The role of tensor rank in the complexity analysis of bilinear forms

Dario A. Bini

Dipartimento di Matematica, Università di Pisa
www.dm.unipi.it/~bini

ICIAM07, Zürich, 16-20 July 2007
1 Preliminaries
 • Tensors
 • Tensor rank
 • Bilinear forms

2 Properties of tensor rank
 • Border rank
 • Lower bounds

3 Open problems
 • The direct sum conjecture
 • Some tensors of unknown rank
Let \mathbb{F} be a number field, say, \mathbb{R}, \mathbb{C}; tensors of the kind

$$\mathcal{A} = (a_{i_1,i_2,...,i_h}) \in \mathbb{F}^{n_1 \times n_2 \times \cdots \times n_h},$$

that is, h-way arrays, are encountered in many problems of very different nature [Comon 2001], [Comon, Golub, Lim, Mourrain, 2006], [De Silva, Lim 2006]

- Blind source separation
- High order factor analysis
- Independent component analysis
- Candecomp/Parafac model
- Complexity analysis
- Psycometric, Chemometric, Economy,...
It is surprising that little interplay occurred among these different research areas
Some properties have been rediscovered in different contexts
Apparently, results obtained in one field have not migrated to the other fields
It is surprising that little interplay occurred among these different research areas

Some properties have been rediscovered in different contexts

Apparently, results obtained in one field have not migrated to the other fields

In this talk I wish to provide an overview of the main results concerning tensors obtained in the research field of computational complexity (starting from 1969) with the aim of

- creating a synergic exchange of information between these research areas
- presenting problems which might be solved with the more recent tools
- presenting old results that might be adapted and extended to the new needs
Tensor rank

Definition (Hitchcock 1927)

A tensor \(\mathcal{T} = (t_{i_1}, \ldots, i_h) \) has rank 1 if there exist vectors \(u^{(k)} = (u_i^{(k)}) \in \mathbb{F}^{n_k} \), \(k = 1 : h \) such that \(t_{i_1}, \ldots, i_h = u_{i_1}^{(1)} u_{i_2}^{(2)} \cdots u_{i_h}^{(h)} \),

\[\mathcal{T} = u^{(1)} \circ u^{(2)} \circ \cdots \circ u^{(h)} \]

Definition (Hitchcock 1927)

The tensor rank \(\text{rk}(\mathcal{A}) \) of \(\mathcal{A} = (a_{i_1}, \ldots, i_h) \) is the minimum number \(r \) of rank-1 tensors \(\mathcal{T}_i \in \mathbb{F}^{n_1 \times \cdots \times n_h} \) such that

\[\mathcal{A} = \mathcal{T}_1 + \mathcal{T}_2 + \cdots + \mathcal{T}_r \quad \text{canonical decomposition} \]
Some remarks

For $\mathcal{A} \in \mathbb{F}^{m\times n\times p}$ a canonical decomposition

$$\mathcal{A} = u^{(1)} \circ v^{(1)} \circ w^{(1)} + u^{(2)} \circ v^{(2)} \circ w^{(2)} + \cdots + u^{(r)} \circ v^{(r)} \circ w^{(r)}$$

is defined by three matrices

$$U = (u_{i,j}) \in \mathbb{F}^{m \times r}, \quad V = (v_{i,j}) \in \mathbb{F}^{n \times r}, \quad W = (w_{i,j}) \in \mathbb{F}^{p \times r},$$

whose columns are the vectors $u^{(i)}$, $v^{(i)}$, $w^{(i)}$, $i = 1 : r$, respectively.
Some remarks

A tensor $\mathcal{A} = (a_{i,j,k}) \in \mathbb{F}^{m \times n \times p}$, can be represented by means of the set of the 3-slabs $A_k = (a_{i,j,k})_{i,j} \in \mathbb{F}^{m \times n}$ of \mathcal{A} or by a single matrix of variables

$$A = \sum_{k=1}^{p} s_k A_k$$

$$\mathcal{A} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}; \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad \leftrightarrow \quad \begin{bmatrix} s_1 & s_2 \\ s_2 & -s_1 \end{bmatrix}$$
Some remarks

A tensor $\mathcal{A} = (a_{i,j,k}) \in \mathbb{F}^{m \times n \times p}$, can be represented by means of the set of the 3-slabs $A_k = (a_{i,j,k})_{i,j} \in \mathbb{F}^{m \times n}$ of \mathcal{A} or by a single matrix of variables

$$A = \sum_{k=1}^{p} s_k A_k$$

$$\mathcal{A} = \left[\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}; \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \right] \leftrightarrow \begin{bmatrix} s_1 & s_2 \\ s_2 & -s_1 \end{bmatrix}$$

This suggests a different point of view for tensor rank:

$\text{rk}(\mathcal{A})$ is the minimum set of rank one matrices which span the linear space generated by the 3-slabs A_1, \ldots, A_p [Gastinel 71, Fiduccia 72].
Problem: Given matrices $A_k = (a_{i,j,k})_{i=1:m, j=1:n, k=1:p}$ compute the set of bilinear forms

$$f_k(x, y) = x^T A_k y, \quad k = 1:p$$

with the **minimum number** of nonscalar multiplications with no use of commutativity (noncommutative bilinear complexity)

A nonscalar multiplication is a multiplication of the kind

$$s = \left(\sum_{i=1}^{m} \alpha_i x_i\right)\left(\sum_{j=1}^{n} \beta_j y_j\right), \quad \alpha_i, \beta_j \in \mathbb{F}$$

Remark: The set of bilinear forms is uniquely determined by the tensor $A = (a_{i,j,k})$.

Dario A. Bini
The role of tensor rank
Bilinear forms

A canonical decomposition of the tensor \mathcal{A} associated with the set of bilinear forms provides an algorithm of complexity r. In fact

$$\mathcal{A} = \sum_{\ell=1}^{r} u^{(\ell)} \circ v^{(\ell)} \circ w^{(\ell)} \quad \rightarrow \quad A_k = \sum_{\ell=1}^{r} w_{k,\ell} u^{(\ell)} \circ v^{(\ell)}$$

$$\rightarrow \quad x^T A_k y = \sum_{\ell=1}^{r} w_{k,\ell} (x^T u^{(\ell)}) (v^{(\ell)^T} y)$$

Theorem (Strassen 1975)

The noncommutative bilinear complexity of a set of bilinear forms $f_k(x, y) = x^T A_k y$, $k = 1 : p$, $A_k = (a_{i,j,k})$, is given by the tensor rank of the associated tensor $\mathcal{A} = (a_{i,j,k})$.

Dario A. Bini

The role of tensor rank
An example

Multiplication of complex numbers

\[(x_1 + ix_2)(y_1 + iy_2) = (x_1y_1 - x_2y_2) + i(x_1y_2 + x_2y_1) = f_1 + if_2\]

Apparently, 4 multiplications are needed
An example

Multiplication of complex numbers

\[(x_1 + ix_2)(y_1 + iy_2) = (x_1y_1 - x_2y_2) + i(x_1y_2 + x_2y_1) = f_1 + if_2\]

Apparently, 4 multiplications are needed

Tensor:\n\[\mathcal{A} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}; \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}\]
An example

Multiplication of complex numbers

\[(x_1 + ix_2)(y_1 + iy_2) = (x_1y_1 - x_2y_2) + i(x_1y_2 + x_2y_1) = f_1 + if_2\]

Apparently, 4 multiplications are needed

Tensor: \[A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}; \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}\]

The tensor rank is at most 3:

\[\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} - \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}\]

\[\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} - \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} - \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}\]

Algorithm:

\[s_1 = (x_1 + x_2)(y_1 + y_2),\]
\[s_2 = x_1y_1,\]
\[s_3 = x_2y_2\]
\[f_1 = s_2 - s_3,\]
\[f_2 = s_1 - s_2 - s_3\]
Main problem: For a given tensor, compute its rank and a canonical decomposition.

Two ways of attacking the problem
- looking for lower bounds to the tensor rank
- looking for upper bounds to the tensor rank

Things get more complicated: unlike the case of $m \times n$ matrices
- The rank depends on the ground field \mathbb{F}
- High rank tensors can be approximated by low rank tensors

Rational algorithms for tensor rank, like Gaussian elimination, cannot exist.
Topological properties of tensors: Border Rank

For $m \times n$ matrices, any sequence $\{A_k\}$ of $m \times n$ matrices of rank r with limit $A = \lim_k A_k$ is such that $\text{rank}(A) \leq r$.

Example (Bini, Capovani, Lotti, Romani 1980)

The tensor $A = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}$; $\begin{bmatrix} 1 & 0 & \epsilon & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}$ has rank 3. The tensor $A \epsilon = \begin{bmatrix} 1 & 0 & \epsilon & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}$ has rank 2 for any $\epsilon \neq 0$.

Dario A. Bini

The role of tensor rank
For $m \times n$ matrices, any sequence $\{A_k\}$ of $m \times n$ matrices of rank r with limit $A = \lim_k A_k$ is such that $\text{rank}(A) \leq r$.

For higher order tensors this property does not hold anymore.

Example (Bini, Capovani, Lotti, Romani 1980)

The tensor

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} ; \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

has rank 3. The tensor

$$A_\epsilon = \begin{bmatrix} 1 & 0 \\ \epsilon & 1 \end{bmatrix} ; \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

has rank 2 for any $\epsilon \neq 0$.
Canonical decomposition

\[
\begin{bmatrix}
1 & 0 \\
\epsilon & 1
\end{bmatrix}
= \begin{bmatrix}
1 & \epsilon^{-1} \\
\epsilon & 1
\end{bmatrix}
- \epsilon^{-1} \begin{bmatrix}
0 & 1 \\
0 & 0
\end{bmatrix}
\]

\[
\begin{bmatrix}
0 & 1 \\
0 & 0
\end{bmatrix}
= \begin{bmatrix}
0 & 1 \\
0 & 0
\end{bmatrix}
\]
Definition (Bini, Capovani, Lotti, Romani 1980)

The border rank of $A \in \mathbb{F}^{m \times n \times p}$ ($\mathbb{F} = \mathbb{R}, \mathbb{C}$) is

$$\text{brk}(A) = \min\{ r : \forall \epsilon > 0 \exists E \in \mathbb{F}^{m \times n \times p} : ||E|| < \epsilon, \text{rk}(A+E) = r \}$$

where $|| \cdot ||$ is any norm

Some properties:

- $\text{brk}(A) \leq \text{rk}(A)$
- $\text{brk}(A)$ is the minimum number of nonscalar multiplications sufficient to approximate the set of bilinear forms associated with A with arbitrarily small nonzero error
More on rank and border rank

Let $\mathcal{A}_\epsilon = \mathcal{A} + \mathcal{E}_\epsilon$ be such that

- $\text{rk}(\mathcal{A}_\epsilon) = \text{brk}(\mathcal{A})$
- the entries of \mathcal{E}_ϵ are polynomials of degree d

Then

$$\text{rk}(\mathcal{A}) \leq (d + 1)\text{brk}(\mathcal{A})$$
Let $A_\epsilon = A + E_\epsilon$ be such that

- $\text{rk}(A_\epsilon) = \text{brk}(A)$
- the entries of E_ϵ are polynomials of degree d

Then

$$\text{rk}(A) \leq (d + 1)\text{brk}(A)$$

Proof:

- Write $d + 1$ copies of the canonical decomposition of length $\text{rk}(A_\epsilon)$ obtained with $(d + 1)$ pairwise different values of ϵ
More on rank and border rank

Let $A_\epsilon = A + E_\epsilon$ be such that

- $\text{rk}(A_\epsilon) = \text{brk}(A)$
- the entries of E_ϵ are polynomials of degree d

Then

$$\text{rk}(A) \leq (d + 1)\text{brk}(A)$$

Proof:

- Write $d + 1$ copies of the canonical decomposition of length $\text{rk}(A_\epsilon)$ obtained with $(d + 1)$ pairwise different values of ϵ
- Take linear combinations of these decompositions with coefficients γ_j, $j = 1 : d + 1$ in order to kill the terms in ϵ^i, $i = 1 : d$ and to have $\sum \gamma_j = 1$
More on rank and border rank

Let $A_\epsilon = A + E_\epsilon$ be such that
- $\text{rk}(A_\epsilon) = \text{brk}(A)$
- the entries of E_ϵ are polynomials of degree d

Then

$$\text{rk}(A) \leq (d + 1) \text{brk}(A)$$

Proof:
- Write $d + 1$ copies of the canonical decomposition of length $\text{rk}(A_\epsilon)$ obtained with $(d + 1)$ pairwise different values of ϵ
- Take linear combinations of these decompositions with coefficients γ_j, $j = 1 : d + 1$ in order to kill the terms in ϵ^i, $i = 1 : d$ and to have $\sum \gamma_j = 1$
- Obtain a decomposition of length $(d + 1) \text{brk}(A)$ with no error
Simple criteria for providing lower bounds on tensor rank and border rank can be given.

Trivial bounds

\[\text{brk}(\mathcal{A}) \geq \dim(\text{span}(A_1, \ldots, A_p)) \]

Similar inequalities are valid w.r.t. the other coordinates.

Assume for simplicity \(p = \dim(\text{span}(A_1, \ldots, A_p)) \).
Let U, V, W be the matrices defining a canonical factorization of A of length $\text{rk}(A)$

$$A = \sum_{\ell=1}^{\text{rk}(A)} u^{(\ell)} \circ v^{(\ell)} \circ w^{(\ell)}$$
Lower bounds and linear algebra

Let U, V, W be the matrices defining a canonical factorization of A of length $\text{rk}(A)$

$$A = \sum_{\ell=1}^{\text{rk}(A)} u^{(\ell)} \circ v^{(\ell)} \circ w^{(\ell)}$$

Assume w.l.o.g. that the first p columns of W are linearly independent, that is

$$W = \begin{bmatrix} W_1 & W_2 \end{bmatrix}, \quad W_1 \in \mathbb{F}^{p \times p}, \quad \det W_1 \neq 0$$
Lower bounds and linear algebra

Let U, V, W be the matrices defining a canonical factorization of A of length $\text{rk}(A)$

$$A = \sum_{\ell=1}^{\text{rk}(A)} u^{(\ell)} \circ v^{(\ell)} \circ w^{(\ell)}$$

Assume w.l.o.g. that the first p columns of W are linearly independent, that is

$$W = \begin{bmatrix} W_1 & W_2 \end{bmatrix}, \quad W_1 \in \mathbb{F}^{p \times p}, \quad \det W_1 \neq 0$$

Let $A'_k = \sum_{j=1}^{p} w_{k,j}^{(-1)} A_j$, define

$$A' = [A'_1, A'_2, \ldots, A'_p] = A \cdot_3 W_1^{-1},$$

i.e., choose a different basis to represent the space spanned by the slabs A_1, \ldots, A_p
Evidently, \mathcal{A}' has the same rank of \mathcal{A} and a canonical decomposition is given by $U' = U, V' = V, W' = W_1^{-1}W$, where

$$W' = \begin{bmatrix} I & W_1^{-1}W_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & * & * & * \\ 0 & 1 & 0 & 0 & * & * & * \\ 0 & 0 & 1 & 0 & * & * & * \\ 0 & 0 & 0 & 1 & * & * & * \end{bmatrix}$$

Remark

Any subtensor $\hat{\mathcal{A}}$ formed by k 3-slabs $[A'_{\sigma_1}, \ldots, A'_{\sigma_k}]$ is such that

$$\text{rk}(\hat{\mathcal{A}}) \leq \text{rk}(\mathcal{A}) - (p - k)$$
More generally,

Theorem

\[\text{rk}(A) \geq \max_{T} \min_{S} (p - k + \text{rk}(A \bullet_3 TS)) \]

\(T: k \times p \) submatrix of \(I_p\), \hspace{1em} \(S: p \times p \) nonsingular
More generally,

Theorem

\[rk(A) \geq \max_T \min_S (p - k + rk(A \cdot_3 TS)) \]

\(T: k \times p \) submatrix of \(I_p \), \(S: p \times p \) nonsingular

Corollary

If for any basis of \(\text{span}(A_1, \ldots, A_p) \) there exists a matrix of rank \(q \) then

\[rk(A) \geq p + q - 1 \]
Higher order generalization:

Corollary

Let $\mathcal{A} = [\mathcal{A}_1, \ldots, \mathcal{A}_{n_h}] \in \mathbb{F}^{n_1 \times \cdots \times n_h}$, $\mathcal{A}_k \in \mathbb{F}^{n_1 \times \cdots \times n_{h-1}}$ be such that $n_h = \dim(\text{span}(\mathcal{A}_1, \ldots, \mathcal{A}_{n_h}))$. If for any basis of $\text{span}(\mathcal{A}_1, \ldots, \mathcal{A}_{n_h})$ there exists a tensor in the basis of rank q then

$$\text{rk}(\mathcal{A}) \geq n_h + q - 1$$
Higher order generalization:

Corollary

Let $\mathcal{A} = [A_1, \ldots, A_{n_h}] \in \mathbb{F}^{n_1 \times \cdots \times n_h}$, $A_k \in \mathbb{F}^{n_1 \times \cdots \times n_{h-1}}$ be such that $n_h = \dim(\text{span}(A_1, \ldots, A_{n_h}))$. If for any basis of $\text{span}(A_1, \ldots, A_{n_h})$ there exists a tensor in the basis of rank q then

$$\text{rk}(\mathcal{A}) \geq n_h + q - 1$$

Example: For

$$\mathcal{A} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}; \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

any basis must contain a nonsingular matrix, therefore

$$\text{rk}(\mathcal{A}) \geq 2 + 2 - 1 = 3$$
Lower bounds to border rank

Unfortunately the same technique cannot be applied to border rank W_1 may be singular in the limit as $\epsilon \to 0$ so that $E \bullet_3 W_1^{-1}$ may not be infinitesimal anymore.

Remedy: compute the QR factorization of W and multiply W by Q^T which has Euclidean norm 1 for any ϵ. One has

$$W' = Q^T W = \begin{bmatrix}
* & * & * & * & * & * & * \\
0 & * & * & * & * & * & * \\
0 & 0 & * & * & * & * & * \\
0 & 0 & 0 & * & * & * & * \\
0 & 0 & 0 & 0 & * & * & * \\
\end{bmatrix}$$

Remark

There exists an $m \times n \times k$ subtensor \hat{A} such that

$$\text{brk}(\hat{A}) \leq \text{brk}(A) - (p - k)$$
Theorem

\[\text{brk}(A) \geq \min_T \min_S \left(p - k + \text{brk}(A \bullet_3 TS) \right) \]

\(T: k \times p \) submatrix of \(l_p \), \(S: p \times p \) nonsingular
Theorem

\[\text{brk}(\mathcal{A}) \geq \min_T \min_S (p - k + \text{brk}(\mathcal{A} \bullet_T T S)) \]

\(T: k \times p \) submatrix of \(I_p \), \(S: p \times p \) nonsingular

Corollary

If any basis of the linear space spanned by \(A_1, \ldots, A_p \) is made up by matrices of rank at most \(q \) then \(\text{brk}(\mathcal{A}) \geq p + q - 1 \)
Theorem

\[
\text{brk}(\mathcal{A}) \geq \min_T \min_S (p - k + \text{brk}(\mathcal{A} \bullet_3 TS))
\]

\(T: k \times p\) submatrix of \(I_p\), \(S: p \times p\) nonsingular

Corollary

If any basis of the linear space spanned by \(A_1, \ldots, A_p\) is made up by matrices of rank at most \(q\) then \(\text{brk}(\mathcal{A}) \geq p + q - 1\)

Corollary (Generalization to higher dimension)

Let \(\mathcal{A} = [A_1, \ldots, A_{n_h}]\). If any basis of the linear space spanned by \(A_1, \ldots, A_{n_h}\) is made up by tensors of rank at most \(q\) then \(\text{brk}(\mathcal{A}) \geq n_h + q - 1\)
Example

The tensor $\mathcal{A} \in \mathbb{R}^{n^2 \times n^2 \times n^2}$ whose 3-slabs span the linear space

$$I \otimes S = \begin{bmatrix} S \\ \vdots \\ S \end{bmatrix}$$

is associated with $n \times n$ matrix multiplication.

$S = \begin{bmatrix} s_{1,1} & \ldots & s_{1,n} \\
\vdots & \ddots & \vdots \\
s_{n,1} & \ldots & s_{n,n} \end{bmatrix}$
The tensor $\mathcal{A} \in \mathbb{F}^{n^2 \times n^2 \times n^2}$ whose 3-slabs span the linear space

$$I \otimes S = \begin{bmatrix} S \\ \vdots \\ S \end{bmatrix}, \quad S = \begin{bmatrix} s_{1,1} & \cdots & s_{1,n} \\ \vdots & \ddots & \vdots \\ s_{n,1} & \cdots & s_{n,n} \end{bmatrix}$$

is associated with $n \times n$ matrix multiplication.

All the matrices in any basis of the linear space have rank at least n. Therefore

$$\text{brk}(\mathcal{A}) \geq n^2 + n - 1$$

The bound can be improved to

$$\text{brk}(\mathcal{A}) \geq n^2 + 2n - 2$$
Example

The tensor $\mathcal{A} \in \mathbb{R}^{4 \times 4 \times 3}$ whose 3-slabs span the linear space

\[
\begin{bmatrix}
s_1 & s_2 & 0 & 0 \\
s_3 & s_4 & 0 & 0 \\
0 & 0 & s_1 & s_2
\end{bmatrix}
\]

is associated with the multiplication of a 2×2 triangular matrix and a full 2×2 matrix.
Example

The tensor $\mathcal{A} \in \mathbb{R}^{4 \times 4 \times 3}$ whose 3-slabs span the linear space

$$
\begin{bmatrix}
 s_1 & s_2 & 0 & 0 \\
s_3 & s_4 & 0 & 0 \\
0 & 0 & s_1 & s_2
\end{bmatrix}
$$

is associated with the multiplication of a 2×2 triangular matrix and a full 2×2 matrix.

For any basis of the linear space there exist two matrices which form a tensor of rank at least 4.

$$\text{rk}(\mathcal{A}) \geq 4 - 2 + 4 = 6$$

Since there exists a canonical approximate decomposition of length 5 of \mathcal{A} then $\text{brk}(\mathcal{A}) \leq 5 < 6 = \text{rk}(\mathcal{A})$
The direct sum conjecture

Let $A \in \mathbb{F}^{m \times n \times p}$, $B \in \mathbb{F}^{m' \times n' \times p'}$. Consider the direct sum of A and B

$$C = A \oplus B \in \mathbb{F}^{(m+m') \times (n+n') \times (p+p')}$$

Direct sum conjecture, Strassen 1973

$$\text{rk}(C) = \text{rk}(A) + \text{rk}(B)$$

The complexity of two disjoint sets of bilinear forms is the sum of the complexities of each set.
The direct sum conjecture

Let $\mathcal{A} \in \mathbb{F}^{m \times n \times p}$, $\mathcal{B} \in \mathbb{F}^{m' \times n' \times p'}$. Consider the direct sum of \mathcal{A} and \mathcal{B}

$$\mathcal{C} = \mathcal{A} \oplus \mathcal{B} \in \mathbb{F}^{(m+m') \times (n+n') \times (p+p')}$$

Direct sum conjecture, Strassen 1973

$$\text{rk}(\mathcal{C}) = \text{rk}(\mathcal{A}) + \text{rk}(\mathcal{B})$$

The complexity of two disjoint sets of bilinear forms is the sum of the complexities of each set.

Fact

There are cases where $\text{brk}(\mathcal{C}) < \text{brk}(\mathcal{A}) + \text{brk}(\mathcal{B})$
Example (A. Schoenhage 81)

\[\text{brk}(\mathcal{A}) = 10 < 9 + 4 \]

\[\mathcal{A} = \begin{bmatrix}
 s_{11} & s_{12} & s_{13} \\
 s_{21} & s_{22} & s_{23} \\
 s_{21} & s_{22} & s_{23} \\
\end{bmatrix} \begin{bmatrix}
 t \\
 t \\
 t \\
\end{bmatrix} \]
Dario A. Bini
The role of tensor rank
Matrix multiplication and open problems

- **2 × 2 matrix product**:
 \[\mathcal{A} = l_2 \otimes \begin{bmatrix} s_{11} & s_{12} \\ s_{21} & s_{22} \end{bmatrix} = \begin{bmatrix} s_{11} & s_{12} \\ s_{21} & s_{22} \end{bmatrix} \]

 \[\text{rk}(\mathcal{A}) = \text{brk}(\mathcal{A}) = 7 \text{ [Strassen 69, Landsberg 05]} \]

- **3 × 3 matrix product** \(\mathcal{A} = l_3 \otimes \begin{bmatrix} s_{11} & s_{12} & s_{13} \\ s_{21} & s_{22} & s_{23} \\ s_{31} & s_{32} & s_{33} \end{bmatrix} \)

 \[19 \leq \text{rk}(\mathcal{A}) \leq 23 \text{ [Laderman 76], [Bläser 03]} \]

 \[13 \leq \text{brk}(\mathcal{A}) \leq 22 \text{ [Schönhage 81]} \]
Matrix multiplication and open problems

- 4×4 matrix product $\mathcal{A} = I_4 \otimes \begin{bmatrix} s_{11} & s_{12} & s_{13} & s_{14} \\ s_{21} & s_{22} & s_{23} & s_{24} \\ s_{31} & s_{32} & s_{33} & s_{34} \\ s_{41} & s_{42} & s_{43} & s_{44} \end{bmatrix}$

$34 \leq \text{rk}(\mathcal{A}) \leq 49$

$22 \leq \text{brk}(\mathcal{A}) \leq 49$