STAT 309: MATHEMATICAL COMPUTATIONS I
 FALL 2021
 PROBLEM SET 5

1. Let $A \in \mathbb{R}^{m \times n}$ and $\mathbf{b}_{1}, \ldots, \mathbf{b}_{p} \in \mathbb{R}^{m}$. Write $B:=\left[\mathbf{b}_{1}, \ldots, \mathbf{b}_{p}\right] \in \mathbb{R}^{m \times p}$.
(a) Show that $\mathbf{x}_{1}, \ldots, \mathbf{x}_{p} \in \mathbb{R}^{n}$ are respectively solutions to

$$
\begin{equation*}
\min \left\|A \mathbf{x}-\mathbf{b}_{1}\right\|_{2}, \ldots \ldots, \min \left\|A \mathbf{x}-\mathbf{b}_{p}\right\|_{2} \tag{1.1}
\end{equation*}
$$

if and only if $X:=\left[\mathrm{x}_{1}, \ldots, \mathbf{x}_{p}\right] \in \mathbb{R}^{n \times p}$ is a solution to

$$
\min \|A X-B\|_{\mathrm{F}} .
$$

Hence write down a normal equation and a minimum norm solution (i.e., $\|X\|_{\text {F }}$ is minimum) for the ordinary least squares problem with multiple right-hand sides (1.1) in terms of A and B. Prove your results. You should get Homework 2, Problem 2(c) as a special case.
(b) Generalize our proof of total least squares solution in the lectures to the case with multiple right-hand sides

$$
\min \left\{\|[E, R]\|_{\mathrm{F}}:(A+E) X=B+R\right\}
$$

and show that if

$$
[A, B]=\left[U_{1}, U_{2}\right]\left[\begin{array}{cc}
\Sigma_{1} & 0 \\
0 & \Sigma_{2}
\end{array}\right]\left[\begin{array}{l}
V_{1}^{\top} \\
V_{2}^{\top}
\end{array}\right]
$$

is a singular value decomposition, then the solution is given by

$$
X=-V_{12} V_{22}^{-1}, \quad V_{2}=\left[\begin{array}{l}
V_{12} \\
V_{22}
\end{array}\right],
$$

where we have assumed that $V_{22} \in \mathbb{R}^{p \times p}$ is nonsingular.
2. Let $A \in \mathbb{R}^{m \times n}$ with $\operatorname{rank}(A)=n \leq m$ and $\mathbf{b} \in \mathbb{R}^{m}$. Suppose we solved the least squares problem $\min \|A \mathbf{x}-\mathbf{b}\|_{2}$ using normal equation (assuming we are in one of these exceptional regimes where it is acceptable to use normal equation) and that we saved the Cholesky factor of $A^{\top} A$.
(a) Given a new row vector $\mathbf{c} \in \mathbb{R}^{n}$ and an additional value $d \in \mathbb{R}$ and that we want $\left|\mathbf{c}^{\boldsymbol{T}} \mathbf{x}-d\right|$ to be simultaneously minimized, i.e.,

$$
\min \left\|\left[\begin{array}{c}
A \tag{2.2}\\
\mathbf{c}^{\top}
\end{array}\right] \mathbf{x}-\left[\begin{array}{l}
\mathbf{b} \\
d
\end{array}\right]\right\|_{2} .
$$

Show how we may take advantage of our solution of the earlier least squares problem to solve this new one. [Hint: Sherman-Morrison formula]
(b) Show how this process can be reversed. Assuming that that we have already obtained the least-squares solution to (2.2) using some unspecified method, i.e., you are not supposed to assume what method this is, only that you have a least squares solution of (2.2). Show how we may take advantage of this solution to obtain a solution of the least squares problem where the last row is deleted, i.e., $\min \|A \mathbf{x}-\mathbf{b}\|_{2}$.
3. Let $A \in \mathbb{R}^{m \times n}$ with $\operatorname{rank}(A)=n \leq m, \mathbf{b} \in \mathbb{R}^{m}, C \in \mathbb{R}^{p \times n}$ with $\operatorname{rank}(C)=p \leq n$, and $\mathbf{d} \in \mathbb{R}^{p}$. Consider the linearly constrained least squares problem

$$
\begin{align*}
\operatorname{minimize} & \|A \mathbf{x}-\mathbf{b}\|_{2} \\
\text { subject to } & C \mathbf{x}=\mathbf{d} \tag{3.3}
\end{align*}
$$

An alternative way to solve this is to consider the penalty function

$$
\begin{equation*}
f_{r}(\mathbf{x}):=\|A \mathbf{x}-\mathbf{b}\|_{2}^{2}+r\|C \mathbf{x}-\mathbf{d}\|_{2}^{2} \tag{3.4}
\end{equation*}
$$

for a sequence of values $r \rightarrow \infty$.
(a) For any fixed value $r>0$, show that a minimizer \mathbf{x}_{r} of (3.4) is a solution to an ordinary least squares problem with normal equation

$$
\left(A^{\top} A+r C^{\top} C\right) \mathbf{x}=A^{\top} \mathbf{b}+r C^{\top} \mathbf{d} .
$$

(b) Show that if $X \in \operatorname{GL}(n)$ and $\left\|X^{-1}\right\|_{2}<1$, then

$$
\begin{equation*}
(I+X)^{-1}=X^{-1}-X^{-2}+X^{-3}-X^{-4}+\cdots \tag{3.5}
\end{equation*}
$$

(c) Applying the Sherman-Morrison-Woodbury formula and (3.5), show that

$$
\lim _{r \rightarrow \infty} \mathbf{x}_{r}=\mathbf{x}_{*}
$$

where \mathbf{x}_{*} is the solution to (3.3) and also deduce that

$$
\mathbf{x}_{*}=\left(A^{\top} A\right)^{-1} C^{\top}\left[C\left(A^{\top} A\right)^{-1} C^{\top}\right]^{-1}\left[\mathbf{d}-C\left(A^{\top} A\right)^{-1} A^{\top} \mathbf{b}\right]+\left(A^{\top} A\right)^{-1} A^{\top} \mathbf{b}
$$

4. Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix partitioned into

$$
A=\left[\begin{array}{ll}
A_{11} & A_{21}^{\top} \\
A_{21} & A_{22}
\end{array}\right]
$$

with $A_{11} \in \mathbb{R}^{k \times k}$ invertible and $S=A_{22}-A_{21} A_{11}^{-1} A_{21}^{\top}$ the Schur complement.
(a) Verify that

$$
\left[\begin{array}{cc}
I & 0 \\
-A_{21} A_{11}^{-1} & I
\end{array}\right]\left[\begin{array}{ll}
A_{11} & A_{21}^{\top} \\
A_{21} & A_{22}
\end{array}\right]\left[\begin{array}{cc}
I & -A_{11}^{-1} A_{21}^{\top} \\
0 & I
\end{array}\right]=\left[\begin{array}{cc}
A_{11} & 0 \\
0 & S
\end{array}\right] .
$$

Deduce that A is positive definite if and only if A_{11} and S are both positive definite.
(b) Show that

$$
\left\|A_{i j}\right\|_{2} \leq\|A\|_{2}, \quad i, j \in\{1,2\}
$$

and deduce that if A is positive definite, then

$$
\kappa_{2}(S) \leq \kappa_{2}(A) .
$$

[Hint: Use Homework 4, Problem 6]
(c) Suppose A is positive definite, by considering the block Cholesky factorization

$$
A=\left[\begin{array}{cc}
R_{11}^{\top} & 0 \\
R_{12}^{\top} & R_{22}^{\top}
\end{array}\right]\left[\begin{array}{cc}
R_{11} & R_{12} \\
0 & R_{22}
\end{array}\right],
$$

or otherwise, show that

$$
\left\|A_{21} A_{11}^{-1}\right\|_{2} \leq \kappa_{2}(A)^{1 / 2}
$$

5. Let $p \in[1, \infty]$ and $\|\cdot\|_{p}$ denote the matrix p-norm. Let $M \in \mathbb{C}^{n \times n}$ and $\mathbf{b} \in \mathbb{C}^{n}$.
(a) Suppose $\|M\|_{p}<1$. Show that $(I-M) \mathbf{x}=\mathbf{b}$ has a unique solution $\mathbf{x} \in \mathbb{C}^{n}$. Show that for any $\mathbf{x}^{(0)} \in \mathbb{C}^{n}$, the iterates

$$
\mathbf{x}^{(k+1)}=M \mathbf{x}^{(k)}+\mathbf{b}, \quad k=0,1,2, \ldots
$$

converge to x. [Hint: Use Homework 1, Problem 2]
(b) Show that

$$
\left\|\mathbf{x}^{(k)}-\mathbf{x}\right\|_{p} \leq \frac{\|M\|_{p}^{k}}{1-\|M\|_{p}}\left\|\mathbf{x}^{(1)}-\mathbf{x}^{(0)}\right\|_{p}
$$

where \mathbf{x} is the solution of $(I-M) \mathbf{x}=\mathbf{b}$ for all $k \in \mathbb{N}$.
(c) Let $A \in \mathbb{C}^{n \times n}$ and define

$$
\gamma_{1}:=\max _{j=1, \ldots, n} \sum_{\substack{i=1 \\ i \neq j}}^{n}\left|\frac{a_{i j}}{a_{i i}}\right|<1, \quad \gamma_{\infty}:=\max _{\substack{i=1, \ldots, n}} \sum_{\substack{j=1 \\ j \neq i}}^{n}\left|\frac{a_{i j}}{a_{i i}}\right|<1, \quad \gamma_{2}:=\left(\sum_{\substack{i, j=1 \\ i \neq j}}^{n}\left|\frac{a_{i j}}{a_{i i}}\right|^{2}\right)^{1 / 2}<1 .
$$

Show that if $\gamma_{p}<1$ for $p=1,2$, or ∞, then Jacobi method

$$
x_{i}^{(k+1)}=\frac{1}{a_{i i}}\left[b_{i}-\sum_{\substack{j=1 \\ j \neq i}}^{n} a_{i j} x_{i}^{(k)}\right], \quad i=1, \ldots, n, \quad k=0,1,2, \ldots
$$

converges for any $\mathbf{x}^{(0)} \in \mathbb{C}^{n}$ to the unique solution of $A \mathbf{x}=\mathbf{b}$ (note that the $p=\infty$ case we have covered in lectures). Furthermore,

$$
\left\|\mathbf{x}^{(k)}-\mathbf{x}\right\|_{p} \leq \frac{\gamma_{p}^{k}}{1-\gamma_{p}}\left\|\mathbf{x}^{(1)}-\mathbf{x}^{(0)}\right\|_{p}
$$

for $p=1,2, \infty$.

