Math. Program., Ser. B 87: 209—213 (2000)

Digital Object Identifier (DOI) 10.1007/s101070000155

C.G. Broyden

On the discovery of the “good Broyden” method

Dedicated to Dr. William C. Davidon to commemorate Ah birthday

Received: February 5, 2000 / Accepted: February 19, 2000
Published online March 15, 20003 Springer-Verlag 2000

Abstract. This short note traces the events that led to the unsymmetric rank one formula known as the
“good Broyden” update [5, 6], which is widely used within derivative-free mathematical software for solving
a system of nonlinear equations.

I left University in 1956 with an indifferent degree in Physics and took up a post with
the English Electric Company in Leicester. The company was involved in the design
and construction of nuclear reactors and | was employed as a computer programmer.

One of the problems with which | was concerned was the solution of systems of
differential equations. These equations were used in the performance calculations of
the reactors and modelled their behaviour as time passed, and some of the favoured
methods of solution were the “predictor-corrector” methods. They worked roughly as
follows. Given a temperature distribution at tirnthey would calculate the equivalent
distribution at timet 4 §t wherest was a small time increment. This calculation would
then be repeated many times in the hope that the computed temperature would subside
before the Magnox cladding of the fuel rods melted.

The new temperature distribution would be obtained by getting an approximate
solution of the “corrector” equations, which were essentially of the form

X = g(X) 1)

wherex € R" represented unknown temperatures gaod was some non-linear func-

tion. Since it was nonlinear, equation (1) could only be solved iteratively and the job of
the “predictor” equations was to give an explicit (and usually not too accurate) initial
approximation to be subsequently refined by the correctors. Equation (1) suggests the
iterative procedure

Xi+1 = 9(Xi),
but often only one correction step was applied so that the solution obtained was none too

accurate either. However, as computers and software improved and people became more
ambitious, more and more correction steps were taken and soon we were thinking in
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terms of solving (1) exactly, or at least as exactly as one can solve nonlinear equations.
The chosen method was, of course, tof$g} = x — g(x) and then to solvé(x) = 0
using Newton’s method.

Now the problem with Newton’s method is that it needs the Jacobi&txpto be
calculated for every iteration, but in this case the inefficiency was worse because of the
way it was to be used. Not only did the equations have to be solvetddiatralso for
t 4 8t, t + 28t, t + 35t etc. and the Jacobian did not change all that much when going
from one solution to the next. It did seem to be rather a waste to keep recomputing it so
| began to look at ways of short-cutting this, perhaps by using an approximation to the
Jacobian.

In an earlier draft of this note | wrote at this point “I then came across a paper [1]
written in the Computer Journal by one J.G.P. Barnes on the secant method” but | now
realise that this was far from the true story. | distinctly remember Barnes’s paper but it
could not have been an influence at the time as it and my paper [3], in which | presented
my update, were both published in 1965. So what were the influences acting on me
at that point? Newton’s method, certainly. My paper [3] starts off with a description
of this method and | had used it before in one of my programs. | also knew the 1963
Fletcher-Powell Computer Journal paper [7] but | don’t remember thinking of this at the
time as an approximate Newton method. Although | included the DFP update formula
in [3] it had been presented in [7] as a type of conjugate gradient method and | probably
thought of it as such. | actually wrote “Powell [8] regards it not as a version of Newton’s
method but as a conjugate gradient method” and | probably went along with that. It was
not until later that | wondered how one should think of it when applied to non-quadratic
functions and realised its close connection to the master algorithm. | cerkaiely of
Bill Davidon’s paper [4] but probably had not seen it at the time. This was because it
was published as some arcane report and my industrial-type library found it difficult
to obtain such things. | did at some stage read it but at the time | probably went along
with the Fletcher-Powell [7,8] view of the algorithm. So the following description of
the secant method perhaps played less of a part in the derivation of the “good Broyden”
update than my recollection suggests.

The secant method as described in [1] is an approximation to Newton’s method,
and it uses aestimateB of the Jacobian, the estimate being based on the Taylor series
approximation to the vector functidiix). This is

f(x + ) = f(x) + Js+ higher order terms

wherelJ is the Jacobian df evaluated ax andsis an arbitrary vector of increments. If
we can ignore the higher order terms (and even if we can't) the best thing we can do
with our approximatiorB is to make it satisfy

f(x+s) =f(x) + Bs,

an equation now generally known as the secant equation following a suggestion by
John Dennis (see for example [6]). This, of course, does not defprecisely, merely
imposes conditions upon it, but, in the context of an iteration like that of Newton, this is
not too much of a problem. Suppose that the iteration to dgkye= 0 had been going
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for some time so that a lot of approximate solutiofjsand corresponding function
valuesfj had been computed. Suppose, also, that we had reached an itergdmthat
we knewy; andfj) and now wanted to determine an approximatgrio the Jacobian
so that we could compute the next approximatipn by

Xi+1 =X — B Hi. 2
If we definesj andy;j by

Sj = Xj+1 =X

and

yi =t —f
and then if we requird3; to satisfyBijsj = yj, i —n < j < i — 1 itis not too
difficult to show that provided the sets of vectdig : i —n < j < i — 1} and
{yj :i—n < j <i—1}arelinearly independentth@& is well-defined and nonsingular

andxj+1 can be computed. | might state in parentheses here that the secant method for
systems of equations is probably due to Gauss, but that the first computer-era references
seem to be the works of Wolfe [10] and Bittner [2].

So far so good! We had an updating procedure that seemed to work provided that
certain conditions of linear independence were satisfied, but the problem was that it did
not work very well. In fact it proved to be quite numerically unstable. Now at that time |
knew nothing of condition numbers — I may not even have known what a norm was — but
it did seem to me that if, in the two-dimensional case, the vesjorg =i — 1,i — 2,
were nearly parallel then there would be trouble. My unease sprang from my intuition as
a physicist. If we have two rods in the horizontal plane, joined to each other by a hinge at
their mid-points so that the angle between them can change, and we rest a plate on them
then if the angle between them is a right-angle the plate is fairly stable. If the angle is
reduced so that looking down on them the rods look likeXh#hich gets thinner and
thinner then the plate becomes more and more unstable until the rods coincide and the
plate topples. | therefore felt that the Jacobian would be well-defined if the two vectors
sj were orthogonal, but would not be so well defined if the information defining it came
from two virtually co-linear steps, and often in the secant method two successive steps
can be almost co-linear. So what to do?

One solution canvassed at the time was to take the “best” two or more vegtors
from the lastm and use these to define the Jacobian, but this did not appeal to me.
What is “best” and how does one choase Besides, it was inelegant and | thought that
mathematics should be elegant, (I still do) so | reasoned thus:

— We have new information, name$y_1 andy;_j that we wish to incorporate into
the new JacobiaB;, i.e. we have new information in the directisn

— We can use this by makir; satisfyBijs_1 = yi_1

— We have no new information in any directisiorthogonal tas 1

— We should therefore require, if possible, tigas = B;j_1s for all s orthogonal to
S-1, i.e. no change t®;_1 in any direction orthogonal tg ;.
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After a certain amount of scratching around | realised that this uniquely deBined
to be
T
S-1

Bi =Bi-1+ (Yi-1 —Bi-15-1) 3 ,
S§-15-1

a formula which appeared in my paper [3] and came to be known as the “good Broyden”
updaté [5,6]. The fact that it turned out to be a rank-1 update was pure serendipity.
When | was at University they did not teach matrices to physicists. As matrices
seemed to be important in my new environment, | decided to learn something about
them and one of the things that | came across, or more probably derived for myself,
was the Sherman-Morrison formula [9]. In those days one wrote computer programs by
punching machine-code instructions in binary on Hollerith cards, and the solution of
ten linear simultaneous equations was a task not to be undertaken lightly. The Sherman-
Morrison formula enabled me to avoid all that by updating the inverd® oH; say,

by

T
_1Hi—1
Hi=Hi—1+(s-1— Hiflyifl)ﬁlil,

S_qHi-1Yi-1

and the new approximate solution was, from equation (2), given by
Xi+1 = Xi — Hifi.

So that’s it! Some good old-fashioned physical intuition allied to a bit of technique. The
work appeared in [3]. And English Electric even paid me a page fee for the published
paper!
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