
COMPLEX MATRIX INVERSION VIA REAL MATRIX INVERSIONS

ZHEN DAI, LEK-HENG LIM, AND KE YE

Abstract. We study the inversion analog of the well-known Gauss algorithm for multiplying
complex matrices. A simple version is (A + iB)−1 = (A + BA−1B)−1 − iA−1B(A + BA−1B)−1

when A is invertible, which may be traced back to Frobenius but has received scant attention. We
prove that it is optimal, requiring fewest matrix multiplications and inversions over the base field,
and we extend it in three ways: (i) to any invertible A+ iB without requiring A or B be invertible;
(ii) to any iterated quadratic extension fields, with C over R a special case; (iii) to Hermitian
positive definite matrices A+iB by exploiting symmetric positive definiteness of A and A+BA−1B.
We call all such algorithms Frobenius inversions, which we will see do not follow from Sherman–
Morrison–Woodbury type identities and cannot be extended to Moore–Penrose pseudoinverse. We
show that a complex matrix with well-conditioned real and imaginary parts can be arbitrarily ill-
conditioned, a situation tailor-made for Frobenius inversion. We prove that Frobenius inversion for
complex matrices is faster than standard inversion by LU decomposition and Frobenius inversion for
Hermitian positive definite matrices is faster than standard inversion by Cholesky decomposition.
We provide extensive numerical experiments, applying Frobenius inversion to solve linear systems,
evaluate matrix sign function, solve Sylvester equation, and compute polar decomposition, showing
that Frobenius inversion can be more efficient than LU/Cholesky decomposition with negligible loss
in accuracy. A side result is a generalization of Gauss multiplication to iterated quadratic extensions,
which we show is intimately related to the Karatsuba algorithm for fast integer multiplication and
multidimensional fast Fourier transform.

1. Introduction

The article is a sequel to our recent work in [14], where we studied the celebrated Gauss multipli-
cation algorithm (A+ iB)(C+ iD) = (AC−BD)+ i[(A+B)(C+D)−AC−BD] for multiplying a
pair of complex matrices with just three real matrix multiplications. Such methods for performing
a complex matrix operation in terms of real matrix operations can be very useful as floating point
standards such as the IEEE-754 [1] often do not implement complex arithmetic natively but rely
on software to reduce complex arithmetic to real arithmetic [55, p. 55]. Here we will analyze and
extend an inversion analogue of Gauss algorithm: Given a complex invertible matrix A+iB ∈ Cn×n

with A,B ∈ Rn×n, it is straightforward to verify that its inverse is given by
(A+ iB)−1 = (A+BA−1B)−1 − iA−1B(A+BA−1B)−1 (1)

if A is invertible, a formula that can be traced back to Georg Frobenius [67]. In our article we will
refer to all such algorithms and their variants and extensions as Frobenius inversions. While Gauss
multiplication has been thoroughly studied (two representative references are [41, Section 4.6.4]
in Computer Science and [32, Section 23.2.4] in Numerical Analysis, with numerous additional
references therein), the same cannot be said of Frobenius inversion — we combed through the
research literature and found only six references, all from the 1970s or earlier, which we will review
in Section 1.3.

Our goal is to vastly extend and thoroughly analyze Frobenius inversion from a modern perspec-
tive. We will extend it to the general case where only A+ iB is invertible but neither A nor B is
(Section 4.2), and to the important special case where A + iB is Hermitian positive definite, in a
way that exploits the symmetric positive definiteness of A and A+BA−1B (Section 4.3). We will
show (Section 3) that it is easy to find complex matrices A+ iB with

max
(
κ2(A), κ2(B), κ2(A+BA−1B)

)
≪ κ2(A+ iB), (2)

1

2 Z. DAI, L.-H. LIM, AND K. YE

where the gap between the left- and right-hand side is arbitrarily large, i.e., A+iB can be arbitrarily
ill-conditioned even when A,B,A+BA−1B are all well-conditioned — a scenario bespoke for (1).

Frobenius inversion obviously extends to any quadratic fields of the form k[
√
a], i.e., x2 + a

is irreducible over k, but we will further extend it to any arbitrary quadratic field, and any it-
erated quadratic extensions including constructible numbers, multiquadratics, and towers of root
extensions (Section 2.4). In fact we show that for iterated quadratic extensions, Frobenius inversion
essentially gives the multidimensional fast Fourier transform. We will prove that over any quadratic
field Frobenius inversion is optimal in that it requires the least number of matrix multiplications
and inversions over its base field (Sections 2.3, 4.3, and 4.2).

For complex matrix inversion, we show that Matlab’s built-in inversion algorithm, i.e., directly
inverting a matrix with LU or Cholesky decomposition in complex arithmetic, is slower than ap-
plying Frobenius inversion with LU or Cholesky decomposition in real arithmetic (Theorem 4.1,
Propositions 4.2 and 4.6). More importantly, we provide a series of numerical experiments in Sec-
tion 5 to show that Frobenius inversion is indeed faster than Matlab’s built-in inversion algorithm
in almost every situation and, despite well-known exhortations to avoid matrix inversion, suffers
from no significant loss in accuracy. In fact methods based on Frobenius inversion may be more
accurate than standard methods in certain scenarios (Section 5.2).

1.1. Why not invert matrices. Matrix inversion is frown upon in numerical linear algebra, likely
an important cause for the lack of interest in algorithms like Frobenius inversion. The usual reason
for eschewing inversion [34] is that in solving an n×n nonsingular system Ax = b, if we compute a
solution x̂inv by inverting A through LU factorization PA = LU and multiplying A−1 to b, and if
we compute a solution x̂LU directly through the LU factors with backward substitutions Ly = Pb,
Ux = y, the latter approach is both faster, with 2n3 flops for x̂inv versus 2n3/3 for x̂LU , and more
accurate, with backward errors

|b−Ax̂inv| ≤ n|A||A−1||b|u+O(u2) versus |b−Ax̂LU | ≤ 3n|L̂||Û ||x̂LU |u+O(u2). (3)

Here u denotes unit roundoff and where | · | and ≤ applies componentwise. As noted in [34], usually
∥|L̂||Û |∥∞ ≈ ∥A∥∞ and so x̂LU is likely more accurate than x̂inv when ∥x∥∞ ≪ ∥|A−1||b|∥∞.

Another common rationale for avoiding inversion is the old wisdom that many tasks that appear
to require inversion actually do not — an explicit inverse matrix A−1 ∈ Cn×n is almost never
required because upon careful examination, one would invariably realize that the same objective
could be accomplished with a vector like A−1b or diag(A−1) ∈ Cn or a scalar like cTA−1b, ∥A−1∥,
or tr(A−1) ∈ C. These vectors and scalars could be computed with a matrix factorization or
approximated to arbitrary accuracy with iterative methods [28], which are often more amenable to
updating/downdating [27] or better suited for preserving structures like sparsity.

Caveat. We emphasize that Frobenius inversion, when applied to solve a system of complex linear
equations (A + iB)z = c + id, will not involve actually computing an explicit inverse matrix
(A + iB)−1 and then multiplying it to the vector c + id. In other words, we do not use the
expression in (1) literally but only apply it in conjunction with various LU decompositions and
back substitutions over R; the matrix (A+ iB)−1 is never explicitly formed. The details are given
in Section 3 alongside discussions of circumstances like (2) where the use of Frobenius inversion
gives more accurate results than standard methods, with numerical evidence in Section 5.2.

1.2. Why invert matrices. We do not dispute the reasons in Section 1.1 but numerical linear
algebra is a field that benefits from a wide variety of different methods for the same task, each
suitable for a different regime. There is no single method that is universally best in every instance.
Even the normal equation, frown upon in numerical linear algebra like matrix inversion, can be the
ideal method for certain least squares problems.

COMPLEX MATRIX INVERSION VIA REAL MATRIX INVERSIONS 3

In fact, if we examine the advantages of computing x̂LU over x̂inv in Section 1.1 more closely, we
will find that the conclusion is not so clear cut. Firstly, the comparison in (3) assumes that accuracy
is quantified by backward error |b−Ax̂| but in reality it is the forward error |x− x̂| that is far more
important and investigations in [15, 16], both analytical and experimental, show that the forward
errors of x̂LU and x̂inv are similar. Secondly, if instead of solving a single linear system Ax = b, we
have p right-hand sides b1, . . . , bp ∈ Cn, then it becomes AX = B where B = [b1, . . . , bp] ∈ Cn×p

and we seek a solution X ∈ Cn×p. In this case the speed advantage of computing X̂LU over X̂inv
disappears when p = O(n): Note that the earlier flop count 2n3/3 for x̂LU ignores the cost of two
backsubstitutions but when there are 2p backsubstitutions, these may no longer be ignored and
are in fact dominant, making the cost of computing X̂inv and X̂LU comparable. In [15], it is shown
that because of data structure complications, computing X̂inv can be significantly faster than X̂LU .

Moreover, the old wisdom that one may avoid computing explicit inverse matrices, while largely
true, is not always true. There are situations, some of them alluded to in [34, p. 260], where
computing an explicit inverse matrix is inevitable or favorable:

Mimo radios: In such radios, explicit inverse matrices are implemented in hardware [16, 19, 66].
It is straightforward to hardwire or hardcode an explicit inverse matrix but considerably more
difficult to do so in the form of “LU factors with permutations and backsubstitutions,” which
can require more gates or code space and is more prone to implementation errors.

Superconductivity: In the so-called KKR CPA algorithm [30], one needs to integrate the KKR
inverse matrix over the first Brillouin zone, necessitating an explicit inverse matrix.

Linear modeling: The inverse of a matrix often reveals important statistical properties that
could only be discerned when one has access to the full explicit inverse [47, 48], i.e., we do
not know which entries of A−1 matter until we see all of them. For a specific example, take
the ubiquitous model y = Xβ̂ + ε with design matrix X and observed values y1, . . . , yn of the
dependent variable y [48], we understand the regression coefficients β̂ through the values its
covariance matrix Σ := σ2 · (XTX)−1 where σ2 is the variance of the dependent variable [48].
To see which values are large (positively correlated), small (negatively correlated), or nearly
zero (uncorrelated) in relation to other values, we need access to all values of Σ.

Statistics: For an unbiased estimator θ̂(X) of a parameter θ, its Cramer–Rao lower bound is the
inverse of its Fisher information matrix I(θ). This is an important quantity that gives a lower
bound for the covariance matrix [13, 58] in the sense of covθ

(
θ̂(X)

)
⪰ I(θ)−1 where ⪰ is the

Loewner order. In some Gaussian processes, this lower bound could be attained [40]. We need
the explicit matrix inverse I(θ)−1 to understand the limits of certain statistical problems and
to design optimal estimators that attain the Cramer–Rao lower bound.

Graph theory: The inverses of the adjacency matrix, forward adjacency matrix, and various
graph Laplacians of a graph G contain important combinatorial properties about G [53, 56, 57,
69] that are only revealed when one examines all entries of their explicit inverse matrices.

Symbolic computing: Matrix inversions do not just arise in numerical computing with floating
point operations. They are routinely performed in finite field arithmetic over a base field of the
form k = GF(pn) in cryptography [36, 65], combinatorics [42], information theory [2], and finite
field matrix computations [10]. They are also carried out in rational arithmetic over transcen-
dental fields [20, 21, 26], e.g., with a base field of the form k = Q(x1, . . . , xn, ex1 , . . . , exn) and
an extension field of the form F = Q[i](x1, . . . , xn, ex1 , . . . , exn), or with finite fields in place of
Q and Q[i]. With such exact arithmetic, the considerations in Section 1.1 become irrelevant.

In summary, the Frobenius inversion algorithms in this article are useful (i) for problems with
well-conditioned A, B, and A+ BA−1B but ill-conditioned A+ iB; (ii) in situations requiring an
explicit inverse matrix; (iii) to applications involving exact finite field or rational arithmetic.

4 Z. DAI, L.-H. LIM, AND K. YE

1.3. Previous works. We review existing works that mentioned the inversion formula (1) in the
research literature: [22, 23, 62, 64, 67, 70] — we note that this is an exhaustive list, and all
predate 1979. We also widened our search to books and the education literature, and found [17, 46]
in engineering education publications, [7, pp. 218–219], [32, Exercise 14.8], and [43, Chapter II,
Section 20], although they contain no new material.

The algorithm, according to [67], was first discovered by Frobenius and Schur although we are
unable to find a published record in their Collected Works [25, 61]. Since “Schur inversion” is
already used to mean something unconnected to complex matrices, and calling (1) “Frobenius–
Schur inversion” might lead to unintended confusion with Schur inversion, it seems befitting to
name (1) after Frobenius alone.

The discussions in [22, 62, 70] are all about deriving Frobenius inversion. From a modern
perspective, the key to these derivations is an embedding of Cn×n into R2n×2n as a subalgebra via

A+ iB 7→
[
A −B
B A

]
=: M,

and noting that if A is invertible, then (A + iB)−1 corresponds to M−1, given by the standard
expression

M−1 =
[
A−1 −A−1B(M/A)−1BA−1 A−1B(M/A)−1

−(M/A)−1BA−1 (M/A)−1

]
,

where M/A := A + BA−1B denotes the Schur complement of A in M . The two right blocks of
M−1 then yield the expression

(A+ iB)−1 = (M/A)−1 − iA−1B(M/A)−1,

which is (1). The works in [43, 64] go further in addressing the case when both A and B are
singular [43] and the case when A, B, A + B or A − B are all singular [64]. However, they
require the inversion of a 2n×2n real matrix, wiping out any computational savings that Frobenius
inversion affords. The works [23, 70] avoided this pitfall but still compromised the computational
savings of Frobenius inversion. Our method in Section 4.2 will cover these cases and more, all while
preserving the computational complexity of Frobenius inversion.

1.4. Notations and conventions. Fields are denoted in blackboard bold fonts. We write
GLn(F) := {X ∈ Fn×n : det(X) ̸= 0},
On(R) := {X ∈ Rn×n : XTX = I},
Un(C) := {X ∈ Cn×n : XHX = I}

for the general linear group of invertible matrices over any field F, the orthogonal group over R,
and the unitary group over C respectively. Note that we have written XT for the transpose and XH

for conjugate transpose for any X ∈ Cm×n. Clearly, XH = XT if X ∈ Rm×n. We will also adopt
the convention that X−T := (X−1)T = (XT)−1 and X−H := (X−1)H = (XH)−1 for any X ∈ GLn(C).
Clearly, X−H = X−T if X ∈ GLn(R).

For F = R or C, we write ∥X∥ := σ1(X) for the spectral norm of X ∈ Fm×n and κ(X) :=
σ1(X)/σn(X) for the spectral condition number of X ∈ GLn(F). When we speak of norm or
condition number in this article, it will always be the spectral norm or spectral condition number,
the only exception is the max norm defined and used in Section 5.

2. Frobenius inversion in exact arithmetic

We will first show that Frobenius inversion works over any quadratic field extension, with C
over R a special case. More importantly, we will show that Frobenius inversion is optimal over any
quadratic field extension in that it requires a minimal number of matrix multiplications, inversions,
and additions (Theorem 2.5).

COMPLEX MATRIX INVERSION VIA REAL MATRIX INVERSIONS 5

The reason for the generality in this section is to show that Frobenius inversion can be useful
beyond numerical analysis, applying to matrix inversions in computational number theory [11, 12],
computer algebra [51, 52], cryptography [36, 65], and finite fields [49, 50] as well. This section covers
the symbolic computing aspects of Frobenius inversion, i.e., in exact arithmetic. Issues related to
the numerical computing aspects, i.e., in floating-point arithmetic, including conditioning, positive
definiteness, etc, will be treated in Sections 3–5.

Recall that a field F is said to be a field extension of another field k if k ⊆ F. In this case, F
is automatically a k-vector space. The dimension of F as a k-vector space is called the degree of
F over k and denoted [F : k] [60]. A degree-two extension is also called a quadratic extension and
they are among the most important field extensions. For example, in number theory, two of the
biggest achievements in the last decade were the generalizations of Andrew Wiles’ celebrated work
to real quadratic fields [24] and imaginary quadratic fields [9]. Let F be a quadratic extension of k.
Then it follows from standard field theory [60] that there exists some monic irreducible quadratic
polynomial f ∈ k[x] such that

F ≃ k[x]
/
⟨f⟩,

where ⟨f⟩ denotes the principal ideal generated by f and k[x]/⟨f⟩ the quotient ring. Let f(x) =
x2 + βx+ τ for some β, τ ∈ k. Then, up to an isomorphism, f may be written in a normal form:

• char(k) ̸= 2: β = 0 and −τ is not a complete square in k;
• char(k) = 2: either β = 0 and −τ is not a complete square in k, or β = 1 and x2 + x + τ
has no solution in k.

2.1. Gauss multiplication over quadratic field extensions. Let ξ be a root of f(x) in an
algebraic closure k. Then F ≃ k[ξ], i.e., any element in F can be written uniquely as a1 + a2ξ
with a1, a2 ∈ k. Henceforth we will assume that F = k[ξ]. The product of two elements a1 + a2ξ,
b1 + b2ξ ∈ k[ξ] is given by

(a1 + a2ξ)(b1 + b2ξ) =
{
(a1b1 − τa2b2) + (a1b2 + a2b1)ξ if f(x) = x2 + τ,

(a1b1 − τa2b2) + (a1b2 + a2b1 − a2b2)ξ if f(x) = x2 + x+ τ.
(4)

The following result is well-known for C = R[i] but we are unable to find a reference for an arbitrary
quadratic extension k[ξ].

Proposition 2.1 (Complexity of multiplication in quadratic extensions). Let k, f, τ, ξ be as above.
Then there exists an algorithm for multiplication in F = k[ξ] that costs three multiplications in
k. Moreover, such an algorithm is optimal in the sense of bilinear complexity, i.e., it requires a
minimal number of multiplications in k.

Proof. Case I: f(x) = x2 + τ . The product in (4) can be computed with three k-multiplications
m1 = (a1 − a2)(b1 + τb2), m2 = a1b2, m3 = a2b1, since

a1b1 − τa2b2 = m1 − τm2 +m3, a1b2 + a2b1 = m2 +m3. (5)
Case II: f(x) = x2 + x + τ . The product in (4) can be computed with three k-multiplications
m1 = a1b1, m2 = a2b2, m3 = (a1 − a2)(b1 − b2), since

a1b1 − τa2b2 = m1 − τm2, a1b2 + a2b1 − a2b2 = m1 −m3. (6)
To show optimality in both cases suppose there is an algorithm for computing (4) with two k-
multiplications m′

1 and m′
2. Then

a1b1 − τa2b2, a1b2 + a2b1 − δa2b2 ∈ span{m′
1,m

′
2},

where δ = 0 in Case I and δ = 1 in Case II. Clearly a1b1 − τa2b2 and a1b2 + a2b1 − δa2b2 are not
collinear; thus

m′
1,m

′
2 ∈ span{a1b1 − τa2b2, a1b2 + a2b1 − δa2b2}

6 Z. DAI, L.-H. LIM, AND K. YE

and so there exist p, q, r, s ∈ k, ps− qr ̸= 0, such that

m′
1 = p(a1b1 − τa2b2) + q(a1b2 + a2b1 − δa2b2) = pa1b1 + qa1b2 + qa2b1 + (−τp− δq)a2b2,

m′
2 = r(a1b1 − τa2b2) + s(a1b2 + a2b1 − δa2b2) = ra1b1 + sa1b2 + sa2b1 + (−τr − δs)a2b2.

As ps − qr ̸= 0, at least one of p, q, r, s is nonzero. Since m′
1 is a k-multiplication, we must have

m′
1 = (λ1a1 + λ2a2)(µ1b1 + µ2b2) for some λ1a1 + λ2a2, µ1b1 + µ2b2 ∈ k. Therefore

p(−τp− δq) = q2, r(−τr − δs) = s2.

For Case I, the left equation reduces to τp2 + q2 = 0 and thus p = q = 0 as −τ is not a complete
square in k; likewise, the right equation gives r = s = 0, a contradiction as p, q, r, s cannot be all
zero. For Case II, the left equation reduces to τp2 + pq+ q2 = 0. We must have p ̸= 0 or else q = 0
will contradict ps− qr ̸= 0; but if so, substituting q′ = q/p gives q′2 + q′ + τ = 0, contradicting the
assumption that x2 + x+ τ = 0 has no solution in k. □

For the special case when k = R and f(x) = x2 + 1, we have ξ = i and F = k[ξ] = C and the
algorithm in (5) is the celebrated Gauss multiplication of complex numbers, (a1 + ia2)(b1 + ib2) =
(a1b1−a2b2)+i[(a1+a2)(b1+b2)−a1b1−a2b2], whose optimality is proved in [54, 68]. Proposition 2.1
may be viewed as a generalization of Gauss multiplication to arbitrary quadratic extensions.

In the language of tensors [44, Example 3.8], multiplication in k[ξ] is a bilinear map over k,

m : k[ξ]× k[ξ] → k[ξ], (a1 + a2ξ, b1 + b2ξ) 7→ (a1 + a2ξ)(b1 + b2ξ),

and therefore corresponds to a tensor in µ ∈ k[ξ]⊗ k[ξ]⊗ k[ξ]. An equivalent way to state Propo-
sition 2.1 is that the tensor rank of µ is exactly three.

2.2. Gauss matrix multiplication over quadratic field extensions. We extend the multipli-
cation algorithm in the previous section to matrices. Notations will be as in the last section. Let
Fn×n be the F-algebra of n × n matrices over F. Since F = k[ξ], we have Fn×n = kn×n ⊗k F [44,
p. 627]. Thus an element in X ∈ Fn×n can be written as X = A+ ξB where A,B ∈ kn×n.

By following the argument in the proof of Proposition 2.1, we obtain its analogue for matrix
multiplication in Fn×n via matrix multiplications in kn×n.

Proposition 2.2 (Gauss matrix multiplication). Let k,F, n, f, τ, ξ be as before. Let X = A+ ξB,
Y = C + ξD ∈ Fn×n with A,B,C,D ∈ kn×n. If f(x) = x2 + τ , then XY can be computed via

M1 = (A−B)(C + τD), M2 = AD, M3 = BC;
N1 = M1 − τM2 +M3, N2 = M2 +M3; XY = N1 + ξN2.

(7)

If f(x) = x2 + x+ τ , then XY can be computed via

M1 = AC, M2 = BD, M3 = (A−B)(C −D);
N1 = M1 − τM2, N2 = M1 −M3; XY = N1 + ξN2.

(8)

The algorithms for forming XY in (7) and (8) use a minimal number of matrix multiplications in
kn×n.

Proof. It is straightforward to check that (7) and (8) give XY . To see minimality, we repeat the
proof of Proposition 2.1 noting that the argument depends only on F as a two-dimensional free
k-module, and that Fn×n is also a two-dimensional free kn×n-module. □

COMPLEX MATRIX INVERSION VIA REAL MATRIX INVERSIONS 7

2.3. Frobenius matrix inversion over quadratic field extensions. Let A + ξB ∈ GLn(F)
with A,B ∈ kn×n. Then (A+ ξB)−1 = C + ξD if and only if

(A+ ξB)(C + ξD) = I, (9)
from which we may solve for C,D ∈ kn×n. As we saw in (4), multiplication in F and thus that in
Fn×n depends on the form of f . So we have to consider two cases corresponding to the two normal
forms of f .

Lemma 2.3. Let k,F, n, f, τ, ξ be as before. Let A+ ξB ∈ GLn(F) with A,B ∈ kn×n.
(i) If f(x) = x2 + τ , then A+ τBA−1B ∈ GLn(k) whenever A ∈ GLn(k).
(ii) If f(x) = x2 + x+ τ , then τB +AB−1A−A ∈ GLn(k) whenever B ∈ GLn(k).

Proof. Consider the case f(x) = x2 + τ . By (9), AC − τBD = I and AD + BC = 0. So
(A + τBA−1B)C = I. Hence A + τBA−1B is invertible. A similar argument applies to the case
f(x) = x2 + x+ τ to yield (ii). □

Let the matrix addition, multiplication, and inversion maps over any field F be denoted respec-
tively by

addn,F : Fn×n × Fn×n → Fn×n, addn,F(X,Y) = X + Y ;
muln,F : Fn×n × Fn×n → Fn×n, muln,F(X,Y) = XY ;

invn,F : GLn(F) → GLn(F), invn,F(X) = X−1.

We will now express invn,F in terms of invn,k, muln,k, and addn,k.

Lemma 2.4 (Frobenius inversion over quadratic fields). Let k,F, n, f, τ, ξ be as before. Let X =
A+ ξB ∈ GLn(F) with A,B ∈ kn×n. If f(x) = x2 + τ and A ∈ GLn(k), then

X−1 = (A+ τBA−1B)−1 − ξA−1B(A+ τBA−1B)−1. (10)
If f(x) = x2 + x+ τ and B ∈ GLn(k), then

X−1 = (B−1A− I)(AB−1A−A+ τB)−1 − ξ(AB−1A−A+ τB)−1 (11)

Proof. Case I: f(x) = x2 + τ . From (9), we get
AC − τBD = I, AD +BC = 0.

Case II: f(x) = x2 + x+ τ . From (9), we get
AC − τBD = I, AD +BC −BD = 0.

In each case, solving the equations for C and D gives us the required expressions (10) and (11). □

We could derive alternative inversion formulas with other conditions on A and B. For example,
in the case f(x) = x2 + τ , instead of (10), we could have

X−1 = B−1A(AB−1A+ τB)−1 − ξ(AB−1A+ τB)−1,

conditional on B ∈ GLn(k); in the case f(x) = x2 + x+ τ , instead of (11), we could have
X−1 = (A+ τB(A−B)−1B)−1 − ξ(A−B)−1B(A+ τB(A−B)−1B)−1,

conditional on A−B ∈ GLn(k). There is no single inversion formula that will work universally for
all A + ξB ∈ GLn(F). Nevertheless, in each case, the inversion formula (10) or (11) works almost
everywhere except for matrices A+ ξB with det(A) = 0 or det(B) = 0 respectively. In Section 4.2,
we will see how to alleviate this minor restriction algorithmically for complex matrices.

We claim that (10) and (11) allow invn,F to be evaluated by invoking invn,k twice, muln,k thrice,
and addn,k once. To see this more clearly, we express them in pseudocode as Algorithms 1 and 2
respectively.

8 Z. DAI, L.-H. LIM, AND K. YE

Algorithm 1 Frobenius Inversion with ξ a root of x2 + τ

Input: X = A+ ξB with A ∈ GLn(k)
1: matrix invert X1 = A−1;
2: matrix multiply X2 = X1B;
3: matrix multiply X3 = BX2;
4: matrix add X4 = A+ τX3;
5: matrix invert X5 = X−1

4 ;
6: matrix multiply X6 = X2X5;

Output: inverse X−1 = X5 − ξX6

A few words are in order here. A numerical linear algebraist may balk at inverting A and then
multiplying it to B to form A−1B instead of solving a linear system with multiple right-hand sides.
However, Algorithms 1 and 2 should be viewed in the context of symbolic computing over arbitrary
fields. To establish complexity results like Theorem 2.5 and Theorem 2.10, we would have to state
the algorithms purely in terms of algebraic operations in kn×n, i.e., invn,k, muln,k, and addn,k. The
numerical computing aspects specific to k = R and F = C will be deferred to Sections 4–5, where,
among other things, we would present several numerical computing variants of Algorithm 1 (see
Algorithms 3, 5, 6, 7). We also remind the reader that a term like X5 − ξX6 in the output of these
algorithms does not entail matrix addition; here ξ plays a purely symbolic role like the imaginary
unit i, and X5 and −X6 are akin to the ‘real part’ and ‘imaginary part.’

Algorithm 2 Frobenius Inversion with ξ a root of x2 + x+ τ

Input: X = A+ ξB with B ∈ GLn(k)
1: matrix invert X1 = B−1;
2: matrix multiply X2 = X1A− I;
3: matrix multiply X3 = AX2;
4: matrix add X4 = X3 + τB;
5: matrix invert X5 = X−1

4 ;
6: matrix multiply X6 = X3X5;

Output: inverse X−1 = X6 − ξX5

Note that the addition of a fixed constant (i.e., independent of inputs A and B) matrix −I in
Step 2 of Algorithm 2 does not count towards the computational complexity of the algorithm [8].

As we mentioned earlier, Fn×n is a kn×n-bimodule. We prove next that Algorithms 1 and 2 have
optimal computational complexity in terms of matrix operations in kn×n.

Theorem 2.5 (Optimality of Frobenius Inversion). Algorithm 1 and 2 for invn,F require the fewest
number of matrix operations in kn×n: two invn,k, three muln,k, and one addn,k, i.e., there is no
algorithm for matrix inversion in Fn×n that takes four or fewer matrix operations in kn×n.

Proof. If n = 1, then this reduces to Proposition 2.1. So we will assume that n ≥ 2. We will restrict
ourselves to Algorithm 1 as the argument for Algorithm 2 is nearly identical.

Clearly, we need at least one addn,k to compute invn,F so Algorithm 1 is already optimal in this
regard. We just need to restrict ourselves to the numbers of invn,k and muln,k, which are invoked
twice and thrice respectively in Algorithm 1. We will show that these numbers are minimal. In the
following, we pick any A,B ∈ GLn(k) that do not commute.

First we claim that it is impossible to compute (A + ξB)−1 with fewer than two invn,k even
with no limit on the number of addn,k and muln,k. By (10), (A + ξB)−1 comprises two kn×n

matrices (A + τBA−1B)−1 and A−1B(A + τBA−1B)−1, which we will call its ‘real part’ and
‘imaginary part’ respectively, slightly abusing terminologies. We claim that computing the ‘real

COMPLEX MATRIX INVERSION VIA REAL MATRIX INVERSIONS 9

part’ (A+τBA−1B)−1 alone already takes at least two invn,k. If (A+τBA−1B)−1 can be computed
with just one invn,k, then A(A+τBA−1B)−1 can also be computed with just one invn,k as the extra
factor A involves no inversion. However, if it takes only one invn,k, then we must have an expression

A(A+ τBA−1B)−1 = f(A,B, g(A,B)−1)
for some noncommutative polynomials f ∈ k⟨x, y, z⟩ and g ∈ k⟨x, y⟩. Now observe that

A(A+ τBA−1B)−1 = (I + τ(BA−1)2)−1.

To see that the last two expressions are contradictory, we write X := BA−1 and expand them in
formal power series, thereby removing negative powers for an easier comparison:

∞∑
k=0

(−τ)kX2k = (I + τX2)−1 = f(A,XA, g(A,XA)−1) = f
(
A,XA,

∞∑
k=0

(
I − g(A,XA)

)k)
.

Note that the leftmost expression is purely in powers of X, but the rightmost expression must
necessarily involve A — indeed any term involving a power of X must involve A to the same or
higher power. The remaining possibility that X is a power of A is excluded since A and B do
not commute. So we arrive at a contradiction. Hence (A+ τBA−1B)−1 and therefore (A+ ξB)−1

requires at least two invn,k to compute.
Next we claim that it is impossible to compute (A+ξB)−1 with fewer than three muln,k even with

no limit on the number of addn,k and invn,k. Let the ‘real part’ and ‘imaginary part’ be denoted

Y := (A+ τBA−1B)−1, Z := A−1B(A+ τBA−1B)−1 = (B + τAB−1A)−1.

Observe that we may express BA−1B in terms of Y and AB−1A in terms of Z using only addn,k
and invn,k:

BA−1B = τ−1(Y −1 −A), AB−1A = τ−1(Z−1 −B).
So computing both BA−1B and AB−1A take the same number of muln,k as computing both Y
and Z. However, as A and B do not commute, it is impossible to compute both BA−1B and
AB−1A with just two muln,k. Consequently (A+ ξB)−1 = Y + ξZ requires at least three muln,k to
compute. □

A more formal way to cast our proof above would involve the notion of a straight-line program
[8, Definition 4.2], but we prefer to avoid pedantry given that the ideas involved are the same.

2.4. Frobenius inversion over iterated quadratic extensions. Repeated applications of Al-
gorithms 1 and 2 allow us to extend Frobenius inversion to an iterated quadratic extension:

k =: F0 ⊊ F1 ⊊ · · · ⊊ Fm := F, (12)
where [Fk : Fk−1] = 2, k = 1, . . . ,m. By our discussion at the beginning of Section 2, Fk = Fk−1[ξk]
for some ξk ∈ Fk. Let fk ∈ k[x] be the minimal polynomial [60] of ξk. Then fk is a monic irreducible
quadratic polynomial that we may assume is in normal form, i.e.,

fk(x) = x2 + τk or fk(x) = x2 + x+ τk, k = 1, . . . ,m.

Since [F : k] =
∏m

k=1 = [Fk : Fk−1] = 2m, any element in F may be written as∑
α∈{0,1}m

cαξ
α (13)

in multi-index notation with α = (α1, . . . , αm) ∈ {0, 1}m, ξα := ξα1
1 · · · ξαm

m , and cα ∈ k. Moreover,
we may regard F as a quotient ring of a multivariate polynomial ring or as a tensor product of m
quotient rings of univariate polynomial ring:

F ≃ k[x1, . . . , xm]
/
⟨f1, . . . , fm⟩ =

m⊗
k=1

(
k[x]

/
⟨fk⟩

)
. (14)

10 Z. DAI, L.-H. LIM, AND K. YE

There are many important fields that are special cases of iterated quadratic extensions

Example 2.6 (Constructible numbers). One of the most famous instance is the special case k = Q
with the iterated quadratic extension F ⊆ R. In which case the positive numbers in F are called
constructible numbers and they are precisely the lengths that can be constructed with a compass
and a straightedge in a finite number of steps. The impossibillity of trisecting an angle, doubling
a cube, squaring a circle, constructing n-sided regular polygons for n = 7, 9, 11, 13, 14, 18, . . . , etc,
were all established using the notion of constructible numbers.

Example 2.7 (Multiquadratic fields). Another interesting example is F = Q[√q1, . . . ,
√
qm]. It is

shown in [6] that
Q ⊊ Q[√q1] ⊊ Q[√q1,

√
q2] ⊊ · · · ⊊ Q[√q1, . . . ,

√
qm]

is an iterated quadratic extension if the product of any nonempty subset of {√q1, . . . ,
√
qm} is not

in Q. In this case, we have Fk = Q[√q1, . . . ,
√
q
k
] and fk(x) = x2 − qk, k = 1, . . . ,m.

Example 2.8 (Tower of root extensions of non-square). Yet another commonly occurring example
[18, Section 14.7] of iterated quadratic extension is a ‘tower’ of root extensions:

Q ⊊ Q[q1/2] ⊊ Q[q1/4] ⊊ · · · ⊊ Q[q1/2m]
where q ∈ Q is not a complete square.

Since kn×n and F are both free k-modules, we have Fn×n = kn×n ⊗k F as tensor product of
k-modules. Hence the expression (13) may be extended to matrices, i.e., any X ∈ Fn×n may be
written as

X =
∑

α∈{0,1}m
Cαξ

α (15)

with Cα ∈ kn×n, α ∈ {0, 1}m. Note that the cα in (13) are scalars and the Cα in (15) are matrices.
On the other hand, in an iterated quadratic extension (12), each Fk is an Fk−1-module, k = 1, . . . ,m,
and thus we also have the tensor product relation

kn×n ⊗k F = kn×n ⊗k F1 ⊗F1 F2 ⊗F2 · · · ⊗Fm−1 F,

recalling that F0 := k and Fm := F. Hence any X ∈ Fn×n may also be expressed recursively as
X = A0 + ξmA1,

Aβ = A0,β + ξm−kA1,β, β ∈ {0, 1}k, k = 1, . . . ,m− 1,
(16)

with Aβ ∈ Fn×n
m−|β|. The relation between the two expressions (15) and (16) is given as follows.

Lemma 2.9. Let X ∈ Fn×n be expressed as in (15) with Cα ∈ kn×n, α ∈ {0, 1}m, and as in (16)
with Aβ ∈ Fn×n

m−|β|, β ∈ {0, 1}k. Then for any k ∈ {1, . . . ,m},

X =
∑

β∈{0,1}k
Aβξ

β1
m−k+1 · · · ξ

βk
m ,

and for any β ∈ {0, 1}k,
Aβ =

∑
γ∈{0,1}m−k

Cγ,βξ
γ1
1 · · · ξγm−k

m−k .

In particular, Cα = Aα.

Proof. We proceed by induction on k. Clearly the formula holds for k = 1 by (16). Assume that
the first expression holds for k = s, i.e.,

X =
∑

β∈{0,1}s
Aβξ

β1
m−s+1 · · · ξ

βs
m .

COMPLEX MATRIX INVERSION VIA REAL MATRIX INVERSIONS 11

To show that it also holds for k = s+ 1, note that Aβ = A0,β + ξm−sA1,β, so

X =
∑

β∈{0,1}s
(A0,β + ξm−sA1,β)ξβ1

m−s+1 · · · ξ
βs
m =

∑
γ∈{0,1}s+1

Aγξ
γ1
m−s · · · ξ

γs+1
m

completing the induction. Comparing coefficients in (15) and (16) yields the second expression. □

The representation in Lemma 2.9, when combined with Gauss multiplication, gives us a method
for fast matrix multiplication in Fn×n, and, when combined with Frobenius inversion, gives us a
method for fast matrix inversion in Fn×n.

Theorem 2.10 (Gauss multiplication and Frobenius inversion over iterated quadratic extension).
Let F be an iterated quadratic extension of k of degree [F : k] = 2m. Then

(i) one may multiply two matrices in Fn×n with 3m multiplications in kn×n;
(ii) one may invert a generic matrix in Fn×n with 3(3m−2m) multiplications and 2m inversions

in kn×n.
If we write N = 2m, this multiplication algorithm reduces the complexity of evaluating muln,F from
O(N2) to O(N log2 3) muln,k.

Proof. Let X,Y ∈ Fn×n. By (16), we may write

X = A0 + ξmA1, Y = B0 + ξmB1,

and thus compute XY in terms of A0, A1, B0, B1 ∈ Fn×n
m−1 using three muln,Fm−1 by Proposition 2.2.

Each muln,Fm−1 in turn costs three muln,Fm−2 by Proposition 2.2. Repeating the argument until we
arrive at muln,F0 = muln,k, we see that the total number of muln,k is 3m.

Now if X above is generic, depending on whether fm(x) = x2+τm or x2+x+τm, Algorithm 1 or
Algorithm 2 takes three muln,Fm−1 and two invn,Fm−1 . As in the multiplication case, the argument
applies recursively to m,m− 1, . . . , 2, 1. Writing #(op) for the number of operation op, we have

#(invn,Fk
) = 3 #(muln,Fk−1) + 2 #(invn,Fk−1), k = 1, . . . ,m.

By Proposition 2.2, we have #(muln,Fk
) = 3 #(muln,Fk−1). Hence we obtain

#(invn,F) = 3(3m − 2m) #(muln,k) + 2m #(invn,k)

as required. □

Slightly abusing terminologies, we will call the multiplication and inversion algorithms in the
proof of Theorem 2.10 Gauss multiplication and Frobenius inversion for iterated quadratic ex-
tension respectively. Both rely on the general technique of divide-and-conquer. Moreover, Gauss
multiplication for iterated quadratic extension is in spirit the same as the Karatsuba algorithm [38]
for fast integer multiplication and multidimensional fast Fourier transform [63]. Indeed, all three
algorithms may be viewed as fast algorithms for modular polynomial multiplication in a ring

k[x1, . . . , xm]/⟨xd1 + τ1, . . . , x
d
m + τm⟩ ≃ k[x1]/⟨xd1 + τ1⟩ ⊗ · · · ⊗ k[xm]/⟨xdm + τm⟩

for different choices of m, d, τ1, . . . , τm. To be more specific, we have
(a) Karatsuba algorithm: m = 1, d = 0, τ1 = −1.
(b) Multidimensional fast Fourier transform: m ∈ N, d ∈ N, τ1 = · · · = τm = −1.
(c) Gauss multiplication for iterated quadratic: m ∈ N, d = 2, τ1, . . . , τm as in (12)–(14).

12 Z. DAI, L.-H. LIM, AND K. YE

2.5. Moore–Penrose and Sherman–Morrison. One might ask if Frobenius inversion extends
to pseudoinverse. In particular, does (10) hold if matrix inverse is replaced by Moore–Penrose
inverse? The answer is no, which can be seen by taking k = R, F = C, in which case (10) is just
(1). Let

X =

0 0 0
0 1 0
0 0 i

 , X† =

0 0 0
0 1 0
0 0 −i

 , Y =

0 0 0
0 1 0
0 0 0

 ,
where Y denotes the right-hand side of (1) with Moore–Penrose inverse in place of matrix inverse.
Clearly X† ̸= Y .

One may be led to think that Frobenius inversion (10) is a consequence of Sherman–Morrison–
Woodbury-type identities such as

(A+B)−1 = A−1 −A−1(B−1 +A−1)−1A−1 = A−1 −A−1
(
AB−1 + I

)−1

= A−1 −
(
A+AB−1A

)−1
= A−1 −A−1B (A+B)−1

but it is not. The point to note is that such identities invariably involve at least one matrix inversion
in Fn×n whereas (10) is purely in terms of matrix inversions in kn×n.

3. Solving linear systems with Frobenius inversion

We remind the reader that the previous section is the only one about Frobenius inversion over
arbitrary fields. In this and all subsequent sections we return to the familiar setting of real and
complex fields. In this section we discuss the solution of a system of complex linear equations

(A+ iB)(x+ iy) = c+ id, A,B ∈ Rn×n, c, d ∈ Rn (17)
for x, y ∈ Rn with Frobenius inversion in a way that does not require computing explicit inverse and
the circumstances under which this method is superior. For the sake of discussion, we will assume
throughout this section that we use LU factorization, computed using Gaussian Elimination with
Partial Pivoting, as our main tool, but one may easily substitute it with any other standard matrix
decomposition.

The most straightforward way to solve (17) would be directly as a complex linear system with
coefficient matrix A+ iB ∈ Cn×n. As we mentioned at the beginning of this article, the IEEE-754
floating point standard [1] does not support complex floating point arithmetic and relies on software
to convert them to real floating point arithmetic [55, p. 55]. For greater control, we might instead
transform (17) into a real linear system with coefficient matrix

[
A −B
B A

]
∈ R2n×2n. Note that the

condition numbers of the coefficient matrices are identical:

κ2(A+ iB) = κ2

([
A −B
B A

])
.

However, an alternative that takes advantage of Frobenius inversion (1) would be Algorithm 3. For
simplicity, we assume that A is invertible below but if not, this can be easily addressed with a
simple trick in Section 4.2.

One may easily verify that Algorithm 3 gives the solution as claimed, by virtue of the expression
(1) for Frobenius inversion. Observe that Algorithm 3 involves only the matrices A, B, and A +
BA−1B, unsurprising since these are the matrices that appear in (1). In the rest of this section,
we will establish that there is an open subset of matrices A+ iB ∈ Cn×n with

max
(
κ2(A), κ2(B), κ2(A+BA−1B)

)
≪ κ2(A+ iB). (18)

A consequence is that ill-conditioned complex matrices with well-conditioned real and imaginary
parts are common; in particular, there are uncountably many and they occur with positive prob-
ability with respect to any reasonable probability measure (e.g., Gaussian) on Cn×n. In fact we

COMPLEX MATRIX INVERSION VIA REAL MATRIX INVERSIONS 13

Algorithm 3 Linear system with Frobenius inversion and LU factorization
Input: A+ iB ∈ GLn(C) with A ∈ GLn(R), c, d ∈ Rn

1: LU factorize A = P T
1L1U1;

2: forward and backward substitute for X1 in L1U1X1 = P1B;
3: matrix multiply and add X2 = A+BX1;
4: LU factorize X2 = P T

2L2U2;
5: forward and backward substitute for x1, y1 in L2U2[x1, y1] = P2[c, d];
6: forward and backward substitute for x2, y2 in L1U1[x2, y2] = P1B[y1, x1];
7: vector add x = x1 + x2, y = y2 − y1;

Output: solution of (A+ iB)(x+ iy) = c+ id

will show in Theorems 3.3 and 3.3 that A + iB ∈ Cn×n or
[
A −B
B A

]
∈ R2n×2n can be arbitrarily

ill-conditioned when A and B are well-conditioned or even perfectly conditioned, a situation that
is tailor-made for Algorithm 3.

Lemma 3.1. Let A,B ∈ Rn×n with A = GH for some G,H ∈ GLn(R). Let N := H−1BG−1.
Then

κ(G)κ(I + iN)κ(H) ≥ κ(A+ iB) ≥ max
{
∥(I + iN)−1∥

κ(H) ,
∥(I + iN)−1∥

κ(G)

}
.

Proof. Let X := A+ iB = H(I + iN)G. Then
κ(X) ≤ κ(H)κ(I + iN)κ(G).

For the other inequality, since X−1 = G−1(I + iN)−1H−1,

κ(X) = ∥X∥∥X−1∥ = ∥A+ iB∥∥G−1(I + iN)−1H−1∥. (19)
As ∥Xv∥ = ∥Av + iBv∥ ≥ ∥Av∥ for all v ∈ Rn, we have

∥X∥ ≥ ∥A∥. (20)
Since the spectral norm is submultiplicative,

∥X∥ = ∥GG−1XH−1H∥ ≤ ∥G∥∥G−1XH−1∥∥H∥, ∥H∥ = ∥AG−1∥ ≤ ∥A∥∥G−1∥,

and we obtain
∥G−1XH−1∥ ≥ ∥X∥

∥G∥∥H∥
≥ ∥X∥

∥G∥∥G−1∥∥A∥
= ∥X∥

κ(G)∥A∥
. (21)

Assembling (19)–(21), we get

κ(X) ≥ ∥A∥∥(I + iN)−1∥
κ(G)∥A∥

= ∥(I + iN)−1∥
κ(G) .

Swapping the roles of G and H, we get κ(X) ≥ ∥(I + iN)−1∥/κ(H). □

Choosing specific matrix decompositions A = GH and imposing conditions on N in Lemma 3.1
allows us to deduce better bounds for κ(A+ iB).

Corollary 3.2. Let A ∈ GLn(R) and B ∈ Rn×n. Let A = QR be a QR decomposition with
Q ∈ On(R) and R ∈ Rn×n upper triangular. If N = QTBR−1 is a normal matrix with eigenvalues
λ1, . . . , λn ∈ C, then

κ(A)
maxk=1,...,n|1 + iλk|
mink=1,...,n|1 + iλk|

≥ κ(A+ iB) ≥ max
k=1,...,n

1
|1 + iλk|

.

Proof. It suffices to observe that κ(A) = κ(R), ∥A∥ = ∥R∥, and N is unitarily diagonalizable. □

14 Z. DAI, L.-H. LIM, AND K. YE

We may now show that for any well-conditioned A ∈ Rn×n, there is a well-conditioned B ∈ Rn×n

such that A+ iB ∈ Cn×n is arbitrarily ill-conditioned (i.e., γ → ∞).
Theorem 3.3 (Ill-conditioned matrices with well-conditioned real and imaginary parts). Let A ∈
GLn(R) and γ ≥ 1. Then there exists B ∈ Rn×n such that

κ(A) ≥ κ(B), κ(A+ iB) ≥ γ.

Proof. Consider the normal matrix

N =

0 −t 0 · · · 0
t 0 0 · · · 0
0 0 t · · · 0
...

...
...

0 0 0 · · · t

 ∈ Rn×n

where t ≥ 0 is a real parameter to be chosen later. The eigenvalues of N are ±it and t so κ(N) = 1.
Let A = QR be the QR decomposition of A and set B := QNR. Then κ(B) ≤ κ(N)κ(A) = κ(A).
By Corollary 3.2, we have κ(A+ iB) ≥ 1/(1− t). Hence if t is chosen in the interval [1− 1/γ, 1),
we get κ(A+ iB) ≥ γ. □

Interestingly, we may use the Frobenius inversion formula to push Theorem 3.3 to the extreme,
constructing an arbitrarily ill-conditioned complex matrix with perfectly conditioned real and imag-
inary parts.
Proposition 3.4. Let γ ≥ 1. There exists A+iB ∈ Cn×n with κ(A+iB) ≥ γ and κ(A) = κ(B) = 1.
Proof. Let Q ∈ On(R). The Frobenius inversion formula (1) gives

(I + iQ)−1 = QT(QT +Q)−1 − i(Q+QT)−1 = (QT − iI)(Q+QT)−1 = (I − iQ)(Q2 + I)−1.

An orthogonal matrix must have an eigenvalue decomposition of the form Q = UΛUH for some
U ∈ Un(C) and Λ = diag(λ1, . . . , λn) ∈ Cn×n with |λ1| = · · · = |λn| = 1. Therefore I + iQ =
U diag(1 + iλ1, . . . , 1 + iλn)UH and

(I − iQ)(Q2 + I)−1 = U diag
(
1− iλ1
1 + λ2

1
, . . . ,

1− iλn

1 + λ2
n

)
UH = U diag

(1
1 + iλ1

, . . . ,
1

1 + iλn

)
UH.

Since the spectral norm is unitarily invariant,

∥I + iQ∥ = max
k=1,...,n

|1 + iλk|, ∥(I − iQ)(Q2 + I)−1∥ = max
k=1,...,n

∣∣∣∣1− iλk

1 + λ2
k

∣∣∣∣,
from which we deduce that

κ(I + iQ) =
(

max
k=1,...,n

|1 + iλk|
)
·
(

max
k=1,...,n

∣∣∣∣1− iλk

1 + λ2
k

∣∣∣∣) ≥
√
2 max
k=1,...,n

∣∣∣∣ 1
1 + iλk

∣∣∣∣.
The last inequality follows from the fact that λk’s are unit complex numbers. Now observe that if
we choose λk to be sufficiently close to i, then κ(I + iQ) can be made arbitrarily large. □

Note that Frobenius inversion (1) and Algorithm 3 avoids A + iB and work instead with the
matrices A, B, and A + BA−1B. It is not difficult to tweak Theorem 3.3 to add A + BA−1B to
the mix.
Theorem 3.5 (Ill-conditioned matrices for Frobenius inversion). Let A ∈ GL2n(R) and γ ≥ 1.
Then there exists B ∈ R2n×2n such that

κ(A) ≥ max
(
κ(B), κ(A+BA−1B)

)
, κ(A+ iB) ≥ γ.

In other words, for any invertible matrix A there exists a well-conditioned B such that A+BA−1B
is well-conditioned but A+ iB is arbitrarily ill-conditioned.

COMPLEX MATRIX INVERSION VIA REAL MATRIX INVERSIONS 15

Proof. Consider the skew-symmetric (and therefore normal) matrix

N =

0 −t · · · 0 0
t 0 · · · 0 0
...

...
...

0 0 · · · 0 −t
0 0 · · · t 0

 ∈ R2n×2n,

where t ≥ 0 is a real parameter to be chosen later. The eigenvalues of N are ±it so κ(N) = 1. Let
A = QR be the QR decomposition of A and set B := QNR. Then κ(B) ≤ κ(N)κ(A) = κ(A). By
Corollary 3.2, we have κ(A + iB) ≥ 1/(1 − t). Hence if t is chosen in the interval [1 − 1/γ, 1), we
get κ(A+ iB) ≥ γ. We also have

A+BA−1B = QR+ (QNR)(R−1QT)(QNR) = Q(I +N2)R
and as I +N2 = (1− t2)I, we see that κ(I +N2) = 1 and so

κ(A+BA−1B) ≤ κ(I +N2)κ(A) ≤ κ(A). □

Theorems 3.3 and 3.5 show the existence of arbitrarily ill-conditioned complex matrices with
well-conditioned real and imaginary parts (and also A + BA−1B in the case of Theorem 3.5).
We next show that such matrices exist in abundance — not only are there uncountably many of
them, they occur with nonzero probability, showing that there is no shortage of matrices where
Algorithm 3 provides an edge by avoiding the ill-conditioning of A+ iB or, equivalently, of

[
A −B
B A

]
.

Proposition 3.6. Let Sn := {A+ iB ∈ GLn(C) : A,B ∈ GLn(R)}. For any 1 < β ≤ γ < ∞,{
A+ iB ∈ Sn : κ(B) ≤ κ(A) ≤ β, κ(A+ iB) ≥ γ

}
,{

A+ iB ∈ S2n : max
(
κ(B)κ(A+BA−1B)

)
≤ κ(A) ≤ β, κ(A+ iB) ≥ γ

}
have nonempty interiors in Cn×n and C2n×2n respectively.

Proof. Consider the maps ϕ1 : Sn → [1,∞) × R × [1,∞) and ϕ2 : S2n → [1,∞] × R × R × [1,∞)
defined by

ϕ1(A+ iB) =
(
κ(A), κ(A)− κ(B), κ(A+ iB)

)
,

ϕ2(A+ iB) =
(
κ(A), κ(A)− κ(B), κ(A)− κ(A+BA−1B), κ(A+ iB)

)
respectively. These are continuous since the condition number κ is a continuous function on invert-
ible matrices. For any γ ≥ β > 1, the preimage ϕ−1

1 ([1, β]× [0,∞)× [γ,∞)) ̸= ∅ by Theorem 3.3
and ϕ−1

2 ((1, β] × [0,∞) × [0,∞) × [γ,∞)) ̸= ∅ by Theorem 3.5. Note that these preimages are
precisely the required sets in question and by continuity of ϕ1 and ϕ2 they must have nonempty
interiors. □

One may wonder if there is a flip side to Theorems 3.3 and 3.5, i.e., are there complex matrices
whose condition numbers are controlled by their real and imaginary parts? We conclude this section
by giving a construction of such matrices.

Proposition 3.7. Let A,B ∈ GLn(R). If σn(A) = µσ1(B) for some µ > 1, then
κ(A)− 1

2 < κ(A+ iB) ≤ κ(A) + κ(A) + 1
µ− 1

In particular, if A is well-conditioned and µ ≫ 1, then A+ iB is also well-conditioned.

Proof. We first show a more generally inequality that holds for arbitrary X,Y ∈ Cn×n. Recall that
singular values satisfy

σi+j−1(X + Y) ≤ σi(X) + σj(Y), 1 ≤ i+ j − 1 ≤ n.

16 Z. DAI, L.-H. LIM, AND K. YE

In particular, we have σ1(X+Y) ≤ σ1(X)+σ1(Y) and σ1((X+Y)+ (−Y)) ≤ σ1(X+Y)+σ1(Y),
and therefore

σ1(X)− σ1(Y) ≤ σ1(X + Y) ≤ σ1(X) + σ1(Y).

Also, we have σn(X + Y) ≤ σn(X) + σ1(Y) and σn((X + Y) + (−Y)) ≤ σn(X + Y) + σ1(Y), and
therefore

σn(X)− σ1(Y) ≤ σn(X + Y) ≤ σn(X) + σ1(Y).

If σn(X) > σ1(Y), then

σ1(X)− σ1(Y)
σn(X) + σ1(Y) ≤ σ1(X + Y)

σn(X + Y) ≤ σ1(X) + σ1(Y)
σn(X)− σ1(Y) .

Rewriting in terms of condition number,

κ(X)σn(X)− σ1(Y)
σn(X) + σ1(Y) ≤ κ(X + Y) ≤ κ(X)σn(X) + σ1(Y)

σn(X)− σ1(Y) .

Hence

κ(X)− (κ(X) + 1)
[

σ1(Y)
σn(X) + σ1(Y)

]
≤ κ(X + Y) ≤ κ(X) + (1 + κ(X))

[
σ1(Y)

σn(X)− σ1(Y)

]
.

Since σn(X) > σ1(Y), we have
σ1(Y)

σn(X) + σ1(Y) <
1
2

and so κ(X + Y) > (κ(X)− 1)/2. If we set X = A, Y = iB, and substitute σn(A) = µσ1(B), the
required inequality follows. □

4. Computing explicit inverse with Frobenius inversion

We have discussed at length in Section 1.2 why computing an explicit inverse for a matrix is
sometimes an inevitable or desirable endeavor. Here we will discuss the numerical properties of
inverting a complex matrix using Frobenius inversion. The quadratic extension C over R falls under
Algorithm 1 (as opposed to Algorithm 2) and here we will compare its computational complexity
with the complex matrix inversion algorithm based on LU decomposition, the standard method of
choice for computing explicit inverse in Matlab, Maple, Julia, and Python.

Algorithm 4 Inversion with LU decomposition
Input: X ∈ GLn(C)
1: LU factorize X = P TLU ;
2: backward substitute for X1 in UX1 = I;
3: forward substitute for X2 in X2L = X1;

Output: inverse X−1 = X2P

Strictly speaking, Algorithm 4 computes the left inverse of the input matrix X, i.e., Y X = I. We
may also compute its right inverse, i.e., XY = I, by swapping the order of backward and forward
substitutions. Even though the left and right inverse of a matrix are always equal mathematically,
i.e., in exact arithmetic, they can be different numerically, i.e., in floating-point arithmetic [34].
Any subsequent mentions of Algorithm 4 would also hold with its right inverse variant.

COMPLEX MATRIX INVERSION VIA REAL MATRIX INVERSIONS 17

4.1. Floating point complexity. In Section 2, we discussed computational complexity of Frobe-
nius inversion for invn,F in units of invn,k, muln,k, addn,k, which are in turn treated as black boxes.
Here, for the case of F = C and k = R, we will count actual real flops, i.e., real floating point oper-
ations; we will not distinguish between the cost of real addition and real multiplication since there
is no noticeable difference in their latency on modern processors — each would count as a single
flop. With this in mind, we do not use Gauss multiplication for complex numbers since it trades
one real multiplication for three real additions, i.e., more expensive if real addition costs the same
as real multiplication. We caution our reader that this says nothing about Gauss multiplication
for complex matrices since real matrix addition (n2 flops) is still much cheaper than real matrix
multiplication (2n3 flops).

Our implementation of Frobenius inversion in Algorithm 1 requires real matrix multiplication
and real matrix inversion as subroutines. Let Ainv and Amul be respectively any two algorithms for
real matrix inversion and real matrix multiplication, with real flop counts Tinv(n) and Tmul(n) on
real n × n matrix inputs. There is little loss of generality in making two mild assumptions about
the inversion algorithm Ainv:

(i) Ainv also works for complex matrix inputs at the cost of a multiple of Tinv(n), the multiple
being the cost of a complex flop in terms of real flops;

(ii) the number of complex additions and the number of complex multiplications in Ainv applied
to complex matrix inputs both take the form cnk+ lower order terms, i.e., same dominant
term but lower order terms may differ.

Note that these assumptions are satisfied if Ainv is chosen to be Algorithm 4, even if we replace the
LU decomposition in them by other decompositions like QR or Cholesky (if applicable).

Theorem 4.1 (Frobenius inversion versus standard inversion). Let λ > 0 be such that the cost
of computing A−1B for any A ∈ GLn(R), B ∈ Rn×n is bounded by λTmul(n). Algorithm 1 with
subroutines Ainv and Amul on real inputs A and B is asymptotically faster than directly applying
Ainv on complex input A+ iB if and only if

lim
n→∞

Tinv(n)
Tmul(n)

>
2 + λ

3 .

Proof. The first two steps of Algorithm 1 computes A−1B, which costs λTmul(n) operations. There-
after, computing BA−1B costs one matrix multiplication, A + BA−1B one matrix addition, S =
(A+BA−1B)−1 one matrix inversion, and finally A−1BS one matrix multiplication. We disregard
matrix addition since it takes O(n2) flops and does not contribute to the dominant term. So the
cost in real flops of Algorithm 1 is dominated by Tinv(n) + (2 + λ)Tmul(n) for n sufficiently large.

Now suppose we apply Ainv directly to the complex matrix A + iB. Each complex addition
costs two real flops (real additions) and each complex multiplication costs six real flops (four real
multiplications and two real additions). Also, by assumption (ii), Ainv has the same number of
real additions and real multiplications, ignoring lower order terms. So the cost in real flops of
Ainv applied directly to A + iB ∈ Cn×n is dominated by 4Tinv(n) for n sufficiently large, i.e., the
‘multiple’ in assumption (i) is 4.

Hence Algorithm 1 is faster than Ainv if and only if

4Tinv(n) > Tinv(n) + (2 + λ)Tmul(n)

for n sufficiently large, i.e., limn→∞ Tinv(n)/Tmul(n) > (2 + λ)/3. □

As we discussed in Section 2.3, Algorithm 1 is written in a general form that applies over arbitrary
fields and to both symbolic and numerical computing. However, when restricted to k = R, F = C,
and with numerical computing in mind, we may state a more specific version Algorithm 5 involving
LU decomposition and backsubstitutions for AX = B.

18 Z. DAI, L.-H. LIM, AND K. YE

Algorithm 5 Frobenius inversion with LU decomposition
Input: X = A+ iB ∈ GLn(C) with A ∈ GLn(R)
1: LU factorize A = P T

1L1U1;
2: forward and backward substitute for X1 in L1U1X1 = P1B;
3: matrix multiply and add X2 = A+BX1;
4: LU factorize X2 = P T

2L2U2;
5: forward and backward substitute for X3, X4 in [X3, X4]P2L2U2 = [I,X1];

Output: inverse X−1 = X3 − iX4

Note that Steps 1 and 2 in Algorithm 5 are essentially just Algorithm 4 with a different right-
hand side, and likewise for Steps 4 and 5. Hence we may regard Algorithm 5 as Algorithm 1 with
Ainv given by Algorithm 4 and Amul given by standard matrix multiplication. These choices allow
us to assign flop counts to illustrate Theorem 4.1.

Proposition 4.2 (Flop counts). Algorithm 5 has a real flop count of 28n3/3 whereas applying
Algorithm 4 directly to a complex matrix has a real flop count of 32n3/3.

Proof. These come from a straightforward flop count of the respective algorithms, dropping lower
order terms. □

With these choices for Ainv and Amul, the cost of computing A−1B is asymptotically bounded by
4
3Tmul(n) — one LU decomposition plus 2n forward and backward substitutions. So λ = 4/3 and (2+
λ)/3 = 10/9 < 4/3 = limn→∞ Tinv(n)/Tmul(n). Hence inverting a complex matrix via Algorithm 5
is indeed faster than inverting it directly with Algorithm 4, as predicted by Theorem 4.1; we will
also present numerical evidence that supports this in Section 5.

Proposition 4.2 also tells us that variations of Frobenius inversion formula like the one proposed
in [70] can obliterate the computational savings afforded by Frobenius inversion. These variants
all take the form X−1 = (ZX)−1Z for some Z ∈ GLn(C) and the extra matrix multiplications
incur additional costs. As a result, the variant in [70] takes 34n3 real flops, which exceeds even the
32n3/3 by standard methods (e.g., Algorithm 4).

4.2. Almost sure Frobenius inversion. One obvious shortcoming of Frobenius inversion is that
(1) requires the real part A to be invertible. It is easy to modify (1) to

(A+ iB)−1 = B−1A(AB−1A+B)−1 − i(AB−1A+B)−1

if B is invertible. Nevertheless we may well have circumstances where A + iB is invertible but
neither A nor B is, e.g., [1 0

0 i]. Here we will extend Frobenius inversion to any invertible A+ iB in a
way that preserves its computational complexity — this last qualification is important. As we saw
in Proposition 4.2, the speed improvement of Frobenius inversion comes from the constants, i.e.,
it inverts an n × n complex matrix with 28n3/3 real flops whereas Algorithm 4 takes 32n3/3 real
flops. As we noted in Section 1.3, prior attempts such as those in [70, 23] at extending Frobenius
inversion to all A+ iB ∈ GLn(C) invariably require the inversion of a real matrix of size 2n× 2n,
thereby obliterating any speed improvement afforded by Frobenius inversion.

Our approach avoids any matrices of larger dimension by adding a simple randomization step
that in turns depend on the following observation.

Lemma 4.3. Let A+ iB ∈ GLn(C) with A,B ∈ Rn×n. Then there exist at most n values of µ ∈ R
such that A− µB is singular.

Proof. As f(t) := det(A+ tB) is a polynomial of degree at most n and f(i) = det(A+ iB) ̸= 0, f
has at most n zeros in C. So A− µB is invertible for all but at most n values of µ ∈ C ⊇ R. □

COMPLEX MATRIX INVERSION VIA REAL MATRIX INVERSIONS 19

Algorithm 6 is essentially Frobenius inversion applied to (1 + µi)(A + iB) for some random µ.
Note that A − µB is exactly the real part of (1 + µi)(A + iB) and therefore invertible for all but
at most n values of µ by Lemma 4.3. The interval (0, 1) is chosen so that we may generate µ from
the uniform distribution but we could have also used R with standard normal distribution, both of
which are standard implementations in numerical packages.

Algorithm 6 Almost sure Frobenius inversion
Input: X = A+ iB ∈ GLn(C)
1: randomly generate µ ∈ [0, 1];
2: matrix add X1 = A− µB, X2 = µA+B;
3: Frobenius invert X3 + iX4 = (X1 + iX2)−1; ▷ calls Algorithm 5
4: matrix add X5 = X3 − µX4, X6 = µX3 +X4;

Output: inverse X−1 = X5 + iX6

Note that Algorithm 5 fails on a set of real dimension 2n2 − 1, i.e., when the real part of the
input is singular, but Algorithm 6 has reduced this to a set of dimension zero.

Proposition 4.4. Algorithm 6 has the same asymptotic time complexity as that of Algorithm 5,
i.e., Frobenius inversion. Algorithm 6 works with probability one if µ is chosen randomly from [0, 1]
with any non-atomic probability measure.

Proof. The time complexity of Algorithm 6 is that of Algorithm 5 plus the matrix additions in
Steps 2 and 4 that cost a total of 4 × 2n2 real flops. By Proposition 4.2, the time complexity
of Algorithm 6 is dominated by 28n3/3, and therefore the lower order term 8n2 may be ignored
asymptotically.

By Lemma 4.3, X1 = A− µB in Step 2 is invertible with probability one since any finite subset
of [0, 1] is a null set with a non-atomic probability measure. Thus Algorithm 5 is applicable to
X1 + iX2 and we have

(X3 − µX4) + i(µX3 +X4) = (1 + µi)(X1 + iX2)−1 = (1 + µi)]
(
X(1 + µi)

)−1 = X−1.

The almost sure correctness of Algorithm 6 follows. □

4.3. Hermitian positive definite matrices. The case of Hermitian positive definite A + iB
deserves special consideration given their ubiquity. We will propose and analyze a new variant of
Frobenius inversion that exploits this special structure of A + iB. The happy coincidence is that
a Hermitian positive definite A + iB ∈ Cn×n must necessarily have symmetric positive definite
A and A + BA−1B ∈ Rn×n as well as a skew-symmetric B ∈ Rn×n — precisely the matrices
we need in Frobenius inversion. Various required quantities may thus be computed via Cholesky
decompositions A = RT

1R1 and A+BA−1B = RT
2R2:

A−1B = R−1
1 R−T

1 B,

BA−1B = BR−1
1 R−T

1 B = −(R−T
1 B)T(R−T

1 B),

(A+BA−1B)−1 =
(
A− (R−T

1 B)T(R−T
1 B)

)−1 = R−1
2 R−T

2 ,

A−1B(A+BA−1B)−1 = A−1BR−1
2 R−T

2 .

(22)

Lemma 4.5. Let A+ iB ∈ Cn×n be a Hermitian positive definite matrix with A,B ∈ Rn×n. Then
(i) A is symmetric positive definite and B is skew-symmetric;
(ii) A+BA−1B is symmetric positive definite.

In particular, A is always invertible and so there is no need for an analogue of Algorithm 6.

20 Z. DAI, L.-H. LIM, AND K. YE

Proof. LetX = A+iB and writeX ≻ 0 to indicate positive definiteness. Then since A = (X+X)/2
and B = (X −X)/2i, A is symmetric and B is skew-symmetric given that X is Hermitian. Since
X ≻ 0, for any x ∈ Rn,

xTAx = 1
2x

H(X +X)x = 1
2x

HXx+ 1
2x

HXx = xHXx ≥ 0,

with equality if and only if x = 0, showing that A is positive definite. Again since X ≻ 0 , for any
z ∈ Cn,

zHXz = zHXz ≥ 0,
with equality if and only if z = 0; so X is also Hermitian positive definite. Now observe that
A− 1

2XA− 1
2 = I + iA− 1

2BA− 1
2 ≻ 0 and

A+BA−1B = A
1
2
[
I + (A− 1

2BA− 1
2)(A− 1

2BA− 1
2)
]
A

1
2 .

Therefore it suffices to establish (ii) for A = I. As

I + iB ≻ 0, I − iB ≻ 0, I +B2 = (I − iB)
1
2 (I + iB)(I − iB)

1
2 ,

it follows that I +B2 ≻ 0. An alternative way to show (ii) is to use Lemma 2.4, which informs us
that (A+BA−1B)−1 is the real part of X−1, allowing us to invoke (i). Then X ≻ 0 ⇒ X−1 ≻ 0 ⇒
(A+BA−1B)−1 ≻ 0 ⇒ A+BA−1B ≻ 0. □

With Lemma 4.5 established, we may turn (22) into Algorithm 7, which essentially replaces the
LU decompositions in Algorithm 5 with Cholesky decompositions, taking care to preserve symmetry
and positive definiteness.

Algorithm 7 Frobenius inversion with Cholesky decomposition
Input: X = A+ iB with A ∈ GLn(R)
1: Cholesky decompose A = RT

1R1;
2: backward substitute for X1 in RT

1X1 = B;
3: forward substitute for X2 in R1X2 = X1;
4: matrix multiply X3 = XT

1X1;
5: matrix add X4 = A−X3;
6: Cholesky decompose X4 = RT

2R2;
7: backward substitute for X5 in RT

2X5 = I;
8: forward substitute for X6 in R2X6 = X5;
9: matrix multiply X7 = X2X6;

Output: inverse X−1 = X6 − iX7

The standard method for inverting a Hermitian positive definite matrix is to simply replace LU
decomposition in Algorithm 4 by Cholesky decomposition, given in Algorithm 8 for easy reference.

Algorithm 8 Inversion with Cholesky decomposition
Input: A ∈ GLn(C)
1: Cholesky decompose A = RHR;
2: backward substitute for X1 in RHX1 = I;
3: forward substitute for X2 in RX2 = X1;

Output: inverse A−1 = X2

With this, we obtain an analogue of Proposition 4.2. The flop counts below show that Algorithm 7
provides a 22% speedup over Algorithm 8. The experiments in Section 5.6 will attest to this
improvement.

COMPLEX MATRIX INVERSION VIA REAL MATRIX INVERSIONS 21

Proposition 4.6 (Flop counts). Algorithm 7 has a real flop count of 23n3/3 whereas applying
Algorithm 8 directly to a complex matrix has a real flop count of 28n3/3.

Proof. Algorithm 8 performs one Cholesky decomposition, n backward substitutions, and n forward
substitutions, all over C. So its flop complexity is dominated by n3/3 + n3 + n3 = 7n3/3 complex
flops and thus, by the same reasoning in the proof of Theorem 4.1, 28n3/3 real flops. On the other
hand, Algorithm 7 performs two Cholesky decompositions, 2n backward substitutions, 2n forward
substitutions, and two matrix multiplications, all over R. Moreover, the symmetry in XT

1X1 allows
the matrix multiplication in Step 4 to have a reduced complexity of n3 real flops. Hence its flop
complexity is dominated by 2n3/3 + 2n3 + 2n3 + 3n3 = 23n3/3 real flops. □

We end with an observation that the discussions in this section apply as long as A ≻ 0 and
A+BA−1B ≻ 0. Indeed, another important class of matrices with this property are the A+ iB ∈
Cn×n with symmetric positive definite real and imaginary parts, i.e., A ≻ 0 and B ≻ 0 [32, p. 209].
By Lemma 4.5, such matrices are not Hermitian positive definite except in the trivial case when
B = 0. However, since such matrices must clearly satisfy A + BA−1B ≻ 0, Algorithm 7 and
Proposition 4.6 will apply verbatim to them.

5. Numerical experiments

We present results from numerical experiments comparing the speed and accuracy of Frobenius
inversion (Algorithms 3, 5, 7) with standard methods via LU and Cholesky decompositions (Algo-
rithms 4, 8). We begin by comparing Algorithms 4 and 5, followed by a variety of common tasks:
linear systems, matrix sign function, Sylvester equations, Lyapunov equations, polar decomposition,
and rounding up with a comparison of Algorithms 7 and 8 on the inversion of Hermitian positive
matrices. These results show that algorithms based on Frobenius inversion are more efficient than
standard ones based on LU or Cholesky decompositions, with negligible loss in accuracy, confirming
Theorem 4.1, Propositions 4.2 and 4.6. In all experiments, we repeat our random trials ten times
and record average time taken and average forward or backward error. All codes are available at
https://github.com/zhen06/Complex-Matrix-Inversion.

5.1. Matrix inversion. For our speed experiments, we generate X = A+ iB ∈ Cn×n with entries
of A,B ∈ Rn×n sampled uniformly from [0, 1] and n from 3600 to 6000.

3.55 3.6 3.65 3.7 3.75 3.8
10

15

20

25

30

35

40

45

50

55

60
Speed (General Matrices)

3500 4000 4500 5000 5500 6000
10

15

20

25

30

35

40

45

50

55

60
Speed (General Matrices)

Figure 1. Time taken versus log-dimension (left) and dimension (right) of matrix.

https://github.com/zhen06/Complex-Matrix-Inversion

22 Z. DAI, L.-H. LIM, AND K. YE

Figure 1 shows the times taken for Matlab’s built-in inversion (Algorithm 4), i.e., directly per-
forming LU decomposition in complex arithmetic, and Frobenius inversion with LU decomposition
in real arithmetic (Algorithm 5). They are plotted against matrix dimension n, using two different
scales for the horizontal axis. As predicted by Proposition 4.2, Frobenius inversion is indeed faster
than Matlab’s inversion, with a widening gap as n grows bigger.

For our accuracy experiments, we want some control over the condition numbers of our random
matrices to reduce conditioning as a factor affecting accuracy. We generate a random A ∈ Rn×n

with condition number κ: first generate a random orthogonal Q ∈ On(R) by QR factoring a
random Y ∈ Rn×n with entries sampled uniformly from [−1, 1]; next generate a random diagonal
Λ = diag(λ1, . . . , λn) ∈ Rn×n with λ1 = ±κ, λn = ±1, signs assigned randomly, and λ2, . . . , λn−1 ∈
[−κ,−1] ∪ [1, κ] sampled uniform randomly; then set A := QΛQT/∥Λ∥F. We generate B ∈ Rn×n in
the same way. So κ(A) = κ(B) = κ. We also check that κ(X) is on the same order of magnitude
as κ or otherwise discard X. In the plots below, we set κ = 10 and increase n from 2 through 4096.

Accuracy is measured by left and right relative residuals defined respectively as

resL(X, Ŷ) := ∥Ŷ X − I∥max

∥X∥max∥Ŷ ∥max
, resR(X, Ŷ) := ∥XŶ − I∥max

∥X∥max∥Ŷ ∥max
(23)

where Ŷ is the computed inverse of X and the max norm is

∥A+ iB∥max := max(∥A∥max, ∥B∥max) := max
(

max
i,j=1,...,n

|aij |, max
i,j=1,...,n

|bij |
)
. (24)

Figure 2 shows the left and right relative residuals computed by Matlab’s built-in inversion (Al-
gorithm 4) and Frobenius inversion (Algorithm 5), plotted against matrix dimension n. At first
glance, Frobenius inversion is less accurate than Matlab’s inversion. But one needs to look at the
scale of the vertical axis — the two algorithms give essentially the same results to machine precision
(15 decimal digits of accuracy), any difference can be safely ignored for all intents and purposes.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

6
10 -15 Left Residual (Well-conditioned Matrices)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

6
10 -15 Right Residual (Well-conditioned Matrices)

Figure 2. Relative left and right residuals of Frobenius inversion versus Matlab
built-in inversion. Note that scale of the vertical axis is 10−15.

5.2. Solving linear systems. It is remarkable that Frobenius inversion shows nearly no loss in
accuracy as measured by backward error. For the matrix dimensions in Section 5.1, forward error
experiments are too expensive due to the cost of finding exact inverse. To get a sense of the forward
errors, we look at a problem intimately related to matrix inversion — solving linear systems.

COMPLEX MATRIX INVERSION VIA REAL MATRIX INVERSIONS 23

We use the same matrices generated in Section 5.1 and generate two vectors x, y ∈ Rn with
entries sampled uniformly from [−1, 1]. We set c + id := (A + iB)(x + iy) and solve the complex
linear system (A + iB)(x + iy) = c + id to get a computed solution x̂ + iŷ using three methods:
(i) Frobenius inversion (Algorithm 3), (ii) complex LU factorization, and (iii) augmented system[
A −B
B A

]
[xy] = [cd]; we rely on Matlab’s mldivide (i.e., the ‘backslash’ operator) for the last two.

3.55 3.6 3.65 3.7 3.75 3.8
0.5

1

1.5

2

2.5

3

3.5

4
10 -14 Forward Error

Figure 3. Linear systems with with Frobenius inversion and Matlab’s backslash.

Figure 3 shows the relative forward errors ∥x̂ + iŷ − (x + iy)∥max/∥x + iy∥max plotted against
matrix dimension. The conclusion is clear: Frobenius inversion gives the most accurate result.

5.3. Matrix sign function. The matrix sign function appears in a wide range of problems such as
algebraic Riccati equation [59], Sylvester equation [33, 59], polar decomposition [33], and spectral
decomposition [3, 4, 5, 37, 45]. For X ∈ GLn(C) with Jordan decomposition X = ZJZ−1 where
its Jordan canonical form J =

[
J+ 0
0 J−

]
is partitioned into J+ ∈ Cp×p with positive real part and

J− ∈ Cq×q with negative real part, its matrix sign function is defined to be

sign(X) = Z

[
Ip 0
0 −Iq

]
Z−1. (25)

Since the Jordan decomposition cannot be determined in finite precision [29], its definition does
not offer a viable way of computation. The standard way to evaluate the matrix sign function is
to use Newton iterations [35, 59]:

Xk+1 =
1
2(Xk +X−1

k), k = 0, 1, 2, . . . , X0 = X. (26)

This affords a particularly pertinent test for Frobenius inversion as it involves repeated inver-
sion. Our stopping condition is given by the relative change in Xk: We stop when ∥Xk −
Xk−1∥max/∥Xk∥max ≤ ε = 10−3 or when k ≥ kmax = 100.

The definition via Jordan decomposition is useful for generating random examples for our tests:
We generate a random diagonal J ∈ Cn×n whose first p ≈ n/2 diagonal entries have positive real
parts and the rest have negative real parts, avoiding near zero values, and with n from 2100 to
4000. We generate a random Z ∈ GLn(C) with real and imaginary parts of its entries zij sampled
uniformly from [−1, 1]. We set X := ZJZ−1. In this way we obtain sign(X) via (25) as well.

In each iteration of (26), we compute X−1
k with Matlab’s inversion in complex arithmetic

(Algorithm 4) and Frobenius inversion in real arithmetic (Algorithm 5). Accuracy is measured

24 Z. DAI, L.-H. LIM, AND K. YE

by relative forward error ∥sign(X) − Ŝ∥max/∥sign(X)∥max. From Figure 4, we see that Frobenius
inversion offers an improvement in speed at the cost of slightly less accurate results.

3.3 3.35 3.4 3.45 3.5 3.55 3.6 3.65
0

50

100

150

200

250

300
Speed (Matrix Sign Function)

3.3 3.35 3.4 3.45 3.5 3.55 3.6 3.65
0

0.2

0.4

0.6

0.8

1

1.2
10 -4 Accuracy (Matrix Sign Function)

Figure 4. Matrix sign function with Frobenius inversion and Matlab’s inversion.

5.4. Sylvester and Lyapunov equations. One application of the matrix sign function is to seek,
for given A ∈ Cp×p, B ∈ Cq×q, and C ∈ Cp×q, a solution Y ∈ Cp×q for the Sylvester equation:

AY + Y B = C,

or its special case with B = AH, the Lyapunov equation [34]. As noted in [33, 59], if sign(A) = Ip
and sign(B) = Iq, then

sign
([

A −C
0 −B

])
=
[
Ip −2Y
0 −Iq

]
.

Thus the Newton iterations (26) applied to X0 =
[
A −C
0 −B

]
will converge to

[
I −2Y
0 −I

]
, yielding the

solution Y of Sylvester equation in the limit.
As usual, we ‘work backwards’ to generate A ∈ Cp×p with sign(A) = Ip, B ∈ Cq×q with sign(B) =

Iq, and C ∈ Cp×q with p and q taking values between 1050 and 2000. First we generate a random
Z ∈ GLp(C) by sampling the real and imaginary parts of its entries in [−1, 1] uniformly; next we
generate a random diagonal J ∈ Cn×n whose diagonal entries have positive real parts sampled from
the interval [9, 10]; then we set A := ZJZ−1 ∈ Cp×p. We generate B ∈ Cq×q in the same way. We
generate a random Y ∈ Cp×q with real and imaginary parts of its entries sampled uniformly from
[−1, 1] and set C := AY + Y B.

Using the same stopping condition in Section 5.3 with a tolerance of ε = 10−1 and kmax = 100
maximum iterations, we compute a solution Ŷ with the Newton iterations (26). Accuracy is
measured by relative forward error ∥Y − Ŷ ∥max/∥Y ∥max.

Figure 5 gives the results for Sylvester and Lyapunov equations, showing that in both cases
Frobenius inversion is faster than Matlab’s inversion with no difference in accuracy. Indeed, at
a scale of 10−5 for the vertical axis, the two graphs in the accuracy plot for Lyapunov equation
(bottom right plot of Figure 5) are indistinguishable. The accuracy plot for Sylvester equation (top
right plot of Figure 5) uses a finer vertical scale of 10−8; but had we used a scale of 10−5, the two
graphs therein would also have been indistinguishable.

COMPLEX MATRIX INVERSION VIA REAL MATRIX INVERSIONS 25

3 3.05 3.1 3.15 3.2 3.25 3.3 3.35
0

20

40

60

80

100

120

140

160
Speed (Sylvester Equation)

3 3.05 3.1 3.15 3.2 3.25 3.3 3.35
1.5

2

2.5

3

3.5

4

4.5
10 -8 Accuracy (Sylvester Equation)

3 3.05 3.1 3.15 3.2 3.25 3.3 3.35
0

50

100

150
Speed (Lyapunov Equation)

3 3.05 3.1 3.15 3.2 3.25 3.3 3.35
2

4

6

8

10

12

14
10 -5 Accuracy (Lyapunov Equation)

Figure 5. Sylvester (top) and Lyapunov (bottom) equations with Frobenius inver-
sion and Matlab’s inversion. Note there are two graphs in the bottom right plot.

5.5. Polar decomposition. Another application of the matrix sign function is to polar decompose
a given X ∈ Cn×n into X = QP with Q ∈ Un(C) and P ∈ Cn×n Hermitian positive semidefinite.
This is based on the observation [31, 33, 39] that

sign
([

0 X
XH 0

])
=
[
0 Q
QH 0

]
.

Here the Newton iterations (26) take a slightly different form

Xk+1 =
1
2(Xk +X−H

k), k = 0, 1, 2, . . . , X0 = X. (27)

We generate random Y,Z ∈ Cn×n with real and imaginary parts of its entries sampled uniformly
from [−1, 1]. We then QR factorize Y = UR and l set P := ZHZ and X = UP . The value of n
runs from 2100 to 4000.

Using the same stopping condition in Section 5.3 with a tolerance of ε = 10−3 and kmax = 100
maximum iterations, we compute a solution Q̂ with the Newton iterations (27), withX−H

k computed
by either Frobenius inversion or Matlab’s inversion. We then set P̂ = Q̂HX. Accuracy is measured
by relative forward errors ∥Q− Q̂∥max/∥Q∥max and ∥P − P̂∥max/∥P∥max.

26 Z. DAI, L.-H. LIM, AND K. YE

3.3 3.35 3.4 3.45 3.5 3.55 3.6 3.65
50

100

150

200

250

300

350

400

450
Speed (Polar Decomposition)

3.3 3.35 3.4 3.45 3.5 3.55 3.6 3.65
0

0.5

1

1.5
10 -3 Accuracy of H (Polar Decomposition)

Figure 6. Polar decomposition with Frobenius inversion and Matlab’s inversion.
Note that there are two graphs in the right plot

Figure 6 again shows that Frobenius inversion is faster than Matlab’s built-in inversion with
near-identical accuracy. Indeed, at a scale of 10−3 for the vertical axis, the two graphs in the
accuracy plot (right plot of Figure 6) are indistinguishable.

5.6. Hermitian positive definite matrix inversion. We repeat experiments in Section 5.1
on Hermitian positive definite matrices for our variant of Frobenius inversion (Algorithm 7) and
Matlab’s built-in inversion based on Cholesky decomposition (Algorithm 8). For comparison, we
also include Algorithms 4 and 5 that do not exploit Hermitian positive definiteness.

For our speed experiments, we generate a random Hermitian positive definite X := (A+iB)H(A+
iB) + 0.01I ∈ Cn×n with A,B ∈ Rn×n sampled uniformly from [−1, 1] and n from 3600 to 6000.
We plot the results in Figure 7, with two different scales for the horizontal axis.

3.55 3.6 3.65 3.7 3.75 3.8
5

10

15

20

25

30

35

40

45

50
Speed (Positive Hermitian Matrices)

3500 4000 4500 5000 5500 6000
5

10

15

20

25

30

35

40

45

50
Speed (Positive Hermitian Matrices)

Figure 7. Time taken versus log-dimension (left) and dimension (right) of matrix.

For our accuracy experiments, we control the condition numbers of our matrices to reduce condi-
tioning as a factor affecting accuracy. To generate a random Hermitian positive definite X ∈ Cn×n

with condition number κ, first we generate a random unitary Q ∈ Un(C) by QR factoring a

COMPLEX MATRIX INVERSION VIA REAL MATRIX INVERSIONS 27

random Y ∈ Cn×n with real and imaginary parts of its entries sampled uniformly from [−1, 1];
next we generate a random diagonal Λ = diag(λ1, . . . , λn) ∈ Rn×n with λ1 = κ, λn = 1, and
λ2, . . . , λn−1 ∈ [1, κ] sampled uniform randomly; then we set X := QΛQH/∥Λ∥F. So κ(X) = κ. In
the plots below, we set κ = 10 and increase n from 2 through 4096.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3
10 -15 Left Residual (Positive Well-conditioned Matrices)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3
10 -15 Right Residual (Positive Well-conditioned Matrices)

Figure 8. Relative left and right residuals of Algorithms 4, 5, 7, 8. Note that scale
of the vertical axis is 10−15.

Accuracy is measured by left and right relative residuals as defined in equation (23), with results
plotted in Figure 8, which shows the left and right relative residuals computed by Algorithms 4, 5,
7, 8 plotted against matrix dimension n. The important thing to note is the scale of the vertical
axes — all four algorithms give essentially the same results up to machine precision.

6. Conclusion

We hope our effort here will rekindle interest in this beautiful algorithm. In future work, we plan
to provide rounding error analysis for Frobenius inversion, discuss its relation with Strassen-style
algorithms, and its advantage in solving linear systems with a large number of right-hand sides.

Acknowledgment. ZD acknowledges the support of DARPA HR00112190040 and NSF ECCF
2216912. LHL acknowledges the support of DARPA HR00112190040, NSF DMS 1854831, and a
Vannevar Bush Faculty Fellowship ONR N000142312863. KY acknowledges the support of CAS
Project for Young Scientists in Basic Research, Grant No. YSBR-008, National Key Research and
Development Project No. 2020YFA0712300, and National Natural Science Foundation of China
Grant No. 12288201.

References
[1] IEEE standard for floating-point arithmetic. In IEEE Std 754-2019 (Revision of IEEE 754-2008), pages 1–84.

IEEE, New York, NY, 2019.
[2] H. Althaus and R. Leake. Inverse of a finite-field Vandermonde matrix (corresp.). IEEE Trans. Inform. Theory,

15(1):173–173, 1969.
[3] Z. Bai, J. Demmel, J. Dongarra, A. Petitet, H. Robinson, and K. Stanley. The spectral decomposition of non-

symmetric matrices on distributed memory parallel computers. SIAM J. Sci. Comput., 18(5):1446–1461, 1997.
[4] Z. Bai and J. W. Demmel. Design of a parallel nonsymmetric eigenroutine toolbox. University of Kentucky,

Lexington, KY, 1992.
[5] A. N. Beavers, Jr. and E. D. Denman. A computational method for eigenvalues and eigenvectors of a matrix

with real eigenvalues. Numer. Math., 21:389–396, 1973.

28 Z. DAI, L.-H. LIM, AND K. YE

[6] A. S. Besicovitch. On the linear independence of fractional powers of integers. J. Lond. Math. Soc., 15:3–6, 1940.
[7] E. Bodewig. Matrix calculus. North-Holland, Amsterdam, enlarged edition, 1959.
[8] P. Bürgisser, M. Clausen, and M. A. Shokrollahi. Algebraic complexity theory, volume 315 of Grundlehren der

mathematischen Wissenschaften. Springer-Verlag, Berlin, 1997.
[9] A. Caraiani and J. Newton. On the modularity of elliptic curves over imaginary quadratic fields. arXiv: 2301.

10509 , 2023.
[10] S. Casacuberta and R. Kyng. Faster sparse matrix inversion and rank computation in finite fields. In 13th

Innovations in Theoretical Computer Science Conference, ITCS 2022, pages 33:1–33:24. Dagstuhl Publishing,
Germany, 2022.

[11] H. Cohen. A course in computational algebraic number theory, volume 138 of Graduate Texts in Mathematics.
Springer-Verlag, Berlin, 1993.

[12] H. Cohen. Advanced topics in computational number theory, volume 193 of Graduate Texts in Mathematics.
Springer-Verlag, New York, NY, 2000.

[13] H. Cramér. Mathematical Methods of Statistics, volume 9 of Princeton Mathematical Series. Princeton University
Press, Princeton, NJ, 1946.

[14] Z. Dai and L.-H. Lim. Numerical stability and tensor nuclear norm. Numer. Math., to appear, 2023.
[15] A. Ditkowski, G. Fibich, and N. Gavish. Efficient solution of Ax(k) = b(k) using A−1. J. Sci. Comput., 32(1):29–

44, 2007.
[16] A. Druinsky and S. Toledo. How accurate is inv(A) ∗ b? arXiv: 1201. 6035 , 2012.
[17] K. Dudeck. Solving complex systems using spreadsheets: A matrix decomposition approach. In Proceedings of

the 2005 ASEE Annual Conference and Exposition: The Changing Landscape of Engineering and Technology
Education in a Global World, pages 12875–12880. ASEE, Washington, DC, 2005.

[18] D. S. Dummit and R. M. Foote. Abstract algebra. John Wiley, Hoboken, NJ, third edition, 2004.
[19] S. Eberli, D. Cescato, and W. Fichtner. Divide-and-conquer matrix inversion for linear MMSE detection in SDR

MIMO receivers. In Proceedings of the 26th IEEE Norchip Conference, pages 162–167. IEEE, New York, NY,
2008.

[20] W. Eberly. Processor-efficient parallel matrix inversion over abstract fields: Two extensions. In Proceedings of
the 2nd International Symposium on Parallel Symbolic Computation, PASCO ’97, page 38–45. ACM, New York,
NY, 1997.

[21] W. Eberly, M. Giesbrecht, P. Giorgi, A. Storjohann, and G. Villard. Faster inversion and other black box matrix
computations using efficient block projections. In Proceedings of the 2007 International Symposium on Symbolic
and Algebraic Computation, ISSAC ’07, page 143–150, New York, NY, USA, 2007. ACM, New York, NY.

[22] L. W. Ehrlich. Complex matrix inversion versus real. Comm. ACM, 13:561–562, 1970.
[23] M. El-Hawary. Further comments on “a note on the inversion of complex matrices”. IEEE Trans. Automat.

Contr., 20(2):279–280, 1975.
[24] N. Freitas, B. V. Le Hung, and S. Siksek. Elliptic curves over real quadratic fields are modular. Invent. Math.,

201(1):159–206, 2015.
[25] F. G. Frobenius. Gesammelte Abhandlungen. Bände I, II, III. Springer-Verlag, Berlin, 1968.
[26] M. Giesbrecht. Nearly optimal algorithms for canonical matrix forms. SIAM J. Comput., 24(5):948–969, 1995.
[27] P. E. Gill, G. H. Golub, W. Murray, and M. A. Saunders. Methods for modifying matrix factorizations. Math.

Comp., 28:505–535, 1974.
[28] G. H. Golub. Matrix computation and the theory of moments. In Proceedings of the International Congress of

Mathematicians, volume 2, pages 1440–1448. Birkhäuser, Basel, 1995.
[29] G. H. Golub and J. H. Wilkinson. Ill-conditioned eigensystems and the computation of the Jordan canonical

form. SIAM Rev., 18(4):578–619, 1976.
[30] M. T. Heath, G. A. Geist, and J. B. Drake. Early experience with the Intel iPSC/860 at Oak Ridge National

Laboratory. Int. J. High Perform. Comput. Appl., 5(2):10–26, 1991.
[31] N. J. Higham. Computing the polar decomposition—with applications. SIAM J. Sci. Statist. Comput., 7(4):1160–

1174, 1986.
[32] N. J. Higham. Stability of a method for multiplying complex matrices with three real matrix multiplications.

SIAM J. Matrix Anal. Appl., 13(3):681–687, 1992.
[33] N. J. Higham. The matrix sign decomposition and its relation to the polar decomposition. Linear Algebra Appl.,

212/213:3–20, 1994.
[34] N. J. Higham. Accuracy and stability of numerical algorithms. SIAM, Philadelphia, PA, second edition, 2002.
[35] N. J. Higham. Functions of matrices. SIAM, Philadelphia, PA, 2008.
[36] J. Hoffstein, J. Pipher, and J. H. Silverman. An introduction to mathematical cryptography. Undergraduate Texts

in Mathematics. Springer, New York, second edition, 2014.
[37] J. L. Howland. The sign matrix and the separation of matrix eigenvalues. Linear Algebra Appl., 49:221–232,

1983.

arXiv:2301.10509
arXiv:2301.10509
arXiv:1201.6035

COMPLEX MATRIX INVERSION VIA REAL MATRIX INVERSIONS 29

[38] A. A. Karatsuba. The complexity of computations. Trudy Mat. Inst. Steklov., 211:186–202, 1995.
[39] C. Kenney and A. J. Laub. On scaling Newton’s method for polar decomposition and the matrix sign function.

SIAM J. Matrix Anal. Appl., 13(3):698–706, 1992.
[40] A. Klein and G. Mélard. Computation of the Fisher information matrix for time series models. J. Comput. Appl.

Math., 64(1-2):57–68, 1995.
[41] D. E. Knuth. The art of computer programming. Vol. 2. Addison-Wesley, Reading, MA, third edition, 1998.
[42] C. Krattenthaler. A new matrix inverse. Proc. Amer. Math. Soc., 124(1):47–59, 1996.
[43] C. Lanczos. Applied analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956.
[44] L.-H. Lim. Tensors in computations. Acta Numer., 30:555–764, 2021.
[45] C.-C. Lin and E. Zmijewski. A parallel algorithm for computing the eigenvalues of an unsymmetric matrix on

an SIMD mesh of processors. University of California, Santa Barbara, CA, 1991.
[46] K. Lo. Several numerical methods for matrix inversion. Int. J. Electr. Eng. Educ., 15(2):131–141, 1978.
[47] J. H. Maindonald. Statistical computation. Series in Probability and Mathematical Statistics: Applied Probability

and Statistics. John Wiley, New York, NY, 1984.
[48] P. McCullagh and J. A. Nelder. Generalized linear models. Monographs on Statistics and Applied Probability.

Chapman & Hall, London, 1989.
[49] R. J. McEliece. Finite fields for computer scientists and engineers, volume 23 of International Series in Engi-

neering and Computer Science. Kluwer, Boston, MA, 1987.
[50] A. J. Menezes, I. F. Blake, X. Gao, R. C. Mullin, S. A. Vanstone, and T. Yaghoobian. Applications of finite

fields, volume 199 of International Series in Engineering and Computer Science. Kluwer, Boston, MA, 1993.
[51] M. Mignotte. Mathematics for computer algebra. Springer-Verlag, New York, NY, 1992.
[52] B. Mishra. Algorithmic algebra. Texts and Monographs in Computer Science. Springer-Verlag, New York, NY,

1993.
[53] P. Mukherjee and L. Satish. On the inverse of forward adjacency matrix. arXiv: 1711. 09216 , 2017.
[54] I. Munro. Some results concerning efficient and optimal algorithms. In Proceedings of the Third Annual ACM

Symposium on Theory of Computing, STOC ’71, page 40–44. ACM, New York, NY, 1971.
[55] M. L. Overton. Numerical computing with IEEE floating point arithmetic. SIAM, Philadelphia, PA, 2001.
[56] S. K. Panda. Inverses of bicyclic graphs. Electron. J. Linear Algebra, 32:217–231, 2017.
[57] S. Pavĺıková. A note on inverses of labeled graphs. Australas. J. Combin., 67:222–234, 2017.
[58] C. R. Rao. Information and the accuracy attainable in the estimation of statistical parameters. Bull. Calcutta

Math. Soc., 37:81–91, 1945.
[59] J. D. Roberts. Linear model reduction and solution of the algebraic Riccati equation by use of the sign function.

Internat. J. Control, 32(4):677–687, 1980.
[60] S. Roman. Field theory, volume 158 of Graduate Texts in Mathematics. Springer, New York, NY, second edition,

2006.
[61] I. Schur. Gesammelte Abhandlungen. Band I, II, III. Springer-Verlag, Berlin, 1973.
[62] J. Schur. Über potenzreihen, die im innern des einheitskreises beschränkt sind. J. Reine Angew. Math., 148:122–

145, 1918.
[63] W. W. Smith and J. Smith. Handbook of real-time fast Fourier transforms. IEEE, New York, NY, 1995.
[64] W. W. Smith, Jr. and S. Erdman. A note on the inversion of complex matrices. IEEE Trans. Automatic Contol,

AC-19:64, 1974.
[65] D. R. Stinson and M. B. Paterson. Cryptography. Textbooks in Mathematics. CRC Press, Boca Raton, FL,

fourth edition, 2019.
[66] C. Studer, S. Fateh, and D. Seethaler. ASIC implementation of soft-input soft-output MIMO detection using

MMSE parallel interference cancellation. IEEE J. Solid-State Circuits, 46(7):1754–1765, 2011.
[67] L. Tornheim. Inversion of a complex matrix. Comm. ACM, 4:398, 1961.
[68] S. Winograd. On the number of multiplications necessary to compute certain functions. Comm. Pure Appl.

Math., 23:165–179, 1970.
[69] D. Ye, Y. Yang, B. Mandal, and D. J. Klein. Graph invertibility and median eigenvalues. Linear Algebra Appl.,

513:304–323, 2017.
[70] A. Zielinski. On inversion of complex matrices. Internat. J. Numer. Methods Engrg., 14(10):1563–1566, 1979.

Computational and Applied Mathematics Initiative, University of Chicago, Chicago, IL 60637-1514
Email address: zhen9@uchicago.edu, lekheng@uchicago.edu

KLMM, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190,
China

Email address: keyk@amss.ac.cn

arXiv:1711.09216

	1. Introduction
	1.1. Why not invert matrices
	Caveat
	1.2. Why invert matrices
	1.3. Previous works
	1.4. Notations and conventions

	2. Frobenius inversion in exact arithmetic
	2.1. Gauss multiplication over quadratic field extensions
	2.2. Gauss matrix multiplication over quadratic field extensions
	2.3. Frobenius matrix inversion over quadratic field extensions
	2.4. Frobenius inversion over iterated quadratic extensions
	2.5. Moore–Penrose and Sherman–Morrison

	3. Solving linear systems with Frobenius inversion
	4. Computing explicit inverse with Frobenius inversion
	4.1. Floating point complexity
	4.2. Almost sure Frobenius inversion
	4.3. Hermitian positive definite matrices

	5. Numerical experiments
	5.1. Matrix inversion
	5.2. Solving linear systems
	5.3. Matrix sign function
	5.4. Sylvester and Lyapunov equations
	5.5. Polar decomposition
	5.6. Hermitian positive definite matrix inversion

	6. Conclusion
	Acknowledgment

	References

