STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2022 LECTURE 3

1. EIGENVALUES AND EIGENVECTORS

• recall: $A \in \mathbb{C}^{n \times n}$, if there exists $\lambda \in \mathbb{C}$ and $\mathbf{0} \neq \mathbf{x} \in \mathbb{C}^n$ such that

$$A\mathbf{x} = \lambda \mathbf{x}$$
,

we call λ an eigenvalue of A and x an eigenvector of A corresponding to λ or λ -eigenvector

- we review some basic properties and terminologies for eigenvalues and eigenvectors
- real matrices can have complex eigenvalues and eigenvectors, an example is

$$S = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

which has eigenvectors $[-i,1]^{\mathsf{T}}$ and $[i,1]^{\mathsf{T}}$ corresponding to eigenvalues i and -i respectively

- eigenvector is a scale invariant notion, if **x** is a λ -eigenvector, then so is $c\mathbf{x}$ for any $c \in \mathbb{C}^{\times}$
- we usually, but not always, require that x be a unit vector, i.e., $\|\mathbf{x}\|_2 = 1$
- note that if \mathbf{x}_1 and \mathbf{x}_2 are λ -eigenvectors, then so is $\mathbf{x}_1 + \mathbf{x}_2$
- for an eigenvalue λ , the subspace

$$V_{\lambda} := \{ \mathbf{x} \in \mathbb{C}^n : A\mathbf{x} = \lambda \mathbf{x} \}$$

is called the λ -eigenspace of A and is the set of all λ -eigenvectors of A together with **0**

• the set of all eigenvalues of A is called its spectrum and often denoted $\lambda(A)$, i.e.,

$$\lambda(A) := \{ \lambda \in \mathbb{C} : A\mathbf{x} = \lambda \mathbf{x} \text{ for some } \mathbf{x} \neq \mathbf{0} \}$$

- an $n \times n$ matrix always have n eigenvalues in $\mathbb C$ counted with multiplicty
- however an $n \times n$ matrix may not have n linear independent eigenvectors, an example is

$$J = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \tag{1.1}$$

which has eigenvalue 0 with multiplicity 2 but only one eigenvector (up to scaling) $\mathbf{x} = [1, 0]^{\mathsf{T}}$

• normally we will sort the eigenvalues in descending order of magnitude

$$|\lambda_1| \ge |\lambda_2| \ge \cdots \ge |\lambda_n|$$

- λ_1 , also denoted λ_{max} , is called the *principle eigenvalue* of A and a λ_{max} -eigenvector is called a *principal eigenvector*
- the eigenvalues of A and A^{T} are identical, i.e., $\lambda(A) = \lambda(A^{\mathsf{T}})$
- the eigenvectors of A^{T} are called *left eigenvectors* of A (and if one needs to make a distinction, the usual eigenvectors are called *right eigenvectors*) and sometimes defined directly via

$$\mathbf{y}^{\mathsf{T}} A = \lambda \mathbf{y}^{\mathsf{T}}$$

• in general, for a nonsymmetric matrix $A \in \mathbb{R}^{n \times n}$, left and right eigenvectors corresponding to the same eigenvalue λ are different

2. EIGENVALUE DECOMPOSITION

• an $n \times n$ matrix A that has n linear independent eigenvectors $\mathbf{x}_1, \dots, \mathbf{x}_n$ is called a *diago-nalizable matrix* since if we write these as columns of a matrix $X = [\mathbf{x}_1, \dots, \mathbf{x}_n]$, then X is necessarily nonsingular and

$$AX = [A\mathbf{x}_1, \dots, A\mathbf{x}_n] = [\lambda_1\mathbf{x}_1, \dots, \lambda_n\mathbf{x}_n] = X \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ & \ddots \\ & & \lambda_n \end{bmatrix} =: X\Lambda$$
 (2.1)

and so

$$A = X\Lambda X^{-1} \tag{2.2}$$

where $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ is a diagonal matrix of eigenvalues

- the decomposition (2.2) is called the eigenvalue decomposition (EVD) of A
- not every matrix has an EVD, an example is J in (1.1)
- summary: a matrix has an EVD iff it has n linearly independent eigenvectors iff it is diagonalizable
- since $\mathbf{x}_1, \dots, \mathbf{x}_n$ form a basis for the domain of A, we call this an eigenbasis
- note that the matrix of eigenvectors X in (2.2) is only required to be non-singular (a.k.a. invertible)
- in general it is difficult to check whether a matrix is diagonalizable
- however there is a special class of matrices for which we check diagonalizability easily, namely, the normal matrices
- a normal matrix is one that commutes with its adjoint, i.e. $A^*A = AA^*$
- recall that $A^* = \bar{A}^{\mathsf{T}}$ is the adjoint or Hermitian conjugate of A
- the matrix J above is not normal

Theorem 1 (Spectral Theorem for Normal Matrices). Let $A \in \mathbb{C}^{n \times n}$. Then A is unitarily diagonalizable iff A has an orthonormal eigenbasis iff A is a normal matrix, i.e.

$$A^*A = AA^*$$
.

iff A has an evd of the form

$$A = V\Lambda V^* \tag{2.3}$$

where $V \in \mathbb{C}^{n \times n}$ is unitary and $\Lambda \in \mathbb{C}^{n \times n}$ is diagonal.

• as in (2.1), $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ consists of the eigenvalues of A and the columns of $V = [\mathbf{v}_1, \dots, \mathbf{v}_n]$ are the eigenvectors of A and are mutually orthonormal, i.e.

$$\mathbf{v}_i^* \mathbf{v}_j = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

- note that by the standard formula for matrix-matrix product, saying the column vectors of $V = [\mathbf{v}_1, \dots, \mathbf{v}_n]$ are mutually orthonormal is the same as saying $V^*V = I = VV^*$ and is the same as saying that V is unitary
- note that by sum-of-rank-one formula for matrix-matrix product, an eigenvalue decomposition (2.3) may also be written as

$$A = \lambda_1 \mathbf{v}_1 \mathbf{v}_1^\mathsf{T} + \dots + \lambda_n \mathbf{v}_n \mathbf{v}_n^\mathsf{T}$$

- a special class of normal matrices are the ones that are equal to their adjoint, i.e. $A^* = A$, and these are called *Hermitian* or self-adjoint matrices
- for Hermitian matrices, we can say more the diagonal matrix Λ in (2.3) is real

Theorem 2 (Spectral Theorem for Hermitian Matrices). Let $A \in \mathbb{C}^{n \times n}$. Then A is unitarily diagonalizable with a real diagonal matrix iff A has an orthonormal eigenbasis and all eigenvalues real iff A is a Hermitian matrix, i.e.

$$A^* = A$$
,

iff A has an EVD of the form

$$A = V\Lambda V^*$$

where $V \in \mathbb{C}^{n \times n}$ is unitary and $\Lambda \in \mathbb{R}^{n \times n}$ is diagonal.

- if we had start from a real matrix $A \in \mathbb{R}^{n \times n}$, then Theorem 2 holds true with 'Hermitian' replaced by symmetric (i.e., $A^{\mathsf{T}} = A$) and 'unitary' replaced by orthogonal (i.e., $V^{\mathsf{T}}V = I =$ VV^{T}
- we have strict inclusions

 $\{\text{real symmetric}\} \subsetneq \{\text{Hermitian}\} \subsetneq \{\text{normal}\} \subsetneq \{\text{diagonalizable}\} \subsetneq \mathbb{C}^{n \times n}$

3. Jordan Canonical form

• if A is not diagonalizable and we want something like a diagonalization, then the best we could do is a Jordan canonical form or Jordan normal form where we get

$$A = XJX^{-1} \tag{3.1}$$

- the matrix J has the following characteristics
 - * it is not diagonal but it is the next best thing to diagonal, namely, bidiagonal, i.e. only the entries a_{ii} and $a_{i,i+1}$ can be non-zero, every other entry in J is 0
 - * the diagonal entries of J are precisely the eigenvalues of A, counted with multiplicity
 - * the superdiagonal entries $a_{i,i+1}$ are as simple as they can be they can take one of two possible values $a_{i,i+1} = 0$ or 1
 - * if $a_{i,i+1} = 0$ for all i, then J is in fact diagonal and (3.1) reduces to the eigenvalue decomposition
- the matrix J is more commonly viewed as a block diagonal matrix

$$J = \begin{bmatrix} J_1 & & \\ & \ddots & \\ & & J_k \end{bmatrix}$$

* each block J_r , for r = 1, ..., k, has the form

$$J_r = \begin{bmatrix} \lambda_r & 1 & & & \\ & \ddots & \ddots & & \\ & & \ddots & 1 & \\ & & & \lambda_r \end{bmatrix}$$

- where J_r is $n_r \times n_r$ * clearly $\sum_{r=1}^k n_r = n$
- the set of column vectors of X are called a *Jordan basis* of A
- in general the Jordan basis X include all eigenvectors of A but also additional vectors that are not eigenvectors of A
- the Jordan canonical form provides valuable information about the eigenvalues of A
- the values λ_i , for $j=1,\ldots,k$, are the eigenvalues of A
- for each distinct eigenvalue λ , the number of Jordan blocks having λ as a diagonal element is equal to the number of linearly independent eigenvectors associated with λ , this number is called the *geometric multiplicity* of the eigenvalue λ

- the sum of the sizes of all of these blocks is called the algebraic multiplicity of λ
- we now consider J_r 's eigenvalues,

$$\lambda(J_r) = \lambda_r, \dots, \lambda_r$$

where λ_r is repeated n_r times, but because

$$J_r - \lambda_r I = \begin{bmatrix} 0 & 1 & & \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ & & & 0 \end{bmatrix}$$

is a matrix of rank $n_r - 1$, it follows that the homogeneous system $(J_r - \lambda_r I)\mathbf{x} = \mathbf{0}$ has only one vector (up to a scalar multiple) for a solution, and therefore there is only one eigenvector associated with this Jordan block

- the unique unit vector that solves $(J_r \lambda_r I)\mathbf{x} = \mathbf{0}$ is the vector $\mathbf{e}_1 = [1, 0, \dots, 0]^\mathsf{T}$
- now consider the matrix

$$(J_r - \lambda_r I)^2 = \begin{bmatrix} 0 & 1 & & & \\ & \ddots & \ddots & & \\ & & \ddots & \ddots & \\ & & & \ddots & 1 \\ & & & & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & & & \\ & \ddots & \ddots & & \\ & & \ddots & \ddots & \\ & & & \ddots & 1 \\ & & & & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & & \\ & \ddots & \ddots & \ddots & \\ & & & \ddots & \ddots & 1 \\ & & & & \ddots & 0 \\ & & & & & 0 \end{bmatrix}$$

- it is easy to see that $(J_r \lambda_r I)^2 \mathbf{e}_2 = 0$
- continuing in this fashion, we can conclude that

$$(J_r - \lambda_r I)^k \mathbf{e}_k = \mathbf{0}, \quad k = 1, \dots, n_r - 1$$

- the Jordan form can be used to easily compute powers of a matrix
- for example,

$$A^2 = XJX^{-1}XJX^{-1} = XJ^2X^{-1}$$

and, in general,

$$A^k = XJ^kX^{-1}$$

• due to its structure, it is easy to compute powers of a Jordan block J_r :

$$J_r^k = \begin{bmatrix} \lambda_r & 1 & & \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ & & & \lambda_r \end{bmatrix}^k = (\lambda_r I + N)^k = \sum_{j=0}^k \binom{k}{j} \lambda_r^{k-j} N^j$$

where

$$N = \begin{bmatrix} 0 & 1 & & \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ & & & 0 \end{bmatrix}$$

is a nilpotent matrix, i.e., $N^d = 0$ for some power d

• the binomial expansion above yields, for $k > n_r$,

$$J_r^k = \begin{bmatrix} \lambda_r^k & \binom{k}{1} \lambda_r^{k-1} & \binom{k}{2} \lambda_r^{k-2} & \cdots & \binom{k}{n_r-1} \lambda_r^{k-(n_r-1)} \\ & \ddots & \ddots & & \vdots \\ & & \ddots & \ddots & & \vdots \\ & & & \ddots & \ddots & \vdots \\ & & & & \ddots & \ddots & \vdots \\ & & & & & \lambda_r^k \end{bmatrix}$$
(3.2)

• for example,

$$\begin{bmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{bmatrix}^3 = \begin{bmatrix} \lambda^3 & 3\lambda^2 & 3\lambda \\ 0 & \lambda^3 & 3\lambda^2 \\ 0 & 0 & \lambda^3 \end{bmatrix}$$

- we now consider an application of the Jordan canonical form
 - consider the system of differential equations

$$\mathbf{y}'(t) = A\mathbf{y}(t), \quad \mathbf{y}(t_0) = \mathbf{y}_0$$

- using the Jordan form, we can rewrite this system as

$$\mathbf{y}'(t) = XJX^{-1}\mathbf{y}(t)$$

- ultiplying through by X^{-1} yields

$$X^{-1}\mathbf{y}'(t) = JX^{-1}\mathbf{y}(t)$$

which can be rewritten as

$$\mathbf{z}'(t) = J\mathbf{z}(t)$$

where $\mathbf{z} = X^{-1}\mathbf{y}(t)$

- this new system has the initial condition

$$\mathbf{z}(t_0) = \mathbf{z}_0 = X^{-1}\mathbf{y}_0$$

- if we assume that J is a diagonal matrix (which is true in the case where A has a full set of linearly independent eigenvectors), then the system decouples into scalar equations of the form

$$z_i'(t) = \lambda_i z_i(t),$$

where λ_i is an eigenvalue of A

- this equation has the solution

$$z_i(t) = e^{\lambda_i(t-t_0)} z_i(0),$$

and therefore the solution to the original system is

$$\mathbf{y}(t) = X \begin{bmatrix} e^{\lambda_1(t-t_0)} & & \\ & \ddots & \\ & & e^{\lambda_n(t-t_0)} \end{bmatrix} X^{-1} \mathbf{y}_0$$

- Jordan canonical form suffers however from one major defect that makes them useless in practice: they cannot be computed in finite precision or in the presence of rounding errors in general, a result of Golub and Wilkinson
- that is why you won't find a MATLAB function for Jordan canonical form

4. Spectral radius

- matrix 2-norm is also known as the spectral norm
- name is connected to the fact that the norm is given by the square root of the largest eigenvalue of $A^{\mathsf{T}}A$, i.e., largest singular value of A (more on this later)
- in general, the spectral radius $\rho(A)$ of a matrix $A \in \mathbb{C}^{n \times n}$ is defined in terms of its largest eigenvalue

$$\rho(A) = \max\{|\lambda_i| : A\mathbf{x}_i = \lambda_i \mathbf{x}_i, \ \mathbf{x}_i \neq \mathbf{0}\}\$$

- note that the spectral radius does not define a norm on $\mathbb{C}^{n\times n}$
- for example the non-zero matrix

$$J = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

has $\rho(J) = 0$ since both its eigenvalues are 0

- there are some relationships between the norm of a matrix and its spectral radius
- the easiest one is that

$$\rho(A) \leq ||A||$$

for any matrix norm that satisfies the inequality $||A\mathbf{x}|| \leq ||A|| ||\mathbf{x}||$ for all $\mathbf{x} \in \mathbb{C}^n$, i.e., consistent norm

- here's a proof:

$$A\mathbf{x}_i = \lambda_i \mathbf{x}_i$$

taking norms,

$$||A\mathbf{x}_i|| = ||\lambda_i\mathbf{x}_i|| = |\lambda_i|||\mathbf{x}_i||$$

therefore

$$|\lambda_i| = \frac{\|A\mathbf{x}_i\|}{\|\mathbf{x}_i\|} \le \|A\|$$

since this holds for any eigenvalue of A, it follows that

$$\max_{i} |\lambda_i| = \rho(A) \le ||A||$$

- in particular this is true for any operator norm
- this is in general not true for norms that do not satisfy the consistency inequality $||A\mathbf{x}|| \le ||A|| ||\mathbf{x}||$ (thanks to Likai Chen for pointing out); for example the matrix

$$A = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix}$$

is orthogonal and therefore $\rho(A) = 1$ but $||A||_{H,\infty} = 1/\sqrt{2}$ and so $\rho(A) > ||A||_{H,\infty}$

- exercise: show that any eigenvalue of a unitary or an orthogonal matrix must have absolute value 1
- on the other hand, the following characterization is true for any matrix norm, even the inconsistent ones

$$\rho(A) = \lim_{m \to \infty} ||A^m||^{1/m}$$

• we can also get an upper bound for any particular matrix (but not for all matrices)

Theorem 3. Let $A \in \mathbb{C}^{n \times n}$ and $\varepsilon > 0$. There exists an operator norm $\|\cdot\|_{\alpha}$ of the form

$$||A||_{\alpha} = \max_{\mathbf{x} \neq 0} \frac{||A\mathbf{x}||_{\alpha}}{||\mathbf{x}||_{\alpha}},$$

where $\|\cdot\|_{\alpha}$ is a norm on \mathbb{C}^n , such that

$$||A||_{\alpha} \le \rho(A) + \epsilon.$$

The norm $\|\cdot\|_{\alpha}$ is dependent on A and ε .

- this result suggests that the largest eigenvalue of a matrix can be easily approximated
- here is an example, let

$$A = \begin{bmatrix} 2 & -1 \\ -1 & 2 & -1 \\ & \ddots & \ddots & \ddots \\ & & -1 & 2 & 1 \\ & & & -1 & 2 \end{bmatrix}$$

- the eigenvalues of this matrix, which arises frequently in numerical methods for solving differential equations, are known to be

$$\lambda_j = 2 + 2\cos\frac{j\pi}{n+1}, \quad j = 1, 2, \dots, n$$

the largest eigenvalue is

$$|\lambda_1| = 2 + 2\cos\frac{\pi}{n+1} \le 4$$

and $||A||_{\infty} = 4$, so in this case, the ∞ -norm provides an excellent approximation – on the other hand, suppose

$$A = \begin{bmatrix} 1 & 10^6 \\ 0 & 1 \end{bmatrix}$$

we have $||A||_{\infty} = 10^6 + 1$, but $\rho(A) = 1$, so in this case the norm yields a poor approximation

- however, suppose

$$D = \begin{bmatrix} \varepsilon & 0 \\ 0 & 1 \end{bmatrix}$$

then

$$DAD^{-1} = \begin{bmatrix} 1 & 10^6 \varepsilon \\ 0 & 1 \end{bmatrix}$$

and $||DAD^{-1}||_{\infty} = 1 + 10^{-6}\epsilon$, which for sufficiently small ε , yields a much better approximation to $\rho(DAD^{-1}) = \rho(A)$.

- if ||A|| < 1 for some submultiplicative norm, then $||A^m|| \le ||A||^m \to 0$ as $m \to \infty$
- since ||A|| is a continuous function of the elements of A, it follows that $A^m \to O$, i.e., every entry of A^m goes to 0
- however, if ||A|| > 1, it does not follow that $||A^m|| \to \infty$
- note that the submultiplicative property implies that

$$||A^n|| \le ||A||^n$$

- so if ||A|| < 1, then, as $n \to \infty$, $||A^n|| \to 0$
- if $||A^n|| \to 0$, then $A^n \to O$, i.e. each entry of A^n converges to 0, by the continuity of norms
- the condition ||A|| < 1 is not necessary for $A^n \to 0$
 - example:

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

has $||A||_1 = 1$ but $A^2 = A^3 = \dots = O$

– the above example is a *nilpotent* matrix, i.e., has the property that $A^n = O$ for some finite $n \in \mathbb{N}$

- another example:

$$A = \begin{bmatrix} 0 & \frac{1}{2} & 0\\ \frac{1}{2} & 0 & \frac{1}{2}\\ 0 & \frac{1}{2} & 0 \end{bmatrix}$$

has $||A||_{\infty} = 1$ but $A^n \to O$

• for example, suppose

$$A = \begin{bmatrix} 0.99 & 10^6 \\ 0 & 0.99 \end{bmatrix}$$

in this case, $||A||_{\infty} > 1$, we claim that because $\rho(A) < 1$, $A^m \to O$ and so $||A^m|| \to 0$

• let us prove this more generally, in fact we claim the following

Lemma 1. $\lim_{m\to\infty} A^m = O$ if and only if $\rho(A) < 1$.

Proof. (\Rightarrow) Let $A\mathbf{x} = \lambda \mathbf{x}$ with $\mathbf{x} \neq \mathbf{0}$. Then $A^m \mathbf{x} = \lambda^m \mathbf{x}$. Taking limits

$$\left(\lim_{m\to\infty}\lambda^m\right)\mathbf{x} = \lim_{m\to\infty}\lambda^m\mathbf{x} = \lim_{m\to\infty}A^m\mathbf{x} = \left(\lim_{m\to\infty}A^m\right)\mathbf{x} = O\mathbf{x} = \mathbf{0}.$$

Since $\mathbf{x} \neq \mathbf{0}$, we must have $\lim_{m \to \infty} \lambda^m = 0$ and thus $|\lambda| < 1$. Hence $\rho(A) < 1$.

(\Leftarrow) Since $\rho(A) < 1$, there exists some operator norm $\|\cdot\|_{\alpha}$ such that $\|A\|_{\alpha} < 1$ by Theorem 3. So $\|A^m\|_{\alpha} \leq \|A\|_{\alpha}^m \to 0$ and so $A^m \to O$.

ullet alternatively, the second part above may also be proved directly via the Jordan form of A and the expression

for sufficiently large k without using Theorem 3).

• in Homework 1 we will see that if for some operator norm, ||A|| < 1, then I - A is nonsingular