
SIMPLER GRASSMANNIAN OPTIMIZATION

ZEHUA LAI, LEK-HENG LIM, AND KE YE

Abstract. There are two widely used models for the Grassmannian Gr(k, n), as the set of equiv-
alence classes of orthogonal matrices O(n)/

(
O(k)×O(n− k)

)
, and as the set of trace-k projection

matrices {P ∈ Rn×n : P T = P = P 2, tr(P) = k}. The former, standard in manifold optimiza-
tion, has the downside of relying on equivalence classes but working with orthogonal matrices is
generally good numerical practice. The latter, widely adopted in coding theory and probability,
uses actual matrices (as opposed to equivalence classes) but working with projection matrices is
numerically unstable. We present an alternative that has both advantages and suffers from neither
of the disadvantages; by representing k-dimensional subspaces as symmetric orthogonal matrices of
trace 2k − n, we obtain

Gr(k, n) ∼= {Q ∈ O(n) : QT = Q, tr(Q) = 2k − n}.
As with the other two models, we show that differential geometric objects and operations — tangent
vector, metric, normal vector, exponential map, geodesic, parallel transport, gradient, Hessian,
etc — have closed-form analytic expressions that are computable with standard numerical linear
algebra. In the proposed model, these expressions are considerably simpler, a result of representing
Gr(k, n) as a linear section of a compact matrix Lie group O(n), and can be computed with at most
one qr decomposition and one exponential of a special skew-symmetric matrix that takes only
O
(
nk(n− k)

)
time. In particular, we completely avoid eigen- and singular value decompositions in

our steepest descent, conjugate gradient, quasi-Newton, and Newton methods for the Grassmannian.
Another important feature of these algorithms, particularly evident in steepest descent and Newton
method, is that they exhibit clear signs of numerical stability; various measures of errors consistently
reduce to the order of machine precision throughout extensive numerical experiments.

1. Introduction

As a manifold, the Grassmannian Gr(k, n) is just the set of k-planes in n-space with its usual
differential structure; this is an abstract description that cannot be employed in algorithms and
applications. In order to optimize functions f : Gr(k, n)→ R using currently available technology,
one needs to put a coordinate system on Gr(k, n). The best known way, as discovered by Edelman,
Arias, and Smith in their classic work [24], is to realize Gr(k, n) as a matrix manifold [2], where
every point on Gr(k, n) is represented by a matrix or an equivalence class of matrices and from
which one may derive closed-form analytic expressions for other differential geometric objects (e.g.,
tangent, metric, geodesic) and differential geometric operations (e.g., exponential map, parallel
transport) that in turn provide the necessary ingredients (e.g., Riemannian gradient and Hessian,
conjugate direction, Newton step) for optimization algorithms. The biggest advantage afforded by
the approach in [24] is that a judiciously chosen system of extrinsic matrix coordinates for points
on Gr(k, n) allows all aforementioned objects, operations, and algorithms to be computed solely in
terms of standard numerical linear algebra, which provides a ready supply of stable and accurate
algorithms [31] with high-quality software implementations [6]. In particular, one does not need to
solve any differential equations numerically when doing optimization on matrix manifolds à la [24].

1.1. Existing models. There are two well-known models for Gr(k, n) supplying such matrix co-
ordinates — one uses orthogonal matrices and the other projection matrices. In optimization, the

2010 Mathematics Subject Classification. 14M15, 90C30, 90C53, 49Q12, 65F25, 62H12.
Key words and phrases. Grassmannian, Grassmann manifold, manifold optimization.

1

2 Z. LAI, L.-H. LIM, AND K. YE

by-now standard model (see, for example, [23, 39, 51, 56, 65]) is the one introduced in [24], namely,

Gr(k, n) ∼= O(n)/
(
O(k)×O(n− k)

) ∼= V(k, n)/O(k), (1)

where V(k, n) := {V ∈ Rn×k : V TV = I} ∼= O(n)/O(n − k) is the Stiefel manifold. In this
homogeneous space model, which is also widely used in areas other than optimization [7, 8, 30,
32, 49, 50, 70], a point V ∈ Gr(k, n), i.e., a k-dimensional subspace V ⊆ Rn, is represented by
its orthonormal basis, written as columns of a matrix V = [v1, . . . , vk] ∈ V(k, n). Since any two
orthonormal bases V1, V2 ∈ V(k, n) of V must be related by V1 = V2Q for some Q ∈ O(k), such
a representation is not unique and so this model requires that we represent V not as a single
n × k orthonormal matrix but as a whole equivalence class JV K := {V Q ∈ V(k, n) : Q ∈ O(k)}
of orthonormal bases of V. A brief word about our notations: Throughout this article, we adopt
the convention that a vector space V ∈ Gr(k, n) will be typeset in blackboard bold, with the
corresponding letter in normal typeface V ∈ V(k, n) denoting an (ordered) orthonormal basis.
Equivalence classes will be denoted in double brackets, so JV K = V. Diffeomorphism of two smooth
manifolds will be denoted by ∼=.

It is straightforward to represent a point V ∈ Gr(k, n) by an actual matrix as opposed to an
equivalence class of matrices. Since any subspace V has a unique orthogonal projection matrix PV,
this gives us an alternative model for the Grassmannian that is also widely used (notably in linear
programming [58, 69] but also many other areas [15, 11, 17, 25, 48, 53]):

Gr(k, n) ∼= {P ∈ Rn×n : P T = P = P 2, tr(P) = k}. (2)

Note that rank(P) = tr(P) = dim(V) for orthogonal projection matrices. The reader is reminded
that an orthogonal projection matrix is not an orthogonal matrix — the ‘orthogonal’ describes the
projection, not the matrix. To avoid confusion, we drop ‘orthogonal’ from future descriptions —
all projection matrices in our article will be orthogonal projection matrices.

As demonstrated in [34], it is also possible to derive closed-form analytic expressions for various
differential geometric objects and present various optimization algorithms in terms of the matrix
coordinates in (2). Nevertheless, the problem with the model (2) is that algorithms based on pro-
jection matrices are almost always numerically unstable, especially in comparison with algorithms
based on orthogonal matrices. This is likely the reason why there are no numerical experiments in
[34]. Roughly speaking an orthogonal matrix preserves (Euclidean) norms and therefore rounding
errors do not get magnified through a sequence of orthogonal transformations [21, Section 3.4.4]
and consequently algorithms based on orthogonal matrices tend to be numerically stable (details
are more subtle, see [66, pp. 124–166] and [36]). Projection matrices not only do not preserve norms
but are singular and give notoriously unstable algorithms — possibly the best known illustration
of numerical instability [63, 64] is one that contrasts Gram–Schmidt, which uses projection matri-
ces, with Householder qr, which uses orthogonal matrices.1 In fact, the proper way to compute
projections is to do so via a sequence of orthogonal matrices [60, pp. 260–261], as a straightforward
computation is numerically unstable [16, pp. 849–851].

The alternative (1) is currently universally adopted for optimization over a Grassmannian. One
issue with the model (1) is that a point on Gr(k, n) is not a single matrix but an equivalence
class of uncountably many matrices. Equivalence classes are tricky to implement in numerical
algorithms and standard algorithms in numerical linear algebra [6] do not work with equivalence
classes of matrices. Given a function f : Gr(k, n)→ R to be optimized, any optimization algorithm
[23, 24, 39, 51, 56, 65] that rely on the model (1) side steps the issue by lifting f to an O(k)-invariant

function f̃ : V(k, n)→ R, i.e., where f̃(V Q) = f̃(V) for all Q ∈ O(k). This incurs additional costs
in two ways: : (a) whenever a point V ∈ Gr(k, n) needs to be lifted to a point V ∈ V(k, n),
this incurs the cost of finding an orthonormal basis V for V; (b) whenever one needs to check

1For example, computing the qr decomposition of a Hilbert matrix A = [1/(i+ j − 1)]15i,j=1, we get ‖Q∗Q− I‖ ≈
8.0× 100 with Gram–Schmidt, 1.7× 100 with modified Gram–Schmidt, 2.4× 10−15 with Householder qr.

SIMPLER GRASSMANNIAN OPTIMIZATION 3

equality of points im(V1)
?
= im(V2), this incurs the cost of one matrix product V T

1 V2 and its norm.2

These additional costs cannot be avoided in the model (1) as we represent a linear subspace by an
equivalence class. For comparison, (a) and (b) are immaterial when points are represented as actual
matrices, like in model (2) or our proposed model. Moreover it is impossible to continuously choose
such ‘Stiefel coordinates’ V ∈ V(k, n) for every point V ∈ Gr(k, n), as we will discuss in Section 7.5.
A second and more serious issue with the model (1) is that its associated optimization algorithms in
[24] are still significantly less stable than those for our proposed model. As we will see in Section 8,
and for reasons explained therein, loss-of-orthogonality remains very much a problem when we use
(1) to represent a Grassmannian. This is likely the reason why the numerical experiments in [24]
had used extended precision arithmetic.

We would like to mention a noncompact analogue of (1) that is popular in combinatorics [1, 26,
28, 44, 47]:

Gr(k, n) ∼= Rn×kk /GL(k), (3)

where Rn×kk := {A ∈ Rn×k : rank(A) = k} and GL(k) := {X ∈ Rk×k : det(X) 6= 0}. It has also been
shown [2] that one may obtain closed-form analytic expressions for differential geometric quantities
with the model (3) and so in principle one may use it for optimization purposes. Nevertheless, from
the perspective of numerical algorithms, the model (3) suffers from the same problem as (2) —
by working with rank-k matrices, i.e., whose condition number can be arbitrarily large, algorithms
based on (3) are inherently numerically unstable. In fact, since the model (3) also represents
points as equivalence classes, it has both shortcomings of (1) and (2) but neither of their good
features. The natural redress of imposing orthogonal constraints on (3) to get a well-conditioned
representative for each equivalence class would just lead one back to the model (1).

Looking beyond optimization, we stress that each of the aforementioned models has its own
(sometimes unique) strengths. For example, (3) is the only model we know in which one may
naturally define the positive Grassmannian [26], an important construction in combinatorics [44]
and physics [28]. The model (2) is indispensable in probability and statistics as probability measures
[48, Section 3.9] and probability densities [15, Section 2.3.2] on Gr(k, n) are invariably expressed in
terms of projection matrices.

1.2. Proposed model. We propose to use a model for the Grassmannian that combines the best
features, suffers from none of the defects of the aforementioned models, and, somewhat surprisingly,
is also simpler:

Gr(k, n) ∼= {Q ∈ O(n) : QT = Q, tr(Q) = 2k − n}. (4)

This model, which represents k-dimensional subspace as a symmetric orthogonal matrix of trace
2k − n, is known but obscure. It was mentioned in passing in [10, p. 305] and was used in [41]
to derive geodesics for the oriented Grassmannian, a different but related manifold. Note that (4)
merely provides an expression for points, our main contribution is to derive expressions for other
differential geometric objects and operations, as well as the corresponding optimization algorithms,
thereby fully realizing (4) as a model for optimization. A summary of these objects, operations,
and algorithms is given in Table 1. From a differential geometric perspective, Sections 2–5 may be
regarded as an investigation into the embedded geometry of Gr(k, n) as a submanifold of O(n).

The two key advantages of the model (4) in computations are that:

(i) we represent points on Gr(k, n) as actual matrices, not equivalence classes;
(ii) we work only with orthogonal matrices and in numerical stable ways.

Numerical stability is an important feature of the algorithms for model (4); as we will see in
Section 8, the errors and gradients in our steepest descent and Newton algorithms consistently
reduce to the order of machine precision. Moreover, another bonus with (4) is that the expressions

2Note that im(V1)
?
= im(V2) is equivalent to V1V

T
1

?
= V2V

T
2 , which is equivalent to ‖V T

1 V2‖
?
= k as ‖V1V

T
1 −V2V

T
2 ‖2 =

2k2 − 2‖V T
1 V2‖2. We thank the referee for this observation.

4 Z. LAI, L.-H. LIM, AND K. YE

objects/operations results

point Proposition 2.1

change-of-coordinates Proposition 2.2, Proposition 2.3, Proposition 2.4, Proposition 2.5

tangent vector Proposition 3.1, Proposition 3.2, Corollary 3.3

metric Proposition 3.4, Proposition 3.5

normal vector Proposition 3.6, Corollary 3.7

curve Proposition 4.2

geodesic Theorem 4.3, Proposition 4.5

geodesic distance Corollary 4.6

exponential map Corollary 4.4

logarithmic map Corollary 4.7

parallel transport Proposition 4.8

gradient Proposition 5.1, Corollary 5.3

Hessian Proposition 5.2

retraction and vector transport Proposition 6.4, Proposition 6.5, Proposition 6.6

steepest descent Algorithm 1, Algorithm 2

Newton method Algorithm 3

conjugate gradient Algorithm 4

quasi-Newton Algorithm 5

Table 1. Guide to results.

and algorithms in Table 1 are considerably simpler compared to those in [2, 24, 34]. We will not
need to solve quadratic eigenvalue problems, nor compute exp/cos/sin/sinc of nonnormal matrices,
nor even evd or svd except in cases when they can be trivially obtained. Aside from standard
matrix arithmetic, our optimization algorithms require just two operations:

(iii) all differential geometric objects and operations can be computed with at most a qr decom-
position and an exponentiation of a skew-symmetric matrix,

exp

([
0 B
−BT 0

])
, B ∈ Rk×(n−k), (5)

which may in turn be computed in time O
(
nk(n− k)

)
with a specialized algorithm based on

Strang splitting.

The problem of computing matrix exponential has been thoroughly studied and there is a plethora
of algorithms [37, 52], certainly more so than other transcendental matrix functions like cosine,
sine, or sinc [37]. For normal matrices, matrix exponentiation is a well-conditioned problem —
the numerical issues described in [52] only occur with nonnormal matrices. For us,

[
0 B
−BT 0

]
is

skew-symmetric and thus normal; in fact its exponential will always be an orthogonal matrix.
There are other algorithmic advantages afforded by (4) that are difficult to explain without con-

text and will be discussed alongside the algorithms in Section 7 and numerical results in Section 8.
In particular, our algorithms will work with what we call “effective gradients,” “effective Newton
steps,” “effective conjugate directions,” etc — these are all matrices of size k × (n − k) like the
matrix B in (5), i.e., they have the intrinsic dimension of Gr(k, n). With this we would also like to
add a note of caution. One cannot infer an accurate estimate of computational complexity based on
a simple dimension count of the models in Table 2. There are many differential geometric objects
and operations involved in an algorithm, such as those in Table 1, and not just points. The matrices
arising in actual computations are highly structured and the computational cost depends heavily
on the specific problem.

SIMPLER GRASSMANNIAN OPTIMIZATION 5

1.3. Nomenclatures and notations. For easy reference, we will introduce names for the models
(1)–(4) based on the type of matrices used as coordinates for points.

name model coordinates for a point

orthogonal model O(n)/
(
O(k)×O(n− k)

)
equivalence class of n× n orthogonal matrices JV K

Stiefel model V(k, n)/O(k) equivalence class of n× k orthonormal matrices JY K

full-rank model Rn×kk /GL(k) equivalence class of n× k full-rank matrices JAK

projection model {P ∈ Rn×n : P T = P = P 2, tr(P) = k} n× n orthogonal projection matrix P

involution model {Q ∈ O(n) : QT = Q, tr(Q) = 2k − n} n× n symmetric involution matrix Q

Table 2. Matrix manifold models for the Grassmannian Gr(k, n).

We note that there are actually two homogeneous space models for Gr(k, n) in (1), one as a quo-
tient of O(n) and the other as a quotient of V(k, n). While they are used somewhat interchangeably
in [24], we distinguish them in Table 2 as their change-of-coordinates maps to the involution model
are different (see Section 2).

The name involution model is warranted for (4) because for any Q ∈ Rn×n, any two of the
following conditions clearly imply the third:

QTQ = I, QT = Q, Q2 = I.

Thus a symmetric orthogonal matrix may also be viewed as a symmetric involution or an orthogonal
involution matrix. We will need the eigendecomposition of a matrix in the involution model for all
of our subsequent calculations; for easy reference we state this as a lemma. Such an eigendecom-
position is trivial to compute, requiring only a single qr decomposition (of the matrix 1

2(I + Q);
see Lemma 7.1).

Lemma 1.1. Let k = 1, . . . , n and Q ∈ Rn×n be such that

QTQ = I, QT = Q, tr(Q) = 2k − n.
Then Q has an eigenvalue decomposition

Q = V Ik,n−kV
T = [y1, . . . , yk, z1, . . . , zn−k]

1
. . .

1
−1

. . .

−1

yT
1

...
yT
k
zT
1

...
zT
n−k

,

where V ∈ O(n) and Ik,n−k := diag(Ik,−In−k) = diag(1, . . . , 1,−1, . . . ,−1).

Proof. Existence of an eigendecomposition follows from the symmetry of Q. A symmetric involution
has all eigenvalues ±1 and the multiplicity of 1 must be k since tr(Q) = 2k − n. �

Henceforth, for a matrix Q in the involution model, we write

YQ := [y1, . . . , yk] ∈ V(k, n), ZQ := [z1, . . . , zn−k] ∈ V(n− k, n),

VQ = [YQ, ZQ] = V ∈ O(n)
(6)

for its matrix of 1-eigenvectors, its matrix of −1-eigenvectors, and its matrix of all eigenvectors
respectively. While these matrices are not unique, the 1-eigenspace and −1-eigenspace

im(YQ) = span{y1, . . . , yk} ∈ Gr(k, n), im(ZQ) = span{z1, . . . , zn−k} ∈ Gr(n− k, n)

are uniquely determined by Q.

6 Z. LAI, L.-H. LIM, AND K. YE

2. Points and change-of-coordinates

We begin by exhibiting a diffeomorphism to justify the involution model, showing that as smooth
manifolds, Gr(k, n) and {Q ∈ O(n) : QT = Q, tr(Q) = 2k − n} are the same. In the next section,
we will show that if we equip the latter with appropriate Riemannian metrics, then as Riemannian
manifolds, they are also the same, i.e., the diffeomorphism is an isometry. The practically minded
may simply take this as establishing a system of matrix coordinates for points on Gr(k, n).

Proposition 2.1 (Points). Let k = 1, . . . , n. Then the map

ϕ : Gr(k, n)→ {Q ∈ O(n) : QT = Q, tr(Q) = 2k − n},
ϕ(W) = PW − PW⊥ ,

(7)

is a diffeomorphism with ϕ−1(Q) = im(YQ) where YQ ∈ V(k, n) is as in (6). Here PW denotes the
orthogonal projection matrix to the subspace W.

Proof. One can check that Q = PW − PW⊥ is symmetric, orthogonal, and has trace 2k − n. So
the map ϕ is well-defined. If we write ψ(Q) = im(YQ), then ϕ(ψ(Q)) = Q and ψ(ϕ(W)) = W, so
ψ = ϕ−1. To see that ϕ is smooth, we may choose any local coordinates, say, represent W ∈ Gr(k, n)
in terms of any orthonormal basis W = [w1, . . . , wk] ∈ V(k, n) and observe that

ϕ(W) = 2WW T − I,

which is smooth. With a linear change-of-coordinates, we may assume that

W =

[
Ik
0

]
.

The differential (dϕ)W is given by the (clearly invertible) linear map

(dϕ)W

([
0
X

])
= 2

([
Ik
0

] [
0 XT

]
+

[
0
X

] [
Ik 0

])
= 2

[
0 XT

X 0

]
for all X ∈ R(n−k)×k. So ϕ is a diffeomorphism. �

Since the manifolds in Table 2 are all diffeomorphic to Gr(k, n), they are diffeomorphic to each
other. Our next results are not intended to establish that they are diffeomorphic but to construct
these diffeomorphisms and their inverses explicitly, so that we may switch to and from the other
systems of coordinates easily.

In the next proposition, JV K =
{
V
[
Q1 0
0 Q2

]
: Q1 ∈ O(k), Q2 ∈ O(n − k)

}
denotes equivalence

class in O(n)/
(
O(k)×O(n− k)

)
.

Proposition 2.2 (Change-of-coordinates I). Let k = 1, . . . , n. Then

ϕ1 : O(n)/
(
O(k)×O(n− k)

)
→ {Q ∈ O(n) : QT = Q, tr(Q) = 2k − n},

ϕ1(JV K) = V TIk,n−kV

is a diffeomorphism with ϕ−11 (Q) = JVQK with VQ ∈ O(n) as in (6).

Proof. Note that Q = V1Ik,n−kV
T
1 = V2Ik,n−kV

T
2 iff

V2 = V1

[
Q1 0
0 Q2

]
for some (Q1, Q2) ∈ O(k)×O(n− k) iff JV1K = JV2K. Hence both ϕ1 and ϕ−11 are well-defined and
are inverses of each other. Observe that ϕ1 is induced from the map

ϕ̃1 : O(n)→ {Q ∈ O(n) : QT = Q, tr(Q) = 2k − n}, ϕ̃1(V) = V TIk,n−kV,

SIMPLER GRASSMANNIAN OPTIMIZATION 7

which is a surjective submersion. The proof that ϕ−11 is well-defined shows that the fibers of ϕ̃1 are
exactly the O(k)×O(n− k)-orbits in O(n). Hence ϕ1, as the composition of ϕ̃1 and the quotient
map O(n)→ O(n)/

(
O(k)×O(n− k)

)
, is a diffeomorphism. �

The next result explains the resemblance between the projection and involution models — each
is a scaled and translated copy of the other. The scaling and translation are judiciously chosen so
that orthogonal projections become symmetric involutions, and this seemingly innocuous difference
will have a significant impact on the numerical stability of Grassmannian optimization algorithms.

Proposition 2.3 (Change-of-coordinates II). Let k = 1, . . . , n. Then

ϕ2 : {P ∈ Rn×n : P T = P = P 2, tr(P) = k} → {Q ∈ O(n) : QT = Q, tr(Q) = 2k − n},
ϕ2(P) = 2P − I

is a diffeomorphism with ϕ−12 (Q) = 1
2(I +Q).

Proof. Note that 2P − I = P −P⊥ where P⊥ is the projection onto the orthogonal complement of
im(P), so both ϕ2 and ϕ−12 are well-defined. They are clearly diffeomorphisms and are inverses to
each other. �

In the next proposition, JY K = {Y Q : Q ∈ O(k)} denotes equivalence class in V(k, n)/O(k).

Proposition 2.4 (Change-of-coordinates III). Let k = 1, . . . , n. Then

ϕ3 : V(k, n)/O(k)→ {Q ∈ O(n) : QT = Q, tr(Q) = 2k − n},
ϕ3(JY K) = 2Y Y T − I

is a diffeomorphism with ϕ−13 (Q) = JYQK with YQ ∈ V(k, n) as in (6).

Proof. Given JY K ∈ V(k, n)/O(k), the matrix Y Y T is the projection matrix onto the k-dimensional
subspace im(Y) ∈ Gr(k, n). Hence ϕ3 is a well-defined map by Proposition 2.3. To show that its
inverse is given by ψ3(Q) = JYQK, observe that any Y ∈ V(k, n) can be extended to a full orthogonal

matrix V := [Y, Y ⊥] ∈ O(n) and we have

V TY =

[
Ik
0

]
, Q = 2Y Y T − I = V

[
2Ik 0
0 0

]
V T − I = V Ik,n−kV

T.

This implies that ψ3 ◦ ϕ3(JY K) = JYQK = JY K. That ϕ3 is a diffeomorphism follows from the same
argument in the proof of Proposition 2.1. �

In the next proposition, JAK = {AX : X ∈ GL(k)} denotes equivalence class in Rn×kk /GL(k).

Also, we write A = YARA for the qr factorization of A ∈ Rn×kk , i.e., YA ∈ V(k, n) and RA ∈ Rk×k
is upper triangular.

Proposition 2.5 (Change-of-coordinates IV). Let k = 1, . . . , n. Then

ϕ4 : Rn×kk /GL(k)→ {Q ∈ O(n) : QT = Q, tr(Q) = 2k − n},
ϕ4(JAK) = 2YAY

T
A − I

is a diffeomorphism with ϕ−14 (Q) = JYQK with YQ is as in (6).

Proof. First observe that V(k, n) ⊆ Rn×kk and the inclusion map V(k, n) ↪→ Rn×kk induces a dif-

feomorphism V(k, n)/O(k) ∼= Rn×kk /GL(k) — if we identify them, then ϕ−14 becomes ϕ−13 in
Proposition 2.4 and is thus a diffeomorphism. It follows that ϕ4 is a diffeomorphism. That the
maps are inverses to each other follows from the same argument in the proof of Proposition 2.4. �

8 Z. LAI, L.-H. LIM, AND K. YE

The maps ϕ,ϕ1, ϕ2, ϕ3, ϕ4 allow one to transform an optimization problem formulated in terms
of abstract k-dimensional subspaces or in terms of one of the first four models in Table 2 into a
mathematically (but not computationally) equivalent problem in terms of the involution model.
Note that these are change-of-coordinate maps for points — they are good for translating expres-
sions that involve only points on Gr(k, n). In particular, one cannot simply apply these maps to
the analytic expressions for other differential geometric objects and operations in [2, 24, 34] and
obtain corresponding expressions for the involution model. Deriving these requires considerable
effort and would take up the next three sections.

Henceforth we will identify the Grassmannian with the involution model:

Gr(k, n) := {Q ∈ O(n) : QT = Q, tr(Q) = 2k − n},
i.e., in the rest of our article, points on Gr(k, n) are symmetric orthogonal matrices of trace 2k−n.
With this, the well-known isomorphism

Gr(k, n) ∼= Gr(n− k, n), (8)

which we will need later, is simply given by the map Q 7→ −Q.

3. Metric, tangents, and normals

The simple observation in Lemma 1.1 implies that a neighborhood of any point Q ∈ Gr(k, n) is
just like a neighborhood of the special point Ik,n−k = diag(Ik,−In−k) ∈ Gr(k, n). Consequently,
objects like tangent spaces and curves at Q can be determined by simply determining them at
Ik,n−k. Although Gr(k, n) is not a Lie group, the involution model, which models it as a linear
section of O(n), allows certain characteristics of a Lie group to be retained. Here Ik,n−k has a role
similar to that of the identity element in a Lie group.

We will provide three different expressions for vectors in the tangent space TQ Gr(k, n) at a point
Q ∈ Gr(k, n): an implicit form (9) as traceless symmetric matrices that anticommutes with Q and
two explicit forms (10), (11) parameterized by k × (n− k) matrices. Recall from Lemma 1.1 that
any Q ∈ Gr(k, n) has an eigendecomposition of the form Q = V Ik,n−kV

T for some V ∈ O(n).

Proposition 3.1 (Tangent space I). Let Q ∈ Gr(k, n) with eigendecomposition Q = V Ik,n−kV
T.

The tangent space of Gr(k, n) at Q is given by

TQ Gr(k, n) =
{
X ∈ Rn×n : XT = X, XQ+QX = 0, tr(X) = 0

}
(9)

=

{
V

[
0 B
BT 0

]
V T ∈ Rn×n : B ∈ Rk×(n−k)

}
(10)

=

{
QV

[
0 B
−BT 0

]
V T ∈ Rn×n : B ∈ Rk×(n−k)

}
. (11)

Proof. By definition, a curve γ in Gr(k, n) passing through Q satisfies

γ(t)T − γ(t) = 0, γ(t)Tγ(t) = In, tr(γ(t)) = 2k − n, t ∈ (−ε, ε),
together with the initial condition γ(0) = Q. Differentiating these equations at t = 0, we get

γ̇(0)T − γ̇(0) = 0, γ̇(0)TQ+QTγ̇(0) = 0, tr(γ̇(0)) = 0,

from which (9) follows. Now take X ∈ TQ Gr(k, n). By (9), V TXV Ik,n−k = V T(XQ)V is skew-
symmetric and V TXV is symmetric. Partition

V TXV =

[
A B
BT C

]
, A ∈ Rk×k, B ∈ Rk×(n−k), C ∈ R(n−k)×(n−k).

Note that A and C are symmetric matrices since X is. So if

V TXV Ik,n−k =

[
A B
BT C

] [
I 0
0 −I

]
=

[
A −B
BT −C

]

SIMPLER GRASSMANNIAN OPTIMIZATION 9

is skew-symmetric, then we must have A = 0 and C = 0 and we obtain (10). Since Q = V Ik,n−kV
T

and Q = QT, (11) follows from (10) by writing V = QV Ik,n−k. �

The implicit form in (9) is inconvenient in algorithms. Of the two explicit forms (10) and (11),
the description in (10) is evidently more economical, involving only V , as opposed to both Q and V
as in (11). Henceforth, (10) will be our preferred choice and we will assume that a tangent vector
at Q ∈ Gr(k, n) always takes the form

X = V

[
0 B
BT 0

]
V T, (12)

for some B ∈ Rk×(n−k). This description appears to depend on the eigenbasis V , which is not
unique, as Q has many repeated eigenvalues. The next proposition, which relates two represen-
tations of the same tangent vector with respect to two different V ’s, guarantees that the tangent
space obtained will nonetheless be the same regardless of the choice of V .

Proposition 3.2 (Tangent vectors). If V1Ik,n−kV
T
1 = Q = V2Ik,n−kV

T
2 , then any X ∈ TQ Gr(k, n)

can be written as

X = V2

[
0 B
BT 0

]
V T
2 = V1

[
0 Q1BQ

T
2

Q2B
TQT

1 0

]
V T
1 ,

for some Q1 ∈ O(k) and Q2 ∈ O(n− k) such that

V2 = V1

[
Q1 0
0 Q2

]
. (13)

Proof. This is a consequence of the fact that V1Ik,n−kV
T
1 = Q = V2Ik,n−kV

T
2 iff there exist Q1 ∈ O(k)

and Q2 ∈ O(n− k) such that (13) holds. �

Another consequence of using (10) is that the tangent space at any pointQ is a copy of the tangent
space at Ik,n−k, conjugated by any eigenbasis V of Q; by Proposition 3.2, this is independent of
the choice of V .

Corollary 3.3 (Tangent space II). The tangent space at Ik,n−k is

TIk,n−k Gr(k, n) =

{[
0 B
BT 0

]
: B ∈ Rk×(n−k)

}
.

For any Q ∈ Gr(k, n) with eigendecomposition Q = V Ik,n−kV
T,

TQ Gr(k, n) = V
(
TIk,n−k Gr(k, n)

)
V T.

With the tangent spaces characterized, we may now define an inner product 〈·, ·〉Q on each
TQ Gr(k, n) that varies smoothly over all Q ∈ Gr(k, n), i.e., a Riemannian metric. With the
involution model, Gr(k, n) is a submanifold of O(n) and there is a natural choice, namely, the
Riemannian metric inherited from that on O(n).

Proposition 3.4 (Riemannian metric). Let Q ∈ Gr(k, n) with Q = V Ik,n−kV
T and

X = V

[
0 B
BT 0

]
V T, Y = V

[
0 C
CT 0

]
V T ∈ TQ Gr(k, n).

Then

〈X,Y 〉Q := tr(XY) = 2 tr(BTC) (14)

defines a Riemannian metric. The corresponding Riemannian norm is

‖X‖Q :=
√
〈X,X〉Q = ‖X‖F =

√
2‖B‖F. (15)

10 Z. LAI, L.-H. LIM, AND K. YE

The Riemannian metric in (14) is induced by the unique (up to a positive constant multiple)
bi-invariant Riemannian metric on O(n):

gQ(X,Y) := tr(XTY), Q ∈ O(n), X, Y ∈ TQ O(n).

Here bi-invariance may be taken to mean

gV1QV T
2

(V1XV
T
2 , V1Y V

T
2) = gQ(X,Y)

for all Q,V1, V2 ∈ O(n) and X,Y ∈ TQ O(n).
There are also natural Riemannian metrics [2, 24, 34] on the other four models in Table 2 but

they differ from each other by a constant. As such, it is not possible for us to choose our metric
(14) so that the diffeomorphisms in Propositions 2.2–2.5 are all isometry but we do have the next
best thing.

Proposition 3.5 (Isometry). All models in Table 2 are, up to a constant factor, isometric as
Riemannian manifolds.

Proof. We verify that the diffeomorphism ϕ1 in Proposition 2.2 gives an isometry between the
orthogonal model and the involution model up a constant factor of 8. A tangent vector [24,
Equation 2.30] at a point JV K ∈ O(n)/

(
O(k)×O(n− k)

)
takes the form

V

[
0 B
−BT 0

]
∈ TJV K O(n)/

(
O(k)×O(n− k)

)
, B ∈ Rk×(n−k);

and the Riemannian metric [24, Equation 2.31] on O(n)/
(
O(k)×O(n− k)

)
is given by

gJV K

(
V

[
0 B1

−BT
1 0

]
, V

[
0 B2

−BT
2 0

])
= tr(BT

1B2).

At In, the differential can be computed by

(dϕ1)JInK

(
In

[
0 B
−BT 0

])
= 2Ik,n−k

[
0 B
−BT 0

]
= 2

[
0 B
BT 0

]
.

Since both g and 〈·, ·〉 are invariant under left multiplication by O(n), we have〈
(dϕ1)JV K

(
V

[
0 B1

−BT
1 0

])
, (dϕ1)JV K

(
V

[
0 B2

−BT
2 0

])〉
ϕ1(JV K)

= 8 tr(BT
1B2).

The proofs for ϕ2, ϕ3, ϕ4 are similar and thus omitted. �

As the above proof shows, the diffeomorphism ϕ1 may be easily made an isometry of the orthog-
onal and involution models by simply changing our metric in (14) to “〈X,Y 〉Q := 1

8 tr(XY).” Had
we wanted to make ϕ2 into an isometry of the projection and involution models, we would have to
choose “〈X,Y 〉Q := 1

2 tr(XY)” instead. We see no reason to favor any single existing model and
we stick to our choice of metric in (14).

In the involution model, Gr(k, n) ⊆ O(n) as a smoothly embedded submanifold and every point
Q ∈ Gr(k, n) has a normal space NQ Gr(k, n). We will next determine the expressions for normal
vectors.

Proposition 3.6 (Normal space). Let Q ∈ Gr(k, n) with Q = V Ik,n−kV
T. The normal space of

Gr(k, n) at Q is given by

NQ Gr(k, n) =

{
V

[
Λ1 0
0 Λ2

]
V T ∈ Rn×n :

Λ1 ∈ Rk×k, Λ2 ∈ R(n−k)×(n−k)

ΛT
1 = −Λ1, ΛT

2 = −Λ2

}
.

SIMPLER GRASSMANNIAN OPTIMIZATION 11

Proof. The tangent space of a point Q ∈ O(n) is given by

TQ O(n) = {QΛ ∈ Rn×n : ΛT = −Λ}.

A tangent vector QΛ ∈ TQ O(n) is normal to Gr(k, n) at Q iff

0 = 〈X,QΛ〉Q = tr(XTQΛ),

for all X ∈ TQ Gr(k, n). By (12), X = V
[

0 B
BT 0

]
V T where Q = V Ik,n−kV

T. Thus

tr

(
V TΛV

[
0 −B
BT 0

])
= 0 (16)

for all B ∈ Rk×(n−k). Since (16) must hold for all B ∈ Rk×(n−k), we must have

Λ = V

[
Λ1 0
0 Λ2

]
V T, (17)

for some skew-symmetric matrices Λ1 ∈ Rk×k, Λ2 ∈ R(n−k)×(n−k), and therefore,

QΛ = V Ik,n−kV
TΛ = V

[
Λ1 0
0 −Λ2

]
V T.

Conversely, any Λ of the form in (17) must satisfy (16). �

Propositions 3.1 and 3.6 allow us to explicitly decompose the tangent space of O(n) at a point
Q ∈ Gr(k, n) into

TQ O(n) = TQ Gr(k, n)⊕ NQ Gr(k, n),

QΛ = QV

[
0 B
−BT 0

]
V T + V

[
Λ1 0
0 Λ2

]
V T.

For later purposes, it will be useful to give explicit expressions for the two projection maps.

Corollary 3.7 (Projection maps). Let Q ∈ Gr(k, n) with Q = V Ik,n−kV
T and

projTQ : TQ O(n)→ TQ Gr(k, n), projNQ : TQ O(n)→ NQ Gr(k, n)

be the projection maps onto the tangent and normal spaces of Gr(k, n) respectively. Then

projTQ(QΛ) =
1

2
(QΛ− ΛQ) =

1

2
V (S + ST)V T,

projNQ(QΛ) =
1

2
(QΛ + ΛQ) =

1

2
V (S − ST)V T,

(18)

for any decomposition QΛ = V SV T where S ∈ Rn×n is such that Ik,n−kS is skew-symmetric.

Proof. We see from Propositions 3.1 and 3.6 that the maps are well defined, i.e., 1
2(QΛ − ΛQ) ∈

TQ Gr(k, n) and 1
2(QΛ + ΛQ) ∈ NQ Gr(k, n), and the images are orthogonal as

〈QΛ− ΛQ,QΛ + ΛQ〉Q = 0.

The alternative expressions follow from taking S = Ik,n−kV
TΛV . �

12 Z. LAI, L.-H. LIM, AND K. YE

4. Exponential map, geodesic, and parallel transport

An explicit and easily computable formula for a geodesic curve is indispensable in most Rie-
mannian optimization algorithms. By Lemma 1.1, any Q ∈ Gr(k, n) can be eigendecomposed as
V Ik,n−kV

T for some V ∈ O(n). So a curve γ in Gr(k, n) takes the form

γ(t) = V (t)Ik,n−kV (t)T, (19)

with V (t) a curve in O(n) that can in turn be written as

V (t) = V exp(Λ(t)), (20)

where Λ(t) is a curve in the space of n× n skew-symmetric matrices, Λ(0) = 0, and V (0) = V . We
will show in Proposition 4.2 that in the involution model the curve Λ(t) takes a particularly simple
form. We first prove a useful lemma using the cs decomposition [29, 59].

Lemma 4.1. Let Λ ∈ Rn×n be skew-symmetric. Then there exist B ∈ Rk×(n−k) and two skew-
symmetric matrices Λ1 ∈ Rk×k, Λ2 ∈ R(n−k)×(n−k) such that

exp(Λ) = exp

([
0 B
−BT 0

])
exp

([
Λ1 0
0 Λ2

])
. (21)

Proof. By (8), we may assume k ≤ n/2. Let the cs decomposition of Q := exp(Λ) ∈ O(n) be

Q =

[
U 0
0 V

] cos Θ sin Θ 0
− sin Θ cos Θ 0

0 0 In−2k

[W 0
0 Z

]T
, (22)

where U,W ∈ O(k), V,Z ∈ O(n − k), Θ = diag(θ1, . . . , θk) with θi ∈ [0, 2π], i = 1, . . . , k. Next
we will show that we may always choose U,W, V, Z to have determinant one, i.e., U,W ∈ SO(k),
V,Z ∈ SO(n− k). To see this, note that

det(Q) = det(exp(Λ)) = 1, det

 cos Θ sin Θ 0
− sin Θ cos Θ 0

0 0 In−2k

 = 1,

and so we must have det(U) det(W) det(V) det(Z) = 1. If det(U) = det(W) = det(V) = det(Z) =

1, then we are done. If either two of them, or all four of them have determinant −1, let Îj :=
diag(1, . . . ,−1, . . . , 1), i.e., the identity matrix with its jth diagonal entry replaced by −1, then

inserting Î1 and Îk+1 in (22) allows us to change the signs of the determinants at will. For example,
if det(U) = det(Z) = −1, det(W) = det(V) = 1, then

Q =

[
U 0
0 V

]
Î1Î1

 cos Θ sin Θ 0
− sin Θ cos Θ 0

0 0 In−2k

 Îk+1Îk+1

[
W 0
0 Z

]T
=

[
U ′ 0
0 V ′

] cos Θ′ sin Θ′ 0
− sin Θ′ cos Θ′ 0

0 0 In−2k

[W ′ 0
0 Z ′

]T
and the new matrices U ′, V ′,W ′, Z ′ now satisfy det(U ′) = det(V ′) = det(W ′) = det(Z ′) = 1. It is
easy to check that in all cases, we may assume that U,W ∈ SO(k), V,Z ∈ SO(n− k) without loss
of generality. Now[

U 0
0 V

] cos Θ sin Θ 0
− sin Θ cos Θ 0

0 0 In−2k

 = exp

([
U 0
0 V

] 0 Θ 0
−Θ 0 0
0 0 0

[U 0
0 V

]T)[
U 0
0 V

]

= exp

([
0 B
−BT 0

])[
U 0
0 V

]
,

where B := U [Θ, 0]V T ∈ Rk×(n−k) with 0 ∈ Rk×(n−2k). As UW T ∈ SO(k) and V ZT ∈ SO(n−k), we
can find skew symmetric matrices Λ1,Λ2 with exp(Λ1) = UW T and exp(Λ2) = V ZT as required. �

SIMPLER GRASSMANNIAN OPTIMIZATION 13

Proposition 4.2 (Curve). Let Q ∈ Gr(k, n) with eigendecomposition Q = V Ik,n−kV
T. Then a

curve γ(t) in Gr(k, n) through Q may be expressed as

γ(t) = V exp

([
0 B(t)

−B(t)T 0

])
Ik,n−k exp

([
0 −B(t)

B(t)T 0

])
V T (23)

for some curve B(t) in Rk×(n−k) through the zero matrix.

Proof. By (19) and (20), we have

γ(t) = V exp
(
Λ(t)

)
Ik,n−k exp

(
−Λ(t)

)
V T.

By Lemma 4.1, we may write

exp
(
Λ(t)

)
= exp

([
0 B(t)

−B(t)T 0

])
exp

([
Λ1(t) 0

0 Λ2(t)

])
,

which gives the desired parametrization in (23). �

Proposition 4.2 yields another way to obtain the expression for tangent vectors in (12). Differ-
entiating the curve in (23) at t = 0, we get

γ̇(0) = V

([
0 −2Ḃ(0)

−2Ḃ(0)T 0

])
V T ∈ TQ Gr(k, n).

Choosing B(t) to be any curve in Rk×(n−k) with B(0) = 0 and Ḃ(0) = −B/2, we obtain (12).
The key ingredient in most manifold optimization algorithms is the geodesic at a point in a

direction. In [24], the discussion regarding geodesics on the Grassmannian is brief: Essentially, it
says that because a geodesic on the Stiefel manifold V(k, n) takes the form Q exp(tΛ), a geodesic
on the Grassmannian V(k, n)/O(k) takes the form JQ exp(tΛ)K. It is hard to be more specific when
one uses the Stiefel model. On the other hand, when we use the involution model, the expression
(25) in the next theorem describes a geodesic precisely, and any point on γ can be evaluated with
a single qr decomposition (to obtain V , see Section 7.1) and a single matrix exponentiation (the
two exponents are transposes of each other).

Theorem 4.3 (Geodesics I). Let Q ∈ Gr(k, n) and X ∈ TQ Gr(k, n) with

Q = V Ik,n−kV
T, X = V

[
0 B
BT 0

]
V T. (24)

The geodesic γ emanating from Q in the direction X is given by

γ(t) = V exp

(
t

2

[
0 −B
BT 0

])
Ik,n−k exp

(
t

2

[
0 B
−BT 0

])
V T. (25)

The differential equation for γ is

γ(t)Tγ̈(t)− γ̈(t)Tγ(t) = 0, γ(0) = Q, γ̇(0) = X. (26)

Proof. By Proposition 4.2, any curve through Q must take the form

γ(t) = V exp

([
0 B(t)

−B(t)T 0

])
Ik,n−k exp

([
0 −B(t)

B(t)T 0

])
V T,

where B(0) = 0. Since γ is in the direction X, we have that γ̇(0) = X, and thus Ḃ(0) = −B/2. It
remains to employ the fact that as a geodesic, γ is a critical curve of the length functional

L(γ) :=

∫ 1

0
‖γ̇(t)‖γ(t) dt

14 Z. LAI, L.-H. LIM, AND K. YE

where the Riemannian norm is as in (15). Let ε > 0. Consider a variation of γ(t) with respect to

a C1-curve C(t) in Rk×(n−k):

γε(t) = V exp

([
0 B(t) + εC(t)

−B(t)T − εC(t)T 0

])
Ik,n−k exp

([
0 −B(t)− εC(t)

B(t)T + εC(t)T 0

])
V T.

We require C(0) = C(1) = 0 so that γε is a variation of γ with fixed end points. The tangent vector
of γε at time t is given by

V exp

([
0 B(t) + εC(t)

−B(t)T − εC(t)T 0

])(
−2

[
0 Ḃ(t) + εĊ(t)

Ḃ(t) + εĊ(t)T 0

])
exp

([
0 −B(t)− εC(t)

B(t)T + εC(t)T 0

])
V T

and so ‖γ̇ε(t)‖γ(t) = 2
√

2‖Ḃ(t) + εĊ(t)‖F where ‖ · ‖F denotes Frobenius norm. Hence,

0 =
d

dε
L
(
γε(t)

)∣∣∣
ε=0

= 2
√

2

∫ 1

0

tr
(
Ḃ(t)TĊ(t)

)
‖Ḃ(t)‖F

dt.

As γ(t) is a geodesic, ‖γ̇(t)‖γ(t) and thus ‖Ḃ(t)‖F must be a constant K > 0. Therefore, we have

0 =
1

K

∫ 1

0
tr
(
Ḃ(t)TĊ(t)

)
dt = − 1

K

∫ 1

0
tr
(
B̈(t)TC(t)

)
dt,

implying that B̈(t) = 0 and thus B(t) = tḂ(0) = −tB/2. Lastly, since

γ̇(t) = V exp

([
0 B(t)

−B(t)T 0

])(
−2

[
0 Ḃ(t)

Ḃ(t)T 0

])
exp

([
0 −B(t)

B(t)T 0

])
V T,

γ̈(t) = V exp

([
0 B(t)

−B(t)T 0

])(
−4

[
Ḃ(t)Ḃ(t)T 0

0 −Ḃ(t)TḂ(t)

]
− 2

[
0 B̈(t)

B̈(t)T 0

])
exp

([
0 −B(t)

B(t)T 0

])
V T,

(27)

and the differential equation for a geodesic curve γ is

projTγ(t)(γ̈) = 0, γ(0) = Q, γ̇(0) = X,

we obtain (26) from the expression for tangent projection in (18). �

Theorem 4.3 also gives the exponential map of X.

Corollary 4.4 (Exponential map). Let Q ∈ Gr(k, n) and X ∈ TQ Gr(k, n) be as in (24). Then

expQ(X) := γ(1) = V exp

(
1

2

[
0 −B
BT 0

])
Ik,n−k exp

(
1

2

[
0 B
−BT 0

])
V T. (28)

The length of the geodesic segment from γ(0) = 0 to γ(1) = expQ(X) is

L(γ) = ‖X‖F =
√

2‖B‖F. (29)

The Grassmannian is geodesically complete and so any two points can be joined by a length-
minimizing geodesic. In the next proposition, we will derive an explicit expression for such a
geodesic in the involution model. By (8), there will be no loss of generality in assuming that
k ≤ n/2 in the following — if k > n/2, then we just replace k by n− k.

Proposition 4.5 (Geodesics II). Let k ≤ n/2. Let Q0, Q1 ∈ Gr(k, n) with eigendecompositions
Q0 = V0Ik,n−kV

T
0 and Q1 = V1Ik,n−kV

T
1 . Let the cs decomposition of V T

0 V1 ∈ O(n) be

V T
0 V1 =

[
U 0
0 V

] cos Θ sin Θ 0
− sin Θ cos Θ 0

0 0 In−2k

[W 0
0 Z

]T
(30)

where U,W ∈ O(k), V,Z ∈ O(n−k), Θ = diag(θ1, . . . , θk) ∈ Rk×k. Then the geodesic γ connecting
Q0 to Q1 is

γ(t) = V0 exp

(
t

2

[
0 −B
BT 0

])
Ik,n−k exp

(
t

2

[
0 B
−BT 0

])
V T
0 ,

SIMPLER GRASSMANNIAN OPTIMIZATION 15

where B = −2U [Θ, 0]V T ∈ Rk×(n−k) with 0 ∈ Rk×(n−2k).

Proof. By Theorem 4.3, γ is a geodesic curve emanating from γ(0) = V0Ik,n−kV
T
0 = Q0. It remains

to verify that

γ(1) = V0 exp

(
1

2

[
0 −B
BT 0

])
Ik,n−k exp

(
1

2

[
0 B
−BT 0

])
V T
0 = Q1,

when B = −2U [Θ, 0]V T. Substituting the expression for B,

γ(1) = V0

[
U 0
0 V

]
exp

 0 Θ 0
−Θ 0 0
0 0 0

 Ik,n−k exp

0 −Θ 0
Θ 0 0
0 0 0

[UT 0
0 V T

]
V T
0

= V0

[
U 0
0 V

] cos Θ sin Θ 0
− sin Θ cos Θ 0

0 0 In−2k

 Ik,n−k
cos Θ − sin Θ 0

sin Θ cos Θ 0
0 0 In−k

[UT 0
0 V T

]
V T
0

= V0

[
U 0
0 V

] cos Θ sin Θ 0
− sin Θ cos Θ 0

0 0 In−2k

[W T 0
0 ZT

]
Ik,n−k

[
W 0
0 Z

]cos Θ − sin Θ 0
sin Θ cos Θ 0

0 0 In−k

[UT 0
0 V T

]
V T
0

where the last equality holds because we have

Ik,n−k =

[
W T 0
0 ZT

]
Ik,n−k

[
W 0
0 Z

]
whenever W ∈ O(k) and Z ∈ O(n− k). By (30), the last expression of γ(1) equals

V0(V
T
0 V1)Ik,n−k(V

T
0 V1)

TV T
0 = V1Ik,n−kV

T
1 = Q1.

�

The geodesic expression in Proposition 4.5 requires a cs decomposition [29, 59] and is more
expensive to evaluate than the one in Theorem 4.3. Nevertheless, we do not need Proposition 4.5
for our optimization algorithms in Section 7, although its next corollary could be useful if one wants
to design proximal gradient methods in the involution model.

Corollary 4.6 (Geodesic distance). The geodesic distance between Q0, Q1 ∈ Gr(k, n) is given by

d(Q0, Q1) = 2
√

2
(∑k

i=1
σi(B)2

)1/2
= 2
√

2
(∑k

i=1
θi

)1/2
(31)

where B ∈ Rk×(n−k) and Θ ∈ Rk×k are as in Proposition 4.5.

Proof. By (29), L(γ) =
√

2‖B‖F = 2
√

2‖Θ‖F with B = −2U [Θ, 0]V T as in Proposition 4.5. �

The last expression in (31) differs from the expression in [24, Section 4.3] by a factor of 2
√

2,
which is exactly what we expect since the metrics in the involution and orthogonal models differ
by a factor of (2

√
2)2 = 8, as we saw in the proof of Proposition 3.5.

The notion of a logarithmic map is somewhat less standard and we remind readers of its definition.
Given a Riemannian manifold M and a point x ∈ M , there exists some r > 0 such that the
exponential map expx : Br(0) → M is a diffeomorphism on the ball Br(0) ⊆ TxM of radius
r centered at the origin [22, Theorem 3.7]. The logarithm map, sometimes called the inverse
exponential map, is then defined on the diffeomorphic image expx

(
Br(0)

)
⊆M by

logx : expx
(
Br(0)

)
→ TxM, logx(v) := exp−1x (v)

for all v ∈ expx
(
Br(0)

)
. The largest r so that expx is a diffeomorphism on Br(0) is the injectivity

radius at x and its infimum over all x ∈M is the injectivity radius of M .

16 Z. LAI, L.-H. LIM, AND K. YE

Corollary 4.7 (Logarithmic map). Let Q0, Q1 ∈ Gr(k, n) be such that d(Q0, Q1) <
√

2π. Let

V0, V1 ∈ O(n), and B ∈ Rk×(n−k) be as in Proposition 4.5. The logarithmic map at Q0 of Q1 is

logQ0
(Q1) = V0

[
0 −B
BT 0

]
V T
0 .

Proof. The injectivity radius of Gr(k, n) is well known to be π/2 [67]. Write Br(0) = {X ∈
TQ0 Gr(k, n) : ‖X‖Q < r} and Bd

r(Q0) = {Q ∈ Gr(k, n) : d(Q0, Q) < r}. By Corollaries 4.4 and
4.6,

expQ0

(
Bπ/2(0)

)
= Bd√

2π
(Q0).

By Corollary 4.4 and Proposition 4.5, logQ0
: B√2π(Q0)→ Gr(k, n) has the required expression. �

We end this section with the expression for the parallel transport of a vector Y along a geodesic
γ at a point Q in the direction X. This will be an essential ingredient for conjugate gradient and
Newton methods in the involution model (see Algorithms 3 and 4).

Proposition 4.8 (Parallel transport). Let Q ∈ Gr(k, n) and X,Y ∈ TQ Gr(k, n) with

Q = V Ik,n−kV
T, X = V

[
0 B
BT 0

]
V T, Y = V

[
0 C
CT 0

]
V T,

where V ∈ O(n) and B,C ∈ Rk×(n−k). Let γ be a geodesic curve emanating from Q in the direction
X. Then the parallel transport of Y along γ is

Y (t) = V exp

(
t

2

[
0 −B
BT 0

])[
0 C
CT 0

]
exp

(
t

2

[
0 B
−BT 0

])
V T. (32)

Proof. Let γ be parametrized as in (25). A vector field Y (t) that is parallel along γ(t) may, by
(12), be written in the form

Y (t) = V exp

(
t

2

[
0 −B
BT 0

])[
0 C(t)

C(t)T 0

]
exp

(
t

2

[
0 B
−BT 0

])
V T

for some curve C(t) in Rk×(n−k) with C(0) = C. Differentiating Y (t) gives

Ẏ (t) = V exp

(
t

2

[
0 −B
BT 0

])[
−1

2

(
BC(t)T + C(t)BT

)
Ċ(t)

Ċ(t)T 1
2

(
BTC(t) + C(t)TB

)] exp

(
t

2

[
0 B
−BT 0

])
V T.

Since Y (t) is parallel along γ(t), we must have

projTγ(t)
(
Ẏ (t)

)
= 0,

which implies that Ċ(t) = 0 and thus C(t) = C(0) = C, giving us (32). �

A word about our notation for parallel transport, or rather, the lack of one. Note that Y (t)
depends on γ and to indicate this dependence, we may write Yγ(t). Other common notations
include τtY [33], P γt Y [40], γts(Y) [46] (s = 0 for us) but there is no single standard notation.

5. Gradient and Hessian

We now derive expressions for the Riemannian gradient and Hessian of a C2 function f :
Gr(k, n)→ R in the involution model with (10) for tangent vectors. As a reminder, this means:

Gr(k, n) = {Q ∈ Rn×n : QTQ = I, QT = Q, tr(Q) = 2k − n},

TQ Gr(k, n) =
{
V

[
0 B
BT 0

]
V T ∈ Rn×n : B ∈ Rk×(n−k)

}
,

(33)

where Q = V Ik,n−kV
T.

SIMPLER GRASSMANNIAN OPTIMIZATION 17

Let Q ∈ Gr(k, n). Then the Riemannian gradient ∇f at Q is a tangent vector ∇f(Q) ∈
TQ Gr(k, n) and, depending on context, the Riemannian Hessian at Q is a bilinear map:

∇2f(Q) : TQ Gr(k, n)× TQ Gr(k, n)→ R.

Proposition 5.1 (Riemannian gradient I). Let f : Gr(k, n) → R be C1. For any Q ∈ Gr(k, n),
write

fQ :=

[
∂f

∂qij
(Q)

]n
i,j=1

∈ Rn×n. (34)

Then

∇f(Q) =
1

4

[
fQ + fT

Q −Q(fQ + fT
Q)Q

]
. (35)

Proof. The projection of QX ∈ TQRn×n to TQ O(n) is Q(X −XT)/2. Therefore the projection of
fQ ∈ TQRn×n to TQ O(n) is (fQ − QfT

QQ)/2. Composing this with the projection of TQ O(n) to

TQ Gr(k, n) given in (18), we get

∇f(Q) = projTQ

(
fQ −QfT

QQ

2

)
=

1

4

(
fQ + fT

Q −QfQQ−QfT
QQ
)

as required. �

Proposition 5.2 (Riemannian Hessian I). Let f : Gr(k, n)→ R be C2. For any Q = V Ik,n−kV
T ∈

Gr(k, n), let fQ be as in (34) and

fQQ(X) :=

[n∑
i,j=1

(∂2f

∂qij∂qkl
(Q)
)
xij

]n
k,l=1

, fQQ(X,Y) :=

n∑
i,j,k,l=1

(∂2f

∂qij∂qkl
(Q)
)
xijykl.

As a bilinear map, the Hessian of f at Q is given by

∇2f(Q)(X,Y) = fQQ(X,Y)− 1

2
tr
(
fT
QQ(XY + Y X)

)
(36)

for any X,Y ∈ TQ Gr(k, n).

Proof. Let γ be a geodesic curve emanating from Q in the direction X ∈ TQ Gr(k, n). Then

∇2f(Q)(X,X) =
d2

dt2
f
(
γ(t)

)∣∣∣∣
t=0

=
d

dt
tr
(
fT

γ(t)γ̇(t)
)∣∣∣∣
t=0

= fQQ(X) + tr
(
fT
Qγ̈(0)

)
.

Since γ(t) is given by (25),

γ̈(0) = V

[
−BBT 0

0 BTB

]
V T = −Qγ̇(0)2

and so

∇2f(Q)(X,X) = fQQ(X)− tr(fT
QQX

2).

To obtain ∇2f(Q) as a bilinear map, we simply polarize the quadratic form above:

∇2f(Q)(X,Y) =
1

2

[
∇2f(Q)(X + Y,X + Y)−∇2f(Q)(X,X)−∇2f(Q)(Y, Y)

]
=

1

2

[
fQQ(X + Y)− fQQ(X)− fQQ(Y)− tr

(
fT
QQ(XY + Y X)

)]
= fQQ(X,Y)− 1

2
tr
(
fT
QQ(XY + Y X)

)
.

�

18 Z. LAI, L.-H. LIM, AND K. YE

Our optimization algorithms require that we parameterize our tangent space as in (33) and we

need to express ∇f(Q) in such a form. This can be easily accomplished. Let Eij ∈ Rk×(n−k) be the
matrix whose (i, j) entry is zero and other entries are one. Let

Xij := V

[
0 Eij
ET
ij 0

]
V T ∈ TQ Gr(k, n). (37)

Then BQ := {Xij : i = 1, . . . , k, j = 1, . . . , n − k} is an orthogonal (but not orthonormal since

Riemannian norm ‖Xij‖Q = 1/
√

2) basis of TQ Gr(k, n).

Corollary 5.3 (Riemannian gradient II). Let f , Q, fQ be as in Propositions 5.1. If we partition

V T(fQ + fT
Q)V =

[
A B
BT C

]
, (38)

where A ∈ Rk×k, B ∈ Rk×(n−k), C ∈ R(n−k)×(n−k), then

∇f(Q) =
1

2
V

[
0 B
BT 0

]
V T. (39)

Proof. By (38), we may rewrite (35) as

∇f(Q) =
1

4

(
V

[
A B
BT C

]
V T − V

[
A −B
−BT C

]
V T

)
=

1

2
V

[
0 B
BT 0

]
V T.

�

In our optimization algorithms, (38) is how we actually compute Riemannian gradients. Note

that in the basis BQ, the gradient of f is essentially given by the matrix B/2 ∈ Rk×(n−k). So in
algorithms that rely only on Riemannian gradients, we just need the top right block B, but the
other blocks A and C would appear implicitly in the Riemannian Hessians.

We may order the basis BQ lexicographically (note that Xij ’s are indexed by two indices), then
the bilinear form ∇2f(Q) has the matrix representation

HQ :=

∇2f(Q)(X11, X11) ∇2f(Q)(X11, X12) . . . ∇2f(Q)(X11, Xk,n−k)
∇2f(Q)(X12, X11) ∇2f(Q)(X12, X12) . . . ∇2f(Q)(X12, Xk,n−k)

...
...

. . .
...

∇2f(Q)(Xk,n−k, X11) ∇2f(Q)(Xk,n−k, X12) . . . ∇2f(Q)(Xk,n−k, Xk,n−k)

 . (40)

In practice, the evaluation of HQ may be simplified; we will discuss this in Section 7.3. To summa-
rize, in the lexicographically ordered basis BQ,[

∇f(Q)
]
BQ

=
1

2
vec(B) ∈ Rk(n−k),

[
∇2f(Q)

]
BQ

= HQ ∈ Rk(n−k)×k(n−k),

and the Newton step S ∈ Rk×(n−k) is given by the linear system

HQ vec(S) = −1

2
vec(B). (41)

6. Retraction map and vector transport

Up till this point, everything that we have discussed is authentic Riemannian geometry, even
though we have used extrinsic coordinates to obtain expressions in terms of matrices and matrix
operations. This section is a departure, we will discuss two notions created for sole use in manifold
optimization: retraction maps [5, 57] and vector transports [3]. They are relaxations of exponential
maps and parallel transports respectively and are intended to be pragmatic substitutes in situations
where these Riemannian operations are either too difficult to compute (e.g., requiring the expo-
nential of a nonnormal matrix) or unavailable in closed form (e.g., parallel transport on a Stiefel

SIMPLER GRASSMANNIAN OPTIMIZATION 19

manifold). While the involution model does not suffer from either of these problems, retraction
algorithms could still serve as a good option for initializing Riemannian optimization algorithms.

As these definitions are not found in the Riemannian geometry literature, we state a version of
[3, Definitions 4.1.1 and 8.1.1] below for easy reference.

Definition 6.1. A map R : TM → M , (x, v) 7→ Rx(v) is a retraction map if it satisfies the
following two conditions:

(a) Rx(0) = x for all x ∈M ;
(b) dRx(0) : TxM → TxM is the identity map for all x ∈M .

A map T : TM ⊕ TM → TM associated to a retraction map R is a vector transport if it satisfies
the following three conditions:

(i) T (x, v, w) =
(
Rx(v), Tx,v(w)

)
for all x ∈M and v, w ∈ TxM ;

(ii) Tx,0(w) = w for all x ∈M and w ∈ TxM ;
(iii) Tx,v(a1w1 + a2w2) = a1Tx,v(w1) + a2Tx,v(w2) for all a1, a2 ∈ R, x ∈M , and v, w1, w2 ∈ TxM .

Here TM ⊕ TM is a direct sum of vector bundles and each element is parametrized by a point
x ∈M and two tangent vectors v, w ∈ TxM . The condition (i) says that the vector transport T is
compatible with its retraction map R, and also defines the map Tx,v : TxM → TxM . Note that v
is the direction to move in while w is the vector to be transported.

For the purpose of optimization, we just need R and T to be well-defined on a neighbourhood of
M ∼= {(x, 0) ∈ TM} ⊆ TM and M ∼= {(x, 0, 0) ∈ TM ⊕TM} ⊆ TM ⊕TM respectively. If R and
T are C1 maps, then various optimization algorithms relying on R and T can be shown to converge
[3], possibly under the additional assumption that M has nonnegative [18] or bounded sectional
curvature [62]. In particular, these results apply in our case since being a compact symmetric space,
Gr(k, n) has both nonnegative and bounded sectional curvature [14, 71].

Example 6.2 (Projection as retraction). For a manifold M embedded in Euclidean space Rn or
Rm×n, we may regard tangent vectors in TxM to be of the form x+ v. In this case an example of
a retraction map is given by the projection of tangent vectors onto M ,

Rx(v) = argmin
y∈M

‖x+ v − y‖,

where ‖ · ‖ is either the 2- or Frobenius norm. By [4, Lemma 3.1], the map Rx is well-defined for
small v and is a retraction.

We will give three retraction maps for Gr(k, n) that are readily computable in the involution
model with evd, block qr, and Cayley transform respectively. The latter two are inspired by similar
maps defined for the projection model in [34] although our motivations are somewhat different.

We begin by showing how one may compute the projection argmin
{
‖A − Q‖F : Q ∈ Gr(k, n)

}
for an arbitrary matrix A ∈ Rn×n in the involution model, a result that may be of independent
interest.

Lemma 6.3. Let A ∈ Rn×n and
A+AT

2
= V DV T (42)

be an eigendecomposition with V ∈ O(n) and D = diag(λ1, . . . , λn), λ1 ≥ · · · ≥ λn. Then Q =
V Ik,n−kV

T is a minimizer of

min
{
‖A−Q‖F : QTQ = I, QT = Q, tr(Q) = 2k − n

}
.

Proof. Since Q is symmetric, ‖A−Q‖2F = ‖(A+AT)/2−Q‖2F +‖(A−AT)/2‖2F , a best approximation
to A is also a best approximation to (A+AT)/2. By (42), ‖(A+AT)/2−Q‖F = ‖D−V TQV ‖F and
so for a best approximation V TQV must be a diagonal matrix. Since the eigenvalues δ1, . . . , δn of

20 Z. LAI, L.-H. LIM, AND K. YE

a symmetric orthogonal Q must be ±1 and tr(Q) = 2k − n, the multiplicities of +1 and −1 are k
and n− k respectively. By assumption, λ1 ≥ · · · ≥ λn, so

min
δ1+···+δn=2k−n

(λ1 − δ1)2 + · · ·+ (λn − δn)2

is attained when δ1 = · · · = δk = +1 and δk+1 = · · · = δn = −1. Hence V TQV = diag(δ1, . . . , δn) =
Ik,n−k as required. �

It is clear from the proof, which is a variation of standard arguments [37, Section 8.1], that a
minimizer is not unique if and only if λk = λk+1, i.e., the kth and (k+1)th eigenvalues of (A+AT)/2
coincide. Since any Q ∈ Gr(k, n) by definition has λk = +1 6= −1 = λk+1, the projection is always
unique in a small enough neighborhood of Q in Rn×n.

In the following, let E : Rn×n → O(n) be the map that takes any A ∈ Rn×n to an orthogonal
matrix of eigenvectors of (A+AT)/2.

Proposition 6.4 (Retraction I). Let Q ∈ Gr(k, n) and X,Y ∈ TQ Gr(k, n) with

Q = V Ik,n−kV
T, X = V

[
0 B
BT 0

]
V T, Y = V

[
0 C
CT 0

]
V T, (43)

where V ∈ O(n) and B,C ∈ Rk×(n−k). Then

REQ(X) = V E
([

I B
BT −I

])
Ik,n−kE

([
I B
BT −I

])T

V T

defines a retraction and

T EQ(X,Y) = V E
([

I B
BT −I

])[
0 C
CT 0

]
E
([

I B
BT −I

])T

V T

defines a vector transport.

Proof. It follows from Lemma 6.3 that REQ defines a projection. The properties in Definition 6.1
are routine to verify. �

As we will see later, the exponential map in our Riemannian algorithms may be computed in
O
(
nk(n−k)

)
time, so a retraction map that requires an evd offers no advantage. Furthermore, the

eigenvector map E is generally discontinuous [45], which can present a problem. One alternative
would be to approximate the map E with a qr decomposition — one should think of this as the first
step of Francis’s qr algorithm for evd. In fact, we will not even require a full qr decomposition,
a 2× 2 block qr decomposition suffices. Let Q : Rn×n → O(n) be a map that takes a matrix A to
its orthogonal factor in a 2× 2 block qr decomposition, i.e.,

A = Q(A)

[
R1 R2

0 R3

]
, R1 ∈ Rk×k, R2 ∈ Rk×(n−k), R3 ∈ R(n−k)×(n−k).

Note that Q(A) is an orthogonal matrix but the second factor just needs to be block upper trian-
gular, i.e., R1 and R3 are not required to be upper triangular matrices. We could compute Q(A)
with, say, the first k steps of Householder qr applied to A.

Proposition 6.5 (Retraction II). Let Q ∈ Gr(k, n) and X,Y ∈ TQ Gr(k, n) be as in (43). If Q is
well-defined and differentiable near Ik,n−k and Q(Ik,n−k) = I, then

RQQ(X) = VQ
(

1

2

[
I B
BT −I

])
Ik,n−kQ

(
1

2

[
I B
BT −I

])T

V T

defines a retraction and

TQQ (X,Y) = VQ
(

1

2

[
I B
BT −I

])[
0 C
CT 0

]
Q
(

1

2

[
I B
BT −I

])T

V T

SIMPLER GRASSMANNIAN OPTIMIZATION 21

defines a vector transport.

Proof. Only property (b) in Definition 6.1 is not immediate and requires checking. Let the following
be a block qr decomposition:

1

2

[
I tB
tBT −I

]
=

[
Q1(t) Q2(t)
Q3(t) Q4(t)

] [
R1(t) R2(t)

0 R3(t)

]
= Q(t)R(t), (44)

with Q(t) ∈ O(n). Since Q(t)Q(t)T = 1 and Q(0) = I, Q′(0) is skew-symmetric and

d

dt
Q(t)Ik,n−kQ(t)T

∣∣∣∣
t=0

=

[
Q′1(0) +Q′1(0)T −Q′2(0) +Q′3(0)T

Q′3(0)−Q′2(0)T −Q′4(0)−Q′4(0)T

]
=

[
0 2Q′3(0)T

2Q′3(0) 0

]
.

Comparing the (1, 1) and (2, 1) entries in (44), we get

Q1(t)R1(t) = I, Q3(t)R1(t) = tBT/2.

Hence Q3(t) = tBTQ1(t)/2, Q′3(0) = BTQ1(0)/2 = BT/2, and we get

d

dt
Q(t)Ik,n−kQ(t)T

∣∣∣∣
t=0

=

[
0 B
BT 0

]
,

as required. �

If we use a first-order Padé approximation exp(X) ≈ (I+X)(I−X)−1 for the matrix exponential
terms in the exponential map (28) and parallel transport (32), we obtain another retraction map
and vector transport. This Padé approximation is the well-known Cayley transform C, which takes
a skew-symmetric matrix to an orthogonal matrix and vice versa:

C : Λ2(Rn)→ O(n), Λ→ (I + Λ)(I − Λ)−1.

Proposition 6.6 (Retraction III). Let Q ∈ Gr(k, n) and X,Y ∈ TQ Gr(k, n) be as in (43). Then

RCQ(X) = V C
(

1

4

[
0 −B
BT 0

])
Ik,n−kC

(
1

4

[
0 −B
BT 0

])T

V T

defines a retraction and

T CQ(X,Y) = V C
(

1

4

[
0 −B
BT 0

])[
0 C
CT 0

]
C
(

1

4

[
0 −B
BT 0

])T

V T

defines a vector transport.

Proof. Again, only property (b) in Definition 6.1 is not immediate and requires checking. But this
is routine we omit the details. �

7. Algorithms

We will now discuss optimization algorithms for minimizing a function f : Gr(k, n) → R in
the involution model. In principle, this is equivalent to a quadratically constrained optimization
problem in n2 variables [qij]

n
i,j=1 = Q ∈ Rn×n:

minimize f(Q)
subject to QTQ = I, QT = Q, tr(Q) = 2k − n.

(45)

Nevertheless, if one attempts to minimize any of the objective functions f in Section 8 by treating
(45) as a general nonlinear constrained optimization problem using, say, the Matlab Optimization
Toolbox, every available method — interior point, trust region, sequential quadratic programming,
active set — will fail without even finding a feasible point, never mind a minimizer. The Riemannian
geometric objects and operations of the last few sections are essential to solving (45).

We will distinguish between two types of optimization algorithms. The retraction algorithms, as
its name implies, will be based on various retractions and vector transports discussed in Section 6.

22 Z. LAI, L.-H. LIM, AND K. YE

The Riemannian algorithms, on the other hand, are built upon true Riemannian geodesics and
parallel transports discussed in Section 4. Both types of algorithms will rely on the materials on
points in Section 2, tangent vectors and metric in Section 3, and Riemannian gradients and Hessians
in Section 5.

For both types of algorithms, the involution model offers one significant advantage over other
existing models. By (39) and (28), at a point Q ∈ Gr(k, n) and in a direction X ∈ TQ Gr(k, n), the
Riemannian gradient and the exponential map are

∇f(Q) = V

[
0 G/2

GT/2 0

]
V T, expQ(X) = V exp

([
0 −B/2

BT/2 0

])
Ik,n−k exp

([
0 B/2

−BT/2 0

])
V T

respectively. In the involution model, explicit parallel transport and exponential map can be
avoided. Instead of ∇f(Q) and expQ(X), it suffices to work with the matrices G,B ∈ Rk×(n−k) that
we will call effective gradient and effective step respectively, and doing so leads to extraordinarily
simple and straightforward expressions in our algorithms. We will highlight this simplicity at
appropriate junctures in Sections 7.2 and 7.3. Aside from simplicity, a more important consequence
is that all key computations in our algorithms are performed at the intrinsic dimension of Gr(k, n).
Our steepest descent direction, conjugate direction, Barzilai–Borwein step, Newton step, quasi-
Newton step, etc, would all be represented as k(n − k)-dimensional objects. This is a feature not
found in the algorithms of [2, 24, 34].

7.1. Initialization, eigendecomposition, and exponentiation. We begin by addressing three
issues that we will frequently encounter in our optimization algorithms.

First observe that it is trivial to generate a point Q ∈ Gr(k, n) in the involution model: Take
any orthogonal matrix V ∈ O(n), generated by say a qr decomposition of a random n× n matrix.
Then we always have Q := V Ik,n−kV

T ∈ Gr(k, n). We may easily generate as many random feasible
initial points for our algorithms as we desire or simply take Ik,n−k as our initial point.

The inverse operation of obtaining a V ∈ O(n) from a given Q ∈ Gr(k, n) so that Q = V Ik,n−kV
T

seems more expensive as it appears to require an evd. In fact, by the following observation, the
cost is the same — a single qr decomposition.

Lemma 7.1. Let Q ∈ Rn×n with QTQ = I, QT = Q, tr(Q) = 2k − n. If

1

2
(I +Q) = V

[
R1 R2

0 0

]
, V ∈ O(n), R1 ∈ Rk×k, R2 ∈ Rk×(n−k), (46)

is a qr decomposition, then Q = V Ik,n−kV
T.

Proof. Recall from (6) that for such a Q, we may write V = [Y,Z] where Y ∈ V(k, n) and Z ∈
V(n−k, n) are a +1-eigenbasis and a −1-eigenbasis of Q respectively. By Proposition 2.3, 1

2(I+Q)

is the projection matrix onto the +1-eigenspace im(Y) = im
(
1
2(I + Q)

)
, i.e., Y is an orthonormal

column basis for 1
2(I + Q) and is therefore given by its condensed qr decomposition. As for Z,

note that any orthonormal basis for im(Y)⊥ would serve the role, i.e., Z can be obtained from the
full qr decomposition. In summary,

1

2
(I +Q) = Y

[
R1

0

]
=
[
Y Z

] [R1 R2

0 0

]
.

As a sanity check, note that

1

2
(I +Q) = Y Y T =

[
Y Z

] [Ik 0
0 0

] [
Y
Z

]
= V

[
Ik 0
0 0

]
V T,

and therefore

Q = V

[
Ik 0
0 −In−k

]
V T = V Ik,n−kV

T.

�

SIMPLER GRASSMANNIAN OPTIMIZATION 23

Our expressions for tangent vector, exponential map, geodesic, parallel transport, retraction,
etc, at a point Q ∈ Gr(k, n) all involve its matrix of eigenvectors V ∈ O(n). So Lemma 7.1 plays
an important role in our algorithms. In practice, numerical stability considerations in the presence
of rounding errors [21, Section 3.5.2] require that we perform our qr decomposition with column
pivoting so that (46) becomes

1

2
(I +Q) = V

[
R1 R2

0 0

]
ΠT

where Π is a permutation matrix. This does not affect our proof above; in particular, note that we
have no need for R1 nor R2 nor Π in any of our algorithms.

The most expensive step in our Riemannian algorithms is the evaluation

B 7→ exp

([
0 B
−BT 0

])
(47)

for B ∈ Rk×(n−k). General algorithms for computing matrix exponential [37, 52] do not exploit
structures aside from normality. There are specialized algorithms that take advantage of skew-
symmetry3 [12] or both skew-symmetry and sparsity [20] or the fact (47) may be regarded as the
exponential map of a Lie algebra to a Lie group [13], but all of them require O(n3) cost. In [24],
the exponential is computed via an svd of B.

Fortunately for us, we have a fast algorithm for (47) based on Strang splitting [61] that takes
time at most 12nk(n − k). First observe a matrix in the exponent of (47) may be written as a
unique linear combination [

0 B
−BT 0

]
=

k∑
i=1

n−k∑
j=1

αij

[
0 Eij
−ET

ij 0

]
(48)

where αij ∈ R and Eij is the matrix whose (i, j) entry is one and other entries are zero. Observe
that

exp

(
θ

[
0 Eij
−ET

ij 0

])
=

[
I + (cos θ − 1)Eii (sin θ)Eij
−(sin θ)Eji I + (cos θ − 1)Ejj

]
=: Gi,j+k(θ)

is a Givens rotation in the ith and (j+k)th plane of θ radians [31, p. 240]. Strang splitting, applied
recursively to (48), then allows us to approximate

exp

([
0 B
−BT 0

])
≈ G1,1+k

(
1
2α11

)
G1,2+k

(
1
2α12

)
· · ·Gk,n−1

(
1
2αk,n−k−1

)
Gk,n

(
αk,n−k

)
Gk,n−1

(
1
2αk,n−k−1

)
· · ·G1,2+k

(
1
2α12

)
G1,1+k

(
1
2α11

)
. (49)

Computing the product in (49) is thus equivalent to computing a sequence of 2k(n− k)− 1 Givens
rotations, which takes time 12nk(n− k)− 6n. For comparison, directly evaluating (47) via an svd
of B would have taken time 4k(n− k)2 + 22k3 + 2n3 (first two summands for svd [31, p. 493], last
summand for two matrix-matrix products).

The approximation in (49) requires that ‖B‖ be sufficiently small [61]. But as gradient goes to
zero when the iterates converge to a minimizer, ‖B‖ will eventually be small enough for Strang
approximation. We initialize our Riemannian algorithms with retraction algorithms, which do not
require matrix exponential, i.e., run a few steps of a retraction algorithm to get close to a minimizer
before switching to a Riemannian algorithm.

3The retraction based on Cayley transform in Proposition 6.6 may be viewed as a special case of the Padé
approximation method in [12].

24 Z. LAI, L.-H. LIM, AND K. YE

7.2. Retraction algorithms. In manifold optimization algorithms, an iterate is a point on a
manifold and a search direction is a tangent vector at that point. Retraction algorithms rely on the
retraction mapRQ for updating iterates and vector transport TQ for updating search directions. Our
interest in retraction algorithms is primarily to use them to initialize the Riemannian algorithms
in the next section, and as such we limit ourselves to the least expensive ones.

A retraction-based steepest descent avoids even vector transport and takes the simple form

Qi+1 = RQi
(
−αi∇f(Qi)

)
,

an analogue of the usual xi+1 = xi − αi∇f(xi) in Euclidean space. As for our choice of retraction
map, again computational costs dictate that we exclude the projection REQ in Proposition 6.4

since it requires an evd, and limit ourselves to the qr retraction RQQ or Cayley retraction RCQ in
Propositions 6.5 and 6.6 respectively. We present the latter in Algorithm 1 as an example.

We select our step size αi using the well-known Barzilai–Borwein formula [9] but any line search
procedure may be used instead. Recall that over Euclidean space, there are two choices for the
Barzilai–Borwein step size:

αi =
sTi−1si−1

(gi − gi−1)Tsi−1
, αi =

(gi − gi−1)Tsi−1
(gi − gi−1)T(gi − gi−1)

, (50)

where si−1 := xi − xi−1. On a manifold M , the gradient gi−1 ∈ Txi−1 M would have to be first
parallel transported to TxiM and the step si−1 would need to be replaced by a tangent vector in
Txi−1 M so that the exponential map expxi−1

(si−1) = xi. Upon applying this procedure, we obtain

αi =
tr(ST

i−1Si−1)

tr
(
(Gi −Gi−1)TSi)

) , αi =
tr
(
(Gi −Gi−1)TSi−1

)
tr
(
(Gi −Gi−1)T(Gi −Gi−1)

) . (51)

In other words, it is as if we have naively replaced the gi and si in (50) by the effective gradient
Gi and the effective step Si. But (51) is indeed the correct Riemannian expressions for Barzilai–
Borwein step size in the involution model — the parallel transport and exponential map have
already been taken into account when we derive (51). This is an example of the extraordinary
simplicity of the involution model that we mentioned earlier and will see again in Section 7.3.

Of the two expressions for αi in (51), we chose the one on the right because our effective gradient
Gi, which is computed directly, is expected to be slightly more accurate than our effective step size
Si, which is computed from Gi. Other more sophisticated retraction algorithms [3] can be readily
created for the involution model using the explicit expressions derived in Section 6.

7.3. Riemannian algorithms. Riemannian algorithms, called “geometric algorithms” in [24], are
true geometric analogues of those on Euclidean spaces — straight lines are replaced by geodesic
curves, displacements by parallel transports, inner products by Riemannian metrics, gradients and
Hessians by their Riemannian counterparts. Every operation in a Riemannian algorithm is intrinsic:
iterates stay on the manifold, conjugate and search directions stay in tangent spaces, and there
are no geometrically meaningless operations like adding a point to a tangent vector or subtracting
tangent vectors from two different tangent spaces.

The involution model, like other models in [2, 24, 34], supplies a system of extrinsic coordinates
that allow geometric objects and operations to be computed with standard numerical linear algebra
but it offers a big advantage, namely, one can work entirely with the effective gradients and effective
steps. For example, it looks as if parallel transport is missing from our Algorithms 2–5, but that
is only because the expressions in the involution model can be simplified to an extent that gives
such an illusion. Our parallel transport is effectively contained in the step where we update the
eigenbasis Vi to Vi+1.

We begin with steepest descent in Algorithm 2, the simplest of our four Riemannian algorithms.
As in the case of Algorithm 1, we will use Barzilai–Borwein step size but any line search procedure
may be used to produce αi. In this case, any conceivable line search procedure would have required

SIMPLER GRASSMANNIAN OPTIMIZATION 25

Algorithm 1 Steepest descent with Cayley retraction

1: Initialize Q0 = V0Ik,n−kV
T
0 ∈ Gr(k, n).

2: for i = 0, 1, . . . do
3: compute effective gradient Gi at Qi . entries ∗ not needed

V T
i (fQi + fT

Qi)Vi =

[
∗ 2Gi

2GT
i ∗

]
;

4: if i = 0 then
5: initialize S0 = −G0, α0 = 1;
6: else
7: compute Barzilai–Borwein step . or get αi from line search

αi = tr
(
(Gi −Gi−1)TSi−1

)
/ tr
(
(Gi −Gi−1)T(Gi −Gi−1)

)
;

Si = −αiGi;
8: end if
9: perform Cayley transform

Ci =

[
I Si/4

−ST
i /4 I

] [
I −Si/4

ST
i /4 I

]−1
;

10: update eigenbasis . effective vector transport

Vi+1 = ViCi;

11: update iterate
Qi+1 = Vi+1Ik,n−kV

T
i+1;

12: end for

us to search over a geodesic curve and thus having to evaluate matrix exponential multiple times,
using the Barzilai–Borwein step size circumvents this problem entirely.

Unlike its retraction-based counterpart in Algorithm 1, here the iterates descent along geodesic
curves. Algorithm 1 may in fact be viewed as an approximation of Algorithm 2 where the matrix
exponential in Step 9 is replaced with its first-order Padé approximation, i.e., a Cayley transform.

Newton method, shown in Algorithm 3, is straightforward with the computation of Newton
step as in (41). In practice, instead of a direct evaluation of HQ ∈ Rk(n−k)×k(n−k) as in (40),
we determine HQ in a manner similar to Corollary 5.3. When regarded as a linear map HQ :
TQ Gr(k, n)→ TQ Gr(k, n), its value on a basis vector Xij in (37) is

HQ(Xij) =
1

4
V

[
0 Bij +AEij − EijC

(Bij +AEij − EijC)T 0

]
V T, (52)

where A,C are as in (38) and Bij is given by

V T
(
fQQ(Xij) + fQQ(Xij)

T
)
V =

[
∗ Bij
BT
ij ∗

]
,

for all i = 1, . . . , k, j = 1, . . . , n− k. Note that these computations can be performed completely in
parallel — with k(n− k) cores, entries of HQ can be evaluated all at once.

Our conjugate gradient uses the Polak–Ribière formula [55] for conjugate step size; it is straight-
forward to replace that with the formulas of Dai–Yuan [19], Fletcher–Reeves [27], or Hestenes–Stiefel
[35]. For easy reference:

βpri = tr
(
GT
i+1(Gi+1 −Gi)

)
/ tr(GT

iGi), βhsi = − tr
(
GT
i+1(Gi+1 −Gi)

)
/ tr
(
P T
i (Gi+1 −Gi)

)
,

βfri = tr(GT
i+1Gi+1)/ tr(GT

iGi), βdyi = − tr(GT
i+1Gi+1)/ tr

(
P T
i (Gi+1 −Gi)

)
.

(53)

26 Z. LAI, L.-H. LIM, AND K. YE

Algorithm 2 Steepest descent

1: Initialize Q0 = V0Ik,n−kV
T
0 ∈ Gr(k, n).

2: for i = 0, 1, . . . do
3: compute effective gradient Gi at Qi . entries ∗ not needed

V T
i (fQi + fT

Qi)Vi =

[
∗ 2Gi

2GT
i ∗

]
;

4: if i = 0 then
5: initialize S0 = −G0, α0 = 1;
6: else
7: compute Barzilai–Borwein step . or get αi from line search

αi = tr
(
(Gi −Gi−1)TSi−1

)
/ tr
(
(Gi −Gi−1)T(Gi −Gi−1)

)
;

Si = −αiGi;
8: end if
9: update eigenbasis . effective parallel transport

Vi+1 = Vi exp

([
0 −Si/2

ST
i /2 0

])
;

10: update iterate
Qi+1 = Vi+1Ik,n−kV

T
i+1;

11: end for

Algorithm 3 Newton’s method

1: Initialize Q0 = V0Ik,n−kV
T
0 ∈ Gr(k, n).

2: for i = 0, 1, . . . do
3: compute effiective gradient Gi at Qi

V T
i (fQi + fT

Qi)Vi =

[
Ai 2Gi

2GT
i Ci

]
;

4: generate Hessian matrix HQ by (40) or (52);
5: solve for effective Newton step Si

HQ vec(Si) = − vec(Gi);

6: update eigenbasis . effective parallel transport

Vi+1 = Vi exp

([
0 Si/2

−ST
i /2 0

])
;

7: update iterate
Qi+1 = Vi+1Ik,n−kV

T
i+1;

8: end for

It may appear from these formulas that we are subtracting tangent vectors from tangent spaces
at different points but this is an illusion. The effective gradients Gi and Gi+1 are defined by the
Riemannian gradients ∇f(Qi) ∈ TQi Gr(k, n) and ∇f(Qi+1) ∈ TQi+1 Gr(k, n) as in (39) but they are
not Riemannian gradients themselves. The formulas in (53) have in fact already accounted for the
requisite parallel transports. This is another instance of the simplicity afforded by the involution
model that we saw earlier in our Barzilai–Borwein step size (51) — our formulas in (53) are no
different from the standard formulas for Euclidean space in [19, 27, 35, 55]. Contrast these with

SIMPLER GRASSMANNIAN OPTIMIZATION 27

the formulas in [24, Equations 2.80 and 2.81], where the parallel transport operator τ makes an
explicit appearance and cannot be avoided.

Algorithm 4 Conjugate gradient

1: Initialize Q0 = V0Ik,n−kV
T
0 ∈ Gr(k, n).

2: Compute effective gradient G0 at Q0 . entries ∗ not needed

V T
0 (fQ0 + fT

Q0
)V0 =

[
∗ 2G0

2GT
0 ∗

]
;

3: initialize P0 = S0 = −G0, α0 = 1;
4: for i = 0, 1, . . . do
5: compute αi from line search of direction Pi and set

Si = αiPi;

6: update eigenbasis . effective parallel transport

Vi+1 = Vi exp

([
0 −Si/2

ST
i /2 0

])
;

7: update iterate
Qi+1 = Vi+1Ik,n−kV

T
i+1;

8: compute effective gradient Gi+1 at Qi+1 . entries ∗ not needed

V T
i+1(fX(Qi+1) + fX(Qi+1)

T)Vi+1 =

[
∗ 2Gi+1

2GT
i+1 ∗

]
;

9: compute Polak–Ribière conjugate step size

βi = tr
(
(Gi+1 −Gi)TGi+1

)
/ tr(GT

iGi);

10: update conjugate direction

Pi+1 = −Gi+1 + βiPi;

11: end for

Our quasi-Newton method, given in Algorithm 5, uses l-bfgs updates with two loops recursion
[54]. Observe that a minor feature of Algorithms 1, 2, 4, 5 is that they do not require vectorization
of matrices; everything can be computed in terms of matrix-matrix products, allowing for Strassen-
style fast algorithms. While it is straightforward to replace the l-bfgs updates with full bfgs, dfp,
sr1, or Broyden class updates, doing so will require that we vectorize matrices like in Algorithm 3.

7.4. Exponential-free algorithms? This brief section is speculative and may be safely skipped.
In our algorithms, an exponential matrix U := exp

([
0 B
−BT 0

])
is always4 applied as a conjugation

of some symmetric matrix X ∈ Rn×n:

X 7→ UXUT or X 7→ UTXU. (54)

In other words, the Givens rotations in (49) are applied in the form of Jacobi rotations [31, p. 477].
For a symmetric X, a Jacobi rotation X 7→ Gij(θ)XGij(θ)

T takes the same number (as opposed
to twice the number) of floating point operations as a Givens rotation applied on the left, X 7→
Gij(θ)X, or on the right, X 7→ XGij(θ). Thus with Strang splitting the operations in (54) take
time 12nk(n− k). To keep our algorithms simple, we did not take advantage of this observation.

In principle, one may avoid any actual computation of matrix exponential by simply storing the
k(n− k) Givens rotations in (49) without actually forming the product, and apply them as Jacobi
rotations whenever necessary. The storage of Gij(θ) requires just a single floating point number θ

4See steps 3, 10 in Algorithm 2; steps 3, 7 in Algorithm 3; steps 7, 8 in Algorithm 4; steps 3, 20 in Algorithm 5.

28 Z. LAI, L.-H. LIM, AND K. YE

Algorithm 5 Quasi-Newton with l-bfgs updates

1: Initialize Q0 = V0Ik,n−kV
T
0 ∈ Gr(k, n).

2: for i = 0, 1, . . . do
3: Compute effective gradient Gi at Qi . entries ∗ not needed

V T
i

(
fX(Qi) + fX(Qi)

T
)
Vi =

[
∗ 2Gi

2GT
i ∗

]
;

4: if i = 0 then
5: initialize S0 = −G0;
6: else
7: set Yi−1 = Gi −Gi−1 and P = Gi; . P is temporary variable for loop
8: for j = i− 1, . . . ,max(0, i−m) do
9: αj = tr(ST

jP)/ tr(Y T
j Sj);

10: P = P − αjYj ;
11: end for
12: set Z = tr(Y T

i−1Si−1)/ tr(Y T
i−1Yi−1)P ; . Z is temporary variable for loop

13: for j = max(0, i−m), . . . , i− 1 do
14: βj = tr(Y T

j Z)/ tr(Y T
j Sj);

15: Z = Z + (αj − βj)Sj ;
16: end for
17: set effective quasi-Newton step Si = −Z;
18: end if
19: update eigenbasis . effective parallel transport

Vi+1 = Vi exp

([
0 −Si/2

ST
i /2 0

])
;

20: update iterate
Qi+1 = Vi+1Ik,n−kV

T
i+1;

21: end for

and two indices but one would need to figure out how to update these k(n − k) Givens rotations
from one iteration to the next. We leave this as an open problem for interested readers.

7.5. Drawbacks of quotient models. This section, which may again be safely skipped, discusses
the pitfalls of modeling a manifold as a homogeneous space of matrices. In our context, this would
be the orthogonal, Stiefel, and full-rank models:

Gr(k, n) ∼= O(n)/
(
O(n− k)×O(k)

) ∼= V(k, n)/O(k) ∼= Rn×kk /GL(k). (55)

Such homogeneous space models take the form of a quotient B = E/G where B is the manifold we
want to optimize over, E is some other manifold on which we have optimization algorithms, and
G is some Lie group. The quotient map π : E → B, x 7→ JxK defines a principal bundle. The idea
of Riemannian optimization algorithms for such models is to lift every point on B up to the total
space E so that optimization algorithms on E can be applied. In Section 1, we only mentioned the
computational costs that come with lifting a point JxK ∈ B to x ∈ E and with checking equality of
points Jx1K = Jx2K given x1, x2. Here we focus on a more serious mathematical difficulty.

Since our goal is optimization, we cannot simply lift points on B to E in arbitrary ways. Ideally,
whatever method of lifting should at least be continuous, i.e., nearby points in B are lifted to nearby
points in E. In fact if we need first or second derivatives for the purpose of optimization, then the
lifting has to be differentiable to first or second order, as we will see below. In differential geometric
lingo, finding a lifting j is called finding a global section and it is impossible for any of the models

SIMPLER GRASSMANNIAN OPTIMIZATION 29

in (55). Take the Stiefel model for illustration, the quotient map π : V(k, n) → V(k, n)/O(k),
Y 7→ JY K, defines Gr(k, n) as an O(k)-principal bundle. This is not a trivial bundle, which is
equivalent to π not admitting a global section [38]. The consequence is that there is no global
‘Stiefel coordinates’ for Gr(k, n), i.e., we cannot represent all points of Gr(k, n) by points of V(k, n)
in a continuous manner.

We will use the Stiefel model as an illustration of the above discussion. Let f : V(k, n)/O(k)→ R
be a differentiable objective function and let π : V(k, n) → V(k, n)/O(k) be the quotient map,
which is always smooth. A lifting is a right inverse j : V(k, n)/O(k) → V(k, n) to π, i.e., π ◦

j(JY K) = JY K for any JY K ∈ V(k, n)/O(k). Note that such a map j is not unique. In order to use
standard numerical linear algebra, we have to work with actual matrices in V(k, n) as opposed to
equivalence classes of matrices in V(k, n)/O(k), so we need a way to assign to any equivalence class
in V(k, n)/O(k) a matrix in V(k, n) that represents that equivalence class — any such assignment
gives us a lifting.

Upon selecting a lifting j, we may then transform the problem of optimzing f : V(k, n)/O(k)→ R
to optimizing f ◦ π : j(V(k, n)/O(k))→ R. Note that j(V(k, n)/O(k)) ⊆ V(k, n) is a set of actual
matrices. The issue is that in order to have gradients and Hessians we also need f ◦ π to be
a differentiable function — this is only possible if its domain j(V(k, n)/O(k)) is a differential
manifold. But as we saw, we cannot even choose j to be continous, so j(V(k, n)/O(k)) is not even
a topological manifold. In the involution and projection models, we do not face these issues as a
point in Gr(k, n) is already represented by a matrix.

8. Numerical experiments

We will describe three sets of numerical experiments, testing Algorithms 1–5 on three different
objective functions, the first two are chosen because their true solutions can be independently
determined in closed-form, allowing us to ascertain that our algorithms have converged to the
global optimizer. All our codes are open source and publicly available at:

https://github.com/laizehua/Simpler-Grassmannians

The goal of these numerical experiments is to compare our algorithms for the involution model in
Section 7 with the corresponding algorithms for the Stiefel model in [24]. Algorithm 5, although
implemented in our codes, is omitted from our comparisons as quasi-Newton methods are not found
in [24].

8.1. Quadratic function. The standard test function for Grassmannian optimization is the qua-
dratic form in [24, Section 4.4] which, in the Stiefel model, takes the form tr(Y TFY) for a
symmetric F ∈ Rn×n and Y ∈ V(k, n). By Proposition 2.4, we write Q = 2Y Y T − I, then
tr(Y TFY) =

(
tr(FQ) + tr(F)

)
/2. Therefore, in the involution model, this optimization problem

takes an even simpler form

f(Q) = tr(FQ) (56)

forQ ∈ Gr(k, n). What was originally quadratic in the Stiefel model becomes linear in the involution
model. The minimizer of f ,

Q∗ := argmin
{

tr(FQ) : QTQ = I, QT = Q, tr(Q) = 2k − n
}
,

is given by Q∗ = ΠV Ik,n−kV
TΠT where

Π =

 1
. .

.

1

 and
F + F T

2
= V DV T

https://github.com/laizehua/Simpler-Grassmannians

30 Z. LAI, L.-H. LIM, AND K. YE

is an eigendecomposition with eigenbasis V ∈ O(n) and eigenvalues D := diag(λ1, . . . , λn) in
descending order. This follows from essentially the same argument5 used in the proof of Lemma 6.3
and the corresponding minimum is f(Q∗) = −λ1 − · · · − λk + λk+1 + · · ·+ λn.

For the function f(Q) = tr(FQ), the effective gradient Gi ∈ Rk×(n−k) in Algorithms 2, 4, 5 at
the point Qi = ViIk,n−kV

T
i ∈ Gr(k, n) is given by

V T
i FVi =

[
A Gi
GT
i C

]
.

The matrices A ∈ Rk×k and C ∈ R(n−k)×(n−k) are not needed for Algorithms 2, 4, 5 but they
are required in Algorithm 3. Indeed, the effective Newton step Si ∈ Rk×(n−k) in Algorithm 3 is
obtained by solving the Sylvester equation

ASi − SiC = 2Gi.

To see this, note that by Proposition 5.2, for any B ∈ Rk×(n−k),

∇2f(Qi)

(
Vi

[
0 B
BT 0

]
V T
i , Vi

[
0 Si
ST
i 0

]
V T
i

)
= −1

2
tr

([
A Gi
GT
i C

] [
XST

i + SiB
T 0

0 −BTSi − ST
i B

])
= − tr

(
BT(ASi − SiC)

)
,

and to obtain the effective Newton step (41), we simply set the last term to be equal to −2 tr(BTGi).

Figure 1. Convergence behavior of algorithms in the Stiefel and involution models.

Figure 1 compares the convergence behaviors of the algorithms in [24] for the Stiefel model and
our Algorithms 2, 3, 4 in the involution model: steepest descent with line search (gd) and with
Barzilai–Borwein step size (bb), conjugate gradient (cg), and Newton’s method (nt) for k = 6,
n = 16. We denote the ith iterate in the Stiefel and involution models by Yi and Qi respectively
— note that Yi is a 16 × 6 matrix with orthonormal columns whereas Qi is a 16 × 16 symmetric
orthogonal matrix. All algorithms are fed the same initial point obtained from 20 iterations of
Algorithm 1. The matrix F is generated randomly with standard normal entries. We use the

5Recall also that for any real numbers a1 ≤ · · · ≤ an, b1 ≤ · · · ≤ bn, and any permutation π, one always have that
a1bn + a2bn−1 + · · ·+ anb1 ≤ a1bπ(1) + a2bπ(2) + · · ·+ anbπ(n) ≤ a1b1 + a2b2 + · · ·+ anbn.

SIMPLER GRASSMANNIAN OPTIMIZATION 31

Armijo conditions for linesearch in gd and cg; but as in the Euclidean case, bb and nt are used
as is without linesearch. Since we have the true global minimizer in closed form, denoted by Y∗
and Q∗ in the respective model, the error is given by geodesic distance to the true solution. For
convenience we compute ‖YiY T

i − Y∗Y
T
∗ ‖F and ‖Qi − Q∗‖F, which are constant multiples of the

chordal distance [68, Table 2] (also called projection F-norm [24, p. 337]) and are equivalent, in the
sense of metrics, to the geodesic distance. Since we use a log scale, the vertical axes of the two
graphs in Figure 1 are effectively both geodesic distance and, in particular, their values may be
compared. The conclusion is clear: While Algorithms 2 (bb) and 3 (nt) in the involution model
attain a level of accuracy on the order of machine precision, the corresponding algorithms in the
Stiefel model do not. The reason is numerical stability, as we will see next.

Figure 2 shows the loss of orthogonality for various algorithms in the Stiefel and involution
models, measured respectively by ‖Y T

i Yi − I‖F and ‖Q2
i − I‖F. In the Stiefel model, the deviation

from orthogonality ‖Y T
i Yi − I‖F grows exponentially. In the worst case, the gd iterates Yi, which

of course ought to be of rank k = 6, actually converged to a rank-one matrix. In the involution
model, the deviation from orthogonality ‖Q2

i − I‖F remains below 10−13 for all algorithms — the
loss-of-orthogonality is barely noticeable.

Figure 2. Loss of orthogonality in the Stiefel and involution models.

A closer inspection of the algorithms for nt [24, p. 325] and cg [24, p. 327] in the Stiefel model
reveals why: A point Yi and the gradient Gi at that point are highly dependent on each other — an
ε-deviation from orthogonality in Yi results in an ε-error in Gi that in turn becomes a 2ε-deviation
from orthogonality in Yi+1, i.e., one loses orthogonality at an exponential rate. We may of course
reorthogonalize Yi at every iteration in the Stiefel model to artificially enforce the orthonormality
of its columns but this incurs additional cost and turns a Riemannian algorithm into a retraction
algorithm, as reorthogonalization of Yi is effectively a qr retraction.

Contrast this with the involution model: In Algorithms 3 (nt) and 4 (cg), the point Qi and the
effective gradient Gi are both computed directly from the eigenbasis Vi, which is updated to Vi+1

by an orthogonal matrix, or a sequence of Givens rotations if one uses Strang splitting as in (49).
This introduces a small (constant order) deviation from orthogonality each step. Consequently, the
deviation from orthogonality at worst grows linearly.

32 Z. LAI, L.-H. LIM, AND K. YE

8.2. Grassmann Procrustes problem. Let k,m, n ∈ N with k ≤ n. Let A ∈ Rm×n and B ∈
Rm×k. The minimization problem

min
QTQ=I

‖AQ−B‖F,

is called the Stiefel Procrustes problem [24, Section 3.5.2] and the special case k = n is the usual
orthogonal Procrustes problem [31, Section 6.4.1]. Respectively, these are

min
Q∈V(k,n)

‖AQ−B‖F and min
Q∈O(n)

‖AQ−B‖F.

One might perhaps wonder if there is also a Grassmann Procrustes problem

min
Q∈Gr(k,n)

‖AQ−B‖F. (57)

In fact, with the involution model for Gr(k, n), the problem (57) makes perfect sense, with the
requirement that k = n. The same argument in the proof of Lemma 6.3 shows that the minimizer
Q∗ of (57) is given by Q∗ = V Ik,n−kV

T where

ATB +BTA

2
= V DV T

is an eigendecomposition with eigenbasis V ∈ O(n) and eigenvalues D := diag(λ1, . . . , λn) in
descending order. The convergence and loss-of-orthogonality behaviors for this problem are very
similar to those in Section 8.1 and provides further confirmation for the earlier numerical results.
The plots from solving (57) for arbitrary A,B using any of Algorithms 2–5 are generated in our
codes but as they are nearly identical to Figures 1 and 2 we omit them here.

8.3. Fréchet mean and Karcher mean. Let Q1, . . . , Qm ∈ Gr(k, n) and consider the sum-of-
square-distances minimization problem:

min
Q∈Gr(k,n)

m∑
j=1

d2(Qj , Q), (58)

where d is the geodesic distance in (31). The global minimizer of this problem is called the Fréchet
mean and a local minimizer is called a Karcher mean [43]. For the case m = 2, a Fréchet mean
is the midpoint, i.e., t = 1/2, of the geodesic connecting Q1 and Q2 given by the closed-form
expression in Proposition 4.5. The objective function f in (58) is differentiable almost everywhere6

with its Riemannian gradient [42] given by

∇f(Q) = 2

m∑
j=1

logQ(Qj),

where the logarithmic map is as in Corollary 4.7. To the best of our knowledge, there is no simple
expression for ∇2f(Q) and as such we exclude Newton method from consideration below.

We will set k = 6, n = 16, and m = 3. Unlike the problems in Sections 8.1 and 8.2, the problem
in (58) does not have a closed-form solution when m > 2. Consequently we quantify convergence
behavior in Figure 3 by the rate gradient goes to zero. The deviation from orthogonality is quantified
as in Section 8.1 and shown in Figure 4. The instability of the algorithms in the Stiefel model is
considerably more pronounced here — both gd and cg failed to converge to a stationary point as
we see in Figure 3. The cause, as revealed by Figure 4, is a severe loss-of-orthogonality that we will
elaborate below.

The expression for geodesic distance d(Y, Y ′) between two points Y, Y ′ in the Stiefel model (see
[2, Section 3.8] or [68, Equation 7]) is predicated on the crucial assumption that each of these
matrices has orthonormal columns. As a result, a moderate deviation from orthonormality in an

6f is nondifferentiable only when Q falls on the cut locus of Qi for some i but the union of all cut loci of Q1, . . . , Qm
has codimension ≥ 1.

SIMPLER GRASSMANNIAN OPTIMIZATION 33

Figure 3. Convergence behavior of algorithms in the Stiefel and involution models.

iterate Y leads to vastly inaccurate values in the objective function value f(Y), which is a sum of m
geodesic distances squared. This is reflected in the graphs on the left of Figure 3 for the gd and cg
algorithms, whose step sizes come from line search and depend on these function values. Using the
bb step size, which does not depend on objective function values, avoids the issue. But for gd and
cg, the reliance on inaccurate function values leads to further loss-of-orthogonality, and when the
columns of an iterate Y are far from orthonormal, plugging Y into the expression for gradient simply
yields a nonsensical result, at times even giving an ascent direction in a minimization problem.

Figure 4. Loss of orthogonality in the Stiefel and involution models.

34 Z. LAI, L.-H. LIM, AND K. YE

For all three algorithms in the involution model, the deviation from orthogonality in the iterates
is kept at a negligible level of under 10−13 over the course of 100 iterations.

Acknowledgment. We would like to acknowledge the intellectual debt we owe to [2, 24, 34]. The
work in this article would not have been possible without drawing from their prior investigations.
The authors would also like to thank Nicolas Boumal for many helpful comments.

ZL and LHL are supported by the DARPA grant HR00112190040. In addition, ZL is supported
by a Neubauer Family Distinguished Doctoral Fellowship from the University of Chicago, and LHL
is supported by NSF IIS 1546413, DMS 1854831, and the Eckhardt Faculty Fund. KY is supported
by NSFC Grant no. 11688101, NSFC Grant no. 11801548 and National Key R&D Program of China
Grant no. 2018YFA0306702.

References

[1] H. Abe and T. Matsumura. Schur polynomials and weighted Grassmannians. J. Algebraic Combin., 42(3):875–
892, 2015.

[2] P.-A. Absil, R. Mahony, and R. Sepulchre. Riemannian geometry of Grassmann manifolds with a view on
algorithmic computation. Acta Appl. Math., 80(2):199–220, 2004.

[3] P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization algorithms on matrix manifolds. Princeton University
Press, Princeton, NJ, 2008.

[4] P.-A. Absil and J. Malick. Projection-like retractions on matrix manifolds. SIAM J. Optim., 22(1):135–158, 2012.
[5] R. L. Adler, J.-P. Dedieu, J. Y. Margulies, M. Martens, and M. Shub. Newton’s method on Riemannian manifolds

and a geometric model for the human spine. IMA J. Numer. Anal., 22(3):359–390, 2002.
[6] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. D. J. Dongarra, J. D. Croz, A. Greenbaum, S. Hammarling,

A. McKenney, and D. Sorensen. LAPACK Users’ Guide. SIAM, Philadelphia, PA, third edition, 1999.
[7] C. Bachoc, R. Coulangeon, and G. Nebe. Designs in Grassmannian spaces and lattices. J. Algebraic Combin.,

16(1):5–19, 2002.
[8] A. Barg and D. Y. Nogin. Bounds on packings of spheres in the Grassmann manifold. IEEE Trans. Inform.

Theory, 48(9):2450–2454, 2002.
[9] J. Barzilai and J. M. Borwein. Two-point step size gradient methods. IMA J. Numer. Anal., 8(1):141–148, 1988.

[10] R. Bhatia. Linear algebra to quantum cohomology: the story of Alfred Horn’s inequalities. Amer. Math. Monthly,
108(4):289–318, 2001.

[11] A. R. Calderbank, R. H. Hardin, E. M. Rains, P. W. Shor, and N. J. A. Sloane. A group-theoretic framework
for the construction of packings in Grassmannian spaces. J. Algebraic Combin., 9(2):129–140, 1999.

[12] J. R. Cardoso and F. S. Leite. Exponentials of skew-symmetric matrices and logarithms of orthogonal matrices.
J. Comput. Appl. Math., 233(11):2867–2875, 2010.

[13] E. Celledoni and A. Iserles. Methods for the approximation of the matrix exponential in a Lie-algebraic setting.
IMA J. Numer. Anal., 21(2):463–488, 2001.

[14] J. Cheeger and D. G. Ebin. Comparison theorems in Riemannian geometry. AMS Chelsea Publishing, Providence,
RI, 2008.

[15] Y. Chikuse. Statistics on special manifolds, volume 174 of Lecture Notes in Statistics. Springer-Verlag, New York,
NY, 2003.

[16] E. S. Coakley, V. Rokhlin, and M. Tygert. A fast randomized algorithm for orthogonal projection. SIAM J. Sci.
Comput., 33(2):849–868, 2011.

[17] J. H. Conway, R. H. Hardin, and N. J. A. Sloane. Packing lines, planes, etc.: packings in Grassmannian spaces.
Experiment. Math., 5(2):139–159, 1996.

[18] J. X. da Cruz Neto, L. L. de Lima, and P. R. Oliveira. Geodesic algorithms in Riemannian geometry. Balkan J.
Geom. Appl., 3(2):89–100, 1998.

[19] Y. H. Dai and Y. Yuan. A nonlinear conjugate gradient method with a strong global convergence property. SIAM
J. Optim., 10(1):177–182, 1999.

[20] N. Del Buono, L. Lopez, and R. Peluso. Computation of the exponential of large sparse skew-symmetric matrices.
SIAM J. Sci. Comput., 27(1):278–293, 2005.

[21] J. W. Demmel. Applied numerical linear algebra. SIAM, Philadelphia, PA, 1997.
[22] M. P. do Carmo. Riemannian geometry. Mathematics: Theory & Applications. Birkhäuser, Boston, MA, 1992.
[23] D. W. Dreisigmeyer. Direct search methods on reductive homogeneous spaces. J. Optim. Theory Appl.,

176(3):585–604, 2018.
[24] A. Edelman, T. A. Arias, and S. T. Smith. The geometry of algorithms with orthogonality constraints. SIAM J.

Matrix Anal. Appl., 20(2):303–353, 1999.

SIMPLER GRASSMANNIAN OPTIMIZATION 35

[25] M. Ehler and M. Gräf. Reproducing kernels for the irreducible components of polynomial spaces on unions of
Grassmannians. Constr. Approx., 49(1):29–58, 2019.

[26] M. Farber and A. Postnikov. Arrangements of equal minors in the positive Grassmannian. Adv. Math., 300:788–
834, 2016.

[27] R. Fletcher and C. M. Reeves. Function minimization by conjugate gradients. Comput. J., 7:149–154, 1964.
[28] P. Galashin and P. Pylyavskyy. Ising model and the positive orthogonal Grassmannian. Duke Math. J.,

169(10):1877–1942, 2020.
[29] E. S. Gawlik, Y. Nakatsukasa, and B. D. Sutton. A backward stable algorithm for computing the CS decompo-

sition via the polar decomposition. SIAM J. Matrix Anal. Appl., 39(3):1448–1469, 2018.
[30] D. G. Giovanis and M. D. Shields. Data-driven surrogates for high dimensional models using Gaussian process

regression on the Grassmann manifold. Comput. Methods Appl. Mech. Engrg., 370:113269, 2020.
[31] G. H. Golub and C. F. Van Loan. Matrix computations. Johns Hopkins Studies in the Mathematical Sciences.

Johns Hopkins University Press, Baltimore, MD, fourth edition, 2013.
[32] M. Harandi, R. Hartley, C. Shen, B. Lovell, and C. Sanderson. Extrinsic methods for coding and dictionary

learning on Grassmann manifolds. Int. J. Comput. Vis., 114(2-3):113–136, 2015.
[33] S. Helgason. Differential geometry, Lie groups, and symmetric spaces, volume 34 of Graduate Studies in Mathe-

matics. AMS, Providence, RI, 2001.
[34] U. Helmke, K. Hüper, and J. Trumpf. Newton’s method on Graßmann manifolds. preprint, arXiv:0709.2205,

2007.
[35] M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems. J. Research Nat. Bur.

Standards, 49:409–436 (1953), 1952.
[36] N. J. Higham. Accuracy and stability of numerical algorithms. SIAM, Philadelphia, PA, second edition, 2002.
[37] N. J. Higham. Functions of matrices. SIAM, Philadelphia, PA, 2008.
[38] D. Husemoller. Fibre bundles, volume 20 of Graduate Texts in Mathematics. Springer-Verlag, New York, third

edition, 1994.
[39] B. Jiang and Y.-H. Dai. A framework of constraint preserving update schemes for optimization on Stiefel mani-

fold. Math. Program., 153(2, Ser. A):535–575, 2015.
[40] J. Jost. Riemannian geometry and geometric analysis. Universitext. Springer, Cham, seventh edition, 2017.
[41] V. Jurdjevic, I. Markina, and F. Silva Leite. Extremal curves on Stiefel and Grassmann manifolds. J. Geom.

Anal., 108(4):289–318, 2019.
[42] H. Karcher. Riemannian center of mass and mollifier smoothing. Comm. Pure Appl. Math., 30(5):509–541, 1977.
[43] H. Karcher. Riemannian center of mass and so called Karcher mean. preprint, arXiv:1407.2087, 2014.
[44] S. N. Karp. Sign variation, the Grassmannian, and total positivity. J. Combin. Theory Ser. A, 145:308–339,

2017.
[45] T. Kato. Perturbation theory for linear operators. Classics in Mathematics. Springer-Verlag, Berlin, 1995.
[46] S. Kobayashi and K. Nomizu. Foundations of differential geometry. Vol. II. Wiley Classics Library. John Wiley

and Sons, New York, NY, 1996.
[47] I. Le and C. Fraser. Tropicalization of positive Grassmannians. Selecta Math. (N.S.), 25(5):Paper No. 75, 55 pp.,

2019.
[48] P. Mattila. Geometry of sets and measures in Euclidean spaces, volume 44 of Cambridge Studies in Advanced

Mathematics. Cambridge University Press, Cambridge, 1995.
[49] A. Medra and T. N. Davidson. Incremental Grassmannian feedback schemes for multi-user MIMO systems. IEEE

Trans. Signal Process., 63(5):1130–1143, 2015.
[50] B. Mishra, H. Kasai, P. Jawanpuria, and A. Saroop. A Riemannian gossip approach to subspace learning on

Grassmann manifold. Mach. Learn., 108(10):1783–1803, 2019.
[51] B. Mishra and R. Sepulchre. Riemannian preconditioning. SIAM J. Optim., 26(1):635–660, 2016.
[52] C. Moler and C. Van Loan. Nineteen dubious ways to compute the exponential of a matrix, twenty-five years

later. SIAM Rev., 45(1):3–49, 2003.
[53] L. I. Nicolaescu. Lectures on the geometry of manifolds. World Scientific, Hackensack, NJ, second edition, 2007.
[54] J. Nocedal and S. J. Wright. Numerical optimization. Springer Series in Operations Research and Financial

Engineering. Springer, New York, NY, second edition, 2006.
[55] E. Polak and G. Ribière. Note sur la convergence de méthodes de directions conjuguées. Rev. Française Informat.

Recherche Opérationnelle, 3(16):35–43, 1969.
[56] A. Sarlette and R. Sepulchre. Consensus optimization on manifolds. SIAM J. Control Optim., 48(1):56–76, 2009.
[57] M. Shub. Some remarks on dynamical systems and numerical analysis. In Dynamical systems and partial differ-

ential equations (Caracas, 1984), pages 69–91. Univ. Simon Bolivar, Caracas, 1986.
[58] G. Sonnevend, J. Stoer, and G. Zhao. On the complexity of following the central path of linear programs by

linear extrapolation. II. volume 52, pages 527–553. 1991.

36 Z. LAI, L.-H. LIM, AND K. YE

[59] G. W. Stewart. Computing the CS decomposition of a partitioned orthonormal matrix. Numer. Math., 40(3):297–
306, 1982.

[60] G. W. Stewart. Matrix algorithms I: Basic decompositions. SIAM, Philadelphia, PA, 1998.
[61] G. Strang. On the construction and comparison of difference schemes. SIAM J. Numer. Anal., 5:506–517, 1968.
[62] Y. Sun, N. Flammarion, and M. Fazel. Escaping from saddle points on Riemannian manifolds. In Advances in

Neural Information Processing Systems, pages 7276–7286, 2019.
[63] L. N. Trefethen and D. Bau, III. Numerical linear algebra. SIAM, Philadelphia, PA, 1997.
[64] D. S. Watkins. Fundamentals of matrix computations. Pure and Applied Mathematics. John Wiley and Sons,

Hoboken, NJ, third edition, 2010.
[65] Z. Wen and W. Yin. A feasible method for optimization with orthogonality constraints. Math. Program., 142(1-2,

Ser. A):397–434, 2013.
[66] J. H. Wilkinson. The algebraic eigenvalue problem. Monographs on Numerical Analysis. Oxford University Press,

New York, NY, 1988.
[67] Y.-C. Wong. Differential geometry of Grassmann manifolds. Proc. Nat. Acad. Sci. U.S.A., 57:589–594, 1967.
[68] K. Ye and L.-H. Lim. Schubert varieties and distances between subspaces of different dimensions. SIAM J. Matrix

Anal. Appl., 37(3):1176–1197, 2016.
[69] G. Zhao. Representing the space of linear programs as the Grassmann manifold. Math. Program., 121(2, Ser.

A):353–386, 2010.
[70] L. Zheng and D. N. C. Tse. Communication on the Grassmann manifold: a geometric approach to the noncoherent

multiple-antenna channel. IEEE Trans. Inform. Theory, 48(2):359–383, 2002.
[71] W. Ziller. Examples of Riemannian manifolds with non-negative sectional curvature. In Surveys in differential

geometry. Vol. XI, volume 11 of Surv. Differ. Geom., pages 63–102. International Press, Somerville, MA, 2007.

Computational and Applied Mathematics Initiative, University of Chicago, Chicago, IL 60637-1514.
Email address: laizehua@uchicago.edu, lekheng@uchicago.edu

KLMM, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190,
China

Email address: keyk@amss.ac.cn

	1. Introduction
	1.1. Existing models
	1.2. Proposed model
	1.3. Nomenclatures and notations

	2. Points and change-of-coordinates
	3. Metric, tangents, and normals
	4. Exponential map, geodesic, and parallel transport
	5. Gradient and Hessian
	6. Retraction map and vector transport
	7. Algorithms
	7.1. Initialization, eigendecomposition, and exponentiation
	7.2. Retraction algorithms
	7.3. Riemannian algorithms
	7.4. Exponential-free algorithms?
	7.5. Drawbacks of quotient models

	8. Numerical experiments
	8.1. Quadratic function
	8.2. Grassmann Procrustes problem
	8.3. Fréchet mean and Karcher mean
	Acknowledgment

	References

