STAT 309: MATHEMATICAL COMPUTATIONS I
 FALL 2021
 PROBLEM SET 0

This homework mostly serves as a linear algebra refresher. We will recall some definitions. The null space or kernel of a matrix $A \in \mathbb{R}^{m \times n}$ is the set

$$
\operatorname{ker}(A)=\left\{\mathbf{x} \in \mathbb{R}^{n}: A \mathbf{x}=\mathbf{0}\right\}
$$

while the range space or image is the set

$$
\operatorname{im}(A)=\left\{\mathbf{y} \in \mathbb{R}^{m}: \mathbf{y}=A \mathbf{x} \text { for some } \mathbf{x} \in \mathbb{R}^{n}\right\} .
$$

The rank and nullity of A are defined as the dimensions of these spaces,

$$
\operatorname{rank}(A)=\operatorname{dimim}(A) \quad \text { and } \quad \operatorname{nullity}(A)=\operatorname{dim} \operatorname{ker}(A) .
$$

By convention we write all vectors in \mathbb{R}^{n} as column vectors.

1. (a) For $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$, show that

$$
\operatorname{im}(A B) \subseteq \operatorname{im}(A) \quad \text { and } \quad \operatorname{ker}(A B) \supseteq \operatorname{ker}(B)
$$

When does equality occur in each of these inclusions?
(b) For $A, B \in \mathbb{R}^{n \times n}$, show that

$$
\begin{aligned}
\operatorname{rank}(A B) & \leq \min \{\operatorname{rank}(A), \operatorname{rank}(B)\}, \\
\operatorname{nullity}(A B) & \leq \operatorname{nullity}(A)+\operatorname{nullity}(B), \\
\operatorname{rank}(A+B) & \leq \operatorname{rank}(A)+\operatorname{rank}(B) .
\end{aligned}
$$

(c) For $A, B \in \mathbb{R}^{n \times n}$, show that if $A B=0$, then

$$
\operatorname{rank}(A)+\operatorname{rank}(B) \leq n
$$

2. (a) Let $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{p \times q}$. Show that

$$
\operatorname{rank}\left(\left[\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right]\right)=\operatorname{rank}(A)+\operatorname{rank}(B)
$$

We have used the block matrix notation here. For example if $A=\left[\begin{array}{lll}a & b & c \\ d & e & f\end{array}\right] \in \mathbb{R}^{2 \times 3}$ and $B=\left[\begin{array}{l}\alpha \\ \beta\end{array}\right] \in \mathbb{R}^{2 \times 1}$, then

$$
\left[\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right]=\left[\begin{array}{llll}
a & b & c & 0 \\
d & e & f & 0 \\
0 & 0 & 0 & \alpha \\
0 & 0 & 0 & \beta
\end{array}\right] \in \mathbb{R}^{4 \times 4} .
$$

This is sometimes also denoted as $A \oplus B$. It is a direct sum of operators induced by a direct sum of vector spaces.
(b) For $\mathbf{x}=\left[x_{1}, \ldots, x_{m}\right]^{\top} \in \mathbb{R}^{m}$ and $\mathbf{y}=\left[y_{1}, \ldots, y_{n}\right]^{\top} \in \mathbb{R}^{n}$, observe that $\mathbf{x y}^{\top} \in \mathbb{R}^{m \times n}$. Let $A \in \mathbb{R}^{m \times n}$. Show that $\operatorname{rank}(A)=1$ iff $A=\mathrm{xy}^{\top}$ for some nonzero $\mathbf{x} \in \mathbb{R}^{m}$ and $\mathbf{y} \in \mathbb{R}^{n}$.
3. Let $A \in \mathbb{R}^{m \times n}$.
(a) Show that

$$
\operatorname{ker}\left(A^{\top} A\right)=\operatorname{ker}(A) \quad \text { and } \quad \operatorname{im}\left(A^{\top} A\right)=\operatorname{im}\left(A^{\top}\right)
$$

Give an example to show this is not true over a finite field (e.g. a field of two elements $\mathbb{F}_{2}=\{0,1\}$ with binary arithmetic).
(b) Show that

$$
A^{\top} A \mathbf{x}=A^{\top} \mathbf{b}
$$

always has a solution (even if $A \mathbf{x}=\mathbf{b}$ has no solution). Give an example to show that this is not true over a finite field.
4. Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \in \mathbb{R}^{n}$. Let $r \leq n$ and $G_{r}=\left[g_{i j}\right] \in \mathbb{R}^{r \times r}$ be the matrix with

$$
g_{i j}=\mathbf{v}_{i}^{\top} \mathbf{v}_{j}
$$

for $i, j=1, \ldots, r$. This is called a Gram matrix.
(a) Show that $\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}$ are linearly independent iff nullity $\left(G_{r}\right)=0$.
(b) Show that $G_{r}=I_{r}$ iff $\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}$ are pairwise orthogonal unit vectors, i.e., $\left\|\mathbf{v}_{i}\right\|_{2}=1$ for all $i=1, \ldots, r$, and $\mathbf{v}_{i}^{\top} \mathbf{v}_{j}=0$ for all $i \neq j$. If this holds, show that

$$
\begin{equation*}
\sum_{i=1}^{r}\left(\mathbf{v}^{\boldsymbol{\top}} \mathbf{v}_{i}\right)^{2} \leq\|\mathbf{v}\|_{2}^{2} \tag{4.1}
\end{equation*}
$$

for all $\mathbf{v} \in \mathbb{R}^{n}$. What can you say about $\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}$ if equality always holds in (??) for all $\mathbf{v} \in \mathbb{R}^{n}$?
5. Let $A \in \mathbb{C}^{n \times n}$. Recall that A is diagonalizable iff there exists an invertible $X \in \mathbb{C}^{n \times n}$ such that $X^{-1} A X=\Lambda$, a diagonal matrix.
(a) Show that A is diagonalizable if and only if its minimal polynomial is of the form

$$
m_{A}(x)=\left(x-\lambda_{1}\right) \cdots\left(x-\lambda_{d}\right)
$$

where $\lambda_{1}, \ldots, \lambda_{d} \in \mathbb{C}$ are all distinct. Hence deduce for a diagonalizable matrix, the degree of its minimal polynomial equals the number of distinct eigenvalues.
(b) Let A be diagonalizable. Let $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \in \mathbb{C}^{n}$ be n linearly independent right eigenvectors, i.e., $A \mathbf{x}_{i}=\lambda_{i} \mathbf{x}_{i}$; and $\mathbf{y}_{1}, \ldots, \mathbf{y}_{n} \in \mathbb{C}^{n}$ be n linearly independent left eigenvectors, i.e., $\mathbf{y}_{i}^{\top} A=\lambda_{i} \mathbf{y}_{i}^{\top}$. Show that there is a choice of left and right eigenvectors of A such that any vector $\mathbf{v} \in \mathbb{C}^{n}$ can be expressed as

$$
\mathbf{v}=\sum_{i=1}^{n}\left(\mathbf{y}_{i}^{\top} \mathbf{v}\right) \mathbf{x}_{i} .
$$

If we write $X=\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right] \in \mathbb{C}^{n \times n}$ and $Y=\left[\mathbf{y}_{1}, \ldots, \mathbf{y}_{n}\right] \in \mathbb{C}^{n \times n}$. What is the relation between X and Y ?

