
Constructive Approximation (2022) 55:583–604
https://doi.org/10.1007/s00365-021-09545-2

Best k-Layer Neural Network Approximations

Lek-Heng Lim1 ·Mateusz Michałek2,3 · Yang Qi4

Received: 12 December 2019 / Accepted: 10 November 2020 / Published online: 7 June 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
We show that the empirical risk minimization (ERM) problem for neural networks
has no solution in general. Given a training set s1, . . . , sn ∈ R

p with corresponding
responses t1, . . . , tn ∈ R

q , fitting a k-layer neural network νθ : R
p → R

q involves
estimation of the weights θ ∈ R

m via an ERM:

inf
θ∈Rm

n∑

i=1

‖ti − νθ (si )‖22.

We show that even for k = 2, this infimum is not attainable in general for common
activations like ReLU, hyperbolic tangent, and sigmoid functions. In addition, we
deduce that if one attempts to minimize such a loss function in the event when its
infimum is not attainable, it necessarily results in values of θ diverging to±∞.Wewill
show that for smooth activations σ(x) = 1/

(
1+ exp(−x)

)
and σ(x) = tanh(x), such

failure to attain an infimum can happen on a positive-measured subset of responses.
For the ReLU activation σ(x) = max(0, x), we completely classify cases where
the ERM for a best two-layer neural network approximation attains its infimum. In
recent applications of neural networks, where overfitting is commonplace, the failure
to attain an infimum is avoided by ensuring that the system of equations ti = νθ (si ),
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i = 1, . . . , n, has a solution. For a two-layer ReLU-activated network, we will show
when such a system of equations has a solution generically, i.e., when can such a
neural network be fitted perfectly with probability one.

Keywords Neural network · Best approximation · Join loci · Secant loci

Mathematics Subject Classification 92B20 · 41A50 · 41A30

1 Introduction

Let αi : R
di → R

di+1 , x �→ Ai x + bi be an affine function with Ai ∈ R
di+1×di

and bi ∈ R
di+1 , i = 1, . . . , k. Given any fixed activation function σ : R → R, we

will abuse notation slightly by also writing σ : R
d → R

d for the function where σ

is applied coordinatewise, i.e., σ(x1, . . . , xd) = (σ (x1), . . . , σ (xd)), for any d ∈ N.
Consider a k-layer neural network ν : R

p → R
q ,

ν = αk ◦ σ ◦ αk−1 ◦ · · · ◦ σ ◦ α2 ◦ σ ◦ α1, (1)

obtained from alternately composing σ with affine functions k times. Note that
such a function ν is parameterized (and completely determined) by its weights
θ := (Ak, bk, . . . , A1, b1) in

� := (Rdk+1×dk × R
dk+1) × · · · × (Rd2×d1 × R

d2) ∼= R
m . (2)

Here and throughout this article,

m :=
k∑

i=1

(di + 1)di+1 (3)

will always denote the number of weights that parameterize ν. In neural networks
lingo, the dimension of the i th layer di is also called the number of neurons in the i th
layer. Whenever it is necessary to emphasize the dependence of ν on θ , we will write
νθ for a k-layer neural network parameterized by θ ∈ �.

Consider the function approximation problem with1 dk+1 = 1, i.e., given � ⊆ R
d1

and a target function f : � → R in some Banach space B = L p(�), Wk,p(�),
BMO(�), etc., how well can f be approximated by a neural network νθ : � → R in
the Banach space norm ‖ · ‖B? In other words, one is interested in the problem

inf
θ∈�

‖ f − νθ‖B. (4)

1 Results may be extended to dk+1 > 1 by applying them coordinatewise, i.e., with B ⊗ R
dk+1 in place

of B.
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Themost celebrated results along these lines are the universal approximation theorems
of Cybenko [5], for sigmoidal activation and L1-norm, as well as those of Hornik et al.
[8,9], for more general activations such as ReLU and L p-norms, 1 ≤ p ≤ ∞. These
results essentially say that the infimum in (4) is zero as long as k is at least two (but
with no bound on d2). In this article, for simplicity, we will focus on the L2-norm.
Henceforth, we denote the dimensions of the first and last layers by

p := d1 and q := dk+1

to avoid the clutter of subscripts.
Traditional studies of neural networks in approximation theory [5,7–9] invariably

assume that�, the domain of the target function f in the problem (4), is an open subset
ofRp. Nevertheless, any actual training of a neural network involves only finitelymany
points s1, . . . , sn ∈ � and the values of f on these points: f (s1) = t1, . . . , f (sn) = tn .
Therefore, in reality, one only solves problem (4) for a finite � = {s1, . . . , sn} and
this becomes a parameter estimation problem commonly called the empirical risk
minimization problem. Let s1, . . . , sn ∈ � ⊆ R

p be a sample of n independent,
identically distributed observations with corresponding responses t1, . . . , tn ∈ R

q .
The main computational problem in supervised learning with neural networks is to fit
the training set {(si , ti ) ∈ R

p × R
q : i = 1, . . . , n} with a k-layer neural network

νθ : � → R
q so that

ti ≈ νθ (si ), i = 1, . . . , n,

often in the least-squares sense

inf
θ∈�

n∑

i=1

‖ti − νθ (si )‖22. (5)

The responses are regarded as values of the unknown function f : � → R
q to be

learned, i.e., ti = f (si ), i = 1, . . . , n. The hope is that by solving (5) for θ∗ ∈ R
m ,

the neural network obtained νθ∗ will approximate f well in the sense of having small
generalization errors, i.e., f (s) ≈ νθ∗(s) for s /∈ {s1, . . . , sn}. This hope has been
borne out empirically in spectacular ways [10,12,16].

Observe that the empirical risk estimation problem (5) is simply the function
approximation problem (4) for the case when � is a finite set equipped with the
counting measure. The problem (4) asks how well a given target function can be
approximated by a given function class, in this case the class of k-layer σ -activated
neural networks. This is an infinite-dimensional problem when � is infinite and is
usually studied using functional analytic techniques. On the other hand, (5) asks how
well the approximation is at finitely many sample points, a finite-dimensional prob-
lem, and is therefore amenable to techniques in algebraic and differential geometry.
We would like to emphasize that the finite-dimensional problem (5) is not any easier
than the infinite-dimensional problem (4); they simply require different techniques. In
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particular, our results do not follow from the results in [3,7,14] for infinite-dimensional
spaces—we will have more to say about this in Sect. 2.

There is a parallel with [15], where we applied methods from algebraic and dif-
ferential geometry to study the empirical risk minimization problem corresponding to
nonlinear approximation, i.e., where one seeks to approximate a target function by a
sum of k atoms ϕ1, . . . , ϕk from a dictionary D,

inf
ϕi∈D

‖ f − ϕ1 − ϕ2 − · · · − ϕk‖B.

If we denote the layers of a neural network by ϕi ∈ L , then (4) may be written in a
form that parallels the above:

inf
ϕi∈L

‖ f − ϕk ◦ ϕk−1 ◦ · · · ◦ ϕ1‖B.

Again our goal is to study the corresponding empirical risk minimization problem,
i.e., the approximation problem (5). The first surprise is that this may not always have
a solution. For example, take n = 6 and p = q = 2 with

s1 =
[−2
0

]
, s2 =

[−1
0

]
, s3 =

[
0
0

]
, s4 =

[
1
0

]
, s5 =

[
2
0

]
, s6 =

[
1
1

]
,

t1 =
[
2
0

]
, t2 =

[
1
0

]
, t3 =

[
0
0

]
, t4 =

[−2
0

]
, t5 =

[−4
0

]
, t6 =

[
0
1

]
.

For a ReLU-activated two-layer neural network, the approximation problem (5) seeks
weights θ = (A, b, B, c) that attain the infimum over all A, B ∈ R

2×2, b, c ∈ R
2 of

the loss function

∥∥∥∥

[
2
0

]
−

[
Bmax

(
A

[−2
0

]
+ b,

[
0
0

])
+ c

]∥∥∥∥
2

+
∥∥∥∥

[
1
0

]
−

[
Bmax

(
A

[−1
0

]
+ b,

[
0
0

])
+ c

]∥∥∥∥
2

+
∥∥∥∥

[
0
0

]
−

[
Bmax

(
A

[
0
0

]
+ b,

[
0
0

])
+ c

]∥∥∥∥
2

+
∥∥∥∥

[−2
0

]
−

[
Bmax

(
A

[
1
0

]
+ b,

[
0
0

])
+ c

]∥∥∥∥
2

+
∥∥∥∥

[−4
0

]
−

[
Bmax

(
A

[
2
0

]
+ b,

[
0
0

])
+ c

]∥∥∥∥
2

+
∥∥∥∥

[
0
1

]
−

[
Bmax

(
A

[
1
1

]
+ b,

[
0
0

])
+ c

]∥∥∥∥
2

.

We will see in the proof of Theorem 1 that this has no solution. Any sequence
of θ = (A, b, B, c) chosen so that the loss function converges to its infimum will
have ‖θ‖2 = ‖A‖2F + ‖b‖22 + ‖B‖2F + ‖c‖22 becoming unbounded—the entries of θ

will diverge to ±∞ in such a way that keeps the loss function bounded and in fact
convergent to its infimum.2

With a smooth activation like hyperbolic tangent in place of ReLU, we can establish
a stronger nonexistence result: In Theorem5,we show that there is a positive-measured
set U ⊆ (Rq)n such that for any target values (t1, . . . , tn) ∈ U , the empirical risk
estimation problem (5) has no solution.

2 We assume the Euclidean norm ‖θ‖2 := ∑k
i=1‖Ai‖2F + ‖bi‖22 on our parameter space �, but results in

this article are independent of the choice of norms as all norms are equivalent on finite-dimensional spaces,
another departure from the infinite-dimensional case in [7,14].
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Whenever one attempts to minimize a function that does not have a minimum (i.e.,
infimum is not attained), one runs into serious numerical issues. We establish this
formally in Proposition 1, showing that the parameters θ must necessarily diverge to
±∞when one attempts tominimize (5) in the event when its infimum is not attainable.

Our study here may thus shed some light on a key feature of modern deep neural
networks, made possible by the abundance of computing power not available to early
adopters like the authors of [5,7–9]. Deep neural networks are, almost by definition
and certainly in practice, heavily overparameterized. In this case, whatever training
data (s1, t1), . . . , (sn, tn) may be perfectly fitted and in essence one solves the system
of neural network equations:

ti = νθ (si ), i = 1, . . . , n, (6)

for a solution θ ∈ � and thereby circumvents the issue of whether the infimum in (5)
can be attained. This in our view is the reason ill-posedness issues did not prevent the
recent success of neural networks. For a two-layer ReLU-activated neural network,
we will address the question of whether (6) has a solution generically in Sect. 5.

A word about our use of the term “ill-posedness” is in order: Recall that a problem
is said to be ill-posed if a solution either (i) does not exist, (ii) exists but is not unique,
or (iii) exists and is unique but does not depend continuously on the input parameters
of the problem. When we claimed that the problem (5) is ill-posed, it is in the sense
of (i), clearly the most serious issue of the three—(ii) and (iii) may be ameliorated
with regularization or other strategies but not (i). We use “ill-posedness” mainly in
the sense of (i) throughout our article. The work in [13], for example, is solely about
ill-posedness in the sense of (ii).

2 Geometry of Empirical Risk Minimization for Neural Networks

Given that we are interested in the behavior of νθ as a function of weights θ , we will
rephrase (5) to put it on more relevant footing. Let the sample s1, . . . , sn ∈ R

p and
responses t1, . . . , tn ∈ R

q be arbitrary but fixed. Henceforth, we will assemble the
sample into a design matrix,

S :=

⎡

⎢⎢⎢⎣

sT1
sT2
...

sTn

⎤

⎥⎥⎥⎦ ∈ R
n×p, (7)

and the corresponding responses into a response matrix,

T :=

⎡

⎢⎢⎢⎣

t T1
t T2
...

t Tn

⎤

⎥⎥⎥⎦ ∈ R
n×q . (8)
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Here and for the rest of this article, we use the following numerical linear algebra
conventions:

• a vector a ∈ R
n will always be regarded as a column vector;

• a row vector will always be denoted aT for some column vector a;
• a matrix A ∈ R

n×p may be denoted either

– as a list of its column vectors A = [a1, . . . , ap], i.e., a1, . . . , ap ∈ R
n are

columns of A;
– or as a list of its row vectors A = [αT

1, . . . , α
T
n]T, i.e., α1, . . . , αn ∈ R

p are
rows of A.

We will also adopt the convention that treats a direct sum of p subspaces (resp. cones)
in R

n as a subspace (resp. cone) of R
n×p: If V1, . . . , Vp ⊆ R

n are subspaces (resp.
cones), then

V1 ⊕ · · · ⊕ Vp := {[v1, . . . , vp] ∈ R
n×p : v1 ∈ V1, . . . , vp ∈ Vp}. (9)

Let νθ : R
p → R

q be a k-layer neural network, k ≥ 2. We define the weights map
ψk : � → R

n×q by

ψk(θ) =

⎡

⎢⎢⎢⎣

νθ (s1)T

νθ (s2)T

...

νθ (sn)T

⎤

⎥⎥⎥⎦ ∈ R
n×q .

In other words, for a fixed sample, ψk is νθ regarded as a function of the weights θ .
The empirical risk minimization problem is (5) rewritten as

inf
θ∈�

‖T − ψk(θ)‖F , (10)

where ‖ · ‖F denotes the Frobenius norm.Wemay view (10) as amatrix approximation
problem—finding a matrix in

ψk(�) = {ψk(θ) ∈ R
n×q : θ ∈ �} (11)

that is nearest to a given matrix T ∈ R
n×q .

Definition 1 We will call the set ψk(�) the image of weights of the k-layer neural
network νθ and the corresponding problem (10) a best k-layer neural network approx-
imation problem.

As we noted in (2), the space of all weights � is essentially the Euclidean space R
m

and uninteresting geometrically, but the image of weightsψk(�), as we will see in this
article, has complicated geometry (e.g., for k = 2 and ReLU activation, it is the join
locus of a line and the secant locus of a cone—see Theorem 2). In fact, the geometry
of the neural network is the geometry of ψk(�). We expect that it will be pertinent to
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understand this geometry if one wants to understand neural networks at a deeper level.
For one, the nontrivial geometry of ψk(�) is the reason that the best k-layer neural
network approximation problem, which is to find a point in ψk(�) closest to a given
T ∈ R

n×q , lacks a solution in general.
Indeed, the most immediate mathematical issues with the approximation problem

(10) are the existence and uniqueness of solutions:

(i) a nearest point may not exist since the set ψk(�) may not be a closed subset of
R
n×q , i.e., the infimum in (10) may not be attainable;

(ii) even if it exists, the nearest point may not be unique, i.e., the infimum in (10) may
be attained by two or more points in ψk(�).

As a reminder a problem is said to be ill-posed if it lacks existence and uniqueness
guarantees. Ill-posedness creates numerous difficulties both logical (what does it mean
to find a solution when it does not exist?) and practical (which solution do we find
when there are more than one?). In addition, a well-posed problem near an ill-posed
one is the very definition of an ill-conditioned problem [4], which presents its own
set of difficulties. In general, ill-posed problems are not only to be avoided but also
delineated to reveal the region of ill-conditioning.

For the function approximation problem (4) with � an open subset of R
p, the

nonexistence issue of a best neural network approximant is very well known, dating
back to [7], with a series of follow-up works, e.g., [3,14]. But for the case that actually
occurs in the training of a neural network, i.e., where � is a finite set, (4) becomes (5)
or (10) and its well-posedness has never been studied, to the best of our knowledge.
Our article seeks to address this gap. The geometry of the set in (11) will play an
important role in studying these problems, much like the role played by the geometry
of rank-k tensors in [15].

Wewill show that formany networks, the problem (10) is ill-posed.We have already
mentioned an explicit example at the end of Sect. 1 for the ReLU activation:

σmax(x) := max(0, x) (12)

where (10) lacks a solution; we will discuss this in detail in Sect. 4. Perhaps more
surprisingly, for the sigmoidal and hyperbolic tangent activation functions:

σexp(x) := 1

1 + exp(−x)
and σtanh(x) := tanh(x),

we will see in Sect. 6 that (10) lacks a solution with positive probability, i.e., there
exists an open set U ⊆ R

n×q such that for any T ∈ U , there is no nearest point in
ψk(�). Similar phenomenon is known for real tensors [6, Sect. 8].

For neural networks with ReLU activation, we are unable to establish similar “fail-
ure with positive probability” results, but the geometry of the problem (10) is actually
simpler in this case. For two-layer ReLU-activated networks, we can completely char-
acterize the geometry ofψ2(�), which provides us with greater insights as to why (10)
generally lacks a solution. We can also determine the dimension of ψ2(�) in many
instances. These will be discussed in Sect. 5.
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The following map will play a key role in this article, and we give it a name to
facilitate exposition.

Definition 2 (ReLU projection) The map σmax : R
d → R

d where the ReLU activation
(12) is applied coordinatewise will be called a ReLU projection. For any � ⊆ R

d ,
σmax(�) ⊆ R

d will be called a ReLU projection of �.

Note that a ReLU projection is a linear projection when restricted to any orthant of
R
d .

3 Geometry of a “One-Layer Neural Network”

We start by studying the “first part” of a two-layer ReLU-activated neural network:

R
p α−→ R

q σmax−−→ R
q

and, slightly abusing terminologies, call this a one-layer ReLU-activated neural net-
work. Note that the weights here are θ = (A, b) ∈ R

q×(p+1) = � with A ∈ R
q×p,

b ∈ R
q that define the affine map α(x) = Ax + b.

Let the sample S = [sT1, . . . , sTn]T ∈ R
n×p be fixed. Define the weight map ψ1 :

� → R
n×q by

ψ1(A, b) = σmax

⎛

⎜⎝

⎡

⎢⎣
As1 + b

...

Asn + b

⎤

⎥⎦

⎞

⎟⎠ , (13)

where σmax is applied coordinatewise.
Recall that a coneC ⊆ R

d is simply a set invariant under scaling by positive scalars,
i.e., if x ∈ C , then λx ∈ C for all λ > 0. Note that we do not assume that a cone
has to be convex; in particular, in our article the dimension of a cone C refers to its
dimension as a semialgebraic set.

Definition 3 (ReLU cone) Let S = [sT1, . . . , sTn]T ∈ R
n×p. The ReLU cone of S is the

set

Cmax(S) :=

⎧
⎪⎨

⎪⎩
σmax

⎛

⎜⎝

⎡

⎢⎣
aTs1 + b

...

aTsn + b

⎤

⎥⎦

⎞

⎟⎠ ∈ R
n : a ∈ R

p, b ∈ R

⎫
⎪⎬

⎪⎭
.

The ReLU cone is clearly a cone. Such cones will form the building blocks for the
image of weights ψk(�). In fact, it is easy to see that Cmax(S) is exactly ψ1(�) in the
case when q = 1. The next lemma describes the geometry of ReLU cones in greater
detail.

Lemma 1 Let S = [sT1, . . . , sTn]T ∈ R
n×p.
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(i) The set Cmax(S) is always a closed pointed cone of dimension

dimCmax(S) = rank[S,1]. (14)

Here, [S,1] ∈ R
n×(p+1) is augmented with an extra column 1 := [1, . . . , 1]T ∈

R
n, the vector of all ones.

(ii) A set C ⊆ R
n is a ReLU cone if and only if it is a ReLU projection of some linear

subspace in R
n containing the vector 1.

Proof Consider the map in (13) with q = 1. Then ψ1 : � → R
n is given by a

composition of the linear map

� → R
n,

[
a
b

]
�→

⎡

⎢⎣
sT1a + b

...

sTna + b

⎤

⎥⎦ = [S,1]
[
a
b

]
,

whose image is a linear space L of dimension rank[S,1] containing 1, and the ReLU
projection σmax : R

n → R
n . Since Cmax(S) = ψ1(�), it is a ReLU projection of a

linear subspace in R
n , which is clearly a closed pointed cone.

For its dimension, note that aReLUprojection is a linear projection on eachquadrant
and thus cannot increase dimension. On the other hand, since 1 ∈ L , we know that L
intersects the interior of the nonnegative quadrant on which σmax is the identity; thus,
σmax preserves dimension and we have (3).

Conversely, a ReLU projection of any linear space L may be realized as Cmax(S)

for some choice of S—just choose S so that the image of the matrix [S,1] is L . ��
It follows from Lemma 1 that the image of weights of a one-layer ReLU neural

network has the geometry of a direct sum of q closed pointed cones. Recall our
convention for direct sum in (9).

Corollary 1 Consider the one-layer ReLU-activated neural network

R
p α1−→ R

q σmax−−→ R
q .

Let S ∈ R
n×p. Then ψ1(�) ⊆ R

n×q has the structure of a direct sum of q copies of
Cmax(S) ⊆ R

n. More precisely,

ψ1(�) = {[v1, . . . , vq ] ∈ R
n×q : v1, . . . , vq ∈ Cmax(S)}. (15)

In particular, ψ1(�) is a closed pointed cone of dimension q · rank[S,1] in R
n×q .

Proof Each row of the matrix α1 can be identified with the affine map defined in
Lemma 1. The conclusion follows from Lemma 1. ��
Given Corollary 1, one might perhaps think that a two-layer neural network

R
d1 α1−→ R

d2 σmax−−→ R
d2 α2−→ R

d3
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592 Constructive Approximation (2022) 55:583–604

would also have a closed image of weights ψ2(�). This turns out to be false. We will
show that the image ψ2(�) may not be closed.

As a side remark, note that Definition 3 and Lemma 1 are peculiar to the ReLU
activation. For smooth activations like σexp and σtanh, the image of weights ψk(�) is
almost never a cone and Lemma 1 does not hold in multiple ways.

4 Ill-Posedness of Best k-Layer Neural Network Approximation

The k = 2 case is the simplest and yet already nontrivial in that it has the universal
approximation property, aswementioned earlier. Themain content of the next theorem
is in its proof, which is constructive and furnishes an explicit example of a function
that does not have a best approximation by a two-layer neural network. The reader is
reminded that even training a two-layer neural network is already an NP-hard problem
[1,2].

Theorem 1 (Ill-posedness of neural network approximation I) The best two-layer
ReLU-activated neural network approximation problem

inf
θ∈�

‖T − ψ2(θ)‖F (16)

is ill-posed, i.e., the infimum in (16) cannot be attained in general.

Proof We will construct an explicit two-layer ReLU-activated network whose image
of weights is not closed. Let d1 = d2 = d3 = 2. For the two-layer ReLU-activated
network

R
2 α1−→ R

2 σmax−−→ R
2 α2−→ R

2,

the weights take the form

θ = (A1, b1, A2, b2) ∈ R
2×2 × R

2 × R
2×2 × R

2 = � ∼= R
12,

i.e., m = 12. Consider a sample S of size n = 6 given by

si =
[
i − 3
0

]
, i = 1, . . . , 5, s6 =

[
1
1

]
,

that is

S =

⎡

⎢⎢⎢⎢⎢⎢⎣

−2 0
−1 0
0 0
1 0
2 0
1 1

⎤

⎥⎥⎥⎥⎥⎥⎦
∈ R

6×2.
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Thus, the weight map ψ2 : � → R
6×2, or, more precisely,

ψ2 : R
2×2 × R

2 × R
2×2 × R

2 → R
6×2,

is given by

ψ2(θ) =
⎡

⎢⎣
νθ (s1)T

...

νθ (s6)T

⎤

⎥⎦ =
⎡

⎢⎣

(
A2 max(A1s1 + b1, 0) + b2

)T
...(

A2 max(A1s6 + b1, 0) + b2
)T

⎤

⎥⎦ ∈ R
6×2.

We claim that the image of weights ψ2(�) is not closed—the point

T =

⎡

⎢⎢⎢⎢⎢⎢⎣

2 0
1 0
0 0

−2 0
−4 0
0 1

⎤

⎥⎥⎥⎥⎥⎥⎦
∈ R

6×2 (17)

is in the closure of ψ2(�) but not in ψ2(�). Therefore, for this choice of T , the
infimum in (16) is zero but is never attainable by any point in ψ2(�).

We will first prove that T is in the closure of ψ2(�): Consider a sequence of affine
transformations α

(k)
1 , k = 1, 2, . . . , defined by

α
(k)
1 (si ) = (i − 3)

[−1
1

]
, i = 1, . . . , 5, α

(k)
1 (s6) =

[
2k
k

]
,

and set

α
(k)
2

([
x
y

])
=

[
x − 2y

1
k y

]
.

The sequence of two-layer neural networks,

ν(k) = α
(k)
2 ◦ σmax ◦ α

(k)
1 , k ∈ N,

have weights given by

θk =
([−1 2k + 1

1 k − 1

]
,

[
0
0

]
,

[
1 −2
0 1

k

]
,

[
0
0

])
(18)

and that

lim
k→∞ ψ2(θk) = T .
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This shows that T in (17) is indeed in the closure of ψ2(�).
We next show by contradiction that T /∈ ψ2(�). Write T = [t T1, . . . , t T6]T ∈ R

6×2

where t1, . . . , t6 ∈ R
2 are as in (17). Suppose T ∈ ψ2(�). Then there exist some

affine maps β1, β2 : R
2 → R

2 such that

ti = β2 ◦ σmax ◦ β1(si ), i = 1, . . . , 6.

As t1, t3, t6 are affinely independent, β2 has to be an affine isomorphism. Hence, the
five points

σmax(β1(s1)), . . . , σmax(β1(s5)) (19)

have to lie on a line in R
2. Also, note that

β1(s1), . . . , β1(s5) (20)

lie on a (different) line in R
2 since β1 is an affine homomorphism. The five points in

(20) have to be in the same quadrant; otherwise, the points in (19) could not lie on a line
or have successive distances δ, δ, 2δ, 2δ for some δ > 0. Note that σmax : R

2 → R
2

is identity in the first quadrant, projection to the y-axis in the second, projection to
the point (0, 0) in the third, and projection to the x-axis in the fourth. So σmax takes
points with equal successive distances in the first, second, fourth quadrant to points
with equal successive distances in the same quadrant, and it takes all points in the
third quadrant to the origin. Hence, σmax cannot take the five colinear points in (20),
with equal successive distances, to the five collinear points in (19), with successive
distances δ, δ, 2δ, 2δ. This yields the required contradiction. ��

Wewould like to emphasize that the example constructed in the proof of Theorem 1,
which is about the nonclosedness of the image of weights within a finite-dimensional
space of response matrices, differs from examples in [7,14], which are about the
nonclosedness of the class of neural network within an infinite-dimensional space
of target functions. Another difference is that here we have considered the ReLU
activation σmax as opposed to the hyperbolic tangent activation σexp in [7,14]. The
“neural networks” studied in [3] differ from standard usage [5,7–9,14] in the sense of
(1); they are defined as a linear combination of neural networks whose weights are
fixed in advanced and approximation is in the sense of finding the coefficients of such
linear combinations. As such the results in [3] are irrelevant to our discussion.

As we pointed out at the end of Sect. 1 and as the reader might also have observed
in the proof of Theorem 1, the sequence of weights θ j in (18) contain entries that
become unbounded as j → ∞. This is not peculiar to the sequence we chose in (18);
by the same discussion in [6, Sect. 4.3], this will always be the case:

Proposition 1 If the infimum in (10) is not attainable, then any sequence of weights
θ j ∈ � with

lim
j→∞‖T − ψk(θ j )‖F = inf

θ∈�
‖T − ψk(θ)‖F
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must be unbounded, i.e.,

lim sup
j→∞

‖θ j‖ = ∞.

This holds regardless of the choice of activation and number of layers.

The implication of Proposition 1 is that if one attempts to forcibly fit a neural network
to target values T where (16) does not have a solution, then it simply results in the
parameters θ blowing up to ±∞.

5 Generic Solvability of the Neural Network Equations

As we mentioned at the end of Sect. 1, modern deep neural networks avoid the issue
that (10) may lack an infimum by overfitting, in which case the relevant problem is no
longer one of approximation but becomes one of solving a system of what we called
neural network equations (6), rewritten here as

ψk(θ) = T . (21)

Whether (21) has a solution is not determined by dim� but by dimψk(�). If the
dimension of the image of weights equals nq, i.e., the dimension of the ambient space
R
n×q in which T lies, then (21) has a solution generically. In this section, we will

provide various expressions for dimψk(�) for k = 2 and the ReLU activation.
There is a deeper geometrical explanation behind Theorem 1. Let d ∈ N. The join

locus of X1, . . . , Xr ⊆ R
d is the set

Join(X1, . . . , Xr ) := {λ1x1 + · · · + λr xr ∈ R
d :

xi ∈ Xi , λi ∈ R, i = 1, . . . , r}. (22)

A special case is when X1 = · · · = Xr = X and in which case the join locus is called
the r th secant locus


◦
r (X) = {λ1x1 + · · · + λr xr ∈ R

d : xi ∈ X , λi ∈ R, i = 1, . . . , r}.

An example of a join locus is the set of “sparse-plus-low-rank”matrices [15, Sect. 8.1];
an example of a r th secant locus is the set of rank-r tensors [15, Sect. 7].

From a geometrical perspective, we will next show that for k = 2 and q = 1,
the set ψ2(�) has the structure of a join locus. Join loci are known in general to be
nonclosed [18]. For this reason, the ill-posedness of the best k-layer neural network
problem is not unlike that of the best rank-r approximation problem for tensors, which
is a consequence of the nonclosedness of the secant loci of the Segre variety [6].

We shall begin with the case of a two-layer neural network with one-dimensional
output, i.e., q = 1. In this case, ψ2(�) ⊆ R

n and we can describe its geometry very
precisely. The more general case where q > 1 will be in Theorem 4.
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Theorem 2 (Geometry of two-layer neural network I) Consider the two-layer ReLU-
activated network with p-dimensional inputs and d neurons in the hidden layer:

R
p α1−→ R

d σmax−−→ R
d α2−→ R. (23)

The image of weights is given by

ψ2(�) = Join
(

◦

d(Cmax(S)), span{1})

where


◦
d

(
Cmax(S)

) :=
⋃

y1,...,yd∈Cmax(S)

span{y1, . . . , yd} ⊆ R
n

is the dth secant locus of the ReLU cone and span{1} is the one-dimensional subspace
spanned by 1 ∈ R

n.

Proof Let α1(z) = A1z + b, where

A1 =
⎡

⎢⎣
aT
1
...

aT
d

⎤

⎥⎦ ∈ R
d×p and b =

⎡

⎢⎣
b1
...

bd

⎤

⎥⎦ ∈ R
d .

Let α2(z) = AT
2z + λ, where AT

2 = (c1, . . . , cd) ∈ R
d . Then x = (x1, . . . , xn)T ∈

ψ2(�) if and only if

⎧
⎪⎨

⎪⎩

x1 = c1σ(sT1a1 + b1) + · · · + cdσ(sT1ad + bd) + λ,
...

...

xn = c1σ(sTna1 + b1) + · · · + cdσ(sTnad + bd) + λ.

(24)

For i = 1, . . . , d, define the vector yi = (σ (sT1ai + bi ), . . . , σ (sTnai + bi ))T ∈ R
n ,

which belongs to Cmax(S) by Corollary 1. Thus, (24) is equivalent to

x = c1y1 + · · · + cd yd + λ1 (25)

for some c1, . . . , cd ∈ R. By definition of secant locus, (25) is equivalent to the
statement

x ∈ 
◦
d

(
Cmax(S)

) + λ1,

which completes the proof. ��
Fromapractical point of view,we aremost interested in basic topological issues like

whether the image of weights ψk(�) is closed or not, since this affects the solvability
of (16). However, the geometrical description of ψ2(�) in Theorem 2 will allow us
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to deduce bounds on its dimension. Note that the dimension of the space of weights
� as in (2) is just m as in (3), but this is not the true dimension of the neural network,
which should instead be that of the image of weights ψk(�).

In general, even for k = 2, it will be difficult to obtain the exact dimension ofψ2(�)

for an arbitrary two-layer network (23). In the next corollary, we deduce from Theo-
rem 2 an upper bound dependent on the sample S ∈ R

n×p and another independent
of it.

Corollary 2 For the two-layer ReLU-activated network (23), we have

dimψ2(�) ≤ d(rank[S,1]) + 1,

and in particular,

dimψ2(�) ≤ min
(
d(min(p, n) + 1) + 1, pn

)
.

When n is sufficiently large and the observations s1, . . . , sn are sufficiently general,3

we may deduce a more precise value of dimψ2(�). Before describing our results, we
introduce several notations. For any index set I ⊆ {1, . . . , n} and sample S ∈ R

n×p,
we write

R
n
I := {x ∈ R

n : xi = 0 if i /∈ I and x j > 0 if j ∈ I },
FI (S) := Cmax(S) ∩ R

n
I .

Note that F∅(S) = {0}, 1 ∈ F{1,...,n}(S), and Cmax(S) may be expressed as

Cmax(S) = FI1(S) ∪ · · · ∪ FI� (S), (26)

for some index sets I1, . . . , I� ⊆ {1, . . . , n} and � ∈ N minimum.

Lemma 2 Given a general x ∈ R
n and any integer k ∈ {1, . . . , n}, there is a k-element

subset I ⊆ {1, . . . , n} and a λ ∈ R such that σ(λ1 + x) ∈ R
n
I .

Proof Let x = (x1, . . . , xn)T ∈ R
n be general. Without loss of generality, we may

assume its coordinates are in ascending order x1 < · · · < xn . For any kwith 1 ≤ k ≤ n,
choose λ so that xn−k < λ < xn−k+1 where we set x0 = −∞. Then σ(u − λ1) ∈
R{n−k+1,...,n}. ��
Lemma 3 Let n ≥ p+1. There is a nonempty open subset of vectors v1, . . . , vp ∈ R

n

such that for any p + 1 ≤ k ≤ n, there are a k-element subset I ⊆ {1, . . . , n} and
λ1, . . . , λp, μ ∈ R where

σ(λ11 + v1), . . . , σ (λp1 + vp), σ (μ1 + v1) ∈ R
n
I

are linearly independent.

3 Here and in Lemma 2 and Corollary 3, “general” is used in the sense of algebraic geometry: A property is
general if the set of points that does not have it is contained in a Zariski closed subset that is not the whole
space.
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Proof For each i = 1, . . . , p, we choose general vi = (vi,1, . . . , vi,n)
T ∈ R

n so that

vi,1 < · · · < vi,n .

For any fixed k with p + 1 ≤ k ≤ n, by Lemma 2, we can find λ1, . . . , λp, μ ∈ R

such that σ(vi −λi1) ∈ R{n−k+1,...,n}, i = 1, . . . , n, and σ(v1−μ1) ∈ R{n−k+1,...,n}.
By the generality of vi ’s, the vectors σ(v1 − λ11), . . . , σ (vp − λp1), σ (v1 −μ1) are
linearly independent. ��

We are now ready to state our main result on the dimension of the image of weights
of a two-layer ReLU-activated neural network.

Theorem 3 (Dimension of two-layer neural network I) Let n ≥ d(p + 1) + 1 where
p is the dimension of the input and d is the dimension of the hidden layer. Then there
is a nonempty open subset of samples S ∈ R

n×p such that the image of weights for
the two-layer ReLU-activated network (23) has dimension

dimψ2(�) = d(p + 1) + 1. (27)

Proof The rows of S = [sT1, . . . , sTn]T ∈ R
n×p are the n samples s1, . . . , sn ∈ R

p. In
this case, it will bemore convenient to consider the columns of S, whichwewill denote
by v1, . . . , vp ∈ R

n . Denote the coordinates by vi = (vi,1, . . . , vi,n)
T, i = 1, . . . , p.

Consider the nonempty open subset

U := {S = [v1, . . . , vp] ∈ R
n×p : vi,1 < · · · < vi,n, i = 1, . . . , p}. (28)

Define the index sets Ji ⊆ {1, . . . , n} by

Ji := {n − i(p + 1) + 1, . . . , n}, i = 1, . . . , d.

By Lemma 3,

dim FJi (S) = rank[S,1] = p + 1, i = 1, . . . , d.

When S ∈ U is sufficiently general,

span FJ1(S) + · · · + span FJd (S) = span FJ1(S) ⊕ · · · ⊕ span FJd (S). (29)

Given any I ⊆ {1, . . . , n} with FI (S) �= ∅, we have that for any x, y ∈ FI (S) and
any a, b > 0, ax + by ∈ FI (S). This implies that

dim FI (S) = dim span FI (S) = dim
◦
r

(
FI (S)

)
(30)

for any r ∈ N. Let I1, . . . , I� ⊆ {1, . . . , n} and � ∈ N be chosen as in (26). Then


◦
d

(
Cmax(S)

) =
⋃

1≤i1≤···≤id≤�

Join
(
FIi1

(S), . . . , FIid
(S)

)
.
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Now, choose Ii1 = J1, . . . , Iid = Jd . By (29) and (30),

dim Join
(
FJ1(S), . . . , FJd (S)

) =
d∑

i=1

dim FJi (S).

Therefore,

dim
◦
d

(
Cmax(S)

) = dim Join
(
FJ1(S), . . . , FJd (S)

) + dim span{1}
= d rank[S,1] + 1,

which gives us (27). ��
A consequence of Theorem 3 is that the dimension formula (27) holds for any

general sample s1, . . . , sn ∈ R
p when n is sufficiently large.

Corollary 3 (Dimension of two-layer neural network II) Let n � pd. Then for general
S ∈ R

n×p, the image of weights for the two-layer ReLU-activated network (23) has
dimension

dimψ2(�) = d(p + 1) + 1.

Proof Let the notations be as in the proof of Theorem 3. When n is sufficiently large,
we can find a subset

I = {i1, . . . , id(p+1)+1} ⊆ {1, . . . , n}

such that either

v j,i1 < · · · < v j,id(p+1)+1 or v j,i1 > · · · > v j,id(p+1)+1

for each j = 1, . . . , p. The conclusion then follows from Theorem 3. ��
For deeper networks, one may have m � dimψk(�) even for n � 0. Consider a

k-layer network with one neuron in every layer, i.e.,

d1 = d2 = · · · = dk = dk+1 = 1.

For any samples s1, . . . , sn ∈ R, we may assume s1 ≤ · · · ≤ sn without loss of
generality. Then the image of weights ψk(�) ⊆ R

n may be described as follows: A
point x = (x1, . . . , xn)T ∈ ψk(�) if and only if

x1 = · · · = x� ≤ · · · ≤ x�+�′ = · · · = xn

and

x�+1, . . . , x�+�′−1 are the affine images of s�+1, . . . , s�+�′−1.
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In particular, as soon as k ≥ 3 the image of weights ψk(�) does not change and its
dimension remains constant for any n ≥ 6.

We next address the case where q > 1. One might think that by the q = 1 case in
Theorem 2 and “one-layer” case in Corollary 1, the image of weights ψ2(�) ⊆ R

n×q

in this case is simply the direct sum of q copies of Join
(

◦

d(Cmax(S)), span{1}). It is
in fact only a subset of that, i.e.,

ψ2(�) ⊆ {[x1, . . . , xq ] ∈ R
n×q : x1, . . . , xd ∈ Join

(

◦

d(Cmax(S)), span{1})},

but equality does not in general hold.

Theorem 4 (Geometry of two-layer neural network II) Consider the two-layer ReLU-
activated network with p-dimensional inputs, d neurons in the hidden layer, and q-
dimensional outputs:

R
p α1−→ R

d σmax−−→ R
d α2−→ R

q . (31)

The image of weights is given by

ψ2(�) = {[x1, . . . , xq ] ∈ R
n×q : there exist y1, . . . , yd ∈ Cmax(S)

such that xi ∈ span{1, y1, . . . , yd}, i = 1, . . . , d
}
.

Proof Let X = [x1, . . . , xq ] ∈ ψ2(�) ⊆ R
n×q . Suppose that the affine map

α2 : R
d → R

q is given by α2(x) = Ax + b where A = [a1, . . . , aq ] ∈ R
d×q

and b = (b1, . . . , bq)T ∈ R
q . Then each xi is realized as in (25) in the proof of The-

orem 2. Therefore, we conclude that [x1, . . . , xq ] ∈ ψ2(�) if and only if there exist
y1, . . . , yd ∈ Cmax(S) with

xi = bi1 +
d∑

j=1

ai j y j , i = 1, . . . , q,

for some bi , ai j ∈ R, i = 1, . . . , n, j = 1, . . . , d. ��
With Theorem 4, we may deduce analogues of (part of) Theorem 3 and Corollary 3

for the case q > 1. The proofs are similar to those of Theorem 3 and Corollary 3.

Corollary 4 (Dimension of two-layer neural network III) The image of weights of the
two-layer ReLU-activated network (31) with p-dimensional inputs, d neurons in the
hidden layer, and q-dimensional output has dimension

dimψ2(�) = (q + rank[S,1])d + q.

If the sample size n is sufficiently large, then for general S ∈ R
n×p, the dimension is

dimψ2(�) = (p + q + 1)d + q.
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Note that by (3),

dim� = (p + 1)d + (d + 1)q = dimψ2(�)

in the latter case of Corollary 4, as we expect.
Note that when dimψ2(�) = dimR

n×q , ψ2(�) becomes a dense set in R
n×q .

Thus, the expressions for dimψ2(�) in Theorem 3, Corollaries 3 and 4 allow one to
ascertain when the neural network equations (21) have a solution generically, namely
when dimψ2(�) = nq.

6 Smooth Activations

For smooth activation like sigmoidal and hyperbolic tangent, we expect the geometry
of the image of weights to be considerably more difficult to describe. Nevertheless,
when it comes to the ill-posedness of the best k-layer neural network problem (10), it
is easy to deduce not only that there is a T ∈ R

n×q such that (10) does not attain its
infimum, but that there is a positive-measured set of such T ’s.

The phenomenon is already visible in the one-dimensional case p = q = 1 and
can be readily extended to arbitrary p and q. Take the sigmoidal activation σexp(x) =
1/

(
1 + exp(−x)

)
. Let n = 1. So the sample S and response matrix T are both in

R
1×1 = R. Suppose S �= 0. Then for a σexp-activated k-layer neural network of

arbitrary k ∈ N,

ψk(�) = (0, 1).

Therefore, any T ≥ 1 or T ≤ 0 will not have a best approximation by points inψk(�).
The same argument works for the hyperbolic tangent activation σtanh(x) = tanh(x) or
indeed any activation σ whose range is a proper open interval. In this sense, the ReLU
activation σmax is special in that its range is not an open interval.

To show that the n = 1 assumption above is not the cause of the ill-posedness, we
provide a more complicated example with n = 3. Again we will keep p = q = 1 and
let

s1 = 0, s2 = 1, s3 = 2; t1 = 0, t2 = 2, t3 = 1.

Consider a k = 2 layer neural network with hyperbolic tangent activation

R
α1−→ R

σtanh−−→ R
α2−→ R. (32)

Note that its weights take the form

θ = (a, b, c, d) ∈ R × R × R × R ∼= R
4,
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and thus � = R
4. It is also straightforward to see that

ψ2(�) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎡

⎢⎢⎢⎢⎢⎣

c
eb − e−b

eb + e−b
+ d

c
ea+b − e−a−b

ea+b + e−a−b
+ d

c
e2a+b − e−2a−b

e2a+b + e−2a−b
+ d

⎤

⎥⎥⎥⎥⎥⎦
∈ R

3 : a, b, c, d ∈ R

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

.

For ε > 0, consider the open set of response matrices

U (ε) :=
⎧
⎨

⎩

⎡

⎣
t ′1
t ′2
t ′3

⎤

⎦ ∈ R
3 : |t1 − t ′1| ≤ ε, |t2 − t ′2| ≤ ε, |t3 − t ′3| ≤ ε

⎫
⎬

⎭ .

We claim that for ε small enough, any response matrix T ′ = (t ′1, t ′2, t ′3)T ∈ U (ε) will
not have a best approximation in ψ2(�).

Any best approximation of T = (0, 2, 1)T in the closure of ψ2(�) must take the
form (0, y, y)T for some y ∈ [1, 2]. On the other hand, (0, y, y)T /∈ ψ2(�) for any
y ∈ [1, 2], and thus, T does not have a best approximation in ψ2(�). Similarly, for
small ε > 0 and T ′ = (t ′1, t ′2, t ′3)T ∈ U , a best approximation of T ′ in the closure of
ψ2(�) must take the form (t ′1, y, y)T for some y ∈ [t ′3, t ′2]. Since (t ′1, y, y)T /∈ ψ2(�)

for any y ∈ [t ′3, t ′2], T ′ has no best approximation in ψ2(�). Thus, for small enough
ε > 0, the infimum in (10) is unattainable for any T ∈ U (ε), a nonempty open set.

Theorem 5 (Ill-posedness of neural network approximation II) Let n ≥ 3, p ≥ 1,
q = 1, and k ≥ 2. Then there exists a positive-measured set U ⊆ R

n×q and some
S ∈ R

n×p such that the best k-layer neural network approximation problem (10) with
hyperbolic tangent activation σtanh does not attain its infimum for any T ∈ U.

Proof The discussion preceding the theorem gives an explicit example for n = 3,
p = q = 1, and k = 2. It remains to show that the values of n, p, k can be extended
arbitrarily. Firstly, observe that the assumption p = 1 is totally unnecessary since
we may embed R

1 ⊆ R
p—our example works as long as the domain of the neural

network contains a line. Secondly, it is also trivial to replace n = 3 by any n > 3,
setting si = s1 for all i > 3. Thirdly, we may extend the number of layers k = 2 to
arbitrary k > 2, keeping all di = 1, as neither the affine transformation nor tanh can
nontrivially change the order of points. Finally, under these assumptions, we note that
the set S may be chosen to have positive measure as in the example constructed above.

��
Note that the implicit assumption di = 1may not be omitted from our construction.

Indeed, if we allow di > 1, then for n = 3 any function may be fitted perfectly without
any error. In particular, the infimum is always attained.

We leave open the question as to whether Theorem 5 holds for the ReLU activation
σmax or for outputs of dimension q > 1. Despite our best efforts, we are unable to
construct an example nor show that such an example cannot possibly exist.
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7 Concluding Remarks

This article studies the best k-layer neural network approximation from the perspec-
tive of our earlier work [15], where we studied similar issues for the best k-term
approximation. An important departure from [15] is that a neural network is not an
algebraic object because the most common activation functions σmax, σtanh, σexp are
not polynomials; thus, the algebraic techniques in [15] do not apply in our study here
and are relevant at best only through analogy.

Nevertheless, by the Stone–Weierstrass theorem continuous functions may be uni-
formly approximated by polynomials. This suggests that it might perhaps be fruitful
to study “algebraic neural networks,” i.e., where the activation function σ is a polyno-
mial function. This will allow us to apply the full machinery of algebraic geometry to
deduce information about the image of weights ψk(�) on the one hand and to extend
the field of interest from R to C on the other. In fact, one of the consequences of
our results in [15] is that for an algebraic neural network over C, i.e., � = C

m , any
response matrix T ∈ C

n×q will almost always have a unique best approximation in
ψk(C

m), i.e., the approximation problem (10) attains its infimumwith probability one.
Furthermore, from our perspective, the most basic questions about neural network

approximations are not the ones that we studied in this article but questions like:

Generic dimension for neural networks: for a general S ∈ R
n×p with n � 0,

what is the dimension of ψk(�)?
Generic rank for neural networks: what is the smallest value of k ∈ N such that

ψk(�) is a dense set in R
n×q?

These are certainly the questions that one would first try to answer about various types
of tensor ranks [11] or tensor networks [17], but as far as we know, they have never
been studied for neural networks. We leave these as directions for potential future
work.
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