1. Let \(u \in \mathbb{C}^n, u \neq 0 \). A Householder matrix \(H_u \in \mathbb{C}^{n \times n} \) is defined by
\[
H_u = I - \frac{2uu^*}{\|u\|^2}.
\]
(a) Show that \(H_u \) is both Hermitian and unitary.
(b) Show that for any \(\alpha \in \mathbb{C} \), \(\alpha \neq 0 \),
\[
H_{\alpha u} = H_u.
\]
In other words, \(H_u \) only depends on the ‘direction’ of \(u \) and not on its ‘magnitude’.
(c) In general, given a matrix \(M \in \mathbb{C}^{n \times n} \) and a vector \(x \in \mathbb{C}^n \), computing the matrix-vector product \(Mx \) requires \(n \) inner products — one for each row of \(M \) with \(x \). Show that \(H_u x \) can be computed using only two inner products.
(d) Given \(a, b \in \mathbb{C}^n \) where \(a \neq e^{i\theta}b \) for any \(\theta \in [0, 2\pi) \) and \(\|a\|_2 = \|b\|_2 \). Find \(u \in \mathbb{C}^n, u \neq 0 \) such that
\[
H_u a = b.
\]
(e) Show that \(u \) is an eigenvector of \(H_u \). What is the corresponding eigenvalue?
(f) Show that every \(v \in \text{span}\{u\}^\perp \) (cf. orthogonal complement in Homework 3) is an eigenvector of \(H_u \). What are the corresponding eigenvalues? What is \(\dim(\text{span}\{u\}^\perp) \)?
(g) Find the eigenvalue decomposition of \(H_u \), i.e. find a unitary matrix \(U \) and a diagonal matrix \(\Lambda \) such that
\[
H_u = U \Lambda U^*.
\]
(Hint: Gram-Schmidt algorithm).

2. Let \(A \in \mathbb{R}^{m \times n} \) and suppose its complete orthogonal decomposition is given by
\[
A = Q_1 \begin{bmatrix} L & 0 \\ 0 & 0 \end{bmatrix} Q_2^\top,
\]
where \(Q_1 \) and \(Q_2 \) are orthogonal, and \(L \) is an nonsingular lower triangular matrix. Recall that \(X \in \mathbb{R}^{n \times m} \) is the unique pseudo-inverse of \(A \) if the following Moore-Penrose conditions hold:
(i) \(AXA = A \),
(ii) \(XAX = X \),
(iii) \((AX)^\top = AX \),
(iv) \((XA)^\top = XA \)
and in which case we write \(X = A^\dagger \).
(a) Let
\[
A^{-} = Q_2 \begin{bmatrix} L^{-1} & 0 \\ 0 & 0 \end{bmatrix} Q_1^\top, \quad Y \neq 0.
\]
Which of the four conditions (i)–(iv) are satisfied?
(b) Prove that
\[A^\dagger = Q_2 \begin{bmatrix} L^{-1} & 0 \\ 0 & 0 \end{bmatrix} Q_1^\top \]
by letting
\[A^\dagger = Q_2 \begin{bmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{bmatrix} Q_1^\top \]
and by completing the following steps:
- Using (i), prove that \(X_{11} = L^{-1} \).
- Using the symmetry conditions (iii) and (iv), prove that \(X_{12} = 0 \) and \(X_{21} = 0 \).
- Using (ii), prove that \(X_{22} = 0 \).

3. Let \(A \in \mathbb{R}^{m \times n} \), \(b \in \mathbb{R}^m \), and \(c \in \mathbb{R}^n \). We are interested in the least squares problem
\[
\min_{x \in \mathbb{R}^n} \| Ax - b \|_2^2. \tag{3.1}
\]
(a) Show that \(x \) is a solution to (3.1) if and only if \(x \) is a solution to the augmented system
\[
\begin{bmatrix} I & A \\ A^\top & 0 \end{bmatrix} \begin{bmatrix} r \\ x \end{bmatrix} = \begin{bmatrix} b \\ 0 \end{bmatrix}. \tag{3.2}
\]
(b) Show that the \((m + n) \times (m + n)\) matrix in (3.2) is nonsingular if and only if \(A \) has full column rank.
(c) Suppose \(A \) has full column rank and the QR decomposition of \(A \) is
\[A = Q \begin{bmatrix} R \\ 0 \end{bmatrix}. \]
Show that the solution to the augmented system
\[
\begin{bmatrix} I & A \\ A^\top & 0 \end{bmatrix} \begin{bmatrix} y \\ x \end{bmatrix} = \begin{bmatrix} b \\ c \end{bmatrix}
\]
can be computed from
\[
\begin{aligned}
 z &= R^{-\top} c, \\
 d_1 &= Q^\top b,
\end{aligned}
\]
and
\[
\begin{aligned}
 x &= R^{-1}(d_1 - z), \\
 y &= Q \begin{bmatrix} z \\ d_2 \end{bmatrix}.
\end{aligned}
\]
(d) Hence deduce that if \(A \) has full column rank, then
\[A^\dagger = R^{-1} Q_1^\top \]
where \(Q = [Q_1, Q_2] \) with \(Q_1 \in \mathbb{R}^{m \times n} \) and \(Q_2 \in \mathbb{R}^{m \times (m - n)} \). Check that this agrees with the general formula derived for a rank-retaining factorization \(A = GH \) in the lectures.

4. Let \(A \in \mathbb{R}^{m \times n} \). Suppose we apply QR with column pivoting to obtain the decomposition
\[A = Q \begin{bmatrix} R & S \\ 0 & 0 \end{bmatrix} \Pi^\top \]
where \(Q \) is orthogonal and \(R \) is upper triangular and invertible. Let \(x_B \) be the basic solution, i.e.
\[
x_B = \Pi \begin{bmatrix} R^{-1} & 0 \\ 0 & 0 \end{bmatrix} Q^\top b,
\]
and let \(\hat{x} = A^\dagger b \). Show that
\[
\frac{\|x_B - \hat{x}\|_2}{\|\hat{x}\|_2} \leq \|R^{-1}S\|_2.
\]
(Hint: If $\Pi^\top x = (u^\top, v^\top)^\top$ and $Q^\top b = (c^\top, d^\top)^\top$, consider the associated linearly constrained least-squares problem

$$\min \|u\|_2^2 + \|v\|_2^2 \quad \text{s.t.} \quad Ru + Sv = c$$

and write down the augmented system for the constrained problem.)

5. In Homework 3, Problem 4, we discussed solution of the data least squares problem, solving $Ax \approx b$ in a least squares sense when the error occurs only in A. In this problem, we examine what happens when $A \in \mathbb{R}^{n \times n}$ is a symmetric matrix, i.e. $A^\top = A$. In this case, it is natural to assume that the error $E \in \mathbb{R}^{n \times n}$ is also symmetric. Given a symmetric $A \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^n$. Let

$$r = b - Ax$$

where $0 \neq x \in \mathbb{R}^n$. Consider the QR decomposition

$$[x, r] = QR$$

and observe that if $Ex = r$, then

$$(Q^\top EQ)(Q^\top x) = Q^\top r.$$

Show how to compute a symmetric $E \in \mathbb{R}^{n \times n}$ so that it attains

$$\min_{(A+E)x = b} \|E\|_F.$$

6. In the following, $\kappa(A) := \|A\|\|A^\dagger\|$ for $A \in \mathbb{C}^{m \times n}$ where $\|\cdot\|$ denotes a submultiplicative matrix norm. We will write $\kappa_p(A)$ if the norm involved is a matrix p-norm.

(a) Show that for any $A \in \mathbb{C}^{m \times n}$,

$$\kappa(A) \geq 1.$$

(b) Show that for any $A \in \mathbb{C}^{m \times n}$,

$$\kappa_2(A^\ast A) = \kappa_2(A)^2$$

but that in general

$$\kappa(A^\ast A) \neq \kappa(A)^2.$$

(c) Show that for nonsingular $A, B \in \mathbb{C}^{n \times n}$,

$$\kappa(AB) \leq \kappa(A)\kappa(B).$$

Is this true in general without the nonsingular condition?

(d) Let $Q \in \mathbb{C}^{m \times n}$ be a matrix with orthonormal columns. Show that

$$\kappa_2(Q) = 1.$$

Is this true if Q has orthonormal rows instead? Is this true with κ_1 or κ_∞ in place of κ_2?

(e) Let $R \in \mathbb{C}^{n \times n}$ be a nonsingular upper-triangular matrix. Show that

$$\kappa_\infty(R) \geq \max_{i=1,\ldots,n} |r_{ii}| / \min_{i=1,\ldots,n} |r_{ii}|.$$

(f) Let $A \in \mathbb{R}^{m \times n}$. Show that

$$\min_{X \in \mathbb{R}^{n \times m}} \|AX - I_m\|_F$$

has a unique solution when A has full column rank. In general, what is the minimum length solution, i.e. where $\|X\|_F$ is minimum?

(g) Let $b = [b_1, \ldots, b_n]^\top \in \mathbb{R}^n$ and $e = [1, \ldots, 1]^\top \in \mathbb{R}^n$. Solve

$$\min_{\beta \in \mathbb{R}} \|b - \beta e\|_p$$

for $p = 1, 2, \infty$. (Hint: The solutions $\beta_1, \beta_2, \beta_\infty$ are well-known notions in Statistics).