Globally convergent algorithms for PARAFAC with semi-definite programming

Lek-Heng Lim

6th ERCIM Workshop on Matrix Computations and Statistics
Copenhagen, Denmark
April 1–3, 2005

Thanks: Vin de Silva, Gunnar Carlsson, Gene Golub,
NSF DMS 01-01364
Acknowledgement

MATLAB Toolbox for Semidefinite Programming — SDPT3

Joint work with:

Kim-Chuan Toh
Department of Mathematics
National University of Singapore

Thanks to:

Vin de Silva
Department of Mathematics
Stanford University
Numerical Multilinear Algebra: Theory, Algorithms and Applications of Tensor Computations

- Develop a collection of standard computational methods for higher order tensors that parallel the methods that have been developed for order-2 tensors, i.e., matrices
- Develop the mathematical foundations to facilitate this goal
- Applications
Motivation

Past 50 years, Numerical Linear Algebra played crucial role in:

- the statistical analysis of two-way data,
- the numerical solution of partial differential equations arising from vector fields,
- the numerical solution of second-order optimization methods.

Next step — develop Numerical Multilinear Algebra for:

- the statistical analysis of multi-way data,
- the numerical solution of partial differential equations arising from tensor fields,
- the numerical solution of higher-order optimization methods.
A Candecomp/Parafac or outer product model has the following form

\[
a_{ijk} = \sum_{\alpha=1}^{r} x_{i\alpha} y_{j\alpha} z_{k\alpha} + e_{ijk}
\]

where \(E = [e_{ijk}] \in \mathbb{R}^{l \times m \times n} \) denotes the (unknown) error.

To minimize the error, we want an outer product approximation

\[
\arg\min \| A - \sum_{\alpha=1}^{r} x_{\alpha} \otimes y_{\alpha} \otimes z_{\alpha} \|_F
\]

where the minimum is taken over all matrices \(X = [x_1, \ldots, x_r] \in \mathbb{R}^{l \times r}, Y = [y_1, \ldots, y_r] \in \mathbb{R}^{m \times r}, Z = [z_1, \ldots, z_r] \in \mathbb{R}^{n \times r} \).

In short, we want an optimal solution

\[
B^{\otimes} = \arg\min_{\text{rank}_\otimes(B) \leq r} \| A - B \|_F.
\]
Alternating least squares

Even when an optimal solution $B^\ast \otimes$ to $\text{argmin}_{\text{rank}(B) \leq r} \|A - B\|_F$ exists, $B^\ast \otimes$ is not easy to compute since the objective function is non-convex.

A widely used strategy is a nonlinear Gauss-Seidel algorithm, better known as the Alternating Least Squares algorithm:

Algorithm: ALS for optimal rank-r approximation

- initialize $X^{(0)} \in \mathbb{R}^{l \times r} \in \mathbb{R}^{m \times r} \in \mathbb{R}^{n \times r}$;
- initialize $s^{(0)}, \varepsilon > 0, k = 0$;
- while $\rho^{(k+1)}/\rho^{(k)} > \varepsilon$;
 - $X^{(k+1)} \leftarrow \text{argmin}_{X \in \mathbb{R}^{l \times r}} \|T - \sum_{\alpha=1}^r x_{\alpha}^{(k+1)} \otimes y_{\alpha}^{(k+1)} \otimes z_{\alpha}^{(k+1)}\|_F^2$;
 - $Y^{(k+1)} \leftarrow \text{argmin}_{Y \in \mathbb{R}^{m \times r}} \|T - \sum_{\alpha=1}^r x_{\alpha}^{(k+1)} \otimes y_{\alpha}^{(k+1)} \otimes z_{\alpha}^{(k+1)}\|_F^2$;
 - $Z^{(k+1)} \leftarrow \text{argmin}_{Z \in \mathbb{R}^{n \times r}} \|T - \sum_{\alpha=1}^r x_{\alpha}^{(k+1)} \otimes y_{\alpha}^{(k+1)} \otimes z_{\alpha}^{(k+1)}\|_F^2$;
 - $\rho^{(k+1)} \leftarrow \|\sum_{\alpha=1}^r [x_{\alpha}^{(k+1)} \otimes y_{\alpha}^{(k+1)} \otimes z_{\alpha}^{(k+1)} - x_{\alpha}^{(k)} \otimes y_{\alpha}^{(k)} \otimes z_{\alpha}^{(k)}]\|_F^2$;
 - $k \leftarrow k + 1$;
A sequence \((\theta_k)_{k=1}^{\infty}\) is said to converge if \(\lim_{k \to \infty} \theta_k\) exists.

An iterative algorithm for solving a particular problem is said to converge if the sequence of iterates \((\theta_k)_{k=1}^{\infty}\) is convergent and \(\lim_{k \to \infty} \theta_k\) is the solution to that problem.

The sequence of iterates generated by ALS may be a convergent sequence but the ALS is not convergent as an algorithm for finding the optimal PARAFAC solution.

Pitfall: An algorithm that monotonically decreases the objective function must converge to the infimum/minimum of the function. (Not necessary, eg. \(f_k = f(\theta_k) = 2 + \frac{1}{k}\) and \(f^* = \inf_D f = 1\).
Some history

f polynomial in variables $x = (x_1, \ldots, x_N)$. Suppose $f: \mathbb{R}^N \to \mathbb{R}$ non-negative valued, ie. $f(x) \geq 0$ for all $x \in \mathbb{R}^N$.

Question: Can we write f as a sum of squares of polynomials, ie. p_1, \ldots, p_M such that

$$f(x) = \sum_{j=1}^{M} p_j(x)^2 \ ?$$

Answer (Hilbert): Not in general, eg. $f(w, x, y, z) = w^4 + x^2y^2 + y^2z^2 + z^2x^2 - 4xyzw$.

Hilbert’s 17th Problem: Can we write f as a sum of squares of rational functions, ie. p_1, \ldots, p_M and q_1, \ldots, q_M such that

$$f(x) = \sum_{j=1}^{M} \left(\frac{p_j(x)}{q_j(x)} \right)^2 \ ?$$

Answer (Artin): Yes!
Observation 1:

\[F(x_{11}, \ldots, z_{nr}) = \|A - \sum_{\alpha=1}^{r} x_{\alpha} \otimes y_{\alpha} \otimes z_{\alpha}\|_F^2 \]

\[= \sum_{i,j,k=1}^{l,m,n} \left(a_{ijk} - \sum_{\alpha=1}^{r} x_{i\alpha} y_{j\alpha} z_{k\alpha}\right)^2 \]

is a polynomial of total degree 6 (resp. \(2k\) for order \(k\)-tensors) in variables \(x_{11}, \ldots, z_{nr}\).

Recent breakthroughs in multivariate polynomial optimization [Lasserre 2001], [Parrilo 2003] [Parrilo-Sturmfels 2003] show that the non-convex problem

\[
\text{argmin } F(x_{11}, \ldots, z_{nr})
\]

may be relaxed to a convex problem (thus global optima is guaranteed) which can in turn be solved using SDP.
Observation 2: If $F - \lambda$ can be expressed as a sum of squares of polynomials

$$F(x_{11}, \ldots, z_{nr}) - \lambda = \sum_{i=1}^{n} P_i(x_{11}, \ldots, z_{nr})^2,$$

then λ is a global lower bound for F, ie.

$$F(x_{11}, \ldots, z_{nr}) \geq \lambda$$

for all $x_{11}, \ldots, z_{nr} \in \mathbb{R}$.

Simple strategy: Find the largest λ^* such that $F - \lambda^*$ is a sum of squares. Then λ^* is often min $F(x_{11}, \ldots, z_{nr})$.

Write $v = (1, x_{11}, \ldots, z_{nr}, \ldots, x_{l1}y_{m1}z_{n1}, \ldots, z_{nr}^6)^t$, the D-tuple of monomials of total degree ≤ 6, where

$$D := \binom{r(l + m + n)}{3} + 3.$$
Write $F(x_{11}, \ldots, z_{nr}) = \alpha^t v$ where $\alpha = (\alpha_1, \ldots, \alpha_D) \in \mathbb{R}^D$ are the coefficients of the respective monomials.

Since $\text{deg}(F)$ is even, F may also be written as

$$F(x_{11}, \ldots, z_{nr}) = v^t M v$$

for some $M \in \mathbb{R}^{D \times D}$. So

$$F(x_{11}, \ldots, z_{nr}) - \lambda = v^t (M - \lambda E_{11}) v$$

where $E_{11} = e_1 e_1^t \in \mathbb{R}^{D \times D}$.

Observation 3: The rhs is a sum of squares iff $M - \lambda E_{11}$ is positive semi-definite (since $M - \lambda E_{11} = B^t B$).

Hence we have

$$\begin{align*}
\text{minimize} & \quad -\lambda \\
\text{subjected to} & \quad v^t (S + \lambda E_{11}) v = F, \\
& \quad S \succeq 0.
\end{align*}$$
This is an SDP problem

\[
\begin{align*}
\text{minimize} & \quad 0 \circ S - \lambda \\
\text{subjected to} & \quad S \circ B_1 + \lambda = \alpha_1, \\
& \quad S \circ B_k = \alpha_k, \quad k = 2, \ldots, D \\
& \quad S \succeq 0, \quad \lambda \in \mathbb{R}.
\end{align*}
\]

This problem can be solved in polynomial time. Like all SDP-based algorithms, the SPD duality produces a certificate that tells us whether we have arrived at a globally optimal solution.

The \textit{duality gap}, ie. difference between the values of the primal and dual objective functions, is 0 at a global minima.
Reducing the complexity

Complexity: For rank-r approximations to order-k tensors $A \in \mathbb{R}^{d_1 \times \cdots \times d_k}$,

$$D = \binom{r(d_1 + \cdots + d_k) + k}{k}$$

is large even for moderate d_i, r and k.

Sparsity to the rescue: The polynomials that we are interested in are always sparse (eg. for $k = 3$, only terms of the form xyz or $x^2y^2z^2$ or $uvwxyz$ appear). This can be exploited.
Newton polytope of a polynomial f is the convex hull of the powers of the monomials in f.

Example. The Newton polytope of the polynomial $f(x, y) = 3.67x^4y^{10} - 2.03x^3y^3 + 5.74x^3 - 20.1y^2 - 7.23$ is the convex hull of the points $(4, 10), (3, 3), (3, 0), (2, 0), (0, 0)$ in \mathbb{R}^2.

Example. The Newton polytope of the polynomial $f(x, y, z) = 1.7x^4y^6z^2 + 7.4x^3z^5 - 3.0y^4 + 0.1yz^2$ is the convex hull of the points $(4, 6, 2), (3, 0, 5), (0, 4, 0), (0, 1, 2)$ in \mathbb{R}^3.

Theorem (Reznick). If $f(x) = \sum_{i=1}^{m} p_i(x)^2$, then the powers of the monomials in p_i must lie in $\frac{1}{2}\text{Newton}(f)$.
The Newton polytope for a polynomial of the form

\[f(x_{11}, \ldots, z_{nr}) = -\lambda + \sum_{i,j,k=1}^{l,m,n} \left(a_{ijk} - \sum_{\alpha=1}^{r} x_{i\alpha}y_{j\alpha}z_{k\alpha} \right)^2 \]

is spanned by 1 and monomials of the form \(x_{i\alpha}^2 y_{j\alpha}^2 z_{k\alpha}^2 \) (ie. monomials of the form \(x_{i\alpha}y_{j\alpha}z_{k\alpha} \) and \(x_{i\alpha}y_{j\alpha}z_{k\alpha}x_{i\beta}y_{j\beta}z_{k\beta} \) may all be dropped).

So if \(f(x_{11}, \ldots, z_{nr}) = \sum_{j=1}^{N} p_j(x_{11}, \ldots, z_{nr})^2 \), then only 1 and monomials of the form \(x_{i\alpha}y_{j\alpha}z_{k\alpha} \) may occur in \(p_1, \ldots, p_N \).

In other words, we have reduced the size of the problem from \((r(l+m+n)+3) \) to \(rlmn + 1 \).
Global convergence issues

If polynomials of the form

\[-\lambda + \sum_{i,j,k=1}^{l,m,n} \left(a_{ijk} - \sum_{\alpha=1}^{r} x_{i\alpha} y_{j\alpha} z_{k\alpha} \right)^2 \]

can always be written as a sum of polynomials (we don’t know), then the SDP algorithm for optimal low-rank tensor approximation will always converge globally.

Numerical experiments performed by Parrilo on general polynomials yield \(\lambda^* = \min F \) in all cases.
Well known to practitioners in multiway data analysis, the problem \(\text{argmin}_{\text{rank} \otimes (B) \leq r} \| A - B \|_F \) may not have an optimal solution when \(r \geq 2, k \geq 3 \). In fact

Theorem (L. and Golub, 2004). For tensors of any order \(k \geq 3 \) and with respect to any choice of norm on \(\mathbb{R}^{d_1 \times \cdots \times d_k} \), there exists an instance \(A \in \mathbb{R}^{d_1 \times \cdots \times d_k} \) such that \(A \) fails to have an optimal rank-\(r \) approximation for some \(r \geq 2 \). On the other hand, an optimal solution always exist for \(k = 2 \) and \(r = 1 \).

In the next slide, we give an explicit example.
Example

\(x, y\) two linearly independent vectors in \(\mathbb{R}^2\). Consider the order-3 tensor in \(\mathbb{R}^{2 \times 2 \times 2}\),

\[
A := x \otimes x \otimes x + x \otimes y \otimes y + y \otimes x \otimes y.
\]

\(A\) has rank 3: straightforward.

\(A\) has no optimal rank-2 approximation: consider sequence \(\{B_n\}_{n=1}^{\infty}\) in \(\mathbb{R}^{2 \times 2 \times 2}\),

\[
B_n := x \otimes x \otimes (x - ny) + \left(x + \frac{1}{n} y\right) \otimes \left(x + \frac{1}{n} y\right) \otimes ny,
\]

Clear that rank\(\otimes(B_n) \leq 2\) for all \(n\). By multilinearity of \(\otimes\),

\[
B_n = x \otimes x \otimes x - nx \otimes x \otimes y + nx \otimes x \otimes y
\]

\[
+ x \otimes y \otimes y + y \otimes x \otimes y + \frac{1}{n} y \otimes y \otimes y = A + \frac{1}{n} y \otimes y \otimes y.
\]

For any choice of norm on \(\mathbb{R}^{2 \times 2 \times 2}\),

\[
\|A - B_n\| = \frac{1}{n} \|y \otimes y \otimes y\| \to 0 \quad \text{as} \; n \to \infty.
\]
Quick but flawed fix

Current way to force a solution: perturb the problem by small \(\varepsilon > 0 \) and find approximate solution \(x_i^*(\varepsilon), y_i^*(\varepsilon) \in \mathbb{R}^{d_i} \) \((i = 1, 2, 3) \) with

\[
\| A - x_1^*(\varepsilon) \otimes y_1^*(\varepsilon) \otimes z_1^*(\varepsilon) - x_2^*(\varepsilon) \otimes y_2^*(\varepsilon) \otimes z_2^*(\varepsilon) \| \\
= \varepsilon + \inf_{x_i,y_i \in \mathbb{R}^{d_i}} \| A - x_1 \otimes y_1 \otimes z_1 - x_2 \otimes y_2 \otimes z_2 \|.
\]

Serious numerical problems due to ill-conditioning (a phenomenon often referred to as degeneracy or swamp in Chemometrics and Psychometrics).

Reason? Rule of thumb in Computational Math:

A well-posed problem near to an ill-posed one is ill-conditioned.

So, even if we may perturb an ill-posed problem slightly to get a well-posed one, the perturbed problem will more often than not be ill-conditioned.
Weak solutions to PARAFAC

Theorem (de Silva and L., 2004). Let \(l, m, n \geq 2 \). Let \(A \in \mathbb{R}^{l \times m \times n} \) with \(\text{rank}_\otimes(A) = 3 \). \(A \) is the limit of a sequence \(B_n \in \mathbb{R}^{l \times m \times n} \) with \(\text{rank}_\otimes(B_n) \leq 2 \) if and only if

\[
A = x_1 \otimes y_1 \otimes z_1 + x_2 \otimes y_1 \otimes z_2 + x_2 \otimes y_2 \otimes z_1
\]

where \(\{x_1, x_2\} \), \(\{y_1, y_2\} \), \(\{z_1, z_2\} \) are linearly independent sets in \(\mathbb{R}^l \), \(\mathbb{R}^m \), and \(\mathbb{R}^n \) respectively.

With this, we can overcome the ill-posedness of \(\text{argmin}_{\text{rank}_\otimes(B) \leq r} \|A - B\|_F \) by replacing \(\text{rank}_\otimes \) with \(\text{closedrank}_\otimes \), defined by

\[
\{A \mid \text{closedrank}_\otimes(A) \leq r\} = \{A \mid \text{rank}_\otimes(A) \leq r\}.
\]

For order-3 tensor, it follows from the theorem that

\[
\{A \in \mathbb{R}^{l \times m \times n} \mid \text{closedrank}_\otimes(A) \leq 2\} = \\
\{x_1 \otimes y_1 \otimes z_1 + x_2 \otimes y_1 \otimes z_2 + x_2 \otimes y_2 \otimes z_1 \mid x_i \in \mathbb{R}^l, y_i \in \mathbb{R}^m, z_i \in \mathbb{R}^n\} \\
\cup \{x_1 \otimes y_1 \otimes z_1 + x_2 \otimes y_2 \otimes z_2 \mid x_i \in \mathbb{R}^l, y_i \in \mathbb{R}^m, z_i \in \mathbb{R}^n\}
\]
Ill-posedness of PARAFAC: uniqueness

Note that in PARAFAC:

$$\text{argmin} \| A - \sum_{\alpha=1}^{r} x_\alpha \otimes y_\alpha \otimes z_\alpha \|_F,$$

we are really interested in minimizer $X^* = [x^*_1, \ldots, x^*_r] \in \mathbb{R}^{l \times r}$, $Y^* = [y^*_1, \ldots, y^*_r] \in \mathbb{R}^{m \times r}$, $Z^* = [z^*_1, \ldots, z^*_r] \in \mathbb{R}^{n \times r}$ rather than the minimum value.

If X^*, Y^*, Z^* is a minimizer, then so is X^*D_1, Y^*D_2, Z^*D_3 for any diagonal $D_1, D_2, D_3 \in \mathbb{R}^{r \times r}$ with $D_1D_2D_3 = I$.

In fact, the SDP method will not work if there is an infinite number of possible minimizers.

Right now, we impose constraints (eg. requiring $\|y_\alpha\| = \|z_\alpha\| = 1$) to get uniqueness up to signs but every additional constraint increases the complexity of the problem.