
Applied and Computational Harmonic Analysis 68 (2024) 101601

Contents lists available at ScienceDirect

Applied and Computational Harmonic Analysis

journal homepage: www.elsevier.com/locate/acha

LU decomposition and Toeplitz decomposition of a neural network

Yucong Liu a, Simiao Jiao a, Lek-Heng Lim b,∗

a Department of Statistics, University of Chicago, Chicago, IL 60637, United States of America
b Computational and Applied Mathematics Initiative, University of Chicago, Chicago, IL 60637, United States of America

A R T I C L E I N F O A B S T R A C T

Communicated by Gerlind Plonka

Keywords:

Neural networks

Toeplitz matrices

Hankel matrices

Triangular matrices

Convolutional neural networks

Universal approximation

Any matrix 𝐴 has an LU decomposition up to a row or column permutation. Less well-known is
the fact that it has a ‘Toeplitz decomposition’ 𝐴 = 𝑇1𝑇2⋯ 𝑇𝑟 where 𝑇𝑖’s are Toeplitz matrices.
We will prove that any continuous function 𝑓 ∶ ℝ𝑛 → ℝ𝑚 has an approximation to arbitrary
accuracy by a neural network that maps 𝑥 ∈ℝ𝑛 to 𝐿1𝜎1𝑈1𝜎2𝐿2𝜎3𝑈2⋯ 𝐿𝑟𝜎2𝑟−1𝑈𝑟𝑥 ∈ℝ𝑚, i.e., where
the weight matrices alternate between lower and upper triangular matrices, 𝜎𝑖(𝑥) ∶= 𝜎(𝑥 − 𝑏𝑖)
for some bias vector 𝑏𝑖, and the activation 𝜎 may be chosen to be essentially any uniformly
continuous nonpolynomial function. The same result also holds with Toeplitz matrices, i.e.,
𝑓 ≈ 𝑇1𝜎1𝑇2𝜎2⋯ 𝜎𝑟−1𝑇𝑟 to arbitrary accuracy, and likewise for Hankel matrices. A consequence
of our Toeplitz result is a fixed-width universal approximation theorem for convolutional neural
networks, which so far have only arbitrary width versions. Since our results apply in particular
to the case when 𝑓 is a general neural network, we may regard them as LU and Toeplitz
decompositions of a neural network. The practical implication of our results is that one may
vastly reduce the number of weight parameters in a neural network without sacrificing its power
of universal approximation. We will present several experiments on real data sets to show that
imposing such structures on the weight matrices dramatically reduces the number of training
parameters with almost no noticeable effect on test accuracy.

1. Introduction

Among the numerous results used to justify and explain the efficacy of feed-forward neural networks, possibly the best known are
the universal approximation theorems of various types. These theorems explain the expressive power of neural networks by showing
that they can approximate various classes of functions to arbitrary accuracy under various measures of accuracy. The universal
approximation theorems in the literature may be divided into two categories, applying respectively to:

(i) shallow wide networks: neural networks of fixed depth and arbitrary width;

(ii) deep narrow networks: neural networks with fixed width and arbitrary depth.

In the first category, we have the celebrated results of Cybenko [1], Hornik [9], Pinkus [26], et al. We state the last of these for easy
reference:

* Corresponding author.
Available online 6 October 2023
1063-5203/© 2023 Elsevier Inc. All rights reserved.

E-mail addresses: yucongliu@uchicago.edu (Y. Liu), smjiao@uchicago.edu (S. Jiao), lekheng@uchicago.edu (L.-H. Lim).

https://doi.org/10.1016/j.acha.2023.101601

Received 28 November 2022; Received in revised form 29 July 2023; Accepted 27 September 2023

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/acha
mailto:yucongliu@uchicago.edu
mailto:smjiao@uchicago.edu
mailto:lekheng@uchicago.edu
https://doi.org/10.1016/j.acha.2023.101601
http://crossmark.crossref.org/dialog/?doi=10.1016/j.acha.2023.101601&domain=pdf
https://doi.org/10.1016/j.acha.2023.101601

Applied and Computational Harmonic Analysis 68 (2024) 101601Y. Liu, S. Jiao and L.-H. Lim

Theorem 1.1 (Pinkus [26]). Let 𝜎 ∈ 𝐶(ℝ) and Ω ⊆ ℝ𝑛 be compact. The set of 𝜎-activated neural networks with one hidden layer and
arbitrary width is dense in 𝐶(Ω, ℝ𝑚) with respect to the uniform norm if and only if 𝜎 is not a polynomial.

In the second category, an example is provided by Kidger and Lyons [14], again quoted below for easy reference:

Theorem 1.2 (Kidger and Lyons [14]). Let 𝜎 ∈ 𝐶(ℝ) be a nonpolynomial function, continuously differentiable at at least one point, with
nonzero derivative at that point. Let Ω ⊆ℝ𝑛 be compact. Then the set of 𝜎-activated neural networks with fixed width 𝑚 + 𝑛 +1 and arbitrary
depth is dense in 𝐶(Ω, ℝ𝑚) with respect to the uniform norm.

In all these results, the weight matrices used in each layer are assumed to be dense general matrices; in particular, these neural
networks are fully connected. The goal of our article is to show that even when we impose special structures on the weight matrices
— upper and lower triangular, Toeplitz or Hankel — we will still have the same type of universal approximation results, for both
shallow wide and deep narrow networks alike. In addition, our numerical experiments will show that when kept at the same depth
and width, a neural network with these structured weight matrices suffers almost no loss in expressive powers, but requires only a
fraction of the parameters — note that an 𝑚 × 𝑛 triangular matrix with 𝑝 = max(𝑚, 𝑛) has at most 𝑝(𝑝 + 1)∕2 parameters whereas an
𝑚 × 𝑛 Toeplitz or Hankel matrix has exactly 𝑚 + 𝑛 − 1 parameters.

The saving in training cost goes beyond a mere reduction in the number of weight parameters. The forward and backward
propagations in the training process ultimately reduce to matrix-vector products. For Toeplitz or Hankel matrices, these come at a
cost of 𝑂(𝑛 log𝑛) operations as opposed to the usual 𝑂(𝑛2).

An alternative way to view our results is that these are “LU decomposition” and “Toeplitz decomposition” of a nonlinear function
in the context of neural networks. A departure from the case of linear functions is that an LU decomposition of a nonlinear function
requires not just one lower triangular matrix and one upper triangular matrix but several of these alternating between lower triangular
and upper triangular, and sandwiching an activation. The Toeplitz (or Hankel) decomposition of a linear function is a consequence
of the following result, which can be readily extended to 𝑚 × 𝑛 matrices, as we will see in Section 2.2.

Theorem 1.3 (Ye and Lim [30]). Every 𝑛 × 𝑛 matrix can be expressed as a product of 2𝑛 + 5 Toeplitz matrices or 2𝑛 + 5 Hankel matrices.

Again we will see that this also applies to a nonlinear continuous function as long as we introduce an activation function between
every Toeplitz or Hankel factor. Another caveat in these results is that the exact equality used in linear algebra is replaced by the
most common notion of equality in approximation theory, namely, equality up to an arbitrarily small error. As in Theorems 1.1 and
1.2, our results will apply with essentially any nonpolynomial continuous activations, including but not limited to common ones like
ReLU, leaky ReLU, sigmoidal, hyperbolic tangent, etc.

We will prove these results in Section 2, with shallow wide neural networks in Section 2.1 and deep narrow neural networks
Section 2.2, after discussing prior works in Section 1.1 and setting up notations in Section 1.2. The experiments showing the practical
side of these results are in Section 4 with a cost analysis in Section 3.

1.1. Prior works

We present a more careful discussion of existing works in the literature, in rough chronological order. To the best of our knowl-

edge, there are six main lines of works related to ours. While none replicates our results in Section 2, they show a progression towards
our work in spirit — with the increase in width and depth of neural networks, it has become an important endeavor to reduce the
number of redundant training parameters through other means.

Shallow wide neural networks: The earliest universal approximation theorems are for one-hidden-layer neural networks with arbitrary
width, beginning with the eponymous theorem of Cybenko [1], which shows that a fully-connected sigmoid-activated network with
one hidden layer and an arbitrary number of neurons can approximate any continuous function on the unit cube in ℝ𝑛 up to arbitrary
accuracy. Cybenko’s argument also works for ReLU activation and could be extended to a fixed number of hidden layers simply by
requiring that the additional hidden layers approximate an identity map. Hornik et al. [10] obtained the next major generalization
to nondecreasing activations with lim𝑥→−∞ 𝜎(𝑥) = 0 and lim𝑥→+∞ 𝜎(𝑥) = 1. The most general universal approximation theorem along
this line is that of Pinkus [26] stated earlier in Theorem 1.1. The striking aspect is that it is a necessary and sufficient condition,
showing that such universal approximation property characterizes the “nonpolynomialness” of the activation function.

Deep narrow networks: With the advent of deep neural networks, the focus has changed to keeping the width fixed and allowing
the depth to increase. Lu et al. [21] showed that ReLU-activated neural networks of width 𝑛 + 4 and arbitrary depth are dense in
𝐿1(ℝ𝑛). Hanin and Sellke [7] showed that such neural networks of width 𝑚 + 𝑛 are dense in 𝐶(Ω, ℝ𝑚) for any compact Ω ⊆ ℝ𝑛. The
aforementioned Theorem 1.2 of Kidger and Lyons [14] is another alternative with more general continuous activations and with
width 𝑚 +𝑛 +1. An extreme case is provided by Lin and Jegelka [20] for ResNet with a single neuron per hidden layer but with depth
2

going to infinity.

Applied and Computational Harmonic Analysis 68 (2024) 101601Y. Liu, S. Jiao and L.-H. Lim

Width-depth tradeoff: The tradeoff between width and depth of a neural network is now well studied. The results of Eldan and
Shamir [2], Telgarsky [28] explain the benefits of having more layers — a deep neural network cannot be well approximated by
shallow neural networks unless they are exponentially large. On the other hand, the results of Johnson [12], Park et al. [25] revealed
the limitations of deep neural networks — they require a minimum width for universal approximation; although these results do not
cover exotic structures like ResNet. There are also studies on the memory capacity of wide and deep neural networks [31].

Neural network pruning: Pruning refers to techniques for eliminating redundant weights from neural networks and it has a long
history [17,8,6,19]. A recent highlight is the lottery ticket hypothesis proposed in Frankle and Carbin [3] that led to extensive
follow-up work [23,4,22]. Our results in Section 2 may be viewed as a particularly aggressive type of pruning whereby we either set
half the weight parameters to zero, as in the LU case, or even reduce the number of weight parameters by an order of magnitude,
from 𝑂(𝑛2) to 𝑂(𝑛), as in the Toeplitz/Hankel case.

Convolutional neural networks: The result closest to ours is likely the universal approximation theorem for deep convolutional neural
network of Zhou [32]. However his result provides the necessary width and depth in terms of the approximating accuracy 𝜀, and as
such requires arbitrary width and depth at the same time. We will deduce an alternative version with fixed width in Corollary 2.5.

Hardware acceleration: In the context of accelerating training of neural networks via GPUs, FPGAs, ASICs, and other specialized
hardware (e.g., Google’s TPU, Nvidia’s H100 AI processor), there have been prior works on exploiting structured matrix algorithms
for matrix-vector multiply, notably for triangular matrices in [11] and Toeplitz matrices in [13].

1.2. Notations and conventions

We write ‖ ⋅ ‖ for both the Euclidean norm on ℝ𝑛 and the Frobenius norm on ℝ𝑚×𝑛. The zero matrix in ℝ𝑚×𝑛 is denoted 0𝑚×𝑛. The
zero vector and the vector of all ones in ℝ𝑛 will be denoted 0𝑛 and 1𝑛 respectively.

Let 𝐴 = (𝑎𝑖𝑗) ∈ ℝ𝑚×𝑛. If 𝑎𝑖𝑗 = 0 whenever 𝑖 > 𝑗, then 𝐴 is upper triangular; if 𝑎𝑖𝑗 = 0 whenever 𝑖 < 𝑗, then 𝐴 is lower triangular. A
matrix is Toeplitz (resp. Hankel) if has equal entries along its diagonals (resp. reverse diagonals). More precisely, 𝐴 is Toeplitz if
𝑎𝑖,𝑖+𝑟 = 𝑎𝑗,𝑗+𝑟 whenever −𝑚 + 1 ≤ 𝑟 ≤ 𝑛 − 1, 1 ≤ 𝑖, 𝑗 ≤ 𝑚, 1 ≤ 𝑖 + 𝑟, 𝑗 + 𝑟 ≤ 𝑛. Similarly 𝐴 is Hankel if 𝑎𝑖,𝑟−𝑖 = 𝑎𝑗,𝑟−𝑗 whenever 2 ≤ 𝑟 ≤𝑚 + 𝑛,
1 ≤ 𝑖, 𝑗 ≤𝑚, 1 ≤ 𝑟 − 𝑖, 𝑟 − 𝑗, ≤ 𝑛. Note that the definitions of these structured matrices do not require that 𝑚 = 𝑛.

An 𝑚 × 𝑛 Toeplitz or Hankel matrix requires only 𝑚 + 𝑛 − 1 parameters to specify — standard convention is to just store the first
row and first column of a Toeplitz matrix and the first row and last column of a Hankel matrix. For example, when 𝑚 = 𝑛, we have

𝑇 =

⎡⎢⎢⎢⎢⎢⎣

𝑎0 𝑎−1 𝑎1−𝑛

𝑎1 𝑎0
. . .

. . .
. . . 𝑎−1

𝑎𝑛−1 𝑎1 𝑎0

⎤⎥⎥⎥⎥⎥⎦
, 𝐻 =

⎡⎢⎢⎢⎢⎢⎣

𝑎0 𝑎1 ⋯ 𝑎𝑛−1

𝑎1 𝑎2 . .
.

𝑎𝑛
... . .

.
. .
. ...

𝑎𝑛−1 𝑎𝑛 ⋯ 𝑎2𝑛−2

⎤⎥⎥⎥⎥⎥⎦
.

We write 𝐶(Ω, ℝ𝑚) for the set of continuous functions on Ω taking values in ℝ𝑚, with 𝐶(Ω) for the special case when 𝑚 = 1.
Throughout this article we will use the uniform norm for all function approximations; there will be no confusion with the norms
introduced above as we will always specify our uniform norm explicitly as sup𝑥∈Ω.

Any univariate function 𝜎 ∶ℝ →ℝ defines a pointwise activation 𝜎 ∶ℝ𝑛 →ℝ𝑛 for any 𝑛 ∈ ℕ through applying 𝜎 coordinatewise to
vectors in ℝ𝑛. We will sometimes drop the parentheses, writing 𝜎𝑥 to mean 𝜎(𝑥), to reduce notational clutter.

A 𝑘-layer neural network 𝜈 ∶ℝ𝑛 →ℝ𝑚 has the following structure:

𝜈(𝑥) =𝐴𝑘𝜎𝑘−1𝐴𝑘−1𝜎𝑘−1⋯𝜎2𝐴2𝜎1𝐴1𝑥+ 𝑏𝑘

for any input 𝑥 ∈ℝ𝑛, weight matrix 𝐴𝑖 ∈ℝ𝑛𝑖×𝑛𝑖−1 ,

𝜎𝑖(𝑥) ∶= 𝜎(𝑥+ 𝑏𝑖)

with 𝑏𝑖 ∈ ℝ𝑛𝑖 the bias vector, and 𝜎 the activation function. The output size of the 𝑖th layer is 𝑛𝑖 and always equals the input size
of (𝑖 + 1)th layer, with 𝑛0 = 𝑛 and 𝑛𝑘 = 𝑚. If there is no special structure on the weight matrix 𝐴𝑖, then the 𝑖th layer is called a
fully-connected layer.

The class of convolutional neural networks deserves special mention, not least because they launched the deep learning revolution
[16]. If the weight matrix 𝐴𝑖 ∈ℝ𝑠×𝑡 arises from a convolution with some kernel vector 𝜅 = (𝑎1−𝑡, … , 𝑎0, … , 𝑎𝑠−1) ∈ℝ𝑠+𝑡−1, then the 𝑖th
layer is called a convolutional layer. In other words, the 𝑖th layer may be expressed as 𝜎(𝜅 ∗ 𝑥 + 𝑏𝑖), where ∗ denotes the convolution

operation. A convolutional neural network is one where the initial layers are all convolutional and the subsequent layers are all
fully-connected.

2. Universal approximation by structured neural networks
3

We present our main results and proofs, beginning with shallow wide networks and followed by deep narrow networks.

Applied and Computational Harmonic Analysis 68 (2024) 101601Y. Liu, S. Jiao and L.-H. Lim

2.1. Fixed depth, arbitrary width

This is an easy case that we state for completeness. Our universal approximation result in this case only holds for scalar-valued
functions. The more interesting case for arbitrary depth neural networks in Section 2.2 will hold for vector-valued functions.

We begin with an observation that, if width is not a limitation, then any general weight matrix may be transformed into a Toeplitz
or Hankel matrix.

Lemma 2.1 (General matrices to Toeplitz/Hankel matrices). Any matrix 𝐴 ∈ℝ𝑚×𝑛 can be transformed into a Toeplitz or Hankel matrix by
inserting additional rows.

Proof. This is best illustrated by way of a simple example first. For a 2 × 2 matrix[
𝑎11 𝑎12
𝑎21 𝑎22

]
,

inserting a row vector in the middle makes it Toeplitz:

⎡⎢⎢⎣
𝑎11 𝑎12
𝑎22 𝑎11
𝑎21 𝑎22

⎤⎥⎥⎦ ;
and similarly inserting a different row vector in the middle makes it Hankel:

⎡⎢⎢⎣
𝑎11 𝑎12
𝑎12 𝑎21
𝑎21 𝑎22

⎤⎥⎥⎦ .
For an 𝑚 × 𝑛 matrix

𝐴 =

⎡⎢⎢⎢⎢⎣

𝑎11 𝑎12 ⋯ 𝑎1𝑛
𝑎21 𝑎22 ⋯ 𝑎2𝑛
...

...
. . .

...

𝑎𝑚1 𝑎𝑚2 ⋯ 𝑎𝑚𝑛

⎤⎥⎥⎥⎥⎦
,

inserting 𝑛 − 1 rows between the first and the second row[
𝑎11 𝑎12 ⋯ 𝑎1𝑛
𝑎21 𝑎22 ⋯ 𝑎2𝑛

]
turns it Toeplitz

⎡⎢⎢⎢⎢⎢⎢⎣

𝑎11 𝑎12 ⋯ 𝑎1𝑛

𝑎2𝑛 𝑎11
. . .

...
...

. . .
. . . 𝑎12

𝑎22 𝑎2𝑛 𝑎11
𝑎21 𝑎22 ⋯ 𝑎2𝑛

⎤⎥⎥⎥⎥⎥⎥⎦
.

Now repeat this to the remaining pairs of adjacent rows of 𝐴, we see that after inserting a total of (𝑚 − 1)(𝑛 − 1) rows, we obtain
an (𝑚𝑛 − 𝑛 + 1) × 𝑛 Toeplitz matrix. The process for transforming a general 𝑚 × 𝑛 matrix into a Hankel matrix by inserting rows is
similar. □

Evidently, the statement and proof of Lemma 2.1 remain true if ‘row’ is replaced by ‘column’ but we will only need the row
version in our proofs.

Theorem 2.2 (Universal approximation by structured neural networks I). Let Ω ⊆ℝ𝑛 be compact and 𝜎 ∶ℝ →ℝ be nonpolynomial. For any
𝑓 ∈ 𝐶(ℝ𝑛) and any 𝜀 > 0, we have

sup
𝑥∈Ω

|𝑓 (𝑥) − 𝜈(𝑥)| ≤ 𝜀

for some one-layer neural network 𝜈 ∶ℝ𝑛 →ℝ,

𝜈(𝑥) = 𝑎𝖳𝜎(𝐴𝑥+ 𝑏),

with 𝑎, 𝑏 ∈ℝ𝑚, 𝑚 ∈ℕ, and 𝐴 ∈ℝ𝑚×𝑛 that can be chosen to be
4

(i) a Toeplitz matrix,

Applied and Computational Harmonic Analysis 68 (2024) 101601Y. Liu, S. Jiao and L.-H. Lim

(ii) a Hankel matrix,

(iii) or a lower triangular matrix.

Proof. It follows from Theorem 1.1 that for a given 𝑓 ∈ 𝐶(ℝ𝑛), there exist 𝑐, 𝑑 ∈ℝ𝑝, 𝑝 ∈ℕ, 𝐵 ∈ℝ𝑝×𝑛 so that

sup
𝑥∈Ω

|𝑓 (𝑥) − 𝑑𝖳𝜎(𝐵𝑥+ 𝑐)| ≤ 𝜀.

Here of course 𝐵 has no specific structure. We begin with the Toeplitz case. By Lemma 2.1, we first transform 𝐵 ∈ℝ𝑝×𝑛 into a Toeplitz
matrix 𝐴 ∈ℝ𝑚×𝑛 for some 𝑚 ∈ ℕ. Since 𝐴 is obtained from 𝐵 by inserting rows, let the rows 𝑖1, … , 𝑖𝑝 of 𝐴 be rows 1, … , 𝑝 of 𝐵. Now
let 𝑎 ∈ℝ𝑚 be the vector whose 𝑖𝑗 th entry is exactly the 𝑗th entry of 𝑑 and zeroes everywhere else. Likewise, let 𝑏 ∈ℝ𝑚 be the vector
whose 𝑖𝑗 th entry is exactly the 𝑗th entry of 𝑐 and zeroes everywhere else. Then we clearly have 𝑑𝖳𝜎(𝐵𝑥 + 𝑐) = 𝑎𝖳𝜎(𝐴𝑥 + 𝑏) and the
required result follows. The Hankel case is identical. For the remaining case, we set

𝑎 =
[
0𝑛
𝑑

]
, 𝐴 =

[
0𝑛×𝑛
𝐵

]
, 𝑏 =

[
0𝑛
𝑐

]
,

and observe that 𝑑𝖳𝜎(𝐵𝑥 + 𝑐) = 𝑎𝖳𝜎(𝐴𝑥 + 𝑏). Hence the required result follows. □

Theorem 2.2 is false if 𝐴 is required to be upper triangular. To see this, take 𝑛 = 2, and let 𝐴 ∈ ℝ𝑚×2 be upper triangular. A
one-layer neural network 𝜈 ∶ℝ2 →ℝ with 𝐴 as weight matrix takes the form 𝜈(𝑥1, 𝑥2) = 𝑠1𝜎(𝑎11𝑥1 + 𝑎12𝑥2 + 𝑏1) + 𝑠2𝜎(𝑎22𝑥2 + 𝑏2) + 𝑐.
If we just set 𝜎 to be the ReLU activation, then clearly 𝜈 will not be able to approximate a function like, say, 𝑓 (𝑥1, 𝑥2) = 𝑥21 + 𝑥22
arbitrarily well. The point is that an upper triangular 𝐴 ∈ ℝ𝑚×2 has at most three parameters regardless of how large 𝑚 is, so the
neural network 𝜈 defined by 𝐴 is a piecewise linear function with at most four linear pieces, and therefore cannot approximate 𝑓 to
arbitrary accuracy. This is also why the counterexample does not apply to a lower triangular 𝐴 ∈ℝ𝑚×2, which has 2𝑚 −1 parameters
and its associated neural network can approximate any continuous 𝑓 to arbitrary accuracy when 𝑚 is large enough (as shown in the
proof above).

2.2. Fixed width, arbitrary depth

The one-layer arbitrary width case above is more of a curiosity. Modern neural networks are almost invariably multilayer and we
now provide the result that applies to this case. We first show that the identity map on ℝ𝑛 may be approximated by essentially any
continuous pointwise activation. This is a generalization of [14, Lemma 4.1].

Lemma 2.3 (Approximation of identity). Let 𝜎 ∶ℝ → ℝ be any continuous function that is continuously differentiable at some point 𝑎 ∈ ℝ
with 𝜎′(𝑎) ≠ 0. Let 𝐼 ∶ ℝ𝑛 → ℝ𝑛 be the identity map. Then for any compact Ω ⊆ ℝ𝑛 and any 𝜀 > 0, there exists a 𝛿 > 0 such that whenever
0 < |ℎ| < 𝛿, the function 𝜌ℎ ∶ℝ𝑛 →ℝ𝑛,

𝜌ℎ(𝑥) ∶=
1

ℎ𝜎′(𝑎)
[𝜎(ℎ𝑥+ 𝑎1𝑛) − 𝜎(𝑎1𝑛)], (1)

satisfies

sup
𝑥∈Ω

‖𝜌ℎ(𝑥) − 𝐼(𝑥)‖ ≤ 𝜀.

Proof. Subscript 𝑖 in this proof refers to the 𝑖th coordinate. As Ω is compact, |𝑥𝑖| ≤𝐿 for some 𝐿 > 0 and for all 𝑖 = 1, … , 𝑛. Since the
derivative 𝜎′ is continuous, there exists 𝜂 > 0 such that

|𝜎′(𝑏) − 𝜎′(𝑎)| < |𝜎′(𝑎)|𝜀
𝐿
√
𝑛

whenever |𝑏 − 𝑎| ≤ 𝜂. Let 𝛿 = 𝜂∕𝐿. Then for 0 < |ℎ| < 𝛿, we have

|𝜌ℎ(𝑥)𝑖 − 𝑥𝑖| = ||||𝜎(𝑎+ ℎ𝑥𝑖) − 𝜎(𝑎)
ℎ𝜎′(𝑎)

− 𝑥𝑖
|||| =

|||||
𝑥𝑖𝜎

′(𝜉)
𝜎′(𝛼)

− 𝑥𝑖

||||| ≤𝐿
||||𝜎

′(𝜉) − 𝜎′(𝑎)
𝜎′(𝑎)

|||| ≤ 𝜀√
𝑛

for some 𝜉 between 𝑎 + ℎ𝑥𝑖 and 𝑎 by the mean value theorem. The last inequality follows from |𝜉 − 𝑎| ≤ |ℎ𝑥1| ≤ |ℎ|𝐿 ≤ 𝜂. Note that 𝛿
is independent of all 𝑥𝑖 ’s and therefore 𝑥. Hence we may take sup𝑥∈Ω‖ ⋅ ‖ to get the required result. □

The proof of our main result below relies on two facts: that we may use 𝜌ℎ to approximate the identity map; and that if we scale
the input of our activation by ℎ or scale the output by 1∕ℎ𝜎′(𝑎), it does not affect the structure of our weight matrices — Toeplitz,
Hankel, and triangular structures are preserved under scalar multiplication.

Theorem 2.4 (Universal approximation by structured neural networks II). Let Ω ⊆ℝ𝑛 be compact and 𝜎 ∶ℝ →ℝ be any uniformly contin-

uous nonpolynomial function that is continuously differentiable at at least one point in Ω, and has nonzero derivative at that point. For any
5

𝑓 ∈ 𝐶(ℝ𝑛, ℝ𝑚) and any 𝜀 > 0, there exists a neural network 𝜈 ∶ℝ𝑛 →ℝ𝑚,

Applied and Computational Harmonic Analysis 68 (2024) 101601Y. Liu, S. Jiao and L.-H. Lim

𝜈(𝑥) =𝐴𝑘𝜎𝑘−1𝐴𝑘−1𝜎𝑘−1⋯𝜎2𝐴2𝜎1𝐴1𝑥+ 𝑏𝑘,

such that

sup
𝑥∈Ω

‖𝑓 (𝑥) − 𝜈(𝑥)‖ < 𝜀,

where the weight matrices 𝐴1 ∈ℝ(𝑚+𝑛+1)×𝑛,

𝐴2,… ,𝐴𝑘−1 ∈ℝ(𝑚+𝑛+1)×(𝑚+𝑛+1),

and 𝐴𝑘 ∈ℝ𝑚×(𝑚+𝑛+1) may be chosen to be

(i) all Toeplitz,

(ii) all Hankel,

(iii) upper triangular for odd-indexed 𝐴𝑖 and lower triangular for even-indexed 𝐴𝑖 ;

with bias vectors 𝑏1, … , 𝑏𝑘−1 ∈ℝ𝑚+𝑛+1, 𝑏𝑘 ∈ℝ𝑚, and 𝜎𝑖(𝑥) ∶= 𝜎(𝑥 + 𝑏𝑖).

Proof. By Theorem 1.2, there is a neural network 𝜑 of width 𝑚 +𝑛 +1 such that sup𝑥∈Ω‖𝑓 (𝑥) −𝜑(𝑥)‖ < 𝜀∕2. We will write 𝜑 recursively
as

𝜑(𝑥) = 𝐵𝑘𝜑𝑘(𝑥) + 𝑐𝑘

with 𝜑0(𝑥) = 𝑥 and 𝜑𝑗+1(𝑥) = 𝜎(𝐵𝑗𝜑𝑗 (𝑥) + 𝑐𝑗), 𝑗 = 1, … , 𝑘 −1. Here 𝐵1 ∈ℝ(𝑚+𝑛+1)×𝑛, 𝐵𝑘 ∈ℝ𝑚×(𝑚+𝑛+1), and 𝐵2, … , 𝐵𝑘−1 ∈ℝ(𝑚+𝑛+1)×(𝑚+𝑛+1).

By Theorem 1.3, the square matrices 𝐵2, … , 𝐵𝑘−1 may each be decomposed into a product of Toeplitz matrices:

𝐵𝑗 = 𝑇
(𝑗)
1 𝑇

(𝑗)
2 ⋯𝑇 (𝑗)

𝑟𝑗
. (2)

As for 𝐵1, we have

𝐵1 = [𝐵1,0(𝑚+𝑛+1)×(𝑚+1)]
[

𝐼𝑛
0(𝑚+1)×𝑛

]
and as [𝐼𝑛, 0𝑛×(𝑚+1)]𝖳 ∈ℝ(𝑚+𝑛+1)×𝑛 is a rectangular Toeplitz matrix and Theorem 1.3 applies to the square matrix [𝐵1, 0(𝑛+𝑚+1)×(𝑚+1)] ∈
ℝ(𝑚+𝑛+1)×(𝑚+𝑛+1), we also have a Toeplitz decomposition for 𝐵1. The argument applied to 𝐵1 also applies to 𝐵𝖳

𝑘
. Hence we have

𝐵1 = 𝑇
(1)
1 ⋯𝑇 (1)

𝑟1
, 𝐵𝑘 = 𝑇

(𝑘)
1 ⋯𝑇 (𝑘)

𝑟𝑘

as well. We thus obtain

𝜑(𝑥) = 𝑇
(𝑘)
1 ⋯𝑇 (𝑘)

𝑟𝑘
𝜑𝑘(𝑥) + 𝑐𝑘

with 𝜑0(𝑥) = 𝑥 and

𝜑𝑗+1(𝑥) = 𝜎
(
𝑇
(𝑗)
1 ⋯𝑇 (𝑗)

𝑟𝑗
𝜑𝑗 (𝑥) + 𝑐𝑗

)
(3)

for 𝑗 = 1, … , 𝑘 − 1.

Let us fix 𝑗 and drop the superscripts to avoid notational clutter. Between each adjacent pair of Toeplitz matrices 𝑇𝑖 and 𝑇𝑖+1, we
may insert an identity map 𝐼 ∶ℝ𝑛+𝑚+1 →ℝ𝑛+𝑚+1 and apply Lemma 2.3 to approximate 𝐼 by 𝜌ℎ𝑖 for some ℎ𝑖 depending on 𝑇𝑖 and 𝑇𝑖+1
to be chosen later. Since

𝑇𝑖𝜌ℎ𝑖𝑇𝑖+1𝑥 =
1

ℎ𝑖𝜎
′(𝑎)

𝑇𝑖𝜎(ℎ𝑖𝑇𝑖+1𝑥+ 𝑎1𝑛) −
𝜎(𝑎)

ℎ𝑖𝜎
′(𝑎)

𝑇𝑖1𝑛

=∶ 𝑇 ′
𝑖 𝜎(𝑇

′
𝑖+1𝑥+ 𝑏𝑖+1) + 𝑏𝑖 (4)

each of these terms has the form we need, and the bias vectors are given by

𝑏𝑖+1 ∶= 𝑎1𝑛 and 𝑏𝑖 ∶= − 𝜎(𝑎)
ℎ𝑖𝜎

′(𝑎)
𝑇𝑖1𝑛.

Observe that the matrices 𝑇 ′
𝑖
∶= (1∕ℎ𝑖𝜎′(𝑎)) ⋅𝑇𝑖 and 𝑇 ′

𝑖+1 ∶= ℎ𝑖𝑇𝑖+1 remain Toeplitz matrices as the Toeplitz structure is invariant under
scaling. We will replace each identity map between adjacent Toeplitz matrices in (3) for each 𝑖 = 1, … , 𝑟𝑗 − 1; and then do this for
each 𝑗 = 1, … , 𝑘 − 1. By (4), the resulting map is a 𝜎-activated neural network with all weight matrices Toeplitz. We will denote this
neural network by 𝜈.

It remains to choose the ℎ𝑖, or more accurately the ℎ𝑖𝑗 since we have earlier dropped the index 𝑗 to simplify notation, in a way
that
6

sup
𝑥∈Ω

‖𝑓 (𝑥) − 𝜈(𝑥)‖ ≤ 𝜀.

Applied and Computational Harmonic Analysis 68 (2024) 101601Y. Liu, S. Jiao and L.-H. Lim

Given that sup𝑥∈Ω‖𝑓 (𝑥) −𝜑(𝑥)‖ < 𝜀∕2, it suffices to show

sup
𝑥∈Ω

‖𝜑(𝑥) − 𝜈(𝑥)‖ ≤ 𝜀

2
. (5)

There is no loss of generality but a great gain in notational simplicity in assuming that 𝑟𝑗 = 2 for 𝑗 = 1, … , 𝑘 and 𝑘 = 2, i.e.,

𝜑(𝑥) = 𝑇
(2)
1 𝑇

(2)
2 𝜎(𝑇 (1)

1 𝑇
(1)
2 𝑥+ 𝑐1) + 𝑐2,

𝜈(𝑥) = 𝑇
(2)
1 𝜌ℎ2𝑇

(2)
2 𝜎(𝑇 (1)

1 𝜌ℎ1𝑇
(1)
2 𝑥+ 𝑐1) + 𝑐2.

The reasoning is identical for the general case by repeating the argument for the 𝑘 = 2 = 𝑟1 = 𝑟2 case. Now set

𝜓(𝑥) ∶= 𝑇
(2)
1 𝑇

(2)
2 𝜎(𝑇 (1)

1 𝜌ℎ1𝑇
(1)
2 𝑥+ 𝑐1) + 𝑐2.

We will first show that there exists ℎ1 ≠ 0, such that

sup
𝑥∈Ω

‖𝜑(𝑥) −𝜓(𝑥)‖ ≤ 𝜀

4
. (6)

Then we will prove that for the given ℎ1, there exists ℎ2 ≠ 0 such that

sup
𝑥∈Ω

‖𝜈(𝑥) −𝜓(𝑥)‖ ≤ 𝜀

4
.

By our assumption, 𝜎 is uniformly continuous on ℝ. So there exists 𝜂 > 0 such that

|𝜎(𝑎) − 𝜎(𝑏)| ≤ 𝜀

4
√
𝑛‖𝑇 (1)

1 ‖‖𝑇 (1)
2 ‖

for any 𝑎, 𝑏 ∈ℝ with |𝑎 − 𝑏| ≤ 𝜂. If we could choose ℎ1 ≠ 0 so that

sup
𝑥∈Ω

‖𝑇 (1)
1 𝑇

(1)
2 𝑥− 𝑇

(1)
1 𝜌ℎ1𝑇

(1)
2 𝑥‖ ≤ 𝜂, (7)

then (6) would follow. Note that the
√
𝑛 factor is necessary as 𝜎 is applied coordinatewise to an 𝑛-dimensional vector.

Since Ω is compact, so is Ω1 ∶= {𝑇 (1)
2 𝑥 ∶ 𝑥 ∈Ω}. Applying Lemma 2.3 to Ω1 with 𝜂∕‖𝑇 (1)

1 ‖, we obtain ℎ1 ≠ 0 with

sup
𝑦∈Ω1

‖𝜌ℎ1 (𝑦) − 𝑦‖ ≤ 𝜂‖𝑇 (1)
1 ‖

and thus

sup
𝑥∈Ω

‖𝑇 (1)
1 𝑇

(1)
2 𝑥− 𝑇

(1)
1 𝜌ℎ1𝑇

(1)
2 𝑥‖ ≤ ‖𝑇 (1)

1 ‖ sup
𝑦∈Ω1

‖𝜌ℎ1 (𝑦) − 𝑦‖ ≤ 𝜂.

Next set Ω2 ∶= {𝑇 (2)
2 𝜎(𝑇 (1)

1 𝜌ℎ1𝑇
(2)
2 𝑥 + 𝑐1) ∶ 𝑥 ∈Ω}, which is again compact. Applying Lemma 2.3 to Ω2 with 𝜀∕4‖𝑇 (2)

1 ‖, we obtain ℎ2 ≠ 0
with

sup
𝑦∈Ω2

‖𝜌ℎ2 (𝑦) − 𝑦‖ ≤ 𝜀

4‖𝑇 (2)
1 ‖ .

Hence

sup
𝑥∈Ω

‖𝜈(𝑥) −𝜓(𝑥)‖ ≤ ‖𝑇 (1)
1 ‖ sup

𝑦∈Ω2

‖𝜌ℎ2 (𝑦) − 𝑦‖ ≤ 𝜀

4
,

which together with (6) gives us (5) as required.

To summarize the argument, if

𝜑(𝑥) = 𝑇
(2)
1 𝑇

(2)
2 𝜎(𝑇 (1)

1 𝑇
(1)
2 𝑥+ 𝑐1) + 𝑐2

approximates 𝑓 to arbitrary accuracy, then we may choose ℎ1 and ℎ2 so that

𝜈(𝑥) = 𝑇
(2)
1 𝜌ℎ2𝑇

(2)
2 𝜎(𝑇 (1)

1 𝜌ℎ1𝑇
(1)
2 𝑥+ 𝑐1) + 𝑐2

approximates 𝑓 to arbitrary accuracy and 𝜈 has all weight matrices Toeplitz. For general 𝑘 and 𝑟1, … , 𝑟𝑘, we may similarly determine
a finite sequence of ℎ1, ℎ2, ℎ3, … successively and insert a copy of 𝜌ℎ𝑖 between each pair of Toeplitz matrices while maintaining the
approximation error within 𝜀. As a reminder, the inserted copy of 𝜌ℎ𝑖 results in a 𝜎-activation with a bias as in (1).

Furthermore, in the above proof, the only property of Toeplitz matrix we have used is that the Toeplitz structure is preserved
under multiplication by any scalar. This scaling invariance also holds true for Hankel matrices and triangular matrices. Consequently,
7

the same arguments apply verbatim if we had used a Hankel decomposition [30, Equation 2]

Applied and Computational Harmonic Analysis 68 (2024) 101601Y. Liu, S. Jiao and L.-H. Lim

𝐵𝑗 =𝐻
(𝑗)
1 𝐻

(𝑗)
2 ⋯𝐻 (𝑗)

𝑟𝑗

in place of the Toeplitz decomposition in (2). Indeed our argument above extends to any decomposition of the weight matrices into
a product of structured matrices whose structures are preserved under scaling.

Now there is a slight complication for the case of triangular matrices — not every matrix will have a decomposition of the form

𝐵𝑗 =𝐿(𝑗)𝑈 (𝑗) (8)

where 𝐿(𝑗) is lower triangular and 𝑈 (𝑗) is upper triangular. Note that the standard LU decomposition of a matrix requires an additional
permutation matrix multiplied either to the left or right [5]. Nevertheless, we could use the fact that any square matrix all of whose
principal minors are invertible has a decomposition of the form (8), and since such matrices are dense in ℝ𝑛×𝑛, any matrix has an LU
approximation to arbitrary accuracy.

For the rectangular weight matrices in the first and last layers, we note that they can be treated much in the same way as we did
in the Toeplitz case. If 𝐵 is an 𝑚 × 𝑛 matrix and 𝑚 > 𝑛, then write

𝐵 = [𝐵,0𝑚×(𝑚−𝑛)]
[

𝐼𝑛
0(𝑚−𝑛)×𝑛

]
.

Since [𝐵, 0𝑚×(𝑚−𝑛)] is an 𝑚 ×𝑚 square matrix, it has an approximation [𝐵, 0𝑚×(𝑚−𝑛)] ≈𝐿𝑈 to arbitrary accuracy and therefore 𝐵 ≈𝐿𝑈 ′

to arbitrary accuracy with 𝑈 ′ = 𝑈
[

𝐼𝑛
0𝑛×(𝑚−𝑛)

]
. The argument for 𝑚 > 𝑛 is similar. In short, LU-decomposable matrices are also dense in

ℝ𝑚×𝑛.

There is also an alternative approach by way of a little-known result of Nagarajan et al. [24]: Any matrix in ℝ𝑛×𝑛 can always be
decomposed into a product of three triangular matrices

𝐵𝑗 =𝐿
(𝑗)
1 𝑈 (𝑗)𝐿(𝑗)

2 .

Note that this result may also be applied to the transpose of a matrix. So the conclusion is that any square matrix has an LUL
decomposition and a ULU decomposition. The required result then follows from applying ULU decompositions to weight matrices
in the odd layers and LUL decompositions to weight matrices in the even layers, adjusting for rectangular weight matrices with the
argument in the previous paragraph. For example, for a neural network of the form

𝐵2𝜎(𝐵1𝑥+ 𝑐),

we decompose it into

𝐿
(2)
1 𝑈 (2)𝐿(2)

2 𝜎(𝑈 (1)
1 𝐿(1)𝑈 (1)

2 𝑥+ 𝑐)

and insert an appropriate activation between every successive factor as in the Toeplitz case to obtain an arbitrary accuracy approxi-

mation. □

Note that the neural network 𝜈 constructed in the proof of Theorem 2.4 has fixed width 𝑚 +𝑛 +1 as in Theorem 1.2 but a departure
from Theorem 1.2 is that 𝜎 has to be uniformly continuous and not just continuous. Nevertheless, almost all common activations like
ReLU, sigmoid, hyperbolic tangent, leaky ReLU, etc, meet this requirement.

It is perhaps also worth highlighting that the proof of Theorem 2.4 would extend to any decomposition of weight matrices into a
product of structured matrices whose structures are preserved under multiplication by scalars.

A particularly interesting implication of the proof of Theorem 2.4 is that fixed width convolutional neural networks has the
universal approximation property. While Zhou [32] has also obtained a universal approximation theorem for convolutional neural
networks, it requires arbitrary width. Our version below requires a width of at most 𝑚 + 𝑛 + 1 and, as will be evident from the proof,
holds regardless of how the convolutional layers and fully connected layers in the network are ordered.

Corollary 2.5 (Universal approximation theory for convolutional neural network). Let Ω ⊆ ℝ𝑛 be compact, 𝜎 ∶ ℝ → ℝ be any uniformly
continuous nonpolynomial function which is continuously differentiable at at least one point, with nonzero derivative at that point. Then for
any function 𝑓 ∈ 𝐶(ℝ𝑛, ℝ𝑚) and any 𝜀 > 0, there exists a deep convolutional neural network 𝜈 ∶ℝ𝑛 →ℝ𝑚 with width 𝑚 + 𝑛 + 1 such that

sup
𝑥∈Ω

‖𝑓 (𝑥) − 𝜈(𝑥)‖ < 𝜀.

Proof. Recall that a convolutional neural network is one that consists of several convolutional layers at the beginning and fully-

connected layers consequently, as defined at the end of Section 1.2. Observe that in the proof of Theorem 2.4, there is no need to
make every layer Toeplitz — we could replace any layer with a few Toeplitz layers or choose to keep it as is with general weight
matrices while preserving the 𝜀-approximation. So there is a 𝑘-layer neural network 𝑔 with first 𝑘′ layers Toeplitz and remaining
8

𝑘 − 𝑘′ layers general such that sup𝑥∈Ω ‖𝑓 (𝑥) − 𝑔(𝑥)‖ < 𝜀. Let 𝑇 ∈ℝ𝑠×𝑡 be Toeplitz, i.e.,

Applied and Computational Harmonic Analysis 68 (2024) 101601Y. Liu, S. Jiao and L.-H. Lim

𝑇 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑎0 𝑎−1 ⋯ 𝑎1−𝑡

𝑎1 𝑎0
. . .

...
...

. . .
. . . 𝑎−1

𝑎𝑠−𝑡−1
. . .

. . . 𝑎0

𝑎𝑠−𝑡
. . .

. . . 𝑎1

𝑎𝑠−𝑡+1
. . .

. . .
...

...
. . . 𝑎𝑠−𝑡 𝑎𝑠−𝑡−1

𝑎𝑠−1 ⋯ 𝑎𝑠−𝑡+1 𝑎𝑠−𝑡

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
when 𝑠 ≥ 𝑡 and

𝑇 =

⎡⎢⎢⎢⎢⎢⎣

𝑎0 𝑎−1 ⋯ 𝑎𝑠−𝑡+1 𝑎𝑠−𝑡 𝑎𝑠−𝑡−1 ⋯ 𝑎1−𝑡

𝑎1 𝑎0
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

. . .
. . . 𝑎𝑠−𝑡−1

𝑎𝑠−1 ⋯ 𝑎1 𝑎0 𝑎−1 ⋯ 𝑎𝑠−𝑡+1 𝑎𝑠−𝑡

⎤⎥⎥⎥⎥⎥⎦
when 𝑡 ≥ 𝑠. Define the kernel 𝜅 = (𝑎1−𝑡, … , 𝑎0, … , 𝑎𝑠−1) ∈ℝ𝑠+𝑡−1. Since its dimension 𝑠 + 𝑡 − 1 is larger than the dimension of an input
𝑥 ∈ ℝ𝑡, the convolution of 𝜅 and 𝑥 is taken in the sense of [15], i.e., with zero-padding that adds 𝑠 − 1 zeros on each side of 𝑥 to
obtain an input 𝑥 = (0, … , 0, 𝑥1, … , 𝑥𝑡, 0, … , 0) ∈ℝ𝑡+2𝑠−2 of the appropriate dimension. Regardless of whether 𝑠 ≥ 𝑡 or 𝑡 ≥ 𝑠, we have

𝜅 ∗ 𝑥 =

⎡⎢⎢⎢⎢⎣

𝑎𝑠−1 ⋯ 𝑎1 𝑎0 ⋯ 𝑎1−𝑡 0 ⋯ 0
0 𝑎𝑠−1 ⋯ 𝑎1 𝑎0 ⋯ 𝑎1−𝑡 ⋯ 0

0
. . .

. . .
. . .

. . .
. . .

...

0 ⋯ 0 𝑎𝑠−1 ⋯ 𝑎1 𝑎0 ⋯ 𝑎1−𝑡

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...

0
𝑥1
...

𝑥𝑡
0
...

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 𝑇𝑥.

Note in particular that the output 𝜅 ∗ 𝑥 ∈ ℝ𝑠. A layer with 𝑇 as weight matrix is therefore equivalent to a convolutional layer with
kernel 𝜅 and zero-padding. By repeating this in every Toeplitz layer in 𝑔, we transform it into a convolutional neural network 𝜈 with
𝑘′ convolutional layers and 𝑘 − 𝑘′ fully connected layer. □

The requirement that the activation function 𝜎 be nonpolynomial in Theorem 2.4 and Corollary 2.5 may be replaced instead by
a polynomial of degree at least two. The caveat is that the width of 𝜈 would have to be increased to 𝑚 + 𝑛 + 2. The proof remains the
same, but instead of Theorem 1.2, the proofs will rely on Proposition 4.11 in [14].

3. Training cost analysis

Here we perform a basic estimate of how much savings one may expect from imposing an LU or Toeplitz/Hankel structure on
a neural network. The reduction in weight parameters is the most obvious advantage: an 𝑚 × 𝑛 upper triangular matrix requires
(𝑛 + 1)𝑛∕2 parameters if 𝑚 ≥ 𝑛 and (2𝑛 − 𝑚 + 1)𝑚∕2 if 𝑚 < 𝑛; an 𝑚 × 𝑛 lower triangular matrix requires (2𝑚 − 𝑛 + 1)𝑛∕2 parameters if
𝑚 ≥ 𝑛 and (𝑚 + 1)𝑚∕2 if 𝑚 < 𝑛; an 𝑚 × 𝑛 Toeplitz or Hankel matrix requires just 𝑚 + 𝑛 − 1 parameters. However, there is also a slightly
less obvious advantage that we will discuss next.

The standard basic procedure in training a neural network involves a loss function 𝓁 on the output of the network. Common
examples include cross-entropy loss, mean squared error loss, mean absolute error loss, negative log-likelihood loss, etc. We calculate
the gradient of 𝓁 under each weight parameter, and then update each parameter with the corresponding gradient scaled by a learning
rate. The training process comprises two parts, forward propagation and backward propagation. In forward propagation, the neural
network is evaluated to produce the output from the input. The computational cost is dominated by the matrix-vector multiplication
in each layer:

𝑦𝑖 =𝐴𝑖𝑧𝑖 + 𝑏𝑖, 𝑧𝑖+1 = 𝜎(𝑦𝑖)

In backward propagation, we calculate the gradient of each parameter with chain rule. In the 𝑖th layer, the gradient is calculated
from

∇𝑧𝑖
𝓁 =𝐴𝖳

𝑖∇𝑦𝑖
𝓁, ∇𝐴𝑖

𝓁 = (∇𝑦𝑖
𝓁)⊗𝑧𝑖,
9

where ⊗ denotes outer product. Again, the computational cost is dominated by matrix-vector multiplication in each layer.

Applied and Computational Harmonic Analysis 68 (2024) 101601Y. Liu, S. Jiao and L.-H. Lim

Fig. 1. Accuracy on MNIST. (For interpretation of the colors in the figures, the reader is referred to the web version of this article.)

Given that training cost ultimately boils down to matrix-vector multiplications, we expect massive savings by exploiting such
algorithms for structured matrices, particularly in the Toeplitz or Hankel cases, as these matrix-vector products can be computed in
𝑂(𝑛 log𝑛) complexity, compared to the usual 𝑂(𝑛2) for general matrices. But even triangular matrices would immediately halve the
cost of training.

4. Experiments

We have conducted extensive experiments to demonstrate that neural networks with structured weight matrices such as those
discussed in this article are almost as accurate as general ones. For a fair comparison, in each experiment we fixed the width and
depth of the neural networks, changing only the type of weight matrices used, whether general (i.e., no structure), triangular,
Toeplitz, or Hankel. In particular, all weight matrices have same dimensions, differing only in their structures or lack therefore. We
have also taken care to avoid over-fitting in all our experiments, to ensure that we are not comparing one overfitted neural network
with another. One telling sign of over-fitting is poor test accuracy, but in all our experiments, test accuracy is reasonably high.

We performed our experiments with three common data sets: MNIST comprises a training set of 60,000 and a test set of 10,000
handwritten digits. CIFAR-10 comprises 60,000 32 × 32 color images in 10 classes, with 6,000 images per class, divided into a
training set of 50,000 and a test set of 10,000. WikiText-2 is a collection of over 100 million tokens extracted from verified ‘Good’
and ‘Featured’ articles on Wikipedia.

We used our neural networks in three different contexts: as multilayer perceptrons, i.e., the classic feed-forward neural network
with fully connected layers; as convolutional neural networks that have convolutional, pooling, and fully-connected layers as in LeCun
et al. [18]; and as transformers, a widely-used architecture based on attention mechanisms [29].

4.1. MNIST and multilayer perceptron:

For an image classification task with MNIST, we compare a three-layer multilayer perceptron with three general weight matrices
against one where the three weight matrices are upper, lower, and upper triangular respectively; and another where all three weight
matrices are Toeplitz. We use a cross entropy loss, set learning rate to 0.01, batch size to 20, and trained for 50 epochs. The mean,
minimum, and maximum accuracy of each epoch over five runs are reported in Fig. 1. Our results show that the LU neural network
has similar performance to the general neural network on both training accuracy and test accuracy. While the Toeplitz neural network
sees poorer performance, its test accuracy, at greater than 95%, is within acceptable standards.

4.2. CIFAR-10 and convolutional neural networks:

For another image classification task with CIFAR-10, we compared a three-fully-connected-layer AlexNet [16] with three general
weight matrices to one with three triangular weight matrices and another with three Toeplitz weight matrices. We set the learning
rate at 0.01, batch size at 32, and trained for 100 epochs. The results are in Fig. 2. In this case, we see no significant difference in the
10

performance — LU AlexNet and Toeplitz AlexNet do just as well as the usual AlexNet.

Applied and Computational Harmonic Analysis 68 (2024) 101601Y. Liu, S. Jiao and L.-H. Lim

Fig. 2. Accuracy on CIFAR-10.

Fig. 3. Perplexity on Wiki-Text 2.

4.3. WikiText and transformer:

We use a transformer with a two-head attention structure for a language modeling task with WikiText-2. As before, we compare
three versions of the transformer where the fully-connected layers are either general, LU, or Toeplitz neural networks. We use a batch
size of 20, a learning rate of 5, decaying by 0.2 for every 10 epochs. The mean, minimum, and maximum perplexity of each epoch
over five runs are reported in Fig. 3. Recall that perplexity is the exponential of cross entropy loss, and thus a lower value represents
a better result. Here the LU transformer performs as well as the standard transformer; the Toeplitz transformer, while slightly less
accurate, is nevertheless within acceptable standards.

5. Conclusion

Our results here may be viewed as a first step towards extending the standard matrix decompositions — widely regarded as one
of the top ten algorithms of the 20th century [27] — from linear maps to continuous maps. Viewed in this light, there are many open
questions: Is there a reasonable way to extend QR decomposition or singular value decomposition in a manner similar to what we
11

did for LU and Toeplitz decompositions? Could one compute such decompositions in a principled way like their linear counterpart

Applied and Computational Harmonic Analysis 68 (2024) 101601Y. Liu, S. Jiao and L.-H. Lim

as opposed to fitting them with data? Can one design neuromorphic chips with lower energy cost or with lower gate complexity by
exploiting such decompositions?

Data availability

Data will be made available on request.

Acknowledgments

This work is partially supported by the DARPA grant HR00112190040, the NSF grants DMS 1854831 and ECCS 2216912, and a
Vannevar Bush Faculty Fellowship ONR N000142312863.

References

[1] G. Cybenko, Approximation by superpositions of a sigmoidal function, Math. Control Signals Syst. 2 (4) (1989) 303–314.

[2] R. Eldan, O. Shamir, The power of depth for feedforward neural networks, in: Conference on Learning Theory, PMLR, 2016, pp. 907–940.

[3] J. Frankle, M. Carbin, The lottery ticket hypothesis: finding sparse, trainable neural networks, in: International Conference on Learning Representations, 2019.

[4] J. Frankle, G.K. Dziugaite, D. Roy, M. Carbin, Linear mode connectivity and the lottery ticket hypothesis, in: International Conference on Machine Learning,
PMLR, 2020, pp. 3259–3269.

[5] G.H. Golub, C.F. Van Loan, Matrix Computations, third edition, Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore,
MD, 1996.

[6] S. Han, J. Pool, J. Tran, W. Dally, Learning both weights and connections for efficient neural network, Adv. Neural Inf. Process. Syst. 28 (2015).

[7] B. Hanin, M. Sellke, Approximating continuous functions by relu nets of minimal width, arXiv :1710 .11278, 2017.

[8] B. Hassibi, D. Stork, Second order derivatives for network pruning: optimal brain surgeon, Adv. Neural Inf. Process. Syst. 5 (1992).

[9] K. Hornik, Approximation capabilities of multilayer feedforward networks, Neural Netw. 4 (2) (1991) 251–257.

[10] K. Hornik, M. Stinchcombe, H. White, Multilayer feedforward networks are universal approximators, Neural Netw. 2 (5) (1989) 359–366.

[11] T. Inoue, H. Tokura, K. Nakano, Y. Ito, Efficient triangular matrix vector multiplication on the gpu, in: International Conference on Parallel Processing and
Applied Mathematics, Springer, 2019, pp. 493–504.

[12] J. Johnson, Deep, skinny neural networks are not universal approximators, in: International Conference on Learning Representations, 2019.

[13] V.I. Kelefouras, A.S. Kritikakou, K. Siourounis, C.E. Goutis, A methodology for speeding up mvm for regular, Toeplitz and bisymmetric Toeplitz matrices, J.
Signal Process. Syst. 77 (3) (2014) 241–255.

[14] P. Kidger, T. Lyons, Universal approximation with deep narrow networks, in: Conference on Learning Theory, PMLR, 2020, pp. 2306–2327.

[15] S. Kiranyaz, O. Avci, O. Abdeljaber, T. Ince, M. Gabbouj, D.J. Inman, 1D convolutional neural networks and applications: a survey, Mech. Syst. Signal Process.
151 (2021) 107398.

[16] A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks, Commun. ACM 60 (6) (2017) 84–90.

[17] Y. LeCun, J. Denker, S. Solla, Optimal brain damage, Adv. Neural Inf. Process. Syst. 2 (1989).

[18] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document recognition, Proc. IEEE 86 (11) (1998) 2278–2324.

[19] H. Li, A. Kadav, I. Durdanovic, H. Samet, H.P. Graf, Pruning filters for efficient convnets, arXiv :1608 .08710, 2016.

[20] H. Lin, S. Jegelka, Resnet with one-neuron hidden layers is a universal approximator, Adv. Neural Inf. Process. Syst. 31 (2018).

[21] Z. Lu, H. Pu, F. Wang, Z. Hu, L. Wang, The expressive power of neural networks: a view from the width, Adv. Neural Inf. Process. Syst. 30 (2017).

[22] E. Malach, G. Yehudai, S. Shalev-Schwartz, O. Shamir, Proving the lottery ticket hypothesis: pruning is all you need, in: International Conference on Machine
Learning, PMLR, 2020, pp. 6682–6691.

[23] A. Morcos, H. Yu, M. Paganini, Y. Tian, One ticket to win them all: generalizing lottery ticket initializations across datasets and optimizers, Adv. Neural Inf.
Process. Syst. 32 (2019).

[24] K.R. Nagarajan, M.P. Devasahayam, T. Soundararajan, Products of three triangular matrices, Linear Algebra Appl. 292 (1–3) (1999) 61–71.

[25] S. Park, C. Yun, J. Lee, J. Shin, Minimum width for universal approximation, in: International Conference on Learning Representations, 2021.

[26] A. Pinkus, Approximation theory of the mlp model in neural networks, Acta Numer. 8 (1999) 143–195.

[27] G.W. Stewart, The decompositional approach to matrix computation, Comput. Sci. Eng. 2 (1) (2000) 50–59.

[28] M. Telgarsky, Benefits of depth in neural networks, in: Conference on Learning Theory, PMLR, 2016, pp. 1517–1539.

[29] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, Ł. Kaiser, I. Polosukhin, Attention is all you need, Adv. Neural Inf. Process. Syst. 30
(2017).

[30] K. Ye, L.-H. Lim, Every matrix is a product of Toeplitz matrices, Found. Comput. Math. 16 (3) (2016) 577–598.

[31] C. Yun, S. Sra, A. Jadbabaie, Small relu networks are powerful memorizers: a tight analysis of memorization capacity, Adv. Neural Inf. Process. Syst. 32 (2019).
12

[32] D.-X. Zhou, Universality of deep convolutional neural networks, Appl. Comput. Harmon. Anal. 48 (2) (2020) 787–794.

http://refhub.elsevier.com/S1063-5203(23)00088-X/bib7C1BC1F9205D66540C060701CBACD75Es1
http://refhub.elsevier.com/S1063-5203(23)00088-X/bibBF81822D3F64FBD5695FA3FBFE390770s1
http://refhub.elsevier.com/S1063-5203(23)00088-X/bib56AF4C62F7971C5345266F155CC143C6s1
http://refhub.elsevier.com/S1063-5203(23)00088-X/bibE98B72D7FECE0E94C66744BF69165ADCs1
http://refhub.elsevier.com/S1063-5203(23)00088-X/bibE98B72D7FECE0E94C66744BF69165ADCs1
http://refhub.elsevier.com/S1063-5203(23)00088-X/bib59050B2F3FC9F63D6B69E94D633AD302s1
http://refhub.elsevier.com/S1063-5203(23)00088-X/bib59050B2F3FC9F63D6B69E94D633AD302s1
http://refhub.elsevier.com/S1063-5203(23)00088-X/bib03C8B1855610E0C25C54568C808A5E74s1
http://refhub.elsevier.com/S1063-5203(23)00088-X/bibA2C115C429C46580D090F11F6D1B4F98s1
http://refhub.elsevier.com/S1063-5203(23)00088-X/bib5004757691D116230A5478E426D9DD4Es1
http://refhub.elsevier.com/S1063-5203(23)00088-X/bib3D18AD99387A5EA460CDBB72AF2DE656s1
http://refhub.elsevier.com/S1063-5203(23)00088-X/bib2A55F0F108D57C912D5822255635D8B2s1
http://refhub.elsevier.com/S1063-5203(23)00088-X/bibC86CA5621B890A36B3D23BEBA12A599Fs1
http://refhub.elsevier.com/S1063-5203(23)00088-X/bibC86CA5621B890A36B3D23BEBA12A599Fs1
http://refhub.elsevier.com/S1063-5203(23)00088-X/bib074EDB8E2EAD98E285F55C75C8121B41s1
http://refhub.elsevier.com/S1063-5203(23)00088-X/bib2B27C5FC68004A7AD9D4694E146A32D4s1
http://refhub.elsevier.com/S1063-5203(23)00088-X/bib2B27C5FC68004A7AD9D4694E146A32D4s1
http://refhub.elsevier.com/S1063-5203(23)00088-X/bib7E9D0FEF8219655DED5CBC3DFB878E0Cs1
http://refhub.elsevier.com/S1063-5203(23)00088-X/bibA0DCA593694DAF0B1AE8DF7440ABB504s1
http://refhub.elsevier.com/S1063-5203(23)00088-X/bibA0DCA593694DAF0B1AE8DF7440ABB504s1
http://refhub.elsevier.com/S1063-5203(23)00088-X/bib6E2E173BE3766503F3DC73D226E5BFCCs1
http://refhub.elsevier.com/S1063-5203(23)00088-X/bib6C9B4B35D6885A56232BCD3F1EC4AB52s1
http://refhub.elsevier.com/S1063-5203(23)00088-X/bib7B42ED56A34BFDA82DAF0C91BCFA6FA7s1
http://refhub.elsevier.com/S1063-5203(23)00088-X/bib91E6EF2DB0E351D9BA0E20FCD86ABBC9s1
http://refhub.elsevier.com/S1063-5203(23)00088-X/bibA5A3BA5F008748EE398B0A4E1A24C62Fs1
http://refhub.elsevier.com/S1063-5203(23)00088-X/bib14C7C4D682F30107AA8B5A6F28CB4B1As1
http://refhub.elsevier.com/S1063-5203(23)00088-X/bibA95BBFDAFEE7CFE4E2E9DA6F0035272Cs1
http://refhub.elsevier.com/S1063-5203(23)00088-X/bibA95BBFDAFEE7CFE4E2E9DA6F0035272Cs1
http://refhub.elsevier.com/S1063-5203(23)00088-X/bib3CF1B4FBB153092CD0BDE85C74F5420As1
http://refhub.elsevier.com/S1063-5203(23)00088-X/bib3CF1B4FBB153092CD0BDE85C74F5420As1
http://refhub.elsevier.com/S1063-5203(23)00088-X/bib762BA5F7878627C28916F73F55646717s1
http://refhub.elsevier.com/S1063-5203(23)00088-X/bib437B4BA145F042E30696404B0F0344EBs1
http://refhub.elsevier.com/S1063-5203(23)00088-X/bibEA08F01AB02A25A30A0F81C02F1414ABs1
http://refhub.elsevier.com/S1063-5203(23)00088-X/bib0D2D8839E6D45EDCB49B1627C676EA13s1
http://refhub.elsevier.com/S1063-5203(23)00088-X/bibD72BF899CEBE2C775BDCAEA8491DF950s1
http://refhub.elsevier.com/S1063-5203(23)00088-X/bib31E3B0E4211047EF95DE0BAD45123C1As1
http://refhub.elsevier.com/S1063-5203(23)00088-X/bib31E3B0E4211047EF95DE0BAD45123C1As1
http://refhub.elsevier.com/S1063-5203(23)00088-X/bibEF0CCAD7B95BEC06AE436A7596512341s1
http://refhub.elsevier.com/S1063-5203(23)00088-X/bibC30A2A684D2C75340BF921D791FC26D3s1
http://refhub.elsevier.com/S1063-5203(23)00088-X/bib9E7FA58222870D0D5530875ED914CEAEs1

	LU decomposition and Toeplitz decomposition of a neural network
	1 Introduction
	1.1 Prior works
	1.2 Notations and conventions

	2 Universal approximation by structured neural networks
	2.1 Fixed depth, arbitrary width
	2.2 Fixed width, arbitrary depth

	3 Training cost analysis
	4 Experiments
	4.1 MNIST and multilayer perceptron:
	4.2 CIFAR-10 and convolutional neural networks:
	4.3 WikiText and transformer:

	5 Conclusion
	Data availability
	Acknowledgments
	References

