewise. if & + ¢ = 0, then the MLEs of p;; and pgo

are a/(2n) and d/(2n). respectively, while pg and p; do not have unique MLEs.

Let ¢' C IR* be the three-dimensional solid determined by the NCI constraints and by the
constraint that the p's sum to 1. If (a/n,b/n,c/n,d/n) ¢ C', then the MLE over C' must lie on the
boundary of C'. This is so because the log-likelihood is a smooth function of the parameters whose

gradient is zero only at (a/n,b/n,c/n,d/n), and C is a compact set in R?. We now describe the
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boundary of C' and how we maximize the likelihood over it.

Let Go C IR* be the region determined by the constraints (p;; = 0 and p’s nonnegative and
sum to 1). let G, be the region determined by (pio + po1 = 1/2 and p’s nonnegative and sum to
1), let Gz be the region determined by (p;; = p1o and p’s nonnegative and sum to 1), and let G3
be the region determined by (p;; = po; and p’s nonnegative and sum to 1). For ¢ = 0,1,2.3. let
A; = GiNC. Then Ag, Ay, Az, A3 are polygons in IR* and AgU A; UA,U Az = d(C') (the boundary
of C'). We shall not be concerned with Ag, because if the MLE over C lies in dg \ 4; (= 4o N Af),
then it must be the unconstrained MLE (a/n,b/n.c/n.d/n). If the MLE over C lies in Ag N Ay,
then we must have a = 0, and it can be seen from TABLE 2 row 2 that in this case, the MLE over
C'is the MLE over ;. Thus Ag need not be considered when we maximize the likelihood over the

boundary of C as long as we are already considering the unconstrained MLE and the MLE over G;.

Note that one way to find the MLE over C' in case (a/n,b/n,c/n.d/n) ¢ C is to let g; be
the MLE over the region G, g2 the MLE over G,. g3 the MLE over (3, g4 the MLE over
G4 = G2 N G3a. g5 the MLE over G5 = (1 N Gy, g¢ the MLE over Gs = (7 N G3, and finally,
let g7 = (.25,.25..25..25) = (G; N G5 N (3. Then determine which of these seven points gives the
highest likelihood. among the ones that lie in C'. Of course, whenever possible, one uses the fact
that the maximized likelihood over .X' dominates the maximized likelihood over Y, when } C X.
Note that if g; € C'. then g; is the MLE of p over A;, for i = 1.2,3. If g4 € C, then g4 is the MILE
of p over A, N As. Similarly, if g5 € C'. then g5 is the MLE of p over A; N As, if g¢ € C'. then g is

the MLE of p over 4; N A3, and g7 is always the MLE of p over 41N A; N A3 = g7.

The MLE on A; is the closest point on Az to (a/n.b/n,c/n,d/n) in Euclidean distance. Sim-

12



ilarly for Aj. This is. in general. false on A; (Counterexample: ¢ = 1, b = ¢ = d = 2. MLE
on Ay is (1/6,1/4.1/4,1/3). Closest point on A; is (5/28,1/4,1/4.9/28).), and hence false on C
since the same counterexampie holds there. Note that it is true on B C R*, B D C defined by
(0 < p11 < min(pio.po1) and p’s sum to 1). This property of As, As. and B follows from Example
2.1 on pp. 65-66 of Barlow et al. (1972), in which it is shown that _the MLEs for a multinomial in
which the multinomial parameters are subject to partial ordering constraints are obtained by iso-
tonic regression with equal weights. That is, the MLE is the closest point in constraint space to the
point representing the observed frequencies (a/n,b/n,c/n,d/n). This result is used in the proof. It
does not apply to the regions C' and A, because they have the additional constraint pjo+ po1 < 1/2
that does not correspond to a partial ordering constraint. In fact. we find that the MLEs over
Ay are obtained by isotonic regression of p* = (a/n,b/n,c/n,d/n) on A; with weights wy; = d/n,
wio = ¢/n, wor = b/n, weo = a/n. That is, they are obtained by minimizing 3_; w;(p; — p;)?* over

pE A.

One interesting property of the solution is that the MLE over C is the closest point, in Eu-
clidean distance. to (a/n,b/n.c/n,d/n) among the gy, ..., g7 that lie in C, although there may be
other points in C. not among gy, ...g7, that lie closer to (a/n,b/n,c/n.d/n). We find that if p is the
MLE over B and p € C, then pis the MLE over C. If p ¢ C, and p is the MLE over A, then p is
the MLE over C'. p and p are both obtained by isotonic regression, but with different weights, as de-
scribed above. In what follows. let gg denote the unconstrained MLE (a/n,b/n,c/n,d/n). In TABLE
2, we list go, g1, .... g7 along with their defining constraints (in addition to py1 + p1o+ Po1 + Poo = 1
and p; > 0 for all i) and the conditions under which they lie in C'. Using TABLE 2 and the RE-

MARKS, LEMMA | is proved in Appendix Al.

13



(Place TABLE 2 here]

3. Maximum Likelihood Estimation of Order for Three-Locus NCI Model. Suppose

we have the recombination data displayed in TABLE 1, as before, but now instead of assuming an

order for the loci, we wish to estimate order.

LEMMA 2. First suppose a < b < ¢ in TABLE 1. Let order A-B-C be denoted by Oy, B-A-C

by O2, A-C-B by O3. Order O, is always an MLE of order under NCI in this case, though it is not

necessarily unique. In particular. the MLEs of order under the NCI model are as follows in this case:

6.

. If @ < min(b,¢,d) and ac < bd, then the MLE of order is O;.

. If @ < min(b,¢,d) and ac > bd, then the MLEs of order are O, and Os.

. If a = b < min(c, d) then the MLEs of order are O; and O,.

. Ifd < aand a+b < n/2, then the MLEs of order are O; and O,.

.Ifd<aand a+b>n/2 then all three possible orders are MLEs.

If a = b = c, then all three possible orders are MLEs.

Let ¢y = a.ca = b,e3 = c. In the case where ¢; < ¢; < ¢, where (i.j, k) is some ordering of 1,2.3,

replace @ by in the above solution by ¢;. b by ¢;, and ¢ by ci. Similarly, replace O; in the above

solution by O;, Oy by O; and O3 by Oy. to get the MLE of order under the NCI model.

14



PROOF. See Appendix A2.

4. Maximum Likelihood Estimation of Order for Three-Locus NI Model. Wilson
(1988) pointed out that the orders for which the product of the pairwise recombination fractions
between adjacent loci is minimized are the MLEs under the NI model. Following is a more explicit

formulation in the three-locus case.

LEsMMA 3. With recombination data as in TABLE 1, assuming a < b < ¢, then O is always an
MLE for order under the NI model, though it is not necessarily unique. In particular. the MLEs

of order under the NI model are as follows in this case:

L. Ifb+c < n/2 then O, is always an MLE. O, is an MLE if and only if @ = b, and O3 is an MLE

if and only if @ = r.

2. Ifa+ ¢ < nj2and b+ ¢ > n/2. then O, is always an MLE. O3 is an MLE if and only if

@+ c=nf2 and O3 is an MLE if and only if a + b = n/2.

3. lfa+b< n/2and a+c>n/2, then O; and O, are always MLEs and O3 is an MLE if and only

ifa+b=n/2

o Ifa+b>n/2 then O, Oz, and O+ are all MLEs.

As in LEMMA 2 above. in the case where ¢; < ¢; < ¢, where (i.j, k) is some ordering of 1.2.3 and



€1 =a.c3 = h.cy = c. replace a.b.c and the O’s in the above solution accordingly.

Proor. Assume without loss of generality that @ < b < ¢. First consider order O;. There are
two recombination parameters for this order under the NI model. #45 and 8¢, where 645 is the
probability of a recombination between markers A and B and 6g¢ is the probability of a recombi-
nation between markers B and C. The MLE for (845,0pc¢) is (min( %’—b, %),min(u—;fﬁ, %)). Letting
flz,y) = zlogly/n)+ (n—z)log(l — y/n), we can write the maximized log-likelihoods under each

of the three orders. in the case when a < b < ¢, as follows:

1. Maximized log-likelihood log(L) under order O,:
(a) Ifa+c < nj2. log(L) = fla+b.a+b)+ fla+c,a+c).
(b)Ifa+b< n/2and a+c>n/2. log(L) = f(a+b,a+b)+ fla+c,n/2).

(c)Ifa+b>ns2.log(L)= fla+b.n/2)+ f(a+ c.n/2).

2. Maximized log-likelihood under order O5:
(a)If b+ c < ni2. log(ﬁ) =flatba+b)+ f(b+ec.b+e).
(b)Ifa+b<n;2and b+c > n/2. log{f,) = fla+ba+0)+ f(b+c.n/2).

(eyIfa+b>n;2. log(fﬂ) = fla+b.n/2)+ f(b+ c.n/2).

3. Maximized log-likelihood under order Os:

(a)Ifb+c < nj2 log(L)= flatc.a+e)+ f(b+ec,b+c).
(b)Ifa+c<ns2.and b+ec>nj2. log(L) = fla+c.a+c) + f(b+c,n/2).

(c)lfa+c>ns2 log(L)= flatec.n/2)+ f(b+c,n/2).

16



From this. the result is easily verified. O
5. Comparison of MLEs of Order for Three-Locus NI and NCI Models.
ProposiTION: If, the recombination data are as given in TaBLE 1 with @ < b < ¢, then the
maximum likelihood estimates of order under the NI and NCI models are identical with the follow-

ing exception:

If @ < min(b.d) and ac < bd. then the unique MLE of order under the NCI model is O, while

under the NI model, we have the following three subcases:

I. When ¢ > d and a + ¢ = n/2, then Oy, O, and O3 are all MLEs of order.
2. When ¢ > d and a + ¢ > n/2, then Oy and O, are both MLEs of order.
3. Otherwise, Oy is the unique MLE.

Thus. when the MLE of order under the NI model is unique. it is the same as the MLE of order
under the NCI model. When there is no unique MLE of order under the NI model. the set of NI
MLE orders contains the set of NCI MLE orders. The proposition follows from LEMMAS 1,2, and 3.

6. Counterexample in the Case of Four Loci. We give a counterexample to show that

in the case of four marker loci. the NI MLE of order and the NCI MLE of order may be different.

This clearly implies that they may differ for any number of markers greater than three.
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Suppose we are given complete recombination data on four loci. A, B. C. and D. which may
be summarized as in TABLE 3. where a '1’ between two markers that are adjacent in the table

indicates that they recombined and a *0" indicates that they did not recombine.

Then the estimates of the recombination fractions obtained by considering each pair of loci
separately are 845 = 4/100,84¢ = 6/100.04p = 5/100.8pc = 4/100.(;’39 = 5/100-6}CD = 1/100.
Using Wilson's (1988) result that the MLE of order under the NI model in the four-locus case is the
one that minimizes the product of the adjacent recombination fractions, it is clear that the unique

MLE of order under the NI model is A-B-C-D.

The MLE for the recombination probabilities of order A-B-C-D under the NCI model lies on
the surface poo1 + p111 = pio1 + Po11, and the maximized log-likelihood is -5.46. The MLE for
the recombination probabilities of order A-D-C-B lies on the surface pgo; + p111 = Pio1 — Poits
where these probabilities are expressed in terms of the new order, A-D-C-B. and the maximized

log-likelihood is -3.29. Thus. A-B-C-D is not an MLE of order under the NCI model.

APPENDIX

APPENDIX Al. Proor ofF LEMMA 1. To prove the lemma. we assume. without loss of
generality. that b < c¢. By interchanging b and ¢ and p;g and po;, we can obtain the solution under

b > c. We prove the following;:
1. Ifb<candb+c > n/2, then the MLE lies in Gy:

(a) if also ac < bd then g, is the MLE.
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(b) if also ac > bd and a + b < ¢ + d. then gs is the MLE.

‘c) if also ac > bd and a + b > ¢ + d. then g- is the MLE.
2. Ifb<aand b<eandb+e<n/2 then the MLE lies in Gy

(a) if also ¢ < d and a + b < 2c, then g, is the MLE.
(b) ifalsoa+b>2canda+b+c< 3n/4, then g, is the MLE.
(c) ifalsoc>dand a+ b < ¢+ d. then gs is the MLE.

(d) ifa[so[c>dora+b>‘26] and a+b+c > 3n/4and a +b > ¢+ d. then g7 is the MLE
(Notethat ¢ > danda+b>c4+d —a+b+ec > dn/4. Also. a + b > 2¢ and

a+b+c>3n/d—a+b>c+d.

Clearly. in all of these cases, the unconstrained MLE go does not lie in C, since either b + ¢ > n/2
or b < a.

Case 1.(a): b <cand b+ ¢ > n/2 and ac < bd.

Show g, is the MLE. In this case, g; € C'. This is because b < ¢ and ac < bd imply [a<dorb=
¢ =0]. Since b+ ¢ > n/2. we must have a < d, so then also ab < ed. Thus, the necessary conditions
listed in TABLE 2 are satisfied.

Let L be defined as follows: L(w,z,y,z)= wizbyc4,

(i) In case ¢ < d and a + b < 2c. i.e. when g2 € C. we need to show that L(g1) > L(g2),
Le. 27%(a/(a + d))*(b/(b + ¢))’(c/(b + c))(d/(a + d))¢ > ((a + b)/(2n))**(c/n)%(d/n) . which is
equivalent to ((2a)/(a + 6))*((20)/(a + b)) > ([2(a + d)]/n)**4([2(b + ¢)]/n)?*< or alog(l + (a —
b)/(a+b))+blogil+(b—a)/(a+b)) > (a+d)log(l—(b+c—a—d)/n)+(b+c)log(1+(b+c—a—d)/n)
Taking a Tavlor expansion of the LHS gives

LHS = i(a = b)¥/[2i(2i - 1){a+6)*7Y > (a - b)%/[2(a + b)].

1=1
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On the RHS. note that

4

(a+d)logil-=(b+c—a—-d)/n)= a+d) (b+c—(z—(1)i/(1'n:)ﬁ—(“+d)(b+t‘—ﬂ—d)/n
1

and

(b+c)log(l—(b+c—a—-d)/n) = b-I-c)Z( l‘+1b+c—a—d)/ DN< (b+c)b+e—a—d)/n.

i=1
so RHS < (b+c—a—d)?/n. Thus, we need only show (¢ — b)2/[2(a +b)] > (b+ ¢ —a—d)*/nin
order to prove L(gy) > L(gz). This is equivalent to n/[2(a +0)] 2 (b—a+c— d)?/(a - b)%. We
must have a < b, since otherwise ¢ < d would imply a + d > b+ ¢ which contradicts b + ¢ > n/2.
Thus. 0 < h—a+c—d <b-asincec<dand b+c>a+d. So(b—a+c—d)?/(a—b)* < 1. Also.
¢+b<a+dsince b<c<d and a+d < n/2 because a + d < b+ ¢. These imply a + b < n/2, s0
n/(2(a + b)] > 1. Thus. L(g1) > L(gz) in the case when g3 € C.
(ii) In case b < d and a + ¢ < 2b, i.e. when g3 € C, we need to show that L(g1) > L(g3),
ie. 27™(a/(a 4 d))*(b/(b+ ¢))’(c/(b+ ¢))(d/(a + d)* > ((a + c_}/(?n)“"’c(b/n)b(d/n)d, which
is equivalent to ((2a)/(a + ¢))*((2¢)/(a + ¢))° > ([2(a + d)]/n) @+ ([2(b + ¢)]/n)t+e). We have
proved above that log{LHS) > (¢ — a)?/[2(a + ¢)] and log(RHS) < (b+c—a - d)*/n. Showing
(c—a)*/[2(a+¢)] > (b+c—a—d)?/nis equivalent to showing n/[2(a+¢)] > (b+c—a—d)*/(c—a)?,
which is true because 0 < b+c—a—d < c—asinceb+c>a+dand b< d;alsoa+c <26 <b+d
soa+c < n/2. Thus, L(gy) > L(g3) in the case when g3 € C.
(iii) In case (c > dora+b > 2c)and (b >dora+c>2b)anda+b+c < 3n/d,ie. whengs€C
and g;,93 ¢ C (Recall: L(gy) < L(ga), L(g3), so we do not consider g4 unless g, g3 ¢ C'). we need
to show that L(g,) > L(gy). Note that a + b > 2¢ may be eliminated from the above conditions
because @ +b > 2c and a + b+ ¢ < 3n/4 and b + ¢ > n/2 would imply b > ¢ which contradicts an
assumption. Note also that L(g;) is automatically greater than or equal to L(gs), because G5 C G1.

If we can show that L(gs) > L(g4) under the given conditions. then we're done. Recall that the
20



MLE over the region A; is the closest point on A, to go in Euclidean distance (see REMARKS).
We show that g is the closest point on A, to gg in Euclidean distance. Then since g4 € C. we
have gy € A; (see REMARKS) so L(gs) > L(gy). To find the closest point on As to gp in Euclidean
distance. we first note that the closest point to go, in Euclidean distance. on the plane G D A3 is g2
(see REMARKS). We have g; ¢ (' and hence g, ¢ A,. Then. since the Euclidean distance to gg from
a point in G is a smooth function whose gradient is zero only at g,. the nearest point on A5 € G
to go must lie on the boundary of Aj, i.e. AN (A; U A3). We find that the closest points to gy on
the lines Gy (which contains 43N A3) and G5 (which contains As N 4;) are g4 and gs, respectively.
We have already seen that g; € Ay. To see that g5 € A, i.e. that (a+ b)/(2n) < (¢ + d)/(2n),
note that we have the conditions a 4+ b + ¢ < 3n/4 and ¢ > d. so nf4 < d < ¢ which implies
¢+ d > n/2 which implies a + b < ¢ + d. It remains to show that g5 is closer to go than g4 is, i.e.
that 2{(a—b)/(2n)+2((c=d)/(2n)]? < [(2a—b—c)/(3n)P+[(2b— a—c)/(3n)+[(2e —a—b)/(3n)]2.
The RHS = [(a —b)?+ (b—c)? + (a — ¢)?)/(3n?), so the inequality becomes 3(a — 6)? + 3(c — d)? <
2(a=b)*4+2(b—c)*+2(a—c)? which is equivalent to 3(c—d)? < (2¢—a—b)2. Since a+b < c+d < 2¢
and d < ¢, then the statement 3(c — d)? < (2¢ — a — b)? is equivalent to the statement that
V3(c - d) < 2¢ — a — b. which is equivalent to a + b < (2 — V3)e + V/3d. The RHS > 2d > n/2
(since ¢ > d and also (@ + b+ ¢)/n < 3/4. the latter implying d > n/4). The LHS < n/2 since
@+ b < ¢+ d. This shows that gs is closer to go than g4 is, hence that g5 is the closest point on
Az to go and so is the MLE on Aj,. Thus, by the argument above. L(g;) > L(g4) in the case when
gq € C.

(iv) We do not need to consider gs, gg, and g-. because the likelihoods at these points will always
be dominated by the likelihood at g;.

Case 1.(b): b<cand b+ c>n/2and ac > bd and a + b < ¢ + d.

Show g5 is the MLE. g5 € (' sincea + b < ¢ + d.
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(i) In this case, g; € C since ac > bd.

(i) We show that g, ¢ C'. To do this. we show that ¢ > d. Note that a < c. because a + b < ¢ - d.
and b+¢ > n/2 implies a +d < b +c. First suppose b < a < c¢. Then ¢ > d because otherwise ¢ < d
would imply b+ ¢ < n/2. which contradicts an assumption. Second. suppose a < b < ¢. Then ¢ > d
because otherwise ¢ < d would imply bd > ac which contradicts an assumption. Thus. g ¢ (' in
the case 1.(b).

(iii) We show that g5 ¢ C. To do this. we show that either b > d or a + ¢ > 2b. Assume
b < d. Then ac > bd > b implies that the geometric mean of a and ¢ is greater than b. but
the arithmetic mean of a and ¢ cannot be smaller than the geometric mean. so @ + ¢ > 2b.
Wae < (a+¢)/2 <= ac < d¥/24+ac+¢22 < 0 < (a®+c?)/2). Thus. g3 ¢ C in the
case 1.(b).

(iv) In case @ + b+ ¢ < 3n/4, i.e. when g, € C, we need to show that L(gs) > L(g4). In fact. this
follows from the proof given in case 1.(a)(iii).

(v) In case a + ¢ < b+ d, i.e. when g¢ € C, we need to show that L{gs) > L(gs). i.e.
that [(a + ¢)/(2n)]*T[(b + d)/(2n))*+¢ < [(a + b)/n)***[(c + d)/(2n)]°t". which is equivalent to
la+e)/(2n)])*Fe[l = (a + e)/n]*"2"¢ < [(a + b)/n]***[1 = (a + b)/n)*~*=*. where we have a — b <
a+c<b+d< b+ c which implies that 0 < e +b < a+ ¢ < n/2. This is true because the function
flz)=(z/n)*(a - r/n)""* is decreasing in 0 < 2 < n/2. Thus. L(gs) > L(ge) in the case 1.(b).
(vi) We do not need to consider g7 because the likelihood at this point will always be dominated
by the likelihood at gs.

Case 1.(c¢): b<cand b+c>n/2and ac >bdand a+ b > ¢ = d.

Show g7 is the MLE. Note that g7 = (.25..25,.25,.25) € C.

(i) In this case. g, ¢ C since ac > bd.

(ii) In this case, g; ¢ C since g2 € C' would require ¢ < d and a + b < 2¢. but we havea +b > c+d

22



and assuming ¢ < 4. this would give a + b > 2.

(iii) In this case. g; = C since g3 € €' wouid require b < d and a + ¢ < 2b. Since we have b < c and
@+ b > c+d. having b < d would require a > max(e,d) > ¢ > b. soa+c > 2b.

(iv) In this case. g; £ C since g4 € C' would require a + b+ ¢ < 3n/4. which implies d > n/4. Since
also ¢ > b and b — ¢ > n/2, we have ¢ > n/4. which, with d > n/4. implies ¢ + d > n/2. giving
c+d > a+ b, which contradicts an assumption.

(v) In this case. g5 is clearly not in C since a + b > ¢ + d.

(vi) In this case. gs ¢ C' sincea+b>c+dand ¢ > bimply a +c¢ > b+ d.

Case 2.(a): b<aandb<cand b+c<n/2andc<danda~b<2c

Show g, is the MLE. g, € C since ¢ < d and a + b < 2c. Consider B O C' as defined in REMARKS.
If we can show that g; is the MLE over B. then it is the MLE over C' and we're done. Note that
to find the MLE over B, one may first find the unconstrained MLE, go. If this does not lie in B,
then one should consider the MLEs over the planes bounding the region B, namely g and g3 (the
MLE over A need not be considered (see REMARKS). The larger of these two lying in B is the
MLE over B. If neither lies in B, then g4 is the MLE over B. Clearly go ¢ B since b < a. We
already have that g; € " C B. To see that g3 ¢ B. note that a + ¢ > 2b.

Case 2.(b): b<aandb<candb+c<n/2anda+b>2canda+b+c<3n/d

Show gy is the MLE. \We reason as in Case 2.(a) . g2 and g3 do not lie in B since ¢ + b > 2c and
a+c>2b. gy€C Z Bsince a+b+c<3n/4. Thus, g4 is the MLE over B and hence over C.
Case 2.(c): b<aandb<candb+c<n/2andc>dand a+b<c+d.

Show g5 is the MLE. g5 € C since a + b < ¢ + d.

(i) In this case, g; # C since ac > bd.

(i1) In this case. g, # (" since ¢ > d.

(iii) In this case. g3 ¢ C since a + ¢ > 2b.
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(iv) In case a~b—c < 3n/4, i.e. when g4 € C', we need to show {(gs) > L(g4). Apply the argument
of Case 1. (a) (iii).

(v) In this case. g; ¢ C sincea+c > b+ d.

Since g5 alwavs dominates g-., g5 is the MLE in this case.

Case 2.(d): b<aand b<cand b+ c < n/2and [c>dora+b>2cand a+b+c > 3n/4and
a+b>c+d.

Show g7 is the MLE. Note that g7 = (.25,.25,.25..25) is always in (.

(1) In this case. g; ¢ C since ac > bd. This is because ¢ > b and a + b > ¢ + d imply a > d. and
since b < ¢, and all counts are assumed positive. we have ac > bd.

(ii) In this case. g» ¢ C since ¢ > dor a + b > 2c.

(iii) In this case. g3 ¢ C since a + ¢ > 2b.

(iv) In this case. g5 ¢ C since a + b + ¢ > 3n/4.

(v) In this case. g5 ¢ C since a + b > ¢ + d.

(vi) In this case. gg ¢ C' since a+¢ > b+d. O

APPENDIX A.2 PROOF OF LEMMA 2. Assume without loss of generality that a < b < ¢. First
we find the MLEs of the multilocus recombination parameters in the different orders, by applying
LEMMA 1. The multilocus recombination parameters are listed in order corresponding to the fol-
lowing order of their associated cell counts: (a,b.c,d).

L. MLE of multilocus recombination parameters in order A-B-C:

Applying LEMMA 1, we get the following solution:

[fb+c<n/2then MLE is (a,b.c.d) x n~!.

Ifb+c>n/2and ac < bd. then MLE is (a/(a + d),b/(b+ ¢),c/(b+ c),d/(a+ d)) x 271 unless

a+d =0 (see REMARKS after LEMMA 1).



[fb+c>n/2and ac > bd and a + b < n/2. then MLE is (a + b.a +b.c+d.c+d) x (2n)7".
Ifa+b>n/2, then MLE is (.25..25..25..25).

2. MLE of multilocus recombination parameters in order B-A-C"

Let A'=B. B =4.C"=C.ad =b. ¥V =ua.¢ =c. d =d. Applving LEMMA 1 to loci A'. B'.C’
and counts a’. b, ¢, d’, we get:

[fa="band a+c<n/2. then MLE is (a.b.c.d) x n~?.

[fa<band a+c<n/2and c <d. then MLE is ((a + b)/2,(a+b)/2,¢,d) x ™1,
fa<banda+c<n/2andc>d then MLEis (a+b.a+b,c+d.c+d) x (2n)7%.
Ifa+c>n/2and a+b < nj2(Note d < ¢ since otherwise a + ¢ < n/2. Thus. bc > ad since all
counts are positive), then MLE is (a + b.a+ b,c+ d,c+ d) x (2n)7L.

[fa+b>n/2 (Note that here. d < a < b < ¢.), then MLE is (.25..23,.25,.25).

3. MLE of multilocus recombination parameters in order A-C-B:

Let A=A, B'=C,C"=B.d =c,b'=b, ¢ =a, d =d. Applying LEMMA 1 to loci A’. B',C’
and counts a’, b, ¢, d’, we get:

[fa=b=c<d,then MLE is (a,b,c,d) x n~1.

[fa<cand b <dand a+c<2b then MLE is ((a + ¢)/2.b,(a+ ci/2,d) x n~L.
fa+b<n/2anda+c>2band a+b+c<3n/4, then MLE is ((a+b+¢)/3,(a+b+¢)/3.(a+
bh+e)/3,d)x n7t,

[fa<canda+c¢c<n/2and b>d. then MLEis (a4 c.b+d.a+c.b+ d) x (‘Zn)’l.
[fa+b<n/2and (b > dora+c > 2bland a+b+c > 3n/4and a+ ¢ > n/2. then MLE is
(.25..25..25..25).

Ifa+b>n/2 (here d < a). then MLE is (.25,.25..25,.25).

MLE of order, applying the above results:

Case 1: Suppose b+ ¢ < n/2. Then A-B-C is clearly an MLE of order, since the maximized
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likelihood in that case is the same as the unconstrained maximized likelihood.

(a) If also @ < b. then neither of the maximized likelihoods for the other orders is the same as the
unconstrained maximized likelihood. so A-B-C' is the unique MLE of order.

(b) If also @ = b < ¢. then B-A-C is also an MLE of order. because its maximized likelihood is the
same as the unconstrained maximized likelihood. A-C-B is not. for its maximized likelihood is not
the same.

(c) If also @ = b = ¢, then all three orders have the same maximized likelihood. so all are MLEs.
Case 2: Suppose b+ ¢ > n/2 and ac < bd. Let C, be the region defined by the NCT constraints
under order A-B-C'. consisting of all points (w,z.y,z) € IR satisfying (0 < w < min(z.y) and
r+y<1/2and w4+ r+y+ z=1). The MLE for the recombination parameters under order
A-B-C'is the MLE over C'y which is (a¢/(a+d),b/(b+c),c/(b+c),d/(a+d)) x 27" unless a+d = 0.
We shall show that A-B-C is always an MLE of order by showing that under the other orders, the
MLEs for the multilocus recombination parameters also lie in C';. Then the maximized likelihood
under order A-B-C will never be smaller than the maximized likelihoods under the other orders.
(a) We show that the MLE under order B-A-C lies in Cy, and we give conditions under which this
order is an MLE in addition to order A-B-C'. The cases below follow the cases in the above list of
MLEs for recombination parameters for order B-A-C'.

(1)Note that @ = b in this case would require a = b = 0, for then b + ¢ > n/2 would imply ¢ > d
which would imply ac > bd if @ > 0, contradicting an assumption. However. @ = b =0 and ¢ > d
do not allow a + ¢ < n/2.

(ii) If e < b and a + ¢ < n/2 and ¢ < d. then the MLE given in 2) above lies in C';. because ¢ < d
and a + b < 2¢. The maximized likelihood under B-A-C is always less than that under A-B-C'.
They could be equal only in case @ = b and ¢ = d, but this is not possible in this case.

(iii) If @ < b and a + ¢ < n/2 and ¢ > d. then the MLE given in 2) above lies in ' since
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a+b<a+c<n/2implies a+b<c+d B-A-C is also an MLE of order if and only if ac = bd.
because the maximized likelihood is the same in this case as for A-B-C.

(iv)Ifa+e>n/2and a+6< n/2, then the MLE given in 2) clearly lies in C';. B-A-C is also an
MLE of order if and only if ac = bd, because the maximized likelihood is the same in this case as
for 4-B-C.

(v) Note that it is impossible to have a + b > n/2 because we also have ¢ > b, so this would imply
@ > d which contradicts ac < bd, since 0 < d < a <b<e.

(b) We show that the NILE under order A-C-B lies in (1, and we give conditions under which this
order is an MLE in addition to order A-B-C. The cases below follow the cases in the above list of
MLEs for recombination parameters for order A-C'-B.

(i) Asin (a)(i), we cannot have both @ = b and a + ¢ < n/2 in this case.
(i)Ife<canda+b<n/2andb<dand a+c < 2b, then the MLE given in 3) above clearly lies
in C;. A-C-B is never an MLE for order in this case, because this would require b + ¢ = n/2 and
d = .

(iii) Ifa+b < n/2and a+c¢ > 2band a+b+c < 3n/4, then the MLE given in 3) above clearly lies in
(1. A-C-Bis never an MLE for order in this case. because this would requirea =b=c=d = n/4.
(iv) Ifa < cand a+c < n/2 and b > d, then the MLE given in 3) above clearly lies in C'y. A-C-B
is an MLE for order in the case when ab = cd.

(v)Ifa+b<n/2and(b>dora+c> 2bl and a4+ b+ ¢ > 3n/4 and @ + ¢ > n/2. then the MLE
given in 3) above clearly lies in Cy. A-C-B is never an MLE for order in this case. because this
would require a = b = ¢ = d = n/4.

(vi) Note that it is not possible to have a+b > n/2 in this case because we have ¢ > b, which with
@+b>n/2implies a > d, which contradicts ac < bd.

Case 3: Suppose b+ ¢ > n/2 and ac > bd and a + b < n/2. We show A-B-C and B-A-C are both
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MLEs of order. and give conditions under which A-C-B is also an MLE of order. The MLE for the
recombination parameters under order A-B-C is (a + b.a + b, ¢+ d.c + d) x (2n)~1.

(a) Consider the cases in 2) above giving the MLE of recombination parameters under order B-A-
C". Note that ac > bd implies (¢ — d)b > (b — ajc which implies ¢ — d > (b—a)e/b > b — a since
0<a<b<c Thus,c—d > b—aimplies a+ ¢ > n/2, so the first two cases under B-A-C' do
not apply. The last case does not apply either. In the only two remaining cases, the MLE for the
recombination parameters is the same under order B-A-C' as under order A-B-C, so these are both
MLEs of order.

(b) Consider the cases in 3) above giving the MLE of recombination parameters under order A-C-
B

(i) We have aiready shown a + ¢ > n/2,i.e. a+ ¢ > b+ d, so the first case does not apply.

(ii) If b < d, then a + ¢ > 2b. so the second case does not apply.

(iii) In case. @ + ¢ > 2b and @ + b + ¢ < 3n/4, then the MLE given in 3) above lies on C since
at+b+c<3n/4. A-C-B is never an MLE for order in this case since this would require ¢ = d = n/4
which would contradict ac > bd.

(iv) Since a + ¢ > n/2, the fourth case does not apply.

(v)Incase[b >dora+c > 2b) and e + b+ ¢ > 3n/4, then the MLE (.25, .25,.25,.25) € C'. A-C-B
will also be an MLE for order in this case if and only if a + b = n/2.

(vi) Since a + b < n/2, the sixth case does not apply.

Case 4: Suppose a +b > n/2. A-B-C, B-A-C. and A-C-B are all MLEs of order, because the

MLEs for the recombination parameters under all three orders are equal to (.25,.25,.25..25). O
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TABLE 1

recombination

between B & C

no recombination

between B & C

recombination between A & B a

no recombination between A & B c

LEGEND: Counts of recombination events among three loci.
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TABLE 2

r defining constraints MLE (g;) conditions for g, € C'

0 none (a.b,c.d)x n~1 a<b,a<ec,
b+c<n/2

1 pio+por =1/2 (af(a+d),b/(b+ c), ab < cd, ac < bd,

c/(b+c),d/(a+ d)) x 271 [b+c>0o0ra<d

2 pur = puo ((a+b)/2, c<d,a+b< 2

(a+b)/2,c,d)x n~!

3 pu=rpro ((a+c)/2,b, b<d, a+c<2b

(a+¢)/2,d) x n~1

4 P11 =Ppio = por ((a+b+c)/3,(a+b+¢)/3, a+b+c<3n/d

(a+b+¢)/3,d)x n~1

5 P11 =pro = (a+b,a+b,c+d, a+b<c+d
1/2 - poy c+d)x (2n)7!

6 pui=po = (a+c.b+d.a+ec, at+c<b+d
1/2 — p1o b+d)x (2n)~!

T p1L = pro = (.25,.25..25,.25) always

Po1 = 1/2 = Po1

LEGEND: Some constrained MLEs of NCI recombination probabilities and the conditions under
which they lie the the NCI constraint space C'. gg is the unconstrained MLE, g,, r = 1.2.3 are
MLEs over planes containing faces of dC (the boundary of C), g,, r = 4,5,6 are MLEs over lines

containing edges of dC, and g7 is a vertex of JC. Column 2 contains the constraints which. in
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addition to the constraints (p; > 0 and ¥, p; = 1). define the region G, over which g, is the MLE.

33



TABLE 3

A B C D | count

l 0 0 2

0 1 0 3

0 0 1 0

1 1 0 1

1 0 1 1

0 1 1 0

| 1 1 0

0 0 0 93
100

LEGEND: Counts of recombination events among four loci. A '1’ between two markers that are

adjacent in the table indicates that they recombined and a ’0’ indicates that thev did not recombine.
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