This homework mostly serves as a linear algebra refresher. We will recall some definitions. The null space or kernel of a matrix $A \in \mathbb{R}^{m \times n}$ is the set

$$\text{ker}(A) = \{ x \in \mathbb{R}^n : A x = 0 \}$$

while the range space or image is the set

$$\text{im}(A) = \{ y \in \mathbb{R}^m : y = A x \text{ for some } x \in \mathbb{R}^n \}.$$

The rank and nullity of A are defined as the dimensions of these spaces,

$$\text{rank}(A) = \dim \text{im}(A) \quad \text{and} \quad \text{nullity}(A) = \dim \text{ker}(A).$$

By convention we write all vectors in \mathbb{R}^n as column vectors.

1. (a) For $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$, show that

$$\text{im}(AB) \subseteq \text{im}(A) \quad \text{and} \quad \text{ker}(AB) \supseteq \text{ker}(B).$$

When does equality occur in each of these inclusions?

(b) For $A, B \in \mathbb{R}^{n \times n}$, show that

$$\text{rank}(AB) \leq \min\{\text{rank}(A), \text{rank}(B)\},$$

$$\text{nullity}(AB) \leq \text{nullity}(A) + \text{nullity}(B),$$

$$\text{rank}(A + B) \leq \text{rank}(A) + \text{rank}(B).$$

(c) For $A, B \in \mathbb{R}^{n \times n}$, show that if $AB = 0$, then

$$\text{rank}(A) + \text{rank}(B) \leq n.$$

2. (a) Let $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{p \times q}$. Show that

$$\text{rank}\left(\begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix} \right) = \text{rank}(A) + \text{rank}(B).$$

We have used the block matrix notation here. For example if $A = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} \in \mathbb{R}^{2 \times 3}$ and $B = \begin{bmatrix} \beta \end{bmatrix} \in \mathbb{R}^{2 \times 1}$, then

$$\begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix} = \begin{bmatrix} a & b & c & 0 \\ d & e & f & 0 \\ 0 & 0 & 0 & \alpha \\ 0 & 0 & 0 & \beta \end{bmatrix} \in \mathbb{R}^{4 \times 4}.$$

This is sometimes also denoted as $A \oplus B$. It is a direct sum of operators induced by a direct sum of vector spaces.

(b) For $x = [x_1, \ldots, x_m]^T \in \mathbb{R}^m$ and $y = [y_1, \ldots, y_n]^T \in \mathbb{R}^n$, observe that $xy^T \in \mathbb{R}^{m \times n}$. Let $A \in \mathbb{R}^{m \times n}$. Show that $\text{rank}(A) = 1$ iff $A = xy^T$ for some nonzero $x \in \mathbb{R}^m$ and $y \in \mathbb{R}^n$.

Date: October 2, 2019 (Version 1.0); due: October 11, 2019.
3. Let $A \in \mathbb{R}^{m \times n}$.
 (a) Show that $\ker(A^T A) = \ker(A)$ and $\text{im}(A^T A) = \text{im}(A^T)$.
 Give an example to show this is not true over a finite field (e.g. a field of two elements $\mathbb{F}_2 = \{0, 1\}$ with binary arithmetic).
 (b) Show that $A^T A x = A^T b$
 always has a solution (even if $A x = b$ has no solution). Give an example to show that this
 is not true over a finite field.

4. Let $v_1, \ldots, v_n \in \mathbb{R}^n$. Let $r \leq n$ and $G_r = [g_{ij}] \in \mathbb{R}^{r \times r}$ be the matrix with
 $g_{ij} = v_i^T v_j$
 for $i, j = 1, \ldots, r$. This is called a Gram matrix.
 (a) Show that v_1, \ldots, v_r are linearly independent iff $\text{nullity}(G_r) = 0$.
 (b) Show that $G_r = I_r$ iff v_1, \ldots, v_r are pairwise orthogonal unit vectors, i.e., $\|v_i\|_2 = 1$ for all
 $i = 1, \ldots, r$, and $v_i^T v_j = 0$ for all $i \neq j$. If this holds, show that
 \[\sum_{i=1}^r (v_i^T v_i)^2 \leq \|v\|_2^2\] \hspace{1cm} (4.1)
 for all $v \in \mathbb{R}^n$. What can you say about v_1, \ldots, v_r if equality always holds in (4.1) for all
 $v \in \mathbb{R}^n$?

5. Let $A \in \mathbb{C}^{n \times n}$. Recall that A is diagonalizable iff there exists an invertible $X \in \mathbb{C}^{n \times n}$ such that
 $X^{-1} A X = \Lambda$, a diagonal matrix.
 (a) Show that A is diagonalizable if and only if its minimal polynomial is of the form
 $m_A(x) = (x - \lambda_1) \cdots (x - \lambda_d)$
 where $\lambda_1, \ldots, \lambda_d \in \mathbb{C}$ are all distinct. Hence deduce for a diagonalizable matrix, the degree
 of its minimal polynomial equals the number of distinct eigenvalues.
 (b) Let A be diagonalizable. Let $x_1, \ldots, x_n \in \mathbb{C}^n$ be n linearly independent right eigenvectors,
 i.e., $A x_i = \lambda_i x_i$; and $y_1, \ldots, y_n \in \mathbb{C}^n$ be n linearly independent left eigenvectors, i.e.,
 $y_i^T A = \lambda_i y_i^T$. Show that there is a choice of left and right eigenvectors of A such that any
 vector $v \in \mathbb{C}^n$ can be expressed as
 \[v = \sum_{i=1}^n (y_i^T v)x_i.\]
 If we write $X = [x_1, \ldots, x_n] \in \mathbb{C}^{n \times n}$ and $Y = [y_1, \ldots, y_n] \in \mathbb{C}^{n \times n}$. What is the relation
 between X and Y?