For this problem set, you should do all problems ‘by hand’, i.e., without relying on any computer program. You should justify your answers with mathematical arguments — how you get from one step to the next; there will be no credit for just writing down an answer (e.g. if you are asked to find the EVD or SVD of a matrix, just plugging it into MATLAB or Mathematica or R and reproducing the answer on paper earns you precisely zero marks).

1. Verify our claim in the lecture that the condensed SVD of a matrix $A \in \mathbb{R}^{m \times n}$ may be expressed as

$$A = \sigma_1 u_1 v_1^T + \cdots + \sigma_r u_r v_r^T$$

where $r = \text{rank}(A)$, $u_1, \ldots, u_r \in \mathbb{R}^m$ and $v_1, \ldots, v_r \in \mathbb{R}^n$ are left and right singular vectors of A. Find a similar expression for the EVD of a symmetric matrix $B \in \mathbb{R}^{n \times n}$.

2. Find the singular value decomposition and the Moore–Penrose inverse of the following matrices

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 5 & -1 \\ -1 & 5 \\ 2 & 2 \end{bmatrix}.$$

Verify that A^\dagger indeed satisfies the four defining properties.

3. Let $A, B \in \mathbb{R}^{n \times n}$ and O be the zero matrix. For each of the following statement, either give a proof or a counter example:

 (a) If all eigenvalues of A are zero, then $A = O$.

 (b) If all singular values of A are zero, then $A = O$.

 (c) If $A = A^\top$, then the EVD and SVD of A are identical.

 (d) If A and B are similar (i.e., $A = XBX^{-1}$ for some nonsingular X), then A and B have the same eigenvalues.

 (e) If A and B are similar, then A and B have the same singular values.

4. Let W be a k-dimensional subspace of \mathbb{R}^n. Suppose $a_1, \ldots, a_k \in \mathbb{R}^n$ form a basis for W. Show that the Moore–Penrose inverse of the matrix $A = [a_1, \ldots, a_k] \in \mathbb{R}^{n \times k}$ is given by

$$A^\dagger = (A^\top A)^{-1} A^\top$$

and deduce a formula for $P_W \in \mathbb{R}^{n \times n}$, the projection onto the subspace W in terms of A. Is this an orthogonal projection? Find an orthogonal projection matrix for each of the following subspaces:

 (a) $W_a = \text{span}\{[1, \ldots, 1]^\top\}$. Discuss how this is related to the mean

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i.$$

 (b) $W_b = \{[x_1, \ldots, x_n]^\top \in \mathbb{R}^n : x_1 + \cdots + x_n = 0\}$. Discuss how this is related to the deviations

$$x_i - \bar{x}, \quad i = 1, \ldots, n.$$
(c) \(W_c = \text{span}\{w\} \) for a nonzero vector \(w \in \mathbb{R}^n \).

(d) \(W_d = W_1 \oplus W_2 \) where \(W_1 \perp W_2 \), i.e., \(x'y = 0 \) for all \(x \in W_1, y \in W_2 \).

(e) \(W_e = E_{\lambda} = \{x : Bx = \lambda x\} \), the \(\lambda \)-eigenspace of a symmetric matrix \(B \in \mathbb{R}^{n \times n} \).

(f) \(W_f = \text{span}\{[1, 1, 1, 1]^T, [1, 1, 0, 0]^T, [1, 1, 0, 0]^T\} \). Here \(n = 4 \).

5. Let \(W \) be a subspace of \(\mathbb{R}^n \) and \(W^\perp := \{x \in \mathbb{R}^n : x'y = 0 \text{ for all } y \in W\} \) be its orthogonal complement. Since \(\mathbb{R}^n = W \oplus W^\perp \), we may define \(P : \mathbb{R}^n \to \mathbb{R}^n \) by \(Pv = w \) where \(v = w + w' \) with \(w \in W \) and \(w' \in W^\perp \). We will see that this gives another way to define projection onto \(W \).

(a) Show that \(P \) is an orthogonal projection and \(\text{im}(P) = W \).

(b) Show that such a \(P \) is uniquely determined by \(W \).

(c) Show that for every \(v \in \mathbb{R}^n \), \(v^TPv \geq 0 \).

(d) Show that for every \(v \in \mathbb{R}^n \), \(\|Pv\|_2 \leq \|v\|_2 \).

(e) Show that \(I - P \) is the orthogonal projection onto \(W^\perp \).

(f) Show that for every \(v \in \mathbb{R}^n \),
\[
\|v\|_2^2 = \|Pv\|_2^2 + \|(I-P)v\|_2^2.
\]

(g) Show that \(P \) is similar to a diagonal matrix of the form \(\text{diag}(1, \ldots, 1, 0, \ldots, 0) \) where the number of 1’s equals \(\dim W \).

6. Let \(x_1, \ldots, x_n \in \mathbb{R}^p \), \(n \geq p \), and set
\[
X := \begin{bmatrix}
 x_1^T \\
 x_2^T \\
 \vdots \\
 x_n^T
\end{bmatrix} = \begin{bmatrix}
 x_{11} & x_{12} & \cdots & x_{1p} \\
 x_{21} & x_{22} & \cdots & x_{2p} \\
 \vdots & \vdots & \ddots & \vdots \\
 x_{n1} & x_{n2} & \cdots & x_{np}
\end{bmatrix} \in \mathbb{R}^{n \times p}.
\]

Suppose that \(X^T1 = 0 \). Let the eigenvalue decomposition of the matrix \(S := \frac{1}{n}X^TX \in \mathbb{R}^{p \times p} \) be given by
\[
S = V\Lambda V^T, \quad V = [v_1, \ldots, v_p], \quad V^TV = I, \quad \Lambda = \text{diag}(\lambda_1, \ldots, \lambda_p), \quad \lambda_1 \geq \cdots \geq \lambda_p.
\]
We would like to plot the projections of \(x_1, \ldots, x_p \) onto the 2-dimensional subspace \(W := \text{span}\{v_j, v_k\} \subseteq \mathbb{R}^p \), i.e., on a graph whose \(x \)-axis is \(v_j \) and \(y \)-axis is \(v_k \).

(a) Write down an expression for \(P_W \in \mathbb{R}^{p \times p} \), the orthogonal projection onto \(W \). Simplify your expression as much as possible.

(b) Show that the eigenvectors of \(S \) are the right singular vectors of \(X \).

(c) Show that to plot the projections of \(x_1, \ldots, x_n \in \mathbb{R}^p \) onto \(W \cong \mathbb{R}^2 \), we may simply plot the \(n \) points
\[
\{(\sigma_j u_{ij}, \sigma_k u_{ik}) \in \mathbb{R}^2 : i = 1, \ldots, n\}
\]
where \(U = [u_{ij}] \in \mathbb{R}^{n \times n} \) and \(\Sigma = \text{diag}(\sigma_1, \ldots, \sigma_p) \in \mathbb{R}^{n \times p} \) are the matrix of left singular vectors and matrix of singular values respectively.