FINM 331: MULTIVARIATE DATA ANALYSIS
FALL 2021
PROBLEM SET 1

The required files for all problems can be found in the subfolder hw1 under ‘Files’ in Canvas or at
the following URL:
http://www.stat.uchicago.edu/~lekheng/courses/331/hw1/
The file name indicates which problem the file is for (p1*.txt for Problem 1, etc). You are welcomed
to use any programming language or software packages you like.

1. Verify our claim in the lecture that the condensed svd of a matrix $A \in \mathbb{R}^{n \times p}$ may be expressed
 as
 $$A = \sigma_1 u_1 v_1^T + \cdots + \sigma_r u_r v_r^T,$$
 where $r = \text{rank}(A)$, $u_1, \ldots, u_r \in \mathbb{R}^n$ and $v_1, \ldots, v_r \in \mathbb{R}^p$ are left and right singular vectors of
 A. Find a similar expression for the evd of a symmetric matrix $B \in \mathbb{R}^{p \times p}$.

2. Let $A, B \in \mathbb{R}^{p \times p}$ and O be the zero matrix. For each of the following statement, either give a
 proof or a counterexample:
 (a) If all eigenvalues of A are zero, then $A = O$.
 (b) If all singular values of A are zero, then $A = O$.
 (c) If $A = A^T$, then the evd and svd of A are identical.
 (d) If A and B are similar (i.e., $A = XBX^{-1}$ for some nonsingular X), then A and B have the
 same eigenvalues.
 (e) If A and B are similar, then A and B have the same singular values.

3. Let $y_1, \ldots, y_n \in \mathbb{R}^n$. Let $p \leq n$ and $G_p \in \mathbb{R}^{p \times p}$ be the matrix

 $$G_p = \begin{bmatrix}
 y_1^T y_1 & y_1^T y_2 & \cdots & y_1^T y_p \\
 y_2^T y_1 & y_2^T y_2 & \cdots & y_2^T y_p \\
 \vdots & \vdots & \ddots & \vdots \\
 y_p^T y_1 & y_p^T y_2 & \cdots & y_p^T y_p
 \end{bmatrix}.$$

 This is called a Gram matrix or more precisely the Gram matrix of y_1, \ldots, y_p.
 (a) Show that y_1, \ldots, y_p are linearly independent \iff $\text{rank}(G_p) = p$.
 (b) Show that y_1, \ldots, y_p are orthonormal \iff $G_p = I_p$.
 Here $I_p \in \mathbb{R}^{p \times p}$ is the $p \times p$ identity matrix.
 (c) Suppose $G_p = I_p$. Let $P_p \in \mathbb{R}^{n \times n}$ be the orthogonal projection matrix for the subspace
 $\text{span}\{y_1, \ldots, y_p\} \subseteq \mathbb{R}^n$.
 What is the relation between $G_p \in \mathbb{R}^{p \times p}$ and $P_p \in \mathbb{R}^{n \times n}$ in terms of the matrix
 $Q_p := [y_1, \ldots, y_p] \in \mathbb{R}^{n \times p}$?
 (d) Show that if $G_p = I_p$, then for any $y \in \mathbb{R}^n$,

 $$\sum_{i=1}^p (y^T y_i)^2 \leq \|y\|_2^2.$$

 Give an example to show that strict inequality can happen.

Date: October 11, 2021 (Version 1.0); due: October 24, 2021.
(e) Show that if $G_n = I_n$, then for any $y \in \mathbb{R}^n$,
\[
\sum_{i=1}^n (y^T y_i)^2 = \|y\|_2^2.
\]

(f) Show that if $G_n = I_n$, then for any $y \in \mathbb{R}^n$,
\[
\sum_{i=1}^n (y^T y_i)y_i = y.
\]

4. You should do this problem ‘by hand’, i.e., without relying on any computer program. Answers
must be justified with mathematical arguments — how you get from one step to the next; there will be no credit for just plugging the matrices into MATLAB or Mathematica or R and reproducing the answers.

(a) Find the singular value decomposition of the following matrices
\[
A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} \in \mathbb{R}^{3 \times 2}, \quad B = \begin{bmatrix} 5 & -1 \\ -1 & 5 \\ 2 & 2 \end{bmatrix} \in \mathbb{R}^{3 \times 2}.
\]

(b) Show that the left singular vectors of A and B give orthonormal bases for the subspaces
\[
W_A := \text{span}\left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \right\}, \quad W_B := \text{span}\left\{ \begin{bmatrix} 5 \\ -1 \\ 2 \end{bmatrix}, \begin{bmatrix} -1 \\ 5 \\ 2 \end{bmatrix} \right\}
\]
respectively.

(c) Find the formulas for projecting a vector
\[
x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \mathbb{R}^3
\]
on to the subspaces W_A and W_B.

(d) Find the orthogonal projection matrices $P_A, P_B \in \mathbb{R}^{3 \times 3}$ corresponding to the two projections above.

5. Let W be a k-dimensional subspace of \mathbb{R}^p. Suppose $a_1, \ldots, a_k \in \mathbb{R}^p$ form a basis for W. Find an orthogonal projection matrix for each of the following subspaces:

(a) $W_a = \text{span}\{[1, \ldots, 1]^T\}$. Discuss how this is related to the mean
\[
\bar{x} = \frac{1}{p} \sum_{i=1}^p x_i.
\]

(b) $W_b = \{[x_1, \ldots, x_p]^T \in \mathbb{R}^p : x_1 + \cdots + x_p = 0 \}$. Discuss how this is related to the deviations
\[
x_i - \bar{x}, \quad i = 1, \ldots, p.
\]

(c) $W_c = \text{span}\{w\}$ for a nonzero vector $w \in \mathbb{R}^p$.

(d) $W_d = W_1 \perp W_2$ where $W_1 \perp W_2$, i.e., $x^T y = 0$ for all $x \in W_1, y \in W_2$.

(e) $W_e = E_\lambda = \{x : Bx = \lambda x\}$, the λ-eigenspace of a symmetric matrix $B \in \mathbb{R}^{p \times p}$.

(f) $W_f = \text{span}\{[1, 1, 1, 1]^T, [1, 1, 0, 0]^T, [1, 1, 1, 0]^T\}$. Here $p = 4$.

6. Let W be a subspace of \mathbb{R}^p and $W^\perp := \{x \in \mathbb{R}^p : x^T y = 0 \text{ for all } y \in W\}$ be its orthogonal complement. Since $\mathbb{R}^p = W \oplus W^\perp$, we may define $P : \mathbb{R}^p \to \mathbb{R}^p$ by $Pv = w$ where $v = w + w'$ with $w \in W$ and $w' \in W^\perp$. We will see that this gives another way to define projection onto W.

(a) Show that P is an orthogonal projection matrix and $\text{im}(P) = W$.

(b) Show that such a P is uniquely determined by W.

(c) Show that for every \(\mathbf{v} \in \mathbb{R}^p \), \(\mathbf{v}^T \mathbf{P} \mathbf{v} \geq 0 \).

(d) Show that for every \(\mathbf{v} \in \mathbb{R}^p \), \(\| \mathbf{P} \mathbf{v} \|_2 \leq \| \mathbf{v} \|_2 \).

(e) Show that \(\mathbf{I} - \mathbf{P} \) is the orthogonal projection onto \(\mathbb{W}^\perp \).

(f) Show that for every \(\mathbf{v} \in \mathbb{R}^p \),
\[
\| \mathbf{v} \|_2^2 = \| \mathbf{P} \mathbf{v} \|_2^2 + \| (\mathbf{I} - \mathbf{P}) \mathbf{v} \|_2^2.
\]

(g) Show that \(\mathbf{P} \) is similar to a diagonal matrix of the form \(\text{diag}(1, \ldots, 1, 0, \ldots, 0) \) where the number of 1’s equals \(\dim \mathbb{W} \).

7. Let \(\mathbf{x}_1, \ldots, \mathbf{x}_n \in \mathbb{R}^p \), \(n \geq p \), and set
\[
\mathbf{X} := \begin{bmatrix}
\mathbf{x}_1^T \\
\mathbf{x}_2^T \\
\vdots \\
\mathbf{x}_n^T
\end{bmatrix} = \begin{bmatrix}
x_{11} & x_{12} & \cdots & x_{1p} \\
x_{21} & x_{22} & \cdots & x_{2p} \\
\vdots & \vdots & \ddots & \vdots \\
x_{n1} & x_{n2} & \cdots & x_{np}
\end{bmatrix} = [\mathbf{y}_1, \mathbf{y}_2, \ldots, \mathbf{y}_p] \in \mathbb{R}^{n \times p},
\]
i.e., the row vectors of \(\mathbf{X} \) are \(\mathbf{x}_1, \ldots, \mathbf{x}_n \in \mathbb{R}^p \) and the column vectors of \(\mathbf{X} \) are \(\mathbf{y}_1, \ldots, \mathbf{y}_p \in \mathbb{R}^n \). We will assume throughout this problem that
\[
\mathbf{X}^T \mathbf{1} = \mathbf{0}.
\]

(a) What is the relation between the sample covariance matrix \(\mathbf{S} \) and the Gram matrix \(\mathbf{G}_p \) as defined in Problem 3?

(b) Let the EVP of \(\mathbf{S} \) be
\[
\mathbf{S} = \mathbf{V} \Lambda \mathbf{V}^T,
\]
where \(\mathbf{V}^T \mathbf{V} = \mathbf{I} \) and \(\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_p) \) with \(\lambda_1 \geq \cdots \geq \lambda_p \). Let \(\mathbf{G}_p \) be the Gram matrix of \(\mathbf{y}_1, \ldots, \mathbf{y}_p \) as in Problem 3. Show that the eigenvectors of \(\mathbf{S} \), the eigenvectors of \(\mathbf{G}_p \), and the right singular vectors of \(\mathbf{X} \) are all the same. How are the eigenvalues of \(\mathbf{S} \), the eigenvalues of \(\mathbf{G}_p \), and the singular values of \(\mathbf{X} \) related?

(c) Write down an expression for \(\mathbf{P}_W \in \mathbb{R}^{p \times p} \), the orthogonal projection onto the 2-dimensional subspace
\[
W := \text{span}\{\mathbf{v}_j, \mathbf{v}_k\} \subseteq \mathbb{R}^p.
\]
Simplify your expression as much as possible.

(d) Show that to plot the projections of \(\mathbf{x}_1, \ldots, \mathbf{x}_n \in \mathbb{R}^p \) onto \(\mathbb{W} \cong \mathbb{R}^2 \), we may simply plot the \(n \) points
\[
\{ (\mathbf{u}_{ij}, \mathbf{u}_{ik}) \in \mathbb{R}^2 : i = 1, \ldots, n \}
\]
where \(\mathbf{U} = [\mathbf{u}_{ij}] \in \mathbb{R}^{n \times n} \) and \(\Sigma = \text{diag}(\sigma_1, \ldots, \sigma_p) \in \mathbb{R}^{n \times p} \) are the matrix of left singular vectors and matrix of singular values respectively.

(e) Explain what we meant by \(\mathbb{W} \cong \mathbb{R}^2 \) and why the plot in (d) may be interpreted as on a graph whose \(x \)-axis is \(\mathbf{v}_j \) and \(y \)-axis is \(\mathbf{v}_k \).

8. The file p8.txt contains an image with 359 pixels by 371 pixels of gray-scale values 1, 2, \ldots, 64 stored in the form of comma separated values (csv). Read the file and store its values as a matrix \(\mathbf{X} \in \mathbb{R}^{359 \times 371} \).

(a) Compute the singular value decomposition of \(\mathbf{X} \) and plot its singular value profile on a semilog scale, i.e., plot the graph
\[
\{ (i, \log \sigma_i) \in \mathbb{R}^2 : i = 1, \ldots, 359 \}.
\]
Why did we use the log scale on the vertical axis? What if we had instead plotted
\[
\{ (i, \sigma_i) \in \mathbb{R}^2 : i = 1, \ldots, 359 \}?
\]
(b) Find \(X_r \in \mathbb{R}^{359 \times 371} \), the best rank-\(r \) approximation of \(X \), for \(r = 1, 20, 50, 100 \). Your solution should show \(X_1, X_{20}, X_{50}, X_{100} \) in the form of images (do not submit them as matrices of numerical values) alongside with the image of \(X \). Comment on the quality of \(X_1, X_{20}, X_{50}, X_{100} \) relative to the original \(X \).

9. The files \texttt{p9X.csv} and \texttt{p9Y.csv} contain entries of two matrices, \(X, Y \in \mathbb{R}^{1000 \times 2} \) respectively. Each row of them represents a point in \(\mathbb{R}^2 \).

(a) Visualize \(X \) and \(Y \) in a single plot with different colors for points in \(X \) and \(Y \).

(b) Write a program that does orthogonal Procrustes analysis, i.e., given two matrices \(X, Y \in \mathbb{R}^{n \times p} \), your program should compute the orthogonal matrix \(Q \in \mathbb{R}^{p \times p} \) that solves

\[
\min_{Q^TQ=I} \|X - YQ\|_F.
\]

You are free to use any programming language as well as packages/functions to compute \texttt{svd}. Test your code on the \(4 \times 2 \) example in the lecture notes.

(c) Use the function you wrote to perform orthogonal Procrustes on \(X \) and \(Y \). That is we would like to rotate \(Y \) to be as close to \(X \) as possible. Visualize your \(X \) and \(YQ \) in a single plot with different colors as in (a).

(d) In your plot for (c), do the two matrices look similar? If so, report your error \(\|X - YQ\|_F \). If not, how can you improve your algorithm? What is the corresponding distance between the transformed \(Y \) and \(X \) in your improved algorithm?