
STAT 309: MATHEMATICAL COMPUTATIONS I

FALL 2021

PROBLEM SET 1

For Problem 4, use any program you like but present your codes and results in a way that is
comprehensible to someone who is unfamiliar with that program, i.e., comment as appropriate.

1. (a) Let A ∈ Cm×n and 1 ≤ p ≤ ∞. Find closed-form expressions for

‖A‖1,p := max
x 6=0

‖Ax‖p
‖x‖1

and ‖A‖p,∞ := max
x 6=0

‖Ax‖∞
‖x‖p

.

Your expressions should agree with the matrix 1-norm and matrix∞-norm when p = 1 and
∞ respectively.

(b) Let Sn := {A ∈ Rn×n : AT = A}. Recall the Gram matrix from Homework 0, Problem 4:
For x1, . . . ,xn ∈ Rn, we write

G(x1, . . . ,xn) :=


xT
1x1 xT

1x2 . . . xT
1xn

xT
2x1 xT

2x2 . . . xT
2xn

...
...

. . .
...

xT
nx1 xT

nx2 . . . xT
nxn

 ∈ Sn.

Consider the set Gn := {G(x1, . . . ,xn) ∈ Sn : ‖x1‖2 ≤ 1, . . . , ‖xn‖2 ≤ 1}. Prove that for
any A ∈ Sn,

‖A‖G := max{|tr(AG)| : G ∈ Gn}
defines a norm on Sn. Show that if A = diag(a11, . . . , ann) ∈ Sn, then

‖A‖G = max

( n∑
i=1

max(aii, 0),−
n∑

i=1

min(aii, 0)

)
.

2. Let A ∈ Cn×n and ‖ · ‖p : Cn×n → [0,∞) be the matrix p-norm for some p ∈ [1,∞].
(a) Show that if ‖A‖p < 1, then I −A is invertible and furthermore,

1

1 + ‖A‖p
≤ ‖(I −A)−1‖p ≤

1

1− ‖A‖p
.

(b) Suppose A is invertible. Show that any X ∈ Cn×n with

‖X −A‖p <
1

‖A−1‖p
must also be invertible.

(c) Let ‖ · ‖ : Cn×n → [0,∞) be an arbitrary norm that may not be submultiplicative. Suppose
‖A‖ < 1, can we conclude that I −A is invertible?

3. Recall that in the lectures, we mentioned that (i) there are matrix norms that are not submul-
tiplicative and an example is the Hölder ∞-norm; (ii) we may always construct a norm that
approximates the spectral radius of a given matrix A as closely as we want.
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(a) Let ‖ · ‖ : Cm×n → R be a norm, defined for all m,n ∈ N. Show that there always exists a
c > 0 such that the constant multiple ‖ · ‖c := c‖ · ‖ defines a submultiplicative norm, i.e.,

‖AB ‖c ≤ ‖A‖c‖B ‖c
for any A ∈ Cm×n and B ∈ Cn×p (even if ‖ · ‖ does not have this property). Note that
the constant c will depend on m,n, p ∈ N in general. Find the constant c for the Hölder
∞-norm.

(b) Let J ∈ Cn×n be in Jordan form, i.e.,

J =

J1 . . .

Jk


where each block Jr, for r = 1, . . . , k, has the form

Jr =


λr 1

. . .
. . .
. . . 1

λr

 .
Let ε > 0 and Dε = diag(1, ε, ε2, . . . , εn−1). Verify that

D−1ε JDε =

J1,ε . . .

Jk,ε


where Jr,ε is the matrix you obtain by replacing the 1’s on the superdiagonal of Jr by ε’s,

Jr,ε =


λr ε

. . .
. . .
. . . ε

λr


(c) Show that

‖D−1ε JDε‖∞ ≤ ρ(J) + ε.

(d) Hence, or otherwise, show that for any given A ∈ Cn×n and ε > 0, there exists a norm ‖ · ‖?
on Cn such that

‖A‖ = max
x 6=0

‖Ax‖?
‖x‖?

has the property that
ρ(A) ≤ ‖A‖ ≤ ρ(A) + ε.

(Hint : Transform A into Jordan form).

4. Let A = [aij ] be an n× n matrix with entries

aij =

{
n+ 1−max(i, j) i ≤ j + 1,

0 i > j + 1.

This is an example of an upper Hessenberg matrix: it is upper triangular except that the entries
on the subdiagonal aj+1,j may also be non-zero. For n = 12 and n = 25, do the following:
(a) Compute ‖A‖∞ and ‖A‖1.
(b) Compute ρ(A) and ‖A‖2. You may use any built-in functions of your program.
(c) Using Gerschgorin’s theorem, describe the domain that contains all of the eigenvalues.



STAT 309 ASSIGNMENT 1 3

(d) Compute all of the eigenvalues and singular values of A. How many of the eigenvalues are
real and how many are complex? You may use any built-in functions of your program.

5. You are not allowed to use the svd for this problem, i.e., no arguments should depend on the
svd of A or A∗. Let W be a subspace of Cn. The subspace W⊥ below is called the orthogonal
complement of W .

W⊥ = {v ∈ Cn : v∗w = 0 for all w ∈W}.
For any subspace W ⊆ Cn, we write PW ∈ Cn×n for an orthogonal projection onto W .
(a) Show that Cn = W ⊕W⊥ and that W = (W⊥)⊥.
(b) Let A ∈ Cm×n. Show that

ker(A∗) = im(A)⊥ and im(A∗) = ker(A)⊥.

(c) Deduce the Fredholm alternative:

Cm = ker(A∗)⊕ im(A) and Cn = im(A∗)⊕ ker(A).

In other words any x ∈ Cn and y ∈ Cm can be written uniquely as

x = x0 + x1, x0 ∈ ker(A), x1 ∈ im(A∗), x∗0x1 = 0,

y = y0 + y1, y0 ∈ ker(A∗), y1 ∈ im(A), y∗0y1 = 0.

(d) Show that

x0 = Pker(A)x, x1 = Pim(A∗)x, y0 = Pker(A∗)y, y1 = Pim(A)y.

(e) Consider the least squares problem for some b ∈ Cm,

min
x∈Cn
‖b−Ax‖2. (5.1)

Show that for any x ∈ Cn,

‖b−Ax‖2 ≥ ‖b0‖2
where b0 = Pker(A∗)b. Deduce that x ∈ Cn is a solution to (5.1) if and only if

Ax = b1 or, equivalently, b−Ax = b0. (5.2)

Why is Ax = b1 consistent?
(f) Show that (5.2) is equivalent (i.e., if and only if) to the normal equation

A∗Ax = A∗b. (5.3)

Caveat : In numerical analysis, it is in general a terrible idea to solve a least squares problem
via its normal equation. Nonetheless (5.3) can be useful in mathematical arguments. We
will discuss in the lectures the very limited number of scenarios when it makes sense to
solve (5.3) via Cholesky decomposition.

(g) Show that the pseudoinverse solution

min

{
‖x‖2 : x ∈ argmin

x∈Cn
‖b−Ax‖2

}
is given by

x1 = Pim(A∗)x

where x ∈ Cn satisfies (5.2).
(h) Let A ∈ Cn×n be normal, i.e., A∗A = AA∗. Show that

ker(A∗) = ker(A) and im(A∗) = im(A)

and deduce that for a normal matrix,

Cn = ker(A)⊕ im(A).
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6. Let x ∈ Cm, y ∈ Cn, and A = xy∗ ∈ Cm×n.
(a) Show that

‖A‖F = ‖A‖2 = ‖x‖2‖y‖2 (6.4)

and that
‖A‖∞ = ‖x‖∞‖y‖1.

What can you say about ‖A‖1?
(b) Let x1, . . . ,xr ∈ Cm be linearly independent and y1, . . . ,yr ∈ Cn be linearly independent.

Let
A = x1y

∗
1 + · · ·+ xry

∗
r .

Show that rank(A) = r. Show that this is not necessarily true if we drop either of the linear
independence conditions.

(c) Given any 0 6= A ∈ Cm×n, show that

rank(A) = min
{
r ∈ N : A =

∑r

i=1
xiy
∗
i

}
.

In other words, the rank of a matrix is the smallest r so that it may be expressed as a sum
of r rank-1 matrices.

(d) Show the following generalization of (6.4),

‖A‖F ≤
√

rank(A)‖A‖2.
Note that ν rank(A) = ‖A‖2F /‖A‖22 is one of the three notions of numerical ranks in the
lecture notes. It is often used as a continuous surrogate for matrix rank.

(e) Show that with the nuclear norm we get instead

‖A‖∗ ≤ rank(A)‖A‖2. (6.5)

In other words we could also use ‖A‖∗/‖A‖2 as a continuous surrogate for matrix rank.


