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GENERALIZED MATRIX NEARNESS PROBLEMS\ast 

ZIHAO LI\dagger AND LEK-HENG LIM\ddagger 

Abstract. We show that the global minimum solution of \| A - BXC\| can be found in closed
form with singular value decompositions and generalized singular value decompositions for a variety
of constraints on X involving rank, norm, symmetry, two-sided product, and prescribed eigenvalue.
This extends the solution of Friedland--Torokhti for the generalized rank-constrained approximation
problem to other constraints and provides an alternative solution for rank constraint in terms of
singular value decompositions. For more complicated constraints on X involving structures such as
Toeplitz, Hankel, circulant, nonnegativity, stochasticity, positive semidefiniteness, prescribed eigen-
vector, etc., we prove that a simple iterative method is linearly and globally convergent to the global
minimum solution.

Key words. matrix approximation, matrix nearness, structured matrices

MSC codes. 15A10, 52A27, 65F18, 65F55
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1. Introduction. In [10], Friedland and Torokhti found a closed-form analytic
solution for the generalized rank-constrained matrix approximation problem

min
rank(X)\leq r

\| A - BXC\| (1.1)

with A \in \BbbR m\times n, B \in \BbbR m\times p, C \in \BbbR q\times n, and \| \cdot \| the Frobenius norm, generalizing
the celebrated result of Eckart and Young [9]. We extend this work in several ways,
replacing the rank constraint rank(X)\leq r by

\ding{192} norm constraint: \| X\| \leq \rho for a given \rho > 0;
\ding{193} two-sided product constraint: FXG=H for given matrices F,G,H;
\ding{194} spectral constraints: X has a prescribed eigenvalue \lambda or a prescribed eigen-

vector v \not = 0;
\ding{195} symmetry constraints: X is symmetric or skew-symmetric;
\ding{196} structure constraints: X is Toeplitz, Hankel, or circulant;
\ding{197} positivity constraints: X is positive semidefinite, correlation, nonnegative,

stochastic, or doubly stochastic.
Note that \ding{193} includes the important special caseXg= h for given vectors g,h. We shall
provide closed-form analytic solutions for \ding{192}--\ding{195}, using singular value decomposition
for \ding{192}--\ding{194} and generalized singular value decomposition for \ding{195}, with the exception of the
prescribed eigenvector problem---for this and for \ding{196} and \ding{197}, we prove that an iterative
algorithm, when applied to these problems, is

(i) globally convergent, i.e., converges for any initial point;
(ii) linearly convergent, i.e., error decreases exponentially to zero;
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1710 ZIHAO LI AND LEK-HENG LIM

(iii) provably convergent, i.e., converges to a global minimizer, not just a station-
ary point or local minimizer.

As an addendum, we provide a simpler alternative solution to (1.1) in terms of singular
value decompositions. While it is analytically equivalent to the solution of [10] in
terms of projection matrices and pseudoinverses, which may be numerically unstable
to compute, an obvious advantage of our solution is that it is stably computable via
singular value decompositions.

We emphasize that we do not treat the problems \ding{192}--\ding{197} as constrained optimization
problems and then apply general purpose nonlinear or convex optimization methods.
While these problems are stated as optimization problems, our solutions are firmly
rooted in numerical linear algebra, in the tradition of [11, 12, 15, 16, 17, 19, 22, 30, 35],
and crucially rely on the matrix structures in these problems. In particular, none of
our methods would involve taking derivatives; all of them are zeroth-order methods
from the perspective of optimization.

Throughout this article, we assume that the dimensions of the matrices A\in \BbbR m\times n,
B \in \BbbR m\times p, C \in \BbbR q\times n satisfy m \geq p and n \geq q since otherwise we may simply add
rows of zeros to A and B or columns of zeros to A and C. While all results are stated
over \BbbR , it is routine to extend them to \BbbC .

2. Closed-form solutions via singular value decomposition. We simplify
the objective function \| A - BXC\| via singular value decomposition and the orthog-
onal invariance of Frobenius norm and matrix rank. Consider singular value decom-
positions

B =UB

\biggl[ 
\Sigma B 0
0 0

\biggr] 
V \sansT 

B , C =UC

\biggl[ 
\Sigma C 0
0 0

\biggr] 
V \sansT 

C

with \Sigma B = diag
\bigl( 
\sigma 1(B), . . . , \sigma s(B)

\bigr) 
, \Sigma C = diag

\bigl( 
\sigma 1(C), . . . , \sigma t(C)

\bigr) 
, rank(B) = s,

rank(C) = t. Since the Frobenius norm is invariant under left and right multipli-
cations by orthogonal matrices, we have

\| A - BXC\| =
\bigm\| \bigm\| \bigm\| \bigm\| U \sansT 

BAVC  - 
\biggl[ 
\Sigma B 0
0 0

\biggr] 
V \sansT 

BXUC

\biggl[ 
\Sigma C 0
0 0

\biggr] \bigm\| \bigm\| \bigm\| \bigm\| .
Partition the respective matrices as

U \sansT 

BAVC =

\biggl[ 
X11 X12

X21 X22

\biggr] 
, V \sansT 

BXUC =

\biggl[ 
A11 A12

A21 A22

\biggr] 
with X11,A11 \in \BbbR s\times t. We obtain

\| A - BXC\| 2 =
\bigm\| \bigm\| \bigm\| \bigm\| \biggl[ A11  - \Sigma BX11\Sigma C A12

A21 A22

\biggr] \bigm\| \bigm\| \bigm\| \bigm\| 2
= \| A11  - \Sigma BX11\Sigma C\| 2 + \| A12\| 2 + \| A21\| 2 + \| A22\| 2.(2.1)

Note in particular that X12, X21, X22 do not appear in the final expression and that
we are free to choose them within whatever constraint we impose on X.

2.1. Generalized rank-constrained approximation. As an illustration, we
consider the Friedland--Torokhti rank approximation problem [10]

min
rank(X)\leq r

\| A - BXC\| .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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GENERALIZED MATRIX NEARNESS PROBLEMS 1711

Algorithm 1 Generalized rank-constrained approximation

input: A\in \BbbR m\times n, B \in \BbbR m\times p, C \in \BbbR q\times n, r\geq 0;
1: compute singular value decompositions B =UB

\bigl[ 
\Sigma B 0
0 0

\bigr] 
V \sansT 

B and C =UC

\bigl[ 
\Sigma C 0
0 0

\bigr] 
V \sansT 

C ;
2: compute A11 from

U \sansT 

BAVC =

\biggl[ 
A11 A12

A21 A22

\biggr] 
;

3: compute singular value decomposition A11 =U\Sigma V \sansT ;
output:

X = VB

\biggl[ 
\Sigma  - 1

B Ur\Sigma rV
\sansT 
r \Sigma 

 - 1
C 0

0 0

\biggr] 
U \sansT 

C .

We may set X12, X21, X22 to be zero matrices in (2.1), and since

rank(\Sigma BX11\Sigma C) = rank(X11) = rank(V \sansT 

BXUC) = rank(X),

we only need to solve

min
rank(\Sigma BX11\Sigma C)\leq r

\| A11  - \Sigma BX11\Sigma C\| .

It immediately follows from the Eckart--Young theorem that the solution is given by
X11 =\Sigma  - 1

B Ur\Sigma rV
\sansT 
r \Sigma 

 - 1
C , with singular value decomposition A11 =U\Sigma V \sansT and Ur\Sigma rV

\sansT 
r

the best rank-r approximation of A11. In fact, given that we have set all free pa-
rameters in V \sansT 

BXUC to zero, this actually gives the minimum-norm solution. We
summarize our solution in Algorithm 1. Note that computing X using the closed-
form expression given in [10] literally would likely yield a significantly less accurate
result because the expression involves forming products of explicit pseudoinverses
(see [18, section 14.1] and [31, pp. 252 and 289] for an explanation of why these
should be avoided).

2.2. Generalized prescribed eigenvalue approximation. A consequence of
our previous solution is the solution to the prescribed eigenvalue approximation prob-
lem in \ding{194}. This problem requires square matrices, so A\in \BbbR n\times n, B \in \BbbR n\times p, C \in \BbbR p\times n.
Let \lambda (X) denote the spectrum of X \in \BbbR p\times p, and let \lambda be a given value. We want

min
\lambda \in \lambda (X)

\| A - BXC\| .

The special case where B =C = I was famously discussed by Wilkinson in [34].
Since

\lambda \in \lambda (X) \leftrightarrow rank(X  - \lambda I)\leq p - 1,

we have

min
\lambda \in \lambda (X)

\| A - BXC\| = min
\lambda \in \lambda (X)

\| A - \lambda BC  - B(X  - \lambda I)C\| 

= min
rank(Y )\leq p - 1

\| \widetilde A - BY C\| ,

where \widetilde A=A - \lambda BC, and the problem reduces to the one in section 2.1.

2.3. Generalized norm-constrained approximation. The problem in \ding{192},

min
\| X\| \leq \rho 

\| A - BXC\| ,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1712 ZIHAO LI AND LEK-HENG LIM

is of course a special case of a norm-constrained least squares problem if we ignore the
fact that the variables xij 's come from a matrix. It may thus be solved using general
techniques in [1, section 5.3]. The advantage of our approach is that it preserves
the matrix structure of the problem so that, for example, we just need to decompose
matrices B and C instead of the matrix C\otimes B, which is an order of magnitude larger.

By (2.1), we may set X12, X21, X22 to be zero matrices. Then

\| X11\| = \| X\| \leq \rho .

If \| \Sigma  - 1
B A11\Sigma 

 - 1
C \| \leq \rho , then the solution is simply X11 = \Sigma  - 1

B A11\Sigma 
 - 1
C . So we may

suppose that \| \Sigma  - 1
B A11\Sigma 

 - 1
C \| > \rho , in which case the solution must lie on the bound-

ary, i.e., \| X11\| = \rho . To see this, note that if \| X11\| < \rho , then X11 \not = \Sigma  - 1
B A11\Sigma 

 - 1
C

since \| \Sigma  - 1
B A11\Sigma 

 - 1
C \| > \rho . Hence, there exists some t \in (0,1) so that \| t\Sigma  - 1

B A11\Sigma 
 - 1
C +

(1 - t)X11\| = \rho and

\| A11  - \Sigma B [t\Sigma 
 - 1
B A11\Sigma 

 - 1
C + (1 - t)X11]\Sigma C\| = (1 - t)\| A11  - \Sigma BX11\Sigma C\| 

< \| A11  - \Sigma BX11\Sigma C\| ,

contradicting the minimality of X11.
So the inequality constraint may be replaced by an equality constraint \| X11\| = \rho ,

and standard Lagrange multiplier theory [29, Chapter 14] applied to

\| A11  - \Sigma BX11\Sigma C\| 2 + \lambda (\| X11\| 2  - \rho 2)

gives

(2.2)

\Biggl\{ 
\Sigma B(\Sigma BX11\Sigma C  - A11)\Sigma C + \lambda X11 = 0,

\| X11\| 2 = \rho 2.

If (X1, \lambda 1) and (X2, \lambda 2) are both solutions to (2.2), then

\Sigma B(\Sigma BX1\Sigma C  - A11)\Sigma C + \lambda 1X1 = 0,

\Sigma B(\Sigma BX2\Sigma C  - A11)\Sigma C + \lambda 2X1 = 0,
(2.3)

and \| X1\| 2 = \| X2\| 2 = \rho 2. Left multiply the first equation in (2.3) by X\sansT 
1 and the

second by X\sansT 
2 , then take the trace and subtract. We get

\| \Sigma BX2\Sigma C\| 2  - \| \Sigma BX1\Sigma C\| 2  - 
\bigl( 
tr(X\sansT 

2\Sigma BA11\Sigma C) - tr(X\sansT 

1\Sigma BA11\Sigma C)
\bigr) 

(2.4)

= \lambda 1\| X1\| 2  - \lambda 2\| X2\| 2.

Left multiply the first equation in (2.3) by X\sansT 
2 and the second by X\sansT 

1 , then take trace
and subtract. We get

 - 
\bigl( 
tr(X\sansT 

2\Sigma BA11\Sigma C) - tr(X\sansT 

1\Sigma BA11\Sigma C)
\bigr) 
= - (\lambda 1  - \lambda 2) tr(X

\sansT 

1X2).(2.5)

Adding (2.4) and (2.5) and noting that \| X1\| 2 = \| X2\| 2, we get

\| A11  - \Sigma BX2\Sigma C\|  - \| A11  - \Sigma BX1\Sigma C\| =
\lambda 1  - \lambda 2

2
\| X1  - X2\| 2.

Hence,

\lambda 1 >\lambda 2 \Rightarrow \| A11  - \Sigma BX2\Sigma C\| > \| A11  - \Sigma BX1\Sigma C\| .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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GENERALIZED MATRIX NEARNESS PROBLEMS 1713

Algorithm 2 Generalized norm-constrained approximation

input: A\in \BbbR m\times n, B \in \BbbR m\times p, C \in \BbbR q\times n, \rho > 0;
1: compute singular value decompositions B =UB

\bigl[ 
\Sigma B 0
0 0

\bigr] 
V \sansT 

B and C =UC

\bigl[ 
\Sigma C 0
0 0

\bigr] 
V \sansT 

C ;
2: compute A11 from

U \sansT 

BAVC =

\biggl[ 
A11 A12

A21 A22

\biggr] 
;

3: set \sigma ij = \sigma i(B)\sigma j(C);
4: calculate largest root \lambda of f(\lambda ) = \rho 2;
5: set X11 with entries

xij =
aij

\sigma ij + \lambda \sigma  - 1
ij

;

output:

X = VB

\biggl[ 
X11 0
0 0

\biggr] 
U \sansT 

C .

The smallest \| A11  - \Sigma BX11\Sigma C\| corresponds to the largest \lambda . Thus, we seek the
solution (X11, \lambda ) to (2.2) with the largest \lambda . Let A11 = (aij), X11 = (xij), \sigma ij =
\sigma i(B)\sigma j(C). The solution to the first equation (2.2) is

xij =
aij

\sigma ij + \lambda \sigma  - 1
ij

.

Plugging into the second equation in (2.2), we obtain the secular equation

f(\lambda ) :=

s\sum 
i=1

t\sum 
j=1

a2ij

(\sigma ij + \lambda \sigma  - 1
ij )2

= \rho 2.(2.6)

The secular equation is a ubiquitous univariate nonlinear equation in matrix com-
putation; see [13, section 12.1.1] or [6, section 5.3.3] for a discussion of its properties.
In particular, f has poles at  - \sigma 2

ij and lim\lambda \rightarrow \pm \infty f(\lambda ) = 0, so f(\lambda ) = \rho 2 only has a
finite number of solutions. We may find all real roots of f(\lambda ) = \rho 2 using any standard
univariate root finder, e.g., Newton--Raphson, regula falsi, Brent, etc., and identify the
largest root. A well-known trick is to instead apply the root finder to 1/f(\lambda ) = 1/\rho 2,
as 1/f is close to linear in the vicinity of a root and convergence will be extremely
fast. We summarize this solution in Algorithm 2.

2.4. Generalized two-sided product-constrained approximation. Here
we consider the problem \ding{193}:

min
FXG=H

\| A - BXC\| .(2.7)

This may be viewed as a least squares counterpart to various two-sided linear matrix
equations such as \Biggl\{ 

BXC =A,

FXG=H,
or BXC + FXG=H,

which have been studied in [3, 26, 33].

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1714 ZIHAO LI AND LEK-HENG LIM

There is no loss of generality in assuming that F has full row rank and G has
full column rank. Otherwise, we may simply take the reduced QR factorizations
F = QFRF , where Q\sansT 

FQF = I and G\sansT = QGRG, where Q\sansT 

GQG = I; observe that
FXG = H then becomes RFXR\sansT 

G = Q\sansT 

FHQG, i.e., of the form F \prime XG\prime = H \prime , where
F \prime :=RF has full row rank, G\prime :=R\sansT 

G has full column rank, and H \prime :=Q\sansT 

FHQG.
For a closed-form solution, we will also need to assume that B has full column

rank and C has full row rank, i.e., rank(B) = p, rank(C) = q. Unlike the case of F and
G, there is a loss of generality in imposing these conditions on B and C. However,
the case of rank-deficient B and C could be easily solved with our iterative algorithm
in section 4.

We start with the simpler version

min
FXG=H

\| A - X\| .(2.8)

We claim that the solution is given by \widehat X = A+ F \sansT (FF \sansT ) - 1(H  - FAG)(G\sansT G) - 1G\sansT .
First, observe that

F \widehat XG= F
\bigl[ 
A+ F \sansT (FF \sansT ) - 1(H  - FAG)(G\sansT G) - 1G\sansT 

\bigr] 
G= FAG+H  - FAG=H.

Next, recall that if \| \cdot \| 2 denotes the spectral norm (matrix 2-norm), then \| Y Z\| \leq 
\| Y \| 2\| Z\| for any Y \in \BbbR m\times n, Z = [z1, . . . , zp]\in \BbbR n\times p as

\| Y Z\| 2 =
p\sum 

i=1

\| Y zi\| 22 \leq 
p\sum 

i=1

\| Y \| 22\| zi\| 22 = \| Y \| 22
\biggl[ p\sum 
i=1

\| zi\| 22
\biggr] 
= \| Y \| 22\| Z\| 2.

Thus, for any X satisfying FXG=H, we have

\| A - \widehat X\| = \| F \sansT (FF \sansT ) - 1(H  - FAG)(G\sansT G) - 1G\sansT \| 
= \| F \sansT (FF \sansT ) - 1F (A - X)G(G\sansT G) - 1G\sansT \| 
\leq \| F \sansT (FF \sansT ) - 1F\| 2\| A - X\| \| G(G\sansT G) - 1G\sansT \| 2 = \| A - X\| 

since F \sansT (FF \sansT ) - 1F and G(G\sansT G) - 1G\sansT are orthogonal projectors.
Now for the generalized problem (2.7). Following our notations at the beginning

of section 2, given that we have assumed rank(B) = p and rank(C) = q, we have

V \sansT 

BXUC =X11, U \sansT 

BAVC =A11.

Let FB := FVB\Sigma 
 - 1
B and GC := \Sigma  - 1

C U \sansT 

CG. The constraint FXG=H is then equivalent
to

FB(\Sigma BV
\sansT 

BXUC\Sigma C)GC =H.

By the solution to (2.8), we get

X = VB\Sigma 
 - 1
B

\bigl[ 
U \sansT 

BAVC + F \sansT 

B(FBF
\sansT 

B)
 - 1(H  - FBU

\sansT 

BAVCGC)(G
\sansT 

CGC)
 - 1G\sansT 

C

\bigr] 
\Sigma  - 1

C U \sansT 

C .

We summarize this solution in Algorithm 3.
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GENERALIZED MATRIX NEARNESS PROBLEMS 1715

Algorithm 3 Generalized two-sided product-constrained approximation

input: A\in \BbbR m\times n, B \in \BbbR m\times p, C \in \BbbR q\times n, H \in \BbbR k\times l, F \in \BbbR k\times p, G\in \BbbR q\times l;
1: compute singular value decompositions B =UB

\bigl[ 
\Sigma B 0
0 0

\bigr] 
V \sansT 

B and C =UC

\bigl[ 
\Sigma C 0
0 0

\bigr] 
V \sansT 

C ;
2: compute FB = FVB\Sigma 

 - 1
B and GC =\Sigma  - 1

C U \sansT 

CG;
output:

X = VB\Sigma 
 - 1
B

\bigl[ 
U \sansT 

BAVC + F \sansT 

B(FBF
\sansT 

B)
 - 1(H  - FBU

\sansT 

BAVCGC)(G
\sansT 

CGC)
 - 1G\sansT 

C

\bigr] 
\Sigma  - 1

C U \sansT 

C .

3. Closed-form solutions via generalized singular value decomposition.
We now address \ding{195}, starting with symmetry constraint

min
X=X\sansT 

\| A - BXC\| (3.1)

and deferring skew-symmetry constraint to later. Since X is necessarily a square
matrix, we require the number of columns in B to equal the number of rows in C.
So let A \in \BbbR m\times p, B \in \BbbR m\times n, C \in \BbbR n\times p. The special case where C = I is called
the symmetric Procrustes problem [2, 24] and was solved in [7, 16]. Exact versions
of this problem, i.e., seeking symmetric solutions to BXC =A, have been studied in
[4, 23]. The special case B =C = I is elementary and well known: The projection of A
onto the spaces of symmetric and skew-symmetric matrices are given by the additive
decomposition A= (A+A\sansT )/2 + (A - A\sansT )/2 into two orthogonal components.

To preserve the symmetry, the singular value decomposition is not useful, as
V \sansT 

BXUC is generally not symmetric for a symmetric X. However, the generalized
singular value decomposition [27] is perfect for our purpose. We remind the reader of
this result.

Theorem 3.1 (Paige--Saunders). Let B \in \BbbR m\times n, C \in \BbbR n\times p, k = rank([ B
C\sansT ]).

Then there exist orthogonal matrices U \in \BbbR m\times m, V \in \BbbR p\times p, W \in \BbbR k\times k, and Q\in \BbbR n\times n

with

U \sansT BQ=\Sigma B

\bigl[ 
W \sansT R 0

\bigr] 
, V \sansT C\sansT Q=\Sigma C

\bigl[ 
W \sansT R 0

\bigr] 
,(3.2)

where

\Sigma B =

\left[  IB SB

OB

\right]  , \Sigma C =

\left[  OC

SC

IC

\right]  ,

and R \in \BbbR k\times k is nonsingular with singular values equal to the nonzero singular
values of [ B

C\sansT ]. Here IB \in \BbbR r\times r and IC \in \BbbR k - r - s\times k - r - s are identity matrices,

OB \in \BbbR (m - r - s)\times (k - r - s) and OC \in \BbbR (p - k+r)\times r are zero matrices with possibly no
rows or columns, and SB = diag(\beta r+1, . . . , \beta r+s), SC = diag(\gamma r+1, . . . , \gamma r+s) \in \BbbR s\times s

with

1>\beta r+1 \geq \cdot \cdot \cdot \geq \beta r+s > 0, 0<\gamma r+1 \leq \cdot \cdot \cdot \leq \gamma r+s < 1.

Following Theorem 3.1, let

M =Q

\biggl[ 
R - 1W 0

0 I

\biggr] 
.
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1716 ZIHAO LI AND LEK-HENG LIM

Then (3.2) becomes

U \sansT BM =
\bigl[ 
\Sigma B 0

\bigr] 
, V \sansT C\sansT M =

\bigl[ 
\Sigma C 0

\bigr] 
.

Then

\| A - BXC\| =
\bigm\| \bigm\| A - U

\bigl[ 
\Sigma B 0

\bigr] 
M - 1XM - \sansT 

\bigl[ 
\Sigma C 0

\bigr] \sansT 
V \sansT 

\bigm\| \bigm\| 
=

\bigm\| \bigm\| \bigm\| \bigm\| U \sansT AV  - 
\bigl[ 
\Sigma B 0

\bigr] 
M - 1XM - \sansT 

\biggl[ 
\Sigma \sansT 

C

0

\biggr] \bigm\| \bigm\| \bigm\| \bigm\| .
Partition the respective matrices to conform to the block structure of \Sigma B and \Sigma \sansT 

C :

U \sansT AV =

\left[  A11 A12 A13

A21 A22 A23

A31 A32 A33

\right]  , M - 1XM - \sansT =

\left[    
X11 X12 X13 X14

X21 X22 X23 X24

X31 X32 X33 X34

X41 X42 X43 X44

\right]    .

We get

U \sansT AV  - 
\bigl[ 
\Sigma B 0

\bigr] 
M - 1XM - \sansT 

\biggl[ 
\Sigma \sansT 

C

0

\biggr] 
=

\left[  A11 A12  - X12SC A13  - X13

A21 A22  - SBX22SC A23  - SBX23

A31 A32 A33

\right]  ,

and (3.1) reduces to minimizing

\| A12  - X12SC\| 2 + \| A13  - X13\| 2 + \| A23  - SBX23\| 2 + \| A22  - SBX22SC\| 2.

Since M - 1XM - \sansT is symmetric, the solution is easily seen to be

X12 =A12S
 - 1
C , X13 =A13, X23 = S - 1

B A23,

X21 = S - \sansT 

C A\sansT 

12, X31 =A\sansT 

13, X32 =A\sansT 

23S
 - \sansT 

B ;

X22 = (xij)\in \BbbR s\times s is given by defining \sigma ij := \beta r+i\gamma r+j and setting

xij = xji =

\left\{   
aij\sigma ij + aji\sigma ji

\sigma 2
ij + \sigma 2

ji

, \sigma 2
ij + \sigma 2

ji \not = 0,

0 otherwise

for i, j = 1, . . . , s. The other blocks X11,X33,X44,X14 = X\sansT 
41,X24 = X\sansT 

42,X34 = X\sansT 
43

are all set to be zero matrices. Note that although we have set the free parameters
in X22 to be zeros, they may be arbitrary as long as X\sansT 

22 =X22. We summarize our
solution in Algorithm 4.

It is easy to adapt the solution above for skew-symmetric matrices, the only
change being that since M - 1XM - \sansT is now skew-symmetric, we want

X12 =A12S
 - 1
C , X13 =A13, X23 = S - 1

B A23,

X21 = - S - \sansT 

C A\sansT 

12, X31 = - A\sansT 

13, X32 = - A\sansT 

23S
 - \sansT 

B ;

X22 = (xij)\in \BbbR s\times s is given by defining \sigma ij := \beta r+i\gamma r+j and setting

xij = - xji =

\left\{   
aij\sigma ij  - aji\sigma ji

\sigma 2
ij + \sigma 2

ji

\sigma 2
ij + \sigma 2

ji \not = 0,

0 otherwise

for i, j = 1, . . . , s.
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GENERALIZED MATRIX NEARNESS PROBLEMS 1717

Algorithm 4 Generalized symmetry-constrained approximation

input: A\in \BbbR m\times n, B \in \BbbR m\times p, C \in \BbbR q\times n, k\geq 0;
1: compute generalized singular value decomposition

U \sansT BQ=\Sigma B

\bigl[ 
W \sansT R 0

\bigr] 
, V \sansT C\sansT Q=\Sigma C

\bigl[ 
W \sansT R 0

\bigr] 
with \Sigma B =diag(IB , SB ,OB), \Sigma C =diag(OC , SC , IC);

2: compute

M =Q

\biggl[ 
R - 1W 0

0 I

\biggr] 
;

3: compute

U \sansT AV =

\left[  A11 A12 A13

A21 A22 A23

A31 A32 A33

\right]  ;
4: compute X22 = (xij) as

xij = xji =

\left\{   
aij\sigma ij + aji\sigma ji

\sigma 2
ij + \sigma 2

ji

, \sigma 2
ij + \sigma 2

ji \not = 0,

0 otherwise;

output:

\widehat X =M

\left[    
0 A12S

 - 1
C A13 0

S - \sansT 

C A\sansT 
12 X22 S - 1

B A23 0
A\sansT 

13 A\sansT 
23S

 - \sansT 

B 0 0
0 0 0 0

\right]    M \sansT .

4. Iterative solution. The other problems \ding{196} and \ding{197} and the prescribed eigen-
vector problem take the form

min
X\in \scrS 

\| A - BXC\| ,(4.1)

where \scrS is a closed convex set of matrices having the requisite property. Although we
are unable to obtain a closed-form solution for these problems directly, we may solve
them by alternating between two subproblems with closed-form solutions:

(a) for any given A,B,C,Y , and \rho , we have a closed-form solution for the norm-
constrained problem

min
\| X - Y \| \leq \rho 

\| A - BXC\| ;

(b) for any A, when B = I and C = I, we have a closed-form solution for the
special case

min
Y \in \scrS 

\| A - Y \| .

The problem (a) is a minor variant of the problem \ding{192} solved in section 2.3, with the
\rho -ball centered at Y instead of 0. The problem (b) is a projection onto the set of
interest \scrS , which we will solve in section 5 for \ding{196}, \ding{197}, and the prescribed eigenvector
problem. Sometimes we will have to project twice to different sets \scrS 1 and \scrS 2; this
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1718 ZIHAO LI AND LEK-HENG LIM

happens when there are closed-form expressions for projections onto \scrS 1 and \scrS 2 but
none for the set of interest \scrS = \scrS 1\cap \scrS 2. An example is when \scrS is the set of correlation
matrices, with \scrS 1 the set of positive semidefinite matrices and \scrS 2 the set of matrices
with ones on the diagonal [19]. We will discuss this variant in section 4.2.

Alternating between (a) and (b) trades off between minimizing \| A - BXC\| and
staying close to within distance \rho of the projection Y \in \scrS . However, if we simply
alternate between these two subproblems, the iterates may end up simply oscillating
between two fixed points. The well-known solution is to introduce a Dykstra correction
Z [8] so that we have

Yk+1 = argmin \{ \| Xk  - Zk  - Y \| : Y \in \scrS \} ,(4.2)

Xk+1 = argmin \{ \| A - BXC\| : \| X  - Zk  - Yk+1\| \leq \rho k, X \in \BbbR p\times q\} ,(4.3)

Zk+1 =Zk  - Xk+1 + Yk+1.(4.4)

In Theorems 4.3 and 4.4, we prove the linear and global convergence of this iterative
algorithm to a global minimizer of (4.1).

We will see in section 5 that (4.2) is readily solvable for \ding{196}, \ding{197}, and the prescribed
eigenvector problem. If we set W = Zk + Yk+1, X

\prime =X  - W , A\prime = A - BWC, then
step (4.3) becomes

min
\| X\prime \| \leq \rho k

\| A\prime  - BX \prime C\| ;

i.e., it is exactly the norm-constrained problem \ding{192} that we solved in section 2.3. For
the sequence of \rho k, let aij(W ) denote the (i, j)th entry of A\prime = A  - BWC. As we
discussed in section 2.3, for any fixed W , there is a bijection between \rho > 0 and the
largest root \lambda > 0 of the secular equation

f(\lambda ,W ) :=

s\sum 
i=1

t\sum 
j=1

aij(W )2

(\sigma ij + \lambda \sigma  - 1
ij )2

= \rho 2.(4.5)

We will show in Theorem 4.4 that when B has full column rank and C has full row
rank, choosing

\lambda = \sigma min(B)\sigma min(C)\sigma max(B)\sigma max(C)(4.6)

gives us the fastest rate of convergence. In this case, we have

\rho (W ) =
\sqrt{} 
f(\sigma min(B)\sigma min(C)\sigma max(B)\sigma max(C),W ).

Note that we set \lambda to be a fixed constant but that \rho generally depends on W . We
write \rho (W ) to emphasize this dependence; in (4.3), \rho k = \rho (Zk + Yk+1). Nevertheless,
like Algorithm 2, \rho k will not make an appearance in our iterative algorithm, which
only requires \lambda . Unlike Algorithm 2, our iterative algorithm fixes a value of \lambda at the
beginning, saving us the effort of solving a secular equation.

We summarize the above discussion in Algorithm 5. Aside from lines 4 and 10,
the rest of the algorithm is identical to Algorithm 2 but sans the secular equation
step. Yet another advantage is that the optimal \lambda in (4.6) is available to us ``for free""
since the algorithm requires computing the singular value decompositions of B and
C to solve (4.3).
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GENERALIZED MATRIX NEARNESS PROBLEMS 1719

Algorithm 5 Iterative algorithm for generalized nearness problems

input: A\in \BbbR m\times n, B \in \BbbR m\times p, C \in \BbbR q\times n;
1: precompute B =UB

\bigl[ 
\Sigma B 0
0 0

\bigr] 
V \sansT 

B and C =UC

\bigl[ 
\Sigma C 0
0 0

\bigr] 
V \sansT 

C , \sigma ij = \sigma i(B)\sigma j(C);
2: set \lambda = \sigma min(B)\sigma min(C)\sigma max(B)\sigma max(C);
3: initialize X0, Y0, Z0, k= 0;
4: compute Yk+1 by projecting Xk  - Zk to the desired set \scrS ;
5: compute W = Yk+1 +Zk;
6: compute A\prime =A - BWC;
7: compute A11 from

U \sansT 

BA
\prime VC =

\biggl[ 
A11 A12

A21 A22

\biggr] 
;

8: compute X11 = (xij) as

xij =
aij

\sigma ij + \lambda \sigma  - 1
ij

;

9: compute

Xk+1 = VB

\biggl[ 
X11 0
0 0

\biggr] 
U \sansT 

C +W ;

10: compute Zk+1 =Zk  - Xk+1 + Yk+1;
11: k= k+ 1 and go to line 4.

4.1. Convergence theorems. We will now show that the iterates generated
by Algorithm 5 always converge to the global solution of (4.1) for any initialization
and that the convergence rate is linear. By (2.2), a solution Xk+1 of (4.3) satisfies
B\sansT (BXk+1C  - A)C\sansT + \lambda (Xk+1  - Zk  - Yk+1) = 0; plugging into (4.4), we get

\lambda Zk+1 =B\sansT (BXk+1C  - A)C\sansT .(4.7)

A solution Yk+1 of (4.2) clearly satisfies

0\leq \| Xk  - Zk  - Y \| 2  - \| Xk  - Zk  - Yk+1\| 2

= 2tr
\bigl( 
(Yk+1  - Xk +Zk)

\sansT (Y  - Yk+1)
\bigr) 
+ \| Y  - Yk+1\| 2

for all Y \in \scrS . Thus, tr
\bigl( 
(Yk+1 - Xk+Zk)

\sansT (Y  - Yk+1)
\bigr) 
\geq 0 for all Y \in \scrS . Plugging into

(4.4), we get

\lambda tr
\bigl( 
(Xk  - Xk+1  - Zk+1)

\sansT (Yk+1  - Y )
\bigr) 
\geq 0(4.8)

for all Y \in \scrS .
As a sanity check, we first establish that a global minimizer of \| A - BXC\| 2 is

guaranteed to exist for various \scrS of interest to us. The one exception is the case when
\scrS is the positive semidefinite cone, which we will discuss later. Recall that m\geq p and
n\geq q as at the end of section 1.

Proposition 4.1 (existence and characterization of global minimizer). For any
A \in \BbbR m\times n, B \in \BbbR m\times p, C \in \BbbR q\times n, the function X \mapsto \rightarrow \| A  - BXC\| 2 attains its
infimum on any \scrS defined by any of the constraints \ding{192}--\ding{197} with the exception of positive
semidefinite case in \ding{197}. In addition, X\ast is a global minimizer if and only if for

\lambda Z\ast :=B\sansT (BX\ast C  - A)C\sansT ,(4.9)
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1720 ZIHAO LI AND LEK-HENG LIM

we have

\lambda tr
\bigl( 
Z\sansT 

\ast (Y  - X\ast )
\bigr) 
\geq 0(4.10)

for all Y \in \scrS . Note that we introduced the parameter \lambda in (4.9) for consistency
with (4.7).

Proof. This holds as long as the sublevel set \{ X \in \scrS : \| A  - BXC\| 2 \leq \alpha \} is
compact in \BbbR p\times q for some \alpha > 0. Obviously, this trivially holds for compact \scrS . For
closed and unbounded \scrS , it is true if \| A - BXC\| 2 \rightarrow \infty whenever \| X\| \rightarrow \infty . If B and
C are both full rank, then the last property is easy to check. But we do not assume
this; in fact, we do not even exclude extreme cases like B = 0 or C = 0. Fortunately,
the issue is easy to fix.

Consider the linear map \Phi : \BbbR p\times q \rightarrow \BbbR m\times n, X \mapsto \rightarrow BXC. Let ker(\Phi ) = \{ X \in 
\BbbR m\times n : BXC = 0\} be its null space, and let ker(\Phi )\bot be the orthogonal complement
under the trace inner product on \BbbR p\times q, i.e., \langle X,Y \rangle = tr(X\sansT Y ). Let \pi : \BbbR p\times q \rightarrow \BbbR p\times q

be the orthogonal projection onto ker(\Phi )\bot . Then \| A - BXC\| 2 = \| A - B\pi (X)C\| 2,
and so we only need to consider the function X \mapsto \rightarrow \| A - BXC\| 2 restricted on \pi (\scrS )\subseteq 
ker(\Phi )\bot .

It remains to check that the function X \mapsto \rightarrow \| A  - BXC\| 2 has compact sublevel
sets when restricted to \pi (\scrS ). Restricting X to be orthogonal to ker(\Phi ) ensures that
for unbounded \scrS , we have \| A  - BXC\| 2 \rightarrow \infty as X \rightarrow \infty ; i.e., the sublevel sets
\{ X \in \pi (\scrS ) : \| A  - BXC\| 2 \leq \alpha \} are all bounded and would be compact as long as
\pi (\scrS ) is closed. We check that it is indeed closed for each of \ding{192}--\ding{197} except the positive
semidefinite case in \ding{197}:

(i) If \scrS is compact, then \pi (\scrS ) is closed since \pi is continuous. This covers \ding{192} and
the correlation, stochastic, and doubly stochastic cases in \ding{197}.

(ii) If \scrS is an affine subspace, then \pi (\scrS ) is also an affine subspace. Any finite-
dimensional affine subspace is closed. This covers \ding{193}, \ding{195}, \ding{196}, and the prescribed
eigenvector case in \ding{194}.

(iii) If \scrS is a polyhedral cone, then \pi (\scrS ) is also a polyhedral cone. Every polyhe-
dral cone is closed because it is a finite intersection of halfspaces. This covers
the nonnegative case in \ding{197}.

This leaves the prescribed eigenvalue case in \ding{194}, which, as we saw in section 2.2, is
a special case of (1.1) and has a closed-form solution, and thus existence of its global
minimizer is guaranteed.

For any Y \in \scrS , since X\ast is a global minimizer, we must have

0\leq \| A - BY C\| 2  - \| A - BX\ast C\| 2

= 2tr
\bigl( 
(B\sansT (BX\ast C  - A)C\sansT )\sansT (Y  - X\ast )

\bigr) 
+ \| B(Y  - X\ast )C\| 2(4.11)

and thus

tr
\bigl( 
(B\sansT (BX\ast C  - A)C\sansT )\sansT (Y  - X\ast )

\bigr) 
\geq 0.

Let Z\ast be defined by (4.9). Then the last inequality becomes (4.10). Conversely, if
X\ast is such that (4.10) holds for all Y \in \scrS , then by (4.11), we have \| A - BX\ast C\| 2 \leq 
\| A - BY C\| 2 for all Y \in \scrS , and so X\ast is a global minimizer.

That Proposition 4.1 may not hold when \scrS is the positive semidefinite cone de-
serves a word. For one, it is a bit of a surprise since for the special case B =C = I, the
nearest positive semidefinite matrix problem has a well-known solution given by the
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GENERALIZED MATRIX NEARNESS PROBLEMS 1721

polar decomposition (cf. section 5). To see that the existence of a global minimizer is
not guaranteed for more general B and C, consider A= [ 0 1

0 0 ], B = I, C = [ 0 1
0 1 ]. Write

X = [ a b
b c ]. Then

max
X\succeq 0

\| A - BXC\| 2 = max
a\geq 0,c\geq 0,ac\geq b2

(b - 1)2 + c2.

Clearly, the objective on the right can be made arbitrarily close to zero by taking,
say, b= 1, a= b2/c, and c\rightarrow 0, but the objective cannot equal zero.

Lemma 4.2. The iterate (Xk,Zk) of Algorithm 5 satisfies

\| Xk  - X\ast \| 2 + \| Zk  - Z\ast \| 2  - \| Xk+1  - X\ast \| 2  - \| Zk+1  - Z\ast \| 2(4.12)

\geq \| Xk  - Xk+1\| 2 + \| Zk  - Zk+1\| 2 +
2

\lambda 
\sigma min(B)2\sigma min(C)2\| Xk  - Xk+1\| 2

+
2

\lambda 
\sigma min(B)2\sigma min(C)2\| Xk+1  - X\ast \| 2.

Proof. It is easy to see that

\sigma max(B)2\sigma max(C)2\| X1  - X2\| 2 \geq tr
\bigl[ \bigl( 
B\sansT B(X1  - X2)CC\sansT 

\bigr) \sansT \bigl( 
X1  - X2

\bigr) \bigr] 
,

\sigma min(B)2\sigma min(C)2\| X1  - X2\| 2 \leq tr
\bigl[ \bigl( 
B\sansT B(X1  - X2)CC\sansT 

\bigr) \sansT \bigl( 
X1  - X2

\bigr) \bigr] 
.

(4.13)

Combining (4.9), (4.13), and (4.7), we have

\lambda tr
\bigl( 
(Xk+1  - X\ast )

\sansT (Zk+1  - Z\ast )
\bigr) 
\geq \sigma min(B)2\sigma min(C)2\| Xk+1  - X\ast \| 2.(4.14)

Combining (4.10) and (4.8), we have

\lambda tr
\bigl( 
(Yk+1  - X\ast )(Xk  - Xk+1  - Zk+1 +Z\ast )

\bigr) 
\geq 0.(4.15)

Adding (4.14) and (4.15) and applying (4.4), we have

\lambda tr
\bigl[ \bigl( 
Zk  - Zk+1

\bigr) \sansT \bigl( 
Zk+1  - Z\ast  - (Xk  - Xk+1)

\bigr) \bigr] 
(4.16)

+ \lambda tr
\bigl( 
(Xk+1  - X\ast )

\sansT (Xk  - Xk+1)
\bigr) 
\geq \sigma min(B)2\sigma min(C)2\| Xk+1  - X\ast \| 2.

Dividing (4.16) by \lambda and using the identity \| a - c\| 2 - \| b - c\| 2 = 2tr
\bigl( 
(a - c)\sansT (a - b)

\bigr) 
 - 

\| a - b\| 2,

\| Xk  - X\ast \| 2 + \| Zk  - Z\ast \| 2  - \| Xk+1  - X\ast \| 2  - \| Zk+1  - Z\ast \| 2 \geq \| Xk  - Xk+1\| 2(4.17)

+ \| Zk  - Zk+1\| 2 + 2tr
\bigl( 
(Zk  - Zk+1)

\sansT (Xk  - Xk+1)
\bigr) 

+
2

\lambda 
\sigma min(B)2\sigma min(C)2\| Xk+1  - X\ast \| 2.

From (4.13) and (4.7), we have

\lambda tr
\bigl( 
(Zk  - Zk+1)

\sansT (Xk  - Xk+1)
\bigr) 
\geq \sigma min(B)2\sigma min(C)2\| Xk  - Xk+1\| 2.

Plug this into (4.17), and we obtain the desired result.

Theorem 4.3 (global convergence). For any \lambda > 0, the iterate (Xk,Zk) of
Algorithm 5 converges to some (X\ast ,Z\ast ) satisfying (4.9) and (4.10).
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1722 ZIHAO LI AND LEK-HENG LIM

Proof. By (4.12), the sequence (\| Xk - X\ast \| 2+\| Zk - Z\ast \| 2)\infty k=0 is monotone decreas-
ing and thus convergent. This also implies that (Xk)

\infty 
k=0 and (Zk)

\infty 
k=0 are bounded

and therefore have convergent subsequences (Xkj )
\infty 
j=0 with limit \widetilde X and (Zkj

)\infty j=0 with

limit \widetilde Z. Taking limits in (4.7) and (4.8) over these subsequences, we obtain

\lambda \widetilde Z =B\sansT (B \widetilde XC  - A)C\sansT , \lambda tr
\bigl( \widetilde Z\sansT (Y  - \widetilde X)

\bigr) 
\geq 0

for all Y \in \scrS . Thus, ( \widetilde X, \widetilde Z) satisfies (4.9) and (4.10), implying that \widetilde X is a global
minimizer. Let X\ast = \widetilde X and Z\ast = \widetilde Z. Since (\| Xk  - X\ast \| 2 + \| Zk  - Z\ast \| 2)\infty k=0 is
convergent, we must have Xk \rightarrow X\ast and Zk \rightarrow Z\ast .

Theorem 4.4 (linear convergence). Suppose B has full column rank and C has
full row rank. Then

\| Xk  - X\ast \| 2 + \| Zk  - Z\ast \| 2 \geq (1 + \delta )(\| Xk+1  - X\ast \| 2 + \| Zk+1  - Z\ast \| 2)

with

\delta =

\biggl[ 
\lambda 

2\sigma min(B)2\sigma min(C)2
+

\sigma max(B)2\sigma max(C)2

2\lambda 

\biggr]  - 1

.

In particular, choosing

\lambda = \sigma min(B)\sigma min(C)\sigma max(B)\sigma max(C)

maximizes the convergence rate with

\delta =
\sigma min(B)\sigma min(C)

\sigma max(B)\sigma max(C)
=

1

\kappa 2(B)\kappa 2(C)
.

Proof. If B has full column rank and C has full row rank, then

\sigma max(B)2\sigma max(C)2 \geq \sigma min(B)2\sigma min(C)2 > 0.

Since for any X1,X2 \in \BbbR m\times n,

\| B\sansT B(X1  - X2)CC\sansT \| 2 \leq \sigma max(B)2\sigma max(C)2 tr
\bigl[ \bigl( 
B\sansT B(X1  - X2)CC\sansT 

\bigr) \sansT 
(X1  - X2)

\bigr] 
,

we have

\lambda tr
\bigl( 
(Xk+1  - X\ast )

\sansT (Zk+1  - Z\ast )
\bigr) 
\geq 1

\sigma max(B)2\sigma max(C)2
\| \lambda Zk+1  - \lambda Z\ast \| 2.(4.18)

Taking a convex combination of (4.14) and (4.18), we get

\lambda tr
\bigl( 
(Xk+1  - X\ast )

\sansT (Zk+1  - Z\ast )
\bigr) 
\geq t\sigma min(B)2\sigma min(C)2\| Xk+1  - X\ast \| 2(4.19)

+ (1 - t)
1

\sigma max(B)2\sigma max(C)2
\| \lambda Zk+1  - \lambda Z\ast \| 2

for any t \in [0,1]. When we derived (4.12), the term 2\sigma min(B)2\sigma min(C)2\| Xk+1  - 
X\ast \| 2/\lambda came from (4.14). If we use (4.19) in place of (4.14) in our derivation, we
obtain

\| Xk  - X\ast \| 2 + \| Zk  - Z\ast \| 2  - \| Xk+1  - X\ast \| 2  - \| Zk+1  - Z\ast \| 2

\geq \| Xk  - Xk+1\| 2 + \| Zk  - Zk+1\| 2 +
2

\lambda 
\sigma min(B)2\sigma min(C)2\| Xk  - Xk+1\| 2

+ t
2

\lambda 
\sigma min(B)2\sigma min(C)2\| Xk+1  - X\ast \| 2

+ (1 - t)
2

\lambda \sigma max(B)2\sigma max(C)2
\| \lambda Zk+1  - \lambda Z\ast \| 2.
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GENERALIZED MATRIX NEARNESS PROBLEMS 1723

Now drop the nonnegative term 2\sigma min(B)2\sigma min(C)2\| Xk  - Xk+1\| 2/\lambda , and combine
the last two terms to get \delta (\| Xk+1  - X\ast \| 2 + \| Zk+1  - Z\ast \| ) with

t=
\lambda 2

1 + \sigma min(B)2\sigma min(C)2\sigma max(B)2\sigma max(C)2
.

Corollary 4.5. The iterate (Xk,Zk) of Algorithm 5 satisfies

\| Xk  - Xk+1\| 2 + \| Zk  - Zk+1\| 2 \leq 
\| X0  - X\ast \| 2 + \| Z0  - Z\ast \| 2

k+ 1
.

Proof. By subtracting two successive inequalities of the form (4.8), we get

tr
\bigl( 
(Zk+1 +Xk+1  - Xk  - Zk+2  - Xk+2 +Xk+1)

\sansT (Yk+2  - Yk+1)
\bigr) 
\geq 0.

Adding this to 2\lambda tr
\bigl( 
(Zk+1  - Zk+2)

\sansT (Xk+1  - Xk+2)
\bigr) 
\geq 0 gives

tr
\bigl( 
(Xk+1  - Xk+2)

\sansT (Xk  - 2Xk+1 +Xk+2)
\bigr) 

+ tr
\bigl( 
(Zk+1 +Xk+1  - Xk  - Zk+2  - Xk+2 +Xk+1)

\sansT (Xk+1  - Xk+2)
\bigr) 
\geq 0.

It follows from (4.4) that

Zk + Yk+1  - Xk  - Zk+1  - Yk+2 +Xk+1 =Zk+1 +Xk+1  - Xk  - Zk+2  - Xk+2 +Xk+1.

So the last inequality becomes

tr
\bigl( 
(Xk+1  - Xk+2)

\sansT (Xk  - 2Xk+1 +Xk+2)
\bigr) (4.20)

+ tr
\bigl( 
(Zk + Yk+1  - Xk  - Zk+1  - Yk+2 +Xk+1)

\sansT (Xk+1  - Yk+1  - Xk+2 + Yk+2)
\bigr) 
\geq 0.

Adding

\| Xk  - 2Xk+1 +Xk+2\| 2

+ tr
\bigl( 
(Xk  - Yk+1  - Xk+1 + Yk+2)

\sansT (Xk+1  - Yk+1  - Xk+2 + Yk+2)
\bigr) 

to both sides of (4.20), we get

tr
\bigl( 
(Xk  - Xk+1)

\sansT (Xk  - 2Xk+1 +Xk+2)
\bigr) 
+ tr

\bigl( 
(Zk  - Zk+1)

\sansT (Zk  - 2Zk+1 +Zk+2)
\bigr) 

\geq \| Xk  - 2Xk+1 +Xk+2\| 2

+ tr
\bigl( 
(Xk  - Yk+1  - Xk+1 + Yk+2)

\sansT (Xk+1  - Yk+1  - Xk+2 + Yk+2)
\bigr) 
,

and with this inequality, we see that

\| Xk  - Xk+1\| 2 + \| Zk  - Zk+1\| 2  - \| Xk+1  - Xk+2\| 2  - \| Zk+1  - Zk+2\| 2

= 2tr
\bigl( 
(Xk  - Xk+1)

\sansT (Xk  - 2Xk+1 +Xk+2)
\bigr) 

+ 2tr
\bigl( 
(Zk  - Zk+1)

\sansT (Zk  - 2Zk+1 +Zk+2)
\bigr) 

 - \| Xk  - 2Xk+1 +Xk+2\| 2  - \| Zk  - 2Zk+1 +Zk+2\| 2

\geq \| Xk  - 2Xk+1 +Xk+2\| 2

+ 2tr
\bigl( 
(Xk  - Yk+1  - Xk+1 + Yk+2)

\sansT (Xk+1  - Yk+1  - Xk+2 + Yk+2)
\bigr) 

 - \| Xk  - 2Xk+1 +Xk+2\| 2  - \| Zk  - 2Zk+1 +Zk+2\| 2

\geq 2\| Xk  - 2Xk+1 +Xk+2\| 2

+ 2tr
\bigl( 
(Xk  - 2Xk+1 +Xk+2 +Zk  - 2Zk+1 +Zk+2)

\sansT (Zk  - 2Zk+1 +Zk+2)
\bigr) 

 - \| Xk  - 2Xk+1 +Xk+2\| 2  - \| Zk  - 2Zk+1 +Zk+2\| 2

= \| Xk  - 2Xk+1 +Xk+2 +Zk  - 2Zk+1 +Zk+2\| 2 \geq 0.
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1724 ZIHAO LI AND LEK-HENG LIM

It follows that the sequence (\| Xk - Xk+1\| 2+\| Zk - Zk+1\| 2)\infty k=0 is monotone decreasing.
Hence,

(k+ 1)(\| Xk  - Xk+1\| 2 + \| Zk  - Zk+1\| 2)\leq 
\infty \sum 
k=0

(\| Xk  - Xk+1\| 2 + \| Zk  - Zk+1\| 2)

\leq \| X0  - X\ast \| 2 + \| Z0  - Z\ast \| 2,

where the inequality follows from (4.12).

4.2. Repeated projections. There are occasions when we do not have a single
closed-form solution for a projection onto the desired set \scrS = \scrS 1 \cap \scrS 2 but we do have
closed-form solutions for projections onto \scrS 1 and \scrS 2. Of course, one may then obtain
an iterative method for projection onto \scrS simply by alternating between projections
onto \scrS 1 and \scrS 2 [8]. Nevertheless, in situations like this, standard wisdom from the
design of iterative algorithms informs us that it would be better to intertwine these
inexpensive projections onto \scrS 1 and \scrS 2 with other steps of Algorithm 5---instead of
projecting onto \scrS , an expensive endeavor requiring a separate iterative procedure,
in every iteration of Algorithm 5. With this in mind, we obtain the following ``two
projections variant"" of Algorithm 5:

Xk+1 = argmin \{ \| A - BXC\| 2 + \lambda \| X  - Wk +Zk\| 2 :X \in \BbbR p\times q\} ,
Yk+1 = argmin \{ \| Wk  - Z \prime 

k  - Y \| : Y \in \scrD \} ,
Wk+1 = argmin \{ \| Xk+1 + Yk+1 +Zk +Z \prime 

k)/2 - W\| :W \in \scrS \} ,(4.21)

Zk+1 =Zk +Xk+1  - Wk+1,

Z \prime 
k+1 =Z \prime 

k + Yk+1  - Wk+1.

It is straightforward to extend this to include three (or more) projections when we have
\scrS = \scrS 1\cap \scrS 2\cap \scrS 3. In other words, we may solve a generalized matrix nearness problem
min \| A - BXC\| , where X is required to satisfy two or more of the constraints \ding{192}--\ding{197}.

The convergence results in section 4.1 may also be adapted to (4.21). To account
for the fact that we now have two Dykstra corrections Zk and Z \prime 

k, we replace (4.7)
and (4.8) by

\lambda (Wk  - Wk+1  - Zk+1) =B\sansT (BXk+1C  - A)C\sansT ,

\lambda tr
\bigl( 
(Wk  - Wk+1  - Z \prime 

k+1)
\sansT (Yk+1  - Y )

\bigr) 
\geq 0,

\lambda tr
\bigl( 
(Zk+1 +Z \prime 

k+1)
\sansT (Wk+1  - W )

\bigr) 
\geq 0

for all Y \in \scrS 1 and W \in \scrS 2. It is straightforward to check that with this modification,
the proofs of Lemma 4.2, Theorems 4.3 and 4.4, and Corollary 4.5 carry through for
the algorithm in (4.21).

5. Computing projections. We rely on Algorithm 5 for the generalized near-
ness problems \ding{196}, \ding{197}, and the prescribed eigenvector problem. Since the algorithm
alternates between projection and norm-constrained least squares, it remains to dis-
cuss how we may compute a projection, i.e.,

min
X\in \scrS 

\| A - X\| ,

for the relevant sets \scrS . We first remind the reader that the projection of A \in \BbbR n\times n

to the subspace of symmetric matrices \BbbS n := \{ X \in \BbbR n\times n : X = X\sansT \} is given by
X = (A+A\sansT )/2, a fact that we will use liberally below.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

11
/1

1/
23

 to
 2

05
.2

08
.1

16
.2

4 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



GENERALIZED MATRIX NEARNESS PROBLEMS 1725

For \ding{196}, \scrS is the subspace of either Toeplitz, Hankel, or circulant matrices [28]:

Toepn(\BbbR ) := \{ X \in \BbbR n\times n : xi,i+k = xj,j+k, - n+ 1\leq k\leq n - 1,

1\leq k+ i, k+ j, i, j \leq n\} ,
Hankn(\BbbR ) := \{ X \in \BbbR n\times n : xi,k - i = xj,k - j ,2\leq k\leq 2n,

1\leq k - i, k - j, i, j \leq n\} ,
Circn(\BbbR ) := \{ X \in \BbbR n\times n : xij = xkl, i - j \equiv k - l mod n\} .

The projections of A \in \BbbR n\times n onto Toepn(\BbbR ), Hankn(\BbbR ), Circn(\BbbR ) are then given,
respectively, by

xij =

\left\{                         

1

n - | i - j| 
\sum 

k - l=i - j

akl (Toeplitz),

1

n - | i+ j  - n - 1| 
\sum 

k+l=i+j

akl (Hankel),

1

n

\sum 
k - l\equiv i - j mod n

akl (circulant)

for i, j = 1, . . . , n.
For the prescribed eigenvector problem, given any nonzero v \in \BbbR n, we write

\BbbS nv := \{ X \in \BbbS n :Xv= \lambda v for some \lambda \in \BbbR \} .

For any given A \in \BbbR n\times n and nonzero v \in \BbbR n, we may assume \| v\| 2 = 1 and, if not,
just normalize. Let V \in \BbbR n\times n be an orthogonal matrix whose first column is v. Let
e = [1,0, . . . ,0]\sansT \in \BbbR n. Then as Xv = \lambda v iff V \sansT XV e = \lambda e, the projection problem
reduces to

min
X\in \BbbS nv

\| A - X\| = min
V \sansT XV \in \BbbS ne

\| V \sansT AV  - V \sansT XV \| .

With this observation, a projection of A\in \BbbR n\times n to X \in \BbbS nv may be computed by first
extending v to an orthogonal matrix V \in \BbbR n\times n (e.g., by using QR decomposition);
partitioning

V \sansT AV =

\biggl[ 
\alpha 11 a\sansT 

12

a21 A22

\biggr] 
with \alpha 11 \in \BbbR , a12, a21 \in \BbbR n - 1, and A22 \in \BbbR (n - 1)\times (n - 1); and finally computing

X = V

\biggl[ 
a11 0
0 (A22 +A\sansT 

22)/2

\biggr] 
V \sansT .

It remains to address the projections for \ding{197}. We introduce more standard nota-
tions: Nonnegative and positive semidefinite X \in \BbbR n\times n are denoted

X \geq 0, X \succeq 0,

respectively; i.e., the former means that xij \geq 0 for all i, j = 1, . . . , n, whereas the
latter means that the quadratic form v\sansT Xv \geq 0 for all v \in \BbbR n. The convex sets of
nonnegative matrices and of symmetric positive semidefinite matrices are denoted

\BbbR n\times n
+ := \{ X \in \BbbR n\times n :X \geq 0\} , \BbbS n+ := \{ X \in \BbbS n :X \succeq 0\} ,
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1726 ZIHAO LI AND LEK-HENG LIM

respectively. It is well known that the projections of a matrix A \in \BbbR n\times n onto these
sets are given by simply zeroing out negative entries or negative eigenvalues. For
\BbbR n\times n

+ , it is an easy exercise: The projected matrix X \in \BbbR n\times n
+ is given by

X =max(A,0),

where max( \cdot ,0) is applied coordinatewise to a matrix. For \BbbS n+, it is slightly more in-
volved [15]: The projected matrix X \in \BbbS n+ is given by taking the symmetric eigenvalue
decomposition (A+A\sansT )/2 = V \Lambda V \sansT and setting

X = V max(\Lambda ,0)V \sansT .

The same projected matrix X may also be computed with polar decomposition
[15, 14].

The convex sets of stochastic, doubly stochastic, and correlation matrices [20] are

Stocn(\BbbR ) :=

\left\{   X \in \BbbR n\times n
+ :

n\sum 
j=1

xij = 1, i= 1, . . . , n

\right\}   ,

DStocn(\BbbR ) :=

\left\{   X \in \BbbR n\times n
+ :

n\sum 
j=1

xij =

n\sum 
i=1

xij = 1, i, j = 1, . . . , n

\right\}   ,

Corrn(\BbbR ) := \{ X \in \BbbS n+ : xii = 1, i= 1, . . . , n\} .

By our discussion in section 4.2, we only need to address the question of projections
onto

\scrC :=

\left\{   X \in \BbbR n\times n :

n\sum 
j=1

xij = 1, i= 1, . . . , n

\right\}   ,

\scrR :=

\Biggl\{ 
X \in \BbbR n\times n :

n\sum 
i=1

xij = 1, j = 1, . . . , n

\Biggr\} 
,

\scrD := \{ X \in \BbbS n : xii = 1, i= 1, . . . , n\} 

since

Stocn(\BbbR ) = \scrC \cap \BbbR n\times n
+ , DStocn(\BbbR ) = \scrC \cap \scrR \cap \BbbR n\times n

+ , Corrn(\BbbR ) =\scrD \cap \BbbS n+.

The projections of A \in \BbbR n\times n onto \scrC , \scrR , \scrD are easily seen to be given, respectively,
by

xij = aij  - 
1

n

\biggl[ n\sum 
k=1

aik  - 1

\biggr] 
, xij = aij  - 

1

n

\biggl[ n\sum 
k=1

akj  - 1

\biggr] 
, xij =

\Biggl\{ 
1, i= j,

aij i \not = j,

where i, j = 1, . . . , n.

6. Numerical experiments. We compare Algorithm 5, which is based on nu-
merical linear algebra, with general algorithms based on convex optimization. We
use problem \ding{197} for illustration, as these nonnegativity constraints are more complex
and allow us to test our two-projection variant (4.21). We will minimize \| A - BXC\| 
with X constrained to nonnegative, stochastic, positive semidefinite, and correlation
matrices. The first two require just a single projection, and thus Algorithm 5 suffices;
the last two require two projections and thus call for (4.21). We compare our results
against those obtained with convex optimization methods in the software package cvx
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GENERALIZED MATRIX NEARNESS PROBLEMS 1727

[5], using its ecos solver for the nonnegative and stochastic cases and its scs solver
for the positive semidefinite and correlation cases.

We generate random matrices B,C,X \in \BbbR n\times n, with X satisfying the constraint at
hand, and set A = BXC. This represents the most common scenario: We minimize
\| A  - BXC\| when we really want to solve A = BXC in the presence of errors.
Furthermore, as X is known and (almost surely) unique, we may use the forward
error \| \widehat X  - X\| /\| X\| as a metric to make comparisons.

6.1. Speed. For each dimension n= 2d, we repeat our runs 10 times and com-
pare the average time taken to reach a prespecified forward error. The default
precisions of cvx are eps \.rel = eps \.abs= 1e-4 for scs and reltol = abstol =
feastol= 1e-8 for ecos; we scale these parameters by the dimension of the matrix
n. We record the final forward error of cvx and run Algorithm 5 until it achieves
the same forward error. From Figure 1, Algorithm 5 outperforms cvx significantly
in speed for large n. Indeed, the range of dimensions is limited by cvx, which fails
to converge for large n. To get a rough idea, for n = 27, cvx took about half an
hour when Algorithm 5 took less than a second. For n= 28 and beyond, cvx did not
converge within 24 hours.

These results are within expectation: In convex optimization, these problems are
transformed to convex quadratic programs or semidefinite programs; both require at
least O(n4) operations per iteration, which is prohibitive for large n. In our Algo-
rithm 5 and its two-projection variant (4.21), the dominating cost is the projection
onto \scrS ---this is essentially free for nonnegative and stochastic matrices, requiring only
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Fig. 1. Speed of Algorithm 5 (nla) versus cvx.
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Fig. 2. Accuracy of Algorithm 5 (nla) versus cvx. Here the red lines indicate the level of
maximum possible accuracy of cvx.

O(n2) operations per iteration; for correlation and positive semidefinite matrices, pro-
jections require around O(n3) operations per iteration.

6.2. Accuracy. Here we compare the minimum possible forward error each
method can achieve. We set n = 32, as cvx may fail to converge in a reasonable
amount of time for larger values of n. We set cvx to its maximum allowed precisions---
reltol = abstol = feastol= 1e-16 for ecos and eps \.rel = eps \.abs= 1e-16 for
scs---and record its final forward error. Then we run Algorithm 5 for 5,000 iterations
and record its forward error at each iteration. Note that it is not meaningful to make
iterationwise comparisons here, as the two algorithms are entirely different. From
Figure 2, we see that Algorithm 5 reaches beyond the maximum possible accuracy of
cvx in every case. The linear convergence rate in Theorem 4.4 is also evident from
these plots.

7. Conclusion. Likely because of the increasing awareness of convex optimiza-
tion as a potent tool in many areas, there has been a tendency to apply general purpose
convex optimization methods to any convex problem. However, convex problems like
those considered in this article often have more structures than mere convexity. We
show that approaching such problems through numerical linear algebra in the spirit
of [11, 12, 15, 16, 17, 19, 22, 30, 35] can sometimes lead to better results and has the
advantage of working for the occasional nonconvex problem like the ones with rank
constraints or prescribed eigenvalues considered in this article.
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A potential avenue for future work is to extend the work in this article to other
unitarily invariant matrix norms: Closed-form expressions like those in sections 2
and 3, if possible, would likely require more advanced tools, such as singular value
majorization [21, Chapter 3], used in the extension of the Eckart--Young theorem
(for the Frobenius norm) to the Eckart--Young--Mirsky theorem (for any unitarily
invariant norms). Iterative algorithms like the ones in section 4 would likely resemble
proximal gradient algorithms [32] or eigenvalue optimization algorithms [25].
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