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Abstract

Under the assumption of no chromatid interference, we derive constraints
on the probabilities of the different recombination patterns among m-+1 ge-
netic loci. An application of these constraints is a proof that the ordering of
the loci which maximizes the likelihood under the assumption of no interfer-
ence is, in fact, a consistent estimator of the true order even when there is

interference.



1. Introduction

Genetic mapping involves ordering a set of markers on a chromosome
and finding distances between them. One way this may be done is through
analysis of data on meiotic recombination between the markers. Meiotic re-
combination is believed to be the result of crossing over between nonsister
chromatids during the pachytene phase of meiosis. If a particular chromatid
passed on in meiosis was involved in an odd number of crossovers between

two loci, a recombination is said to have taken place between the two loci.

[Insert Figure 1 about here.]

It is important to keep in mind that crossing over takes place in the four-
stranded state, when each chromosome has duplicated to form two sister
chromatids. In that case, the two aspects relevant to recombination are (i)
the distribution of crossovers along the chromosome and (ii) which pair of
nonsister chromatids is involved in each crossover. Two simplifying assump-
tions are often made. The first is that the locations of different crossovers are
independent and identically distributed along the chromosome. The second
is that each pair of nonsister chromatids is equally likely to be involved in a
crossover, independent of which were involved in other crossovers. If the oc-
currence of a crossover influences the probability of another occurring nearby,
in violation of the first assumption, it is termed crossover position interfer-
ence. Following Whitehouse (1), we prefer this over the traditional term
“chiasma interference.” If the second assumption is violated, it is termed

chromatid interference. There is a considerable body of data demonstrat-



ing both kinds of interference (1), but on the whole the extent of chromatid
interference seems slight. On the other hand, position interference can be
substantial and can take different forms. In what follows, we will permit an
arbitrary crossover location point process, but we will assume no chromatid

interference.

2. A general model with no chromatid interference

Assuming no chromatid interference, we model the occurence of crossovers
along a chromosome as a realization of a point process, with the points cor-
responding to the locations of the crossovers. That is, we associate the chro-
mosome with the interval [0,1] and require (i) a distribution for n = the total
number of points in the interval and (ii) for each n > 1, the joint distribution
of the positions of the points, given that their total number is n. Further-
more, we require that the point process be simple, i.e. with probability 1, no
two points shall occupy the same location. A simple point process on R or a

subset of R is known as a counting process.

Define the avoidance function or zero function 7. of the process by Z(A)
= Pr{no points in A}, for each measurable set A. It is well-known that the
distribution of a simple point process on a complete separable metric space is
determined by the values of the avoidance function on the Borel sets (2). We
shall find that the avoidance function of the crossing-over process is closely

related to the recombination probabilites.

Following is a well-known derivation (see e.g. ref. 3) of Mather’s For-



mula (4), which expresses the chance of recombination in an interval in
terms of the avoidance function, in the case of no chromatid interference.
If we assume that there is no chromatid interference, then each crossover is
equally likely to involve any of the possible nonsister pairs of chromatids,
independent of which pairs are involved in other crossovers. In that case, if
there are n > 0 crossovers between loci at locations A and B,0 < A< B <1,

then any given chromatid has probability
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of being involved in exactly i of them, for 0 < ¢ < n. In a given meiotic
product (sperm or oocyte), a recombination between A and B will have
occurred if the chromatid passed on in the meiosis has been involved in an odd
number of crossovers between A and B. Thus, the chance of a recombination

given that n > 0 crossovers have occurred is

1 (2510 n 1
5 % () =3

so the chance of a recombination is 1 x Pr{n > 0} = 1x (1-Z([A,B])).

More generally, consider the recombination pattern among m-+1 ordered
loci. Let A; denote the interval between loci j and j+1. Let p,, 2 =
(21, ey tm) € {0,1}, denote the probability of the event of x; recombina-
tions in A;, 7 =1,...,m. Let Z, denote Z(U{A, : z; = 1}), the probability
that the point process avoids all of the intervals A; with z; = 1. In the ge-
netics literature, p, is known as the crossover distribution, and 7, is known

as the linkage value associated with z. The following relationship between



7, and p, is well-known:

Ly = Z(_l)y.xpy

and

where the sum is over all y = (y1,...,ym) € {0,1}" and y -z = Y7L, y;z;.
That is, (Z,) is the 73" Fourier transform of (p,), and (p,) is the inverse 7"
Fourier transform of (7,) (5,7,8).

This relationship between the distribution of recombinations among m+1
loci and the avoidance function can be exploited to get necessary and suffi-
cient conditions for the distribution of recombinations among m+1 loci to be
compatible with at least one underlying crossover point process. It is easy to
get necessary conditions on the p,’s as follows: define ¢, * = (v1,...,2,) €
{0,1}™ to be the probability of the event of no crossovers in each of the
intervals A; with z; = 0 and at least one crossover in each of the intervals A;
with ; = 1; 7 = 1,...,m. Note that (¢,) and (Z,) refer to the distribution
of crossovers along the four-stranded chromosome, while (p,) refers to the

recombination distribution on a single strand. Then, clearly

Ly = Z Qy,

y<a!
where y < 2/ denotes y; <1 —x;, 7 =1,...,m. Plugging into the formula
for p, in terms of 7, we get
1
Pz = Z 21/—,1%/-
y>z



Alternatively, the relation between the p’s and the ¢’s may be proved from
Lemma 1 of (6), by induction. Inverting, we have
=3 (-1)17,
y>a!

and

g =271 % 30 (=) p,.

y>z

Now it is clearly necessary that we have

(4) qu =1, and

(71) for all x, ¢, > 0.

Expressed in terms of the p,’s, these conditions are

(1) > p.=1, and

xr

(71) for all =, 0< Z(—l)(y_gc)'lpy.

y>z

We further note that these conditions can be expressed in terms of the Z,’s

as
(1) Z(0)=1, and
(71) for all , 0< Z(—l)(y_x)'lZy.

y>z
If we assume that any given pattern of crossovers is possible, that is, that

each of the parameters ¢, is non-zero, then the weak inequalities satisfied



by the parameters (p,) and (Z,) become strict. Of course, the constraints
in terms of the p,’s are of greatest interest, since the p,’s correspond to the
observed data.

In fact, these conditions on the p,’s are also sufficient, under the assump-
tion of no chromatid interference, for the existence of an underlying point
process of crossovers which would be compatible with the p,’s. To show this,
we need only construct, given any set of ¢,’s with ¢, > 0 and Y}, ¢, =1, a
point process on [0, 1] which is compatible with them. This is easily done
by fixing one point in each interval A; and allowing crossovers only at those

points. The pattern of crossovers among those m points is then chosen to be =
1 if there is a crossover in A,

0 otherwise '
Note that our constraints are stronger than those required by Karlin

with probability ¢,, where for all 5, z; =

& Liberman (1979) for their class of “natural” recombination distributions.

They require

(i) Z2(0) = 1,

(ii) for all @, 7, > 0.

3. An application of the constraints: robustness of the Poisson
model
Proposition: Suppose we have recombination data on m+1 loci whose true

order is unknown. Assume that there is no chromatid interference, but



crossover location interference of an arbitrary form may be present. That
is, the positions of crossovers and the occurrence of recombinations is given
by a model of the type described in Section 2. Assume further that we are
in the non-degenerate situation in which each of the parameters ¢, is non-
zero. Suppose that our data is from n meioses, and for each meiosis, we
can observe whether or not a recombination occurred between each of the
%m(m + 1) pairs of loci. Suppose that for each possible order of the loci, we
fit the data by maximum likelihood under the assumption of no crossover-

location interference. Then with probability approaching 1 as n approaches

00, the maximized likelihood will be largest for the true order.

If we arbitrarily choose an ordering of the loci f = (f1,..., fmt1), where
f is a permutation of (1,....m+1) and fit the data by maximum likelihood,
assuming no interference, we will be fitting m parameters (0, 1,, ..., 05, ,..,).

where 0y, is the chance of a recombination between loci f; and f;41. The

fit1
proof (see Appendix) lies in showing that for any non-identity permutation
f, with probability 1 as n approaches oo, the collection {éfhf27 "'7éfm7fm+1}
dominates {él,% ...7ém7m+1}. That is, the two sets can be put into a one-
to-one correspondence such that each element of the first set is larger than
or equal to the corresponding element of the second set, with at least one
strict inequality. This is because, with probability 1 as n approaches oo, the

constraints on the p;’s imply constraints on the data. Then it follows that

the likelihood will be maximized by the true order.

4. Discussion



As we try to increase the resolution of genetic maps, we shall find that
interference plays a greater role. Although estimation of order of loci under
the assumption of no crossover position interference is consistent, still the
number of data points n may need to be very large in practice. It is likely
that with a reasonable model for interference, one could use the data to es-
timate order more efficiently. Work is in progress to develop such a model
and use it for inference. We note that even in the absence of a specific in-
terference model, one could compare maximized likelihoods under different
orders, where the likelihood is in terms of 2™ p,’s subject to the constraints,

rather than in terms of m ’s.

Another area in which the constraints may be useful is in determining
when a map function has an underlying crossover point process (an exten-
sion to Liberman & Karlin (7)). Liberman & Karlin define a map function M
(which converts expected number of crossovers to chance of recombination)

to be “multilocus feasible” if it satisfies

(i) M(0) = 0

(ii) for all z,
0 < > (=1)"(1—2M(v)),

ye{o,1}m

where 7, is the map distance of Uj, —1A;. We could replace (ii) with the
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more stringent condition

(i) for all x,
0 < -1 - 2M (),

y>z

Work is in progress on the connection between map functions and crossover
point processes.

5. Appendix

Proof of Proposition: As before, let A; denote the interval between loci j
and j+1 in the true order, j = 1,...,m, and let p,, * = (21, ..., 2,,) € {0,1}™
be defined as before. Assume that the constraints of section 2 hold with strict
inequalities.

The data consist of r”?

nox = (21, ., ) € {0,1}" where r? denotes the

number of meioses in which z; recombinations occurred in A;, j =1,...,m.
Note that we can still calculate the set of numbers {r?} without knowing the
true order. We could do the calculation assuming an arbitrary order, and
the resulting set of counts {r?} would be the same but for an (unknown)
permutation of indices. Assuming that the recombination patterns in differ-
ent meioses are iid, (r") is distributed as Multinomial(n,p), where r" is the

vector of r”’s and p is the vector of p,’s.
If we arbitrarily choose an ordering of the loci f = (fi, ..., fiut1), where f

is a permutation of (1,...,m 4 1) and fit the data by maximum likelihood,

assuming no interference, we will be fitting m parameters (0, 1,, ..., 05, ,..,).
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where 0, is the chance of a recombination between loci f; and f;1;. Sup-

7f]-|-1

pose we maximize the likelihood under the true order and under any other or-
der f and compare the maximized likelihoods. In the case in which we can ob-
serve any recombination among the loci, the maximum likelihood estimates of

the 0’s are very simple. For the true order, we have éj =n1y where

rr,=1 T;,
J

éj is the maximum likelihood estimate of the chance of a recombination in

the interval A;, y = 1,...,m. For the order f, we have éfj,fj+1 =n"'Y

where I is the set whose members x all satisfy

Z Tr is odd.

k : Ay lies between fj and fj 11

For all z € {0,1}™ set

CZ = 971 Z(_l)(l/—l’)'lrg

y>z

and consider the strict constraints ¢! > 0, € {0,1}". By the law of large
numbers, the probability that these constraints are satisfied approaches 1 as n
approaches oo because of the constraints on p in section 2. Assume that these

: n no i 1,-1 ()
constraints on r” hold. In terms of the ¢;’s, we have ; = on™" 3, ., _ ¢}

and éfj,fj+1 = %n‘l Sower oy, where I = {x : 24 = 1 for at least one Ay lying

between f; and f;41}. Note that we have 4, and éf] both < 1/2 under

7f]-|-1

the constraints. ;From this representation, we can see that if A, lies between

fi and fi41, then 0, < éf] since ¢ > 0 for all z.

7f]-|-1 Y

Now we will match each of the m éf] ’s in one-to-one correspondence

7f]-|-1

with a 6, which is smaller than or equal to it. This will prove the proposition,
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for the function g(x) = xlog(x) + (1-x)log(1-x) is decreasing in 0 < z <
1/2. Thus, if Lg is the maximized likelihood under order f, and L is the

maximized likelihood under the true order, we will have

m m

Li=n-Y905;.)<n-> g(0;) = Lie

=1 =1

To see that the {éf] } can be matched with the {0;} in such a way that

7f]-|-1

the 6 corresponding to 0, is no larger than it, we use P. Hall’s matching

7f]-|-1
theorem, see (8), p. 401. We associate each interval (f;, f;+1) in the ordering
f with the set of intervals A in the true ordering which lie between f; and

fi+1. As noted above, this ensures that éf] is greater than or equal to 0,

Sita
for any k of this kind. The condition of Hall’s theorem which must be checked
is that any set {(f;, fi+1) : j € J} of |J| distinct intervals in the order f must
contain at least |J| distinct intervals in the original order. Then there is a
matching with the property stated and the proof is complete.

To show that the condition holds, argue by induction on the number of
loci. The condition clearly holds for 2 loci. Suppose it holds for M loci,
and consider the case of M + 1 loci. Let {(f;, fi+1) : 7 € J} be any set
of |J| distinct intervals in some order f. Let ¢ = min{;j € J}, so f; is
an endpoint of exactly one interval in the set. Now consider the M loci
{1,2,....M + 1}\{f;} and the |J — 1| intervals {(f;, fj+1) : J € J\{¢}}.
By the induction hypothesis, these intervals cover at least |J — 1] distinct
intervals in the original order of {1,2,..., M + 1}\{f;}. Note that if the
{(f;, fi+1) 2 7 € J\{i}} cover exactly k distinct intervals in the original order
of {1,2,....M + 1}\{/:}, then they must cover either k or k + 1 distinct

intervals in the original order of {1,2,..., M 4 1}. If at least |.J| intervals of
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the original order of {1,..., M + 1} are covered by {(f;, fi+1) : j € J\{i}},
then we’re done, so assume without loss of generality that exactly |J — 1|
distinct intervals of the original orders of both {1,..., M+1} and {1,..., M+
1I\{f;} are covered. That is, the same number of intervals are covered in
the original order whether locus f; is included or not. Thus, if we say f; is
between loci f; —1 and f;+1 in the original order, then neither (f;—1, f;) nor
(fi, fi+1) could be covered. Otherwise, (f;—1, f;+1) would have to be covered
by an element of {(f;, f;+1): 7 € J\{¢}}, but then adding in locus f; would
add in one more interval covered, which contradicts our assumption. Since
the interval (f;, fiz1) must contain at least one of (f; — 1, f;) and (fi, fi + 1),
then {(f;, fj+1) : J € J} covers at least |.J| distinct intervals in the original
order of the M + 1 loci. The argument is similar if f; is the first or last locus
in the original order.
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