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To the memory of my parents





. . . vessels, unable to contain the great light flowing into them, shatter and
break. . . . the remains of the broken vessels fall . . . into the lowest world, where
they remain scattered and hidden

— D. W. Menzi and Z. Padeh,
The Tree of Life, Chayyim Vital’s
Introduction to the Kabbalah of
Isaac Luria, Jason Aaronson,
Northvale, 1999

Thor . . . placed the horn to his lips . . . He drank with all his might and kept
drinking as long as ever he was able; when he paused to look, he could see that the
level had sunk a little, . . . for the other end lay out in the ocean itself.

— P. A. Munch, Norse Mythology,
AMS Press, New York, 1970
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Preface to the Second Edition

This second edition of Matrix Mathematics represents a major expansion of the
original work. While the total number of pages is increased 46% from 752 to 1100,
the increase is actually greater since this edition is typeset in a smaller font to
facilitate a manageable physical size.

The second edition expands on the first edition in several ways. For example,
the new version includes material on graphs (developed within the framework of
relations and partially ordered sets), as well as alternative partial orderings of
matrices, such as rank subtractivity, star, and generalized Löwner. This edition also
includes additional material on the Kronecker canonical form and matrix pencils;
realizations of finite groups; zeros of multi-input, multi-output transfer functions;
identities and inequalities for real and complex numbers; bounds on the roots of
polynomials; convex functions; and vector and matrix norms.

The additional material as well as works published subsequent to the first edition
increased the number of cited works from 820 to 1503, an increase of 83%. To
increase the utility of the bibliography, this edition uses the “back reference” feature
of LATEX, which indicates where each reference is cited in the text. As in the first
edition, the second edition includes an author index. The expansion of the first
edition resulted in an increase in the size of the index from 108 pages to 156 pages.

The first edition included 57 problems, while the current edition has 73. These
problems represent various extensions or generalizations of known results, some-
times motivated by gaps in the literature.

In this edition, I have attempted to correct all errors that appeared in the first
edition. As with the first edition, readers are encouraged to contact me about errors
or omissions in the current edition, which I will periodically update on my home
page.

Acknowledgments

I am grateful to many individuals who graciously provided useful advice and ma-
terial for this edition. Some readers alerted me to errors, while others suggested
additional material. In other cases I sought out researchers to help me understand
the precise nature of interesting results. At the risk of omitting those who were help-
ful, I am pleased to acknowledge the following: Mark Balas, Jason Bernstein, Vijay
Chellaboina, Sever Dragomir, Harry Dym, Masatoshi Fujii, Rishi Graham, Was-
sim Haddad, Nicholas Higham, Diederich Hinrichsen, Iman Izadi, Pierre Kabamba,



xvi PREFACE TO THE SECOND EDITION

Marthe Kassouf, Christopher King, Michael Margliot, Roy Mathias, Peter Mercer,
Paul Otanez, Bela Palancz, Harish Palanthandalam-Madapusi, Fotios Paliogiannis,
Wei Ren, Mario Santillo, Christoph Schmoeger, Wasin So, Robert Sullivan, Yongge
Tian, Panagiotis Tsiotras, Götz Trenkler, Chenwei Zhang, and Fuzhen Zhang.

As with the first edition, I am especially indebted to my family, who endured three
more years of my consistent absence to make this revision a reality. It is clear that
any attempt to fully embrace the enormous body of mathematics known as matrix
theory is a neverending task. After committing almost two decades to the project, I
remain, like Thor, barely able to perceive a dent in the vast knowledge that resides
in the hundreds of thousands of pages devoted to this fascinating and incredibly
useful subject. Yet, it my hope, that this book will prove to be valuable to all of
those who use matrices, and will inspire interest in a mathematical construction
whose secrets and mysteries know no bounds.

Dennis S. Bernstein
Ann Arbor, Michigan
dsbaero@umich.edu
October 2008



Preface to the First Edition

The idea for this book began with the realization that at the heart of the solution
to many problems in science, mathematics, and engineering often lies a “matrix
fact,” that is, an identity, inequality, or property of matrices that is crucial to the
solution of the problem. Although there are numerous excellent books on linear
algebra and matrix theory, no one book contains all or even most of the vast number
of matrix facts that appear throughout the scientific, mathematical, and engineering
literature. This book is an attempt to organize many of these facts into a reference
source for users of matrix theory in diverse applications areas.

Viewed as an extension of scalar mathematics, matrix mathematics provides the
means to manipulate and analyze multidimensional quantities. Matrix mathematics
thus provides powerful tools for a broad range of problems in science and engineer-
ing. For example, the matrix-based analysis of systems of ordinary differential equa-
tions accounts for interaction among all of the state variables. The discretization of
partial differential equations by means of finite differences and finite elements yields
linear algebraic or differential equations whose matrix structure reflects the nature
of physical solutions [1238]. Multivariate probability theory and statistical analysis
use matrix methods to represent probability distributions, to compute moments,
and to perform linear regression for data analysis [504, 606, 654, 702, 947, 1181].
The study of linear differential equations [691, 692, 727] depends heavily on matrix
analysis, while linear systems and control theory are matrix-intensive areas of en-
gineering [3, 65, 142, 146, 311, 313, 348, 371, 373, 444, 502, 616, 743, 852, 865, 935,
1094, 1145, 1153, 1197, 1201, 1212, 1336, 1368, 1455, 1498]. In addition, matrices
are widely used in rigid body dynamics [26, 726, 733, 789, 806, 850, 970, 1026,
1068, 1069, 1185, 1200, 1222, 1351], structural mechanics [863, 990, 1100], compu-
tational fluid dynamics [305, 479, 1426], circuit theory [30], queuing and stochastic
systems [642, 919, 1034], econometrics [403, 948, 1119], geodesy [1241], game theory
[225, 898, 1233], computer graphics [62, 498], computer vision [941], optimization
[255, 374, 953], signal processing [702, 1163, 1361], classical and quantum infor-
mation theory [353, 702, 1042, 1086], communications systems [778, 779], statistics
[580, 654, 948, 1119, 1177], statistical mechanics [16, 159, 160, 1372], demography
[297, 805], combinatorics, networks, and graph theory [165, 128, 179, 223, 235, 266,
269, 302, 303, 335, 363, 405, 428, 481, 501, 557, 602, 702, 844, 920, 931, 1143, 1387],
optics [549, 659, 798], dimensional analysis [641, 1252], and number theory [841].

In all applications involving matrices, computational techniques are essential for
obtaining numerical solutions. The development of efficient and reliable algorithms
for matrix computations is therefore an important area of research that has been
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extensively developed [95, 304, 396, 569, 681, 683, 721, 752, 1224, 1225, 1227, 1229,
1315, 1369, 1427, 1431, 1433, 1478]. To facilitate the solution of matrix problems,
entire computer packages have been developed using the language of matrices. How-
ever, this book is concerned with the analytical properties of matrices rather than
their computational aspects.

This book encompasses a broad range of fundamental questions in matrix the-
ory, which, in many cases can be viewed as extensions of related questions in scalar
mathematics. A few such questions follow.

What are the basic properties of matrices? How can matrices be
characterized, classified, and quantified?

How can a matrix be decomposed into simpler matrices? A matrix
decomposition may involve addition, multiplication, and partition.
Decomposing a matrix into its fundamental components provides
insight into its algebraic and geometric properties. For example, the
polar decomposition states that every square matrix can be written
as the product of a rotation and a dilation analogous to the polar
representation of a complex number.

Given a pair of matrices having certain properties, what can be
inferred about the sum, product, and concatenation of these matrices?
In particular, if a matrix has a given property, to what extent does that
property change or remain unchanged if the matrix is perturbed by
another matrix of a certain type by means of addition, multiplication,
or concatenation? For example, if a matrix is nonsingular, how large
can an additive perturbation to that matrix be without the sum
becoming singular?

How can properties of a matrix be determined by means of simple
operations? For example, how can the location of the eigenvalues of a
matrix be estimated directly in terms of the entries of the matrix?

To what extent do matrices satisfy the formal properties of the real
numbers? For example, while 0 ≤ a ≤ b implies that ar ≤ br for real
numbers a, b and a positive integer r, when does 0 ≤ A ≤ B imply
Ar ≤ Br for positive-semidefinite matrices A and B and with the
positive-semidefinite ordering?

Questions of these types have occupied matrix theorists for at least a century,
with motivation from diverse applications. The existing scope and depth of knowl-
edge are enormous. Taken together, this body of knowledge provides a powerful
framework for developing and analyzing models for scientific and engineering ap-
plications.

This book is intended to be useful to at least four groups of readers. Since
linear algebra is a standard course in the mathematical sciences and engineering,
graduate students in these fields can use this book to expand the scope of their
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linear algebra text. For instructors, many of the facts can be used as exercises to
augment standard material in matrix courses. For researchers in the mathematical
sciences, including statistics, physics, and engineering, this book can be used as
a general reference on matrix theory. Finally, for users of matrices in the applied
sciences, this book will provide access to a large body of results in matrix theory.
By collecting these results in a single source, it is my hope that this book will prove
to be convenient and useful for a broad range of applications. The material in this
book is thus intended to complement the large number of classical and modern texts
and reference works on linear algebra and matrix theory [10, 376, 503, 540, 541,
558, 586, 701, 790, 872, 939, 956, 963, 1008, 1045, 1051, 1098, 1143, 1194, 1238].

After a review of mathematical preliminaries in Chapter 1, fundamental proper-
ties of matrices are described in Chapter 2. Chapter 3 summarizes the major classes
of matrices and various matrix transformations. In Chapter 4 we turn to polyno-
mial and rational matrices whose basic properties are essential for understanding
the structure of constant matrices. Chapter 5 is concerned with various decompo-
sitions of matrices including the Jordan, Schur, and singular value decompositions.
Chapter 6 provides a brief treatment of generalized inverses, while Chapter 7 de-
scribes the Kronecker and Schur product operations. Chapter 8 is concerned with
the properties of positive-semidefinite matrices. A detailed treatment of vector and
matrix norms is given in Chapter 9, while formulas for matrix derivatives are given
in Chapter 10. Next, Chapter 11 focuses on the matrix exponential and stability
theory, which are central to the study of linear differential equations. In Chapter
12 we apply matrix theory to the analysis of linear systems, their state space re-
alizations, and their transfer function representation. This chapter also includes a
discussion of the matrix Riccati equation of control theory.

Each chapter provides a core of results with, in many cases, complete proofs.
Sections at the end of each chapter provide a collection of Facts organized to cor-
respond to the order of topics in the chapter. These Facts include corollaries and
special cases of results presented in the chapter, as well as related results that go
beyond the results of the chapter. In some cases the Facts include open problems,
illuminating remarks, and hints regarding proofs. The Facts are intended to provide
the reader with a useful reference collection of matrix results as well as a gateway
to the matrix theory literature.

Acknowledgments

The writing of this book spanned more than a decade and a half, during which
time numerous individuals contributed both directly and indirectly. I am grate-
ful for the helpful comments of many people who contributed technical material
and insightful suggestions, all of which greatly improved the presentation and con-
tent of the book. In addition, numerous individuals generously agreed to read
sections or chapters of the book for clarity and accuracy. I wish to thank Jasim
Ahmed, Suhail Akhtar, David Bayard, Sanjay Bhat, Tony Bloch, Peter Bullen,
Steve Campbell, Agostino Capponi, Ramu Chandra, Jaganath Chandrasekhar,
Nalin Chaturvedi, Vijay Chellaboina, Jie Chen, David Clements, Dan Davison,
Dimitris Dimogianopoulos, Jiu Ding, D. Z. Djokovic, R. Scott Erwin, R. W. Fare-
brother, Danny Georgiev, Joseph Grcar, Wassim Haddad, Yoram Halevi, Jesse
Hoagg, Roger Horn, David Hyland, Iman Izadi, Pierre Kabamba, Vikram Kapila,
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Fuad Kittaneh, Seth Lacy, Thomas Laffey, Cedric Langbort, Alan Laub, Alexan-
der Leonessa, Kai-Yew Lum, Pertti Makila, Roy Mathias, N. Harris McClamroch,
Boris Mordukhovich, Sergei Nersesov, JinHyoung Oh, Concetta Pilotto, Harish
Palanthandalum-Madapusi, Michael Piovoso, Leiba Rodman, Phil Roe, Carsten
Scherer, Wasin So, Andy Sparks, Edward Tate, Yongge Tian, Panagiotis Tsiotras,
Feng Tyan, Ravi Venugopal, Jan Willems, Hong Wong, Vera Zeidan, Xingzhi Zhan,
and Fuzhen Zhang for their assistance. Nevertheless, I take full responsibility for
any remaining errors, and I encourage readers to alert me to any mistakes, correc-
tions of which will be posted on the web. Solutions to the open problems are also
welcome.

Portions of the manuscript were typed by Jill Straehla and Linda Smith at Harris
Corporation, and by Debbie Laird, Kathy Stolaruk, and Suzanne Smith at the
University of Michigan. John Rogosich of Techsetters, Inc., provided invaluable
assistance with LATEX issues, and Jennifer Slater carefully copyedited the entire
manuscript. I also thank JinHyoung Oh and Joshua Kang for writing C code to
refine the index.

I especially thank Vickie Kearn of Princeton University Press for her wise guid-
ance and constant encouragement. Vickie managed to address all of my concerns
and anxieties, and helped me improve the manuscript in many ways.

Finally, I extend my greatest appreciation for the (uncountably) infinite patience
of my family, who endured the days, weeks, months, and years that this project
consumed. The writing of this book began with toddlers and ended with a teenager
and a twenty-year old. We can all be thankful it is finally finished.

Dennis S. Bernstein
Ann Arbor, Michigan
dsbaero@umich.edu
January 2005



Special Symbols

General Notation

π 3.14159 . . .

e 2.71828 . . .
�= equals by definition

limε↓0 limit from the right(
α
m

) α(α−1)···(α−m+1)
m!(

n
m

)
n!

m!(n−m)!

�a� largest integer less than or equal to a

δij 1 if i = j, 0 if i �= j (Kronecker delta)

log logarithm with base e

signα 1 if α > 0, −1 if α < 0, 0 if α = 0

Chapter 1

{ } set (p. 2)

∈ is an element of (p. 2)

�∈ is not an element of (p. 2)

∅ empty set (p. 2)

{ }ms multiset (p. 2)

card cardinality (p. 2)

∩ intersection (p. 2)

∪ union (p. 2)

Y\X complement of X relative to Y (p. 2)

X∼ complement of X (p. 2)



xxii SPECIAL SYMBOLS

⊆ is a subset of (p. 2)

⊂ is a proper subset of (p. 3)

(x1, . . . , xn) tuple or n-tuple (p. 3)

Graph(f) {(x, f(x)): x ∈ X} (p. 3)

f: X �→ Y f is a function with domain X and codomain
Y (p. 3)

f • g composition of functions f and g (p. 3)

f−1(S) inverse image of S (p. 4)

rev(R) reversal of the relation R (p. 5)

R∼ complement of the relation R (p. 5)

ref(R) reflexive hull of the relation R (p. 5)

sym(R) symmetric hull of the relation R (p. 5)

trans(R) transitive hull of the relation R (p. 5)

equiv(R) equivalence hull of the relation R (p. 5)

x R= y (x, y) is an element of the equivalence relation
R (p. 6)

glb(S) greatest lower bound of S (p. 7, Definition
1.3.9)

lub(S) least upper bound of S (p. 7, Definition 1.3.9)

inf(S) infimum of S (p. 7, Definition 1.3.9)

sup(S) supremum of S (p. 7, Definition 1.3.9)

rev(G) reversal of the graph G (p. 8)

G∼ complement of the graph G (p. 8)

ref(G) reflexive hull of the graph G (p. 8)

sym(G) symmetric hull of the graph G (p. 8)

trans(G) transitive hull of the graph G (p. 8)

equiv(G) equivalence hull of the graph G (p. 8)

indeg(x) indegree of the node x (p. 9)

outdeg(x) outdegree of the node x (p. 9)

deg(x) degree of the node x (p. 9)

Chapter 2

Z integers (p. 77)

N nonnegative integers (p. 77)
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P positive integers (p. 77)

R real numbers (p. 77)

C complex numbers (p. 77)

F R or C (p. 77)

j
√−1 (p. 77)

z complex conjugate of z ∈ C (p. 77)

Re z real part of z ∈ C (p. 77)

Im z imaginary part of z ∈ C (p. 77)

|z| absolute value of z ∈ C (p. 77)

OLHP open left half plane in C (p. 77)

CLHP closed left half plane in C (p. 77)

ORHP open right half plane in C (p. 77)

CRHP closed right half plane in C (p. 77)

jR imaginary numbers (p. 77)

Rn Rn×1 (real column vectors) (p. 78)

C
n

C
n×1 (complex column vectors) (p. 78)

Fn Rn or Cn (p. 78)

x(i) ith component of x ∈ Fn (p. 78)

x ≥≥ y x(i) ≥ y(i) for all i (x − y is nonnegative)
(p. 79)

x >> y x(i) > y(i) for all i (x − y is positive) (p. 79)

Rn×m n×m real matrices (p. 79)

Cn×m n×m complex matrices (p. 79)

Fn×m Rn×m or Cn×m (p. 79)

rowi(A) ith row of A (p. 79)

coli(A) ith column of A (p. 79)

A(i,j) (i, j) entry of A (p. 79)

A
i← b matrix obtained from A ∈ Fn×m by replacing

coli(A) with b ∈ Fn or rowi(A) with b ∈ F1×m

(p. 80)

dmax(A) �= d1(A) largest diagonal entry of A ∈ Fn×n having real
diagonal entries (p. 80)

di(A) ith largest diagonal entry of A ∈ Fn×n having
real diagonal entries (p. 80)
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dmin(A) �= dn(A) smallest diagonal entry of A ∈ Fn×n having
real diagonal entries (p. 80)

A(S1,S2) submatrix of A formed by retaining the rows
of A listed in S1 and the columns of A listed
in S2 (p. 80)

A(S) A(S,S) (p. 80)

A ≥≥B A(i,j) ≥ B(i,j) for all i, j (A−B is
nonnegative) (p. 81)

A >>B A(i,j) > B(i,j) for all i, j (A−B is positive)
(p. 81)

[A,B] commutator AB −BA (p. 82)

adA(X) adjoint operator [A,X ] (p. 82)

x× y cross product of vectors x, y ∈ R3 (p. 82)

K(x) cross-product matrix for x ∈ R3 (p. 82)

0n×m, 0 n×m zero matrix (p. 83)

In, I n× n identity matrix (p. 83)

ei,n, ei coli(In) (p. 84)

În, Î n× n reverse identity matrix

[
0 1

. .
.

1 0

]
(p. 84)

Ei,j,n×m, Ei,j ei,ne
T
j,m (p. 84)

1n×m, 1 n×m ones matrix (p. 84)

AT transpose of A (p. 86)

trA trace of A (p. 86)

C complex conjugate of C ∈ Cn×m (p. 87)

A∗ A
T

conjugate transpose of A (p. 87)

ReA real part of A ∈ Fn×m (p. 87)

ImA imaginary part of A ∈ Fn×m (p. 87)

S {Z : Z ∈ S} or {Z : Z ∈ S}ms (p. 87)

AT̂ ÎATÎ reverse transpose of A (p. 88)

A∗̂ ÎA∗Î reverse complex conjugate transpose of A
(p. 88)

|x| absolute value of x ∈ Fn (p. 88)

|A| absolute value of A ∈ Fn×n (p. 88)

signx sign of x ∈ Rn (p. 89)

signA sign of A ∈ Rn×n (p. 89)
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co S convex hull of S (p. 89)

coneS conical hull of S (p. 89)

coco S convex conical hull of S (p. 89)

spanS span of S (p. 90)

aff S affine hull of S (p. 90)

dim S dimension of S (p. 90)

S⊥ orthogonal complement of S (p. 91)

polarS polar of S (p. 91)

dconeS dual cone of S (p. 91)

R(A) range of A (p. 93)

N(A) null space of A (p. 94)

rankA rank of A (p. 95)

def A defect of A (p. 96)

AL left inverse of A (p. 98)

AR right inverse of A (p. 98)

A−1 inverse of A (p. 101)

A−T
(
AT
)−1 (p. 102)

A−∗ (A∗)−1 (p. 102)

detA determinant of A (p. 103)

A[i;j] submatrix A({i}∼,{j}∼) of A obtained by
deleting rowi(A) and colj(A) (p. 105)

AA adjugate of A (p. 105)

A
rs≤ B rank subtractivity partial ordering (p. 119, Fact

2.10.32)

A
∗≤ B star partial ordering (p. 120, Fact 2.10.35)

Chapter 3

Nn, N n× n standard nilpotent matrix (p. 166)

diag(a1, . . . , an)

[
a1 0

. . .

0 an

]
(p. 167)

revdiag(a1, . . . , an)

[
0 a1

. .
.

an 0

]
(p. 167)
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diag(A1, . . . , Ak) block-diagonal matrix

⎡
⎢⎣

A1 0

. . .

0 Ak

⎤
⎥⎦, where

Ai ∈ Fni×mi (p. 167)

J2n, J
[

0 In
−In 0

]
(p. 169)

glF(n), plC(n), slF(n),
u(n), su(n), so(n),
sympF(2n), osympF(2n),
affF(n), seF(n), transF(n)

Lie algebras (p. 171)

GLF(n), PLF(n), SLF(n),
U(n), O(n), U(n,m),
O(n,m), SU(n), SO(n),
SympF(2n), OSympF(2n),
AffF(n), SEF(n), TransF(n)

groups (p. 172)

A⊥ complementary idempotent matrix or
projector I −A corresponding to the
idempotent matrix or projector A (p. 175)

indA index of A (p. 176)

H quaternions (p. 225, Fact 3.22.1)

Chapter 4

F[s] polynomials with coefficients in F (p. 231)

deg p degree of p ∈ F[s] (p. 231)

mroots(p) multiset of roots of p ∈ F[s] (p. 232)

roots(p) set of roots of p ∈ F[s] (p. 232)

multp(λ) multiplicity of λ as a root of p ∈ F[s] (p. 232)

Fn×m[s] n×m matrices with entries in F[s] (n×m
polynomial matrices with coefficients in F)
(p. 234)

rankP rank of P ∈ Fn×m[s] (p. 235)

Szeros(P ) set of Smith zeros of P ∈ Fn×m[s] (p. 237)

mSzeros(P ) multiset of Smith zeros of P ∈ Fn×m[s]
(p. 237)

χA characteristic polynomial of A (p. 240)

λmax(A) �= λ1(A) largest eigenvalue of A ∈ Fn×n having real
eigenvalues (p. 240)
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λi(A) ith largest eigenvalue of A ∈ Fn×n having real
eigenvalues (p. 240)

λmin(A) �= λn(A) smallest eigenvalue of A ∈ Fn×n having real
eigenvalues (p. 240)

amultA(λ) algebraic multiplicity of λ ∈ spec(A) (p. 240)

spec(A) spectrum of A (p. 240)

mspec(A) multispectrum of A (p. 240)

gmultA(λ) geometric multiplicity of λ ∈ spec(A) (p. 245)

spabs(A) spectral abscissa of A (p. 245)

sprad(A) spectral radius of A (p. 245)

ν−(A), ν0(A), ν+(A) number of eigenvalues of A counting algebraic
multiplicity having negative, zero, and
positive real part, respectively (p. 245)

InA inertia of A, that is, [ν−(A) ν0(A) ν+(A)]T

(p. 245)

sigA signature of A, that is, ν+(A)− ν−(A) (p. 245)

μA minimal polynomial of A (p. 247)

F(s) rational functions with coefficients in F (SISO
rational transfer functions) (p. 249)

Fprop(s) proper rational functions with coefficients in F

(SISO proper rational transfer functions)
(p. 249)

reldeg g relative degree of g ∈ Fprop(s) (p. 249)

Fn×m(s) n × m matrices with entries in F(s) (MIMO
rational transfer functions) (p. 249)

Fn×mprop (s) n×m matrices with entries in Fprop(s) (MIMO
proper rational transfer functions) (p. 249)

reldegG relative degree of G ∈ Fn×mprop (s) (p. 249)

rankG rank of G ∈ Fn×m(s) (p. 249)

poles(G) set of poles of G ∈ Fn×m(s) (p. 249)

bzeros(G) set of blocking zeros of G ∈ Fn×m(s) (p. 249)

McdegG McMillan degree of G ∈ F
n×m(s) (p. 251)

tzeros(G) set of transmission zeros of G ∈ Fn×m(s)
(p. 251)

mpoles(G) multiset of poles of G ∈ Fn×m(s) (p. 251)

mtzeros(G) multiset of transmission zeros of G ∈ Fn×m(s)
(p. 251)
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mbzeros(G) multiset of blocking zeros of G ∈ Fn×m(s)
(p. 251)

B(p, q) Bezout matrix of p, q ∈ F[s] (p. 255, Fact 4.8.6)

H(g) Hankel matrix of g ∈ F(s) (p. 257, Fact 4.8.8)

Chapter 5

C(p) companion matrix for monic polynomial p
(p. 283)

Hl(q) l× l or 2l× 2l hypercompanion matrix (p. 288)

Jl(q) l × l or 2l× 2l real Jordan matrix (p. 289)

indA(λ) index of λ with respect to A (p. 295)

σi(A) ith largest singular value of A ∈ Fn×m (p. 301)

σmax(A) �= σ1(A) largest singular value of A ∈ Fn×m (p. 301)

σmin(A) �= σn(A) minimum singular value of A ∈ Fn×n (p. 301)

PA,B pencil of (A,B), where A,B ∈ F
n×n (p. 304)

spec(A,B) generalized spectrum of (A,B), where
A,B ∈ Fn×n (p. 304)

mspec(A,B) generalized multispectrum of (A,B), where
A,B ∈ Fn×n (p. 304)

χA,B characteristic polynomial of (A,B), where
A,B ∈ Fn×n (p. 305)

V (λ1, . . . , λn) Vandermonde matrix (p. 354, Fact 5.16.1)

circ(a0, . . . , an−1) circulant matrix of a0, . . . , an−1 ∈ F (p. 355,
Fact 5.16.7)

Chapter 6

A+ (Moore-Penrose) generalized inverse of A
(p. 363)

D|A Schur complement of D with respect to A

(p. 367)

AD Drazin generalized inverse of A (p. 367)

A# group generalized inverse of A (p. 369)
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Chapter 7

vecA vector formed by stacking columns of A
(p. 399)

⊗ Kronecker product (p. 400)

Pn,m Kronecker permutation matrix (p. 402)

⊕ Kronecker sum (p. 403)

A ◦B Schur product of A and B (p. 404)

A◦α Schur power of A, (A◦α)(i,j) =
(
A(i,j)

)α
(p. 404)

Chapter 8

Hn n× n Hermitian matrices (p. 417)

Nn n× n positive-semidefinite matrices (p. 417)

Pn n× n positive-definite matrices (p. 417)

A ≥ B A−B ∈ Nn (p. 417)

A > B A−B ∈ Pn (p. 417)

〈A〉 (A∗A)1/2 (p. 431)

A#B geometric mean of A and B (p. 461,
Fact 8.10.43)

A#αB generalized geometric mean of A and B
(p. 464, Fact 8.10.45)

A :B parallel sum of A and B (p. 528, Fact 8.20.18)

sh(A,B) shorted operator (p. 530, Fact 8.20.19)

Chapter 9

‖x‖p Hölder norm
[
n∑
i=1

|x(i)|p
]1/p

(p. 544)

‖A‖p Hölder norm

[
n,m∑
i,j=1

|A(i,j)|p
]1/p

(p. 547)

‖A‖F Frobenius norm
√

trA∗A (p. 547)

‖A‖σp Schatten norm
[
rankA∑
i=1

σpi (A)
]1/p

(p. 548)

‖A‖q,p Hölder-induced norm (p. 554)
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‖A‖col column norm
‖A‖1,1 = maxi∈{1,...,m}‖coli(A)‖1 (p. 556)

‖A‖row row norm ‖A‖∞,∞ = maxi∈{1,...,n}‖rowi(A)‖1
(p. 556)


(A) induced lower bound of A (p. 558)


q,p(A) Hölder-induced lower bound of A (p. 559)

‖ · ‖D dual norm (p. 570, Fact 9.7.22)

Chapter 10

Bε(x) open ball of radius ε centered at x (p. 621)

Sε(x) sphere of radius ε centered at x (p. 621)

int S interior of S (p. 621)

intS′ S interior of S relative to S′ (p. 621)

cl S closure of S (p. 621)

clS′ S closure of S relative to S′ (p. 622)

bd S boundary of S (p. 622)

bdS′ S boundary of S relative to S′ (p. 622)

(xi)∞i=1 sequence (x1, x2, . . .) (p. 622)

vconeD variational cone of D (p. 625)

D+f(x0; ξ) one-sided directional derivative of f at x0 in
the direction ξ (p. 625)

∂f(x0)
∂x(i)

partial derivative of f with respect to x(i) at
x0 (p. 625)

f ′(x) Fréchet derivative of f at x (p. 626)

df(x0)
dx(i)

f ′(x0) (p. 626)

f (k)(x) kth Fréchet derivative of f at x (p. 627)
d+f(x0)

dx(i)
right one-sided derivative (p. 627)

d−f(x0)
dx(i)

left one-sided derivative (p. 627)

Sign(A) matrix sign of A ∈ Cn×n (p. 630)

Chapter 11

eA or exp(A) matrix exponential (p. 643)
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L Laplace transform (p. 646)

Ss(A) asymptotically stable subspace of A (p. 665)

Su(A) unstable subspace of A (p. 665)

OUD open unit disk in C (p. 670)

CUD closed unit disk in C (p. 670)

Chapter 12

U(A,C) unobservable subspace of (A,C) (p. 728)

O(A,C)

⎡
⎣

C
CA
CA2
...

CAn−1

⎤
⎦ (p. 728)

C(A,B) controllable subspace of (A,B) (p. 737)

K(A,B)
[
B AB A2B · · · An−1B

]
(p. 737)

G ∼
[
A B

C D

]
state space realization of G ∈ Fl×mprop[s] (p. 749)

Hi,j,k(G) Markov block-Hankel matrix
Oi(A,C)Kj(A,B) (p. 754)

H(G) Markov block-Hankel matrix O(A,C)K(A,B)
(p. 754)

G
min∼
[
A B

C D

]
state space realization of G ∈ Fl×mprop[s] (p. 756)

H Hamiltonian
[
A Σ
R1 −AT

]
(p. 780)





Conventions, Notation, and Terminology

When a word is defined, it is italicized.

The definition of a word, phrase, or symbol should always be understood as an “if
and only if” statement, although for brevity “only if” is omitted. The symbol �=
means equal by definition, where A �= B means that the left-hand expression A is
defined to be the right-hand expression B.

Analogous statements are written in parallel using the following style: If n is (even,
odd), then n+ 1 is (odd, even).

The variables i, j, k, l,m, n always denote integers. Hence, k ≥ 0 denotes a nonneg-
ative integer, k ≥ 1 denotes a positive integer, and the limit limk→∞ Ak is taken
over positive integers.

The imaginary unit
√−1 is always denoted by dotless j.

The letter s always represents a complex scalar. The letter z may or may not
represent a complex scalar.

The inequalities c ≤ a ≤ d and c ≤ b ≤ d are written simultaneously as

c ≤
{
a
b

}
≤ d.

The prefix “non” means “not” in the words nonconstant, nonempty, nonintegral,
nonnegative, nonreal, nonsingular, nonsquare, nonunique, and nonzero. In some
traditional usage, “non” may mean “not necessarily.”

“Increasing” and “decreasing” indicate strict change for a change in the argument.
The word “strict” is superfluous, and thus is omitted. Nonincreasing means nowhere
increasing, while nondecreasing means nowhere decreasing.

Multisets can have repeated elements. Hence, {x}ms and {x, x}ms are different.
The listed elements α, β, γ of the conventional set {α, β, γ} need not be distinct.
For example, {α, β, α} = {α, β}.
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The order in which the elements of the set {x1, . . . , xn} and the elements of the
multiset {x1, . . . , xn}ms are listed has no significance. The components of the n-
tuple (x1, . . . , xn) are ordered.

The notation (xi)∞i=1 denotes the sequence (x1, x2, . . .). A sequence can be viewed
as an infinite-tuple, where the order of components is relevant and the components
need not be distinct.

The composition of functions f and g is denoted by f • g. The traditional notation
f ◦ g is reserved for the Schur product.

S1 ⊂ S2 means that S1 is a proper subset of S2, whereas S1 ⊆ S2 means that S1

is either a proper subset of S2 or is equal to S2. Hence, S1 ⊂ S2 is equivalent to
S1⊆ S2 and S1 �= S2, while S1⊆ S2 is equivalent to either S1⊂ S2 or S1 = S2.

The terminology “graph” corresponds to what is commonly called a “simple di-
rected graph,” while the terminology “symmetric graph” corresponds to a “simple
undirected graph.”

The range of cos−1 is [0, π], the range of sin−1 is [−π/2, π/2], and the range of tan−1

is (−π/2, π/2). The angle between two vectors is an element of [0, π]. Therefore, the
inner product of two vectors can be used to compute the angle between two vectors.

0! �= 1.

For all α ∈ C,

(
α

0

)
�= 1. For all k ∈ N,

(
0
k

)
�= 1.

0/0 = (sin 0)/0 = (sinh 0)/0 �= 1.

For all square matrices A, A0 �= I . In particular, 00
n×n

�= In. With this convention,
it is possible to write ∞∑

i=0

αi =
1

1− α
for all −1 < α < 1. Of course, limx↓0 0x = 0, limx↓0 x0 = 1, and limx↓0 xx = 1.

Neither ∞ nor −∞ is a real number. However, some operations are defined for
these objects as extended real numbers, such as ∞+∞ = ∞, ∞∞ =∞, and, for
all nonzero real numbers α, α∞ = sign(α)∞. 0∞ and ∞−∞ are not defined. See
[68, pp. 14, 15].

1/∞ �= 0.
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Let a and b be real numbers such that a < b. A finite interval is of the form (a, b),
[a, b), (a, b], or [a, b], whereas an infinite interval is of the form (−∞, a), (−∞, a],
(a,∞), [a,∞), or (−∞,∞). An interval is either a finite interval or an infinite inter-
val. An extended infinite interval includes either ∞ or −∞. For example, [−∞, a)
and [−∞, a] include −∞, (a,∞] and [a,∞] include ∞, and [−∞,∞] includes −∞
and ∞.

The symbol F denotes either R or C consistently in each result. For example, in
Theorem 5.6.4, the three appearances of “F” can be read as either all “C” or all
“R.”

The imaginary numbers are denoted by jR. Hence, 0 is both a real number and an
imaginary number.

The notation ReA and ImA represents the real and imaginary parts of A, respec-
tively. Some books use ReA and ImA to denote the Hermitian and skew-Hermitian
matrices 1

2 (A+A∗) and 1
2 (A−A∗).

For the scalar ordering “≤,” if x ≤ y, then x < y if and only if x �= y. For the
entrywise vector and matrix orderings, x ≤ y and x �= y do not imply that x < y.

Operations denoted by superscripts are applied before operations represented by
preceding operators. For example, tr (A+B)2 means tr

[
(A+B)2

]
and clS∼ means

cl(S∼). This convention simplifies many formulas.

A vector in Fn is a column vector, which is also a matrix with one column. In
mathematics, “vector” generally refers to an abstract vector not resolved in coor-
dinates.

Sets have elements, vectors have components, and matrices have entries. This
terminology has no mathematical consequence.

The notation x(i) represents the ith component of the vector x.

The notation A(i,j) represents the scalar (i, j) entry of A. Ai,j or Aij denotes a
block or submatrix of A.

All matrices have nonnegative integral dimensions. If at least one of the dimensions
of a matrix is zero, then the matrix is empty.

The entries of a submatrix Â of a matrix A are the entries of A lying in specified
rows and columns. Â is a block of A if Â is a submatrix of A whose entries are
entries of adjacent rows and columns of A. Every matrix is both a submatrix and
block of itself.
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The determinant of a submatrix is a subdeterminant. Some books use “minor.”
The determinant of a matrix is also a subdeterminant of the matrix.

The dimension of the null space of a matrix is its defect. Some books use “nullity.”

A block of a square matrix is diagonally located if the block is square and the
diagonal entries of the block are also diagonal entries of the matrix; otherwise, the
block is off-diagonally located. This terminology avoids confusion with a “diagonal
block,” which is a block that is also a square, diagonal submatrix.

For the partitioned matrix [A B
C D ] ∈ F(n+m)×(k+l), it can be inferred that A ∈ Fn×k

and similarly for B,C, and D.

The Schur product of matrices A and B is denoted by A◦B. Matrix multiplication
is given priority over Schur multiplication, that is, A ◦BC means A ◦ (BC).

The adjugate of A ∈ Fn×n is denoted by AA. The traditional notation is adjA,
while the notation AA is used in [1228]. If A ∈ F is a scalar then AA = 1. In
particular, 0A

1×1 = 1. However, for all n ≥ 2, 0A
n×n = 0n×n.

If F = R, then A becomes A, A∗ becomes AT, “Hermitian” becomes “symmetric,”
“unitary” becomes “orthogonal,” “unitarily” becomes “orthogonally,” and “con-
gruence” becomes “T-congruence.” A square complex matrix A is symmetric if
AT = A and orthogonal if ATA = I.

The diagonal entries of a matrix A ∈ Fn×n all of whose diagonal entries are real
are ordered as dmax(A) = d1(A) ≥ d2(A) ≥ · · · ≥ dn(A) = dmin(A).

Every n×n matrix has n eigenvalues. Hence, eigenvalues are counted in accordance
with their algebraic multiplicity. The phrase “distinct eigenvalues” ignores algebraic
multiplicity.

The eigenvalues of a matrix A ∈ Fn×n all of whose eigenvalues are real are ordered
as λmax(A) = λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A) = λmin(A).

The inertia of a matrix is written as

InA �=

⎡
⎣ ν−(A)
ν0(A)
ν+(A)

⎤
⎦.

Some books use the notation (ν(A), δ(A), π(A)).
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For A ∈ Fn×n, amultA(λ) is the number of copies of λ in the multispectrum of A,
gmultA(λ) is the number of Jordan blocks of A associated with λ, and indA(λ) is the
order of the largest Jordan block of A associated with λ. The index of A, denoted
by indA = indA(0), is the order of the largest Jordan block of A associated with
the eigenvalue 0.

The matrix A ∈ Fn×n is semisimple if the order of every Jordan block of A is 1, and
cyclic if A has exactly one Jordan associated with each of its eigenvalues. Defective
means not semisimple, while derogatory means not cyclic.

An n ×m matrix has exactly min{n,m} singular values, exactly rankA of which
are positive.

The min{n,m} singular values of a matrix A ∈ F
n×m are ordered as σmax(A) �=

σ1(A) ≥ σ2(A) ≥ · · · ≥ σmin{n,m}(A). If n = m, then σmin(A) �= σn(A). The
notation σmin(A) is defined only for square matrices.

Positive-semidefinite and positive-definite matrices are Hermitian.

A square matrix with entries in F is diagonalizable over F if and only if it can be
transformed into a diagonal matrix whose entries are in F by means of a similarity
transformation whose entries are in F. Therefore, a complex matrix is diagonalizable
over C if and only if all of its eigenvalues are semisimple, whereas a real matrix is
diagonalizable over R if and only if all of its eigenvalues are semisimple and real.
The real matrix

[
0 1−1 0

]
is diagonalizable over C, although it is not diagonalizable

over R. The Hermitian matrix
[ 1 j
−j 2

]
is diagonalizable over C, and also has real

eigenvalues.

An idempotent matrix A ∈ Fn×n satisfies A2 = A, while a projector is a Hermitian,
idempotent matrix. Some books use “projector” for idempotent and “orthogonal
projector” for projector. A reflector is a Hermitian, involutory matrix. A projector
is a normal matrix each of whose eigenvalues is 1 or 0, while a reflector is a normal
matrix each of whose eigenvalues is 1 or −1.

An elementary matrix is a nonsingular matrix formed by adding an outer-product
matrix to the identity matrix. An elementary reflector is a reflector exactly one
of whose eigenvalues is −1. An elementary projector is a projector exactly one of
whose eigenvalues is 0. Elementary reflectors are elementary matrices. However,
elementary projectors are not elementary matrices since elementary projectors are
singular.

A range-Hermitian matrix is a square matrix whose range is equal to the range of
its complex conjugate transpose. These matrices are also called “EP” matrices.
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The polynomials 1 and s3 + 5s2 − 4 are monic. The zero polynomial is not monic.

The rank of a polynomial matrix P is the maximum rank of P (s) over C. This
quantity is also called the normal rank. We denote this quantity by rankP as
distinct from rankP (s), which denotes the rank of the matrix P (s).

The rank of a rational transfer function G is the maximum rank of G(s) over C

excluding poles of the entries of G. This quantity is also called the normal rank.
We denote this quantity by rankG as distinct from rankG(s), which denotes the
rank of the matrix G(s).

The symbol ⊕ denotes the Kronecker sum. Some books use ⊕ to denote the direct
sum of matrices or subspaces.

The notation |A| represents the matrix obtained by replacing every entry of A by
its absolute value.

The notation 〈A〉 represents the matrix (A∗A)1/2. Some books use |A| to denote this
matrix.

The Hölder norms for vectors and matrices are denoted by ‖ · ‖p. The matrix norm
induced by ‖ · ‖q on the domain and ‖ · ‖p on the codomain is denoted by ‖ · ‖p,q.

The Schatten norms for matrices are denoted by ‖ · ‖σp, and the Frobenius norm
is denoted by ‖ · ‖F. Hence, ‖ · ‖σ∞ = ‖ · ‖2,2 = σmax(·), ‖ · ‖σ2 = ‖ · ‖F, and
‖ · ‖σ1 = tr 〈·〉.

Let “≤” be a partial ordering, let X be a set, and consider the inequality

f(x) ≤ g(x) for all x ∈ X. (1)

Inequality (1) is sharp if there exists x0 ∈ X such that f(x0) = g(x0).

The inequality

f(x) ≤ f(y) for all x ≤ y (2)

is a monotonicity result.

The inequality

f(x) ≤ p(x) ≤ g(x) for all x ∈ X, (3)

where p is not identically equal to either f or g on X, is an interpolation or refine-
ment of (1). The inequality

g(x) ≤ αf(x) for all x ∈ X, (4)

where α > 1, is a reversal of (1).
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Defining h(x) �= g(x)− f(x), it follows that (1) is equivalent to

h(x) ≥ 0 for all x ∈ X. (5)

Now, suppose that h has a global minimizer x0 ∈ X. Then, (5) implies that

0 ≤ h(x0) = min
x∈X

h(x) ≤ h(y) for all y ∈ X. (6)

Consequently, inequalities are often expressed equivalently in terms of optimization
problems, and vice versa.

Many inequalities are based on a single function that is either monotonic or convex.
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Chapter One

Preliminaries

In this chapter we review some basic terminology and results concerning logic,
sets, functions, and related concepts. This material is used throughout the book.

1.1 Logic and Sets

Let A and B be statements. The negation of A is the statement (not A),
the both of A and B is the statement (A and B), and the either of A and B is the
statement (A or B). The statement (A or B) does not contradict (A and B), that
is, the word “or” is inclusive. Every statement is assumed to be either true or false;
likewise, no statement can be both true and false.

The statements “A and B or C” and “A or B and C” are ambiguous. We
therefore write “A and either B or C” and “either A or both B and C.”

Let A and B be statements. The implication statement “if A is satisfied, then
B is satisfied” or, equivalently, “A implies B” is written as A =⇒ B, while A⇐⇒ B
is equivalent to [(A =⇒ B) and (A⇐= B)]. Of course, A⇐= B means B =⇒ A. A
tautology is a statement that is true regardless of whether the component statements
are true or false. For example, the statement “(A and B) implies A” is a tautology.
A contradiction is a statement that is false regardless of whether the component
statements are true or false.

Suppose that A⇐⇒ B. Then, A is satisfied if and only if B is satisfied. The
implication A =⇒ B (the “only if” part) is necessity, while B =⇒ A (the “if” part)
is sufficiency. The converse statement of A =⇒ B is B =⇒ A. The statement
A =⇒ B is equivalent to its contrapositive statement (not B) =⇒ (not A).

A theorem is a significant statement, while a proposition is a theorem of less
significance. The primary role of a lemma is to support the proof of a theorem or
proposition. Furthermore, a corollary is a consequence of a theorem or proposition.
Finally, a fact is either a theorem, proposition, lemma, or corollary. Theorems,
propositions, lemmas, corollaries, and facts are provably true statements.

Suppose that A′ =⇒ A =⇒ B =⇒ B′. Then, A′ =⇒ B′ is a corollary of
A =⇒ B.
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Let A, B, and C be statements, and assume that A =⇒ B. Then, A =⇒ B is
a strengthening of the statement (A and C) =⇒ B. If, in addition, A =⇒ C, then
the statement (A and C) =⇒ B has a redundant assumption.

Let X
�= {x, y, z} be a set. Then,

x ∈ X (1.1.1)

means that x is an element of X. If w is not an element of X, then we write

w �∈ X. (1.1.2)

The set with no elements, denoted by ∅, is the empty set. If X �= ∅, then X is
nonempty.

A set cannot have repeated elements. For example, {x, x} = {x}. However, a
multiset is a collection of elements that allows for repetition. The multiset consisting
of two copies of x is written as {x, x}ms . However, we do not assume that the listed
elements x, y of the conventional set {x, y} are distinct. The number of distinct
elements of the set S or not-necessarily-distinct elements of the multiset S is the
cardinality of S, which is denoted by card(S).

There are two basic types of mathematical statements involving quantifiers.
An existential statement is of the form

there exists x ∈ X such that statement Z is satisfied, (1.1.3)

while a universal statement has the structure

for all x ∈ X, it follows that statement Z is satisfied, (1.1.4)

or, equivalently,
statement Z is satisfied for all x ∈ X. (1.1.5)

Let X and Y be sets. The intersection of X and Y is the set of common
elements of X and Y given by

X ∩ Y
�= {x: x ∈ X and x ∈ Y} = {x ∈ X: x ∈ Y} (1.1.6)
= {x ∈ Y: x ∈ X} = Y ∩ X, (1.1.7)

while the set of elements in either X or Y (the union of X and Y) is

X ∪ Y
�= {x: x ∈ X or x ∈ Y} = Y ∪ X. (1.1.8)

The complement of X relative to Y is

Y\X �= {x ∈ Y: x �∈ X}. (1.1.9)

If Y is specified, then the complement of X is

X∼ �= Y\X. (1.1.10)

If x ∈ X implies that x ∈ Y, then X is contained in Y (X is a subset of Y), which is
written as

X ⊆ Y. (1.1.11)
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The statement X = Y is equivalent to the validity of both X ⊆ Y and Y ⊆ X. If
X ⊆ Y and X �= Y, then X is a proper subset of Y and we write X ⊂ Y. The sets X

and Y are disjoint if X ∩ Y = ∅. A partition of X is a set of pairwise-disjoint and
nonempty subsets of X whose union is equal to X.

The operations “∩,” “∪,” and “\” and the relations “⊂” and “⊆” extend
directly to multisets. For example,

{x, x}ms ∪ {x}ms = {x, x, x}ms. (1.1.12)

By ignoring repetitions, a multiset can be converted to a set, while a set can be
viewed as a multiset with distinct elements.

The Cartesian product X1× · · · × Xn of sets X1, . . . ,Xn is the set consisting
of tuples of the form (x1, . . . , xn), where xi ∈ Xi for all i = 1, . . . , n. A tuple with n
components is an n-tuple. Note that the components of an n-tuple are ordered but
need not be distinct.

By replacing the logical operations “=⇒,” “and,” “or,” and “not” by “⊆,”
“∪,” “∩,” and “∼,” respectively, statements about statements A and B can be
transformed into statements about sets A and B, and vice versa. For example, the
identity

A and (B or C) = (A and B) or (A and C)

is equivalent to
A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

1.2 Functions

Let X and Y be sets. Then, a function f that maps X into Y is a rule f : X �→ Y

that assigns a unique element f(x) (the image of x) of Y to each element x of X.
Equivalently, a function f : X �→ Y can be viewed as a subset F of X×Y such that,
for all x ∈ X, it follows that there exists y ∈ Y such that (x, y) ∈ F and such that, if
(x, y1), (x, y2) ∈ F, then y1 = y2. In this case, F = Graph(f) �= {(x, f(x)): x ∈ X}.
The set X is the domain of f, while the set Y is the codomain of f. If f : X �→ X, then
f is a function on X. For X1⊆ X, it is convenient to define f(X1)

�= {f(x): x ∈ X1}.
The set f(X), which is denoted by R(f), is the range of f. If, in addition, Z is a set
and g : Y �→ Z, then g • f : X �→ Z (the composition of g and f) is the function
(g • f)(x) �= g[f(x)]. If x1, x2 ∈ X and f(x1) = f(x2) implies that x1 = x2, then f
is one-to-one; if R(f) = Y, then f is onto. The function IX: X �→ X defined by
IX(x) �= x for all x ∈ X is the identity on X. Finally, x ∈ X is a fixed point of the
function f : X �→ X if f(x) = x.

The following result shows that function composition is associative.

Proposition 1.2.1. Let X, Y, Z, and W be sets, and let f : X �→ Y, g : Y �→ Z,
h : Z �→W. Then,

h • (g • f) = (h • g) • f. (1.2.1)
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Hence, we write h • g • f for h • (g • f) and (h • g) • f.

Let X be a set, and let X̂ be a partition of X. Furthermore, let f : X̂ �→ X,
where, for all S ∈ X̂, it follows that f(S) ∈ S. Then, f is a canonical mapping, and
f(S) is a canonical form. That is, for all components S of the partition X̂ of X, it
follows that the function f assigns an element of S to the set S.

Let f : X �→ Y. Then, f is left invertible if there exists a function g : Y �→ X

(a left inverse of f) such that g • f = IX, whereas f is right invertible if there exists
a function h: Y �→ X (a right inverse of f) such that f • h = IY. In addition, the
function f : X �→ Y is invertible if there exists a function f−1: Y �→ X (the inverse
of f) such that f−1 • f = IX and f • f−1 = IY. The inverse image f−1(S) of S ⊆ Y

is defined by
f−1(S) �= {x ∈ X: f(x) ∈ S}. (1.2.2)

Theorem 1.2.2. Let X and Y be sets, and let f : X �→ Y. Then, the following
statements hold:

i) f is left invertible if and only if f is one-to-one.

ii) f is right invertible if and only if f is onto.

Furthermore, the following statements are equivalent:

iii) f is invertible.

iv) f has a unique inverse.

v) f is one-to-one and onto.

vi) f is left invertible and right invertible.

vii) f has a unique left inverse.

viii) f has a unique right inverse.

Proof. To prove i), suppose that f is left invertible with left inverse g : Y �→ X.
Furthermore, suppose that x1, x2 ∈ X satisfy f(x1) = f(x2). Then, x1 = g[f(x1)] =
g[f(x2)] = x2, which shows that f is one-to-one. Conversely, suppose that f is
one-to-one so that, for all y ∈ R(f), there exists a unique x ∈ X such that f(x) = y.

Hence, define the function g : Y �→ X by g(y) �= x for all y = f(x) ∈ R(f) and by
g(y) arbitrary for all y ∈ Y\R(f). Consequently, g[f(x)] = x for all x ∈ X, which
shows that g is a left inverse of f.

To prove ii), suppose that f is right invertible with right inverse g : Y �→
X. Then, for all y ∈ Y, it follows that f [g(y)] = y, which shows that f is onto.
Conversely, suppose that f is onto so that, for all y ∈ Y, there exists at least one
x ∈ X such that f(x) = y. Selecting one such x arbitrarily, define g : Y �→ X by
g(y) �= x. Consequently, f [g(y)] = y for all y ∈ Y, which shows that g is a right
inverse of f.
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Definition 1.2.3. Let I ⊂ R be a finite or infinite interval, and let f : I �→ R.
Then, f is convex if, for all α ∈ [0, 1] and for all x, y ∈ I, it follows that

f [αx+ (1 − α)y] ≤ αf(x) + (1 − α)f(y). (1.2.3)

Furthermore, f is strictly convex if, for all α ∈ (0, 1) and for all distinct x, y ∈ I, it
follows that

f [αx+ (1 − α)y] < αf(x) + (1 − α)f(y).

A more general definition of convexity is given by Definition 8.6.14.

1.3 Relations

Let X, X1, and X2 be sets. A relation R on X1×X2 is a subset of X1×X2. A
relation R on X is a relation on X× X. Likewise, a multirelation R on X1× X2 is a
multisubset of X1× X2, while a multirelation R on X is a multirelation on X× X.

Let X be a set, and let R1 and R2 be relations on X. Then, R1∩ R2, R1\R2,
and R1∪ R2 are relations on X. Furthermore, if R is a relation on X and X0 ⊆ X,

then we define R|X0

�= R ∩ (X0 × X0), which is a relation on X0.

The following result shows that relations can be viewed as generalizations of
functions.

Proposition 1.3.1. Let X1 and X2 be sets, and let R be a relation X1 × X2.
Then, there exists a function f : X1 �→ X2 such that R = Graph(f) if and only
if, for all x ∈ X1, there exists a unique y ∈ X2 such that (x, y) ∈ R. In this case,
f(x) = y.

Definition 1.3.2. Let R be a relation on X. Then, the following terminology
is defined:

i) R is reflexive if, for all x ∈ X, it follows that (x, x) ∈ R.

ii) R is symmetric if, for all (x1, x2) ∈ R, it follows that (x2, x1) ∈ R.

iii) R is transitive if, for all (x1, x2) ∈ R and (x2, x3) ∈ R, it follows that
(x1, x3) ∈ R.

iv) R is an equivalence relation if R is reflexive, symmetric, and transitive.

Proposition 1.3.3. Let R1 and R2 be relations on X. If R1 and R2 are
(reflexive, symmetric) relations, then so are R1∩R2 and R1∪R2. If R1 and R2 are
(transitive, equivalence) relations, then so is R1∩ R2.

Definition 1.3.4. Let R be a relation on X. Then, the following terminology
is defined:

i) The complement R∼ of R is the relation R∼ �= (X× X)\R.
ii) The support supp(R) of R is the smallest subset X0 of X such that R is a

relation on X0.



6 CHAPTER 1

iii) The reversal rev(R) of R is the relation rev(R) �= {(y, x) : (x, y) ∈ R}.
iv) The shortcut shortcut(R) of R is the relation shortcut(R) �= {(x, y) ∈ X×

X: x and y are distinct and there exist k ≥ 1 and x1, . . . , xk ∈ X such that
(x, x1), (x1, x2), . . . , (xk, y) ∈ R}.

v) The reflexive hull ref(R) of R is the smallest reflexive relation on X that
contains R.

vi) The symmetric hull sym(R) of R is the smallest symmetric relation on X

that contains R.

vii) The transitive hull trans(R) of R is the smallest transitive relation on X

that contains R.

viii) The equivalence hull equiv(R) of R is the smallest equivalence relation on
X that contains R.

Proposition 1.3.5. Let R be a relation on X. Then, the following statements
hold:

i) ref(R) = R ∪ {(x, x) : x ∈ X}.
ii) sym(R) = R ∪ rev(R).

iii) trans(R) = R ∪ shortcut(R).

iv) equiv(R) = R ∪ ref(R) ∪ sym(R) ∪ trans(R).

v) equiv(R) = R ∪ ref(R) ∪ rev(R) ∪ shortcut(R).

Furthermore, the following statements hold:

vi) R is reflexive if and only if R = ref(R).

vii) R is symmetric if and only if R = rev(R).

viii) R is transitive if and only if R = trans(R).

ix) R is an equivalence relation if and only if R = equiv(R).

For an equivalence relation R on X, (x1, x2) ∈ R is denoted by x1
R= x2. If R

is an equivalence relation and x ∈ X, then the subset Ex
�= {y ∈ X: y

R= x} of X is
the equivalence class of x induced by R.

Theorem 1.3.6. Let R be an equivalence relation on a set X. Then, the set
{Ex : x ∈ X} of equivalence classes induced by R is a partition of X.

Proof. Since X =
⋃
x∈XEx, it suffices to show that if x, y ∈ X, then either

Ex = Ey or Ex ∩ Ey = ∅. Hence, let x, y ∈ X, and suppose that Ex and Ey are not
disjoint so that there exists z ∈ Ex ∩ Ey. Thus, (x, z) ∈ R and (z, y) ∈ R. Now,
let w ∈ Ex. Then, (w, x) ∈ R, (x, z) ∈ R, and (z, y) ∈ R imply that (w, y) ∈ R.
Hence, w ∈ Ey, which implies that Ex ⊆ Ey. By a similar argument, Ey ⊆ Ex.
Consequently, Ex = Ey.
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The following result, which is the converse of Theorem 1.3.6, shows that a
partition of a set X defines an equivalence relation on X.

Theorem 1.3.7. Let X be a set, consider a partition of X, and define the
relation R on X by (x, y) ∈ R if and only if x and y belong to the same partition
subset of X. Then, R is an equivalence relation on X.

Definition 1.3.8. Let R be a relation on X. Then, the following terminology
is defined:

i) R is antisymmetric if (x1, x2) ∈ R and (x2, x1) ∈ R imply that x1 = x2.

ii) R is a partial ordering on X if R is reflexive, antisymmetric, and transitive.

Let R be a partial ordering on X. Then, (x1, x2) ∈ R is denoted by x1
R≤ x2.

If x1
R≤ x2 and x2

R≤ x1, then, since R is antisymmetric, it follows that x1 = x2.

Furthermore, if x1
R≤ x2 and x2

R≤ x3, then, since R is transitive, it follows that
x1

R≤ x3.

Definition 1.3.9. Let “
R≤” be a partial ordering on X. Then, the following

terminology is defined:

i) Let S ⊆ X. Then, y ∈ X is a lower bound for S if, for all x ∈ S, it follows

that y
R≤ x.

ii) Let S ⊆ X. Then, y ∈ X is an upper bound for S if, for all x ∈ S, it follows

that x
R≤ y.

iii) Let S ⊆ X. Then, y ∈ X is the least upper bound lub(S) for S if y is an
upper bound for S and, for all upper bounds x ∈ X for S, it follows that
y

R≤ x. In this case, we write y = lub(S).

iv) Let S ⊆ X. Then, y ∈ X is the greatest lower bound for S if y is a lower

bound for S and, for all lower bounds x ∈ X for S, it follows that x
R≤ y. In

this case, we write y = glb(S).

v)
R≤ is a lattice on X if, for all distinct x, y ∈ X, the set {x, y} has a least
upper bound and a greatest lower bound.

vi) R is a total ordering on X if, for all x, y ∈ X, it follows that either (x, y) ∈ R

or (y, x) ∈ R.

For a subset S of the real numbers, it is traditional to write inf S and sup S

for glb(S) and lub(S), respectively, where “inf” and “sup” denote infimum and
supremum, respectively.
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1.4 Graphs

Let X be a finite, nonempty set, and let R be a relation on X. Then, the pair
G = (X,R) is a graph. The elements of X are the nodes of G, while the elements of
R are the arcs of G. If R is a multirelation on X, then G = (X,R) is a multigraph.

The graph G = (X,R) can be visualized as a set of points in the plane repre-
senting the nodes in X connected by the arcs in R. Specifically, the arc (x, y) ∈ R

from x to y can be visualized as a directed line segment or curve connecting node x
to node y. The direction of an arc can be denoted by an arrow head. For example,
consider a graph that represents a city with streets (arcs) connecting houses (nodes).
Then, a symmetric relation is a street plan with no one-way streets, whereas an
antisymmetric relation is a street plan with no two-way streets.

Definition 1.4.1. Let G = (X,R) be a graph. Then, the following terminology
is defined:

i) The reversal of G is the graph rev(G) �= (X, rev(R)).

ii) The complement of G is the graph G∼ �= (X,R∼).

iii) The reflexive hull of G is the graph ref(G) �= (X, ref(R)).

iv) The symmetric hull of G is the graph sym(G) �= (X, sym(R)).

v) The transitive hull of G is the graph trans(G) �= (X, trans(R)).

vi) The equivalence hull of G is the graph equiv(G) �= (X, equiv(R)).

vii) G is reflexive if R is reflexive.

viii) G is symmetric if R is symmetric. In this case, the arcs (x, y) and (y, x) in
R are denoted by the subset {x, y} of X, called an edge.

ix) G is transitive if R is transitive.

x) G is an equivalence graph if R is an equivalence relation.

xi) G is antisymmetric if R is antisymmetric.

xii) G is partially ordered if R is a partial ordering on X.

xiii) G is totally ordered if R is a total ordering on X.

xiv) G is a tournament if G has no self-loops, is antisymmetric, and sym(R) =
X× X.

Definition 1.4.2. Let G = (X,R) be a graph. Then, the following terminology
is defined:

i) The arc (x, x) ∈ R is a self-loop.

ii) The reversal of (x, y) ∈ R is (y, x).

iii) If x, y ∈ X and (x, y) ∈ R, then y is the head of (x, y) and x is the tail of
(x, y).
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iv) If x, y ∈ X and (x, y) ∈ R, then x is a parent of y, and y is a child of x.

v) If x, y ∈ X and either (x, y) ∈ R or (y, x) ∈ R, then x and y are adjacent.

vi) If x ∈ X has no parent, then x is a root.

vii) If x ∈ X has no child, then x is a leaf.

Suppose that (x, x) ∈ R. Then, x is both the head and the tail of (x, x), and
thus x is a parent and child of itself. Consequently, x is neither a root nor a leaf.
Furthermore, x is adjacent to itself.

Definition 1.4.3. Let G = (X,R) be a graph. Then, the following terminology
is defined:

i) The graph G′ = (X′,R′) is a subgraph of G if X′ ⊆ X and R′ ⊆ R.

ii) The subgraph G′ = (X′,R′) of G is a spanning subgraph of G if supp(R) =
supp(R′).

iii) For x, y ∈ X, a walk in G from x to y is an n-tuple of arcs of the form
( (x, y) ) ∈ R for n = 1 and ( (x, x1), (x1, x2), . . . , (xn−1, y) ) ∈ Rn for n ≥ 2.
The length of the walk is n. The nodes x, x1, . . . , xn−1, y are the nodes of
the walk. Furthermore, if n ≥ 2, then the nodes x1, . . . , xn−1 are the
intermediate nodes of the walk.

iv) G is connected if, for all distinct x, y ∈ X, there exists a walk in G from x
to y.

v) For x, y ∈ X, a trail in G from x to y is a walk in G from x to y whose arcs
are distinct and such that no reversed arc is also an arc of G.

vi) For x, y ∈ X, a path in G from x to y is a trail in G from x to y whose
intermediate nodes (if any) are distinct.

vii) G is traceable if G has a path such that every node in X is a node of the
path. Such a path is called a Hamiltonian path.

viii) For x ∈ X, a cycle in G at x is a path in G from x to x whose length is
greater than 1.

ix) The period of G is the greatest common divisor of the lengths of the cycles
in G. Furthermore, G is aperiodic if the period of G is 1.

x) G is Hamiltonian if G has a cycle such that every node in X is a node of
the cycle. Such a cycle is called a Hamiltonian cycle.

xi) G is a forest if G is symmetric and has no cycles.

xii) G is a tree if G is a forest and is connected.

xiii) The indegree of x ∈ X is indeg(x) �= card{y ∈ X: y is a parent of x}.
xiv) The outdegree of x ∈ X is outdeg(x) �= card{y ∈ X: y is a child of x}.
xv) If G is symmetric, then the degree of x ∈ X is deg(x) �= indeg(x) =

outdeg(x).
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xvi) If X0 ⊆ X, then,
G|X0

�= (X0, R|X0
).

xvii) If G′ = (X′,R′) is a graph, then G ∪ G′ �= (X ∪ X′,R ∪ R′) and G ∩ G′ �=
(X ∩X′,R ∩ R′).

xviii) Let X = X1∪X2, where X1 and X2 are nonempty and disjoint, and assume
that X = supp(G). Then, (X1,X2) is a directed cut of G if, for all x1 ∈ X1

and x2 ∈ X2, there does not exist a walk from x1 to x2.

Let G = (X,R) be a graph, and let w : X × X �→ [0,∞), where w(x, y) > 0
if (x, y) ∈ R and w(x, y) = 0 if (x, y) /∈ R. For each arc (x, y) ∈ R, w(x, y) is the
weight associated with the arc (x, y), and the triple G = (X,R, w) is a weighted
graph. Every graph can be viewed as a weighted graph by defining w[(x, y)] �= 1
for all (x, y) ∈ R and w[(x, y)] �= 0 for all (x, y) /∈ R. The graph G′ = (X′,R′, w′) is
a weighted subgraph of G if X ⊆ X′, R′ is a relation on X′, R′ ⊆ R, and w′ is the
restriction of w to R′. Finally, if G is symmetric, then w is defined on edges {x, y}
of G.

1.5 Facts on Logic, Sets, Functions, and Relations

Fact 1.5.1. Let A and B be statements. Then, the following statements
hold:

i) not(A or B)⇐⇒ [(not A) and (not B)].

ii) not(A and B)⇐⇒ (not A) or (not B).

iii) (A or B)⇐⇒ [(not A) =⇒B].

iv) [(not A) or B]⇐⇒ (A =⇒ B).

v) [A and (not B)]⇐⇒ [not(A =⇒B)].

(Remark: Each statement is a tautology.) (Remark: Statements i) and ii) are De
Morgan’s laws. See [229, p. 24].)

Fact 1.5.2. The following statements are equivalent:

i) A =⇒ (B or C).

ii) [A and (not B)] =⇒ C.

(Remark: The statement that i) and ii) are equivalent is a tautology.)



PRELIMINARIES 11

Fact 1.5.3. The following statements are equivalent:

i) A⇐⇒ B.

ii) [A or (not B)] and (not [A and (not B)]).

(Remark: The statement that i) and ii) are equivalent is a tautology.)

Fact 1.5.4. The following statements are equivalent:

i) Not [for all x, there exists y such that statement Z is satisfied].

ii) There exists x such that, for all y, statement Z is not satisfied.

Fact 1.5.5. Let A, B, and C be sets, and assume that each of these sets has
a finite number of elements. Then,

card(A ∪B) = card(A) + card(B)− card(A ∩B)

and

card(A ∪B ∪ C) = card(A) + card(B) + card(C)
− card(A ∩B)− card(A ∩ C)− card(B ∩ C)
+ card(A ∩B ∩ C).

(Remark: This result is the inclusion-exclusion principle. See [177, p. 82] or [1218,
pp. 64–67].)

Fact 1.5.6. Let A,B,C be subsets of a set X. Then, the following identities
hold:

i) A ∩A = A ∪A = A.

ii) (A ∪B)∼ = A∼ ∩B∼.

iii) (A ∩B)∼ = A∼ ∪B∼.

iv) A = (A\B) ∪ (A ∩B).

v) [A\(A ∩B)] ∪B = A ∪B.

vi) (A ∪B)\(A ∩B) = (A ∩B∼) ∪ (A∼ ∩B).

vii) A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

viii) A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).

ix) (A\B)\C = A\(B ∪ C).

x) (A ∩B)\C = (A\C) ∩ (B\C).

xi) (A ∩B)\(C ∩B) = (A\C) ∩B.

xii) (A ∪B)\C = (A\C) ∪ (B\C) = [A\(B ∪ C)] ∪ (B\C).

xiii) (A ∪B)\(C ∩B) = (A\B) ∪ (B\C).

xiv) (A ∪B) ∩ (A ∪B∼) = A.

xv) (A ∪B) ∩ (A∼ ∪B) ∩ (A ∪B∼) = A ∩B.
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Fact 1.5.7. Define the relation R on R× R by

R
�= {((x1, y1), (x2, y2)) ∈ (R× R)× (R× R) : x1≤ x2 and y1≤ y2}.

Then, R is a partial ordering.

Fact 1.5.8. Define the relation L on R× R by

L
�= {((x1, y1), (x2, y2)) ∈ (R× R)× (R× R) :

x1≤ x2 and, if x1 = x2, then y1≤ y2}.
Then, L is a total ordering on R × R. (Remark: Denoting this total ordering by

“
d≤,” note that (1, 4)

d≤ (2, 3) and (1, 4)
d≤ (1, 5).) (Remark: This ordering is the

lexicographic ordering or dictionary ordering, where ‘book’
d≤ ‘box’. Note that the

ordering of words in a dictionary is reflexive, antisymmetric, and transitive, and
that every pair of words can be ordered.) (Remark: See Fact 2.9.31.)

Fact 1.5.9. Let f : X �→ Y, and assume that f is invertible. Then,

(f−1)−1 = f.

Fact 1.5.10. Let f : X �→ Y and g : Y �→ Z, and assume that f and g are
invertible. Then, g • f is invertible and

(g • f)−1 = f−1 • g−1.

Fact 1.5.11. Let f : X �→ Y, and let A,B ⊆ X. Then, the following statements
hold:

i) If A ⊆ B, then f(A) ⊆ f(B).

ii) f(A ∪B) = f(A) ∪ f(B).

iii) f(A ∩B) ⊆ f(A) ∩ f(B).

Fact 1.5.12. Let f : X �→ Y, and let A,B ⊆ Y. Then, the following statements
hold:

i) f [f−1(A)] ⊆ A ⊆ f−1[f(A)].

ii) f−1(A ∪B) = f−1(B1) ∪ f−1(B2).

iii) f−1(A1 ∩A2) = f−1(A1) ∩ f−1(A2).

Fact 1.5.13. Let X and Y be finite sets, assume that card(X) = card(Y), and
let f : X �→ Y. Then, f is one-to-one if and only if f is onto. (Remark: See Fact
1.6.1.)

Fact 1.5.14. Let f : X �→ Y. Then, the following statements are equivalent:

i) f is one-to-one.

ii) For all A ⊆ X and B ⊆ Y, it follows that f(A ∩B) = f(A) ∩ f(B).

iii) For all A ⊆ X, it follows that f−1[f(A)] = A.
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iv) For all disjoint A ⊆ X and B ⊆ Y, it follows that f(A) and f(B) are
disjoint.

v) For all A ⊆ X and B ⊆ Y such that A ⊆ B, it follows that f(A\B) =
f(A)\f(B).

(Proof: See [68, pp. 44, 45].)

Fact 1.5.15. Let f : X �→ Y. Then, the following statements are equivalent:

i) f is onto.

ii) For all A ⊆ X, it follows that f [f−1(A)] = A.

Fact 1.5.16. Let f : X �→ Y, and let g : Y �→ Z. Then, the following statements
hold:

i) If f and g are one-to-one, then f • g is one-to-one.

ii) If f and g are onto, then f • g is onto.

(Remark: A matrix version of this result is given by Fact 2.10.3.)

Fact 1.5.17. Let X be a set, and let X denote the class of subsets of X. Then,
“⊂” and “⊆” are transitive relations on X, and “⊆” is a partial ordering on X.

1.6 Facts on Graphs

Fact 1.6.1. Let G = (X,R) be a graph. Then, the following statements hold:

i) R is the graph of a function on X if and only if every node in X has exactly
one child.

Furthermore, the following statements are equivalent:

ii) R is the graph of a one-to-one function on X.

iii) R is the graph of an onto function on X.

iv) R is the graph of a one-to-one and onto function on X.

v) Every node in X has exactly one child and not more than one parent.

vi) Every node in X has exactly one child and at least one parent.

vii) Every node in X has exactly one child and exactly one parent.

(Remark: See Fact 1.5.13.)

Fact 1.6.2. Let G = (X,R) be a graph, and assume that R is the graph of a
function f : X �→ X. Then, either f is the identity map or G has a cycle.

Fact 1.6.3. Let G = (X,R) be a graph, and assume that G has a Hamiltonian
cycle. Then, G has no roots and no leaves.
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Fact 1.6.4. Let G = (X,R) be a graph. Then, G has either a root or a cycle.

Fact 1.6.5. Let G = (X,R) be a symmetric graph. Then, the following state-
ments are equivalent:

i) G is a forest.

ii) G has no cycles.

iii) No pair of nodes is connected by more than one path.

Furthermore, the following statements are equivalent:

iv) G is a tree.

v) G is a connected forest.

vi) G is connected and has no cycles.

vii) G is connected and has card(X)− 1 edges.

viii) G has no cycles and has card(X)− 1 edges.

ix) Every pair of nodes is connected by exactly one path.

Fact 1.6.6. Let G = (X,R) be a tournament. Then, G has a Hamiltonian
path. Furthermore, the Hamiltonian path is a Hamiltonian cycle if and only if G is
connected.

Fact 1.6.7. Let G = (X,R) be a symmetric graph, where X ⊂ R2, assume that
n

�= card(X) ≥ 3, and assume that the edges in R can be represented by line seg-
ments lying in a plane that are either disjoint or intersect at a node. Furthermore,
let m denote the number of edges of G, and let f denote the number of disjoint
regions in R2 whose boundaries are the edges of G. Then,

n−m+ f = 2.

Consequently, if n ≥ 3, then
m ≤ 3(n− 2).

(Remark: The identity is Euler’s polyhedron formula.)

1.7 Facts on Binomial Identities and Sums

Fact 1.7.1. The following identities hold:

i) Let 0 ≤ k ≤ n. Then, (
n

k

)
=
(

n

n− k
)
.

ii) Let 1 ≤ k ≤ n. Then,

k

(
n

k

)
= n

(
n− 1
k − 1

)
.
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iii) Let 2 ≤ k ≤ n. Then,

k(k − 1)
(
n

k

)
= n(n− 1)

(
n− 2
k − 2

)
.

iv) Let 0 ≤ k < n. Then,

(n− k)
(
n

k

)
= n

(
n− 1
k

)
.

v) Let 1 ≤ k ≤ n. Then, (
n

k

)
=
(
n− 1
k

)
+
(
n− 1
k − 1

)
.

vi) Let 0 ≤ m ≤ k ≤ n. Then,(
n

k

)(
k

m

)
=
(
n

m

)(
n−m
k −m

)
.

vii) Let m,n ≥ 0. Then,
m∑
i=0

(
n+ i

n

)
=
(
n+m+ 1

m

)
.

viii) Let k ≥ 0 and n ≥ 1. Then,
n−1∑
i=0

(k + i)!
i!

= k!
(
k + n

k + 1

)
.

ix) Let 0 ≤ k ≤ n. Then,
n∑
i=k

(
i

k

)
=
(
n+ 1
k + 1

)
.

x) Let n,m ≥ 0, and let 0 ≤ k ≤ min{n,m}. Then,

k∑
i=0

(
n

i

)(
m

k − i
)

=
(
n+m

k

)
.

xi) Let n ≥ 0. Then,
n∑
i=1

(
n

i

)(
n

i− 1

)
=
(

2n
n+ 1

)
.

xii) Let 0 ≤ k ≤ n. Then,

n−k∑
i=0

(
n

i

)(
n

k + i

)
=

(2n)!
(n− k)!(n+ k)!

.

xiii) Let 0 ≤ k ≤ n/2. Then,

n−k∑
i=k

(
i

k

)(
n− i
k

)
=
(
n+ 1
2k + 1

)
.

xiv) Let n ≥ 0. Then,
n∑
i=0

(
n

i

)2

=
(

2n
n

)
.
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xv) Let n ≥ 1. Then,
n∑
i=0

i

(
n

i

)2

= n

(
2n− 1
n− 1

)
.

xvi) For all x, y ∈ C and n ≥ 0,

(x+ y)n =
n∑
i=0

(
n

i

)
xn−iyi.

xvii) Let n ≥ 0. Then,
n∑
i=0

(
n

i

)
= 2n.

xviii) Let n ≥ 0. Then,
n∑
i=0

1
i+ 1

(
n

i

)
=

2n+1 − 1
n+ 1

.

xix) Let n ≥ 0. Then,
n∑
i=0

(
2n+ 1
i

)
=

2n∑
i=0

(
2n
i

)
= 4n.

xx) Let n > 1. Then,
n−1∑
i=0

(n− i)2
(

2n
i

)
= 4n−1n.

xxi) Let n ≥ 0. Then,
�n/2�∑
i=0

(
n

2i

)
= 2n−1.

xxii) Let n ≥ 0. Then,
�(n−1)/2�∑

i=0

(
n

2i+ 1

)
= 2n−1.

xxiii) Let n ≥ 0. Then,
�n/2�∑
i=0

(−1)i
(
n

2i

)
= 2n/2cos

nπ

4
.

xxiv) Let n ≥ 0. Then,

�(n−1)/2�∑
i=0

(−1)i
(

n

2i+ 1

)
= 2n/2sin

nπ

4
.

xxv) Let n ≥ 1. Then,
n∑
i=1

i

(
n

i

)
= n2n−1.

xxvi) Let n ≥ 1. Then,
n∑
i=0

(
n

2i

)
= 2n−1.
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xxvii) Let 0 ≤ k < n. Then,

k∑
i=0

(−1)i
(
n

i

)
= (−1)k

(
n− 1
k

)
.

xxviii) Let n ≥ 1. Then,
n∑
i=0

(−1)i
(
n

i

)
= 0.

xxix) Let n ≥ 1. Then,
n∑
i=0

2i

i+ 1
=

2n

n+ 1

n∑
i=0

1(
n
i

) .
(Proof: See [177, pp. 64–68, 78], [332], [584, pp. 1, 2], and [668, pp. 2–10, 74].
Statement xxix) is given in [238, p. 55].) (Remark: Statement x) is Vandermonde’s
identity.)

Fact 1.7.2. The following inequalities hold:

i) Let n ≥ 2. Then,
4n

n+ 1
<

(
2n
n

)
< 4n.

ii) Let n ≥ 7. Then, (n
3

)n
< n! <

(n
2

)n
.

iii) Let 1 ≤ k ≤ n. Then,(n
k

)k
≤
(
n

k

)
≤ min

{
nk

k!
,
(ne
k

)k}
.

iv) Let 0 ≤ k ≤ n. Then,

(n+ 1)k
(
n

k

)
≤ nk

(
n+ 1
k

)
.

v) Let 1 ≤ k ≤ n− 1. Then,

k∑
i=1

i(i+ 1)
(

2n
k − i

)
<

22n−2k(k + 1)
n

.

vi) Let 1 ≤ k ≤ n. Then,

nk ≤ kk/2(k + 1)(k−1)/2

(
n

k

)
.

(Proof: Statements i) and ii) are given in [238, p. 210]. Statement iv) is given in
[668, p. 111]. Statement vi) is given in [451].)

Fact 1.7.3. Let n be a positive integer. Then,
n∑
i=1

i = 1
2n(n+ 1),
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n∑
i=1

(2i− 1) = n2,

n∑
i=1

i2 = 1
6n(n+ 1)(2n+ 1),

n∑
i=1

i3 = 1
4n

2(n+ 1)2 =

(
n∑
i=1

i

)2
,

n∑
i=1

i4 = 1
30n(n+ 1)(2n+ 1)(3n2 + 3n− 1),

n∑
i=1

i5 = 1
12n

2(n+ 1)2(2n2 + 2n− 1).

(Remark: See Fact 1.15.9 and [668, p. 11].)

Fact 1.7.4. Let n ≥ 2. Then,

n( n
√
n+ 1− 1) <

n∑
i=1

1
i
< 1 + n

(
1− 1

n
√
n

)
.

(Proof: See [668, pp. 158, 161].)

Fact 1.7.5. Let n be a positive integer. Then,

0 <
n∑
i=1

1
i
< logn

and

lim
n→∞

[(
n∑
i=1

1
i

)
− logn

]
= γ ≈ 0.57721 . . . .

Hence,

lim
n→∞

∑n
i=1

1
i

logn
= 1.

(Remark: γ is the Euler constant.)

Fact 1.7.6. The following statements hold:
∞∑
i=1

1
ii

=
∫ 1

0

1
xx

dx ≈ 1.291

and ∞∑
i=1

(−1)i+1 1
ii

=
∫ 1

0

xx dx.

(Proof: See [238, pp. 4, 44].)
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Fact 1.7.7. The following statements hold:
∞∑
i=0

1
i!

= e,

∞∑
i=1

1
i2

=
π2

6
,

∞∑
i=1

1
i4

=
π4

90
,

∞∑
i=1

1
i6

=
π6

945
,

∞∑
i=1

1
(2i− 1)2

=
π2

8
,

∞∑
i=1

1
(2i− 1)4

=
π4

96
,

∞∑
i=1

1
(2i− 1)6

=
π6

960
,

∞∑
i=1

(−1)i+1 1
i2

=
π2

12
,

∞∑
i=1

(−1)i+1 1
i4

=
7π4

720
,

∞∑
i=1

(−1)i+1 1
i6

=
31π6

30240
,

∞∑
i=1

(−1)i+1 1
2i− 1

=
π

4
,

∞∑
i=1

(−1)i+1 1
(2i− 1)3

=
5π5

1536
,

∞∑
i=1

(−1)i+1 1
(2i− 1)5

=
61π7

184320
.

Fact 1.7.8. For i = 1, 2, . . . , let pi denote the ith prime number, where p1 = 2.
Then,

π2

6
=

∞∏
i=1

1
1− p−2

i

≈ 1.6449.

(Remark: This identity is the Euler product formula for ζ(2), where ζ is the zeta
function.)
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Fact 1.7.9. The following statements hold:
∞∑
i=1

1(
2i
i

) =
1
3

+
2π

9
√

3
,

∞∑
i=1

i(
2i
i

) =
2
3

+
2π

9
√

3
,

∞∑
i=1

i2(
2i
i

) =
4
3

+
10π

27
√

3
,

∞∑
i=1

1
i
(
2i
i

) =
π

3
√

3
,

∞∑
i=1

1
i2
(
2i
i

) =
π2

18
,

∞∑
i=1

2− i(
2i
i

) =
2π

9
√

3
,

∞∑
i=0

25i− 3
2i−1
(
3i
i

) = π.

(Proof: See [238, pp. 20, 25, 26].)

Fact 1.7.10. The following statements hold:
∞∏
i=2

i2 − 1
i2 + 1

= 1
2

∞∏
i=2

i2

i2 + 1
=

π

sinhπ
≈ 0.2720,

∞∏
i=2

i2 − 1
i2

=
1
2
,

∞∏
i=2

i3 − 1
i3 + 1

=
2
3
,

∞∏
i=2

i4 − 1
i4 + 1

=
π sinhπ

cosh(
√

2π)− cos(
√

2π)
≈ 0.8480.

(Proof: See [238, pp. 4, 5].)
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Fact 1.7.11. The following statements hold for all x ∈ R :

sinx = x

∞∏
i=1

(
1− x2

i2π2

)
,

cosx =
∞∏
i=1

(
1− 4x2

(2i− 1)2π2

)
,

sinhx = x

∞∏
i=1

(
1 +

x2

i2π2

)
,

coshx =
∞∏
i=1

(
1 +

4x2

(2i− 1)2π2

)
,

sinx = x

∞∏
i=1

cos
x

2i
.

1.8 Facts on Convex Functions

Fact 1.8.1. Let I be a finite or infinite interval, and let f : I �→ R. Then, in
each case below, f is convex:

i) I = (0,∞), f(x) = −logx.

ii) I = (0,∞), f(x) = x log x.

iii) I = (0,∞), f(x) = xp, where p < 0.

iv) I = [0,∞), f(x) = −xp, where p ∈ (0, 1).

v) I = [0,∞), f(x) = xp, where p ∈ (1,∞).

vi) I = [0,∞), f(x) = (1 + xp)1/p, where p ∈ (1,∞).

vii) I = R, f(x) = ax−bx

cx−dx , where 0 < d < c < b < a.

viii) I = R, f(x) = log ax−bx

cx−dx , where 0 < d < c < b < a and ad ≥ bc.
(Proof: Statements vii) and viii) are given in [238, p. 39].)

Fact 1.8.2. Let I ⊆ (0,∞) be a finite or infinite interval, let f : I �→ R, and
define g : I �→ R by g(x) = xf(1/x). Then, f is (convex, strictly convex) if and only
if g is (convex, strictly convex). (Proof: See [1039, p. 13].)

Fact 1.8.3. Let f : R �→ R, assume that f is convex, and assume that there
exists α ∈ R such that, for all x ∈ R, f(x) ≤ α. Then, f is constant. (Proof: See
[1039, p. 35].)

Fact 1.8.4. Let I ⊆ R be a finite or infinite interval, let f : I �→ R, and assume
that f is continuous. Then, the following statements are equivalent:

i) f is convex.

ii) For all k ∈ P, x1, . . . , xk ∈ I, and α1, . . . , αn ∈ [0, 1] such that
∑n

i=1 αi = 1,
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it follows that

f

(
n∑
i=1

αixi

)
≤

n∑
i=1

αif(xi).

(Remark: This result is Jensen’s inequality.) (Remark: Setting f(x) = xp yields
Fact 1.15.35, whereas setting f(x) = log x for x ∈ (0,∞) yields the arithmetic-
mean–geometric-mean inequality given by Fact 1.15.14.) (Remark: See
Fact 10.11.7.)

Fact 1.8.5. Let [a, b] ⊂ R, let f : [a, b] �→ R be convex, and let x, y ∈ [a, b].
Then,

1
2 [f(x) + f(y)]− f [12 (x+ y)] ≤ 1

2 [f(a) + f(b)]− f [12 (a+ b)].

(Remark: This result is Niculescu’s inequality. See [99, p. 13].)

Fact 1.8.6. Let I ⊆ R be a finite or infinite interval, let f : I �→ R. Then, the
following statements are equivalent:

i) f is convex.

ii) f is continuous, and, for all x, y ∈ I,

2
3 (f [12 (x+y)]+f [12 (y+z)]+f [ 12 (x+z)] ≤ 1

3 [f(x)+f(y)+f(z)]+f [13 (x+y+z).

(Remark: This result is Popoviciu’s inequality. See [1039, p. 12].) (Remark: For
the case of a scalar argument and f(x) = |x|, this result implies Hlawka’s inequality
given by Fact 9.7.4. See Fact 1.18.2 and [1041].) (Problem: Extend this result so
that it yields Hlawka’s inequality for vector arguments.)

Fact 1.8.7. Let [a, b] ⊂ R, let f : [a, b] �→ R, and assume that f is convex.
Then,

f [12 (a+ b)] ≤ 1
b−a

∫ b

a

f(x) dx ≤ 1
2 [f(a) + f(b)].

(Proof: See [1039, pp. 50–53] and [1156, 1158].) (Remark: This result is the
Hermite-Hadamard inequality.)

1.9 Facts on Scalar Identities and Inequalities in One Variable

Fact 1.9.1. Let x and α be real numbers, and assume that x ≥ −1. Then,
the following statements hold:

i) If α ≤ 0, then
1 + αx ≤ (1 + x)α.

Furthermore, equality holds if and only if either x = 0 or α = 0.

ii) If α ∈ [0, 1], then
(1 + x)α ≤ 1 + αx.

Furthermore, equality holds if and only if either x = 0, α = 0, or α = 1.

iii) If α ≥ 1, then
1 + αx ≤ (1 + x)α.
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Furthermore, equality holds if and only if either x = 0 or α = 1.

(Proof: See [34], [274, p. 4], and [1010, p. 65]. Alternatively, the result follows
from Fact 1.9.26. See [1447].) (Remark: These results are Bernoulli’s inequality.
An equivalent version is given by Fact 1.9.2.) (Remark: The proof of i) and iii) in
[34] is based on the fact that, for x ≥ −1, the function f(x) �= (1+x)α−1

x for x �= 0
and f(0) �= α, is increasing.)

Fact 1.9.2. Let x be a nonnegative number, and let α be a real number. If
α ∈ [0, 1], then

α+ xα ≤ 1 + αx,

whereas, if either α ≤ 0 or α ≥ 1, then

1 + αx ≤ α+ xα.

(Proof: Set y = x + 1 in Fact 1.9.1. Alternatively, for the case α ∈ [0, 1], set
y = 1 in the right-hand inequality in Fact 1.10.21. For the case α ≥ 1, note
that f(x) �= α + xα − 1 − αx satisfies f(1) = 0, f ′(1) = 0, and, for all x ≥ 0,
f ′′(x) = α(α − 1)xα−2 > 0.) (Remark: This result is equivalent to Bernoulli’s
inequality. See Fact 1.9.1.) (Remark: For α ∈ [0, 1] a matrix version is given by
Fact 8.9.42.) (Problem: Compare the second inequality to Fact 1.10.22 with y = 1.)

Fact 1.9.3. Let x and α be real numbers, assume that either α ≤ 0 or α ≥ 1,
and assume that x ∈ [0, 1]. Then,

(1 + x)α ≤ 1 + (2α − 1)x.

Furthermore, equality holds if and only if either α = 0, α = 1, x = 0, or x = 1.
(Proof: See [34].)

Fact 1.9.4. Let x ∈ (0, 1), and let k be a positive integer. Then,

(1 − x)k < 1
1 + kx

.

(Proof: See [668, p. 137].)

Fact 1.9.5. Let x be a nonnegative number. Then,

8x < x4 + 9,

3x2 ≤ x3 + 4,

4x2 < x4 + x3 + x+ 1,

8x2 < x4 + x3 + 4x+ 4,

3x5 < x11 + x4 + 1.

Now, let n be a positive integer. Then,

(2n+ 1)xn ≤
2n∑
i=1

xi.

(Proof: See [668, pp. 117, 123, 152, 153, 155].)
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Fact 1.9.6. Let x be a positive number. Then,

1 + 1
2x− 1

8x
2 <
√

1 + x < 1 + 1
2x− 1

8x
2 + 1

16x
3.

(Proof: See [783, p. 55].)

Fact 1.9.7. Let x ∈ (0, 1). Then,

1
2− x < xx < x2 − x+ 1.

(Proof: See [668, p. 164].)

Fact 1.9.8. Let x, p ∈ [1,∞). Then,

x1/p(x−1) < px(x1/p −1).

Furthermore, equality holds if and only if either p = 1 or x = 1. (Proof: See [530,
p. 194].)

Fact 1.9.9. If p ∈ [
√

2, 2), then, for all x ∈ (0, 1), it follows that[
1− xp
p(1− x)

]2
≤ 1

2 (1 + xp−1).

Furthermore, if p ∈ (1,
√

2), then there exists x ∈ (0, 1), such that

1
2 (1 + xp−1) <

[
1− xp
p(1− x)

]2
.

(Proof: See [206].)

Fact 1.9.10. Let x, p ∈ [1,∞). Then,

(p−1)p−1(xp −1)p ≤ pp(x−1)(xp − x)p−1xp−1.

Furthermore, equality holds if and only if either p = 1 or x = 1. (Proof: See [530,
p. 194].)

Fact 1.9.11. Let x ∈ [1,∞), and let p, q ∈ (1,∞) satisfy 1/p+1/q = 1. Then,

px1/q ≤ 1 + (p−1)x.

Furthermore, equality holds if and only if x = 1. (Proof: See [530, p. 194].)

Fact 1.9.12. Let x ∈ [1,∞), and let p, q ∈ (1,∞) satisfy 1/p+1/q = 1. Then,

x−1 ≤ p1/pq1/q(x1/p −1)1/p(x1/q −1)1/qx2/(pq).

Furthermore, equality holds if and only if x = 1. (Proof: See [530, p. 195].)

Fact 1.9.13. Let x be a real number, and let p, q ∈ (1,∞) satisfy 1/p+1/q = 1.
Then,

1
pe
px + 1

q e
−qx ≤ ep2q2x2/8.

(Proof: See [868, p. 260].)
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Fact 1.9.14. Let x and y be positive numbers. If x ∈ (0, 1] and y ∈ [0, x],
then (

1 +
1
x

)y
≤ 1 +

y

x
.

Equality holds if and only if either y = 0 or x = y = 1. If x ∈ (0, 1), then(
1 +

1
x

)x
< 2.

If x > 1 and y ∈ [1, x], then

1 +
y

x
≤
(

1 +
1
x

)y
< 1 +

y

x
+
y2

x2
.

The left-hand inequality is an equality if and only if y = 1. Finally, if x > 1, then

2 <
(

1 +
1
x

)x
< 3.

(Proof: See [668, p. 137].)

Fact 1.9.15. Let x be a nonnegative number, and let p and q be real numbers
such that 0 < p ≤ q. Then,

ex
(

1 +
1
p

)−x
≤
(

1 +
x

p

)p
≤
(

1 +
x

q

)q
≤ ex.

Furthermore, if p < q, then equality holds if and only if x = 0. Finally,

lim
q→∞

(
1 +

x

q

)q
= ex.

(Proof: See [274, pp. 7, 8].) (Remark: For q →∞, (1+1/q)q = e+O(1/q), whereas
(1 + 1/q)q[1 + 1/(2q)] = e+O(1/q2). See [829].)

Fact 1.9.16. Let x be a positive number. Then,√
x

x+ 1
e <

(
1 +

1
x

)x
<

2x+ 1
2x+ 2

e

and √
1 +

1
x
e−1/[12x(x+1)] <

2x+ 2
2x+ 1

e1/[6(2x+1)2]

<
e(

1 + 1
x

)x
<

√
1 +

1
x
e−1/[3(2x+1)2].

(Proof: See [1160].)
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Fact 1.9.17. Let x be a positive number. Then,(
1 +

1
x+ 1

5

)1/2

<

(
1 +

2
3x+ 1

)3/4

<

(
1 +

1
5
4x+ 1

3

)5/8

<
e(

1 + 1
x

)x
<

(
1 +

1
x+ 1

6

)1/2

.

(Proof: See [921].)

Fact 1.9.18. e is given by

lim
q→∞

(
q + 1
q − 1

)q/2
= e

and
lim
q→∞

[
qq

(q − 1)q−1
− (q − 1)q−1

(q − 2)q−2

]
= e.

(Proof: These expressions are given in [1157] and [829], respectively.)

Fact 1.9.19. Let n ≥ 2 be a positive integer. Then,

e
(n
e

)n
<
√

2πn
(n
e

)n
< n! <

√
n

n− 1

√
2πn
(n
e

)n
<

(
n+ 1

2

)n
<
nn+1

en−1
< e
(n

2

)n
.

(Proof: See [1160].) (Remark: The lower bound for n! is Stirling’s formula.) (Re-
mark: (e/2)n < n and

√
2π < e.)

Fact 1.9.20. Let n be a positive integer. If n ≥ 3, then

n! < 2n(n−1)/2.

If n ≥ 6, then (n
3

)2
< n! <

(n
2

)2
.

(Proof: See [668, p. 137].)

Fact 1.9.21. Let x and a be positive numbers. Then,

log x ≤ ax− log a− 1.

In particular,
log x ≤ x

e
.

Fact 1.9.22. Let x be a positive number. Then,

x− 1
x
≤ log x ≤ x− 1.
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Furthermore, equality holds if and only if x = 1.

Fact 1.9.23. Let x be a positive number such that x �= 1. Then,

1
x2 + 1

≤ log x
x2 − 1

≤ 1
2x
.

Furthermore, equality holds if and only if x = 1.

Fact 1.9.24. Let x be a positive number. Then,

2|x− 1|
x+ 1

≤ |logx| ≤ |x− 1|(1 + x1/3)
x+ x1/3

≤ |x− 1|√
x

.

Furthermore, equality holds if and only if x = 1. (Proof: See [274, p. 8].)

Fact 1.9.25. If x ∈ (0, 1], then

x− 1
x
≤ x2 − 1

2x
≤ x− 1√

x
≤ (x− 1)(1 + x1/3)

x+ x1/3
≤ log x ≤ 2(x− 1)

x+ 1
≤ x2 − 1
x2 + 1

≤ x−1.

If x ≥ 1, then

x− 1
x
≤ x2 − 1
x2 + 1

≤ 2(x− 1)
x+ 1

≤ log x ≤ (x− 1)(1 + x1/3)
x+ x1/3

≤ x− 1√
x
≤ x2 − 1

2x
≤ x−1.

Furthermore, equality holds in all cases if and only if x = 1. (Proof: See [274, p.
8] and [625].)

Fact 1.9.26. Let x be a positive number, and let p and q be real numbers
such that 0 < p ≤ q. Then,

log x ≤ xp − 1
p

≤ xq − 1
q
≤ xq log x.

In particular,
log x ≤ 2(

√
x− 1) ≤ x− 1.

Furthermore, equality holds in the second inequality if and only if either p = q or
x = 1. Finally,

lim
p↓0

xp − 1
p

= log x.

(Proof: See [34, 1447] and [274, p. 8].) (Remark: See Proposition 8.6.4.) (Remark:
See Fact 8.13.1.)

Fact 1.9.27. Let x > 0. Then,

x− 1
2x

2 + 1
3x

3 − 1
4x

4 < log(1 + x) < x− 1
2x

2 + 1
3x

3.

(Proof: See [783, p. 55].)

Fact 1.9.28. Let x > 1. Then,

x− 1
log x

<

(
x1/2 + x1/4 + 1

3

)2
<

(
x1/3 + 1

2

)3
.

(Proof: See [756].)
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Fact 1.9.29. Let x be a real number. Then, the following statements hold:

i) If x ∈ [0, π/2], then

x cos x
2
πx ≤ 2

πx+ 1
π3x(π2 − 4x2)
x√

(1 − 4/π2)x2 + 1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
≤ sinx ≤

⎧⎪⎨
⎪⎩

2
πx+ π−2

π3 x(π2 − 4x2)

x ≤ tanx

1

.

ii) If x ∈ (0, π/2], then
cot2 x <

1
x2

< 1 + cot2 x.

iii) If x ∈ (0, π), then
1
πx(π − x) ≤ sinx ≤ 4

π2x(π − x).
iv) If x ∈ [−4, 4], then

cosx ≤ sinx
x
≤ 1.

v) If x ∈ [−π/2, π/2] and p ∈ [0, 3], then

cosx ≤
(

sinx
x

)p
≤ 1.

vi) If x �= 0, then
x− 1

6x
3 < sinx < x− 1

6x
3 + 1

120x
5.

vii) If x �= 0, then
1− 1

2x
2 < cosx < 1− 1

2x
2 + 1

24x
4.

viii) If x ≥ √3, then
1 + x cos

π

x
< (x+ 1) cos

π

x+ 1
.

ix) If x ∈ [0, π/2),
4x

π − 2x
≤ π tanx.

x) If x ∈ [0, π/2), then

2 ≤ 16
π4x

3 tanx+ 2 ≤
(

sinx
x

)2

+
tanx
x
≤ 8

45x
3 tanx+ 2.

xi) If x ∈ (0, π/2), then
3x < 2 sinx+ tanx.

xii) For all x > 0,
3 sinx < (2 + cosx)x.

xiii) If x ∈ [0, π/2],
2 log secx ≤ (sinx) tanx.

xiv) If x ∈ (0, 1), then
sin−1 x <

x

1− x2
.
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xv) If x > 0, then
x

x2 + 1
3x

1 + 2
√
x2 + 1

⎫⎪⎪⎬
⎪⎪⎭ < tan−1 x.

xvi) If x ∈ (0, π/2), then
sinhx < 2 tanx.

xvii) If x ∈ R, then

1 ≤ sinhx
x
≤ coshx ≤

(
sinhx
x

)3

.

xviii) If x > 0 and p ≥ 3, then

coshx <
(

sinhx
x

)p
.

xix) If x > 0, then

2 ≤ 8
45x

3 tanx+ 2 ≤
(

sinhx
x

)2

+
tanhx
x

.

xx) If x > 0, then

sinhx√
sinh2 x+ cosh2 x

< tanhx < x < sinhx < 1
2 sinh 2x.

(Proof: Statements i), iv), viii), ix), and xiii) are given in [273, pp. 250, 251]. For
i), see also [783, p. 75] and [902]. Statement ii) follows from sinx < x < tanx
in statement i). Statement iii) is given in [783, p. 72]. Statement v) is given in
[1500]. Statements vi) and vii) are given in [783, p. 68]. Statement x) is given in
[34, 1432]. See also [274, p. 9], [868, pp. 270–271], and [1499, 1500]. Statement
xi) is Huygens’s inequality. See [783, p. 71] and [868, p. 266]. Statement xii) is
given in [783, p. 71] and [868, p. 266]. Statement xiv) is given in [868, p. 271].
Statements xv) and xvi) are given in [783, pp. 70, 75]. Statement xvii) is given
in [273, pp. 131] and [673, p. 71]. Statements xviii) and xix) are given in [1500].
Statement xx) is given in [783, p. 74].) (Remark: The inequality 2/π ≤ (sinx)/x is
Jordan’s inequality. See [902].)

Fact 1.9.30. The following statements hold:

i) If x ∈ R, then
1− x2

1 + x2
≤ sinπx

πx
.

ii) If |x| ≥ 1, then
1− x2

1 + x2
+

(1− x)2
x(1 + x2)

≤ sinπx
πx

.

iii) If x ∈ (0, 1), then

(1− x2)(4− x2)(9 − x2)
x6 − 2x4 + 13x2 + 36

≤ sinπx
πx

≤ 1− x2

√
1 + 3x4

.

(Proof: See [902].)
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Fact 1.9.31. Let n be a positive integer, and let r be a positive number.
Then,

n

n+ 1
≤
[

(n+ 1)
∑n
i=1 i

r

n
∑n+1
i=1 i

r

]1/r
≤

n
√
n!

n+1
√

(n+ 1)!
.

(Proof: See [4].) (Remark: The left-hand inequality is Alzer’s inequality, while the
right-hand inequality is Martins’s inequality.)

1.10 Facts on Scalar Identities and Inequalities in Two
Variables

Fact 1.10.1. Let m and n be positive integers. Then,

(m2 − n2)2 + (2mn)2 = (m2 + n2)2.

In particular, if m = 2 and n = 1, then

32 + 42 = 52,

while, if m = 3 and n = 2, then

52 + 122 = 132.

Furthermore, if m = 4 and n = 1, then

82 + 152 = 172,

whereas, if m = 4 and n = 3, then

72 + 242 = 252.

(Remark: This result characterizes all Pythagorean triples within an integer multi-
ple.)

Fact 1.10.2. The following integer identities hold:

i) 33 + 43 + 53 = 63.

ii) 13 + 123 = 93 + 103.

iii) 102 + 112 + 122 = 132 + 142.

iv) 212 + 222 + 232 + 242 = 252 + 262 + 272.

(Remark: The cube of a positive integer cannot be the sum of the cubes of two
positive integers. See [477, p. 7].)

Fact 1.10.3. Let x, y ∈ R. Then,

x2 − y2 = (x − y)(x+ y),

x3 − y3 = (x− y)(x2 + xy + y2),

x3 + y3 = (x+ y)(x2 − xy + y2),

x4 − y4 = (x − y)(x+ y)(x2 + y2),

x4 + x2y2 + y4 = (x2 + xy + y2)(x2 − xy + y2),
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x4 + (x+ y)4 + y4 = 2(x2 + xy + y2)2,

x5 − y5 = (x− y)(x4 + x3y + x2y2 + xy3 + y4),

x5 + y5 = (x+ y)(x4 − x3y + x2y2 − xy3 + y4),

x6 − y6 = (x− y)(x + y)(x2 + xy + y2)(x2 − xy + y2).

Fact 1.10.4. Let x and y be real numbers. Then,

xy ≤ 1
4 (x+ y)2 ≤ 1

2

(
x2 + y2

)
.

If, in addition, x and y are positive, then

2 ≤ x

y
+
y

x

and 2
1
x + 1

y

≤ √xy ≤ 1
2 (x+ y).

(Remark: See Fact 8.10.7.)

Fact 1.10.5. Let x and y be positive numbers, and assume that 0 < x < y.
Then,

(x− y)2
8y

<
(x− y)2
4(x+ y)

< 1
2 (x + y)−√xy < (x− y)2

8x
.

(Proof: See [136, p. 231] and [457, p. 183].)

Fact 1.10.6. Let x and y be real numbers, and let α ∈ [0, 1]. Then,
√
αx+

√
1− αy ≤ (x2 + y2)1/2.

Furthermore, equality holds if and only if one of the following conditions holds:

i) x = y = 0.

ii) x = 0, y > 0, and α = 0.

iii) x > 0, y = 0, and α = 1.

iv) x > 0, y > 0, and α = x2

x2+y2 .

Fact 1.10.7. Let α be a real number. Then,

0 ≤ x2 + αxy + y2

for all real numbers x, y if and only if α ∈ [−2, 2].

Fact 1.10.8. Let x and y be nonnegative numbers. Then,

9xy2 ≤ 3x3 + 7y3,

27x2y ≤ 4(x+ y)3,

6xy2 ≤ x3 + y6 + 8,

x2y + y2x ≤ x3 + y3,

x3y + y3x ≤ x4 + y4,

x4y + y4x ≤ x5 + y5,
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5x6y6 ≤ 2x15 + 3y10,

8(x3y + y3x) ≤ (x+ y)4,

4x2y ≤ x4 + x3y + y2 + xy,

4x2y ≤ x4 + x3y2 + y2 + x,

12xy ≤ 4x2y + 4y2x+ 4x+ y,

9xy ≤ (x2 + x+ 1)(y2 + y + 1),

6x2y2 ≤ x4 + 2x3y + 2y3x+ y4,

4(x2y + y2x) ≤ 2(x2 + y2)2 + x2 + y2,

2(x2y + y2x+ x2y2) ≤ 2(x4 + y4) + x2 + y2.

(Proof: See Fact 1.15.8, [457, p. 183], [668, pp. 117, 120, 123, 124, 150, 153, 155].)

Fact 1.10.9. Let x and y be real numbers. Then,

x3y + y3x ≤ x4 + y4,

4xy(x− y)2 ≤ (x2 − y2)2,

2x+ 2xy ≤ x2y2 + x2 + 2,

3(x+ y + xy) ≤ (x+ y + 1)2.

(Proof: See [668, p. 117].)

Fact 1.10.10. Let x and y be real numbers. Then,

2|(x+ y)(1− xy)| ≤ (1 + x2)(1 + y2).

(Proof: See [457, p. 185].)

Fact 1.10.11. Let x and y be real numbers, and assume that xy(x + y) ≥ 0.
Then,

(x2 + y2)(x3 + y3) ≤ (x+ y)(x4 + y4).

(Proof: See [457, p. 183].)

Fact 1.10.12. Let x and y be real numbers. Then,

[x2 + y2 + (x + y)2]2 = 2[x4 + y4 + (x+ y)4].

Therefore,
1
2 (x2 + y2)2 ≤ x4 + y4 + (x+ y)4

and
x4 + y4 ≤ 1

2 [x2 + y2 + (x + y)2]2.

(Remark: This result is Candido’s identity. See [25].)

Fact 1.10.13. Let x and y be real numbers. Then,

54x2y2(x+ y)2 ≤ [x2 + y2 + (x+ y)2
]3
.

Equivalently, [
x2y2(x+ y)2

]1/3 ≤ 1
3√2

1
3

[
x2 + y2 + (x+ y)2

]3
.
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(Remark: This result interpolates the arithmetic-mean–geometric-mean inequality
due to the factor 1/ 3

√
2.) (Remark: This inequality is used in Fact 4.10.1.)

Fact 1.10.14. Let x and y be real numbers, and let p ∈ [1,∞). Then,

(p− 1)(x− y)2 + [12 (x+ y)]2 ≤ [ 12 (|x|p + |y|p)]2/p.
(Proof: See [542, p. 148].)

Fact 1.10.15. Let x and y be complex numbers. If p ∈ [1, 2], then

[|x|2 + (p− 1)|y|2]1/2 ≤ [ 12 (|x+ y|p + |x− y|p)]1/p.
If p ∈ [2,∞], then

[ 12 (|x+ y|p + |x− y|p)]1/p ≤ [|x|2 + (p− 1)|y|2]1/2.
(Proof: See Fact 9.9.35.)

Fact 1.10.16. Let x and y be real numbers, let p and q be real numbers, and
assume that 1 ≤ p ≤ q. Then,

[12 (|x+ y√
q−1
|q + |x− y√

q−1
|q)]1/q ≤ [ 12 (|x + y√

p−1
|p + |x− y√

p−1
|p)]1/p.

(Proof: See [542, p. 206].) (Remark: This result is the scalar version of Bonami’s
inequality. See Fact 9.7.20.)

Fact 1.10.17. Let x and y be positive numbers, and let n be a positive integer.
Then,

(n+ 1)(xyn)1/(n+1) < x+ ny.

(Proof: See [868, p. 252].)

Fact 1.10.18. Let x and y be positive numbers such that x < y, and let n be
a positive integer. Then,

(n+ 1)(y − x)xn < yn+1 − xn+1 < (n+ 1)(y − x)yn.
(Proof: See [868, p. 248].)

Fact 1.10.19. Let [a, b] ⊂ R, and let x, y ∈ [a, b]. Then,

|x|+ |y| − |x+ y| ≤ |a|+ |b| − |a+ b|.
(Proof: Use Fact 1.8.5.)

Fact 1.10.20. Let [a, b] ⊂ (0,∞), and let x, y ∈ [a, b]. Then,√
x

y
+
√
y

x
≤
√
a

b
+

√
b

a
.

(Proof: Use Fact 1.8.5.)

Fact 1.10.21. Let x and y be nonnegative numbers, and let α ∈ [0, 1]. Then,[
αx−1 + (1− α)y−1

]−1 ≤ xαy1−α ≤ αx+ (1 − α)y.
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(Remark: The right-hand inequality follows from the concavity of the logarithm
function.) (Remark: The left-hand inequality is the scalar Young inequality. See
Fact 8.10.46, Fact 8.12.26, and Fact 8.12.27.)

Fact 1.10.22. Let x and y be distinct positive numbers, and let α ∈ [0, 1].
Then,

αx + (1− α)y ≤ γxαy1−α,

where γ > 0 is defined by

γ
�=

(h−1)h1/(h−1)

e logh

and h �= max{y/x, x/y}. In particular,
√
xy ≤ 1

2 (x+ y) ≤ γ√xy.
(Remark: This result is the reverse Young inequality. See Fact 1.10.21. The
case α = 1/2 is the reverse arithmetic-mean–geometric mean inequality. See Fact
1.15.19.) (Remark: γ = S(1, h) is Specht’s ratio. See Fact 1.15.19 and Fact
11.14.22.) (Remark: This result is due to Tominaga. See [515].)

Fact 1.10.23. Let x and y be positive numbers. Then,

1 < xy + yx.

(Proof: See [457, p. 184] or [783, p. 75].)

Fact 1.10.24. Let x and y be positive numbers. Then,

(x+ y) log[12 (x+ y)] ≤ x log x+ y log y.

(Proof: The result follows from the fact that f(x) = x log x is convex on (0,∞).
See [783, p. 62].)

Fact 1.10.25. Let x be a positive number and let y be a real number. Then,

y − ey−1

x
≤ log x.

Furthermore, equality holds if x = y = 1.

Fact 1.10.26. Let x and y be real numbers, and let α ∈ [0, 1]. Then,

[αe−x + (1− α)e−y]−1 ≤ eαx+(1−α)y ≤ αex + (1− α)ey.

(Proof: Replace x and y by ex and ey, respectively, in Fact 1.10.21.) (Remark: The
right-hand inequality follows from the convexity of the exponential function.)

Fact 1.10.27. Let x and y be real numbers, and assume that x �= y. Then,

e(x+y)/2 ≤ ex − ey
x− y ≤

1
2 (ex + ey).

(Proof: See [24].) (Remark: See Fact 1.10.36.)
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Fact 1.10.28. Let x and y be real numbers. Then,

2− y − e−x−y ≤ 1 + x ≤ y + ex−y.

Furthermore, equality holds on the left if and only if x = −y, and on the right if
and only if x = y. In particular,

2− e−x ≤ 1 + x ≤ ex.

Fact 1.10.29. Let x and y be real numbers. Then, the following statements
hold:

i) If 0 ≤ x ≤ y ≤ π/2, then

x

y
≤ sinx

sin y
≤ π

2

(
x

y

)
.

ii) If either x, y ∈ [0, 1] or x, y ∈ [1, π/2], then

(tanx) tan y ≤ (tan 1) tanxy.

iii) If x, y ∈ [0, 1], then

(sin−1 x) sin−1 y ≤ 1
2 sin−1 xy.

iv) If y ∈ (0, π/2] and x ∈ [0, y], then(
sin y
y

)
x ≤ sinx ≤ sin

[
y

(
x

y

)y cot y
]
.

v) If x, y ∈ [0, π] are distinct, then

1
2 (sinx+ sin y) <

cosx− cos y
y − x < sin[ 12 (x + y)].

vi) If 0 ≤ x < y < π/2, then

1
cos2 x

<
tanx− tan y

x− y <
1

cos2 y
.

vii) If x and y are positive numbers, then

(sinhx) sinh xy ≤ xy sinh(x+ xy).

viii) If 0 < y < x < π/2, then

sinx
sin y

<
x

y
<

tanx
tan y

.

(Proof: Statements i)–iii) are given in [273, pp. 250, 251]. Statement iv) is given in
[1039, p. 26]. Statement v) is a consequence of the Hermite-Hadamard inequality
given by Fact 1.8.6. See [1039, p. 51]. Statement vi) follows from the mean value
theorem and monotonicity of the cosine function. See [868, p. 264]. Statement
vii) is given in [673, p. 71]. Statement viii) is given in [868, p. 267].) (Remark:
(sin 0)/0 = (sinh 0)/0 = 1.)

Fact 1.10.30. Let x and y be positive numbers. If p ∈ [1,∞), then

xp + yp ≤ (x + y)p.
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Furthermore, if p ∈ [0, 1), then

(x+ y)p ≤ xp + yp.

(Proof: For the first statement, set p = 1 in Fact 1.15.34. For the second statement,
set q = 1 in Fact 1.15.34.)

Fact 1.10.31. Let x, y, p, q be nonnegative numbers. Then,

xpyq + xqyp ≤ xp+q + yp+q.

Furthermore, equality holds if and only if either pq = 0 or x = y. (Proof: See [668,
p. 96].)

Fact 1.10.32. Let x and y be nonnegative numbers, and let p, q ∈ (1,∞)
satisfy 1/p+ 1/q = 1. Then,

xy ≤ xp

p
+
yq

q
.

Furthermore, equality holds if and only if xp = yq. (Proof: See [430, p. 12] or [431,
p. 10].) (Remark: This result is Young’s inequality. An extension is given by Fact
1.15.31. Matrix versions are given by Fact 8.12.12 and Fact 9.14.22.) (Remark:
1/p+ 1/q = 1 is equivalent to (p− 1)(q − 1) = 1.)

Fact 1.10.33. Let x and y be positive numbers, and let p and q be real
numbers such that 0 ≤ p ≤ q. Then,

xp + yp

(xy)p/2
≤ xq + yq

(xy)q/2
.

(Remark: See Fact 8.8.9.)

Fact 1.10.34. Let x and y be positive numbers, and let p and q be nonzero
real numbers such that p ≤ q. Then,(

xp + yp

2

)1/p
≤
(
xq + yq

2

)1/q
.

Furthermore, equality holds if and only if either p = q or x = y. Finally,

√
xy = lim

p→0

(
xp + yp

2

)1/p
.

Hence, if p < 0 < q, then(
xp + yp

2

)1/p
≤ √xy ≤

(
xq + yq

2

)1/q
where equality holds if and only if x = y. (Proof: See [800, pp. 63–65] and
[916].) (Remark: This result is a power mean inequality. Letting q = 1 yields
the arithmetic-mean–geometric-mean inequality

√
xy ≤ 1

2(x+ y).)

Fact 1.10.35. Let x and y be positive numbers, and let p and q be nonzero
real numbers such that p ≤ q. Then,

xp + yp

xp−1 + yp−1
≤ xq + yq

xq−1 + yq−1
.
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Furthermore, equality holds if and only if either x = y or p = q. (Proof: See [99, p.
23].) (Remark: The quantity xp+yp

xp−1+yp−1 is the Lehmer mean.)

Fact 1.10.36. Let x and y be positive numbers such that x < y, and define

G �=
√
xy, L �=

y − x
log y − log x

, I �=
1
e

(
xx

yy

)1/(y−x)
, A �= 1

2 (x+ y).

Then,
x < G < L < I < A < y,

G <
√
GA <

3
√
G2A < 3

√
1
4 (G+A)2G < L <

⎧⎨
⎩

1
3 (2G+A) < 1

3 (G+ 2A)
√
LA < 1

2 (L+A)

⎫⎬
⎭< I < A,

and
G+

(x− y)2(x+ 3y)(y + 3x)
8(x+ y)(x2 + 6xy + y2)

≤ A.

Now, let p and q be real numbers such that 1/3 ≤ p < 1 < q. Then,

L <

(
xp + yp

2

)1/p
< A <

(
xq + yq

2

)1/q
.

(Proof: See [916, 1155, 1236] and [668, p. 106]. The inequality L < 1
3 (2G + A)

is Polya’s inequality. See [1039, p. 53]. The inequality 1
3 (G + 2A) < I is due to

Sandor. See [99, p. 24].) (Remark: These inequalities refine the arithmetic-mean–
geometric-mean inequality Fact 1.15.14.) (Remark: L is the logarithmic mean. Note
that L =

∫ 1

0
xty1−t dt.) (Remark: I is the identric mean. See [1236].) (Remark:

See Fact 1.15.26.) (Remark: See Fact 1.10.26.)

Fact 1.10.37. Let x and y be positive numbers, and define

L �=
y − x

log y − log x
, Hp

�=
(
xp + (xy)p/2 + yp

3

)1/p
, Mp

�=
(
xp + yp

2

)1/p
.

If p, q are positive numbers such that p < q, then

Mp < Mq

and
Hp < Hq.

Now, let p, q, r be positive numbers such that 0.5283 ≈ (log 3)/(3 log 2) ≤ p ≤ 3q/2
and 1/3 < r < [(log 2)/ log 3]p ≈ 0.6309p. Then,

L < H1/2 < M1/3 < Mr < Hp < Mq.

In particular, if r ≤ (log 2)/ log 3 ≈ 0.6309 and q ≥ 2/3 ≈ 0.6667, then(
xr + yr

2

)1/r
<
x+
√
xy + y

3
<

(
xq + yq

2

)1/q
.

Finally, if 1/2 ≤ p ≤ 3q/2, then

y − x
log y − log x

<

(
xp + (xy)p/2 + yp

3

)1/p
<

(
xq + yq

2

)1/q
.
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(Proof: See [275, p. 350] and [604, 756].) (Remark: The center term is the Heron
mean.)

Fact 1.10.38. Let x and y be distinct positive numbers, and let α ∈ [0, 1].
Then, √

xy ≤ 1
2 (x1−αyα + xαy1−α) ≤ 1

2 (x+ y).

Furthermore,
1
2 (x1−αyα + xαy1−α) ≤ y − x

log y − log x

if and only if α ∈ [12 (1− 1/
√

3), 1
2 (1 + 1/

√
3)], whereas

y − x
log y − log x

≤ 1
2 (x1−αyα + xαy1−α)

if and only if α ∈ [0, 1
2 (1−1/

√
3)]∪ [ 12 (1+1/

√
3)]. (Proof: See [437].) (Remark: The

first string of inequalities refines the arithmetic-mean–geometric-mean inequality
Fact 1.15.14. The center term is the Heinz mean. Monotonicity is considered in
Fact 1.16.1, while matrix extensions are given by Fact 9.9.49.)

Fact 1.10.39. Let x and y be positive numbers. Then,(
x

y

)y
≤
(
x+ 1
y + 1

)y+1

.

Furthermore, equality holds if and only if x = y. (Proof: See [868, p. 267].)

Fact 1.10.40. Let x and y be real numbers. If either 0 < x < y < 1 or
1 < x < y, then

yx

xy
<
y

x

and
yy

xx
<
( y
x

)xy
.

If 0 < x < 1 < y, then both inequalities are reversed. If either 0 < x < 1 < y or
0 < x < y < e, then

1 <
(
y log x
x log y

)(
yx − 1
xy − 1

)
<
yx

xy
.

If e < x < y, then both inequalities are reversed. (Proof: See [1105].)

Fact 1.10.41. Let x and y be real numbers. If k ≥ 1, then

|x− y|2k+1 ≤ 22k|x2k+1 − y2k+1|.
Now, assume that x and y are nonnegative. If r ≥ 1, then

|x− y|r ≤ |xr− yr|.
(Proof: See [695].) (Remark: Matrix versions of these results are given in [695].
Applications to nonlinear control appear in [1106].) (Problem: Merge these in-
equalities.)
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1.11 Facts on Scalar Identities and Inequalities in Three
Variables

Fact 1.11.1. Let x, y, z be real numbers. Then,

|x| + |y|+ |z| ≤ |x+ y − z|+ |y + z − x|+ |z + x− y|
and |x+ y|

1 + |x+ y| ≤
|x|

1 + |x| +
|y|

1 + |y| .

(Proof: See [457, pp. 181, 183].) (Problem: Extend these results to C and vector
arguments.) (Remark: Equality holds in the first result if x, y, z represent the
lengths of the sides of a triangle. See Fact 1.11.17.)

Fact 1.11.2. Let x, y, z be real numbers. Then,

2[(x− y)(x− z) + (y− z)(y− x) + (z − x)(z − y)] = (x− y)2 + (y − z)2 + (z − x)2.
(Proof: See [136, pp. 242, 402].)

Fact 1.11.3. Let x, y, z be real numbers. Then,

(x+ y)z ≤ 1
2 (x2 + y2) + z2.

(Proof: See [136, p. 230].)

Fact 1.11.4. Let x, y, z be real numbers. Then,

(1
2x+ 1

3y + 1
6z)

2 ≤ 1
2x

2 + 1
3y

2 + 1
6z

2.

(Proof: See [668, p. 129].)

Fact 1.11.5. Let x, y be nonnegative numbers, and let z be a positive number.
Then,

x+ y ≤ zyx+ z−xy.

(Proof: See [668, p. 163].)

Fact 1.11.6. Let x, y, z be nonnegative numbers. Then,

3
√
xyz ≤ 1

3 (
√
xy +

√
yz +

√
zx) ≤ 1

6 (x + y + z) + 1
2

3
√
xyz ≤ 1

3 (x + y + z).

(Proof: The first inequality is given by Fact 1.15.21, while the second inequality is
given in [1040].)

Fact 1.11.7. Let x, y, z be nonnegative numbers. Then,

xy + yz + zx ≤ (
√
xy +

√
yz +

√
zx)2

≤ 3(xy + yz + zx)

≤ (x+ y + z)2

≤ 3(x2 + y2 + z2),
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4(xy + yz) ≤ (x + y + z)2,

2(x+ y + z) ≤ x2 + y2 + z2 + 3,

2(xy + yz − zx) ≤ x2 + y2 + z2,

5xy + 3yz + 7zx ≤ 6x2 + 4y2 + 5z2.

(Proof: See Fact 1.15.7 and [668, pp. 117, 126].)

Fact 1.11.8. Let x, y, z be nonnegative numbers. Then,

12xy + 6xyz ≤ 6x2 + y2(z + 2)(2z + 3),

(x+ y − z)(y + z − x)(z + x− y) ≤ xyz,
8xyz ≤ (x+ y)(y + z)(z + x),

6xyz ≤ x2y2 + y2z2 + z2x2 + x2 + y2 + z2,

15xyz ≤ x3 + y3 + z3 + 2(x2y + y2z + z2x+ xy2 + yz2 + zx2),

15xyz + x3 + y3 + z3 ≤ 2(x+ y + z)(x2 + y2 + z2),

16xyz ≤ (x+ 1)(y + 1)(x+ z)(y + z),

27xyz ≤ (x2 + x+ 1)(y2 + y + 1)(z2 + z + 1),

4xyz ≤ x2y2z2 + xy + yz + zx,

x2y + y2z + z2x ≤ x3 + y3 + z3,

x2(z + y − x)+y2(z + x− y) + z2(x+ y − z)
≤ 3xyz

≤ xy2 + yz2 + zx2

≤ x3 + y3 + z3,

27xyz ≤ 3(x+ y + z)(xy + yz + zx)

≤ (x + y + z)3

≤ 3(x+ y + z)(x2 + y2 + z2)

≤ 9(x3 + y3 + z3).

(Proof: See Fact 1.11.11, [457, pp. 166, 169, 179, 182], [668, pp. 117, 120, 152],
and [868, pp. 247, 257].) (Remark: Note the factorization

x3 + y3 + z3 − 3xyz = (x+ y + z)(x2 + y2 + z2 − xy − yz − zx),
where both sides are nonnegative due to the arithmetic-mean–geometric-mean in-
equality.) (Remark: For positive x, y, z, the inequality 9xyz ≤ (x + y + z)(xy +
yz + zx) is given by Fact 1.15.16.) (Remark: For positive x, y, z, the inequality
3xyz ≤ xy2 + yz2 + zx2 is given by Fact 1.15.17.)
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Fact 1.11.9. Let x, y, z be nonnegative numbers. Then,

xyz(x+ y + z)

2xyz|x+ y − z|
2xyz|x− y + z|

2xyz| − x+ y + z|

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
≤
{
x2y2 + y2z2 + z2x2

3xyz(x+ y + z)

}

≤ (xy + yz + zx)2

≤ 3(x2y2 + y2z2 + z2x2)

≤ (x2 + y2 + z2)2

≤ (x+ y + z)(x3 + y3 + z3)

≤
{

3(x4 + y4 + z4)

(x+ y + z)4

}

≤ 27(x4 + y4 + z4),

x2y2 + y2z2 + z2x2 ≤ 1
2 [x4 + y4 + z4 + xyz(x+ y + z)]

≤ x4 + y4 + z4

≤ (x2 + y2 + z2)2,

xyz(x+ y + z) ≤ x3y + y3z + z3x ≤ x4 + y4 + z4,

2xyz|x+ y − z|
2xyz|x− y + z|

2xyz| − x+ y + z|

⎫⎪⎬
⎪⎭ ≤ 3(x3y + y3z + z3x) ≤ (x2 + y2 + z2)2,

(x2 + y2 + z2)(x3 + y3 + z3) ≤ 3(x5 + y5 + z5).

Furthermore,

1
3
(x + y + z) ≤ x3

x2 + xy + y2
+

y3

y2 + yz + z2
+

z3

z2 + zx+ x2
.

(Proof: See [457, pp. 170, 180], [668, pp. 106, 108, 149], [868, pp. 247, 257], Fact
1.15.2, Fact 1.15.4, and Fact 1.15.22.) (Remark: The inequality 2xyz(x+ y− z) ≤
x2y2 + y2z2 + z2x2 follows from (xy− yz− zx)2, and thus is valid for all real x, y, z.
See [457, p. 194].) (Remark: The inequality 3xyz(x + y + z) ≤ (xy + yz + zx)2

follows from Newton’s inequality. See Fact 1.15.11.)

Fact 1.11.10. Let x, y, z be nonnegative numbers. Then,

9x2y2z2 ≤ (x2y + y2z + z2x)(xy2 + yz2 + zx2),
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27x2y2z2 ≤ 3xyz(x+ y + z)(xy + yz + zx)

≤
{
xyz(x+ y + z)3

(xy + yz + zx)3

}

≤ 27
64 (x+ y)2(y + z)2(z + x)2

≤ 9
64 [(x+ y)6 + (y + z)6 + (z + x)6]

≤ 1
27 (x+ y + z)6

≤ 9(x6 + y6 + z6),

432xy2z3 ≤ (x+ y + z)6,

3x2y2z2 ≤
{
x3yz2 + x2y3z + xy2z3

xy3z2 + x2yz3 + x3y2z

}
≤ x2y4 + y2z4 + z2x4,

9(x2 + yz)(y2 + zx)(z2 + xy) ≤ 8(x3 + y3 + z3)2,

3xyz(x3 + y3 + z3) ≤ (xy + yz + zx)(x4 + y4 + z4),

2(x3y3 + y3z3 + z3x3) ≤ x6 + y6 + z6 + 3x2y2z2,

xyz(x+ y + z)(x3 + y3 + z3) ≤ (xy + yz + zx)(x5 + y5 + z5),

(xy + yz + zx)x2y2z2 ≤ x8 + y8 + z8,

(xy + yz + zx)2(xyz2 + x2yz + xy2z) ≤ 3(y2z2 + z2x2 + x2y2)2,

(xyz + 1)3 ≤ (x3 + 1)(y3 + 1)(z3 + 1).

Finally, if α ∈ [3/7, 7/3], then

(α + 1)6(xy + yz + zx)3 ≤ 27(αx+ y)2(αy + z)2(αz + x)2.

In particular,
64(xy + yz + zx)3 ≤ (x + y)2(y + z)2(z + x)2

and
27(xy + yz + zx)3 ≤ (2x+ y)2(2y + z)2(2z + x)2.

(Proof: See [136, p. 229], [273, p. 244], [326, p. 114], [457, pp. 179, 182], [668,
pp. 105, 134, 150, 155, 169], [868, pp. 247, 252, 257], [1039, p. 14], [1374],
Fact 1.11.11, Fact 1.11.21, Fact 1.15.2, Fact 1.15.4, and Fact 1.15.8. For the last
inequality, see [63].) (Remark: The inequality (xy+yz+zx)2(xyz2+x2yz+xy2z) ≤
3(y2z2 + z2x2 + x2y2)2 is due to Klamkin. See Fact 2.20.11 and [1374].)

Fact 1.11.11. Let x, y, z be positive numbers. Then,

6 ≤ 9
2

+
x

y + z
+

y

z + x
+

z

x+ y
≤ x+ y

z
+
y + z

x
+
z + x

y
.

(Proof: See [99, pp. 33, 34].)
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Fact 1.11.12. Let x, y, z be real numbers. Then,

2xyz ≤ x2 + y2z2

and
3x2y2z2 ≤ x4y2 + x2y4 + z6.

(Proof: See [668, p. 117] and [153, p. 78].)

Fact 1.11.13. Let x, y, z be positive numbers, and assume that x < y + z.
Then,

x

1 + x
<

y

1 + y
+

z

1 + z
.

(Proof: See [868, p. 44].)

Fact 1.11.14. Let x, y, z be nonnegative numbers. Then,

xy(x+ y) + yz(y + z) + zx(z + x) ≤ x3 + y3 + z3 + 3xyz.

(Proof: See [668, p. 98].)

Fact 1.11.15. Let x, y, z be nonnegative numbers, and assume that x+y < z.
Then,

2(x+ y)2z ≤ x3 + y3 + z3 + 3xyz.

(Proof: See [668, p. 98].)

Fact 1.11.16. Let x, y, z be nonnegative numbers, and assume that z < x+y.
Then,

2(x+ y)z2 ≤ x3 + y3 + z3 + 3xyz.

(Proof: See [668, p. 100].)

Fact 1.11.17. Let x, y, z be positive numbers. Then, the following statements
are equivalent:

i) x, y, z represent the lengths of the sides of a triangle.

ii) z < x+ y, x < y + z, and y < z + x.

iii) (x + y − z)(y + z − x)(z + x− y) > 0.

iv) x > |y − z|, y > |z − x|, and z > |x− y|.
v) |y − z| < x < y + z.

vi) There exist positive numbers a, b, c such that x = a + b, y = b + c, and
z = c+ a.

vii) 2(x4 + y4 + z4) < (x2 + y2 + z2)2.

In this case, a, b, c in v) are given by

a = 1
2 (z + x− y), b = 1

2 (x+ y − z), c = 1
2 (y + z − x).

(Proof: See [457, p. 164]. Statements v) and vii) are given in [668, p. 125].)
(Remark: See Fact 8.9.5.)
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Fact 1.11.18. Let n ≥ 2, let x, y, z be positive numbers, and assume that
xn + yn = zn. Then, x, y, z represent the lengths of the sides of a triangle. (Proof:
See [668, p. 112].) (Remark: For n ≥ 3, a lengthy proof shows that the equation
xn + yn = zn has no solution in integers.)

Fact 1.11.19. Let x, y, z be positive numbers that represent the lengths of the
sides of a triangle. Then, 1/(x+ y), 1/(y + z), and 1/(z + x) represent the lengths
of the sides of a triangle. (Proof: See [868, p. 44].) (Remark: See Fact 1.11.17 and
Fact 1.11.20.)

Fact 1.11.20. Let x, y, z be positive numbers that represent the lengths of
the sides of a triangle. Then,

√
x,
√
y, and

√
z, represent the lengths of the sides of

a triangle. (Proof: See [668, p. 99].) (Remark: See Fact 1.11.17 and Fact 1.11.19.)

Fact 1.11.21. Let x, y, z be positive numbers that represent the lengths of
the sides of a triangle. Then,

3(xy + yz + zx) < (x+ y + z)2 < 4(xy + yz + zx),

2(x2 + y2 + z2) < (x+ y + z)2 < 3(x2 + y2 + z2),

1
4 (x+ y + z)2 ≤

{
xy + yz + zx
1
3 (x + y + z)2

}
≤ x2 + y2 + z2 ≤ 2(xy + yz + zx),

3 <
2x
y + z

+
2y
z + x

+
2z
x+ y

< 4,

x(y2 + z2) + y(z2 + x2) + z(x2 + y2) ≤ 3xyz + x3 + y3 + z3,

1
4 (x+ y + z)3 ≤ (x+ y)(y + z)(z + x) ≤ 8

27 (x + y + z)3,

13
27 (x + y + z)3 ≤ (x2 + y2 + z2)(x+ y + z) + 4xyz ≤ 1

2 (x+ y + z)3,

xyz(x+ y + z) ≤ x2y2 + y2z2 + z2x2 ≤ x3y + y3z + z3x,

xyz ≤ 1
8 (x+ y)(y + z)(z + x).

If, in addition, the triangle is isosceles, then

3(xy + yz + zx) < (x+ y + z)2 < 16
5 (xy + yz + zx),

8
3 (x2 + y2 + z2) < (x+ y + z)2 < 3(x2 + y2 + z2),

9
32 (x+ y + z)3 ≤ (x + y)(y + z)(z + x) ≤ 8

27 (x+ y + z)3.

(Proof: The first string is given in [868, p. 42]. In the second string, the lower
bound is given in [457, p. 179], while the upper bound, which holds for all positive
x, y, z, is given in Fact 1.11.8. Both the first and second strings are given in [971, p.
199]. In the third string, the upper leftmost inequality follows from Fact 1.11.21;
the upper inequality second from the left follows from Fact 1.11.7 whether or not
x, y, z represent the lengths of the sides of a triangle; the rightmost inequality is
given in [457, p. 179]; the lower leftmost inequality is immediate; and the lower
inequality second from the left follows from Fact 1.15.2. The fourth string is given
in [868, pp. 267]. The fifth string is given in [457, p. 183]. This result can be



PRELIMINARIES 45

written as [457, p. 186]

3 ≤ x

y + z − x +
y

z + x− y +
z

x+ y − z .

The sixth string is given in [971, p. 199]. The seventh string is given in [1411].
In the eighth string, the left-hand inequality holds for all positive x, y, z. See Fact
1.11.9. The right-hand inequality, which is given in [457, p. 183], orders and
interpolates two upper bounds for xyz(x + y + z) given in Fact 1.11.9. The ninth
string is given in [971, p. 201]. The inequalities for the case of an obtuse triangle
are given in given in [236] and [971, p. 199].) (Remark: In the fourth string, the
lower left inequality is Nesbitt’s inequality. See [457, p. 163].) (Remark: See Fact
1.11.17 and Fact 2.20.11.)

Fact 1.11.22. Let x, y, z represent the lengths of the sides of a triangle, then

9
x+ y + z

≤ 1
x

+
1
y

+
1
z
≤ 1
x+ y − z +

1
x+ z − y +

1
y + z − x.

(Proof: The lower bound, which holds for all x, y, z, follows from Fact 1.11.21. The
upper bound is given in [971, p. 72].) (Remark: The upper bound is Walker’s
inequality.)

Fact 1.11.23. Let x, y, z be positive numbers such that x+ y + z = 1. Then,

25
1 + 48xyz

≤ 1
x

+
1
y

+
1
z
.

(Proof: See [1469].)

Fact 1.11.24. Let x, y, z be positive numbers that represent the lengths of
the sides of a triangle. Then,∣∣∣∣xy +

y

z
+
z

x
−
(
y

x
+
z

y
+
x

z

)∣∣∣∣ < 1.

(Proof: See [457, p. 181].)

Fact 1.11.25. Let x, y, z be positive numbers that represent the lengths of
the sides of a triangle. Then,∣∣∣∣x− yx+ y

+
y − z
y + z

+
z − x
z + x

∣∣∣∣ < 1
8
.

(Proof: See [457, p. 183].)

Fact 1.11.26. Let x, y, z be real numbers. Then,

|x− z|√
1 + x2

√
1 + z2

≤ |x− y|√
1 + x2

√
1 + y2

+
|y − z|√

1 + y2
√

1 + z2
.

(Proof: See [457, p. 184].)
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1.12 Facts on Scalar Identities and Inequalities in Four
Variables

Fact 1.12.1. Let w, x, y, z be nonnegative numbers. Then,
√
wx +

√
yz ≤

√
(w + y)(x+ z)

and

6 4
√
wxyz ≤

√
(w + x)(y + z) +

√
(w + y)(x+ z) +

√
(w + z)(x+ y).

(Proof: Use Fact 1.10.4 and see [668, p. 120].)

Fact 1.12.2. Let w, x, y, z be nonnegative numbers. Then,

4(wx+ xy + yz + zw) ≤ (w + x+ y + z)2,

8(wx+ xy + yz + zw + wy + xz) ≤ 3(w + x+ y + z)2,

16(wxy + xyz + yzw + zwx) ≤ (w + x+ y + z)3,

256wxyz ≤ 16(w + x+ y + z)(wxy + xyz + yzw + zwx)

≤ (w + x+ y + z)4

≤ 16(w + x+ y + z)(w3 + x3 + y3 + z3),

4wxyz ≤ w2xy + xyz2 + y2zw + zwx2 = (wx + yz)(wy + xz),

4wxyz ≤ wx2z + xy2w + yz2x+ zw2y,

8wxyz ≤ (wx + yz)(w + x)(y + z),

(wx + wy + wz + xy + xz + yz)2 ≤ 6(w2x2 + w2y2 + w2z2 + x2y2 + x2z2 + y2z2),

4(wxy + xyz + yzw + zwx)2 ≤ (w2 + x2 + y2 + z2)3,

81wxyz ≤ (w2 + w + 1)(x2 + x+ 1)(y2 + y + 1)(z2 + z + 1),

w3x3y3 + x3y3z3 + y3z3w3 + z3w3x3 ≤ (wxy + xyz + yzw + zwx)3

≤ 16(w3x3y3 + x3y3z3 + y3z3w3 + z3w3x3),

16
3(w + x+ y + z)

≤ 1
w + x+ y

+
1

x+ y + z
+

1
y + z + w

+
1

z + w + x
.

(Proof: See [457, p. 179], [668, pp. 120, 123, 124, 134, 144, 161], [797], Fact 1.15.22,
and Fact 1.15.20.) (Remark: The inequality (w+x+y+z)3 ≤ 16(w3 +x3 +y3+z3)
is given by Fact 1.15.2.) (Remark: The inequality 16wxyz ≤ (w+x+ y+ z)(wxy+
xyz + yzw + zwx) is given by Fact 1.15.16.) (Remark: The inequality 4wxyz ≤
w2xy + xyz2 + y2zw + zwx2 follows from Fact 1.15.17 with n = 2.) (Remark: The
inequality 4wxyz ≤ wx2z + xy2w + yz2x+ zw2y is given by Fact 1.15.17.)

Fact 1.12.3. Let w, x, y, z be real numbers. Then,

4wxyz ≤ w2x2 + x2y2 + y2w2 + z4
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and
(wxyz + 1)3 ≤ (w3 + 1)(x3 + 1)(y3 + 1)(z3 + 1).

(Proof: See [153, p. 78] and [668, p. 134].)

Fact 1.12.4. Let w, x, y, z be real numbers. Then,

(w2 + x2)(y2 + z2) = (wz + xy)2 + (wy − xz)2
= (wz − xy)2 + (wy + xz)2.

Hence,
(wz + xy)2

(wy − xz)2
(wz − xy)2
(wy + xz)2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
≤ (w2 + x2)(y2 + z2).

(Remark: The identity is a statement of the fact that, for complex numbers z1, z2,
|z1|2|z2|2 = |z1z2|2 = |Re(z1z2)|2 + |Im(z1z2)|2. See [346, p. 77].)

Fact 1.12.5. Let w, x, y, z be real numbers. Then,

w4 + x4 + y4 + z4 − 4wxyz = (w2 − x2)2 + (y2 + z2)2 + 2(wx− yz)2.
(Remark: This result yields the arithmetic-mean–geometric-mean inequality for
four variables. See [136, pp. 226, 367].)

1.13 Facts on Scalar Identities and Inequalities in Six Variables

Fact 1.13.1. Let x, y, z, u, v, w be real numbers. Then,

x6 + y6 + z6 + u6 + v6 + w6 − 6xyzuvw

= 1
2 (x2 + y2 + z2)2[(x2 − y2)2 + (y2 − z2)2 + (z2 − x2)2]

+ 1
2 (u2 + v2 + w2)2[(u2 − v2)2 + (v2 − w2)2 + (w2 − u2)2]

+ 3(xyz − uvw)2.

(Remark: This result yields the arithmetic-mean–geometric-mean inequality for six
variables. See [136, p. 226].)

1.14 Facts on Scalar Identities and Inequalities in Eight
Variables

Fact 1.14.1. Let x1, x2, x3, x4, y1, y2, y3, y4 be real numbers. Then,

(x2
1 + x2

2 + x2
3 + x2

4)(y
2
1 + y2

2 + y2
3 + y2

4)

= (x1y1 − x2y2 − x3y3 − x4y4)2 + (x1y2 + x2y1 + x3y4 − x4y3)2

+ (x1y3 − x2y4 + x3y1 + x4y2)2 + (x1y4 + x2y3 − x3y2 + x4y1)2.
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Hence,

(x1y1 − x2y2 − x3y3 − x4y4)2 + (x1y2 + x2y1 + x3y4 − x4y3)2

+ (x1y3 − x2y4 + x3y1 + x4y2)2

(x1y1 − x2y2 − x3y3 − x4y4)2 + (x1y2 + x2y1 + x3y4 − x4y3)2

+ (x1y4 + x2y3 − x3y2 + x4y1)2

(x1y1 − x2y2 − x3y3 − x4y4)2 + (x1y3 − x2y4 + x3y1 + x4y2)2

+ (x1y4 + x2y3 − x3y2 + x4y1)2

(x1y2 + x2y1 + x3y4 − x4y3)2 + (x1y3 − x2y4 + x3y1 + x4y2)2

+ (x1y4 + x2y3 − x3y2 + x4y1)2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

≤ (x2
1 + x2

2 + x2
3 + x2

4)(y
2
1 + y2

2 + y2
3 + y2

4).

(Remark: The identity represents a relationship between a pair of quaternions.
An analogous identity holds for two sets of eight variables representing a pair of
octonions. See [346, p. 77].)

1.15 Facts on Scalar Identities and Inequalities in n Variables

Fact 1.15.1. Let x1, . . . , xn be real numbers, and let k be a positive integer.
Then, (

n∑
i=1

xi

)k
=

∑
i1+···+in=k

k!
i1! · · · in!x

i1
1 · · ·xinn .

(Remark: This result is the multinomial theorem.)

Fact 1.15.2. Let x1, . . . , xn be nonnegative numbers, and let k be a positive
integer. Then,

n∑
i=1

xki ≤
(

n∑
i=1

xi

)k
≤ nk−1

n∑
i=1

xki .

Furthermore, equality holds in the second inequality if and only if x1 = · · · = xn.
(Remark: The case n = 4, k = 3 is given by the inequality (w + x + y + z)3 ≤
16(w3 + x3 + y3 + z3) of Fact 1.12.2.)

Fact 1.15.3. Let x1, . . . , xn be nonnegative numbers. Then,(
n∑
i=1

xi

)2
≤ n

n∑
i=1

x2
i.

Furthermore, equality holds if and only if x1 = · · · = xn. (Remark: This result is
equivalent to i) of Fact 9.8.12 with m = 1.)

Fact 1.15.4. Let x1, . . . , xn be nonnegative numbers, and let k be a positive
integer. Then,

n∑
i=1

xki ≤
(

n∑
i=1

xi

)(
n∑
i=1

xk−1
i

)
≤ n

n∑
i=1

xki .
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(Proof: See [868, pp. 257, 258].)

Fact 1.15.5. Let x1, . . . , xn be nonnegative numbers, and let p, q ∈ [1,∞),
where p ≤ q. Then,(

n∑
i=1

xqi

)1/q
≤
(

n∑
i=1

xpi

)1/p
≤ n1/p−1/q

(
n∑
i=1

xqi

)1/q
.

Equivalently,
n∑
i=1

xqi ≤
(

n∑
i=1

xpi

)q/p
≤ nq/p−1

n∑
i=1

xqi .

(Proof: See Fact 9.7.29.) (Remark: Setting p = 1 and q = k yields Fact 1.15.2.)

Fact 1.15.6. Let x1, . . . , xn be nonnegative numbers. Then,(
n∑
i=1

x3
i

)2
≤
(

n∑
i=1

x2
i

)3
≤ n
(

n∑
i=1

x3
i

)2
.

(Proof: Set p = 2 and q = 3 in Fact 1.15.5 and square all terms.)

Fact 1.15.7. Let x1, . . . , xn be nonnegative numbers. For n = 2,

2(x1x2 + x2x1) ≤ (x1 + x2)2.

For n = 3,
3(x1x2 + x2x3 + x3x1) ≤ (x1 + x2 + x3)2.

If n ≥ 4, then

4(x1x2 + x2x3 + · · ·+ xnx1) ≤
(

n∑
i=1

xi

)2
.

(Proof: See [668, p. 144]. The cases n = 2, 3, 4 are given by Fact 1.10.4, Fact 1.11.7,
and Fact 1.12.2.) (Problem: Is 4 the best constant for n ≥ 5?)

Fact 1.15.8. Let x1, . . . , xn be nonnegative numbers. Then,(
n∑
i=1

xi

)(
n∑
i=1

x3
i

)
≤
(

n∑
i=1

x5
i

)(
n∑
i=1

1
xi

)
.

(Proof: See [668, p. 150].)

Fact 1.15.9. Let x1, . . . , xn be positive numbers, and assume that, for all
i = 1, . . . , n− 1, xi < xi+1 ≤ xi + 1. Then,

n∑
i=1

x3
i ≤
(

n∑
i=1

xi

)2
.

(Proof: See [457, p. 183].) (Remark: Equality holds in Fact 1.7.3.)
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Fact 1.15.10. Let x1, . . . , xn be complex numbers, define E0
�= 1, and, for

1 ≤ k ≤ n, define

Ek
�=
∑

i1<···<ik

k∏
j=1

xij .

Furthermore, for each positive integer k define

μk
�=

n∑
i=1

xki .

Then, for all k = 1, . . . , n,

kEk =
k∑
i=1

(−1)i−1Ek−iμi.

In particular,

E1 = μ1,

2E2 = E1μ1 − μ2,

3E3 = E2μ2 − E1μ2 + μ3.

Furthermore,

E1 = μ1,

E2 = 1
2 (μ2

1 − μ2),

E3 = 1
6 (μ3

1 − 3μ1μ2 + 2μ3)

and

μ1 = E1,

μ2 = E2
1 − 2E2,

μ3 = E3
1 − 3E1E2 + 3E3.

(Remark: This result is Newton’s identity. An application to roots of polynomials
is given by Fact 4.8.2.) (Remark: Ek is the kth elementary symmetric polynomial.)
(Remark: See Fact 1.15.11.)

Fact 1.15.11. Let x1, . . . , xn be complex numbers, let k be a positive integer
such that 1 < k < n, and define

Sk
�=
(
n
k

)−1∑
i1<···<ik

k∏
j=1

xij .

Then,
Sk−1Sk+1 ≤ S2

k.

(Remark: This result is Newton’s inequality. The case n = 3, k = 2 is given by Fact
1.11.9.) (Remark: Sk is the kth elementary symmetric mean.) (Remark: See Fact
1.15.10.)
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Fact 1.15.12. Let x1, . . . , xn be real numbers, and define

x
�= 1

n

n∑
j=1

xj

and

σ
�=

√√√√ 1
n

n∑
j=1

(xj − x)2 =

√√√√√
⎛
⎝ 1
n

n∑
j=1

x2
j

⎞
⎠− x2.

Then, for all i = 1, . . . , n,
|xi − x| ≤

√
n− 1σ.

Equality holds if and only if all of the elements of {x1, . . . , xn}ms\{xi} are equal.
In addition,

σ√
n− 1

≤ max{x1, . . . , xn} − x ≤
√
n− 1σ.

Equality holds in either the left-hand inequality or the right-hand inequality if and
only if all of the elements of {x1, . . . , xn}ms\max{x1, . . . , xn} are equal. Finally,

σ√
n− 1

≤ x−min{x1, . . . , xn} ≤
√
n− 1σ.

Equality holds in either the left-hand inequality or the right-hand inequality if and
only if all of the elements of {x1, . . . , xn}ms\min{x1, . . . , xn} are equal. (Proof: The
first result is the Laguerre-Samuelson inequality. See [574, 732, 754, 1043, 1140,
1332]. The lower bounds in the second and third strings are given in [1448]. See
also [1140].) (Remark: A vector extension of the Laguerre-Samuelson inequality is
given by Fact 8.9.35. An application to eigenvalue bounds is given by Fact 5.11.45.)

Fact 1.15.13. Let x1, . . . , xn be real numbers, and let α, δ, and p be positive
numbers. If p ≥ 1, then(

α

α+ n

)p−1

δp ≤
∣∣∣∣∣δ −

n∑
i=1

xi

∣∣∣∣∣
p

+ αp−1
n∑
i=1

|xi|p.

In particular,
αδ2

α+ n
≤
(
δ −

n∑
i=1

xi

)2

+ α

n∑
i=1

x2
i .

Furthermore, if p ≤ 1, x1, . . . , xn are nonnegative, and
∑n
i=1 xi ≤ δ, then∣∣∣∣∣δ −

n∑
i=1

xi

∣∣∣∣∣
p

+ αp−1
n∑
i=1

|xi|p ≤
(

α

α+ n

)p−1

δp.

Finally, equality holds in all cases if and only if x1 = · · · = xn = δ/(α+ n). (Proof:
See [1253].) (Remark: This result is Wang’s inequality. The special case p = 2 is
Hua’s inequality. Generalizations are given by Fact 9.7.8 and Fact 9.7.9.)

Fact 1.15.14. Let x1, . . . , xn be nonnegative numbers. Then,(
n∏
i=1

xi

)1/n
≤ 1

n

n∑
i=1

xi.
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Furthermore, equality holds if and only if x1 = x2 = · · · = xn. (Remark: This
result is the arithmetic-mean–geometric-mean inequality. Several proofs are given
in [275]. See also [314]. Bounds for the difference between these quantities are given
in [28, 295, 1343].)

Fact 1.15.15. Let x1, . . . , xn be positive numbers. Then,

n
1
x1

+ · · ·+ 1
xn

≤ n
√
x1 · · ·xn ≤ 1

n (x1 + · · ·+ xn) ≤
√√√√ 1

n

n∑
i=1

x2
i .

Furthermore, equality holds in each inequality if and only if x1 = x2 = · · · = xn.
(Remark: The lower bound for the geometric mean is the harmonic mean, while
the left-hand inequality is the arithmetic-mean–harmonic-mean inequality. See Fact
1.15.37.) (Remark: The upper bound for the arithmetic mean is the quadratic mean.
See [612] and Fact 1.15.32.)

Fact 1.15.16. Let x1, . . . , xn be positive numbers. Then,

n2

x1 + · · ·+ xn
≤ 1
x1

+ · · ·+ 1
xn
.

(Proof: Use Fact 1.15.15. See also [668, p. 130].) (Remark: The case n = 3 yields
the inequality 9xyz ≤ (x+ y+ z)(xy+ yz+ zx) of Fact 1.11.8.) (Remark: The case
n = 4 yields the inequality 16wxyz ≤ (w + x+ y + z)(wxy + xyz + yzw + zwx) of
Fact 1.12.2.)

Fact 1.15.17. Let x1, . . . , xn be positive numbers. Then,

n ≤ x1

x2
+
x2

x3
+ · · ·+ xn−1

xn
+
xn
x1
.

(Remark: The case n = 3 yields the inequality 3xyz ≤ xy2 + yz2 + zx2 of Fact
1.11.8.) (Remark: The case n = 4 yields the inequality 4wxyz ≤ wx2z + xy2w +
yz2x+ zw2y of Fact 1.12.2.)

Fact 1.15.18. Let x1, . . . , xn be nonnegative numbers. Then,(
n∏
i=1

xi

)1/n
≤ 1

n

n∑
i=1

xi ≤
(

n∏
i=1

xi

)1/n
+ 1

n

∑
i<j

|xi − xj |.

(Proof: See [457, p. 186].)

Fact 1.15.19. Let x1, . . . , xn be positive numbers contained in [a, b], where
a > 0. Then, (

n∏
i=1

xi

)1/n
≤ 1

n

n∑
i=1

xi ≤ γ
(

n∏
i=1

xi

)1/n
,

where γ is defined by

γ
�=

(h−1)h1/(h−1)

e logh

and h �= b/a. (Remark: The right-hand inequality is a reverse arithmetic-mean–
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geometric mean inequality; see [511, 516, 1470]. This result is due to Specht. For
the case n = 2, see Fact 1.10.22.) (Remark: γ = S(1, h) is Specht’s ratio. See
Fact 1.10.22 and Fact 11.14.22.) (Remark: Matrix extensions are considered in
[19, 809].)

Fact 1.15.20. Let x1, . . . , xn be positive numbers, and let k satisfy 1 ≤ k ≤ n.
Then, ⎛

⎝(n
k

)−1∑
i1<···<ik

k∏
j=1

xij

⎞
⎠

1/k

≤ 1
n

n∑
i=1

xi.

Equivalently, ∑
i1<···<ik

k∏
j=1

xij ≤
(
n
k

)(
1
n

n∑
i=1

xi

)k
.

(Proof: The result follows from the fact that the kth elementary symmetric function
is Schur concave. See [542, p. 102, Exercise 7.11].) (Remark: Equality holds if
k = 1. The case n = k is the arithmetic-mean–geometric-mean inequality. The case
n = 3, k = 2 yields the third inequality in Fact 1.11.7. The cases n = 4, k = 3 and
n = 4, k = 2 are given in Fact 1.12.2.)

Fact 1.15.21. Let x1, . . . , xn be positive numbers, and let k and k′ satisfy
1 ≤ k ≤ k′ ≤ n. Then,(

n∏
i=1

xi

)1/n
≤ (nk′)−1∑

i1<···<i′k

k′∏
j=1

x
1/k′

ij
≤ (nk)−1∑

i1<···<ik

k∏
j=1

x
1/k
ij
≤ 1

n

n∑
i=1

xi.

(Proof: See [542, p. 23] and [797].) (Remark: This result is an interpolation of the
arithmetic-mean–geometric-mean inequality. An alternative interpolation is given
by Fact 1.15.25.) (Remark: If k = 1, then the right-hand inequality is an equality.
If k = n, then the left-hand inequality is an equality. The case n = 3 and k = 2 is
given by Fact 1.11.6.)

Fact 1.15.22. Let x1, . . . , xn be nonnegative numbers, and let k be a positive
integer such that 1 ≤ k ≤ n. Then,⎛

⎝ ∑
i1<···<ik

k∏
j=1

xij

⎞
⎠
k

≤ (nk)k−1 ∑
i1<···<ik

k∏
j=1

xkij .

(Remark: Equality holds if k = 1 or k = n. The case n = 3, k = 2 is given by Fact
1.11.9. The cases n = 4, k = 3 and n = 4, k = 2 are given by Fact 1.12.2.)

Fact 1.15.23. Let x1, . . . , xn be positive numbers, and let k satisfy 1 ≤ k ≤ n.
Then,

(
n∏
i=1

xi

)1/n
≤ (nk)−1∑

i1<···<ik

k∏
j=1

x
1/k
ij
≤
⎛
⎝(n

k

)−1∑
i1<···<ik

k∏
j=1

xij

⎞
⎠

1/k

≤ 1
n

n∑
i=1

xi.

(Proof: Use Fact 1.15.22 to merge Fact 1.15.20 and Fact 1.15.21.)
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Fact 1.15.24. Let x1, . . . , xn be positive numbers, and let k and k′ satisfy
1 ≤ k ≤ k′ ≤ n. Then,

(
n∏
i=1

xi

)1/n
≤
⎛
⎝(n

k′
)−1∑
i1<···<i′k

k′∏
j=1

xij

⎞
⎠

1/k′

≤
⎛
⎝(n

k

)−1∑
i1<···<ik

k∏
j=1

xij

⎞
⎠

1/k

≤ 1
n

n∑
i=1

xi.

(Proof: See [797].)

Fact 1.15.25. Let x1, . . . , xn be positive numbers, let α1, . . . , αn be nonneg-
ative numbers, and assume that

∑n
i=1 αi = 1. Then,(

n∏
i=1

xi

)1/n
≤ 1

n!

∑ n∏
j=1

x
αj

ij
≤ 1

n

n∑
i=1

xi,

where the summation is taken over all n! permutations {i1, . . . , in} of {1, . . . , n}.
(Proof: See [542, p. 100].) (Remark: This result is a consequence of Muirhead’s
theorem, which states that the middle expression is a Schur convex function of the
exponents. See Fact 2.21.5.)

Fact 1.15.26. Let x1, . . . , xn be positive numbers. Then,(
n∏
i=1

xi

)1/n
< 1

n

(
x2 − x1

log x2 − logx1
+

x3 − x2

log x3 − log x2
+ · · ·+ x1− xn

log x1− log xn

)
< 1

n

n∑
i=1

xi.

(Proof: See [99, p. 44].) (Remark: This result is due to Bencze.) (Remark: This
result extends Fact 1.10.36 to n variables. See also [1465].)

Fact 1.15.27. Let x1, . . . , xn be positive numbers contained in [a, b], where
a > 0. Then,

a
2n2

∑
i<j

(log xi − log xj)2 ≤ 1
n

n∑
i=1

xi −
(

n∏
i=1

xi

)1/n
≤ b

2n2

∑
i<j

(log xi − log xj)2.

(Proof: See [1039, p. 86] or [1040].)

Fact 1.15.28. Let x1, . . . , xn be nonnegative numbers contained in (0, 1/2].
Furthermore, define

A �= 1
n

n∑
i=1

xi, G �=
n∏
i=1

x
1/n
i , H �= n

n∑
i=1

1
xi

and

A′ �= 1
n

n∑
i=1

(1− xi), G′ �=
n∏
i=1

(1 − xi)1/n, H ′ �= n
n∑
i=1

1
1−xi

.

Then, the following statements hold:

i) A′/G′ ≤ A/G. Furthermore, equality holds if and only if x1 = · · · = xn.
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ii) A′ −G′ ≤ A−G. Furthermore, equality holds if and only if x1 = · · · = xn.

iii) An − Gn ≤ A′n − G′n. Furthermore, equality holds for n = 1 and n = 2,
and, for n ≥ 3, if and only if x1 = · · · = xn.

iv) G′/H ′ ≤ G/H.
(Proof: See [1141]. For a proof of iv), see [1159].) (Remark: Result i) is due to
Fan. See [1159].)

Fact 1.15.29. Let x1, . . . , xn be positive numbers, and, for all k = 1, . . . , n,
define

Ak
�= 1

k

k∑
i=1

xi, Gk
�=

k∏
i=1

x
1/k
i .

Then,

1 =
(
A1

G1

)1
≤
(
A2

G2

)2
≤ · · · ≤

(
An
Gn

)n
and

0 = 1(A1 −G1) ≤ 2(A2 −G2) ≤ · · · ≤ n(An −Gn).

(Proof: See [1039, p. 13].) (Remark: The first result is due to Popoviciu, while the
second result is due to Rado.)

Fact 1.15.30. Let x1, . . . , xn be positive numbers, let p be a real number, and
define

Mp
�=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
n∏
i=1

xi

)1/n
, p = 0,

(
1
n

n∑
i=1

xpi

)1/p
, p �= 0.

Now, let p and q be real numbers such that p ≤ q. Then,

Mp ≤Mq

and

lim
r→−∞Mr = min{x1, . . . , xn} ≤ lim

r→0
Mr = M0 ≤ lim

r→∞Mr = max{x1, . . . , xn}.

Finally, p < q and at least two of the numbers x1, . . . , xn are distinct if and only if

Mp < Mq.

(Proof: See [273, p. 210] and [963, p. 105].) If p and q are nonzero and p ≤ q, then(
n∑
i=1

xpi

)1/p
≤ ( 1

n

)1/q−1/p

(
n∑
i=1

xqi

)1/q
,

which is a reverse form of Fact 1.15.34. (Proof: To verify the limit, take the log
of both sides and use l’Hôpital’s rule.) (Remark: This result is a power mean
inequality. M0 ≤ M1 is the arithmetic-mean–geometric-mean inequality given by
Fact 1.15.14.) (Remark: A matrix application of this result is given by Fact 8.12.1.)
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Fact 1.15.31. Let x1, . . . , xn be nonnegative numbers, let α1, . . . , αn be non-
negative numbers, and assume that

∑n
i=1αi = 1. Then,

n∏
i=1

xi ≤
n∑
i=1

αix
1/αi

i .

Furthermore, equality holds if and only if x1 = x2 = · · · = xn. (Proof: See [447].)
(Remark: This result is a generalization of Young’s inequality. See Fact 1.10.32.
Matrix versions are given by Fact 8.12.12 and Fact 9.14.22.) (Remark: This result
is equivalent to Fact 1.15.32.)

Fact 1.15.32. Let x1, . . . , xn be positive numbers, let α1, . . . , αn be nonneg-
ative numbers, and assume that

∑n
i=1αi = 1. Then,

1∑n
i=1

αi

xi

≤
n∏
i=1

xαi

i ≤
n∑
i=1

αixi.

Now, let r be a real number, define

Mr
�=

(
n∑
i=1

αix
r
i

)1/r

.

and let p and q be real numbers such that p ≤ q. Then,

Mp ≤Mq

and

lim
r→−∞Mr = min{x1, . . . , xn} ≤ lim

r→0
Mr = M0 ≤ lim

r→∞Mr = max{x1, . . . , xn}.

Furthermore, equality holds if and only if x1 = x2 = · · ·= xn. (Remark: This result
is the weighted arithmetic-mean–geometric-mean inequality. Setting α1 = · · · =
αn = 1/n yields Fact 1.15.14.) (Proof: Since f(x) = −logx is convex, it follows
that

log
n∏
i=1

xαi

i =
n∑
i=1

αi log xi ≤ log
n∑
i=1

αixi.

To prove the second statement, define f : [0,∞)n �→ [0,∞) by f(μ1, . . . , μn)
�=∑n

i=1 αiμi −
∏n
i=1 μ

αi

i . Note that f(μ, . . . , μ) = 0 for all μ ≥ 0. If x1, . . . , xn
minimizes f, then ∂f/∂μi(x1, . . . , xn) = 0 for all i = 1, . . . , n, which implies that
x1 = x2 = · · · = xn.) (Remark: This result is equivalent to Fact 1.15.31.) (Re-
mark: See [1039, p. 11].)

Fact 1.15.33. Let x1, . . . , xn be nonnegative numbers. Then,

1 +

(
n∏
i=1

xi

)1/n
≤
[
n∏
i=1

(1 + xi)

]1/n
.

Furthermore, equality holds if and only if x1 = x2 = · · · = xn. (Proof: Use Fact
1.15.14. See [238, p. 210].) (Remark: This inequality is used to prove Corollary
8.4.15.)
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Fact 1.15.34. Let x1, . . . , xn be nonnegative numbers, and let p, q be positive
numbers such that p ≤ q. Then,(

n∑
i=1

xqi

)1/q
≤
(

n∑
i=1

xpi

)1/p
.

Furthermore, the inequality is strict if and only if p < q and at least two of the
numbers x1, . . . , xn are nonzero. (Proof: See Proposition 9.1.5.) (Remark: This
result is the power-sum inequality. See [273, p. 213]. This result implies that the
Hölder norm is a monotonic function of the exponent.)

Fact 1.15.35. Let x1, . . . , xn be positive numbers, and let α1, . . . , αn ∈ [0, 1]
be such that

∑n
i=1 αi = 1. If p ≤ 0 or p ≥ 1, then(

n∑
i=1

αixi

)p
≤

n∑
i=1

αix
p
i .

Alternatively, if p ∈ [0, 1], then
n∑
i=1

αix
p
i ≤
(

n∑
i=1

αixi

)p
.

Finally, equality in both cases holds if and only if either p = 0 or p = 1 or x1 =
· · · = xn. (Remark: This result is a consequence of Jensen’s inequality given by
Fact 1.8.4.)

Fact 1.15.36. Let 0 < x1< · · · < xn, and let α1, . . . , αn ≥ 0 satisfy
∑n

i=1αi =
1. Then,

1 ≤
(

n∑
i=1

αixi

)(
n∑
i=1

αi
xi

)
≤ (x1 + xn)2

4x1xn
.

(Remark: This result is the Kantorovich inequality. See Fact 8.15.9 and [927].)
(Remark: See Fact 1.15.37.)

Fact 1.15.37. Let x1, . . . , xn be positive numbers, and define α �=
mini=1,...,n xi and β �= maxi=1,...,n xi. Then,

1 ≤
(

1
n

n∑
i=1

xi

)(
1
n

n∑
i=1

1
xi

)
≤ (α+ β)2

4αβ
.

(Proof: Use Fact 1.15.36 or Fact 1.16.21. See [430, p. 94] or [431, p. 119].) (Remark:
The left-hand inequality is the arithmetic-mean–harmonic-mean inequality. See
Fact 1.15.12. The right-hand inequality is Schweitzer’s inequality. See [1394, 1409]
for historical details.) (Remark: A matrix extension is given by Fact 8.10.29.)

Fact 1.15.38. Let x1, . . . , xn be positive numbers, and let p and q be positive
numbers. Then, (

1
n

n∑
i=1

xpi

)(
1
n

n∑
i=1

xqi

)
≤ 1

n

n∑
i=1

xp+qi .
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In particular, if p ∈ [0, 1], Then,(
1
n

n∑
i=1

xpi

)(
1
n

n∑
i=1

x1−p
i

)
≤ 1

n

n∑
i=1

xpi .

(Proof: See [1398].) (Remark: These inequalities are interpolated in [1398].)

Fact 1.15.39. Let x1, . . . , xn be positive numbers. Then,

1
n

n∑
k=1

(
k∏
i=1

xi

)1/k
≤
[

n∏
k=1

(
1
k

k∑
i=1

xi

)]1/k

.

Furthermore, equality holds if and only if x1 = · · · = xn. (Remark: The result
can be expressed as 1

n (z1 + · · · + zn) ≤ n
√
y1 · · · yn, where zk

�= k
√
x1 · · ·xk ≤ yk

�=
1
k (x1 + · · · + xk).) (Remark: This result is the mixed arithmetic-geometric mean
inequality. This result is due to Nanjundiah. See [336, 983].)

Fact 1.15.40. Let x1, . . . , xn be positive numbers, where n ≥ 2. Then,

n∑
k=1

(
k∏
i=1

xi

)1/k
≤ n

n√
n!

n∑
k=1

xk ≤ e(n−1)/n
n∑
k=1

xk ≤ e
n∑
k=1

xk.

Furthermore, equality holds in all of these inequalities if and only if x1 = · · · = xn =
0. (Remark: The inequality n

n√
n!
< e(n−1)/n, which is equivalent to e(n/e)n < n!,

follows from Fact 1.9.19.) (Remark: This result is a finite version of Carleman’s
inequality. See [336] and [542, p. 22].)

Fact 1.15.41. Let x1, . . . , xn be positive numbers, not all of which are zero.
Then, (

n∑
i=1

xi

)4
< (2 tan−1 n)2

(
n∑
i=1

x2
i

)
n∑
i=1

i2x2
i < π2

(
n∑
i=1

x2
i

)
n∑
i=1

i2x2
i .

Furthermore, (
n∑
i=1

xi

)2
< π2

6

n∑
i=1

i2x2
i .

(Proof: See [154] or [869, p. 18].) (Remark: The first and third terms in the first
inequality constitute a finite version of the Carlson inequality. The last inequality
follows from the Cauchy-Schwarz inequality. See [457, p. 175].)

Fact 1.15.42. Let x1, . . . , xn be nonnegative numbers, and let p > 1. Then,

n∑
k=1

(
1
k

k∑
i=1

xi

)p
≤
(

p
p−1

)p n∑
k=1

xpk.

(Proof: See [849].) (Remark: This result is the Hardy inequality. See [336, 849].)
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Fact 1.15.43. Let x1, . . . , xn be nonnegative numbers, and let p > 1. Then,
n∑
k=1

(
n∑
i=k

xi
i

)p
≤ pp

n∑
k=1

xpk.

(Proof: See [849].) (Remark: This result is the Copson inequality.)

Fact 1.15.44. Let x1, . . . , xn, α, and β be positive numbers, let p and q be
real numbers, and assume that one of the following conditions is satisfied:

i) p ∈ (−∞, 1]\{0} and (n− 1)α ≤ β.
ii) p ≥ 1 and (np − 1)α ≤ β.

Then,
n

(α+ β)1/p
≤

n∑
i=1

(
xqi

αxqi + β
∏n
k=1 x

q/n
k

)1/p

.

(Proof: See [1461].)

Fact 1.15.45. Let x1, . . . , xn be nonnegative numbers, and assume that∑n
i=1 xi = 1. Then,

0 ≤ logn−
n∑
i=1

xi log 1
xi
≤ 1

2 (n2 − n) max
i,j=1,...,n

|xi − xj |2.

Furthermore,
∑n

i=1 xi log 1
xi

= 0 if and only if xi = 1 for some i, while
∑n

i=1 xi log 1
xi

= log n if and only if x1 = · · · = xn = 1/n. (Proof: See [433].) (Remark: Define
0log 1

0
�= 0.) (Remark: Alternative entropy bounds involving maxi,j=1,...,n xi/xj are

given in [434].)

Fact 1.15.46. Let x1, . . . , xn be positive numbers, and assume that
∑n
i=1 xi =

1. Then,

0 ≤ logn−
n∑
i=1

xi log
1
xi
≤
(
n

n∑
i=1

x2
i

)
− 1 ≤

(
n∑
i=1

x3
i

)1/2[( n∑
i=1

1
xi

)
− n2

]1/2
.

Consequently,

logn+ 1− n
n∑
i=1

x2
i ≤

n∑
i=1

xi log
1
xi
≤ logn.

(Proof: See [433, 982].) (Remark: It follows from Fact 1.15.37 that n2 ≤∑n
i=1

1
xi
.)

Fact 1.15.47. Let x1, . . . , xn be positive numbers, assume that
∑n
i=1 xi = 1,

and define a �= mini=1,...,n xi and b �= maxi=1,...,n xi. Then,

0 ≤ logn−
n∑
i=1

xi log
1
xi
≤ 1

n�n
2

4 �(b− a) log
b

a
≤ 1

n�n
2

4 �
(b− a)2√

ab
.

(Proof: See [435].) (Remark: This result is based on Fact 1.16.18.) (Remark: See
Fact 2.21.6.)
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Fact 1.15.48. Let x1, . . . , xn be nonnegative numbers. Then,

e2

4

n∑
i=1

x2
i ≤

n∏
i=1

exi.

Furthermore, equality holds for n = 1 and x1 = 2. (Proof: See [1104].)

1.16 Facts on Scalar Identities and Inequalities in 2n Variables

Fact 1.16.1. Let x1, . . . , xn and y1, . . . , yn be nonnegative numbers, let α, β
∈ R, and assume that either 0 ≤ β ≤ α ≤ 1

2 or 1
2 ≤ α ≤ β ≤ 1. Then,

n∑
i=1

x1−α
i yαi

n∑
i=1

xαi y
1−α
i ≤

n∑
i=1

x1−β
i yβi

n∑
i=1

xβi y
1−β
i .

Furthermore, if x and y are nonnegative numbers, then

x1−αyα + xαy1−α ≤ x1−βyβ + xβy1−β.

(Remark: This monotonicity inequality is due to Callebaut. See [1386].)

Fact 1.16.2. Let x1, . . . , xn and y1, . . . , yn be real numbers. Furthermore, let
x[1], . . . , x[n] denote a rearrangement of x1, . . . , xn such that x[1] ≥ · · · ≥ x[n]. Then,

n∑
i=1

(x[i] − y[i])2 ≤
n∑
i=1

(x[i] − yi)2.

(Proof: See [457, p. 180].)

Fact 1.16.3. Let x1, . . . , xn and y1, . . . , yn be real numbers, and assume that
x1 ≤ · · · ≤ xn and y1 ≤ · · · ≤ yn. Furthermore, let x[1], . . . , x[n] denote a rearrange-
ment of x1, . . . , xn such that x[1] ≥ · · · ≥ x[n]. Then,

n

n∑
i=1

x[i]y[n−i+1] ≤
(

n∑
i=1

xi

)(
n∑
i=1

yi

)
≤ n

n∑
i=1

x[i]y[i].

Furthermore, each inequality is an equality if and only if either x1 = · · · = xn or
y1 = · · · = yn. (Proof: See [668, pp. 148, 149].) (Remark: This result is Chebyshev’s
inequality.)

Fact 1.16.4. Let x1, . . . , xn and y1, . . . , yn be real numbers. Furthermore, let
x[1], . . . , x[n] denote a rearrangement of x1, . . . , xn such that x[1] ≥ · · · ≥ x[n]. Then,

n∑
i=1

x[i]y[n−i+1] ≤
n∑
i=1

xiyi ≤
n∑
i=1

x[i]y[i].

(Proof: See [236, p. 127] and [971, p. 141].) (Remark: This result is the Hardy-
Littlewood rearrangement inequality.) (Remark: See Fact 8.18.18.)

Fact 1.16.5. Let x1, . . . , xn be nonnegative numbers, and let y1, . . . , yn be
real numbers. Furthermore, let y[1], . . . , y[n] denote a rearrangement of y1, . . . , yn
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such that y[1] ≥ · · · ≥ y[n]. Then, for all k = 1, . . . , n, it follows that

k∑
i=1

x[i]yi ≤
k∑
i=1

x[i]y[i]

and
k∑
i=1

x[i]y[n−i+1] ≤
k∑
i=1

xiyi.

Now, assume that y1, . . . , yn are nonnegative numbers. Then, for all k = 1, . . . , n,
it follows that

k∑
i=1

x[i]y[n−i+1] ≤
k∑
i=1

xiyi ≤
k∑
i=1

x[i]yi ≤
k∑
i=1

x[i]y[i].

(Proof: See [381, 838] and [971, p. 141].) (Remark: This result is an extension of
the Hardy-Littlewood rearrangement inequality.)

Fact 1.16.6. Let x1, . . . , xn and y1, . . . , yn be positive numbers, and let p, q
be positive numbers such that, for all i = 1, . . . , n,

q ≤ xi
yi
≤ p.

Furthermore, let x[1], . . . , x[n] denote a rearrangement of x1, . . . , xn such that x[1] ≥
· · · ≥ x[n]. Then,

n∑
i=1

x[i]y[i] ≤ p+q
2
√
pq

n∑
i=1

xiyi.

(Remark: This result is a reverse rearrangement inequality.) (Remark: Equality
holds for x1 = 2, x2 = 1, y1 = 1/2, y2 = 2, q = 1, and p = 4. Consequently, if
q = mini=1,...,n xi/yi and p = maxi=1,...,n xi/yi, then the coefficient p+q

2
√
pq is the best

possible.) (Proof: See [251].)

Fact 1.16.7. Let x1, . . . , xn and y1, . . . , yn be nonnegative numbers, and as-
sume that x1 ≥ · · · ≥ xn and y1 ≥ · · · ≥ yn. Then,

n∏
i=1

(x2
i + y2

i ) ≤
n∏
i=1

(x2
i + y2

n−i+1).

(Remark: See Fact 8.13.11.)

Fact 1.16.8. Let x1, . . . , xn and y1, . . . , yn be complex numbers. Then,∣∣∣∣∣
n∑
i=1

xiyi

∣∣∣∣∣
2

=
n∑
i=1

|xi|2
n∑
i=1

|yi|2 −
∑
i<j

|xiyj − xjyi|2.

(Remark: This result is the Lagrange identity. For the complex case, see [430, p.
6] or [431, p. 3]. For the real case, see [1322, 314].)



62 CHAPTER 1

Fact 1.16.9. Let x1, . . . , xn and y1, . . . , yn be real numbers. Then,

n∑
i=1

xiyi ≤
(

n∑
i=1

x2
i

)1/2( n∑
i=1

y2
i

)1/2
.

Furthermore, equality holds if and only if
[
x1 · · · xn

]T and
[
y1 · · · yn

]T are
linearly dependent. (Remark: This result is the Cauchy-Schwarz inequality.)

Fact 1.16.10. Let x1, . . . , xn and y1, . . . , yn be real numbers, and assume that
x1 ≤ · · · ≤ xn and y1 ≤ · · · ≤ yn. Then,(

n∑
i=1

xi

)(
n∑
i=1

yi

)
≤ n

n∑
i=1

xiyi.

(Proof: See [68, p. 27].)

Fact 1.16.11. Let x1, . . . , xn and y1, . . . , yn be nonnegative numbers, and let
α ∈ [0, 1]. Then,

n∑
i=1

xαi y
1−α
i ≤

(
n∑
i=1

xi

)α( n∑
i=1

yi

)1−α
.

Now, let p, q ∈ [1,∞] satisfy 1/p+ 1/q = 1. Then, equivalently,

n∑
i=1

xiyi ≤
(

n∑
i=1

xpi

)1/p( n∑
i=1

yqi

)1/q
.

Furthermore, equality holds if and only if
[
xp1 · · · xpn

]T and
[
yq1 · · · yqn

]T
are linearly dependent. (Remark: This result is Hölder’s inequality.) (Remark:
Note the relationship between the conjugate parameters p, q and the barycentric
coordinates α, 1 − α. See Fact 8.21.50.) (Remark: See Fact 9.7.34.)

Fact 1.16.12. Let x1, . . . , xn and y1, . . . , yn be complex numbers, let p, q, r be
positive numbers, and assume that 1/p+ 1/q = 1/r. If p ∈ (0, 1), q < 0, and r = 1,
then (

n∑
i=1

|xi|p
)1/p( n∑

i=1

|yi|q
)1/q

≤
n∑
i=1

|xiyi|.

Furthermore, if p, q, r > 0, then(
n∑
i=1

|xiyi|r
)1/r

≤
(

n∑
i=1

|xi|p
)1/p( n∑

i=1

|yi|q
)1/q

.

(Proof: See [1039, p. 19].) (Remark: This result is the Rogers-Hölder inequality.)
(Remark: Extensions of this result involving negative values of p, q, and r are
considered in [1039, p. 19].) (Remark: See Proposition 9.1.6.)
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Fact 1.16.13. Let x1, . . . , xn and y1, . . . , yn be nonnegative numbers, and let
p, q ∈ [1,∞] satisfy 1/p+ 1/q = 1. Then,

n∑
i=1

n∑
j=1

xiyj
i+ j − 1

≤ π
sin(π/p)

(
n∑
i=1

xpi

)1/p( n∑
i=1

yqi

)1/q
.

In particular,
n∑
i=1

n∑
j=1

xiyj
i+ j − 1

≤ π
(

n∑
i=1

x2
i

)1/2( n∑
i=1

y2
i

)1/2
.

(Proof: See [542, p. 66] or [849].) (Remark: This result is the Hardy-Hilbert
inequality.) (Remark: It follows from Fact 1.16.11 that

n∑
i=1

n∑
j=1

xiyj ≤ n
(

n∑
i=1

xpi

)1/p( n∑
i=1

yqi

)1/q
.)

Fact 1.16.14. Let x1, . . . , xn and y1, . . . , yn be nonnegative numbers, and let
p, q ∈ [1,∞] satisfy 1/p+ 1/q = 1. Then,

n∑
i=1

n∑
j=1

xiyj
max{i, j} ≤ pq

(
n∑
i=1

xpi

)1/p( n∑
i=1

yqi

)1/q
.

Furthermore,

n∑
i=2

n∑
j=2

xiyj
log ij

≤ π
sin(π/p)

(
n∑
i=2

ip−1xpi

)1/p( n∑
i=2

iq−1yqi

)1/q
.

In particular,
n∑
i=2

n∑
j=2

xiyj
log ij

≤ π
(

n∑
i=2

ix2
i

)1/2( n∑
i=2

iy2
i

)1/2
.

(Proof: For the first result, see [96]. For the second result see [1472].) (Remark:
Related inequalities are given in [1473].)

Fact 1.16.15. Let x1, . . . , xn and y1, . . . , yn be nonnegative numbers, and
assume that, for all i = 1, . . . , n, xi + yi > 0. Then,(

n∑
i=1

xiyi

)2
≤

n∑
i=1

(x2
i + y2

i )
n∑
i=1

x2
i y

2
i

x2
i + y2

i

≤
n∑
i=1

x2
i

n∑
i=1

y2
i .

(Proof: See [430, p. 37], [431, p. 51], or [1386].) (Remark: This interpolation of
the Cauchy-Schwarz inequality is Milne’s inequality.)

Fact 1.16.16. Let x1, . . . , xn and y1, . . . , yn be nonnegative numbers, and let
α ∈ [0, 1]. Then,(

n∑
i=1

xiyi

)2
≤

n∑
i=1

x1+α
i y1−α

i

n∑
i=1

x1−α
i y1+α

i ≤
n∑
i=1

x2
i

n∑
i=1

y2
i .
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(Proof: See [430, p. 43], [431, p. 51], or [1386].) (Remark: This interpolation of
the Cauchy-Schwarz inequality is Callebaut’s inequality.)

Fact 1.16.17. Let x1, . . . , x2n and y1, . . . , y2n be real numbers. Then,(
2n∑
i=1

xiyi

)2
≤
(

2n∑
i=1

xiyi

)2
+

[
n∑
i=1

(xiyn+i − xn+iyi)

]2

≤
2n∑
i=1

x2
i

2n∑
i=1

y2
i .

(Proof: See [430, p. 41] or [431, p. 49].) (Remark: This interpolation of the
Cauchy-Schwarz inequality is McLaughlin’s inequality.)

Fact 1.16.18. Let x1, . . . , xn and y1, . . . , yn be nonnegative numbers, and
define a

�= mini=1,...,n xi, and b
�= maxi=1,...,n xi, c

�= mini=1,...,n yi, and d
�=

maxi=1,...,n yi. Then,∣∣∣∣∣
n∑
i=1

xiyi − 1
n

n∑
i=1

xi

n∑
i=1

yi

∣∣∣∣∣ ≤ �n2 �(1− 1
n�n2 �)(b− a)(d − c).

(Proof: See [435].) (Remark: This result is used in Fact 1.15.45.)

Fact 1.16.19. Let x1, . . . , xn and y1, . . . , yn be positive numbers, and assume
that

∑n
i=2 x

2
i < x2

1. Then,(
x2

1 −
n∑
i=2

x2
i

)(
y2
1 −

n∑
i=2

y2
i

)
≤
(
x1y1 −

n∑
i=2

xiyi

)2
.

(Remark: This result is Aczels’s inequality. See [273, p. 16]. Extensions are given
in [1462] and Fact 9.7.4.)

Fact 1.16.20. Let x1, . . . , xn be real numbers, and let z1, . . . , zn be complex
numbers. Then,∣∣∣∣∣

n∑
i=1

xizi

∣∣∣∣∣
2

≤ 1
2

n∑
i=1

x2
i

(
n∑
i=1

|zi|2 +

∣∣∣∣∣
n∑
i=1

z2
i

∣∣∣∣∣
)
≤

n∑
i=1

x2
i

n∑
i=1

|zi|2.

(Proof: See [430, p. 40] or [431, p. 48].) (Remark: Conditions for equality in
the left-hand inequality are given in [430, p. 40] or [431, p. 48].) (Remark: This
interpolation of the Cauchy-Schwarz inequality is De Bruijn’s inequality.)

Fact 1.16.21. Let x1, . . . , xn and y1, . . . , yn be positive numbers, and define
α

�= mini=1,...,n xi/yi and β �= maxi=1,...,n xi/yi. Then,(
n∑
i=1

xiyi

)2
≤

n∑
i=1

x2
i

n∑
i=1

y2
i ≤ (α+β)2

4αβ

(
n∑
i=1

xiyi

)2
.

Equivalently, let a �= mini=1,...,n xi, A
�= maxi=1,...,n xi, b

�= mini=1,...,n yi, and
B �= maxi=1,...,n yi. Then,(

n∑
i=1

xiyi

)2
≤

n∑
i=1

x2
i

n∑
i=1

y2
i ≤

(ab+AB)2

4abAB

(
n∑
i=1

xiyi

)2
.
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(Proof: See [430, p. 73] or [431, p. 92].) (Remark: This reversal of the Cauchy-
Schwarz inequality is the Polya-Szego inequality.)

Fact 1.16.22. Let x1, . . . , xn and y1, . . . , yn be positive numbers, let a �=
mini=1,...,n xi, A

�= maxi=1,...,n xi, b
�= mini=1,...,n yi, and B �= maxi=1,...,n yi, let

p, q be positive numbers, and assume that 1/p+ 1/q = 1. Then,

n∑
i=1

xiyi ≤
(

n∑
i=1

xpi

)1/p( n∑
i=1

yqi

)1/q

≤ γ
n∑
i=1

xiyi,

where
γ

�=
ApBq − apbq

[p(AbBq − aBbq)]1/p[q(aBAp −Abap)]1/q .

(Proof: See [1394].) (Remark: The left-hand inequality, which is a reversal of
Hölder’s inequality, is the Diaz-Goldman-Metcalf inequality.) (Remark: Setting
p = q = 1/2 yields Fact 1.16.21.) (Remark: The case in which 1/p + 1/q = 1/r is
discussed in [1394].)

Fact 1.16.23. Let x1, . . . , xn and y1, . . . , yn be nonnegative numbers, and
define mx

�= mini=1,...,n xi my
�= mini=1,...,n yi Mx

�= maxi=1,...,n xi, and My
�=

maxi=1,...,n yi. Then,(
n∑
i=1

xiyi

)2
≤

n∑
i=1

x2
i

n∑
i=1

y2
i ≤
(

n∑
i=1

xiyi

)2
+ n2

3 (MxMy −mxmy)2.

(Proof: See [748].) (Remark: This reversal of the Cauchy-Schwarz inequality is
Ozeki’s inequality.)

Fact 1.16.24. Let x1, . . . , xn and y1, . . . , yn be nonnegative numbers, and
assume that, for all i = 1, . . . , n, xi + yi > 0. Then,

n∑
i=1

xiyi
xi + yi

n∑
i=1

(xi + yi) ≤
n∑
i=1

xi

n∑
i=1

yi.

(Proof: See [430, p. 36] or [431, p. 42].) (Remark: For positive numbers x and y,
define the harmonic mean H(x, y) of x and y by

H(x, y) �=
2

1
x + 1

y

.

Then, this result is equivalent to
n∑
i=1

H(xi, yi) ≤ H
(

n∑
i=1

xi,

n∑
i=1

yi

)
.

See [430, p. 37] or [431, p. 43]. The factor of 2 appearing on the right-hand side in
[430, 431] is not needed.) (Remark: This result is Dragomir’s inequality.) (Remark:
Letting α, β be positive numbers and defining the arithmetic mean A(α, β) �= 1

2 (α+
β), it follows that

(α + β)2

4αβ
=
A(α, β)
H(α, β)

.
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For details, see [1409].)

Fact 1.16.25. Let x1, . . . , xn and y1, . . . , yn be nonnegative numbers. If p ∈
(0, 1], then [

n∑
i=1

(xi + yi)p
]1/p
≥
(

n∑
i=1

xpi

)1/p
+

(
n∑
i=1

ypi

)1/p
.

If p ≥ 1, then [
n∑
i=1

(xi + yi)p
]1/p
≤
(

n∑
i=1

xpi

)1/p
+

(
n∑
i=1

ypi

)1/p
.

Furthermore, equality holds if and only if either p = 1 or
[
x1 · · · xn

]T and[
y1 · · · yn

]T are linearly dependent. (Remark: This result is Minkowski’s in-
equality.) (Proof: See [263].)

Fact 1.16.26. Let x1, . . . , xn and y1, . . . , yn be nonnegative numbers, let α1,
. . . , αn be nonnegative numbers, and assume that

∑n
i=1 αi = 1. Then,

xα1
1 · · ·xαn

n + yα1
1 · · · yαn

n ≤ (x1 + y1)α1 · · · (xn + yn)αn.

(Proof: See [783, p. 64].)

Fact 1.16.27. Let x1, . . . , xn, y1, . . . , yn ∈ (−1, 1), and let m be a positive
integer. Then,[

n∑
i=1

1
(1− xiyi)m

]2

≤
[
n∑
i=1

1
(1− x2

i )m

][
n∑
i=1

1
(1 − y2

i )m

]
.

(Proof: See [430, p. 19] or [431, p. 19].)

Fact 1.16.28. Let x1, . . . , xn and y1, . . . , yn be nonnegative numbers, and
assume that

∑n
i=1xi and

∑n
i=1 yi are nonzero. Then,(∑n
i=1 xi∑n
i=1 yi

)∑n
i=1 xi n∏

i=1

yxi

i ≤
n∏
i=1

xxi

i .

Furthermore, equality holds if and only if there exists α > 0 such that, for all
i = 1, . . . , n, xi = αyi. (Proof: See [130].)

Fact 1.16.29. Let x1, . . . , xn and y1, . . . , yn be nonnegative numbers, and
assume that

∑n
i=1xi =

∑n
i=1 yi. Then,

n∏
i=1

yxi

i ≤
n∏
i=1

xxi

i .

In particular, (
1
n

n∑
i=1

xi

)∑n
i=1 xi

≤
n∏
i=1

xxi

i .

(Proof: See Fact 1.16.28 and [1160].)
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Fact 1.16.30. Let x1, . . . , xn and y1, . . . , yn be positive numbers. Then,
n∑
i=1

xi log

∑n
j=1 xj∑n
j=1 yj

≤
n∑
i=1

xi log
xi
yi
.

If
∑n

i=1 xi = 1, then
n∑
i=1

xi log
1
xi
≤

n∑
i=1

xi log
1
yi

+ log
n∑
i=1

yi.

On the other hand, if
∑n

i=1 xi =
∑n

i=1 yi, then

0 ≤
n∑
i=1

xi log
1
yi

+ log
n∑
i=1

yi.

Finally, if
∑n
i=1 xi =

∑n
i=1 yi = 1, then

n∑
i=1

xi log
1
xi
≤

n∑
i=1

xi log
1
yi
,

or, equivalently,

0 ≤
n∑
i=1

xi log
xi
yi
.

(Proof: See [982].) (Remark:
∑n

i=1 xi log 1
xi

is the entropy.) (Remark: A refined
upper bound and positive lower bound for

∑n
i=1 xi log xi

yi
are given in [625].) (Re-

mark: See Fact 2.21.6.) (Remark: Related results are given in [1184, p. 276].)

1.17 Facts on Scalar Identities and Inequalities in 3n Variables

Fact 1.17.1. Let x1, . . . , xn, y1, . . . , yn, z1, . . . , zn be real numbers. Then,(
n∑
i=1

xiyizi

)4
≤
(

n∑
i=1

x4
i

)(
n∑
i=1

y2
i

)2( n∑
i=1

z4
i

)
.

(Proof: See [68, p. 27].)

Fact 1.17.2. Let x1, . . . , xn, y1, . . . , yn, z1, . . . , zn be complex numbers.
Then, ∣∣∣∣∣

n∑
i=1

xizi

n∑
i=1

ziyi

∣∣∣∣∣ ≤ 1
2

⎛
⎝
√√√√ n∑

i=1

|xi|2
n∑
i=1

|yi|2 +

∣∣∣∣∣
n∑
i=1

xiyi

∣∣∣∣∣
⎞
⎠ n∑
i=1

|zi|2.

(Proof: See [514].) (Remark: This extension of the Cauchy-Schwarz inequality is
Buzano’s inequality.) (Remark: See xv) of Fact 9.7.4.)
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1.18 Facts on Scalar Identities and Inequalities in Complex
Variables

Fact 1.18.1. Let z be a complex number with complex conjugate z, real part
Re z, and imaginary part Im z. Then, the following statements hold:

i) −|z| ≤ Re z ≤ |Re z| ≤ |z|.
ii) −|z| ≤ Im z ≤ |Im z| ≤ |z|.
iii) 0 ≤ |z| = |−z| = |z|.
iv) Re z = |Re z| = |z| if and only if Re z ≥ 0 and Im z = 0.

v) Im z = |Im z| = |z| if and only if Im z ≥ 0 and Re z = 0.

vi) If z �= 0, then z−1 = z−1.

vii) If z �= 0, then z−1 = z/|z|2.
viii) If z �= 0, then |z−1| = 1/|z|.
ix) If |z| = 1, then z−1 = z.

x) If z �= 0, then Re z−1 = (Re z)/|z|2.
xi) Re z �= 0 if and only if Re z−1 �= 0.

xii) If Re z �= 0, then |z| =√(Re z)/(Re z−1).

xiii) |z2| = |z|2 = zz.

xiv) z2 ≥ 0 if and only if Im z = 0.

xv) z2 ≤ 0 if and only if Re z = 0.

xvi) z2 + z2 + 4(Im z)2 = 2|z|2.
xvii) z2 + z2 + 2|z|2 = 4(Re z)2.

xviii) z2 + z2 + 2(Im z)2 = 2(Re z)2.

xix) z2 + z2 ≤
{
|z2 + z2|
(Re z)2

}
≤ 2|z|2.

xx) z2 + z2 = |z2 + z2| = (Re z)2 = 2|z|2 if and only if Im z = 0.

xxi) Let n be a positive integer. If z �= 1, then

1− zn
1− z =

n−1∑
i=0

zi = 1 + z + · · ·+ zn−1.

Furthermore,
lim
z→1

1− zn
1− z = n.

(Remark: A matrix version of i) is given in [1271].)
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Fact 1.18.2. Let z1 and z2 be complex numbers. Then, the following state-
ments hold:

i) |z1z2| = |z1| |z2|.
ii) If z2 �= 0, then |z1/z2| = |z1|/|z2|.
iii)
∣∣|z1| − |z2|∣∣ ≤ |z1 + z2| ≤ |z1|+ |z2|.

iv) |z1 + z2| = |z1|+ |z2| if and only if Re(z1z2) = |z1||z2|.
v) |z1 + z2| = |z1| + |z2| if and only if there exists α ≥ 0 such that either

z1 = αz2 or z2 = αz1, that is, if and only if z1 and z2 have the same phase
angle.

vi)
∣∣|z1| − |z2|∣∣ ≤ |z1− z2|.

vii)
∣∣|z1| − |z2|∣∣ = |z1 − z2| if and only if there exists α ≥ 0 such that either
z1 = αz2 or z2 = αz1, that is, if and only if z1 and z2 have the same phase
angle.

viii) |1+z1z2|2 = (1−|z1|)2(1−|z2|)2+|z1+z2|2 = (1+|z1|2)(1+|z2|2)−|z1−z2|2.
ix) |z1− z2|2 ≤ (1 + |z1|2)(1 + |z2|2).
x) 1

2

∣∣z1− z2 +
∣∣ z2
z1

∣∣z1 − ∣∣ z1z2 ∣∣z2∣∣ = 1
2 (|z1|+ |z2|)

∣∣ z1|z1| − z2
|z2|
∣∣ ≤ |z1− z2|.

xi) 2 Re(z1z2) ≤ |z1|2 + |z2|2.
xii) 2 Re(z1z2) = |z1|2 + |z2|2 if and only if z1 = z2.

xiii) 1
2 (|z1 + z2|2 + |z1− z2|2) = |z1|2 + |z2|2.

xiv) z1z2 = 1
4

(|z1 + z2|2 − |z1 − z2|2 + j|z1 + jz2|2 − j|z1 − jz2|2
)
.

xv) If a, b ∈ C, |a| �= |b|, and z2 = az1 + bz1, then

z1 =
az2 − bz2
|a|2 − |b|2 .

xvi) If p ≥ 1, then
|z1 + z2|p ≤ 2p−1(|z1|p + |z2|p).

xvii) If p ≥ 2, then

2(|z1|p + |z2|p) ≤ |z1 + z2|p + |z1− z2|p ≤ 2p−1(|z1|p + |z2|p).
xviii) If p ≥ 2, q > 0, and 1/p+ 1/q = 1, then

2(|z1|p + |z2|p)q−1 ≤ |z1 + z2|q + |z1− z2|q.
xix) If p ∈ (1, 2], q > 0, and 1/p+ 1/q = 1, then

|z1 + z2|q + |z1− z2|q ≤ 2(|z1|p + |z2|p)q−1.

xx) Let n be a positive integer. If z1 �= z2, then

zn1 − zn2
z1 − z2 = zn−1

1 + z2z
n−2
1 + · · ·+ zn−1

2 .

Furthermore,
lim
z2→z1

zn1 − zn2
z1 − z2 = nzn−1

1 .
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Now, let z1, z2, and z3 be complex numbers. Then, the following statements hold:

xxi) |z1 + z2|2 + |z2 + z3|2 + |z3 + z1|2 = |z1|2 + |z2|2 + |z3|2 + |z1 + z2 + z2|2.
xxii) |z1 + z2|+ |z2 + z3|+ |z3 + z1| ≤ |z1|+ |z2|+ |z3|+ |z1 + z2 + z2|.
xxiii) 4(|z1|2 + |z2|2 + |z3|2) ≤ |z1 + z2 + z3|2 + |z1 + z2 − z3|2 + |z1− z2 + z3|2 +

|z1− z2 − z3|2.
xxiv) If z1, z2, z3 are nonzero and z7

1 + z7
2 + z7

3 = 0, then |z1| = |z2| = |z3|.
Finally, for i = 1, . . . , n, let zi = rie

jφi be complex numbers, where ri ≥ 0 and
φi ∈ R, and assume that there exist θ1, θ2 ∈ R such that 0 < θ2 − θ1 < π and such
that, for all i = 1, . . . , n, θ1 ≤ φi ≤ θ2. Then, the following inequality holds:

xxv) cos[ 12 (θ2 − θ1)]
∑n

i=1 |zi| ≤ |
∑n
i=1zi|.

(Remark: Matrix versions of i), iii), v)–vii) are given in [1271]. Result viii) is given
in [59, p. 19] and [1467]. Result x) is the Dunkl-Williams inequality. See [430, p.
43] or [431, p. 52] and ii) of Fact 9.7.4. Result xiii) is the parallelogram law; see
[449] and Fact 9.7.4. Result xiv) is the polarization identity; see [368, p. 54], [1030,
p. 276], and Fact 9.7.4. Result xv) is given in [734]. Result xvi) is given in [695].
Results xvii)–xix) are due to Clarkson; see [695], [1010, p. 536], and Fact 9.9.34.
Result xxi) is given in [59, p. 19]. Result xxii) is Hlawka’s inequality. See Fact
1.8.6 and Fact 9.7.4. Result xxiii) is given in [449]. Result xxiv) is given in [59, pp.
186, 187]. Result xxv) is due to Petrovich; see [432].) (Remark: The absolute value
|z| = |x + jy|, where x and y are real, is identical to the Euclidean norm ‖[ xy ]‖2.
Therefore, each result in Section 9.7 involving the Euclidean norm on R2 can be
recast in terms of complex numbers.) (Problem: Compare the lower bounds for
|z1 − z2| given by iv) and vii).)

Fact 1.18.3. Let a, b, c be complex numbers, and assume that a �= 0. Then,
z ∈ C satisfies

az2 + bz + c = 0

if and only if
z =

1
2a

(y − b),
where

y = ± 1√
2
(
√
|Δ|+ Re Δ + j sign(Im Δ)

√
|Δ|+ Re Δ)

and
Δ �= b2 − 4ac.

If, in addition, a, b, c are real, then z ∈ C satisfies

az2 + bz + c = 0

if and only if
z =

1
2a

(−b±
√
b2 − 4ac).

(Proof: See [59, pp. 15, 16].)
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Fact 1.18.4. Let z, z1, . . . , zn be complex numbers. Then,

1
n

n∑
i=1

|z − zi|2 =

∣∣∣∣∣z − 1
n

n∑
i=1

zi

∣∣∣∣∣
2

+ 1
n

∑
1≤i<j≤n

|zi − zj |2.

(Proof: See [59, pp. 146].)

Fact 1.18.5. let z1 and z2 be complex numbers. Then,

|z1 − z2| −
∣∣|z1| − |z2|∣∣

min{|z1|, |z2|} ≤
∣∣∣∣ z1|z1| −

z2
|z2|
∣∣∣∣

≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
|z1 − z2|+

∣∣|z1| − |z2|∣∣
max{|z1|, |z2|}

2|z1 − z2|
|z1|+ |z2|

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2|z1 − z2|
max{|z1|, |z2|}

2(|z1 − z2|+
∣∣|z1| − |z2|∣∣)

|z1|+ |z2|

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

≤ 4|z1 − z2|
|z1|+ |z2| .

(Proof: See Fact 9.7.10.) (Remark: The second and lower third terms constitute
the Dunkl-Williams inequality given by Fact 1.18.2.)

Fact 1.18.6. Let z be a complex number. Then, the following statements
hold:

i) 0 < |ez| ≤ e|z|.
ii) |ez| = e|z| if and only if Im z = 0 and Re z ≥ 0.

iii) |ez| = 1 if and only if Re z = 0.

iv)
∣∣|ez| − 1

∣∣ ≤ |ez − 1| ≤ e|z| − 1.

v) If |z| < log 2, then |ez −1| ≤ e|z| − 1 < 1.

vi) ez = eRe z[cos(Im z) + j sin(Im z)].

vii) Re ez = 0 if and only if Im z is an odd integer multiple of ±π/2.
viii) Im ez = 0 if and only if Im z is an integer multiple of ±π.
ix) If z is nonzero, then |zj| < eπ.

Furthermore, let θ1 and θ2 be real numbers. Then, the following statements hold:

x) |ejθ1 − ejθ2| ≤ |θ1 − θ2|.
xi) |ejθ1 − ejθ2| = |θ1 − θ2| if and only if θ1 = θ2.

Finally, let r1 and r2 be nonnegative numbers, at least one of which is positive.
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Then, the following statement holds:

xii) |ejθ1 − ejθ2 | ≤ 2|r1ejθ1−r2ejθ2 |
r1+r2

.

(Proof: Statement xii) is given in [683, p. 218].) (Remark: A matrix version of x)
is given by Fact 11.16.13.)

Fact 1.18.7. Let z be a complex number. Then, for all nonzero z ∈ C, there
exist infinitely many s ∈ C such that es = z. Specifically, let z = rejφ, where r > 0
and φ ∈ R. Then, for all k ∈ Z, s = log r+ j(φ+2πk) satisfies es = z, where log r is
the positive logarithm of r. In particular, for all odd integers k, e±jπk = −1, while,
for all even integers k, e±jπk = 1. To obtain a single-valued definition of log, let
z ∈ C be nonzero, and write z uniquely as z = rejφ, where r > 0 and φ ∈ (−π, π].
Then, the principal branch of the log function log z ∈ C is defined as

log z �= log r + jφ.

The principal branch of the log function

log: C\{0} �→ {z : Re z �= 0 and − π < Im z ≤ π}
has the following properties:

i) If z ∈ C is nonzero, then
elog z = z.

ii) Let z = rejφ ∈ C, where r ≥ 0 and φ ∈ (−π, π], and assume that r sinφ ∈
(−π, π]. Then,

log ez = z.

iii) Let z1 = r1e
jφ1 and z2 = r2e

jφ2 , where r1, r2 > 0 and φ1, φ2 ∈ (−π, π], and
assume that φ1 + φ2 ∈ (−π, π]. Then,

log z1z2 = log z1 + log z2.

Now, define D
�= {z ∈ C: |z −1| < 1}. Then, the following statements hold:

iv) For all z ∈ D, log z is given by the convergent series

log z =
∞∑
i=1

(−1)i+1

i
(z −1)i.

v) If z ∈ D, then
log ez = z.

vi) If z1, z2 ∈ D, then
log z1z2 = log z1 + log z2.

vi) If |z| < 1, then
| log(1 + z)| ≤ − log(1− |z|)

and |z|
1 + |z| ≤ | log(1 + z)| ≤ |z|(1 + |z|)

|1 + z| .

(Remark: Let z = rejθ ∈ C satisfy |z−1| < 1. Then, −π/2 < θ < π/2. Furthermore,
log z = (log r)+jθ, and thus −π/2 < Im log z < π/2. Consequently, the infinite series
in iv) gives the principal log of z.)
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Fact 1.18.8. The following infinite series converge for the given values of the
complex argument z:

i) For all z ∈ C, sin z = z − 1
3!z

3 + 1
5!z

5 − 1
7!z

7 + · · · .
ii) For all z ∈ C, cos z = 1− 1

2!z
2 + 1

4!z
4 − 1

6!z
6 + · · · .

iii) For all |z| < π/2,

tan z = z + 1
3z

3 + 2
15z

5 + 17
315z

7 + 62
2835z

9 + · · · .
iv) For all z ∈ C,

ez = 1 + z + 1
2!z

2 + 1
3!z

3 + 1
4!z

4 + · · · .
v) For all nonzero z ∈ C such that |z − 1| ≤ 1,

log z = −[1− z + 1
2 (1 − z)2 + 1

3 (1− z)3 + 1
4 (1− z)4 + · · · ].

vi) For all z ∈ CUD\{1},
log(1 − z) = −(z + 1

2z
2 + 1

3z
3 + 1

4z
4 + · · · ).

vii) For all z ∈ CUD\{−1},
log(1 + z) = z − 1

2z
2 + 1

3z
3 − 1

4z
4 + · · · .

viii) For all z ∈ CUD\{−1, 1},

log
1 + z

1− z = 2(z + 1
3z

3 + 1
5z

5 + · · · ).

ix) For all z ∈ C such that Re z > 0,

log z =
∞∑
i=0

2
2i+ 1

(
z − 1
z + 1

)2i+1

.

x) For all z ∈ C,

sinh z = sin jz = z + 1
3!z

3 + 1
5!z

5 + 1
7!z

7 + · · · .
xi) For all z ∈ C,

cosh z = cos jz = 1 + 1
2!z

2 + 1
4!z

4 + 1
6!z

6 + · · · .
xii) For all |z| < π/2,

tanh z = tan jz = z − 1
3z

3 + 2
15z

5 − 17
315z

7 + 62
2835z

9 − · · · .
xiii) For all α ∈ C and |z| ≤ 1 such that either |z| < 1 or both Reα > −1 and

|z| �= −1,

(1 + z)α = 1 + αz + α(α−1)
2! z2 + α(α−1)(α−2)

3! z3 + α(α−1)(α−2)(α−3)
4! z4 + · · ·

=
(
α
0

)
+
(
α
1

)
z +
(
α
2

)
z2 +

(
α
3

)
z3 +

(
α
4

)
z4 + · · · .

xiv) For all α ∈ C and |z| < 1,

1
(1− z)α+1

=
(
α
0

)
+
(
1+α

1

)
z +
(
2+α

2

)
z2 +

(
3+α

3

)
z3 +

(
4+α

4

)
z4 + · · · .
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xv) For all |z| < 1,

(1 − z)−1 = 1 + z + z2 + z3 + z4 + · · · .

(Proof: See [750, pp. 11, 12]. For x ∈ R such that |x| < 1, it follows that

d
dx

log(1− x) =
−1

1− x = −(1 + x+ x2 + · · · ).
Integrating yields

log(1− x) = −(x+ 1
2x

2 + 1
3x

3 + · · · ).
Using analytic continuation to replace x ∈ R satisfying |x| < 1 with z ∈ C satisfying
|z| < 1 yields vii).) (Remark: vii) is Mercator’s series, while viii) and ix) are
equivalent forms of Gregory’s series. See [683, p. 273].) (Remark: xiii) is the
binomial series.) (Remark: CUD = {z ∈ C: |z| ≤ 1}.)

1.19 Facts on Trigonometric and Hyperbolic Identities

Fact 1.19.1. Let x be a real number such that the expressions below are
defined. Then, the following identities hold:

i) sinx = 1
2j (e

jx − e−jx).
ii) cosx = 1

2 (ejx + e−jx).

iii) sin(x+ y) = (sinx)(cos y) + (cosx) sin y.

iv) sin(x− y) = (sinx)(cos y)− (cosx) sin y.

v) cos(x + y) = (cos x)(cos y)− (sinx) sin y.

vi) cos(x − y) = (cos x)(cos y) + (sinx) sin y.

vii) (sinx) sin y = 1
2 [cos(x− y)− cos(x+ y)].

viii) (sinx) cos y = 1
2 [sin(x+ y) + sin(x− y)].

ix) (cos x) cos y = 1
2 [cos(x+ y) + cos(x− y)].

x) sin2 x− sin2 y = [sin(x+ y)] sin(x− y).
xi) cos2 x− sin2 y = [cos(x+ y)] cos(x− y).
xii) cos2 x− cos2 y = [sin(x+ y)] sin(y − x).
xiii) sinx+ sin y = 2[sin 1

2 (x + y)] cos 1
2 (x− y).

xiv) sinx− sin y = 2[sin 1
2 (x − y)] cos 1

2 (x+ y).

xv) cosx+ cos y = 2[cos 1
2 (x+ y)] cos 1

2 (x− y).
xvi) cosx− cos y = 2[sin 1

2 (x+ y)] sin 1
2 (y − x).

xvii) tan(x+ y) = (tan x)+tan y
1−(tan x) tan y .

xviii) tan(x− y) = (tan x)−tan y
1+(tan x) tan y .

xix) tanx+ tan y = sin(x+y)
(cosx) cos y .
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xx) tanx− tan y = sin(x−y)
(cosx) cos y .

xxi) sinx = 2(sin x
2 ) cos x2 .

xxii) cosx = 2(cos2 x
2 )− 1.

xxiii) sin 2x = 2(sinx) cos x.

xxiv) cos 2x = 2(cos2 x)− 1.

xxv) tan 2x = 2 tan x
1−tan2 x .

xxvi) sin 3x = 3(sinx) − 4 sin3 x.

xxvii) cos 3x = 4(cos3 x)− 3 cosx.

xxviii) tan 3x = 3(tan x)−tan3 x
1−3 tan2 x .

xxix) sin2 x = 1
2 (1− cos 2x).

xxx) cos2 x = 1
2 (1 + cos 2x).

xxxi) tan2 x = 1−cos 2x
1+cos 2x .

xxxii) tanx = sin 2x
1+cos 2x = 1−cos 2x

sin 2x = 2 tan x
2

1−tan2 x
2
.

xxxiii) sin2 x
2 = 1

2 (1− cosx).

xxxiv) cos2 x
2 = 1

2 (1 + cosx).

xxxv) tan 1
2x = sin x

1+cos x = 1−cosx
sin x .

xxxvi) For all t ≥ 0 and α ∈ (0, 1),
∞∫
0

txα−1

t+ x
dx =

tαπ

sinαπ
.

(Remark: See [750, pp. 114–116]. The last result is given in [1503, p. 448, formula
589]. See also [542, p. 69].)

Fact 1.19.2. Let x be a real number such that the expressions below are
defined. Then, the following identities hold:

i) sinhx = 1
2(e

x − e−x) .
ii) coshx = 1

2(e
x + e−x) .

iii) tanhx = sinh x
cosh x .

iv) sin jx = j sinhx.

v) cos jx = j coshx.

vi) tan jx = j tanhx.

vii) sinh jx = j sinx.

viii) cosh jx = j cosx.

ix) tanh jx = j tanx.
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x) sinh(x + y) = (sinhx)(cosh y) + (coshx) sinh y.

xi) cosh(x+ y) = (coshx)(cosh y) + (sinh x) sinh y.

xii) tanh(x + y) = (tanhx)+tanh y
1+(tanhx) tanh y .

(Remark: See [750, pp. 117–119].)

Fact 1.19.3. Let z = x + jy, where z is a complex number and x and y are
real numbers. Then, the following identities hold:

i) sin z = (sinx)(cosh y) + j(cosx) sinh y.

ii) cos z = (cos x)(cosh y)− j(sinx) sinh y.

iii) tan z = (sin 2x)+j sinh 2y
(cos 2x)+cosh 2y .

1.20 Notes

Much of the preliminary material in this chapter can be found in [1030]. A
related treatment of mathematical preliminaries is given in [1129]. An extensive
introduction to logic and mathematical fundamentals is given in [229]. In [229], the
notation “A→ B” is used to denote an implication, which is called a disjunction,
while “A =⇒ B” indicates a tautology.

An extensive treatment of partially ordered sets is given in [1179]. Lattices
are discussed in [229].

Alternative terminology for “one-to-one” and “onto” is injective and surjec-
tive, respectively, while a function that is injective and surjective is bijective.

Reference works on inequalities include [162, 273, 274, 275, 340, 637, 963, 971,
1010, 1221]. Recommended texts on complex variables include [725, 1031, 1066].



Chapter Two

Basic Matrix Properties

In this chapter we provide a detailed treatment of the basic properties of ma-
trices such as range, null space, rank, and invertibility. We also consider properties
of convex sets, cones, and subspaces.

2.1 Matrix Algebra

The symbols Z, N, and P denote the sets of integers, nonnegative integers, and
positive integers, respectively. The symbols R and C denote the real and complex
number fields, respectively, whose elements are scalars. Since R is a proper subset
of C, we state many results for C. In other cases, we treat R and C separately. To
do this efficiently, we use the symbol F to consistently denote either R or C.

Let x ∈ C. Then, x = y+jz, where y, z ∈ R and j �=
√−1. Define the complex

conjugate x of x by
x �= y − jz (2.1.1)

and the real part Rex of x and the imaginary part Imx of x by

Rex �= 1
2 (x+ x) = y (2.1.2)

and
Imx �= 1

2j (x− x) = z. (2.1.3)

Furthermore, the absolute value |x| of x is defined by

|x| �=
√
y2 + z2. (2.1.4)

The closed left half plane (CLHP), open left half plane (OLHP), closed right half
plane (CRHP), and open right half plane (ORHP) are the subsets of C defined by

OLHP �= {s ∈ C: Re s < 0}, (2.1.5)

CLHP �= {s ∈ C: Re s ≤ 0}, (2.1.6)

ORHP �= {s ∈ C: Re s > 0}, (2.1.7)

CRHP �= {s ∈ C: Re s ≥ 0}. (2.1.8)

The imaginary numbers are represented by jR. Note that 0 is both a real number
and an imaginary number.
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The set Fn consists of vectors x of the form

x =

⎡
⎢⎣
x(1)

...
x(n)

⎤
⎥⎦, (2.1.9)

where x(1), . . . , x(n) ∈ F are the components of x. Hence, the elements of Fn are
column vectors. Since F1 = F, it follows that every scalar is also a vector. If x ∈ Rn

and every component of x is nonnegative, then x is nonnegative, while, if every
component of x is positive, then x is positive.

Definition 2.1.1. Let x, y ∈ R
n, and assume that x(1) ≥ · · · ≥ x(n) and

y(1) ≥ · · · ≥ y(n). Then, the following terminology is defined:

i) y weakly majorizes x if, for all k = 1, . . . , n, it follows that

k∑
i=1

x(i) ≤
k∑
i=1

y(i). (2.1.10)

ii) y strongly majorizes x if y weakly majorizes x and
n∑
i=1

x(i) =
n∑
i=1

y(i). (2.1.11)

Now, assume that x and y are nonnegative. Then, the following terminology is
defined:

iii) y weakly log majorizes x if, for all k = 1, . . . , n, it follows that

k∏
i=1

x(i) ≤
k∏
i=1

y(i). (2.1.12)

iv) y strongly log majorizes x if y weakly log majorizes x and
n∏
i=1

x(i) =
n∏
i=1

y(i). (2.1.13)

Clearly, if y strongly majorizes x, then y weakly majorizes x, and, if y strongly
log majorizes x, then y weakly log majorizes x. Fact 2.21.13 states that, if y weakly
log majorizes x, then y weakly majorizes x. Finally, in the notation of Definition
2.1.1, if y majorizes x, then x(1) ≤ y(1), while, if y strongly majorizes x, then
y(n) ≤ x(n).

Definition 2.1.2. Let S ⊆ Rn, and let f : S �→ R. Then, f is Schur convex
if, for all x, y ∈ S such that y strongly majorizes x, it follows that f(x) ≤ f(y).
Furthermore, f is Schur concave if −f is Schur convex.
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If α ∈ F and x ∈ Fn, then αx ∈ Fn is given by

αx =

⎡
⎢⎣
αx(1)

...
αx(n)

⎤
⎥⎦. (2.1.14)

If x, y ∈ F
n, then x and y are linearly dependent if there exists α ∈ F such that

either x = αy or y = αx. Linear dependence for a set of two or more vectors is
defined in Section 2.3. Furthermore, vectors add component by component, that
is, if x, y ∈ Fn, then

x+ y =

⎡
⎢⎣
x(1) + y(1)

...
x(n) + y(n)

⎤
⎥⎦. (2.1.15)

Thus, if α, β ∈ F, then the linear combination αx + βy is given by

αx+ βy =

⎡
⎢⎣
αx(1) + βy(1)

...
αx(n) + βy(n)

⎤
⎥⎦. (2.1.16)

If x ∈ Rn and x is nonnegative, then we write x ≥≥ 0, while, if x is positive,
then we write x >> 0. If x, y ∈ Rn, then x ≥≥ y means that x − y ≥≥ 0, while
x >> y means that x− y >> 0.

The vectors x1, . . . , xm ∈ Fn placed side by side form the matrix

A
�=
[
x1 · · · xm

]
, (2.1.17)

which has n rows and m columns. The components of the vectors x1, . . . , xm are the
entries of A. We write A ∈ Fn×m and say that A has size n×m. Since Fn = Fn×1,
it follows that every vector is also a matrix. Note that F1×1 = F1 = F. If n = m,
then n is the order of A, and A is square. The ith row of A and the jth column of
A are denoted by rowi(A) and colj(A), respectively. Hence,

A =

⎡
⎢⎣

row1(A)
...

rown(A)

⎤
⎥⎦ =
[

col1(A) · · · colm(A)
]
. (2.1.18)

The entry xj(i) of A in both the ith row of A and the jth column of A is denoted
by A(i,j). Therefore, x ∈ Fn can be written as

x =

⎡
⎢⎣
x(1)

...
x(n)

⎤
⎥⎦ =

⎡
⎢⎣
x(1,1)

...
x(n,1)

⎤
⎥⎦. (2.1.19)

Let A ∈ Fn×m. For b ∈ Fn, the matrix obtained from A by replacing coli(A)
with b is denoted by

A
i← b. (2.1.20)
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Likewise, for b ∈ F1×m, the matrix obtained from A by replacing rowi(A) with b is
denoted by (2.1.20).

Let A ∈ Fn×m, and let l �= min{n,m}. Then, the entries A(i,i) for all i =
1, . . . , l and A(i,j) for all i �= j are the diagonal entries and off-diagonal entries of
A, respectively. Moreover, for all i = 1, . . . , l−1, the entries A(i,i+1) and A(i+1,i) are
the superdiagonal entries and subdiagonal entries of A, respectively. In addition,
the entries A(i,l+1−i) for all i = 1, . . . , l are the reverse-diagonal entries of A. If the
diagonal entries A(1,1), . . . , A(l,l) of A are real, then the diagonal entries of A are
labeled from largest to smallest as

d1(A) ≥ · · · ≥ dl(A), (2.1.21)

and we define
dmax(A) �= d1(A), dmin(A) �= dl(A). (2.1.22)

Partitioned matrices are of the form⎡
⎢⎣
A11 · · · A1l

... · · ·.. ...
Ak1 · · · Akl

⎤
⎥⎦, (2.1.23)

where, for all i = 1, . . . , k and j = 1, . . . , l, the block Aij of A is a matrix of size
ni×mj . If ni = mj and the diagonal entries of Aij lie on the diagonal of A, then the
square matrix Aij is a diagonally located block; otherwise, Aij is an off-diagonally
located block.

Let A ∈ Fn×m. Then, a submatrix of A is formed by deleting rows and columns
of A. By convention, A is a submatrix of A. If A is a partitioned matrix, then
every block of A is a submatrix of A. A block is thus a submatrix whose entries
are entries of adjacent rows and adjacent columns. A submatrix can be specified
in terms of the rows and columns that are retained. If like-numbered rows and
columns of A are retained, then the resulting square submatrix of A is a principal
submatrix of A. Every diagonally located block is a principal submatrix. Finally,
if rows and columns 1, . . . , j of A are retained, then the resulting j × j submatrix
of A is a leading principal submatrix of A.

Let A ∈ Fn×m, and let S1 and S2 be subsets of {1, . . . , n} and {1, . . . ,m},
respectively. Then, A(S1,S2) is the card(S1) × card(S2) submatrix of A formed by
retaining the rows of A listed in S1 and the columns of A listed in S2. Therefore,
A(S∼

1 ,S
∼
2 ) is the [n−card(S1)]×[m−card(S2)] submatrix of A formed by deleting the

rows of A listed in S1 and the columns of A listed in S2. If S ⊆ {1, . . . ,min{n,m}},
then we define A(S)

�= A(S,S), which is a principal submatrix of A.

Matrices of the same size add entry by entry, that is, if A,B ∈ F
n×m, then,

for all i = 1, . . . , n and j = 1, . . . ,m, (A + B)(i,j) = A(i,j) + B(i,j). Furthermore,
for all i = 1, . . . , n and j = 1, . . . ,m, (αA)(i,j) = αA(i,j) for all α ∈ F so that
(αA + βB)(i,j) = αA(i,j) + βB(i,j) for all α, β ∈ F. If A,B ∈ F

n×m, then A and B
are linearly dependent if there exists α ∈ F such that either A = αB or B = αA.
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Let A ∈ Rn×m. If every entry of A is nonnegative, then A is nonnegative,
which is written as A ≥≥ 0. If every entry of A is positive, then A is positive, which
is written as A >> 0. If A,B ∈ Rn×m, then A ≥≥ B means that A − B ≥≥ 0,
while A >> B means that A−B >> 0.

Let z ∈ F
1×n and y ∈ F

n = F
n×1. Then, the scalar zy ∈ F is defined by

zy
�=

n∑
i=1

z(1,i)y(i). (2.1.24)

Now, let A ∈ Fn×m and x ∈ Fm. Then, the matrix-vector product Ax is defined by

Ax
�=

⎡
⎢⎣

row1(A)x
...

rown(A)x

⎤
⎥⎦. (2.1.25)

It can be seen that Ax is a linear combination of the columns of A, that is,

Ax =
m∑
i=1

x(i)coli(A). (2.1.26)

The matrix A can be associated with the function f : Fm �→ Fn defined by f(x) �=
Ax for all x ∈ Fm. The function f : Fm �→ Fn is linear since, for all α, β ∈ F and
x, y ∈ Fm, it follows that

f(αx + βy) = αAx+ βAy. (2.1.27)

The function f : Fm �→ Fn defined by

f(x) �= Ax+ z, (2.1.28)

where z ∈ Fn, is affine.

Theorem 2.1.3. Let A ∈ Fn×m and B ∈ Fm×l, and define f : Fm �→ Fn and
g : Fl �→ Fm by f(x) �= Ax and g(y) �= By. Furthermore, define the composition
h �= f • g : Fl �→ Fn. Then, for all y ∈ Rl,

h(y) = f [g(y)] = A(By) = (AB)y, (2.1.29)

where, for all i = 1, . . . , n and j = 1, . . . , l, AB ∈ Fn×l is defined by

(AB)(i,j)
�=

m∑
k=1

A(i,k)B(k,j). (2.1.30)

Hence, we write ABy for (AB)y and A(By).

Let A ∈ Fn×m and B ∈ Fm×l. Then, AB ∈ Fn×l is the product of A and B.
The matrices A and B are conformable, and the product (2.1.30) defines matrix
multiplication.
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Let A ∈ Fn×m and B ∈ Fm×l. Then, AB can be written as

AB =
[
Acol1(B) · · · Acoll(B)

]
=

⎡
⎢⎣

row1(A)B
...

rown(A)B

⎤
⎥⎦. (2.1.31)

Thus, for all i = 1, . . . , n and j = 1, . . . , l,

(AB)(i,j) = rowi(A)colj(B), (2.1.32)
colj(AB) = Acolj(B), (2.1.33)
rowi(AB) = rowi(A)B. (2.1.34)

For conformable matrices A, B, C, the associative and distributive identities

(AB)C = A(BC), (2.1.35)
A(B + C) = AB +AC, (2.1.36)
(A+B)C = AC +BC (2.1.37)

are valid. Hence, we write ABC for (AB)C and A(BC). Note that (2.1.35) is a
special case of (1.2.1).

Let A,B ∈ Fn×n. Then, the commutator [A,B] ∈ Fn×n of A and B is the
matrix

[A,B] �= AB − BA. (2.1.38)

The adjoint operator adA : Fn×n �→ Fn×n is defined by

adA(X) �= [A,X ]. (2.1.39)

Let x, y ∈ R3. Then, the cross product x× y ∈ R3 of x and y is defined by

x× y �=

⎡
⎣ x(2)y(3) − x(3)y(2)
x(3)y(1) − x(1)y(3)
x(1)y(2) − x(2)y(1)

⎤
⎦. (2.1.40)

Furthermore, the 3× 3 cross-product matrix is defined by

K(x) �=

⎡
⎣ 0 −x(3) x(2)

x(3) 0 −x(1)

−x(2) x(1) 0

⎤
⎦. (2.1.41)

Note that
x× y = K(x)y. (2.1.42)

Multiplication of partitioned matrices is analogous to matrix multiplication
with scalar entries. For example, for matrices with conformable blocks,

[
A B

][ C
D

]
= AC +BD, (2.1.43)
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A
B

]
C =

[
AC
BC

]
, (2.1.44)

[
A
B

][
C D

]
=
[
AC AD
BC BD

]
, (2.1.45)

[
A B
C D

][
E F
G H

]
=
[
AE +BG AF +BH
CE +DG CF +DH

]
. (2.1.46)

The n ×m zero matrix, all of whose entries are zero, is written as 0n×m. If
the dimensions are unambiguous, then we write just 0. Let x ∈ Fm and A ∈ Fn×m.
Then, the zero matrix satisfies

0k×mx = 0k, (2.1.47)
A0m×l = 0n×l, (2.1.48)
0k×nA = 0k×m. (2.1.49)

Another special matrix is the empty matrix. For n ∈ N, the 0 × n empty
matrix, which is written as 00×n, has zero rows and n columns, while the n×0 empty
matrix, which is written as 0n×0, has n rows and zero columns. For A ∈ F

n×m,
where n,m ∈ N, the empty matrix satisfies the multiplication rules

00×nA = 00×m (2.1.50)

and
A0m×0 = 0n×0. (2.1.51)

Although empty matrices have no entries, it is useful to define the product

0n×000×m
�= 0n×m. (2.1.52)

Also, we define
I0

�= Î0
�= 00×0. (2.1.53)

For n,m ∈ N, we define F
0×m �= {00×m}, F

n×0 �= {0n×0}, and F
0 �= F

0×1. Note
that [

0n×0 0n×m
00×0 00×m

]
= 0n×m. (2.1.54)

The empty matrix can be viewed as a useful device for matrices just as 0 is for real
numbers and ∅ is for sets.

The n × n identity matrix, which has 1’s on the diagonal and 0’s elsewhere,
is denoted by In or just I. Let x ∈ F

n and A ∈ F
n×m. Then, the identity matrix

satisfies
Inx = x (2.1.55)

and
AIm = InA = A. (2.1.56)

Let A ∈ Fn×n. Then, A2 �= AA and, for all k ≥ 1, Ak �= AAk−1. We use the
convention A0 �= I even if A is the zero matrix.
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The n× n reverse identity matrix, which has 1’s on the reverse diagonal and
0’s elsewhere, is denoted by În or just Î. Left multiplication of A ∈ Fn×m by În
reverses the rows of A, while right multiplication of A by Îm reverses the columns
of A. Note that

Î2
n = In. (2.1.57)

2.2 Transpose and Inner Product

A fundamental vector and matrix operation is the transpose. If x ∈ Fn, then
the transpose xT of x is defined to be the row vector

xT �=
[
x(1) · · · x(n)

] ∈ F
1×n. (2.2.1)

Similarly, if x =
[
x(1,1) · · · x(1,n)

] ∈ F1×n, then

xT =

⎡
⎢⎣
x(1,1)

...
x(1,n)

⎤
⎥⎦ ∈ F

n×1. (2.2.2)

Let x, y ∈ Fn. Then, xTy ∈ F is a scalar, and

xTy = yTx =
n∑
i=1

x(i)y(i). (2.2.3)

Note that

xTx =
n∑
i=1

x2
(i). (2.2.4)

The vector ei,n ∈ R
n, or just ei, has 1 as its ith component and 0’s elsewhere.

Thus,
ei,n = coli(In). (2.2.5)

Let A ∈ F
n×m. Then, eTiA = rowi(A) and Aei = coli(A). Furthermore, the (i, j)

entry of A can be written as
A(i,j) = eTiAej . (2.2.6)

The n×m matrix Ei,j,n×m ∈ R
n×m, or just Ei,j , has 1 as its (i, j) entry and

0’s elsewhere. Thus,
Ei,j,n×m = ei,ne

T
j,m. (2.2.7)

Note that Ei,1,n×1 = ei,n and

In = E1,1 + · · ·+ En,n =
n∑
i=1

eie
T
i . (2.2.8)

Finally, the n × m ones matrix, all of whose entries are 1, is written as 1n×m or
just 1. Thus,

1n×m =
n,m∑
i,j=1

Ei,j,n×m. (2.2.9)
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Note that

1n×1 =
n∑
i=1

ei,n =

⎡
⎢⎣

1
...
1

⎤
⎥⎦ (2.2.10)

and
1n×m = 1n×111×m. (2.2.11)

Lemma 2.2.1. Let x ∈ R. Then, xTx = 0 if and only if x = 0.

Let x, y ∈ Rn. Then, xTy ∈ R is the inner product of x and y. Furthermore, x
and y are orthogonal if xTy = 0. If x and y are nonzero, then the angle θ ∈ [0, π]
between x and y is defined by

θ
�= cos−1 xTy√

xTxyTy
. (2.2.12)

Note that x and y are orthogonal if and only if θ = π/2.

Let x ∈ Cn. Then, x = y + jz, where y, z ∈ Rn. Therefore, the transpose xT

of x is given by
xT = yT + jzT. (2.2.13)

The complex conjugate x of x is defined by

x
�= y − jz, (2.2.14)

while the complex conjugate transpose x∗ of x is defined by

x∗ �= xT = yT − jzT. (2.2.15)

The vectors y and z are the real and imaginary parts Rex and Imx of x, respectively,
which are defined by

Rex �= 1
2 (x+ x) = y (2.2.16)

and
Imx

�= 1
2j (x− x) = z. (2.2.17)

Note that

x∗x =
n∑
i=1

x(i)x(i) =
n∑
i=1

|x(i)|2 =
n∑
i=1

[
y2
(i) + z2

(i)

]
. (2.2.18)

If w, x ∈ C
n, then wTx = xTw.

Lemma 2.2.2. Let x ∈ Cn. Then, x∗x = 0 if and only if x = 0.

Let x, y ∈ Cn. Then, x∗y ∈ C is the inner product of x and y, which is given
by

x∗y =
n∑
i=1

x(i)y(i). (2.2.19)

Furthermore, x and y are orthogonal if x∗y = 0.
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Let A ∈ Fn×m. Then, the transpose AT ∈ Fm×n of A is defined by

AT �=
[

[row1(A)]T · · · [rown(A)]T
]

=

⎡
⎢⎣

[col1(A)]T

...
[colm(A)]T

⎤
⎥⎦, (2.2.20)

that is, coli
(
AT
)

= [rowi(A)]T for all i = 1, . . . , n and rowi
(
AT
)

= [coli(A)]T for all

i = 1, . . . ,m. Hence,
(
AT
)
(i,j)

= A(j,i) and
(
AT
)T = A. If B ∈ Fm×l, then

(AB)T = BTAT. (2.2.21)

In particular, if x ∈ Fm, then

(Ax)T = xTAT, (2.2.22)

while, if, in addition, y ∈ Fn, then yTAx is a scalar and

yTAx =
(
yTAx

)T
= xTATy. (2.2.23)

If B ∈ F
n×m, then, for all α, β ∈ F,

(αA+ βB)T = αAT + βBT. (2.2.24)

Let x ∈ Fn and y ∈ Fm. Then, the matrix xyT ∈ Fn×m is the outer product of
x and y. The outer product xyT is nonzero if and only if both x and y are nonzero.

The trace of a square matrix A ∈ Fn×n, denoted by trA, is defined to be the
sum of its diagonal entries, that is,

trA �=
n∑
i=1

A(i,i). (2.2.25)

Note that
trA = trAT. (2.2.26)

Let A ∈ Fn×m and B ∈ Fm×n. Then, AB and BA are square,

trAB = trBA = trATBT = trBTAT =
n,m∑
i,j=1

A(i,j)B(j,i), (2.2.27)

and

trAAT = trATA =
n,m∑
i,j=1

A2
(i,j). (2.2.28)

Furthermore, if n = m, then, for all α, β ∈ F,

tr(αA+ βB) = α trA+ β trB. (2.2.29)

Lemma 2.2.3. Let A ∈ Rn×m. Then, trATA = 0 if and only if A = 0.

Let A,B ∈ Rn×m. Then, the inner product of A and B is trATB. Furthermore,
A is orthogonal to B if trATB = 0.
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Let C ∈ Cn×m. Then, C = A + jB, where A,B ∈ Rn×m. Therefore, the
transpose CT of C is given by

CT = AT + jBT. (2.2.30)

The complex conjugate C of C is

C
�= A− jB, (2.2.31)

while the complex conjugate transpose C∗ of C is

C∗ �= C
T

= AT− jBT. (2.2.32)

Note that C = C if and only if B = 0, and that(
CT
)T

= C = (C∗)∗ = C. (2.2.33)

The matrices A and B are the real and imaginary parts ReC and ImC of C,
respectively, which are denoted by

ReC �= 1
2

(
C + C

)
= A (2.2.34)

and
ImC �= 1

2j

(
C − C) = B. (2.2.35)

If C is square, then
trC = trA+ jtrB (2.2.36)

and
trC = trCT = trC = trC∗. (2.2.37)

If S ⊆ Cn×m, then
S

�=
{
A: A ∈ S

}
. (2.2.38)

If S is a multiset with elements in C
n×m, then

S =
{
A: A ∈ S

}
ms
. (2.2.39)

Let A ∈ Fn×n. Then, for all k ∈ N,

AkT �= (Ak)T =
(
AT
)k
, (2.2.40)

Ak = A
k
, (2.2.41)

and
Ak∗ �= (Ak)∗ = (A∗)k. (2.2.42)

Lemma 2.2.4. Let A ∈ Cn×m. Then, trA∗A = 0 if and only if A = 0.

Let A,B ∈ Cn×m. Then, the inner product of A and B is trA∗B. Furthermore,
A is orthogonal to B if trA∗B = 0.

If A,B ∈ Cn×m, then, for all α, β ∈ C,

(αA+ βB)∗ = αA∗ + βB∗, (2.2.43)
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while, if A ∈ Cn×m and B ∈ Cm×l, then

AB = AB (2.2.44)

and
(AB)∗ = B∗A∗. (2.2.45)

In particular, if A ∈ Cn×m and x ∈ Cm, then

(Ax)∗ = x∗A∗, (2.2.46)

while, if, in addition, y ∈ Cn, then

y∗Ax = (y∗Ax)T = xTATy (2.2.47)

and
(y∗Ax)∗ =

(
y∗Ax

)T
=
(
yTAx

)T
= x∗A∗y. (2.2.48)

For A ∈ F
n×m, define the reverse transpose of A by

AT̂ �= ÎmA
TÎn (2.2.49)

and the reverse complex conjugate transpose of A by

A∗̂ �= ÎmA
∗În. (2.2.50)

For example, [
1 2 3
4 5 6

]T̂
=

⎡
⎣ 6 3

5 2
4 1

⎤
⎦. (2.2.51)

In general,
(A∗)∗̂ = (A∗̂)∗ =

(
AT
)̂T

=
(
AT̂
)T

= ÎnAÎm (2.2.52)

and
(A∗̂)∗̂ =

(
AT̂
)̂T

= A. (2.2.53)

Note that, if B ∈ Fm×l, then

(AB)∗̂ = B∗̂A∗̂ (2.2.54)

and
(AB)T̂ = BT̂AT̂. (2.2.55)

For x ∈ Fm and A ∈ Fn×m, every component of x and every entry of A can
be replaced by its absolute value to obtain |x| ∈ Rm and |A| ∈ Rn×m defined by

|x|(i) �= |x(i)| (2.2.56)

for all i = 1, . . . , n and

|A|(i,j) �= |A(i,j)| (2.2.57)

for all i = 1, . . . , n and j = 1, . . . ,m. Note that

|Ax| ≤≤ |A||x|. (2.2.58)
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Furthermore, if B ∈ Fm×l, then

|AB| ≤≤ |A||B|. (2.2.59)

For x ∈ Rn and A ∈ Rn×m, every component of x and every entry of A can
be replaced by its sign to obtain signx ∈ R

n and signA ∈ R
n×m defined by

(signx)(i)
�= signx(i) (2.2.60)

for all i = 1, . . . , n, and
(signA)(i,j)

�= signA(i,j) (2.2.61)

for all i = 1, . . . , n and j = 1, . . . ,m.

2.3 Convex Sets, Cones, and Subspaces

The definitions in this section are stated for subsets of Fn. All of these defi-
nitions apply to subsets of Fn×m.

Let S ⊆ F
n. If α ∈ F, then αS

�= {αx: x ∈ S} and, if y ∈ F
n, then y + S =

S + y
�= {y+ x: x ∈ S}. We write −S for (−1)S. The set S is symmetric if S = −S,

that is, x ∈ S if and only if −x ∈ S. For S1, S2 ⊆ Fn define S1 + S2
�= {x+ y : x ∈

S1 and y ∈ S2}. Note that, for all α1, α2 ∈ F, (α + β)S ⊆ αS + βS. Trivially,
S + ∅ = ∅.

If x, y ∈ Fn and α ∈ [0, 1], then αx + (1 − α)y is a convex combination of x
and y with barycentric coordinates α and 1 − α. The set S ⊆ Fn is convex if, for
all x, y ∈ S, every convex combination of x and y is an element of S. Trivially, the
empty set is convex.

Let S ⊆ Fn. Then, S is a cone if, for all x ∈ S and all α > 0, the vector αx is
an element of S. Now, assume that S is a cone. Then, S is pointed if 0 ∈ S, while S

is blunt if 0 /∈ S. Furthermore, S is one-sided if x,−x ∈ S implies that x = 0. Hence,
S is one-sided if and only if S ∩ −S ⊆ {0}. Furthermore, S is a convex cone if it is
convex. Trivially, the empty set is a convex cone.

Let S ⊆ Fn. Then, S is a subspace if, for all x, y ∈ S and α, β ∈ F, the
vector αx + βy is an element of S. Note that, if {x1, . . . , xr} ⊂ Fn, then the set
{∑r

i=1 αixi: α1, . . . , αr ∈ F} is a subspace. In addition, S is an affine subspace
if there exists a vector z ∈ Fn such that S + z is a subspace. Affine subspaces
S1, S2 ⊆ F

n are parallel if there exists a vector z ∈ F
n such that S1+ z = S2. If S is

an affine subspace, then there exists a unique subspace parallel to S. Trivially, the
empty set is a subspace and an affine subspace.

Let S ⊆ Fn. The convex hull of S, denoted by coS, is the smallest convex set
containing S. Hence, coS is the intersection of all convex subsets of Fn that contain
S. The conical hull of S, denoted by coneS, is the smallest cone in Fn containing S,
while the convex conical hull of S, denoted by coco S, is the smallest convex cone
in F

n containing S. If S has a finite number of elements, then coS is a polytope
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and cocoS is a polyhedral convex cone. The span of S, denoted by spanS, is the
smallest subspace in Fn containing S, while, if S is nonempty, then the affine hull
of S, denoted by aff S, is the smallest affine subspace in Fn containing S. Note that
S is convex if and only if S = co S, while similar statements hold for coneS, coco S,
spanS, and aff S. Trivially, co ∅ = cone ∅ = coco ∅ = span∅ = aff ∅ = ∅.

Let x1, . . . , xr ∈ Fn. Then, x1, . . . , xr are linearly independent if α1, . . . , αr ∈ F

and r∑
i=1

αixi = 0 (2.3.1)

imply that α1 = α2 = · · · = αr = 0. Clearly, x1, . . . , xr is linearly independent
if and only if x1, . . . , xr are linearly independent. If x1, . . . , xr are not linearly
independent, then x1, . . . , xr are linearly dependent. Note that 0n×1 is linearly
dependent.

Let S ⊆ Fn, and assume that S is not empty. If S is not equal to {0n×1}, then
there exist r ≥ 1 vectors x1, . . . , xr ∈ Fn such that x1, . . . , xr are linearly indepen-
dent over F and such that span{x1, . . . , xr} = S. The set of vectors {x1, . . . , xr} is a
basis for S. The positive integer r, which is the dimension dim S of S, is uniquely de-
fined. We define dim{0n×1} = 0. If S is an affine subspace, then the dimension dim S

of S is the dimension of the subspace parallel to S. If S is not an affine subspace,
then the dimension dim S of S is the dimension of aff S. We define dim ∅

�= −∞.

Let x1, . . . , xn+1 ∈ Rn, and define S
�= co {x1, . . . , xn+1}. The set S is a simplex

if dim S = n.

The following result is the subspace dimension theorem.

Theorem 2.3.1. Let S1, S2 ⊆ Fn be subspaces. Then,

dim(S1 + S2) + dim(S1∩ S2) = dim S1 + dim S2. (2.3.2)

Proof. See [630, p. 227].

Let S1, S2 ⊆ Fn be subspaces. Then, S1 and S2 are complementary if S1+S2 =
Fn and S1 ∩ S2 = {0}. In this case, we say that S1 is complementary to S2, or vice
versa.

Corollary 2.3.2. Let S1, S2 ⊆ Fn be subspaces, and consider the following
conditions:

i) dim(S1 + S2) = n.

ii) S1∩ S2 = {0}.
iii) dim S1 + dim S2 = n.

iv) S1 and S2 are complementary subspaces.

Then,
[i), ii)]⇐⇒ [i), iii)]⇐⇒ [ii), iii)]⇐⇒ [i), ii), iii)]⇐⇒ [iv)].
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Let S ⊆ Fn be nonempty. Then, the orthogonal complement S⊥ of S is defined
by

S⊥ �= {x ∈ F
n: x∗y = 0 for all y ∈ S}. (2.3.3)

The orthogonal complement S⊥ of S is a subspace even if S is not.

Let y ∈ Fn be nonzero. Then, the subspace {y}⊥, whose dimension is n−1, is
a hyperplane. Furthermore, S is an affine hyperplane if there exists a vector z ∈ Fn

such that S + z is a hyperplane. The set {x ∈ Fn: Rex∗y ≤ 0} is a closed half
space, while the set {x ∈ Fn: Rex∗y < 0} is an open half space. Finally, S is an
affine (closed, open) half space if there exists a vector z ∈ F

n such that S + z is a
(closed, open) half space.

Let S ⊆ F
n. Then,

polarS
�= {x ∈ F

n: Rex∗y ≤ 1 for all y ∈ S} (2.3.4)

is the polar of S. Note that polarS is a convex set. Furthermore,

polarS = polar coS. (2.3.5)

Let S ⊆ Fn. Then,

dconeS
�= {x ∈ F

n: Rex∗y ≤ 0 for all y ∈ S} (2.3.6)

is the dual cone of S. Note that dconeS is a pointed convex cone. Furthermore,

dconeS = dcone cone S = dcone coco S. (2.3.7)

Let S1, S2 ⊆ Fn be subspaces. Then, S1 and S2 are orthogonally complemen-
tary if S1 and S2 are complementary and x∗y = 0 for all x ∈ S1 and y ∈ S2.

Proposition 2.3.3. Let S1, S2 ⊆ Fn be subspaces. Then, S1 and S2 are or-
thogonally complementary if and only if S1 = S⊥

2 .

For the next result, note that “⊂” indicates proper inclusion.

Lemma 2.3.4. Let S1, S2 ⊆ Fn be subspaces such that S1⊆ S2. Then, S1⊂ S2

if and only if dimS1< dim S2. Equivalently, S1 = S2 if and only if dimS1 = dim S2.

The following result provides constructive characterizations of coS, coneS,
coco S, spanS, and aff S.

Theorem 2.3.5. Let S ⊆ Rn be nonempty. Then,

co S =
⋃
k∈P

{
k∑
i=1

αixi: αi ≥ 0, xi ∈ S, and
k∑
i=1

αi = 1

}
(2.3.8)

=

{
n+1∑
i=1

αixi: αi ≥ 0, xi ∈ S, and
n+1∑
i=1

αi = 1

}
, (2.3.9)
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coneS = {αx: x ∈ S and α > 0}, (2.3.10)

coco S =
⋃
k∈P

{
k∑
i=1

αixi: αi ≥ 0, xi ∈ S, and
k∑
i=1

αi > 0

}
(2.3.11)

=

{
n+1∑
i=1

αixi: αi ≥ 0, xi ∈ S, and
n∑
i=1

αi > 0

}
, (2.3.12)

span S =
⋃
k∈P

{
k∑
i=1

αixi: αi ∈ R and xi ∈ S

}
(2.3.13)

=

{
n∑
i=1

αixi: αi ∈ R and xi ∈ S

}
, (2.3.14)

aff S =
⋃
k∈P

{
k∑
i=1

αixi: αi ∈ R, xi ∈ S, and
k∑
i=1

αi = 1

}
(2.3.15)

=

{
n+1∑
i=1

αixi: αi ∈ R, xi ∈ S, and
n+1∑
i=1

αi = 1

}
. (2.3.16)

Now, let S ⊆ Cn. Then,

co S =
⋃
k∈P

{
k∑
i=1

αixi: αi ≥ 0, xi ∈ S, and
k∑
i=1

αi = 1

}
(2.3.17)

=

{
2n+1∑
i=1

αixi: αi ≥ 0, xi ∈ S, and
2n+1∑
i=1

αi = 1

}
, (2.3.18)

coneS = {αx: x ∈ S and α > 0}, (2.3.19)

coco S =
⋃
k∈P

{
k∑
i=1

αixi: αi ≥ 0, xi ∈ S, and
k∑
i=1

αi > 0

}
(2.3.20)

=

{
2n+1∑
i=1

αixi: αi ≥ 0, xi ∈ S, and
2n∑
i=1

αi > 0

}
, (2.3.21)

span S =
⋃
k∈P

{
k∑
i=1

αixi: αi ∈ C and xi ∈ S

}
(2.3.22)

=

{
n∑
i=1

αixi: αi ∈ C and xi ∈ S

}
, (2.3.23)
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aff S =
⋃
k∈P

{
k∑
i=1

αixi: αi ∈ C, xi ∈ S, and
k∑
i=1

αi = 1

}
(2.3.24)

=

{
n+1∑
i=1

αixi: αi ∈ C, xi ∈ S, and
n+1∑
i=1

αi = 1

}
. (2.3.25)

Proof. Result (2.3.8) is immediate, while (2.3.9) is proved in [879, p. 17].
Furthermore, (2.3.10) is immediate. Next, note that, since coco S = co cone S, it
follows that (2.3.8) and (2.3.10) imply (2.3.12) with n replaced by n+ 1. However,
every element of cocoS lies in the convex hull of n + 1 points one of which is the
origin. It thus follows that we can set xn+1 = 0, which yields (2.3.12). Similar
arguments yield (2.3.14). Finally, note that all vectors of the form x1+ β(x2 − x1),
where x1, x2 ∈ S and β ∈ R, are elements of aff S. Forming the convex hull of these
vectors yields (2.3.16).

The following result shows that cones can be used to induce relations on Fn.

Proposition 2.3.6. Let S ⊆ Fn be a cone and, for x, y ∈ Fn, let x ≤ y denote
the relation y − x ∈ S. Then, the following statements hold:

i) “≤” is reflexive if and only if S is a pointed cone.

ii) “≤” is antisymmetric if and only if S is a one-sided cone.

iii) “≤” is symmetric if and only if S is a symmetric cone.

iv) “≤” is transitive if and only if S is a convex cone.

Proof. The proofs of i), ii), and iii) are immediate. To prove iv), suppose
that “≤” is transitive, and let x, y ∈ S so that 0 ≤ αx ≤ αx + (1 − α)y for all
α ∈ (0, 1]. Hence, αx + (1 − α)y ∈ S for all α ∈ (0, 1], and thus S is convex.
Conversely, suppose that S is a convex cone, and assume that x ≤ y and y ≤ z.
Then, y − x ∈ S and z − y ∈ S imply that z − x = 2

[
1
2 (y − x) + 1

2 (z − y)] ∈ S.
Hence, x ≤ z, and thus “≤” is transitive.

2.4 Range and Null Space

Two key features of a matrix A ∈ Fn×m are its range and null space, denoted
by R(A) and N(A), respectively. The range of A is defined by

R(A) �= {Ax: x ∈ F
m}. (2.4.1)

Note that R(0n×0) = {0n×1} and R(00×m) = {00×1}. Letting αi denote x(i), it can
be seen that

R(A) =

{
m∑
i=1

αicoli(A): α1, . . . , αm ∈ F

}
, (2.4.2)

which shows that R(A) is a subspace of Fn. It thus follows from Theorem 2.3.5 that

R(A) = span{col1(A), . . . , colm(A)}. (2.4.3)

By viewing A as a function from F
m into F

n, we can write R(A) = AF
m.
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The null space of A ∈ Fn×m is defined by

N(A) �= {x ∈ F
m: Ax = 0}. (2.4.4)

Note that N(0n×0) = F0 = {00×1} and N(00×m) = Fm. Equivalently,

N(A) =
{
x ∈ F

m: xT[rowi(A)]T = 0 for all i = 1, . . . , n
}

(2.4.5)

=
{
[row1(A)]T, . . . , [rown(A)]T

}⊥
, (2.4.6)

which shows that N(A) is a subspace of Fm. Note that, if α ∈ F is nonzero, then
R(αA) = R(A) and N(αA) = N(A). Finally, if F = C, then R(A) and R(A) are not
necessarily identical. For example, let A �= [ j1 ].

Let A ∈ Fn×n, and let S ⊆ Fn be a subspace. Then, S is an invariant subspace
of A if AS ⊆ S. Note that AR(A) ⊆ AFn = R(A) and AN(A) = {0n} ⊆ N(A).
Hence, R(A) and N(A) are invariant subspaces of A.

If A ∈ Fn×m and B ∈ Fm×l, then it is easy to see that

R(AB) = AR(B). (2.4.7)

Hence, the following result is not surprising.

Lemma 2.4.1. Let A ∈ Fn×m, B ∈ Fm×l, and C ∈ Fk×n. Then,

R(AB) ⊆ R(A) (2.4.8)

and
N(A) ⊆ N(CA). (2.4.9)

Proof. Since R(B) ⊆ Fm, it follows that R(AB) = AR(B) ⊆ AFm = R(A).
Furthermore, y ∈ N(A) implies that Ay = 0, and thus CAy = 0.

Corollary 2.4.2. Let A ∈ Fn×n, and let k ≥ 1. Then,

R
(
Ak
) ⊆ R(A) (2.4.10)

and
N(A) ⊆ N

(
Ak
)
. (2.4.11)

Although R(AB) ⊆ R(A) for arbitrary conformable matrices A,B, we now
show that equality holds in the special case B = A∗. This result, along with others,
is the subject of the following basic theorem.

Theorem 2.4.3. Let A ∈ Fn×m. Then, the following identities hold:

i) R(A)⊥ = N(A∗).

ii) R(A) = R(AA∗).

iii) N(A) = N(A∗A).

Proof. To prove i), we first show that R(A)⊥ ⊆ N(A∗). Let x ∈ R(A)⊥.
Then, x∗z = 0 for all z ∈ R(A). Hence, x∗Ay = 0 for all y ∈ Rm. Equivalently,
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y∗A∗x = 0 for all y ∈ Rm. Letting y = A∗x, it follows that x∗AA∗x = 0. Now,
Lemma 2.2.2 implies that A∗x = 0. Thus, x ∈ N(A∗). Conversely, let us show that
N(A∗) ⊆ R(A)⊥. Letting x ∈ N(A∗), it follows that A∗x = 0, and, hence, y∗A∗x = 0
for all y ∈ Rm. Equivalently, x∗Ay = 0 for all y ∈ Rm. Hence, x∗z = 0 for all
z ∈ R(A). Thus, x ∈ R(A)⊥, which proves i).

To prove ii), note that Lemma 2.4.1 with B = A∗ implies that R(AA∗) ⊆
R(A). To show that R(A) ⊆ R(AA∗), let x ∈ R(A), and suppose that x �∈ R(AA∗).
Then, it follows from Proposition 2.3.3 that x = x1 + x2, where x1 ∈ R(AA∗) and
x2 ∈ R(AA∗)⊥ with x2 �= 0. Thus, x∗2AA

∗y = 0 for all y ∈ Rn, and setting y = x2

yields x∗2AA∗x2 = 0. Hence, Lemma 2.2.2 implies that A∗x2 = 0, so that, by i),
x2 ∈ N(A∗) = R(A)⊥. Since x ∈ R(A), it follows that 0 = x∗2x = x∗2x1 + x∗2x2.
However, x∗2x1 = 0 so that x∗2x2 = 0 and x2 = 0, which is a contradiction. This
proves ii).

To prove iii), note that ii) with A replaced by A∗ implies that R(A∗A)⊥ =
R(A∗)⊥. Furthermore, replacing A by A∗ in i) yields R(A∗)⊥ = N(A). Hence,
N(A) = R(A∗A)⊥. Now, i) with A replaced by A∗A implies that R(A∗A)⊥ = N(A∗A).
Hence, N(A) = N(A∗A), which proves iii).

Result i) of Theorem 2.4.3 can be written equivalently as

N(A)⊥ = R(A∗), (2.4.12)

N(A) = R(A∗)⊥, (2.4.13)

N(A∗)⊥ = R(A), (2.4.14)

while replacing A by A∗ in ii) and iii) of Theorem 2.4.3 yields

R(A∗) = R(A∗A), (2.4.15)
N(A∗) = N(AA∗). (2.4.16)

Using ii) of Theorem 2.4.3 and (2.4.15), it follows that

R(AA∗A) = AR(A∗A) = AR(A∗) = R(AA∗) = R(A). (2.4.17)

Letting A �=
[

1 j
]

shows that R(A) and R
(
AAT

)
may be different.

2.5 Rank and Defect

The rank of A ∈ Fn×m is defined by

rankA �= dimR(A). (2.5.1)

It can be seen that the rank of A is equal to the number of linearly independent
columns of A over F. For example, if F = C, then rank

[
1 j

]
= 1, while, if

either F = R or F = C, then rank
[

1 1
]

= 1. Furthermore, rankA = rankA,
rankAT = rankA∗, rankA ≤ m, and rankAT≤ n. If rankA = m, then A has full
column rank, while, if rankAT = n, then A has full row rank. If A has either full
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column rank or full row rank, then A has full rank. Finally, the defect of A is

def A �= dimN(A). (2.5.2)

The following result follows from Theorem 2.4.3.

Corollary 2.5.1. Let A ∈ Fn×m. Then, the following identities hold:

i) rankA∗ + def A = m.

ii) rankA = rankAA∗.

iii) def A = def A∗A.

Proof. It follows from (2.4.12) and Proposition 2.3.2 that rankA∗ =
dimR(A∗) = dim N(A)⊥ = m − dim N(A) = m − def A, which proves i). Results
ii) and iii) follow from ii) and iii) of Theorem 2.4.3.

Replacing A by A∗ in Corollary 2.5.1 yields

rankA+ def A∗ = n, (2.5.3)
rankA∗ = rankA∗A, (2.5.4)
def A∗ = def AA∗. (2.5.5)

Furthermore, note that
def A = def A (2.5.6)

and
def AT = def A∗. (2.5.7)

Lemma 2.5.2. Let A ∈ Fn×m and B ∈ Fm×l. Then,

rankAB ≤ min{rankA, rankB}. (2.5.8)

Proof. Since, by Lemma 2.4.1, R(AB) ⊆ R(A), it follows that rankAB ≤
rankA. Next, suppose that rankB < rankAB. Let {y1, . . . , yr} ⊂ Fn be a basis
for R(AB), where r �= rankAB, and, since yi ∈ AR(B) for all i = 1, . . . , r, let
xi ∈ R(B) be such that yi = Axi for all i = 1, . . . , r. Since rankB < r, it follows
that x1, . . . , xr are linearly dependent. Hence, there exist α1, . . . , αr ∈ F, not all
zero, such that

∑r
i=1 αixi = 0, which implies that

∑r
i=1 αiAxi =

∑r
i=1 αiyi = 0.

Thus, y1, . . . , yr are linearly dependent, which is a contradiction.

Corollary 2.5.3. Let A ∈ Fn×m. Then,

rankA = rankA∗ (2.5.9)

and
def A = def A∗+m− n. (2.5.10)

Therefore,
rankA = rankA∗A.

If, in addition, n = m, then
def A = def A∗. (2.5.11)
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Proof. It follows from (2.5.8) with B = A∗ that rankAA∗ ≤ rankA∗. Fur-
thermore, ii) of Corollary 2.5.1 implies that rankA = rankAA∗. Hence, rankA ≤
rankA∗. Interchanging A and A∗ and repeating this argument yields rankA∗ ≤
rankA. Hence, rankA = rankA∗. Next, using i) of Corollary 2.5.1, (2.5.9), and
(2.5.3) it follows that def A = m− rankA∗ = m− rankA = m− (n−defA∗), which
proves (2.5.10).

Corollary 2.5.4. Let A ∈ Fn×m. Then,

rankA ≤ min{m,n}. (2.5.12)

Proof. By definition, rankA ≤ m, while it follows from (2.5.9) that rankA =
rankA∗ ≤ n.

The dimension theorem is given by (2.5.13) in the following result.

Corollary 2.5.5. Let A ∈ Fn×m. Then,

rankA+ def A = m (2.5.13)

and
rankA = rankA∗A. (2.5.14)

Proof. The result (2.5.13) follows from i) of Corollary 2.5.1 and (2.5.9), while
(2.5.14) follows from (2.5.4) and (2.5.9).

The following result follows from the subspace dimension theorem and the
dimension theorem.

Corollary 2.5.6. Let A ∈ F
n×m. Then,

dim[R(A) + N(A)] + dim[R(A) ∩N(A)] = m. (2.5.15)

Corollary 2.5.7. Let A ∈ Fn×n and k ≥ 1. Then,

rankAk ≤ rankA (2.5.16)

and
def A ≤ def Ak. (2.5.17)

Proposition 2.5.8. Let A ∈ Fn×n. If rankA2 = rankA, then rankAk =
rankA for all k ≥ 1. Equivalently, if def A2 = def A, then def Ak = def A for all
k ∈ P.

Proof. Since rankA2 = rankA and R
(
A2
) ⊆ R(A), it follows from Lemma

2.3.4 that R
(
A2
)

= R(A). Hence, R
(
A3
)

= AR
(
A2
)

= AR(A) = R
(
A2
)
. Thus,

rankA3 = rankA. Similar arguments yield rankAk = rankA for all k ≥ 1.

We now prove Sylvester’s inequality, which provides a lower bound for the
rank of the product of two matrices.
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Proposition 2.5.9. Let A ∈ Fn×m and B ∈ Fm×l. Then,

rankA+ rankB ≤ m+ rankAB. (2.5.18)

Proof. Using (2.5.8) to obtain the second inequality below, it follows that

rankA+ rankB = rank
[

0 A
B 0

]

≤ rank
[

0 A
B I

]

= rank
[
I A
0 I

][ −AB 0
B I

]

≤ rank
[ −AB 0

B I

]
≤ rank

[ −AB 0
]
+ rank

[
B I

]
= rankAB +m. �

Combining (2.5.8) with (2.5.18) yields the following result.

Corollary 2.5.10. Let A ∈ Fn×m and B ∈ Fm×l. Then,

rankA+ rankB −m ≤ rankAB ≤ min{rankA, rankB}. (2.5.19)

2.6 Invertibility

Let A ∈ Fn×m. Then, A is left invertible if there exists a matrix AL ∈ Fm×n

such that ALA = Im, while A is right invertible if there exists a matrix AR ∈ Fm×n

such that AAR = In. These definitions are consistent with the definitions of left
and right invertibility given in Chapter 1 applied to the function f : Fm �→ Fn given
by f(x) = Ax. Note that AL (when it exists) and A∗ are the same size, and likewise
for AR.

Theorem 2.6.1. Let A ∈ F
n×m. Then, the following statements are equiva-

lent:

i) A is left invertible.

ii) A is one-to-one.

iii) def A = 0.

iv) rankA = m.

v) A has full column rank.

The following statements are also equivalent:

vi) A is right invertible.

vii) A is onto.

viii) def A = m− n.
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ix) rankA = n.

x) A has full row rank.

Proposition 2.6.2. Let A ∈ Fn×m. Then, the following statements are equiv-
alent:

i) A has a unique left inverse.

ii) A has a unique right inverse.

iii) rankA = n = m.

Proof. To prove that i) implies iii), suppose that rankA = m < n so that
A is left invertible but nonsquare. Then, it follows from the dimension theorem
Corollary 2.5.5 that def AT = n−m > 0. Hence, there exist infinitely many matrices
AL ∈ Fm×n such that ALA = Im. Conversely, suppose that B ∈ Fn×n and C ∈ Fn×n

are left inverses of A. Then, (B−C)A = 0, and it follows from Sylvester’s inequality
Proposition 2.5.9 that B = C.

The following result shows that the rank and defect of a matrix are not affected
by either left multiplication by a left invertible matrix or right multiplication by a
right invertible matrix.

Proposition 2.6.3. Let A ∈ Fn×m, and let C ∈ Fk×n be left invertible and
B ∈ Fm×l be right invertible. Then,

R(A) = R(AB) (2.6.1)

and

N(A) = N(CA). (2.6.2)

Furthermore,

rankA = rankCA = rankAB (2.6.3)

and
def A = def CA = def AB +m− l. (2.6.4)

Proof. Let CL be a left inverse of C. Using both inequalities in (2.5.19) and
the fact that rankA ≤ n, it follows that

rankA = rankA+ rankCLC − n ≤ rankCLCA ≤ rankCA ≤ rankA,

which implies that rankA = rankCA. Next, (2.5.13) and (2.6.3) imply that m −
def A = m− def CA = l − def AB, which yields (2.6.4).

As shown in Proposition 2.6.2, left and right inverses of nonsquare matrices are
not unique. For example, the matrix A = [ 0

1 ] is left invertible and has left inverses[
0 1

]
and
[

1 1
]
. In spite of this nonuniqueness, however, left inverses are

useful for solving equations of the form Ax = b, where A ∈ Fn×m, x ∈ Fm, and
b ∈ Fn. If A is left invertible, then one can formally (although not rigorously) solve
Ax = b by noting that x = ALAx = ALb, where AL ∈ Rm×n is a left inverse of
A. However, it is necessary to determine beforehand whether or not there actually
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exists a vector x satisfying Ax = b. For example, if A = [ 0
1 ] and b = [ 1

0 ], then A
is left invertible although there does not exist a vector x satisfying Ax = b. The
following result addresses the various possibilities that can arise. One interesting
feature of this result is that, if there exists a solution of Ax = b and A is left
invertible, then the solution is unique even if A does not have a unique left inverse.
For this result,

[
A b

]
denotes the n× (m+1) partitioned matrix formed from A

and b. Note that rankA ≤ rank
[
A b

] ≤ m+ 1, while rankA = rank
[
A b

]
is equivalent to b ∈ R(A).

Theorem 2.6.4. Let A ∈ Fn×m and b ∈ Fn. Then, the following statements
hold:

i) There does not exist a vector x ∈ Fm satisfying Ax = b if and only if
rankA < rank

[
A b

]
.

ii) There exists a unique vector x ∈ F
m satisfying Ax = b if and only if

rankA = rank
[
A b

]
= m. In this case, if AL ∈ Fm×n is a left inverse

of A, then the solution is given by x = ALb.

iii) There exist infinitely many x ∈ Fm satisfyingAx = b if and only if rankA =
rank

[
A b

]
< m. In this case, let x̂ ∈ Fm satisfy Ax̂ = b. Then, the set

of solutions of Ax = b is given by x̂+ N(A).

iv) Assume that rankA = n. Then, there exists at least one vector x ∈ Fm

satisfying Ax = b. Furthermore, if AR ∈ F
m×n is a right inverse of A, then

x = ARb satisfies Ax = b. If n = m, then x = ARb is the unique solution
of Ax = b. If n < m and x̂ ∈ Fn satisfies Ax̂ = b, then the set of solutions
of Ax = b is given by x̂+ N(A).

Proof. To prove i), note that rankA < rank
[
A b

]
is equivalent to the

fact that b cannot be represented as a linear combination of columns of A, that
is, Ax = b does not have a solution x ∈ Fm. To prove ii), suppose that rankA =
rank

[
A b

]
= m so that, by i), Ax = b has a solution x ∈ F

m. If x̂ ∈ F
m satisfies

Ax̂ = b, then A(x− x̂) = 0. Since rankA = m, it follows from Theorem 2.6.1 that A
has a left inverseAL ∈ Fm×n.Hence, x−x̂ = ALA(x−x̂) = 0, which proves thatAx =
b has a unique solution. Conversely, suppose that rankA = rank

[
A b

]
= m and

there exist vectors x, x̂ ∈ Fm, where x �= x̂, such that Ax = b and Ax̂ = b. Then,
A(x− x̂) = 0, which implies that def A ≥ 1. Therefore, rankA = m−def A ≤ m−1,
which is a contradiction. This proves the first statement of ii). Assuming Ax = b
has a unique solution x ∈ Fm, multiplying by AL yields x = ALb. To prove iii), note
that it follows from i) that Ax = b has at least one solution x̂ ∈ F

m. Hence, x ∈ F
m

is a solution of Ax = b if and only if A(x− x̂) = 0, or, equivalently, x ∈ x̂+ N(A).
To prove iv), note that, since rankA = n, it follows that rankA = rank

[
A b

]
,

and thus either ii) or iii) applies.

The set of solutions x ∈ Fm to Ax = b is explicitly characterized by Proposi-
tion 6.1.7.

Let A ∈ F
n×m. Proposition 2.6.2 considers the uniqueness of left and right

inverses of A, but does not consider the case in which a matrix is both a left inverse
and a right inverse of A. Consequently, we say that A is nonsingular if there exists
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a matrix B ∈ Fm×n, the inverse of A, such that BA = Im and AB = In, that is, B
is both a left and right inverse of A.

Proposition 2.6.5. Let A ∈ Fn×m. Then, the following statements are equiv-
alent:

i) A is nonsingular

ii) rankA = n = m.

In this case, A has a unique inverse.

Proof. If A is nonsingular, then, since B is both left and right invertible, it
follows from Theorem 2.6.1 that rankA = m and rankA = n. Hence, ii) holds.
Conversely, it follows from Theorem 2.6.1 that A has both a left inverse B and
a right inverse C. Then, B = BIn = BAC = InC = C. Hence, B is also a right
inverse of A. Thus, A is nonsingular. In fact, the same argument shows that A has
a unique inverse.

The following result can be viewed as a specialization of Theorem 1.2.2 to the
function f : F

n �→ F
n, where f(x) = Ax.

Corollary 2.6.6. Let A ∈ Fn×n. Then, the following statements are equiva-
lent:

i) A is nonsingular.

ii) A has a unique inverse.

iii) A is one-to-one.

iv) A is onto.

v) A is left invertible.

vi) A is right invertible.

vii) A has a unique left inverse.

viii) A has a unique right inverse.

ix) rankA = n.

x) def A = 0.

Let A ∈ F
n×n be nonsingular. Then, the inverse of A, denoted by A−1, is a

unique n× n matrix with entries in F. If A is not nonsingular, then A is singular.

The following result is a specialization of Theorem 2.6.4 to the case n = m.

Corollary 2.6.7. Let A ∈ Fn×n and b ∈ Fn. Then, the following statements
hold:

i) A is nonsingular if and only if there exists a unique vector x ∈ Fn satisfying
Ax = b. In this case, x = A−1b.

ii) A is singular and rankA = rank
[
A b

]
if and only if there exist infinitely
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many x ∈ Rn satisfying Ax = b. In this case, let x̂ ∈ Fm satisfy Ax̂ = b.
Then, the set of solutions of Ax = b is given by x̂+ N(A).

Proposition 2.6.8. Let A ∈ Fn×n. Then, the following statements are equiv-
alent:

i) A is nonsingular.

ii) A is nonsingular.

iii) AT is nonsingular.

iv) A∗ is nonsingular.

In this case,

(A)−1 = A−1, (2.6.5)(
AT
)−1

=
(
A−1
)T
, (2.6.6)

(A∗)−1 =
(
A−1
)∗
. (2.6.7)

Proof. Since AA−1 = I, it follows that
(
A−1
)∗
A∗ = I. Hence,

(
A−1
)∗ = (A∗)−1.

We thus use A−T to denote
(
AT
)−1 or

(
A−1
)T and A−∗ to denote (A∗)−1 or(

A−1
)∗
.

Proposition 2.6.9. Let A,B ∈ Fn×n be nonsingular. Then,

(AB)−1 = B−1A−1, (2.6.8)

(AB)−T = A−TB−T, (2.6.9)

(AB)−∗ = A−∗B−∗. (2.6.10)

Proof. Note that ABB−1A−1 = AIA−1 = I, which shows that B−1A−1 is the
inverse of AB. Similarly, (AB)∗A−∗B−∗ = B∗A∗A−∗B−∗ = B∗IB−∗ = I, which shows
that A−∗B−∗ is the inverse of (AB)∗.

For a nonsingular matrix A ∈ Fn×n and r ∈ Z we write

A−r �= (Ar)−1 =
(
A−1
)r
, (2.6.11)

A−rT �= (Ar)−T =
(
A−T
)r

= (A−r)T =
(
AT
)−r

, (2.6.12)

A−r∗ �= (Ar)−∗ = (A−∗)r = (A−r)∗ = (A∗)−r. (2.6.13)

For example, A−2∗ = (A−∗)2.

2.7 The Determinant

One of the most useful quantities associated with a square matrix is its deter-
minant. In this section we develop some basic results pertaining to the determinant
of a matrix.
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The determinant of A ∈ Fn×n is defined by

detA �=
∑
σ

(−1)Nσ

n∏
i=1

A(i,σ(i)), (2.7.1)

where the sum is taken over all n! permutations σ = (σ(1), . . . , σ(n)) of the column
indices 1, . . . , n, and where Nσ is the minimal number of pairwise transpositions
needed to transform σ(1), . . . , σ(n) to 1, . . . , n. The following result is an immediate
consequence of this definition.

Proposition 2.7.1. Let A ∈ F
n×n. Then,

detAT = detA, (2.7.2)

detA = detA, (2.7.3)

detA∗ = detA, (2.7.4)

and, for all α ∈ F,
detαA = αndetA. (2.7.5)

If, in addition, B ∈ Fm×n and C ∈ Fm×m, then

det
[
A 0
B C

]
= (detA)(detC). (2.7.6)

The following observations are immediate consequences of the definition of
the determinant.

Proposition 2.7.2. Let A,B ∈ Fn×n. Then, the following statements hold:

i) If every off-diagonal entry of A is zero, then

detA =
n∏
i=1

A(i,i). (2.7.7)

In particular, det In = 1.

ii) If A has a row or column consisting entirely of 0’s, then detA = 0.

iii) If A has two identical rows or two identical columns, then detA = 0.

iv) If x ∈ Fn and i ∈ {1, . . . , n}, then

det
(
A+ xeTi

)
= detA+ det

(
A

i← x
)
. (2.7.8)

v) If x ∈ F1×n and i ∈ {1, . . . , n}, then

det(A+ eix) = detA+ det
(
A

i← x
)
. (2.7.9)

vi) If B is identical to A except that, for some i ∈ {1, . . . , n} and α ∈ F, either
coli(B) = αcoli(A) or rowi(B) = αrowi(A), then detB = αdetA.

vii) If B is formed from A by interchanging two rows or two columns of A, then
detB = −detA.
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viii) If B is formed from A by adding a multiple of a (row, column) of A to
another (row, column) of A, then detB = detA.

Statements vi)–viii) correspond, respectively, to multiplying the matrix A on
the left or right by matrices of the form

In + (α−1)Ei,i =

⎡
⎣ Ii−1 0 0

0 α 0
0 0 In−i

⎤
⎦, (2.7.10)

In + Ei,j + Ej,i − Ei,i − Ej,j =

⎡
⎢⎢⎢⎢⎣
Ii−1 0 0 0 0
0 0 0 1 0
0 0 Ij−i−1 0 0
0 1 0 0 0
0 0 0 0 In−j

⎤
⎥⎥⎥⎥⎦, (2.7.11)

where i �= j, and

In + βEi,j =

⎡
⎢⎢⎢⎢⎣
Ii−1 0 0 0 0
0 1 0 β 0
0 0 Ij−i−1 0 0
0 0 0 1 0
0 0 0 0 In−j

⎤
⎥⎥⎥⎥⎦, (2.7.12)

where β ∈ F and i �= j. The matrices in (2.7.11) and (2.7.12) illustrate the case i < j.
Since I+(α−1)Ei,i = I+(α−1)eieTi , I+Ei,j+Ej,i−Ei,i−Ej,j = I−(ei−ej)(ei−ej)T,
and I+βEi,j = I+βeieTj , it follows that all of these matrices are of the form I−xyT.
In terms of Definition 3.1.1, (2.7.10) is an elementary matrix if and only if α �= 0,
(2.7.11) is an elementary matrix, and (2.7.12) is an elementary matrix if and only
if either i �= j or β �= −1.

Proposition 2.7.3. Let A,B ∈ Fn×n. Then,

detAB = detBA = (detA)(detB). (2.7.13)

Proof. First note the identity[
A 0
I B

]
=
[
I A
0 I

][ −AB 0
0 I

][
I 0
B I

][
0 I
I 0

]
.

The first and third matrices on the right-hand side of this identity add multiples of
rows and columns of

[−AB 0
0 I

]
to other rows and columns of

[−AB 0
0 I

]
. As already

noted, these operations do not affect the determinant of
[−AB 0

0 I

]
. In addition,

the fourth matrix on the right-hand side of this identity interchanges n pairs of
columns of [ 0 A

B I ]. Using (2.7.5), (2.7.6), and the fact that every interchange of a
pair of columns of [ 0 A

B I ] entails a factor of −1, it thus follows that (detA)(detB) =
det [A 0

I B ] = (−1)ndet
[−AB 0

0 I

]
= (−1)ndet(−AB) = detAB.

Corollary 2.7.4. Let A ∈ Fn×n be nonsingular. Then, detA �= 0 and

detA−1 = (detA)−1. (2.7.14)
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Proof. Since AA−1 = In, it follows that detAA−1 = (detA)
(
detA−1

)
= 1.

Hence, detA �= 0. In addition, detA−1 = 1/detA.

Let A ∈ Fn×m. The determinant of a square submatrix of A is a subdetermi-
nant of A. By convention, the determinant of A is a subdeterminant of A. The
determinant of a j × j (principal, leading principal) submatrix of A is a j × j
(principal, leading principal) subdeterminant of A.

Let A ∈ Fn×n. Then, the cofactor of A(i,j), denoted by A[i;j], is the (n−1)×
(n −1) submatrix of A obtained by deleting the ith row and jth column of A. In
other words,

A[i;j]
�= A({i}∼,{j}∼). (2.7.15)

The following result provides a cofactor expansion of detA.

Proposition 2.7.5. Let A ∈ Fn×n. Then, for all i = 1, . . . , n,
n∑
k=1

(−1)i+kA(i,k)detA[i;k] = detA. (2.7.16)

Furthermore, for all i, j = 1, . . . , n such that j �= i,

n∑
k=1

(−1)i+kA(j,k)detA[i;k] = 0. (2.7.17)

Proof. Identity (2.7.16) is an equivalent recursive form of the definition detA,
while the right-hand side of (2.7.17) is equal to detB, where B is obtained from A
by replacing rowi(A) by rowj(A). As already noted, detB = 0.

Let A ∈ F
n×n, where n ≥ 2. To simplify (2.7.16) and (2.7.17) it is useful to

define the adjugate of A, denoted by AA ∈ Fn×n, where, for all i, j = 1, . . . , n,(
AA
)
(i,j)

�= (−1)i+jdetA[j;i] = det(A i← ej). (2.7.18)

Then, (2.7.16) implies that, for all i = 1, . . . , n,
n∑
k=1

A(i,k)(AA)(k,i) =
(
AAA

)
(i,i)

=
(
AAA
)
(i,i)

= detA, (2.7.19)

while (2.7.17) implies that, for all i, j = 1, . . . , n such that j �= i,

n∑
k=1

A(i,k)(AA)(k,j) =
(
AAA

)
(i,j)

=
(
AAA
)
(i,j)

= 0. (2.7.20)

Thus,
AAA = AAA = (detA)I. (2.7.21)

Consequently, if detA �= 0, then

A−1 = 1
detA

AA, (2.7.22)

whereas, if detA = 0, then
AAA = AAA = 0. (2.7.23)
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For a scalar A ∈ F, we define AA �= 1.

The following result provides the converse of Corollary 2.7.4 by using (2.7.22)
to construct A−1 in terms of (n−1)× (n−1) subdeterminants of A.

Corollary 2.7.6. Let A ∈ Fn×n. Then, A is nonsingular if and only if detA �=
0. In this case, for all i, j = 1, . . . , n, the (i, j) entry of A−1 is given by

(
A−1
)
(i,j)

= (−1)i+j
detA[j;i]

detA
. (2.7.24)

Finally, the following result uses the nonsingularity of submatrices to charac-
terize the rank of a matrix.

Proposition 2.7.7. Let A ∈ Fn×m. Then, rankA is the largest order of all
nonsingular submatrices of A.

2.8 Partitioned Matrices

Partitioned matrices were used to state or prove several results in this chap-
ter including Proposition 2.5.9, Theorem 2.6.4, Proposition 2.7.1, and Proposition
2.7.3. In this section we give several useful identities involving partitioned matrices.

Proposition 2.8.1. Let Aij ∈ Fni×mj for all i = 1, . . . , k and j = 1, . . . , l.
Then, ⎡

⎢⎣
A11 · · · A1l

... · · ·.. ...
Ak1 · · · Akl

⎤
⎥⎦

T

=

⎡
⎢⎣
AT

11 · · · AT
k1

... · · ·.. ...
AT

1l · · · AT
kl

⎤
⎥⎦ (2.8.1)

and ⎡
⎢⎣
A11 · · · A1l

... · · ·.. ...
Ak1 · · · Akl

⎤
⎥⎦
∗

=

⎡
⎢⎣
A∗

11 · · · A∗
k1

... · · ·.. ...
A∗

1l · · · A∗
kl

⎤
⎥⎦. (2.8.2)

If, in addition, k = l and ni = mi for all i = 1, . . . ,m, then

tr

⎡
⎢⎣
A11 · · · A1k

... · · ·.. ...
Ak1 · · · Akk

⎤
⎥⎦ =

k∑
i=1

trAii (2.8.3)

and

det

⎡
⎢⎢⎢⎣
A11 A12 · · · A1k

0 A22 · · · A2k

...
. . . . . .

...
0 0 · · · Akk

⎤
⎥⎥⎥⎦ =

k∏
i=1

detAii. (2.8.4)
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Lemma 2.8.2. Let B ∈ Fn×m and C ∈ Fm×n. Then,[
I B
0 I

]−1

=
[
I −B
0 I

]
(2.8.5)

and [
I 0
C I

]−1

=
[

I 0
−C I

]
. (2.8.6)

Let A ∈ Fn×n and D ∈ Fm×m be nonsingular. Then,[
A 0
0 D

]−1

=
[
A−1 0
0 D−1

]
. (2.8.7)

Proposition 2.8.3. Let A ∈ F
n×n, B ∈ F

n×m, C ∈ F
l×n, and D ∈ F

l×m, and
assume that A is nonsingular. Then,[

A B
C D

]
=
[

I 0
CA−1 I

][
A 0
0 D − CA−1B

][
I A−1B
0 I

]
(2.8.8)

and
rank

[
A B
C D

]
= n+ rank

(
D − CA−1B

)
. (2.8.9)

If, furthermore, l = m, then

det
[
A B
C D

]
= (detA)det

(
D − CA−1B

)
. (2.8.10)

Proposition 2.8.4. Let A ∈ Fn×m, B ∈ Fn×l, C ∈ Fl×m, and D ∈ Fl×l, and
assume that D is nonsingular. Then,[

A B
C D

]
=
[
I BD−1

0 I

][
A−BD−1C 0

0 D

][
I 0

D−1C I

]
(2.8.11)

and
rank

[
A B
C D

]
= l+ rank

(
A−BD−1C

)
. (2.8.12)

If, furthermore, n = m, then

det
[
A B
C D

]
= (detD)det

(
A−BD−1C

)
. (2.8.13)

Corollary 2.8.5. Let A ∈ Fn×m and B ∈ Fm×n. Then,[
In A
B Im

]
=
[
In 0
B Im

][
In 0
0 Im −BA

][
In A
0 Im

]

=
[
In A
0 Im

][
In −AB 0

0 Im

][
In 0
B Im

]
.

Hence,

rank
[
In A
B Im

]
= n+ rank(Im −BA) = m+ rank(In −AB)
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and

det
[
In A
B Im

]
= det(Im −BA) = det(In −AB). (2.8.14)

Hence, In +AB is nonsingular if and only if Im +BA is nonsingular.

Lemma 2.8.6. Let A ∈ Fn×n, B ∈ Fn×m, C ∈ Fm×n, and D ∈ Fm×m. If A
and D are nonsingular, then

(detA)det(D − CA−1B) = (detD)det
(
A−BD−1C

)
, (2.8.15)

and thus D − CA−1B is nonsingular if and only if A−BD−1C is nonsingular.

Proposition 2.8.7. Let A ∈ F
n×n, B ∈ F

n×m, C ∈ F
m×n, and D ∈ F

m×m. If
A and D − CA−1B are nonsingular, then[

A B
C D

]−1

=

⎡
⎣ A−1 +A−1B

(
D − CA−1B

)−1
CA−1 −A−1B

(
D − CA−1B

)−1

−(D − CA−1B
)−1
CA−1

(
D − CA−1B

)−1

⎤
⎦. (2.8.16)

If D and A−BD−1C are nonsingular, then[
A B
C D

]−1

=

⎡
⎣

(
A−BD−1C

)−1 −(A−BD−1C
)−1
BD−1

−D−1C
(
A−BD−1C

)−1
D−1 +D−1C

(
A−BD−1C

)−1
BD−1

⎤
⎦. (2.8.17)

If A, D, and D − CA−1B are nonsingular, then A−BD−1C is nonsingular, and[
A B
C D

]−1

=

⎡
⎣

(
A−BD−1C

)−1 −(A−BD−1C
)−1
BD−1

−(D − CA−1B
)−1
CA−1

(
D − CA−1B

)−1

⎤
⎦. (2.8.18)

The following result is the matrix inversion lemma.

Corollary 2.8.8. Let A ∈ Fn×n, B ∈ Fn×m, C ∈ Fm×n, and D ∈ Fm×m. If A,
D − CA−1B, and D are nonsingular, then A−BD−1C is nonsingular,(

A−BD−1C
)−1

= A−1 +A−1B
(
D − CA−1B

)−1
CA−1, (2.8.19)

and
C
(
A−BD−1C

)−1
A = D

(
D − CA−1B

)−1
C. (2.8.20)

If A and I − CA−1B are nonsingular, then A−BC is nonsingular, and

(A−BC)−1 = A−1 +A−1B
(
I − CA−1B

)−1
CA−1. (2.8.21)
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If D − CB, and D are nonsingular, then I −BD−1C is nonsingular, and(
I −BD−1C

)−1
= I +B(D − CB)−1C. (2.8.22)

If I − CB is nonsingular, then I −BC is nonsingular, and

(I −BC)−1 = I +B(I − CB)−1C. (2.8.23)

Corollary 2.8.9. Let A,B,C,D ∈ Fn×n. If A, B, C−DB−1A, and D−CA−1B
are nonsingular, then

[
A B
C D

]−1

=

⎡
⎣ A−1 − (C −DB−1A

)−1
CA−1

(
C −DB−1A

)−1

−(D − CA−1B
)−1
CA−1

(
D − CA−1B

)−1

⎤
⎦. (2.8.24)

If A, C, B −AC−1D, and D − CA−1B are nonsingular, then

[
A B
C D

]−1

=

⎡
⎣ A−1 −A−1B

(
B −AC−1D

)−1 −A−1B
(
D − CA−1B

)−1

(
B −AC−1D

)−1 (
D − CA−1B

)−1

⎤
⎦.

(2.8.25)

If A, B, C, B − AC−1D, and D − CA−1B are nonsingular, then C − DB−1A is
nonsingular, and

[
A B
C D

]−1

=

⎡
⎣ A−1 −A−1B

(
B −AC−1D

)−1 (
C −DB−1A

)−1

(
B −AC−1D

)−1 (
D − CA−1B

)−1

⎤
⎦. (2.8.26)

If B, D, A− BD−1C, and C −DB−1A are nonsingular, then

[
A B
C D

]−1

=

⎡
⎣

(
A−BD−1C

)−1 (
C −DB−1A

)−1

−D−1C
(
A−BD−1C

)−1
D−1 −D−1C

(
C −DB−1A

)−1

⎤
⎦.

(2.8.27)

If C, D, A−BD−1C, and B −AC−1D are nonsingular, then

[
A B
C D

]−1

=

⎡
⎣
(
A−BD−1C

)−1 −(A−BD−1C
)−1
BD−1

(
B −AC−1D

)−1
D−1 − (B −AC−1D

)−1
BD−1

⎤
⎦. (2.8.28)

If B, C, D, A − BD−1C, and C − DB−1A are nonsingular, then B − AC−1D is
nonsingular, and

[
A B
C D

]−1

=

⎡
⎣
(
A−BD−1C

)−1 (
C −DB−1A

)
(
B −AC−1D

)−1
D−1 −D−1C

(
C −DB−1A

)−1

⎤
⎦. (2.8.29)

Finally, if A, B, C, D, A−BD−1C, and B−AC−1D, are nonsingular, then C−DB−1A
and D − CA−1B are nonsingular, and

[
A B
C D

]−1

=

⎡
⎣
(
A−BD−1C

)−1 (
C −DB−1A

)−1

(
B −AC−1D

)−1 (
D − CA−1B

)−1

⎤
⎦. (2.8.30)
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Corollary 2.8.10. Let A,B ∈ Fn×n, and assume that A and I − A−1B are
nonsingular. Then, A−B is nonsingular, and

(A−B)−1 = A−1 +A−1B
(
I −A−1B

)−1
A−1. (2.8.31)

If, in addition, B is nonsingular, then

(A−B)−1 = A−1 +A−1
(
B−1 −A−1

)−1
A−1. (2.8.32)

2.9 Facts on Polars, Cones, Dual Cones, Convex Hulls, and
Subspaces

Fact 2.9.1. Let S ⊆ Fn, assume that S is convex, and let α ∈ [0, 1]. Then,

αS + (1− α)S = S.

Fact 2.9.2. Let S1, S2 ⊆ Fn, and assume that S1 and S2 are convex. Then,
S1 + S2 is convex.

Fact 2.9.3. Let S ⊆ Fn. Then, the following statements hold:

i) coco S = co coneS = cone co S.

ii) S⊥⊥ = spanS = coco(S ∪ −S).

iii) S ⊆ co S ⊆ (aff S ∩ coco S) ⊆
{

aff S
coco S

}
⊆ spanS.

iv) S ⊆ (co S ∩ coneS) ⊆
{

co S
cone S

}
⊆ coco S ⊆ span S.

v) dcone dconeS = cl coco S.

(Proof: For v), see [239, p. 54].) (Remark: See [176, p. 52]. Note that “pointed”
in [176] means one-sided.)

Fact 2.9.4. Let S, S1, S2 ⊆ Fn. Then, the following statements hold:

i) polarS is a closed, convex set containing the origin.

ii) polar Fn = {0}, and polar {0} = Fn.

iii) If α > 0, then polarαS = 1
α polarS.

iv) S ⊆ polar polarS.

v) If S is nonempty, then polar polar polarS = polarS.

vi) If S is nonempty, then polar polarS = cl co(S ∪ {0}).
vii) If 0 ∈ S and S is closed and convex, then polar polarS = S.

viii) If S1 ⊆ S2, then polarS2 ⊆ polarS1.

ix) polar(S1 ∪ S2) = (polarS1) ∩ (polarS2).

x) If S is a convex cone, then polarS = dconeS.

(Proof: See [153, pp. 143–147].)
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Fact 2.9.5. Let S1, S2 ⊆ Fn, and assume that S1 and S2 are cones. Then,

dcone(S1 + S2) = (dconeS1) ∩ (dconeS1).

If, in addition, S1 and S2 are closed and convex, then

dcone(S1 ∩ S2) = cl[(dcone S1) + (dconeS2)].

(Proof: See [239, pp. 58, 59] or [153, p. 147].)

Fact 2.9.6. Let S ⊂ Fn. Then, the following statements hold:

i) S is an affine hyperplane if and only if there exist a nonzero vector y ∈ Fn

and α ∈ R such that S = {x: Rex∗y = α}.
ii) S is an affine closed half space if and only if there exist a nonzero vector

y ∈ F
n and α ∈ R such that S = {x ∈ F

n: Rex∗y ≤ α}.
iii) S is an affine open half space if and only if there exist a nonzero vector

y ∈ Fn and α ∈ R such that S = {x ∈ Fn: Rex∗y ≤ α}.
(Proof: Let z ∈ Fn satisfy z∗y = α. Then, {x: x∗y = α} = {y}⊥ + z.)

Fact 2.9.7. Let x1, . . . , xk ∈ Fn. Then,

aff {x1, . . . , xk} = x1 + span {x2 − x1, . . . , xk − x1}.
(Remark: See Fact 10.8.12.)

Fact 2.9.8. Let S ⊆ Fn, and assume that S is an affine subspace. Then, S is
a subspace if and only if 0 ∈ S.

Fact 2.9.9. Let S1, S2 ⊆ Fn be (cones, convex sets, convex cones, subspaces).
Then, so are S1∩ S2 and S1 + S2.

Fact 2.9.10. Let S1, S2 ⊆ Fn be pointed convex cones. Then,

co(S1∪ S2) = S1 + S2.

Fact 2.9.11. Let S1, S2 ⊆ Fn be subspaces. Then, S1∪ S2 is a subspace if and
only if either S1⊆ S2 or S2 ⊆ S1.

Fact 2.9.12. Let S1, S2 ⊆ Fn. Then,

(spanS1) ∪ (span S2) ⊆ span(S1∪ S2)

and
span(S1∩ S2) ⊆ (spanS1) ∩ (span S2).

(Proof: See [1184, p. 11].)

Fact 2.9.13. Let S1, S2 ⊆ Fn be subspaces. Then,

span(S1∪ S2) = S1+ S2.

Therefore, S1+ S2 is the smallest subspace that contains S1∪ S2.
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Fact 2.9.14. Let S1, S2 ⊆ Fn be subspaces. Then, the following statements
are equivalent:

i) S1⊆ S2

ii) S⊥
2 ⊆ S⊥

1 .

iii) For all x ∈ S1 and y ∈ S⊥
2 , x

∗y = 0.

Furthermore, S1⊂ S2 if and only if S⊥
2 ⊂ S⊥

1 .

Fact 2.9.15. Let S1, S2 ⊆ Fn. Then,

S⊥
1 ∩ S⊥

2 ⊆ (S1 + S2)⊥.

(Problem: Determine necessary and sufficient conditions under which equality
holds.)

Fact 2.9.16. Let S1, S2 ⊆ Fn be subspaces. Then,

(S1∩ S2)⊥ = S⊥
1 + S⊥

2

and
(S1+ S2)⊥ = S⊥

1 ∩ S⊥
2 .

Fact 2.9.17. Let S1, S2, S3 ⊆ Fn be subspaces. Then,

S1+ (S2 ∩ S3) ⊆ (S1+ S2) ∩ (S1+ S3)

and
S1∩ (S2 + S3) ⊇ (S1∩ S2) + (S1∩ S3).

Fact 2.9.18. Let S1, S2 ⊆ Fn be subspaces. Then, S1, S2 are complementary
subspaces if and only if S⊥

1 , S
⊥
2 are complementary subspaces. (Remark: See Fact

3.12.1.)

Fact 2.9.19. Let S1, S2 ⊆ Fn be nonzero subspaces, and define θ ∈ [0, π/2] by

cos θ = max{|x∗y| : (x, y) ∈ S1 × S2 and x∗x = y∗y = 1}.
Then,

cos θ = max{|x∗y| : (x, y) ∈ S⊥
1 × S⊥

2 and x∗x = y∗y = 1}.
Furthermore, θ = 0 if and only if S1∩S2 = {0}, and θ = π/2 if and only if S1 = S⊥

2 .
(Remark: See [537, 744].) (Remark: θ is a principal angle. See Fact 5.9.29, Fact
5.11.39, and Fact 5.12.17.)

Fact 2.9.20. Let S1, S2 ⊆ Fn be subspaces, and assume that S1∩ S2 = {0}.
Then,

dim S1 + dim S2 ≤ n.
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Fact 2.9.21. Let S1, S2 ⊆ Fn be subspaces. Then,

dim(S1∩ S2) ≤ min{dim S1, dim S2}

≤
{

dim S1

dim S2

}
≤ max{dim S1, dim S2}
≤ dim(S1 + S2)
≤ min{dim S1 + dim S2, n}.

Fact 2.9.22. Let S1, S2, S3 ⊆ Fn be subspaces. Then,

dim(S1 + S2 + S3) + max{dim(S1∩ S2), dim(S1∩ S3), dim(S2 ∩ S3)}
≤ dim S1 + dim S2 + dim S3.

(Proof: See [392, p. 124].) (Remark: Setting S3 = {0} yields a weaker version of
Theorem 2.3.1.)

Fact 2.9.23. Let S1, . . . , Sk ⊆ Fn be subspaces having the same dimension.
Then, there exists a subspace Ŝ ⊆ Fn such that, for all i = 1, . . . , k, Ŝ and Si are
complementary. (Proof: See [629, pp. 78, 79, 259, 260].)

Fact 2.9.24. Let S ⊆ Fn be a subspace. Then, for all m ≥ dim S, there exists
a matrix A ∈ Fn×m such that S = R(A).

Fact 2.9.25. Let A ∈ Fn×n, let S ⊆ Fn, assume that S is a subspace, let
k �= dim S, let S ∈ Fn×k, and assume that R(S) = S. Then, S is an invariant
subspace of A if and only if there exists a matrix M ∈ Fk×k such that AS = SM.
(Proof: Set B = I in Fact 5.13.1. See [872, p. 99].)

Fact 2.9.26. Let S ⊆ Fm, and let A ∈ Fn×m. Then,

coneAS = Acone S,

coAS = Aco S,

spanAS = Aspan S,

aff AS = Aaff S.

Hence, if S is a (cone, convex set, subspace, affine subspace), then so is AS. Now,
assume that A is left invertible, and let AL ∈ Fm×n be a left inverse of A. Then,

cone S = ALconeAS,

co S = ALcoAS,

span S = ALspanAS,

aff S = ALaff AS.

Hence, if AS is a (cone, convex set, subspace, affine subspace), then so is S.
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Fact 2.9.27. Let S ⊆ Fn, and let A ∈ Fn×m. Then, the following statements
hold:

i) If A is right invertible and AR is a right inverse of A, then

(AS)⊥ ⊆ AR∗S⊥.

ii) If A is left invertible and AL is a left inverse of A, then

AS⊥ ⊆ (AL∗S)⊥.

iii) If n = m and A is nonsingular, then

(AS)⊥ = A−∗S⊥.

(Proof: The third statement is an immediate consequence of the first two state-
ments.)

Fact 2.9.28. Let A ∈ Fn×m, and let S1 ⊆ Rm and S2 ⊆ Fn be subspaces.
Then, the following statements are equivalent:

i) AS1 ⊆ S2.

ii) A∗S⊥
2 ⊆ S⊥

1 .

(Proof: See [311, p. 12].)

Fact 2.9.29. Let S1, S2 ⊆ Fm be subspaces, and let A ∈ Fn×m. Then, the
following statements hold:

i) A(S1∪ S2) = AS1∪AS2.

ii) A(S1∩ S2) ⊆ AS1∩AS2.

iii) A(S1+ S2) = AS1+AS2.

If, in addition, A is left invertible, then the following statement holds:

iv) A(S1∩ S2) = AS1∩AS2.

(Proof: See Fact 1.5.11, Fact 1.5.14, and [311, p. 12].)

Fact 2.9.30. Let S, S1, S2 ⊆ F
n be subspaces, let A ∈ F

n×m, and define
f : F

m �→ F
n by f(x) �= Ax. Then, the following statements hold:

i) f [f−1(S)] ⊆ S ⊆ f−1[f(S)].

ii) [f−1(S)]⊥ = A∗S⊥.

iii) f−1(S1∪ S2) = f−1(S1) ∪ f−1(S2).

iv) f−1(S1∩ S2) = f−1(S1) ∩ f−1(S2).

v) f−1(S1+ S2) ⊇ f−1(S1) + f−1(S2).

(Proof: See Fact 1.5.12 and [311, p. 12].) (Problem: For a subspace S ⊆ Fn,

A ∈ Fn×m, and f(x) �= Ax, determine B ∈ Fm×n such that f−1(S) = BS, that is,
ABS ⊆ S and BS is maximal.)
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Fact 2.9.31. Define the convex pointed cone S ⊂ R2 by

S
�= {(x1, x2) ∈ [0,∞)× R : if x1 = 0, then x2 ≥ 0},

that is,
S = ([0,∞)× R)\[{0} × (−∞, 0)].

Furthermore, for x, y ∈ R
2, define x

d≤ y if and only if y − x ∈ S. Then, “
d≤” is

a total ordering on R2. (Remark: “
d≤” is the lexicographic or dictionary ordering.

See Fact 1.5.8.) (Remark: See [153, p. 161].)

2.10 Facts on Range, Null Space, Rank, and Defect

Fact 2.10.1. Let A ∈ Fn×n. Then,

N(A) ⊆ R(I −A)

and
N(I −A) ⊆ R(A).

(Remark: See Fact 3.12.3.)

Fact 2.10.2. Let A ∈ Fn×m. Then, the following statements hold:

i) If B ∈ Fm×l and rankB = m, then R(A) = R(AB).

ii) If C ∈ Fk×n and rankC = n, then N(A) = N(CA).

iii) If S ∈ Fm×m and S is nonsingular, then N(A) = SN(AS).

(Remark: See Lemma 2.4.1.)

Fact 2.10.3. Let A ∈ Fn×m and B ∈ Fm×l. Then, the following statements
hold:

i) If A and B are right invertible, then so is AB.

ii) If A and B are left invertible, then so is AB.

iii) If n = m = l and A and B are nonsingular, then so is AB.

(Proof: The result follows from either Corollary 2.5.10 or Proposition 2.6.3.) (Re-
mark: See Fact 1.5.16.)

Fact 2.10.4. Let S ⊆ Fm, assume that S is an affine subspace, and let A ∈
Fn×m. Then, the following statements hold:

i) rankA+ dim S−m ≤ dimAS ≤ min{rankA, dim S}.
ii) dim(AS) + dim[N(A) ∩ S] = dim S.

iii) dimAS ≤ dim S.

iv) If A is left invertible, then dimAS = dim S.

(Proof: For ii), see [1129, p. 413]. For iii), note that dimAS ≤ dim S = dimALAS ≤
dimAS.) (Remark: See Fact 2.9.26 and Fact 10.8.17.)
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Fact 2.10.5. Let A ∈ Fn×m and B ∈ F1×m. Then, N(A) ⊆ N(B) if and only
if there exists a vector λ ∈ Fn such that B = λ∗A.

Fact 2.10.6. Let A ∈ Fn×m and b ∈ Fn. Then, there exists a vector x ∈ Fn

satisfying Ax = b if and only if b∗λ = 0 for all λ ∈ N(A∗). (Proof: Assume that
A∗λ = 0 implies that b∗λ = 0. Then, N(A∗) ⊆ N(b∗). Hence, b ∈ R(b) ⊆ R(A).)

Fact 2.10.7. Let A ∈ Fn×m and B ∈ Fl×m. Then, N(B) ⊆ N(A) if and only
if there exists a matrix C ∈ Fn×l such that A = CB. Now, let A ∈ Fn×m and
B ∈ Fn×l. Then, R(A) ⊆ R(B) if and only if there exists a matrix C ∈ Fl×m such
that A = BC.

Fact 2.10.8. Let A,B ∈ Fn×m, and let C ∈ Fm×l be right invertible. Then,
R(A) ⊆ R(B) if and only if R(AC) ⊆ R(BC). Furthermore, R(A) = R(B) if
and only if R(AC) = R(BC). (Proof: Since C is right invertible, it follows that
R(A) = R(AC).

Fact 2.10.9. Let A,B ∈ Fn×n, and assume there exists α ∈ F such that
αA+ B is nonsingular. Then, N(A) ∩ N(B) = {0}. (Remark: The converse is not
true. Let A �= [ 1 0

2 0 ] and B �= [ 0 1
0 2 ].)

Fact 2.10.10. Let A,B ∈ F
n×m, and let α ∈ F be nonzero. Then,

N(A) ∩N(B) = N(A) ∩N(A+ αB) = N(αA+B) ∩N(B).

(Remark: See Fact 2.11.3.)

Fact 2.10.11. Let x ∈ Fn and y ∈ Fm. If either x = 0 or y �= 0, then

R(xyT) = R(x) = span {x}.
Furthermore, if either x �= 0 or y = 0, then

N(xyT) = N(yT) = {y}⊥.

Fact 2.10.12. Let A ∈ Fn×m and B ∈ Fm×l. Then, rankAB = rankA if and
only if R(AB) = R(A). (Proof: If R(AB) ⊂ R(A) (note proper inclusion), then
Lemma 2.3.4 implies that rankAB < rankA.)

Fact 2.10.13. Let A ∈ Fn×m, B ∈ Fm×l, and C ∈ Fl×k. If rankAB =
rankB, then rankABC = rankBC. (Proof: rankBTAT = rankBT implies that
R
(
CTBTAT

)
= R
(
CTBT

)
.)

Fact 2.10.14. Let A ∈ Fn×m and B ∈ Fm×l. Then, the following statements
hold:

i) rankAB + def A = dim[N(A) + R(B)].

ii) rankAB + dim[N(A) ∩ R(B)] = rankB.

iii) rankAB + dim[N(A∗) ∩ R(B∗)] = rankA.

iv) def AB + rankA+ dim[N(A) + R(B)] = l +m.



BASIC MATRIX PROPERTIES 117

v) def AB = def B + dim[N(A) ∩R(B)].

vi) def AB +m = def A+ dim[N(A∗) ∩R(B∗)] + l.

(Remark: rankB− rankAB = dim[N(A)∩R(B)] ≤ dimN(A) = m− rankA yields
(2.5.18).)

Fact 2.10.15. Let A ∈ Fn×m and B ∈ Fm×l. Then,

max{def A+ l −m, def B} ≤ def AB ≤ def A+ def B.

If, in addition, m = l, then

max{def A, def B} ≤ def AB.

(Remark: The first inequality is Sylvester’s law of nullity.)

Fact 2.10.16. Let A ∈ Fn×m and B ∈ Fn×p. Then, there exists a matrix
X ∈ Fm×p satisfying AX = B and rankX = q if and only if

rankB ≤ q ≤ min{m+ rankB − rankA, p}.
(Proof: See [1353].)

Fact 2.10.17. The following statements hold:

i) rankA ≥ 0 for all A ∈ Fn×m.

ii) rankA = 0 if and only if A = 0.

iii) rankαA = (sign |α|) rankA for all α ∈ F and A ∈ Fn×m.

iv) rank(A+B) ≤ rankA+ rankB for all A,B ∈ Fn×m.

(Remark: Compare these conditions to the properties of a matrix norm given by
Definition 9.2.1.)

Fact 2.10.18. Let n,m, k ∈ P. Then, rank 1n×m = 1 and 1kn×n = nk−11n×n.

Fact 2.10.19. Let A ∈ Fn×m. Then, rankA = 1 if and only if there exist
vectors x ∈ Fn and y ∈ Fm such that x �= 0, y �= 0, and A = xyT. In this case,
trA = yTx. (Remark: See Fact 5.14.1.)

Fact 2.10.20. Let A ∈ Fn×n, k ≥ 1, and l ∈ N. Then, the following identities
hold:

i) R
[
(AA∗)k

]
= R
[
(AA∗)lA

]
.

ii) N
[
(A∗A)k

]
= N
[
A(A∗A)l

]
.

iii) rank (AA∗)k = rank (AA∗)lA.

iv) def (A∗A)k = def A(A∗A)l.

Fact 2.10.21. Let A ∈ Fn×m, and let B ∈ Fm×p. Then,

rankAB = rankA∗AB = rankABB∗.
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(Proof: See [1184, p. 37].)

Fact 2.10.22. Let A ∈ Fn×n. Then,

2rankA2 ≤ rankA+ rankA3.

(Proof: See [392, p. 126] and consider a Jordan block of A.)

Fact 2.10.23. Let A ∈ Fn×n. Then,

rankA+ rank(A−A3) = rank(A+A2) + rank(A−A2).

Consequently, rankA ≤ rank(A+A2) + rank(A−A2),

and A is tripotent if and only if

rankA = rank(A+A2) + rank(A−A2).

(Proof: See [1308].) (Remark: This result is due to Anderson and Styan.)

Fact 2.10.24. Let x, y ∈ F
n. Then,

R
(
xyT+ yxT

)
= R(

[
x y

]
),

N
(
xyT+ yxT

)
= {x}⊥ ∩ {y}⊥,

rank
(
xyT+ yxT

) ≤ 2.

Furthermore, rank
(
xyT+ yxT

)
= 1 if and only if there exists α ∈ F such that

x = αy �= 0. (Remark: xyT+ yxT is a doublet. See [374, pp. 539, 540].)

Fact 2.10.25. Let A ∈ Fn×m, x ∈ Fn, and y ∈ Fm. Then,

(rankA)−1 ≤ rank(A+ xy∗) ≤ (rankA) + 1.

(Remark: See Fact 6.4.2.)

Fact 2.10.26. Let A �= [ 1 0
0 0 ] and B �= [ 0 1

0 0 ]. Then, rankAB = 1 and rankBA
= 0. (Remark: See Fact 3.7.30.)

Fact 2.10.27. Let A,B ∈ Fn×m. Then,

|rankA− rankB| ≤
{

rank(A+B)
rank(A−B)

}
≤ rankA+ rankB.

If, in addition, rankB ≤ k, then

(rankA)− k ≤
{

rank(A+B)
rank(A−B)

}
≤ (rankA) + k.

Fact 2.10.28. Let A,B ∈ Fn×m. Then, the following statements are equiva-
lent:

i) rank(A+B) = rankA+ rankB.

ii) R(A) ∩R(B) = {0} and R(AT) ∩ R(BT) = {0}.
(Proof: See [281].) (Remark: See Fact 2.10.29.)
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Fact 2.10.29. Let A,B ∈ Fn×m, and assume that A∗B = 0 and BA∗ = 0.
Then,

rank(A+B) = rankA+ rankB.

(Proof: Use Fact 2.11.4 and Proposition 6.1.6. See [339].) (Remark: See Fact
2.10.28.)

Fact 2.10.30. Let A,B ∈ Fn×m. Then, the following statements are equiva-
lent:

i) rank(B −A) = rankB − rankA.

ii) There exists M ∈ Fm×n such that A = BMB and M = MBM.

iii) There exists M ∈ Fm×n such that B = BMB, MA = 0, and AM = 0.

iv) There exists M ∈ Fm×n such that A = AMA, MB = 0, and BM = 0.

(Proof: See [339].)

Fact 2.10.31. Let A,B,C ∈ Fn×m, and assume that

rank(B −A) = rankB − rankA

and
rank(C −B) = rankC − rankB.

Then,
rank(C −A) = rankC − rankA.

(Proof: rank(C − A) ≤ rank(C − B) + rank(B − A) = rankC − rankA. Further-
more, rankC ≤ rank(C − A) + rankA, and thus rank(C − A) ≥ rankC − rankA.
Alternatively, use Fact 2.10.30.) (Remark: This result is due to [647].)

Fact 2.10.32. Let A,B ∈ Fn×m, and define

A
rs≤ B

if and only if
rank(B −A) = rankB − rankA.

Then, “
rs≤” is a partial ordering on Fn×m. (Proof: Use Fact 2.10.31.) (Remark: The

relation “
rs≤” is the rank subtractivity partial ordering.) (Remark: See Fact 8.19.5.)

Fact 2.10.33. Let A,B ∈ Fn×m, and assume that the following conditions
hold:

i) A∗A = A∗B.

ii) AA∗ = BA∗.

iii) B∗B = B∗A.

iv) BB∗ = AB∗.

Then, A = B. (Proof: See [652].)
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Fact 2.10.34. Let A,B,C ∈ Fn×m, and assume that the following conditions
hold:

i) A∗A = A∗B.

ii) AA∗ = BA∗.

iii) B∗B = B∗C.

iv) BB∗ = CB∗.

Then, the following conditions hold:

v) A∗A = A∗C.

vi) AA∗ = CA∗.

(Proof: See [652].)

Fact 2.10.35. Let A,B ∈ Fn×m. Then,

A
∗≤ B

if and only if
A∗A = A∗B

and
AA∗ = BA∗.

Then, “
∗≤” is a partial ordering on F

n×m. (Proof: Use Fact 2.10.33 and Fact 2.10.34.)

(Remark: The relation “
∗≤” is the star partial ordering. See [111, 652].) (Remark:

See Fact 8.19.7.)

Fact 2.10.36. Let A,B ∈ Fn×n, and assume that A
∗≤ B and AB = BA.

Then, A2
∗≤ B2. (Proof: See [106].) (Remark: See Fact 8.19.5.)

2.11 Facts on the Range, Rank, Null Space, and Defect of
Partitioned Matrices

Fact 2.11.1. Let A ∈ F
n×m and B ∈ F

n×l. Then,

R
([

A B
])

= R(A) + R(B).

Consequently,
rank

[
A B

]
= dim[R(A) + R(B)].

Furthermore, the followings statements are equivalent:

i) rank
[
A B

]
= n.

ii) def
[
A∗

B∗

]
= 0.

iii) N(A∗) ∩N(B∗) = {0}.
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Fact 2.11.2. Let A ∈ Fn×m and B ∈ Fl×m. Then,

rank
[
A
B

]
= dim

[
R
(
A∗)+ R

(
B∗)].

(Proof: Use Fact 2.11.1.)

Fact 2.11.3. Let A ∈ F
n×m and B ∈ F

l×m. Then,

N

([
A
B

])
= N(A) ∩N(B).

Consequently,

def
[
A
B

]
= dim[N(A) ∩N(B)].

Furthermore, the followings statements are equivalent:

i) rank
[
A
B

]
= m.

ii) def
[
A
B

]
= 0.

iii) N(A) ∩N(B) = {0}.
(Remark: See Fact 2.10.10.)

Fact 2.11.4. Let A,B ∈ Fn×m. Then, the following statements are equivalent:

i) rank(A+B) = rankA+ rankB.

ii) rank
[
A B

]
= rank

[
A
B

]
= rankA+ rankB.

iii) dim[R(A) ∩ R(B)] = dim[R(A∗) ∩R(B∗)] = 0.

iv) R(A) ∩ R(B) = R(A∗) ∩R(B∗) = {0}.
v) There exists a matrix C ∈ Fm×n such that ACA = A, CB = 0, and

BC = 0.

(Proof: See [339, 968].) (Remark: Additional conditions are given by Fact 6.4.32
under the assumption that A+B is nonsingular.)

Fact 2.11.5. Let A ∈ Fn×m and B ∈ Fn×l. Then,

R(A) = R(B)

if and only if
rankA = rankB = rank

[
A B

]
.

Fact 2.11.6. Let A ∈ Fn×m, and let A0 ∈ Fk×l be a submatrix of A. Then,

rankA0 ≤ rankA.

Fact 2.11.7. Let A ∈ Fn×m, B ∈ Fk×m, C ∈ Fm×l, and D ∈ Fm×p, and
assume that

rank
[
A
B

]
= rankA
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and
rank

[
C D

]
= rankC.

Then,

rank
[
A
B

][
C D

]
= rankAC.

(Proof: Use i) of Fact 2.10.14.)

Fact 2.11.8. Let A ∈ Fn×m and B ∈ Fn×l. Then,

max{rankA, rankB} ≤ rank
[
A B

]
= rankA+ rankB − dim[R(A) ∩ R(B)]

≤ rankA+ rankB

and
def A+ def B ≤ def

[
A B

]
= def A+ def B + dim[R(A) ∩R(B)]

≤ min{l + def A,m+ def B}.
If, in addition, A∗B = 0, then

rank
[
A B

]
= rankA+ rankB

and
def
[
A B

]
= def A+ def B.

(Proof: To prove the first equality, use Theorem 2.3.1 and Fact 2.11.1. For the case
A∗B = 0, note that

rank
[
A B

]
= rank

[
A∗

B∗

][
A B

]
=
[
A∗A 0
0 B∗B

]
= rankA∗A+ rankB∗B = rankA+ rankB.)

(Remark: See Fact 6.5.6 and Fact 6.4.44.)

Fact 2.11.9. Let A ∈ Fn×m and B ∈ Fn×l. Then,

rank
[
A B

]
+ dim[R(A) ∩ R(B)] = rankA+ rankB.

(Proof: Use Theorem 2.3.1 and Fact 2.11.1.)

Fact 2.11.10. Let A ∈ F
n×m and B ∈ F

l×m. Then,

rank
[
A
B

]
+ dim[R(A∗) ∩ R(B∗)] = rankA+ rankB.

(Proof: Use Fact 2.11.9.)



BASIC MATRIX PROPERTIES 123

Fact 2.11.11. Let A ∈ Fn×m and B ∈ Fl×m. Then,

max{rankA, rankB} ≤ rank
[
A
B

]
= rankA+ rankB − dim[R(A∗) ∩R(B∗)]
≤ rankA+ rankB

and
def A− rankB ≤ def A− rankB + dim[R(A∗) ∩R(B∗)]

= def
[
A
B

]
≤ min{def A, def B}.

If, in addition, AB∗ = 0, then

rank
[
A
B

]
= rankA+ rankB

and
def
[
A
B

]
= def A− rankB.

(Proof: Use Fact 2.11.8 and Fact 2.9.21.) (Remark: See Fact 6.5.6.)

Fact 2.11.12. Let A,B ∈ Fn×m. Then,

max{rankA, rankB}

rank(A+B)

⎫⎬
⎭ ≤

⎧⎪⎪⎨
⎪⎪⎩

rank
[
A B

]

rank
[
A
B

]
⎫⎪⎪⎬
⎪⎪⎭ ≤ rankA+ rankB

and

def A− rankB ≤

⎧⎪⎪⎨
⎪⎪⎩

def
[
A B

]−m
def
[
A
B

]
⎫⎪⎪⎬
⎪⎪⎭ ≤

{
min{def A, def B}

def(A+B).

(Proof: rank(A + B) = rank
[
A B

]
[ II ] ≤ rank

[
A B

]
, and rank(A + B) =

rank
[
I I

]
[ AB ] ≤ rank [AB ].)

Fact 2.11.13. Let A ∈ Fn×m, B ∈ Fl×k, and C ∈ Fl×m. Then,

rankA+ rankB = rank
[
A 0
0 B

]
≤ rank

[
A 0
C B

]
and

rankA+ rankB = rank
[

0 A
B 0

]
≤ rank

[
0 A
B C

]
.

Fact 2.11.14. Let A ∈ Fn×m, B ∈ Fm×l, and C ∈ Fl×k. Then,

rankAB + rankBC ≤ rank
[

0 AB
BC B

]
= rankB + rankABC.
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Consequently,
rankAB + rankBC − rankB ≤ rankABC.

Furthermore, the following statements are equivalent:

i) rank
[

0 AB
BC B

]
= rankAB + rankBC.

ii) rankAB + rankBC − rankB = rankABC.

iii) There exist X ∈ Fk×l and Y ∈ Fm×n such that

BCX + YAB = B.

(Remark: This result is the Frobenius inequality.) (Proof: Use Fact 2.11.13 and
[ 0 AB
BC B ] = [ I A0 I ]

[−ABC 0
0 B

]
[ I 0
C I ]. The last statement follows from Fact 5.10.21. See

[1307, 1308].) (Remark: See Fact 6.5.15 for the case of equality.)

Fact 2.11.15. Let A,B ∈ Fn×m. Then,

rank
[
A B

]
+ rank

[
A
B

]
≤ rank

⎡
⎣ 0 A B
A A 0
B 0 B

⎤
⎦

= rankA+ rankB + rank(A+B).

(Proof: Use the Frobenius inequality with A �= CT �=
[
I I

]
and with B replaced

by [A 0
0 B ].)

Fact 2.11.16. Let A ∈ Fn×m, B ∈ Fn×l, and C ∈ Fn×k. Then,

rank
[
A B C

] ≤ rank
[
A B

]
+ rank

[
B C

]− rankB

≤ rank
[
A B

]
+ rankC

≤ rankA+ rankB + rankC.

(Proof: See [937].)

Fact 2.11.17. Let A ∈ Fn×m and B ∈ Fk×l, and assume that B is a submatrix
of A. Then,

k + l− rankB ≤ n+m− rankA.

(Proof: See [134].)

Fact 2.11.18. Let A ∈ Fn×m and B ∈ Fm×n. Then,[
In In −AB
B 0

]
=
[
In A
0 Im

][
0 In −AB
B 0

][
In 0
In In

]

=
[
In 0
B Im

][
In 0
0 BAB −B

][
In In −AB
0 Im

]
.

Hence,

rank
[
In In − AB
B 0

]
= rankB + rank(In −AB) = n+ rank(BAB −B).

(Remark: See Fact 2.14.7.)
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Fact 2.11.19. Let A ∈ Fn×m and B ∈ Fm×n. Then,[
A AB
BA B

]
=
[
In 0
B Im

][
A 0
0 B −BAB

][
Im B
0 In

]

=
[
In A
0 Im

][
A−ABA 0

0 B

][
Im 0
A In

]
.

Hence,

rank
[

A AB
BA B

]
= rankA+ rank(B −BAB) = rankB + rank(A−ABA).

(Remark: See Fact 2.14.10.)

Fact 2.11.20. Let [A B
C D ] ∈ F(n1+n2)×(m1+m2), assume that [A B

C D ] is nonsingu-
lar, and define [E F

G H ] ∈ F(m1+m2)×(n1+n2) by[
E F
G H

]
�=
[
A B
C D

]−1

.

Then,
def A = def H,
def B = def F,
def C = def G,
defD = def E.

More generally, if U and V are complementary submatrices of a matrix and its
inverse, then def U = def V. (Proof: See [1242, 1364] and [1365, p. 38].) (Remark:
U and V are complementary submatrices if the row numbers not used to create U
are the column numbers used to create V, and the column numbers not used to
create U are the row numbers used to create V.) (Remark: Note the sizes of the
matrix blocks, which differs from Fact 2.14.28.) (Remark: This result is the nullity
theorem. A history of this result is given in [1242]. See Fact 3.20.5.)

Fact 2.11.21. Let A ∈ Fn×n, assume that A is nonsingular, and let S1, S2 ⊆
{1, . . . , n}. Then,

rank (A−1)(S1,S2) = rankA(S∼
2 ,S

∼
1 ) + card(S1) + card(S2)− n.

(Proof: See [1365, p. 40].) (Remark: See Fact 2.11.22 and Fact 2.13.5.)

Fact 2.11.22. Let A ∈ Fn×n, assume that A is nonsingular, and let S ⊆
{1, . . . , n}. Then,

rank (A−1)(S,S∼) = rankA(S,S∼).

(Proof: Apply Fact 2.11.21 with S2 = S∼
1 .)
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2.12 Facts on the Inner Product, Outer Product, Trace, and
Matrix Powers

Fact 2.12.1. Let x, y, z ∈ Fn, and assume that x∗x = y∗y = z∗z = 1. Then,√
1− |x∗y|2 ≤

√
1− |x∗z|2 +

√
1− |z∗y|2.

Equality holds if and only if there exists α ∈ F such that either z = αx or z = αy.
(Proof: See [1490, p. 155].) (Remark: See Fact 3.11.32.)

Fact 2.12.2. Let x, y ∈ Fn. Then, x∗x = y∗y and Imx∗y = 0 if and only if
x− y is orthogonal to x+ y.

Fact 2.12.3. Let x, y ∈ R
n. Then, xxT = yyT if and only if either x = y or

x = −y.

Fact 2.12.4. Let x, y ∈ Rn. Then, xyT = yxT if and only if x and y are linearly
dependent.

Fact 2.12.5. Let x, y ∈ Rn. Then, xyT = −yxT if and only if either x = 0 or
y = 0. (Proof: If x(i) �= 0 and y(j) �= 0, then x(j) = y(i) = 0 and 0 �= x(i)y(j) �=
x(j)y(i) = 0.)

Fact 2.12.6. Let x, y ∈ Rn. Then, yxT + xyT = yTyxxT if and only if either
x = 0 or y = 1

2y
Tyx.

Fact 2.12.7. Let x, y ∈ Fn. Then,

(xy∗)r = (y∗x)r−1xy∗.

Fact 2.12.8. Let x1, . . . , xk ∈ Fn, and let y1, . . . , yk ∈ Fm. Then, the following
statements are equivalent:

i) x1, . . . , xk are linearly independent, and y1, . . . , yk are linearly independent.

ii) R
(∑k

i=1 xiy
T
i

)
= k.

(Proof: See [374, p. 537].)

Fact 2.12.9. Let A,B,C ∈ R2×2. Then,

tr(ABC +ACB) + (trA)(trB)trC

= (trA)trBC + (trB)trAC + (trC)trAB.

(Proof: See [269, p. 330].) (Remark: See Fact 4.9.3.)

Fact 2.12.10. Let A ∈ Fn×m and B ∈ Fl×k. Then,

AEi,j,m×lB = coli(A)rowj(B).
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Fact 2.12.11. Let A ∈ Fn×m, B ∈ Fm×l, and C ∈ Fl×n. Then,

trABC =
n∑
i=1

rowi(A)Bcoli(C).

Fact 2.12.12. Let A ∈ Fn×m. Then, the following statements are equivalent:

i) A = 0.

ii) Ax = 0 for all x ∈ Fm.

iii) trAA∗ = 0.

Fact 2.12.13. Let A ∈ Fn×n and k ≥ 1. Then,

Re trA2k ≤ trAkAk∗ ≤ tr (AA∗)k.

(Remark: To prove the left-hand inequality, consider tr (Ak −Ak∗)(Ak∗ −Ak). For
the right-hand inequality when k = 2, consider tr (AA∗ −A∗A)2.)

Fact 2.12.14. Let A ∈ Fn×n. Then, trAk = 0 for all k = 1, . . . , n if and only
if An = 0. (Proof: For sufficiency, Fact 4.10.6 implies that spec(A) = {0}, and thus
the Jordan form of A is a block-diagonal matrix each of whose diagonally located
blocks is a standard nilpotent matrix. For necessity, see [1490, p. 112].)

Fact 2.12.15. Let A ∈ F
n×n, and assume that trA = 0. If A2 = A, then

A = 0. If Ak = A, where k ≥ 4 and 2 ≤ n < p, where p is the smallest prime
divisor of k −1, then A = 0. (Proof: See [344].)

Fact 2.12.16. Let A,B ∈ Fn×n. Then,

Re trAB ≤ 1
2 tr(AA∗ +BB∗).

(Proof: See [729].) (Remark: See Fact 8.12.18.)

Fact 2.12.17. Let A,B ∈ Fn×n, and assume that AB = 0. Then, for all
k ≥ 1,

tr (A+B)k = trAk + trBk.

Fact 2.12.18. Let A ∈ Rn×n, let x, y ∈ Rn, and let k ≥ 1. Then,(
A+ xyT

)k
= Ak +BÎkC

T,

where
B

�=
[
x Ax · · · Ak−1x

]
and

C �=
[
y (AT + yxT)y · · · (AT + yxT)ky

]
.

(Proof: See [192].)

Fact 2.12.19. Let A,B ∈ Fn×n. Then, the following statements hold:

i) AB +BA = 1
2

[
(A+B)2 − (A−B)2

]
.

ii) (A+ B)(A−B) = A2 −B2 − [A,B].
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iii) (A−B)(A +B) = A2 −B2 + [A,B].

iv) A2 −B2 = 1
2 [(A+B)(A−B) + (A−B)(A+B)].

Fact 2.12.20. Let A,B ∈ Fn×n, and let k be a positive integer. Then,

Ak −Bk =
k−1∑
i=0

Ai(A−B)Bk−1−i =
k∑
i=1

Ak−i(A−B)Bi−1.

Fact 2.12.21. Let A ∈ Fn×n, B ∈ Fn×m, and C ∈ Fm×m, and let k ≥ 1.
Then, [

A B
0 C

]k
=

⎡
⎣ Ak

∑k
i=1A

k−iBCi−1

0 Ck

⎤
⎦.

Fact 2.12.22. Let A,B ∈ Fn×n, and define A
�= [A A

A A ] and B
�=
[
B −B
−B B

]
.

Then,
AB = BA = 0.

Fact 2.12.23. A cube root of I2 is given by[
− 1

2

√
3

2

−√
3

2 − 1
2

]3
=

[
−1 −1

1 0

]3

= I2.

Fact 2.12.24. Let n be an integer, and define⎡
⎣ an
bn
cn

⎤
⎦ �=

⎡
⎣ 63 104 −68

64 104 −67
80 131 −85

⎤
⎦
n⎡
⎣ 1

2
2

⎤
⎦.

Then,
∞∑
n=0

an =
1 + 53x+ 9x2

1− 82x− 82x2 + x3
,

∞∑
n=0

bn =
2− 26x− 12x2

1− 82x− 82x2 + x3
,

∞∑
n=0

cn =
2 + 8x− 10x2

1− 82x− 82x2 + x3
,

and
a3
n + b3n = c3n + (−1)n.

(Remark: This result is an identity of Ramanujan. See [632].) (Remark: The last
identity holds for all integers, not necessarily positive.)

2.13 Facts on the Determinant

Fact 2.13.1. det În = (−1)�n/2� = (−1)n(n−1)/2.
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Fact 2.13.2. det(In + α1n×n) = 1 + αn.

Fact 2.13.3. Let A ∈ Fn×m, let B ∈ Fm×n, and assume that m< n. Then,
detAB = 0.

Fact 2.13.4. Let A ∈ F
n×m, let B ∈ F

m×n, and assume that n ≤ m. Then,

detAB =
∑

1≤i1<···<in≤m
detA({1,...,n},{i1,...,in}) detB({i1,...,in},{1,...,n})

(Proof: See [447, p. 102].) (Remark: detAB is equal to the sum of all
(
m
n

)
products of pairs of subdeterminants of A and B formed by choosing n columns of
A and the corresponding n rows of B.) (Remark: This identity is a special case of
the Binet-Cauchy formula given by Fact 7.5.17. The special case n = m is given
by Proposition 2.7.1.) (Remark: Determinantal and minor identities are given in
[270, 880].) (Remark: See Fact 2.14.8.)

Fact 2.13.5. Let A ∈ Fn×n, assume that A is nonsingular, let S1, S2 ⊆
{1, . . . , n}, and assume that card(S1) = card(S2). Then,

|det (A−1)(S1,S2)| =
|detA(S∼

1 ,S
∼
2 )|

|detA| .

(Proof: See [1365, p. 38].) (Remark: When card(S1) = card(S2) = 1, this result
yields the absolute value of (2.7.24).) (Remark: See Fact 2.11.21.)

Fact 2.13.6. Let A ∈ F
n×n, assume that A is nonsingular, and let b ∈ F

n.
Then, the solution x ∈ Fn of Ax = b is given by

x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

det
(
A

1← b
)

detA
...

det
(
A

n← b
)

detA

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(Proof: Note that A
(
I
i← x
)

= A
i← b. Since det

(
I
i← x
)

= x(i), it follows that

(detA)x(i) = det
(
A

i← b
)
.) (Remark: This identity is Cramer’s rule. See Fact

2.13.7 for extensions to nonsquare A.)

Fact 2.13.7. Let A ∈ Fn×m be right invertible, and let b ∈ Fn. Then, a
solution x ∈ F

m of Ax = b is given by

x(i) =
det
[(
A

i← b
)
A∗
]
− det

[(
A

i← 0
)
A∗
]

det(AA∗)
,

for all i = 1, . . . ,m. (Proof: See [862].) (Remark: This result is a generalization
of Cramer’s rule. See Fact 2.13.6. Extensions to generalized inverses are given in
[178, 755, 855] and [1396, Chapter 3].)
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Fact 2.13.8. Let A ∈ Fn×n, and assume that either A(i,j) = 0 for all i, j such
that i+ j < n+ 1 or A(i,j) = 0 for all i, j such that i+ j > n+ 1. Then,

detA = (−1)�n/2�
n∏
i=1

A(i,n+1−i).

(Remark: A is lower reverse triangular.)

Fact 2.13.9. Define A ∈ Rn×n by

A
�=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0 0

0 0 1 · · · 0 0

0 0 0
. . . 0 0

...
...

...
. . . . . .

...
0 0 0 · · · 0 1
1 0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Then,
detA = (−1)n+1.

Fact 2.13.10. Let a1, . . . , an ∈ F. Then,

det

⎡
⎢⎢⎢⎢⎢⎣

1 + a1 a2 · · · an

a1 1 + a2 · · · an
...

...
. . .

...

a1 a2 · · · 1 + an

⎤
⎥⎥⎥⎥⎥⎦ = 1 +

n∑
i=1

ai.

Fact 2.13.11. Let a1, . . . , an ∈ F be nonzero. Then,

det

⎡
⎢⎢⎢⎢⎢⎣

1+a1
a1

1 · · · 1

1 1+a2
a2

· · · 1
...

...
. . .

...

1 1 · · · 1+an

an

⎤
⎥⎥⎥⎥⎥⎦ =

1 +
∑n
i=1 ai∏n

i=1 ai
.

Fact 2.13.12. Let a, b, c1, . . . , cn ∈ F, define A ∈ Fn×n by

A �=

⎡
⎢⎢⎢⎢⎢⎢⎣

c1 a a · · · a

b c2 a · · · a

b b c3
. . . a

...
...

. . . . . .
...

b b b · · · cn

⎤
⎥⎥⎥⎥⎥⎥⎦
,

and let p(x) = (c1−x)(c2−x) · · · (cn−x) and pi(x) = p(x)/(ci−x) for all i = 1, . . . , n.
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Then,

detA =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
bp(a)− ap(b)

b− a , b �= a,

a
n−1∑
i=1

pi(a) + cnpn(a), b = a.

(Proof: See [1487, p. 10].)

Fact 2.13.13. Let a, b ∈ F, and define A,B ∈ Fn×n by

A �= (a− b)In + b1n×n =

⎡
⎢⎢⎢⎢⎢⎢⎣

a b b · · · b

b a b · · · b

b b a
. . . b

...
...

. . . . . .
...

b b b · · · a

⎤
⎥⎥⎥⎥⎥⎥⎦

and

B �= aIn + b1n×n =

⎡
⎢⎢⎢⎢⎢⎢⎣

a+ b b b · · · b

b a+ b b · · · b

b b a+ b
. . . b

...
...

. . . . . .
...

b b b · · · a+ b

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Then,
detA = (a− b)n−1[a+ b(n− 1)]

and, if detA �= 0,

A−1 =
1

a− bIn +
b

(b− a)[a+ b(n−1)]
1n×n.

Furthermore,
detB = an−1(a+ nb)

and, if detB �= 0,

B−1 =
1
a

(
In − b

a+ nb
1n×n

)
.

(Remark: See Fact 2.14.26, Fact 4.10.15, and Fact 8.9.34.) (Remark: The matrix
aIn + b1n×n arises in combinatorics. See [267, 269].)

Fact 2.13.14. Let A ∈ Fn×n, and define γ �= maxi,j=1,...,n |A(i,j)|. Then,

|detA| ≤ γnnn/2.
(Proof: The result is a consequence of the arithmetic-mean–geometric-mean in-
equality Fact 1.15.14 and Schur’s inequality Fact 8.17.5. See [447, p. 200].) (Re-
mark: See Fact 8.13.34.)

Fact 2.13.15. Let A ∈ Rn×n, and, for i = 1, . . . , n, let αi denote the sum
of the positive components in rowi(A) and let βi denote the sum of the positive
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components in rowi(−A). Then,

|detA| ≤
n∏
i=1

max{αi, βi} −
n∏
i=1

min{αi, βi}.

(Proof: See [767].) (Remark: This result is an extension of a result due to Schinzel.)

Fact 2.13.16. For i = 1, . . . , 4, let Ai, Bi ∈ F2×2, where detAi = detBi = 1.
Furthermore, define A,B,C,D ∈ F4×4, where, for i, j = 1, . . . , 4,

A(i,j) = trAiAj ,
B(i,j) = trBiBj ,
C(i,j) = trAiBj ,

D(i,j) = trAiB−1
j .

Then,
detC + detD = 0

and
(detA)(det B) = (detC)2.

(Remark: These identities are due to Magnus. See [735].)

Fact 2.13.17. Let I ⊆ R be a finite or infinite interval, and let f : I �→ R.
Then, the following statements are equivalent:

i) f is convex.

ii) For all distinct x, y, z ∈ I,

det

⎡
⎣ 1 x f(x)

1 y f(y)
1 z f(z)

⎤
⎦

det

⎡
⎣ 1 x x2

1 y y2

1 z z2

⎤
⎦
≥ 0.

iii) For all x, y, z ∈ I such that x < y < z,

det

⎡
⎣ 1 x f(x)

1 y f(y)
1 z f(z)

⎤
⎦ ≥ 0.

(Proof: See [1039, p. 21].)

2.14 Facts on the Determinant of Partitioned Matrices

Fact 2.14.1. Let A ∈ Fn×n, let A0 be the k × k leading principal submatrix
of A, and let B ∈ F(n−k)×(n−k), where, for all i, j = 1, . . . , n − k, B(i,j) is the
determinant of the submatrix of A comprised of rows 1, . . . , k and k+i and columns
1, . . . , k and k + j. Then,

detB = (detA0)n−k−1detA.
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If, in addition, A0 is nonsingular, then

detA =
detB

(detA0)n−k−1
.

(Remark: If k = n − 1, then B = detA.) (Remark: This result is Sylvester’s
identity.)

Fact 2.14.2. Let A ∈ Fn×n, x, y ∈ Fn, and a ∈ F. Then,

det
[
A x
yT a

]
= a(detA)− yTAAx.

Hence,

det
[
A x
yT a

]
=

⎧⎪⎪⎨
⎪⎪⎩

(detA)
(
a− yTA−1x

)
, detA �= 0,

adet
(
A− a−1xyT

)
, a �= 0,

−yTAAx, a = 0 or detA = 0.

In particular,

det
[

A Ax
yTA yTAx

]
= 0.

Finally,

det
(
A+ xyT

)
= detA+ yTAAx = −det

[
A x
yT −1

]
.

(Remark: See Fact 2.16.2, Fact 2.14.3, and Fact 2.16.4.)

Fact 2.14.3. Let A ∈ Fn×n, b ∈ Fn, and a ∈ F. Then,

det
[
A b
b∗ a

]
= a(detA)− b∗AAb.

In particular,

det
[
A b
b∗ a

]
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(detA)
(
a− b∗A−1b

)
, detA �= 0,

adet
(
A− a−1bb∗

)
, a �= 0,

−b∗AAb, a = 0.

(Remark: This identity is a specialization of Fact 2.14.2 with x = b and y = b.)
(Remark: See Fact 8.15.4.)

Fact 2.14.4. Let A ∈ Fn×n. Then,

rank
[
A A
A A

]
= rank

[
A −A
−A A

]
= rankA,

rank
[

A A
−A A

]
= 2rankA,

det
[
A A
A A

]
= det

[
A −A
−A A

]
= 0,
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det
[

A A
−A A

]
= 2n(detA)2.

(Remark: See Fact 2.14.5.)

Fact 2.14.5. Let a, b, c, d ∈ F, let A ∈ Fn×n, and define A
�=
[
aA bA
cA dA

]
. Then,

rankA =
(
rank

[
a b
c d

])
rankA

and
detA = (ad− bc)n(detA)2.

(Remark: See Fact 2.14.4.) (Proof: See Proposition 7.1.11 and Fact 7.4.23.)

Fact 2.14.6. det
[

0 In
Im 0

]
= (−1)nm.

Fact 2.14.7. Let A,B ∈ Fn×n. Then,

det
[
In In −AB
B 0

]
= det

[
0 In −AB
B 0

]
= det(BAB −B).

(Remark: See Fact 2.11.18 and Fact 2.14.6.)

Fact 2.14.8. Let A ∈ F
n×m, let B ∈ F

m×n, and assume that n ≤ m. Then,

detAB = (−1)(n+1)mdet
[

A 0n×n
−Im B

]
.

(Proof: See [447].) (Remark: See Fact 2.13.4.)

Fact 2.14.9. Let A,B,C,D be conformable matrices with entries in F. Then,[
A AB
C D

]
=
[
I 0
C I

][
A 0

C − CA D − CB

][
I B

0 I

]
,

det
[
A AB
C D

]
= (detA)det(D − CB),

[
A B
CA D

]
=
[
I 0
C I

][
A B −AB
0 D − CB

][
I B
0 I

]
,

det
[

A B
CA D

]
= (detA)det(D − CB),

[
A BD
C D

]
=
[
I B
0 I

][
A−BC 0

C −DC D

][
I 0
C I

]
,

det
[
A BD
C D

]
= det(A−BC)detD,

[
A B
DC D

]
=
[
I B
0 I

][
A−BC B − BD

0 D

][
I 0
C I

]
,
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det
[

A B
DC D

]
= det(A−BC)detD.

(Remark: See Fact 6.5.25.)

Fact 2.14.10. Let A,B ∈ Fn×n. Then,

det
[

A AB
BA B

]
= (detA)det(B −BAB) = (detB)det(A−ABA).

(Proof: See Fact 2.11.19 and Fact 2.14.7.)

Fact 2.14.11. Let A1, A2, B1, B2 ∈ Fn×m, and define A
�=
[
A1 A2
A2 A1

]
and B

�=[
B1 B2
B2 B1

]
. Then,

rank
[

A B

B A

]
=

4∑
i=1

rankCi,

where C1
�= A1+A2 +B1+B2, C2

�= A1+A2 −B1−B2, C3
�= A1−A2 +B1−B2,

and C4
�= A1−A2 −B1 +B2. If, in addition, n = m, then

det
[

A B

B A

]
=

4∏
i=1

detCi.

(Proof: See [1305].) (Remark: See Fact 3.22.8.)

Fact 2.14.12. Let A,B,C,D ∈ Fn×n, and assume that rank [A B
C D ] = n. Then,

det

[
detA detB

detC detD

]
= 0.

Fact 2.14.13. Let A,B,C,D ∈ Fn×n. Then,

det
[
A B
C D

]
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

det(DA− CB), AB = BA,

det(AD − CB), AC = CA,

det(AD −BC), DC = CD,

det(DA−BC), DB = BD.

(Remark: These identities are Schur’s formulas. See [146, p. 11].) (Proof: If A is
nonsingular, then

det
[
A B
C D

]
= (detA)det

(
D − CA−1B

)
= det

(
DA− CA−1BA

)
= det(DA− CB).

Alternatively, note the identity[
A B
C D

]
=

[
A 0

C DA− CB

][
I BA−1

0 A−1

]
.

If A is singular, then replace A by A + εI and use continuity.) (Problem: Find a
direct proof for the case in which A is singular.)
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Fact 2.14.14. Let A,B,C,D ∈ Fn×n. Then,

det
[
A B
C D

]
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

det
(
ADT −BTCT

)
, AB = BAT,

det
(
ADT −BC), DC = CDT,

det
(
ATD − CB), ATC = CA,

det
(
ATD − CTBT

)
, DTB = BD.

(Proof: Define the nonsingular matrix Aε
�= A + εI, which satisfies AεB = BAT

ε.
Then,

det
[
Aε B
C D

]
= (detAε)det

(
D − CA−1

ε B
)

= det
(
DAT

ε − CA−1
ε BA

T
ε

)
= det

(
DAT

ε − CB
)
.)

Fact 2.14.15. Let A,B,C,D ∈ Fn×n. Then,

det
[
A B
C D

]
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)rankCdet
(
ATD + CTB

)
, ATC = −CTA,

(−1)n+rankAdet
(
ATD + CTB

)
, ATC = −CTA,

(−1)rankBdet
(
ATD + CTB

)
, BTD = −DTB,

(−1)n+rankDdet
(
ATD + CTB

)
, BTD = −DTB,

(−1)rankBdet
(
ADT +BCT

)
, ABT = −BAT,

(−1)n+rankAdet
(
ADT +BCT

)
, ABT = −BAT,

(−1)rankCdet
(
ADT +BCT

)
, CDT = −DCT,

(−1)n+rankDdet
(
ADT +BCT

)
, CDT = −DCT.

(Proof: See [960, 1405].) (Remark: This result is due to Callan. See [1405].)
(Remark: If ATC = −CTA and rankA+ rankC +n is odd, then [A B

C D ] is singular.)

Fact 2.14.16. Let A,B,C,D ∈ Fn×n. Then,

det
[
A B
C D

]
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

det
(
ADT −BCT

)
, ABT = BAT,

det
(
ADT −BCT

)
, DCT = CDT,

det
(
ATD − CTB

)
, ATC = CTA,

det
(
ATD − CTB

)
, DTB = BTD.

(Proof: See [960].)

Fact 2.14.17. Let A ∈ Fn×m, B ∈ Fn×l, C ∈ Fk×m, and D ∈ Fk×l, and
assume that n+ k = m+ l. If ACT +BDT = 0, then

det
[
A B
C D

]2
= det

(
AAT +BBT

)
det
(
CCT +DDT

)
.
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Alternatively, if ATB + CTD = 0, then

det
[
A B
C D

]2
= det

(
ATA+ CTC

)
det
(
BTB +DTD

)
.

(Proof: Form [A B
C D ][A B

C D ]T and [A B
C D ]T[A B

C D ].)

Fact 2.14.18. Let A ∈ Fn×m, B ∈ Fn×m, C ∈ Fk×m, and D ∈ Fk×m, and
assume that n+ k = 2m. If ADT +BCT = 0, then

det
[
A B
C D

]2
= (−1)mdet

(
ABT +BAT

)
det
(
CDT +DCT

)
.

Alternatively, if ABT +BAT = 0 or CDT +DCT = 0, then

det
[
A B
C D

]2
= (−1)m

2+nkdet
(
ADT +BCT

)2
.

(Proof: Form [A B
C D ]
[
BT DT

AT CT

]
and [A B

C D ]
[
DT BT

CT AT

]
. See [1405].)

Fact 2.14.19. Let A ∈ F
n×m, B ∈ F

n×l, C ∈ F
n×m, and D ∈ F

n×l, and
assume that m+ l = 2n. If ATD + CTB = 0, then

det
[
A B
C D

]2
= (−1)ndet

(
CTA+ATC

)
det
(
DTB +BTD

)
.

Alternatively, if BTD +DTB = 0 or ATC + CTA = 0, then

det
[
A B
C D

]2
= (−1)n

2+mldet
(
ATD + CTB

)2
.

(Proof: Form
[
CT AT

DT BT

]
[A B
C D ] and

[
DT BT

CT AT

]
[A B
C D ].)

Fact 2.14.20. Let A ∈ Fn×n, B ∈ Fn×k, C ∈ Fk×n, and D ∈ Fk×k. If
AB +BD = 0 or CA +DC = 0, then

det
[
A B
C D

]2
= det

(
A2 +BC

)
det
(
CB +D2

)
.

Alternatively, if A2 +BC = 0 or CB +D2 = 0, then

det
[
A B
C D

]2
= (−1)nkdet(AB +BD)det(CA+DC).

(Proof: Form [A B
C D ]2 and [A B

C D ][B A
D C ].)

Fact 2.14.21. Let A ∈ Fn×m, B ∈ Fn×n, C ∈ Fm×m, and D ∈ Fm×n. If
AD +B2 = 0 or C2 +DA = 0, then

det
[
A B
C D

]2
= (−1)nmdet(AC +BA)det(CD +DB).
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Alternatively, if AC +BA = 0 or CD +DB = 0, then

det
[
A B
C D

]2
= det

(
AD +B2

)
det
(
C2 +DA

)
.

(Proof: Form [A B
C D ][C D

A B ] and [A B
C D ][D C

B A ].)

Fact 2.14.22. Let A ∈ Fn×m, B ∈ Fn×l, C ∈ Fk×m, and D ∈ Fk×l, and
assume that n+ k = m+ l. If AC∗ +BD∗ = 0, then∣∣∣∣det

[
A B
C D

]∣∣∣∣
2

= det(AA∗ +BB∗)det(CC∗ +DD∗).

Alternatively, if A∗B + C∗D = 0, then∣∣∣∣det
[
A B
C D

]∣∣∣∣
2

= det(A∗A+ C∗C)det(B∗B +D∗D).

(Proof: Form [A B
C D ][A B

C D ]∗ and [A B
C D ]∗[A B

C D ].) (Remark: See Fact 8.13.27.)

Fact 2.14.23. Let A ∈ Fn×m, B ∈ Fn×m, C ∈ Fk×m, and D ∈ Fk×m, and
assume that n+ k = 2m. If AD∗ +BC∗ = 0, then∣∣∣∣det

[
A B
C D

]∣∣∣∣
2

= (−1)mdet(AB∗ +BA∗)det(CD∗ +DC∗).

Alternatively, if AB∗ +BA∗ = 0 or CD∗ +DC∗ = 0, then∣∣∣∣det
[
A B
C D

]∣∣∣∣
2

= (−1)m
2+nk |det(AD∗ +BC∗)|2.

(Proof: Form [A B
C D ]
[
B∗ D∗
A∗ C∗

]
and [A B

C D ]
[
D∗ B∗
C∗ A∗

]
.) (Remark: If m2 + nk is odd, then

[A B
C D ] is singular.)

Fact 2.14.24. Let A ∈ Fn×m, B ∈ Fn×l, C ∈ Fn×m, and D ∈ Fn×l, and
assume that m+ l = 2n. If A∗D + C∗B = 0, then∣∣∣∣det

[
A B
C D

]∣∣∣∣
2

= (−1)mdet(C∗A+A∗C)det(D∗B +B∗D).

Alternatively, if D∗B +B∗D = 0 or C∗A+A∗C = 0, then∣∣∣∣det
[
A B
C D

]∣∣∣∣
2

= (−1)n
2+ml|det(A∗D + C∗B)|2.

(Proof: Form
[
C∗ A∗
D∗ B∗

]
[A B
C D ] and

[
D∗ B∗
C∗ A∗

]
[A B
C D ].) (Remark: If n2 +ml is odd, then

[A B
C D ] is singular.)

Fact 2.14.25. Let A ∈ Fn×m and B ∈ Fn×l. Then,

det

[
A∗A A∗B

B∗A B∗B

]
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

det(A∗A)det[B∗B −B∗A(A∗A)−1A∗B], rankA = m,

det(B∗B)det[A∗A−A∗B(B∗B)−1B∗A], rankB = l,

0, n < m+ l.
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If, in addition, m+ l = n, then

det

[
A∗A A∗B

B∗A B∗B

]
= det(AA∗ +BB∗).

(Remark: See Fact 6.5.27.)

Fact 2.14.26. Let A,B ∈ Fn×n, and define A ∈ Fkn×kn by

A
�=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A B B · · · B

B A B · · · B

B B A
. . . B

...
...

. . .
. . .

...
B B B · · · A

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

Then,
detA =[det(A−B)]k−1det[A+ (k −1)B].

If k = 2, then

det
[
A B
B A

]
= det[(A+B)(A −B)] = det

(
A2 −B2 − [A,B]

)
.

(Proof: See [573].) (Remark: For k = 2, the result follows from Fact 4.10.25.)
(Remark: See Fact 2.13.13.)

Fact 2.14.27. Let A ∈ Fn×n, B ∈ Fn×m, C ∈ Fm×n, and D ∈ Fm×m, and
define M �= [A B

C D ] ∈ F(n+m)×(n+m). Furthermore, let
[
A′ B′
C′ D′

] �= MA, where A′ ∈
Fn×n and D′ ∈ Fm×m. Then,

detD′ = (detM)m−1detA

and
detA′ = (detM)n−1detD.

(Proof: See [1184, p. 297].) (Remark: See Fact 2.14.28.)

Fact 2.14.28. Let A ∈ Fn×n, B ∈ Fn×m, C ∈ Fm×n, and D ∈ Fm×m, define
M �= [A B

C D ] ∈ F(n+m)×(n+m), and assume that M is nonsingular. Furthermore, let[
A′ B′
C′ D′

] �= M−1, where A′ ∈ Fn×n and D′ ∈ Fm×m. Then,

detD′ =
detA
detM

and
detA′ =

detD
detM

.

Consequently, A is nonsingular if and only ifD′ is nonsingular, andD is nonsingular
if and only ifA′ is nonsingular. (Proof: UseM

[
I B′
0 D′
]

= [A 0
C I ]. See [1188].) (Remark:

This identity is a special case of Jacobi’s identity. See [709, p. 21].) (Remark: See
Fact 2.14.27 and Fact 3.11.24.)
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2.15 Facts on Left and Right Inverses

Fact 2.15.1. Let A ∈ Fn×m. Then, the following statements hold:

i) If AL ∈ Fm×n is a left inverse of A, then AL ∈ Fm×n is a left inverse of A.

ii) If AL ∈ F
m×n is a left inverse of A, then ALT ∈ F

n×m is a right inverse of
AT.

iii) If AL ∈ F
m×n is a left inverse of A, then AL∗ ∈ F

n×m is a right inverse of
A∗.

iv) If AR ∈ Fm×n is a right inverse of A, then AR ∈ Fm×n is a right inverse of
A.

v) If AR ∈ Fm×n is a right inverse of A, then ART ∈ Fn×m is a left inverse of
AT.

vi) If AR ∈ Fm×n is a right inverse of A, then AR∗ ∈ Fn×m is a left inverse of
A∗.

Furthermore, the following statements are equivalent:

vii) A is left invertible.

viii) A is left invertible.

ix) AT is right invertible.

x) A∗ is right invertible.

Finally, the following statements are equivalent:

xi) A is right invertible.

xii) A is right invertible.

xiii) AT is left invertible.

xiv) A∗ is left invertible.

Fact 2.15.2. Let A ∈ Fn×m. If rankA = m, then (A∗A)−1A∗ is a left inverse
of A. If rankA = n, then A∗(AA∗)−1 is a right inverse of A. (Remark: See Fact
3.7.25, Fact 3.7.26, and Fact 3.13.6.)

Fact 2.15.3. Let A ∈ F
n×m, and assume that rankA = m. Then, AL ∈ F

m×n

is a left inverse of A if and only if there exists a matrix B ∈ Fm×n such that BA is
nonsingular and

AL = (BA)−1B.

(Proof: For necessity, let B = AL.)

Fact 2.15.4. Let A ∈ F
n×m, and assume that rankA = n. Then, AR ∈ F

m×n

is a right inverse of A if and only if there exists a matrix B ∈ Fm×n such that AB
is nonsingular and

AR = B(AB)−1.

(Proof: For necessity, let B = AR.)
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Fact 2.15.5. Let A ∈ Fn×m and B ∈ Fm×l, and assume that A and B are
left invertible. Then, AB is left invertible. If, in addition, AL is a left inverse of A
and BL is a left inverse of B, then BLAL is a left inverse of AB.

Fact 2.15.6. Let A ∈ Fn×m and B ∈ Fm×l, and assume that A and B are
right invertible. Then, AB is right invertible. If, in addition, AR is a right inverse
of A and BR is a right inverse of B, then BRAR is a right inverse of AB.

2.16 Facts on the Adjugate and Inverses

Fact 2.16.1. Let x, y ∈ Fn. Then,(
I + xyT

)A
=
(
1 + yTx

)
I − xyT

and
det
(
I + xyT

)
= det

(
I + yxT

)
= 1 + xTy = 1 + yTx.

If, in addition, xTy �= −1, then(
I + xyT

)−1
= I − (1 + xTy

)−1
xyT.

Fact 2.16.2. Let A ∈ Fn×n, x, y ∈ Fn, and a ∈ F. Then,

[
A x
yT a

]
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[
I 0

yTA−1 1

][
A 0
0 a− yTA−1x

][
I A−1x

0 1

]
, detA �= 0,

[
I a−1x

0 1

][
A− a−1xyT 0

0 a

][
I 0

a−1yT 1

]
, a �= 0.

(Remark: See Fact 6.5.25.)

Fact 2.16.3. Let A ∈ Fn×n, assume that A is nonsingular, and let x, y ∈ Fn.
Then,

det
(
A+ xyT

)
=
(
1 + yTA−1x

)
detA

and (
A+ xyT

)A
=
(
1 + yTA−1x

)
(detA)I −AAxyT.

Furthermore, the following statements are equivalent:

i) det
(
A+ xyT

) �= 0

ii) yTA−1x �= −1.

iii)
[
A x
yT −1

]
is nonsingular.

In this case, (
A+ xyT

)−1
= A−1 − (1 + yTA−1x

)−1
A−1xyTA−1.

(Remark: See Fact 2.16.2 and Fact 2.14.2.) (Remark: The last identity, which
is a special case of the matrix inversion lemma Corollary 2.8.8, is the Sherman-
Morrison-Woodbury formula.)
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Fact 2.16.4. Let A ∈ Fn×n, let x, y ∈ Fn, and let a ∈ F. Then,

[
A x
yT a

]A
=

⎡
⎣ (a+ 1)AA − (A+ xyT

)A −AAx

−yTAA detA

⎤
⎦.

Now, assume that
[
A x
yT a

]
is nonsingular. Then,

[
A x
yT a

]−1

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

(detA)(a−yTA−1x)

⎡
⎣
(
a− yTA−1x

)
A−1 +A−1xyTA−1 −A−1x

−yTA−1 1

⎤
⎦, detA �= 0,

1

adet(A−a−1xyT)

⎡
⎢⎣ (a+ 1)AA − (A+ xyT

)A −AAx

−yTAA detA

⎤
⎥⎦, a �= 0,

1

−yTAAx

⎡
⎢⎣ (a+ 1)AA − (A+ xyT

)A −AAx

−yTAA detA

⎤
⎥⎦, a = 0.

(Proof: Use Fact 2.14.2 and see [455, 686].)

Fact 2.16.5. Let A ∈ Fn×n. Then, the following statements hold:

i)
(
A
)A

=AA.

ii)
(
AT
)A =

(
AA
)T
.

iii) (A∗)A =
(
AA
)∗
.

iv) If α ∈ F, then (αA)A = αn−1AA.

v) detAA = (detA)n−1.

vi)
(
AA
)A = (detA)n−2A.

vii) det
(
AA
)A = (detA)(n−1)2.

viii) If A is nonsingular, then (A−1)A = (AA)−1.

(Proof: See [686].) (Remark: With 0/0 �= 1 in vi), all of these results hold in the
degenerate case n = 1.)

Fact 2.16.6. Let A ∈ Fn×n. Then,

det(A+ 1n×n)− detA = 1T
1×nA

A1 =
n∑
i=1

det
(
A

i← 1n×1

)
.

(Proof: See [222].) (Remark: See Fact 2.14.2, Fact 2.16.9, and Fact 10.11.21.)
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Fact 2.16.7. Let A ∈ Fn×n, and assume that A is singular. Then,

R(A) ⊆ N
(
AA
)
.

Hence,
rankA ≤ def AA

and
rankA+ rankAA ≤ n.

Furthermore, R(A) = N
(
AA
)

if and only if rankA = n−1.

Fact 2.16.8. Let A ∈ Fn×n. Then, the following statements hold:

i) rankAA = n if and only if rankA = n.

ii) rankAA = 1 if and only if rankA = n−1.

iii) AA = 0 if and only if rankA ≤ n− 2.

(Proof: See [1098, p. 12].) (Remark: See Fact 4.10.7.) (Remark: Fact 6.3.6
provides an expression for AA in the case rankAA = 1.)

Fact 2.16.9. Let A,B ∈ Fn×n. Then,(
AAB
)
(i,j)

= det
[
A

i← colj(B)
]
.

(Remark: See Fact 10.11.21.)

Fact 2.16.10. Let A,B ∈ Fn×n. Then, the following statements hold:

i) (AB)A = BAAA.

ii) If B is nonsingular, then
(
BAB−1

)A
= BAAB−1.

iii) If AB = BA, then AAB = BAA, ABA = BAA, and AABA = BAAA.

Fact 2.16.11. Let A,B,C,D ∈ Fn×n and ABCD = I. Then, ABCD =
DABC = CDAB = BCDA.

Fact 2.16.12. Let A =
[
a b
c d

] ∈ F2×2, where ad− bc �= 0. Then,

A−1 = (ad− bc)−1

[
d −b
−c a

]
.

Furthermore, if A =
[
a b c
d e f
g h i

]
∈ F3×3 and β = a(ei−fh)−b(di−fg)+c(dh−eg) �= 0,

then
A−1 = β−1

⎡
⎣ ei− fh −(bi− ch) bf − ce
−(di− fg) ai− cg −(af − cd)
dh− eg −(ah− bg) ae− bd

⎤
⎦.

Fact 2.16.13. Let A,B ∈ Fn×n, and assume that A+B is nonsingular. Then,

A(A+B)−1B = B(A+B)−1A = A−A(A+B)−1A = B − B(A+B)−1B.
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Fact 2.16.14. Let A,B ∈ Fn×n, and assume that A and B are nonsingular.
Then,

A−1 +B−1 = A−1(A+B)B−1.

Furthermore, A−1 +B−1 is nonsingular if and only if A+B is nonsingular. In this
case, (

A−1 +B−1
)−1

= A(A+B)−1B

= B(A+B)−1A

= A−A(A+B)−1A

= B −B(A+B)−1B.

Fact 2.16.15. Let A,B ∈ Fn×n, and assume that A and B are nonsingular.
Then,

A−B = A(B−1 −A−1)B.

Therefore,
rank(A−B) = rank(A−1 −B−1).

In particular, A−B is nonsingular if and only if A−1 −B−1 is nonsingular. In this
case, (

A−1 −B−1
)−1

= A−A(A−B)−1A.

Fact 2.16.16. Let A ∈ Fn×m and B ∈ Fm×n, and assume that I + AB is
nonsingular. Then, I +BA is nonsingular and

(In +AB)−1A = A(Im + BA)−1.

(Remark: This result is the push-through identity.) Furthermore,

(I +AB)−1 = I − (I +AB)−1AB.

Fact 2.16.17. Let A,B ∈ Fn×n, and assume that I + BA is nonsingular.
Then,

(I +AB)−1 = I −A(I +BA)−1B.

Fact 2.16.18. Let A ∈ Fn×n, and assume that A and A+ I are nonsingular.
Then,

(A+ I)−1 +
(
A−1 + I

)−1
= (A+ I)−1 + (A+ I)−1A = I.

Fact 2.16.19. Let A ∈ Fn×m. Then,

(I +AA∗)−1 = I −A(I +A∗A)−1A∗.

Fact 2.16.20. Let A ∈ Fn×n, assume that A is nonsingular, let B ∈ Fn×m,
let C ∈ Fm×n, and assume that A+BC and I + CA−1B are nonsingular. Then,

(A+BC)−1B = A−1B
(
I + CA−1B

)−1
.

In particular, if A+BB∗ and I + B∗A−1B are nonsingular, then

(A+BB∗)−1B = A−1B
(
I +B∗A−1B

)−1
.



BASIC MATRIX PROPERTIES 145

Fact 2.16.21. Let A ∈ Fn×n, B ∈ Fn×m, C ∈ Fl×n, and D ∈ Fm×l, and
assume that A and A+BDC are nonsingular. Then,

(A+BDC)−1 = A−1 − (I +A−1BDC)−1A−1BDCA−1

= A−1 −A−1(I +BDCA−1)−1BDCA−1

= A−1 −A−1B(I +DCA−1B)−1DCA−1

= A−1 −A−1BD(I + CA−1BD)−1CA−1

= A−1 −A−1BDC(I +A−1BDC)−1A−1

= A−1 −A−1BDCA−1(I +BDCA−1)−1.

(Proof: See [666].) (Remark: The third identity generalizes the matrix inversion
lemma Corollary 2.8.8 in the form

(A+BDC)−1 = A−1 −A−1B
(
D−1 + CA−1B

)−1
CA−1

since D need not be square or invertible.)

Fact 2.16.22. Let A ∈ Fn×m, let C,D ∈ Fn×m, and assume that I + DB is
nonsingular. Then,

I +AC − (A+ B)(I +DB)−1(D + C) = (I −AD)(I +BD)−1(I −BC).

(Proof: See [1467].) (Remark: See Fact 2.16.23 and Fact 8.11.21.)

Fact 2.16.23. Let A,B,C ∈ Fn×m. Then,

I +AC∗ − (A+B)(I +B∗B)−1(B + C)∗ = (I −AB∗)(I +BB∗)−1(I −BC∗).

(Proof: Set D = B∗ and replace C by C∗ in Fact 2.16.22.)

Fact 2.16.24. Let A,B ∈ Fn×n, and assume that B is nonsingular. Then,

A = B
[
I +B−1(A−B)

]
.

Fact 2.16.25. Let A,B ∈ Fn×n, and assume thatA andA+B are nonsingular.
Then, for all k ∈ N,

(A+B)−1 =
k∑
i=0

A−1
(−BA−1

)i
+
(−A−1B

)k+1
(A+B)−1

=
k∑
i=0

A−1
(−BA−1

)i
+A−1

(−BA−1
)k+1(

I +BA−1
)−1
.

Fact 2.16.26. Let A ∈ Fn×n, assume that A is either upper triangular or lower
triangular, let D denote the diagonal part of A, and assume that D is nonsingular.
Then,

A−1 =
n∑
i=0

(I −D−1A)iD−1.

(Remark: Using the Schur product notation, D = I ◦A.)
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Fact 2.16.27. Let A,B ∈ Fn×n and α ∈ F, and assume that A, B, αA−1 +
(1− α)B−1, and αB + (1 − α)A are nonsingular. Then,

αA+ (1 − α)B − [αA−1 + (1− α)B−1
]−1

= α(1 − α)(A−B)[αB + (1 − α)A]−1(A−B).

(Remark: This identity is relevant to iv) of Proposition 8.6.17.)

Fact 2.16.28. Let A ∈ Fn×n, assume that A is nonsingular, and define A0
�=

In. Furthermore, for all k = 1, . . . , n, let

αk = 1
k trAAk−1,

and, for all k = 1, . . . , n−1, let

Ak = AAk−1 − αkI.
Then,

A−1 = 1
αn
An−1.

(Remark: This result is due to Frame. See [170, p. 99].)

Fact 2.16.29. Let A ∈ Fn×n, assume thatA is nonsingular, and define {Bi}∞i=1

by
Bi+1

�= 2Bi −BiABi,
where B0 ∈ Fn×n satisfies sprad(I −B0A) < 1. Then,

Bi → A−1

as i → ∞. (Proof: See [144, p. 167].) (Remark: This sequence is given by a
Newton-Raphson algorithm.) (Remark: See Fact 6.3.35 for the case in which A is
singular or nonsquare.)

Fact 2.16.30. Let A ∈ Fn×n, and assume that A is nonsingular. Then,
A+A−∗ is nonsingular. (Proof: Note that AA∗ + I is positive definite.)

2.17 Facts on the Inverse of Partitioned Matrices

Fact 2.17.1. Let A ∈ F
n×n, B ∈ F

n×m, C ∈ F
m×n, and D ∈ F

m×m, and
assume that A and D are nonsingular. Then,[

A B
0 D

]−1

=

[
A−1 −A−1BD−1

0 D−1

]

and [
A 0
C D

]−1

=

[
A−1 0

−D−1CA−1 D−1

]
.

Fact 2.17.2. Let A ∈ Fn×n, B ∈ Fm×m, and C ∈ Fm×n. Then,

det
[

0 A
B C

]
= det

[
C B
A 0

]
= (−1)nm(detA)(detB).
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If, in addition, A and B are nonsingular, then[
0 A
B C

]−1

=

[
−B−1CA−1 B−1

A−1 0

]

and [
C B
A 0

]−1

=

[
0 A−1

B−1 −B−1CA−1

]
.

Fact 2.17.3. Let A ∈ Fn×n, B ∈ Fn×m, and C ∈ Fm×m, and assume that C
is nonsingular. Then,[

A B
BT C

]
=

[
A−BC−1BT B

0 C

][
I 0

C−1BT I

]
.

If, in addition, A−BC−1BT is nonsingular, then
[

A B

BT C

]
is nonsingular and

[
A B
BT C

]−1

=

⎡
⎣

(
A−BC−1BT

)−1 −(A−BC−1BT
)−1
BC−1

−C−1BT
(
A−BC−1BT

)−1
C−1BT

(
A−BC−1BT

)−1
BC−1 + C−1

⎤
⎦.

Fact 2.17.4. Let A,B ∈ Fn×n. Then,

det
[
I A
B I

]
= det(I −AB) = det(I −BA).

If det(I −BA) �= 0, then[
I A
B I

]−1

=

[
I +A(I −BA)−1B −A(I −BA)−1

−(I −BA)−1B (I −BA)−1

]

=

[
(I −AB)−1 −(I −AB)−1A

−B(I −AB)−1 I +B(I −AB)−1A

]
.

Fact 2.17.5. Let A,B ∈ F
n×m. Then,[

A B
B A

]
= 1

2

[
I I

I −I

][
A+B 0

0 A−B

][
I I

I −I

]
.

Therefore,
rank

[
A B
B A

]
= rank(A+B) + rank(A−B).

Now, assume that n = m. Then,

det
[
A B
B A

]
= det[(A+B)(A −B)] = det

(
A2 −B2 − [A,B]

)
.

Hence, [A B
B A ] is nonsingular if and only if A + B and A − B are nonsingular. In
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this case,[
A B
B A

]−1

= 1
2

[
(A+B)−1 + (A−B)−1 (A+B)−1 − (A−B)−1

(A+B)−1 − (A−B)−1 (A+B)−1 + (A−B)−1

]
,

(A+ B)−1 = 1
2

[
I I

][ A B
B A

]−1
[
I

I

]
,

and

(A−B)−1 = 1
2

[
I −I ][ A B

B A

]−1
[

I

−I

]
.

(Remark: See Fact 6.5.1.)

Fact 2.17.6. Let A1, . . . , Ak ∈ Fn×n, and assume that the kn×kn partitioned
matrix below is nonsingular. Then, A1 + · · ·+Ak is nonsingular, and

(A1 + · · ·+Ak)−1 = 1
k

[
In · · · In

]
⎡
⎢⎢⎢⎢⎣
A1 A2 · · · Ak

Ak A1 · · · Ak−1

...
...

. . .
...

A2 A3 · · · A1

⎤
⎥⎥⎥⎥⎦

−1⎡
⎢⎣
Im
...
Im

⎤
⎥⎦.

(Proof: See [1282].) (Remark: The partitioned matrix is block circulant. See Fact
6.5.2 and Fact 6.6.1.)

Fact 2.17.7. Let A
�=
[

A B
0m×m C

]
, where A ∈ Fn×m, B ∈ Fn×n, and C ∈ Fm×n,

and assume that CA is nonsingular. Furthermore, define P �= A(CA)−1C and
P⊥

�= I − P. Then, A is nonsingular if and only if P + P⊥BP⊥ is nonsingular. In
this case,

A−1 =

[
(CA)−1(C − CBD) −(CA)−1CB(A−DBA)(CA)−1

D (A−DBA)(CA)−1

]
,

where D �= (P + P⊥BP⊥)−1P⊥. (Proof: See [639].)

Fact 2.17.8. Let A ∈ Fn×m and B ∈ Fn×(n−m), and assume that
[
A B

]
is nonsingular and A∗B = 0. Then,

[
A B

]−1
=

[
(A∗A)−1A∗

(B∗B)−1B∗

]
.

(Remark: See Fact 6.5.18.) (Problem: Find an expression for
[
A B

]−1 without
assuming A∗B = 0.)

Fact 2.17.9. Let A ∈ Fn×m, B ∈ Fn×l, and C ∈ Fm×l. Then,⎡
⎣ In A B

0 Im C
0 0 Il

⎤
⎦
−1

=

⎡
⎣ In −A AC −B

0 Im −C
0 0 Il

⎤
⎦.
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Fact 2.17.10. Let A ∈ Fn×n, and assume that A is nonsingular. Then,
X = A−1 is the unique matrix satisfying

rank
[
A I
I X

]
= rankA.

(Remark: See Fact 6.3.30 and Fact 6.6.2.) (Proof: See [483].)

2.18 Facts on Commutators

Fact 2.18.1. Let A,B ∈ F2×2. Then,

[A,B]2 = 1
2

(
tr [A,B]2

)
I2.

(Remark: See [499, 500].)

Fact 2.18.2. Let A,B ∈ Fn×n. Then,

tr [A,B]3 = 3tr(A2B2AB −B2A2BA) = −3tr(AB2A[A,B]).

Fact 2.18.3. Let A,B ∈ Fn×n, assume that [A,B] = 0, and let k, l ∈ N.
Then,

[
Ak, Bl

]
= 0.

Fact 2.18.4. Let A,B,C ∈ Fn×n. Then, the following identities hold:

i) [A,A] = 0.

ii) [A,B] = [−A,−B] = −[B,A].

iii) [A,B + C] = [A,B] + [A,C].

iv) [αA,B] = [A,αB] = α[A,B] for all α ∈ F.

v) [A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0.

vi) [A,B]T =
[
BT, AT

]
= −[AT, BT

]
.

vii) tr [A,B] = 0.

viii) tr Ak[A,B] = tr Bk[A,B] = 0 for all k ≥ 1.

ix) [[A,B], B −A] = [[B,A], A−B].

x) [A, [A,B]] = −[A, [B,A]].

(Remark: v) is the Jacobi identity.)

Fact 2.18.5. Let A,B ∈ Fn×n. Then, for all X ∈ Fn×n,

ad[A,B] = [adA, adB],

that is,
ad[A,B](X) = adA[adB(X)]− adB[adA(X)]

or, equivalently,
[[A,B], X ] = [A, [B,X ]]− [B, [A,X ]].
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Fact 2.18.6. Let A ∈ Fn×n and, for all X ∈ Fn×n, define

adkA(X) �=

{
adA(X), k = 1,

adk−1
A [adA(X)], k ≥ 2.

Then, for all X ∈ Fn×n and k ≥ 1,

ad2
A(X) = [A, [A,X ]]− [[A,X ], A]

and

adkA(X) =
k∑
i=0

(−1)k−i
(
k

i

)
AiXAk−i.

(Remark: The proof of Proposition 11.4.7 is based on g
(
etadAetadB

)
, where g(z) �=

(log z)/(z−1). See [1162, p. 35].) (Remark: See Fact 11.14.4.) (Proof: For the last
identity, see [1098, pp. 176, 207].)

Fact 2.18.7. Let A,B ∈ Fn×n, and assume that [A,B] = A. Then, A is
singular. (Proof: If A is nonsingular, then trB = trABA−1 = trB + n.)

Fact 2.18.8. Let A,B ∈ Rn×n be such that AB = BA. Then, there exists
a matrix C ∈ Rn×n such that A2 + B2 = C2. (Proof: See [415].) (Remark: This
result applies to real matrices only.)

Fact 2.18.9. Let A ∈ F
n×n. Then,

n ≤ dim {X ∈ F
n×n: AX = XA}

and
dim {[A,X ]: X ∈ F

n×n} ≤ n2 − n.
(Proof: See [392, pp. 125, 142, 493, 537].) (Remark: The first set is the centralizer
or commutant of A. See Fact 7.5.2.) (Remark: These quantities are the defect and
rank, respectively, of the operator f : Fn×n �→ Fn×n defined by f(X) �= AX −XA.
See Fact 7.5.2.) (Remark: See Fact 5.14.22 and Fact 5.14.24.)

Fact 2.18.10. Let A ∈ Fn×n. Then, there exists α ∈ F such that A = αI if
and only if, for all X ∈ F

n×n, AX = XA. (Proof: To prove sufficiency, note that
AT⊕−A = 0. Hence, {0} = spec(AT⊕−A) = {λ− μ : λ, μ ∈ spec(A)}. Therefore,
spec(A) = {α}, and thus A = αI + N, where N is nilpotent. Consequently, for
all X ∈ Fn×n, NX = XN. Setting X = N∗, it follows that N is normal. Hence,
N = 0.) (Remark: This result determines the center subgroup of GL(n).)

Fact 2.18.11. Define S ⊆ Fn×n by

S
�= {[X,Y ]: X,Y ∈ F

n×n}.
Then, S is a subspace. Furthermore,

S = {Z ∈ F
n×n: trZ = 0}

and
dim S = n2 −1.
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(Proof: See [392, pp. 125, 493]. Alternatively, note that tr: Fn
2 �→ F is onto, and

use Corollary 2.5.5.)

Fact 2.18.12. Let A,B,C,D ∈ Fn×n. Then, there exist E,F ∈ Fn×n such
that

[E,F ] = [A,B] + [C,D].

(Proof: The result follows from Fact 2.18.11.) (Problem: Construct E and F.)

2.19 Facts on Complex Matrices

Fact 2.19.1. Let a, b ∈ R. Then,
[
a b
−b a
]

is a representation of the complex
number a + jb that preserves addition, multiplication and inversion of complex
numbers. In particular, if a2 + b2 �= 0, then[

a b
−b a

]−1

=

[
a

a2+b2
−b

a2+b2

b
a2+b2

a
a2+b2

]

and
(a+ jb)−1 =

a

a2 + b2
− j b

a2 + b2
.

(Remark:
[
a b
−b a
]

is a rotation-dilation. See Fact 3.22.6.)

Fact 2.19.2. Let ν, ω ∈ R. Then,[
ν ω
−ω ν

]
= 1√

2

[
1 1
j −j

][
ν + jω 0

0 ν − jω
]

1√
2

[
1 1
j −j

]∗

= 1√
2

[
1 j
j 1

][
ν + jω 0

0 ν − jω
]

1√
2

[
1 j
j 1

]∗

= 1√
2

[
1 −j
j −1

][
ν + jω 0

0 ν − jω
]

1√
2

[
1 −j
j −1

]
and [

ν ω
−ω ν

]−1

=
1

ν2 + ω2

[
ν −ω
ω ν

]
.

(Remark: See Fact 2.19.1.) (Remark: All three transformations are unitary. The
third transformation is also Hermitian.)

Fact 2.19.3. Let A,B ∈ Rn×m. Then,[
A B
−B A

]
= 1

2

[
I I
jI −jI

][
A+ jB 0

0 A− jB
][

I −jI
I jI

]

= 1
2

[
I jI
−jI −I

][
A− jB 0

0 A+ jB

][
I jI
−jI −I

]

=
[
I 0
jI I

][
A+ jB B

0 A− jB
][

I 0
−jI I

]
.
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Consequently,[
A+ jB 0

0 A− jB
]

= 1
2

[
I −jI
I jI

][
A B
−B A

][
I I
jI −jI

]
,

and thus
A+ jB = 1

2

[
I −jI ][ A B

−B A

][
I
jI

]
.

Furthermore,

rank(A+ jB) = rank(A− jB) = 1
2 rank

[
A B
−B A

]
.

Now, assume that n = m. Then,

det
[

A B
−B A

]
= det(A+ jB)det(A− jB)

= |det(A+ jB)|2

= det
[
A2 +B2 + j(AB −BA)

]
≥ 0.

Hence,
[
A B
−B A

]
is nonsingular if and only if A + jB is nonsingular. If A is nonsin-

gular, then

det
[

A B
−B A

]
= det

(
A2 +ABA−1B

)
.

If AB = BA, then
det
[

A B
−B A

]
= det

(
A2 +B2

)
.

(Proof: If A is nonsingular, then use[
A B
−B A

]
=
[
A 0
0 A

][
I A−1B

−A−1B I

]
and

det
[

I A−1B
−A−1B I

]
= det

[
I +
(
A−1B

)2]
.)

(Remark: See Fact 4.10.26 and [79, 1281].)

Fact 2.19.4. Let A,B ∈ R
n×m. Then,

[
A B
−B A

]
and

[
A −B
B A

]
are represen-

tations of the complex matrices A + jB and A+ jB, respectively. Furthermore,[
AT BT

−BT AT

]
and
[
AT −BT

BT AT

]
are representations of the complex matrices (A + jB)T

and (A+ jB)∗, respectively.

Fact 2.19.5. Let A,B ∈ Rn×m and C,D ∈ Rm×l. Then, for all α, β ∈ R,[
A B
−B A

]
,
[
C D
−D C

]
, and

[
αA+βC αB+βD

−(αB+βD) αA+βC

]
= α
[
A B
−B A

]
+ β
[
C D
−D C

]
are represen-

tations of the complex matrices A + jB, C + jD, and α(A + jB) + β(C + jD),
respectively.

Fact 2.19.6. Let A,B ∈ Rn×m and C,D ∈ Rm×l. Then,
[
A B
−B A

]
,
[
C D
−D C

]
, and[

AC−BD AD+BC
−(AD+BC) AC−BD

]
=
[
A B
−B A

][
C D
−D C

]
are representations of the complex matrices
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A+ jB, C + jD, and (A+ jB)(C + jD), respectively.

Fact 2.19.7. Let A,B ∈ Rn×n. Then, A + jB is nonsingular if and only if[
A B
−B A

]
is nonsingular. In this case,

(A+ jB)−1 = 1
2

[
I −jI ][ A B

−B A

]−1[
I
jI

]
.

If A is nonsingular, then A+ jB is nonsingular if and only if A+BA−1B is nonsin-
gular. In this case,[

A B
−B A

]−1

=

[ (
A+BA−1B

)−1 −A−1B
(
A+BA−1B

)−1

A−1B
(
A+BA−1B

)−1 (
A+BA−1B

)−1

]

and
(A+ jB)−1 =

(
A+BA−1B

)−1− jA−1B
(
A+BA−1B

)−1
.

Alternatively, if B is nonsingular. Then, A + jB is nonsingular if and only if
B +AB−1A is nonsingular. In this case,[

A B
−B A

]−1

=

[
B−1A

(
B +AB−1A

)−1 −(B +AB−1A
)−1

(
B +AB−1A

)−1
B−1A

(
B +AB−1A

)−1

]

and
(A+ jB)−1 = B−1A

(
B + AB−1A

)−1− j(B +AB−1A
)−1
.

(Remark: See Fact 3.11.27, Fact 6.5.1, and [1282].)

Fact 2.19.8. Let A ∈ Fn×n. Then,

det
(
I +AA

) ≥ 0.

(Proof: See [416].)

Fact 2.19.9. Let A,B ∈ Fn×n. Then,

det
[

A B
−B A

]
≥ 0.

If, in addition, A is nonsingular, then

det
[

A B
−B A

]
= |detA|2det

(
I +A−1BA−1B

)
.

(Proof: See [1489].) (Remark: Fact 2.19.8 implies that det
(
I +A−1BA−1B

)
≥ 0.)

Fact 2.19.10. Let A,B ∈ Rn×n, and define C ∈ R2n×2n by C
�=⎡

⎢⎢⎣
C11 C12 · · ·
C21 · · ·

.

.

.

⎤
⎥⎥⎦, where Cij

�=
[
A(i,j) B(i,j)

−B(i,j) A(i,j)

]
∈ R2×2 for all i, j = 1, . . . , n. Then,

detC = |det(A+ jB)|2.
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(Proof: Note that

C = A⊗ I2 +B⊗ J2 = P2,n(I2⊗A+ J2⊗B)P2,n = P2,n

[
A B
−B A

]
P2,n.

See [257].)

2.20 Facts on Geometry

Fact 2.20.1. The points x, y, z ∈ R2 lie on one line if and only if

det
[
x y z
1 1 1

]
= 0.

Fact 2.20.2. The points w, x, y, z ∈ R3 lie in one plane if and only if

det
[
w x y z
1 1 1 1

]
= 0.

Fact 2.20.3. Let x1, . . . , xn ∈ R
n. Then,

rank
[

1 · · · 1
x1 · · · xn

]
= rank

[
1 0 · · · 0
x1 x2 − x1 · · · xn − x1

]
.

Hence,

rank
[

1 · · · 1
x1 · · · xn

]
= n

if and only if
rank

[
x2 − x1 · · · xn − x1

]
= n− 1.

In this case,

aff {x1, . . . , xn} = x1 + span {x2 − x1, . . . , xn − x1},
and thus aff {x1, . . . , xn} is an affine hyperplane. Finally,

aff {x1, . . . , xn} = {x ∈ R
n: det

[
1 1 · · · 1
x x1 · · · xn

]
= 0}.

(Proof: See [1184, p. 31].) (Remark: See Fact 2.20.4.)

Fact 2.20.4. Let x1, . . . , xn+1 ∈ Rn. Then, the following statements are equiv-
alent:

i) co {x1, . . . , xn+1} is a simplex.

ii) co {x1, . . . , xn+1} has nonempty interior.

iii) aff {x1, . . . , xn+1} = Rn.

iv) span {x2 − x1, . . . , xn+1 − x1} = Rn.

v)
[

1 · · · 1
x1 · · · xn+1

]
is nonsingular.
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(Proof: The equivalence of i) and ii) follows from Fact 10.8.9. The equivalence of i)
and iv) follows from Fact 2.9.7. Finally, the equivalence of iv) and v) follows from

[
1 · · · 1
x1 · · · xn+1

]
=
[

1 0 · · · 0
x1 x2 − x1 · · · xn+1 − x1

]
⎡
⎢⎢⎢⎢⎣

1 1 1 · · · 1
0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . . . . .

...
0 0 · · · · · · 1

⎤
⎥⎥⎥⎥⎦.)

(Remark: See Fact 2.20.3 and Fact 10.8.12.)

Fact 2.20.5. Let z1, z2, z be complex numbers, and assume that z1 �= z2.
Then, the following statements are equivalent:

i) z lies on the line passing through z1 and z2.

ii) z−z1
z2−z1 is real.

iii) det
[
z − z1 z − z1
z2 − z1 z2 − z1

]
= 0.

iv) det

⎡
⎣ z z 1
z1 z1 1
z2 z2 1

⎤
⎦ = 0.

Furthermore, the following statements are equivalent:

v) z lies on the line segment connecting z1 and z2.

vi) z−z1
z2−z1 is a positive number.

vii) There exists φ ∈ (−π, π] such that |z − z1|ejφ = |z2 − z1|ejφ.
(Proof: See [59, pp. 54–56].)

Fact 2.20.6. Let z1, z2, z3 be distinct complex numbers. Then, the following
statements are equivalent:

i) z1, z2, z3 are the vertices of an equilateral triangle.

ii) |z1 − z2| = |z2 − z3| = |z3 − z1|.
iii) z2

1 + z2
2 + z2

3 = z1z2 + z2z3 + z3z1.

iv) z2−z1
z3−z2 = z3−z2

z1−z2 .

(Proof: See [59, pp. 70, 71] and [868, p. 316].)

Fact 2.20.7. Let S ⊂ R2 denote the triangle with vertices [ 0
0 ], [ x1

y1 ], [ x2
y2 ] ∈ R2.

Then,
area(S) = 1

2

∣∣∣∣det
[
x1 x2

y1 y2

]∣∣∣∣ .



156 CHAPTER 2

Fact 2.20.8. Let S ⊂ R2 denote the triangle with vertices [ x1
y1 ], [ x2

y2 ] , [ x3
y3 ] ∈ R2.

Then,

area(S) = 1
2

∣∣∣∣∣∣det

⎡
⎣ 1 1 1
x1 x2 x3

y1 y2 y3

⎤
⎦
∣∣∣∣∣∣ .

(Proof: See [1184, p. 32].)

Fact 2.20.9. Let z1, z2, z3 be complex numbers. Then, the area of the triangle
S formed by z1, z2, z3 is given by

area(S) = 1
4

∣∣∣∣∣∣det

⎡
⎣ z1 z1 1
z2 z2 1
z3 z3 1

⎤
⎦
∣∣∣∣∣∣ .

(Proof: See [59, p. 79].)

Fact 2.20.10. Let S ⊂ R3 denote the triangle with vertices x, y, z ∈ R3. Then,

area(S) = 1
2

√
[(y − x)× (z − x)]T[(y − x)× (z − x)].

Fact 2.20.11. Let S ⊂ R2 denote a triangle whose sides have lengths a, b, and
c, let A,B,C denote the angles of the triangle opposite the sides having lengths a,
b, and c, respectively, define the semiperimeter s �= 1

2 (a + b + c), let r denote the
radius of the largest inscribed circle, and let R denote the radius of the smallest
circumscribed circle. Then, the following identities hold:

i) A+B + C = π.

ii) a2 + b2 = c2 + 2ab cosC.

iii) sinA
a = sinB

b = sinC
c .

iv) area(S) = 1
2ab sinC = c2

2
(sinA) sinB

sinC .

v) area(S) =
√
s(s− a)(s− b)(s− c) = rs = abc

4R .

vi) area(S) ≤
√

3
12 (a2 + b2 + c2).

vii) If S is equilateral, then area(S) =
√

3
4 a

2 and R = 2r =
√

3
3 a.

viii) a, b, c are the roots of the cubic equation

x3 − 2sx2 + (s2 + r2 + 4rR)x− 4srR = 0.

That is,

a+ b+ c = 2s, ab+ bc+ ca = s2 + r2 + 4rR, abc = 4rRs.

ix) a, b, c satisfy
a2 + b2 + c2 = 2(s2 − r2 − 4rR)

and
a3 + b3 + c3 = 2s(s2 − 3r2 − 6rR).
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x) If r1, r2, r3 denote the altitudes of the triangle, then

1
r

=
1
r1

+
1
r2

+
1
r3
.

xi) r ≤ 1
2

(
2

1+
√

5

)5/2
(a+ b) ≈ 0.15(a+ b). If, in addition, S is equilateral, then

r =
√

3
12 (a+ b) ≈ 0.14(a+ b).

Furthermore, the following statements hold:

xii) 2 ≤ a
b + b

a ≤ R
r .

xiii) 2 ≤ 2
3

(
a
b + b

c + c
a

) ≤ a
b + b

c + c
a − 1 ≤ 1

2

(
1 + a2

bc + b2

ca + c2

ab

)
≤ R

r .

xiv) 1 ≤ 2a2

2a2−(b−c)2
2b2

2b2−(c−a)2
2c2

2c2−(a−b)2 ≤ R
2r .

xv) a
2

4r−R
R ≤√(s− b)(s− c) ≤ a

2 .

xvi) A triangle S with values area(S), r, and R exists if and only if

r

√
2R2 + 10rR− r2 − 2(R− 2r)

√
R(R− 2r)

≤ area(S) ≤ r
√

2R2 + 10rR− r2 + 2(R− 2r)
√
R(R − 2r).

xvii) Let θ �= min{|A−B|, |A− C|, |B − C|}ms. Then,

r

√
2R2 + 10rR− r2 − 2(R− 2r)

√
R(R− 2r) cos θ

≤ area(S) ≤ r
√

2R2 + 10rR− r2 + 2(R− 2r)
√
R(R− 2r) cos θ.

xviii) area(S) ≤ (R + 1
2r)

2.

xix) area(S) ≤ 1√
3
(R+ r)2.

xx) area(S) ≤ 3
√

3
25 (R+ 3r)2.

xxi) 3
√

3r2 ≤ area(S) ≤ 2rR + (3
√

3− 4)r2.

xxii) r
√

16rR− 5r2 ≤ area(S) ≤ r√4R2 + 4rR + 3r2.

xxiii) For all n ≥ 0, an + bn + cn ≤ 2n+1Rn + 2n(31+n/2 − 21+n)rn.

xxiv) A triangle S with values u = cosA, v = cosB, and v = cosC exists if and
only if u+ v + w ≥ 1, uvw ≥ −1, and u2 + v2 + w2 + 2uvw = 1.

xxv) If P is a point inside S and d1, d2, d3 are the distances from P to each of
the sides, then √

d1 +
√
d2 +

√
d3 ≤

√
a2+b2+c2

2R .

In particular,
18R2 ≤ a2 + b2 + c2.

xxvi) 4r2[8R2 − (a2 + b2 + c2)] ≤ R2(R2 − 4r2).

xxvii) abc ≤ 3
√

3R3.
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xxviii) The triangle S is similar to the triangle S′ with sides of length a′, b′, c′ if
and only if

√
aa′ +

√
bb′ +

√
cc′ =

√
(a+ b+ c)(a′ + b′ + c′).

xxix) (sin 1
2A)(sin 1

2B)(sin 1
2C) < (sin 1

2
3
√
ABC)3 < 1

8 .

xxx) (cos 1
2A)(cos 1

2B)(cos 1
2C) < [sin 1

2
3
√

(π −A)(π −B)(π − C)]3.

xxxi) (tan 1
2

3
√
ABC)3 < (tan 1

2A)(tan 1
2B)(tan 1

2C).

xxxii) 1 ≤ tan2(1
2A) + tan2(1

2B) + tan2(1
2C).

xxxiii) π
3 (a+ b+ c) ≤ Aa+Bb+ Cc ≤ π−min{A,B,C}

2 (a+ b+ c).

xxxiv) If x, y, z are positive numbers, then

x sinA+ y sinB + z sinC ≤ 1
2 (xy + yz + zx)

√
1
xy

+
1
yz

+
1
zx

≤
√

3
2

(
yz

x
+
zx

y
+
xy

z

)
.

xxxv) sinA+ sinB + sinC ≤ 3
√

3
2 .

(Proof: Results i)–v) are classical. The first expression for area(S) in v) is Heron’s
formula. Statements ii) and iii) are the cosine rule and sine rule, respectively. See
[1503, p. 319]. Statement vi) is due to Weitzenbock. See [59, p. 145] and [457,
p. 170]. The expression for area(S) in vii) follows from v) and provides the case of
equality in vi). Statements viii) and ix) are given in [59, pp. 110, 111]. Statement
xi) is given in [102]. Statements xii) and xiii) are given in [1374]. Statement xiv)
is due to [1097]. See [457, p. 174]. Statement xv) is given in [1146]. Statement
xvi), which is due to Ramus, is the fundamental triangle inequality. See [1011]. The
interpolation of xvi) given by xvii) is given in [1463]. The bounds xviii)–xx) are given
in [1464]. The bounds xxi) and xxii) are due to Blundon. See [1161]. Statement
xxiii) is given in [1161]. Statement xxiv) is given in [622]. Statement xxv) is given
in [868, pp. 255, 256]. Statement xxvi) follows from [59, p. 189]. Statement xxvii)
follows from [59, p. 144]. Statement xxviii) is given in [457, p. 183]. Necessity is
immediate. Statements xxix)–xxxi) are given in [1040]. Statement xxxii) is given
in [136, p. 231]. Statement xxxiii) is given in [971, p. 203]. The first inequality
in statement xxxiv) is Klamkin’s inequality. The first and third terms comprise it
Vasic’s inequality. See [1374]. Statement xxxiv) follows from statement xxxii) with
x = y = z = 1.) (Remark: 2r ≤ R in xii) is Euler’s inequality. The interpolation
is Bandila’s inequality. The inequality involving the second and fifth terms in xiii)
is due to Zhang and Song. See [1374].) (Remark: The bound xxi) is Mircea’s
inequality, while xxii) is due to Carliz and Leuenberger. See [1464].) (Remark:
Additional inequalities involving the sides and angles of a triangle are given in Fact
1.11.21, [244], and [971, pp. 192–203].) (Remark: The second inequality in xxxiv)
is given in Fact 1.11.10.)

Fact 2.20.12. Let a be a complex number, let b ∈ (0, |a|2), and define

S
�= {z ∈ C : |z|2 − az − az + b = 0}.
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Then, S is the circle with center at a and radius
√|a|2 − b. That is,

S = {z ∈ C : |z − a| =
√
|a|2 − b}.

(Proof: See [59, p. 84, 85].)

Fact 2.20.13. Let S ⊂ R2 be a convex quadrilateral whose sides have lengths
a, b, c, d, define the semiperimeter s �= 1

2 (a + b + c + d), let A,B,C,D denote the
angles of S labeled consecutively, and define θ �= 1

2 (A+C) = π − 1
2 (B +D). Then,

area(S) =
√

(s− a)(s− b)(s− c)(s− d)− abcd cos2 θ.

Now, let p, q be the lengths of the diagonals of S. Then,

pq ≤ ac+ bc

and

area(S) =
√

(s− a)(s− b)(s− c)(s− d)− 1
4 (ac+ bd+ pq)(ac+ bd− pq).

If the quadrilateral has an inscribed circle that contacts all four sides of the quadri-
lateral, then

area(S) =
√
abcd =

√
p2q2 − (ac− bd)2.

Finally, all of the vertices of S lie on a circle if and only if

pq = ac+ bc.

In this case,
area(S) =

√
(s− a)(s− b)(s− c)(s− d)

and
area(S) =

1
4R

√
(ad+ bc)(ac+ bd)(ab+ cd),

where R is the radius of the circumscribed circle. (Proof: See [60, pp. 37, 38],
Wikipedia, PlanetMath, and MathWorld.) (Remark: pq ≤ ac+ bc is Ptolemy’s in-
equality, which holds for nonconvex quadrilaterals. The equality case is Ptolemy’s
theorem. See [59, p. 130].) (Remark: The fourth expression for area(S) is Brah-
magupta’s formula. The limiting case d = 0 yields Heron’s formula. See Fact
2.20.11.) (Remark: For each quadrilateral, there exists a quadrilateral with the
same side lengths and whose vertices lie on a circle. The area of the latter quadri-
lateral is maximum over all quadrilaterals with the same side lengths. See [1082].)
(Problem: For which quadrilaterals does there exist a quadrilateral with the same
side lengths and whose sides are tangent to an inscribed circle?) (Remark: See Fact
9.7.5.)

Fact 2.20.14. Let S ⊂ R2 denote the polygon with vertices [ x1
y1 ], . . . , [ xn

yn ] ∈ R2

arranged in counterclockwise order, and assume that the interior of the polygon is
either empty or simply connected. Then,

area(S) = 1
2det

[
x1 x2

y1 y2

]
+ 1

2det
[
x2 x3

y2 y3

]
+ · · ·

+ 1
2det

[
xn−1 xn
yn−1 yn

]
+ 1

2det
[
xn x1

yn y1

]
.
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(Remark: The polygon need not be convex, while “counterclockwise” is determined
with respect to a point in the interior of the polygon. Simply connected means that
the polygon has no holes. See [1237].) (Remark: See [59, p. 100].) (Remark: See
Fact 9.7.5.)

Fact 2.20.15. Let S ⊂ R
3 denote the tetrahedron with vertices x, y, z, w ∈ R

3.
Then, volume(S) = 1

6

∣∣(x− w)T[(y − w)× (z − w)]
∣∣.

(Proof: The volume of the unit simplex S ⊂ R3 with vertices (0, 0, 0), (1, 0, 0),
(0, 1, 0), (0, 0, 1) is 1/6. Now, Fact 2.20.18 implies that the volume of AS is
(1/6)|detA|.) (Remark: The connection between the signed volume of a simplex
and the determinant is discussed in [878, pp. 32, 33].)

Fact 2.20.16. Let S ⊂ R3 denote the parallelepiped with vertices x, y, z, x +
y, x+ z, y + z, x+ y + z ∈ R3. Then,

volume(S) = |det
[
x y z

] |.
Fact 2.20.17. Let A ∈ Rn×m, assume that rankA = m, and let S ⊂ Rn

denote the parallelepiped in Rn with a vertex at 0 and generated by the m columns
of A, that is,

S =

{
m∑
i=1

αicoli(A): 0 ≤ αi ≤ 1 for all i = 1, . . . ,m

}
.

Then,
volume(S) =

[
det
(
ATA
)]1/2

.

If, in addition, m = n, then
volume(S) = |detA|.

(Remark: volume(S) denotes the m-dimensional volume of S. If m = 2, then
volume(S) is the area of a parallelogram. See [447, p. 202].)

Fact 2.20.18. Let S ⊂ R
n and A ∈ R

n×n. Then,

volume(AS) = |detA|volume(S).

(Remark: See [998, p. 468].)

Fact 2.20.19. Let S ⊂ Rn be a simplex, and assume that S is inscribed in a
sphere of radius R. Then,

volume(S) ≤
√

(n+ 1)n+1

nn
Rn

n!
.

Furthermore, equality holds if and only if S is a regular polytope. (Proof: See
[1373].) (Remark: See [482, p. 66-13].)

Fact 2.20.20. Let x1, . . . , xn+1 ∈ Rn, define

S
�= co {x1, . . . , xn+1},
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and define A ∈ R(n+2)×(n+2) by

A
�=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 · · · 1

1 0 ‖x1 − x2‖22 · · · ‖x1 − xn+1‖22
1 ‖x2 − x1‖22 0 · · · ‖x2 − xn+1‖22
...

...
...

. . .
...

1 ‖xn+1 − x1‖22 ‖xn+1 − x2‖22 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Then, the n-dimensional volume of S is given by

vol(S) =

√|detA|
2n−1n!

.

(Proof: See [232, pp. 97–99] and [238, pp. 234, 235].) (Remark: detA is the
Cayley-Menger determinant.) (Remark: In the case n = 2, this result yields Heron’s
formula for the area of a triangle. See Fact 2.20.11.)

Fact 2.20.21. Let S denote the spherical triangle on the surface of the unit
sphere whose vertices are x, y, z ∈ R3, and let A,B,C denote the angles of S located
at the points x, y, z, respectively. Furthermore, let a, b, c denote the planar angles
subtended by the pairs (y, z), (x, z), (x, y), respectively, or, equivalently, a, b, c
denote the sides of the spherical triangle opposite A,B,C, respectively. Finally,
define the solid angle Ω to be the area of S. Then,

Ω = A+B + C − π.
Furthermore,

tan
Ω
2

=
|[ x y z

]|
1 + xTy + xTz + yTz

.

Equivalently,

tan
Ω
2

=

√
1− cos2 a− cos2 b− cos2 c+ 2(cos a)(cos b) cos c

1 + cos a+ cos b+ cos c
.

Finally,
tan

Ω
4

=
√

(tan s
2 )(tan s−a

2 )(tan s−b
2 ) tan s−c

2 .

(Proof: See [461] and [1503, pp. 368–371].) (Remark: Spherical triangles are
discussed in [477, pp. 253–260], [753, Chapter 2], [1425, pp. 904–907], and [1436,
pp. 26–29]. A linear algebraic approach is given in [127].)

Fact 2.20.22. Let S denote a circular cap on the surface of the unit sphere,
where the angle subtended by cross sections of the cone with apex at the center of
the sphere is 2θ. Furthermore, define the solid angle Ω to be the area of S. Then,

Ω = 2π(1− cos θ).

Fact 2.20.23. Let S denote a region on the surface of the unit sphere sub-
tended by the sides of a right rectangular pyramid with apex at the center of the
sphere, where the subtended planar angles of the edges of the pyramid are θ and
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φ. Furthermore, define the solid angle Ω to be the area of S. Then,

Ω = 4 sin−1
[
(sin θ

2 ) sin φ
2

]
.

2.21 Facts on Majorization

Fact 2.21.1. Let x ∈ R
n, where x(1) ≥ · · · ≥ x(n) ≥ 0, and assume that∑n

i=1 x(i) = 1. Then, e1,n strongly majorizes x, and x strongly majorizes 1
n1n×1.

(Proof: See [971, p. 95].) (Remark: See Fact 2.21.2.)

Fact 2.21.2. Let x, y, z ∈ Rn, assume that x(1) ≥ · · · ≥ x(n), y(1) ≥ · · · ≥ y(n),
and z(1) ≥ · · · ≥ z(n) ≥ 0, and assume that y weakly majorizes x. Then,

xTz ≤ yTz.

(Proof: See [971, p. 95].) (Remark: See Fact 2.21.3.)

Fact 2.21.3. Let x, y, z ∈ Rn, assume that x(1) ≥ · · · ≥ x(n), y(1) ≥ · · · ≥ y(n),
and z(1) ≥ · · · ≥ z(n), and assume that y strongly majorizes x. Then,

xTz ≤ yTz.

(Proof: See [971, p. 92].)

Fact 2.21.4. Let a < b, let f : (a, b)n �→ R, and assume that f is C1. Then, f
is Schur convex if and only if f is symmetric and, for all x ∈ (a, b)n,

(x(1) − x(2))
(
∂f(x)
∂x(1)

− ∂f(x)
∂x(2)

)
≥ 0.

(Proof: See [971, p. 57].) (Remark: f is symmetric means that f(Ax) = f(x) for
all x ∈ (a, b)n and for every permutation matrix A ∈ Rn×n. (Remark: See [779].)

Fact 2.21.5. Let x, y ∈ Rn, assume that x(1) ≥ · · · ≥ x(n) ≥ 0 and y(1) ≥
· · · ≥ y(n) ≥ 0, assume that y strongly majorizes x, and let p1, . . . , pn be nonnegative
numbers. Then, ∑ n∏

j=1

p
x(j)
ij
≤ 1

n!

∑ n∏
j=1

p
y(j)
ij

where the summation is taken over all n! permutations {i1, . . . , in} of {1, . . . , n}.
(Proof: See [542, p. 99] and [971, p. 88].) (Remark: This result is Muirhead’s theo-
rem, which is based on a function that is Schur convex. An immediate consequence
is an interpolated version of the arithmetic-mean–geometric-mean inequality. See
Fact 1.15.25.)

Fact 2.21.6. Let x, y ∈ Rn, where x(1) ≥ · · · ≥ x(n) ≥ 0 and y(1) ≥ · · · ≥
y(n) ≥ 0, assume that y strongly majorizes x, and assume that

∑n
i=1 x(i) = 1. Then,

n∑
i=1

yi log 1
y(i)
≤

n∑
i=1

xi log 1
x(i)
≤ logn.
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(Proof: See [542, p. 102] and [971, pp. 71, 405].) (Remark: For x(1), x(2) > 0,
note that (x(1)−x(2)) log(x(1)/x(2)) ≥ 0. Hence, it follows from Fact 2.21.4 that the
entropy function is Schur concave.) (Remark: Entropy bounds are given in Fact
1.15.45, Fact 1.15.46, and Fact 1.15.47.)

Fact 2.21.7. Let x, y ∈ R
n, where x(1) ≥ · · · ≥ x(n) and y(1) ≥ · · · ≥ y(n).

Then, the following statements are equivalent:

i) y strongly majorizes x.

ii) x is an element of the convex hull of the vectors y1, . . . , yn! ∈ Rn, where
each of these n! vectors is formed by permuting the components of y.

iii) There exists a doubly stochastic matrix A ∈ Rn×n such that y = Ax.

(Proof: The equivalence of i) and ii) is due to Rado. See [971, p. 113]. The
equivalence of i) and iii) is the Hardy-Littlewood-Polya theorem. See [197, p. 33],
[709, p. 197], and [971, p. 22].) (Remark: See Fact 8.17.8.) (Remark: The matrix
A is doubly stochastic if it is nonnegative, 11×nA = 11×n, and A1n×1 = 1n×1.)

Fact 2.21.8. Let x, y ∈ Rn, where x(1) ≥ · · · ≥ x(n) and y(1) ≥ · · · ≥ y(n),
assume that y strongly majorizes x, let f : [min{x(n), y(n)}, y(1)] �→ R, assume that
f is convex, and let {i1, . . . , in} = {j1, . . . , jn} = {1, . . . , n} be such that f(x(i1)) ≥
· · · ≥ f(x(in)) and f(y(i1)) ≥ · · · ≥ f(y(in)). Then,

[
f(y(j1)) · · · f(y(jn))

]T
weakly majorizes

[
f(x(i1)) · · · f(x(in))

]T
. (Proof: See [197, p. 42], [711, p.

173], or [971, p. 116].)

Fact 2.21.9. Let x, y ∈ Rn, where x(1) ≥ · · · ≥ x(n) ≥ 0 and y(1) ≥ · · · ≥
y(n) ≥ 0, assume that y strongly log majorizes x, let f : [0,∞) �→ R, assume that
g: R �→ R defined by g(z) �= f(ez) is convex, and let {i1, . . . , in} = {j1, . . . , jn} =
{1, . . . , n} be such that f(x(i1)) ≥ · · · ≥ f(x(in)) and f(y(j1)) ≥ · · · ≥ f(y(jn)).

Then,
[
f(y(j1)) · · · f(y(jn))

]T weakly majorizes
[
f(x(i1)) · · · f(x(in))

]T
.

(Proof: Apply Fact 2.21.8.)

Fact 2.21.10. Let x, y ∈ Rn, where x(1) ≥ · · · ≥ x(n) and y(1) ≥ · · · ≥ y(n),
assume that y weakly majorizes x, let f : [min{x(n), y(n)}, y(1)] �→ R, assume
that f is convex and increasing, and let {i1, . . . , in} = {j1, . . . , jn} = {1, . . . , n}
be such that f(x(i1)) ≥ · · · ≥ f(x(in)) and f(y(j1)) ≥ · · · ≥ f(y(jn)). Then,[
f(y(j1)) · · · f(y(jn))

]T
weakly majorizes

[
f(x(i1)) · · · f(x(in))

]T
. (Proof:

See [197, p. 42], [711, p. 173], or [971, p. 116].) (Remark: See Fact 2.21.11.)

Fact 2.21.11. Let x, y ∈ Rn, where x(1) ≥ · · · ≥ x(n) ≥ 0 and y(1) ≥ · · · ≥
y(n) ≥ 0, assume that y strongly majorizes x, and let r ≥ 1. Then,[
yr(1) · · · yr(n)

]T
weakly majorizes

[
xr(1) · · · xr(n)

]T
. (Proof: Use

Fact 2.21.11.) (Remark: Using the Schur power (see Section 7.3), the conclusion
can be stated as the fact that y◦r weakly majorizes x◦r.)

Fact 2.21.12. Let x, y ∈ Rn, where x(1) ≥ · · · ≥ x(n) ≥ 0 and y(1) ≥
· · · ≥ y(n) ≥ 0, assume that y weakly log majorizes x, let f : [0,∞) �→ R, as-
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sume that g: R �→ R defined by g(z) �= f(ez) is convex and increasing, and let
{i1, . . . , in} = {j1, . . . , jn} = {1, . . . , n} be such that f(x(i1)) ≥ · · · ≥ f(x(in))

and f(y(j1)) ≥ · · · ≥ f(y(jn)). Then,
[
f(y(j1)) · · · f(y(jn))

]T weakly majorizes[
f(x(i1)) · · · f(x(in))

]T
. (Proof: Use Fact 2.21.10.)

Fact 2.21.13. Let x, y ∈ Rn, where x(1) ≥ · · · ≥ x(n) ≥ 0 and y(1) ≥ · · · ≥
y(n) ≥ 0, and assume that y weakly log majorizes x. Then, y weakly majorizes x.
(Proof: Use Fact 2.21.12 with f(t) = t. See [1485, p. 19].)

Fact 2.21.14. Let x, y ∈ Rn, where x(1) ≥ · · · ≥ x(n) ≥ 0 and y(1) ≥ · · · ≥
y(n) ≥ 0, assume that y weakly majorizes x, and let p ∈ [1,∞). Then, for all
k = 1, . . . , n, (

k∑
i=1

xp(i)

)1/p
≤
(

k∑
i=1

yp(i)

)1/p
.

(Proof: Use Fact 2.21.10. See [971, p. 96].) (Remark: φ(x) �=
(∑k

i=1 x
p
(i)

)1/p
is a

symmetric gauge function. See Fact 9.8.42.)

2.22 Notes

The theory of determinants is discussed in [1023, 1346]. Applications to
physics are described in [1371, 1372]. Contributors to the development of this
subject are are highlighted in [581]. The empty matrix is discussed in [382, 1032],
[1129, pp. 462–464], and [1235, p. 3]. Recent versions of Matlab follow the proper-
ties of the empty matrix given in this chapter [676, pp. 305, 306]. Convexity is the
subject of [180, 239, 255, 450, 879, 1133, 1235, 1355, 1412]. Convex optimization
theory is developed in [176, 255]. In [239] the dual cone is called the polar cone.

The development of rank properties is based on [968]. Theorem 2.6.4 is based
on [1045]. The term “subdeterminant” is used in [1081] and is equivalent to minor.
The notation AA for adjugate is used in [1228]. Numerous papers on basic topics
in matrix theory and linear algebra are collected in [292, 293]. A geometric inter-
pretation of N(A), R(A), N(A∗), and R(AT) is given in [1239]. Some reflections
on matrix theory are given in [1259, 1276]. Applications of the matrix inversion
lemma are discussed in [619]. Some historical notes on the determinant and inverse
of partitioned matrices as well as the matrix inversion lemma are given in [666].

The implications of majorization are extensively developed in [971, 973].



Chapter Three

Matrix Classes and Transformations

This chapter presents definitions of various types of matrices as well as trans-
formations for analyzing matrices.

3.1 Matrix Classes

In this section we categorize various types of matrices based on their algebraic
and structural properties.

The following definition introduces various types of square matrices.

Definition 3.1.1. For A ∈ Fn×n define the following types of matrices:

i) A is group invertible if R(A) = R
(
A2
)
.

ii) A is involutory if A2 = I.

iii) A is skew involutory if A2 = −I.
iv) A is idempotent if A2 = A.

v) A is skew idempotent if A2 = −A.
vi) A is tripotent if A3 = A.

vii) A is nilpotent if there exists k ∈ P such that Ak = 0.

viii) A is unipotent if A− I is nilpotent.

ix) A is range Hermitian if R(A) = R(A∗).

x) A is range symmetric if R(A) = R
(
AT
)
.

xi) A is Hermitian if A = A∗.

xii) A is symmetric if A = AT.

xiii) A is skew Hermitian if A = −A∗.

xiv) A is skew symmetric if A = −AT.

xv) A is normal if AA∗ = A∗A.

xvi) A is positive semidefinite (A ≥ 0) if A is Hermitian and x∗Ax ≥ 0 for all
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x ∈ Fn.

xvii) A is negative semidefinite (A ≤ 0) if −A is positive semidefinite.

xviii) A is positive definite (A > 0) if A is Hermitian and x∗Ax > 0 for all x ∈ Fn

such that x �= 0.

xix) A is negative definite (A < 0) if −A is positive definite.

xx) A is semidissipative if A+A∗ is negative semidefinite.

xxi) A is dissipative if A+ A∗ is negative definite.

xxii) A is unitary if A∗A = I.

xxiii) A is shifted unitary if A+A∗ = 2A∗A.

xxiv) A is orthogonal if ATA = I.

xxv) A is shifted orthogonal if A+AT = 2ATA.

xxvi) A is a projector if A is Hermitian and idempotent.

xxvii) A is a reflector if A is Hermitian and unitary.

xxviii) A is a skew reflector if A is skew Hermitian and unitary.

xxix) A is an elementary projector if there exists a nonzero vector x ∈ Fn such
that A = I − (x∗x)−1xx∗.

xxx) A is an elementary reflector if there exists a nonzero vector x ∈ Fn such
that A = I − 2(x∗x)−1xx∗.

xxxi) A is an elementary matrix if there exist vectors x, y ∈ Fn such that A =
I − xyT and xTy �= 1.

xxxii) A is reverse Hermitian if A = A∗̂.

xxxiii) A is reverse symmetric if A = AT̂.

xxxiv) A is a permutation matrix if each row of A and each column of A possesses
one 1 and zeros otherwise.

xxxv) A is reducible if either n = 1 and A = 0 or n ≥ 2 and there exist k ≥ 1 and
a permutation matrix S ∈ Rn×n such that SAST =

[
B C

0k×(n−k) D

]
, where

B ∈ F(n−k)×(n−k), C ∈ F(n−k)×k, and D ∈ Fk×k.

xxxvi) A is irreducible if A is not reducible.

Let A ∈ Fn×n be Hermitian. Then, the function f : Fn �→ R defined by

f(x) �= x∗Ax (3.1.1)

is a quadratic form.

The n× n standard nilpotent matrix, which has 1’s on the superdiagonal and
0’s elsewhere, is denoted by Nn or just N. We define N1

�= 0 and N0
�= 00×0.

The following definition considers matrices that are not necessarily square.
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Definition 3.1.2. For A ∈ Fn×m define the following types of matrices:

i) A is semicontractive if In −AA∗ is positive semidefinite.

ii) A is contractive if In −AA∗ is positive definite.

iii) A is left inner if A∗A = Im.

iv) A is right inner if AA∗ = In.

v) A is centrohermitian if A = ÎnAÎm.

vi) A is centrosymmetric if A = ÎnAÎm.

vii) A is an outer-product matrix if there exist x ∈ F
n and y ∈ F

m such that
A = xyT.

The following definition introduces various types of structured matrices.

Definition 3.1.3. For A ∈ Fn×m define the following types of matrices:

i) A is diagonal if A(i,j) = 0 for all i �= j. If n = m, then

A = diag
(
A(1,1), . . . , A(n,n)

)
.

ii) A is tridiagonal if A(i,j) = 0 for all |i− j| > 1.

iii) A is reverse diagonal if A(i,j) = 0 for all i+ j �= min{n,m}+ 1. If n = m,
then

A = revdiag
(
A(1,n), . . . , A(n,1)

)
.

iv) A is (upper triangular, strictly upper triangular) if A(i,j) = 0 for all (i ≥
j, i > j).

v) A is (lower triangular, strictly lower triangular) if A(i,j) = 0 for all (i ≤
j, i < j).

vi) A is (upper Hessenberg, lower Hessenberg) if A(i,j) = 0 for all (i > j+1, i <
j + 1).

vii) A is Toeplitz if A(i,j) = A(k,l) for all k − i = l− j, that is,

A =

⎡
⎢⎢⎢⎢⎢⎣

a b c · · ·
d a b

. . .

e d a
. . .

...
. . . . . . . . .

⎤
⎥⎥⎥⎥⎥⎦.

viii) A is Hankel if A(i,j) = A(k,l) for all i+ j = k + l, that is,

A =

⎡
⎢⎢⎢⎢⎢⎣

a b c · · ·
b c d . ..

c d e . ..

... . .. . .. . ..

⎤
⎥⎥⎥⎥⎥⎦.



168 CHAPTER 3

ix) A is block diagonal if

A =

⎡
⎣ A1 0

. . .
0 Ak

⎤
⎦ = diag(A1, . . . , Ak),

where Ai ∈ Fni×mi for all i = 1, . . . , k.

x) A is upper block triangular if

A =

⎡
⎢⎢⎣
A11 A12 · · · A1k

0 A22 · · · A2k
...

. . .
. . .

...
0 0 · · · Akk

⎤
⎥⎥⎦,

where Aij ∈ Fni×nj for all i, j = 1, . . . , k.

xi) A is lower block triangular if

A =

⎡
⎢⎢⎢⎢⎣
A11 0 · · · 0
A21 A22

. . . 0
...

...
. . .

...
Ak1 Ak2 · · · Akk

⎤
⎥⎥⎥⎥⎦,

where Aij ∈ Fni×nj for all i, j = 1, . . . , k.

xii) A is block Toeplitz if A(i,j) = A(k,l) for all k − i = l − j, that is,

A =

⎡
⎢⎢⎢⎢⎢⎣

A1 A2 A3 · · ·
A4 A1 A2

. . .

A5 A4 A1
. . .

...
. . . . . . . . .

⎤
⎥⎥⎥⎥⎥⎦,

where Ai ∈ F
ni×mi.

xiii) A is block Hankel if A(i,j) = A(k,l) for all i+ j = k + l, that is,

A =

⎡
⎢⎢⎢⎢⎢⎣

A1 A2 A3 · · ·
A2 A3 A4 . ..

A3 A4 A5 . ..

... . .. . .. . ..

⎤
⎥⎥⎥⎥⎥⎦,

where Ai ∈ Fni×mi.

Definition 3.1.4. For A ∈ Rn×m define the following types of matrices:

i) A is nonnegative (A ≥≥ 0) ifA(i,j) ≥ 0 for all i = 1, . . . , n and j = 1, . . . ,m.

ii) A is positive (A >> 0) if A(i,j) > 0 for all i = 1, . . . , n and j = 1, . . . ,m.

Now, assume that n = m. Then, define the following types of matrices:

iii) A is almost nonnegative if A(i,j) ≥ 0 for all i, j = 1, . . . , n such that i �= j.
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iv) A is a Z-matrix if −A is almost nonnegative.

Define the unit imaginary matrix J2n ∈ R2n×2n (or just J) by

J2n
�=
[

0 In
−In 0

]
. (3.1.2)

In particular,

J2 =
[

0 1
−1 0

]
. (3.1.3)

Note that J2n is skew symmetric and orthogonal, that is,

JT
2n = −J2n = J−1

2n . (3.1.4)

Hence, J2n is skew involutory and a skew reflector.

The following definition introduces structured matrices of even order. Note
that F can represent either R or C, although AT does not become A∗ in the latter
case.

Definition 3.1.5. For A ∈ F2n×2n define the following types of matrices:

i) A is Hamiltonian if J−1ATJ = −A.
ii) A is symplectic if A is nonsingular and J−1ATJ = A−1.

Proposition 3.1.6. Let A ∈ Fn×n. Then, the following statements hold:

i) If A is Hermitian, skew Hermitian, or unitary, then A is normal.

ii) If A is nonsingular or normal, then A is range Hermitian.

iii) If A is range Hermitian, idempotent, or tripotent, then A is group invert-
ible.

iv) If A is a reflector, then A is tripotent.

v) If A is a permutation matrix, then A is orthogonal.

Proof. i) is immediate. To prove ii), note that, if A is nonsingular, then
R(A) = R(A∗) = Fn, and thus A is range Hermitian. If A is normal, then it
follows from Theorem 2.4.3 that R(A) = R(AA∗) = R(A∗A) = R(A∗), which proves
that A is range Hermitian. To prove iii), note that, if A is range Hermitian, then
R(A) = R(AA∗) = AR(A∗) = AR(A) = R(A2), while, if A is idempotent, then
R(A) = R(A2). If A is tripotent, then R(A) = R(A3) = A2R(A) ⊆ R(A2) =
AR(A) ⊆ R(A). Hence, R(A) = R(A2).

Proposition 3.1.7. Let A ∈ F2n×2n. Then, A is Hamiltonian if and only if
there exist matrices A,B,C ∈ Fn×n such that B and C are symmetric and

A =
[
A B
C −AT

]
. (3.1.5)
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3.2 Matrices Based on Graphs

Definition 3.2.1. Let G = (X,R) be a graph, where X = {x1, . . . , xn}. Then,
the following terminology is defined:

i) The adjacency matrix A ∈ Rn×n of G is given by A(i,j) = 1 if (xj , xi) ∈ R

and A(i,j) = 0 if (xj , xi) /∈ R, for all i, j = 1, . . . , n.

ii) The inbound Laplacian matrix Lin ∈ Rn×n of G is given by Lin(i,i) =∑n
j=1,j �=i A(i,j), for all i = 1, . . . , n, and Lin(i,j) = −A(i,j), for all distinct

i, j = 1, . . . , n.

iii) The outbound Laplacian matrix Lout ∈ Rn×n of G is given by Lout(i,i) =∑n
j=1,j �=i A(j,i), for all i = 1, . . . , n, and Lout(i,j) = −A(i,j), for all distinct

i, j = 1, . . . , n.

iv) The indegree matrix Din ∈ Rn×n is the diagonal matrix such that Din(i,i) =
indeg(xi), for all i = 1, . . . , n.

v) The outdegree matrix Dout ∈ Rn×n is the diagonal matrix such that
Dout(i,i) = outdeg(xi), for all i = 1, . . . , n.

vi) Assume that G has no self-loops, and let R = {a1, . . . , am}. Then, the
incidence matrix B ∈ Rn×m of G is given by B(i,j) = 1 if i is the tail of
aj , B(i,j) = −1 if i is the head of aj , and B(i,j) = 0 otherwise, for all
i = 1, . . . , n and j = 1, . . . ,m.

vii) If G is symmetric, then the Laplacian matrix of G is given by L
�= Lin =

Lout.

viii) If G is symmetric, then the degree matrix D ∈ Rn×n of G is given by
D

�= Din = Dout.

ix) If G = (X,R, w) is a weighted graph, then the adjacency matrix A ∈ Rn×n

of G is given by A(i,j) = w[(xj , xi)] if (xj , xi) ∈ R and A(i,j) = 0 if (xj , xi) /∈
R, for all i, j = 1, . . . , n.

Note that the adjacency matrix is nonnegative, while the inbound Laplacian,
outbound Laplacian, and Laplacian matrices are Z-matrices. Furthermore, note
that the inbound Laplacian, outbound Laplacian, and Laplacian matrices are unaf-
fected by the presence of self-loops. However, the indegree and outdegree matrices
account for self-loops. It can be seen that, for the arc ai given by (xk, xl), the ith
column of B is given by coli(B) = el − ek. Finally, if G is a symmetric graph, then
A and L are symmetric.

Theorem 3.2.2. Let G = (X,R) be a graph, where X = {x1, . . . , xn}, and let
Lin, Lout, Din, Dout, and A denote the inbound Laplacian, outbound Laplacian,
indegree, outdegree, and adjacency matrices of G, respectively. Then,

Lin = Din −A (3.2.1)

and

Lout = Dout −A. (3.2.2)
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Theorem 3.2.3. Let G = (X,R) be a symmetric graph, where X =
{x1, . . . , xn}, and let A, L, D, and B denote the adjacency, Laplacian, degree,
and incidence matrices of G, respectively. Then,

L = D −A. (3.2.3)

Now, assume that G has no self-loops. Then,

L = 1
2BB

T. (3.2.4)

Definition 3.2.4. Let M ∈ Fn×n, and let X = {x1, . . . , xn}. Then, the graph
of M is G(M) �= (X,R), where, for all i, j = 1, . . . , n, (xj , xi) ∈ R if and only if
M(i,j) �= 0.

Proposition 3.2.5. Let M ∈ Fn×n. Then, the adjacency matrix A of G(M)
is given by

A = sign |M |. (3.2.5)

3.3 Lie Algebras and Groups

In this section we introduce Lie algebras and groups. Lie groups are discussed
in Section 11.5. In the following definition, note that the coefficients α and β are
required to be real when F = C.

Definition 3.3.1. Let S ⊆ F
n×n. Then, S is a Lie algebra if the following

conditions are satisfied:

i) If A,B ∈ S and α, β ∈ R, then αA+ βB ∈ S.

ii) If A,B ∈ S, then [A,B] ∈ S.

Note that, if F = R, then statement i) is equivalent to the statement that S

is a subspace. However, if F = C and S contains matrices that are not real, then S

is not a subspace.

Proposition 3.3.2. The following sets are Lie algebras:

i) glF(n) �= Fn×n.

ii) plC(n) �= {A ∈ Cn×n: trA ∈ R}.
iii) slF(n) �= {A ∈ Fn×n: trA = 0}.
iv) u(n) �= {A ∈ Cn×n: A is skew Hermitian}.
v) su(n) �= {A ∈ C

n×n: A is skew Hermitian and trA = 0}.
vi) so(n) �= {A ∈ Rn×n: A is skew symmetric}.
vii) su(n,m) �= {A ∈ C(n+m)×(n+m): diag(In,−Im)A∗diag(In,−Im) = −A and

trA = 0}.
viii) so(n,m)�={A ∈ R(n+m)×(n+m): diag(In,−Im)ATdiag(In,−Im)=−A}.
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ix) sympF(2n) �= {A ∈ F2n×2n: A is Hamiltonian}.
x) osympC(2n) �= su(2n) ∩ sympC(2n).

xi) osympR(2n) �= so(2n) ∩ sympR(2n).

xii) affF(n) �=
{[

A b
0 0

]
: A ∈ glF(n), b ∈ Fn

}
.

xiii) seC(n) �=
{[

A b
0 0

]
: A ∈ su(n), b ∈ Cn

}
.

xiv) seR(n) �=
{[

A b
0 0

]
: A ∈ so(n), b ∈ Rn

}
.

xv) transF(n) �=
{[

0 b
0 0

]
: b ∈ Fn

}
.

Definition 3.3.3. Let S ⊂ Fn×n. Then, S is a group if the following conditions
are satisfied:

i) If A ∈ S, then A is nonsingular.

ii) If A ∈ S, then A−1 ∈ S.

iii) If A,B ∈ S, then AB ∈ S.

S is an Abelian group if S is a group and the following condition is also satisfied:

iv) For all A,B ∈ S, [A,B] = 0.

Finally, S is a finite group if S is a group and has a finite number of elements.

Definition 3.3.4. Let S1 ⊂ F
n1×n1 and S2 ⊂ F

n1×n1 be groups. Then, S1

and S2 are isomorphic if there exists a one-to-one and onto function φ : S1 �→ S2

such that, for all A,B ∈ S1, φ(AB) = φ(A)φ(B). In this case, S1 ≈ S2, and φ is an
isomorphism.

Proposition 3.3.5. Let S1 ⊂ Fn1×n1 and S2 ⊂ Fn1×n1 be groups, and assume
that S1 and S2 are isomorphic with isomorphism φ : S1 �→ S2. Then, φ(In1 ) = In2 ,
and, for all A ∈ S1, φ(A−1) = [φ(A)]−1.

Note that, if S ⊂ Fn×n is a group, then In ∈ S.

The following result lists classical groups that arise in physics and engineering.
For example, O(1, 3) is the Lorentz group [1162, p. 16], [1186, p. 126]. The special
orthogonal group SO(n) consists of the orthogonal matrices whose determinant is
1. In particular, each matrix in SO(2) and SO(3) is a rotation matrix.

Proposition 3.3.6. The following sets are groups:

i) GLF(n) �= {A ∈ Fn×n: detA �= 0}.
ii) PLF(n) �= {A ∈ Fn×n: detA > 0}.
iii) SLF(n) �= {A ∈ Fn×n: detA = 1}.
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iv) U(n) �= {A ∈ Cn×n: A is unitary}.
v) O(n) �= {A ∈ Rn×n: A is orthogonal}.
vi) SU(n) �= {A ∈ U(n): detA = 1}.
vii) SO(n) �= {A ∈ O(n): detA = 1}.
viii) U(n,m) �= {A∈C

(n+m)×(n+m): A∗diag(In,−Im)A = diag(In,−Im)}.
ix) O(n,m) �= {A∈R(n+m)×(n+m): ATdiag(In,−Im)A = diag(In,−Im)}.
x) SU(n,m) �= {A∈ U(n,m): detA = 1}.
xi) SO(n,m) �= {A∈O(n,m): detA = 1}.
xii) SympF(2n) �= {A ∈ F2n×2n: A is symplectic}.
xiii) OSympC(2n) �= U(2n) ∩ SympC(2n).

xiv) OSympR(2n) �= O(2n) ∩ SympR(2n).

xv) AffF(n) �=
{[

A b
0 1

]
: A ∈ GLF(n), b ∈ Fn

}
.

xvi) SEC(n) �=
{[

A b
0 1

]
: A ∈ SU(n), b ∈ Cn

}
.

xvii) SER(n) �=
{[

A b
0 1

]
: A ∈ SO(n), b ∈ Rn

}
.

xviii) TransF(n) �=
{[

I b
0 1

]
: b ∈ Fn

}
.

3.4 Matrix Transformations

The following results use groups to define equivalence relations.

Proposition 3.4.1. Let S1 ⊂ Fn×n and S2 ⊂ Fm×m be groups, and let M ⊆
Fn×m. Then, the subset of M×M defined by

R
�= {(A,B) ∈M×M:

there exist S1∈ S1 and S2 ∈ S2 such that A = S1BS2}
is an equivalence relation on M.

Proposition 3.4.2. Let S⊂ Fn×n be a group, and let M ⊆ Fn×n. Then, the
following subsets of M×M are equivalence relations:

i) R
�= {(A,B) ∈M×M: there exists S ∈ S such that A = SBS−1}.

ii) R
�= {(A,B) ∈M×M: there exists S ∈ S such that A = SBS∗}.

iii) R
�= {(A,B) ∈M×M: there exists S ∈ S such that A = SBST}.

If, in addition, S is an Abelian group, then the following subset M × M is an
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equivalence relation:

iv) R
�= {(A,B) ∈M×M: there exists S ∈ S such that A = SBS}.

Various transformations can be employed for analyzing matrices. Propositions
3.4.1 and 3.4.2 imply that these transformations define equivalence relations.

Definition 3.4.3. Let A,B ∈ Fn×m. Then, the following terminology is de-
fined:

i) A and B are left equivalent if there exists a nonsingular matrix S1 ∈ Fn×n

such that A = S1B.

ii) A and B are right equivalent if there exists a nonsingular matrix S2 ∈ Fm×m

such that A = BS2.

iii) A and B are biequivalent if there exist nonsingular matrices S1∈ F
n×n and

S2 ∈ Fm×m such that A = S1BS2.

iv) A and B are unitarily left equivalent if there exists a unitary matrix S1 ∈
Fn×n such that A = S1B.

v) A and B are unitarily right equivalent if there exists a unitary matrix
S2 ∈ Fm×m such that A = BS2.

vi) A and B are unitarily biequivalent if there exist unitary matrices S1 ∈ Fn×n

and S2 ∈ Fm×m such that A = S1BS2.

Definition 3.4.4. Let A,B ∈ F
n×n. Then, the following terminology is de-

fined:

i) A and B are similar if there exists a nonsingular matrix S ∈ Fn×n such
that A = SBS−1.

ii) A and B are congruent if there exists a nonsingular matrix S ∈ Fn×n such
that A = SBS∗.

iii) A and B are T-congruent if there exists a nonsingular matrix S ∈ Fn×n

such that A = SBST.

iv) A and B are unitarily similar if there exists a unitary matrix S ∈ Fn×n

such that A = SBS∗ = SBS−1.

The transformations that appear in Definition 3.4.3 and Definition 3.4.4 are
called left equivalence, right equivalence, biequivalence, unitary left equivalence, uni-
tary right equivalence, unitary biequivalence, similarity, congruence, T-congruence,
and unitary similarity transformations, respectively. The following results summa-
rize some matrix properties that are preserved under left equivalence, right equiv-
alence, biequivalence, similarity, congruence, and unitary similarity.

Proposition 3.4.5. Let A,B ∈ Fn×n. If A and B are similar, then the follow-
ing statements hold:

i) A and B are biequivalent.

ii) trA = trB.
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iii) detA = detB.

iv) Ak and Bk are similar for all k ≥ 1.

v) Ak∗ and Bk∗ are similar for all k ≥ 1.

vi) A is nonsingular if and only if B is; in this case, A−k and B−k are similar
for all k ≥ 1.

vii) A is (group invertible, involutory, skew involutory, idempotent, tripotent,
nilpotent) if and only if B is.

If A and B are congruent, then the following statements hold:

viii) A and B are biequivalent.

ix) A∗ and B∗ are congruent.

x) A is nonsingular if and only if B is; in this case, A−1 and B−1 are congruent.

xi) A is (range Hermitian, Hermitian, skew Hermitian, positive semidefinite,
positive definite) if and only if B is.

If A and B are unitarily similar, then the following statements hold:

xii) A and B are similar.

xiii) A and B are congruent.

xiv) A is (range Hermitian, group invertible, normal, Hermitian, skew Her-
mitian, positive semidefinite, positive definite, unitary, involutory, skew
involutory, idempotent, tripotent, nilpotent) if and only if B is.

3.5 Projectors, Idempotent Matrices, and Subspaces

The following result shows that a unique projector can be associated with
each subspace.

Proposition 3.5.1. Let S ⊆ Fn be a subspace. Then, there exists a unique
projector A ∈ Fn×n such that S = R(A). Furthermore, x ∈ S if and only if x = Ax.

Proof. See [998, p. 386] and Fact 3.13.15.

For a subspace S ⊆ Fn, the matrix A ∈ Fn×n given by Proposition 3.5.1 is
the projector onto S.

Let A ∈ Fn×n be a projector. Then, the complementary projector A⊥ is the
projector defined by

A⊥
�= I −A. (3.5.1)

Proposition 3.5.2. Let S ⊆ Fn be a subspace, and let A ∈ Fn×n be the
projector onto S. Then, A⊥ is the projector onto S⊥. Furthermore,

R(A)⊥ = N(A) = R(A⊥) = S⊥. (3.5.2)



176 CHAPTER 3

The following result shows that a unique idempotent matrix can be associated
with each pair of complementary subspaces.

Proposition 3.5.3. Let S1, S2 ⊆ Fn be complementary subspaces. Then,
there exists a unique idempotent matrix A ∈ F

n×n such that R(A) = S1 and
N(A) = S2.

Proof. See [182, p. 118] or [998, p. 386].

For complementary subspaces S1, S2 ⊆ Fn, the unique idempotent matrix
A ∈ Fn×n given by Proposition 3.5.3 is the idempotent matrix onto S1 = R(A)
along S2 = N(A).

For an idempotent matrix A ∈ Fn×n, the complementary idempotent matrix
A⊥ defined by (3.5.1) is also idempotent.

Proposition 3.5.4. Let S1, S2 ⊆ Fn be complementary subspaces, and let
A ∈ Fn×n be the idempotent matrix onto S1 = R(A) along S2 = N(A). Then,
R(A⊥) = S2 and N(A⊥) = S1, that is, A⊥ is the idempotent matrix onto S2 along
S1.

Definition 3.5.5. The index of A, denoted by indA, is the smallest nonneg-
ative integer k such that

R
(
Ak
)

= R
(
Ak+1

)
. (3.5.3)

Proposition 3.5.6. Let A ∈ Fn×n. Then, A is nonsingular if and only if
indA = 0. Furthermore, A is group invertible if and only if indA ≤ 1.

Note that ind 0n×n = 1.

Proposition 3.5.7. Let A ∈ F
n×n, and let k ≥ 1. Then, indA ≤ k if and only

if R
(
Ak
)

and N
(
Ak
)

are complementary subspaces.

Fact 3.6.3 states that the null space and range of a range-Hermitian matrix
are orthogonally complementary subspaces. Furthermore, Proposition 3.1.6 states
that every range-Hermitian matrix is group invertible. Hence, the null space and
range of a group-invertible matrix are complementary subspaces. The following
corollary of Proposition 3.5.7 shows that the converse is true. Note that every
idempotent matrix is group invertible.

Corollary 3.5.8. Let A ∈ Fn×n. Then, A is group invertible if and only if
R(A) and N(A) are complementary subspaces.

For a group-invertible matrix A ∈ Fn×n, the following result shows how to
construct the idempotent matrix onto R(A) along N(A).

Proposition 3.5.9. Let A ∈ F
n×n, and let r �= rankA. Then, A is group

invertible if and only if there exist matrices B ∈ Fn×r and C ∈ Fr×n such that A =
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BC and rankB = rankC = r. In this case, the idempotent matrix P �= B(CB)−1C
is the idempotent matrix onto R(A) along N(A).

Proof. See [998, p. 634].

An alternative expression for the idempotent matrix onto R(A) along N(A)
is given by Proposition 6.2.3.

3.6 Facts on Group-Invertible and Range-Hermitian Matrices

Fact 3.6.1. Let A ∈ Fn×n. Then, the following statements are equivalent:

i) A is group invertible.

ii) A∗ is group invertible.

iii) AT is group invertible.

iv) A is group invertible.

v) R(A) = R(A2).

vi) N(A) = N
(
A2
)
.

vii) N(A) ∩ R(A) = {0}.
viii) N(A) + R(A) = Fn.

ix) A and A2 are left equivalent.

x) A and A2 are right equivalent.

xi) indA ≤ 1.

xii) rankA = rankA2.

xiii) def A = def A2.

xiv) def A = amultA(0).

(Remark: See Corollary 3.5.8, Proposition 3.5.9, and Corollary 5.5.9.)

Fact 3.6.2. Let A ∈ Fn×n. Then, indA ≤ k if and only if Ak is group invert-
ible.

Fact 3.6.3. Let A ∈ Fn×n. Then, the following statements are equivalent:

i) A is range Hermitian.

ii) A∗ is range Hermitian.

iii) R(A) = R(A∗).

iv) R(A) ⊆ R(A∗).

v) R(A∗) ⊆ R(A).

vi) N(A) = N(A∗).
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vii) A and A∗ are right equivalent.

viii) R(A)⊥ = N(A).

ix) N(A)⊥ = R(A).

x) R(A) and N(A) are orthogonally complementary subspaces.

xi) rankA = rank
[
A A∗ ].

(Proof: See [323, 1277].) (Remark: Using Fact 3.13.15, Proposition 3.5.2, and
Proposition 6.1.6, vi) is equivalent to A+A = I − (I −A+A) = AA+. See Fact 6.3.9,
Fact 6.3.10, and Fact 6.3.11.)

Fact 3.6.4. Let A ∈ Fn×n, and assume that A2 = A∗. Then, A is range
Hermitian. (Proof: See [114].) (Remark: A is a generalized projector.)

Fact 3.6.5. Let A,B ∈ Fn×n, and assume that A and B are range Hermitian.
Then,

rankAB = rankBA.

(Proof: See [122].)

3.7 Facts on Normal, Hermitian, and Skew-Hermitian Matrices

Fact 3.7.1. Let A ∈ Fn×n, assume that A is nonsingular, and assume that A
is (normal, Hermitian, skew Hermitian, unitary). Then, so is A−1.

Fact 3.7.2. Let A ∈ Fn×m. Then, AAT ∈ Fn×n and ATA ∈ Fm×m are sym-
metric.

Fact 3.7.3. Let α ∈ R and A ∈ R
n×n. Then, the matrix equation αA+AT = 0

has a nonzero solution A if and only if α = 1 or α = −1.

Fact 3.7.4. Let A ∈ Fn×n, assume that A is Hermitian, and let k ≥ 1. Then,
R(A) = R

(
Ak
)

and N(A) = N
(
Ak
)
.

Fact 3.7.5. Let A ∈ Rn×n. Then, the following statements hold:

i) xTAx = 0 for all x ∈ Rn if and only if A is skew symmetric.

ii) A is symmetric and xTAx = 0 for all x ∈ Rn if and only if A = 0.

Fact 3.7.6. Let A ∈ Cn×n. Then, the following statements hold:

i) x∗Ax is real for all x ∈ Cn if and only if A is Hermitian.

ii) x∗Ax is imaginary for all x ∈ Cn if and only if A is skew Hermitian.

iii) x∗Ax = 0 for all x ∈ Cn if and only if A = 0.
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Fact 3.7.7. Let A ∈ Rn×n. Then, the following statements are equivalent:

i) x∗Ax > 0 for all nonzero x ∈ Cn.

ii) xTAx > 0 for all nonzero x ∈ Rn.

Fact 3.7.8. Let A ∈ F
n×n, and assume that A is block diagonal. Then, A is

(normal, Hermitian, skew Hermitian) if and only if every diagonally located block
has the same property.

Fact 3.7.9. Let A ∈ Cn×n. Then, the following statements hold:

i) A is Hermitian if and only if jA is skew Hermitian.

ii) A is skew Hermitian if and only if jA is Hermitian.

iii) A is Hermitian if and only if ReA is symmetric and ImA is skew symmetric.

iv) A is skew Hermitian if and only if ReA is skew symmetric and ImA is
symmetric.

v) A is positive semidefinite if and only if ReA is positive semidefinite.

vi) A is positive definite if and only if ReA is positive definite.

vii) A is symmetric if and only if [ 0 A
A 0 ] is symmetric.

viii) A is Hermitian if and only if [ 0 A
A 0 ] is Hermitian.

ix) A is symmetric if and only if
[

0 A
−A 0

]
is skew symmetric.

x) A is Hermitian if and only if
[

0 A
−A 0

]
is skew Hermitian.

(Remark: x) is a real analogue of i) since
[

0 A
−A 0

]
= I2 ⊗ A, and I2 is a real

representation of j.)

Fact 3.7.10. Let A ∈ Fn×n. Then, the following statements hold:

i) If A is (normal, unitary, Hermitian, positive semidefinite, positive definite),
then so is AA.

ii) If A is skew Hermitian and n is odd, then AA is Hermitian.

iii) If A is skew Hermitian and n is even, then AA is skew Hermitian.

iv) If A is diagonal, then so is AA, and, for all i = 1, . . . , n,

(
AA
)
(i,i)

=
n∏
j=1
j �=i

A(j,j).

(Proof: Use Fact 2.16.10.) (Remark: See Fact 5.14.5.)

Fact 3.7.11. Let A ∈ F
n×n, assume that n is even, let x ∈ F

n, and let α ∈ F.
Then,

det(A+ αxx∗) = detA.

(Proof: Use Fact 2.16.3 and Fact 3.7.10.)
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Fact 3.7.12. Let A ∈ Fn×n. Then, the following statements are equivalent:

i) A is normal.

ii) A2A∗ = AA∗A.

iii) AA∗A = A∗A2.

iv) tr (AA∗)2 = trA2A2∗.

v) There exists k ≥ 1 such that

tr (AA∗)k = trAkAk∗.

vi) There exist k, l ∈ P such that

tr (AA∗)kl = tr
(
AkAk∗

)l
.

vii) A is range Hermitian, and AA∗A2 = A2A∗A.

viii) AA∗ −A∗A is positive semidefinite.

ix) [A,A∗A] = 0.

x) [A, [A,A∗]] = 0.

(Proof: See [115, 323, 452, 454, 589, 1208].) (Remark: See Fact 3.11.4, Fact 5.14.15,
Fact 5.15.4, Fact 6.3.16, Fact 6.6.10, Fact 8.9.27, Fact 8.12.5, Fact 8.17.5, Fact
11.15.4, and Fact 11.16.14.)

Fact 3.7.13. Let A ∈ Fn×n. Then, the following statements are equivalent:

i) A is Hermitian.

ii) A2 = A∗A.

iii) A2 = AA∗.

iv) A∗2 = A∗A.

v) A∗2 = AA∗.

vi) There exists α ∈ F such that A2 = αA∗A+ (1− α)AA∗.

vii) There exists α ∈ F such that A∗2 = αA∗A+ (1− α)AA∗.

viii) trA2 = trA∗A.

ix) trA2 = trAA∗.

x) trA∗2 = trA∗A.

xi) trA∗2 = trAA∗.

If, in addition, F = R, then the following condition is equivalent to i)–xi):

xii) There exist α, β ∈ R such that

αA2 + (1− α)AT2 = βATA+ (1− β)AAT.

(Proof: To prove that viii) implies i), use the Schur decomposition Theorem 5.4.1
to replace A with D + S, where D is diagonal and S is strictly upper triangular.
Then, trD∗D + trS∗S = trD2 ≤ trD∗D. Hence, S = 0, and thus trD∗D = trD2,
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which implies that D is real. See [115, 856].) (Remark: See Fact 3.13.1.) (Remark:
Fact 9.11.3 states that, for all A ∈ Fn×n, |trA2| ≤ trA∗A.)

Fact 3.7.14. Let A ∈ Fn×n, let α, β ∈ F, and assume that α �= 0. Then, the
following statements are equivalent:

i) A is normal.

ii) αA + βI is normal.

Now, assume, in addition, that α, β ∈ R. Then, the following statements are equiv-
alent:

iii) A is Hermitian.

iv) αA + βI is Hermitian.

(Remark: The function f(A) = αA+ βI is an affine mapping.)

Fact 3.7.15. Let A ∈ Rn×n, assume that A is skew symmetric, and let α > 0.
Then, −A2 is positive semidefinite, detA ≥ 0, and det(αI +A) > 0. If, in addition,
n is odd, then detA = 0.

Fact 3.7.16. Let A ∈ Fn×n, and assume that A is skew Hermitian. If n is
even, then detA ≥ 0. If n is odd, then detA is imaginary. (Proof: The first
statement follows from Proposition 5.5.21.)

Fact 3.7.17. Let x, y ∈ Fn, and define

A �=
[
x y

]
.

Then,
xy∗ − yx∗ = AJ2A

∗.

Furthermore, xy∗ − yx∗ is skew Hermitian and has rank 0 or 2.

Fact 3.7.18. Let x, y ∈ Fn. Then, the following statements hold:

i) xyT is idempotent if and only if either xyT = 0 or xTy = 1.

ii) xyT is Hermitian if and only if there exists α ∈ R such that either y = αx
or x = αy.

Fact 3.7.19. Let x, y ∈ F
n, and define A

�= I − xyT. Then, the following
statements hold:

i) detA = 1− xTy.

ii) A is nonsingular if and only if xTy �= 1.

iii) A is nonsingular if and only if A is elementary.

iv) rankA = n−1 if and only if xTy = 1.

v) A is Hermitian if and only if there exists α ∈ R such that either y = αx or
x = αy.

vi) A is positive semidefinite if and only if A is Hermitian and xTy ≤ 1.
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vii) A is positive definite if and only if A is Hermitian and xTy < 1.

viii) A is idempotent if and only if either xyT = 0 or xTy = 1.

ix) A is orthogonal if and only if either x = 0 or y = 1
2y

Tyx.

x) A is involutory if and only if xTy = 2.

xi) A is a projector if and only if either y = 0 or x = x∗xy.

xii) A is a reflector if and only if either y = 0 or 2x = x∗xy.

xiii) A is an elementary projector if and only if x �= 0 and y = (x∗x)−1x.

xiv) A is an elementary reflector if and only if x �= 0 and y = 2(x∗x)−1x.

(Remark: See Fact 3.13.9.)

Fact 3.7.20. Let x, y ∈ Fn satisfy xTy �= 1. Then, I − xyT is nonsingular and(
I − xyT)−1

= I − 1
xTy −1

xyT.

(Remark: The inverse of an elementary matrix is an elementary matrix.)

Fact 3.7.21. Let A ∈ Fn×n, and assume that A is Hermitian. Then, detA is
real.

Fact 3.7.22. Let A ∈ Fn×n, and assume that A is Hermitian. Then,

(trA)2 ≤ (rankA)trA2.

Furthermore, equality holds if and only if there exists α ∈ R such that A2 = αA.
(Remark: See Fact 5.11.10 and Fact 9.13.12.)

Fact 3.7.23. Let A ∈ R
n×n, and assume that A is skew symmetric. Then,

trA = 0. If, in addition, B ∈ Rn×n is symmetric, then trAB = 0.

Fact 3.7.24. Let A ∈ Fn×n, and assume that A is skew Hermitian. Then,
Re trA = 0. If, in addition, B ∈ Fn×n is Hermitian, then Re trAB = 0.

Fact 3.7.25. Let A ∈ Fn×m. Then, A∗A is positive semidefinite. Furthermore,
A∗A is positive definite if and only if A is left invertible. In this case, AL ∈ Fm×n

defined by
AL �= (A∗A)−1A∗

is a left inverse of A. (Remark: See Fact 2.15.2, Fact 3.7.26, and Fact 3.13.6.)

Fact 3.7.26. Let A ∈ Fn×m. Then, AA∗ is positive semidefinite. Furthermore,
AA∗ is positive definite if and only if A is right invertible. In this case, AR ∈ Fm×n

defined by
AR �= A∗(AA∗)−1

is a right inverse of A. (Remark: See Fact 2.15.2, Fact 3.13.6, and Fact 3.7.25.)

Fact 3.7.27. Let A ∈ Fn×m. Then, A∗A, AA∗, and
[

0 A∗
A 0

]
are Hermitian, and[

0 A∗
−A 0

]
is skew Hermitian. Now, assume that n = m. Then, A + A∗, j(A −A∗),
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and 1
2j (A−A∗) are Hermitian, while A−A∗ is skew Hermitian. Finally,

A = 1
2 (A+A∗) + 1

2 (A−A∗)

and
A = 1

2 (A+A∗) + j[ 1
2j (A−A∗)].

(Remark: The last two identities are Cartesian decompositions.)

Fact 3.7.28. Let A ∈ Fn×n. Then, there exist a unique Hermitian matrix
B ∈ Fn×n and a unique skew-Hermitian matrix C ∈ Fn×n such that A = B + C.
Specifically, if A = B̂ + jĈ, where B̂, Ĉ ∈ Rn×n, then B̂ and Ĉ are given by

B = 1
2(A+A∗) = 1

2 (B̂ + B̂T) + j 1
2(Ĉ − ĈT)

and
C = 1

2(A−A∗) = 1
2(B̂ − B̂T) + j 1

2(Ĉ + ĈT).

Furthermore, A is normal if and only if BC = CB. (Remark: See Fact 11.13.9.)

Fact 3.7.29. Let A ∈ Fn×n. Then, there exist unique Hermitian matrices
B,C ∈ Cn×n such that A = B+jC. Specifically, if A = B̂+jĈ, where B̂, Ĉ ∈ Rn×n,
then B̂ and Ĉ are given by

B = 1
2(A+A∗) = 1

2(B̂ + B̂T) + j 1
2(Ĉ − ĈT)

and
C = 1

2j(A−A∗) = 1
2(Ĉ + ĈT)− j 1

2(B̂ − B̂T).

Furthermore, A is normal if and only if BC = CB. (Remark: This result is the
Cartesian decomposition.)

Fact 3.7.30. Let A,B ∈ Cn×n, assume that A is either Hermitian or skew
Hermitian, and assume that B is either Hermitian or skew Hermitian. Then,

rankAB = rankBA.

(Proof: AB and (AB)∗ = BA have the same singular values. See Fact 5.11.19.)
(Remark: See Fact 2.10.26.)

Fact 3.7.31. Let A,B ∈ R3×3, and assume that A and B are skew symmetric.
Then,

trAB3 = 1
2(trAB)

(
trB2

)
and

trA3B3 = 1
4

(
trA2

)
(trAB)

(
trB2

)
+ 1

3

(
trA3

)(
trB3

)
.

(Proof: See [79].)

Fact 3.7.32. Let A ∈ Fn×n and k ≥ 1. If A is (normal, Hermitian, unitary,
involutory, positive semidefinite, positive definite, idempotent, nilpotent), then so
is Ak. If A is (skew Hermitian, skew involutory), then so is A2k+1. If A is Hermitian,
then A2k is positive semidefinite. If A is tripotent, then so is A3k.
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Fact 3.7.33. Let a, b, c, d, e, f ∈ R, and define the skew-symmetric matrix
A ∈ R4×4 given by

A
�=

⎡
⎢⎢⎣

0 a b c
−a 0 d e
−b −d 0 f
−c −e −f 0

⎤
⎥⎥⎦.

Then,
detA = (af − be+ cd)2.

(Proof: See [1184, p. 63].) (Remark: See Fact 4.8.14 and Fact 4.10.2.)

Fact 3.7.34. Let A ∈ R2n×2n, and assume that A is skew symmetric. Then,
there exists a nonsingular matrix S ∈ R

2n×2n such that STAS = J2n. (Proof: See
[103, p. 231].)

Fact 3.7.35. Let A ∈ Rn×n, and assume that A is positive definite. Then,

E
�= {x ∈ R

n: xTAx ≤ 1}
is a hyperellipsoid. Furthermore, the volume V of E is given by

V =
α(n)√
detA

,

where

α(n) �=

⎧⎨
⎩
πn/2/(n/2)!, n even,

2nπ(n−1)/2[(n−1)/2]!/n!, n odd.

In particular, the area of the ellipse {x ∈ R2: xTAx ≤ 1} is π/detA. (Remark: α(n)
is the volume of the unit n-dimensional hypersphere.) (Remark: See [801, p. 36].)

3.8 Facts on Commutators

Fact 3.8.1. Let A,B ∈ Fn×n. If either A and B are Hermitian or A and B
are skew Hermitian, then [A,B] is skew Hermitian. Furthermore, if A is Hermitian
and B is skew Hermitian, or vice versa, then [A,B] is Hermitian.

Fact 3.8.2. Let A ∈ Fn×n. Then, the following statements are equivalent:

i) trA = 0.

ii) There exist matrices B,C ∈ Fn×n such that B is Hermitian, trC = 0, and
A = [B,C].

iii) There exist matrices B,C ∈ Fn×n such that A = [B,C].

(Proof: See [535] and Fact 5.9.18. If every diagonal entry of A is zero, then let
B

�= diag(1, . . . , n), C(i,i)
�= 0, and, for i �= j, C(i,j)

�= A(i,j)/(i − j). See [1487, p.
110]. See also [1098, p. 172].)
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Fact 3.8.3. Let A ∈ Fn×n. Then, the following statements are equivalent:

i) A is Hermitian, and trA = 0.

ii) There exists a nonsingular matrix B ∈ Fn×n such that A = [B,B∗].

iii) There exist a Hermitian matrix B ∈ Fn×n and a skew-Hermitian matrix
C ∈ Fn×n such that A = [B,C].

iv) There exist a skew-Hermitian matrix B ∈ Fn×n and a Hermitian matrix
C ∈ Fn×n such that A = [B,C].

(Proof: See [535] and [1266].)

Fact 3.8.4. Let A ∈ Fn×n. Then, the following statements are equivalent:

i) A is skew Hermitian, and trA = 0.

ii) There exists a nonsingular matrix B ∈ Fn×n such that A = [jB,B∗].

iii) If A ∈ Cn×n is skew Hermitian, then there exist Hermitian matrices B,C ∈
Fn×n such that A = [B,C].

(Proof: See [535] or use Fact 3.8.3.)

Fact 3.8.5. Let A ∈ Fn×n, and assume that A is skew symmetric. Then,
there exist symmetric matrices B,C ∈ Fn×n such that A = [B,C]. (Proof: Use
Fact 5.15.24. See [1098, pp. 83, 89].) (Remark: “Symmetric” is correct for F = C.)

Fact 3.8.6. Let A ∈ Fn×n, and assume that [A, [A,A∗]] = 0. Then, A is
normal. (Remark: See [1487, p. 32].)

Fact 3.8.7. Let A ∈ Fn×n. Then, there exist B,C ∈ Fn×n such that B is
normal, C is Hermitian, and

A = B + [C,B].

(Remark: See [440].)

3.9 Facts on Linear Interpolation

Fact 3.9.1. Let y ∈ Fn and x ∈ Fm. Then, there exists a matrix A ∈ Fn×m

such that y = Ax if and only if either y = 0 or x �= 0. If y = 0, then one such
matrix is A = 0. If x �= 0, then one such matrix is

A = (x∗x)−1yx∗.

(Remark: This is a linear interpolation problem. See [773].)

Fact 3.9.2. Let x, y ∈ Fn, and assume that x �= 0. Then, there exists a
Hermitian matrix A ∈ Fn×n such that y = Ax if and only if x∗y is real. One such
matrix is

A = (x∗x)−1[yx∗ + xy∗ − x∗yI].
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Now, assume that x and y are real. Then,

σmax(A) =
‖x‖2
‖y‖2 = min{σmax(B): B ∈ R

n×n is symmetric and y = Bx}.

(Proof: The last statement is given in [1205].)

Fact 3.9.3. Let x, y ∈ Fn, and assume that x �= 0. Then, there exists a
positive-definite matrix A ∈ Fn×n such that y = Ax if and only if x∗y is real and
positive. One such matrix is

A = I + (x∗y)−1yy∗ − (x∗x)−1xx∗.

(Proof: To show that A is positive definite, note that the elementary projector
I − (x∗x)−1xx∗ is positive semidefinite and rank[I − (x∗x)−1xx∗] = n − 1. Since
(x∗y)−1yy∗ is positive semidefinite, it follows that N(A) ⊆ N[I− (x∗x)−1xx∗]. Next,
since x∗y > 0, it follows that y∗x �= 0 and y �= 0, and thus x /∈ N(A). Consequently,
N(A) ⊂ N[I − (x∗x)−1xx∗] (note proper inclusion), and thus def A < 1. Hence, A
is nonsingular.)

Fact 3.9.4. Let x, y ∈ Fn. Then, there exists a skew-Hermitian matrix A ∈
F
n×n such that y = Ax if and only if either y = 0 or x �= 0 and x∗y = 0. If x �= 0

and x∗y = 0, then one such matrix is

A = (x∗x)−1(yx∗ − xy∗).
(Proof: See [924].)

Fact 3.9.5. Let x, y ∈ Rn. Then, there exists an orthogonal matrix A ∈ Rn×n

such that Ax = y if and only if xTx = yTy. (Remark: One such matrix is given
by a product of n plane rotations given by Fact 5.15.16. Another matrix is given
by the product of elementary reflectors given by Fact 5.15.15. For n = 3, one such
matrix is given by Fact 3.11.8, while another is given by the exponential of a skew-
symmetric matrix given by Fact 11.11.7. See Fact 3.14.4.) (Problem: Extend this
result to Cn.) (Remark: See Fact 9.15.6.)

3.10 Facts on the Cross Product

Fact 3.10.1. Let x, y, z, w ∈ R3, and define the cross-product matrix K(x) ∈
R3×3 by

K(x) �=

⎡
⎣ 0 −x(3) x(2)

x(3) 0 −x(1)

−x(2) x(1) 0

⎤
⎦.

Then, the following statements hold:

i) x× x = K(x)x = 0.

ii) xTK(x) = 0.

iii) KT(x) = −K(x).

iv) K2(x) = xxT− (xTx
)
I.
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v) trKT(x)K(x) = − trK2(x) = 2xTx.

vi) K3(x) = −(xTx)K(x).

vii) [I −K(x)]−1 = I +
(
1 + xTx

)−1[
K(x) +K2(x)

]
.

viii)
[
I + 1

2K(x)
][
I − 1

2K(x)
]−1 = I + 4

4+xTx

[
K(x) + 1

2K
2(x)
]
.

ix) Define
H(x) �= 1

2 [12 (1− xTx)I + xxT +K(x)].

Then,
H(x)HT(x) = 1

16 (1 + xTx)2I.

x) For all α, β ∈ R, K(αx+ βy) = αK(x) + βK(y).

xi) x× y = −(y × x) = K(x)y = −K(y)x = KT(y)x.

xii) If x× y �= 0, then N
[
(x× y)T] = {x× y}⊥ = R

([
x y

])
.

xiii) K(x × y) = K[K(x)y] = [K(x),K(y)].

xiv) K(x × y) = yxT − xyT =
[
x y

][−yT

xT

]
= −[ x y

]
J2

[
x y

]T
.

xv) (x × y)× x =
(
xTxI − xxT

)
y.

xvi) K[(x× y)× x] = (xTx)K(y)− (xTy)K(x).

xvii) (x × y)T(x× y) = det
[
x y x× y ].

xviii) (x × y)Tz = xT(y × z) = det
[
x y z

]
.

xix) x× (y × z) =
(
xTz
)
y − (xTy

)
z.

xx) (x × y)× z =
(
xTz
)
y − (yTz)x.

xxi) K[(x× y)× z] =
(
xTz
)
K(y)− (yTz)K(x).

xxii) K[x× (y × z)] =
(
xTz
)
K(y)− (xTy

)
K(z).

xxiii) (x × y)T(x× y) = xTxyTy − (xTy
)2
.

xxiv) K(x)K(y) = yxT − xTyI3.

xxv) K(x)K(y)K(x) = −(xTy
)
K(x).

xxvi) K2(x)K(y) +K(y)K2(x) = −(xTx
)
K(y)−(xTy

)
K(x).

xxvii) K2(x)K2(y)−K2(y)K2(x) = −(xTy
)
K(x× y).

xxviii) K(x)K(z)(xTwy − xTyw) = K(x)K(w)xTzy.

xxix)
√

(x× y)T(x× y) =
√
xTxyTy sin θ, where θ is the angle between x and y.

xxx) (x × y)T(x× y) = xTxyTy − (xTy)2.

xxxi) 2xxTK(y) = (x× y)xT + x(x × y)T + xTxK(y)− xTyK(x).

xxxii) (x × y)T(z × w) = xTzyTw − xTwyTz = det
[
xTz xTw

yTz yTw

]
.

xxxiii) (x × y)× (z × w) = xT(y × w)z − xT(y × z)w = xT(z × w)y − yT(z × w)x.

xxxiv) x× [y × (z × w)] =
(
yTw
)
(x× z)− (yTz)(x× w).
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xxxv) x× [y × (y × x)] = y × [x× (y × x)] =
(
yTx
)
(x× y).

xxxvi) Let A ∈ R3×3. Then,

ATK(Ax)A = (detA)K(x),

and thus
AT(Ax ×Ay) = (detA)(x × y).

xxxvii) Let A ∈ R3×3, and assume that A is orthogonal. Then,

K(Ax)A = (detA)AK(x),

and thus
Ax×Ay = (detA)A(x × y).

xxxviii) Let A ∈ R
3×3, and assume that A is orthogonal and detA = 1. Then,

K(Ax)A = AK(x),

and thus
Ax×Ay = A(x× y).

xxxix)
[
x y z

]A =
[
y × z z × x x× y ]T .

xl) det

[
K(x) y

−yT 0

]
=
(
xTy
)2
.

xli)

[
K(x) y

−yT 0

]A
= −xTy

[
K(y) x

−xT 0

]
.

xlii) If xTy �= 0, then [
K(x) y

−yT 0

]−1

=
−1
xTy

[
K(y) x

−xT 0

]
.

xliii) If x �= 0, then K+(x) = (xTx)−1K(x).

xliv) If xTy = 0 and xTx+ yTy �= 0, then[
K(x) y

−yT 0

]+
=

−1
xTx+ yTy

[
K(x) y

−yT 0

]
.

(Proof: Results vii), viii), and xxv)–xxvii) are given in [746, p. 363]. Result ix) is
given in [1341]. Statement xxviii) is a consequence of a result given in [572, p. 58].
Statement xxx) is equivalent to the fact that sin2 θ + cos2 θ = 1. Using xviii),

eTiA
T(Ax×Ay) = det

[
Ax Ay Aei

]
= (detA)eTi (x× y)

for all i = 1, 2, 3, which proves xxxvi). Result xxxix) is given in [1319]. Results
xl)–xliv) are proved in [1334].) (Proof: See [410, 474, 746, 1058, 1192, 1262, 1327].)
(Remark: Cross products of complex vectors are considered in [599].) (Remark:
A cross product can be defined on R

7. See [477, pp. 297–299].) (Remark: An
extension of the cross product to higher dimensions is given by the outer product
in Clifford algebras. See Fact 9.7.5 and [349, 425, 555, 605, 671, 672, 870, 934].)



MATRIX CLASSES AND TRANSFORMATIONS 189

(Remark: See Fact 11.11.11.) (Problem: Extend these identities to complex vectors
and matrices.)

Fact 3.10.2. Let A ∈ R3×3, assume that A is orthogonal, let B ∈ C3×3, and
assume that B is symmetric. Then,

3∑
i=1

(Aei)× (BAei) = 0.

(Proof: For i = 1, 2, 3, multiply by eTiA
T.)

Fact 3.10.3. Let α1, α2, and α3 be distinct positive numbers, let A ∈ R3×3,
assume that A is orthogonal, and assume that

3∑
i=1

αiei ×Aei = 0.

Then,
A ∈ {I, diag(1,−1,−1), diag(−1, 1,−1), diag(−1,−1, 1)}.

(Remark: This result characterizes equilibria for a dynamical system on SO(3). See
[306].)

3.11 Facts on Unitary and Shifted-Unitary Matrices

Fact 3.11.1. Let S1, S2 ⊆ Fn, assume that S1 and S2 are subspaces, and
assume that dim S1 ≤ dim S2. Then, there exists a unitary matrix A ∈ Fn×n such
that AS1 ⊆ S2.

Fact 3.11.2. Let S1, S2 ⊆ Fn, assume that S1 and S2 are subspaces, and
assume that dim S1 + dim S2 ≤ n. Then, there exists a unitary matrix A ∈ F

n×n

such that AS1 ⊆ S⊥
2 . (Proof: Use Fact 3.11.1.)

Fact 3.11.3. Let A ∈ Fn×n, and assume that A is unitary. Then, the following
statements hold:

i) A = A−∗.

ii) AT = A
−1

= A
∗
.

iii) A = A−T = A
−∗
.

iv) A∗ = A−1.

Fact 3.11.4. Let A ∈ Fn×n, and assume that A is nonsingular. Then, the
following statements are equivalent:

i) A is normal.

ii) A−1A∗ is unitary.

iii) [A,A∗] = 0.



190 CHAPTER 3

iv) [A,A−∗] = 0.

v) [A−1, A−∗] = 0.

(Proof: See [589].) (Remark: See Fact 3.7.12, Fact 5.15.4, Fact 6.3.16, and Fact
6.6.10.)

Fact 3.11.5. Let A ∈ Fn×m. If A is (left inner, right inner), then A is (left
invertible, right invertible) and A∗ is a (left inverse, right inverse) of A.

Fact 3.11.6. Let θ ∈ R, and define the orthogonal matrix

A(θ) �=
[

cos θ sin θ
− sin θ cos θ

]
.

Now, let θ1, θ2 ∈ R. Then,

A(θ1)A(θ2) = A(θ1 + θ2).

Consequently,

cos(θ1 + θ2) = (cos θ1)cos θ2 − (sin θ1)sin θ2,
sin(θ1 + θ2) = (cos θ1)sin θ2 + (sin θ1)cos θ2.

Furthermore,
SO(2) = {A(θ): θ ∈ R}

and
O(2)\SO(2) =

{[
cos θ sin θ
sin θ − cos θ

]
: θ ∈ R

}
.

(Remark: See Proposition 3.3.6 and Fact 11.11.3.)

Fact 3.11.7. Let A ∈ O(3)\SO(3). Then, −A ∈ SO(3).

Fact 3.11.8. Let x, y ∈ R3, assume that xTx = yTy �= 0, let θ ∈ (0, π) denote
the angle between x and y, define z ∈ R

3 by

z
�=

1
‖x× y‖2x× y,

and define A ∈ R3×3 by

A
�= (cos θ)I + (sin θ)K(z) + (1− cos θ)zzT.

Then,
A = I + (sin θ)K(z) + (1− cos θ)K2(z),

y = Ax, A is orthogonal, and detA = 1. Furthermore,

A = (I −B)(I +B)−1,

where
B �= − tan(1

2θ)K(z).

(Proof: The expression for A in terms of B is derived in [11]. The expression
involving B is derived in [1008, pp. 244, 245].) (Remark: θ is given by
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θ = cos−1 xTy

‖x‖2‖y‖2 .

Furthermore,
sin θ =

‖x× y‖2
‖x‖2‖y‖2 .)

(Remark: A can be written as

A = (cos θ)I +
1
‖x‖22

(yxT − xyT) +
1− cos θ
‖x× y‖22

(x× y)(x× y)T

=
xTy

xTx
I +

1
xTx

(yxT − xyT) +
1− cos θ

(xTx sin θ)2
(x× y)(x× y)T

=
xTy

xTx
I +

1
xTx

(yxT − xyT) +
tan(1

2θ)
(xTx)2 sin θ

(x× y)(x× y)T

=
xTy

xTx
I +

1
xTx

(yxT − xyT) +
1

(xTx)2(1 + cos θ)
(x× y)(x× y)T

=
xTy

xTx
I +

1
xTx

(yxT − xyT) +
1

xTx(xTx+ xTy)
(x× y)(x × y)T.

As a check, note that

Ax = (cos θ)x+
1
‖x‖22

(xTxy − yTxx) +
1− cos θ
‖x× y‖22

(x × y)(x× y)Tx

=
xTy

‖x‖22
x+

1
‖x‖22

(xTxy − yTxx)

= y.

Furthermore, B can be written as

B =
1

xTx+ xTy
(xyT − yxT).

These expressions satisfy A + B + AB = I.) (Remark: The matrix A represents a
right-hand rule rotation of the nonzero vector x through the angle θ around z to
yield the vector y, which has the same length as x. In the cases x = y and x = −y,
which correspond, respectively, to θ = 0 and θ = π, the pivot vector z is not unique.
Letting z ∈ R3 be arbitrary in these cases yields A = I and A = −I, respectively,
and thus y = Ax holds in both cases. However, −I has determinant −1.) (Remark:
See Fact 11.11.6.) (Remark: This is a linear interpolation problem. See Fact 3.9.5,
Fact 11.11.7, and [135, 773].) (Remark: Extensions of the Cayley transform are
discussed in [1342].)

Fact 3.11.9. Let A ∈ R3×3, and let z �=
[
b
c
d

]
, where b2 + c2 + d2 = 1. Then,

A ∈ SO(3), and A rotates every vector in R
3 by the angle π about z if and only if

A =

⎡
⎢⎣

2b2 − 1 2bc 2bd

2bc 2c2 − 1 2cd

2bd 2cd 2d2 − 1

⎤
⎥⎦.
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(Proof: This formula follows from the last expression for A in Fact 3.11.10 with
θ = π. See [357, p. 30].) (Remark: A is a reflector.) (Problem: Solve for b, c, and
d in terms of the entries of A.)

Fact 3.11.10. Let A ∈ R3×3. Then, A ∈ SO(3) if and only if there exist real
numbers a, b, c, d such that a2 + b2 + c2 + d2 = 1 and

A =

⎡
⎢⎣
a2 + b2 − c2 − d2 2(bc− ad) 2(ac+ bd)

2(ad+ bc) a2 − b2 + c2 − d2 2(cd− ab)
2(bd− ac) 2(ab+ cd) a2 − b2 − c2 + d2

⎤
⎥⎦.

In this case,
a = ± 1

2

√
1 + trA.

If, in addition, a �= 0, then b, c, and d are given by

b =
A(3,2) −A(2,3)

4a
, c =

A(1,3) −A(3,1)

4a
, d =

A(2,1) − A(1,2)

4a
.

Now, define v �=
[
b c d

]T
. Then, A represents a rotation about the unit-length

vector z �= (csc θ2 )v through the angle θ ∈ [0, 2π] that satisfies

a = cos θ2 ,

where the direction of rotation is determined by the right-hand rule. Therefore,

θ
�= 2 cos−1 a.

If a ∈ [0, 1], then

θ = 2 cos−1(1
2

√
1 + trA) = cos−1(1

2 [(trA)− 1]),

whereas, if a ∈ [−1, 0], then

θ = 2 cos−1(− 1
2

√
1 + trA) = π + cos−1(1

2 [1− trA]).

In particular, a = 1 if and only if θ = 0; a = 0 if and only if θ = π; and a = −1 if
and only if θ = 2π. Furthermore,

A = (2a2 − 1)In + 2aK(v) + 2vvT

= (cos θ)I + (sin θ)K(z) + (1 − cos θ)zzT

= I + (sin θ)K(z) + (1− cos θ)K2(z).

Furthermore,
A−AT = 4aK(v) = 2(sin θ)K(z),

and thus
2a sin θ

2 = sin θ.

If θ = 0 or θ = 2π, then v = z = 0, whereas, if θ = π, then

K2(z) = 1
2 (A− I).
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Conversely, let θ ∈ R, let z ∈ R3, assume that zTz = 1, and define⎡
⎢⎢⎣
a
b
c
d

⎤
⎥⎥⎦ =

[
cos θ2

(sin θ
2 )z

]
.

Then, A represents a rotation about the unit-length vector z through the angle θ,
where the direction of rotation is determined by the right-hand rule. In this case,
A is given by

A =

⎡
⎢⎢⎣

z2(1)+(z2(2)+z
2
(3)) cos θ z(1)z(2)(1−cos θ)−z(3) sin θ z(1)z(3)(1−cos θ)+z(2) sin θ

z(1)z(2)(1−cos θ)+z(3) sin θ z2(2)+(z2(1)+z
2
(3)) cos θ z(2)z(3)(1−cos θ)−z(1) sin θ

z(1)z(3)(1−cos θ)−z(2) sin θ z(2)z(3)(1−cos θ)+z(1) sin θ z2(3)+(z2(1)+z
2
(2)) cos θ

⎤
⎥⎥⎦.

(Proof: See [477, p. 162], [555, p. 22], [1185, p. 19], and use Fact 3.11.8.) (Remark:
This result is due to Rodrigues.) (Remark: The numbers a, b, c, d, which are Euler
parameters, are elements of S3, which is the sphere in R4. The elements of S3

can be viewed as unit quaternions, thus giving S3 a group structure. See Fact
3.21.2. Conversely, a, b, c, d can be expressed in terms of the entries of a 3 × 3
orthogonal matrix, which are the direction cosines. See [152, pp. 384–387]. See
also Fact 3.22.1.) (Remark: Replacing a by −a in A but keeping b, c, d unchanged
yields the transpose of A.) (Remark: Note that A is unchanged when a, b, c, d
are replaced by −a,−b,−c,−d. Conversely, given the direction cosines of a rotation
matrix A, there exist exactly two distinct quadruples (a, b, c, d) of Euler parameters
that parameterize A. Therefore, the Euler parameters, which parameterize the unit
sphere S3 in R4, provide a double cover of SO(3). See [969, p. 304] and Fact
3.22.1.) (Remark: Sp(1) is a double cover of SO(3), Sp(1) × Sp(1) is a double
cover of SO(4), Sp(2) is a double cover of SO(5), and SU(4) is a double cover of
SO(3). For each n, SO(n) is double covered by the spin group Spin(n). See [362,
p. 141], [1256, p. 130], and [1436, pp. 42–47]. Sp(2) is defined in Fact 3.22.4.)
(Remark: Rotation matrices in R2×2 are discussed in [1196].) (Remark: A history
of Rodrigues’s contributions is given in [27].) (Remark: See Fact 8.9.26 and Fact
11.15.10.) (Remark: Extensions to n× n matrices are considered in [538].)

Fact 3.11.11. Let θ1, θ2 ∈ R, let z1, z2 ∈ R3, assume that zT
1 z1 = zT

2 z2 = 1,
and, for i = 1, 2, let Ai ∈ R

3×3 be the rotation matrix that represents the rotation
about the unit-length vector zi through the angle θi, where the direction of rotation
is determined by the right-hand rule. Then, A3

�= A2A1 represents the rotation
about the unit-length vector z3 through the angle θ3, where the direction of rotation
is determined by the right-hand rule, and where θ3 and z3 are given by

cos θ32 = (cos θ22 ) cos θ12 − (sin θ2
2 ) sin θ1

2 z
T
2 z1

and

z3 = (csc θ32 )[(sin θ2
2 )(cos θ12 )z2 + (cos θ22 )(sin θ1

2 )z1 + (sin θ2
2 )(sin θ1

2 )(z2 × z1)]

=
cot

θ3
2

1−zT2 z1(tan
θ2
2 ) tan

θ1
2

[(tan θ2
2 )z2 + (tan θ1

2 )z1 + (tan θ2
2 )(tan θ1

2 )(z2 × z1)].

(Proof: See [555, pp. 22–24].) (Remark: These expressions are Rodrigues’s formu-
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las, which are identical to the quaternion multiplication formula given by⎡
⎢⎢⎣
a3

b3
c3
d3

⎤
⎥⎥⎦ =

[
cos θ32

(sin θ3
2 )z3

]
=

[
a1a2 − zT

2 z1

a1z2 + a2z1 + z2 × z1

]

with ⎡
⎢⎢⎣
a2

b2
c2
d2

⎤
⎥⎥⎦ =

[
cos θ22

(sin θ2
2 )z2

]
,

⎡
⎢⎢⎣
a1

b1
c1
d1

⎤
⎥⎥⎦ =

[
cos θ12

(sin θ1
2 )z1

]

in Fact 3.22.1. See [27].)

Fact 3.11.12. Let x, y, z ∈ R2. If x is rotated according to the right-hand rule
through an angle θ ∈ R about y, then the resulting vector x̂ ∈ R2 is given by

x̂ =
[

cos θ − sin θ
sin θ cos θ

]
x+
[
y(1)(1 − cos θ) + y(2) sin θ
y(2)(1 − cos θ) + y(1) sin θ

]
.

If x is reflected across the line passing through 0 and z and parallel to the line
passing through 0 and y, then the resulting vector x̂ ∈ R2 is given by

x̂ =

[
y2
(1) − y2

(2) 2y(1)y(2)

2y(1)y(2) y2
(2) − y2

(1)

]
x+

⎡
⎣ −z(1)

(
y2
(1) − y2

(2) −1
)
− 2z(2)y(1)y(2)

−z(2)
(
y2
(1) − y2

(2) −1
)
− 2z(1)y(1)y(2)

⎤
⎦.

(Remark: These affine planar transformations are used in computer graphics. See
[62, 498, 1095].) (Remark: See Fact 3.11.13 and Fact 3.11.31.)

Fact 3.11.13. Let x, y ∈ R3, and assume that yTy = 1. If x is rotated
according to the right-hand rule through an angle θ ∈ R about the line passing
through 0 and y, then the resulting vector x̂ ∈ R

3 is given by

x̂ = x+ (sin θ)(y × x) + (1− cos θ)[y × (y × x)].
(Proof: See [23].) (Remark: See Fact 3.11.12 and Fact 3.11.31.)

Fact 3.11.14. Let x, y ∈ Fn, let A ∈ Fn×n, and assume that A is unitary.
Then, x∗y = 0 if and only if (Ax)∗Ay = 0.

Fact 3.11.15. Let A ∈ F
n×n, assume that A is unitary, and let x ∈ F

n be
such that x∗x = 1 and Ax = −x. Then, the following statements hold:

i) det(A+ I) = 0.

ii) A+ 2xx∗ is unitary.

iii) A = (A+ 2xx∗)(In − 2xx∗) = (In − 2xx∗)(A+ 2xx∗).

iv) det(A+ 2xx∗) = −detA.

Fact 3.11.16. Let A ∈ Fn×n, and assume that A is unitary. Then,

|Re trA| ≤ n,
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|Im trA| ≤ n,
and

|trA| ≤ n.
(Remark: The third inequality does not follow from the first two inequalities.)

Fact 3.11.17. Let A ∈ R
n×n, and assume that A is orthogonal. Then,

−1n×n ≤≤ A ≤≤ 1n×n

and
−n ≤ trA ≤ n.

Furthermore, the following statements are equivalent:

i) A = I.

ii) diag(A) = I.

iii) trA = n.

Finally, if n is odd and detA = 1, then

2− n ≤ trA ≤ n.
(Remark: See Fact 3.11.18.)

Fact 3.11.18. Let A ∈ Rn×n, assume that A is orthogonal, let B ∈ Rn×n,
and assume that B is diagonal and positive definite. Then,

−B1n×n ≤≤ BA ≤≤ B1n×n

and
− trB ≤ trBA ≤ trB.

Furthermore, the following statements are equivalent:

i) BA = B.

ii) diag(BA) = B.

iii) trBA = trB.

(Remark: See Fact 3.11.17.)

Fact 3.11.19. Let x ∈ Cn, where n ≥ 2. Then, the following statements are
equivalent:

i) There exists a unitary matrix A ∈ Cn×n such that

x =

⎡
⎢⎣
A(1,1)

...
A(n,n)

⎤
⎥⎦.

ii) For all j = 1, . . . , n, |x(j)| ≤ 1 and

2(1− |x(j)|) +
n∑
i=1

|x(i)| ≤ n.
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(Proof: See [1338].) (Remark: This result is equivalent to the Schur-Horn theorem
given by Fact 8.17.10.) (Remark: The inequalities in ii) define a polytope.)

Fact 3.11.20. LetA ∈ Cn×n, and assume thatA is unitary. Then, |detA| = 1.

Fact 3.11.21. Let A ∈ R
n×n, and assume that A is orthogonal. Then, either

detA = 1 or detA = −1.

Fact 3.11.22. Let A,B ∈ SO(3). Then,

det(A+B) ≥ 0.

(Proof: See [1013].)

Fact 3.11.23. Let A ∈ F
n×n, and assume that A is unitary. Then,

|det(I +A)| ≤ 2n.

If, in addition, A is real, then

0 ≤ det(I +A) ≤ 2n.

Fact 3.11.24. LetM �= [A B
C D ] ∈ F(n+m)×(n+m), and assume thatM is unitary.

Then,
detA = (detM)detD.

(Proof: Let
[
Â B̂
Ĉ D̂

]
�= A−1, and take the determinant of A

[
I B̂
0 D̂

]
= [A 0

C I ]. See [12] or
[1188].) (Remark: See Fact 2.14.28 and Fact 2.14.7.)

Fact 3.11.25. Let A ∈ Fn×n, and assume that A is block diagonal. Then, A
is (unitary, shifted unitary) if and only if every diagonally located block has the
same property.

Fact 3.11.26. Let A ∈ Fn×n, and assume that A is unitary. Then, 1√
2

[
A −A
A A

]
is unitary.

Fact 3.11.27. Let A,B ∈ R
n×n. Then, A + jB is (Hermitian, skew Hermi-

tian, unitary) if and only if
[
A B
−B A

]
is (symmetric, skew symmetric, orthogonal).

(Remark: See Fact 2.19.7.)

Fact 3.11.28. The following statements hold:

i) If A ∈ Fn×n is skew Hermitian, then I+A is nonsingular, B �= (I−A)(I+
A)−1 is unitary, and I + B = 2(I + A)−1. If, in addition, mspec(A) =
mspec(A), then detB = 1.

ii) If B ∈ F
n×n is unitary and λ ∈ C is such that |λ| = 1 and I + λB is

nonsingular, then A �= (I +λB)−1(I −λB) is skew Hermitian and I +A =
2(I + λB)−1.

iii) If A ∈ Fn×n is skew Hermitian, then there exists a unique unitary matrix
B ∈ Fn×n such that I + B is nonsingular and A = (I + B)−1(I − B). In
fact, B �= (I −A)(I +A)−1.
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iv) If B is unitary and λ ∈ C is such that |λ| = 1 and I + λB is nonsingular,
then there exists a unique skew-Hermitian matrix A ∈ Fn×n such that
B = λ(I −A)(I +A)−1. In fact, A �= (I + λB)−1(I − λB).

(Proof: See [508, p. 184] and [711, p. 440].) (Remark: C(A) �= (A− I)(A+ I)−1 =
I − 2(A + I)−1 is the Cayley transform of A. See Fact 3.11.8, Fact 3.11.29, Fact
3.11.30, Fact 3.11.31, Fact 3.19.12, Fact 8.9.30, and Fact 11.21.8.)

Fact 3.11.29. The following statements hold:

i) If A ∈ Fn×n is Hermitian, then A+jI is nonsingular, B �= (jI−A)(jI+A)−1

is unitary, and I +B = 2j(jI +A)−1.

ii) If B ∈ Fn×n is unitary and λ ∈ C is such that |λ| = 1 and I + λB is
nonsingular, then A �= j(I − λB)(I + λB)−1 is Hermitian and jI + A =
2j(I + λB)−1.

iii) If A ∈ Fn×n is Hermitian, then there exists a unique unitary matrix B ∈
Fn×n such that I +B is nonsingular and A = j(I −B)(I + B)−1. In fact,
B = (jI −A)(jI +A)−1.

iv) If B ∈ Fn×n is unitary and λ ∈ C is such that |λ| = 1 and I + λB is
nonsingular, then there exists a unique Hermitian matrix A ∈ Fn×n such
that λB = (jI −A)(jI +A)−1. In fact, A �= j(I − λB)(I + λB)−1.

(Proof: See [508, pp. 168, 169].) (Remark: The linear fractional transformation
f(s) �= (j− s)/(j+ s) maps the upper half plane of C onto the unit disk in C, and
the real line onto the unit circle in C.)

Fact 3.11.30. The following statements hold:

i) If A ∈ Rn×n is skew symmetric, then I+A is nonsingular, B �= (I−A)(I+
A)−1 is orthogonal, I +B = 2(I +A)−1, and detB = 1.

ii) If B ∈ Rn×n is orthogonal, C ∈ Rn×n is diagonal with diagonally located
entries ±1, and I + CB is nonsingular, then A

�= (I + CB)−1(I − CB) is
skew symmetric, I +A = 2(I + CB)−1, and detCB = 1.

iii) If A ∈ Rn×n is skew symmetric, then there exists a unique orthogonal
matrix B ∈ Rn×n such that I+B is nonsingular and A = (I+B)−1(I−B).
In fact, B �= (I −A)(I +A)−1.

iv) If B ∈ Rn×n is orthogonal and C ∈ Rn×n is diagonal with diagonally
located entries ±1, then there exists a unique skew-symmetric matrix A ∈
Rn×n such that CB = (I −A)(I +A)−1. In fact, A = (I +CB)−1(I −CB).

(Remark: The last statement is due to Hsu. See [1098, p. 101].) (Remark: The
Cayley transform is a one-to-one and onto map from the set of skew-symmetric
matrices to the set of orthogonal matrices whose spectrum does not include −1.)
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Fact 3.11.31. Let x ∈ R3, assume that xTx = 1, let θ ∈ [0, 2π), assume that
θ �= π, and define the skew-symmetric matrix A ∈ R3×3 by

A
�= −(tan θ

2 )K(x) =

⎡
⎢⎢⎣

0 x(3)tan θ
2 −x(2)tan θ

2

−x(3)tan θ
2 0 x(1)tan θ

2

x(2)tan θ
2 −x(1)tan θ

2 0

⎤
⎥⎥⎦.

Then, the matrix B ∈ R3×3 defined by

B
�= (I −A)(I +A)−1

is an orthogonal matrix that rotates vectors about x through an angle equal to
θ according to the right-hand rule. (Proof: See [1008, pp. 243, 244].) (Remark:
Every 3× 3 skew-symmetric matrix has a representation of the form given by A.)
(Remark: See Fact 3.11.10, Fact 3.11.11, Fact 3.11.12, Fact 3.11.13, Fact 3.11.30,
and Fact 11.11.7.)

Fact 3.11.32. Furthermore, if A,B ∈ Fn×n are unitary, then√
1− ∣∣ 1n trAB

∣∣2 ≤√1− ∣∣ 1n trA
∣∣2 +
√

1− ∣∣ 1n trB
∣∣2.

(Proof: See [1391].) (Remark: See Fact 2.12.1.)

Fact 3.11.33. If A ∈ Fn×n is shifted unitary, then B
�= 2A − I is unitary.

Conversely, If B ∈ F
n×n is unitary, then A �= 1

2 (B+ I) is shifted unitary. (Remark:
The affine mapping f(A) �= 2A− I from the shifted-unitary matrices to the unitary
matrices is one-to-one and onto. See Fact 3.14.1 and Fact 3.15.2.) (Remark: See
Fact 3.7.14 and Fact 3.13.13.)

Fact 3.11.34. If A ∈ F
n×n is shifted unitary, then A is normal. Hence, the

following statements are equivalent:

i) A is shifted unitary.

ii) A+A∗ = 2A∗A.

iii) A+A∗ = 2AA∗.

(Proof: By Fact 3.11.33 there exists a unitary matrix B such that A = 1
2 (B + I).

Since B is normal, it follows from Fact 3.7.14 that A is normal.)

3.12 Facts on Idempotent Matrices

Fact 3.12.1. Let S1, S2 ⊆ Fn be complementary subspaces, and let A ∈ Fn×n

be the idempotent matrix onto S1 along S2. Then, A∗ is the idempotent matrix
onto S⊥

2 along S⊥
1 , and A∗

⊥ is the idempotent matrix onto S⊥
1 along S⊥

2 . (Remark:
See Fact 2.9.18.)

Fact 3.12.2. Let A ∈ Fn×n. Then, A is idempotent if and only if there exists
a positive integer k such that Ak+1 = Ak.
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Fact 3.12.3. Let A ∈ Fn×n. Then, the following statements are equivalent:

i) A is idempotent.

ii) N(A) = R(A⊥).

iii) R(A) = N(A⊥).

In this case, the following statements hold:

iv) A is the idempotent matrix onto R(A) along N(A).

v) A⊥ is the idempotent matrix onto N(A) along R(A).

vi) A∗ is the idempotent matrix onto N(A)⊥ along R(A)⊥.

vii) A∗
⊥ is the idempotent matrix onto R(A)⊥ along N(A)⊥.

(Proof: See [654, p. 146].) (Remark: See Fact 2.10.1 and Fact 5.12.18.)

Fact 3.12.4. Let A ∈ Fn×n, and assume that A is idempotent. Then,

R(I −AA∗) = R(2I −A−A∗).

(Proof: See [1287].)

Fact 3.12.5. Let A ∈ Fn×n. Then, A is idempotent if and only if −A is skew
idempotent.

Fact 3.12.6. Let A ∈ Fn×n. Then, A is idempotent and rankA = 1 if and
only if there exist vectors x, y ∈ Fn such that yTx = 1 and A = xyT.

Fact 3.12.7. Let A ∈ F
n×n, and assume that A is idempotent. Then, AT, A,

and A∗ are idempotent.

Fact 3.12.8. Let A ∈ Fn×n, and assume that A is idempotent and skew
Hermitian. Then, A = 0.

Fact 3.12.9. Let A ∈ Fn×n. Then, A is idempotent if and only if rankA +
rank(I −A) = n.

Fact 3.12.10. Let A ∈ Fn×m. If AL ∈ Fm×n is a left inverse of A, then AAL

is idempotent and rankAL = rankA. Furthermore, if AR ∈ Fm×n is a right inverse
of A, then ARA is idempotent and rankAR = rankA.

Fact 3.12.11. Let A ∈ Fn×n, and assume that A is nonsingular and idempo-
tent. Then, A = In.

Fact 3.12.12. Let A ∈ F
n×n, and assume that A is idempotent. Then, so is

A⊥
�= I −A, and, furthermore, AA⊥ = A⊥A = 0.

Fact 3.12.13. Let A ∈ Fn×n, and assume that A is idempotent. Then,

det(I +A) = 2trA
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and
(I +A)−1 = I − 1

2A.

Fact 3.12.14. Let A ∈ Fn×n and α ∈ F, where α �= 0. Then, the matrices[
A A∗

A∗ A

]
,

[
A α−1A

α(I −A) I −A
]
,

[
A α−1A
−αA −A

]
are, respectively, normal, idempotent, and nilpotent.

Fact 3.12.15. Let A,B ∈ Fn×n, and assume that A and B are idempotent.
Then,

R([A,B]) = R(A−B) ∩ R(A⊥−B)

and
N([A,B]) = N(A −B) ∩N(A⊥−B).

(Proof: See [1424].)

Fact 3.12.16. Let A ∈ Fn×n, and assume that A is nilpotent. Then, there
exist idempotent matrices B,C ∈ Fn×n such that A = [B,C]. (Proof: See [439].)
(Remark: A necessary and sufficient condition for a matrix to be a commutator of
a pair of idempotents is given in [439].) (Remark: See Fact 9.9.9 for the case of
projectors.)

Fact 3.12.17. Let A,B ∈ Fn×n, assume that A and B are idempotent, and
define A⊥

�= I −A and B⊥
�= I −B. Then, the following identities hold:

i) (A−B)2 + (A⊥−B)2 = I.

ii) [A,B] = [B,A⊥] = [B⊥, A] = [A⊥, B⊥].

iii) A−B = AB⊥−A⊥B.

iv) AB⊥+BA⊥ = AB⊥A+A⊥BA⊥.

v) A[A,B] = [A,B]A⊥.

vi) B[A,B] = [A,B]B⊥.

(Proof: See [1044].)

Fact 3.12.18. Let A,B ∈ Rn×n. Then, the following statements hold:

i) Assume that A3 = −A and B = I+A+A2. Then, B4 = I, B−1 = I−A+A2,
B3 −B2 +B − I = 0, A = 1

2

(
B −B3

)
, and I +A2 is idempotent.

ii) Assume that B3 − B2 + B − I = 0 and A = 1
2

(
B −B3

)
. Then, A3 = −A

and B = I +A+A2.

iii) Assume that B4 = I and A = 1
2

(
B −B−1

)
. Then, A3 = −A, and

1
4

(
I +B +B2 +B3

)
is idempotent.

(Remark: The geometric meaning of these results is discussed in [474, pp. 153,
212–214, 242].)
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Fact 3.12.19. Let A ∈ Fn×n, B ∈ Fn×m, and C ∈ Fl×n, and assume that A
is idempotent, rank

[
C∗ B

]
= n, and CB = 0. Then,

rankCAB = rankCA + rankAB − rankA.

(Proof: See [1307].) (Remark: See Fact 3.12.20.)

Fact 3.12.20. A �=
[
A11 A12
A∗

12 A22

]
∈ F(n+m)×(n+m), and assume that A is idem-

potent. Then,

rankA = rank
[
A12

A22

]
+ rank

[
A11 A12

]− rankA12

= rank
[
A11

A21

]
+ rank

[
A21 A22

]− rankA21.

(Proof: See [1307] and Fact 3.12.19.) (Remark: See Fact 3.13.12 and Fact 6.5.13.)

Fact 3.12.21. Let A ∈ Fn×m and B ∈ Fm×n, and assume that AB is nonsin-
gular. Then, B(AB)−1A is idempotent.

Fact 3.12.22. Let A,B ∈ Fn×n, assume that A and B are idempotent, and
let α, β ∈ F be nonzero and satisfy α+ β �= 0. Then,

rank(A+B) = rank(αA + βB)
= rankA+ rank(A⊥BA⊥)
= n− dim[N(A⊥B) ∩N(A)]

= rank

⎡
⎣ 0 A B
A 0 0
B 0 2B

⎤
⎦− rankA− rankB

= rank
[
A B
B 0

]
− rankB = rank

[
B A
A 0

]
− rankA

= rank(B⊥AB⊥) + rankB = rank(A⊥BA⊥) + rankA
= rank(A+A⊥B) = rank(A+BA⊥)
= rank(B +B⊥A) = rank(B +AB⊥)
= rank(I −A⊥B⊥) = rank(I −B⊥A⊥)

= rank
[
AB⊥ B

]
= rank

[
BA⊥ A

]
= rank

[
B⊥A
B

]
= rank

[
A⊥B
A

]

= rankA+ rankB − n+ rank
[

A⊥ A⊥B⊥
B⊥A⊥ B⊥

]
.

Furthermore, the following statements hold:

i) If AB = 0, then

rank(A+B) = rank(BA⊥) + rankA
= rank(B⊥A) + rankB.
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ii) If BA = 0, then

rank(A+B) = rank(AB⊥) + rankB
= rank(A⊥B) + rankA.

iii) If AB = BA, then

rank(A+B) = rank(AB⊥) + rankB
= rank(BA⊥) + rankA.

iv) A+B is idempotent if and only if AB = BA = 0.

v) A+B = I if and only if AB = BA = 0 and rank [A,B] = rankA+rankB =
n.

(Remark: See Fact 6.4.33.) (Proof: See [597, 835, 836, 1306, 1309]. To prove
necessity in iv) note that AB + BA = 0 implies AB + ABA = ABA + BA = 0,
which implies that AB − BA = 0, and hence AB = 0. See [630, p. 250] and [654,
p. 435].)

Fact 3.12.23. Let A ∈ Fn×n, let r �= rankA, and let B ∈ Fn×r and C ∈ Fr×n

satisfy A = BC. Then, A is idempotent if and only if CB = I. (Proof: See [1396, p.
16].) (Remark: A = BC is a full-rank factorization.)

Fact 3.12.24. Let A,B ∈ Fn×n, assume that A and B are idempotent, and
let C ∈ Fn×m. Then,

rank(AC − CB) = rank(AC −ACB) + rank(ACB − CB)

= rank
[
AC
B

]
+ rank

[
CB A

]− rankA− rankB.

(Proof: See [1281].)

Fact 3.12.25. Let A,B ∈ Fn×n, and assume that A and B are idempotent.
Then,

rank(A−B) = rank

⎡
⎣ 0 A B
A 0 0
B 0 0

⎤
⎦− rankA− rankB

= rank
[
A
B

]
+ rank

[
A B

]− rankA− rankB

= n− dim[N(A) ∩N(B)] − dim[R(A) ∩R(B)]
= rank(AB⊥) + rank(A⊥B)
≤ rank(A+B)
≤ rankA+ rankB.

Furthermore, if either AB = 0 or BA = 0, then

rank(A−B) = rank(A+B) = rankA+ rankB.

(Proof: See [597, 836, 1306, 1309]. The inequality rank(A − B) ≤ rank(A + B)
follows from Fact 2.11.13 and the block 3 × 3 expressions in this result and in
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Fact 3.12.22. To prove the last statement in the case AB = 0, first note that
rankA + rankB = rank(A − B), which yields rank(A − B) ≤ rank(A + B) ≤
rankA+ rankB = rank(A−B).) (Remark: See Fact 6.4.33.)

Fact 3.12.26. Let A,B ∈ Fn×n, and assume that A and B are idempotent.
Then, the following statements are equivalent:

i) A+B is nonsingular.

ii) There exist α, β ∈ F such that α+ β �= 0 and αA+ βB is nonsingular.

iii) For all nonzero α, β ∈ F such that α+ β �= 0, αA+ βB is nonsingular.

(Proof: See [104, 833, 1309].)

Fact 3.12.27. Let A,B ∈ F
n×n, and assume that A and B are idempotent.

Then, the following statements are equivalent:

i) A−B is idempotent.

ii) rank(A⊥ +B) + rank(A−B) = n.

iii) ABA = B.

iv) rank(A−B) = rankA− rankB.

v) R(B) ⊆ R(A) and R(B∗) ⊆ R(A∗).

(Proof: See [1308].) (Remark: This result is due to Hartwig and Styan.)

Fact 3.12.28. Let A,B ∈ Fn×n, and assume that A and B are idempotent.
Then, the following statements are equivalent:

i) A−B is nonsingular.

ii) I − AB is nonsingular, and there exist α, β ∈ F such that α + β �= 0 and
αA + βB is nonsingular.

iii) I − AB is nonsingular, and αA + βB is nonsingular for all α, β ∈ F such
that α+ β �= 0.

iv) I −AB and A+A⊥B are nonsingular.

v) I −AB and A+B are nonsingular.

vi) R(A) + R(B) = F
n and R(A∗) + R(B∗) = F

n.

vii) R(A) + R(B) = Fn and N(A) + N(B) = Fn.

viii) R(A) ∩ R(B) = {0} and N(A) ∩N(B) = {0}.
ix) rank[ AB ] = rank

[
A B

]
= rankA+ rankB = n.

(Proof: See [104, 597, 834, 836, 1306].)

Fact 3.12.29. Let A,B ∈ F
n×n, assume that A and B are idempotent. Then,

the following statements hold:

i) R(A) ∩ R(B) ⊆ R(AB).
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ii) N(B) + [N(A) ∩R(B)] ⊆ N(AB) ⊆ R(I −AB) ⊆ N(A) + N(B).

iii) If AB = BA, then AB is the idempotent matrix onto R(A) ∩ R(B) along
N(A) + N(B).

Furthermore, the following statements are equivalent:

iv) AB = BA.

v) rankAB = rankBA, and AB is the idempotent matrix onto R(A) ∩ R(B)
along N(A) + N(B).

vi) rankAB = rankBA, and A + B − AB is the idempotent matrix onto
R(A) + R(B) along N(A) ∩N(B).

In addition, the following statements are equivalent:

vii) AB is idempotent.

viii) R(AB) ⊆ R(B) + [N(A) ∩N(B)].

ix) R(AB) = R(A) ∩ (R(B) + [N(A) ∩N(B)]).

x) N(B) + [N(A) ∩R(B)] = R(I −AB).

Finally, the following statements hold:

xi) A−B is idempotent if and only if B is the idempotent matrix onto R(A)∩
R(B) along N(A) + N(B).

xii) A+B is idempotent if and only if A is the idempotent matrix onto R(A)∩
N(B) along N(A) + R(B).

(Proof: See [536, p. 53] and [596].) (Remark: See Fact 5.12.19.)

Fact 3.12.30. Let A,B ∈ F
n×n, assume that A and B are idempotent, and

assume that AB = BA. Then, the following statements are equivalent:

i) A−B is nonsingular.

ii) (A−B)2 = I.

iii) A+B = I.

(Proof: See [597].)

Fact 3.12.31. Let A,B ∈ F
n×n, and assume that A and B are idempotent.

Then,

rank [A,B] = rank(A−B) + rank(A⊥−B)− n
= rank(A−B) + rankAB + rankBA− rankA− rankB.

Furthermore, the following statements hold:

i) AB = BA if and only if R(AB) = R(BA) and R[(AB)∗] = R[(BA)∗].

ii) AB = BA if and only if

rank(A− B) + rank(A⊥−B) = n.

iii) [A,B] is nonsingular if and only if A−B and A⊥−B are nonsingular.
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iv) max{rankAB, rankBA} ≤ rank(AB +BA).

v) AB +BA = 0 if and only if AB = BA = 0.

vi) AB +BA is nonsingular if and only if A+B and A⊥−B are nonsingular.

vii) rank(AB +BA) = rank(αAB + βBA).

viii) A⊥−B is nonsingular if and only if rankA = rankB = rankAB = rankBA.
In this case, A and B are similar.

ix) rank(A+B) + rank(AB − BA) = rank(A−B) + rank(AB +BA).

x) rank(AB −BA) ≤ rank(AB +BA).

(Proof: See [836].)

Fact 3.12.32. Let A,B ∈ Fn×n, assume that A and B are idempotent, and
assume that A − B is nonsingular. Then, A + B is nonsingular. Now, define
F,G ∈ Fn×n by

F
�= A(A−B)−1 = (A−B)−1(I −B)

and
G �= (A−B)−1A = (I −A)(A −B)−1.

Then, F and G are idempotent. In particular, F is the idempotent matrix onto
R(A) along N(B), and G∗ is the idempotent matrix onto R(A∗) along R(B∗).
Furthermore,

FB = AG = 0,

(A−B)−1 = F −G⊥,

(A−B)−1 = (A+B)−1(A−B)(A +B)−1,

(A+B)−1 = I −G⊥F −GF⊥,
(A+B)−1 = (A−B)−1(A+B)(A −B)−1.

(Proof: See [836].) (Remark: See [836] for an explicit expression for (A + B)−1 in
the case A−B is nonsingular.) (Remark: See Proposition 3.5.3.)

Fact 3.12.33. If A ∈ Fn×m and B ∈ Fn×(n−m), assume that [A B] is nonsin-
gular, and define

P �=
[
A 0

][
A B

]−1

and
Q

�=
[

0 B
][

A B
]−1

.

Then, the following statements hold:

i) P and Q are idempotent.

ii) P +Q = In.

iii) PQ = 0.

iv) P
[
A 0

]
=
[
A 0

]
.

v) Q
[

0 B
]

=
[

0 B
]
.
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vi) R(P ) = R(A) and N(P ) = R(B).

vii) R(Q) = R(B) and N(Q) = R(A).

viii) If A∗B = 0, then P = A(A∗A)−1A and Q = B(B∗B)−1B∗.

ix) R(A) and R(B) are complementary subspaces.

x) P is the idempotent matrix onto R(A) along R(B).

xi) Q is the idempotent matrix onto R(B) along R(A).

(Proof: See [1497].) (Remark: See Fact 3.13.24, Fact 6.4.18, and Fact 6.4.19.)

3.13 Facts on Projectors

Fact 3.13.1. Let A ∈ Fn×n. Then, the following statements are equivalent:

i) A is a projector.

ii) A = AA∗.

iii) A = A∗A.

iv) A is idempotent and normal.

v) A and A∗A are idempotent.

vi) AA∗A = A, and A is idempotent.

vii) A and 1
2 (A+A∗) are idempotent.

viii) A is idempotent, and AA∗ +A∗A = A+A∗.

ix) A is tripotent, and A2 = A∗.

x) AA∗ = A∗AA∗.

xi) A is idempotent, and rankA+ rank(I −A∗A) = n.

xii) A is idempotent, and, for all x ∈ Fn, x∗Ax ≥ 0.

(Remark: See Fact 3.13.2, Fact 3.13.3, and Fact 6.3.27.) (Remark: The matrix
A =

[
1/2 1/2
0 0

]
satisfies trA = trA∗A but is not a projector. See Fact 3.7.13.)

Fact 3.13.2. Let A ∈ Fn×n, and assume that A is Hermitian. Then, the
following statements are equivalent:

i) A is a projector.

ii) rankA = trA = trA2.

(Proof: See [1184, p. 55].) (Remark: See Fact 3.13.1 and Fact 3.13.3.)

Fact 3.13.3. Let A ∈ Fn×n, and assume that A is idempotent. Then, the
following statements are equivalent:

i) A is a projector.

ii) AA∗A = A.
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iii) A is Hermitian.

iv) A is normal.

v) A is range Hermitian.

(Proof: See [1335].) (Remark: See Fact 3.13.1 and Fact 3.13.2.)

Fact 3.13.4. Let A ∈ Fn×n, and assume that A is a projector. Then, A is
positive semidefinite.

Fact 3.13.5. Let A ∈ Fn×n, assume that A is a projector, and let x ∈ Fn.
Then, x ∈ R(A) if and only if x = Ax.

Fact 3.13.6. Let A ∈ Fn×m. If rankA = m, then B
�= A(A∗A)−1A∗ is a

projector and rankB = m. If rankA = n, then B �= A∗(AA∗)−1A is a projector and
rankB = n. (Remark: See Fact 2.15.2, Fact 3.7.25, and Fact 3.7.26.)

Fact 3.13.7. Let x ∈ Fn be nonzero, and define the elementary projector
A �= I − (x∗x)−1xx∗. Then, the following statements hold:

i) rankA = n−1.

ii) N(A) = span {x}.
iii) R(A) = {x}⊥.
iv) 2A− I is the elementary reflector I − 2(x∗x)−1xx∗.

(Remark: If y ∈ Fn, then Ay is the projection of y on {x}⊥.)

Fact 3.13.8. Let n > 1, let S ⊂ F
n, and assume that S is a hyperplane.

Then, there exists a unique elementary projector A ∈ Fn×n such that R(A) = S

and N(A) = S⊥. Furthermore, if x ∈ Fn is nonzero and S
�= {x}⊥, then A =

I − (x∗x)−1xx∗.

Fact 3.13.9. Let A ∈ Fn×n. Then, A is a projector and rankA = n−1 if and
only if there exists a nonzero vector x ∈ N(A) such that

A = I − (x∗x)−1xx∗.

In this case, it follows that, for all y ∈ Fn,

y∗y − y∗Ay =
|y∗x|2
x∗x

.

Furthermore, for y ∈ Fn, the following statements are equivalent:

i) y∗Ay = y∗y.

ii) y∗x = 0.

iii) Ay = y.

(Remark: See Fact 3.7.19.)
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Fact 3.13.10. Let A ∈ Fn×n, assume that A is a projector, and let x ∈ Fn.
Then,

x∗Ax ≤ x∗x.
Furthermore, the following statements are equivalent:

i) x∗Ax = x∗x.

ii) Ax = x.

iii) x ∈ R(A).

Fact 3.13.11. Let A ∈ Fn×n, and assume that A is idempotent. Then, A is
a projector if and only if, for all x ∈ Fn, x∗Ax ≤ x∗x. (Proof: See [1098, p. 105].)

Fact 3.13.12. A �=
[
A11 A12
A∗

12 A22

]
∈ F(n+m)×(n+m), and assume that A is a pro-

jector. Then,
rankA = rankA11 + rankA22 − rankA12.

(Proof: See [1308] and Fact 3.12.20.) (Remark: See Fact 3.12.20 and Fact 6.5.13.)

Fact 3.13.13. Let A ∈ Fn×n, and assume that A satisfies two out of the
three properties (Hermitian, shifted unitary, idempotent). Then, A satisfies the
remaining property. Furthermore, these matrices are the projectors. (Proof: If A
is idempotent and shifted unitary, then (2A− I)−1 = 2A− I = (2A∗ − I)−1. Hence,
A is Hermitian.) (Remark: The condition A + A∗ = 2AA∗ is considered in Fact
3.11.33.) (Remark: See Fact 3.14.2 and Fact 3.14.6.)

Fact 3.13.14. Let A ∈ Fn×n, let B ∈ Fn×m, assume that A is a projector, and
assume that R(AB) = R(B). Then, AB = B. (Proof: 0 = R(A⊥AB) = A⊥R(AB) =
A⊥R(B) = R(A⊥B). Hence, A⊥B = 0. Consequently, B = (A + A⊥)B = AB.)
(Remark: See Fact 6.4.16.)

Fact 3.13.15. Let A,B ∈ Fn×n, and assume that A and B are projectors.
Then, R(A) = R(B) if and only if A = B. (Remark: See Proposition 3.5.1.)

Fact 3.13.16. Let A,B ∈ Fn×n, assume that A and B are projectors, and
assume that rankA = rankB. Then, there exists a reflector S ∈ Fn×n such that
A = SBS. If, in addition, A+B− I is nonsingular, then one such reflector is given
by S = 〈A+B − I〉(A+B − I)−1. (Proof: See [327].)

Fact 3.13.17. Let A,B ∈ Fn×n, and assume that A and B are projectors.
Then, the following statements are equivalent:

i) R(A) ⊆ R(B).

ii) A ≤ B.
iii) AB = A.

iv) BA = A.

v) B −A is a projector

(Proof: See [1184, pp. 24, 169].) (Remark: See Fact 9.8.3.)
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Fact 3.13.18. Let A,B ∈ Fn×n, and assume that A and B are projectors.
Then,

R(I −AB) = N(A) + N(B)

and
R(A+A⊥B) = R(A) + R(B).

(Proof: See [594, 1328].)

Fact 3.13.19. Let A,B ∈ Fn×n, and assume that A and B are projectors.
Then, the following statements are equivalent:

i) AB = 0.

ii) BA = 0.

iii) R(A) = R(B)⊥.

iv) A+B is a projector.

In this case, R(A + B) = R(A) + R(B). (Proof: See [530, pp. 42–44].) (Remark:
See [537].)

Fact 3.13.20. Let A,B ∈ Fn×n, and assume that A and B are projectors.
Then, the following statements are equivalent:

i) AB is a projector.

ii) AB = BA.

iii) AB is idempotent.

iv) AB is Hermitian.

v) AB is normal.

vi) AB is range Hermitian.

In this case, the following statements hold:

vii) R(AB) = R(A) ∩ R(B).

viii) AB is the projector onto R(A) ∩ R(B).

ix) A+A⊥B is a projector.

x) A+A⊥B is the projector onto R(A) + R(B).

(Proof: See [530, pp. 42–44] and [1321, 1423].) (Remark: See Fact 5.12.16 and
Fact 6.4.23.) (Problem: If A +A⊥B is a projector, then does it follow that A and
B commute?)

Fact 3.13.21. Let A,B ∈ Fn×n, and assume that A and B are projectors.
Then, AB is group invertible. (Proof: N(BA) ⊆ N(BABA) ⊆ N(ABABA) =
N(ABAABA) = N(ABA) = N(ABBA) = N(BA).) (Remark: See [1423].)
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Fact 3.13.22. Let A,B ∈ Fn×n, and assume that A and B are projectors.
Then, the ln× ln matrix below has rank

rank

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A+B AB

AB A+B
. . .

. . . . . . . . .

. . . A+B AB

AB A+B

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= l rank(A+B).

(Proof: See [1309].)

Fact 3.13.23. Let A,B ∈ F
n×n, and assume that A and B are projectors.

Then,
rank(A+B) = rankA+ rankB − n+ rank(A⊥ +B⊥),

rank
[
A B

]
= rankA+ rankB − n+ rank

[
A⊥ B⊥

]
,

rank [A,B] = 2
(
rank

[
A B

]
+ rankAB − rankA− rankB

)
.

(Proof: See [1306, 1309].)

Fact 3.13.24. Let A,B ∈ Fn×n, and assume that A and B are projectors.
Then, the following statements are equivalent:

i) A−B is nonsingular.

ii) rank
[
A B

]
= rankA+ rankB = n.

iii) R(A) and R(B) are complementary subspaces.

Now, assume that i)–iii) hold. Then, the following statements hold:

iv) I −BA is nonsingular.

v) A+B −AB is nonsingular.

vi) The idempotent matrix M ∈ Fn×n onto R(B) along R(A) is given by

M = (I −BA)−1B(I −BA)

= B(I −AB)−1(I −BA)

= (I −AB)−1(I −A)

= A(A+B −AB)−1.

vii) M satisfies
M +M∗ = (B −A)−1 + I,

that is,
(B −A)−1 = M +M∗ − I = M −M∗

⊥.

(Proof: See Fact 5.12.17 and [6, 271, 537, 588, 744, 1115]. The uniqueness of M
follows from Proposition 3.5.3, while vii) follows from Fact 5.12.18.) (Remark: See
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Fact 3.12.33, Fact 5.12.18, Fact 6.4.18, and Fact 6.4.19.)

3.14 Facts on Reflectors

Fact 3.14.1. If A ∈ Fn×n is a projector, then B �= 2A − I is a reflector.
Conversely, if B ∈ Fn×n is a reflector, then A �= 1

2(B + I) is a projector. (Remark:
See Fact 3.15.2.) (Remark: The affine mapping f(A) �= 2A− I from the projectors
to the reflectors is one-to-one and onto. See Fact 3.11.33 and Fact 3.15.2.)

Fact 3.14.2. Let A ∈ Fn×n, and assume that A satisfies two out of the three
properties (Hermitian, unitary, involutory). Then, A also satisfies the remaining
property. Furthermore, these matrices are the reflectors. (Remark: See Fact 3.13.13
and Fact 3.14.6.)

Fact 3.14.3. Let x ∈ F
n be nonzero, and define the elementary reflector

A
�= I − 2(x∗x)−1xx∗. Then, the following statements hold:

i) detA = −1.

ii) If y ∈ Fn, then Ay is the reflection of y across {x}⊥.
iii) Ax = −x.
iv) 1

2 (A+ I) is the elementary projector I − (x∗x)−1xx∗.

Fact 3.14.4. Let x, y ∈ F
n. Then, there exists a unique elementary reflector

A ∈ Fn×n such that Ax = y if and only if x∗y is real and x∗x = y∗y. If, in addition,
x �= y, then A is given by

A = I − 2[(x− y)∗(x− y)]−1(x − y)(x− y)∗.
(Remark: This result is the reflection theorem. See [558, pp. 16–18] and [1129, p.
357]. See Fact 3.9.5.)

Fact 3.14.5. Let n > 1, let S ⊂ F
n, and assume that S is a hyperplane.

Then, there exists a unique elementary reflector A ∈ Fn×n such that, for all y =
y1+ y2 ∈ Fn, where y1 ∈ S and y2 = S⊥, it follows that Ay = y1− y2. Furthermore,
if S = {x}⊥, then A = I − 2(x∗x)−1xx∗.

Fact 3.14.6. Let A ∈ Fn×n, and assume that A satisfies two out of the three
properties (skew Hermitian, unitary, skew involutory). Then, A also satisfies the
remaining property. Furthermore, these matrices are the skew reflectors. (Remark:
See Fact 3.13.13, Fact 3.14.2, and Fact 3.14.7.)

Fact 3.14.7. Let A ∈ Cn×n. Then, A is a reflector if and only if jA is a skew
reflector. (Remark: The mapping f(A) �= jA relates Fact 3.14.2 to Fact 3.14.6.)
(Problem: When A is real and n is even, determine a real transformation between
the reflectors and the skew reflectors.)
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Fact 3.14.8. Let A ∈ Fn×n. Then, the following statements are equivalent:

i) A is a reflector.

ii) A = AA∗ +A∗ − I.
iii) A = 1

2 (A+ I)(A∗ + I)− I.

3.15 Facts on Involutory Matrices

Fact 3.15.1. Let A ∈ Fn×n, and assume that A is involutory. Then, either
detA = 1 or detA = −1.

Fact 3.15.2. If A ∈ Fn×n is idempotent, then B �= 2A − I is involutory.
Conversely, if B ∈ Fn×n is involutory, then A1

�= 1
2(I + B) and A2

�= 1
2(I − B)

are idempotent. (Remark: See Fact 3.14.1.) (Remark: The affine mapping f(A) �=
2A− I from the idempotent matrices to the involutory matrices is one-to-one and
onto. See Fact 3.11.33 and Fact 3.14.1.)

Fact 3.15.3. Let A ∈ Fn×n. Then, A is involutory if and only if

(A+ I)(A− I) = 0.

Fact 3.15.4. Let A,B ∈ Fn×n, and assume that A and B are involutory.
Then,

R([A,B]) = R(A−B) ∩ R(A+B)

and
N([A,B]) = N(A −B) ∩N(A +B).

(Proof: See [1292].)

Fact 3.15.5. Let A ∈ Fn×m, let B ∈ Fm×n, and define

C �=

[
I −BA B

2A−ABA AB − I

]
.

Then, C is involutory. (Proof: See [998, p. 113].)

Fact 3.15.6. Let A ∈ Rn×n, and assume that A is skew involutory. Then, n
is even.

3.16 Facts on Tripotent Matrices

Fact 3.16.1. Let A ∈ Fn×n, and assume that A is tripotent. Then, A2 is
idempotent. (Remark: The converse is false. A counterexample is [ 0 1

0 0 ].)

Fact 3.16.2. Let A ∈ Fn×n. Then, A is nonsingular and tripotent if and only
if A is involutory.
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Fact 3.16.3. Let A ∈ Fn×n, and assume that A is Hermitian. Then, A is
tripotent if and only if

rankA = rank(A+A2) + rank(A−A2).

(Proof: See [1184, p. 176].)

Fact 3.16.4. Let A ∈ Rn×n be tripotent. Then,

rankA = rankA2 = trA2.

Fact 3.16.5. If A,B ∈ Fn×n are idempotent and AB = 0, then A + BA⊥ is
idempotent and C �= A−B is tripotent. Conversely, if C ∈ Fn×n is tripotent, then
A

�= 1
2

(
C2 + C

)
and B

�= 1
2

(
C2 − C) are idempotent and satisfy C = A − B and

AB = BA = 0. (Proof: See [987, p. 114].)

3.17 Facts on Nilpotent Matrices

Fact 3.17.1. Let A ∈ Fn×n. Then, the following statements are equivalent:

i) R(A) = N(A).

ii) A is similar to a block-diagonal matrix each of whose diagonal blocks is
N2.

(Proof: To prove i) =⇒ ii), let S ∈ Fn×n transform A into its Jordan form. Then,
it follows from Fact 2.10.2 that R(SAS−1) = SR(AS−1) = SR(A) = SN(A) =
SN(AS−1S) = N(AS−1) = N(SAS−1). The only Jordan block J that satisfies
R(J) = N(J) is J = N2. Using R(N2) = N(N2) and reversing these steps yields the
converse result.) (Remark: The fact that n is even follows from rankA+def A = n
and rankA = def A.) (Remark: See Fact 3.17.2 and Fact 3.17.3.)

Fact 3.17.2. Let A ∈ Fn×n. Then, the following statements are equivalent:

i) N(A) ⊆ R(A).

ii) A is similar to a block-diagonal matrix each of whose diagonal blocks is
either nonsingular or N2.

(Remark: See Fact 3.17.1 and Fact 3.17.3.)

Fact 3.17.3. Let A ∈ Fn×n. Then, the following statements are equivalent:

i) R(A) ⊆ N(A).

ii) A is similar to a block-diagonal matrix each of whose diagonal blocks is
either zero or N2.

(Remark: See Fact 3.17.1 and Fact 3.17.2.)

Fact 3.17.4. Let n ∈ P and k ∈ {0, . . . , n}. Then, rankNk
n = n− k.

Fact 3.17.5. Let A ∈ Rn×n. Then, rankAk is a nonincreasing function of
k ≥ 1. Furthermore, if there exists k ∈ {1, . . . , n} such that rankAk+1 = rankAk,
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then rankAl = rankAk for all l ≥ k. Finally, if A is nilpotent and Al �= 0, then
rankAk+1 < rankAk for all k = 1, . . . , l.

Fact 3.17.6. Let A ∈ Fn×n. Then, A is nilpotent if and only if, for all k =
1, . . . , n, trAk = 0. (Proof: See [1098, p. 103] or use Fact 4.8.2 with p = χA and
μ1 = · · · = μn = 0.)

Fact 3.17.7. Let λ ∈ F and n, k ∈ P. Then,

(λIn +Nn)k =

⎧⎨
⎩
λkIn +

(
k
1

)
λk−1Nn + · · ·+ (kk)Nk

n , k < n−1,

λkIn +
(
k
1

)
λk−1Nn + · · ·+ ( k

n−1

)
λk−n+1Nn−1

n , k ≥ n−1,

that is, for k ≥ n−1,

⎡
⎢⎢⎢⎢⎢⎢⎣

λ 1 · · · 0 0

0 λ
. . . 0 0

...
. . .

. . .
. . .

...

0 0
. . . λ 1

0 0 · · · 0 λ

⎤
⎥⎥⎥⎥⎥⎥⎦

k

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λk
(

k
1

)
λk−1 · · · (

k
n−2

)
λk−n+1

(
k

n−1

)
λk−n+1

0 λk
. . .

(
k

n−3

)
λk−n+2

(
k

n−2

)
λk−n+2

...
. . .

. . .
. . .

...

0 0
. . . λk

(
k
1

)
λk−1

0 0 · · · 0 λk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Fact 3.17.8. Let A ∈ Rn×n, assume that A is nilpotent, and let k ≥ 1 be
such that Ak = 0. Then, det(I −A) = 1

and

(I −A)−1 =
k−1∑
i=0

Ai.

Fact 3.17.9. Let A,B ∈ Fn×n, assume that B is nilpotent, and assume that
AB = BA. Then, det(A+B) = detA. (Proof: Use Fact 5.17.4.)

Fact 3.17.10. Let A,B ∈ R
n×n, assume that A and B are nilpotent, and

assume that AB = BA. Then, A + B is nilpotent. (Proof: If Ak = Bl = 0, then
(A+B)k+l = 0.)

Fact 3.17.11. Let A,B ∈ Fn×n, and assume that A and B are either both
upper triangular or both lower triangular. Then,

[A,B]n = 0.

Hence, [A,B] is nilpotent. (Remark: See [499, 500].) (Remark: See Fact 5.17.6.)

Fact 3.17.12. Let A,B ∈ Fn×n, and assume that [A, [A,B]] = 0. Then, [A,B]
is nilpotent. (Remark: This result is due to Jacobson. See [492] or [709, p. 98].)

Fact 3.17.13. Let A,B ∈ Fn×n, and assume that there exist k ∈ P and
nonzero α ∈ R such that

[
Ak, B

]
= αA. Then, A is nilpotent. (Proof: For all l ∈ N,
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Ak+lB − AlBAk = αAl+1, and thus trAl+1 = 0. The result now follows from Fact
3.17.6.) (Remark: See [1145].)

3.18 Facts on Hankel and Toeplitz Matrices

Fact 3.18.1. Let A ∈ Fn×m. Then, the following statements hold:

i) If A is Toeplitz, then ÎA and AÎ are Hankel.

ii) If A is Hankel, then ÎA and AÎ are Toeplitz.

iii) A is Toeplitz if and only if ÎAÎ is Toeplitz.

iv) A is Hankel if and only if ÎAÎ is Hankel.

Fact 3.18.2. Let A ∈ Fn×n, assume that A is Hankel, and consider the fol-
lowing conditions:

i) A is Hermitian.

ii) A is real.

iii) A is symmetric.

Then, i) =⇒ ii) =⇒ iii).

Fact 3.18.3. Let A ∈ Fn×n, and assume that A is a partitioned matrix, each
of whose blocks is a k × k (circulant, Hankel, Toeplitz) matrix. Then, A is similar
to a block-(circulant, Hankel, Toeplitz) matrix. (Proof: See [140].)

Fact 3.18.4. For all i, j = 1, . . . , n, define A ∈ Rn×n by

A(i,j)
�=

1
i+ j − 1

.

Then, A is Hankel, positive definite, and

detA =
[1!2! · · · (n−1)!]4

1!2! · · · (2n−1)!
.

Furthermore, for all i, j = 1, . . . , n, A−1 has integer entries given by

(
A−1
)
(i,j)

= (−1)i+j(i+ j − 1)
(
n+ i−1
n− j

)(
n+ j −1
n− i

)(
i+ j − 2
i−1

)2
.

Finally, for large n,
detA ≈ 2−2n2

.

(Remark: A is the Hilbert matrix, which is a Cauchy matrix. See [681, p. 513],
Fact 1.10.36, Fact 3.20.14, Fact 3.20.15, and Fact 12.21.18.) (Remark: See [325].)

Fact 3.18.5. Let A ∈ F
n×n, and assume that A is Toeplitz. Then, A is reverse

symmetric.



216 CHAPTER 3

Fact 3.18.6. Let A ∈ Fn×n. Then, A is Toeplitz if and only if there exist
a0, . . . , an ∈ F and b1, . . . , bn ∈ F such that

A =
n∑
i=1

biN
iT
n +

n∑
i=0

aiN
i
n.

Fact 3.18.7. Let A ∈ Fn×n, let k ≥ 1, and assume that A is (lower triangular,
strictly lower triangular, upper triangular, strictly upper triangular). Then, so is
Ak. If, in addition, A is Toeplitz, then so is Ak. (Remark: If A is Toeplitz, then A2

is not necessarily Toeplitz.) (Remark: See Fact 11.13.1.)

3.19 Facts on Hamiltonian and Symplectic Matrices

Fact 3.19.1. Let A ∈ F2n×2n. Then, A is Hamiltonian if and only if JA =
(JA)T. Furthermore, A is symplectic if and only if ATJA = J.

Fact 3.19.2. Assume that n ∈ P is even, let A ∈ Fn×n, and assume that A
is Hamiltonian and symplectic. Then, A is skew involutory. (Remark: See Fact
3.19.3.)

Fact 3.19.3. The following statements hold:

i) I2n is orthogonal, shifted orthogonal, a projector, a reflector, and symplec-
tic.

ii) J2n is skew symmetric, orthogonal, skew involutory, a skew reflector, sym-
plectic, and Hamiltonian.

iii) Î2n is symmetric, orthogonal, involutory, shifted orthogonal, a projector, a
reflector, and Hamiltonian.

(Remark: See Fact 3.19.2 and Fact 5.9.25.)

Fact 3.19.4. Let A ∈ F
2n×2n, assume that A is Hamiltonian, and let S ∈

F2n×2n be symplectic. Then, SAS−1 is Hamiltonian.

Fact 3.19.5. Let A ∈ F2n×2n, and assume that A is Hamiltonian and nonsin-
gular. Then, A−1 is Hamiltonian.

Fact 3.19.6. Let A ∈ F2n×2n. Then, A is Hamiltonian if and only if there
exist A,B,C,D ∈ Fn×n such that B and C are symmetric and

A =
[
A B
C −AT

]
.

(Remark: See Fact 4.9.23.)

Fact 3.19.7. Let A ∈ F2n×2n, and assume that A is Hamiltonian. Then,
trA = 0.
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Fact 3.19.8. Let A ∈ F2n×2n. Then, A is skew symmetric and Hamiltonian if
and only if there exist a skew-symmetric matrix A ∈ Fn×n and a symmetric matrix
B ∈ Fn×n such that

A =
[

A B
−B A

]
.

Fact 3.19.9. Let A
�= [A B

C D ] ∈ F2n×2n, where A,B,C,D ∈ Fn×n. Then, A is
symplectic if and only if ATC and BTD are symmetric and ATD − CTB = I.

Fact 3.19.10. Let A ∈ F2n×2n, and assume that A is symplectic. Then,
detA = 1. (Proof: Using Fact 2.14.16 and Fact 3.19.9 it follows that det A =
det(ATD − CTB) = det I = 1. See also [103, p. 27], [423], [624, p. 8], or [1186, p.
128].)

Fact 3.19.11. Let A ∈ F2×2. Then, A is symplectic if and only if detA = 1.
Hence, SLF(2) = SympF(2).

Fact 3.19.12. The following statements hold:

i) If A ∈ F2n×2n is Hamiltonian and A + I is nonsingular, then B
�= (A −

I)(A+ I)−1 is symplectic, I −B is nonsingular, and (I −B)−1 = 1
2 (A+ I).

ii) If B ∈ F2n×2n is symplectic and I−B is nonsingular, then A = (I+B)(I−
B)−1 is Hamiltonian, A+ I is nonsingular, and (A+ I)−1 = 1

2 (I −B).

iii) If A ∈ F2n×2n is Hamiltonian, then there exists a unique symplectic matrix
B ∈ F2n×2n such that I −B is nonsingular and A = (I +B)(I −B)−1. In
fact, B = (A− I)(A+ I)−1.

iv) If B ∈ F2n×2n is symplectic and I − B is nonsingular, then there exists a
unique Hamiltonian matrix A ∈ F2n×2n such that B = (A − I)(A + I)−1.
In fact, A = (I +B)(I −B)−1.

(Remark: See Fact 3.11.28, Fact 3.11.29, and Fact 3.11.30.)

Fact 3.19.13. Let A ∈ R2n×2n. Then, A ∈ osympR(2n) if and only if there
exist A,B ∈ Rn×n such that A is skew symmetric, B is symmetric, and A =[
A B
−B A

]
. (Proof: See [395].) (Remark: OSympR(2n) is the orthosymplectic group.)

3.20 Facts on Miscellaneous Types of Matrices

Fact 3.20.1. Let A ∈ Fn×n, and assume that there exists i ∈ {1, . . . , n} such
that either rowi(A) = 0 or coli(A) = 0. Then, A is reducible.

Fact 3.20.2. Let A ∈ F
n×n, and assume that A is reducible. Then, A has at

least n− 1 entries that are equal to zero.

Fact 3.20.3. Let A ∈ Rn×n, and assume that A is a permutation matrix.
Then, A is irreducible if and only if there exists a permutation matrix S ∈ Rn×n

such that SAS−1 is the primary circulant. (Proof: See [1184, p. 177].) (Remark:
The primary circulant is defined in Fact 5.16.7.)
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Fact 3.20.4. Let A ∈ Fn×n. Then, A is reducible if and only if |A| is reducible.
Furthermore, A is irreducible if and only if |A| is irreducible.

Fact 3.20.5. Let A ∈ Fn×n, assume that A is nonsingular, and let l ∈
{0, . . . , n} and k ∈ {1, . . . , n}. Then, the following statements are equivalent:

i) Every submatrix B of A whose entries are entries of A lying above the lth
superdiagonal of A satisfies rankB ≤ k −1.

ii) Every submatrix C of A whose entries are entries of A−1 lying above the
lth subdiagonal of A−1 satisfies rankC ≤ l + k −1.

Specifically, the following statements hold:

iii) A is lower triangular if and only if A−1 is lower triangular.

iv) A is diagonal if and only if A−1 is diagonal.

v) A is lower Hessenberg if and only if every submatrix C of A−1 whose entries
are entries of A−1 lying on or above the diagonal of A−1 satisfies rankC ≤ 1.

vi) A is tridiagonal if and only if every submatrix C of A−1 whose entries are
entries of A−1 lying on or above the diagonal of A−1 satisfies rankC ≤ 1
and every submatrix C of A−1 whose entries are entries of A−1 lying on or
below the diagonal of A−1 satisfies rankC ≤ 1.

(Remark: The 0th subdiagonal and the 0th superdiagonal are the diagonal.) (Proof:
See [1242].) (Remark: Statement iii) corresponds to l = 0 and k = 1, iv) corre-
sponds to l = 0 and k = 1 applied to A and AT, v) corresponds to l = 1 and
k = 1, and vi) corresponds to l = 1 and k = 1 applied to A and AT. (Remark:
See Fact 2.11.20.) (Remark: Extensions to generalized inverses are considered in
[131, 1131].)

Fact 3.20.6. Let A ∈ F
n×n be the tridiagonal matrix

A
�=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a+ b ab 0 · · · 0 0

1 a+ b ab · · · 0 0

0 1 a+ b
. . . 0 0

...
...

. . . . . . . . .
...

0 0 0
. . . a+ b ab

0 0 0 · · · 1 a+ b

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Then,

detA =

⎧⎪⎪⎨
⎪⎪⎩

(n+ 1)an, a = b,

an+1 − bn+1

a− b , a �= b.

(Proof: See [841, pp. 401, 621].)
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Fact 3.20.7. Let A ∈ Fn×n be the tridiagonal, Toeplitz matrix

A
�=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b c 0 · · · 0 0

a b c · · · 0 0

0 a b
. . . 0 0

...
...

. . .
. . .

. . .
...

0 0 0
. . . b c

0 0 0 · · · a b

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and define
α

�= 1
2 (b+

√
b2 − 4ac), β

�= 1
2 (b −

√
b2 − 4ac).

Then,

detA =

⎧⎪⎨
⎪⎩
bn, ac = 0,
(n+ 1)(b/2)n, b2 = 4ac,
(αn+1 − βn+1)/(α− β), b2 �= 4ac.

(Proof: See [1490, pp. 101, 102].) (Remark: See Fact 3.20.6 and Fact 5.11.43.)

Fact 3.20.8. Let A ∈ R
n×n, assume that A is tridiagonal with positive diag-

onal entries, and assume that, for all i = 2, . . . , n,

A(i,i−1)A(i−1,i) <
1
4

(
cos π

n+1

)−2

A(i,i)A(i−1,i−1).

Then, detA > 0. If, in addition, A is symmetric, then A is positive definite. (Proof:
See [766].) (Remark: Related results are given in [324].) (Remark: See Fact 8.8.18.)

Fact 3.20.9. Let A ∈ Rn×n, assume that A is tridiagonal, assume that every
entry of the superdiagonal and subdiagonal of A is nonzero, assume that every
leading principal subdeterminant of A and every trailing principal subdeterminant
of A is nonzero. Then, every entry of A−1 is nonzero. (Proof: See [700].)

Fact 3.20.10. Define A ∈ Rn×n by

A
�=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 · · · 0 0

−1 2 −1 · · · 0 0

0 −1 2
. . . 0 0

...
...

. . . . . . . . .
...

0 0 0
. . . 2 −1

0 0 0 · · · −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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Then,

A−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 · · · 1 1

1 2 2 · · · 2 2

1 2 3
. . . 3 3

...
...

. . . . . . . . .
...

1 2 3
. . . n− 1 n− 1

1 2 3 · · · n− 1 n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(Proof: See [1184, p. 182], where the (n, n) entry of A is incorrect.) (Remark: See
Fact 3.20.9.)

Fact 3.20.11. Let A ∈ Fn×n, assume that A is nonsingular, and assume that
A(2,2), . . . , A(n−1,n−1) are nonzero. Then, A−1 is tridiagonal if and only if, for all
i, j = 1, . . . , n such that |i − j| ≥ 2, and for all k satisfying min{i, j} < k <
max{i, j}, it follows that

A(i,j) =
A(i,k)A(k,j)

A(k,k)
.

(Proof: See [147].)

Fact 3.20.12. Let A ∈ Fn×m. Then, A is (semicontractive, contractive) if and
only if A∗ is.

Fact 3.20.13. Let A ∈ Fn×n, and assume that A is dissipative. Then, A
is nonsingular. (Proof: Suppose that A is singular, and let x ∈ N(A). Then,
x∗(A + A∗)x = 0.) (Remark: If A + A∗ is nonsingular, then A is not necessarily
nonsingular. Consider A = [ 0 1

0 0 ].)

Fact 3.20.14. Let a1, . . . , an, b1, . . . , bn ∈ R, assume that ai + bj �= 0 for all
i, j = 1, . . . , n, and, for all i, j = 1, . . . , n, define A ∈ Rn×n by

A(i,j)
�=

1
ai + bj

.

Then,

detA =

∏
1≤i<j≤n

(aj − ai)(bj − bi)
∏

1≤i,j≤n
(ai + bj)

.

Now, assume that a1, . . . , an are distinct and b1, . . . , bn are distinct. Then, A is
nonsingular and

(
A−1
)
(i,j)

=

∏
1≤k≤n

(aj + bk)(ak + bi)

(aj + bi)
∏

1≤k≤n
k �=j

(aj − ak)
∏

1≤k≤n
k �=i

(bi − bk)
.
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Furthermore,

11×nA−11n×1 =
n∑
i=1

(ai + bi).

(Remark: A is a Cauchy matrix. See [199], [681, p. 515], Fact 3.18.4, Fact 3.20.15,
and Fact 12.21.18.)

Fact 3.20.15. Let x1, . . . , xn be distinct positive numbers, let y1, . . . , yn be
distinct positive numbers, and let A ∈ R

n×n, where, for all i, j = 1, . . . , n,

A(i,j)
�=

1
xi + yj

.

Then, A is nonsingular. (Proof: See [854].) (Remark: A is a Cauchy matrix. See
Fact 3.18.4, Fact 3.20.14, and Fact 12.21.18.)

Fact 3.20.16. Let A ∈ Fn×m. Then, A is centrosymmetric if and only if
AT = AT̂. Furthermore, A is centrohermitian if and only if A∗ = A∗̂.

Fact 3.20.17. Let A ∈ Fn×m and B ∈ Fm×l. If A and B are both (centroher-
mitian, centrosymmetric), then so is AB. (Proof: See [685].)

Fact 3.20.18. Let A,B ∈ Fn, and assume that A and B are (upper triangular,
lower triangular). Then, AB is (upper triangular, lower triangular). If, in addition,
either A or B is (strictly upper triangular, strictly lower triangular), then AB is
(strictly upper triangular, strictly lower triangular). (Remark: See Fact 3.21.5.)

3.21 Facts on Groups

Fact 3.21.1. The following subsets of R are groups:

i) {x ∈ R: x �= 0}.
ii) {x ∈ R: x > 0}.
iii) {x ∈ R: x �= 0 and x is rational}.
iv) {x ∈ R: x > 0 and x is rational}.
v) {−1, 1}.
vi) {1}.

Fact 3.21.2. Let n be a nonnegative integer, and define Sn �= {x ∈ R
n+1: xTx

= 1}, which is the unit sphere in Rn+1. Then, the following statements hold:

i) SO(1) = SU(1) = {1}.
ii) S0 = O(1) = {−1, 1}.
iii) {1,−1, j,−j}.
iv) U(1) = {ejθ : θ ∈ [0, 2π)} ≈ SO(2).
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v) S1 = {[ cos θ sin θ
]T ∈ R2: θ ∈ [0, 2π)} = {[ Re z Im z

]T : z ∈ U(1)}.
vi) SU(2) = {[ z w

−w z ] ∈ C
2×2: z, w ∈C and |z|2 + |w|2 = 1} ≈ Sp(1).

vii) S3 = {[ Re z Im z Rew Imw
]T ∈ R4:

[
z w

]T ∈ C2 and |z|2 +
|w|2 = 1}.

(Proof: See [1256, p. 40].) (Remark: Sp(1) ⊂ H
1×1 is the group of unit quaternions.

See Fact 3.22.1.) (Remark: A group operation can be defined on Sn if and only if
n = 0, 1, or 3. See [1256, p. 40].)

Fact 3.21.3. The groups U(n) and O(2n) ∩ SympR(2n) are isomorphic. In
particular, U(1) and O(2) ∩ SympR(2) = SO(2) are isomorphic. (Proof: See [97].)

Fact 3.21.4. The following subsets of Fn×n are Lie algebras:

i) ut(n) �= {A ∈ glF(n): A is upper triangular}.
ii) sut(n) �= {A ∈ glF(n): A is strictly upper triangular}.
iii) {0n×n}.

Fact 3.21.5. The following subsets of Fn×n are groups:

i) UT(n) �= {A ∈ GLF(n): A is upper triangular}.
ii) UT+(n) �= {A ∈ UT(n): A(i,i) > 0 for all i = 1, . . . , n}.
iii) UT±1(n) �= {A ∈ UT(n): A(i,i) = ±1 for all i = 1, . . . , n}.
iv) SUT(n) �= {A ∈ UT(n): A(i,i) = 1 for all i = 1, . . . , n}.
v) {In}.

(Remark: The matrices in SUT(n) are unipotent. See Fact 5.15.9.) (Remark:
SUT(3) for F = R is the Heisenberg group.) (Remark: See Fact 3.20.18.)

Fact 3.21.6. Let P ∈ Rn×n, and assume that P is a permutation matrix.
Then, there exist transposition matrices T1, . . . , Tk ∈ Rn×n such that

P = T1 · · ·Tk.
(Remark: The permutation matrix Ti is a transposition matrix if it has exactly two
off-diagonal entries that are nonzero.) (Remark: Every permutation of n objects
can be realized as a sequence of pairwise transpositions. See [445, pp. 106, 107] or
[497, p. 82].) (Example:[

0 1 0
0 0 1
1 0 0

]
=
[

0 0 1
0 1 0
1 0 0

][
1 0 0
0 0 1
0 1 0

]
=
[

1 0 0
0 0 1
0 1 0

][
0 1 0
1 0 0
0 0 1

]
,

which represents a 3-cycle.) (Remark: This factorization in terms of transpositions
is not unique. However, Fact 5.16.8 shows that every permutation can be written
essentially uniquely as a product of disjoint cycles.)
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Fact 3.21.7. The following subsets of Rn×n are finite groups:

i) P(n) �= {A ∈ GLR(n): A is a permutation matrix}.
ii) SP(n) �= {A ∈ P(n): detA = 1}.

Furthermore, let k be a positive integer, and define R,S ∈ R2×2 by

R
�=

[
cos 2π

k sin 2π
k

− sin 2π
k cos 2π

k

]
, S

�=
[

0 1
1 0

]
= Î2.

Then, Rk = S2 = I2, and the following subsets of R2×2 are finite groups:

iii) Ok(2) �= {I, R, . . . , Rk−1, S, SR, . . . , SRk−1}.
iv) SOk(2) �= {I, R, . . . , Rk−1}.

Finally, the cardinality of P(n), SP(n), Ok(2), and SOk(2) is n!, 1
2n!, 2k, and k,

respectively. (Remark: The elements of P(n) permute n-tuples arbitrarily, while
the elements of SP(n) permute n-tuples evenly. See Fact 5.16.8. The elements
of SOk(2) perform counterclockwise rotations of planar figures by the angle 2π/k
about a line perpendicular to the plane and passing through 0, while the elements
of Ok(2) perform the rotations of SOk(2) and reflect planar figures across the line
y = x. See [445, pp. 41, 845].) (Remark: These groups are matrix representations
of symmetry groups, which are groups of transformations that map a set onto itself.
Specifically, P(k), SP(k), Ok(2), and SOk(2), are matrix representations of the per-
mutation group Sk, the alternating group Ak, the dihedral group Dk, and the cyclic
group Ck, respectively, all of which can be viewed as abstract groups having matrix
representations. Matrix representations of groups are discussed in [520].) (Remark:
An abstract group is a collection of objects (not necessarily matrices) that satisfy
the properties of a group as defined by Definition 3.3.3.) (Remark: Every finite sub-
group of O(2) is a representation of either Dk or Ck for some k. Furthermore, every
finite subgroup of SO(3) is a representation of either Dk or Ck for some k or A4, S4,
or A5. The symmetry groups A4, S4, and A5 are represented by bijective transforma-
tions of regular solids. Specifically, A4 is represented by the tetrahedral group, which
consists of 12 rotation matrices that map a regular tetrahedron onto itself; S4 is
represented by the octahedral group, which consists of 24 rotation matrices that map
an octahedron or a cube onto itself; and A5 is represented by the icosahedral group,
which consists of 60 rotation matrices that map a regular icosahedron or a regular
dodecahedron onto itself. The 12 elements of the tetrahedral group representing A4

are given by DRk, where D ∈ {I3, diag(1,−1,−1), diag(−1,−1, 1), diag(−1, 1,−1)},
R

�=
[

0 0 1
1 0 0
0 1 0

]
, and k = 0, 1, 2. The 24 elements of the octahedral group representing

S4 are given by the 3× 3 signed permutation matrices with determinant 1, where a
signed permutation matrix has exactly one nonzero entry, which is either 1 or −1, in
each row and column. See [75, p. 184], [346, p. 32], [571, pp. 176–193], [603, pp. 9–
23], [1149, p. 69], [1187, pp. 35–43], or [1256, pp. 45–47].) (Remark: The dihedral
group D2 is also called the Klein four group.) (Remark: The permutation group
Sk is not Abelian for all k ≥ 3. The alternating group A3 is Abelian, whereas Ak is
not Abelian for all k ≥ 4. A5 is essential to the classical result of Abel and Galois
that there exist fifth-order polynomials whose roots cannot be expressed in terms
of radicals involving the coefficients. Two such polynomials are p(x) = x5 − x − 1
and p(x) = x5 − 16x+ 2. See [75, p. 574] and [445, pp. 32, 625–639].)
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Fact 3.21.8. The following sets of matrices are groups:

i) P(2) = O1(2) = {[ 1 0
0 1 ], [ 0 1

1 0 ]}.
ii) SO2(2) =

{
[ 1 0
0 1 ],
[−1 0

0 −1

]}
.

iii)
{
[ 1 0
0 1 ],
[

0 −1
−1 0

]}
.

iv) SP(3) = {I3, P3, P
2
3 }, where P3

�=
[

0 1 0
0 0 1
1 0 0

]
.

v) O2(2) =
{
[ 1 0
0 1 ],
[−1 0

0 −1

]
, [ 0 1

1 0 ] ,
[

0 −1
−1 0

]}
.

vi) {I4, P4, P
2
4 , P

3
4 }, where P4

�=
[

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

]
.

vii) P(3) =
{[

1 0 0
0 1 0
0 0 1

]
,
[

0 1 0
1 0 0
0 0 1

]
,
[

1 0 0
0 0 1
0 1 0

]
,
[

0 0 1
0 1 0
1 0 0

]
,
[

0 1 0
0 0 1
1 0 0

]
,
[

0 0 1
1 0 0
0 1 0

]}
.

viii)
{
[ 1 0
0 1 ],
[

0 1−1 −1

]
,
[−1 −1

1 0

]
, [ 0 1

1 0 ],
[−1 −1

0 1

]
,
[

1 0−1 −1

]}
.

ix) For all k ≥ 0, SUk(1) �= {1, e2πj/k, e4πj/k, . . . , e2(k−1)πj/k}.
x) {I, Pk, P 2

k , . . . , P
k−1
k }.

(Remark: i), ii), and iii) are representations of the cyclic group C2, which is identi-
cal to the permutation group S2 and the dihedral group D1; iv) is a representation
of the cyclic group C3, which is identical to alternating group A3; v) is a repre-
sentation of the dihedral group D2, which is also called the Klein four group, see
Fact 3.21.7; vi) is a representation of the cyclic group C4; vii) is a representation
of the permutation group S3, which is identical to the dihedral group D3, with
A2 = B3 = (AB)2 = I3, where A �=

[
0 1 0
1 0 0
0 0 1

]
and B

�=
[

0 1 0
0 0 1
1 0 0

]
; viii) is a representa-

tion of the dihedral group D3, where
[

0 1−1 −1

]3 = I2; ix) is a matrix representation
of the cyclic group Ck and its real representation SOk(2); x) is a matrix representa-
tion of the cyclic group Ck, where Pk is the k× k primary circulant defined in Fact
5.16.7. The groups P(n) and SP(n) are defined in Fact 3.21.7. Representations of
groups are discussed in [316, 631, 703].)

Fact 3.21.9. The following statements hold:

i) There exists exactly one isomorphically distinct group consisting of one
element. A representation is {In}.

ii) There exists exactly one isomorphically distinct group consisting of two
elements, namely, the cyclic group C2, which is identical to the permutation
group S2 and the dihedral group D1. Representations of C2 are given by
P(2), O1(2), SO2(2), and SU2(1) = {1,−1}.

iii) There exists exactly one isomorphically distinct group consisting of three
elements, namely, the cyclic group C3, which is identical to the alternating
group A3. Representations of C3 are given by SP(3), SO3(2), SU3(1), and
{I3, P3, P

2
3 }.

iv) There exist exactly two isomorphically distinct groups consisting of four
elements, namely, the cyclic group C4 and the dihedral group D2. Rep-
resentations of C4 are given by SO4(2) and SU4(1) = {1,−1, j,−j}. A
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representation of D2 is given by O2(2).

v) There exists exactly one isomorphically distinct group consisting of five
elements, namely, the cyclic group C5. Representations of C5 are given by
SO5(2), SU5(1), and {I5, P5, P

2
5 , P

3
5 , P

4
5 }.

vi) There exist exactly two isomorphically distinct groups consisting of six el-
ements, namely, the cyclic group C6 and the dihedral group D3, which
is identical to S3. Representations of C6 are given by SO6(2), SU6(1),
and {I6, P6, P

2
6 , P

3
6 , P

4
6 , P

5
6 }. Representations of D3 are given by P(3) and

O3(2).

vii) There exists exactly one isomorphically distinct group consisting of seven
elements, namely, the cyclic group C7. Representations of C7 are given by
SO7(2), SU7(1), and {I7, P7, P

2
7 , P

3
7 , P

4
7 , P

5
7 , P

6
7 }.

viii) There exist exactly five isomorphically distinct groups consisting of eight
elements, namely, C8, D2 × C2, C4 × C2, D4, and the quaternion group
{±1,±ı̂,±ĵ,±k̂}. Representations of C8 are given by SO8(2), SU8(1), and
{I8, P8, P

2
8 , P

3
8 , P

4
8 , P

5
8 , P

6
8 , P

7
8 }. A representation of D4 is given by O8(2).

Representations of the quaternion group are given by ii) of Fact 3.22.3 and
v) of Fact 3.22.6.

(Proof: See [555, pp. 4–7].) (Remark: Pk is the k × k primary circulant defined in
Fact 5.16.7.)

Fact 3.21.10. Let S ⊂ Fn×n, and assume that S is a group. Then,{
AT: A ∈ S

}
and
{
A: A ∈ S

}
are groups.

Fact 3.21.11. Let P ∈ Fn×n, and define S
�= {A ∈ Fn×n : ATPA = P}. Then,

S is a group. If, in addition, P is nonsingular and skew symmetric, then, for every
matrix P ∈ S, it follows that detP = 1. (Proof: See [341].) (Remark: If F = R, n
is even, and P = Jn, then S = SympR(n).) (Remark: Weaker conditions on P such
that detP = 1 for all P ∈ S are given in [341].)

3.22 Facts on Quaternions

Fact 3.22.1. Let ı̂, ĵ, k̂ satisfy

ı̂2 = ĵ2 = k̂2 = −1,

ı̂ĵ = k̂ = −ĵ̂ı,
ĵk̂ = ı̂ = −k̂ĵ,
k̂ı̂ = ĵ = −ı̂k̂,

and define
H

�= {a+ bı̂+ cĵ+ dk̂ : a, b, c, d ∈ R}.
Furthermore, for a, b, c, d ∈ R, define q �= a+ bı̂+ cĵ+ dk̂, q �= a− bı̂− cĵ− dk̂, and
|q| �= √qq =

√
a2 + b2 + c2 + d2 = |q|. Then,

qI4 = UQ(q)U,
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where

Q(q) �=

⎡
⎢⎢⎣
a −b −c −d
b a −d c
c d a −b
d −c b a

⎤
⎥⎥⎦

and

U
�= 1

2

⎡
⎢⎢⎣

1 ı̂ ĵ k

−ı̂ 1 k̂ −ĵ
−ĵ −k̂ 1 ı̂

−k̂ ĵ −ı̂ 1

⎤
⎥⎥⎦

satisfies U2 = I4. In addition,

detQ(q) = (a2 + b2 + c2 + c2)2.

Furthermore, if |q| = 1, then

[
a −b −c −d
b a −d c
c d a −b
d −c b a

]
is orthogonal. Next, for i = 1, 2, let

ai, bi, ci, di ∈ R, define qi
�= ai + biı̂+ ciĵ+ dik̂, and define

q3
�= q2q1 = a3 + b3ı̂+ c3ĵ+ d3k̂.

Then,

q3 = q2 q1,

|q3| = |q2q1| = |q1q2| = |q1q2| = |q1q2| = |q1 q2| = |q1| |q2|,
Q(q3) = Q(q2)Q(q1),

and ⎡
⎢⎢⎣
a3

b3
c3
d3

⎤
⎥⎥⎦ = Q(q2)

⎡
⎢⎢⎣
a1

b1
c1
d1

⎤
⎥⎥⎦.

Next, for i = 1, 2, define vi
�=
[
bi ci di

]T
. Then,⎡

⎢⎢⎣
a3

b3
c3
d3

⎤
⎥⎥⎦ =

[
a2a1 − vT

2 v1

a1v2 + a2v1 + v2 × v1

]
.

(Remark: q is a quaternion. See [477, pp. 287–294]. Note the analogy between
ı̂, ĵ, k̂ and the unit vectors in R3 under cross-product multiplication. See [103,
p. 119].) (Remark: The group Sp(1) of unit-length quaternions is isomorphic to
SU(2). See [362, p. 30], [1256, p. 40], and Fact 3.19.11.) (Remark: The unit-
length quaternions, whose coefficients comprise the unit sphere S3 ⊂ R4 and are
called Euler parameters, provide a double cover of SO(3) as shown by Fact 3.11.10.
See [152, p. 380] and [26, 346, 850, 1195].) (Remark: An equivalent formulation
of quaternion multiplication is given by Rodrigues’s formulas. See Fact 3.11.11.)
(Remark: Determinants of matrices with quaternion entries are discussed in [80]
and [1256, p. 31].) (Remark: The Clifford algebras include the quaternion algebra
H and the octonion algebra O, which involves the Cayley numbers. See [477, pp.
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295–300]. These ideas from the basis for geometric algebra. See [1217, p. 100] and
[98, 346, 349, 364, 411, 425, 426, 477, 605, 607, 636, 670, 671, 672, 684, 831, 870,
934, 1098, 1185, 1250, 1256, 1279].)

Fact 3.22.2. Let a, b, c, d ∈ R, and let q �= a+ bı̂+ cĵ+ dk̂ ∈ H. Then,

q = a+ bı̂+ (c+ dı̂)ĵ.

(Remark: For all q ∈ H, there exist z, w ∈ C such that q = z + wĵ, where we
interpret C as {a+ bı̂ : a, b ∈ R}. This observation is analogous to the fact that, for
all z ∈ C, there exist a, b ∈ R such that z = a + bj, where j �=

√−1. See [1256, p.
10].)

Fact 3.22.3. The following sets are groups:

i) Q �= {±1,±ı̂,±ĵ,±k̂}.
ii) GLH(1) �= H\{0} = {a+bı̂+cĵ+dk̂: a, b, c, d ∈ R and a2+b2+c2+d2 > 0}.
iii) Sp(1) �= {a+ bı̂+ cĵ+ dk̂: a, b, c, d ∈ R and a2 + b2 + c2 + d2 = 1}.

iv) QR

�=
{
±I4,±

[
0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

]
,±
[

0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

]
,±
[

0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

]}
.

v) GLH,R(1) �=

{[
a −b −c −d
b a −d c
c d a −b
d −c b a

]
: a2 + b2 + c2 + d2 > 0

}
.

vi) GL′
H,R(1) �=

{[
a −b −c −d
b a −d c
c d a −b
d −c b a

]
: a2 + b2 + c2 + d2 = 1

}
.

Furthermore, Q and QR are isomorphic, GLH(1) and GLH,R(1) are isomorphic,
Sp(1) and GL′

H,R(1) are isomorphic, and GL′
H,R(1) ⊂ SO(4) ∩ SympR(4). (Remark:

J4 is an element of SympR(4)∩ SO(4) but is not contained in GL′
H,R(1).) (Remark:

See Fact 3.22.1.)

Fact 3.22.4. Define

Sp(n) �= {A ∈ H
n×n: A∗A = I},

where H is the quaternion algebra, A∗ �= A
T
, and, for q = a + bı̂ + cĵ + dk̂ ∈ H,

q
�= a−bı̂−cĵ−dk̂. Then, the groups Sp(n) and U(2n)∩SympC(2n) are isomorphic.

In particular, Sp(1) and U(2) ∩ SympC(2) = SU(2) are isomorphic. (Proof: See
[97].) (Remark: U(n) and O(2n)∩SympR(2n) are isomorphic.) (Remark: See Fact
3.22.3.)

Fact 3.22.5. Let n be a positive integer. Then, SO(2n) ∩ SympR(2n) is a
matrix group whose Lie algebra is so(2n)∩ sympR(2n). Furthermore, A ∈ SO(2n)∩
SympR(2n) if and only if A ∈ SympR(2n) and AJ2n = J2nA. Finally, A ∈ so(2n) ∩
sympR(2n) if and only if A ∈ sympR(2n) and AJ2n = J2nA. (Proof: See [194].)
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Fact 3.22.6. Define Q0, Q1, Q2, Q3 ∈ C2×2 by

Q0
�= I2, Q1

�=
[

0 −1
1 0

]
, Q2

�=
[ −j 0

0 j

]
, Q3

�=
[

0 −j
−j 0

]
.

Then, the following statements hold:

i) Q∗
0 = Q0 and Q∗

i = −Qi for all i = 1, 2, 3.

ii) Q2
0 = Q0 and Q2

i = −Q0 for all i = 1, 2, 3.

iii) QiQj = −QjQi for all 1 ≤ i < j ≤ 3.

iv) Q1Q2 = Q3, Q2Q3 = Q1, and Q3Q1 = Q2.

v) {±Q0,±Q1,±Q2,±Q3} is a group.

For β �=
[
β0 β1 β2 β3

]T∈ R
4 define

Q(β) �=
3∑
i=0

βiQi =

[
β0 + β1j −(β2 + β3j)

β2 − β3j β0 − β1j

]
.

Then,
Q(β)Q∗(β) = βTβI2

and
detQ(β) = βTβ.

Hence, if βTβ = 1, then Q(β) is unitary. Furthermore, the complex matrices
Q0, Q1, Q2, Q3, and Q(β) have the real representations

Q0 = I4, Q1 =
[ −J2 0

0 −J2

]
,

Q2 =

⎡
⎢⎢⎣

0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

⎤
⎥⎥⎦, Q3 =

⎡
⎢⎢⎣

0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

⎤
⎥⎥⎦,

Q(β) =

⎡
⎢⎢⎣
β0 −β1 −β2 −β3

β1 β0 −β3 β2

β2 β3 β0 −β1

β3 −β2 β1 β0

⎤
⎥⎥⎦.

Hence,
Q(β)QT(β) = βTβI4

and
detQ(β) =

(
βTβ
)2
.

(Remark: Q0, Q1, Q2, Q3 represent the quaternions 1, ı̂, ĵ, k̂. See Fact 3.22.1. An
alternative representation is given by the Pauli spin matrices given by σ0 = I2, σ1 =
jQ3, σ2 = jQ1, σ3 = jQ2. See [636, pp. 143–144], [777].) (Remark: For applications
of quaternions, see [26, 607, 636, 850].) (Remark: Q(β) has the form

[
A B
−B A

]
, where

A and ÎB are rotation-dilations. See Fact 2.19.1.)
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Fact 3.22.7. Let A,B,C,D ∈ Rn×m, define ı̂, ĵ, k̂ as in Fact 3.22.1, and let
Q �= A+ ı̂B + ĵC + k̂D. Then,

diag(Q,Q) = U∗
n

[
A+ ı̂B −C − ı̂D
C − ı̂D A− ı̂B

]
Um,

where
Un

�= 1√
2

[
In −ı̂In

−ĵIn kIn

]
.

Furthermore, UnU∗
n = I2n. (Proof: See [1304, 1305].) (Remark: When n = m,

this identity uses a similarity transformation to construct a complex representation
of quaternions.) (Remark: The complex conjugate U∗

n is constructed as in Fact
3.22.7.)

Fact 3.22.8. Let A,B,C,D ∈ Rn×n, define ı̂, ĵ, k̂ as in Fact 3.22.1, and let
Q

�= A+ ı̂B + ĵC + k̂D. Then,

diag(Q,Q,Q,Q) = Un

⎡
⎢⎢⎣
A −B −C −D
B A −D C
C D A −B
D −C B A

⎤
⎥⎥⎦Um,

where

Un
�= 1

2

⎡
⎢⎢⎣

In ı̂In ĵIn k̂In
−ı̂In In k̂In −ĵIn
−ĵIn −k̂In In ı̂In
−k̂In ĵIn −ı̂In In

⎤
⎥⎥⎦.

Furthermore, U∗
n = Un and U2

n = I4n. (Proof: See [1304, 1305]. See also [80, 257,
470, 600, 1488].) (Remark: When n = m, this identity uses a similarity transforma-
tion to construct a real representation of quaternions. See Fact 2.14.11.) (Remark:
The complex conjugate U∗

n is constructed by replacing ı̂, ĵ, k̂ by −ı̂,−ĵ,−k̂, respec-
tively, in UT

n .)

Fact 3.22.9. Let A ∈ C
2×2. Then, A is unitary if and only if there exist θ ∈ R

and β ∈ R4 such that A = ejθQ(β), where Q(β) is defined in Fact 3.22.6. (Proof:
See [1129, p. 228].)

3.23 Notes

In the literature on generalized inverses, range-Hermitian matrices are tradi-
tionally called EP matrices. Elementary reflectors are traditionally called House-
holder matrices or Householder reflections.

An alternative term for irreducible is indecomposable, see [963, p. 147].

Left equivalence, right equivalence, and biequivalence are treated in [1129].
Each of the groups defined in Proposition 3.3.6 is a Lie group; see Definition 11.6.1.
Elementary treatments of Lie algebras and Lie groups are given in [75, 77, 103,
362, 459, 473, 553, 554, 724, 1077, 1147, 1185], while an advanced treatment ap-
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pears in [1366]. Some additional groups of structured matrices are given in [944].
Applications of group theory are discussed in [781].

“Almost nonnegative matrices” are called “ML-matrices” in [1184, p. 208]
and “essentially nonnegative matrices” in [182, 190, 617].

The terminology “idempotent” and “projector” is not standardized in the
literature. Some writers use “projector,” “oblique projector,” or “projection” [536]
for idempotent, and “orthogonal projector” or “orthoprojector” for projector. Cen-
trosymmetric and centrohermitian matrices are discussed in [883, 1410].

Matrices with set-valued entries are discussed in [551]. Matrices with entries
having physical dimensions are discussed in [641, 1062].



Chapter Four

Polynomial Matrices and Rational
Transfer Functions

In this chapter we consider matrices whose entries are polynomials or rational
functions. The decomposition of polynomial matrices in terms of the Smith form
provides the foundation for developing canonical forms in Chapter 5. In this chapter
we also present some basic properties of eigenvalues and eigenvectors as well as the
minimal and characteristic polynomials of a square matrix. Finally, we consider
the extension of the Smith form to the Smith-McMillan form for rational transfer
functions.

4.1 Polynomials

A function p: C �→ C of the form

p(s) = βks
k + βk−1s

k−1 + · · ·+ β1s+ β0, (4.1.1)

where k ∈ N and β0, . . . , βk ∈ F, is a polynomial. The set of polynomials is denoted
by F[s]. If the coefficient βk ∈ F is nonzero, then the degree of p, denoted by deg p, is
k. If, in addition, βk = 1, then p is monic. If k = 0, then p is constant. The degree
of a nonzero constant polynomial is zero, while the degree of the zero polynomial
is defined to be −∞.

Let p1 and p2 be polynomials. Then,

deg p1p2 = deg p1 + deg p2. (4.1.2)

If p1 = 0 or p2 = 0, then deg p1p2 = deg p1 + deg p2 = −∞. If p2 is a nonzero
constant, then deg p2 = 0, and thus deg p1p2 = deg p1. Furthermore,

deg(p1 + p2) ≤ max{deg p1, deg p2}. (4.1.3)

Therefore, deg(p1+p2) = max{deg p1, deg p2} if and only if either i) deg p1 �= deg p2

or ii) p1 = p2 = 0 or iii) r �= deg p1 = deg p2 �= −∞ and the sum of the coefficients
of sr in p1 and p2 is not zero. Equivalently, deg(p1 + p2) < max{deg p1, deg p2} if
and only if r �= deg p1 = deg p2 �= −∞ and the sum of the coefficients of sr in p1

and p2 is zero.
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Let p ∈ F[s] be a polynomial of degree k ≥ 1. Then, it follows from the funda-
mental theorem of algebra that p has k possibly repeated complex roots λ1, . . . , λk
and thus can be factored as

p(s) = β

k∏
i=1

(s−λi), (4.1.4)

where β ∈ F. The multiplicity of a root λ ∈ C of p is denoted by multp(λ). If
λ is not a root of p, then multp(λ) = 0. The multiset consisting of the roots of
p including multiplicity is mroots(p) = {λ1, . . . , λk}ms, while the set of roots of
p ignoring multiplicity is roots(p) = {λ̂1, . . . , λ̂l}, where

∑l
i=1multp(λ̂i) = k. If

F = R, then the multiplicity of a root λi whose imaginary part is nonzero is equal
to the multiplicity of its complex conjugate λi. Hence, mroots(p) is self-conjugate,
that is, mroots(p) = mroots(p).

Let p ∈ F[s]. If p(−s) = p(s) for all s ∈ C, then p is even, while, if p(−s) =
−p(s) for all s ∈ C, then p is odd. If p is either odd or even, then mroots(p) =
−mroots(p). If p ∈ R[s] and there exists a polynomial q ∈ R[s] such that p(s) =
q(s)q(−s) for all s ∈ C, then p has a spectral factorization. If p has a spectral
factorization, then p is even and deg p is an even integer.

Proposition 4.1.1. Let p ∈ R[s]. Then, the following statements are equiva-
lent:

i) p has a spectral factorization.

ii) p is even, and every imaginary root of p has even multiplicity.

iii) p is even, and p(jω) ≥ 0 for all ω ∈ R.

Proof. The equivalence of i) and ii) is immediate. To prove i) =⇒ iii), note
that, for all ω ∈ R,

p(jω) = q(jω)q(−jω) = |q(jω)|2 ≥ 0.

Conversely, to prove iii) =⇒ i) write p = p1p2, where every root of p1 is
imaginary and none of the roots of p2 are imaginary. Now, let z be a root of p2.
Then, −z, z, and −z are also roots of p2 with the same multiplicity as z. Hence,
there exists a polynomial p20 ∈ R[s] such that p2(s) = p20(s)p20(−s) for all s ∈ C.

Next, assuming that p has at least one imaginary root, write p1(s) =∏k
i=1

(
s2 + ω2

i

)mi
, where 0 ≤ ω1 < · · · < ωk and mi

�= multp(jωi). Let ωi0 de-
note the smallest element of the set {ω1, . . . , ωk} such that mi is odd. Then,
it follows that p1(jω) =

∏k
i=1

(
ω2
i − ω2

)mi
< 0 for all ω ∈ (ωi0 , ωi0+1), where

ωk+1
�= ∞. However, note that p1(jω) = p(jω)/p2(jω) = p(jω)/|p20(jω)|2 ≥ 0 for

all ω ∈ R, which is a contradiction. Therefore, mi is even for all i = 1, . . . , k,
and thus p1(s) = p10(s)p10(−s) for all s ∈ C, where p10(s)

�=
∏k
i=1

(
s2 + ω2

i

)mi/2
.

Consequently, p(s) = p10(s)p20(s)p10(−s)p20(−s) for all s ∈ C. Finally, if p has no
imaginary roots, then p1 = 1, and p(s) = p20(s)p20(−s) for all s ∈ C.
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The following division algorithm is essential to the study of polynomials.

Lemma 4.1.2. Let p1, p2 ∈ F[s], and assume that p2 is not the zero polyno-
mial. Then, there exist unique polynomials q, r ∈ F[s] such that deg r < deg p2

and
p1 = qp2 + r. (4.1.5)

Proof. Define n �= deg p1 and m �= deg p2. If n < m, then q = 0 and r = p1.
Hence, deg r = deg p1 = n < m = deg p2.

Now, assume that n ≥ m ≥ 0, and write p1(s) = βns
n + · · ·+ β0 and p2(s) =

γms
m + · · · + γ0. If n = 0, then m = 0, γ0 �= 0, q = β0/γ0, and r = 0. Hence,

−∞ = deg r < 0 = deg p2.

If n = 1, then either m = 0 or m = 1. If m = 0, then p2(s) = γ0 �= 0, and
(4.1.5) is satisfied with q(s) = p1(s)/γ0 and r = 0, in which case −∞ = deg r < 0 =
deg p2. If m = 1, then (4.1.5) is satisfied with q(s) = β1/γ1 and r(s) = β0−β1γ0/γ1.
Hence, deg r ≤ 0 < 1 = deg p2.

Now, suppose that n = 2. Then, p̂1(s) = p1(s)−(β2/γm)s2−mp2(s) has degree
1. Applying (4.1.5) with p1 replaced by p̂1, it follows that there exist polynomials
q1, r1 ∈ F[s] such that p̂1 = q1p2 + r1 and such that deg r1 < deg p2. It thus
follows that p1(s) = q1(s)p2(s)+r1(s)+(β2/γm)s2−mp2(s) = q(s)p2(s)+r(s), where
q(s) = q1(s) + (β2/γm)sn−m and r = r1, which verifies (4.1.5). Similar arguments
apply to successively larger values of n.

To prove uniqueness, suppose there exist polynomials q̂ and r̂ such that
deg r̂ < deg p2 and p1 = q̂p2 + r̂. Then, it follows that (q̂ − q)p2 = r − r̂. Next,
note that deg(r − r̂) < deg p2. If q̂ �= q, then deg p2 ≤ deg[(q̂ − q)p2] so that
deg(r − r̂) < deg[(q̂ − q)p2], which is a contradiction. Thus, q̂ = q, and, hence,
r = r̂.

In Lemma 4.1.2, q is the quotient of p1 and p2, while r is the remainder. If
r = 0, then p2 divides p1, or, equivalently, p1 is a multiple of p2. Note that, if
p2(s) = s− α, where α ∈ F, then r is constant and is given by r(s) = p1(α).

If a polynomial p3 ∈ F[s] divides two polynomials p1, p2 ∈ F[s], then p3 is a
common divisor of p1 and p2. Given polynomials p1, p2 ∈ F[s], there exists a unique
monic polynomial p3 ∈ F[s], the greatest common divisor of p1 and p2, such that p3

is a common divisor of p1 and p2 and such that every common divisor of p1 and p2

divides p3. In addition, there exist polynomials q1, q2 ∈ F[s] such that the greatest
common divisor p3 of p1 and p2 is given by p3 = q1p1 + q2p2. See [1081, p. 113]
for proofs of these results. Finally, p1 and p2 are coprime if their greatest common
divisor is p3 = 1, while a polynomial p ∈ F[s] is irreducible if there do not exist
nonconstant polynomials p1, p2 ∈ F[s] such that p = p1p2. For example, if F = R,
then p(s) = s2 + s+ 1 is irreducible.
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If a polynomial p3 ∈ F[s] is a multiple of two polynomials p1, p2 ∈ F[s], then
p3 is a common multiple of p1 and p2. Given nonzero polynomials p1 and p2, there
exists (see [1081, p. 113]) a unique monic polynomial p3 ∈ F[s] that is a common
multiple of p1 and p2 and that divides every common multiple of p1 and p2. The
polynomial p3 is the least common multiple of p1 and p2.

The polynomial p ∈ F[s] given by (4.1.1) can be evaluated with a square
matrix argument A ∈ Fn×n by defining

p(A) �= βkA
k + βk−1A

k−1 + · · ·+ β1A+ β0I. (4.1.6)

4.2 Polynomial Matrices

The set Fn×m[s] of polynomial matrices consists of matrix functions P : C �→
Cn×m whose entries are elements of F[s]. A polynomial matrix P ∈ Fn×m[s] can
thus be written as

P (s) = skBk + sk−1Bk−1 + · · ·+ sB1 +B0, (4.2.1)

where B0, . . . , Bk ∈ Fn×m. If Bk is nonzero, then the degree of P , denoted by degP ,
is k, whereas, if P = 0, then degP = −∞. If n = m and Bk is nonsingular, then
P is regular, while, if Bk = I, then P is monic.

The following result, which generalizes Lemma 4.1.2, provides a division al-
gorithm for polynomial matrices.

Lemma 4.2.1. Let P1, P2 ∈ Fn×n[s], where P2 is regular. Then, there exist
unique polynomial matricesQ,R, Q̂, R̂ ∈ Fn×n[s] such that degR < degP2, deg R̂ <
degP2,

P1 = QP2 +R, (4.2.2)

and
P1 = P2Q̂+ R̂. (4.2.3)

Proof. See [559, p. 90] or [1081, pp. 134–135].

If R = 0, then P2 right divides P1, while, if R̂ = 0, then P2 left divides P1.

Let the polynomial matrix P ∈ Fn×m[s] be given by (4.2.1). Then, P can
be evaluated with a square matrix argument in two different ways, either from the
right or from the left. For A ∈ C

m×m define

PR(A) �= BkA
k +Bk−1A

k−1 + · · ·+B1A+B0, (4.2.4)

while, for A ∈ Cn×n, define

PL(A) �= AkBk +Ak−1Bk−1 + · · ·+AB1 +B0. (4.2.5)

PR(A) and PL(A) are matrix polynomials.

If n = m, then PR(A) and PL(A) can be evaluated for all A ∈ Fn×n, although
these matrices may be different.
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The following result is useful.

Lemma 4.2.2. Let Q, Q̂ ∈ Fn×n[s] and A ∈ Fn×n. Furthermore, define P, P̂ ∈
Fn×n[s] by P (s) �= Q(s)(sI −A) and P̂ (s) �= (sI −A)Q̂(s). Then, PR(A) = 0 and
P̂L(A) = 0.

Let p ∈ F[s] be given by (4.1.1), and define P (s) �= p(s)In = skβkIn +
sk−1βk−1In + · · · + sβ1In + β0In ∈ Fn×n[s]. For A ∈ Cn×n it follows that p(A) =
P (A) = PR(A) = PL(A).

The following result specializes Lemma 4.2.1 to the case of polynomial matrix
divisors of degree 1.

Corollary 4.2.3. Let P ∈ Fn×n[s] and A ∈ Fn×n. Then, there exist unique
polynomial matrices Q, Q̂ ∈ Fn×n[s] and unique matrices R, R̂ ∈ Fn×n such that

P (s) = Q(s)(sI −A) +R (4.2.6)

and
P (s) = (sI −A)Q̂(s) + R̂. (4.2.7)

Furthermore, R = PR(A) and R̂ = PL(A).

Proof. In Lemma 4.2.1 set P1 = P and P2(s) = sI −A. Since degP2 = 1, it
follows that degR = deg R̂ = 0, and thus R and R̂ are constant. Finally, the last
statement follows from Lemma 4.2.2.

Definition 4.2.4. Let P ∈ Fn×m[s]. Then, rankP is defined by

rankP �= max
s∈C

rankP (s). (4.2.8)

Let P ∈ Fn×n[s]. Then, P (s) ∈ Cn×n for all s ∈ C. Furthermore, detP is a
polynomial in s, that is, detP ∈ F[s].

Definition 4.2.5. Let P ∈ Fn×n[s]. Then, P is nonsingular if detP is not the
zero polynomial; otherwise, P is singular.

Proposition 4.2.6. Let P ∈ Fn×n[s], and assume that P is regular. Then, P
is nonsingular.

Let P ∈ Fn×n[s]. If P is nonsingular, then the inverse P−1 of P can
be constructed according to (2.7.22). In general, the entries of P−1 are ratio-
nal functions of s (see Definition 4.7.1). For example, if P (s) =

[
s+2 s+1

s−2 s−1

]
, then

P−1(s) = 1
2s

[
s−1 −s−1

−s+2 s+2

]
. In certain cases, P−1 is also a polynomial matrix. For

example, if P (s) =
[

s 1

s2+s−1 s+1

]
, then P−1(s) =

[
s+1 −1

−s2−s+1 s

]
.

The following result is an extension of Proposition 2.7.7 from constant matri-
ces to polynomial matrices.
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Proposition 4.2.7. Let P ∈ Fn×m[s]. Then, rankP is the order of the largest
nonsingular polynomial matrix that is a submatrix of P.

Proof. For all s ∈ C it follows from Proposition 2.7.7 that rankP (s) is the
order of the largest nonsingular submatrix of P (s). Now, let s0 ∈ C be such that
rankP (s0) = rankP. Then, P (s0) has a nonsingular submatrix of maximal order
rankP. Therefore, P has a nonsingular polynomial submatrix of maximal order
rankP.

A polynomial matrix can be transformed by performing elementary row and
column operations of the following types:

i) Multiply a row or a column by a nonzero constant.

ii) Interchange two rows or two columns.

iii) Add a polynomial multiple of one (row, column) to another (row, column).

These operations correspond respectively to left multiplication or right multiplica-
tion by the elementary matrices

In + (α−1)Ei,i =

⎡
⎣ Ii−1 0 0

0 α 0
0 0 In−i

⎤
⎦, (4.2.9)

where α ∈ F is nonzero,

In + Ei,j + Ej,i − Ei,i − Ej,j =

⎡
⎢⎢⎢⎢⎣
Ii−1 0 0 0 0
0 0 0 1 0
0 0 Ij−i−1 0 0
0 1 0 0 0
0 0 0 0 In−j

⎤
⎥⎥⎥⎥⎦, (4.2.10)

where i �= j, and the elementary polynomial matrix

In + pEi,j =

⎡
⎢⎢⎢⎢⎣
Ii−1 0 0 0 0
0 1 0 p 0
0 0 Ij−i−1 0 0
0 0 0 1 0
0 0 0 0 In−j

⎤
⎥⎥⎥⎥⎦, (4.2.11)

where i �= j and p ∈ F[s]. The matrices shown in (4.2.10) and (4.2.11) illustrate the
case i < j. Applying these operations sequentially corresponds to forming products
of elementary matrices and elementary polynomial matrices. Note that the elemen-
tary polynomial matrix I + pEi,j is nonsingular, and that (I + pEi,j)−1 = I − pEi,j .
Therefore, the inverse of an elementary polynomial matrix is an elementary poly-
nomial matrix.

4.3 The Smith Decomposition and Similarity Invariants

Definition 4.3.1. Let P ∈ F
n×n[s]. Then, P is unimodular if P is the product

of elementary matrices and elementary polynomial matrices.
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The following result provides a canonical form, known as the Smith form, for
polynomial matrices under unimodular transformation.

Theorem 4.3.2. Let P ∈ Fn×m[s], and let r �= rankP. Then, there exist
unimodular matrices S1 ∈ Fn×n[s] and S2 ∈ Fm×m[s] and monic polynomials
p1, . . . , pr ∈ F[s] such that pi divides pi+1 for all i = 1, . . . , r −1 and such that

P = S1

⎡
⎢⎢⎢⎣
p1 0

. . .
pr

0 0(n−r)×(m−r)

⎤
⎥⎥⎥⎦S2. (4.3.1)

Furthermore, for all i = 1, . . . , r, let Δi denote the monic greatest common divisor
of all i× i subdeterminants of P. Then, pi is uniquely determined by

Δi = p1 · · · pi. (4.3.2)

Proof. The result is obtained by sequentially applying elementary row and
column operations to P. For details, see [787, pp. 390–392] or [1081, pp. 125–
128].

Definition 4.3.3. The monic polynomials p1, . . . , pr ∈ F[s] of the Smith form
(4.3.1) of P ∈ Fn×m[s] are the Smith polynomials of P. The Smith zeros of P are
the roots of p1, . . . , pr. Let

Szeros(P ) �= roots(pr) (4.3.3)

and

mSzeros(P ) �=
r⋃
i=1

mroots(pi). (4.3.4)

Proposition 4.3.4. Let P ∈ Rn×m[s], and assume there exist unimodular
matrices S1 ∈ F

n×n[s] and S2 ∈ F
m×m[s] and monic polynomials p1, . . . , pr ∈ F[s]

satisfying (4.3.1). Then, rankP = r.

Proposition 4.3.5. Let P ∈ Fn×m[s], and let r �= rankP. Then, r is the
largest order of all nonsingular submatrices of P.

Proof. Let r0 denote the largest order of all nonsingular submatrices of P,
and let P0 ∈ Fr0×r0 [s] be a nonsingular submatrix of P. First, assume that r < r0.
Then, there exists s0 ∈ C such that rankP (s0) = rankP0(s0) = r0. Thus, r =
rankP = maxs∈C rankP (s) ≥ rankP (s0) = r0, which is a contradiction. Next,
assume that r > r0. Then, it follows from (4.3.1) that there exists s0 ∈ C such
that rankP (s0) = r. Consequently, P (s0) has a nonsingular r × r submatrix. Let
P̂0 ∈ Fr×r[s] denote the corresponding submatrix of P . Thus, P̂0 is nonsingular,
which implies that P has a nonsingular submatrix whose order is greater than r0,
which is a contradiction. Consequently, r = r0.
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Proposition 4.3.6. Let P ∈ Fn×m[s], and let S ⊂ C be a finite set. Then,

rankP = max
s∈C\S

rankP (s). (4.3.5)

Proposition 4.3.7. Let P ∈ Fn×n[s]. Then, the following statements are
equivalent:

i) P is unimodular.

ii) detP is a nonzero constant.

iii) The Smith form of P is the identity.

iv) P is nonsingular, and P−1 is a polynomial matrix.

v) P is nonsingular, and P−1 is unimodular.

Proof. To prove i) =⇒ ii), note that every elementary matrix and every el-
ementary polynomial matrix has a constant nonzero determinant. Since P is a
product of elementary matrices and elementary polynomial matrices, its determi-
nant is a constant.

To prove ii) =⇒ iii), note that it follows from (4.3.1) that rankP = n
and detP = (detS1)(detS2)p1 · · · pn, where S1, S2 ∈ Fn×n are unimodular and
p1, . . . , pn are monic polynomials. From the result i) =⇒ ii), it follows that detS1

and detS2 are nonzero constants. Since detP is a nonzero constant, it follows
that p1 · · · pn = detP/[(detS1)(detS2)] is a nonzero constant. Since p1, . . . , pn are
monic polynomials, it follows that p1 = · · · = pn = 1.

Next, to prove iii) =⇒ iv), note that P is unimodular, and thus it follows
that detP is a nonzero constant. Furthermore, since PA is a polynomial matrix, it
follows that P−1 = (detP )−1PA is a polynomial matrix.

To prove iv) =⇒ v), note that detP−1 is a polynomial. Since detP is a
polynomial and detP−1 = 1/detP it follows that detP is a nonzero constant.
Hence, P is unimodular, and thus P−1 = (detP )−1PA is unimodular.

Finally, to prove v) =⇒ i), note that detP−1 is a nonzero constant, and
thus P = [detP−1]−1[P−1]A is a polynomial matrix. Furthermore, since detP =
1/detP−1, it follows that detP is a nonzero constant. Hence, P is unimodular.

Proposition 4.3.8. Let A1, B1, A2, B2 ∈ Fn×n, where A2 is nonsingular, and
define the polynomial matrices P1, P2 ∈ F

n×n[s] by P1(s)
�= sA1 + B1 and P2(s)

�=
sA2 + B2. Then, P1 and P2 have the same Smith polynomials if and only if there
exist nonsingular matrices S1, S2 ∈ Fn×n such that P2 = S1P1S2.

Proof. The sufficiency result is immediate. To prove necessity, note that it
follows from Theorem 4.3.2 that there exist unimodular matrices T1, T2 ∈ Fn×n[s]
such that P2 = T2P1T1. Now, since P2 is regular, it follows from Lemma 4.2.1 that
there exist polynomial matrices Q, Q̂ ∈ Fn×n[s] and constant matrices R, R̂ ∈ Fn×n
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such that T1 = QP2 +R and T2 = P2Q̂+ R̂. Next, we have

P2 = T2P1T1

= (P2Q̂+ R̂)P1T1

= R̂P1T1 + P2Q̂T
−1
2 P2

= R̂P1(QP2 +R) + P2Q̂T
−1
2 P2

= R̂P1R+ (T2 − P2Q̂)P1QP2 + P2Q̂T
−1
2 P2

= R̂P1R+ T2P1QP2 + P2

(
−Q̂P1Q+ Q̂T−1

2

)
P2

= R̂P1R+ P2

(
T−1

1 Q− Q̂P1Q+ Q̂T−1
2

)
P2.

Since P2 is regular and has degree 1, it follows that, if T−1
1 Q − Q̂P1Q + Q̂T−1

2

is not zero, then degP2

(
T−1

1 Q− Q̂P1Q+ Q̂T−1
2

)
P2 ≥ 2. However, since P2 and

R̂P1R have degree less than 2, it follows that T−1
1 Q − Q̂P1Q + Q̂T−1

2 = 0. Hence,
P2 = R̂P1R.

Next, to show that R̂ and R are nonsingular, note that, for all s ∈ C,

P2(s) = R̂P1(s)R = sR̂A1R+ R̂B1R,

which implies that A2 = S1A1S2, where S1 = R̂ and S2 = R. Since A2 is nonsingu-
lar, it follows that S1 and S2 are nonsingular.

Definition 4.3.9. Let A ∈ Fn×n. Then, the similarity invariants of A are the
Smith polynomials of sI −A.

The following result provides necessary and sufficient conditions for two ma-
trices to be similar.

Theorem 4.3.10. Let A,B ∈ Fn×n. Then, A and B are similar if and only if
they have the same similarity invariants.

Proof. To prove necessity, assume that A and B are similar. Then, the
matrices sI−A and sI −B have the same Smith form and thus the same similarity
invariants. To prove sufficiency, it follows from Proposition 4.3.8 that there exist
nonsingular matrices S1, S2 ∈ Fn×n such that sI−A = S1(sI−B)S2. Thus, S1 = S−1

2 ,
and, hence, A = S1BS

−1
1 .

Corollary 4.3.11. Let A ∈ Fn×n. Then, A and AT are similar.

An improved form of Corollary 4.3.11 is given by Corollary 5.3.8.

4.4 Eigenvalues

Let A ∈ Fn×n. Then, the polynomial matrix sI −A ∈ Fn×n[s] is monic and
has degree 1.
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Definition 4.4.1. Let A ∈ Fn×n. Then, the characteristic polynomial of A is
the polynomial χA ∈ F[s] given by

χA(s) �= det(sI −A). (4.4.1)

Since sI − A is a polynomial matrix, its determinant is the product of its
Smith polynomials, that is, the similarity invariants of A.

Proposition 4.4.2. Let A ∈ Fn×n, and let p1, . . . , pn ∈ F[s] denote the simi-
larity invariants of A. Then,

χA =
n∏
i=1

pi. (4.4.2)

Proposition 4.4.3. Let A ∈ Fn×n. Then, χA is monic and degχA = n.

Let A ∈ Fn×n, and write the characteristic polynomial of A as

χA(s) = sn + βn−1s
n−1 + · · ·+ β1s+ β0, (4.4.3)

where β0, . . . , βn−1 ∈ F. The eigenvalues of A are the n possibly repeated roots
λ1, . . . , λn ∈ C of χA, that is, the solutions of the characteristic equation

χA(s) = 0. (4.4.4)

It is often convenient to denote the eigenvalues of A by λ1(A), . . . , λn(A)
or just λ1, . . . , λn. This notation may be ambiguous, however, since it does not
uniquely specify which eigenvalue is denoted by λi. If, however, every eigenvalue
of A is real, then we employ the notational convention

λ1 ≥ · · · ≥ λn, (4.4.5)

and we define
λmax(A) �= λ1, λmin(A) �= λn. (4.4.6)

Definition 4.4.4. Let A ∈ Fn×n. The algebraic multiplicity of an eigenvalue λ
of A, denoted by amultA(λ), is the algebraic multiplicity of λ as a root of χA, that
is,

amultA(λ) �= multχA(λ). (4.4.7)

The multiset consisting of the eigenvalues of A including their algebraic multiplicity,
denoted by mspec(A), is the multispectrum of A, that is,

mspec(A) �= mroots(χA). (4.4.8)

Ignoring algebraic multiplicity, spec(A) denotes the spectrum of A, that is,

spec(A) �= roots(χA). (4.4.9)

Note that
Szeros(sI −A) = spec(A) (4.4.10)
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and

mSzeros(sI −A) = mspec(A). (4.4.11)

If λ /∈ spec(A), then λ /∈ roots(χA), and thus amultA(λ) = multχA(λ) = 0.

Let A ∈ Fn×n and mroots(χA) = {λ1, . . . , λn}ms. Then,

χA(s) =
n∏
i=1

(s−λi). (4.4.12)

If F = R, then χA(s) has real coefficients, and thus the eigenvalues of A occur in
complex conjugate pairs, that is, mroots(χA) = mroots(χA). Now, let spec(A) =
{λ1, . . . , λr}, and, for all i = 1, . . . , r, let ni denote the algebraic multiplicity of λi.
Then,

χA(s) =
r∏
i=1

(s−λi)ni. (4.4.13)

The following result gives some basic properties of the spectrum of a matrix.

Proposition 4.4.5. Let A,B ∈ Fn×n. Then, the following statements hold:

i) χAT = χA.

ii) For all s ∈ C, χ−A(s) = (−1)nχA(−s).
iii) mspec

(
AT
)

= mspec(A).

iv) mspec
(
A
)

= mspec(A).

v) mspec(A∗) = mspec(A).

vi) 0 ∈ spec(A) if and only if detA = 0.

vii) If k ∈ N or if A is nonsingular and k ∈ Z, then

mspec
(
Ak
)

=
{
λk: λ ∈ mspec(A)

}
ms
. (4.4.14)

viii) If α ∈ F, then χαA+I(s) = χA(s− α).

ix) If α ∈ F, then mspec(αI +A) = α+ mspec(A).

x) If α ∈ F, then mspec(αA) = αmspec(A).

xi) If A is Hermitian, then spec(A) ⊂ R.

xii) If A and B are similar, then χA = χB and mspec(A) = mspec(B).

Proof. To prove i), note that

det
(
sI −AT

)
= det (sI −A)T = det(sI −A).

To prove ii), note that

χ−A(s) = det(sI +A) = (−1)ndet(−sI −A) = (−1)nχA(−s).
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Next, iii) follows from i). Next, iv) follows from

det(sI −A) = det(sI −A) = det(sI −A),

while v) follows from iii) and iv).

Next, vi) follows from the fact that χA(0) = (−1)ndetA. To prove “⊇” in
vii), note that, if λ ∈ spec(A) and x ∈ Cn is an eigenvector of A associated with
λ (see Section 4.5), then A2x = A(Ax) = A(λx) = λAx = λ2x. Similarly, if A
is nonsingular, then Ax = λx implies that A−1x = λ−1x, and thus A−2x = λ−2x.
Similar arguments apply to arbitrary k ∈ Z. The reverse inclusion follows from the
Jordan decomposition given by Theorem 5.3.3.

To prove viii), note that

χαI+A(s) = det[sI − (αI +A)] = det[(s− α)I −A] = χA(s− α).

Statement ix) follows immediately.

Statement x) is true for α = 0. For α �= 0, it follows that

χαA(s) = det(sI − αA) = α−1det[(s/α)I − A] = χA(s/α).

To prove xi), assume that A = A∗, let λ ∈ spec(A), and let x ∈ C
n be an

eigenvector of A associated with λ. Then, λ = x∗Ax/x∗x, which is real. Finally, xii)
is immediate.

The following result characterizes the coefficients of χA in terms of the eigen-
values of A.

Proposition 4.4.6. Let A ∈ Fn×n, let mspec(A) = {λ1, . . . , λn}ms, and, for
all i = 1, . . . , n, let γi denote the sum of all i × i principal subdeterminants of A.
Then, for all i = 1, . . . , n−1,

γi =
∑

1≤j1<···<ji≤n
λj1 · · ·λji . (4.4.15)

Furthermore, for all i = 0, . . . , n−1, the coefficient βi of si in (4.4.3) is given by

βi = (−1)n−iγn−i. (4.4.16)

In particular,

βn−1 = −trA = −
n∑
i=1

λi, (4.4.17)

βn−2 = 1
2

[
(trA)2 − trA2

]
=

∑
1≤j1<j2≤n

λj1λj2 , (4.4.18)

β1 = (−1)n−1trAA = (−1)n−1
∑

1≤j1<···<jn−1≤n
λj1 · · ·λjn−1 = (−1)n−1

n∑
i=1

detA[i;i], (4.4.19)
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β0 = (−1)ndetA = (−1)n
n∏
i=1

λi. (4.4.20)

Proof. The expression for γi given by (4.4.15) follows from the factored form
of χA(s) given by (4.4.12), while the expression for βi given by (4.4.16) follows by
examining the cofactor expansion (2.7.16) of det(sI −A). For details, see [998, p.
495]. Equation (4.4.17) follows from (4.4.16) and the fact that the (n−1)× (n−1)
principal subdeterminants of A are the diagonal entries A(i,i). Using

n∑
i=1

λ2i =

(
n∑
i=1

λi

)2
− 2
∑

λj1λj2 ,

where the third summation is taken over all pairs of elements of mspec(A), and
(4.4.17) yields (4.4.18). Next, if A is nonsingular, then χA−1(s) =
(−s)n(detA−1

)
χA(1/s). Using (4.4.3) with s replaced by 1/s and (4.4.17), it follows

that trA−1 = (−1)n−1
(
detA−1

)
β1, and, hence, (4.4.19) is satisfied. Using conti-

nuity for the case in which A is singular yields (4.4.19) for arbitrary A. Finally,
β0 = χA(0) = det(0I −A) = (−1)ndetA, which verifies (4.4.20).

From the definition of the adjugate of a matrix it follows that (sI −A)A ∈
Fn×n[s] is a monic polynomial matrix of degree n−1 of the form

(sI −A)A = sn−1I + sn−2Bn−2 + · · ·+ sB1 +B0, (4.4.21)

where B0, B1, . . . , Bn−2 ∈ F
n×n. Since (sI −A)A is regular, it follows from Proposi-

tion 4.2.6 that (sI−A)A is a nonsingular polynomial matrix. The matrix (sI−A)−1

is the resolvent of A, which is given by

(sI −A)−1 =
1

χA(s)
(sI −A)A. (4.4.22)

Therefore,

(sI −A)−1 =
sn−1

χA(s)
I +

sn−2

χA(s)
Bn−2 + · · ·+ s

χA(s)
B1 +

1
χA(s)

B0. (4.4.23)

The next result is the Cayley-Hamilton theorem, which shows that every ma-
trix is a “root” of its characteristic polynomial.

Theorem 4.4.7. Let A ∈ Fn×n. Then,

χA(A) = 0. (4.4.24)

Proof. Define P,Q ∈ Fn×n[s] by P (s) �= χA(s)I and Q(s) �= (sI−A)A. Then,
(4.4.22) implies that P (s) = Q(s)(sI −A). It thus follows from Lemma 4.2.2 that
PR(A) = 0. Furthermore, χA(A) = P (A) = PR(A). Hence, χA(A) = 0.

In the notation of (4.4.13), it follows from Theorem 4.4.7 that
r∏
i=1

(λiI −A)ni = 0. (4.4.25)
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Lemma 4.4.8. Let A ∈ Fn×n. Then,

d
ds
χA(s) = tr

[
(sI −A)A

]
=

n∑
i=1

det
(
sI −A[i;i]

)
. (4.4.26)

Proof. It follows from (4.4.19) that d
dsχA(s)

∣∣
s=0

= β1 = (−1)n−1trAA. Hence,

d
ds
χA(s) =

d
dz

det[(s+ z)I −A]
∣∣∣∣
z=0

=
d
dz

det[zI − (−sI +A)]
∣∣∣∣
z=0

= (−1)n−1tr
[
(−sI +A)A

]
= tr
[
(sI −A)A

]
. �

The following result, known as Leverrier’s algorithm, provides a recursive
formula for the coefficients β0, . . . , βn−1 of χA and B0, . . . , Bn−2 of (sI −A)A.

Proposition 4.4.9. Let A ∈ Fn×n, let χA be given by (4.4.3), and let (sI−A)A

be given by (4.4.21). Then, βn−1, . . . , β0 and Bn−2, . . . , B0 are given by

βk = 1
k−n trABk, k = n−1, . . . , 0, (4.4.27)

Bk−1 = ABk + βkI, k = n−1, . . . , 1, (4.4.28)

where Bn−1 = I.

Proof. Since (sI −A)(sI −A)A = χA(s)I, it follows that

snI + sn−1(Bn−2 −A) + sn−2(Bn−3 −ABn−2) + · · ·+ s(B0 −AB1)−AB0

= (sn + βn−1s
n−1 + · · ·+ β1s+ β0)I.

Equating coefficients of powers of s yields (4.4.28) along with −AB0 = β0I. Taking
the trace of this last identity yields β0 = − 1

n trAB0, which confirms (4.4.27) for
k = 0. Next, using (4.4.26) and (4.4.21), it follows that

d
ds
χA(s) =

n∑
k=1

kβks
k−1 =

n∑
k=1

(trBk−1)sk−1,

where Bn−1
�= In and βn

�= 1. Equating powers of s, it follows that kβk = trBk−1

for all k = 1, . . . , n. Now, (4.4.28) implies that kβk = tr(ABk + βkI) for all
k = 1, . . . , n−1, which implies (4.4.27).

Proposition 4.4.10. Let A ∈ Fn×m and B ∈ Fm×n, and assume that m ≤ n.
Then,

χAB(s) = sn−mχBA(s). (4.4.29)

Consequently, mspec(AB) = mspec(BA) ∪ {0, . . . , 0}ms, (4.4.30)

where the multiset {0, . . . , 0}ms contains n−m 0’s.

Proof. First note that[
0m×m 0m×n
A AB

]
=
[

Im −B
0n×m In

][
BA 0m×n
A 0n×n

][
Im B

0n×m In

]
,
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which shows that
[

0m×m 0m×n

A AB

]
and
[
BA 0m×n

A 0n×n

]
are similar. It thus follows from xi)

of Proposition 4.4.5 that smχAB(s) = snχBA(s), which implies (4.4.29). Finally,
(4.4.30) follows immediately from (4.4.29).

If n = m, then Proposition 4.4.10 specializes to the following result.

Corollary 4.4.11. Let A,B ∈ F
n×n. Then,

χAB = χBA. (4.4.31)

Consequently,
mspec(AB) = mspec(BA). (4.4.32)

We define the spectral abscissa of A ∈ F
n×n by

spabs(A) �= max{Reλ: λ ∈ spec(A)} (4.4.33)

and the spectral radius of A ∈ Fn×n by

sprad(A) �= max{|λ|: λ ∈ spec(A)}. (4.4.34)

Let A ∈ F
n×n. Then, ν−(A), ν0(A), and ν+(A) denote the number of eigen-

values of A counting algebraic multiplicity having, respectively, negative, zero, and
positive real part. Define the inertia of A by

InA �=

⎡
⎣ ν−(A)
ν0(A)
ν+(A)

⎤
⎦ (4.4.35)

and the signature of A by

sigA �= ν+(A) − ν−(A). (4.4.36)

Note that spabs(A) < 0 if and only if ν−(A) = n, while spabs(A) = 0 if and only if
ν+(A) = 0.

4.5 Eigenvectors

Let A ∈ Fn×n, and let λ ∈ C be an eigenvalue of A. Then, χA(λ) = det(λI −
A) = 0, and thus λI−A ∈ Cn×n is singular. Furthermore, N(λI−A) is a nontrivial
subspace of C

n, that is, def(λI −A) > 0. If x ∈ N(λI −A), that is, Ax = λx,
and x �= 0, then x is an eigenvector of A associated with λ. By definition, all
eigenvectors are nonzero. Note that, if A and λ are real, then there exists a real
eigenvector associated with λ.

Definition 4.5.1. The geometric multiplicity of λ ∈ spec(A), denoted by
gmultA(λ), is the number of linearly independent eigenvectors associated with λ,
that is,

gmultA(λ) �= def(λI −A). (4.5.1)

By convention, if λ /∈ spec(A), then gmultA(λ) �= 0.
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Proposition 4.5.2. Let A ∈ Fn×n, and let λ ∈ spec(A). Then, the following
statements hold:

i) rank(λI −A) + gmultA(λ) = n.

ii) def A = gmultA(0).

iii) rankA+ gmultA(0) = n.

The spectral properties of normal matrices deserve special attention.

Lemma 4.5.3. Let A ∈ Fn×n be normal, let λ ∈ spec(A), and let x ∈ Cn be
an eigenvector of A associated with λ. Then, x is an eigenvector of A∗ associated
with λ ∈ spec(A∗).

Proof. Since λ ∈ spec(A), statement v) of Proposition 4.4.5 implies that
λ ∈ spec(A∗). Next, since x and λ satisfy Ax = λx, x∗A∗ = λx∗, and AA∗ = A∗A, it
follows that

(A∗x− λx)∗(A∗x− λx) = x∗AA∗x− λx∗Ax−λx∗A∗x+ λλx∗x

= x∗A∗Ax−λλx∗x−λλx∗x+ λλx∗x

= λλx∗x−λλx∗x = 0.

Hence, A∗x = λx.

Proposition 4.5.4. Let A ∈ Fn×n. Then, eigenvectors associated with distinct
eigenvalues of A are linearly independent. If, in addition, A is normal, then these
eigenvectors are mutually orthogonal.

Proof. Let λ1, λ2 ∈ spec(A) be distinct with associated eigenvectors x1, x2 ∈
Cn. Suppose that x1 and x2 are linearly dependent, that is, x1 = αx2, where α ∈ C

and α �= 0. Then, Ax1 = λ1x1 = λ1αx2, while also Ax1 = Aαx2 = αλ2x2. Hence,
α(λ1− λ2)x2 = 0, which contradicts α �= 0. Since pairwise linear independence
does not imply the linear independence of larger sets, next, let λ1, λ2, λ3 ∈ spec(A)
be distinct with associated eigenvectors x1, x2, x3 ∈ Cn. Suppose that x1, x2, x3 are
linearly dependent. In this case, there exist a1, a2, a3 ∈ C, not all zero, such that
a1x1 + a2x2 + a3x3 = 0. If a1 = 0, then a2x2 + a3x3 = 0. However, λ2 �= λ3

implies that x2 and x3 are linearly independent, which in turn implies that a2 = 0
and a3 = 0. Since a1, a2, a3 are not all zero, it follows that a1 �= 0. Therefore,
x1 = αx2 + βx3, where α �= −a2/a1 and β �= −a3/a1 are not both zero. Thus,
Ax1 = A(αx2 + βx3) = αAx2 + βAx3 = αλ2x2 + βλ3x3. However, Ax1 = λ1x1 =
λ1(αx2 + βx3) = αλ1x2 + βλ1x3. Subtracting these relations yields 0 = α(λ1 −
λ2)x2 + β(λ1 − λ3)x3. Since x2 and x3 are linearly independent, it follows that
α(λ1−λ2) = 0 and β(λ1−λ3) = 0. Since α and β are not both zero, it follows that
λ1 = λ2 or λ1 = λ3, which contradicts the assumption that λ1, λ2, λ3 are distinct.
The same arguments apply to sets of four or more eigenvectors.

Now, suppose that A is normal, and let λ1, λ2 ∈ spec(A) be distinct eigenval-
ues with associated eigenvectors x1, x2 ∈ Cn. Then, by Lemma 4.5.3, Ax1 = λ1x1

implies that A∗x1 = λ1x1. Consequently, x∗1A = λ1x
∗
1, which implies that x∗1Ax2 =

λ1x
∗
1x2. Furthermore, x∗1Ax2 = λ2x

∗
1x2. It thus follows that 0 = (λ1− λ2)x∗1x2.
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Hence, λ1 �= λ2 implies that x∗1x2 = 0.

If A ∈ Rn×n is symmetric, then Lemma 4.5.3 is not needed and the proof
of Proposition 4.5.4 is simpler. In this case, it follows from x) of Proposition 4.4.5
that λ1, λ2 ∈ spec(A) are real, and thus associated eigenvectors x1 ∈ N(λ1I −A)
and x2 ∈ N(λ2I −A) can be chosen to be real. Hence, Ax1 = λ1x1 and Ax2 = λ2x2

imply that xT
2Ax1 = λ1x

T
2x1 and xT

1Ax2 = λ2x
T
1x2. Since xT

1Ax2 = xT
2A

Tx1 = xT
2Ax1

and xT
1x2 = xT

2x1, it follows that (λ1−λ2)xT
1x2 = 0. Since λ1 �= λ2, it follows that

xT
1x2 = 0.

4.6 The Minimal Polynomial

Theorem 4.4.7 showed that every square matrix A ∈ Fn×n is a root of its
characteristic polynomial. However, there may be polynomials of degree less than
n having A as a root. In fact, the following result shows that there exists a unique
monic polynomial that has A as a root and that divides all polynomials that have
A as a root.

Theorem 4.6.1. Let A ∈ Fn×n. Then, there exists a unique monic polynomial
μA ∈ F[s] of minimal degree such that μA(A) = 0. Furthermore, deg μA ≤ n, and
μA divides every polynomial p ∈ F[s] satisfying p(A) = 0.

Proof. Since χA(A) = 0 and degχA = n, it follows that there exists a min-
imal positive integer n0 ≤ n such that there exists a monic polynomial p0 ∈ F[s]
satisfying p0(A) = 0 and deg p0 = n0. Let p ∈ F[s] satisfy p(A) = 0. Then,
by Lemma 4.1.2, there exist polynomials q, r ∈ F[s] such that p = qp0 + r and
deg r < deg p0. However, p(A) = p0(A) = 0 implies that r(A) = 0. If r �= 0, then
r can be normalized to obtain a monic polynomial of degree less than n0, which
contradicts the definition n0. Hence, r = 0, which implies that p0 divides p. This
proves existence.

Now, suppose there exist two monic polynomials p0, p̂0 ∈ F[s] of degree n0

and such that p0(A) = p̂0(A) = 0. By the previous argument, p0 divides p̂0, and
vice versa. Therefore, p0 is a constant multiple of p̂0. Since p0 and p̂0 are both
monic, it follows that p0 = p̂0. This proves uniqueness. Denote this polynomial by
μA.

The monic polynomial μA of smallest degree having A as a root is the minimal
polynomial of A.

The following result relates the characteristic and minimal polynomials of
A ∈ Fn×n to the similarity invariants of A. Note that rank(sI −A) = n, so that A
has n similarity invariants p1, . . . , pn ∈ F[s]. In this case, (4.3.1) becomes

sI −A = S1(s)

⎡
⎢⎣
p1(s) 0

. . .
0 pn(s)

⎤
⎥⎦S2(s), (4.6.1)
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where S1, S2 ∈ Fn×n[s] are unimodular and pi divides pi+1 for all i = 1, . . . , n−1.

Proposition 4.6.2. Let A ∈ Fn×n, and let p1, . . . , pn ∈ F[s] be the similarity
invariants of A, where pi divides pi+1 for all i = 1, . . . , n−1. Then,

χA =
n∏
i=1

pi (4.6.2)

and
μA = pn. (4.6.3)

Proof. Using Theorem 4.3.2 and (4.6.1), it follows that

χA(s) = det(sI −A) = [detS1(s)] [detS2(s)]
n∏
i=1

pi(s).

Since S1 and S2 are unimodular and χA and p1, . . . , pn are monic, it follows that
[detS1(s)][detS2(s)] = 1, which proves (4.6.2).

To prove (4.6.3), first note that it follows from Theorem 4.3.2 that χA =
Δn−1pn, where Δn−1 ∈ F[s] is the greatest common divisor of all (n−1)× (n−1)
subdeterminants of sI−A. Since the (n−1)×(n−1) subdeterminants of sI−A are the
entries of ±(sI −A)A, it follows that Δn−1 divides every entry of (sI −A)A. Hence,
there exists a polynomial matrix P ∈ F

n×n[s] such that (sI −A)A = Δn−1(s)P (s).
Furthermore, since (sI−A)A(sI−A) = χA(s)I, it follows that Δn−1(s)P (s)(sI−A) =
χA(s)I = Δn−1(s)pn(s)I, and thus P (s)(sI−A) = pn(s)I. Lemma 4.2.2 now implies
that pn(A) = 0.

Since pn(A) = 0, it follows from Theorem 4.6.1 that μA divides pn. Hence,
let q ∈ F[s] be the monic polynomial satisfying pn = qμA. Furthermore, since
μA(A) = 0, it follows from Corollary 4.2.3 that there exists a polynomial matrix
Q ∈ F

n×n[s] such that μA(s)I = Q(s)(sI −A). Thus, P (s)(sI −A) = pn(s)I =
q(s)μA(s)I = q(s)Q(s)(sI −A), which implies that P = qQ. Thus, q divides every
entry of P. However, since P is obtained by dividing (sI − A)A by the greatest
common divisor of all of its entries, it follows that the greatest common divisor of
the entries of P is 1. Hence, q = 1, which implies that pn = μA, which proves
(4.6.3).

Proposition 4.6.2 shows that μA divides χA, which is also a consequence of
Theorem 4.4.7 and Theorem 4.6.1. Proposition 4.6.2 also shows that μA = χA
if and only if p1 = · · · = pn−1 = 1, that is, if and only if pn = χA is the only
nonconstant similarity invariant of A. Note that, in general, it follows from (4.6.2)
that

∑n
i=1 deg pi = n.

Finally, note that the similarity invariants of the n×n identity matrix In are
given by pi(s) = s−1 for all i = 1, . . . , n. Thus, χIn(s) = (s−1)n and μIn(s) = s−1.

Proposition 4.6.3. Let A ∈ F
n×n, and assume that A and B are similar.

Then,
μA = μB. (4.6.4)
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4.7 Rational Transfer Functions and the Smith-
McMillan Decomposition

We now turn our attention to rational functions.

Definition 4.7.1. The set F(s) of rational functions consists of functions
g : C\S �→ C, where g(s) = p(s)/q(s), p, q ∈ F[s], q �= 0, and S

�= roots(q).
The rational function g is strictly proper, proper, exactly proper, improper, respec-
tively, if deg p < deg q, deg p ≤ deg q, deg p = deg q, deg p > deg q. If p and q are
coprime, then the zeros of g are the elements of mroots(p), while the poles of g
are the elements of mroots(q). The set of proper rational functions is denoted by
Fprop(s). The relative degree of g ∈ Fprop(s), denoted by reldeg g, is deg q − deg p.

Definition 4.7.2. The set Fl×m(s) of rational transfer functions consists of
matrices whose entries are elements of F(s). The rational transfer function G ∈
Fl×m(s) is strictly proper if every entry of G is strictly proper, proper if every entry
of G is proper, exactly proper if every entry of G is proper and at least one entry of
G is exactly proper, and improper if at least one entry of G is improper. The set
of proper rational transfer functions is denoted by Fl×mprop(s).

Definition 4.7.3. Let G ∈ Fl×mprop(s). Then, the relative degree of G, denoted
by reldegG, is defined by

reldegG �= min
i=1,...,l
j=1,...,m

reldegG(i,j). (4.7.1)

By writing (sI −A)−1 as

(sI −A)−1 =
1

χA(s)
(sI −A)A, (4.7.2)

it follows from (4.4.21) that (sI−A)−1 is a strictly proper rational transfer function.
In fact, for all i = 1, . . . , n,

reldeg
[
(sI −A)−1

]
(i,i)

= 1, (4.7.3)

and thus
reldeg (sI −A)−1 = 1. (4.7.4)

The following definition is an extension of Definition 4.2.4 to rational transfer
functions.

Definition 4.7.4. Let G ∈ Fl×m(s), and, for all i = 1, . . . , l and j = 1, . . . ,m,
let G(i,j) = pij/qij, where qij �= 0, and pij, qij ∈ F[s] are coprime. Then, the poles
of G are the elements of the set

poles(G) �=
l,m⋃
i,j=1

roots(qij), (4.7.5)
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and the blocking zeros of G are the elements of the set

bzeros(G) �=
l,m⋂
i,j=1

roots(pij). (4.7.6)

Finally, the rank of G is the nonnegative integer

rankG �= max
s∈C\poles(G)

rankG(s). (4.7.7)

The following result provides a canonical form, known as the Smith-McMillan
form, for rational transfer functions under unimodular transformation.

Theorem 4.7.5. Let G ∈ Fl×m(s), and let r
�= rankG. Then, there ex-

ist unimodular matrices S1 ∈ Fl×l[s] and S2 ∈ Fm×m[s] and monic polynomials
p1, . . . , pr, q1, . . . , qr ∈ F[s] such that pi and qi are coprime for all i = 1, . . . , r, pi
divides pi+1 for all i = 1, . . . , r −1, qi+1 divides qi for all i = 1, . . . , r −1, and

G = S1

⎡
⎢⎢⎢⎣
p1/q1

. . . 0r×(m−r)
pr/qr

0(l−r)×r 0(l−r)×(m−r)

⎤
⎥⎥⎥⎦S2. (4.7.8)

Proof. Let nij/dij denote the (i, j) entry of G, where nij , dij ∈ F[s] are co-
prime, and let d ∈ F[s] denote the least common multiple of dij for all i = 1, . . . , l
and j = 1, . . . ,m. From Theorem 4.3.2 it follows that the polynomial matrix dG has
the Smith form diag(p̂1, . . . , p̂r, 0, . . . , 0), where p̂1, . . . , p̂r ∈ F[s] and p̂i divides p̂i+1

for all i = 1, . . . , r−1. Now, divide this Smith form by d and express every rational
function p̂i/d in coprime form pi/qi so that pi divides pi+1 for all i = 1, . . . , r −1
and qi+1 divides qi for all i = 1, . . . , r −1.

Proposition 4.7.6. Let G ∈ Fl×m(s), and assume that there exist unimodular
matrices S1 ∈ Fl×l[s] and S2 ∈ Fm×m[s] and monic polynomials p1, . . . , pr, q1, . . . , qr
∈ F[s] such that pi and qi are coprime for all i = 1, . . . , r and such that (4.7.8) holds.
Then, rankG = r.

Proposition 4.7.7. Let G ∈ F
n×m[s], and let r �= rankG. Then, r is the

largest order of all nonsingular submatrices of G.

Proposition 4.7.8. Let G ∈ Fn×m(s), and let S ⊂ C be a finite set such that
poles(G) ⊆ S. Then,

rankG = max
s∈C\S

rankG(s). (4.7.9)

Let g1, . . . , gr ∈ Fn(s). Then, g1, . . . , gr are linearly independent if α1, . . . , αr
∈ F[s] and

∑r
n=1 αigi = 0 imply that α1 = · · · = αr = 0. Equivalently, g1, . . . , gr

are linearly independent if α1, . . . , αr ∈ F(s) and
∑r
n=1 αigi = 0 imply that α1 =

· · · = αr = 0. In other words, the coefficients αi can be either polynomials or
rational functions.
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Proposition 4.7.9. Let G ∈ Fl×m(s). Then, rankG is equal to the number
of linearly independent columns of G.

Since G ∈ Fl×m[s] ⊂ Fl×m(s), Proposition 4.7.9 applies to polynomial matri-
ces.

Definition 4.7.10. Let G ∈ Fl×m(s), assume that G �= 0, let r �= rankG,
and let p1, . . . , pr, q1, . . . , qr ∈ F[s] be given by Theorem 4.7.5. Then, the McMillan
degree Mcdeg G of G is defined by

Mcdeg G �=
r∑
i=1

deg qi. (4.7.10)

Furthermore, the transmission zeros of G are the elements of the set

tzeros(G) �= roots(pr). (4.7.11)

Proposition 4.7.11. Let G ∈ Fl×m(s), assume that G �= 0, and assume that
G has the Smith-McMillan form (4.7.8). Then,

poles(G) = roots(q1) (4.7.12)

and

bzeros(G) = roots(p1). (4.7.13)

Note that

bzeros(G) ⊆ tzeros(G). (4.7.14)

Furthermore, we define the multisets

mpoles(G) �=
r⋃
i=1

mroots(qi), (4.7.15)

mtzeros(G) �=
r⋃
i=1

mroots(pi), (4.7.16)

mbzeros(G) �= mroots(p1). (4.7.17)

Note that

mbzeros(G) ⊆ mtzeros(G). (4.7.18)

If G = 0, then these multisets as well as the sets poles(G), tzeros(G), and bzeros(G)
are empty.

Proposition 4.7.12. Let G ∈ Fl×mprop(s), assume that G �= 0, let z ∈ C, and
assume that z is not a pole of G. Then, z is a transmission zero of G if and only if
rankG(z) < rankG. Furthermore, z is a blocking zero of G if and only if G(z) = 0.

The following example shows that a pole of G can also be a transmission zero
of G.
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Example 4.7.13. Define G ∈ R2×2
prop(s) by

G(s) =

⎡
⎣ 1

(s+1)2
1

(s+1)(s+2)

1
(s+1)(s+2)

s+3
(s+2)2

⎤
⎦.

Then, rankG = 2. Furthermore,

G(s) = S1(s)

[
1

(s+1)2(s+2)2
0

0 s+ 2

]
S2(s),

where S1, S2 ∈ R2×2[s] are the unimodular matrices

S1(s) =

[
(s+ 2)(s3 + 4s2 + 5s+ 1) 1

(s+ 1)(s3 + 5s2 + 8s+ 3) 1

]

and

S2(s) =

[ −(s+ 2) (s+ 1)(s2 + 3s+ 1)

1 −s(s+ 2)

]
.

Hence, the McMillan degree ofG is 4, the poles ofG are−1 and−2, the transmission
zero of G is −2, and G has no blocking zeros. Note that −2 is both a pole and a
transmission zero of G. Note also that, although G is strictly proper, the Smith-
McMillan form of G is improper.

Let G ∈ Fl×mprop(s). A factorization of G of the form

G(s) = N(s)D−1(s), (4.7.19)

where N ∈ Fl×m[s] and D ∈ Fm×m[s], is a right polynomial fraction description of
G. We say that N and D are right coprime if every R ∈ F

m×m[s] that right divides
both N and D is unimodular. In this case, (4.7.19) is a coprime right polynomial
fraction description of G.

Theorem 4.7.14. Let N ∈ Fl×m[s] and D ∈ Fm×m[s]. Then, the following
statements are equivalent:

i) N and D are right coprime.

ii) There exist X ∈ F
m×l[s] and Y ∈ F

m×m[s] such that

XN + YD = I. (4.7.20)

iii) For all s ∈ C,

rank
[
N(s)
D(s)

]
= m. (4.7.21)

Proof. See [1150, p. 297].

Equation (4.7.20) is the Bezout identity.

The following result shows that all coprime right polynomial fraction de-
scriptions of a proper rational transfer function G are related by a unimodular
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transformation.

Proposition 4.7.15. Let G ∈ Fl×mprop(s), let N, N̂ ∈ Fl×m[s], let D, D̂ ∈
Fm×m[s], and assume that G = ND−1 = N̂D̂−1. Then, there exists a unimodu-
lar matrix R ∈ Fm×m[s] such that N = N̂R and D = D̂R.

Proof. See [1150, p. 298].

The following result uses the Smith-McMillan form to show that every proper
rational transfer function has a coprime right polynomial fraction description.

Proposition 4.7.16. Let G ∈ Fl×mprop(s). Then, G has a coprime right polyno-
mial fraction description. If, in addition, G(s) = N(s)D−1(s), where N ∈ Fl×m[s]
and D ∈ Fm×m[s], is a coprime right polynomial fraction description of G, then

Szeros(N) = tzeros(G) (4.7.22)

and

Szeros(D) = poles(G). (4.7.23)

Proof. Note that (4.7.8) can be written as

G = S1

⎡
⎢⎢⎢⎣
p1/q1 0

. . .
pr/qr

0 0(l−r)×(m−r)

⎤
⎥⎥⎥⎦S2

= S1

⎡
⎢⎢⎢⎣
p1 0

. . .
pr

0 0(l−r)×(m−r)

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
q1 0

. . .
qr

0 Im−r

⎤
⎥⎥⎥⎦
−1

S2

= S1

⎡
⎢⎢⎢⎣
p1 0

. . .
pr

0 0(l−r)×(m−r)

⎤
⎥⎥⎥⎦
⎛
⎜⎜⎜⎝S−1

2

⎡
⎢⎢⎢⎣
q1 0

. . .
qr

0 Im−r

⎤
⎥⎥⎥⎦
⎞
⎟⎟⎟⎠
−1

,

which, by Theorem 4.7.14, is a right coprime polynomial fraction description of G.
The last statement follows from Theorem 4.7.5 and Proposition 4.7.15.

4.8 Facts on Polynomials and Rational Functions

Fact 4.8.1. Let p ∈ R[s] be monic, and define q(s) �= snp(1/s), where n �=
deg p. If 0 /∈ roots(p), then deg(q) = n and

mroots(q) = {1/λ: λ ∈ mroots(p)}ms.
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If 0 ∈ roots(p) with multiplicity r, then deg(q) = n− r and

mroots(q) = {1/λ: λ �= 0 and λ ∈ mroots(p)}ms.

(Remark: See Fact 11.17.4 and Fact 11.17.5.)

Fact 4.8.2. Let p ∈ F
n[s] be given by

p(s) = sn + βn−1s
n−1 + · · ·+ β1s+ β0,

let βn
�= 1, let mroots(p) = {λ1, . . . , λn}ms, and define μ1, . . . , μn by

μi
�= λi1 + · · ·+ λin.

Then, for all k = 1, . . . , n,

kβn−k + μ1βn−k+1 + μ2βn−k+2 + · · ·+ μkβn = 0.

That is, ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n μ1 μ2 μ3 μ4 · · · μn

0 n−1 μ1 μ2 μ3 · · · μn−1

...
. . . . . . . . . . . . . . .

...
...

. . . . . . . . . . . . . . .
...

0 0 · · · 0 2 μ1 μ2

0 0 · · · 0 0 1 μ1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

β0

β1

...
βn−1

βn

⎤
⎥⎥⎥⎥⎥⎦ = 0.

Consequently, β1, . . . , βn−1 are uniquely determined by μ1, . . . , μn. In particular,

βn−1 = −μ1,

βn−2 = 1
2 (μ2

1 − μ2),

β3 = 1
6 (−μ3

1 + 3μ1μ2 − 2μ3).

(Proof: See [709, p. 44] and [1002, p. 9].) (Remark: These equations are a conse-
quence of Newton’s identities given by Fact 1.15.11. Note that, for i = 0, . . . , n, it
follows that βi = (−1)n−iEn−i, where Ei is the ith elementary symmetric polyno-
mial of the roots of p.)

Fact 4.8.3. Let p, q ∈ F[s] be monic. Then, p and q are coprime if and only
if their least common multiple is pq.

Fact 4.8.4. Let p, q ∈ F[s], where p(s) = ans
n + · · · + a1s + a0, q(s) =

bms
m + · · ·+ b1s+ b0, deg p = n, and deg q = m. Furthermore, define the Toeplitz

matrices [p](m) ∈ Fm×(n+m) and [q](n) ∈ Fn×(n+m) by

[p](m) �=

⎡
⎢⎢⎣
an an−1 · · · a1 a0 0 0 · · · 0

0 an an−1 · · · a1 a0 0 · · · 0
...

. . . . . . . . . · · · . . . . . . . . .
...

⎤
⎥⎥⎦

and

[q](n) �=

⎡
⎢⎢⎣
bm bm−1 · · · b1 b0 0 0 · · · 0

0 bm bm−1 · · · b1 b0 0 · · · 0
...

. . . . . . . . . · · · . . . . . . . . .
...

⎤
⎥⎥⎦.
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Then, p and q are coprime if and only if

det

[
[p](m)

[q](n)

]
�= 0.

(Proof: See [481, p. 162] or [1098, pp. 187–191].) (Remark: [AB ] is the Sylvester

matrix, and det [ AB ] is the resultant of p and q.) (Remark: The form
[

[p](m)

[q](n)

]
appears

in [1098, pp. 187–191]. The result is given in [481, p. 162] in terms of
[
Î[p](m)

Î[q](n)

]
Î

and in [1503, p. 85] in terms of
[

[p](m)

Î[q](n)

]
. Interweaving the rows of [p](m) and [q](n)

and taking the transpose yields a step-down matrix [389].)

Fact 4.8.5. Let p1, . . . , pn ∈ F[s], and let d ∈ F[s] be the greatest common
divisor of p1, . . . , pn. Then, there exist polynomials q1, . . . , qn ∈ F[s] such that

d =
n∑
i=1

qipi.

In addition, p1, . . . , pn are coprime if and only if there exist polynomials q1, . . . , qn ∈
F[s] such that

1 =
n∑
i=1

qipi.

(Proof: See [508, p. 16].) (Remark: The polynomial d is given by the Bezout
equation.)

Fact 4.8.6. Let p, q ∈ F[s], where p(s) = ans
n + · · · + a1s + a0 and q(s) =

bns
n + · · ·+ b1s+ b0, and define [p](n), [q](n) ∈ Fn×2n as in Fact 4.8.4. Furthermore,

define

R(p, q) �=

[
[p](n)

[q](n)

]
=
[
A1 A2

B1 B2

]
,

where A1, A2, B1, B2 ∈ Fn×n, and define p̂(s) �= snp(−s) and q̂(s) �= snq(−s). Then,[
A1 A2

B1 B2

]
=

[
p̂
(
NT
n

)
p(Nn)

q̂
(
NT
n

)
q(Nn)

]
,

A1B1 = B1A1,

A2B2 = B2A2,

A1B2 +A2B1 = B1A2 + B2A1.

Therefore, [
I 0
−B1 A1

] [
A1 A2

B1 B2

]
=
[
A1 A2

0 A1B2 −B1A2

]
,

[ −B2 A2

0 I

][
A1 A2

B1 B2

]
=
[
A2B1 −B2A1 0

B1 B2

]
,

and
detR(p, q) = det(A1B2 −B1A2) = det(B2A1 −A2B1).
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Now, define B(p, q) ∈ Fn×n by

B(p, q) �= (A1B2 −B1A2)Î.

Then, the following statements hold:

i) For all s, ŝ ∈ C,

p(s)q(ŝ)− q(s)p(ŝ) = (s− ŝ)

⎡
⎢⎢⎢⎣

1
s
...

sn−1

⎤
⎥⎥⎥⎦
T

B(p, q)

⎡
⎢⎢⎢⎣

1
ŝ
...

ŝn−1

⎤
⎥⎥⎥⎦.

ii) B(p, q) = (B2A1 −A2B1)Î = Î
(
AT

1B
T
2 −BT

1A
T
2

)
= Î
(
BT

1A
T
2 −AT

1B
T
2

)
.

iii)
[

0 B(p, q)
−B(p, q) 0

]
= QRT(p, q)QR(p, q)Q, where Q �=

[
0 Î
−Î 0

]
.

iv) |detB(p, q)| = |detR(p, q)| = |det q[C(p)]|.
v) B(p, q) and B̂(p, q) are symmetric.

vi) B(p, q) is a linear function of (p, q).

vii) B(p, q) = −B(q, p).

Now, assume that deg q ≤ deg p = n and p is monic. Then, the following statements
hold:

viii) def B(p, q) is equal to the degree of the greatest common divisor of p and
q.

ix) p and q are coprime if and only if B(p, q) is nonsingular.

x) If B(p, q) is nonsingular, then [B(p, q)]−1 is Hankel. In fact,

[B(p, q)]−1 = H(a/p),

where a, b ∈ F[s] satisfy the Bezout equation aq + bp = 1.

xi) If q = q1q2, where q1, q2 ∈ F[s], then

B(p, q) = B(p, q1)q2[C(p)] = q1
[
CT(p)

]
B(p, q2).

xii) B(p, q) = B(p, q)C(p) = CT(p)B(p, q).

xiii) B(p, q) = B(p, 1)q[C(p)] = q
[
CT(p)

]
B(p, 1), where B(p, 1) is the Hankel

matrix

B(p, 1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a1 a2 · · · an−1 1

a2 a3 . .. 1 0
... . .. . .. . ..

...

an−1 1 . .. 0 0

1 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.
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In particular, for n = 3 and q(s) = s, it follows that⎡
⎣ −a0 0 0

0 a2 1
0 1 0

⎤
⎦ =

⎡
⎣ a1 a2 1
a2 1 0
1 0 0

⎤
⎦
⎡
⎣ 0 1 0

0 0 1
−a0 −a1 −a2

⎤
⎦.

xiv) If A2 is nonsingular, then[
A1 A2

B1 B2

]
=
[

0 I

A−1
2 Î B2A

−1
2

][
B(p, q) 0

0 I

][
I 0
A1 A2

]
.

xv) If p has distinct roots λ1, . . . , λn, then

V T(λ1, . . . , λn)B(p, q)V (λ1, . . . , λn) = diag[q(λ1)p′(λ1), . . . , q(λn)p′(λn)].

(Proof: See [481, pp. 164–167], [508, pp. 200–207], and [663]. To prove ii), note
that A1, A2, B1, B2 are square and Toeplitz, and thus reverse symmetric, that is,
A1 = AT̂

1 . See Fact 3.18.5.) (Remark: B(p, q) is the Bezout matrix of p and q.
See [145, 662, 722, 1356, 1444], [1098, p. 189], and Fact 5.15.24.) (Remark: xiii)
is the Barnett factorization. See [138, 1356]. The definitions of B(p, q) and ii)
are the Gohberg-Semencul formulas. See [508, p. 206].) (Remark: It follows from
continuity that the expressions for detR(p, q) are valid whether or not A1 or B2 is
singular. See Fact 2.14.13.) (Remark: The inverse of a Hankel matrix is a Bezout
matrix. See [481, p. 174].)

Fact 4.8.7. Let p, q ∈ F[s], where p(s) = α1s+ α0 and q(s) = s2 + β1s+ β0.
Then, p and q are coprime if and only if α2

0 + α2
1β0 �= α0α1β1. (Proof: Use Fact

4.8.6.)

Fact 4.8.8. Let p, q ∈ F[s], assume that q is monic, assume that deg p <
deg q = n, and define B(p, q) as in Fact 4.8.6. Furthermore, define g ∈ F(s) by

g(s) �=
p(s)
q(s)

=
∞∑
i=1

hi
si
.

Finally, define the Hankel matrix Hi,j(g) ∈ Ri×j by

Hi,j(g) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h1 h2 hk+3 · · · hj

hk+2 hk+3 . .. . ..
...

hk+3 . .
.

. .
.

. .
. ...

... . .. . .. . ..
...

... . .. . .. . ..
...

hi · · · · · · · · · hj+i−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Then, the following statements are equivalent:

i) p and q are coprime.

ii) Hn,n(g) is nonsingular.

iii) For all i, j ≥ n, rankHi,j(g) = n.

iv) There exist i, j ≥ n such that rankHi,j(g) = n.
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Furthermore, the following statements hold:

v) If p and q are coprime, then [Hn,n(g)]−1 = B(q, a), where a, b ∈ F[s] satisfy
the Bezout equation ap+ bq = 1.

vi) B(q, p) = B(q, 1)Hn,n(g)B(q, 1).

vii) B(q, p) and Hn,n(g) are congruent.

viii) InB(q, p) = InHn,n(g).

ix) detHn,n(g) = detB(q, p).

(Proof: See [508, pp. 215–221].) (Remark: See Proposition 12.9.11.)

Fact 4.8.9. Let q ∈ R[s], define g ∈ F(s) by g �= q′/q, and define B(q, q′) as in
Fact 4.8.6. Then, the following statements hold:

i) The number of distinct roots of q is rankB(q, q′).

ii) q has n distinct roots if and only if B(q, q′) is nonsingular.

iii) The number of distinct real roots of q is sigB(q, q′).

iv) q has n distinct, real roots if and only if B(q, q′) is positive definite.

v) The number of distinct complex roots of q is 2ν−[B(q, q′)].

vi) q has n distinct, complex roots if and only if n is even and ν−[B(q,q′)] = n/2.

vii) q has n real roots if and only if B(q, q′) is positive semidefinite.

(Proof: See [508, p. 252].) (Remark: q′(s) �= (d/ds)q(s).)

Fact 4.8.10. Let q ∈ F[s], where q(s) =
∑n
i=0 bis

i, and define

coeff(q) �=

⎡
⎢⎣
bn
...
b0

⎤
⎥⎦.

Now, let p ∈ F[s], where p(s) =
∑n
i=0 ais

i. Then,

coeff(pq) = Acoeff(q),

where A ∈ F2n×(n+1) is the Toeplitz matrix

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

an 0 0 · · · 0
an−1 an 0 · · · 0

...
. . . . . . . . .

...
...

. . . . . . . . .
...

a0 a1
. . . . . . an

0 a0
. . . . . . an−1

...
...

. . . . . .
...

0 0 · · · a0 a1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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In particular, if n = 3, then

A =

⎡
⎢⎢⎣
a2 0 0
a1 a2 0
a0 a1 a2

0 a0 a1

⎤
⎥⎥⎦.

Fact 4.8.11. Let λ1, . . . , λn ∈ C be distinct and, for all i = 1, . . . , n, define

pi(s)
�=

n∏
j=1
j �=i

s−λi
λi −λj .

Then, for all i = 1, . . . , n,

pi(λj) =

{
1, i = j,

0, i �= j.

(Remark: This identity is the Lagrange interpolation formula.)

Fact 4.8.12. Let A ∈ Fn×n, and assume that det(I + A) �= 0. Then, there
exists p ∈ F[s] such that deg p ≤ n−1 and (I + A)−1 = p(A). (Remark: See Fact
4.8.12.)

Fact 4.8.13. Let A ∈ Fn×n, let q ∈ F[s], and assume that q(A) is nonsingular.
Then, there exists p ∈ F[s] such that deg p ≤ n −1 and [q(A)]−1 = p(A). (Proof:
See Fact 5.14.24.)

Fact 4.8.14. Let A ∈ Rn×n, assume that A is skew symmetric, and let the
components of xA ∈ Rn(n−1)/2 be the entries A(i,j) for all i > j. Then, there exists a
polynomial function p: Rn(n−1)/2 �→ R such that, for all α ∈ R and x ∈ Rn(n−1)/2,

p(αx) = αn/2p(x)

and
detA = p2(xA).

In particular,

det
[

0 a
−a 0

]
= a2

and

det

⎡
⎢⎢⎣

0 a b c
−a 0 d e
−b −d 0 f
−c −e −f 0

⎤
⎥⎥⎦ = (af − be+ cd)2.

(Proof: See [878, p. 224] and [1098, pp. 125–127].) (Remark: The polynomial p
is the Pfaffian, and this result is Pfaff’s theorem.) (Remark: An extension to the
product of a pair of skew-symmetric matrices is given in [436].) (Remark: See Fact
3.7.33.)

Fact 4.8.15. Let G ∈ F
n×m(s), and let G(i,j) = nij/dij , where nij ∈ F[s] and

dij ∈ F[s] are coprime for all i = 1, . . . , n and j = 1, . . . ,m. Then, q1 given by the
Smith-McMillan form is the least common multiple of d11, d12, . . . , dnm.
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Fact 4.8.16. Let G ∈ Fn×m(s), assume that rankG = m, and let λ ∈ C,
where λ is not a pole of G. Then, λ is a transmission zero of G if and only if there
exists a vector u ∈ Cm such that G(λ)u = 0. Furthermore, if G is square, then λ is
a transmission zero of G if and only if detG(λ) = 0.

Fact 4.8.17. Let G ∈ F
n×m(s), let ω ∈ R, and assume that jω is not a pole

of G. Then,
ImG(−jω) = −ImG(jω).

4.9 Facts on the Characteristic and Minimal Polynomials

Fact 4.9.1. Let A =
[
a b
c d

] ∈ R2×2. Then, the following identities hold:

i) mspec(A) =
{

1
2

[
a+ d±√(a− d)2 + 4bc

]}
ms

=
{

1
2

[
trA±√(trA)2 − 4 detA

]}
ms
.

ii) χA(s) = s2 − (trA)s+ detA.

iii) detA = 1
2

[
(trA)2 − trA2

]
.

iv) (sI −A)A = sI +A− (trA)I.

v) A−1 = (detA)−1[(trA)I −A].

vi) AA = (trA)I −A.

vii) trA−1 = trA/detA.

Fact 4.9.2. Let A ∈ R3×3. Then, the following identities hold:

i) χA(s) = s3 − (trA)s2 +
(
trAA

)
s− detA.

ii) trAA = 1
2

[
(trA)2 − trA2

]
.

iii) detA = 1
3 trA3 − 1

2 (trA)trA2 + 1
6 (trA)3.

iv) (sI −A)A = s2I + s[A− (trA)I] +A2 − (trA)A + 1
2

[
(trA)2 − trA2

]
I.

(Remark: See Fact 7.5.17.)

Fact 4.9.3. Let A,B ∈ F2×2. Then,

AB +BA− (trA)B − (trB)A + [(trA)(trB)− trAB]I = 0.

Furthermore,

det(A +B)− detA− detB = (trA)(trB)− trAB.

(Proof: Apply the Cayley-Hamilton theorem to A+ xB, differentiate with respect
to x, and set x = 0. For the second identity, evaluate the Cayley-Hamilton theorem
with A + B. See [499, 500, 890, 1128] or [1186, p. 37].) (Remark: This identity is
a polarized Cayley-Hamilton theorem. See [78].)
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Fact 4.9.4. Let A,B,C ∈ F2×2. Then,

2ABC = (trA)BC + (trB)AC + (trC)AB
− (trAC)B + [(trAB)− (trA)(trB)]C
+ [(trBC)− (trB)(trC)]A
− [(trACB)− (trAC)(trB)]I.

(Remark: This identity is a polarized Cayley-Hamilton theorem. See [78].) (Remark:
An analogous formula exists for the product of six 3× 3 matrices. See [78].)

Fact 4.9.5. Let A,B,C ∈ F3×3, and assume that trA = trA = trC = 0.
Then,

4 tr(A2B2) + 2 tr[(AB)2] = tr(A2) tr(B2) + 2[tr(AB)]2

and

6 tr(A2B2AB) + 6 tr(B2A2BA) + 2 tr(AB) tr[(AB)2] + 2 tr(A3) tr(B3)

= 2 tr(AB) tr(A2B2) + tr(A2) tr(AB) tr(B2) + 2[tr(AB)]3 + 6 tr(A2B) tr(AB2).

(Proof: See [81].)

Fact 4.9.6. Let A,B,C ∈ F
3×3. Then,∑

[A′B′C′ −(trA′)B′C′ +(trA′)(trB′)C′ −(trA′B′)C′]

− [(trA)(trB)trC − (trA)trBC − (trB)trCA− (trC)trAB + trABC
+ trCBA]I = 0,

where the sum is taken over all six permutations A′, B′, C′ of A,B,C. (Remark:
This identity is a polarized Cayley-Hamilton theorem. See [79, 890, 1128].)

Fact 4.9.7. Let A,B ∈ Fn×n, assume that A and B commute, and define
f : C2 �→ C by f(r, s) �= det(rA− sB). Then, f(B,A) = 0. (Remark: This result is
the generalized Cayley-Hamilton theorem. See [356, 682].)

Fact 4.9.8. Let A ∈ Fn×n, let χA(s) = sn + βn−1s
n−1 + · · · + β0, and let

mspec(A) = {λ1, . . . , λn}ms. Then,

AA = (−1)n−1
(
An−1 + βn−1A

n−2 + · · ·+ β1I
)
.

Furthermore,

trAA = (−1)n−1χ′
A(0) = (−1)n−1β1 =

∑
1≤j1<···<jn−1≤n

λj1 · · ·λjn−1 =
n∑
i=1

detA[i;i].

(Proof: Use A−1χA(A) = 0. The second identity follows from (4.4.19) or Lemma
4.4.8.) (Remark: See Fact 4.10.7.)

Fact 4.9.9. Let A ∈ Fn×n, assume that A is nonsingular, and let χA(s) =
sn + βn−1s

n−1 + · · ·+ β0. Then,
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χA−1(s) =
1

detA
(−s)nχA(1/s)

= sn + (β1/β0)sn−1 + · · ·+ (βn−1/β0)s+ 1/β0.

(Remark: See Fact 5.16.2.)

Fact 4.9.10. Let A ∈ Fn×n, and assume that either A and −A are similar or
AT and −A are similar. Then,

χA(s) = (−1)nχA(−s).
Furthermore, if n is even, then χA is even, whereas, if n is odd, then χA is odd.
(Remark: A and AT are similar. See Corollary 4.3.11 and Corollary 5.3.8.)

Fact 4.9.11. Let A ∈ F
n×n. Then, for all s ∈ C,

(sI −A)A = χA(s)(sI −A)−1 =
n−1∑
i=0

χ
[i]
A (s)Ai,

where
χA(s) = sn + βn−1s

n−1 + · · ·+ β1s+ β0

and, for all i = 0, . . . , n−1, the polynomial χ[i]
A is defined by

χ
[i]
A(s) �= sn−i + βn−1s

n−1−i + · · ·+ βi+1.

Note that
χ

[n−1]
A (s) = s+ βn−1, χ

[n]
A (s) = 1,

and that, for all i = 0, . . . , n −1 and with χ
[0]
A

�= χA, the polynomials χ[i]
A satisfy

the recursion
sχ

[i+1]
A (s) = χ

[i]
A(s)− βi.

(Proof: See [1455, p. 31].)

Fact 4.9.12. Let A ∈ Rn×n, and assume that A is skew symmetric. If n is
even, then χA is even, whereas, if n is odd, then χA is odd.

Fact 4.9.13. Let A ∈ Fn×n, and assume that A is skew Hermitian. Then, for
all s ∈ C,

χA(−s) = (−1)np(s).

Fact 4.9.14. Let A ∈ Fn×n. Then, χA is even for the matrices A ∈ F2n×2n

given by
[

0 A
A∗ 0

]
,
[
A 0
0 −A

]
, and

[
A 0
0 −A∗

]
.

Fact 4.9.15. Let A,B ∈ Fn×n, and define A
�= [ 0 A

B 0 ]. Then,

χA(s) = χAB
(
s2
)

= χBA
(
s2
)
.

Consequently, χA is even. (Proof: Use Fact 2.14.13 and Proposition 4.4.10.)

Fact 4.9.16. Let x, y, z, w ∈ Fn, and define A �= xyT and B �= xyT + zwT.
Then,

χA(s) = sn−1
(
s− xTy

)
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and
χB(s) = sn−2

[
s2 − (xTy + zTw

)
s+ xTyzTw − yTzxTw

]
.

(Remark: See Fact 5.11.13.)

Fact 4.9.17. Let x, y ∈ Fn−1, and define A ∈ Fn×n by

A
�=
[

0 xT

y 0

]
.

Then,
χA(s) = sn−1(s2 − yTx).

(Proof: See [1333].)

Fact 4.9.18. Let x, y, z, w ∈ Fn−1, and define A ∈ Fn×n by

A
�=
[

1 xT

y zwT

]
.

Then,

χA(s) = sn−3
[
s3 − (1 + wTz

)
s2 +

(
wTz − xTy

)
s+ wTzxTy − xTzwTy

]
.

(Proof: See [409].) (Remark: Extensions are given in [1333].)

Fact 4.9.19. Let x ∈ R3, and define θ �=
√
xTx. Then,

χK(x)(s) = s3 + θ2s.

Hence,
mspec[K(x)] = {0, jθ,−jθ}ms.

Now, assume that x �= 0. Then, x is an eigenvector corresponding to the eigenvalue
0, that is, K(x)x = 0. Furthermore, if either x(1) �= 0 or x(2) �= 0, then⎡

⎢⎣
x(1)x(3) + jθx(2)

x(2)x(3) − jθx(1)

−x2
(1) − x2

(2)

⎤
⎥⎦

is an eigenvector corresponding to the eigenvalue jθ. Finally, if x(1) = x(2) = 0,

then
[ j

1
0

]
is an eigenvector corresponding to the eigenvalue jθ. (Remark: See Fact

11.11.6.)

Fact 4.9.20. Let a, b ∈ R3, where a =
[
a1 a2 a3

]T and b =[
b1 b2 b3

]T
, and define the skew-symmetric matrix A ∈ R4×4 by

A
�=

[
K(a) b

−bT 0

]
.

Then, the following statements hold:

i) detA =
(
aTb
)2
.

ii) χA(s) = s4 +
(
aTa+ bTb

)
s2 +

(
aTb
)2
.
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iii) AA = −aTb
[
K(b) a

−aT 0

]
.

iv) If detA �= 0, then A−1 = −(aTb)−1

[
K(b) a

−aT 0

]
.

v) If detA = 0, then
A3 = −(aTa+ bTb

)2
A

and
A+ = −(aTa+ bTb

)−2
A.

(Proof: See [1334].) (Remark: See Fact 4.10.2 and Fact 11.11.17.)

Fact 4.9.21. Let A ∈ R
2n×2n, and assume that A is Hamiltonian. Then, χA

is even, and thus mspec(A) = −mspec(A). (Remark: See Fact 5.9.24.)

Fact 4.9.22. Let A,B,C ∈ Rn×n, and define

A
�=
[
A B
C −AT

]
.

If B and C are symmetric, then A is Hamiltonian. If B and C are skew symmetric,
then χA is even, although A is not necessarily Hamiltonian. (Proof: For the second
result replace J2n by

[
0 In
In 0

]
.)

Fact 4.9.23. Let A ∈ Rn×n, R ∈ Rn×n, and B ∈ Rn×m, and define A ∈
R

2n×2n by

A
�=
[
A BBT

R −AT

]
.

Then, for all s /∈ spec(A),

χA(s) = (−1)nχA(s)χA(−s)det
[
I +BT

(−sI −AT
)−1
R(sI −A)−1B

]
.

Now, assume that R is symmetric. Then, A is Hamiltonian, and χA is even. If,
in addition, R is positive semidefinite, then (−1)nχA has a spectral factorization.
(Proof: Using (2.8.10) and (2.8.14), it follows that, for all ±s �∈ spec(A),

χA(s) = det(sI −A)det
[
sI +AT −R(sI −A)−1BBT

]
= (−1)nχA(s)χA(−s)det

[
I −BT

(
sI +AT

)−1
R(sI −A)−1B

]
.

To prove the second statement, note that, for all ω ∈ R such that jω �∈ spec(A), it
follows that

χA(jω) = (−1)nχA(jω)χA(jω)det
[
I +BT(jωI −A)−∗R(jωI −A)−1B

]
.

Thus, (−1)nχA(jω) ≥ 0. By continuity, (−1)nχA(jω) ≥ 0 for all ω ∈ R. Now,
Proposition 4.1.1 implies that (−1)nχA has a spectral factorization.) (Remark: Not
all Hamiltonian matrices A ∈ R2n×2n have the property that (−1)nχA has a spec-

tral factorization. Consider
[

0 0 1 0
0 0 0 1−1 0 0 0
0 −3 0 0

]
, whose spectrum is {j,−j,√3j,−√3j}.)

(Remark: This result is closely related to Proposition 12.17.8.) (Remark: See Fact
3.19.6.)
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Fact 4.9.24. Let A ∈ Fn×n. Then, μA = χA if and only if there exists a
unique monic polynomial p ∈ F[s] of degree n and such that p(A) = 0. (Proof: To
prove necessity, note that if p̂ �= p is monic, of degree n, and satisfies p̂(A) = 0, then
p− p̂ is nonzero, has degree less than n, and satisfies (p− p̂)(A) = 0. Conversely, if
μA �= χA, then μA + χA is monic, has degree n, and satisfies (μA + χA)(A).)

4.10 Facts on the Spectrum

Fact 4.10.1. Let A ∈ F3×3, assume that A is symmetric, let λ1, λ2, λ3 ∈ R

denote the eigenvalues of A, where λ1 ≥ λ2 ≥ λ3, and define

p = 1
6 tr [A− 1

3 (trA)I]2

and
q = 1

2 det
[
A− 1

3 (trA)I
]
.

Then, the following statements hold:

i) 0 ≤ |q| ≤ p3/2.

ii) p = 0 if and only if λ1 = λ2 = λ3 = 1
3 trA.

iii) p > 0 if and only if

λ1 = 1
3 trA+ 2

√
p cosφ,

λ2 = 1
3 trA+

√
3p sinφ−√p cosφ,

λ3 = 1
3 trA−

√
3p sinφ−√p cosφ,

where φ ∈ [0, π/3] is given by

φ = 1
3 cos−1 q

p3/2
.

iv) φ = 0 if and only if q = p3/2 > 0. In this case,

λ1 = 1
3 trA+ 2

√
p,

λ2 = λ3 = 1
3 trA−√p.

v) φ = π/6 if and only if p > 0 and q = 0. In this case, sinφ = 1/2, cosφ =√
3/2, and

λ1 = 1
3 trA+

√
3p,

λ2 = 1
3 trA,

λ3 = 1
3 trA−

√
3p.

vi) φ = π/3 if and only if q = −p3/2 < 0. In this case, sinφ =
√

3/2, cosφ =
1/2, and

λ1 = λ2 = 1
3 trA+

√
p,

λ3 = 1
3 trA− 2

√
p.

(Proof: See [1203].) (Remark: This result is based on Cardano’s trigonometric
solution for the roots of a cubic polynomial. See [234, 1203].) (Remark: The
inequality q2 ≤ p3 follows from Fact 1.10.13.)
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Fact 4.10.2. Let a, b, c, d, ω ∈ R, and define the skew-symmetric matrix A ∈
R4×4 given by

A
�=

⎡
⎢⎢⎣

0 ω a b
−ω 0 c d
−a −c 0 ω
−b −d −ω 0

⎤
⎥⎥⎦.

Then,
χA(s) = s4 + (2ω2 + a2 + b2 + c2 + d2)s2 +

[
ω2 − (ad− bc)]2

and
detA =

[
ω2 − (ad− bc)]2.

Hence, A is singular if and only if bc ≤ ad and ω =
√
ad− bc. Furthermore, A has

a repeated eigenvalue if and only if either i) A is singular or ii) a = −d and b = c.
In case i), A has the repeated eigenvalue 0, while, in case ii), A has the repeated
eigenvalues j

√
ω2 + a2 + b2 and −j√ω2 + a2 + b2. Finally, cases i) and ii) cannot

occur simultaneously. (Remark: See Fact 4.9.20, Fact 3.7.33, Fact 11.11.15, and
Fact 11.11.17.)

Fact 4.10.3. Define A,B ∈ Rn×n by

A
�=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 −2

1 −2

1
. . .
. . . −2

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and

B �=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 −2

1 −2

1
. . .
. . . −2

α 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

where α �= −1/2n−1. Then,
spec(A) = {1}

and
detB = 0.

Fact 4.10.4. Let A ∈ Fn×n. Then,

|spabs(A)| ≤ sprad(A).

Fact 4.10.5. Let A ∈ Fn×n, assume that A is nonsingular, and assume that
sprad(I −A) < 1. Then,

A−1 =
∞∑
k=0

(I −A)k.
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Fact 4.10.6. Let A ∈ Fn×n and B ∈ Fm×m. If trAk = trBk for all k ∈
{1, . . . ,max{m,n}}, then A and B have the same nonzero eigenvalues with the
same algebraic multiplicity. Now, assume that n = m. Then, trAk = trBk for
all k ∈ {1, . . . , n} if and only if mspec(A) = mspec(B). (Proof: Use Newton’s
identities. See Fact 4.8.2.) (Remark: This result yields Proposition 4.4.10 since
tr (AB)k = tr (BA)k for all k ≥ 1 and for all nonsquare matrices A andB.) (Remark:
Setting B = 0n×n yields necessity in Fact 2.12.14.)

Fact 4.10.7. Let A ∈ Fn×n, and let mspec(A) = {λ1, . . . , λn}ms. Then,

mspec
(
AA
)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

{
detA
λ1

, . . . ,
detA
λn

}
ms

, rankA = n,

{
n∑
i=1

detA[i;i], 0, . . . , 0

}
ms

, rankA = n−1,

{0}, rankA ≤ n− 2.

(Remark: If rankA = n− 1 and λn = 0, then it follows from (4.4.19) that
n∑
i=1

detA[i;i] = λ1 · · ·λn−1.)

(Remark: See Fact 2.16.8, Fact 4.9.8, and Fact 5.11.36.)

Fact 4.10.8. Let A ∈ Fn×n, and let p ∈ F[s]. Then, μA divides p if and only
if spec(A) ⊆ roots(p) and, for all λ ∈ spec(A), indA(λ) ≤ multp(λ).

Fact 4.10.9. Let A ∈ Fn×n, let mspec(A) = {λ1, . . . , λn}ms, and let p ∈ F[s].
Then, the following statements hold:

i) mspec[p(A)] = {p(λ1), . . . , p(λn)}ms.

ii) roots(p) ∩ spec(A) = ∅ if and only if p(A) is nonsingular.

iii) μA divides p if and only if p(A) = 0.

Fact 4.10.10. Let A ∈ Fn×n, B ∈ Fn×m, and C ∈ Fm×m, and let p ∈ F[s].
Then,

p

([
A B
0 C

])
=
[
p(A) B̂

0 p(C)

]
,

where B̂ ∈ Fn×m.

Fact 4.10.11. Let A1 ∈ Fn×n, A12 ∈ Fn×m, and A2 ∈ Fm×m, and define
A ∈ F(n+m)×(n+m) by

A
�=
[
A1 A12

0 A2

]
.

Then,
χA = χA1χA2 .

Furthermore,

χA1(A) =
[

0 B1

0 χA1(A2)

]
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and
χA2(A) =

[
χA2(A1) B2

0 0

]
,

where B1, B2 ∈ F
n×m. Therefore,

R[χA2(A)] ⊆ R

([
In
0

])
⊆ N[χA1(A)]

and
χA2(A1)B1 +B2χA1(A2) = 0.

Hence,
χA(A) = χA1(A)χA2(A) = χA2(A)χA1(A) = 0.

Fact 4.10.12. Let A1 ∈ Fn×n, A12 ∈ Fn×m, and A2 ∈ Fm×m, assume that
spec(A1) and spec(A2) are disjoint, and define A ∈ F(n+m)×(n+m) by

A
�=
[
A1 A12

0 A2

]
.

Furthermore, let μ1, μ2 ∈ F[s] be such that

μA = μ1μ2,

roots(μ1) = spec(A1),
roots(μ2) = spec(A2).

Then,

μ1(A) =
[

0 B1

0 μ1(A2)

]
and

μ2(A) =
[
μ2(A1) B2

0 0

]
,

where B1, B2 ∈ Fn×m. Therefore,

R[μ2(A)] ⊆ R

([
In
0

])
⊆ N[μ1(A)]

and
μ2(A1)B1 +B2μ1(A2) = 0.

Hence,
μA(A) = μ1(A)μ2(A) = μ2(A)μ1(A) = 0.

Fact 4.10.13. Let A1, A2, A3, A4, B1, B2 ∈ Fn×n, and define A ∈ F4n×4n by

A
�=

⎡
⎢⎢⎣
A1 B1 0 0
0 A2 0 0
0 0 A3 0
0 0 B2 A4

⎤
⎥⎥⎦.

Then,

mspec(A) =
4⋃
i=1

mspec(Ai).
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Fact 4.10.14. Let A ∈ Fn×m and B ∈ Fm×n, and assume that m < n. Then,

mspec(In +AB) = mspec(Im +BA) ∪ {1, . . . , 1}ms.

Fact 4.10.15. Let a, b ∈ F, and define the symmetric, Toeplitz matrix A ∈
Fn×n by

A
�=

⎡
⎢⎢⎢⎢⎢⎣

a b b · · · b
b a b · · · b
b b a · · · b
...

...
...

. . .
...

b b b · · · a

⎤
⎥⎥⎥⎥⎥⎦.

Then,
mspec(A) = {a+ (n−1)b, a− b, . . . , a− b}ms,

A1n = [a+ (n−1)b]1n,

and
A2 + a1A+ a0I = 0,

where a1
�= −2a+ (2 − n)b and a0

�= a2 + (n− 2)ab+ (1− n)b2. Finally,

mspec(aIn + b1n×n) = {a+ nb, a, . . . , a}ms.

(Remark: See Fact 2.13.13 and Fact 8.9.34.) (Remark: For the remaining eigen-
vectors of A, see [1184, pp. 149, 317].)

Fact 4.10.16. Let A ∈ Fn×n. Then,

spec(A) ⊂
n⋃
i=1

⎧⎪⎨
⎪⎩s ∈ C: |s−A(i,i)| ≤

n∑
j=1
j �=i

|A(i,j)|

⎫⎪⎬
⎪⎭.

(Remark: This result is the Gershgorin circle theorem. See [268, 1370] for a proof
and related results.) (Remark: This result yields Corollary 9.4.5 for ‖ · ‖col and
‖ · ‖row.)

Fact 4.10.17. Let A ∈ Fn×n, and assume that, for all i = 1, . . . , n,
n∑

j=1
j �=i

|A(i,j)| < |A(i,i)|.

Then, A is nonsingular. (Proof: Apply the Gershgorin circle theorem.) (Remark:
This result is the diagonal dominance theorem, and A is diagonally dominant. See
[1174] for a history of this result.) (Remark: For related results, see Fact 4.10.19
and [456, 1020, 1107].)

Fact 4.10.18. Let A ∈ Fn×n, assume that, for all i = 1, . . . , n, A(i,i) �= 0, and
assume that

αi
�=

∑n
j=1,j �=i |A(i,j)|
|A(i,i)| < 1.
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Then,

|A(1,1)|
n∏
i=2

(|A(i,i)| − li + Li) ≤ |detA|,

where

li
�=

i−1∑
j=1

αj |A(i,j)|, Li
�=
∣∣∣∣A(i,1)

A(1,1)

∣∣∣∣
n∑

j=i+1

|A(i,j)|.

(Proof: See [256].) (Remark: Note that, for all i = 1, . . . , n, li =
∑i−1
j=1 αj |A(i,j)| ≤∑n

j=1,j �=i αj |A(i,j)| ≤
∑n

j=1,j �=i |A(i,j)| = αi|A(i,i)| < |A(i,i)|. Hence, the lower
bound for |detA| is positive.)

Fact 4.10.19. Let A ∈ Fn×n, and, for all i = 1, . . . , n, define

ri
�=

n∑
j=1
j �=i

|A(i,j)|, ci
�=

n∑
j=1
j �=i

|A(j,i)|.

Furthermore, assume that at least one of the following conditions is satisfied:

i) For all distinct i, j = 1, . . . , n, ricj < |A(i,i)A(j,j)|.
ii) A is irreducible, for all i = 1, . . . , n it follows that ri ≤ |A(i,i)|, and there

exists i ∈ {1, . . . , n} such that ri < |A(i,i)|.
iii) There exist positive integers k1, . . . , kn such that

∑n
i=1(1 + ki)−1 ≤ 1 and

such that, for all i = 1, . . . , n, kimaxj=1,...,n,j �=i |A(i,j)| < |A(i,i)|.
iv) There exists α ∈ [0, 1] such that, for all i = 1, . . . , n, rαi c

1−α
i < |A(i,i)|.

Then, A is nonsingular. (Proof: See [101].) (Remark: All three conditions yield
stronger results than Fact 4.10.17.)

Fact 4.10.20. Let A ∈ Rn×n, assume that A is symmetric, and, for i =
1, . . . , n, define

αi
�=

n∑
j=1
j �=i

|A(i,j)|.

Then,

spec(A) ⊂
n⋃
i=1

[A(i,i) − αi, A(i,i) + αi].

Furthermore, for i = 1, . . . , n, define

βi
�= max{0, max

j=1,n
j �=i

A(i,j)}

and
γi

�= min{0, min
j=1,n

j �=i

A(i,j)}.

Then,

spec(A) ⊂
n⋃
i=1

⎡
⎣ n∑
j=1

A(i,j) − nβi,
n∑
j=1

A(i,j) − nγi
⎤
⎦.
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(Proof: The first statement is the specialization of the Gershgorin circle theorem
to real, symmetric matrices. See Fact 4.10.16. The second result is given in [137].)

Fact 4.10.21. Let A ∈ Fn×n. Then,

spec(A)⊂
n⋃

i,j=1
i�=j

⎧⎪⎨
⎪⎩s ∈ C: |s−A(i,i)||s−A(j,j)| ≤

n∑
k=1
k �=i

|A(i,k)|
n∑
k=1
k �=j

|A(j,k)|

⎫⎪⎬
⎪⎭.

(Remark: The inclusion region is the ovals of Cassini. The result is due to Brauer.
See [709, p. 380].)

Fact 4.10.22. Let A ∈ F
n×n, and let λn denote the eigenvalue of A of smallest

absolute value. Then,
|λn| ≤ max

i=1,...,n
|trAi|1/i.

Furthermore,
sprad(A) ≤ max

i=1,...,2n−1
|trAi|1/i

and
sprad(A) ≤ 5

n max
i=1,...,n

|trAi|1/i.

(Remark: These results are Turan’s inequalities. See [1010, p. 657].)

Fact 4.10.23. Let A ∈ Fn×n, and, for j = 1, . . . , n, define bj
�=
∑n

i=1 |A(i,j)|.
Then, n∑

j=1

|A(j,j)|/bj ≤ rankA.

(Proof: See [1098, p. 67].) (Remark: Interpret 0/0 as 0.) (Remark: See Fact
4.10.17.)

Fact 4.10.24. Let A1, . . . , Ar ∈ Fn×n, assume that A1, . . . , Ar are normal,
and let A ∈ co {A1, . . . , Ar}. Then,

spec(A)⊆ co
⋃

i=1,...,r

spec(Ai).

(Proof: See [1399].) (Remark: See Fact 8.14.7.)

Fact 4.10.25. Let A,B ∈ Rn×n. Then,

mspec
([

A B
B A

])
= mspec(A+B) ∪mspec(A−B).

(Proof: See [1184, p. 93].) (Remark: See Fact 2.14.26.)

Fact 4.10.26. Let A,B ∈ Rn×n. Then,

mspec
([

A B
−B A

])
= mspec(A+ jB) ∪mspec(A− jB).
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Now, assume that A is symmetric and B is skew symmetric. Then,
[
A B
BT A

]
is

symmetric, A+ jB is Hermitian, and

mspec
([

A B
BT A

])
= mspec(A+ jB) ∪mspec(A+ jB).

(Remark: See Fact 2.19.3 and Fact 8.15.6.)

Fact 4.10.27. Let A ∈ Fn×n, B ∈ Fm×m, and C ∈ Fn×m, assume that A and
B are Hermitian, and define A0

�= [A 0
0 B ] and A

�=
[
A C
C∗ B

]
. Furthermore, define

η
�= min

i=1,...,n
j=1,...,m

|λi(A)− λj(B)|.

Then, for all i = 1, . . . , n+m,

|λi(A)− λi(A0)| ≤ 2σ2
max(C)

η +
√
η2 + 4σmax(C)

.

(Proof: See [200, pp. 142–146] or [893].)

Fact 4.10.28. Let A ∈ Rn×n, let b, c ∈ Rn, define p ∈ R[s] by p(s) �= cT(sI −
A)Ab, assume that p and det(sI−A) are coprime, define Aα

�= A+αbcT for all α ∈
[0,∞), and let λ: [0,∞)→ C be a continuous function such that λ(α) ∈ spec(Aα)
for all α ∈ [0,∞). Then, either limα→∞ |λ(α)| = ∞ or limα→∞ λ(α) ∈ roots(p).
(Remark: This result is a consequence of root locus analysis from classical control
theory, which determines asymptotic pole locations under high-gain feedback.)

Fact 4.10.29. Let A ∈ Fn×n, where n ≥ 2, and assume that there exist
α ∈ [0,∞) and B ∈ Fn×n such that A = αI −B and sprad(B) ≤ α. Then,

spec(A) ⊂ {0} ∪ORHP.

If, in addition, sprad(B) < α, then

spec(A) ⊂ ORHP,

and thus A is nonsingular. (Proof: Let λ ∈ spec(A). Then, there exists μ ∈ spec(B)
such that λ = α−μ. Hence, Reλ = α−Reμ. Since Reμ ≤ |Reμ| ≤ |μ| ≤ sprad(B),
it follows that Reλ ≥ α−|Reμ| ≥ α−|μ| ≥ α−sprad(B) ≥ 0. Hence, Reλ ≥ 0.Now,
suppose that Reλ = 0. Then, since α−λ = μ ∈ spec(B), it follows that α2 + |λ|2 ≤
[sprad(B)]2 ≤ α2. Hence, λ = 0. By a similar argument, if sprad(B) < α, then
Reλ > 0.) (Remark: Converses of these statements hold when B is nonnegative.
See Fact 4.11.6.)

4.11 Facts on Graphs and Nonnegative Matrices

Fact 4.11.1. Let G = ({x1, . . . , xn},R) be a graph without self-loops, as-
sume that G is antisymmetric, let A ∈ Rn×n denote the adjacency matrix of G,
let Lin ∈ Rn×n and Lout ∈ Rn×n denote the inbound and outbound Laplacians of
G, respectively, and let Asym, Dsym, and Lsym denote the adjacency, degree, and
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Laplacian matrices, respectively, of sym(G). Then,

Dsym = Din +Dout,

Asym = A+AT,

and

Lsym = Lin + LT
out = LT

in + Lout = Dsym −Asym.

Fact 4.11.2. Let G = ({x1, . . . , xn},R) be a graph, and let A ∈ Rn×n be the
adjacency matrix of G. Then, the following statements are equivalent:

i) G is connected.

ii) G has no directed cuts.

iii) A is irreducible.

Furthermore, the following statements are equivalent:

iv) G is not connected.

v) G has a directed cut.

vi) A is reducible.

Finally, suppose that A is reducible and there exist k ≥ 1 and a permutation matrix
S ∈ R

n×n such that SAST =
[

B C
0k×(n−k) D

]
, where B ∈ F(n−k)×(n−k), C ∈ F(n−k)×k,

and D ∈ Fk×k. Then, ({xi1 , . . . , xin−k
}, {xin−k+1 , . . . , xin}) is a directed cut, where[

i1 · · · in
]T = S

[
1 · · · n

]T
. (Proof: See [709, p. 362].)

Fact 4.11.3. Let G = (X,R) be a graph, where X = {x1, . . . , xn}, and let A
be the adjacency matrix of G. Then, the following statements hold:

i) The number of distinct walks from xi to xj of length k ≥ 1 is (Ak)(j,i).

ii) Let k be an integer such that 1 ≤ k ≤ n− 1. Then, for distinct xi, xj ∈ X,
the number of distinct walks from xi to xj whose length is less than or
equal to k is [(I +A)k](j,i).

Fact 4.11.4. Let A ∈ Fn×n, and consider G(A) = (X,R), where X = {x1, . . . ,
xn}. Then, the following statements are equivalent:

i) G(A) is connected.

ii) There exists k ≥ 1 such that (I + |A|)k−1 is positive.

iii) (I + |A|)n−1 is positive.

(Proof: See [709, pp. 358, 359].)

Fact 4.11.5. Let A ∈ Rn×n, where n ≥ 2, and assume that A is nonnegative.
Then, the following statements hold:

i) sprad(A) is an eigenvalue of A.

ii) There exists a nonzero nonnegative vector x ∈ Rn such that Ax =
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sprad(A)x.

Furthermore, the following statements are equivalent:

iii) A is irreducible.

iv) (I +A)n−1 is positive.

v) G(A) is connected.

vi) A has exactly one nonnegative eigenvector whose components sum to 1,
and this eigenvector is positive.

If A is irreducible, then the following statements hold:

vii) sprad(A) > 0.

viii) sprad(A) is a simple eigenvalue of A.

ix) There exists a positive vector x ∈ Rn such that Ax = sprad(A)x.

x) A has exactly one positive eigenvector whose components sum to 1.

xi) Assume that {λ1, . . . , λk}ms = {λ ∈ mspec(A): |λ| = sprad(A)}ms. Then,
λ1, . . . , λk are distinct, and

{λ1, . . . , λk} = {e2πji/ksprad(A): i = 1, . . . , k}.
Furthermore,

mspec(A) = e2πj/kmspec(A).

xii) If at least one diagonal entry of A is positive, then sprad(A) is the only
eigenvalue of A whose absolute value is sprad(A).

xiii) If A has at least m positive diagonal entries, then A2n−m−1 is positive.

In addition, the following statements are equivalent:

xiv) There exists k ≥ 1 such that Ak is positive.

xv) A is irreducible and |λ| < sprad(A) for all λ ∈ spec(A)\{sprad(A)}.
xvi) An

2−2n+2 is positive.

xvii) G(A) is aperiodic.

A is primitive if xiv)–xviii) are satisfied. (Example: [ 0 1
1 0 ] is irreducible but not

primitive.) If A is primitive, then the following statements hold:

xviii) For all k ∈ P, Ak is primitive.

xix) If k ∈ P and Ak is positive, then, for all l ≥ k, Al is positive.

xx) There exists a positive integer k ≤ (n−1)nn such that Ak is positive.

xxi) If x, y ∈ Rn are positive and satisfy Ax = sprad(A)x and ATy = sprad(A)y,
then

lim
k→∞

([sprad(A)]−1A)k =
1
xTy

xyT.

xxii) If x0 ∈ Rn is nonzero and nonnegative and x, y ∈ Rn are positive and
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satisfy Ax = sprad(A)x and ATy = sprad(A)y, then

lim
k→∞

Akx0 − [sprad(A)]kyTx0x

‖Akx0‖2 = 0.

xxiii) sprad(A) = limk→∞(tr Ak)1/k.

(Remark: For an arbitrary nonzero and nonnegative initial condition, the state
xk = Akx0 of the difference equation xk+1 = Axk approaches a distribution given
by the eigenvector associated with the positive eigenvalue of maximum absolute
value. In demography, this eigenvector is interpreted as the stable age distribution.
See [805, pp. 47, 63].) (Proof: See [16, pp. 45–49], [133, p. 17], [181, pp. 26–
28, 32, 55], [481], and [709, pp. 507–518]. For xxiii), see [1193] and [1369, p.
49].) (Remark: This result is the Perron-Frobenius theorem.) (Remark: See Fact
11.18.20.) (Remark: Statement xvi) is due to Wielandt. See [1098, p. 157].)
(Remark: Statement xvii) is given in [1148, p. 9-3].) (Remark: See Fact 6.6.20.)
(Example: Let x and y be positive numbers such that x+ y < 1, and define

A
�=

⎡
⎣ x y 1− x− y

1− x− y x y
y 1− x− y x

⎤
⎦.

Then, A13×1 = AT13×1 = 13×1, and thus limk→∞ Ak = 1
313×3. See [238, p. 213].)

Fact 4.11.6. Let A ∈ Rn×n, where n ≥ 2, and assume that A is a Z-matrix.
Then, the following statements are equivalent:

i) There exist α ∈ (0,∞) and B ∈ Rn×n such that A = αI −B, B is nonneg-
ative, and sprad(B) ≤ α.

ii) spec(A) ⊂ ORHP ∪ {0}.
iii) spec(A) ⊂ CRHP.

iv) If λ ∈ spec(A) is real, then λ ≥ 0.

v) Every principal subdeterminant of A is nonnegative.

vi) For every diagonal, positive-definite matrixD ∈ Rn×n, it follows that A+D
is nonsingular.

(Remark: A is an M-matrix if A is a Z-matrix and i)–v) hold. Example: A =[
0 −1
0 0

]
= I − [ 1 1

0 1 ]). In addition, the following statements are equivalent:

vii) There exist α ∈ (0,∞) and B ∈ Rn×n such that A = αI −B, B is nonneg-
ative, and sprad(B) < α.

viii) spec(A) ⊂ ORHP.

(Proof: The result i) =⇒ ii) follows from Fact 4.10.29, while ii) =⇒ iii) is imme-
diate. To prove iii) =⇒ i), let α ∈ (0,∞) be sufficiently large that B �= αI − A is
nonnegative. Hence, for every μ ∈ spec(B), it follows that λ �= α − μ ∈ spec(A).
Since Reλ ≥ 0, it follows that every μ ∈ spec(B) satisfies Reμ ≤ α. Since B is
nonnegative, it follows from i) of Fact 4.11.5 that sprad(B) is an eigenvalue of B.
Hence, setting μ = sprad(B) implies that sprad(B) ≤ α. Conditions iv) and v) are
proved in [182, pp. 149, 150]. Finally, the argument used to prove that i) =⇒ ii)



276 CHAPTER 4

shows in addition that vii) =⇒ viii).) (Remark: A is a nonsingular M-matrix if vii)
and viii) hold. See Fact 11.19.5.) (Remark: See Fact 11.19.3.)

Fact 4.11.7. Let A ∈ Rn×n, where n ≥ 2. If A is a Z-matrix, then every
principal submatrix of A is also a Z-matrix. Furthermore, if A is an M-matrix,
then every principal submatrix of A is also an M-matrix. (Proof: See [711, p.
114].)

Fact 4.11.8. Let A ∈ Rn×n, where n ≥ 2, and assume that A is a nonsingular
M-matrix, B is a Z-matrix, and A ≤≤ B. Then, the following statements hold:

i) tr(A−1AT) ≤ n.
ii) tr(A−1AT) = n if and only if A is symmetric.

iii) B is a nonsingular M-matrix.

iv) 0 ≤ B−1 ≤ A−1.

v) 0 < detA ≤ detB.

(Proof: See [711, pp. 117, 370].)

Fact 4.11.9. Let A ∈ Rn×n, where n ≥ 2, assume that A is a Z-matrix, and
define

τ(A) �= min{Reλ : λ ∈ spec(A)}.
Then, the following statements hold:

i) τ(A) ∈ spec(A).

ii) mini=1,...,n

∑n
j=1 A(i,j) ≤ τ(A).

Now, assume that A is an M-matrix. Then, the following statements hold:

iii) If A is nonsingular, then τ(A) = 1/sprad(A−1).

iv) [τ(A)]n ≤ detA.

v) If B ∈ Rn×n, B is an M-matrix, and B ≤≤ A, then τ(B) ≤ τ(A).

(Proof: See [711, pp. 128–131].) (Remark: τ(A) is the minimum eigenvalue of A.)
(Remark: See Fact 7.6.15.)

Fact 4.11.10. Let A ∈ Rn×n, where n ≥ 2, and assume that A is an M-matrix.
Then, the following statements hold:

i) There exists a nonzero nonnegative vector x ∈ Rn such that Ax is nonneg-
ative.

ii) If A is irreducible, then there exists a positive vector x ∈ Rn such that Ax
is nonnegative.

Now, assume that A is singular. Then, the following statements hold:

iii) rankA = n− 1.

iv) There exists a positive vector x ∈ Rn such that Ax = 0.
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v) A is group invertible.

vi) Every principal submatrix of A of order less than n and greater than 1 is
a nonsingular M-matrix.

vii) If x ∈ Rn and Ax is nonnegative, then Ax = 0.

(Proof: To prove the first statement, it follows from Fact 4.11.6 that there ex-
ist α ∈ (0,∞) and B ∈ Rn×n such that A = αI − B, B is nonnegative, and
sprad(B) ≤ α. Consequently, it follows from ii) of Fact 4.11.5 that there exists
a nonzero nonnegative vector x ∈ Rn such that Bx = sprad(B)x. Therefore,
Ax = [α − sprad(B)]x is nonnegative. Statements iii)–vii) are given in [182, p.
156].)

Fact 4.11.11. Let G = (X,R) be a symmetric graph, where X = {x1, . . . , xn},
and let Lin ∈ Rn×n denote the Laplacian of G. Then, the following statements hold:

i) spec(L) ⊂ {0} ∪ORHP.

ii) 0 ∈ spec(L), and an associated eigenvector is 1n×1.

iii) 0 is a semisimple eigenvalue of L.

iv) 0 is a simple eigenvalue of L if and only if G has a spanning subgraph that
is a tree.

v) L is positive semidefinite.

vi) 0 ∈ spec(L) ⊂ {0} ∪ [0,∞).

vii) If G is connected, then 0 is a simple eigenvalue of L.

viii) G is connected if and only if λn−1(L) is positive.

(Proof: For the last statement, see [993, p. 147].) (Remark: See Fact 11.19.7.)
(Problem: Extend these results to graphs that are not symmetric.)

Fact 4.11.12. Let A �= [ 1 1
1 0 ]. Then, χA(s) = s2− s− 1 and spec(A) = {α, β},

where α �= 1
2(1 +

√
5) ≈ 1.61803 and β �= 1

2(1−
√

5) ≈ −0.61803 satisfy

α− 1 = 1/α, β − 1 = 1/β.

Furthermore, [ α1 ] is an eigenvector of A associated with α. Now, for k ≥ 0, consider
the difference equation

xk+1 = Axk.

Then, for all k ≥ 0,
xk = Akx0

and
xk+2(1) = xk+1(1) + xk(1).

Furthermore, if x0 is positive, then

lim
k→∞

xk(1)

xk(2)
= α.
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In particular, if x0
�= [ 1

1 ], then, for all k ≥ 0,

xk =
[
Fk+2

Fk+1

]
,

where F1
�= F2

�= 1 and, for all k ≥ 1, Fk is given by

Fk =
1√
5
(αk − βk)

and satisfies
Fk+2 = Fk+1 + Fk.

Furthermore,
1

1− x− x2
= F1x+ F2x

2 + · · ·
and

Ak =
[
Fk+1 Fk
Fk Fk−1

]
.

On the other hand, if x0
�= [ 3

1 ], then, for all k ≥ 0,

xk =
[
Lk+2

Lk+1

]
,

where L1
�= 1, L2

�= 3, and, for all k ≥ 1, Lk is given by

Lk = αk + βk

and satisfies
Lk+2 = Lk+1 + Lk.

Moreover,
lim
k→∞

Fk+1

Fk
=
Lk+1

Lk
= α.

In addition,

α =

√
1 +

√
1 +
√

1 +
√

1 + · · ·.

Finally, for all k ≥ 1,

Fk+1 = det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 j 0 · · · 0 0
j 1 j · · · 0 0

0 j 1
. . . 0 0

...
...

. . . . . . . . . 0

0 0 0
. . . 1 j

0 0 0 · · · j 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 · · · 0 0
−1 1 1 · · · 0 0

0 −1 1
. . . 0 0

...
...

. . . . . . . . . 0

0 0 0
. . . 1 1

0 0 0 · · · −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where both matrices are of size k × k. (Proof: Use the last statement of Fact
4.11.5.) (Remark: Fk is the kth Fibonacci number, Lk is the kth Lucas number,
and α is the golden ratio. See [841, pp. 6–8, 239–241, 362, 363] and Fact 12.23.4.
The expressions for Fk and Lk involving powers of α and β are Binet’s formulas.
See [177, p. 125]. The iterated square root identity is given in [477, p. 24]. The
determinant identities are given in [279] and [1119, p. 515].) (Remark: 1/(1−x−x2)
is a generating function for the Fibonacci numbers. See [1407].)
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Fact 4.11.13. Consider the nonnegative companion matrix A ∈ Rn×n defined
by

A
�=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0 0

0 0 1
. . . 0 0

0 0 0
. . . 0 0

...
...

...
. . . . . .

...

0 0 0 · · · 0 1

1/n 1/n 1/n · · · 1/n 1/n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Then, A is irreducible, 1 is a simple eigenvalue of A with associated eigenvector
1n×1, and |λ| < 1 for all λ ∈ spec(A)\{1}. Furthermore, if x ∈ Rn, then

lim
k→∞

Akx =

[
2

n(n+ 1)

n∑
i=1

ix(i−1)

]
1n×1.

(Proof: See [629, pp. 82, 83, 263–266].) (Remark: The result follows from Fact
4.11.5.)

Fact 4.11.14. Let A ∈ R
n×m and b ∈ R

m. Then, the following statements are
equivalent:

i) If x ∈ Rm and Ax ≥≥ 0, then bTx ≥ 0.

ii) There exists a vector y ∈ Rn such that y ≥≥ 0 and ATy = b.

Equivalently, exactly one of the following two statements is satisfied:

iii) There exists a vector x ∈ Rm such that Ax ≥≥ 0 and bTx < 0.

iv) There exists a vector y ∈ Rn such that y ≥≥ 0 and ATy = b.

(Proof: See [157, p. 47] or [239, p. 24].) (Remark: This result is the Farkas
theorem.)

Fact 4.11.15. Let A ∈ Rn×m. Then, the following statements are equivalent:

i) There exists a vector x ∈ Rm such that Ax >> 0.

ii) If y ∈ Rn is nonzero and y ≥≥ 0, then ATy �= 0.

Equivalently, exactly one of the following two statements is satisfied:

iii) There exists a vector x ∈ Rm such that Ax >> 0.

iv) There exists a nonzero vector y ∈ R
n such that y ≥≥ 0 and ATy = 0.

(Proof: See [157, p. 47] or [239, p. 23].) (Remark: This result is Gordan’s theorem.)

Fact 4.11.16. Let A ∈ Cn×n, and define |A| ∈ Rn×n by |A|(i,j) �= |A(i,j)| for
all i, j = 1, . . . , n. Then,

sprad(A) ≤ sprad(|A|).
(Proof: See [998, p. 619].)
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Fact 4.11.17. Let A ∈ Rn×n, assume that A is nonnegative, and let α ∈ [0, 1].
Then,

sprad(A) ≤ sprad
[
αA+ (1 − α)AT

]
.

(Proof: See [130].)

Fact 4.11.18. Let A,B ∈ Rn×n, where 0 ≤≤ A ≤≤ B. Then,

sprad(A) ≤ sprad(B).

In particular, B0 ∈ Rm×m is a principal submatrix of B, then

sprad(B0) ≤ sprad(B).

If, in addition, A �= B and A+B is irreducible, then

sprad(A) < sprad(B).

Hence, if sprad(A) = sprad(B) and A +B is irreducible, then A = B. (Proof: See
[170, p. 27]. See also [447, pp. 500, 501].)

Fact 4.11.19. Let A,B ∈ Rn×n, assume that B is diagonal, assume that A
and A+B are nonnegative, and let α ∈ [0, 1]. Then,

sprad[αA+ (1 − α)B] ≤ α sprad(A) + (1− α) sprad(A+B).

(Proof: See [1148, p. 9-5].)

Fact 4.11.20. Let A ∈ Rn×n, assume that A >> 0, and let λ ∈
spec(A)\{sprad(A)}. Then,

|λ| ≤ Amax −Amin

Amax +Amin
sprad(A),

where
Amax

�= max
{
A(i,j): i, j = 1, . . . , n

}
and

Amin
�= min

{
A(i,j): i, j = 1, . . . , n

}
.

(Remark: This result is Hopf’s theorem.) (Remark: The equality case is discussed
in [688].)

Fact 4.11.21. Let A ∈ Rn×n, assume that A is nonnegative and irreducible,
and let x, y ∈ Rn, where x > 0 and y > 0 satisfy Ax = sprad(A)x and ATy =
sprad(A)y. Then,

lim
l→∞

1
l

l∑
k=1

[
1

sprad(A)
A

]k
= xyT.

If, in addition, A is primitive, then

lim
k→∞

[
1

sprad(A)
A

]k
= xyT.

(Proof: See [447, p. 503] and [709, p. 516].)
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Fact 4.11.22. Let A ∈ Rn×n, assume that A is nonnegative, and let k and m
be positive integers. Then, [

trAk
]m≤ nm−1trAkm.

(Proof: See [860].) (Remark: This result is the JLL inequality.)

4.12 Notes

Much of the development in this chapter is based on [1081]. Additional dis-
cussions of the Smith and Smith-McMillan forms are given in [787] and [1498].
The proofs of Lemma 4.4.8 and Leverrier’s algorithm Proposition 4.4.9 are based
on [1129, pp. 432, 433], where it is called the Souriau-Frame algorithm. Alterna-
tive proofs of Leverrier’s algorithm are given in [143, 720]. The proof of Theorem
4.6.1 is based on [709]. Polynomial-based approaches to linear algebra are given in
[276, 508], while polynomial matrices and rational transfer functions are studied in
[559, 1368].

The term normal rank is often used to refer to what we call the rank of a
rational transfer function.





Chapter Five

Matrix Decompositions

In this chapter we present several matrix decompositions, namely, the Smith,
multicompanion, elementary multicompanion, hypercompanion, Jordan, Schur, and
singular value decompositions.

5.1 Smith Form

Our first decomposition involves rectangular matrices subject to a biequiva-
lence transformation. This result is the specialization of the Smith decomposition
given by Theorem 4.3.2 to constant matrices.

Theorem 5.1.1. LetA ∈ Fn×m and r �= rankA. Then, there exist nonsingular
matrices S1 ∈ Fn×n and S2 ∈ Fm×m such that

A = S1

[
Ir 0r×(m−r)

0(n−r)×r 0(n−r)×(m−r)

]
S2. (5.1.1)

Corollary 5.1.2. Let A,B ∈ Fn×m. Then, A and B are biequivalent if and
only if A and B have the same Smith form.

Proposition 5.1.3. Let A,B ∈ Fn×m. Then, the following statements hold:

i) A and B are left equivalent if and only if N(A) = N(B).

ii) A and B are right equivalent if and only R(A) = R(B).

iii) A and B are biequivalent if and only if rankA = rankB.

Proof. The proof of necessity is immediate in i)–iii). Sufficiency in iii) follows
from Corollary 5.1.2. For sufficiency in i) and ii), see [1129, pp. 179–181].

5.2 Multicompanion Form

For the monic polynomial p(s) = sn + βn−1s
n−1 + · · · + β1s + β0 ∈ F[s] of

degree n ≥ 1, the companion matrix C(p) ∈ Fn×n associated with p is defined to
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be

C(p) �=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0 0

0 0 1
. . . 0 0

0 0 0
. . . 0 0

...
...

...
. . . . . .

...

0 0 0 · · · 0 1

−β0 −β1 −β2 · · · −βn−2 −βn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.2.1)

If n = 1, then p(s) = s + β0 and C(p) = −β0. Furthermore, if n = 0 and p = 1,
then we define C(p) �= 00×0. Note that, if n ≥ 1, then trC(p) = −βn−1 and
detC(p) = (−1)nβ0 = (−1)np(0).

It is easy to see that the characteristic polynomial of the companion matrix
C(p) is p. For example, let n = 3 so that

C(p) =

⎡
⎣ 0 1 0

0 0 1
−β0 −β1 −β2

⎤
⎦, (5.2.2)

and thus

sI − C(p) =

⎡
⎣ s −1 0

0 s −1
β0 β1 s+ β2

⎤
⎦. (5.2.3)

Adding s times the second column and s2 times the third column to the first column
leaves the determinant of sI − C(p) unchanged and yields⎡

⎣ 0 −1 0
0 s −1
p(s) β1 s+ β2

⎤
⎦. (5.2.4)

Hence, χC(p) = p. If n = 0 and p = 1, then we define χC(p)
�= χ00×0 = 1. The

following result shows that companion matrices have the same characteristic and
minimal polynomials.

Proposition 5.2.1. Let p ∈ F[s] be a monic polynomial having degree n.
Then, there exist unimodular matrices S1, S2 ∈ Fn×n[s] such that

sI − C(p) = S1(s)

[
In−1 0(n−1)×1

01×(n−1) p(s)

]
S2(s). (5.2.5)

Furthermore,
χC(p) = μC(p) = p. (5.2.6)

Proof. Since χC(p) = p, it follows that rank[sI − C(p)] = n. Next, since
det
(
[sI − C(p)][n;1]

)
= (−1)n−1, it follows that Δn−1 = 1, where Δn−1 is the greatest

common divisor (which is monic by definition) of all (n−1)×(n−1) subdeterminants
of sI − C(p). Furthermore, since Δi−1 divides Δi for all i = 2, . . . , n−1, it follows
that Δ1 = · · · = Δn−2 = 1. Consequently, p1 = · · · = pn−1 = 1. Since, by



MATRIX DECOMPOSITIONS 285

Proposition 4.6.2, χC(p) =
∏n
i=1 pi = pn and μC(p) = pn, it follows that χC(p) =

μC(p) = p.

Next, we consider block-diagonal matrices all of whose diagonally located
blocks are companion matrices.

Lemma 5.2.2. Let p1, . . . , pn ∈ F[s] be monic polynomials such that pi
divides pi+1 for all i = 1, . . . , n − 1 and n =

∑n
i=1 deg pi. Furthermore, de-

fine C �= diag[C(p1), . . . , C(pn)] ∈ F
n×n. Then, there exist unimodular matrices

S1, S2 ∈ Fn×n[s] such that

sI − C = S1(s)

⎡
⎢⎣
p1(s) 0

. . .
0 pn(s)

⎤
⎥⎦S2(s). (5.2.7)

Proof. Letting ki = deg pi, Proposition 5.2.1 implies that the Smith form
of sIki − C(pi) is 00×0 if ki = 0 and diag(Iki−1, pi) if ki ≥ 1. Note that p1 =
· · · = pn0 = 1, where n0

�=
∑n

i=1 max{0, ki − 1}. By combining these Smith forms
and rearranging diagonal entries, it follows that there exist unimodular matrices
S1, S2 ∈ Fn×n[s] such that

sI − C =

⎡
⎢⎣
sIk1 − C(p1)

. . .
sIkn − C(pn)

⎤
⎥⎦

= S1(s)

⎡
⎢⎣
p1(s) 0

. . .
0 pn(s)

⎤
⎥⎦S2(s).

Since pi divides pi+1 for all i = 1, . . . , n−1, it follows that this diagonal matrix is
the Smith form of sI − C.

The following result uses Lemma 5.2.2 to construct a canonical form, known
as the multicompanion form, for square matrices under a similarity transformation.

Theorem 5.2.3. Let A ∈ Fn×n, and let p1, . . . , pn ∈ F[s] denote the similarity
invariants of A, where pi divides pi+1 for all i = 1, . . . , n−1. Then, there exists a
nonsingular matrix S ∈ Fn×n such that

A = S

⎡
⎢⎣
C(p1) 0

. . .
0 C(pn)

⎤
⎥⎦S−1. (5.2.8)

Proof. Lemma 5.2.2 implies that the n × n matrix sI − C, where C
�=

diag[C(p1), . . . , C(pn)], has the Smith form diag(p1, . . . , pn). Now, since sI − A
has the same similarity invariants as C, it follows from Theorem 4.3.10 that A and
C are similar.
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Corollary 5.2.4. Let A ∈ Fn×n. Then, μA = χA if and only if A is similar to
C(χA).

Proof. Suppose that μA = χA. Then, it follows from Proposition 4.6.2 that
pi = 1 for all i = 1, . . . , n − 1 and pn = χA is the only nonconstant similarity
invariant of A. Thus, C(pi) = 00×0 for all i = 1, . . . , n − 1, and it follows from
Theorem 5.2.3 that A is similar to C(χA). The converse follows from (5.2.6), xi) of
Proposition 4.4.5, and Proposition 4.6.3.

Corollary 5.2.5. Let A ∈ Fn×n be a companion matrix. Then, A = C(χA)
and μA = χA.

Note that, if A = In, then the similarity invariants of A are pi(s) = s−1 for
all i = 1, . . . , n. Thus, C(pi) = 1 for all i = 1, . . . , n, as expected.

Corollary 5.2.6. Let A,B ∈ Fn×n. Then, the following statements are equiv-
alent:

i) A and B are similar.

ii) A and B have the same similarity invariants.

iii) A and B have the same multicompanion form.

The multicompanion form given by Theorem 5.2.3 provides a canonical form
for A in terms of a block-diagonal matrix of companion matrices. As shown below,
however, the multicompanion form is only one such decomposition. The goal of the
remainder of this section is to obtain an additional canonical form by applying a
similarity transformation to the multicompanion form.

To begin, note that, if Ai is similar to Bi for all i = 1, . . . , r, then
diag(A1, . . . , Ar) is similar to diag(B1, . . . , Br). Therefore, it follows from Corollary
5.2.6 that, if sI−Ai and sI−Bi have the same Smith form for all i = 1, . . . , r, then
sI − diag(A1, . . . , Ar) and sI − diag(B1, . . . , Br) have the same Smith form. The
following lemma is needed.

Lemma 5.2.7. Let A = diag(A1, A2), where Ai ∈ F
ni×ni for i = 1, 2. Then,

μA is the least common multiple of μA1 and μA2 . In particular, if μA1 and μA2 are
coprime, then μA = μA1μA2 .

Proof. Since 0 = μA(A) = diag[μA(A1), μA(A2)], it follows that μA(A1) = 0
and μA(A2) = 0. Therefore, Theorem 4.6.1 implies that μA1 and μA2 both divide
μA. Consequently, the least common multiple q of μA1 and μA2 also divides μA.
Since q(A1) = 0 and q(A2) = 0, it follows that q(A) = 0. Therefore, μA divides q.
Hence, q = μA. If, in addition, μA1 and μA2 are coprime, then μA = μA1μA2 .

Proposition 5.2.8. Let p ∈ F[s] be a monic polynomial of positive degree
n, and let p = p1 · · · pr, where p1, . . . , pr ∈ F[s] are monic and pairwise coprime
polynomials. Then, the matrices C(p) and diag[C(p1), . . . , C(pr)] are similar.
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Proof. Let p̂2 = p2 · · · pr and Ĉ
�= diag[C(p1), C(p̂2)]. Since p1 and p̂2 are

coprime, it follows from Lemma 5.2.7 that μĈ = μC(p1)μC(p̂2). Furthermore, χĈ =
χC(p1)χC(p̂2) = μĈ . Hence, Corollary 5.2.4 implies that Ĉ is similar to C(χĈ).
However, χĈ = p1 · · · pr = p, so that Ĉ is similar to C(p). If r > 2, then the
same argument can be used to decompose C(p̂2) to show that C(p) is similar to
diag[C(p1), . . . , C(pr)].

Proposition 5.2.8 can be used to decompose every companion block of a mul-
ticompanion form into smaller companion matrices. This procedure can be car-
ried out for every companion block whose characteristic polynomial has coprime
factors. For example, suppose that A ∈ R10×10 has the similarity invariants
pi(s) = 1 for all i = 1, . . . , 7, p8(s) = (s + 1)2, p9(s) = (s + 1)2(s + 2), and
p10(s) = (s + 1)2(s + 2)(s2 + 3), so that, by Theorem 5.2.3, the multicompan-
ion form of A is diag[C(p8), C(p9), C(p10)], where C(p8) ∈ R2×2, C(p9) ∈ R3×3,
and C(p10) ∈ R5×5. According to Proposition 5.2.8, the companion matrices
C(p9) and C(p10) can be further decomposed. For example, C(p9) is similar to
diag[C(p9,1), C(p9,2)], where p9,1(s) = (s + 1)2 and p9,2(s) = s + 2 are coprime.
Furthermore, C(p10) is similar to four different diagonal matrices, three of which
have two companion blocks while the fourth has three companion blocks. Since
p8(s) = (s + 1)2 does not have nonconstant coprime factors, however, it follows
that the companion matrix C(p8) cannot be decomposed into smaller companion
matrices.

The largest number of companion blocks achievable by similarity transfor-
mation is obtained by factoring every similarity invariant into elementary divi-
sors, which are powers of irreducible polynomials that are nonconstant, monic,
and pairwise coprime. In the above example, this factorization is given by p9(s) =
p9,1(s)p9,2(s), where p9,1(s) = (s + 1)2 and p9,2(s) = s + 2, and by p10 =
p10,1p10,2p10,3, where p10,1(s) = (s + 1)2, p10,2(s) = s + 2, and p10,3(s) = s2 + 3.
The elementary divisors of A are thus (s + 1)2, (s + 1)2, s + 2, (s + 1)2, s + 2,
and s2 + 3, which yields six companion blocks. Viewing A ∈ Cn×n we can further
factor p10,3(s) = (s+j

√
3)(s−j√3), which yields a total of seven companion blocks.

From Proposition 5.2.8 and Theorem 5.2.3 we obtain the elementary multicompan-
ion form, which provides another canonical form for A.

Theorem 5.2.9. Let A ∈ F
n×n, and let ql11 , . . . , q

lh
h ∈ F[s] be the elementary

divisors of A, where l1, . . . , lh ∈ P. Then, there exists a nonsingular matrix S ∈ Fn×n

such that

A = S

⎡
⎢⎢⎢⎣
C
(
ql11

)
0

. . .

0 C
(
qlhh

)
⎤
⎥⎥⎥⎦S−1. (5.2.9)

5.3 Hypercompanion Form and Jordan Form

In this section we present an alternative form of the companion blocks of the
elementary multicompanion form (5.2.9). To do this we define the hypercompanion
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matrix Hl(q) associated with the elementary divisor ql ∈ F[s], where l ∈ P, as
follows. For q(s) = s−λ ∈ C[s], define the l × l Toeplitz hypercompanion matrix

Hl(q)
�= λIl +Nl =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ 1 0
0 λ 1 0

. . .
. . .
. . . 1 0

0 λ 1
0 λ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (5.3.1)

while, for q(s) = s2− β1s− β0 ∈ R[s], define the 2l× 2l real, tridiagonal hypercom-
panion matrix

Hl(q)
�=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1
β0 β1 1 0

0 0 1
β0 β1 1

. . . . . . . . .

0
. . . 0 1

β0 β1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.3.2)

The following result shows that the hypercompanion matrix Hl(q) is similar
to the companion matrix C

(
ql
)

associated with the elementary divisor ql of Hl(q).

Lemma 5.3.1. Let l ∈ P, and let q(s) = s−λ ∈ C[s] or q(s) = s2−β1s−β0 ∈
R[s]. Then, ql is the only elementary divisor of Hl(q), and Hl(q) is similar to C

(
ql
)
.

Proof. Let k denote the order of Hl(q). Then, χHl(q) = ql and
det
(
[sI −Hl(q)][k;1]

)
= (−1)k−1. Hence, as in the proof of Proposition 5.2.1, it

follows that χHl(q) = μHl(q). Corollary 5.2.4 now implies that Hl(q) is similar to
C
(
ql
)
.

Proposition 5.2.8 and Lemma 5.3.1 yield the following canonical form, which
is known as the hypercompanion form.

Theorem 5.3.2. Let A ∈ Fn×n, and let ql11 , . . . , q
lh
h ∈ F[s] be the elementary

divisors of A, where l1, . . . , lh ∈ P. Then, there exists a nonsingular matrix S ∈ Fn×n

such that

A = S

⎡
⎢⎣

Hl1(q1) 0
. . .

0 Hlh(qh)

⎤
⎥⎦S−1. (5.3.3)

Next, consider Theorem 5.3.2 with F = C. In this case, every elementary
divisor qlii is of the form (s−λi)li, where λi ∈ C. Furthermore, S ∈ Cn×n, and the
hypercompanion form (5.3.3) is a block-diagonal matrix whose diagonally located
blocks are of the form (5.3.1). The hypercompanion form (5.3.3) with every diago-
nally located block of the form (5.3.1) is the Jordan form, as given by the following
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result.

Theorem 5.3.3. Let A ∈ Cn×n, and let ql11 , . . . , q
lh
h ∈ C[s] be the elementary

divisors of A, where l1, . . . , lh ∈ P and each of the polynomials q1, . . . , qh ∈ C[s] has
degree 1. Then, there exists a nonsingular matrix S ∈ Cn×n such that

A = S

⎡
⎢⎣

Hl1(q1) 0
. . .

0 Hlh(qh)

⎤
⎥⎦S−1. (5.3.4)

Corollary 5.3.4. Let p ∈ F[s], let λ1, . . . , λr denote the distinct roots of p,
and, for i = 1, . . . , r, let li

�= mp(λi) and pi(s)
�= s − λi. Then, C(p) is similar to

diag[Hl1(p1), . . . ,Hlr(pr)].

To illustrate the structure of the Jordan form, let li = 3 and qi(s) = s − λi,
where λi ∈ C. Then, Hli(qi) is the 3× 3 matrix

Hli(qi) = λiI3 +N3 =

⎡
⎣ λi 1 0

0 λi 1
0 0 λi

⎤
⎦ (5.3.5)

so that mspec[Hli(qi)] = {λi, λi, λi}ms. If Hli(qi) is the only diagonally located
block of the Jordan form associated with the eigenvalue λi, then the algebraic
multiplicity of λi is equal to 3, while its geometric multiplicity is equal to 1.

Now, consider Theorem 5.3.2 with F = R. In this case, every elementary
divisor qlii is either of the form (s − λi)li or of the form (s2 − β1is − β0i)li, where
β0i, β1i ∈ R. Furthermore, S ∈ R

n×n, and the hypercompanion form (5.3.3) is a
block-diagonal matrix whose diagonally located blocks are real matrices of the form
(5.3.1) or (5.3.2). In this case, (5.3.3) is the real hypercompanion form.

Applying an additional real similarity transformation to each diagonally lo-
cated block of the real hypercompanion form yields the real Jordan form. To do
this, define the real Jordan matrix Jl(q) for l ∈ P as follows. For q(s) = s−λ ∈ F[s]
define Jl(q)

�= Hl(q), while, if q(s) = s2 − β1s − β0 ∈ F[s] is irreducible with a
nonreal root λ = ν + jω, then define the 2l× 2l upper Hessenberg matrix

Jl(q)
�=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ν ω 1 0

−ω ν 0 1
. . . 0

ν ω 1
. . .

−ω ν 0
. . .

. . .
. . . . . . 1 0

. . . 0 1

0 ν ω

−ω ν

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.3.6)



290 CHAPTER 5

Theorem 5.3.5. Let A ∈ Rn×n, and let ql11 , . . . , q
lh
h ∈ R[s], where l1, . . . , lh ∈ P

are the elementary divisors of A. Then, there exists a nonsingular matrix S ∈ Rn×n

such that

A = S

⎡
⎢⎣

Jl1(q1) 0
. . .

0 Jlh(qh)

⎤
⎥⎦S−1. (5.3.7)

Proof. For the irreducible quadratic q(s) = s2−β1s−β0 ∈ R[s] we show that
Jl(q) and Hl(q) are similar. Writing q(s) = (s−λ)(s− λ), it follows from Theorem
5.3.3 that Hl(q) ∈ R2l×2l is similar to diag(λIl + Nl, λIl + Nl). Next, by using a
permutation similarity transformation, it follows that Hl(q) is similar to⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ 0 1 0

0 λ 0 1 0 0

0 λ 0 1 0
0 λ 0 1

. . . . . . . . .
. . . . . . 1 0

. . . 0 1
0 λ 0

0 λ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Finally, applying the similarity transformation S
�= diag(Ŝ, . . . , Ŝ) to the above

matrix, where Ŝ �=
[−j −j

1 −1

]
and Ŝ−1 = 1

2

[ j 1
j −1

]
, yields Jl(q).

Example 5.3.6. Let A,B ∈ R4×4 and C ∈ C4×4 be given by

A =

⎡
⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1
−16 0 −8 0

⎤
⎥⎥⎦,

B =

⎡
⎢⎢⎣

0 1 0 0
−4 0 1 0
0 0 0 1
0 0 −4 0

⎤
⎥⎥⎦,

and

C =

⎡
⎢⎢⎣

2j 1 0 0
0 2j 0 0
0 0 −2j 1
0 0 0 −2j

⎤
⎥⎥⎦.

Then, A is in companion form, B is in real hypercompanion form, and C is in
Jordan form. Furthermore, A, B, and C are similar.
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Example 5.3.7. Let A,B ∈ R6×6 and C ∈ C6×6 be given by

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
−27 54 −63 44 −21 6

⎤
⎥⎥⎥⎥⎥⎥⎦
,

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0
−3 2 1 0 0 0
0 0 0 1 0 0
0 0 −3 2 1 0
0 0 0 0 0 1
0 0 0 0 −3 2

⎤
⎥⎥⎥⎥⎥⎥⎦
,

and

C =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 + j
√

2 1 0 0 0 0
0 1 + j

√
2 1 0 0 0

0 0 1 + j
√

2 0 0 0
0 0 0 1− j√2 1 0
0 0 0 0 1− j√2 1
0 0 0 0 0 1− j√2

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Then, A is in companion form, B is in real hypercompanion form, and C is in
Jordan form. Furthermore, A, B, and C are similar.

The next result shows that every matrix is similar to its transpose by means
of a symmetric similarity transformation. This result, which improves Corollary
4.3.11, is due to Frobenius.

Corollary 5.3.8. Let A ∈ Fn×n. Then, there exists a symmetric, nonsingular
matrix S ∈ Fn×n such that A = SATS−1.

Proof. It follows from Theorem 5.3.3 that there exists a nonsingular matrix
Ŝ ∈ Cn×n such that A = ŜBŜ−1, where B = diag(B1, . . . , Br) is the Jordan form
of A, and Bi ∈ Cni×ni for all i = 1, . . . , r. Now, define the symmetric nonsingular
matrix S �= ŜĨŜT, where Ĩ �= diag

(
În1 , . . . , Înr

)
is symmetric and involutory. Fur-

thermore, note that ÎniBiÎni = BT
i for all i = 1, . . . , r so that ĨBĨ = BT, and thus

ĨBTĨ = B. Hence, it follows that

SATS−1 = SŜ−TBTŜTS−1 = ŜĨŜTŜ−TBTŜTŜ−TĨŜ−1

= ŜĨBTĨŜ−1 = ŜBŜ−1 = A.

If A is real, then a similar argument based on the real Jordan form shows that S
can be chosen to be real.

An extension of Corollary 5.3.8 to the case in which A is normal is given by
Fact 5.9.9.
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Corollary 5.3.9. LetA ∈ Fn×n. Then, there exist symmetric matrices S1, S2 ∈
Fn×n such that S2 is nonsingular and A = S1S2.

Proof. From Corollary 5.3.8 it follows that there exists a symmetric, nonsin-
gular matrix S ∈ Fn×n such that A = SATS−1. Now, let S1

�= SAT and S2
�= S−1.

Note that S2 is symmetric and nonsingular. Furthermore, ST
1 = AS = SAT = S1,

which shows that S1 is symmetric.

Note that Corollary 5.3.8 follows from Corollary 5.3.9. If A = S1S2, where
S1, S2 are symmetric and S2 is nonsingular, then A = S−1

2 S2S1S2 = S−1
2 A

TS2.

5.4 Schur Decomposition

The Schur decomposition uses a unitary similarity transformation to trans-
form an arbitrary square matrix into an upper triangular matrix.

Theorem 5.4.1. Let A ∈ Cn×n. Then, there exist a unitary matrix S ∈ Cn×n

and an upper triangular matrix B ∈ C
n×n such that

A = SBS∗. (5.4.1)

Proof. Let λ1 ∈ C be an eigenvalue of A with associated eigenvector x ∈ Cn

chosen such that x∗x = 1. Furthermore, let S1
�=
[
x Ŝ1

] ∈ Cn×n be unitary,
where Ŝ1 ∈ Cn×(n−1) satisfies Ŝ∗

1S1 = In−1 and x∗Ŝ1 = 01×(n−1). Then, S1e1 = x,
and

col1(S−1
1 AS1) = S−1

1 Ax = λ1S
−1
1 x = λ1e1.

Consequently,

A = S1

[
λ1 C1

0(n−1)×1 A1

]
S−1

1 ,

where C1 ∈ C
1×(n−1) and A1 ∈ C

(n−1)×(n−1). Next, let S20 ∈ C
(n−1)×(n−1) be a

unitary matrix such that

A1 = S20

[
λ2 C2

0(n−2)×1 A2

]
S−1

20 ,

where C2 ∈ C
1×(n−2) and A2 ∈ C

(n−2)×(n−2). Hence,

A = S1S2

⎡
⎣ λ1 C11 C12

0 λ2 C2

0 0 A2

⎤
⎦S−1

2 S1,

where C1 =
[
C11 C12

]
, C11 ∈ C, and S2

�=
[

1 0
0 S20

]
is unitary. Proceeding in a

similar manner yields (5.4.1) with S �= S1S2 · · ·Sn−1, where S1, . . . , Sn−1 ∈ Cn×n

are unitary.

It can be seen that the diagonal entries of B are the eigenvalues of A.
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The real Schur decomposition uses a real orthogonal similarity transformation
to transform a real matrix into an upper Hessenberg matrix with real 1 × 1 and
2× 2 diagonally located blocks.

Corollary 5.4.2. Let A ∈ Rn×n, and let mspec(A) = {λ1, . . . , λr}ms ∪ {ν1 +
jω1, ν1− jω1, . . . , νl + jωl, νl− jωl}ms, where λ1, . . . , λr ∈ R and, for all i = 1, . . . , l,
νi, ωi ∈ R and ωi �= 0. Then, there exists an orthogonal matrix S ∈ Rn×n such that

A = SBST, (5.4.2)

where B is upper block triangular and the diagonally located blocks B1, . . . , Br ∈ R

and B̂1, . . . , B̂l ∈ R2×2 of B satisfy Bi
�= [λi] for all i = 1, . . . , r and spec(B̂i) =

{νi + jωi, νi − jωi} for all i = 1, . . . , l.

Proof. The proof is analogous to the proof of Theorem 5.3.5. See also [709,
p. 82].

Corollary 5.4.3. Let A ∈ Rn×n, and assume that the spectrum of A is real.
Then, there exist an orthogonal matrix S ∈ Rn×n and an upper triangular matrix
B ∈ Rn×n such that

A = SBST. (5.4.3)

The Schur decomposition reveals the structure of range-Hermitian matrices
and thus, as a special case, normal matrices.

Corollary 5.4.4. Let A ∈ Fn×n, and define r �= rankA. Then, A is range
Hermitian if and only if there exist a unitary matrix S ∈ Fn×n and a nonsingular
matrix B ∈ Fr×r such that

A = S

[
B 0
0 0

]
S∗. (5.4.4)

In addition, A is normal if and only if there exist a unitary matrix S ∈ Cn×n and
a diagonal matrix B ∈ Cr×r such that (5.4.4) is satisfied.

Proof. Suppose that A is range Hermitian, and let A = SB̂S∗, where B̂ is
upper triangular and S ∈ Fn×n is unitary. Assume that A is singular, and choose
S such that B̂(j,j) = B̂(j+1,j+1) = · · · = B̂(n,n) = 0 and such that all other diagonal
entries of B̂ are nonzero. Thus, rown(B̂) = 0, which implies that en �∈ R(B̂). Since
A is range Hermitian, it follows that R(B̂) = R(B̂∗) so that en �∈ R(B̂∗). Thus,
coln(B̂) = rown(B̂∗) = 0. If, in addition, B̂(n−1,n−1) = 0, then coln−1(B̂) = 0.
Repeating this argument shows that B̂ has the form [B 0

0 0 ], where B ∈ F
r×r is

nonsingular.

Now, suppose that A is normal, and let A = SB̂S∗, where B̂ ∈ Cn×n is
upper triangular and S ∈ Cn×n is unitary. Since A is normal, it follows that
AA∗ = A∗A, which implies that B̂B̂∗ = B̂∗B̂. Since B̂ is upper triangular, it fol-
lows that (B̂∗B̂)(1,1) = B̂(1,1)B̂(1,1), whereas (B̂B̂∗)(1,1) = row1(B̂)[row1(B̂)]∗ =∑n

i=1 B̂(1,i)B̂(1,i). Since (B̂∗B̂)(1,1) = (B̂B̂∗)(1,1), it follows that B̂(1,i) = 0 for all
i = 2, . . . , n. Continuing in a similar fashion row by row, it follows that B̂ is
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diagonal.

Corollary 5.4.5. Let A ∈ Fn×n, assume that A is Hermitian, and define
r

�= rankA. Then, there exist a unitary matrix S ∈ Fn×n and a diagonal matrix
B ∈ R

r×r such that (5.4.4) is satisfied. In addition, A is positive semidefinite if
and only if the diagonal entries of B are positive, and A is positive definite if and
only if A is positive semidefinite and r = n.

Proof. Corollary 5.4.4 and x), xi) of Proposition 4.4.5 imply that there exist
a unitary matrix S ∈ Fn×n and a diagonal matrix B ∈ Rr×r such that (5.4.4) is
satisfied. If A is positive semidefinite, then x∗Ax ≥ 0 for all x ∈ Fn. Choosing
x = Sei, it follows that B(i,i) = eTiS

∗ASei ≥ 0 for all i = 1, . . . , r. If A is positive
definite, then r = n and B(i,i) > 0 for all i = 1, . . . , n.

Proposition 5.4.6. Let A ∈ Fn×n be Hermitian. Then, there exists a non-
singular matrix S ∈ F

n×n such that

A = S

⎡
⎢⎣
−Iν−(A) 0 0

0 0ν0(A)×ν0(A) 0
0 0 Iν+(A)

⎤
⎥⎦S∗. (5.4.5)

Furthermore,
rankA = ν+(A) + ν−(A) (5.4.6)

and
def A = ν0(A). (5.4.7)

Proof. Since A is Hermitian, it follows from Corollary 5.4.5 that there exist
a unitary matrix Ŝ ∈ F

n×n and a diagonal matrix B ∈ R
n×n such that A = ŜBŜ∗.

Choose S to order the diagonal entries of B such that B = diag(B1, 0,−B2),
where the diagonal matrices B1, B2 are both positive definite. Now, define B̂ �=
diag(B1, I, B2). Then, B = B̂1/2DB̂1/2, where D

�= diag(Iν−(A), 0ν0(A)×ν0(A),

−Iν+(A)). Hence, A = ŜB̂1/2DB̂1/2Ŝ∗.

The following result is Sylvester’s law of inertia.

Corollary 5.4.7. Let A,B ∈ Fn×n be Hermitian. Then, A and B are congru-
ent if and only if InA = InB.

Proposition 4.5.4 shows that two or more eigenvectors associated with distinct
eigenvalues of a normal matrix are mutually orthogonal. Thus, a normal matrix
has at least as many mutually orthogonal eigenvectors as it has distinct eigenvalues.
The next result, which is an immediate consequence of Corollary 5.4.4, shows that
every n×n normal matrix actually has n mutually orthogonal eigenvectors. In fact,
the converse is also true.

Corollary 5.4.8. Let A ∈ Cn×n. Then, A is normal if and only if A has n
mutually orthogonal eigenvectors.

The following result concerns the real normal form.
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Corollary 5.4.9. Let A ∈ Rn×n be range symmetric. Then, there exist an
orthogonal matrix S ∈ Rn×n and a nonsingular matrixB ∈ Rr×r, where r �= rankA,
such that

A = S

[
B 0
0 0

]
ST. (5.4.8)

In addition, assume that A is normal, and let mspec(A) = {λ1, . . . , λr}ms ∪ {ν1 +
jω1, ν1− jω1, . . . , νl + jωl, νl− jωl}ms, where λ1, . . . , λr ∈ R and, for all i = 1, . . . , l,
νi, ωi ∈ R and ωi �= 0. Then, there exists an orthogonal matrix S ∈ Rn×n such that

A = SBST, (5.4.9)

where B �= diag(B1, . . . , Br, B̂1, . . . , B̂l), Bi
�= [λi] for all i = 1, . . . , r, and B̂i

�=
[ νi ωi−ωi νi

] for all i = 1, . . . , l.

5.5 Eigenstructure Properties

Definition 5.5.1. Let A ∈ Fn×n, and let λ ∈ C. Then, the index of λ with
respect to A, denoted by indA(λ), is the smallest nonnegative integer k such that

R
[
(λI −A)k

]
= R
[
(λI −A)k+1

]
. (5.5.1)

That is,

indA(λ) = ind(λI −A). (5.5.2)

Note that λ �∈ spec(A) if and only if indA(λ) = 0. Hence, 0 �∈ spec(A) if and
only if indA = indA(0) = 0.

Proposition 5.5.2. Let A ∈ Fn×n, and let λ ∈ C. Then, indA(λ) is the
smallest nonnegative integer k such that

rank
[
(λI −A)k

]
= rank

[
(λI −A)k+1

]
. (5.5.3)

Furthermore, indA is the smallest nonnegative integer k such that

rank
(
Ak
)

= rank
(
Ak+1

)
. (5.5.4)

Proof. Corollary 2.4.2 implies that R
[
(λI −A)k

] ⊆ R
[
(λI −A)k+1

]
. Now,

Lemma 2.3.4 implies that R
[
(λI −A)k

]
= R

[
(λI −A)k+1

]
if and only if

rank
[
(λI −A)k

]
= rank

[
(λI −A)k+1

]
.

Proposition 5.5.3. Let A ∈ Fn×n, and let λ ∈ spec(A). Then, the following
statements hold:

i) The order of the largest Jordan block of A associated with λ is indA(λ).

ii) The number of Jordan blocks of A associated with λ is gmultA(λ).

iii) The number of linearly independent eigenvectors of A associated with λ is
gmultA(λ).

iv) indA(λ) ≤ amultA(λ).
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v) gmultA(λ) ≤ amultA(λ).

vi) indA(λ) + gmultA(λ) ≤ amultA(λ) + 1.

vii) indA(λ) + gmultA(λ) = amultA(λ) + 1 if and only if every block except
possibly one block associated with λ is of order 1.

Definition 5.5.4. Let A ∈ Fn×n, and let λ ∈ spec(A). Then, the following
terminology is defined:

i) λ is simple if amultA(λ) = 1.

ii) A is simple if every eigenvalue of A is simple.

iii) λ is cyclic (or nonderogatory) if gmultA(λ) = 1.

iv) A is cyclic (or nonderogatory) if every eigenvalue of A is cyclic.

v) λ is derogatory if gmultA(λ) > 1.

vi) A is derogatory if A has at least one derogatory eigenvalue.

vii) λ is semisimple if gmultA(λ) = amultA(λ).

viii) A is semisimple if every eigenvalue of A is semisimple.

ix) λ is defective if gmultA(λ) < amultA(λ).

x) A is defective if A has at least one defective eigenvalue.

xi) A is diagonalizable over C if A is semisimple.

xii) A ∈ Rn×n is diagonalizable over R if A is semisimple and every eigenvalue
of A is real.

Proposition 5.5.5. Let A ∈ Fn×n, and let λ ∈ spec(A). Then, λ is simple if
and only if λ is cyclic and semisimple.

Proposition 5.5.6. Let A ∈ Fn×n, and let λ ∈ spec(A). Then,

def
[
(λI −A)indA(λ)

]
= amultA(λ). (5.5.5)

Theorem 5.3.3 yields the following result, which shows that the subspaces
N
[
(λI −A)k

]
, where λ ∈ spec(A) and k = indA(λ), provide a decomposition of Fn.

Proposition 5.5.7. Let A ∈ Fn×n, let spec(A) = {λ1, . . . , λr}, and, for all
i = 1, . . . , r, let ki

�= indA(λi). Then, the following statements hold:

i) N
[
(λiI −A)ki

] ∩ N
[
(λjI −A)kj

]
= {0} for all i, j = 1, . . . , r such that

i �= j.

ii)
∑r

i=1 N
[
(λiI −A)ki

]
= F

n.

Proposition 5.5.8. Let A ∈ Fn×n, and let λ ∈ spec(A). Then, the following
statements are equivalent:

i) λ is semisimple.
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ii) def(λI −A) = def
[
(λI −A)2

]
.

iii) N(λI −A) = N
[
(λI −A)2

]
.

iv) indA(λ) = 1.

Proof. To prove that i) implies ii), suppose that λ is semisimple so that
gmultA(λ) = amultA(λ), and thus def(λI −A) = amultA(λ). Then, it follows from
Proposition 5.5.6 that def

[
(λI −A)k

]
= amultA(λ), where k �= indA(λ). Therefore,

it follows from Corollary 2.5.7 that amultA(λ) = def(λI −A) ≤ def
[
(λI −A)2

] ≤
def
[
(λI −A)k

]
= amultA(λ), which implies that def(λI −A) = def

[
(λI −A)2

]
.

To prove that ii) implies iii), note that it follows from Corollary 2.5.7 that
N(λI −A) ⊆ N

[
(λI −A)2

]
. Since, by ii), these subspaces have equal dimension, it

follows from Lemma 2.3.4 that these subspaces are equal. Conversely, iii) implies
ii).

Finally, iv) is equivalent to the fact that every Jordan block of A associated
with λ has order 1, which is equivalent to the fact that the geometric multiplicity
of λ is equal to the algebraic multiplicity of λ, that is, that λ is semisimple.

Corollary 5.5.9. Let A ∈ Fn×n. Then, A is group invertible if and only if
indA ≤ 1.

Proposition 5.5.10. Assume that A,B ∈ Fn×n are similar. Then, the fol-
lowing statements hold:

i) mspec(A) = mspec(B).

ii) For all λ ∈ spec(A), gmultA(λ) = gmultB(λ).

Proposition 5.5.11. Let A ∈ Fn×n. Then, A is semisimple if and only if A is
similar to a normal matrix.

The following result is an extension of Corollary 5.3.9.

Proposition 5.5.12. Let A ∈ F
n×n. Then, the following statements are equiv-

alent:

i) A is semisimple, and spec(A) ⊂ R.

ii) There exists a positive-definite matrix S ∈ Fn×n such that A = SA∗S−1.

iii) There exist a Hermitian matrix S1 ∈ F
n×n and a positive-definite matrix

S2 ∈ Fn×n such that A = S1S2.

Proof. To prove that i) implies ii), let Ŝ ∈ Fn×n be a nonsingular matrix
such that A = ŜBŜ−1, where B ∈ Rn×n is diagonal. Then, B = Ŝ−1AŜ = Ŝ∗A∗Ŝ−∗.

Hence, A = ŜBŜ−1 = Ŝ
(
Ŝ∗A∗Ŝ−∗

)
Ŝ−1 =

(
ŜŜ∗
)
A∗
(
ŜŜ∗
)−1

= SA∗S−1, where S �= ŜŜ∗

is positive definite. To show that ii) implies iii), note that A = SA∗S−1 = S1S2,
where S1

�= SA∗ and S2 = S−1. Since S∗
1 = (SA∗)∗ = AS∗ = AS = SA∗ = S1, it

follows that S1 is Hermitian. Furthermore, since S is positive definite, it follows
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that S−1, and hence S2, is also positive definite. Finally, to prove that iii) implies
i), note that A = S1S2 = S

−1/2
2

(
S

1/2
2 S1S

1/2
2

)
S

1/2
2 . Since S1/2

2 S1S
1/2
2 is Hermitian, it

follows from Corollary 5.4.5 that S1/2
2 S1S

1/2
2 is unitarily similar to a real diagonal

matrix. Consequently, A is semisimple and spec(A) ⊂ R.

If a matrix is block triangular, then the following result shows that its eigen-
values and their algebraic multiplicity are determined by the diagonally located
blocks. If, in addition, the matrix is block diagonal, then the geometric multiplici-
ties of its eigenvalues are determined by the diagonally located blocks.

Proposition 5.5.13. Let A ∈ Fn×n, assume that A is partitioned as A =⎡
⎣ A11 ··· A1k

... · · ·.. ...
Ak1 ··· Akk

⎤
⎦, where, for all i, j = 1, . . . , k, Aij ∈ Fni×nj, and let λ ∈ spec(A).

Then, the following statements hold:

i) If Aii is the only nonzero block in the ith column of blocks, then

amultAii(λ) ≤ amultA(λ). (5.5.6)

ii) If A is upper block triangular or lower block triangular, then

amultA(λ) =
r∑
i=1

amultAii(λ) (5.5.7)

and

mspec(A) =
k⋃
i=1

mspec(Aii). (5.5.8)

Proposition 5.5.14. Let A ∈ Fn×n, assume that A is partitioned as A =⎡
⎣ A11 ··· A1k

... · · ·.. ...
Ak1 ··· Akk

⎤
⎦, where, for all i, j = 1, . . . , k, Aij ∈ Fni×nj, and let λ ∈ spec(A).

Then, the following statements hold:

i) If Aii is the only nonzero block in the ith column of blocks, then

gmultAii
(λ) ≤ gmultA(λ). (5.5.9)

ii) If A is upper block triangular, then

gmultA11
(λ) ≤ gmultA(λ). (5.5.10)

iii) If A is lower block triangular, then

gmultAkk
(λ) ≤ gmultA(λ). (5.5.11)

iv) If A is block diagonal, then

gmultA(λ) =
r∑
i=1

gmultAii
(λ). (5.5.12)
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Proposition 5.5.15. Let A ∈ Fn×n, let spec(A) = {λ1, . . . , λr}, and let ki
�=

indA(λi) for all i = 1, . . . , r. Then,

μA(s) =
r∏
i=1

(s−λi)ki (5.5.13)

and

deg μA =
r∑
i=1

ki. (5.5.14)

Furthermore, the following statements are equivalent:

i) μA = χA.

ii) A is cyclic.

iii) For all λ ∈ spec(A), the Jordan form of A contains exactly one block
associated with λ.

iv) A is similar to C(χA).

Proof. Let A = SBS−1, where B = diag(B1, . . . , Bnh) denotes the Jordan
form of A given by (5.3.4). Let λi ∈ spec(A), and let Bj be a Jordan block
associated with λi. Then, the order of Bj is less than or equal to ki. Consequently,
(Bj −λiI)ki = 0.

Next, let p(s) denote the right-hand side of (5.5.13). Thus,

p(A) =
r∏
i=1

(A−λiI)ki = S

[
r∏
i=1

(B −λiI)ki

]
S−1

= Sdiag

(
r∏
i=1

(B1−λiI)ki , . . . ,

r∏
i=1

(Bnh −λiI)ki

)
S−1 = 0.

Therefore, it follows from Theorem 4.6.1 that μA divides p. Furthermore, note that,
if ki is replaced by k̂i < ki, then p(A) �= 0. Hence, p is the minimal polynomial of
A. The equivalence of i) and ii) is now immediate, while the equivalence of ii) and
iii) follows from Theorem 5.3.5. The equivalence of i) and iv) is given by Corollary
5.2.4.

Example 5.5.16. The standard nilpotent matrix Nn is in companion form,
and thus is cyclic. In fact, Nn consists of a single Jordan block, and χNn(s) =
μNn(s) = sn.

Example 5.5.17. The matrix
[

1 1−1 1

]
is normal but is neither symmetric nor

skew symmetric, while the matrix
[

0 1−1 0

]
is normal but is neither symmetric nor

semisimple with real eigenvalues.

Example 5.5.18. The matrices
[

1 0
2 −1

]
and [ 1 1

0 2 ] are diagonalizable over R

but not normal, while the matrix
[ −1 1
−2 1

]
is diagonalizable but is neither normal nor

diagonalizable over R.
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Example 5.5.19. The product of the Hermitian matrices [ 1 2
2 1 ] and

[
2 1
1 −2

]
has no real eigenvalues.

Example 5.5.20. The matrices [ 1 0
0 2 ] and

[
0 1−2 3

]
are similar, whereas [ 1 0

0 1 ]
and
[

0 1−1 2

]
have the same spectrum but are not similar.

Proposition 5.5.21. Let A ∈ F
n×n. Then, the following statements hold:

i) A is singular if and only if 0 ∈ spec(A).

ii) A is group invertible if and only if either A is nonsingular or 0 ∈ spec(A)
is semisimple.

iii) A is Hermitian if and only if A is normal and spec(A) ⊂ R.

iv) A is skew Hermitian if and only if A is normal and spec(A) ⊂ jR.
v) A is positive semidefinite if and only if A is normal and spec(A) ⊂ [0,∞).

vi) A is positive definite if and only if A is normal and spec(A) ⊂ (0,∞).

vii) A is unitary if and only if A is normal and spec(A) ⊂ {λ ∈ C: |λ| = 1}.
viii) A is shifted unitary if and only if A is normal and

spec(A) ⊂ {λ ∈ C: |λ− 1
2 | = 1

2}.
ix) A is involutory if and only if A is semisimple and spec(A) ⊆ {−1, 1}.
x) A is skew involutory if and only if A is semisimple and spec(A) ⊆ {−j, j}.
xi) A is idempotent if and only if A is semisimple and spec(A) ⊆ {0, 1}.
xii) A is skew idempotent if and only if A is semisimple and spec(A) ⊆ {0,−1}.
xiii) A is tripotent if and only if A is semisimple and spec(A) ⊆{−1, 0, 1}.
xiv) A is nilpotent if and only if spec(A) = {0}.
xv) A is unipotent if and only if spec(A) = {1}.
xvi) A is a projector if and only if A is normal and spec(A) ⊆ {0, 1}.
xvii) A is a reflector if and only if A is normal and spec(A) ⊆ {−1, 1}.
xviii) A is a skew reflector if and only if A is normal and spec(A) ⊆ {−j, j}.
xix) A is an elementary projector if and only if A is normal and mspec(A) =

{0, 1, . . . , 1}ms.

xx) A is an elementary reflector if and only if A is normal and mspec(A) =
{−1, 1, . . . , 1}ms.

If, furthermore, A ∈ F2n×2n, then the following statements hold:

xxi) If A is Hamiltonian, then mspec(A) = mspec(−A).

xxii) If A is symplectic, then mspec(A) = mspec
(
A−1
)
.

The following result is a consequence of Proposition 5.5.12 and Proposition
5.5.21.
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Corollary 5.5.22. Let A ∈ Fn×n, and assume that A is either involutory,
idempotent, skew idempotent, tripotent, a projector, or a reflector. Then, the
following statements hold:

i) There exists a positive-definite matrix S ∈ Fn×n such that A = SA∗S−1.

ii) There exist a Hermitian matrix S1 ∈ F
n×n and a positive-definite matrix

S2 ∈ Fn×n such that A = S1S2.

5.6 Singular Value Decomposition

The third matrix decomposition that we consider is the singular value de-
composition. Unlike the Jordan and Schur decompositions, the singular value de-
composition applies to matrices that are not necessarily square. Let A ∈ Fn×m,
where A �= 0, and consider the positive-semidefinite matrices AA∗ ∈ Fn×n and
A∗A ∈ Fm×m. It follows from Proposition 4.4.10 that AA∗ and A∗A have the same
nonzero eigenvalues with the same algebraic multiplicities. Since AA∗ and A∗A are
positive semidefinite, it follows that they have the same positive eigenvalues with the
same algebraic multiplicities. Furthermore, since AA∗ is Hermitian, it follows that
the number of positive eigenvalues of AA∗ (or A∗A) counting algebraic multiplicity
is equal to the rank of AA∗ (or A∗A). Since rankA = rankAA∗ = rankA∗A, it thus
follows that AA∗ and A∗A both have r positive eigenvalues, where r �= rankA.

Definition 5.6.1. Let A ∈ Fn×m. Then, the singular values of A are the
min{n,m} nonnegative numbers σ1(A), . . . , σmin{n,m}(A), where, for all i = 1, . . . ,
min{n,m},

σi(A) �= λ
1/2
i (AA∗) = λ

1/2
i (A∗A). (5.6.1)

Hence,

σ1(A) ≥ · · · ≥ σmin{n,m}(A) ≥ 0. (5.6.2)

Let A ∈ Fn×m, and define r �= rankA. If 1 ≤ r < min{n,m}, then

σ1(A) ≥ · · · ≥ σr(A) > σr+1(A) = · · · = σmin{n,m}(A) = 0, (5.6.3)

whereas, if r = min{m,n}, then

σ1(A) ≥ · · · ≥ σr(A) = σmin{n,m}(A) > 0. (5.6.4)

For convenience, define

σmax(A) �= σ1(A) (5.6.5)

and, if n = m,
σmin(A) �= σn(A). (5.6.6)

If n �= m, then σmin(A) is not defined. By convention, we define

σmax(0n×m) = σmin(0n×n) = 0, (5.6.7)

and, for all i = 1, . . . ,min{n,m},
σi(A) = σi(A∗) = σi(A) = σi

(
AT
)
. (5.6.8)
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Now, suppose that n = m. If A is Hermitian, then, for all i = 1, . . . , n,

σi(A) = |λi(A)|, (5.6.9)

while, if A is positive semidefinite, then, for all i = 1, . . . , n,

σi(A) = λi(A). (5.6.10)

Proposition 5.6.2. Let A ∈ Fn×m. If n ≤ m, then the following statements
are equivalent:

i) rankA = n.

ii) σn(A) > 0.

If m ≤ n, then the following statements are equivalent:

iii) rankA = m.

iv) σm(A) > 0.

If n = m, then the following statements are equivalent:

v) A is nonsingular.

vi) σmin(A) > 0.

Proposition 5.6.3. Let A,B ∈ Fn×n. Then, the following statements hold:

i) Assume that A and B are normal. Then, A and B are unitarily similar if
and only if mspec(A) = mspec(B).

ii) Assume that A and B are projectors. Then, A and B are unitarily similar
if and only if rankA = rankB.

iii) Assume that A and B are (projectors, reflectors). Then, A and B are
unitarily similar if and only if trA = trB.

iv) Assume that A and B are semisimple. Then, A and B are similar if and
only if mspec(A) = mspec(B).

v) Assume that A and B are (involutory, skew involutory, idempotent). Then,
A and B are similar if and only if trA = trB.

vi) Assume that A and B are idempotent. Then, A and B are similar if and
only if rankA = rankB.

vii) Assume that A and B are tripotent. Then, A and B are similar if and only
if rankA = rankB and trA = trB.

We now state the singular value decomposition.

Theorem 5.6.4. Let A ∈ Fn×m, assume that A is nonzero, let r �= rankA, and
define B �= diag[σ1(A), . . . , σr(A)]. Then, there exist unitary matrices S1 ∈ Fn×n

and S2 ∈ Fm×m such that

A = S1

[
B 0r×(m−r)

0(n−r)×r 0(n−r)×(m−r)

]
S2. (5.6.11)
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Furthermore, each column of S1 is an eigenvector of AA∗, while each column of S∗
2

is an eigenvector of A∗A.

Proof. For convenience, assume that r < min{n,m}, since otherwise the zero
matrices become empty matrices. By Corollary 5.4.5 there exists a unitary matrix
U ∈ F

n×n such that
AA∗ = U

[
B2 0
0 0

]
U∗.

Partition U =
[
U1 U2

]
, where U1 ∈ F

n×r and U2 ∈ F
n×(n−r). Since U∗U = In, it

follows that U∗
1U1 = Ir and U∗

1U =
[
Ir 0r×(n−r)

]
. Now, define V1

�= A∗U1B
−1 ∈

Fm×r, and note that

V ∗
1 V1 = B−1U∗

1AA
∗U1B

−1 = B−1U∗
1U

[
B2 0
0 0

]
U∗U1B

−1 = Ir .

Next, note that, since U∗
2U =

[
0(n−r)×r In−r

]
, it follows that

U∗
2AA

∗ =
[

0 I
][ B2 0

0 0

]
U∗ = 0.

However, since R(A) = R(AA∗), it follows that U∗
2A = 0. Finally, let V2 ∈

Fm×(m−r) be such that V �=
[
V1 V2

] ∈ Fm×m is unitary. Hence, we have

U

[
B 0
0 0

]
V ∗ =

[
U1 U2

][ B 0
0 0

][
V ∗

1

V ∗
2

]
= U1BV

∗
1 = U1BB

−1U∗
1A

= U1U
∗
1A = (U1U

∗
1 + U2U

∗
2 )A = UU∗A = A,

which yields (5.6.11) with S1 = U and S2 = V ∗.

An immediate corollary of the singular value decomposition is the polar de-
composition.

Corollary 5.6.5. Let A ∈ Fn×n. Then, there exists a positive-semidefinite
matrix M ∈ Fn×n and a unitary matrix S ∈ Fn×n such that

A = MS. (5.6.12)

Proof. It follows from the singular value decomposition that there exist uni-
tary matrices S1, S2 ∈ Fn×n and a diagonal positive-definite matrix B ∈ Fr×r,
where r �= rankA, such that A = S1[B 0

0 0 ]S2. Hence,

A = S1

[
B 0
0 0

]
S∗

1S1S2 = MS,

where M �= S1[B 0
0 0 ]S∗

1 is positive semidefinite and S �= S1S2 is unitary.

Proposition 5.6.6. Let A ∈ Fn×m, let r �= rankA, and define the Hermitian
matrix A

�=
[

0 A
A∗ 0

] ∈ F(n+m)×(n+m). Then, In A =
[
r 0 r

]T
, and the 2r

nonzero eigenvalues of A are the r positive singular values of A and their negatives.
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Proof. Since χA(s) = det
(
s2I −A∗A

)
, it follows that

mspec(A)\{0, . . . , 0}ms = {σ1(A),−σ1(A), . . . , σr(A),−σr(A)}ms. �

5.7 Pencils and the Kronecker Canonical Form

Let A,B ∈ F
n×m, and define the polynomial matrix PA,B ∈ F

n×m[s], called
a pencil, by

PA,B(s) �= sB −A.
The pencil PA,B is regular if rankPA,B = min{n,m} (see Definition 4.2.4). Other-
wise, PA,B is singular.

Let A,B ∈ Fn×m. Since PA,B ∈ Fn×m we define the generalized spectrum of
PA,B by

spec(A,B) �= Szeros(PA,B) (5.7.1)

and the generalized multispectrum of PA,B by

mspec(A,B) �= mSzeros(PA,B). (5.7.2)

Furthermore, the elements of spec(A,B) are the generalized eigenvalues of PA,B.

The structure of a pencil is illuminated by the following result known as the
Kronecker canonical form.

Theorem 5.7.1. Let A,B ∈ Cn×m. Then, there exist nonsingular matrices
S1 ∈ Cn×n and S2 ∈ Cm×m such that, for all s ∈ C,

PA,B(s) = S1diag(sIr1 −A1, sB2− Ir2 , [sIk1−Nk1 −ek1 ], . . . , [sIkp−Nkp −ekp ],

[sIl1−Nl1 −el1 ]T, . . . , [sIlq−Nlq −elq ]T, 0t×u)S2, (5.7.3)

where A1 ∈ Cr1×r1 is in Jordan form, B2 ∈ Rr2×r2 is nilpotent and in Jordan form,
k1, . . . , kp, l1, . . . , lq are positive integers, and [sIl−Nl −el] ∈ Cl×(l+1). Furthermore,

rankPA,B = r1 + r2 +
p∑
i=1

ki +
q∑
i=1

li. (5.7.4)

Proof. See [65, Chapter 2], [541, Chapter XII], [787, pp. 395–398], [866],
[872, pp. 128, 129], and [1230, Chapter VI].

In Theorem 5.7.1, note that

n = r1 + r2 +
p∑
i=1

ki +
q∑
i=1

li + q + t (5.7.5)

and

m = r1 + r2 +
p∑
i=1

ki +
q∑
i=1

li + p+ u. (5.7.6)
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Proposition 5.7.2. Let A,B ∈ Cn×m, and consider the notation of Theorem
5.7.1. Then, PA,B is regular if and only if t = u = 0 and either p = 0 or q = 0.

Let A,B ∈ Fn×m, and let λ ∈ C. Then,

rankPA,B(λ) = rank(λI −A1) + r2 +
p∑
i=1

ki +
q∑
i=1

li. (5.7.7)

Note that λ is a generalized eigenvalue of PA,B if and only if rankPA,B(λ) <
rankPA,B. Consequently, λ is a generalized eigenvalue of PA,B if and only if λ
is an eigenvalue of A1, that is,

spec(A,B) = spec(A1) (5.7.8)

and

mspec(A,B) = mspec(A1). (5.7.9)

The generalized algebraic multiplicity amultA,B(λ) of λ ∈ spec(A,B) is defined by

amultA,B(λ) �= amultA1(λ). (5.7.10)

It can be seen that, for λ ∈ spec(A,B),

gmultA1
(λ) �= rankPA,B − rankPA,B(λ).

The generalized geometric multiplicity gmultA,B(λ) of λ ∈ spec(A,B) is defined by

gmultA,B(λ) �= gmultA1
(λ). (5.7.11)

Now, assume that A,B ∈ F
n×n, that is, A and B are square, which, from

(5.7.5) and (5.7.6), is equivalent to q+t = p+u. Then, the characteristic polynomial
χA,B ∈ F[s] of (A,B) is defined by

χA,B(s) �= detPA,B(s) = det(sB −A).

Proposition 5.7.3. Let A,B ∈ Fn×n. Then, the following statements hold:

i) PA,B is singular if and only if χA,B = 0.

ii) PA,B is singular if and only if degχA,B = −∞.
iii) PA,B is regular if and only if χA,B is not the zero polynomial.

iv) PA,B is regular if and only if 0 ≤ degχA,B ≤ n.
v) If PA,B is regular, then multχA,B(0) = n− degχB,A.

vi) degχA,B = n if and only if B is nonsingular.

vii) If B is nonsingular, then χA,B = χB−1A, spec(A,B) = spec(B−1A), and
mspec(A,B) = mspec(B−1A).

viii) roots(χA,B) = spec(A,B).

ix) mroots(χA,B) = mspec(A,B).
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x) If A or B is nonsingular, then PA,B is regular.

xi) If all of the generalized eigenvalues of (A,B) are real, then PA,B is regular.

xii) If PA,B is regular, then N(A) ∩N(B) = {0}.
xiii) If PA,B is regular, then there exist nonsingular matrices S1, S2 ∈ Cn×n

such that, for all s ∈ C,

PA,B(s) = S1

(
s

[
Ir 0
0 B2

]
−
[
A1 0
0 In−r

])
S2,

where r �= degχA,B, A1 ∈ C
r×r is in Jordan form, and B2 ∈ R

(n−r)×(n−r)

is nilpotent and in Jordan form. Furthermore,

χA,B = χA1 ,

roots(χA,B) = spec(A1),

and
mroots(χA,B) = mspec(A1).

Proof. See [872, p. 128] and [1230, Chapter VI].

Statement xiii) is the Weierstrass canonical form for a square, regular pencil.

Proposition 5.7.4. Let A,B ∈ Fn×n, assume that A is positive semidefinite,
and assume that B is Hermitian. Then, the following statements hold:

i) PA,B is regular.

ii) There exists α ∈ F such that A+ αB is nonsingular.

iii) N(A) ∩N(B) = {0}.
iv) N([AB ]) = {0}.
v) There exists nonzero α ∈ F such that N(A) ∩N(B + αA) = {0}.
vi) For all nonzero α ∈ F, N(A) ∩N(B + αA) = {0}.
vii) All generalized eigenvalues of (A,B) are real.

If, in addition, B is positive semidefinite, then the following statement is equivalent
to i)–vii):

viii) There exists β > 0 such that βB < A.

Proof. The results i) =⇒ ii) and ii) =⇒ iii) are immediate. Next, Fact
2.10.10 and Fact 2.11.3 imply that iii), iv), v), and vi) are equivalent. Next,
to prove iii) =⇒ vii), let λ ∈ C be a generalized eigenvalue of (A,B). Since
λ = 0 is real, suppose λ �= 0. Since det(λB − A) = 0, let nonzero θ ∈ Cn satisfy
(λB−A)θ = 0, and thus it follows that θ∗Aθ = λθ∗Bθ. Furthermore, note that θ∗Aθ
and θ∗Bθ are real. Now, suppose θ ∈ N(A). Then, it follows from (λB − A)θ = 0
that θ ∈ N(B), which contradicts N(A) ∩N(B) = {0}. Hence, θ �∈ N(A), and thus
θ∗Aθ > 0 and, consequently, θ∗Bθ �= 0. Hence, it follows that λ = θ∗Aθ/θ∗Bθ, and
thus λ is real. Hence, all generalized eigenvalues of (A,B) are real.
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Next, to prove vii) =⇒ i), let λ ∈ C\R so that λ is not a generalized eigenvalue
of (A,B). Consequently, χA,B(s) is not the zero polynomial, and thus (A,B) is
regular.

Next, to prove i)–vii) =⇒ viii), let θ ∈ Rn be nonzero, and note that N(A)∩
N(B) = {0} implies that either Aθ �= 0 or Bθ �= 0. Hence, either θTAθ > 0 or
θTBθ > 0. Thus, θT(A+B)θ > 0, which implies A+B > 0 and hence −B < A.

Finally, to prove viii) =⇒ i)–vii), let β ∈ R be such that βB < A, so that
βθTBθ < θTAθ for all nonzero θ ∈ Rn. Next, suppose θ̂ ∈ N(A) ∩N(B) is nonzero.
Hence, Aθ̂ = 0 and Bθ̂ = 0. Consequently, θ̂TBθ̂ = 0 and θ̂TAθ̂ = 0, which
contradicts βθ̂TBθ̂ < θ̂TAθ̂. Thus, N(A) ∩N(B) = {0}.

5.8 Facts on the Inertia

Fact 5.8.1. Let A ∈ Fn×n, and assume that A is idempotent. Then,

rankA = sigA = trA

and

InA =

⎡
⎣ 0
n− trA

trA

⎤
⎦.

Fact 5.8.2. Let A ∈ F
n×n, and assume that A is involutory. Then,

rankA = n,

sigA = trA,

and

InA =

⎡
⎢⎣

1
2 (n− trA)

0
1
2 (n+ trA)

⎤
⎥⎦.

Fact 5.8.3. Let A ∈ Fn×n, and assume that A is tripotent. Then,

rankA = trA2,

sigA = trA,

and

InA =

⎡
⎢⎣

1
2

(
trA2 − trA

)
n− trA2

1
2

(
trA2 + trA

)
⎤
⎥⎦.

Fact 5.8.4. Let A ∈ Fn×n, and assume that A is either skew Hermitian, skew
involutory, or nilpotent. Then,

sigA = ν−(A) = ν+(A) = 0
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and

InA =

⎡
⎣ 0
n
0

⎤
⎦.

Fact 5.8.5. Let A ∈ Fn×n, assume that A is group invertible, and assume
that spec(A) ∩ jR ⊆ {0}. Then,

rankA = ν−(A) + ν+(A)

and
def A = ν0(A) = amultA(0).

Fact 5.8.6. Let A ∈ Fn×n, and assume that A is Hermitian. Then,

rankA = ν−(A) + ν+(A)

and

InA =

⎡
⎢⎣
ν−(A)

ν0(A)

ν+(A)

⎤
⎥⎦ =

⎡
⎢⎣

1
2 (rankA− sigA)

n− rankA
1
2 (rankA+ sigA)

⎤
⎥⎦.

Fact 5.8.7. Let A,B ∈ F
n×n, and assume that A and B are Hermitian. Then,

InA = InB if and only if rankA = rankB and sigA = sigB.

Fact 5.8.8. Let A ∈ Fn×n, assume that A is Hermitian, and let A0 be a
principal submatrix of A. Then,

ν−(A0) ≤ ν−(A)

and
ν+(A0) ≤ ν+(A).

(Proof: See [770].)

Fact 5.8.9. Let A ∈ Fn×n, and assume that A is positive semidefinite. Then,

rankA = sigA = ν+(A)

and

InA =

⎡
⎢⎣

0

def A

rankA

⎤
⎥⎦.

Fact 5.8.10. Let A ∈ Fn×n, and assume that A is positive semidefinite. Then,

InA =

⎡
⎣ 0

def A
rankA

⎤
⎦.

If, in addition, A is positive definite, then

InA =

⎡
⎣ 0

0
n

⎤
⎦.
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Fact 5.8.11. Let A ∈ Fn×n. Then, the following statements are equivalent:

i) A is an elementary projector.

ii) A is a projector, and trA = n−1.

iii) A is a projector, and InA =
[ 0

1
n−1

]
.

Furthermore, the following statements are equivalent:

iv) A is an elementary reflector.

v) A is a reflector, and trA = n− 2.

vi) A is a reflector, and InA =
[ 1

0
n−1

]
.

(Proof: See Proposition 5.5.21.)

Fact 5.8.12. Let A ∈ Fn×n. Then, the following statements are equivalent:

i) A+A∗ is positive definite.

ii) For all Hermitian matrices B ∈ Fn×n, InB = InAB.

(Proof: See [280].)

Fact 5.8.13. Let A,B ∈ Fn×n, assume that AB and B are Hermitian, and
assume that spec(A) ∩ [0,∞) = ∅. Then,

In(−AB) = InB.

(Proof: See [280].)

Fact 5.8.14. Let A,B ∈ Fn×n, assume that A and B are Hermitian and
nonsingular, and assume that spec(AB) ∩ [0,∞) = ∅. Then,

ν+(A) + ν+(B) = n.

(Proof: Use Fact 5.8.13. See [280].) (Remark: Weaker versions of this result are
given in [761, 1036].)

Fact 5.8.15. Let A ∈ Fn×n, assume that A is Hermitian, and let S ∈ Fm×n.
Then,

ν−(SAS∗) ≤ ν−(A)

and
ν+(SAS∗) ≤ ν+(A).

Furthermore, consider the following conditions:

i) rankS = n.

ii) rankSAS∗ = rankA.

iii) ν−(SAS∗) = ν−(A) and ν+(SAS∗) = ν+(A).

Then, i) =⇒ ii) ⇐⇒ iii). (Proof: See [447, pp. 430, 431] and [508, p. 194].)
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Fact 5.8.16. Let A ∈ Fn×n, assume that A is Hermitian, and let S ∈ Fm×n.
Then,

ν−(SAS∗) + ν+(SAS∗) = rankSAS∗ ≤ min{rankA, rankS},

ν−(A) + rankS − n ≤ ν−(SAS∗) ≤ ν−(A),

ν+(A) + rankS − n ≤ ν+(SAS∗) ≤ ν+(A).

(Proof: See [1060].)

Fact 5.8.17. Let A,S ∈ Fn×n, assume that A is Hermitian, and assume that
S is nonsingular. Then, there exist α1, . . . , αn ∈ [λmin(SS∗), λmax(SS∗)] such that,
for all i = 1, . . . , n,

λi(SAS∗) = αiλi(A).

(Proof: See [1439].) (Remark: This result, which is due to Ostrowski, is a quanti-
tative version of Sylvester’s law of inertia given by Corollary 5.4.7.)

Fact 5.8.18. Let A,S ∈ Fn×n, assume that A is Hermitian, and assume that
S is nonsingular. Then, the following statements are equivalent:

i) In(SAS∗) = InA.

ii) rank(SAS∗) = rankA.

iii) R(A) ∩N(A) = {0}.
(Proof: See [109].)

Fact 5.8.19. Let A ∈ Fn×n, B ∈ Fn×m, and C ∈ Fm×m, and assume that A
is positive definite and C is negative definite. Then,

In

⎡
⎣ A B 0
B∗ C 0
0 0 0l×l

⎤
⎦ =

⎡
⎣ n
m

l

⎤
⎦.

(Proof: The result follows from Fact 5.8.6. See [770].)

Fact 5.8.20. Let A ∈ R
n×m. Then,

In
[

0 A
A∗ 0

]
= In

[
AA∗ 0

0 −A∗A

]

= In
[
AA+ 0

0 −A+A

]

=

⎡
⎣ rankA
n+m− 2rankA

rankA

⎤
⎦.

(Proof: See [447, pp. 432, 434].)



MATRIX DECOMPOSITIONS 311

Fact 5.8.21. Let A ∈ Cn×n, assume that A is Hermitian, and let B ∈ Cn×m.
Then,

In
[
A B
B∗ 0

]
≥≥
⎡
⎣ rankB
n− rankB

rankB

⎤
⎦.

Furthermore, if R(A) ⊆ R(B), then

In
[
A B
B∗ 0

]
=

⎡
⎣ rankB
n+m− 2rankB

rankB

⎤
⎦.

Finally, if rankB = n, Then,

In
[
A B
B∗ 0

]
=

⎡
⎣ n
m− n
n

⎤
⎦.

(Proof: See [447, pp. 433, 434] or [945].) (Remark: Extensions are given in [945].)
(Remark: See Fact 8.15.27.)

Fact 5.8.22. Let A ∈ Fn×n. Then, there exist a nonsingular matrix S ∈ Fn×n

and a skew-Hermitian matrix B ∈ Fn×n such that

A = S

⎛
⎜⎝
⎡
⎢⎣
Iν−(A+A∗) 0 0

0 0ν0(A+A∗)×ν0(A+A∗) 0

0 0 −Iν+(A+A∗)

⎤
⎥⎦+B

⎞
⎟⎠S∗.

(Proof: Write A = 1
2 (A+A∗)+ 1

2 (A−A∗), and apply Proposition 5.4.6 to 1
2 (A+A∗).)

5.9 Facts on Matrix Transformations for One Matrix

Fact 5.9.1. Let A ∈ Fn×n, and assume that spec(A) = {1}. Then, Ak is
similar to A for all k ≥ 1.

Fact 5.9.2. Let A ∈ F
n×n, and assume there exists a nonsingular matrix

S ∈ Fn×n such that S−1AS is upper triangular. Then, for all r = 1, . . . , n, R
(
S
[
Ir
0

])
is an invariant subspace of A. (Remark: Analogous results hold for lower triangular
matrices and block-triangular matrices.)

Fact 5.9.3. Let A ∈ Fn×n. Then, there exist unique matrices B,C ∈ Fn×n

such that the following properties are satisfied:

i) B is diagonalizable over F.

ii) C is nilpotent.

iii) A = B + C.

iv) BC = CB.

Furthermore, mspec(A) = mspec(B). (Proof: See [691, p. 112] or [727, p. 74].
Existence follows from the real Jordan form. The last statement follows from Fact
5.17.4.) (Remark: This result is the S-N decomposition or the Jordan-Chevalley
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decomposition.)

Fact 5.9.4. Let A ∈ Fn×n. Then, the following statements are equivalent:

i) A is similar to a skew-Hermitian matrix.

ii) A is semisimple, and spec(A) ⊂ jR.
(Remark: See Fact 11.18.12.)

Fact 5.9.5. Let A ∈ Fn×n, and let r �= rankA. Then, A is group invertible
if and only if there exist a nonsingular matrix B ∈ Fr×r and a nonsingular matrix
S ∈ Fn×n such that

A = S

[
B 0
0 0

]
S−1.

Fact 5.9.6. Let A ∈ Fn×n, and let r �= rankA. Then, A is range Hermitian
if and only if there exist a nonsingular matrix S ∈ Fn×n and a nonsingular matrix
B ∈ Fr×r such that

A = S

[
B 0
0 0

]
S∗.

(Remark: S need not be unitary for sufficiency. See Corollary 5.4.4.) (Proof: Use
the QR decomposition Fact 5.15.8 to let S �= ŜR, where Ŝ is unitary and R is upper
triangular. See [1277].)

Fact 5.9.7. Let A ∈ Fn×n. Then, there exists an involutory matrix S ∈ Fn×n

such that
AT = SAST.

(Remark: Note AT rather than A∗.) (Proof: See [420] and [577].)

Fact 5.9.8. Let A ∈ Fn×n. Then, there exists a nonsingular matrix S ∈ Fn×n

such that A = SA∗S−1 if and only if there exist Hermitian matrices S1, S2 ∈ Fn×n

such that A = S1S2. (Proof: See [1490, pp. 215, 216].) (Remark: See Proposition
5.5.12.)

Fact 5.9.9. Let A ∈ Fn×n, and assume that A is normal. Then, there exists
a symmetric, nonsingular matrix S ∈ F

n×n such that

AT = SAS−1

and such that S−1 = S. (Proof: For F = C, let A = UBU∗, where U is unitary and
B is diagonal. Then, AT = SAS = SAS−1, where S �= UU−1. For F = R, use the
real normal form and let S �= UĨUT, where U is orthogonal and Ĩ �= diag(Î, . . . , Î).)
(Remark: See Corollary 5.3.8.)

Fact 5.9.10. Let A ∈ Rn×n, and assume that A is normal. Then, there exists
a reflector S ∈ Rn×n such that

AT = SAS−1.

Consequently, A and AT are orthogonally similar. Finally, if A is skew symmetric,
then A and −A are orthogonally similar. (Proof: Specialize Fact 5.9.9 to the case
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F = R.)

Fact 5.9.11. Let A ∈ Fn×n. Then, there exists a reverse-symmetric, nonsin-
gular matrix S ∈ Fn×n such that AT̂ = SAS−1. (Proof: The result follows from
Corollary 5.3.8. See [882].)

Fact 5.9.12. Let A ∈ Fn×n. Then, there exist reverse-symmetric matrices
S1, S2 ∈ Fn×n such that S2 is nonsingular and A = S1S2. (Proof: The result
follows from Corollary 5.3.9. See [882].)

Fact 5.9.13. Let A ∈ Rn×n, and assume that A is not of the form aI, where
a ∈ R. Then, A is similar to a matrix with diagonal entries 0, . . . , 0, trA. (Proof:
See [1098, p. 77].) (Remark: This result is due to Gibson.)

Fact 5.9.14. Let A ∈ Rn×n, and assume that A is not zero. Then, A is
similar to a matrix whose diagonal entries are all nonzero. (Proof: See [1098, p.
79].) (Remark: This result is due to Marcus and Purves.)

Fact 5.9.15. Let A ∈ Rn×n, and assume that A is symmetric. Then, there ex-
ists an orthogonal matrix S ∈ Rn×n such that −1 /∈ spec(S) and SAST is diagonal.
(Proof: See [1098, p. 101].) (Remark: This result is due to Hsu.)

Fact 5.9.16. Let A ∈ Rn×n, and assume that A is symmetric. Then, there
exist a diagonal matrix B ∈ Rn×n and a skew-symmetric matrix C ∈ Rn×n such
that

A = [2(I + C)−1 − I]B[2(I + C)−1 − I]T.
(Proof: Use Fact 5.9.15. See [1098, p. 101].)

Fact 5.9.17. Let A ∈ Fn×n. Then, there exists a unitary matrix S ∈ Fn×n

such that S∗AS has equal diagonal entries. (Proof: See [488] or [1098, p. 78], or
use Fact 5.9.18.) (Remark: The diagonal entries are equal to (trA)/n.) (Remark:
This result is due to Parker. See [535].)

Fact 5.9.18. Let A ∈ F
n×n. Then, the following statements are equivalent:

i) trA = 0.

ii) There exist matrices B,C ∈ Fn×n such that A = [B,C].

iii) A is unitarily similar to a matrix whose diagonal entries are zero.

(Proof: See [13, 535, 799, 814] or [626, p. 146].) (Remark: This result is Shoda’s
theorem.) (Remark: See Fact 5.9.19.)

Fact 5.9.19. Let R ∈ Fn×n, and assume that R is Hermitian. Then, the
following statements are equivalent:

i) trR < 0.

ii) R is unitarily similar to a matrix all of whose diagonal entries are negative.

iii) There exists an asymptotically stable matrix A ∈ Fn×n such that R =
A+A∗.
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(Proof: See [120].) (Remark: See Fact 5.9.18.)

Fact 5.9.20. Let A ∈ Fn×n. Then, AA∗ and A∗A are unitarily similar.

Fact 5.9.21. Let A ∈ Fn×n, and assume that A is idempotent. Then, A and
A∗ are unitarily similar. (Proof: The result follows from Fact 5.9.27 and the fact
that [ 1 a

0 0 ] and [ 1 0
a 0 ] are unitarily similar. See [419].)

Fact 5.9.22. Let A ∈ Fn×n, and assume that A is symmetric. Then, there
exists a unitary matrix S ∈ Fn×n such that

A = SBST,

where
B

�= diag[σ1(A), . . . , σn(A)].

(Proof: See [709, p. 207].) (Remark: A is symmetric, complex, and T-congruent
to B.)

Fact 5.9.23. Let A ∈ Fn×n. Then,
[
A 0
0 −A

]
and [ 0 A

A 0 ] are unitarily similar.
(Proof: Use the unitary transformation 1√

2

[
I −I
I I

]
.)

Fact 5.9.24. Let n ∈ P. Then,

În =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

S

[
−In/2 0

0 −In/2

]
ST, n even,

S

⎡
⎢⎣ −In/2 0 0

0 1 0
0 0 In/2

⎤
⎥⎦ST, n odd,

where

S
�=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1√
2

[
In/2 −În/2
În/2 In/2

]
, n even,

1√
2

⎡
⎢⎣ In/2 0 −În/2

0
√

2 0
În/2 0 In/2

⎤
⎥⎦, n odd.

Therefore,

mspec(În) =

⎧⎨
⎩
{−1, 1, . . . ,−1, 1}ms, n even,

{1,−1, 1, . . . ,−1, 1}ms, n odd.

(Remark: For even n, Fact 3.19.3 shows that În is Hamiltonian, and thus, by Fact
4.9.21, mspec(In) = −mspec(In).) (Remark: See [1410].)
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Fact 5.9.25. Let n ∈ P. Then,

J2n = S

[
jIn 0

0 −jIn

]
S∗,

where

S
�= 1√

2

[
I −I
jI −jI

]
.

Hence,
mspec(J2n) = {j,−j, . . . , j,−j}ms

and
detJ2n = 1.

(Proof: See Fact 2.19.3.) (Remark: Fact 3.19.3 shows that J2n is Hamiltonian, and
thus, by Fact 4.9.21, mspec(J2n) = −mspec(J2n).)

Fact 5.9.26. Let A ∈ Fn×n, assume that A is idempotent, and let r �= rankA.
Then, there exists a matrix B ∈ F

r×(n−r) and a unitary matrix S ∈ F
n×n such that

A = S

[
Ir B
0 0(n−r)×(n−r)

]
S∗.

(Proof: See [536, p. 46].)

Fact 5.9.27. Let A ∈ Fn×n, assume that A is idempotent, and let r �= rankA.
Then, there exist a unitary matrix S ∈ Fn×n and positive numbers a1, . . . , ak such
that

A = Sdiag
([

1 a1

0 0

]
, . . . ,

[
1 ak
0 0

]
, Ir−k, 0(n−r−k)×(n−r−k)

)
S∗.

(Proof: See [419].) (Remark: This result provides a canonical form for idempotent
matrices under unitary similarity. See also [537].) (Remark: See Fact 5.9.21.)

Fact 5.9.28. Let A ∈ Fn×m, assume that A is nonzero, let r �= rankA, define
B �= diag[σ1(A), . . . , σr(A)], and let S1 ∈ Fn×n and S2 ∈ Fm×m be unitary matrices
such that

A = S1

[
B 0r×(m−r)

0(n−r)×r 0(n−r)×(m−r)

]
S2.

Then, there exist K ∈ Fr×r and L ∈ Fr×(m−r) such that

KK∗ + LL∗ = Ir

and

A = S1

[
BK BL

0(n−r)×r 0(n−r)×(m−r)

]
S∗

1.

(Proof: See [115, 651].) (Remark: See Fact 6.3.15 and Fact 6.6.15.)
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Fact 5.9.29. Let A ∈ Fn×n, assume that A is unitary, and partition A as

A =
[
A11 A12

A21 A22

]
,

where A11 ∈ F
m×k, A12 ∈ F

m×q, A21 ∈ F
p×k, A22 ∈ F

p×q, and m+ p = k + q = n.
Then, there exist unitary matrices U, V ∈ Fn×n and l, r ≥ 0 such that

A = U

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ir 0 0 0 0 0

0 Γ 0 0 Σ 0

0 0 0 0 0 Im−r−l
0 0 0 Iq−m+r 0 0

0 Σ 0 0 −Γ 0

0 0 Ik−r−l 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
V,

where Γ,Σ ∈ Rl×l are diagonal and satisfy

0 < Γ(l,l) ≤ · · · ≤ Γ(1,1) < 1, (5.9.1)

0 < Σ(1,1) ≤ · · · ≤ Σ(l,l) < 1, (5.9.2)

and
Γ 2 +Σ2 = Im.

(Proof: See [536, p. 12] and [1230, p. 37].) (Remark: This result is the CS
decomposition. See [1059, 1061]. The entries Σ(i,i) and Γ(i,i) can be interpreted as
sines and cosines, respectively, of the principal angles between a pair of subspaces
S1 = R(X1) and S2 = R(Y1) such that [X1 X2] and [Y1 Y2] are unitary and A =
[X1 X2]∗[Y1 Y2]; see [536, pp. 25–29], [1230, pp. 40–43], and Fact 2.9.19. Principal
angles can also be defined recursively; see [536, p. 25] and [537].)

Fact 5.9.30. Let A ∈ Fn×n, and let r �= rankA. Then, there exist S1 ∈ Fn×r,
B ∈ Rr×r, and S2 ∈ Fn×r, such that S1 is left inner, S2 is right inner, B is upper
triangular, I ◦B = αI, where α �=

∏r
i=1 σi(A), and

A = S1BS2.

(Proof: See [757].) (Remark: Note that B is real.) (Remark: This result is the
geometric mean decomposition.)

Fact 5.9.31. Let A ∈ Cn×n. Then, there exists a matrix B ∈ Rn×n such that
AA and B2 are similar. (Proof: See [415].)

5.10 Facts on Matrix Transformations for Two or More Matrices

Fact 5.10.1. Let q(s) �= s2−β1s−β0 ∈ R[s] be irreducible, and let λ = ν+jω
denote a root of q so that β1 = 2ν and β0 = −(ν2 + ω2). Then,

H1(q) =
[

0 1
β0 β1

]
=
[

1 0
ν ω

][
ν ω
−ω ν

][
1 0
−ν/ω 1/ω

]
= SJ1(q)S−1.
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The transformation matrix S = [ 1 0
ν ω ] is not unique; an alternative choice is S =[ ω ν

0 ν2+ω2
]
. Similarly,

H2(q) =

⎡
⎢⎢⎣

0 1 0 0
β0 β1 1 0
0 0 0 1
0 0 β0 β1

⎤
⎥⎥⎦ = S

⎡
⎢⎢⎣

ν ω 1 0
−ω ν 0 1
0 0 ν ω
0 0 −ω ν

⎤
⎥⎥⎦S−1 = SJ2(q)S−1,

where

S �=

⎡
⎢⎢⎣
ω ν ω ν
0 ν2 + ω2 ω ν2 + ω2 + ν
0 0 −2ων 2ω2

0 0 −2ω(ν2 + ω2) 0

⎤
⎥⎥⎦.

Fact 5.10.2. Let q(s) �= s2 − 2νs+ ν2 + ω2 ∈ R[s] with roots λ = ν + jω and
λ = ν − jω. Then,

H1(q) =
[

ν ω
−ω ν

]
= 1√

2

[
1 1
j −j

][
λ 0
0 λ

]
1√
2

[
1 −j
1 j

]

and

H2(q) =

⎡
⎢⎢⎣

ν ω 1 0
−ω ν 0 1
0 0 ν ω
0 0 −ω ν

⎤
⎥⎥⎦ = S

⎡
⎢⎢⎣
λ 1 0 0
0 λ 0 0
0 0 λ 1
0 0 0 λ

⎤
⎥⎥⎦S−1,

where

S
�= 1√

2

⎡
⎢⎢⎣

1 0 1 0
j 0 −j 0
0 1 0 1
0 j 0 −j

⎤
⎥⎥⎦, S−1 = 1√

2

⎡
⎢⎢⎣

1 −j 0 0
0 0 1 −j
1 j 0 0
0 0 1 j

⎤
⎥⎥⎦.

Fact 5.10.3. Left equivalence, right equivalence, biequivalence, unitary left
equivalence, unitary right equivalence, and unitary biequivalence are equivalence
relations on F

n×m. Similarity, congruence, and unitary similarity are equivalence
relations on Fn×n.

Fact 5.10.4. Let A,B ∈ Fn×m. Then, A and B are in the same equivalence
class of Fn×m induced by biequivalent transformations if and only if A and B are
biequivalent to [ I 0

0 0 ]. Now, let n = m. Then, A and B are in the same equivalence
class of F

n×n induced by similarity transformations if and only if A and B have the
same Jordan form.

Fact 5.10.5. Let A,B ∈ F
n×n, and assume that A and B are similar. Then,

A is semisimple if and only if B is.

Fact 5.10.6. Let A ∈ Fn×n, and assume that A is normal. Then, A is unitarily
similar to its Jordan form.

Fact 5.10.7. Let A,B ∈ Fn×n, assume that A and B are normal, and assume
that A and B are similar. Then, A and B are unitarily similar. (Proof: Since
A and B are similar, it follows that mspec(A) = mspec(B). Since A and B are
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normal, it follows that they are unitarily similar to the same diagonal matrix. See
Fact 5.10.6. See [627, p. 104].) (Remark: See [541, p. 8] for related results.)

Fact 5.10.8. Let A,B ∈ Fn×n, and let r �= 2n2. Then, the following statements
are equivalent:

i) A and B are unitarily similar.

ii) For all k1, . . . , kr, l1, . . . , lr ∈ N such that
∑r

i,j=1(ki + lj) ≤ r, it follows
that

trAk1Al1∗ · · ·AkrAlr∗ = trBk1Bl1∗ · · ·BkrBlr∗.

(Proof: See [1076].) (Remark: See [790, pp. 71, 72] and [220, 1190].) (Remark:
The number of distinct tuples of positive integers whose sum is a positive integer
k is 2k−1. The number of expressions in ii) is thus

∑2n2

k=1 2k−1 = 4n
2 − 1. Because

of properties of the trace function, the number of distinct expressions is less than
this number. Furthermore, in special cases, the number of expressions that need to
be checked is significantly less than the number of distinct expressions. In the case
n = 2, it suffices to check three equalities, specifically, trA = trB, trA2 = trB2, and
trA∗A = trB∗B. In the case n = 3, it suffices to check 7 equalities. See [220, 1190].)

Fact 5.10.9. Let A,B ∈ Fn×n, assume that A and B are idempotent, assume
that sprad(A−B) < 1, and define

S
�= (AB +A⊥B⊥)

[
I − (A−B)2

]−1/2
.

Then, the following statements hold:

i) S is nonsingular.

ii) If A = B, then S = I.

iii) S−1 = (BA+B⊥A⊥)
[
I − (B −A)2

]−1/2
.

iv) A and B are similar. In fact, A = SBS−1.

v) If A and B are projectors, then S is unitary and A and B are unitarily
similar.

(Proof: See [690, p. 412].) (Remark: [I − (A − B)2]−1/2 is defined by ix) of Fact
10.11.24.)

Fact 5.10.10. Let A,B ∈ F
n×n, and assume that A and B are idempotent.

Then, the following statements are equivalent:

i) A and B are unitarily similar.

ii) trA = trB and, for all i = 1, . . . , �n/2�, tr (AA∗)i = tr (BB∗)i.

iii) χAA∗ = χBB∗.

(Proof: The result follows from Fact 5.9.27. See [419].)

Fact 5.10.11. Let A,B ∈ Fn×n, and assume that either A or B is nonsingular.
Then, AB and BA are similar. (Proof: If A is nonsingular, then AB = A(BA)A−1.)
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Fact 5.10.12. Let A,B ∈ Fn×n, and assume that A and B are projectors.
Then, AB and BA are unitarily similar. (Remark: This result is due to Dixmier.
See [1114].)

Fact 5.10.13. Let A ∈ Fn×n. Then, A is idempotent if and only if there exists
an orthogonal matrix B ∈ F

n×n such that A and B are similar.

Fact 5.10.14. Let A,B ∈ Fn×n, assume that A and B are idempotent, and
assume that A+B − I is nonsingular. Then, A and B are similar. In particular,

A = (A+B − I)−1B(A+B − I).

Fact 5.10.15. Let A1, . . . , Ar ∈ Fn×n, and assume that AiAj = AjAi for all
i, j = 1, . . . , r. Then,

dim span

{
r∏
i=1

Ani

i : 0 ≤ ni ≤ n−1, i = 1, . . . , r

}
≤ 1

4n
2 + 1.

(Remark: This result gives a bound on the dimension of a commutative subalgebra.)
(Remark: This result is due to Schur. See [859].)

Fact 5.10.16. Let A,B ∈ Fn×n, and assume that AB = BA. Then,

dim span
{
AiBj : 0 ≤ i ≤ n−1, 0 ≤ j ≤ n−1

} ≤ n.
(Remark: This result gives a bound on the dimension of a commutative subalgebra
generated by two matrices.) (Remark: This result is due to Gerstenhaber. See
[150, 859].)

Fact 5.10.17. Let A,B ∈ Fn×n, and assume that A and B are normal, non-
singular, and congruent. Then, InA = InB. (Remark: This result is due to Ando.)

Fact 5.10.18. Let A,B ∈ Fn×m. Then, the following statements hold:

i) The matrices A andB are unitarily left equivalent if and only if A∗A = B∗B.

ii) The matrices A and B are unitarily right equivalent if and only if AA∗ =
BB∗.

iii) The matrices A and B are unitarily biequivalent if and only if A and B
have the same singular values with the same multiplicity.

(Proof: See [715] and [1129, pp. 372, 373].) (Remark: In [715] A and B need
not be the same size.) (Remark: The singular value decomposition provides a
canonical form under unitary biequivalence in analogy with the Smith form under
biequivalence.) (Remark: Note that AA∗ = BB∗ implies that R(A) = R(B), which
implies right equivalence, which is an alternative proof of the immediate fact that
unitary right equivalence implies right equivalence.)

Fact 5.10.19. Let A,B ∈ Fn×n. Then, the following statements hold:

i) A∗A = B∗B if and only if there exists a unitary matrix S ∈ Fn×n such that
A = SB.
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ii) A∗A ≤ B∗B if and only if there exists a matrix S ∈ Fn×n such that A = SB
and S∗S ≤ I.

iii) A∗B +B∗A = 0 if and only if there exists a unitary matrix S ∈ F
n×n such

that (I − S)A = (I + S)B.

iv) A∗B + B∗A ≥ 0 if and only if there exists a matrix S ∈ F
n×n such that

(I − S)A = (I + S)B and S∗S ≤ I.
(Proof: See [709, p. 406] and [1117].) (Remark: Statements iii) and iv) follow from
i) and ii) by replacing A and B with A−B and A+B, respectively.)

Fact 5.10.20. Let A ∈ F
n×n, B ∈ F

m×m, and C ∈ F
n×m. Then, there exist

matrices X,Y ∈ Fn×m satisfying

AX + YB + C = 0

if and only if

rank
[
A 0
0 −B

]
= rank

[
A C
0 −B

]
.

(Proof: See [1098, pp. 194, 195] and [1403].) (Remark: AX + YB + C = 0 is a
generalization of Sylvester’s equation. See Fact 5.10.21.) (Remark: This result is
due to Roth.) (Remark: An explicit expression for all solutions is given by Fact
6.5.7, which applies to the case in which A and B are not necessarily square and
thus X and Y are not necessarily the same size.)

Fact 5.10.21. Let A ∈ F
n×n, B ∈ Fm×m, and C ∈ Fn×m. Then, there exists

a matrix X ∈ Fn×m satisfying

AX +XB + C = 0

if and only if the matrices[
A 0
0 −B

]
,

[
A C
0 −B

]
are similar. In this case,[

A C
0 −B

]
=
[
I X
0 I

][
A 0
0 −B

][
I −X
0 I

]
.

(Proof: See [1403]. For sufficiency, see [867, pp. 422–424] or [1098, pp. 194, 195].)
(Remark: AX+XB+C = 0 is Sylvester’s equation. See Proposition 7.2.4, Corollary
7.2.5, and Proposition 11.9.3.) (Remark: This result is due to Roth. See [217].)

Fact 5.10.22. Let A,B ∈ Fn×n, and assume that A and B are idempotent.
Then, the matrices[

A+B A
0 −A−B

]
,

[
A+B 0

0 −A−B
]

are similar. In fact,[
A+B A

0 −A−B
]

=
[
I X
0 I

][
A+B 0

0 −A−B
][

I −X
0 I

]
,
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where X �= 1
4 (I+A−B). (Remark: This result is due to Tian.) (Remark: See Fact

5.10.21.)

Fact 5.10.23. Let A ∈ Fn×n, B ∈ Fm×m, and C ∈ Fn×m, and assume that A
and B are nilpotent. Then, the matrices[

A C
0 B

]
,

[
A 0
0 B

]
are similar if and only if

rank
[
A C
0 B

]
= rankA+ rankB

and
AC + CB = 0.

(Proof: See [1294].)

5.11 Facts on Eigenvalues and Singular Values for One Matrix

Fact 5.11.1. Let A ∈ Fn×n, and assume that A is singular. If A is either
simple or cyclic, then rankA = n−1.

Fact 5.11.2. Let A ∈ Rn×n, and assume that A ∈ SO(n). Then, amultA(−1)
is even. Now, assume that n = 3. Then, the following statements hold:

i) amultA(1) is either 1 or 3.

ii) trA ≥ −1.

iii) trA = −1 if and only if mspec(A) = {1,−1,−1}ms.

Fact 5.11.3. Let A ∈ Fn×n, let α ∈ F, and assume that A2 = αA. Then,
spec(A) ⊆ {0, α}.

Fact 5.11.4. Let A ∈ Fn×n, assume that A is Hermitian, and let α ∈ R.
Then, A2 = αA if and only if spec(A) ⊆ {0, α}. (Remark: See Fact 3.7.22.)

Fact 5.11.5. Let A ∈ Fn×n, and assume that A is Hermitian. Then,

spabs(A) = λmax(A)

and
sprad(A) = σmax(A) = max{|λmin(A)|, λmax(A)}.

If, in addition, A is positive semidefinite, then

sprad(A) = σmax(A) = spabs(A) = λmax(A).

(Remark: See Fact 5.12.2.)

Fact 5.11.6. Let A ∈ Fn×n, and assume that A is skew Hermitian. Then, the
eigenvalues of A are imaginary. (Proof: Let λ ∈ spec(A). Since 0 ≤ AA∗ = −A2, it
follows that −λ2 ≥ 0, and thus λ2 ≤ 0.)
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Fact 5.11.7. Let A,B ∈ Fn×n, and assume that A and B are idempotent.
Then, the following statements are equivalent:

i) mspec(A) = mspec(B).

ii) rankA = rankB.

iii) trA = trB.

Fact 5.11.8. Let A ∈ Fn×n. Then, the following statements are equivalent:

i) A is idempotent.

ii) rank(I −A) ≤ tr(I − A), A is group invertible, and every eigenvalue of A
is nonnegative.

iii) A and I−A are group invertible, and every eigenvalue of A is nonnegative.

(Proof: See [649].)

Fact 5.11.9. Let A ∈ Fn×n, and let mspec(A) = {λ1, . . . , λk, 0, . . . , 0}ms.
Then,

|trA|2 ≤
(

k∑
i=1

|λi|
)2
≤ k

k∑
i=1

|λi|2.

(Proof: Use Fact 1.15.3.)

Fact 5.11.10. Let A ∈ Fn×n, and assume that A has exactly k nonzero
eigenvalues. Then,

|trA|2

k|trA2| ≤ k tr (A2∗A2)1/2

}
≤ k trA∗A ≤ (rankA)trA∗A.

Furthermore, the upper left-hand inequality is an equality if and only if A is normal
and all of the nonzero eigenvalues of A have the same absolute value, while the right-
hand inequality is an equality if and only if A is group invertible. If, in addition,
all of the eigenvalues of A are real, then

(trA)2 ≤ k trA2 ≤ k trA∗A ≤ (rankA)trA∗A.

(Proof: The upper left-hand inequality in the first string is given in [1448]. The
lower left-hand inequality in the first string is given by Fact 9.11.3. When all of the
eigenvalues of A are real, the inequality (trA)2 ≤ k trA2 follows from Fact 5.11.9.)
(Remark: The inequality |trA|2 ≤ k|trA2| does not necessarily hold. Consider
mspec(A) = {1, 1, j,−j}ms.) (Remark: See Fact 3.7.22, Fact 8.17.7, Fact 9.13.17,
and Fact 9.13.18.)

Fact 5.11.11. Let A ∈ Rn×n, and let mspec(A) = {λ1, . . . , λn}ms. Then,
n∑
i=1

(Reλi)(Im λi) = 0

and

trA2 =
n∑
i=1

(Re λi)2 −
n∑
i=1

(Imλi)2.
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Fact 5.11.12. Let n ≥ 2, let a1, . . . , an > 0, and define the symmetric matrix
A ∈ Rn×n by A(i,j)

�= ai + aj for all i, j = 1, . . . , n. Then,

rankA ≤ 2

and
mspec(A) = {λ, μ, 0, . . . , 0}ms,

where

λ �=
n∑
i=1

ai +

√√√√n n∑
i=1

a2
i , μ �=

n∑
i=1

ai −
√√√√n n∑

i=1

a2
i .

Furthermore, the following statements hold:

i) λ > 0.

ii) μ ≤ 0.

Furthermore, the following statements are equivalent:

iii) μ < 0.

iv) At least two of the numbers a1, . . . , an > 0 are distinct.

v) rankA = 2.

In this case,

λmin(A) = μ < 0 < trA = 2
n∑
i=1

ai < λmax(A) = λ.

(Proof: A = a11×n + 1n×1a
T, where a �=

[
a1 · · · an

]T
. Then, it follows

from Fact 2.11.12 that rankA ≤ rank(a11×n) + rank(1n×1a
T) = 2. Furthermore,

mspec(A) follows from Fact 5.11.13, while Fact 1.15.14 implies that μ ≤ 0.) (Re-
mark: See Fact 8.8.7.)

Fact 5.11.13. Let x, y ∈ R
n. Then,

mspec
(
xyT + yxT

)
=
{
xTy +

√
xTxyTy, xTy −

√
xTxyTy, 0, . . . , 0

}
ms
,

sprad
(
xyT + yxT

)
=

⎧⎨
⎩
xTy +

√
xTxyTy, xTy ≥ 0,∣∣∣xTy −
√
xTxyTy

∣∣∣, xTy ≤ 0,

and
spabs

(
xyT + yxT

)
= xTy +

√
xTxyTy.

If, in addition, x and y are nonzero, then v1, v2 ∈ Rn defined by

v1
�= 1

‖x‖x+ 1
‖y‖y, v2

�= 1
‖x‖x− 1

‖y‖y

are eigenvectors of xyT+yxT corresponding to xTy+
√
xTxyTy and xTy−

√
xTxyTy,

respectively. (Proof: See [374, p. 539].) (Example: The spectrum of
[

0n×n 1n×1
11×n 0

]
is {−√n, 0, . . . , 0,√n}ms.) (Problem: Extend this result to C and xyT + zwT. See
Fact 4.9.16.)
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Fact 5.11.14. Let A ∈ Fn×n, and let mspec(A) = {λ1, . . . , λn}ms. Then,

mspec
[
(I + A)2

]
=
{
(1 + λ1)2, . . . , (1 + λn)2

}
ms
.

If A is nonsingular, then

mspec
(
A−1
)

=
{
λ−1

1 , . . . , λ
−1
n

}
ms
.

Finally, if I +A is nonsingular, then

mspec
[
(I +A)−1

]
=
{
(1 + λ1)−1, . . . , (1 + λn)−1

}
ms

and
mspec

[
A(I +A)−1

]
=
{
λ1(1 + λ1)−1, . . . , λn(1 + λn)−1

}
ms
.

(Proof: Use Fact 5.11.15.)

Fact 5.11.15. Let p, q ∈ F[s], assume that p and q are coprime, define g �=
p/q ∈ F(s), let A ∈ Fn×n, let mspec(A) = {λ1, . . . , λn}ms, assume that roots(q)∩
spec(A) = ∅, and define g(A) �= p(A)[q(A)]−1. Then,

mspec[g(A)] = {g(λ1), . . . , g(λn)}ms.

(Proof: Statement ii) of Fact 4.10.9 implies that q(A) is nonsingular.)

Fact 5.11.16. Let x ∈ Fn and y ∈ Fm. Then,

σmax(xy∗) =
√
x∗xy∗y.

If, in addition, m = n, then

mspec(xy∗) = {x∗y, 0, . . . , 0}ms ,

mspec(I + xy∗) = {1 + x∗y, 1, . . . , 1}ms ,

sprad(xy∗) = |x∗y|,

spabs(xy∗) = max{0,Rex∗y}.
(Remark: See Fact 9.7.26.)

Fact 5.11.17. Let A ∈ Fn×n, and assume that rankA = 1. Then,

σmax(A) = (trAA∗)1/2.

Fact 5.11.18. Let x, y ∈ F
n, and assume that x∗y �= 0. Then,

σmax

[
(x∗y)−1xy∗

]
≥ 1.

Fact 5.11.19. Let A ∈ Fn×m, and let α ∈ F. Then, for all i = 1, . . . ,
min{n,m},

σi(αA) = |α|σi(A).

Fact 5.11.20. Let A ∈ Fn×m. Then, for all i = 1, . . . , rankA, it follows that

σi(A) = σi(A∗).
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Fact 5.11.21. Let A ∈ Fn×n, and let λ ∈ spec(A). Then, the following
inequalities hold:

i) σmin(A) ≤ |λ| ≤ σmax(A).

ii) λmin

[
1
2(A+A∗)

] ≤ Reλ ≤ λmax

[
1
2(A+A∗)

]
.

iii) λmin

[
1
2j(A−A∗)

]
≤ Imλ ≤ λmax

[
1
2j(A−A∗)

]
.

(Remark: i) is Browne’s theorem, ii) is Bendixson’s theorem, and iii) is Hirsch’s
theorem. See [311, p. 17] and [963, pp. 140–144].) (Remark: See Fact 5.11.22, Fact
5.12.3, and Fact 9.11.8.)

Fact 5.11.22. Let A ∈ Fn×n, and let mspec(A) = {λ1, . . . , λn}ms. Then, for
all k = 1, . . . , n,

k∑
i=1

[
σ2
n−i+1(A)− |λi|2

] ≤ 2
k∑
i=1

(
σ2
i [

1
2j (A−A∗)]− |Im λi|2

)

and

2
k∑
i=1

(
σ2
n−i+1[

1
2j(A−A∗)]− |Imλi|2

)
≤

k∑
i=1

[
σ2
i (A)− |λi|2

]
.

Furthermore,
n∑
i=1

[
σ2
i (A)− |λi|2

]
= 2

n∑
i=1

(
σ2
i [

1
2j (A−A∗)]− |Imλi|2

)
.

Finally, for all i = 1, . . . , n,

σn(A) ≤ |Reλi| ≤ σ1(A)

and
σn[ 1

2j (A−A∗)] ≤ |Imλi| ≤ σ1[ 1
2j(A−A∗)].

(Proof: See [552].) (Remark: See Fact 9.11.7.)

Fact 5.11.23. Let A ∈ Fn×n, let mspec(A) = {λ1, . . . , λn}ms, and let r denote
the number of Jordan blocks in the Jordan decomposition of A. Then, for all k =
1, . . . , r,

k∑
i=1

σ2
n−i+1(A) ≤

k∑
i=1

|λi|2 ≤
k∑
i=1

σ2
i (A)

and
k∑
i=1

σ2
n−i+1[

1
2j (A−A∗)] ≤

k∑
i=1

|Imλi|2 ≤
k∑
i=1

σ2
i [

1
2j (A−A∗)].

(Proof: See [552].)

Fact 5.11.24. Let A ∈ Fn×n, and let mspec(A) = {λ1(A), . . . , λn(A)}ms,
where λ1(A), . . . , λn(A) are ordered such that Reλ1(A) ≥ · · · ≥ Reλn(A). Then,
for all k = 1, . . . , n,

k∑
i=1

Reλi(A) ≤
k∑
i=1

λi
[

1
2 (A+A∗)

]
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and n∑
i=1

Reλi(A) = Re trA = Re tr 1
2 (A+A∗) =

n∑
i=1

λi
[
1
2 (A+A∗)

]
.

In particular,

λmin

[
1
2 (A+A∗)

] ≤ Reλn(A) ≤ spabs(A) ≤ λmax

[
1
2 (A+A∗)

]
.

Furthermore, the last right-hand inequality is an equality if and only if A is nor-
mal. (Proof: See [197, p. 74]. Also, see xii) and xiv) of Fact 11.15.7.) (Remark:
spabs(A) = Reλ1(A).) (Remark: This result is due to Fan.)

Fact 5.11.25. Let A ∈ Fn×n. Then, for all i = 1, . . . , n,

−σi(A) ≤ λi
[

1
2 (A+A∗)

] ≤ σi(A).

In particular,
−σmin(A) ≤ λmin

[
1
2 (A+A∗)

] ≤ σmin(A)

and
−σmax(A) ≤ λmax

[
1
2 (A+A∗)

] ≤ σmax(A).

(Proof: See [690, p. 447], [711, p. 151], or [971, p. 240].) (Remark: This result
generalizes Re z ≤ |z| for z ∈ C.) (Remark: See Fact 8.17.4 and Fact 5.11.27.)

Fact 5.11.26. Let A ∈ Fn×n. Then,

−σmax(A) ≤ −σmin(A)

≤ λmin

[
1
2 (A+A∗)

]
≤ spabs(A)

≤
{ | spabs(A)| ≤ sprad(A)

1
2λmax(A+A∗)

}

≤ σmax(A).

(Proof: Combine Fact 5.11.24 and Fact 5.11.25.)

Fact 5.11.27. Let A ∈ Fn×n, and let {μ1, . . . , μn}ms = { 1
2 |λ1(A + A∗)|, . . . ,

1
2 |λn(A+A∗)|}ms, where μ1 ≥ · · · ≥ μn ≥ 0. Then,

[
σ1(A) · · · σn(A)

]
weakly

majorizes
[
μ1 · · · μn

]
. (Proof: See [971, p. 240].) (Remark: See Fact 5.11.25.)

Fact 5.11.28. Let A ∈ Fn×n, and let mspec(A) = {λ1, . . . , λn}ms, where
λ1, . . . , λn are ordered such that |λ1| ≥ · · · ≥ |λn|. Then, for all k = 1, . . . , n,

k∏
i=1

|λi| ≤
k∏
i=1

σi(A)

with equality for k = n, that is,

|detA| =
n∏
i=1

|λi| =
n∏
i=1

σi(A).
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Hence, for all k = 1, . . . , n,
n∏
i=k

σi(A) ≤
n∏
i=k

|λi|.

(Proof: See [197, p. 43], [690, p. 445], [711, p. 171], or [1485, p. 19].) (Remark:
This result is due to Weyl.) (Remark: See Fact 8.18.21 and Fact 9.13.19.)

Fact 5.11.29. Let A ∈ Fn×n, and let mspec(A) = {λ1, . . . , λn}ms, where
λ1, . . . , λn are ordered such that |λ1| ≥ · · · ≥ |λn|. Then,

σmin(A) ≤ σ1/n
max(A)σ(n−1)/n

min (A) ≤ |λn| ≤ |λ1|

≤ σ1/n
min(A)σ(n−1)/n

max (A) ≤ σmax(A)

and

σnmin(A) ≤ σmax(A)σn−1
min (A) ≤ |detA|

≤ σmin(A)σn−1
max(A) ≤ σnmax(A).

(Proof: Use Fact 5.11.28. See [690, p. 445].) (Remark: See Fact 11.20.12.) (Re-
mark: See Fact 8.13.1.)

Fact 5.11.30. Let β0, . . . , βn−1 ∈ F, define A ∈ Fn×n by

A
�=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0 0

0 0 1
. . . 0 0

0 0 0
. . . 0 0

...
...

...
. . .

. . .
...

0 0 0 · · · 0 1

−β0 −β1 −β2 · · · −βn−2 −βn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and define α �= 1 +
∑n−1

i=0 |βi|2. Then,

σ1(A) =
√

1
2

(
α+
√
α2 − 4|β0|2

)
,

σ2(A) = · · · = σn−1(A) = 1,

σn(A) =
√

1
2

(
α−
√
α2 − 4|β0|2

)
.

In particular,
σ1(Nn) = · · · = σn−1(Nn) = 1

and
σmin(Nn) = 0.

(Proof: See [681, p. 523] or [802, 817].) (Remark: See Fact 6.3.28 and Fact
11.20.12.)
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Fact 5.11.31. Let β ∈ C. Then,

σmax

([
1 2β
0 1

])
= |β|+

√
1 + |β|2

and
σmin

([
1 2β
0 1

])
=
√

1 + |β|2 − |β|.

(Proof: See [897].) (Remark: Inequalities involving the singular values of block-
triangular matrices are given in [897].)

Fact 5.11.32. Let A ∈ Fn×m. Then,

σmax

([
I 2A
0 I

])
= σmax(A) +

√
1 + σ2

max(A).

(Proof: See [681, p. 116].)

Fact 5.11.33. For i = 1, . . . , l, let Ai ∈ Fni×mi. Then,

σmax[diag(A1, . . . , Al)] = max{σmax(A1), . . . , σmax(Al)}.

Fact 5.11.34. Let A ∈ Fn×m, and let r �= rankA. Then, for all i = 1, . . . , r,

λi(AA∗) = λi(A∗A) = σi(AA∗) = σi(A∗A) = σ2
i (A).

In particular,
σmax(AA∗) = σ2

max(A),

and, if n = m, then
σmin(AA∗) = σ2

min(A).

Furthermore, for all i = 1, . . . , r,

σi(AA∗A) = σ3
i (A).

Fact 5.11.35. Let A ∈ Fn×n. Then, σmax(A) ≤ 1 if and only if A∗A ≤ I.

Fact 5.11.36. Let A ∈ Fn×n. Then, for all i = 1, . . . , n,

σi
(
AA
)

=
n∏
j=1

j �=n+1−i

σj(A).

(Proof: See Fact 4.10.7 and [1098, p. 149].)

Fact 5.11.37. Let A ∈ Fn×n. Then, σ1(A) = σn(A) if and only if there exist
λ ∈ F and a unitary matrix B ∈ Fn×n such that A = λB. (Proof: See [1098, pp.
149, 165].)

Fact 5.11.38. Let A ∈ Fn×n, and assume that A is idempotent. Then, the
following statements hold:

i) If σ is a singular value of A, then either σ = 0 or σ ≥ 1.

ii) If A �= 0, then σmax(A) ≥ 1.
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iii) σmax(A) = 1 if and only if A is a projector.

iv) If 1 ≤ rankA ≤ n− 1, then

σmax(A) = σmax(A⊥).

v) If A �= 0, then

σmax(A) = σmax(A+A∗ − I) = σmax(A+A∗)− 1

and
σmax(I − 2A) = σmax(A) + [σ2

max(A)− 1]1/2.

(Proof: See [537, 723, 744]. Statement iv) is given in [536, p. 61] and follows from
Fact 5.11.39.) (Problem: Use Fact 5.9.26 to prove iv).)

Fact 5.11.39. Let A ∈ Fn×n, assume that A is idempotent, and assume that
1 ≤ rankA ≤ n− 1. Then,

σmax(A) = σmax(A+A∗ − I) =
1

sin θ
,

where θ ∈ (0, π/2] is defined by

cos θ = max{|x∗y| : (x, y) ∈ R(A)×N(A) and x∗x = y∗y = 1}.
(Proof: See [537, 744].) (Remark: θ is the minimal principal angle. See Fact 2.9.19
and Fact 5.12.17.) (Remark: Note that N(A) = R(A⊥). See Fact 3.12.3.) (Remark:
This result is due to Ljance.) (Remark: This result yields statement iii) of Fact
5.11.38.) (Remark: See Fact 10.9.18.)

Fact 5.11.40. Let A ∈ Rn×n, where n ≥ 2, be the tridiagonal matrix

A �=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1 c1 0 · · · 0 0

a1 b2 c2 · · · 0 0

0 a2 b3
. . . 0 0

...
...

. . . . . . . . .
...

0 0 0
. . . bn−1 cn−1

0 0 0 · · · an−1 bn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and assume that, for all i = 1, . . . , n − 1, aici > 0 Then, A is simple, and every
eigenvalue of A is real. Hence, rankA ≥ n−1. (Proof: SAS−1 is symmetric, where
S �= diag(d1, . . . , dn), d1

�= 1, and di+1
�= (ci/ai)1/2di for all i = 1, . . . , n −1. For a

proof of the fact that A is simple, see [481, p. 198].) (Remark: See Fact 5.11.41.)
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Fact 5.11.41. Let A ∈ Rn×n, where n ≥ 2, be the tridiagonal matrix

A
�=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1 c1 0 · · · 0 0

a1 b2 c2 · · · 0 0

0 a2 b3
. . . 0 0

...
...

. . . . . . . . .
...

0 0 0
. . . bn−1 cn−1

0 0 0 · · · an−1 bn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and assume that, for all i = 1, . . . , n−1, aici �= 0. Then, A is reducible. Furthermore,
let k+ and k− denote, respectively, the number of positive and negative numbers
in the sequence

1, a1c1, a1a2c1c2, . . . , a1a2 · · · an−1c1c2 · · · cn−1.

Then, A has at least |k+−k−| distinct real eigenvalues, of which at least max{0, n−
3 min{k+, k−}} are simple. (Proof: See [1376].) (Remark: Note that k+ + k− = n
and |k+ − k−| = n− 2 min{k+, k−}.) (Remark: This result yields Fact 5.11.40 as a
special case.)

Fact 5.11.42. Let A ∈ R
n×n be the tridiagonal matrix

A �=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0

n−1 0 2 0

0 n− 2 0
. . .

. . . . . . . . . . . .
. . . . . . 0 n− 2 0

0
. . . 2 0 n−1

0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Then,

χA(s) =
n∏
i=1

[s− (n+ 1− 2i)].

Hence,

spec(A) =

{{n−1,−(n−1), . . . , 1,−1}, n even,

{n−1,−(n−1), . . . , 2,−2, 0}, n odd.

(Proof: See [1260].)
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Fact 5.11.43. Let A ∈ Rn×n, where n ≥ 1, be the tridiagonal, Toeplitz matrix

A
�=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b c 0 · · · 0 0

a b c · · · 0 0

0 a b
. . . 0 0

...
...

. . . . . . . . .
...

0 0 0
. . . b c

0 0 0 · · · a b

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and assume that ac > 0. Then,

spec(A) =
{
b+ 2

√
ac cos

iπ

n+ 1
: i = 1, . . . , n

}
.

(Remark: See [681, p. 522].) (Remark: See Fact 3.20.7.)

Fact 5.11.44. Let A ∈ Rn×n, where n ≥ 1, be the tridiagonal, Toeplitz matrix

A
�=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1/2 0 · · · 0 0

1/2 0 1/2 · · · 0 0

0 1/2 0
. . . 0 0

...
...

. . . . . . . . .
...

0 0 0
. . . 0 1/2

0 0 0 · · · 1/2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Then,

spec(A) =
{

cos
iπ

n+ 1
: i = 1, . . . , n

}
,

and, for i = 1, . . . , n, associated mutually orthogonal eigenvectors satisfying ‖vi‖2 =
1 are, respectively,

vi =
√

2
n+1

⎡
⎢⎢⎢⎢⎣

sin iπ
n+1

sin 2iπ
n+1
...

sin niπ
n+1

⎤
⎥⎥⎥⎥⎦.

(Remark: See [822].)

Fact 5.11.45. Let A ∈ Fn×n, and assume that A has real eigenvalues. Then,

1
n trA−

√
n−1
n

[
trA2 − 1

n (trA)2
] ≤ λmin(A)

≤ 1
n trA−

√
1

n2−n
[
trA2 − 1

n(trA)2
]

≤ 1
n trA+

√
1

n2−n
[
trA2 − 1

n(trA)2
]

≤ λmax(A)

≤ 1
n trA+

√
n−1
n

[
trA2 − 1

n (trA)2
]
.
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Furthermore, for all i = 1, . . . , n,∣∣λi(A) − 1
n trA

∣∣ ≤√n−1
n

[
trA2 − 1

n (trA)2
]
.

Finally, if n = 2, then

1
n trA−

√
1
ntrA2 − 1

n2 (trA)2 = λmin(A) ≤ λmax(A) = 1
n trA+

√
1
ntrA2 − 1

n2 (trA)2.

(Proof: See [1448, 1449].) (Remark: These inequalities are related to Fact 1.15.12.)

Fact 5.11.46. Let A ∈ Fn×n, and let μ(A) �= min{|λ| : λ ∈ spec(A)}. Then,

1
n |trA| −

√
n−1
n (trAA∗ − 1

n |trA|2) ≤ μ(A) ≤
√

1
n trAA∗

and
1
n |trA| ≤ sprad(A) ≤ 1

n |trA|+
√

n−1
n (trAA∗ − 1

n |trA|2).
(Proof: See Theorem 3.1 of [1448].)

Fact 5.11.47. Let A ∈ Fn×n, where n ≥ 2, be the bidiagonal matrix

A
�=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 b1 0 · · · 0 0

0 a2 b2 · · · 0 0

0 0 a3
. . . 0 0

...
...

. . . . . . . . .
...

0 0 0
. . . an−1 bn−1

0 0 0 · · · 0 an

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and assume that a1, . . . , an, b1, . . . , bn−1 are nonzero. Then, the following state-
ments hold:

i) The singular values of A are distinct.

ii) If B ∈ Fn×n is bidiagonal and |B| = |A|, then A and B have the same
singular values.

iii) If B ∈ Fn×n is bidiagonal, |A| ≤ |B|, and |A| �= |B|, then σmax(A) <
σmax(B).

iv) If B ∈ Fn×n is bidiagonal, |I ◦ A| ≤ |I ◦ B|, and |I ◦A| �= |I ◦B|, then
σmin(A) < σmin(B).

v) If B ∈ Fn×n is bidiagonal, |Isup ◦A| ≤ |Isup ◦B|, and |Isup ◦A| �= |Isup ◦B|,
where Isup denotes the matrix all of whose entries on the superdiagonal are
1 and are 0 otherwise, then σmin(B) < σmin(A).

(Proof: See [981, p. 17-5].)
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5.12 Facts on Eigenvalues and Singular Values for Two or More
Matrices

Fact 5.12.1. Let A ∈ Fn×n and B ∈ Fn×m, let r �= rankB, and define
A

�=
[
A B
B∗ 0

]
. Then, ν−(A) ≥ r, ν0(A) ≥ 0, and ν+(A) ≥ r. If, in addition, n = m

and B is nonsingular, then InA =
[
n 0 n

]T
. (Proof: See [717].) (Remark: See

Proposition 5.6.6.)

Fact 5.12.2. Let A,B ∈ Fn×n. Then,

sprad(A+B) ≤ σmax(A+B) ≤ σmax(A) + σmax(B).

If, in addition, A and B are Hermitian, then

sprad(A+B) = σmax(A+B) ≤ σmax(A) + σmax(B) = sprad(A) + sprad(B)

and
λmin(A) + λmin(B) ≤ λmin(A+B) ≤ λmax(A+B) ≤ λmax(A) + λmax(B).

(Proof: Use Lemma 8.4.3 for the last string of inequalities.) (Remark: See Fact
5.11.5.)

Fact 5.12.3. Let A,B ∈ Fn×n, and let λ be an eigenvalue of A+B. Then,
1
2λmin(A∗ +A) + 1

2λmin(B∗ +B) ≤ Reλ ≤ 1
2λmax(A∗ +A) + 1

2λmax(B∗ +B).

(Proof: See [311, p. 18].) (Remark: See Fact 5.11.21.)

Fact 5.12.4. Let A,B ∈ F
n×n be normal, and let mspec(A) = {λ1, . . . , λn}

and mspec(B) = {μ1, . . . , μn}. Then,

min Re
n∑
i=1

λiμσ(i) ≤ Re trAB ≤ max Re
n∑
i=1

λiμσ(i),

where “max” and “min” are taken over all permutations σ of the eigenvalues of B.
Now, assume that A and B are Hermitian. Then, trAB is real, and

n∑
i=1

λi(A)λn−i+1(B) ≤ trAB ≤
n∑
i=1

λi(A)λi(B).

Furthermore, the last inequality is an identity if and only if there exists a unitary
matrix S ∈ Fn×n such that A = Sdiag[λ1(A), . . . , λn(A)]S∗ and B =
Sdiag[λ1(B), . . . , λn(B)]S∗. (Proof: See [957]. For the second string of inequali-
ties, use Fact 1.16.4. For the last statement, see [239, p. 10] or [891].) (Remark:
The upper bound for trAB is due to Fan.) (Remark: See Fact 5.12.5, Fact 5.12.8,
Proposition 8.4.13, Fact 8.12.28, and Fact 8.18.18.)

Fact 5.12.5. Let A,B ∈ F
n×n, and assume that B is Hermitian. Then,

n∑
i=1

λi[12 (A+A∗)]λn−i+1(B) ≤ Re trAB ≤
n∑
i=1

λi[12 (A+A∗)]λi(B).

(Proof: Apply the second string of inequalities in Fact 5.12.4.) (Remark: For A,B
real, these inequalities are given in [837]. The complex case is given in [871].) (See
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Proposition 8.4.13 for the case in which B is positive semidefinite.)

Fact 5.12.6. Let A ∈ Fn×m and B ∈ Fm×n, and let r �= min{rankA, rankB}.
Then,

|trAB| ≤
r∑
i=1

σi(A)σi(B).

(Proof: See [971, pp. 514, 515] or [1098, p. 148].) (Remark: Applying Fact 5.12.4
to
[

0 A
A∗ 0

]
and
[

0 B∗
B 0

]
and using Proposition 5.6.6 yields the weaker result

|Re trAB| ≤
r∑
i=1

σi(A)σi(B).

See [239, p. 14].) (Remark: This result is due to Mirsky.) (Remark: See Fact
5.12.7.) (Remark: A generalization is given by Fact 9.14.3.)

Fact 5.12.7. Let A,B ∈ F
n×n, and assume that B is positive semidefinite.

Then,
|trAB| ≤ σmax(A)trB.

(Proof: Apply Fact 5.12.6.) (Remark: A generalization is given by Fact 9.14.4.)

Fact 5.12.8. Let A,B ∈ Rn×n, assume that B is symmetric, and define C �=
1
2 (A+AT). Then,

λmin(C)trB−λmin(B)[nλmin(C)− trA]

≤ trAB ≤ λmax(C)trB −λmax(B)[nλmax(C)− trA].

(Proof: See [468].) (Remark: See Fact 5.12.4, Proposition 8.4.13, and Fact 8.12.28.
Extensions are given in [1071].)

Fact 5.12.9. Let A,B,Q, S1, S2 ∈ Rn×n, assume that A and B are symmetric,
assume that Q, S1, and S2 are orthogonal, assume that ST

1AS1 and ST
2BS2 are

diagonal with the diagonal entries arranged in nonincreasing order, and define the
orthogonal matrices Q1, Q2 ∈ Rn×n by Q1

�= S1revdiag(±1, . . . ,±1)ST
1 and Q2

�=
S2diag(±1, . . . ,±1)ST

2 . Then,

trAQ1BQ
T
1 ≤ trAQBQT ≤ trAQ2BQ

T
2 .

(Proof: See [156, 891].) (Remark: See Fact 5.12.8.)

Fact 5.12.10. Let A1, . . . , Ak, B1, . . . , Bk ∈ Fn×n, and assume that A1, . . . , Ak
are unitary. Then,

|trA1B1 · · ·AkBk| ≤
n∑
i=1

σi(B1) · · ·σi(Bk).

(Proof: See [971, p. 516].) (Remark: This result is due to Fan.) (Remark: See
Fact 5.12.9.)

Fact 5.12.11. Let A,B ∈ Rn×n, and assume that AB = BA. Then,

sprad(AB) ≤ sprad(A) sprad(B)
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and
sprad(A+B) ≤ sprad(A) + sprad(B).

(Proof: Use Fact 5.17.4.) (Remark: If AB �= BA, then both of these inequalities
may be violated. Consider A = [ 0 1

0 0 ] and B = [ 0 0
1 0 ].)

Fact 5.12.12. Let A,B ∈ Cn×n, assume that A and B are normal, and let
mspec(A) = {λ1, . . . , λn}ms and mspec(B) = {μ1, . . . , μn}ms. Then,

| det(A+B)| ≤ min

⎧⎨
⎩

n∏
i=1

max
j=1,...,n

|λi + μj |,
n∏
j=1

max
i=1,...,n

|λi + μj |
⎫⎬
⎭.

(Proof: See [1110].) (Remark: Equality is discussed in [161].) (Remark: See Fact
9.14.18.)

Fact 5.12.13. Let A ∈ Fn×m and B ∈ Fn×m. Then,

det(ABB∗A∗) ≤
[
m∏
i=1

σi(B)

]
det(AA∗).

(Proof: See [447, p. 218].)

Fact 5.12.14. Let A,B,C ∈ Fn×n, assume that spec(A) ∩ spec(B) = ∅, and
assume that [A + B,C] = 0 and [AB,C] = 0. Then, [A,C] = [B,C] = 0. (Proof:
The result follows from Corollary 7.2.5.) (Remark: This result is due to Embry.
See [217].)

Fact 5.12.15. Let A,B ∈ Fn×n, and assume that A and B are projectors.
Then,

spec(AB) ⊂ [0, 1]

and
spec(A−B) ⊂ [−1, 1].

(Proof: See [38], [536, p. 53], or [1098, p. 147].) (Remark: The first result is due
to Afriat.)

Fact 5.12.16. Let A,B ∈ Fn×n, and assume that A and B are projectors.
Then, the following statements are equivalent:

i) AB is a projector.

ii) spec(A+B) ⊂ {0} ∪ [1,∞).

iii) spec(A−B) ⊂ {−1, 0, 1}.
(Proof: See [537, 598].) (Remark: See Fact 3.13.20 and Fact 6.4.23.)

Fact 5.12.17. Let A,B ∈ Fn×n, assume that A and B are nonzero projectors,
and define the minimal principal angle θ ∈ [0, π/2] by

cos θ = max{|x∗y| : (x, y) ∈ R(A)× R(B) and x∗x = y∗y = 1}.
Then, the following statements hold:
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i) σmax(AB) = σmax(BA) = cos θ.

ii) σmax(A+B) = 1 + σmax(AB) = 1 + cos θ.

iii) 1 ≤ σmax(AB) + σmax(A−B).

iv) If σmax(A−B) < 1, then rankA = rankB.

v) θ > 0 if and only if R(A) ∩R(B) = {0}.
Furthermore, the following statements are equivalent:

vi) A−B is nonsingular.

vii) R(A) and R(B) are complementary subspaces.

viii) σmax(A+B − I) < 1.

Now, assume that A−B is nonsingular. Then, the following statements hold:

ix) σmax(AB) < 1.

x) σmax[(A−B)−1] = 1√
1−σ2

max(AB)
= 1/sin θ.

xi) σmin(A−B) = sin θ.

xii) σ2
min(A−B) + σ2

max(AB) = 1.

xiii) I −AB is nonsingular.

xiv) If rankA = rankB, then σmax(A−B) = sin θ.

(Proof: Statement i) is given in [744]. Statement ii) is given in [537]. Statement
iii) follows from the first inequality in Fact 8.18.11. For iv), see [447, p. 195] or
[560, p. 389]. Statement v) is given in [560, p. 393]. Fact 3.13.24 shows that vi)
and vii) are equivalent. Statement viii) is given in [272]; see also [536, p. 236].
Statement xiv) follows from [1230, pp. 92, 93].) (Remark: Additional conditions
for the nonsingularity of A−B are given in Fact 3.13.24.) (Remark: See Fact 2.9.19
and Fact 5.11.39.) (Remark: See Fact 5.12.18.)

Fact 5.12.18. Let A ∈ Fn×n, assume that A is idempotent, and let P,Q ∈
F
n×n, where P is the projector onto R(A) and Q is the projector onto N(A). Then,

the following statements hold:

i) P −Q is nonsingular.

ii) (P −Q)−1 = A+A∗ − I = A−A∗
⊥.

iii) σmax(A) = 1√
1−σ2

max(PQ)
= σmax[(P −Q)−1] = σmax(A+A∗ − I).

iv) σmax(A) = 1/sin θ, where θ is the minimal principal angle θ ∈ [0, π/2]
defined by

cos θ = max{|x∗y| : (x, y) ∈ R(P )× R(Q) and x∗x = y∗y = 1}.
v) σ2

min(P −Q) = 1− σ2
max(PQ).

vi) σmax(PQ) = σmax(QP ) = σmax(P +Q− I) < 1.

(Proof: See [1115] and Fact 5.12.17. The nonsingularity of P −Q follows from Fact
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3.13.24. Statement ii) is given by Fact 3.13.24 and Fact 6.3.25. The first identity in
iii) is given in [272]. See also [537].) (Remark: A∗

⊥ is the idempotent matrix onto
R(A)⊥ along N(A)⊥. See Fact 3.12.3.) (Remark: P = AA+ and Q = I −A+A.)

Fact 5.12.19. Let A,B ∈ Fn×n, and assume that A and B are idempotent.
Then, A − B is idempotent if and only if A − B is group invertible and every
eigenvalue of A−B is nonnegative. (Proof: See [649].) (Remark: This result is due
to Makelainen and Styan.) (Remark: See Fact 3.12.29.) (Remark: Conditions for
a matrix to be expressible as a difference of idempotents are given in [649].)

Fact 5.12.20. Let A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rm×m, define A
�=[

A B
BT C

] ∈ R(n+m)×(n+m), and assume that A is symmetric. Then,

λmin(A) + λmax(A) ≤ λmax(A) + λmax(C).

(Proof: See [223, p. 56].)

Fact 5.12.21. Let M ∈ Rr×r, assume that M is positive definite, let C,K ∈
Rr×r, assume that C and K are positive semidefinite, and consider the equation

Mq̈ + Cq̇ +Kq = 0.

Then, x(t) �=
[
q(t)
q̇(t)

]
satisfies ẋ(t) = Ax(t), where A is the 2r × 2r matrix

A
�=

[
0 I

−M−1K −M−1C

]
.

Furthermore, the following statements hold:

i) A, K, and M satisfy
detA =

detK
detM

.

ii) A and K satisfy
rankA = r + rankK.

iii) A is nonsingular if and only if K is positive definite. In this case,

A−1 =

[
−K−1C −K−1M

I 0

]
.

iv) Let λ ∈ C. Then, λ ∈ spec(A) if and only if det(λ2M + λC +K) = 0.

v) If λ ∈ spec(A), Reλ = 0, and Imλ �= 0, then λ is semisimple.

vi) mspec(A) ⊂ CLHP.

vii) If C = 0, then spec(A) ⊂ jR.
viii) If C and K are positive definite, then spec(A) ⊂ OLHP.

ix) x̂(t) �=
[

1√
2
K1/2q(t)

1√
2
M1/2q̇(t)

]
satisfies ẋ(t) = Âx(t), where

Â
�=

[
0 K1/2M−1/2

−M−1/2K1/2 −M−1/2CM−1/2

]
.
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If, in addition, C = 0, then Â is skew symmetric.

x) x̂(t) �=
[
M1/2q(t)

M1/2q̇(t)

]
satisfies ẋ(t) = Âx(t), where

Â
�=

[
0 I

−M−1/2KM−1/2 −M−1/2CM−1/2

]
.

If, in addition, C = 0, then Â is Hamiltonian.

(Remark: M,C, and K are mass, damping, and stiffness matrices, respectively. See
[186].) (Remark: See Fact 11.18.38.) (Problem: Prove v).)

Fact 5.12.22. Let A,B ∈ Rn×n, and assume that A and B are positive
semidefinite. Then, every eigenvalue λ of

[
0 B

−A 0

]
satisfies Reλ = 0. (Proof: Square

this matrix.) (Problem: What happens if A and B have different dimensions?) In
addition, let C ∈ Rn×n, and assume that C is (positive semidefinite, positive defi-
nite). Then, every eigenvalue of

[
0 A

−B −C
]

satisfies (Reλ ≤ 0, Reλ < 0). (Problem:
Consider also

[−C A
−B −C

]
and
[−C A
−A −C

]
.)

5.13 Facts on Matrix Pencils

Fact 5.13.1. Let A,B ∈ Fn×n, assume that PA,B is a regular pencil, let
S ⊆ F

n, assume that S is a subspace, let k �= dim S, let S ∈ F
n×k, and assume that

R(S) = S. Then, the following statements are equivalent:

i) dim(AS +BS) = dim S.

ii) There exists a matrix M ∈ Fk×k such that AS = BSM.

(Proof: See [872, p. 144].) (Remark: S is a deflating subspace of PA,B. This result
generalizes Fact 2.9.25.)

5.14 Facts on Matrix Eigenstructure

Fact 5.14.1. Let A ∈ Fn×n. Then, rankA = 1 if and only if gmultA(0) =
n −1. In this case, mspec(A) = {trA, 0, . . . , 0}ms. (Proof: Use Proposition 5.5.3.)
(Remark: See Fact 2.10.19.)

Fact 5.14.2. Let A ∈ Fn×n, let λ ∈ spec(A), assume that λ is cyclic, let
i ∈ {1, . . . , n} be such that rank (A− λI)({i}∼,{1,...,n}) = n− 1, and define x ∈ Cn

by

x
�=

⎡
⎢⎢⎢⎢⎣

det(A− λI)[i;1]
− det(A− λI)[i;2]

...

(−1)n+1det(A− λI)[i;n]

⎤
⎥⎥⎥⎥⎦.

Then, x is an eigenvector of A associated with λ. (Proof: See [1339].)
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Fact 5.14.3. Let n ≥ 2, x, y ∈ Fn, define A �= xyT, and assume that rankA =
1, that is, A is nonzero. Then, the following statements are equivalent:

i) A is semisimple.

ii) yTx �= 0.

iii) trA �= 0.

iv) A is group invertible.

v) indA = 1.

vi) amultA(0) = n−1.

Furthermore, the following statements are equivalent:

vii) A is defective.

viii) yTx = 0.

ix) trA = 0.

x) A is not group invertible.

xi) indA = 2.

xii) A is nilpotent.

xiii) amultA(0) = n.

xiv) spec(A) = {0}.
(Remark: See Fact 2.10.19.)

Fact 5.14.4. Let A ∈ Fn×n. Then, the following statements are equivalent:

i) A is group invertible.

ii) R(A) = R
(
A2
)
.

iii) indA ≤ 1.

iv) rankA =
∑r

i=1 amultA(λi), where λ1, . . . , λr are the nonzero eigenvalues
of A.

Fact 5.14.5. Let A ∈ Fn×n, and assume that A is diagonalizable over F.
Then, AT, A, A∗, and AA are diagonalizable. If, in addition, A is nonsingular, then
A−1 is diagonalizable. (Proof: See Fact 2.16.10 and Fact 3.7.10.)

Fact 5.14.6. Let A ∈ Fn×n, assume that A is diagonalizable over F with
eigenvalues λ1, . . . , λn, and let B �= diag(λ1, . . . , λn). If, x1, . . . , xn ∈ Fn are linearly
independent eigenvectors of A associated with λ1, . . . , λn, respectively, then A =
SBS−1, where S �=

[
x1 · · · xn

]
. Conversely, if S ∈ F

n×n is nonsingular and
A = SBS−1, then, for all i = 1, . . . , n, coli(S) is an associated eigenvector.

Fact 5.14.7. Let A ∈ Fn×n, let S ∈ Fn×n, assume that S is nonsingular, let
λ ∈ C, and assume that row1(S−1AS) = λeT1. Then, λ ∈ spec(A), and col1(S) is an
associated eigenvector.
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Fact 5.14.8. Let A ∈ Cn×n. Then, there exist v1, . . . , vn ∈ Cn such that the
following statements hold:

i) v1, . . . , vn ∈ C
n are linearly independent.

ii) For each k × k Jordan block of A associated with λ ∈ spec(A), there exist
vi1 , . . . , vik such that

Avi1 = λvi1 ,

Avi2 = λvi2 + vi1 ,

...
Avik = λvik + vik−1 .

iii) Let λ and vi1 , . . . , vik be given by ii). Then,

span {vi1 , . . . , vik} = N[(λI −A)k].

(Remark: v1, . . . , vn are generalized eigenvectors of A.) (Remark: (vi1 , . . . , vik) is a
Jordan chain of A associated with λ. See [867, pp. 229–231].) (Remark: See Fact
11.13.7.)

Fact 5.14.9. Let A ∈ Fn×n. Then, A is cyclic if and only if there exists a
vector b ∈ Fn such that

[
b Ab · · · An−1b

]
is nonsingular. (Proof: See Fact

12.20.13.) (Remark: (A, b) is controllable. See Corollary 12.6.3.)

Fact 5.14.10. Let A ∈ Fn×n, and define the positive integer m by

m �= max
λ∈spec(A)

gmultA(λ).

Then, m is the smallest integer such that there exists B ∈ Fn×m such that
rank

[
B AB · · · An−1B

]
= n. (Proof: See Fact 12.20.13.) (Remark: (A,B)

is controllable. See Corollary 12.6.3.)

Fact 5.14.11. Let A ∈ Rn×n. Then, A is cyclic and semisimple if and only if
A is simple.

Fact 5.14.12. Let A = revdiag(a1, . . . , an) ∈ Rn×n. Then, A is semisimple if
and only if, for all i = 1, . . . , n, ai and an+1−i are either both zero or both nonzero.
(Proof: See [626, p. 116], [804], or [1098, pp. 68, 86].)

Fact 5.14.13. Let A ∈ Fn×n. Then, A has at least m real eigenvalues and m
associated linearly independent eigenvectors if and only if there exists a positive-
semidefinite matrix S ∈ Fn×n such that rankS = m and AS = SA∗. (Proof: See
[1098, pp. 68, 86].) (Remark: See Proposition 5.5.12.) (Remark: This result is due
to Drazin and Haynsworth.)

Fact 5.14.14. Let A ∈ F
n×n, assume that A is normal, and let mspec(A) =

{λ1, . . . , λn}ms. Then, there exist vectors x1, . . . , xn ∈ Cn such that x∗ixj = δij for
all i, j = 1, . . . , n and

A =
n∑
i=1

λixix
∗
i.
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(Remark: This result is a restatement of Corollary 5.4.4.)

Fact 5.14.15. Let A∈Fn×n, and let mspec(A) = {λ1, . . . , λn}ms, where |λ1| ≥
· · · ≥ |λn|. Then, the following statements are equivalent:

i) A is normal.

ii) For all i = 1, . . . , n, |λi| = σi(A).

iii)
∑n

i=1 |λi|2 =
∑n

i=1 σ
2
i (A).

iv) There exists p ∈ F[s] such that A = p(A∗).

v) Every eigenvector of A is also an eigenvector of A∗.

vi) AA∗ −A∗A is either positive semidefinite or negative semidefinite.

vii) For all x ∈ Fn, x∗A∗Ax = x∗AA∗x.

viii) For all x, y ∈ Fn, x∗A∗Ay = x∗AA∗y.

In this case,
sprad(A) = σmax(A).

(Proof: See [589] or [1098, p. 146].) (Remark: See Fact 9.11.2 and Fact 9.8.13.)

Fact 5.14.16. Let A ∈ Fn×n. Then, the following statements are equivalent:

i) A is (simple, cyclic, derogatory, semisimple, defective, diagonalizable over
F).

ii) There exists α ∈ F such that A+αI is (simple, cyclic, derogatory, semisim-
ple, defective, diagonalizable over F).

iii) For all α ∈ F, A + αI is (simple, cyclic, derogatory, semisimple, defective,
diagonalizable over F).

Fact 5.14.17. Let x, y ∈ Fn, assume that xTy �= 1, and define the elementary
matrix A �= I−xyT. Then, A is semisimple if and only if either xyT = 0 or xTy �= 0.
(Remark: Use Fact 5.14.3 and Fact 5.14.16.)

Fact 5.14.18. Let A ∈ Fn×n, and assume that A is nilpotent. Then, A is
nonzero if and only if A is defective.

Fact 5.14.19. Let A ∈ Fn×n, and assume that A is either involutory or skew
involutory. Then, A is semisimple.

Fact 5.14.20. Let A ∈ Rn×n, and assume that A is involutory. Then, A is
diagonalizable over R.

Fact 5.14.21. Let A ∈ Fn×n, assume that A is semisimple, and assume that
A3 = A2. Then, A is idempotent.

Fact 5.14.22. Let A ∈ Fn×n. Then, A is cyclic if and only if every matrix
B ∈ Fn×n satisfying AB = BA is a polynomial in A. (Proof: See [711, p. 275].)
(Remark: See Fact 2.18.9, Fact 5.14.23, Fact 5.14.24, and Fact 7.5.2.)
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Fact 5.14.23. Let A ∈ Fn×n, assume that A is simple, let B ∈ Fn×n, and
assume that AB = BA. Then, B is a polynomial in A whose degree is not greater
than n− 1. (Proof: See [1490, p. 59].) (Remark: See Fact 5.14.22.)

Fact 5.14.24. Let A,B ∈ Fn×n. Then, B is a polynomial in A if and only if
B commutes with every matrix that commutes with A. (Proof: See [711, p. 276].)
(Remark: See Fact 4.8.13.) (Remark: See Fact 2.18.9, Fact 5.14.22, Fact 5.14.23,
and Fact 7.5.2.)

Fact 5.14.25. Let A,B ∈ Cn×n, assume that AB = BA, let x ∈ Cn be an
eigenvector of A with associated eigenvalue λ ∈ C, and assume that Bx �= 0. Then,
Bx is an eigenvector of A with associated eigenvalue λ ∈ C. (Proof: A(Bx) =
BAx = B(λx) = λ(Bx).)

Fact 5.14.26. Let A ∈ Cn×n, and let x ∈ Cn be an eigenvector of A with
associated eigenvalue λ. If A is nonsingular, then x is an eigenvector of AA with
associated eigenvalue (detA)/λ. If rankA = n−1, then x is an eigenvector of AA

with associated eigenvalue trAA or 0. Finally, if rankA ≤ n − 2, then x is an
eigenvector of AA with associated eigenvalue 0. (Proof: Use Fact 5.14.25 and the
fact that AAA = AAA. See [354].) (Remark: See Fact 2.16.8 or Fact 6.3.6.)

Fact 5.14.27. Let A,B ∈ C
n×n. Then, the following statements are equiva-

lent:

i) ∩n−1
k,l=1N([Ak, Bl]) �= {0}.

ii)
∑n−1

k,l=1[A
k, Bl]∗[Ak, Bl] is singular.

iii) A and B have a common eigenvector.

(Proof: See [547].) (Remark: This result is due to Shemesh.) (Remark: See Fact
5.17.1.)

Fact 5.14.28. Let A,B ∈ Cn×n, and assume that AB = BA. Then, there
exists a nonzero vector x ∈ Cn that is an eigenvector of both A and B. (Proof: See
[709, p. 51].)

Fact 5.14.29. Let A,B ∈F
n×n. Then, the following statements hold:

i) Assume that A and B are Hermitian. Then, AB is Hermitian if and only
if AB = BA.

ii) A is normal if and only if, for all C ∈ Fn×n, AC = CA implies that
A∗C = CA∗.

iii) Assume that B is Hermitian and AB = BA. Then, A∗B = BA∗.

iv) Assume that A and B are normal and AB = BA. Then, AB is normal.

v) Assume that A, B, and AB are normal. Then, BA is normal.

vi) Assume that A and B are normal and either A or B has the property that
distinct eigenvalues have unequal absolute values. Then, AB is normal if
and only if AB = BA.
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(Proof: See [358, 1428], [630, p. 157], and [1098, p. 102].)

Fact 5.14.30. Let A,B,C ∈ Fn×n, and assume that A and B are normal
and AC = CB. Then, A∗C = CB∗. (Proof: Consider [A 0

0 B ] and [ 0 C
0 0 ] in ii) of

Fact 5.14.29. See [627, p. 104] or [630, p. 321].) (Remark: This result is the
Putnam-Fuglede theorem.)

Fact 5.14.31. Let A,B ∈ Fn×n, and assume that A is dissipative and B is
range Hermitian. Then,

indB = indAB.

(Proof: See [189].)

Fact 5.14.32. Let A ∈ Fn×n, B ∈ Fn×m, and C ∈ Fm×m. Then,

max{indA, indC} ≤ ind
[
A B
0 C

]
≤ indA+ indC.

If C is nonsingular, then

ind
[
A B
0 C

]
= indA,

whereas, if A is nonsingular, then

ind
[
A B
0 C

]
= indC.

(Proof: See [265, 999].) (Remark: See Fact 6.6.13.) (Remark: The eigenstructure
of a partitioned Hamiltonian matrix is considered in Fact 12.23.1.)

Fact 5.14.33. Let A,B ∈ Rn×n, and assume that A and B are skew symmet-
ric. Then, there exists an orthogonal matrix S ∈ Rn×n such that

A = S

[
0(n−l)×(n−l) A12

−AT
12 A22

]
ST

and

B = S

[
B11 B12

−BT
12 0l×l

]
ST,

where l �= �n/2�. Consequently,

mspec(AB) = mspec
(−A12B

T
12

) ∪mspec
(−AT

12B12

)
,

and thus every nonzero eigenvalue of AB has even algebraic multiplicity. (Proof:
See [30].)

Fact 5.14.34. Let A,B ∈ Rn×n, and assume that A and B are skew symmet-
ric. If n is even, then there exists a monic polynomial p of degree n/2 such that
χAB(s) = p2(s) and p(AB) = 0. If n is odd, then there exists a monic polynomial
p(s) of degree (n − 1)/2 such that χAB(s) = sp2(s) and ABp(AB) = 0. Conse-
quently, if n is (even, odd), then χAB is (even, odd) and (every, every nonzero)
eigenvalue of AB has even algebraic multiplicity and geometric multiplicity of at
least 2. (Proof: See [418, 578].)
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Fact 5.14.35. Let q(t) denote the displacement of a mass m > 0 connected
to a spring k ≥ 0 and dashpot c ≥ 0 and subject to a force f(t). Then, q(t) satisfies

mq̈(t) + cq̇(t) + kq(t) = f(t)

or
q̈(t) +

c

m
q̇(t) +

k

m
q(t) =

1
m
f(t).

Now, define the natural frequency ωn
�=
√
k/m and, if k > 0, the damping ratio

ζ �= c/2
√
km to obtain

q̈(t) + 2ζωnq̇(t) + ω2
nq(t) =

1
m
f(t).

If k = 0, then set ωn = 0 and ζωn = c/2m. Next, define x1(t)
�= q(t) and x2(t)

�= q̇(t)
so that this equation can be written as[

ẋ1(t)
ẋ2(t)

]
=
[

0 1
−ω2

n −2ζωn

][
x1(t)
x2(t)

]
+
[

0
1/m

]
f(t).

The eigenvalues of the companion matrix Ac
�=
[

0 1
−ω2

n −2ζωn

]
are given by

mspec(Ac) =

⎧⎪⎨
⎪⎩
{−ζωn − jωd,−ζωn + jωd}ms, 0 ≤ ζ ≤ 1,{
(−ζ −

√
ζ2 −1)ωn, (−ζ +

√
ζ2 −1)ωn

}
, ζ > 1,

where ωd
�= ωn

√
1− ζ2 is the damped natural frequency. The matrix Ac has re-

peated eigenvalues in exactly two cases, namely,

mspec(Ac) =

{{0, 0}ms, ωn = 0,

{−ωn,−ωn}ms, ζ = 1.

In both of these cases the matrix Ac is defective. In the case ωn = 0, the matrix
Ac is also in Jordan form, while, in the case ζ = 1, it follows that Ac = SAJS

−1,

where S �=
[−1 0
ωn −1

]
and AJ is the Jordan form matrix AJ

�=
[−ωn 1

0 −ωn

]
. If Ac is not

defective, that is, if ωn �= 0 and ζ �= 1, then the Jordan form AJ of Ac is given by

AJ
�=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[
−ζωn + jωd 0

0 −ζωn − jωd

]
, 0 ≤ ζ < 1, ωn �= 0,

⎡
⎣
(
−ζ −

√
ζ2 −1

)
ωn 0

0
(
−ζ +

√
ζ2 −1

)
ωn

⎤
⎦, ζ > 1, ωn �= 0.

In the case 0 ≤ ζ < 1 and ωn �= 0, define the real normal form

An
�=
[ −ζωn ωd

−ωd −ζωn

]
.

The matrices Ac, AJ, and An are related by the similarity transformations

Ac = S1AJS
−1
1 = S2AnS

−1
2 , AJ = S3AnS

−1
3 ,
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where

S1
�=

[
1 1

−ζωn + jωd −ζωn − jωd

]
, S−1

1 =
j

2ωd

[
−ζωn − jωd −1

ζωn − jωd 1

]
,

S2
�=

1
ωd

[
1 0
−ζωn ωd

]
, S−1

2 =
[
ωd 0
ζωn 1

]
,

S3
�=

1
2ωd

[
1 −j
1 j

]
, S−1

3 = ωd

[
1 1
j −j

]
.

In the case ζ > 1 and ωn �= 0, the matrices Ac and AJ are related by

Ac = S4AJS
−1
4 ,

where

S4
�=

[
1 1

−ζωn + jωd −ζωn − jωd

]
, S−1

4 =
j

2ωd

[
−ζωn − jωd −1

ζωn − jωd 1

]
.

Finally, define the energy-coordinates matrix

Ae
�=
[

0 ωn

−ωn −2ζωn

]
.

Then, Ae = S5AcS
−1
5 , where

S5
�=
√

m
2

[
1 0
0 1/ωn

]
.

(Remark: m and k are not necessarily integers here.)

5.15 Facts on Matrix Factorizations

Fact 5.15.1. Let A ∈ Fn×n. Then, A is normal if and only if there exists a
unitary matrix S ∈ Fn×n such that A∗ = AS. (Proof: See [1098, pp. 102, 113].)

Fact 5.15.2. Let A ∈ Cn×n. Then, there exists a nonsingular matrix S ∈
Cn×n such that SAS−1 is symmetric. (Proof: See [709, p. 209].) (Remark: The
symmetric matrix is a complex symmetric Jordan form.) (Remark: See Corollary
5.3.8.) (Remark: The coefficient of the last matrix in [709, p. 209] should be j/2.)

Fact 5.15.3. Let A ∈ Cn×n, and assume that A2 is normal. Then, the follow-
ing statements hold:

i) There exists a unitary matrix S ∈ Cn×n such that SAS−1 is symmetric.

ii) There exists a symmetric unitary matrix S ∈ Cn×n such that AT = SAS−1.

(Proof: See [1375].)

Fact 5.15.4. Let A ∈ F
n×n, and assume that A is nonsingular. Then, A−1

and A∗ are similar if and only if there exists a nonsingular matrix B ∈ Fn×n such
that A = B−1B∗. Furthermore, A is unitary if and only if there exists a normal,
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nonsingular matrix B ∈ Fn×n such that A = B−1B∗. (Proof: See [398]. Sufficiency
in the second statement follows from Fact 3.11.4.)

Fact 5.15.5. Let A ∈ Fm×m and B ∈ Fn×n. Then, there exist matrices
C ∈ Fm×n and D ∈ Fn×m such that A = CD and B = DC if and only if the
following statements hold:

i) The Jordan blocks associated with nonzero eigenvalues are identical in A
and B.

ii) Let n1 ≥ n2 ≥ · · · ≥ nr denote the orders of the Jordan blocks of A
associated with 0 ∈ spec(A), and let m1 ≥ m2 ≥ · · · ≥ mr denote the
orders of the Jordan blocks of B associated with 0 ∈ spec(B), where ni = 0
or mi = 0 as needed. Then, |ni −mi| ≤ 1 for all i = 1, . . . , r.

(Proof: See [771].) (Remark: See Fact 5.15.6.)

Fact 5.15.6. Let A,B ∈ Fn×n, and assume that A and B are nonsingular.
Then, A and B are similar if and only if there exist nonsingular matrices C,D ∈
Fn×n such that A = CD and B = DC. (Proof: Sufficiency follows from Fact 5.10.11.
Necessity is a special case of Fact 5.15.5.)

Fact 5.15.7. Let A,B ∈ Fn×n, and assume that A and B are nonsingular.
Then, detA = detB if and only if there exist nonsingular matrices C,D,E ∈ Rn×n

such that A = CDE and B = EDC. (Remark: This result is due to Shoda and
Taussky-Todd. See [258].)

Fact 5.15.8. Let A ∈ Fn×n. Then, there exist matrices B,C ∈ Fn×n such that
B is unitary, C is upper triangular, and A = BC. If, in addition, A is nonsingular,
then there exist unique matrices B,C ∈ Fn×n such that B is unitary, C is upper
triangular with positive diagonal entries, and A = BC. (Proof: See [709, p. 112]
or [1129, p. 362].) (Remark: This result is the QR decomposition. The orthogonal
matrix B is constructed as a product of elementary reflectors.)

Fact 5.15.9. Let A ∈ Fn×m, and assume that rankA = m. Then, there exist
a unique matrix B ∈ Fn×m and a matrix C ∈ Fm×m such that B∗B = Im, C is
upper triangular with positive diagonal entries, and A = BC. (Proof: See [709, p.
15] or [1129, p. 206].) (Remark: C ∈ UT+(n). See Fact 3.21.5.) (Remark: This
factorization is a consequence of Gram-Schmidt orthonormalization.)

Fact 5.15.10. Let A ∈ Fn×n, let r �= rankA, and assume that the first r
leading principal subdeterminants of A are nonzero. Then, there exist matrices
B,C ∈ Fn×n such that B is lower triangular, C is upper triangular, and A = BC.
Either B or C can be chosen to be nonsingular. Furthermore, both B and C are
nonsingular if and only if A is nonsingular. (Proof: See [709, p. 160].) (Remark:
This result is the LU decomposition.) (Remark: All LU factorizations of a singular
matrix are characterized in [424].)
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Fact 5.15.11. Let θ ∈ (−π, π). Then,[
cos θ − sin θ
sin θ cos θ

]
=
[

1 −tan(θ/2)
0 1

][
1 0

sin θ 1

][
1 −tan(θ/2)
0 1

]
.

(Remark: This result is a ULU factorization involving three shear factors. The
matrix −I2 requires four factors. In general, all factors may be different. See
[1240, 1311].)

Fact 5.15.12. Let A ∈ Fn×n. Then, A is nonsingular if and only if A is the
product of elementary matrices. (Problem: How many factors are needed?)

Fact 5.15.13. Let A ∈ Fn×n, assume that A is a projector, and let r �= rankA.
Then, there exist nonzero vectors x1, . . . , xn−r ∈ Fn such that x∗ixj = 0 for all i �= j
and such that

A =
n−r∏
i=1

[
I − (x∗ixi)

−1xix
∗
i

]
.

(Remark: Every projector is the product of mutually orthogonal elementary projec-
tors.) (Proof: A is unitarily similar to diag(1, . . . , 1, 0, . . . , 0), which can be written
as the product of elementary projectors.)

Fact 5.15.14. Let A ∈ Fn×n. Then, A is a reflector if and only if there exist
m ≤ n nonzero vectors x1, . . . , xm ∈ Fn such that x∗ixj = 0 for all i �= j and such
that

A =
m∏
i=1

[
I − 2(x∗ixi)

−1xix
∗
i

]
.

In this case, m is the algebraic multiplicity of −1 ∈ spec(A). (Remark: Every
reflector is the product of mutually orthogonal elementary reflectors.) (Proof: A
is unitarily similar to diag(±1, . . . ,±1), which can be written as the product of
elementary reflectors.)

Fact 5.15.15. Let A ∈ Rn×n. Then, A is orthogonal if and only if there exist
m ∈ P and nonzero vectors x1, . . . , xm ∈ Rn such that detA = (−1)m and

A =
m∏
i=1

[
I − 2(xT

i xi)
−1xix

T
i

]
.

(Remark: Every orthogonal matrix is the product of elementary reflectors. This
factorization is a result of Cartan and Dieudonné. See [103, p. 24] and [1168, 1354].
The minimal number of factors is unsettled. See Fact 3.14.4 and Fact 3.9.5. The
complex case is open.)

Fact 5.15.16. Let A ∈ Rn×n, where n ≥ 2. Then, A is orthogonal and detA =
1 if and only if there exist m ∈ P such that 1 ≤ m ≤ n(n −1)/2, θ1, . . . , θm ∈ R,
and j1, . . . , jm, k1, . . . , km ∈ {1, . . . , n} such that

A =
m∏
i=1

P (θi, ji, ki),
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where

P (θ, j, k) �= In + [(cos θ)−1](Ej,j + Ek,k) + (sin θ)(Ej,k − Ek,j).
(Proof: See [471].) (Remark: P (θ, j, k) is a plane or Givens rotation. See Fact
3.9.5.) (Remark: Suppose that detA = −1, and let B ∈ Rn×n be an elementary
reflector. Then, AB ∈ SO(n). Therefore, the factorization given above holds with
an additional elementary reflector.) (Problem: Generalize this result to Cn×n.)
(Remark: See [887].)

Fact 5.15.17. Let A ∈ Fn×n. Then, A2∗A = A∗A2 if and only if there exist a
projector B ∈ Fn×n and a Hermitian matrix C ∈ Fn×n such that A = BC. (Proof:
See [1114].)

Fact 5.15.18. Let A ∈ R
n×n. Then, |detA| = 1 if and only if A is the product

of n+ 2 or fewer involutory matrices that have exactly one negative eigenvalue. In
addition, the following statements hold:

i) If n = 2, then 3 or fewer factors are needed.

ii) If A �= αI for all α ∈ R and detA = (−1)n, then n or fewer factors are
needed.

iii) If detA = (−1)n+1, then n+ 1 or fewer factors are needed.

(Proof: See [298, 1112].) (Remark: The minimal number of factors for a unitary
matrix A is given in [417].)

Fact 5.15.19. Let A ∈ Cn×n, and define r0
�= n and rk

�= rankAk for all
k = 1, 2, . . .. Then, there exists a matrix B ∈ Cn×n such that A = B2 if and only if
the sequence (rk − rk+1)∞k=0 does not contain two elements that are the same odd
integer and, if r0 − r1 is odd, then r0 + r2 ≥ 1 + 2r1. Now, assume that A ∈ Rn×n.
Then, there exists B ∈ R

n×n such that A = B2 if and only if the above condition
holds and, for every negative eigenvalue λ of A and for every positive integer k, the
Jordan form of A has an even number of k × k blocks associated with λ. (Proof:
See [711, p. 472].) (Remark: See Fact 11.18.36.) (Remark: For all l ≥ 2, A �= Nl
does not have a square root.) (Remark: Uniqueness is discussed in [769]. Square
roots of A that are functions of A are defined in [678].) (Remark: The principal
square root is considered in Theorem 10.6.1.) (Remark: mth roots are considered
in [329, 683, 1101, 1263].)

Fact 5.15.20. Let A ∈ Cn×n, and assume that A is group invertible. Then,
there exists B ∈ Cn×n such that A = B2.

Fact 5.15.21. Let A ∈ Fn×n, and assume that A is nonsingular and has no
negative eigenvalues. Furthermore, define (Pk)∞k=0 ⊂ Fn×n and (Qk)∞k=0 ⊂ Fn×n

by
P0

�= A, Q0
�= I,

and, for all k ≥ 1,
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Pk+1
�= 1

2

(
Pk +Q−1

k

)
,

Qk+1
�= 1

2

(
Qk + P−1

k

)
.

Then,
B �= lim

k→∞
Pk

exists, satisfies B2 = A, and is the unique square root of A satisfying spec(B) ⊂
ORHP. Furthermore,

lim
k→∞

Qk = A−1.

(Proof: See [397, 677].) (Remark: All indicated inverses exist.) (Remark: This
sequence is related to Newton’s iteration for the matrix sign function. See Fact
10.10.2.) (Remark: See Fact 8.9.32.)

Fact 5.15.22. Let A ∈ Fn×n, assume that A is positive semidefinite, and let
r �= rankA. Then, there exists B ∈ Fn×r such that A = BB∗.

Fact 5.15.23. Let A ∈ Fn×n, and let k ≥ 1. Then, there exists a unique
matrix B ∈ Fn×n such that

A = B(B∗B)k.

(Proof: See [1091].)

Fact 5.15.24. Let A ∈ Fn×n. Then, there exist symmetric matrices B,C ∈
F
n×n, one of which is nonsingular, such that A = BC. (Proof: See [1098, p. 82].)

(Remark: Note that⎡
⎣ β1 β2 1
β2 1 0
1 0 0

⎤
⎦
⎡
⎣ 0 1 0

0 0 1
−β0 −β1 −β2

⎤
⎦ =

⎡
⎣ −β0 0 0

0 β2 1
0 1 0

⎤
⎦

and use Theorem 5.2.3.) (Remark: This result is due to Frobenius. The identity
is a Bezout matrix factorization; see Fact 4.8.6. See [240, 241, 628].) (Remark: B
and C are symmetric for F = C.)

Fact 5.15.25. Let A ∈ Cn×n. Then, detA is real if and only if A is the product
of four Hermitian matrices. Furthermore, four is the smallest number of factors in
general. (Proof: See [1459].)

Fact 5.15.26. Let A ∈ Rn×n. Then, the following statements hold:

i) A is the product of two positive-semidefinite matrices if and only if A is
similar to a positive-semidefinite matrix.

ii) If A is nilpotent, then A is the product of three positive-semidefinite ma-
trices.

iii) If A is singular, then A is the product of four positive-semidefinite matrices.

iv) detA > 0 and A �= αI for all α ≤ 0 if and only if A is the product of four
positive-definite matrices.
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v) detA > 0 if and only if A is the product of five positive-definite matrices.

(Proof: [117, 628, 1458, 1459].) (Remark: See [1459] for factorizations of complex
matrices and operators.) (Example for v):[

−1 0
0 −1

]
=
[

2 0
0 1/2

][
5 7
7 10

][
13/2 −5
−5 4

][
8 5
5 13/4

][
25/8 −11/2
−11/2 10

]
.)

Fact 5.15.27. Let A ∈ Rn×n. Then, the following statements hold:

i) A = BC, where B ∈ Sn and C ∈ Nn, if and only if A2 is diagonalizable
over R and spec(A) ⊂ [0,∞).

ii) A = BC, where B ∈ Sn and C ∈ Pn, if and only if A is diagonalizable over
R.

iii) A = BC, where B,C ∈ Nn, if and only if A = DE, where D ∈ Nn and
E ∈ Pn.

iv) A = BC, where B ∈ Nn and C ∈ Pn, if and only if A is diagonalizable
over R and spec(A) ⊂ [0,∞).

v) A = BC, where B,C ∈ Pn, if and only if A is diagonalizable over R and
spec(A) ⊂ [0,∞).

(Proof: See [706, 1453, 1458].)

Fact 5.15.28. Let A ∈ F
n×n. Then, A is singular or the identity if and only

if A is the product of n or fewer idempotent matrices in Fn×n, each of whose rank
is equal to rankA. Furthermore, rank(A− I) ≤ kdef A, where k ≥ 1, if and only if
A is the product of k idempotent matrices. (Examples:[

0 1
0 0

]
=
[

1 1/2
0 0

][
0 1/2
0 1

]
and [

2 0
0 0

]
=
[

1 1
0 0

][
1 0
1 0

]
.)

(Proof: See [71, 125, 378, 460].)

Fact 5.15.29. Let A ∈ Rn×n, assume that A is singular, and assume that A
is not a 2 × 2 nilpotent matrix. Then, there exist nilpotent matrices B,C ∈ R

n×n

such that A = BC and rankA = rankB = rankC. (Proof: See [1215, 1457]. See
also [1248].)

Fact 5.15.30. Let A ∈ Fn×n, and assume that A is idempotent. Then, there
exist B,C ∈ Fn×n such that B is positive definite, C is positive semidefinite, and
A = BC. (Proof: See [1324].)

Fact 5.15.31. Let A ∈ R
n×n, and assume that A is nonsingular. Then, A

is similar to A−1 if and only if A is the product of two involutory matrices. If,
in addition, A is orthogonal, then A is the product of two reflectors. (Proof: See
[123, 414, 1451, 1452] or [1098, p. 108].) (Problem: Construct these reflectors for
A =

[
cos θ sin θ
− sin θ cos θ

]
.)
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Fact 5.15.32. Let A ∈ Rn×n. Then, |detA| = 1 if and only if A is the product
of four or fewer involutory matrices. (Proof: [124, 611, 1214].)

Fact 5.15.33. Let A ∈ Rn×n, where n ≥ 2. Then, A is the product of two
commutators. (Proof: See [1459].)

Fact 5.15.34. Let A ∈ Rn×n, and assume that detA = 1. Then, there exist
nonsingular matrices B,C ∈ Rn×n such that A = BCB−1C−1. (Proof: See [1191].)
(Remark: The product is a multiplicative commutator. This result is due to Shoda.)

Fact 5.15.35. Let A ∈ Rn×n, assume that A is orthogonal, and assume that
detA = 1. Then, there exist reflectors B,C ∈ Rn×n such that A = BCB−1C−1.
(Proof: See [1268].)

Fact 5.15.36. Let A ∈ Fn×n, and assume that A is nonsingular. Then, there
exists an involutory matrix B ∈ Fn×n and a symmetric matrix C ∈ Fn×n such that
A = BC. (Proof: See [577].)

Fact 5.15.37. Let A ∈ Fn×n, and assume that n is even. Then, the following
statements are equivalent:

i) A is the product of two skew-symmetric matrices.

ii) Every elementary divisor of A has even algebraic multiplicity.

iii) There exists a matrix B ∈ Fn/2×n/2 such that A is similar to [B 0
0 B ].

(Remark: In i) the factors are skew symmetric even when A is complex.) (Proof:
See [578, 1459].)

Fact 5.15.38. Let A ∈ Cn×n, and assume that n ≥ 4 and n is even. Then, A
is the product of five skew-symmetric matrices in C

n×n. (Proof: See [857, 858].)

Fact 5.15.39. Let A ∈ Fn×n. Then, there exist a symmetric matrix B ∈ Fn×n

and a skew-symmetric matrix C ∈ Fn×n such that A = BC if and only if A is similar
to −A. (Proof: See [1135].)

Fact 5.15.40. Let A ∈ Fn×m, and let r �= rankA. Then, there exist matrices
B ∈ Fn×r and C ∈ Rr×m such that A = BC and rankB = rankC = r.

Fact 5.15.41. Let A ∈ Fn×n. Then, A is diagonalizable over F with (nonneg-
ative, positive) eigenvalues if and only if there exist (positive-semidefinite, positive-
definite) matrices B,C ∈ Fn×n such that A = BC. (Proof: To prove sufficiency, use
Theorem 8.3.5 and note that

A = S−1(SBS∗)
(
S−∗CS−1

)
S.)
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5.16 Facts on Companion, Vandermonde, and Circulant
Matrices

Fact 5.16.1. Let p ∈ F[s], where p(s) = sn + βn−1s
n−1 + · · ·+ β0, and define

Cb(p), Cr(p), Ct(p), Cl(p) ∈ F
n×n by

Cb(p)
�=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0 0

0 0 1
. . . 0 0

0 0 0
. . . 0 0

...
...

...
. . .

. . .
...

0 0 0 · · · 0 1

−β0 −β1 −β2 · · · −βn−2 −βn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Cr(p)
�=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0 −β0

1 0 0 · · · 0 −β1

0 1 0 · · · 0 −β2

...
. . . . . . . . .

...
...

0 0 0
. . . 0 −βn−2

0 0 0 · · · 1 −βn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Ct(p)
�=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−βn−1 −βn−2 · · · −β2 −β1 −β0

1 0 · · · 0 0 0
...

. . . . . .
...

...
...

0 0
. . . 0 0 0

0 0
. . . 1 0 0

0 0 · · · 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Cl(p)
�=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−βn−1 1 · · · 0 0 0

−βn−2 0
. . . 0 0 0

...
...

. . . . . . . . .
...

−β2 0 · · · 0 1 0
−β1 0 · · · 0 0 1
−β0 0 · · · 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Then,
Cr(p) = CT

b (p), Cl(p) = CT
t (p),

Ct(p) = ÎCb(p)Î, Cl(p) = ÎCr(p)Î,
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Cl(p) = CT̂
b (p), Ct(p) = CT̂

r (p),

and
χCb(p) = χCr(p) = χCt(p) = χCl(p) = p.

Furthermore,
Cr(p) = SCb(p)S−1

and
Cl(p) = ŜCt(p)Ŝ−1,

where S, Ŝ ∈ Fn×n are the Hankel matrices

S
�=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

β1 β2 · · · βn−1 1

β2 β3 . .. 1 0
... . .. . .. . ..

...

βn−1 1 . .. 0 0

1 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and

Ŝ
�= ÎSÎ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 1

0 0 . .. 1 βn−1

... . .. . .. . ..
...

0 1 . .. β3 β2

1 βn−1 · · · β2 β1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

(Remark: (Cb(p), Cr(p), Ct(p), Cl(p)) are the (bottom, right, top, left) companion
matrices. Note that Cb(p) = C(p). See [144, p. 282] and [787, p. 659].) (Remark:
S = B(p, 1), where B(p, 1) is a Bezout matrix. See Fact 4.8.6.)

Fact 5.16.2. Let p ∈ F[s], where p(s) = sn+βn−1s
n−1 + · · ·+β0, assume that

β0 �= 0, and let

Cb(p) �=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0 0

0 0 1
. . . 0 0

0 0 0
. . . 0 0

...
...

...
. . . . . .

...

0 0 0 · · · 0 1

−β0 −β1 −β2 · · · −βn−2 −βn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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Then,

C−1
b (p) = Ct(p̂) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−β1/β0 · · · −βn−2/β0 −βn−1/β0 −1/β0

1 · · · 0 0 0
...

. . .
...

...
...

0 · · · 1 0 0

0 · · · 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where p̂(s) �= β−1
0 snp(1/s). (Remark: See Fact 4.9.9.)

Fact 5.16.3. Let λ1, . . . , λn ∈ F, and define the Vandermonde matrix
V (λ1, . . . , λn) ∈ F

n×n by

V (λ1, . . . , λn) �=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 · · · 1
λ1 λ2 · · · λn

λ21 λ22 · · · λ2n

λ31 λ32 · · · λ3n
...

... · · ·.. ...
λn−1

1 λn−1
2 · · · λn−1

n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Then,
detV (λ1, . . . , λn) =

∏
1≤i<j≤n

(λi −λj).

Thus, V (λ1, . . . , λn) is nonsingular if and only if λ1, . . . , λn are distinct. (Remark:
This result yields Proposition 4.5.4. Let x1, . . . , xk be eigenvectors of V (λ1, . . . , λn)
associated with distinct eigenvalues λ1, . . . , λk of V (λ1, . . . , λn). Suppose that
α1x1 + · · · + αkxk = 0 so that V i(λ1, . . . , λn)(α1x1 + · · · + αkxk) = α1λ

i
1xi + · · · +

αkλ
i
kxk = 0 for all i = 0, 1, . . . , k − 1. Let X �=

[
x1 · · · xk

] ∈ Fn×k and
D

�= diag(α1, . . . , αk). Then, XDV T(λ1, . . . , λk) = 0, which implies that XD = 0.
Hence, αixi = 0 for all i = 1, . . . , k, and thus α1 = · · · = αk = 0.) (Remark: Con-
nections between the Vandermonde matrix and the Pascal matrix, Stirling matrix,
Bernoulli matrix, Bernstein matrix, and companion matrices are discussed in [5].
See also Fact 11.11.4.)

Fact 5.16.4. Let p ∈ F[s], where p(s) = sn + βn−1s
n−1 + · · ·+ β1s + β0, and

assume that p has distinct roots λ1, . . . , λn ∈ C. Then,

C(p) = V (λ1, . . . , λn)diag(λ1, . . . , λn)V −1(λ1, . . . , λn).

Consequently, for all i = 1, . . . , n, λi is an eigenvalue of C(p) with associated
eigenvector coli(V ). Finally,

(V V T)−1CV V T = CT.

(Proof: See [139].) (Remark: Case in which C(p) has repeated eigenvalues is
considered in [139].)

Fact 5.16.5. Let A ∈ Fn×n. Then, A is cyclic if and only if A is similar to a
companion matrix. (Proof: The result follows from Corollary 5.3.4. Alternatively,
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let spec(A) = {λ1, . . . , λr} and A = SBS−1, where S ∈ Cn×n is nonsingular and
B = diag(B1, . . . , Br) is the Jordan form of A, where, for all i = 1, . . . , r, Bi ∈
Cni×ni and λi, . . . , λi are the diagonal entries of Bi. Now, define R ∈ Cn×n by
R

�=
[
R1 · · · Rr

] ∈ Cn×n, where, for all i = 1, . . . , r, Ri ∈ Cn×ni is the matrix

Ri
�=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0
λi 1 · · · 0
...

... · · ·.. ...

λn−2
i

(
n−2

1

)
λn−3
i · · · (n−2

ni−1

)
λn−ni−1
i

λn−1
i

(
n−1
1

)
λn−2
i · · · (

n−1
ni−1

)
λn−ni

i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Then, since λ1, . . . , λr are distinct, it follows that R is nonsingular. Furthermore,
C = RBR−1 is in companion form, and thus A = SR−1CRS. If ni = 1 for all
i = 1, . . . , r, then R is a Vandermonde matrix. See Fact 5.16.3 and Fact 5.16.4.)

Fact 5.16.6. Let λ1, . . . , λn ∈ F and, for i = 1, . . . , n, define

pi(s)
�=

n∏
j=1
j �=i

(s−λj).

Furthermore, define A ∈ Fn×n by

A
�=

⎡
⎢⎢⎢⎢⎢⎣

p1(0) 1
1!p

′
1(0) · · · 1

(n−1)!p
(n−1)
1 (0)

... · · ·.. · · ·.. ...

pn(0) 1
1!p

′
n(0) · · · 1

(n−1)!p
(n−1)
n (0)

⎤
⎥⎥⎥⎥⎥⎦.

Then,
diag[p1(λ1), . . . , pn(λn)] = AV (λ1, . . . , λn).

(Proof: See [481, p. 159].)

Fact 5.16.7. Let a0, . . . , an−1 ∈ F, and define circ(a0, . . . , an−1) ∈ Fn×n by

circ(a0, . . . , an−1)
�=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0 a1 a2 · · · an−2 an−1

an−1 a0 a1 · · · an−3 an−2

an−2 an−1 a0
. . . an−4 an−3

...
...

. . . . . . . . .
...

a2 a3 a4
. . . a0 a1

a1 a2 a3 · · · an−1 a0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

A matrix of this form is circulant. Furthermore, for n ≥ 2, define the n×n primary
circulant
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Pn
�= circ(0, 1, 0, . . . , 0) �=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0 0

0 0 1
. . . 0 0

0 0 0
. . . 0 0

...
. . . . . . . . . . . .

...

0 0 0
. . . 0 1

1 0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Define P1
�= 1. Finally, define p(s) �= an−1s

n−1 + · · · + a1s + a0 ∈ F[s], and let
θ

�= e2πj/n. Then, the following statements hold:

i) p(Pn) = circ(a0, . . . , an−1).

ii) Pn = C(q), where q ∈ F[s] is defined by q(s) �= sn −1.

iii) spec(Pn) =
{
1, θ, θ2, . . . , θn−1

}
.

iv) detPn = (−1)n−1.

v) mspec[circ(a0, . . . , an−1)] =
{
p(1), p(θ), p

(
θ2
)
, . . . , p

(
θn−1
)}

ms
.

vi) If A,B ∈ F
n×n are circulant, then AB = BA and AB is circulant.

vii) If A is circulant, then A, AT, and A∗ are circulant.

viii) If A is circulant and k ≥ 0, then Ak is circulant.

ix) If A is nonsingular and circulant, then A−1 is circulant.

x) A ∈ Fn×n is circulant if and only if A = PnAP
T
n .

xi) Pn is an orthogonal matrix, and Pnn = In.

xii) If A ∈ Fn×n is circulant, then A is reverse symmetric, Toeplitz, and normal.

xiii) If A ∈ Fn×n is circulant and nonzero, then A is irreducible.

xiv) A ∈ Fn×n is normal if and only if A is unitarily similar to a circulant
matrix.

Next, define the Fourier matrix S ∈ Cn×n by

S
�= n−1/2V

(
1, θ, . . . , θn−1

)
=

1√
n

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1 · · · 1

1 θ θ2 · · · θn−1

1 θ2 θ4 · · · θn−2

...
...

... · · ·.. ...
1 θn−1 θn−2 · · · θ

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Then, the following statements hold:

xv) S is symmetric and unitary, but not Hermitian.

xvi) S4 = In.

xvii) spec(S) ⊆ {1,−1, j,−j}.
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xviii) ReS and ImS are symmetric, commute, and satisfy

(ReS)2 + (ImS)2 = In.

xix) S−1PnS = diag
(
1, θ, . . . , θn−1

)
.

xx) S−1circ(a0, . . . , an−1)S = diag
[
p(1), p(θ), . . . , p

(
θn−1
)]
.

(Proof: See [16, pp. 81–98], [377, p. 81], and [1490, pp. 106–110].) (Remark:
Circulant matrices play a role in digital signal processing, specifically, in the efficient
implementation of the fast Fourier transform. See [997, pp. 356–380], [1142], and
[1361, pp. 206, 207].) (Remark: S is a Fourier matrix and a Vandermonde matrix.)
(Remark: If a real Toeplitz matrix is normal, then it must be either symmetric,
skew symmetric, circulant, or skew circulant. See [72, 472]. A unified treatment of
the solutions of quadratic, cubic, and quartic equations using circulant matrices is
given in [788].) (Remark: The set {I, Pk, P 2

k , . . . , P
k−1
k } is a group. See Fact 3.21.8

and Fact 3.21.9.) (Remark: Circulant matrices are generalized by cycle matrices,
which correspond to visual geometric symmetries. See [548].)

Fact 5.16.8. Let A ∈ Rn×n, and assume that A is a permutation matrix.
Then, there exists a permutation matrix S ∈ Rn×n such that

A = S diag(Pn1, . . . , Pnr)S
−1,

and, for all i = 1, . . . , r, Pni ∈ Rni×ni is a primary circulant (see Fact 5.16.7.)
Furthermore, the primary circulants Pn1, . . . , Pnr are unique up to a relabeling.
Consequently,

mspec(A) =
r⋃
i=1

{1, θi, . . . , θni−1
i }ms,

where θi
�= e2πj/ni. Hence,

detA = (−1)n−r.

Finally, the smallest positive integer m such that Am = I is given by the least
common multiple of n1, . . . , nr. (Proof: See [377, p. 29]. The last statement follows
from [445, pp. 32, 33].) (Remark: This result provides a canonical form for permu-
tation matrices under unitary similarity with a permutation matrix.) (Remark: It
follows that A can be written as the product

A = S

[
Pn1 0
0 I

]
· · ·
⎡
⎣ I 0 0

0 Pni 0
0 0 I

⎤
⎦ · · · [ I 0

0 Pnr

]
S−1,

where the factors represent disjoint cycles. The factorization reveals the cycle de-
composition for an element of the permutation group Sn on a set having n elements,
where Sn is represented by the group of n× n permutation matrices. See [445, pp.
29–32], [1149, p. 18] and Fact 3.21.7.) (Remark: The number of possible canon-
ical forms is given by pn, where pn is the number of integral partitions of n. For
example, p1 = 1, p2 = 2, p3 = 3, p4 = 5, and p5 = 7. For all n, pn is given by the
expansion

1 +
∞∑
n=1

pnx
n =

1
(1− x)(1 − x2)(1− x3) · · · .

See [1503, pp. 210, 211].)
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5.17 Facts on Simultaneous Transformations

Fact 5.17.1. Let A,B ∈ Fn×n, and assume that there exists a nonsingular
matrix S ∈ Fn×n such that SAS−1 and SBS−1 are upper triangular. Then, A and
B have a common eigenvector with corresponding eigenvalues (SAS−1)(1,1) and
(SAS−1)(1,1). (Proof: See [547].) (Remark: See Fact 5.14.27.)

Fact 5.17.2. Let A,B ∈ Cn×n, and assume that PA,B is regular. Then,
there exist unitary matrices S1, S2 ∈ Cn×n such that S1AS2 and S1BS2 are upper
triangular. (Proof: See [1230, p. 276].)

Fact 5.17.3. Let A,B ∈ Rn×n, and assume that PA,B is regular. Then, there
exist orthogonal matrices S1, S2 ∈ Rn×n such that S1AS2 is upper triangular and
S1BS2 is upper Hessenberg with 2×2 diagonally located blocks. (Proof: See [1230,
p. 290].) (Remark: This result is due to Moler and Stewart.)

Fact 5.17.4. Let S ⊂ Fn×n, and assume that AB = BA for all A,B ∈ S.
Then, there exists a unitary matrix S ∈ Fn×n such that, for all A ∈ S, SAS∗ is
upper triangular. (Proof: See [709, p. 81] and [1113].) (Remark: See Fact 5.17.9.)

Fact 5.17.5. Let A,B ∈ Cn×n, and assume that either

[A, [A,B]] = [B, [A,B]] = 0

or
rank [A,B] ≤ 1.

Then, there exists a nonsingular matrix S ∈ Cn×n such that SAS−1 and SBS−1 are
upper triangular. (Proof: The first result is due to McCoy, and the second result
is due to Laffey. See [547, 1113].)

Fact 5.17.6. Let A,B ∈ Cn×n, and assume that A and B are idempotent.
Then, there exists a unitary matrix S ∈ Cn×n such that SAS∗ and SBS∗ are upper
triangular if and only if [A,B] is nilpotent. (Proof: See [1251].) (Remark: Necessity
follows from Fact 3.17.11.) (Remark: See Fact 5.17.4.)

Fact 5.17.7. Let S ⊂ Fn×n, and assume that every matrix A ∈ S is normal.
Then, AB = BA for all A,B ∈ S if and only if there exists a unitary matrix
S ∈ Fn×n such that, for all A ∈ S, SAS∗ is diagonal. (Remark: See Fact 8.16.1 and
[709, pp. 103, 172].)

Fact 5.17.8. Let S ⊂ Fn×n, and assume that every matrix A ∈ S is diago-
nalizable over F. Then, AB = BA for all A,B ∈ S if and only if there exists a
nonsingular matrix S ∈ Fn×n such that, for all A ∈ S, SAS−1 is diagonal. (Proof:
See [709, p. 52].)

Fact 5.17.9. Let A,B ∈ Fn×n, and assume that {x ∈ Fn: x∗Ax = x∗Bx =
0} = {0}. Then, there exists a nonsingular matrix S ∈ Fn×n such that SAS∗

and SBS∗ are upper triangular. (Proof: See [1098, p. 96].) (Remark: A and B
need not be Hermitian.) (Remark: See Fact 5.17.4 and Fact 8.16.6.) (Remark:
Simultaneous triangularization by means of a unitary biequivalence transformation
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is given in Proposition 5.7.3.)

5.18 Facts on the Polar Decomposition

Fact 5.18.1. Let A ∈ Fn×m. Then,

(AA∗)1/2A = A(A∗A)1/2.

(Remark: See Fact 5.18.4.) (Remark: The positive-semidefinite square root is
defined in (8.5.3).)

Fact 5.18.2. Let A ∈ Fn×m, where n ≤ m. Then, there exist M ∈ Fn×n and
S ∈ F

n×m such that M is positive semidefinite, S satisfies SS∗ = In, and A = MS.

Furthermore, M is given uniquely by M = (AA∗)1/2. If, in addition, rankA = n,
then S is given uniquely by

S = (AA∗)−1/2A = 2
πA

∗
∫ ∞

0

(t2I +AA∗)−1 dt.

(Proof: See [683, Chapter 8].)

Fact 5.18.3. Let A ∈ Fn×m, where m ≤ n. Then, there exist M ∈ Fm×m and
S ∈ F

n×m such that M is positive semidefinite, S satisfies S∗S = Im, and A = SM.

Furthermore, M is given uniquely by M = (A∗A)1/2. If, in addition, rankA = m,
then M is positive definite and S is given uniquely by

S = A(A∗A)−1/2 = 2
πA

∫ ∞

0

(t2I +A∗A)−1 dt.

(Proof: See [683, Chapter 8].)

Fact 5.18.4. Let A ∈ Fn×n, and assume that A is nonsingular. Then, there
exist unique matrices M,S ∈ Fn×n such that A = MS, M is positive definite, and
S is unitary. In particular, M = (AA∗)1/2 and S = (AA∗)−1/2A. (Remark: See
Fact 5.18.1.)

Fact 5.18.5. Let A ∈ Fn×n, and assume that A is nonsingular. Then, there
exist unique matrices M,S ∈ Fn×n such that A = SM, M is positive definite, and
S is unitary. In particular, M = (A∗A)1/2 and S = (AA∗)−1/2A.

Fact 5.18.6. Let M1,M2 ∈ Fn×n, assume that M1,M2 are positive definite,
let S1, S2 ∈ Fn×n, assume that S1, S2 are unitary, and assume that M1S1 = S2M2.
Then, S1 = S2. (Proof: Let A = M1S1 = S2M2. Then, S1 =

(
S2M

2
2S

∗
2

)−1/2
S2M2 =

S2.)

Fact 5.18.7. Let A ∈ Fn×n, and assume that A is singular. Then, there exist a
matrix S ∈ Fn×n and unique matrices M1,M2 ∈ Fn×n such that A = M1S = SM2.
In particular, M1 = (AA∗)1/2 and M2 = (A∗A)1/2. (Remark: S is not uniquely
determined.)
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Fact 5.18.8. Let A ∈ Fn×n, assume that A is nonsingular, and let M,S ∈
Fn×n be such that A = MS, M is positive semidefinite, and S is unitary. Then, A
is normal if and only if MS = SM. (Proof: See [709, p. 414].)

Fact 5.18.9. Let A,B ∈ Fn×n, assume that A and B are unitary, and assume
that A+B is nonsingular. Then, the unitary factor in the polar decomposition of
A + B is A(A∗B)1/2. (Proof: See [1013] or [683, p. 216].) (Remark: The principal
square root of A∗B exists since A+B is nonsingular.)

5.19 Facts on Additive Decompositions

Fact 5.19.1. Let A ∈ C
n×n. Then, there exist unitary matrices B,C ∈ C

n×n

such that
A = 1

2σmax(A)(B + C).

(Proof: See [899, 1484].)

Fact 5.19.2. Let A ∈ Rn×n. Then, there exist orthogonal matrices B,C,D,E
∈ Rn×n such that

A = 1
2σmax(A)(B + C +D − E).

(Proof: See [899]. See also [1484].) (Remark: A/σmax(A) is expressed as an affine
combination of B,C,D,E since the sum of the coefficients is 1.)

Fact 5.19.3. Let A ∈ Rn×n, assume that σmax(A) ≤ 1, and define r
�=

rank(I − A∗A). Then, A is a convex combination of not more than h(r) orthog-
onal matrices, where

h(r) �=

{
1 + r, r ≤ 4,
3 + log2 r, r > 4.

(Proof: See [899].)

Fact 5.19.4. Let A ∈ Fn×n. Then, the following statements hold:

i) A is positive semidefinite, trA is an integer, and rankA ≤ trA.

ii) There exist projectors B1, . . . , Bl ∈ Fn×n, where l = trA, such that A =∑l
i=1Bi.

(Proof: See [489, 1460].) (Remark: The minimal number of projectors needed in
general is trA.) (Remark: See Fact 5.19.7.)

Fact 5.19.5. Let A ∈ Fn×n, assume that A is Hermitian, 0 ≤ A ≤ I, and trA
is a rational number. Then, A is the average of a finite set of projectors in Fn×n.
(Proof: See [327].) (Remark: The required number of projectors can be arbitrarily
large.)

Fact 5.19.6. Let A ∈ Fn×n, assume that A is Hermitian, and assume that
0 ≤ A ≤ I. Then, A is a convex combination of �log2 n� + 2 projectors in Fn×n.
(Proof: See [327].)
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Fact 5.19.7. Let A ∈ Fn×n. Then, the following statements hold:

i) trA is an integer, and rankA ≤ trA.

ii) There exist idempotent matrices B1, . . . , Bm ∈ Fn×n such that A =∑m
i=1 Bi.

iii) There exist a positive integer m and idempotent matrices B1, . . . , Bm ∈
Fn×n such that, for all i = 1, . . . ,m, rankBi = 1 and R(Bi) ⊆ A, and such
that A =

∑m
i=1 Bi.

iv) There exist idempotent matrices B1, . . . , Bl ∈ Fn×n, where l �= trA, such
that A =

∑l
i=1 Bi.

(Proof: See [650, 1216, 1460].) (Remark: The minimal number of idempotent
matrices is discussed in [1397].) (Remark: See Fact 5.19.8.)

Fact 5.19.8. Let A ∈ Fn×n, and assume that 2rankA− 2 ≤ trA ≤ 2n. Then,
there exist idempotent matrices B,C,D,E ∈ Fn×n such that A = B + C +D + E.
(Proof: See [874].) (Remark: See Fact 5.19.10.)

Fact 5.19.9. Let A ∈ Fn×n. If n = 2 or n = 3, then there exist b, c ∈ F

and idempotent matrices B,C ∈ Fn×n such that A = bB + cC. Furthermore, if
n ≥ 4, then there exist b, c, d ∈ F and idempotent matrices B,C,D ∈ Fn×n such
that A = bB + cC + dD. (Proof: See [1111].)

Fact 5.19.10. Let A ∈ Cn×n, and assume that A is Hermitian. If n = 2 or
n = 3, then there exist b, c ∈ C and projectors B,C ∈ Cn×n such that A = bB+cC.
Furthermore, if 4 ≤ n ≤ 7, then there exist b, c, d ∈ F and projectorsB,C,D ∈ F

n×n

such that A = bB + cC + dD. If n ≥ 8, then there exist b, c, d, e ∈ C and projectors
B,C,D,E ∈ Cn×n such that A = bB+cC+dD+eE. (Proof: See [1029].) (Remark:
See Fact 5.19.8.)

5.20 Notes

The multicompanion form and the elementary multicompanion form are
known as rational canonical forms [445, pp. 472–488], while the multicompan-
ion form is traditionally called the Frobenius canonical form [146]. The derivation
of the Jordan form by means of the elementary multicompanion form and the hy-
percompanion form follows [1081]. Corollary 5.3.8, Corollary 5.3.9, and Proposition
5.5.12 are given in [240, 241, 1257, 1258, 1261]. Corollary 5.3.9 is due to Frobenius.
Canonical forms for congruence transformations are given in [884, 1275].

It is sometimes useful to define block-companion form matrices in which the
scalars are replaced by matrix blocks [559, 560, 562]. The companion form pro-
vides only one of many connections between matrices and polynomials. Additional
connections are given by the Leslie, Schwarz, and Routh forms [139]. Given a
polynomial expressed in terms of an arbitrary polynomial basis, the correspond-
ing matrix is in confederate form, which specializes to the comrade form when the
polynomials are orthogonal, which in turn specializes to the colleague form when
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Chebyshev polynomials are used. The companion, confederate, comrade, and col-
league forms are called congenial matrices. See [139, 141, 144] and Fact 11.18.25
and Fact 11.18.27 for the Schwarz and Routh forms. The companion matrix is
sometimes called a Frobenius matrix or the Frobenius canonical form, see [5].

Matrix pencils are discussed in [85, 163, 224, 842, 1340, 1352]. Computational
algorithms for the Kronecker canonical form are given in [917, 1358]. Applications
to linear system theory are discussed in [311, pp, 52–55] and [791].

Application of the polar decomposition to the elastic deformation of solids is
discussed in [1072, pp. 140–142].



Chapter Six

Generalized Inverses

Generalized inverses provide a useful extension of the matrix inverse to sin-
gular matrices and to rectangular matrices that are neither left nor right invertible.

6.1 Moore-Penrose Generalized Inverse

Let A ∈ Fn×m. If A is nonzero, then, by the singular value decomposition
Theorem 5.6.4, there exist orthogonal matrices S1 ∈ Fn×n and S2 ∈ Fm×m such
that

A = S1

[
B 0r×(m−r)

0(n−r)×r 0(n−r)×(m−r)

]
S2, (6.1.1)

where B �= diag[σ1(A), . . . , σr(A)], r �= rankA, and σ1(A) ≥ σ2(A) ≥ · · · ≥ σr(A) >
0 are the positive singular values of A. In (6.1.1), some of the bordering zero
matrices may be empty. Then, the (Moore-Penrose) generalized inverse A+ of A is
the m× n matrix

A+ �= S∗
2

[
B−1 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

]
S∗

1 . (6.1.2)

If A = 0n×m, then A+ �= 0m×n, while, if m = n and detA �= 0, then A+ = A−1. In
general, it is helpful to remember that A+ and A∗ are the same size. It is easy to
verify that A+ satisfies

AA+A = A, (6.1.3)

A+AA+ = A+, (6.1.4)

(AA+)∗ = AA+, (6.1.5)

(A+A)∗ = A+A. (6.1.6)

Hence, for each A ∈ Fn×m there exists a matrix X ∈ Fm×n satisfying the four
conditions

AXA = A, (6.1.7)
XAX = X, (6.1.8)

(AX)∗ = AX, (6.1.9)
(XA)∗ = XA. (6.1.10)

We now show that X is uniquely defined by (6.1.7)–(6.1.10).
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Theorem 6.1.1. Let A ∈ Fn×m. Then, X = A+ is the unique matrix X ∈
Fm×n satisfying (6.1.7)–(6.1.10).

Proof. Suppose there exists a matrix X ∈ Fm×n satisfying (6.1.7)–(6.1.10).
Then,

X = XAX = X(AX)∗ = XX∗A∗ = XX∗(AA+A)∗ = XX∗A∗A+∗A∗

= X(AX)∗(AA+)∗ = XAXAA+ = XAA+ = (XA)∗A+ = A∗X∗A+

= (AA+A)∗X∗A+ = A∗A+∗A∗X∗A+ = (A+A)∗(XA)∗A+

= A+AXAA+ = A+AA+ = A+. �

Given A ∈ F
n×m, X ∈ F

m×n is a (1)-inverse of A if (6.1.7) holds, a (1,2)-
inverse of A if (6.1.7) and (6.1.8) hold, and so forth.

Proposition 6.1.2. Let A ∈ Fn×m, and assume that A is right invertible.
Then, X ∈ Fm×n is a right inverse of A if and only if X is a (1)-inverse of A.
Furthermore, every right inverse (or, equivalently, every (1)-inverse) of A is also a
(2,3)-inverse of A.

Proof. Suppose that AX = In, that is, X ∈ F
m×n is a right inverse of A.

Then, AXA = A, which implies that X is a (1)-inverse of A. Conversely, let X
be a (1)-inverse of A, that is, AXA = A. Then, letting X̂ ∈ Fm×n denote a right
inverse of A, it follows that AX = AXAX̂ = AX̂ = In. Hence, X is a right inverse
of A. Finally, if X is a right inverse of A, then it is also a (2,3)-inverse of A.

Proposition 6.1.3. Let A ∈ Fn×m, and assume that A is left invertible. Then,
X ∈ Fm×n is a left inverse of A if and only if X is a (1)-inverse of A. Furthermore,
every left inverse (or, equivalently, every (1)-inverse) of A is also a (2,4)-inverse of
A.

It can now be seen that A+ is a particular (right, left) inverse when A is
(right, left) invertible.

Corollary 6.1.4. Let A ∈ Fn×m. If A is right invertible, then A+ is a right
inverse of A. Furthermore, if A is left invertible, then A+ is a left inverse of A.

The following result provides an explicit expression for A+ when A is either
right invertible or left invertible. It is helpful to note that A is (right, left) invertible
if and only if (AA∗, A∗A) is positive definite.

Proposition 6.1.5. Let A ∈ Fn×m. If A is right invertible, then

A+ = A∗(AA∗)−1 (6.1.11)

and A+ is a right inverse of A. If A is left invertible, then

A+ = (A∗A)−1A∗ (6.1.12)

and A+ is a left inverse of A.
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Proof. It suffices to verify (6.1.7)–(6.1.10) with X = A+.

Proposition 6.1.6. Let A ∈ Fn×m. Then, the following statements hold:

i) A = 0 if and only if A+ = 0.

ii) (A+)+ = A.

iii) A
+

= A+.

iv)
(
AT
)+ = (A+)T = A+T.

v) (A∗)+ = (A+)∗ �= A+∗.

vi) R(A) = R(AA∗) = R(AA+) = R(A+∗) = N(I −AA+) = N(A∗)⊥.

vii) R(A∗) = R(A∗A) = R(A+A) = R(A+) = N(I −A+A) = N(A)⊥.

viii) N(A) = N(A+A) = N(A∗A) = N(A+∗) = R(I −A+A) = R(A∗)⊥.

ix) N(A∗) = N(AA+) = N(AA∗) = N(A+) = R(I −AA+) = R(A)⊥.

x) AA+ and A+A are positive semidefinite.

xi) spec(AA+) ⊆ {0, 1} and spec(A+A) ⊆ {0, 1}.
xii) AA+ is the projector onto R(A).

xiii) A+A is the projector onto R(A∗).

xiv) Im −A+A is the projector onto N(A).

xv) In −AA+ is the projector onto N(A∗).

xvi) x ∈ R(A) if and only if x = AA+x.

xvii) rankA = rankA+ = rankAA+ = rankA+A = trAA+ = trA+A.

xviii) rank(Im −A+A) = m− rankA.

xix) rank(In −AA+) = n− rankA.

xx) (A∗A)+ = A+A+∗.

xxi) (AA∗)+ = A+∗A+.

xxii) AA+ = A(A∗A)+A∗.

xxiii) A+A = A∗(AA∗)+A.

xxiv) A = AA∗A∗+ = A∗+A∗A.

xxv) A∗ = A∗AA+ = A+AA∗.

xxvi) A+ = A∗(AA∗)+ = (A∗A)+A∗ = A∗(A∗AA∗)+A∗.

xxvii) A+∗ = (AA∗)+A = A(A∗A)+.

xxviii) A = A(A∗A)+A∗A = AA∗A(A∗A)+.

xxix) A = AA∗(AA∗)+A = (AA∗)+AA∗A.

xxx) If S1 ∈ Fn×n and S2 ∈ Fm×m are unitary, then (S1AS2)+ = S∗
2A

+S∗
1.
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xxxi) A is (range Hermitian, normal, Hermitian, positive semidefinite, positive
definite) if and only if A+ is.

xxxii) If A is a projector, then A+ = A.

xxxiii) A+ = A if and only if A is tripotent and A2 is Hermitian.

Proof. The last equality in xxvi) is given in [1502].

Theorem 2.6.4 showed that the equation Ax = b, where A ∈ Fn×m and b ∈ Fn,
has a solution x ∈ Fm if and only if rankA = rank

[
A b

]
. In particular, Ax = b

has a unique solution x ∈ Fm if and only if rankA = rank
[
A b

]
= m, while

Ax = b has infinitely many solutions if and only if rankA = rank
[
A b

]
< m.

We are now prepared to characterize these solutions.

Proposition 6.1.7. Let A ∈ Fn×m and b ∈ Fn. Then, the following statements
are equivalent:

i) There exists a vector x ∈ Fm satisfying Ax = b.

ii) rankA = rank
[
A b

]
.

iii) b ∈ R(A).

iv) AA+b = b.

Now, assume that i)–iv) are satisfied. Then, the following statements hold:

v) x ∈ Fm satisfies Ax = b if and only if

x = A+b+ (I −A+A)x. (6.1.13)

vi) For all y ∈ Fm, x ∈ Fm given by

x = A+b+ (I −A+A)y (6.1.14)

satisfies Ax = b.

vii) Let x ∈ Fm be given by (6.1.14), where y ∈ Fm. Then, y = 0 minimizes
x∗x.

viii) Assume that rankA = m. Then, there exists a unique vector x ∈ Fm

satisfying Ax = b given by x = A+b. If, in addition, AL ∈ Fm×m is a left
inverse of A, then ALb = A+b.

ix) Assume that rankA = n, and let AR ∈ Fm×n be a right inverse of A. Then,
x = ARb satisfies Ax = b.

Proof. The equivalence of i)–iii) is immediate. To prove the equivalence of
iv), note that, if there exists a vector x ∈ F

n satisfying Ax = b, then b = Ax =
AA+Ax = AA+b. Conversely, if b = AA+b, then x = A+b satisfies Ax = b.

Now, suppose that i)–iv) hold. To prove v), let x ∈ Fm satisfy Ax = b so that
A+Ax = A+b. Hence, x = x+A+b−A+Ax = A+b+(I−A+A)x. To prove vi), let y ∈
Fm, and let x ∈ Fm be given by (6.1.14). Then, Ax = AA+b = b. To prove vii), let
y ∈ Fm, and let x ∈ Fn be given by (6.1.14). Then, x∗x = b∗A+∗A+b+ y∗(I−A+A)y.
Therefore, x∗x is minimized by y = 0. See also Fact 9.15.1.
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To prove viii), suppose that rankA = m. Then, A is left invertible, and it
follows from Corollary 6.1.4 that A+ is a left inverse of A. Hence, it follows from
(6.1.13) that x = A+b is the unique solution of Ax = b. In addition, x = ALb. To
prove ix), let x = ARb, and note that AARb = b.

Definition 6.1.8. Let A ∈ F
n×m, B ∈ F

n×l, C ∈ F
k×m, and D ∈ F

k×l, and
define A

�= [A B
C D ] ∈ F

(n+k)×(m+l). Then, the Schur complement A|A of A with
respect to A is defined by

A|A �= D − CA+B. (6.1.15)

Likewise, the Schur complement D|A of D with respect to A is defined by

D|A �= A−BD+C. (6.1.16)

6.2 Drazin Generalized Inverse

We now introduce a different type of generalized inverse, which applies only
to square matrices yet is more useful in certain applications. Let A ∈ Fn×n. Then,
A has a decomposition

A = S

[
J1 0
0 J2

]
S−1, (6.2.1)

where S ∈ Fn×n is nonsingular, J1 ∈ Fm×m is nonsingular, and J2 ∈ F(n−m)×(n−m)

is nilpotent. Then, the Drazin generalized inverse AD of A is the matrix

AD �= S

[
J−1

1 0
0 0

]
S−1. (6.2.2)

Let A ∈ Fn×n. Then, it follows from Definition 5.5.1 that indA = indA(0).
Furthermore, A is nonsingular if and only if indA = 0, whereas indA = 1 if
and only if A is singular and the zero eigenvalue of A is semisimple. In particular,
ind 0n×n = 1. Note that indA is the order of the largest Jordan block ofA associated
with the zero eigenvalue of A.

It can be seen that AD satisfies

ADAAD = AD, (6.2.3)

AAD = ADA, (6.2.4)

Ak+1AD = Ak, (6.2.5)

where k = indA. Hence, for all A ∈ Fn×n such that indA = k there exists a matrix
X ∈ Fn×n satisfying the three conditions

XAX = X, (6.2.6)
AX = XA, (6.2.7)

Ak+1X = Ak. (6.2.8)

We now show that X is uniquely defined by (6.2.6)–(6.2.8).
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Theorem 6.2.1. Let A ∈ Fn×n, and let k �= indA. Then, X = AD is the
unique matrix X ∈ F

n×n satisfying (6.2.6)–(6.2.8).

Proof. Let X ∈ Fn×n satisfy (6.2.6)–(6.2.8). If k = 0, then it follows from
(6.2.8) that X = A−1. Hence, let A = S

[
J1 0
0 J2

]
S−1, where k = indA ≥ 1, S ∈ Fn×n

is nonsingular, J1 ∈ Fm×m is nonsingular, and J2 ∈ F(n−m)×(n−m) is nilpotent.
Now, let X̂ �= S−1XS =

[
X̂1 X̂12

X̂21 X̂2

]
be partitioned conformably with S−1AS =[

J1 0
0 J2

]
. Since, by (6.2.7), ÂX̂ = X̂Â, it follows that J1X̂1 = X̂1J1, J1X̂12 = X̂12J2,

J2X̂21 = X̂21J1, and J2X̂2 = X̂2J2. Since Jk2 = 0, it follows that J1X̂12J
k−1
2 = 0, and

thus X̂12J
k−1
2 = 0. By repeating this argument, it follows that J1X̂12J2 = 0, and

thus X̂12J2 = 0, which implies that J1X̂12 = 0, and thus X̂12 = 0. Similarly, X̂21 =
0, so that X̂ =

[
X̂1 0

0 X̂2

]
. Now, (6.2.8) implies that Jk+1

1 X̂1 = Jk1 , and hence X̂1 = J−1
1 .

Next, (6.2.6) implies that X̂2J2X̂2 = X̂2, which, together with J2X̂2 = X̂2J2, yields
X̂2

2J2 = X̂2. Consequently, 0 = X̂2
2J

k
2 = X̂2J

k−1
2 , and thus, by repeating this

argument, X̂2 = 0. Therefore, AD = S
[
J−1
1 0
0 0

]
S−1 = S

[
X̂1 0
0 0

]
S−1 = SX̂S−1 =

X.

Proposition 6.2.2. Let A ∈ Fn×n, and define k �= indA. Then, the following
statements hold:

i) A
D

= AD.

ii) ADT �= ATD �=
(
AT
)D = (AD)T.

iii) AD∗ �= A∗D �= (A∗)D = (AD)∗.

iv) If r ∈ P, then ADr �= ArD
�=
(
AD
)r = (Ar)D.

v) R(Ak) = R(AD) = R(AAD) = N(I −AAD).

vi) N(Ak) = N(AD) = N(AAD) = R(I −AAD).

vii) rankAk = rankAD = rankAAD = def(I −AAD).

viii) def Ak = def AD = def AAD = rank(I −AAD).

ix) AAD is the idempotent matrix onto R(AD) along N(AD).

x) AD = 0 if and only if A is nilpotent.

xi) AD is group invertible.

xii) indAD = 0 if and only if A is nonsingular.

xiii) indAD = 1 if and only if A is singular.

xiv) (AD)D = (AD)# = A2AD.

xv) (AD)D = A if and only if A is group invertible.

xvi) If A is idempotent, then k = 1 and AD = A.

xvii) A = AD if and only if A is tripotent.
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Let A ∈ Fn×n, and assume that indA ≤ 1 so that, by Corollary 5.5.9, A is
group invertible. In this case, the Drazin generalized inverse AD is denoted by A#,
which is the group generalized inverse of A. Therefore, A# satisfies

A#AA# = A#, (6.2.9)

AA# = A#A, (6.2.10)

AA#A = A, (6.2.11)

while A# is the unique matrix X ∈ Fn×n satisfying

XAX = X, (6.2.12)
AX = XA, (6.2.13)
AXA = A. (6.2.14)

Proposition 6.2.3. Let A ∈ Fn×n, and assume that A is group invertible.
Then, the following statements hold:

i) A
#

= A#.

ii) A#T �= AT# �=
(
AT
)# = (A#)T.

iii) A#∗ �= A∗# �= (A∗)# = (A#)∗.

iv) If r ∈ P, then A#r �= Ar# �=
(
A#
)r = (Ar)#.

v) R(A) = R(AA#) = N(I −AA#) = R(AA+) = N(I −AA+).

vi) N(A) = N(AA#) = R(I −AA#) = N(A+A) = R(I −A+A).

vii) rankA = rankA# = rankAA# = rankA#A.

viii) def A = def A# = def AA# = def A#A.

ix) AA# is the idempotent matrix onto R(A) along N(A).

x) A# = 0 if and only if A = 0.

xi) A# is group invertible.

xii) (A#)# = A.

xiii) If A is idempotent, then A# = A.

xiv) A = A# if and only if A is tripotent.

An alternative expression for the idempotent matrix onto R(A) along N(A)
is given by Proposition 3.5.9.

6.3 Facts on the Moore-Penrose Generalized Inverse for One
Matrix

Fact 6.3.1. Let A ∈ Fn×m, x ∈ Fm, b ∈ Fn, and y ∈ Fm, assume that A is
right invertible, and assume that

x = A+b+ (I −A+A)y,
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which satisfies Ax = b. Then, there exists a right inverse AR ∈ Fm×n of A such that
x = ARb. Furthermore, if S ∈ Fm×n is such that zTSb �= 0, where z �= (I −A+A)y,
then one such right inverse is given by

AR = A+ +
1

zTSb
zzTS.

Fact 6.3.2. Let A ∈ Fn×m, and assume that rankA = 1. Then,

A+ = (trAA∗)−1A∗.

Consequently, if x ∈ Fn and y ∈ Fn are nonzero, then

(xy∗)+ = (x∗xy∗y)−1yx∗ =
1

‖x‖22‖y‖22
yx∗.

In particular,
1+
n×m = 1

nm1m×n.

Fact 6.3.3. Let x ∈ Fn, and assume that x is nonzero. Then, the projector
A ∈ F

n×n onto span {x} is given by

A = (x∗x)−1xx∗.

Fact 6.3.4. Let x, y ∈ Fn, assume that x, y are nonzero, and assume that
x∗y = 0. Then, the projector A ∈ Fn×n onto span {x, y} is given by

A = (x∗x)−1xx∗ + (y∗y)−1yy∗.

Fact 6.3.5. Let x, y ∈ F
n, and assume that x, y are linearly independent.

Then, the projector A ∈ Fn×n onto span {x, y} is given by

A = (x∗xy∗y − |x∗y|2)−1(y∗yxx∗ − y∗xyx∗ − x∗yxy∗ + x∗xyy∗).

Furthermore, define z �= [I − (x∗x)−1xx∗]y. Then,

A = (x∗x)−1xx∗ + (z∗z)−1zz∗.

(Remark: For F = R, this result is given in [1206, p. 178].)

Fact 6.3.6. Let A ∈ Fn×m, assume that rankA = n − 1, let x ∈ N(A) be
nonzero, let y ∈ N(A∗) be nonzero, let α = 1 if spec(A) = {0} and the product of
the nonzero eigenvalues of A otherwise, and define k �= amultA(0). Then,

AA =
(−1)k+1α

y∗(Ak−1)+x
xy∗.

In particular,
NA
n = (−1)n+1E1,n.

If, in addition, k = 1, then
AA =

α

y∗x
xy∗.

(Proof: See [948, p. 41] and Fact 3.17.4.) (Remark: This result provides an
expression for ii) of Fact 2.16.8.) (Remark: If A is range Hermitian, then N(A) =
N(A∗) and y∗x �= 0, and thus Fact 5.14.3 implies that AA is semisimple.) (Remark:
See Fact 5.14.26.)
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Fact 6.3.7. Let A ∈ Fn×m, and assume that rankA = n−1. Then,

A+ = 1

det[AA∗+(AA∗)A]
A∗[AA∗ + (AA∗)A]A.

(Proof: See [345].) (Remark: Extensions to matrices of arbitrary rank are given in
[345].)

Fact 6.3.8. Let A ∈ Fn×m, B ∈ Fk×n, and C ∈ Fm×l, and assume that B is
left inner and C is right inner. Then,

(BAC)+ = C∗A+B∗.

(Proof: See [654, p. 506].)

Fact 6.3.9. Let A ∈ Fn×n. Then,

rank [A,A+] = 2rank
[
A A∗ ]− 2rankA

= rank
(
A−A2A+

)
= rank

(
A−A+A2

)
.

Furthermore, the following statements are equivalent:

i) A is range Hermitian.

ii) [A,A+] = 0.

iii) rank
[
A A∗ ] = rankA.

iv) A = A2A+.

v) A = A+A2.

(Proof: See [1306].) (Remark: See Fact 3.6.3, Fact 6.3.10, and Fact 6.3.11.)

Fact 6.3.10. Let A ∈ Fn×n. Then, the following statements are equivalent:

i) A is range Hermitian.

ii) R(A) = R(A+).

iii) A+A = AA+.

iv) (I −A+A)⊥ = AA+.

v) A = A2A+.

vi) A = A+A2.

vii) AA+ = A2(A+)2.

viii) (AA+)2 = A2(A+)2.

ix) (A+A)2 = (A+)2A2.

x) indA ≤ 1, and (A+)2 =
(
A2
)+
.

xi) indA ≤ 1, and AA+A∗A = A∗A2A+.

xii) A2A+ +A∗A+∗A = 2A.
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xiii) A2A+ +
(
A2A+

)∗ = A+A∗.

xiv) R(A−A+) = R(A−A3).

xv) R(A+A+) = R(A+A3).

(Proof: See [323, 1281, 1296, 1331] and Fact 6.6.8.) (Remark: See Fact 3.6.3, Fact
6.3.9, and Fact 6.3.11.)

Fact 6.3.11. Let A ∈ F
n×n, let r �= rankA, let B ∈ F

n×r and C ∈ F
r×n,

and assume that that A = BC and rankB = rankC = r. Then, the following
statements are equivalent:

i) A is range Hermitian.

ii) BB+ = C+C.

iii) N(B∗) = N(C).

iv) B = C+CB and C = CBB+.

v) B+ = B+C+C and C = CBB+.

vi) B = C+CB and C+ = BB+C+.

vii) B+ = B+C+C and C+ = BB+C+.

(Proof: See [438].) (Remark: See Fact 3.6.3, Fact 6.3.9, and Fact 6.3.10.)

Fact 6.3.12. Let A ∈ F
n×n. Then, the following statements are equivalent:

i) A+A+ = 2AA+.

ii) A+A+ = 2A+A.

iii) A+A+ = AA+ +A+A.

iv) A is range Hermitian, and A2 +AA+ = 2A.

v) A is range Hermitian, and (I −A)2A = 0.

(Proof: See [1323, 1330].)

Fact 6.3.13. Let A ∈ F
n×n. Then, the following statements are equivalent:

i) A+A∗ = A∗A+.

ii) AA+A∗A = AA∗A+A.

iii) AA∗A2 = A2A∗A.

If these conditions hold, then A is star-dagger. If A is star-dagger, then A2(A+)2

and (A+)2A2 are positive semidefinite. (Proof: See [651, 1281].) (Remark: See Fact
6.3.16.)

Fact 6.3.14. Let A ∈ Fn×m, let B,C ∈ Fm×n, assume that B is a (1, 3) inverse
of A, and assume that C is a (1, 4) inverse of A. Then,

A+ = CAB.

(Proof: See [174, p. 48].) (Remark: This result is due to Urquhart.)
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Fact 6.3.15. Let A ∈ Fn×m, assume that A is nonzero, let r �= rankA, define
B

�= diag[σ1(A), . . . , σr(A)], and let S ∈ Fn×n, K ∈ Fr×r, and L ∈ Fr×(m−r) be
such that S is unitary,

KK∗ + LL∗ = Ir ,

and

A = S

[
BK BL

0(n−r)×r 0(n−r)×(m−r)

]
S∗.

Then,

A+ = S

[
K∗B−1 0r×(n−r)
L∗B−1 0(m−r)×(n−r)

]
S∗.

(Proof: See [115, 651].) (Remark: See Fact 5.9.28 and Fact 6.6.15.)

Fact 6.3.16. Let A ∈ Fn×n. Then, the following statements are equivalent:

i) A is normal.

ii) AA∗A+ = A+AA∗.

iii) A is range Hermitian, and A+A∗ = A∗A+.

iv) A(AA∗A)+ = (AA∗A)+A.

v) AA+A∗A2A+ = AA∗.

vi) A(A∗ +A+) = (A∗ +A+)A.

vii) A∗A(AA∗)+A∗A = AA∗.

viii) 2AA∗(AA∗ +A∗A)+AA∗ = AA∗.

ix) There exists a matrix X ∈ Fn×n such that AA∗X = A∗A and A∗AX = AA∗.

x) There exists a matrix X ∈ Fn×n such that AX = A∗ and A+∗X = A+.

(Proof: See [323].) (Remark: See Fact 3.7.12, Fact 3.11.4, Fact 5.15.4, Fact 6.3.13,
and Fact 6.6.10.)

Fact 6.3.17. Let A ∈ F
n×n. Then, the following statements are equivalent:

i) A is Hermitian.

ii) AA+ = A∗A+.

iii) A2A+ = A∗.

iv) AA∗A+ = A.

(Proof: See [115].)

Fact 6.3.18. Let A ∈ Fn×m, and assume that rankA = m. Then,

(AA∗)+ = A(A∗A)−2A∗.

(Remark: See Fact 6.4.7.)
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Fact 6.3.19. Let A ∈ Fn×m. Then,

A+ = lim
α↓0

A∗(AA∗ + αI)−1 = lim
α↓0

(A∗A+ αI)−1A∗.

Fact 6.3.20. Let A ∈ Fn×m, let χAA∗(s) = sn + βn−1s
n−1 + · · · + β1s + β0,

and let n− k denote the smallest integer in {0, . . . , n−1} such that βk �= 0. Then,

A+ = −β−1
n−kA

∗[(AA∗)k−1 + βn−1(AA∗)k−2 + · · ·+ βn−k+1I
]
.

(Proof: See [394].)

Fact 6.3.21. Let A ∈ Fn×n, and assume that A is Hermitian. Then,

InA = InA+ = InAD.

If, in addition, A is nonsingular, then

InA = A−1.

Fact 6.3.22. Let A ∈ F
n×n, and consider the following statements:

i) A is idempotent.

ii) rankA = trA.

iii) rankA ≤ trA2A+A∗.

Then, i) =⇒ ii) =⇒ iii). Furthermore, the following statements are equivalent:

iv) A is idempotent.

v) rankA = trA = trA2A+A∗.

vi) There exist projectors B,C ∈ F
n×n such that A+ = BC.

vii) A∗A+ = A+.

viii) A+A∗ = A+.

(Proof: See [807] and [1184, p. 166].)

Fact 6.3.23. Let A ∈ Fn×n, and assume that A is idempotent. Then,

A∗A+A = A+A

and
AA+A∗ = AA+.

(Proof: Note that A∗A+A is a projector, and R(A∗A+A) = R(A∗) = R(A+A). Alter-
natively, use Fact 6.3.22.)

Fact 6.3.24. Let A ∈ Fn×n, and assume that A is idempotent. Then,

A+A+ (I −A)(I −A)+ = I

and
AA+ + (I −A)+(I −A) = I.

(Proof: N(A) = R(I −A+A) = R(I −A) = R[(I −A)(I −A+)].) (Remark: The
first identity states that the projector onto the null space of A is the same as
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the projector onto the range of I − A, while the second identity states that the
projector onto the range of A is the same as the projector onto the null space of
I −A.) (Remark: See Fact 3.13.24 and Fact 5.12.18.)

Fact 6.3.25. Let A ∈ Fn×n, and assume that A is idempotent. Then, A +
A∗ − I is nonsingular, and

(A+A∗ − I)−1 = AA+ +A+A− I.
(Proof: Use Fact 6.3.23.) (Remark: See Fact 3.13.24, Fact 5.12.18, or [998, p. 457]
for a geometric interpretation of this identity.)

Fact 6.3.26. Let A ∈ Fn×n, and assume that A is idempotent. Then, 2A(A+
A∗)+A∗ is the projector onto R(A) ∩ R(A∗). (Proof: See [1320].)

Fact 6.3.27. Let A ∈ Fn×n. Then, the following statements are equivalent:

i) A+ is idempotent.

ii) AA∗A = A2.

If A is range Hermitian, then the following statements are equivalent:

iii) A+ is idempotent.

iv) AA∗ = A∗A = A.

The following statements are equivalent:

v) A+ is a projector.

vi) A is a projector.

vii) A is idempotent, and A and A+ are similar.

viii) A is idempotent, and A = A+.

ix) A is idempotent, and AA+ = AA∗.

x) A+ = A, and A2 = A∗.

xi) A and A+ are idempotent.

xii) A = AA+.

(Proof: See [1184, pp. 167, 168] and [1281, 1326, 1423].) (Remark: See Fact 3.13.1.)

Fact 6.3.28. Let A ∈ Fn×m, and let r �= rankA. Then, the following state-
ments are equivalent:

i) AA∗ is a projector.

ii) A∗A is a projector.

iii) AA∗A = A.

iv) A∗AA∗ = A∗.

v) A+ = A∗.

vi) σ1(A) = σr(A) = 1.
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In particular, N+
n = NT

n . (Proof: See [174, pp. 219–220].) (Remark: A is a partial
isometry, which preserves lengths and distances with respect to the Euclidean norm
on R(A∗). See [174, p. 219].) (Remark: See Fact 5.11.30.)

Fact 6.3.29. Let A ∈ Fn×m, assume that A is nonzero, and let r �= rankA.
Then, for all i = 1, . . . , r, the singular values of A+ are given by

σi(A+) = σ−1
r+1−i(A).

In particular,
σr(A) = 1/σmax(A+).

If, in addition, A ∈ Fn×n and A is nonsingular, then

σmin(A) = 1/σmax

(
A−1
)
.

Fact 6.3.30. Let A ∈ F
n×m. Then, X = A+ is the unique matrix satisfying

rank
[

A AA+

A+A X

]
= rankA.

(Remark: See Fact 2.17.10 and Fact 6.6.2.) (Proof: See [483].)

Fact 6.3.31. Let A ∈ Fn×n, and assume that A is centrohermitian. Then,
A+ is centrohermitian. (Proof: See [883].)

Fact 6.3.32. Let A ∈ F
n×n. Then, the following statements are equivalent:

i) A2 = AA∗A.

ii) A is the product of two projectors.

iii) A = A(A+)2A.

(Remark: This result is due to Crimmins. See [1114].)

Fact 6.3.33. Let A ∈ F
n×m. Then,

A+ = 4(I +A+A)+A+(I +AA+)+.

(Proof: Use Fact 6.4.36 with B = A.)

Fact 6.3.34. Let A ∈ Fn×n, and assume that A is unitary. Then,

lim
k→∞

1
k

k−1∑
i=0

Ai = I − (A− I)(A− I)+.

(Remark: I − (A − I)(A − I)+ is the projector onto {x: Ax = x} = N(A − I).)
(Remark: This result is the ergodic theorem.) (Proof: Use Fact 11.21.11 and Fact
11.21.13, and note that (A− I)∗ = (A− I)+. See [626, p. 185].)

Fact 6.3.35. Let A ∈ Fn×m, and define {Bi}∞i=1 by

Bi+1
�= 2Bi −BiABi,
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where B0
�= αA∗ and α ∈ (0, 2/σ2

max(A)). Then,

lim
i→∞

Bi = A+.

(Proof: See [144, p. 259] or [283, p. 250]. This result is due to Ben-Israel.)
(Remark: This sequence is a Newton-Raphson algorithm.) (Remark: B0 satisfies
sprad(I−B0A) < 1.) (Remark: For the case in which A is square and nonsingular,
see Fact 2.16.29.) (Problem: Does convergence hold for all B0 ∈ Fn×n satisfying
sprad(I −B0A) < 1?)

Fact 6.3.36. Let A ∈ Fn×m, let (Ai)∞i=1 ⊂ Fn×m, and assume that limi→∞ Ai
= A. Then, limi→∞ A+

i = A+ if and only if there exists a positive integer k such
that, for all i > k, rankAi = rankA. (Proof: See [283, pp. 218, 219].)

6.4 Facts on the Moore-Penrose Generalized Inverse for Two or
More Matrices

Fact 6.4.1. Let A ∈ Fn×m and B ∈ Fm×n. Then, the following statements
are equivalent:

i) B = A+.

ii) A∗AB = A∗ and B∗BA = B∗.

iii) BAA∗ = A∗ and ABB∗ = B∗.

(Remark: See [654, pp. 503, 513].)

Fact 6.4.2. Let A ∈ Fn×n, and let x ∈ Fn and y ∈ Fm be nonzero. Further-
more, define

d �= A+x, e �= A+∗y, f �= (I −AA+)x, g �= (I −A+A)y,

δ �= d∗d, η �= e∗e, φ �= f∗f, ψ �= g∗g,

λ
�= 1 + y∗A+x, μ

�= |λ|2 + δψ, ν
�= |λ|2 + ηφ.

Then,
rank(A+ xy∗) = rankA−1

if and only if
x ∈ R(A), y ∈ R(A∗), λ = 0.

In this case,

(A+ xy∗)+ = A+ − δ−1dd∗A+ − η−1A+ee∗ + (δη)−1d∗A+ede∗.

Furthermore,
rank(A+ xy∗) = rankA

if and only if ⎧⎪⎨
⎪⎩
x ∈ R(A), y ∈ R(A∗), λ �= 0,
x ∈ R(A), y /∈ R(A∗),
x /∈ R(A), y ∈ R(A∗).
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In this case, respectively,⎧⎪⎨
⎪⎩

(A+ xy∗)+ = A+ − λ−1de∗,
(A+ xy∗)+ = A+ − μ−1(ψdd∗A+ + δge∗) + μ−1(λgd∗A+ − λde∗),
(A+ xy∗)+ = A+ − ν−1(φA+ee∗ + ηdf∗) + ν−1(λA+ef∗ − λde∗).

Finally,
rank(A+ xy∗) = rankA+ 1

if and only if
x /∈ R(A), y /∈ R(A∗).

In this case,

(A+ xy∗)+ = A+ − φ−1df∗ − ψ−1ge∗ + λ(φψ)−1gf∗.

(Proof: See [108]. To prove sufficiency in the first alternative of the third statement,
let x̂, ŷ ∈ F

n be such that x = Ax̂ and y = A∗ŷ. Then, A+xy∗ = A(I + x̂y∗). Since
α �= 0 it follows that −1 �= y∗A+x = ŷ∗AA+Ax̂ = ŷ∗Ax̂ = y∗x̂. It now follows that
I+ x̂y∗ is an elementary matrix and thus, by Fact 3.7.19, is nonsingular.) (Remark:
An equivalent version of the first statement is given in [330] and [721, p. 33]. A
detailed treatment of the generalized inverse of an outer-product perturbation is
given in [1396, pp. 152–157].) (Remark: See Fact 2.10.25.)

Fact 6.4.3. Let A ∈ Fn×n, assume that A is Hermitian, let b ∈ Fn, and define
S

�= I −A+A. Then,

(A+ bb∗)+

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
I − (b∗(A+)2b)−1A+bb∗A+

]
A+
[
I − (b∗(A+)2b)−1A+bb∗A+

]
, 1+b∗A+b = 0,

A+ − (1 + b∗A+b)−1A+bb∗A+, 1+b∗A+b �= 0,

[
I − (b∗Sb)−1Sbb∗

]
A+
[
I − (b∗Sb)−1bb∗S

]
+ (b∗Sb)−2Sbb∗S, b∗Sb �= 0.

(Proof: See [1006].)

Fact 6.4.4. Let A ∈ Fn×n, assume that A is positive semidefinite, let C ∈
Fm×m, assume that C is positive definite, and let B ∈ Fn×m. Then,

(A+BCB∗)+ = A+ −A+B
(
C−1 +B∗A+B

)−1
B∗A+

if and only if
AA+B = B.

(Proof: See [1049].) (Remark: AA+B = B is equivalent to R(B) ⊆ R(A).) (Remark:
Extensions of the matrix inversion lemma are considered in [384, 487, 1006, 1126]
and [654, pp. 426–428, 447, 448].)

Fact 6.4.5. Let A ∈ Fn×m and B ∈ Fm×l. Then, AB = 0 if and only if
B+A+ = 0.

Fact 6.4.6. Let A ∈ Fn×m and B ∈ Fn×l. Then, A+B = 0 if and only if
A∗B = 0.
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Fact 6.4.7. Let A ∈ Fn×m, assume that rankA = m, let B ∈ Fn×n, and
assume that B is positive definite. Then,

(ABA∗)+ = A(A∗A)−1B−1(A∗A)−1A∗.

(Proof: Use Fact 6.3.18.)

Fact 6.4.8. Let A ∈ Fn×m, let S ∈ Fm×m, assume that S is nonsingular, and
define B �= AS. Then,

BB+ = AA+.

(Proof: See [1184, p. 144].)

Fact 6.4.9. Let A ∈ Fn×r and B ∈ Fr×m, and assume that rankA = rankB =
r. Then,

(AB)+ = B+A+ = B∗(BB∗)−1(A∗A)−1A∗.

(Remark: AB is a full-rank factorization.)

Fact 6.4.10. Let A ∈ Fn×m and B ∈ Fm×l. Then,

(AB)+ = (A+AB)+
(
ABB+

)+
.

If, in addition, R(B) = R(A∗), then A+AB = B, ABB+ = A, and

(AB)+ = B+A+.

(Proof: See [1177, pp. 192] or [1301].) (Remark: This result is due to Cline and
Greville.)

Fact 6.4.11. Let A ∈ Fn×m and B ∈ Fm×l, and define B1
�= A+AB and

A1
�= AB1B

+
1 . Then,

AB = A1B1

and
(AB)+ = B+

1A
+
1 .

(Proof: See [1177, pp. 191, 192].)

Fact 6.4.12. Let A ∈ Fn×m and B ∈ Fm×l. Then, the following statements
are equivalent:

i) (AB)+ = B+A+.

ii) R(A∗AB) ⊆ R(B) and R(BB∗A∗) ⊆ R(A∗).

iii) (AB)(AB)+ = (AB)B+A+ and (AB)+(AB) = B+A+AB.

iv) A∗AB = BB+A∗AB and ABB∗ = ABB∗A+A.

v) AB(AB)+A = ABB+ and A+AB = B(AB)+AB.

vi) A∗ABB+ and A+ABB∗ are Hermitian.

vii) (ABB+)+ = BB+A+ and (A+AB)+ = B+A+A.

viii) B+(ABB+)+ = B+A+ and (A+AB)+A = B+A+.

ix) A∗ABB∗ = BB+A∗ABB∗A+A.
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(Proof: See [15, p. 53] and [587, 1291].) (Remark: The equivalence of i) and ii) is
due to Greville.) (Remark: Conditions under which B+A+ is a (1)-inverse of AB
are given in [1291].) (Remark: See [1416].)

Fact 6.4.13. Let A ∈ Fn×m and B ∈ Fm×l. Then, AB = 0 if and only
if B+A+ = 0. Furthermore, A+B = 0 if and only if A∗B = 0. (Proof: The first
statement follows from ix) =⇒ i) of Fact 6.4.12. The second statement follows from
Proposition 6.1.6.)

Fact 6.4.14. Let A ∈ Fn×m and B ∈ Fm×l. Then, the following statements
are equivalent:

i) (AB)+ = B+A+−B+[(I −BB+)(I −A+A)]+A+.

ii) R(AA∗AB) = R(AB) and R[(ABB∗B)∗] = R[(AB)∗].

(Proof: See [1289].)

Fact 6.4.15. Let A,B ∈ Fn×n, and assume that A and B are projectors.
Then,

R([A,B]) = R
[
(A−B)+ − (A−B)

]
.

Consequently, (A−B)+ = (A−B) if and only if AB = BA. (Proof: See [1288].)

Fact 6.4.16. Let A,B ∈ F
n×n, and assume that A and B are projectors.

Then, the following statements hold:

i) (AB)+ = B(AB)+.

ii) (AB)+ = (AB)+A.

iii) (AB)+ = B(AB)+A.

iv) (AB)+ = BA−B(B⊥A⊥)+A.

v) (AB)+, B(AB)+, (AB)+A, B(AB)+A, and BA − B(B⊥A⊥)+A are idempo-
tent.

vi) AB = A(AB)+B.

vii) (AB)2 = AB +AB(B⊥A⊥)+AB.

(Proof: To prove i) note that R[(AB)+] = R[(AB)∗] = R(BA), and thus
R[B(AB)+] = R[B(AB)∗] = R(BA). Hence, R[(AB)+] = R[B(AB)+]. It now fol-
lows from Fact 3.13.14 that (AB)+ = B(AB)+. Statement iv) follows from Fact
6.4.14. Statements v) and vi) follow from iii). Statement vii) follows from iv)
and vi).) (Remark: The converse of the first result in v) is given by Fact 6.4.17.)
(Remark: See Fact 6.3.27, Fact 6.4.10, and Fact 6.4.21. See [1289, 1423].)

Fact 6.4.17. Let A ∈ Fn×n, and assume that A is idempotent. Then, there
exist projectors B,C ∈ Fn×n such that A = (BC)+. (Proof: See [322, 537].) (Re-
mark: The converse of this result is given by v) of Fact 6.4.16.) (Remark: This
result is due to Penrose.)
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Fact 6.4.18. Let A,B ∈ Fn×n, and assume that R(A) and R(B) are com-
plementary subspaces. Furthermore, define P �= AA+ and Q

�= BB+. Then, the
matrix (Q⊥P )+ is the idempotent matrix onto R(B) along R(A). (Proof: See [588].)
(Remark: See Fact 3.12.33, Fact 3.13.24, and Fact 6.4.19.)

Fact 6.4.19. Let A,B ∈ F
n×n, assume that A and B are projectors, and

assume that R(A) and R(B) are complementary subspaces. Then, (A⊥B)+ is the
idempotent matrix onto R(B) along R(A). (Proof: See Fact 6.4.18, [593], or [744].)
(Remark: It follows from Fact 6.4.16 that (A⊥B)+ is idempotent.) (Remark: See
Fact 3.12.33, Fact 3.13.24, and Fact 6.4.18.)

Fact 6.4.20. Let A,B ∈ Fn×n, assume that A and B are projectors, and
assume that A−B is nonsingular. Then, I −BA is nonsingular, and

(A⊥B)+ = (I −BA)−1B(I −BA).

(Proof: Combine Fact 3.13.24 and Fact 6.4.19.)

Fact 6.4.21. Let k ≥ 1, let A1, . . . , Ak ∈ Fn×n, assume that A1, . . . , Ak are
projectors, and define B1, . . . , Bk−1 ∈ Fn×n by

Bi = (A1 · · ·Ak−i+1)+A1 · · ·Ak−i, i = 1, . . . , k − 2,

and
Bk−1 = A2 · · ·Ak(A1 · · ·Ak)+.

Then, B1, . . . , Bk−1 are idempotent, and

(A1 · · ·Ak)+ = B1 · · ·Bk−1.

(Proof: See [1298].) (Remark: When k = 2, the result that B1 is idempotent is
given by vi) of Fact 6.4.16.)

Fact 6.4.22. Let A ∈ Fn×n and B ∈ Fm×n, and assume that A is idempotent.
Then,

A∗(BA)+ = (BA)+.

(Proof: See [654, p. 514].)

Fact 6.4.23. Let A,B ∈ Fn×n, and assume that A and B are projectors.
Then, the following statements are equivalent:

i) AB is a projector.

ii) [(AB)+]2 = [(AB)2]+.

(Proof: See [1321].) (Remark: See Fact 3.13.20 and Fact 5.12.16.)

Fact 6.4.24. Let A ∈ Fn×m. Then, B ∈ Fm×m satisfies BAB = B if and only
if there exist projectors C ∈ Fn×n and D ∈ Fm×m such that B = (CAD)+. (Proof:
See [588].)

Fact 6.4.25. Let A ∈ Fn×n. Then, A is idempotent if and only if there exist
projectors B,C ∈ Fn×n such that A = (BC)+. (Proof: Let A = I in Fact 6.4.24.)
(Remark: See [594].)
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Fact 6.4.26. Let A,B ∈ Fn×n, and assume that A is range Hermitian. Then,
AB = BA if and only if A+B = BA+. (Proof: See [1280].)

Fact 6.4.27. Let A,B ∈ Fn×n, and assume that A and B are range Hermitian.
Then, the following statements are equivalent:

i) AB = BA.

ii) A+B = BA+.

iii) AB+ = B+A.

iv) A+B+ = B+A+.

(Proof: See [1280].)

Fact 6.4.28. Let A,B ∈ Fn×n, assume that A and B are range Hermitian,
and assume that (AB)+ = A+B+. Then, AB is range Hermitian. (Proof: See [648].)
(Remark: See Fact 8.20.21.)

Fact 6.4.29. Let A,B ∈ Fn×n, and assume that A and B are range Hermitian.
Then, the following statements are equivalent:

i) AB is range Hermitian.

ii) AB(I −A+A) = 0 and (I −B+B)AB = 0.

iii) N(A) ⊆ N(AB) and R(AB) ⊆ R(B).

iv) N(AB) = N(A) + N(B) and R(AB) = R(A) ∩ R(B).

(Proof: See [648, 832].)

Fact 6.4.30. Let A ∈ Fn×m and B ∈ Fm×l, and assume that rankB = m.
Then,

AB(AB)+ = AA+.

Fact 6.4.31. Let A ∈ Fn×m, B ∈ Fm×n, and C ∈ Fm×n, and assume that
BAA∗ = A∗ and A∗AC = A∗. Then,

A+ = BAC.

(Proof: See [15, p. 36].) (Remark: This result is due to Decell.)

Fact 6.4.32. Let A,B ∈ Fn×n, and assume that A+B is nonsingular. Then,
the following statements are equivalent:

i) rankA+ rankB = n.

ii) A(A +B)−1B = 0.

iii) B(A+B)−1A = 0.

iv) A(A +B)−1A = A.

v) B(A+B)−1B = B.

vi) A(A +B)−1B +B(A+ B)−1A = 0.
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vii) A(A +B)−1A+B(A +B)−1B = A+B.

viii) (A+ B)−1 = [(I −BB+)A(I −B+B)]+ + [(I −AA+)B(I −A+A)]+.

(Proof: See [1302].) (Remark: See Fact 2.11.4 and Fact 8.20.23.)

Fact 6.4.33. Let A ∈ F
n×m and B ∈ F

n×l, and assume that A and B are
projectors. Then, the following statements hold:

i) A(A −B)+B = B(A−B)+A = 0.

ii) A−B = A(A−B)+A−B(B −A)+B.

iii) (A− B)+ = (A−AB)+ + (AB −B)+.

iv) (A− B)+ = (A−BA)+ + (BA−B)+.

v) (A− B)+ = A−B +B(A−BA)+ − (B −BA)+A.

vi) (A− B)+ = A−B + (A−AB)+B −A(B −AB)+.

vii) (I −A−B)+ = (A⊥B⊥)+ − (AB)+.

viii) (I −A−B)+ = (B⊥A⊥)+ − (BA)+.

Furthermore, the following statements are equivalent:

ix) AB = BA.

x) (A− B)+ = A−B.
xi) B(A −BA)+ = (B −BA)+A.

xii) (A− B)3 = A−B.
xiii) A−B is tripotent.

(Proof: See [322].) (Remark: See Fact 3.12.22.)

Fact 6.4.34. Let A,B ∈ Fn×m, and assume that A∗B = 0 and BA∗ = 0.
Then,

(A+B)+ = A+ +B+.

(Proof: Use Fact 2.10.29 and Fact 6.4.35. See [339] and [654, p. 513].) (Remark:
This result is due to Penrose.)

Fact 6.4.35. Let A,B ∈ Fn×m, and assume that rank(A + B) = rankA +
rankB. Then,

(A+B)+ = (I − C+B)A+(I −BC+) + C+,

where C �= (I −AA+)B(I −A+A). (Proof: See [339].)

Fact 6.4.36. Let A,B ∈ Fn×m. Then,

(A+B)+ = (I +A+B)+(A+ +A+BA+)(I +BA+)+

if and only if AA+B = B = BA+A. Furthermore, if n = m and A is nonsingular,
then

(A+B)+ =
(
I +A−1B

)+(
A−1 +A−1BA−1

)(
I +BA−1

)+
.

(Proof: See [339].) (Remark: If A and A+ B are nonsingular, then the last state-
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ment yields (A + B)−1 = (A + B)−1(A + B)(A + B)−1 for which the assumption
that A is nonsingular is superfluous.)

Fact 6.4.37. Let A,B ∈ Fn×m. Then,

A+− B+

= B+(B −A)A+ + (I −B+B)(A∗ −B∗)A+∗A+ +B+B+∗(A∗ −B∗)(I −AA+)

= A+(B −A)B+ + (I −A+A)(A∗ −B∗)B+∗B+ +A+A+∗(A∗ − B∗)(I −BB+).

Furthermore, if B is left invertible, then

A+ −B+ = B+(B −A)A+ +B+B+∗(A∗ −B∗)(I −AA+),

while, if B is right invertible, then

A+ −B+ = A+(B −A)B+ + (I −A+A)(A∗ −B∗)B+∗B+.

(Proof: See [283, p. 224].)

Fact 6.4.38. Let A ∈ Fn×m, B ∈ Fl×k, and C ∈ Fn×k. Then, there exists a
matrix X ∈ Fm×l satisfying AXB = C if and only if AA+CB+B = C. Furthermore,
X satisfies AXB = C if and only if there exists a matrix Y ∈ Fm×l such that

X = A+CB+ + Y −A+AYBB+.

Finally, if Y = 0, then trX∗X is minimized. (Proof: Use Proposition 6.1.7. See
[948, p. 37] and, for Hermitian solutions, see [808].)

Fact 6.4.39. Let A ∈ Fn×m, and assume that rankA = m. Then, AL ∈ Fm×n

is a left inverse of A if and only if there exists a matrix B ∈ Fm×n such that

AL = A+ +B(I −AA+).

(Proof: Use Fact 6.4.3 with A = C = Im.)

Fact 6.4.40. Let A ∈ Fn×m, and assume that rankA = n. Then, AR ∈ Fm×n

is a right inverse of A if and only if there exists a matrix B ∈ Fm×n such that

AR = A+ + (I −A+A)B.

(Proof: Use Fact 6.4.38 with B = C = In.)

Fact 6.4.41. Let A,B ∈ Fn×n, and assume that A and B are projectors.
Then,

glb{A,B} = lim
k→∞

A(BA)k = 2A(A+B)+B.

Furthermore, 2A(A + B)+B is the projector onto R(A) ∩ R(B). (Proof: See [39]
and [627, pp. 64, 65, 121, 122].) (Remark: See Fact 6.4.42 and Fact 8.20.18.)

Fact 6.4.42. Let A ∈ Rn×m and B ∈ Rn×l. Then,

R(A) ∩ R(B) = R[AA+(AA++ BB+)+BB+].

(Remark: See Theorem 2.3.1 and Fact 8.20.18.)
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Fact 6.4.43. Let A ∈ Rn×m and B ∈ Rn×l. Then, R(A) ⊆ R(B) if and only
if BB+A = A. (Proof: See [15, p. 35].)

Fact 6.4.44. Let A ∈ Rn×m and B ∈ Rn×l. Then,

dim[R(A) ∩ R(B)] = rankAA+(AA+ +BB+)+BB+

= rankA+ rankB − rank
[
A B

]
.

(Proof: Use Fact 2.11.1, Fact 2.11.12, and Fact 6.4.42.) (Remark: See Fact 2.11.8.)

Fact 6.4.45. Let A,B ∈ Fn×n, and assume that A and B are projectors.
Then,

lub{A,B} = (A+B)(A+B)+.

Furthermore, lub{A,B} is the projector onto R(A) + R(B) = span[R(A) ∪ R(B)].
(Proof: Use Fact 2.9.13 and Fact 8.7.3.) (Remark: See Fact 8.7.2.)

Fact 6.4.46. Let A,B ∈ Fn×n, and assume that A and B are projectors.
Then,

lub{A,B} = I − lim
k→∞

A⊥(B⊥A⊥)k = I − 2A⊥(A⊥ +B⊥)+B⊥.

Furthermore, I − 2A⊥(A⊥ +B⊥)+B⊥ is the projector onto

[R(A⊥) ∩ R(B⊥)]⊥ = [N(A) ∩N(B)]⊥

= [N(A)]⊥ + [N(B)]⊥

= R(A) + R(B)
= span[R(A) ∪ R(B)].

Consequently,
I − 2A⊥(A⊥ +B⊥)+B⊥ = (A+B)(A +B)+.

(Proof: See [39] and [627, pp. 64, 65, 121, 122].) (Remark: See Fact 6.4.42 and
Fact 8.20.18.)

Fact 6.4.47. Let A,B ∈ Fn×m. Then,

A
∗≤ B

if and only if
A+A = A+B

and
AA+ = BA+.

(Proof: See [652].) (Remark: See Fact 2.10.35.)

6.5 Facts on the Moore-Penrose Generalized Inverse for
Partitioned Matrices

Fact 6.5.1. Let A,B ∈ Fn×m. Then,

(A+B)+ = 1
2

[
In In

][ A B
B A

]+[
Im
Im

]
.
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(Proof: See [1278, 1282, 1302].) (Remark: See Fact 2.17.5 and Fact 2.19.7.)

Fact 6.5.2. Let A1, . . . , Ak ∈ Fn×m. Then,

(A1 + · · ·+Ak)+ = 1
k

[
In · · · In

]
⎡
⎢⎢⎢⎢⎣
A1 A2 · · · Ak

Ak A1 · · · Ak−1

...
...

. . .
...

A2 A3 · · · A1

⎤
⎥⎥⎥⎥⎦

+⎡
⎢⎣
Im
...
Im

⎤
⎥⎦.

(Proof: See [1282].) (Remark: The partitioned matrix is block circulant. See Fact
6.6.1 and Fact 2.17.6.)

Fact 6.5.3. Let A,B ∈ Fn×m. Then, the following statements are equivalent:

i) R
([

A
A∗A

])
= R
([

B
B∗B

])
.

ii) R
([

A
A+A

])
= R
([

B
B+B

])
.

iii) A = B.

(Remark: This result is due to Tian.)

Fact 6.5.4. Let A ∈ Fn×m, B ∈ Fn×l, C ∈ Fk×m, and D ∈ Fk×l. Then,[
A B
C D

]
=
[

I 0
CA+ I

][
A B −AA+B

C − CA+A D − CA+B

][
I A+B
0 I

]
.

(Proof: See [1290].)

Fact 6.5.5. Let A ∈ Fn×n, B ∈ Fn×m, and C ∈ Fm×m, define A
�=
[
A B
B∗ C

]
,

and assume that B = AA+B. Then,

In A = InA+ In(A|A).

(Remark: This result is the Haynsworth inertia additivity formula. See [1103].)
(Remark: If A is positive semidefinite, then B = AA+B. See Proposition 8.2.4.)

Fact 6.5.6. Let A ∈ Fn×m, B ∈ Fn×l, C ∈ Fk×m, and D ∈ Fk×l. Then,

rank
[
A B

]
= rankA+ rank

(
B −AA+B

)
= rankB + rank

(
A−BB+A

)
= rankA+ rankB − dim[R(A) ∩ R(B)],

rank
[
A
C

]
= rankA+ rank

(
C − CA+A

)
= rankC + rank

(
A−AC+C

)
= rankA+ rankC − dim[R(A∗) ∩ R(C∗)],

rank
[
A B
C 0

]
= rankB + rankC + rank

[(
In −BB+

)
A
(
Im − C+C

)]
,
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and

rank
[
A B
C D

]
= rankA+ rankX + rankY

+ rank
[(
Ik − Y Y +

)
(D − CA+B)

(
Il −X+X

)]
,

where X �= B −AA+B and Y �= C − CA+A. Consequently,

rankA+ rank(D − CA+B) ≤ rank
[
A B
C D

]
,

and, if AA+B = B and CA+A = C, then

rankA+ rank(D − CA+B) = rank
[
A B
C D

]
.

Finally, if n = m and A is nonsingular, then

n+ rank
(
D − CA−1B

)
= rank

[
A B
C D

]
.

(Proof: See [290, 968], Fact 2.11.8, and Fact 2.11.11.) (Remark: With certain
restrictions the generalized inverses can be replaced by (1)-inverses.) (Remark: See
Proposition 2.8.3 and Proposition 8.2.3.)

Fact 6.5.7. Let A ∈ Fn×m, B ∈ Fk×l, and C ∈ Fn×l. Then,

min
X∈Fm×l,Y ∈Fn×k

rank(AX + YB + C) = rank
[
A C
0 −B

]
− rankA− rankB.

Furthermore, X,Y is a minimizing solution if and only if there exist U ∈ Fm×k,
U1 ∈ F

m×l, and U2 ∈ F
n×k, such that

X = −A+C + UB + (Im −A+A)U1,

Y = (AA+ − I)CB+ −AU + U2(Ik −BB+).

Finally, all such matrices X ∈ F
m×l and Y ∈ F

n×k satisfy

AX + YB + C = 0

if and only if

rank
[
A C
0 −B

]
= rankA+ rankB.

(Proof: See [1285, 1303].) (Remark: See Fact 5.10.20. Note that A and B are
square in Fact 5.10.20.)

Fact 6.5.8. Let A ∈ Fn×n, B ∈ Fn×m, and C ∈ Fm×m, and assume that[
A B
B∗ C

]
is a projector. Then,

rank(D −B∗A+B) = rankC − rankB∗A+B.

(Proof: See [1295].) (Remark: See [107].)

Fact 6.5.9. Let A ∈ F
n×m and B ∈ F

n×l. Then, the following statements are
equivalent:

i) rank
[
A B

]
= rankA+ rankB.
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ii) R(A) ∩R(B) = ∅.

iii) rank(AA∗ +BB∗) = rankA+ rankB.

iv) A∗(AA∗ +BB∗)+A is idempotent.

v) A∗(AA∗ +BB∗)+A = A+A.

vi) A∗(AA∗ +BB∗)+B = 0.

(Proof: See [948, pp. 56, 57].) (Remark: See Fact 2.11.8.)

Fact 6.5.10. Let A ∈ Fn×m andB ∈ Fn×l, and define the projectors P �= AA+

and Q �= BB+. Then, the following statements are equivalent:

i) rank
[
A B

]
= rankA+ rankB = n.

ii) P −Q is nonsingular.

In this case,

(P −Q)−1 = (P − PQ)+ + (PQ−Q)+

= (P −QP )+ + (QP −Q)+

= P −Q+Q(P −QP )+ − (Q−QP )+P.

(Proof: See [322].)

Fact 6.5.11. Let A ∈ Fn×m, B ∈ Fn×l, C ∈ Fl×n, D ∈ Fl×l, and assume that
D is nonsingular. Then,

rankA = rank
(
A−BD−1C

)
+ rankBD−1C

if and only if there exist matrices X ∈ Fm×l and Y ∈ Fl×n such that B = AX,
C = YA, and D = YAX. (Proof: See [330].)

Fact 6.5.12. Let A ∈ Fn×m, B ∈ Fn×l, C ∈ Fk×m, and D ∈ Fk×l. Then,

rankA+ rank(D − CA+B) = rank
[
A∗AA∗ A∗B
CA∗ D

]
.

(Proof: See [1286].)

Fact 6.5.13. Let A11 ∈ Fn×m, A12 ∈ Fn×l, A21 ∈ Fk×m, and A22 ∈ Fk×l,
and define A �=

[
A11 A12
A21 A22

] ∈ F(n+k)×(m+l) and B �= AA+ =
[
B11 B12

BT
12 B22

]
, where

B11 ∈ Fn×m, B12 ∈ Fn×l, B21 ∈ Fk×m, and B22 ∈ Fk×l. Then,

rankB12 = rank
[
A11 A12

]
+ rank

[
A21 A22

]− rankA.

(Proof: See [1308].) (Remark: See Fact 3.12.20 and Fact 3.13.12.)
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Fact 6.5.14. Let A,B ∈ Fn×n. Then,

rank
[

0 A
B I

]
= rankA+ rank

[
B I −A+A

]
= rank

[
A

I −BB+

]
+ rankB

= rankA+ rankB + rank
[(
I −BB+

)(
I −A+A

)]
= n+ rankAB.

Hence, the following statements hold:

i) rankAB = rankA+ rankB − n if and only if (I −BB+)(I −A+A) = 0.

ii) rankAB = rankA if and only if
[
B I −A+A

]
is right invertible.

iii) rankAB = rankB if and only if
[

A
I−BB+

]
is left invertible.

(Proof: See [968].) (Remark: The generalized inverses can be replaced by arbitrary
(1)-inverses.)

Fact 6.5.15. Let A ∈ Fn×m, B ∈ Fm×l, and C ∈ Fl×k. Then,

rank
[

0 AB
BC B

]
= rankB + rankABC

= rankAB + rankBC

+ rank [(I −BC)(BC)+]B[(I − (AB)+(AB)].

Furthermore, the following statements are equivalent:

i) rank [ 0 AB
BC B ] = rankAB + rankBC.

ii) rankABC = rankAB + rankBC − rankB.

iii) There exist matrices X ∈ Fk×l and Y ∈ Fm×n such that

BCX + YAB = B.

(Proof: See [968, 1308] and Fact 5.10.20.) (Remark: This result is related to the
Frobenius inequality. See Fact 2.11.14.)

Fact 6.5.16. Let x, y ∈ R3, and assume that x and y are linearly independent.
Then, [

x y
]+ =

[
x+(I3 − yφT)

φT

]
,

where x+ = (xTx)−1xT, α �= yT(I − xx+)y, and φ �= α−1(I − xx+)y. Now, let
x, y, z ∈ R3, and assume that x and y are linearly independent. Then,

[
x y z

]+
=

⎡
⎣ (I2 − βwwT)

[
x y

]+
βwT
[
x y

]+
⎤
⎦,

where w �= [x y]+z and β �= 1/(1 + wTw). (Proof: See [1319].)
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Fact 6.5.17. Let A ∈ Fn×m and b ∈ Fn. Then,

[
A b

]+ =

[
A+(In − bφ∗)

φ∗

]

and

[
b A

]+ =

[
φ∗

A+(In − bφ∗)

]
,

where

φ
�=

⎧⎨
⎩

(b −AA+b)+∗, b �= AA+b,

γ−1(AA∗)+b, b = AA+b.

and γ
�= 1 + b∗(AA∗)+b. (Proof: See [15, p. 44], [481, p. 270], or [1186, p. 148].)

(Remark: This result is due to Greville.)

Fact 6.5.18. Let A ∈ Fn×m and B ∈ Fn×l. Then,

[
A B

]+ =

[
A+ −A+B(C+ +D)

C+ +D

]
,

where
C

�= (I −AA+)B

and

D
�= (I − C+C)[I + (I − C+C)B∗(AA∗)+B(I − C+C)]−1B∗(AA∗)+(I −BC+).

Furthermore,

[
A B

]+ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
A∗(AA∗ +BB∗)−1

B∗(AA∗ +BB∗)−1

]
, rank

[
A B

]
= n,

[
A∗A A∗B
B∗A B∗B

]−1[
A∗

B∗

]
, rank

[
A B

]
= m+ l,

[
A∗(AA∗)−1(I −BE)

E

]
, rankA = n,

where
E

�=
[
I +B∗(AA∗)−1B

]−1
B∗(AA∗)−1.

(Proof: See [338] or [947, p. 14].) (Remark: If
[
A B

]
is square and nonsingular

and A∗B = 0, then the second expression yields Fact 2.17.8.)

Fact 6.5.19. Let A ∈ Fn×m and B ∈ Fn×l. Then,

rank
([

A B
]+ − [ A+

B+

])
= rank

[
AA∗B BB∗A

]
.

Hence, if A∗B = 0, then [
A B

]+ =
[
A+

B+

]
.
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(Proof: See [1289].)

Fact 6.5.20. Let A ∈ Fn×m and B ∈ Fn×l. Then, the following statements
are equivalent:

i)
[
A B

][
A B

]+ = 1
2 (AA+ +BB+).

ii) R(A) = R(B).

Furthermore, the following statements are equivalent:

iii)
[
A B

]+ = 1
2

[
A+

B+

]
.

iv) AA∗ = BB∗.

(Proof: See [1300].)

Fact 6.5.21. Let A ∈ Fn×m and B ∈ Fk×l. Then,[
A 0
0 B

]+
=
[
A+ 0
0 B+

]
.

Fact 6.5.22. Let A ∈ Fn×m. Then,[
In A

0m×n 0m×m

]+
=

[
(In +AA∗)−1 0n×m
A∗(In +AA∗)−1 0m×m

]
.

(Proof: See [17, 1326].)

Fact 6.5.23. Let A ∈ Fn×n, let B ∈ Fn×m, and assume that BB∗ = I. Then,[
A B
B∗ 0

]+
=
[

0 B
B∗ −B∗AB

]
.

(Proof: See [447, p. 237].)

Fact 6.5.24. Let A ∈ F
n×n, assume that A is positive semidefinite, and let

B ∈ Fn×m. Then,[
A B
B∗ 0

]+
=

[
C+ − C+BD+B∗C+ C+BD+

(C+BD+)∗ DD+ −D+

]
,

where
C �= A+BB∗, D �= B∗C+B.

(Proof: See [948, p. 58].) (Remark: Representations for the generalized inverse
of a partitioned matrix are given in [174, Chapter 5] and [105, 112, 134, 172, 277,
283, 296, 595, 643, 645, 736, 904, 996, 997, 999, 1000, 1001, 1046, 1120, 1137, 1278,
1310, 1418].) (Problem: Show that the generalized inverses in this result and in
Fact 6.5.23 are identical when A is positive semidefinite and BB∗ = I.)
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Fact 6.5.25. Let A ∈ Fn×n, x, y ∈ Fn, and a ∈ F, and assume that x ∈ R(A).
Then, [

A x
yT a

]
=
[

I 0
yT 1

][
A 0

yT − yTA a− yTA+x

][
I A+x
0 1

]
.

(Remark: See Fact 2.16.2 and Fact 2.14.9, and note that x = AA+x.) (Problem:
Obtain a factorization for the case x /∈ R(A).)

Fact 6.5.26. Let A ∈ Fn×m, assume that A is partitioned as

A =

⎡
⎢⎣
A1

...
Ak

⎤
⎥⎦,

and define
B

�=
[
A+

1 · · · A+
k

]
.

Then, the following statements hold:

i) detAB = 0 if and only if rankA < n.

ii) 0 < detAB ≤ 1 if and only if rankA = n.

iii) If rankA = n, then

detAB =
detAA∗∏k
i=1 detAiA∗

i

,

and thus

detAA∗ ≤
k∏
i=1

detAiA∗
i.

iv) detAB = 1 if and only if AB = I.

v) AB is group invertible.

vi) Every eigenvalue of AB is nonnegative.

vii) rankA = rankB = rankAB = rankBA.

Now, assume that rankA =
∑k

i=1 rankAi, and let β denote the product of the
positive eigenvalues of AB. Then, the following statements hold:

viii) 0 < β ≤ 1.

ix) β = 1 if and only if B = A+.

(Proof: See [875, 1247].) (Remark: Result iii) yields Hadamard’s inequality as
given by Fact 8.13.34 in the case that A is square and each Ai has a single row.)

Fact 6.5.27. Let A ∈ Fn×m and B ∈ Fn×l. Then,

det
[
A∗A B∗A
B∗A B∗B

]
= det(A∗A)det[B∗(I −AA+)B]

= det(B∗B)det[A∗(I −BB+)A].

(Remark: See Fact 2.14.25.)



GENERALIZED INVERSES 393

Fact 6.5.28. Let A ∈ Fn×n, B ∈ Fn×m, C ∈ Fm×n, and D ∈ Fm×m, assume
that either rank

[
A B

]
= rankA or rank [AC ] = rankA, and let A− ∈ Fn×n be

a (1)-inverse of A. Then,

det
[
A B
C D

]
= (detA)det(D − CA−B).

(Proof: See [144, p. 266].)

Fact 6.5.29. Let A �=
[
A11 A12
A21 A22

] ∈ F(n+m)×(n+m), B ∈ F(n+m)×l, C ∈
Fl×(n+m), D ∈ Fl×l, and A

�= [A B
C D ], and assume that A and A11 are nonsingu-

lar. Then,
A|A = (A11|A)|(A11|A).

(Proof: See [1098, pp. 18, 19].) (Remark: This result is the Crabtree-Haynsworth
quotient formula. See [717].) (Remark: Extensions are given in [1495].) (Problem:
Extend this result to the case in which either A or A11 is singular.)

Fact 6.5.30. Let A,B ∈ F
n×m. Then, the following statements are equivalent:

i) A
rs≤ B.

ii) AA+B = BA+A = BA+B = B.

iii) rankA = rank
[
A B

]
= rank [ AB ] and BA+B = B.

(Proof: See [1184, p. 45].) (Remark: See Fact 8.20.7.)

6.6 Facts on the Drazin and Group Generalized Inverses

Fact 6.6.1. Let A1, . . . , Ak ∈ F
n×m. Then,

(A1 + · · ·+Ak)D = 1
k

[
In · · · In

]
⎡
⎢⎢⎢⎢⎣
A1 A2 · · · Ak

Ak A1 · · · Ak−1

...
...

. . .
...

A2 A3 · · · A1

⎤
⎥⎥⎥⎥⎦

D⎡
⎢⎣
Im
...
Im

⎤
⎥⎦.

(Proof: See [1282].) (Remark: See Fact 6.5.2.)

Fact 6.6.2. Let A ∈ Fn×n. Then, X = AD is the unique matrix satisfying

rank
[

A AAD

ADA X

]
= rankA.

(Remark: See Fact 2.17.10 and Fact 6.3.30.) (Proof: See [1417, 1496].)

Fact 6.6.3. Let A,B ∈ Fn×n, and assume that AB = 0. Then,

(AB)D = A(BA)2DB.

(Remark: This result is Cline’s formula.)
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Fact 6.6.4. Let A,B ∈ Fn×n, and assume that AB = BA. Then,

(AB)D = BDAD,

ADB = BAD,

ABD = BDA.

Fact 6.6.5. Let A,B ∈ Fn×n, and assume that AB = BA = 0. Then,

(A+B)D = AD +BD.

(Proof: See [653].) (Remark: This result is due to Drazin.)

Fact 6.6.6. Let A ∈ Fn×n, and assume that indA = rankA = 1. Then,

A# =
(
trA2

)−1
A.

Consequently, if x, y ∈ Fn satisfy x∗y �= 0, then

(xy∗)# = (x∗y)−2xy∗.

In particular,
1#
n×n = n−21n×n.

Fact 6.6.7. Let A ∈ Fn×n, and let k �= indA. Then,

AD = Ak
(
A2k+1

)+
Ak.

If, in particular, indA ≤ 1, then

A# = A
(
A3
)+
A.

(Proof: See [174, pp. 165, 174].)

Fact 6.6.8. Let A ∈ Fn×n. Then, the following statements are equivalent:

i) A is range Hermitian.

ii) A+ = AD.

iii) indA ≤ 1, and A+ = A#.

iv) indA ≤ 1, and A∗A#A+AA#A∗ = 2A∗.

v) indA ≤ 1, and A+A#A+AA#A+ = 2A+.

(Proof: See [323].) (Remark: See Fact 6.3.10.)

Fact 6.6.9. Let A ∈ Fn×n, assume that A is group invertible, and let S,B ∈
Fn×n, where S is nonsingular, B is a Jordan canonical form of A, and A = SBS−1.
Then,

A# = SB#S−1 = SB+S−1.

(Proof: Since B is range Hermitian, it follows from Fact 6.6.8 that B# = B+. See
[174, p. 158].)

Fact 6.6.10. Let A ∈ Fn×n. Then, the following statements are equivalent:

i) A is normal.



GENERALIZED INVERSES 395

ii) indA ≤ 1, and A#A∗ = A∗A#.

(Proof: See [323].) (Remark: See Fact 3.7.12, Fact 3.11.4, Fact 5.15.4, and Fact
6.3.16.)

Fact 6.6.11. Let A ∈ Fn×n, and let k ≥ 1. Then, the following statements
are equivalent:

i) k ≥ indA.

ii) limα→0 α
k(A+ αI)−1 exists.

iii) limα→0(Ak+1 + αI)−1Ak exists.

In this case,
AD = lim

α→0
(Ak+1 + αI)−1Ak

and

lim
α→0

αk(A+ αI)−1 =

⎧⎪⎨
⎪⎩

(−1)k−1(I −AAD)Ak−1, k = indA > 0,
A−1, k = indA = 0,
0, k > indA.

(Proof: See [999].)

Fact 6.6.12. Let A ∈ Fn×n, let r �= rankA, let B ∈ Rn×r and C ∈ Rr×n, and
assume that A = BC. Then, A is group invertible if and only if BA is nonsingular.
In this case,

A# = B(CB)−2C.

(Proof: See [174, p. 157].) (Remark: This result is due to Cline.)

Fact 6.6.13. Let A ∈ Fn×n, B ∈ Fn×m, and C ∈ Fm×m. If A and C are
singular, then ind [A B

0 C ] = 1 if and only if indA = indC = 1, and (I −AAD)B(I −
CCD) = 0. (Proof: See [999].) (Remark: See Fact 5.14.32.)

Fact 6.6.14. Let A ∈ Fn×n. Then, A is group invertible if and only if
limα→0(A+ αI)−1A exists. In this case,

lim
α→0

(A+ αI)−1A = AA#.

(Proof: See [283, p. 138].)

Fact 6.6.15. Let A ∈ Fn×n, assume that A is nonzero and group invertible,
let r �= rankA, define B �= diag[σ1(A), . . . , σr(A)], and let S ∈ F

n×n, K ∈ F
r×r, and

L ∈ Fr×(n−r) be such that S is unitary,

KK∗ + LL∗ = Ir ,

and

A = S

[
BK BL

0(n−r)×r 0(n−r)×(n−r)

]
S∗.
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Then,

A# = S

[
K−1B−1 K−1B−1K−1L

0(n−r)×r 0(n−r)×(n−r)

]
S∗.

(Proof: See [115, 651].) (Remark: See Fact 5.9.28 and Fact 6.3.15.)

Fact 6.6.16. Let A ∈ Fn×n. Then, the following statements are equivalent:

i) A is range Hermitian.

ii) A is group invertible and AA+A+ = A#.

iii) A is group invertible and AA#A+ = A#.

iv) A is group invertible and A∗AA# = A∗.

v) A is group invertible and A+AA# = A+.

vi) A is group invertible and A#A+A = A+.

vii) A is group invertible and AA# = A+A.

viii) A is group invertible and A∗A+ = A∗A#.

ix) A is group invertible and A+A∗ = A#A∗.

x) A is group invertible and A+A+ = A+A#.

xi) A is group invertible and A+A+ = A#A+.

xii) A is group invertible and A+A+ = A#A#.

xiii) A is group invertible and A+A# = A#A#.

xiv) A is group invertible and A#A+ = A#A#.

xv) A is group invertible and A+A# = A#A+.

xvi) A is group invertible and AA+A∗ = A∗AA+.

xvii) A is group invertible and AA+A# = A+A#A.

xviii) A is group invertible and AA+A# = A#AA+.

xix) A is group invertible and AA#A∗ = A∗AA#.

xx) A is group invertible and AA#A+ = A+AA#.

xxi) A is group invertible and AA#A+ = A#A+A.

xxii) A is group invertible and A∗A+A = A+AA∗.

xxiii) A is group invertible and A+AA# = A#A+A.

xxiv) A is group invertible and A+A+A# = A+A#A+.

xxv) A is group invertible and A+A+A# = A#A+A+.

xxvi) A is group invertible and A+A#A+ = A#A+A+.

xxvii) A is group invertible and A+A#A# = A#A+A#.

xxviii) A is group invertible and A+A#A# = A#A#A+.
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xxix) A is group invertible and A#A#A+ = A#A+A#.

(Proof: See [115].)

Fact 6.6.17. Let A ∈ Fn×n. Then, the following statements are equivalent:

i) A is normal.

ii) A is group invertible and A∗A+ = A#A∗.

iii) A is group invertible and A∗A# = A+A∗.

iv) A is group invertible and A∗A# = A#A∗.

v) A is group invertible and AA∗A# = A∗A#A.

vi) A is group invertible and AA∗A# = A#AA∗.

vii) A is group invertible and AA#A∗ = A#A∗A.

viii) A is group invertible and A∗AA# = A#A∗A.

ix) A is group invertible and A∗2A# = A∗A#A∗.

x) A is group invertible and A∗A+A# = A#A∗A+.

xi) A is group invertible and A∗A#A∗ = A#A2∗.

xii) A is group invertible and A∗A#A+ = A+A∗A#.

xiii) A is group invertible and A∗A#A# = A#A∗A#.

xiv) A is group invertible and A+A∗A# = A#A+A∗.

xv) A is group invertible and A+A#A∗ = A#A∗A+.

xvi) A is group invertible and A#A∗A# = A#A#A∗.

(Proof: See [115].)

Fact 6.6.18. Let A ∈ Fn×n. Then, the following statements are equivalent:

i) A is Hermitian.

ii) A is group invertible and AA# = A∗A+.

iii) A is group invertible and AA# = A∗A#.

iv) A is group invertible and AA# = A+A∗.

v) A is group invertible and A+A = A#A∗.

vi) A is group invertible and A∗AA# = A.

vii) A is group invertible and A2∗A# = A∗.

viii) A is group invertible and A∗A+A+ = A#.

ix) A is group invertible and A∗A+A# = A+.

x) A is group invertible and A∗A+A# = A#.

xi) A is group invertible and A∗A#A# = A#.
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xii) A is group invertible and A#A∗A# = A+.

(Proof: See [115].)

Fact 6.6.19. Let A,B ∈ Fn×n, assume that A and B are group invertible,
and consider the following conditions:

i) ABA = B.

ii) BAB = A.

iii) A2 = B2.

Then, if two of the above conditions are satisfied, then the third condition is satis-
fied. Furthermore, if i)–iii) are satisfied, then the following statements hold:

iv) A and B are group invertible.

v) A# = A3 and B# = B3.

vi) A5 = A and B5 = B.

vii) A4 = B4 = (AB)4.

viii) If A and B are nonsingular, then A4 = B4 = (AB)4 = I.

(Proof: See [469].)

Fact 6.6.20. Let A ∈ Rn×n, where n ≥ 2, assume that A is positive, define
B

�= sprad(A)I − A, let x, y ∈ Rn be positive, and assume that Ax = sprad(A)x
and ATy = sprad(A)y. Then, the following statements hold:

i) B + 1
xTy

xyT is nonsingular.

ii) B# = (B + 1
xTy

xyT)−1(I − 1
xTy

xyT).

iii) I −BB# = 1
xTy

xyT.

iv) B# = limk→∞
[∑k−1

i=0
1

[sprad(A)]iA
i − k

xTy
xyT
]
.

(Proof: See [1148, p. 9-4].) (Remark: See Fact 4.11.5.)

6.7 Notes

A brief history of the generalized inverse is given in [173] and [174, p. 4].
The proof of the uniqueness of A+ is given in [948, p. 32]. Additional books
on generalized inverses include [174, 245, 1118, 1396]. The terminology “range
Hermitian” is used in [174]; the terminology “EP” is more common. Generalized
inverses are widely used in least squares methods; see [237, 283, 876]. Applications
to singular differential equations are considered in [282]. Applications to Markov
chains are discussed in [737].



Chapter Seven

Kronecker and Schur Algebra

In this chapter we introduce Kronecker matrix algebra, which is useful for
solving linear matrix equations.

7.1 Kronecker Product

For A ∈ Fn×m define the vec operator as

vecA �=

⎡
⎢⎣

col1(A)
...

colm(A)

⎤
⎥⎦ ∈ F

nm, (7.1.1)

which is the column vector of size nm× 1 obtained by stacking the columns of A.
We recover A from vecA by writing

A = vec−1(vecA). (7.1.2)

Proposition 7.1.1. Let A ∈ Fn×m and B ∈ Fm×n. Then,

trAB =
(
vecAT

)T
vecB =

(
vecBT

)T
vecA. (7.1.3)

Proof. Note that

trAB =
n∑
i=1

rowi(A)coli(B)

=
n∑
i=1

[
coli
(
AT
)]T

coli(B)

=
[

colT1
(
AT
) · · · colTn

(
AT
) ]
⎡
⎢⎣

col1(B)
...

coln(B)

⎤
⎥⎦

=
(
vecAT

)T
vecB. �

Next, we introduce the Kronecker product.
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Definition 7.1.2. Let A ∈ Fn×m and B ∈ Fl×k. Then, the Kronecker product
A⊗B ∈ Fnl×mk of A is the partitioned matrix

A⊗B �=

⎡
⎢⎣
A(1,1)B A(1,2)B · · · A(1,m)B

...
... · · ·.. ...

A(n,1)B A(n,2)B · · · A(n,m)B

⎤
⎥⎦. (7.1.4)

Unlike matrix multiplication, the Kronecker product A⊗B does not entail a
restriction on either the size of A or the size of B.

The following results are immediate consequences of the definition of the
Kronecker product.

Proposition 7.1.3. Let α ∈ F, A ∈ F
n×m, and B ∈ F

l×k. Then,

A⊗ (αB) = (αA)⊗B = α(A⊗B), (7.1.5)

A⊗B = A⊗B, (7.1.6)

(A⊗B)T = AT⊗BT, (7.1.7)

(A⊗B)∗ = A∗⊗B∗. (7.1.8)

Proposition 7.1.4. Let A,B ∈ Fn×m and C ∈ Fl×k. Then,

(A+B)⊗C = A⊗C +B⊗C (7.1.9)

and
C ⊗ (A+B) = C ⊗A+ C ⊗B. (7.1.10)

Proposition 7.1.5. Let A ∈ Fn×m, B ∈ Fl×k, and C ∈ Fp×q. Then,

A⊗ (B⊗C) = (A⊗B)⊗C. (7.1.11)

Hence, we write A⊗B⊗C for A⊗ (B⊗C) and (A⊗B)⊗C.

The next result illustrates a useful form of compatibility between matrix mul-
tiplication and the Kronecker product.

Proposition 7.1.6. Let A ∈ Fn×m, B ∈ Fl×k, C ∈ Fm×q, and D ∈ Fk×p.
Then,

(A⊗B)(C ⊗D) = AC ⊗BD. (7.1.12)



KRONECKER AND SCHUR ALGEBRA 401

Proof. Note that the ij block of (A⊗B)(C ⊗D) is given by

[(A⊗B)(C ⊗D)]ij =
[
A(i,1)B · · · A(i,m)B

]
⎡
⎢⎣

C(1,j)D
...

C(m,j)D

⎤
⎥⎦

=
m∑
k=1

A(i,k)C(k,j)BD = (AC)(i,j)BD

= (AC ⊗BD)ij . �

Next, we consider the inverse of a Kronecker product.

Proposition 7.1.7. Assume that A ∈ Fn×n and B ∈ Fm×m are nonsingular.
Then,

(A⊗B)−1 = A−1⊗B−1. (7.1.13)

Proof. Note that

(A⊗B)
(
A−1⊗B−1

)
= AA−1⊗BB−1 = In⊗ Im = Inm. �

Proposition 7.1.8. Let x ∈ Fn and y ∈ Fm. Then,

xyT = x⊗ yT = yT⊗ x (7.1.14)

and
vecxyT = y⊗ x. (7.1.15)

The following result concerns the vec of the product of three matrices.

Proposition 7.1.9. Let A ∈ Fn×m, B ∈ Fm×l, and C ∈ Fl×k. Then,

vec(ABC) =
(
CT⊗A)vecB. (7.1.16)

Proof. Using (7.1.12) and (7.1.15), it follows that

vecABC = vec
l∑
i=1

Acoli(B)eTiC =
l∑
i=1

vec
[
Acoli(B)

(
CTei
)T]

=
l∑
i=1

[
CTei
]⊗ [Acoli(B)] =

(
CT⊗A) l∑

i=1

ei⊗ coli(B)

=
(
CT⊗A) l∑

i=1

vec
[
coli(B)eTi

]
=
(
CT⊗A)vecB. �

The following result concerns the eigenvalues and eigenvectors of the Kro-
necker product of two matrices.

Proposition 7.1.10. Let A ∈ Fn×n and B ∈ Fm×m. Then,

mspec(A⊗B) = {λμ: λ ∈ mspec(A), μ ∈ mspec(B)}ms. (7.1.17)
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If, in addition, x ∈ Cn is an eigenvector of A associated with λ ∈ spec(A) and
y ∈ Cn is an eigenvector of B associated with μ ∈ spec(B), then x ⊗ y is an
eigenvector of A⊗B associated with λμ.

Proof. Using (7.1.12), we have

(A⊗B)(x⊗ y) = (Ax)⊗ (By) = (λx)⊗ (μy) = λμ(x⊗ y). �

Proposition 7.1.10 shows that mspec(A⊗B) = mspec(B⊗A). Consequently,
it follows that det(A⊗B) = det(B⊗A) and tr(A⊗B) = tr(B⊗A). The following
results are generalizations of these identities.

Proposition 7.1.11. Let A ∈ Fn×n and B ∈ Fm×m. Then,

det(A⊗B) = det(B⊗A) = (detA)m(detB)n. (7.1.18)

Proof. Let mspec(A) = {λ1, . . . , λn}ms and mspec(B) = {μ1, . . . , μm}ms.
Then, Proposition 7.1.10 implies that

det(A⊗B) =
n,m∏
i,j=1

λiμj =

⎛
⎝λm1 m∏

j=1

μj

⎞
⎠ · · ·

⎛
⎝λmn m∏

j=1

μj

⎞
⎠

= (λ1 · · ·λn)m(μ1 · · ·μm)n = (detA)m(detB)n. �

Proposition 7.1.12. Let A ∈ F
n×n and B ∈ F

m×m. Then,

tr(A⊗B) = tr(B⊗A) = (trA)(trB). (7.1.19)

Proof. Note that

tr(A⊗B) = tr(A(1,1)B) + · · ·+ tr(A(n,n)B)
= [A(1,1) + · · ·+A(n,n)]trB
= (trA)(trB). �

Next, define the Kronecker permutation matrix Pn,m ∈ Fnm×nm by

Pn,m
�=

n,m∑
i,j=1

Ei,j,n×m⊗Ej,i,m×n. (7.1.20)

Proposition 7.1.13. Let A ∈ Fn×m. Then,

vecAT = Pn,mvecA. (7.1.21)

7.2 Kronecker Sum and Linear Matrix Equations

Next, we define the Kronecker sum of two square matrices.
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Definition 7.2.1. Let A ∈ Fn×n and B ∈ Fm×m. Then, the Kronecker sum
A⊕B ∈ Fnm×nm of A and B is

A⊕B �= A⊗ Im + In⊗B. (7.2.1)

Proposition 7.2.2. Let A ∈ Fn×n, B ∈ Fm×m, and C ∈ Fl×l. Then,

A⊕ (B ⊕ C) = (A⊕B)⊕ C. (7.2.2)

Hence, we write A⊕B ⊕ C for A⊕ (B ⊕ C) and (A⊕B)⊕ C.

Proposition 7.1.10 shows that, if λ ∈ spec(A) and μ ∈ spec(B), then λμ ∈
spec(A⊗B). Next, we present an analogous result involving Kronecker sums.

Proposition 7.2.3. Let A ∈ Fn×n and B ∈ Fm×m. Then,

mspec(A⊕ B) = {λ+ μ: λ ∈ mspec(A), μ ∈ mspec(B)}ms. (7.2.3)

Now, let x ∈ Cn be an eigenvector of A associated with λ ∈ spec(A), and let y ∈ Cm

be an eigenvector of B associated with μ ∈ spec(B). Then, x⊗ y is an eigenvector
of A⊕B associated with λ+ μ.

Proof. Note that

(A⊕B)(x⊗ y) = (A⊗ Im)(x⊗ y) + (In⊗B)(x⊗ y)
= (Ax⊗ y) + (x⊗By) = (λx⊗ y) + (x⊗μy)
= λ(x⊗ y) + μ(x⊗ y) = (λ+ μ)(x⊗ y). �

The next result concerns the existence and uniqueness of solutions to
Sylvester’s equation. See Fact 5.10.21 and Proposition 11.9.3.

Proposition 7.2.4. Let A ∈ Fn×n, B ∈ Fm×m, and C ∈ Fn×m. Then, X ∈
Fn×m satisfies

AX +XB + C = 0 (7.2.4)

if and only if X satisfies (
BT⊕A

)
vecX + vecC = 0. (7.2.5)

Consequently, BT⊕ A is nonsingular if and only if there exists a unique matrix
X ∈ F

n×m satisfying (7.2.4). In this case, X is given by

X = −vec−1

[(
BT⊕A

)−1

vecC
]
. (7.2.6)

Furthermore, BT⊕A is singular and rankBT⊕A = rank
[
BT⊕A vecC

]
if and

only if there exist infinitely many matrices X ∈ Fn×m satisfying (7.5.8). In this
case, the set of solutions of (7.2.4) is given by X + N

(
BT⊕A).
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Proof. Note that (7.2.4) is equivalent to

0 = vec(AXI + IXB) + vecC = (I ⊗A)vecX +
(
BT⊗ I)vecX + vecC

=
(
BT⊗ I + I ⊗A)vecX + vecC =

(
BT⊕A)vecX + vecC,

which yields (7.2.5). The remaining results follow from Corollary 2.6.7.

For the following corollary, note Fact 5.10.21.

Corollary 7.2.5. Let A ∈ Fn×n, B ∈ Fm×m, and C ∈ Fn×m, and assume that
spec(A) and spec(−B) are disjoint. Then, there exists a unique matrix X ∈ F

n×m

satisfying (7.2.4). Furthermore, the matrices
[
A 0
0 −B

]
and
[
A C
0 −B

]
are similar and

satisfy [
A C
0 −B

]
=
[
I X
0 I

][
A 0
0 −B

][
I −X
0 I

]
. (7.2.7)

7.3 Schur Product

An alternative form of vector and matrix multiplication is given by the Schur
product. If A ∈ F

n×m and B ∈ F
n×m, then A ◦B ∈ F

n×m is defined by

(A ◦B)(i,j)
�= A(i,j)B(i,j), (7.3.1)

that is, A ◦B is formed by means of entry-by-entry multiplication. For matrices
A,B,C ∈ Fn×m, the commutative, associative, and distributive identities

A ◦B = B ◦A, (7.3.2)
A ◦ (B ◦C) = (A ◦B) ◦C, (7.3.3)

A ◦ (B + C) = A ◦B +A ◦C (7.3.4)

hold. For a real scalar α ≥ 0 and A ∈ Fn×m, the Schur power A◦α is defined by

(A◦α)(i,j)
�=
(
A(i,j)

)α
. (7.3.5)

Thus, A◦2 = A◦A. Note that A◦0 = 1n×m. Furthermore, α < 0 is allowed if A has
no zero entries. In particular, A◦−1 is the matrix whose entries are the reciprocals
of the entries of A. For all A ∈ F

n×m,

A ◦ 1n×m = 1n×m ◦A = A. (7.3.6)

Finally, if A is square, then I ◦A is the diagonal part of A.

The following result shows that A ◦B is a submatrix of A⊗B.

Proposition 7.3.1. Let A,B ∈ Fn×m. Then,

A ◦B = (A⊗B)({1,n+2,2n+3,...,n2},{1,m+2,2m+3,...,m2}). (7.3.7)

If, in addition, n = m, then

A ◦B = (A⊗B)({1,n+2,2n+3,...,n2}), (7.3.8)

and thus A ◦B is a principal submatrix of A⊗B.
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Proof. See [711, p. 304] or [962].

7.4 Facts on the Kronecker Product

Fact 7.4.1. Let x, y ∈ Fn. Then,

x⊗ y = (x⊗ In)y = (In⊗ y)x.

Fact 7.4.2. Let x, y, w, z ∈ Fn. Then,

xTwyTz = (xT⊗ yT)(w⊗ z) = (x⊗ y)T(w⊗ z).

Fact 7.4.3. Let A ∈ F
n×n and B ∈ F

m×m, and assume that A and B are
(diagonal, upper triangular, lower triangular). Then, so is A⊗B.

Fact 7.4.4. Let A ∈ Fn×n, B ∈ Fm×m, and l ∈ P. Then,

(A⊗B)l = Al⊗Bl.

Fact 7.4.5. Let A ∈ Fn×m. Then,

vecA = (Im⊗A)vec Im =
(
AT⊗ In

)
vec In.

Fact 7.4.6. Let A ∈ Fn×m and B ∈ Fm×l. Then,

vecAB = (Il⊗A)vecB =
(
BT⊗A)vec Im =

m∑
i=1

coli
(
BT
)⊗ coli(A).

Fact 7.4.7. Let A ∈ Fn×m, B ∈ Fm×l, and C ∈ Fl×n. Then,

trABC = (vecA)T(B⊗ I)vecCT.

Fact 7.4.8. Let A,B,C ∈ F
n×n, and assume that C is symmetric. Then,

(vecC)T(A⊗B)vecC = (vecC)T(B⊗A)vecC.

Fact 7.4.9. Let A ∈ Fn×m, B ∈ Fm×l, C ∈ Fl×k, and D ∈ Fk×n. Then,

trABCD = (vecA)T
(
B⊗DT

)
vecCT.

Fact 7.4.10. Let A ∈ Fn×m, B ∈ Fm×l, and k ≥ 1. Then,

(AB)⊗k = A⊗kB⊗k,

where A⊗k �= A⊗A⊗ · · ·⊗A, with A appearing k times.

Fact 7.4.11. Let A,C ∈ Fn×m and B,D ∈ Fl×k, assume that A is (left equiv-
alent, right equivalent, biequivalent) to C, and assume that B is (left equivalent,
right equivalent, biequivalent) to D. Then, A⊗B is (left equivalent, right equivalent,
biequivalent) to C ⊗D.
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Fact 7.4.12. Let A,B,C,D ∈ Fn×n, assume that A is (similar, congruent,
unitarily similar) to C, and assume that B is (similar, congruent, unitarily similar)
to D. Then, A⊗B is (similar, congruent, unitarily similar) to C ⊗D.

Fact 7.4.13. Let A ∈ Fn×n and B ∈ Fm×m, and let γ ∈ spec(A⊗B). Then,∑
gmultA(λ)gmultB(μ) ≤ gmultA⊗B(γ)

≤ amultA⊗B(γ)

=
∑

amultA(λ)amultB(μ),

where both sums are taken over all λ ∈ spec(A) and μ ∈ spec(B) such that λμ = γ.

Fact 7.4.14. Let A ∈ Fn×n. Then,

sprad(A⊗A) = [sprad(A)]2.

Fact 7.4.15. Let A ∈ Fn×n and B ∈ Fm×m, and let γ ∈ spec(A⊗B). Then,
indA⊗B(γ) = 1 if and only if indA(λ) = 1 and indB(μ) = 1 for all λ ∈ spec(A) and
μ ∈ spec(B) such that λμ = γ.

Fact 7.4.16. Let A ∈ Fn×n and B ∈ Fn×n, and assume that A and B are
(group invertible, range Hermitian, range symmetric, Hermitian, symmetric, nor-
mal, positive semidefinite, positive definite, unitary, orthogonal, projectors, reflec-
tors, involutory, idempotent, tripotent, nilpotent, semisimple). Then, so is A⊗B.
(Remark: See Fact 7.4.31.)

Fact 7.4.17. Let A1, . . . , Al ∈ Fn×n, and assume that A1, . . . , Al are skew
Hermitian. If l is (even, odd), then A1⊗ · · ·⊗Al is (Hermitian, skew Hermitian).

Fact 7.4.18. Let Ai,j ∈ Fni×nj for all i = 1, . . . , k and j = 1, . . . , l. Then,⎡
⎢⎢⎣
A11 A22 · · ·
A21 A22 · · ·..
... · · ·.. · · ·..

⎤
⎥⎥⎦⊗B =

⎡
⎢⎢⎣
A11 ⊗B A22 ⊗B · · ·
A21 ⊗B A22 ⊗B · · ·..

... · · ·.. · · ·..

⎤
⎥⎥⎦.

Fact 7.4.19. Let x ∈ F
k, and let Ai ∈ Fn×ni for all i = 1, . . . , l. Then,

x⊗ [ A1 · · · Al
]

=
[
x⊗ A1 · · · x⊗Al

]
.

Fact 7.4.20. Let x ∈ Fm, let A ∈ Fn×m, and let B ∈ Fm×l. Then,

(A⊗ x)B = (A⊗ x)(B⊗ 1) = (AB)⊗ x.

Fact 7.4.21. Let A ∈ Fn×n and B ∈ Fm×m. Then, the eigenvalues of∑k,l
i,j=1,1 γijA

i ⊗Bj are of the form
∑k,l

i,j=1,1 γijλ
iμj, where λ ∈ spec(A) and μ ∈

spec(B) and an associated eigenvector is given by x⊗y, where x ∈ Fn is an eigenvec-
tor of A associated with λ ∈ spec(A) and y ∈ Fn is an eigenvector of B associated
with μ ∈ spec(B). (Remark: This result is due to Stephanos.) (Proof: Let Ax = λx
and By = μy. Then, γij(Ai ⊗Bj)(x⊗ y) = γijλ

iμj(x⊗ y). See [519], [867, p. 411],
or [942, p. 83].)
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Fact 7.4.22. Let A ∈ Fn×m and B ∈ Fl×k. Then,

R(A⊗B) = R(A⊗ Il×l) ∩ R(In×n ⊗B).

(Proof: See [1293].)

Fact 7.4.23. Let A ∈ F
n×m and B ∈ F

l×k. Then,

rank(A⊗B) = (rankA)(rankB) = rank(B⊗A).

Consequently, A⊗B = 0 if and only if either A = 0 or B = 0. (Proof: Use the
singular value decomposition of A⊗B.) (Remark: See Fact 8.21.16.)

Fact 7.4.24. Let A ∈ Fn×m, B ∈ Fl×k, C ∈ Fn×p, D ∈ Fl×q. Then,

rank
[
A⊗B C ⊗D ]

≤
{

(rankA)rank
[
B D

]
+ (rankD)rank

[
A C

]− (rankA)rankD

(rankB)rank
[
A C

]
+ (rankC)rank

[
B D

]− (rankB)rankC.

(Proof: See [1297].)

Fact 7.4.25. Let A ∈ Fn×n and B ∈ Fm×m. Then,

rank(I −A⊗B) ≤ nm− [n− rank(I −A)][m− rank(I −B)].

(Proof: See [333].)

Fact 7.4.26. Let A ∈ Fn×n and B ∈ Fm×m. Then,

indA⊗B = max{indA, indB}.

Fact 7.4.27. Let A ∈ Fn×m and B ∈ Fl×k, and assume that nl = mk and
n �= m. Then, A⊗B is singular. (Proof: See [711, p. 250].)

Fact 7.4.28. Let A ∈ Fn×m and B ∈ Fm×n. Then,

|n−m|min{n,m} ≤ amultA⊗B(0).

(Proof: See [711, p. 249].)

Fact 7.4.29. The Kronecker permutation matrix Pn,m ∈ Rnm×nm has the
following properties:

i) Pn,m is a permutation matrix.

ii) PT
n,m = P−1

n,m = Pm,n.

iii) Pn,m is orthogonal.

iv) Pn,mPm,n = Inm.

v) Pn,n is orthogonal, symmetric, and involutory.

vi) Pn,n is a reflector.

vii) sigPn,n = trPn,n = n.
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viii) The inertia of Pn,n is given by

InPn,n =

⎡
⎢⎣

1
2 (n2 − n)

0
1
2 (n2 + n)

⎤
⎥⎦.

ix) P1,m = Im and Pn,1 = In.

x) If x ∈ Fn and y ∈ Fm, then

Pn,m(y⊗ x) = x⊗ y.
xi) If A ∈ Fn×m and b ∈ Fk, then

Pk,n(A⊗ b) = b⊗A
and

Pn,k(b⊗A) = A⊗ b.
xii) If A ∈ Fn×m and B ∈ Fl×k, then

Pl,n(A⊗B)Pm,k = B⊗A
and

vec(A⊗B) = (Im⊗Pk,n⊗ Il)[(vecA)⊗ (vecB)].

xiii) If A ∈ Fn×n and B ∈ Fl×l, then

Pl,n(A⊗B)Pn,l = Pl,n(A⊗B)P−1
l,n = B⊗A.

Hence, A⊗B and B⊗A are similar.

xiv) If A ∈ Fn×m and B ∈ Fm×n, then

trAB = tr[Pm,n(A⊗B)].

Fact 7.4.30. Let A ∈ Fn×m and B ∈ Fl×k. Then,

(A⊗B)+ = A+⊗B+.

Fact 7.4.31. Let A ∈ Fn×n and B ∈ Fm×m. Then,

(A⊗B)D = AD⊗BD.

Now, assume that A and B are group invertible. Then, A⊗B is group invertible,
and

(A⊗B)# = A#⊗B#.

(Remark: See Fact 7.4.16.)

Fact 7.4.32. For all i = 1, . . . , p, let Ai ∈ Fni×ni. Then,

mspec(A1⊗ · · · ⊗Ap)
= {λ1 · · ·λp : λi ∈ mspec(Ai) for all i = 1, . . . , p}ms.

If, in addition, for all i = 1, . . . , p, xi ∈ Cni is an eigenvector of Ai associated with
λi ∈ spec(Ai), then x1⊗ · · ·⊗ xp is an eigenvector of A1⊗ · · ·⊗Ap associated with
λ1 · · ·λp.
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7.5 Facts on the Kronecker Sum

Fact 7.5.1. Let A ∈ Fn×n. Then,

(A⊕A)2 = A2⊕A2 + 2A⊗A.

Fact 7.5.2. Let A ∈ Fn×n. Then,

n ≤ def(AT⊕−A) = dim {X ∈ F
n×n : AX = XA}

and
rank(AT⊕−A) = dim {[A,X ]: X ∈ F

n×n} ≤ n2 − n.
(Proof: See Fact 2.18.9.) (Remark: rank(AT⊕ −A) is the dimension of the com-
mutant or centralizer of A. See Fact 2.18.9.) (Problem: Express rank(AT⊕−A) in
terms of the eigenstructure of A.) (Remark: See Fact 5.14.22 and Fact 5.14.24.)

Fact 7.5.3. Let A ∈ Fn×n, assume that A is nilpotent, and assume that
AT⊕ −A = 0. Then, A = 0. (Proof: Note that AT⊗Ak = I ⊗ Ak+1, and use Fact
7.4.23.)

Fact 7.5.4. Let A ∈ Fn×n, and assume that, for all X ∈ Fn×n, AX = XA.
Then, there exists α ∈ F such that A = αI. (Proof: It follows from Proposition
7.2.3 that all of the eigenvalues of A are equal. Hence, there exists α ∈ F such that
A = αI +B, where B is nilpotent. Now, Fact 7.5.3 implies that B = 0.)

Fact 7.5.5. Let A ∈ Fn×n and B ∈ Fm×m, and let γ ∈ spec(A⊕B). Then,∑
gmultA(λ)gmultB(μ) ≤ gmultA⊕B(γ)

≤ amultA⊕B(γ)

=
∑

amultA(λ)amultB(μ),

where both sums are taken over all λ ∈ spec(A) and μ ∈ spec(B) such that λ+μ =
γ.

Fact 7.5.6. Let A ∈ Fn×n. Then,

spabs(A⊕A) = 2 spabs(A).

Fact 7.5.7. Let A ∈ Fn×n and B ∈ Fm×m, and let γ ∈ spec(A ⊕ B). Then,
indA⊕B(γ) = 1 if and only if indA(λ) = 1 and indB(μ) = 1 for all λ ∈ spec(A) and
μ ∈ spec(B) such that λ+ μ = γ.

Fact 7.5.8. Let A ∈ Fn×n and B ∈ Fm×m, and assume that A and B are
(group invertible, range Hermitian, Hermitian, symmetric, skew Hermitian, skew
symmetric, normal, positive semidefinite, positive definite, semidissipative, dissipa-
tive, nilpotent, semisimple). Then, so is A⊕B.

Fact 7.5.9. Let A ∈ Fn×n and B ∈ Fm×m. Then,

Pm,n(A⊕B)Pn,m = Pm,n(A⊕B)P−1
m,n = B⊕A.
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Hence, A⊕B and B⊕A are similar, and thus

rank(A⊕B) = rank(B⊕A).

(Proof: Use xiii) of Fact 7.4.29.)

Fact 7.5.10. Let A ∈ F
n×n and B ∈ F

m×m. Then,

nrankB +mrankA− 2(rankA)(rankB)
≤ rank(A⊕B)

≤
{
nm− [n− rank(I +A)][m− rank(I −B)]
nm− [n− rank(I −A)][m− rank(I +B)].

If, in addition, −A and B are idempotent, then

rank(A⊕B) = nrankB +mrankA− 2(rankA)(rankB).

Equivalently,

rank(A⊕ B) = (rank (−A)⊥)rankB + (rankB⊥)rankA.

(Proof: See [333].) (Remark: Equality may not hold for the upper bounds when
−A and B are idempotent.)

Fact 7.5.11. Let A ∈ Fn×n, let B ∈ Fm×m, assume that A is positive definite,
and define p(s) �= det(I − sA), and let mroots(p) = {λ1, . . . , λn}ms. Then,

det(A⊕B) = (detA)m
n∏
i=1

det(λiB + I).

(Proof: Specialize Fact 7.5.12.)

Fact 7.5.12. Let A,C ∈ Fn×n, let B,D ∈ Fm×m, assume that A is positive
definite, assume that C is positive semidefinite, define p(s) �= det(C − sA), and let
mroots(p) = {λ1, . . . , λn}ms. Then,

det(A⊗B + C ⊗D) = (detA)m
n∏
i=1

det(λiD +B).

(Proof: See [1002, pp. 40, 41].) (Remark: The Kronecker product definition in
[1002] follows the convention of [942], where “A⊗B” denotes B⊗A.)

Fact 7.5.13. Let A,D ∈ Fn×n, let C,B ∈ Fm×m, assume that rankC = 1,
and assume that A is nonsingular. Then,

det(A⊗B + C ⊗D) = (detA)m(detB)n−1det
[
B +

(
trCA−1

)
D
]
.

(Proof: See [1002, p. 41].)

Fact 7.5.14. Let A ∈ Fn×n and B ∈ Fm×m. Then, spec(A) and spec(−B)
are disjoint if and only if, for all C ∈ F

n×m, the matrices
[
A 0
0 −B

]
and
[
A C
0 −B

]
are

similar. (Proof: Sufficiency follows from Fact 5.10.21, while necessity follows from
Corollary 2.6.6 and Proposition 7.2.3.)
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Fact 7.5.15. Let A ∈ Fn×n, B ∈ Fm×m, and C ∈ Fn×m, and assume that
det(BT⊕A) �= 0. Then, X ∈ Fn×m satisfies

A2X + 2AXB +XB2 + C = 0

if and only if
X = −vec−1

[(
BT⊕A)−2

vecC
]
.

Fact 7.5.16. For all i = 1, . . . , p, let Ai ∈ Fni×ni. Then,

mspec(A1⊕ · · ·⊕Ap)
= {λ1 + · · ·+λp : λi ∈ mspec(Ai) for all i = 1, . . . , p}ms.

If, in addition, for all i = 1, . . . , p, xi ∈ Cni is an eigenvector of Ai associated with
λi ∈ spec(Ai), then x1⊕ · · ·⊕ xp is an eigenvector of A1⊕ · · ·⊕Ap associated with
λ1 + · · ·+ λp.

Fact 7.5.17. Let A ∈ Fn×m, and let k ∈ P satisfy 1 ≤ k ≤ min{n,m}.
Furthermore, define the kth compound A(k) to be the

(
n
k

) × (mk ) matrix whose
entries are k × k subdeterminants of A, ordered lexicographically. (Example:
For n = k = 3, subsets of the rows and columns of A are chosen in the order
{1, 1, 1}, {1, 1, 2}, {1, 1, 3}, {1, 2, 1}, {1, 2, 2}, . . . .) Specifically,

(
A(k)
)
(i,j)

is the k×k
subdeterminant of A corresponding to the ith selection of k rows of A and the jth
selection of k columns of A. Then, the following statements hold:

i) A(1) = A.

ii) (αA)(k) = αkA(k).

iii)
(
AT
)(k) =

(
A(k)
)T
.

iv) A
(k)

= A(k).

v) (A∗)(k) =
(
A(k)
)∗
.

vi) If B ∈ Fm×l and 1 ≤ k ≤ min{n,m, l}, then (AB)(k) = A(k)B(k).

vii) If B ∈ Fm×n, then detAB = A(k)B(k).

Now, assume that m = n, let 1 ≤ k ≤ n, and let mspec(A) = {λ1, . . . , λn}ms. Then,
the following statements hold:

viii) If A is (diagonal, lower triangular, upper triangular, Hermitian, positive
semidefinite, positive definite, unitary), then so is A(k).

ix) Assume that A is skew Hermitian. If k is odd, then A(k) is skew Hermitian.
If k is even, then A(k) is Hermitian.

x) Assume that A is diagonal, upper triangular, or lower triangular, and let
1 ≤ i1 < · · · < ik ≤ n. Then, the (i1 + · · ·+ ik, i1 + · · ·+ ik) entry of A(k)

is A(i1,i1) · · ·A(ik,ik). In particular, I(k)
n = I(n

k).

xi) detA(k) = (detA)(
n−1
k−1).

xii) A(n) = detA.
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xiii) SA(n−1)TS = AA, where S �= diag(1,−1, 1, . . .).

xiv) detA(n−1) = detAA = (detA)n−1.

xv) trA(n−1) = trAA.

xvi) If A is nonsingular, then
(
A(k)
)−1

=
(
A−1
)(k)

.

xvii) mspec
(
A(k)
)

= {λi1 · · ·λik : 1 ≤ i1 < · · · < ik ≤ n}ms. In particular,

mspec
(
A(2)
)

= {λiλj : i, j = 1, . . . , n, i < j}ms.

xviii) trA(k) =
∑

1≤i1<···<ik≤n λi1 · · ·λik .
xix) If A has exactly k nonzero eigenvalues, then A(k) has exactly one nonzero

eigenvalue.

xx) If k < n and A has exactly k nonzero eigenvalues, then
spec
(
A(k+1)

)
= {0}, and thus A(k+1) is nilpotent.

xxi) If B ∈ Fn×n, then det(A+B) =
[
A I

](n)
[
I
B

](n)

.

xxii) The characteristic polynomial of A is given by

χA(s) = sn +
n−1∑
i=1

(−1)n+i[trA(n−i)]si + (−1)ndetA.

xxiii) det(I +A) = 1 + detA+
∑n−1

i=1 trA(n−i).
Now, for i = 0, . . . , k, define A(k,i) by

(A+ sI)(k) = skA(k,0) + sk−1A(k,1) + · · ·+ sA(k,k−1) +A(k,k).

Then, the following statements hold:

xxiv) A(k,0) = I.

xxv) A(k,k) = A(k).

xxvi) If B ∈ Fn×n and α, β ∈ F, then

(αA + βB)(k,1) = αA(k,1) + βB(k,1).

xxvii) mspec
(
A(k,1)

)
= {λi1 + · · ·+ λik : 1 ≤ i1 < · · · < ik ≤ n}ms.

xxviii) trA(k,1) =
(
n−1
k−1

)
trA.

xxix) mspec
(
A(2,1)

)
= {λi + λj : i, j = 1, . . . , n, i < j}ms.

xxx) mspec
[(
A(2,1)

)2 − 4A(2)
]

=
{
(λi −λj)2: i, j = 1, . . . , n, i < j

}
ms
.

(Proof: See [481, pp. 142–155], [709, p. 11], [958, pp. 116–130], [971, pp. 502–
506], [1098, p. 124], and [1099].) (Remark: Statement vi) is the Binet-Cauchy
theorem. See [971, p. 503]. The special case given by statement vii) is also given
by Fact 2.13.4. Another special case is given by statement xxi). Statement xi)
is the Sylvester-Franke theorem. See [958, p. 130].) (Remark: A(k,1) is the kth
additive compound of A.) (Remark:

(
A(2,1)

)2 − 4A(2) is the discriminant of A,
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which is singular if and only if A has a repeated eigenvalue.) (Remark: Additional
expressions for the determinant of a sum of matrices are given in [1099].) (Remark:
The compound operation is related to the bialternate product since mspec(2A ·I) =
mspec

(
A(2,1)

)
and mspec(A · A) = mspec

(
A(2)
)
. See [519, 576], [782, pp. 313–

320], and [942, pp. 84, 85].) (Remark: Induced norms of compound matrices are
considered in [451].) (Remark: See Fact 11.17.12.) (Remark: Fact 4.9.2 and Fact
8.13.42.) (Problem: Express A ·B in terms of compounds.)

7.6 Facts on the Schur Product

Fact 7.6.1. Let x, y, z ∈ Fn. Then,

xT(y ◦ z) = zT(x ◦ y) = yT(x ◦ z).

Fact 7.6.2. Let w, y ∈ F
n and x, z ∈ F

m. Then,(
wxT
)◦(yzT

)
= (w ◦ y)(x ◦ z)T.

Fact 7.6.3. Let A ∈ Fn×n and d ∈ Fn. Then,

diag(d)A = A ◦ d11×n.

Fact 7.6.4. Let A,B ∈ Fn×m, D1 ∈ Fn×n, and D2 ∈ Fm×m, and assume that
D1 and D2 are diagonal. Then,

(D1A) ◦ (BD2) = D1(A ◦B)D2.

Fact 7.6.5. Let A1, . . . , Ak ∈ Fn×n. Then,

R[(A1A
∗
1) ◦ · · · ◦ (AkA∗

k)] = span {(A1x1) ◦ · · · ◦ (Akxk): x1, . . . , xk ∈ F
n}.

Furthermore, if A1, . . . , Ak are positive semidefinite, then

R(A1 ◦ · · · ◦Ak) = span {(A1x1) ◦ · · · ◦ (Akxk): x1, . . . , xk ∈ F
n}

= span {(A1x) ◦ . . . ◦ (Akx): x ∈ F
n}.

(Proof: See [1109].)

Fact 7.6.6. Let A,B ∈ Fn×m. Then,

rank(A ◦B) ≤ rank(A⊗B) = (rankA)(rankB).

(Proof: Use Proposition 7.3.1.) (Remark: See Fact 8.21.16.)

Fact 7.6.7. Let x, a ∈ Fn, y, b ∈ Fm, and A ∈ Fn×m. Then,

xT(A ◦ abT)y = (a ◦ x)TA(b ◦ y).

Fact 7.6.8. Let A,B ∈ Fn×m. Then,

tr
[
(A ◦B)(A ◦B)T

]
= tr
[
(A ◦A)(B ◦B)T

]
.
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Fact 7.6.9. Let A ∈ Fn×m, B ∈ Fm×n, a ∈ Fm, and b ∈ Fn. Then,

tr
[
A
(
B ◦ abT)] = aT

(
AT ◦B)b.

In particular,
trAB = 1T

m(AT ◦B)1n.

Fact 7.6.10. Let A,B ∈ F
n×m and C ∈ F

m×n. Then,

I ◦ [A(BT◦C)] = I ◦ [(A ◦B)C] = I ◦ [(A ◦CT
)
BT
]
.

Hence,
tr
[
A
(
BT◦C)] = tr[(A ◦B)C] = tr

[(
A ◦CT

)
BT
]
.

Fact 7.6.11. Let x ∈ Rm and A ∈ Rn×m, and define xA ∈ Rn by

xA
�=

⎡
⎢⎢⎢⎣
∏m
i=1 x

A(1,i)

(i)

...∏m
i=1 x

A(n,i)

(i)

⎤
⎥⎥⎥⎦,

where every component of xA is assumed to exist. Then, the following statements
hold:

i) If a ∈ R, then ax =

⎡
⎣ a

x(1)

...
a

x(m)

⎤
⎦.

ii) x−A =
(
xA
)◦−1

.

iii) If y ∈ Rm, then (x ◦ y)A = xA ◦ yA.
iv) If B ∈ R

n×m, then xA+B = xA ◦ xB.
v) If B ∈ Rl×n, then

(
xA
)B = xBA.

vi) If a ∈ R, then (ax)A = aAx.

vii) If AL ∈ Rm×n is a left inverse of A and y = xA, then x = yA
L
.

viii) If A ∈ R
n×n is nonsingular and y = xA, then x = yA

−1
.

ix) Define f(x) �= xA. Then, f ′(x) = diag
(
xA
)
Adiag

(
x◦−1
)
.

x) Let x1, . . . , xn ∈ Rn, let a ∈ Rn, and assume that 0 < x1 < · · · < xn and
a(1) < · · · < a(n). Then,

det
[
xa1 · · · xan

]
> 0.

(Remark: These operations arise in modeling chemical reaction kinetics. See [892].)
(Proof: Result x) is given in [1130].)

Fact 7.6.12. Let A ∈ Rn×n, and assume that A is nonsingular. Then,(
A ◦A−T

)
1n×1 = 1n×1

and
11×n
(
A ◦A−T

)
= 11×n.
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(Proof: See [772].)

Fact 7.6.13. Let A ∈ Rn×n, and assume that A ≥≥ 0. Then,

sprad
[(
A ◦AT

)◦1/2] ≤ sprad(A) ≤ sprad
[

1
2

(
A+AT

)]
.

(Proof: See [1180].)

Fact 7.6.14. Let A1, . . . , Ar ∈ R
n×n and α1, . . . , αr ∈ R, and assume that

Ai ≥≥ 0 for all i = 1, . . . , r, αi > 0 for all i = 1, . . . , r, and
∑r
i=1αi ≥ 1. Then,

sprad(A◦α1
1 ◦ · · · ◦A◦αr

r ) ≤
r∏
i=1

[sprad(Ai)]
αi.

In particular, let A ∈ Rn×n, and assume that A ≥≥ 0. Then, for all α ≥ 1,

sprad(A◦α) ≤ [sprad(A)]α ,

whereas, for all α ≤ 1,
[sprad(A)]α ≤ sprad(A◦α).

Furthermore,
sprad

(
A◦1/2 ◦AT◦1/2

)
≤ sprad(A)

and
[sprad(A ◦A)]1/2 ≤ sprad(A) = [sprad(A⊗A)]1/2.

If, in addition, B ∈ Rn×n is such that B ≥≥ 0, then

sprad(A ◦B) ≤ [sprad(A ◦A) sprad(B ◦B)]1/2 ≤ sprad(A)sprad(B),

sprad(A ◦B) ≤ sprad(A) sprad(B)
+ max
i=1,...,n

[2A(i,i)B(i,i) − sprad(A)B(i,i) − sprad(B)A(i,i)]

≤ sprad(A)sprad(B),

and
sprad

(
A◦1/2 ◦B◦1/2

)
≤
√

sprad(A)sprad(B).

If, in addition, A >> 0 and B >> 0, then

sprad(A ◦B) < sprad(A)sprad(B).

(Proof: See [453, 467, 792]. The identity sprad(A) = [sprad(A⊗A)]1/2 follows from
Fact 7.4.14.) (Remark: The inequality sprad(A ◦A) ≤ sprad(A⊗A) follows from
Fact 4.11.18 and Proposition 7.3.1.) (Remark: Some extensions are given in [731].)

Fact 7.6.15. Let A,B ∈ Rn×n, and assume that A and B are nonsingular
M-matrices. Then, the following statements hold:

i) A ◦B−1 is a nonsingular M-matrix.

ii) If n = 2, then τ(A ◦A−1) = 1.

iii) If n ≥ 3, then 1
n < τ(A ◦A−1) ≤ 1.

iv) τ(A)mini=1,...,n(B−1)(i,i) ≤ τ(A ◦B−1).
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v) [τ(A)τ(B)]n ≤ |det(A ◦B)|.
vi) |(A ◦B)−1| ≤≤ A−1 ◦B−1.

(Proof: See [711, pp. 359, 370, 375, 380].) (Remark: The minimum eigenvalue
τ(A) is defined in Fact 4.11.9.) (Remark: Some extensions are given in [731].)

Fact 7.6.16. Let A,B ∈ Fn×m. Then,

sprad(A ◦B) ≤
√

sprad(A ◦A) sprad(B ◦B).

Consequently,

sprad(A ◦A)

sprad(A ◦AT)

sprad(A ◦A∗)

⎫⎪⎬
⎪⎭ ≤ sprad(A ◦A).

(Proof: See [1193].) (Remark: See Fact 9.14.34.)

Fact 7.6.17. Let A,B ∈ Rn×n, assume that A and B are nonnegative, and
let α ∈ [0, 1]. Then,

sprad(A◦α ◦B◦(1−α)) ≤ spradα(A) sprad1−α(B).

In particular,
sprad(A◦1/2 ◦B◦1/2) ≤

√
sprad(A) sprad(B).

Finally,

sprad(A◦1/2 ◦A◦1/2T) ≤ sprad(A◦α ◦A◦(1−α)T) ≤ sprad(A).

(Proof: See [1193].) (Remark: See Fact 9.14.35.)

7.7 Notes

A history of the Kronecker product is given in [665]. Kronecker matrix algebra
is discussed in [259, 579, 667, 948, 994, 1219, 1379]. Applications are discussed in
[1121, 1122, 1362].

The fact that the Schur product is a principal submatrix of the Kronecker
product is noted in [962]. A variation of Kronecker matrix algebra for symmetric
matrices can be developed in terms of the half-vectorization operator “vech” and
the associated elimination and duplication matrices [667, 947, 1344].

Generalizations of the Schur and Kronecker products, known as the block-
Kronecker, strong Kronecker, Khatri-Rao, and Tracy-Singh products, are discussed
in [385, 714, 739, 840, 923, 925, 926, 928] and [1119, pp. 216, 217]. A related
operation is the bialternate product, which is a variation of the compound operation
discussed in Fact 7.5.17. See [519, 576], [782, pp. 313–320], and [942, pp. 84, 85].
The Schur product is also called the Hadamard product.

The Kronecker product is associated with tensor analysis and multilinear
algebra [421, 545, 585, 958, 959, 994].



Chapter Eight

Positive-Semidefinite Matrices

In this chapter we focus on positive-semidefinite and positive-definite matri-
ces. These matrices arise in a variety of applications, such as covariance analysis
in signal processing and controllability analysis in linear system theory, and they
have many special properties.

8.1 Positive-Semidefinite and Positive-Definite Orderings

Let A ∈ Fn×n be a Hermitian matrix. As shown in Corollary 5.4.5, A is
unitarily similar to a real diagonal matrix whose diagonal entries are the eigenvalues
of A. We denote these eigenvalues by λ1, . . . , λn or, for clarity, by λ1(A), . . . , λn(A).
As in Chapter 4, we employ the convention

λ1≥ λ2 ≥ · · · ≥ λn, (8.1.1)

and, for convenience, we define

λmax(A) �= λ1, λmin(A) �= λn. (8.1.2)

Then, A is positive semidefinite if and only if λmin(A) ≥ 0, while A is positive
definite if and only if λmin(A) > 0.

For convenience, let Hn,Nn, and Pn denote, respectively, the Hermitian,
positive-semidefinite, and positive-definite matrices in Fn×n. Hence, Pn ⊂ Nn ⊂
Hn. If A ∈ Nn, then we write A ≥ 0, while, if A ∈ Pn, then we write A > 0.
If A,B ∈ Hn, then A − B ∈ Nn is possible even if neither A nor B is positive
semidefinite. In this case, we write A ≥ B or B ≤ A. Similarly, A − B ∈ Pn is
denoted by A > B or B < A. This notation is consistent with the case n = 1,
where H1 = R, N1 = [0,∞), and P1 = (0,∞).

Since 0 ∈ Nn, it follows that Nn is a pointed cone. Furthermore, if A,−A ∈
Nn, then x∗Ax = 0 for all x ∈ Fn, which implies that A = 0. Hence, Nn is a
one-sided cone. Finally, Nn and Pn are convex cones since, if A,B ∈ Nn, then
αA + βB ∈ Nn for all α, β > 0, and likewise for Pn. The following result shows
that the relation “≤” is a partial ordering on Hn.

Proposition 8.1.1. The relation “≤” is reflexive, antisymmetric, and transi-
tive on Hn, that is, if A,B,C ∈ Hn, then the following statements hold:
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i) A ≤ A.

ii) If A ≤ B and B ≤ A, then A = B.

iii) If A ≤ B and B ≤ C, then A ≤ C.

Proof. Since Nn is a pointed, one-sided, convex cone, it follows from Propo-
sition 2.3.6 that the relation “≤” is reflexive, antisymmetric, and transitive.

Additional properties of “≤” and “<” are given by the following result.

Proposition 8.1.2. Let A,B,C,D ∈ Hn. Then, the following statements hold:

i) If A ≥ 0, then αA ≥ 0 for all α ≥ 0, and αA ≤ 0 for all α ≤ 0.

ii) If A > 0, then αA > 0 for all α > 0, and αA < 0 for all α < 0.

iii) αA+ βB ∈ Hn for all α, β ∈ R.

iv) If A ≥ 0 and B ≥ 0, then αA+ βB ≥ 0 for all α, β ≥ 0.

v) If A ≥ 0 and B > 0, then A+B > 0.

vi) A2 ≥ 0.

vii) A2 > 0 if and only if detA �= 0.

viii) If A ≤ B and B < C, then A < C.

ix) If A < B and B ≤ C, then A < C.

x) If A ≤ B and C ≤ D, then A+ C ≤ B +D.

xi) If A ≤ B and C < D, then A+ C < B +D.

Furthermore, let S ∈ Fm×n. Then, the following statements hold:

xii) If A ≤ B, then SAS∗ ≤ SBS∗.

xiii) If A < B and rankS = m, then SAS∗ < SBS∗.

xiv) If SAS∗ ≤ SBS∗ and rankS = n, then A ≤ B.
xv) If SAS∗ < SBS∗ and rankS = n, then m = n and A < B.

xvi) If A ≤ B, then SAS∗ < SBS∗ if and only if rankS = m and R(S)∩N(B−
A) = {0}.

Proof. Results i)–xi) are immediate. To prove xii), note that A < B implies
that (B−A)1/2 is positive definite. Thus, rankS(A−B)1/2 = m, which implies that
S(A−B)S∗ is positive definite. To prove xiii), note that, since rankS = n, it follows
that S has a left inverse SL ∈ Fn×m. Thus, xi) implies that A = SLSAS∗SL∗ ≤
SLSBS∗SL∗ = B. To prove xv), note that, since S(B −A)S∗ is positive definite, it
follows that rankS = m. Hence, m = n and S is nonsingular. Thus, xii) implies
that A = S−1SAS∗S−∗ < S−1SBS∗S−∗ = B. Statement xvi) is proved in [285].

The following result is an immediate consequence of Corollary 5.4.7.
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Corollary 8.1.3. Let A,B ∈ Hn, and assume that A and B are congruent.
Then, A is positive semidefinite if and only if B is positive semidefinite. Further-
more, A is positive definite if and only if B is positive definite.

8.2 Submatrices

We first consider some identities involving a partitioned positive-semidefinite
matrix.

Lemma 8.2.1. Let A =
[
A11 A12
A∗

12 A22

]
∈ Nn+m. Then,

A12 = A11A
+
11A12, (8.2.1)

A12 = A12A22A
+
22. (8.2.2)

Proof. Since A ≥ 0, it follows from Corollary 5.4.5 that A = BB∗, where
B =

[
B1
B2

] ∈ F(n+m)×r and r
�= rankA. Thus, A11 = B1B

∗
1, A12 = B1B

∗
2, and

A22 = B2B
∗
2. Since A11 is Hermitian, it follows from xxvii) of Proposition 6.1.6

that A+
11 is also Hermitian. Next, defining S

�= B1− B1B
∗
1(B1B

∗
1)+B1, it follows

that SS∗ = 0, and thus trSS∗ = 0. Hence, Lemma 2.2.3 implies that S = 0,
and thus B1 = B1B

∗
1(B1B

∗
1 )+B1. Consequently, B1B

∗
2 = B1B

∗
1(B1B

∗
1)+B1B

∗
2, that is,

A12 = A11A
+
11A12. The second result is analogous.

Corollary 8.2.2. Let A =
[
A11 A12
A∗

12 A22

]
∈ Nn+m. Then, the following statements

hold:

i) R(A12) ⊆ R(A11).

ii) R(A∗
12) ⊆ R(A22).

iii) rank
[
A11 A12

]
= rankA11.

iv) rank
[
A∗

12 A22

]
= rankA22.

Proof. Results i) and ii) follow from (8.2.1) and (8.2.2), while iii) and iv) are
consequences of i) and ii).

Next, if (8.2.1) holds, then the partitioned Hermitian matrix A �=
[
A11 A12
A∗

12 A22

]
can be factored as[

A11 A12

A∗
12 A22

]
=
[

I 0
A∗

12A
+
11 I

][
A11 0
0 A11|A

] [
I A+

11A12

0 I

]
, (8.2.3)

while, if (8.2.2) holds, then[
A11 A12

A∗
12 A22

]
=
[
I A12A

+
22

0 I

][
A22|A 0

0 A22

][
I 0

A+
22A

∗
12 I

]
, (8.2.4)

where
A11|A = A22 −A∗

12A
+
11A12 (8.2.5)

and
A22|A = A11 −A12A

+
22A

∗
12. (8.2.6)
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Hence, it follows from Lemma 8.2.1 that, if A is positive semidefinite, then (8.2.3)
and (8.2.4) are valid, and, furthermore, the Schur complements (see Definition
6.1.8) A11|A and A22|A are both positive semidefinite. Consequently, we have the
following results.

Proposition 8.2.3. Let A �=
[
A11 A12
A∗

12 A22

]
∈ Nn+m. Then,

rankA = rankA11 + rankA11|A (8.2.7)

= rankA22|A+ rankA22 (8.2.8)

≤ rankA11 + rankA22. (8.2.9)

Furthermore,

detA = (detA11)det(A11|A) (8.2.10)

and

detA = (detA22)det(A22|A). (8.2.11)

Proposition 8.2.4. Let A �=
[
A11 A12
A∗

12 A22

]
∈ Hn+m. Then, the following state-

ments are equivalent:

i) A ≥ 0.

ii) A11 ≥ 0, A12 = A11A
+
11A12, and A∗

12A
+
11A12 ≤ A22.

iii) A22 ≥ 0, A12 = A12A22A
+
22, and A12A

+
22A

∗
12 ≤ A11.

The following statements are also equivalent:

iv) A > 0.

v) A11 > 0 and A∗
12A

−1
11A12 < A22.

vi) A22 > 0 and A12A
−1
22A

∗
12 < A11.

The following result follows from (2.8.16) and (2.8.17) or from (8.2.3) and
(8.2.4).

Proposition 8.2.5. Let A �=
[
A11 A12
A∗

12 A22

]
∈ Pn+m. Then,

A−1 =

⎡
⎣ A−1

11 +A−1
11A12(A11|A)−1A∗

12A
−1
11 −A−1

11A12(A11|A)−1

−(A11|A)−1A∗
12A

−1
11 (A11|A)−1

⎤
⎦ (8.2.12)

and

A−1 =

⎡
⎣ (A22|A)−1 −(A22|A)−1A12A

−1
22

−A−1
22A

∗
12(A22|A)−1 A−1

22A
∗
12(A22|A)−1A12A

−1
22 +A−1

22

⎤
⎦, (8.2.13)

where
A11|A = A22 −A∗

12A
−1
11A12 (8.2.14)

and
A22|A = A11 −A12A

−1
22A

∗
12. (8.2.15)
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Now, let A−1 =
[
B11 B12
B∗

12 B22

]
. Then,

B11|A−1 = A−1
22 (8.2.16)

and
B22|A−1 = A−1

11. (8.2.17)

Lemma 8.2.6. Let A ∈ Fn×n, b ∈ Fn, and a ∈ R, and define A
�=
[
A b
b∗ a

]
.

Then, the following statements are equivalent:

i) A is positive semidefinite.

ii) A is positive semidefinite, b = AA+b, and b∗A+b ≤ a.
iii) Either A is positive semidefinite, a = 0, and b = 0, or a > and bb∗ ≤ aA.

Furthermore, the following statements are equivalent:

i) A is positive definite.

ii) A is positive definite, and b∗A−1b < a.

iii) a > 0 and bb∗ < aA.

In this case,
det A = (detA)

(
a− b∗A−1b

)
. (8.2.18)

For the following result note that a matrix is a principal submatrix of itself,
while the determinant of a matrix is also a principal subdeterminant of the matrix.

Proposition 8.2.7. Let A ∈ Hn. Then, the following statements are equiva-
lent:

i) A is positive semidefinite.

ii) Every principal submatrix of A is positive semidefinite.

iii) Every principal subdeterminant of A is nonnegative.

iv) For all i = 1, . . . , n, the sum of all i× i principal subdeterminants of A is
nonnegative.

v) β0, . . . , βn−1 ≥ 0, where χA(s) = sn + βn−1s
n−1 + · · ·+ β1s+ β0.

Proof. To prove i) =⇒ ii), let Â ∈ Fm×m be the principal submatrix of A
obtained from A by retaining rows and columns i1, . . . , im. Then, Â = STAS, where
S

�=
[
ei1 · · · eim

] ∈ R
n×m. Now, let x̂ ∈ F

m. Since A is positive semidefinite,
it follows that x̂∗Âx̂ = x̂∗STASx̂ ≥ 0, and thus Â is positive semidefinite.

Next, the implications ii) =⇒ iii) =⇒ iv) are immediate. To prove iv) =⇒ i),
note that it follows from Proposition 4.4.6 that

χA(s) =
n∑
i=0

βis
i =

n∑
i=0

(−1)n−iγn−isi = (−1)n
n∑
i=0

γn−i(−s)i, (8.2.19)

where, for all i = 1, . . . , n, γi is the sum of all i× i principal subdeterminants of A,
and βn = γ0 = 1. By assumption, γi ≥ 0 for all i = 1, . . . , n. Now, suppose there
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exists λ ∈ spec(A) such that λ < 0. Then, 0 = (−1)nχA(λ) =
∑n
i=0 γn−i(−λ)i > 0,

which is a contradiction. The equivalence of iv) and v) follows from Proposition
4.4.6.

Proposition 8.2.8. Let A ∈ Hn. Then, the following statements are equiva-
lent:

i) A is positive definite.

ii) Every principal submatrix of A is positive definite.

iii) Every principal subdeterminant of A is positive.

iv) Every leading principal submatrix of A is positive definite.

v) Every leading principal subdeterminant of A is positive.

Proof. To prove i) =⇒ ii), let Â ∈ Fm×m and S be as in the proof of Propo-
sition 8.2.7, and let x̂ be nonzero so that Sx̂ is nonzero. Since A is positive definite,
it follows that x̂∗Âx̂ = x̂∗STASx̂ > 0, and hence Â is positive definite.

Next, the implications i) =⇒ ii) =⇒ iii) =⇒ v) and ii) =⇒ iv) =⇒ v) are
immediate. To prove v) =⇒ i), suppose that the leading principal submatrix Ai ∈
Fi×i has positive determinant for all i = 1, . . . , n. The result is true for n = 1. For
n ≥ 2, we show that, if Ai is positive definite, then so is Ai+1. Writing Ai+1 =[
Ai bi

b∗i ai

]
, it follows from Lemma 8.2.6 that detAi+1 = (detAi)

(
ai − b∗iA−1

i bi
)
> 0,

and hence ai − b∗iA
−1
i bi = detAi+1/detAi > 0. Lemma 8.2.6 now implies that

Ai+1 is positive definite. Using this argument for all i = 2, . . . , n implies that A is
positive definite.

The example A =
[

0 0
0 −1

]
shows that every principal subdeterminant of A,

rather than just the leading principal subdeterminants of A, must be checked to
determine whether A is positive semidefinite. A less obvious example is A =

[
1 1 1
1 1 1
1 1 0

]
,

whose eigenvalues are 0, 1 +
√

3, and 1−√3. In this case, the principal subdeter-
minant detA[1;1] = det [ 1 1

1 0 ] < 0.

Note that condition iii) of Proposition 8.2.8 includes detA > 0 since the

determinant of A is also a subdeterminant of A. The matrix A =
[

3/2 −1 1
−1 2 1
1 1 2

]
has

the property that every 1×1 and 2×2 subdeterminant is positive but is not positive
definite. This example shows that the result iii) =⇒ ii) of Proposition 8.2.8 is false
if the requirement that the determinant of A be positive is omitted.

8.3 Simultaneous Diagonalization

This section considers the simultaneous diagonalization of a pair of matrices
A,B ∈ Hn. There are two types of simultaneous diagonalization. Cogredient diag-
onalization involves a nonsingular matrix S ∈ Fn×n such that SAS∗ and SBS∗ are
both diagonal, whereas contragredient diagonalization involves finding a nonsingu-
lar matrix S ∈ F

n×n such that SAS∗ and S−∗BS−1 are both diagonal. Both types
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of simultaneous transformation involve only congruence transformations. We begin
by assuming that one of the matrices is positive definite, in which case the results
are quite simple to prove. Our first result involves cogredient diagonalization.

Theorem 8.3.1. Let A,B ∈ Hn, and assume that A is positive definite.
Then, there exists a nonsingular matrix S ∈ F

n×n such that SAS∗ = I and SBS∗

is diagonal.

Proof. Setting S1 = A−1/2, it follows that S1AS
∗
1 = I. Now, since S1BS

∗
1

is Hermitian, it follows from Corollary 5.4.5 that there exists a unitary matrix
S2 ∈ Fn×n such that SBS∗ = S2S1BS

∗
1S

∗
2 is diagonal, where S = S2S1. Finally,

SAS∗ = S2S1AS
∗
1S

∗
2 = S2IS

∗
2 = I.

An analogous result holds for contragredient diagonalization.

Theorem 8.3.2. Let A,B ∈ Hn, and assume that A is positive definite. Then,
there exists a nonsingular matrix S ∈ Fn×n such that SAS∗ = I and S−∗BS−1 is
diagonal.

Proof. Setting S1 = A−1/2, it follows that S1AS
∗
1 = I. Since S−∗

1 BS−1
1 is

Hermitian, it follows that there exists a unitary matrix S2 ∈ Fn×n such that
S−∗BS−1 = S−∗

2 S−∗
1 BS−1

1 S−1
2 = S2

(
S−∗

1 BS−1
1

)
S∗

2 is diagonal, where S = S2S1.
Finally, SAS∗ = S2S1AS

∗
1S

∗
2 = S2IS

∗
2 = I.

Corollary 8.3.3. Let A,B ∈ Pn. Then, there exists a nonsingular matrix
S ∈ Fn×n such that SAS∗ and S−∗BS−1 are equal and diagonal.

Proof. By Theorem 8.3.2 there exists a nonsingular matrix S1 ∈ Fn×n such
that S1AS

∗
1 = I and B1 = S−∗

1 BS−1
1 is diagonal. Defining S

�= B
1/4
1 S1 yields

SAS∗ = S−∗BS−1 = B
1/2
1 .

The transformation S of Corollary 8.3.3 is a balancing transformation.

Next, we weaken the requirement in Theorem 8.3.1 and Theorem 8.3.2 that
A be positive definite by assuming only that A is positive semidefinite. In this case,
however, we assume that B is also positive semidefinite.

Theorem 8.3.4. Let A,B ∈ Nn. Then, there exists a nonsingular matrix
S ∈ Fn×n such that SAS∗ = [ I 0

0 0 ] and SBS∗ is diagonal.

Proof. Let the nonsingular matrix S1 ∈ F
n×n be such that S1AS

∗
1 = [ I 0

0 0 ],

and similarly partition S1BS
∗
1 =
[
B11 B12
B∗

12 B22

]
, which is positive semidefinite. Letting

S2
�=
[
I −B12B

+
22

0 I

]
, it follows from Lemma 8.2.1 that

S2S1BS
∗
1S

∗
2 =
[
B11 −B12B

+
22B

∗
12 0

0 B22

]
.

Next, let U1 and U2 be unitary matrices such that U1(B11 − B12B
+
22B

∗
12)U∗

1 and
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U2B22U
∗
2 are diagonal. Then, defining S3

�=
[
U1 0
0 U2

]
and S

�= S3S2S1, it follows
that SAS∗ = [ I 0

0 0 ] and SBS∗ = S3S2S1BS
∗
1S

∗
2S

∗
3 is diagonal.

Theorem 8.3.5. Let A,B ∈ Nn. Then, there exists a nonsingular matrix
S ∈ Fn×n such that SAS∗ = [ I 0

0 0 ] and S−∗BS−1 is diagonal.

Proof. Let S1 ∈ Fn×n be a nonsingular matrix such that S1AS
∗
1 = [ I 0

0 0 ], and

similarly partition S−∗
1 BS−1

1 =
[
B11 B12
B∗

12 B22

]
, which is positive semidefinite. Letting

S2
�=
[
I B+

11B12
0 I

]
, it follows that

S−∗
2 S−∗

1 BS−1
1 S−1

2 =
[
B11 0
0 B22 −B∗

12B
+
11B12

]
.

Now, let U1 and U2 be unitary matrices such that U1B11U
∗
1 and

U2(B22 − B∗
12B

+
11B12)U∗

2 are diagonal. Then, defining S3
�=
[
U1 0
0 U2

]
and S

�=
S3S2S1, it follows that SAS∗ = [ I 0

0 0 ] and S−∗BS−1 = S−∗
3 S−∗

2 S−∗
1 BS−1

1 S−1
2 S

−1
3 is

diagonal.

Corollary 8.3.6. Let A,B ∈ Nn. Then, AB is semisimple, and every eigen-
value of AB is nonnegative. If, in addition, A and B are positive definite, then
every eigenvalue of AB is positive.

Proof. It follows from Theorem 8.3.5 that there exists a nonsingular matrix
S ∈ Rn×n such that A1 = SAS∗ and B1 = S−∗BS−1 are diagonal with nonnega-
tive diagonal entries. Hence, AB = S−1A1B1S is semisimple and has nonnegative
eigenvalues.

A more direct approach to showing that AB has nonnegative eigenvalues is
to use Corollary 4.4.11 and note that λi(AB) = λi

(
B1/2AB1/2

) ≥ 0.

Corollary 8.3.7. Let A,B ∈ Nn, and assume that rankA = rankB =
rankAB. Then, there exists a nonsingular matrix S ∈ Fn×n such that SAS∗ =
S−∗BS−1 and such that SAS∗ is diagonal.

Proof. By Theorem 8.3.5 there exists a nonsingular matrix S1 ∈ Fn×n such
that S1AS

∗
1 =
[
Ir 0
0 0

]
, where r �= rankA, and such that B1 = S−∗

1 BS−1
1 is diagonal.

Hence, AB = S−1
1

[
Ir 0
0 0

]
B1S1. Since rankA = rankB = rankAB = r, it follows that

B1 =
[
B̂1 0
0 0

]
, where B̂1 ∈ Fr×r is positive diagonal. Hence, S−∗

1 BS−1
1 =

[
B̂1 0
0 0

]
.

Now, define S2
�=
[
B̂

1/4
1 0
0 I

]
and S �= S2S1. Then, SAS∗ = S2S1AS

∗
1S

∗
2 =
[
B̂

1/2
1 0
0 0

]
=

S−∗
2 S−∗

1 BS−1
1 S

−1
2 = S−∗BS−1.

8.4 Eigenvalue Inequalities

Next, we turn our attention to inequalities involving eigenvalues. We begin
with a series of lemmas.
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Lemma 8.4.1. Let A ∈ Hn, and let β ∈ R. Then, the following statements
hold:

i) βI ≤ A if and only if β ≤ λmin(A).

ii) βI < A if and only if β < λmin(A).

iii) A ≤ βI if and only if λmax(A) ≤ β.
iv) A < βI if and only if λmax(A) < β.

Proof. To prove i), assume that βI ≤ A, and let S ∈ Fn×n be a unitary
matrix such that B = SAS∗ is diagonal. Then, βI ≤ B, which yields β ≤ λmin(B) =
λmin(A). Conversely, let S ∈ Fn×n be a unitary matrix such that B = SAS∗ is
diagonal. Since the diagonal entries of B are the eigenvalues of A, it follows that
λmin(A)I ≤ B, which implies that βI ≤ λmin(A)I ≤ S∗BS = A. Results ii), iii),
and iv) are proved in a similar manner.

Corollary 8.4.2. Let A ∈ Hn. Then,

λmin(A)I ≤ A ≤ λmax(A)I. (8.4.1)

Proof. The result follows from i) and iii) of Lemma 8.4.1 with β = λmin(A)
and β = λmax(A), respectively.

The following result concerns the maximum and minimum values of the
Rayleigh quotient.

Lemma 8.4.3. Let A ∈ Hn. Then,

λmin(A) = min
x∈Fn\{0}

x∗Ax
x∗x

(8.4.2)

and
λmax(A) = max

x∈Fn\{0}
x∗Ax
x∗x

. (8.4.3)

Proof. It follows from (8.4.1) that λmin(A) ≤ x∗Ax/x∗x for all nonzero x ∈ Fn.
Letting x ∈ Fn be an eigenvector of A associated with λmin(A), it follows that
this lower bound is attained. This proves (8.4.2). An analogous argument yields
(8.4.3).

The following result is the Cauchy interlacing theorem.

Lemma 8.4.4. Let A ∈ Hn, and let A0 be an (n − 1) × (n − 1) principal
submatrix of A. Then, for all i = 1, . . . , n−1,

λi+1(A) ≤ λi(A0) ≤ λi(A). (8.4.4)

Proof. Note that (8.4.4) is the chain of inequalities

λn(A) ≤ λn−1(A0) ≤ λn−1(A) ≤ · · · ≤ λ2(A) ≤ λ1(A0) ≤ λ1(A).

Suppose that this chain of inequalities does not hold. In particular, first suppose
that the rightmost inequality that is not true is λj(A0) ≤ λj(A), so that λj(A) <
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λj(A0). Choose δ such that λj(A) < δ < λj(A0) and such that δ is not an eigenvalue
of A0. If j = 1, then A− δI is negative definite, while, if j ≥ 2, then λj(A) < δ <
λj(A0) ≤ λj−1(A0) ≤ λj−1(A), so that A− δI has j −1 positive eigenvalues. Thus,
ν+(A− δI) = j −1. Furthermore, since δ < λi(A0), it follows that ν+(A0 − δI) ≥ j.

Now, assume for convenience that the rows and columns of A are ordered so
that A0 is the (n−1)× (n−1) leading principal submatrix of A. Thus, A =

[
A0 β
β∗ γ

]
,

where β ∈ Fn−1 and γ ∈ F. Next, note the identity

A− δI

=
[

I 0

β∗(A0 − δI)−1 1

][
A0 − δI 0

0 γ − δ − β∗(A0 − δI)−1β

][
I (A0 − δI)−1β

0 1

]
,

where A0 − δI is nonsingular since δ is chosen to not be an eigenvalue of A0. Since
the right-hand side of this identity involves a congruence transformation, and since
ν+(A0 − δI) ≥ j, it follows from Corollary 5.4.7 that ν+(A− δI) ≥ j. However, this
inequality contradicts the fact that ν+(A− δI) = j −1.

Finally, suppose that the rightmost inequality in (8.4.4) that is not true is
λj+1(A) ≤ λj(A0), so that λj(A0) < λj+1(A). Choose δ such that λj(A0) < δ <
λj+1(A) and such that δ is not an eigenvalue of A0. Then, it follows that ν+(A −
δI) ≥ j + 1 and ν+(A0 − δI) = j −1. Using the congruence transformation as in
the previous case, it follows that ν+(A − δI) ≤ j, which contradicts the fact that
ν+(A− δI) ≥ j + 1.

The following result is the inclusion principle.

Theorem 8.4.5. Let A ∈ Hn, and let A0 ∈ Hk be a k×k principal submatrix
of A. Then, for all i = 1, . . . , k,

λi+n−k(A) ≤ λi(A0) ≤ λi(A). (8.4.5)

Proof. For k = n−1, the result is given by Lemma 8.4.4. Hence, let k = n−2,
and let A1 denote an (n − 1) × (n − 1) principal submatrix of A such that the
(n − 2) × (n − 2) principal submatrix A0 of A is also a principal submatrix of
A1. Therefore, Lemma 8.4.4 implies that λn(A) ≤ λn−1(A1) ≤ · · · ≤ λ2(A1) ≤
λ2(A) ≤ λ1(A1) ≤ λ1(A) and λn−1(A1) ≤ λn−2(A0) ≤ · · · ≤ λ2(A0) ≤ λ2(A1) ≤
λ1(A0) ≤ λ1(A1). Combining these inequalities yields λi+2(A) ≤ λi(A0) ≤ λi(A)
for all i = 1, . . . , n− 2, while proceeding in a similar manner with k < n− 2 yields
(8.4.5).

Corollary 8.4.6. Let A ∈ Hn, and let A0 ∈ Hk be a k×k principal submatrix
of A. Then,

λmin(A) ≤ λmin(A0) ≤ λmax(A0) ≤ λmax(A) (8.4.6)

and
λmin(A0) ≤ λk(A). (8.4.7)
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The following result compares the maximum and minimum eigenvalues with
the maximum and minimum diagonal entries.

Corollary 8.4.7. Let A ∈ Hn. Then,

λmin(A) ≤ dmin(A) ≤ dmax(A) ≤ λmax(A). (8.4.8)

Lemma 8.4.8. Let A,B ∈ Hn, and assume that A ≤ B and mspec(A) =
mspec(B). Then, A = B.

Proof. Let α ≥ 0 be such that 0 < Â ≤ B̂, where Â
�= A + αI and

B̂
�= B + αI. Note that mspec(Â) = mspec(B̂), and thus det Â = det B̂. Next,

it follows that I ≤ Â−1/2B̂Â−1/2. Hence, it follows from i) of Lemma 8.4.1 that
λmin

(
Â−1/2B̂Â−1/2

)
≥ 1. Furthermore, det

(
Â−1/2B̂Â−1/2

)
= det B̂/det Â = 1,

which implies that λi(Â−1/2B̂Â−1/2) = 1 for all i = 1, . . . , n. Hence, Â−1/2B̂Â−1/2 =
I, and thus Â = B̂. Hence, A = B.

The following result is the monotonicity theorem or Weyl’s inequality.

Theorem 8.4.9. Let A,B ∈ Hn, and assume that A ≤ B. Then, for all
i = 1, . . . , n,

λi(A) ≤ λi(B). (8.4.9)

If A �= B, then there exists i ∈ {1, . . . , n} such that

λi(A) < λi(B). (8.4.10)

If A < B, then (8.4.10) holds for all i = 1, . . . , n.

Proof. Since A ≤ B, it follows from Corollary 8.4.2 that λmin(A)I ≤ A ≤
B ≤ λmax(B)I. Hence, it follows from iii) and i) of Lemma 8.4.1 that λmin(A) ≤
λmin(B) and λmax(A) ≤ λmax(B). Next, let S ∈ Fn×n be a unitary matrix such
that SAS∗ = diag[λ1(A), . . . , λn(A)]. Furthermore, for 2 ≤ i ≤ n − 1, let A0 =
diag[λ1(A), . . . , λi(A)], and let B0 denote the i× i leading principal submatrices of
SAS∗ and SBS∗, respectively. Since A ≤ B, it follows that A0 ≤ B0, which implies
that λmin(A0) ≤ λmin(B0). It now follows from (8.4.7) that

λi(A) = λmin(A0) ≤ λmin(B0) ≤ λi(SBS∗) = λi(B),

which proves (8.4.9). If A �= B, then it follows from Lemma 8.4.8 that mspec(A) �=
mspec(B) and thus there exists i ∈ {1, . . . , n} such that (8.4.10) holds. If A < B,
then λmin(A0) < λmin(B0), which implies that (8.4.10) holds for all i = 1, . . . , n.

Corollary 8.4.10. Let A,B ∈ Hn. Then, the following statements hold:

i) If A ≤ B, then trA ≤ trB.

ii) If A ≤ B and trA = trB, then A = B.

iii) If A < B, then trA < trB.

iv) If 0 ≤ A ≤ B, then 0 ≤ detA ≤ detB.

v) If 0 ≤ A < B, then 0 ≤ detA < detB.
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vi) If 0 < A ≤ B and detA = detB, then A = B.

Proof. Statements i), iii), iv), and v) follow from Theorem 8.4.9. To prove
ii), note that, since A ≤ B and trA = trB, it follows from Theorem 8.4.9 that
mspec(A) = mspec(B). Now, Lemma 8.4.8 implies that A = B. A similar argument
yields vi).

The following result, which is a generalization of Theorem 8.4.9, is due to
Weyl.

Theorem 8.4.11. Let A,B ∈ Hn. If i+ j ≥ n+ 1, then

λi(A) + λj(B) ≤ λi+j−n(A+B). (8.4.11)

If i+ j ≤ n+ 1, then

λi+j−1(A+B) ≤ λi(A) + λj(B). (8.4.12)

In particular, for all i = 1, . . . , n,

λi(A) + λmin(B) ≤ λi(A+B) ≤ λi(A) + λmax(B), (8.4.13)

λmin(A) + λmin(B) ≤ λmin(A+B) ≤ λmin(A) + λmax(B), (8.4.14)

λmax(A) + λmin(B) ≤ λmax(A+ B) ≤ λmax(A) + λmax(B). (8.4.15)

Furthermore,
ν−(A+B) ≤ ν−(A) + ν−(B) (8.4.16)

and
ν+(A+B) ≤ ν+(A) + ν+(B). (8.4.17)

Proof. See [709, p. 182]. The last two inequalities are noted in [393].

Lemma 8.4.12. Let A,B,C ∈ Hn. If A ≤ B and C is positive semidefinite,
then

trAC ≤ trBC. (8.4.18)

If A < B and C is positive definite, then

trAC < trBC. (8.4.19)

Proof. Since C1/2AC1/2 ≤ C1/2BC1/2, it follows from i) of Corollary 8.4.10
that

trAC = trC1/2AC1/2 ≤ trC1/2BC1/2 = trBC.

Result (8.4.19) follows from ii) of Corollary 8.4.10 in a similar fashion.

Proposition 8.4.13. Let A,B ∈ Fn×n, and assume that B is positive semidef-
inite. Then,

1
2λmin(A+A∗)trB ≤ Re trAB ≤ 1

2λmax(A+A∗)trB. (8.4.20)

If, in addition, A is Hermitian, then

λmin(A)trB ≤ trAB ≤ λmax(A)trB. (8.4.21)
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Proof. It follows from Corollary 8.4.2 that 1
2λmin(A+A∗)I ≤ 1

2(A+A∗), while
Lemma 8.4.12 implies that 1

2λmin(A + A∗)trB = tr 1
2λmin(A + A∗)IB ≤ tr 1

2(A +
A∗)B = Re trAB, which proves the left-hand inequality of (8.4.20). Similarly, the
right-hand inequality holds.

For results relating to Proposition 8.4.13, see Fact 5.12.4, Fact 5.12.5, Fact
5.12.8, and Fact 8.18.18.

Proposition 8.4.14. Let A,B ∈ Pn, and assume that detB = 1. Then,

(detA)1/n ≤ 1
n trAB. (8.4.22)

Furthermore, equality holds if and only if B = (detA)1/nA−1.

Proof. Using the arithmetic-mean–geometric-mean inequality given by Fact
1.15.14, it follows that

(detA)1/n =
(
detB1/2AB1/2

)1/n
=

[
n∏
i=1

λi

(
B1/2AB1/2

)]1/n

≤ 1
n

n∑
i=1

λi

(
B1/2AB1/2

)
= 1

n trAB.

Equality holds if and only if there exists β > 0 such that B1/2AB1/2 = βI. In this
case, β = (detA)1/n and B = (detA)1/nA−1.

The following corollary of Proposition 8.4.14 is Minkowski’s determinant the-
orem.

Corollary 8.4.15. Let A,B ∈ Nn, and let p ∈ [1, n]. Then,

detA+ detB ≤
[
(detA)1/p + (detB)1/p

]p
(8.4.23)

≤
[
(detA)1/n + (detB)1/n

]n
(8.4.24)

≤ det(A+B). (8.4.25)

Furthermore, the following statements hold:

i) If A = 0 or B = 0 or det(A+B) = 0, then (8.4.23)–(8.4.25) are identities.

ii) If there exists α ≥ 0 such that B = αA, then (8.4.25) is an identity.

iii) If A + B is positive definite and (8.4.25) holds as an identity, then there
exists α ≥ 0 such that either B = αA or A = αB.

iv) If n ≥ 2, p > 1, A is positive definite, and (8.4.23) holds as an identity,
then detB = 0.

v) If n ≥ 2, p < n, A is positive definite, and (8.4.24) holds as an identity,
then detB = 0.

vi) If n ≥ 2, A is positive definite, and detA + detB = det(A + B), then
B = 0.
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Proof. Inequalities (8.4.23) and (8.4.24) are consequences of the power-sum
inequality Fact 1.15.34. Now, assume that A+B is positive definite, since otherwise
(8.4.23)–(8.4.25) are identities. To prove (8.4.25), Proposition 8.4.14 implies that

(detA)1/n + (detB)1/n ≤ 1
n tr
[
A[det(A+B)]1/n(A+B)−1

]
+ 1

n tr
[
B[det(A+B)]1/n(A+B)−1

]
= [det(A+B)]1/n.

Statements i) and ii) are immediate. To prove iii), suppose that A + B
is positive definite and that (8.4.25) holds as an identity. Then, either A or B
is positive definite. Hence, suppose that A is positive definite. Multiplying the
identity (detA)1/n + (detB)1/n = [det(A+B)]1/n by (detA)−1/n yields

1 +
(
detA−1/2BA−1/2

)1/n
=
[
det
(
I +A−1/2BA−1/2

)]1/n
.

Letting λ1, . . . , λn denote the eigenvalues of A−1/2BA−1/2, it follows that
1 + (λ1 · · ·λn)1/n = [(1 + λ1) · · · (1 + λn)]1/n. It now follows from Fact 1.15.33
that λ1 = · · · = λn.

To prove iv), note that, since 1/p < 1, detA > 0, and identity holds in
(8.4.23), it follows from Fact 1.15.34 that detB = 0.

To prove v), note that, since 1/n < 1/p, detA > 0, and identity holds in
(8.4.24), it follows from Fact 1.15.34 that detB = 0.

To prove vi), note that (8.4.23) and (8.4.24) hold as identities for all p ∈ [1, n].
Therefore, detB = 0. Consequently, detA = det(A+B). Since 0 < A ≤ A+B, it
follows from vi) of Corollary 8.4.10 that B = 0.

8.5 Exponential, Square Root, and Logarithm of Hermitian
Matrices

Let A = SBS∗ ∈ Fn×n be Hermitian, where S ∈ Fn×n is unitary, B ∈ Rn×n

is diagonal, spec(A) ⊂ D, and D ⊆ R. Furthermore, let f : D �→ R. Then, we
define f(A) ∈ Hn by

f(A) �= Sf(B)S∗, (8.5.1)

where [f(B)](i,i)
�= f[B(i,i)]. Hence, with an obvious extension of notation, f : {X ∈

Hn: spec(X) ⊂ D} �→ Hn. If f : D �→ R is one-to-one, then its inverse f−1: {X ∈
Hn: spec(X) ⊂ f(D)} �→ Hn exists.

Let A = SBS∗ ∈ Fn×n be Hermitian, where S ∈ Fn×n is unitary and B ∈
Rn×n is diagonal. Then, the matrix exponential is defined by

eA
�= SeBS∗ ∈ Hn, (8.5.2)

where, for all i = 1, . . . , n, (eB)(i,i)
�= eB(i,i).
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Let A = SBS∗ ∈ Fn×n be positive semidefinite, where S ∈ Fn×n is unitary
and B ∈ Rn×n is diagonal with nonnegative entries. Then, for all r ≥ 0 (not neces-
sarily an integer), Ar = SBrS∗ is positive semidefinite, where, for all i = 1, . . . , n,
(Br)(i,i) =

[
B(i,i)

]r
. Note that A0 �= I. In particular, the positive-semidefinite ma-

trix

A1/2 = SB1/2S∗ (8.5.3)

is a square root of A since

A1/2A1/2 = SB1/2S∗SB1/2S∗ = SBS∗ = A. (8.5.4)

The uniqueness of the positive-semidefinite square root of A given by (8.5.3) follows
from Theorem 10.6.1; see also [711, p. 410] or [877]. Uniqueness can also be shown
directly; see [447, pp. 265, 266] or [709, p. 405]. Hence, if C ∈ Fn×m, then C∗C is
positive semidefinite, and we define

〈C 〉 �= (C∗C)1/2. (8.5.5)

If A is positive definite, then Ar is positive definite for all r ∈ R, and, if r �= 0, then
(Ar)1/r= A.

Now, assume that A is positive definite. Then, the matrix logarithm is defined
by

logA �= S(logB)S∗ ∈ Hn, (8.5.6)

where, for all i = 1, . . . , n, (logB)(i,i)
�= log[B(i,i)].

In chapters 10 and 11, the matrix exponential, square root, and logarithm are
extended to matrices that are not necessarily Hermitian.

8.6 Matrix Inequalities

Lemma 8.6.1. Let A,B ∈ Fn, assume that A and B are Hermitian, and
assume that 0 ≤ A ≤ B. Then, R(A) ⊆ R(B).

Proof. Let x ∈ N(B). Then, x∗Bx = 0, and thus x∗Ax = 0, which implies
that Ax = 0. Hence, N(B) ⊆ N(A), and thus N(A)⊥ ⊆ N(B)⊥. Since A and B are
Hermitian, it follows from Theorem 2.4.3 that R(A) = N(A)⊥ and R(B) = N(B)⊥.
Hence, R(A) ⊆ R(B).

The following result is the Douglas-Fillmore-Williams lemma [427, 490].

Theorem 8.6.2. Let A ∈ Fn×m and B ∈ Fn×l. Then, the following statements
are equivalent:

i) There exists a matrix C ∈ Fl×m such that A = BC.

ii) There exists α > 0 such that AA∗ ≤ αBB∗.

iii) R(A) ⊆ R(B).
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Proof. First we prove that i) implies ii). Since A = BC, it follows that
AA∗ = BCC∗B∗. Since CC∗ ≤ λmax(CC∗)I, it follows that AA∗ ≤ αBB∗, where
α

�= λmax(CC∗). To prove that ii) implies iii), first note that Lemma 8.6.1 implies
that R(AA∗) ⊆ R(αBB∗) = R(BB∗). Since, by Theorem 2.4.3, R(AA∗) = R(A) and
R(BB∗) = R(B), it follows that R(A) ⊆ R(B). Finally, to prove that iii) implies
i), use Theorem 5.6.4 to write B = S1[D 0

0 0 ]S2, where S1 ∈ F
n×n and S2 ∈ F

l×l are
unitary and D ∈ Rr×r is diagonal with positive diagonal entries, where r �= rankB.
Since R(S∗

1A) ⊆ R(S∗
1B) and S∗

1B = [D 0
0 0 ]S2, it follows that S∗

1A =
[
A1
0

]
, where

A1 ∈ Fr×m. Consequently,

A = S1

[
A1

0

]
= S1

[
D 0
0 0

]
S2S

∗
2

[
D−1 0

0 0

][
A1

0

]
= BC,

where C �= S∗
2

[
D−1 0

0 0

][
A1
0

] ∈ Fl×m.

Proposition 8.6.3. Let (Ai)∞i=1 ⊂ Nn satisfy 0 ≤ Ai ≤ Aj for all i ≤ j, and
assume there exists B ∈ Nn satisfying Ai ≤ B for all i ∈ P. Then, A �= limi→∞ Ai
exists and satisfies 0 ≤ A ≤ B.

Proof. Let k ∈ {1, . . . , n}. Then, the sequence (Ai(k,k))∞i=1 is nondecreas-
ing and bounded from above. Hence, A(k,k)

�= limi→∞ Ai(k,k) exists. Now, let
k, l ∈ {1, . . . , n}, where k �= l. Since Ai ≤ Aj for all i < j, it follows that
(ek + el)∗Ai(ek + el) ≤ (ek + el)∗Aj(ek + el), which implies that Ai(k,l) −Aj(k,l) ≤
1
2

[
Aj(k,k) −Ai(k,k) +Aj(l,l) −Ai(l,l)

]
. Alternatively, replacing ek+el by ek−el yields

Aj(k,l)−Ai(k,l) ≤ 1
2

[
Aj(k,k) −Ai(k,k) +Aj(l,l) −Ai(l,l)

]
. Thus, Ai(k,l)−Aj(k,l) → 0 as

i, j →∞, which implies that A(k,l)
�= limi→∞Ai(k,l) exists. Hence, A �= limi→∞ Ai

exists. Since Ai ≤ B for all i = 1, 2, . . . , it follows that A ≤ B.

Proposition 8.6.4. Let A ∈ Fn×n, assume that A is positive definite, and let
p > 0. Then,

A−1(A− I) ≤ logA ≤ p−1(Ap − I) (8.6.1)

and

logA = lim
p↓0

p−1(Ap − I). (8.6.2)

Proof. The result follows from Fact 1.9.26.

Lemma 8.6.5. Let A ∈ Pn. If A ≤ I, then I ≤ A−1. Furthermore, if A < I,
then I < A−1.

Proof. Since A ≤ I, it follows from xi) of Proposition 8.1.2 that I =
A−1/2AA−1/2 ≤ A−1/2IA−1/2 = A−1. Similarly, A < I implies that I = A−1/2AA−1/2

< A−1/2IA−1/2 = A−1.

Proposition 8.6.6. Let A,B ∈ Hn, and assume that either A and B are
positive definite or A and B are negative definite. If A ≤ B, then B−1 ≤ A−1. If, in
addition, A < B, then B−1 < A−1.
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Proof. Suppose that A and B are positive definite. Since A ≤ B, it follows
that B−1/2AB−1/2 ≤ I. Now, Lemma 8.6.5 implies that I ≤ B1/2A−1B1/2, which
implies that B−1 ≤ A−1. If A and B are negative definite, then A ≤ B is equivalent
to −B ≤ −A. The case A < B is proved in a similar manner.

The following result is the Furuta inequality.

Proposition 8.6.7. Let A,B ∈ Nn, and assume that 0 ≤ A ≤ B. Further-
more, let p, q, r ∈ R satisfy p ≥ 0, q ≥ 1, r ≥ 0, and p+ 2r ≤ (1 + 2r)q. Then,

A(p+2r)/q ≤ (ArBpAr)1/q (8.6.3)

and
(BrApBr)1/q ≤ B(p+2r)/q. (8.6.4)

Proof. See [522] or [530, pp. 129, 130].

Corollary 8.6.8. Let A,B ∈ Nn, and assume that 0 ≤ A ≤ B. Then,

A2 ≤ (AB2A
)1/2

(8.6.5)

and (
BA2B

)1/2≤ B2. (8.6.6)

Proof. In Proposition 8.6.7 set r = 1, p = 2, and q = 2.

Corollary 8.6.9. Let A,B,C ∈ Nn, and assume that 0 ≤ A ≤ C ≤ B. Then,(
CA2C

)1/2 ≤ C2≤ (CB2C
)1/2

. (8.6.7)

Proof. The result follows from Corollary 8.6.8. See also [1395].

The following result provides representations for Ar, where r ∈ (0, 1).

Proposition 8.6.10. Let A ∈ Pn and r ∈ (0, 1). Then,

Ar =
(
cos

rπ

2

)
I +

sin rπ
π

∞∫
0

[
xr+1

1 + x2
I − (A+ xI)−1xr

]
dx (8.6.8)

and

Ar =
sin rπ
π

∞∫
0

(A+ xI)−1Axr−1 dx. (8.6.9)

Proof. Let t ≥ 0. As shown in [193], [197, p. 143],
∞∫
0

[
xr+1

1 + x2
− xr

t+ x

]
dx =

π

sin rπ

(
tr − cos

rπ

2

)
.

Solving for tr and replacing t by A yields (8.6.8). Likewise, replacing t by A in
xxxii) of Fact 1.19.1 yields (8.6.9).
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The following result is the Löwner-Heinz inequality.

Corollary 8.6.11. Let A,B ∈ Nn, assume that 0 ≤ A ≤ B, and let r ∈ [0, 1].
Then, Ar ≤ Br. If, in addition, A < B and r ∈ (0, 1], then Ar < Br.

Proof. Let 0 < A ≤ B, and let r ∈ (0, 1). In Proposition 8.6.7, replace p, q, r
with r, 1, 0. The first result now follows from (8.6.3). Alternatively, it follows from
(8.6.8) of Proposition 8.6.10 that

Br−Ar =
sin rπ
π

∞∫
0

[
(A+ xI)−1 − (B + xI)−1

]
xr dx.

Since A ≤ B, it follows from Proposition 8.6.6 that, for all x ≥ 0, (B + xI)−1 ≤
(A + xI)−1. Hence, Ar ≤ Br. By continuity, the result holds for A,B ∈ Nn and
r ∈ [0, 1]. In the case A < B, it follows from Proposition 8.6.6 that, for all x ≥ 0,
(B + xI)−1 < (A+ xI)−1, so that Ar < Br.

Alternatively, it follows from (8.6.9) of Proposition 8.6.10 that

Br−Ar =
sin rπ
π

∞∫
0

[
(A+ xI)−1A− (B + xI)−1B

]
xr−1 dx.

Since A ≤ B, it follows that, for all x ≥ 0, (B + xI)−1B ≤ (A + xI)−1A. Hence,
Ar ≤ Br. Alternative proofs are given in [530, p. 127] and [1485, p. 2].

For the case r = 1/2, let λ ∈ R be an eigenvalue of B1/2−A1/2, and let x ∈ Fn

be an associated eigenvector. Then,

λx∗
(
B1/2 +A1/2

)
x = x∗

(
B1/2 +A1/2

)(
B1/2 −A1/2

)
x

= x∗
(
B −B1/2A1/2 +A1/2B1/2 −A

)
= x∗(B −A)x ≥ 0.

Since B1/2 + A1/2 is positive semidefinite, it follows that either λ ≥ 0 or
x∗
(
B1/2 +A1/2

)
x = 0. In the latter case, B1/2x = A1/2x = 0, which implies that

λ = 0.

The Löwner-Heinz inequality does not extend to r > 1. In fact, A �= [ 2 1
1 1 ] and

B
�= [ 1 0

0 0 ] satisfy A ≥ B ≥ 0, whereas, for all r > 1, Ar �≥ Br. For details, see [530,
pp. 127, 128].

Many of the results given so far involve functions that are nondecreasing or
increasing on suitable sets of matrices.

Definition 8.6.12. Let D ⊆ Hn, and let φ: D �→ Hm. Then, the following
terminology is defined:

i) φ is nondecreasing if, for all A,B ∈ D such that A ≤ B, it follows that
φ(A) ≤ φ(B).
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ii) φ is increasing if φ is nondecreasing and, for all A,B ∈ D such that A < B,
it follows that φ(A) < φ(B).

iii) φ is strongly increasing if φ is nondecreasing and, for all A,B ∈ D such
that A ≤ B and A �= B, it follows that φ(A) < φ(B).

iv) φ is (nonincreasing, decreasing, strongly decreasing) if −φ is (nondecreas-
ing, increasing, strongly increasing).

Proposition 8.6.13. The following functions are nondecreasing:

i) φ: Hn �→ Hm defined by φ(A) �= BAB∗, where B ∈ F
m×n.

ii) φ: Hn �→ R defined by φ(A) �= trAB, where B ∈ Nn.

iii) φ: Nn+m �→ Nn defined by φ(A) �= A22|A, where A �=
[
A11 A12
A∗

12 A22

]
.

iv) φ: Nn ×Nm �→ Nnm defined by φ(A,B) �= Ar1⊗Br2, where r1, r2 ∈ [0, 1]
satisfy r1 + r2 ≤ 1.

v) φ: Nn ×Nn �→ Nn defined by φ(A,B) �= Ar1 ◦Br2, where r1, r2 ∈ [0, 1]
satisfy r1 + r2 ≤ 1.

The following functions are increasing:

vi) φ: Hn �→ R defined by φ(A) �= λi(A), where i ∈ {1, . . . , n}.
vii) φ: Nn �→ Nn defined by φ(A) �= Ar, where r ∈ [0, 1].

viii) φ: Nn �→ Nn defined by φ(A) �= A1/2.

ix) φ: Pn �→ −Pn defined by φ(A) �= −A−r, where r ∈ [0, 1].

x) φ: Pn �→ −Pn defined by φ(A) �= −A−1.

xi) φ: Pn �→ −Pn defined by φ(A) �= −A−1/2.

xii) φ: −Pn �→ Pn defined by φ(A) �= (−A)−r, where r ∈ [0, 1].

xiii) φ: −Pn �→ Pn defined by φ(A) �= −A−1.

xiv) φ: −Pn �→ Pn defined by φ(A) �= −A−1/2.

xv) φ: Hn �→ Hm defined by φ(A) �= BAB∗, where B ∈ Fm×n and rankB =
m.

xvi) φ: Pn+m �→ Pn defined by φ(A) �= A22|A, where A �=
[
A11 A12
A∗

12 A22

]
.

xvii) φ: Pn+m �→Pn defined by φ(A) �=−(A22|A)−1, where A �=
[
A11 A12
A∗

12 A22

]
.

xviii) φ: Pn �→ Hn defined by φ(A) �= logA.

The following functions are strongly increasing:

xix) φ: Hn �→ [0,∞) defined by φ(A) �= trBAB∗, where B ∈ Fm×n and
rankB = m.

xx) φ: Hn �→ R defined by φ(A) �= trAB, where B ∈ Pn.
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xxi) φ: Nn �→ [0,∞) defined by φ(A) �= trAr, where r > 0.

xxii) φ: Nn �→ [0,∞) defined by φ(A) �= detA.

Proof. For the proof of iii), see [896]. To prove xviii), let A,B ∈ Pn, and
assume that A ≤ B. Then, for all r ∈ [0, 1], it follows from vii) that r−1(Ar − I) ≤
r−1(Br − I). Letting r ↓ 0 and using Proposition 8.6.4 yields logA ≤ logB, which
proves that log is nondecreasing. See [530, p. 139] and Fact 8.19.2. To prove that
log is increasing, assume that A < B, and let ε > 0 be such that A+ εI < B. Then,
it follows that logA < log(A+ εI) ≤ logB.

Finally, we consider convex functions defined with respect to matrix inequali-
ties. The following definition generalizes Definition 1.2.3 in the case n = m = p = 1.

Definition 8.6.14. Let D ⊆ Fn×m be a convex set, and let φ: D �→ Hp.
Then, the following terminology is defined:

i) φ is convex if, for all α ∈ [0, 1] and A1, A2 ∈ D,

φ[αA1 + (1− α)A2] ≤ αφ(A1) + (1− α)φ(A2). (8.6.10)

ii) φ is concave if −φ is convex.

iii) φ is strictly convex if, for all α ∈ (0, 1) and distinct A1, A2 ∈ D,

φ[αA1 + (1− α)A2] < αφ(A1) + (1− α)φ(A2). (8.6.11)

iv) φ is strictly concave if −φ is strictly convex.

Theorem 8.6.15. Let S ⊆ R, let φ : S1 �→ S2, and assume that φ is continuous.
Then, the following statements hold:

i) Assume that S1 = S2 = (0,∞) and φ: Pn �→ Pn is increasing. Then,
ψ : Pn �→ Pn defined by ψ(x) = 1/φ(x) is convex.

ii) Assume that S1 = S2 = [0,∞). Then, φ: Nn �→ Nn is increasing if and
only if φ: Nn �→ Nn is concave.

iii) Assume that S1 = [0,∞) and S2 = R. Then, φ: Nn �→ Hn is convex and
φ(0) ≤ 0 if and only if ψ : Pn �→ Hn defined by ψ(x) = φ(x)/x is increasing.

Proof. See [197, pp. 120–122].

Lemma 8.6.16. Let D ⊆ Fn×m and S ⊆Hp be convex sets, and let φ1: D �→
S and φ2: S �→ Hq. Then, the following statements hold:

i) If φ1 is convex and φ2 is nondecreasing and convex, then φ2 •φ1: D �→ Hq

is convex.

ii) If φ1 is concave and φ2 is nonincreasing and convex, then φ2 •φ1: D �→ Hq

is convex.

iii) If S is symmetric, φ2(−A) = −φ2(A) for all A ∈ S, φ1 is concave, and φ2

is nonincreasing and concave, then φ2 • φ1: D �→ Hq is convex.

iv) If S is symmetric, φ2(−A) = −φ2(A) for all A ∈ S, φ1 is convex, and φ2 is
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nondecreasing and concave, then φ2 • φ1: D �→ Hq is convex.

Proof. To prove i) and ii), let α ∈ [0, 1] and A1, A2 ∈ D. In both cases it
follows that

φ2(φ1[αA1 + (1− α)A2]) ≤ φ2[αφ1(A1) + (1− α)φ1(A2)]

≤ αφ2[φ1(A1)] + (1− α)φ2[φ1(A2)].

Statements iii) and iv) follow from i) and ii), respectively.

Proposition 8.6.17. The following functions are convex:

i) φ: Nn �→ Nn defined by φ(A) �= Ar, where r ∈ [1, 2].

ii) φ: Nn �→ Nn defined by φ(A) �= A2.

iii) φ: Pn �→ Pn defined by φ(A) �= A−r, where r ∈ [0, 1].

iv) φ: Pn �→ Pn defined by φ(A) �= A−1.

v) φ: Pn �→ Pn defined by φ(A) �= A−1/2.

vi) φ: Nn �→ −Nn defined by φ(A) �= −Ar, where r ∈ [0, 1].

vii) φ: Nn �→ −Nn defined by φ(A) �= −A1/2.

viii) φ: Nn �→ Hm defined by φ(A) �= γBAB∗, where γ ∈ R and B ∈ F
m×n.

ix) φ: Nn �→ Nm defined by φ(A) �= BArB∗, where B ∈ Fm×n and r ∈ [1, 2].

x) φ: Pn �→ Nm defined by φ(A) �= BA−rB∗, where B ∈ Fm×n and r ∈ [0, 1].

xi) φ: Nn �→ −Nm defined by φ(A) �= −BArB∗, where B ∈ Fm×n and r ∈
[0, 1].

xii) φ: Pn �→ −Pm defined by φ(A) �= −(BA−rB∗)−p, where B ∈ Fm×n has
rankm and r, p ∈ [0, 1].

xiii) φ: Fn×m �→ Nn defined by φ(A) �= ABA∗, where B ∈ Nm.

xiv) φ: Pn × Fm×n �→ Nm defined by φ(A,B) �= BA−1B∗.

xv) φ: Pn × F
m×n �→ Nm defined by φ(A) �=

(
A−1 +A−∗)−1

.

xvi) φ: Nn ×Nn �→ Nn defined by φ(A,B) �= −A(A+B)+B.

xvii) φ: Nn+m �→ Nn defined by φ(A) �= −A22|A, where A �=
[
A11 A12
A∗

12 A22

]
.

xviii) φ: Pn+m �→Pn defined by φ(A) �=(A22|A)−1
, where A �=

[
A11 A12
A∗

12 A22

]
.

xix) φ: Hn �→ [0,∞) defined by φ(A) �= trAk, where k is a nonnegative even
integer.

xx) φ: Pn �→ (0,∞) defined by φ(A) �= trA−r, where r > 0.

xxi) φ: Pn �→ (−∞, 0) defined by φ(A) �= −(trA−r)−p, where r, p ∈ [0, 1].
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xxii) φ: Nn × Nn �→ (−∞, 0] defined by φ(A,B) �= −tr (Ar + Br)1/r, where
r ∈ [0, 1].

xxiii) φ: Nn ×Nn �→ [0,∞) defined by φ(A,B) �= tr
(
A2 +B2

)1/2
.

xxiv) φ: Nn×Nm �→ R defined by φ(A,B) �= −trArXBpX∗, where X ∈ F
n×m,

r, p ≥ 0, and r + p ≤ 1.

xxv) φ: Nn �→ (−∞, 0) defined by φ(A) �= −trArXApX∗, where X ∈ Fn×n,
r, p ≥ 0, and r + p ≤ 1.

xxvi) φ: Pn×Pm×Fm×n �→ R defined by φ(A,B,X) �=(trA−pXB−rX∗)q, where
r, p ≥ 0, r + p ≤ 1, and q ≥ (2− r − p)−1.

xxvii) φ: Pn×Fn×n �→ [0,∞) defined by φ(A,X) �= trA−pXA−rX∗, where r, p ≥
0 and r + p ≤ 1.

xxviii) φ: Pn × Fn×n �→ [0,∞) defined by φ(A) �= trA−pXA−rX∗, where r, p ∈
[0, 1] and X ∈ Fn×n.

xxix) φ: Pn �→ R defined by φ(A) �= − tr([Ar, X ][A1−r, X ]), where r ∈ (0, 1) and
X ∈ Hn.

xxx) φ: Pn �→ Hn defined by φ(A) �= −logA.

xxxi) φ: Pn �→ Hm defined by φ(A) �= AlogA.

xxxii) φ: Nn\{0} �→ R defined by φ(A) �= − log trAr, where r ∈ [0, 1].

xxxiii) φ: Pn �→ R defined by φ(A) �= log trA−1.

xxxiv) φ: Pn ×Pn �→ (0,∞) defined by φ(A,B) �= tr[A(logA− logB)].

xxxv) φ: Pn ×Pn → [0,∞) defined by φ(A,B) �= −e[1/(2n)]tr(logA+logB).

xxxvi) φ: Nn �→ (−∞, 0] defined by φ(A) �= −(detA)1/n.

xxxvii) φ: Pn �→ (0,∞) defined by φ(A) �= log detBA−1B∗, where B ∈ F
m×n and

rankB = m.

xxxviii) φ: Pn �→ R defined by φ(A) �= −log detA.

xxxix) φ: Pn �→ (0,∞) defined by φ(A) �= detA−1.

xl) φ: Pn �→ R defined by φ(A) �= log(detAk/detA), where k ∈ {1, . . . , n−1}
and Ak is the leading k × k principal submatrix of A.

xli) φ: Pn �→ R defined by φ(A) �= − detA/detA[n;n].

xlii) φ: Nn ×Nm �→ −Nnm defined by φ(A,B) �= −Ar1⊗Br2, where r1, r2 ∈
[0, 1] satisfy r1 + r2 ≤ 1.

xliii) φ: Pn ×Nm �→ Nnm defined by φ(A,B) �= A−r⊗B1+r, where r ∈ [0, 1].

xliv) φ: Nn×Nn �→ −Nn defined by φ(A,B) �= −Ar1◦Br2, where r1, r2 ∈ [0, 1]
satisfy r1 + r2 ≤ 1.

xlv) φ: Hn �→ R defined by φ(A) �=
∑k
i=1λi(A), where k ∈ {1, . . . , n}.
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xlvi) φ: Hn �→ R defined by φ(A) �= −∑n
i=kλi(A), where k ∈ {1, . . . , n}.

Proof. Statements i) and iii) are proved in [43] and [197, p. 123].

Let α ∈ [0, 1] for the remainder of the proof.

To prove ii) directly, let A1, A2 ∈ Hn. Since

α(1 − α) =
(
α− α2

)1/2[
(1− α)− (1 − α)2

]1/2
,

it follows that

0 ≤
[(
α− α2

)1/2
A1−

[
(1 − α)− (1− α)2

]1/2
A2

]2
=
(
α− α2

)
A2

1 +
[
(1 − α)− (1− α)2

]
A2

2 − α(1 − α)(A1A2 +A2A1).

Hence,
[αA1 + (1 − α)A2]2≤ αA2

1 + (1− α)A2
2,

which shows that φ(A) = A2 is convex.

To prove iv) directly, let A1, A2 ∈ Pn. Then,
[
A−1

1 I
I A1

]
and

[
A−1

2 I
I A2

]
are

positive semidefinite, and thus

α

[
A−1

1 I

I A1

]
+ (1− α)

[
A−1

2 I

I A2

]

=
[
αA−1

1 + (1 − α)A−1
2 I

I αA1 + (1− α)A2

]

is positive semidefinite. It now follows from Proposition 8.2.4 that [αA1 + (1 −
α)A2]−1 ≤ αA−1

1 + (1 − α)A−1
2 , which shows that φ(A) = A−1 is convex.

To prove v) directly, note that φ(A) = A−1/2 = φ2[φ1(A)], where φ1(A) �= A1/2

and φ2(B) �= B−1. It follows from vii) that φ1 is concave, while it follows from
iv) that φ2 is convex. Furthermore, x) of Proposition 8.6.13 implies that φ2 is
nonincreasing. It thus follows from ii) of Lemma 8.6.16 that φ(A) = A−1/2 is
convex.

To prove vi), let A ∈ Pn and note that φ(A) = −Ar = φ2[φ1(A)], where
φ1(A) �= A−r and φ2(B) �= −B−1. It follows from iii) that φ1 is convex, while it
follows from iv) that φ2 is concave. Furthermore, x) of Proposition 8.6.13 implies
that φ2 is nondecreasing. It thus follows from iv) of Lemma 8.6.16 that φ(A) = Ar

is convex on Pn. Continuity implies that φ(A) = Ar is convex on Nn.

To prove vii) directly, let A1, A2 ∈ Nn. Then,

0 ≤ α(1 − α)
(
A

1/2
1 −A1/2

2

)2
,

which is equivalent to[
αA

1/2
1 + (1− α)A1/2

2

]2
≤ αA1 + (1 − α)A2.
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Using viii) of Proposition 8.6.13 yields

αA
1/2
1 + (1− α)A1/2

2 ≤ [αA1 + (1− α)A2]1/2.

Finally, multiplying by −1 shows that φ(A) = −A1/2 is convex.

The proof of viii) is immediate. Statements ix), x), and xi) follow from i),
iii), and vi), respectively.

To prove xii), note that φ(A) = −(BA−rB∗)−p = φ2[φ1(A)], where φ1(A) =
−BA−rB∗ and φ2(C) = C−p. Statement x) implies that φ1 is concave, while iii)
implies that φ2 is convex. Furthermore, ix) of Proposition 8.6.13 implies that φ2 is
nonincreasing. It thus follows from ii) of Lemma 8.6.16 that φ(A) = −(BA−rB∗)−p

is convex.

To prove xiii), let A1, A2 ∈ Fn×m, and let B ∈ Nm. Then,

0 ≤ α(1− α)(A1−A2)B(A1−A2)∗

= αA1BA
∗
1 + (1− α)A2BA

∗
2 − [αA1 + (1− α)A2]B[αA1 + (1 − α)A2]∗.

Thus,

[αA1 + (1− α)A2]B[αA1 + (1− α)A2]∗ ≤ αA1BA
∗
1 + (1− α)A2BA

∗
2,

which shows that φ(A) = ABA∗ is convex.

To prove xiv), let A1, A2 ∈ Pn and B1, B2 ∈ Fm×n. Then, it follows from
Proposition 8.2.4 that

[
B1A

−1
1 B

∗
1 B1

B∗
1 A1

]
and

[
B2A

−1
2 B

∗
2 B2

B∗
2 A2

]
are positive semidefinite,

and thus

α

[
B1A

−1
1 B

∗
1 B1

B∗
1 A1

]
+ (1− α)

[
B2A

−1
2 B

∗
2 B2

B∗
2 A2

]

=

[
αB1A

−1
1 B

∗
1 + (1− α)B2A

−1
2 B

∗
2 αB1 + (1 − α)B2

αB∗
1 + (1 − α)B∗

2 αA1 + (1− α)A2

]

is positive semidefinite. It thus follows from Proposition 8.2.4 that

[αB1 + (1− α)B2][αA1 + (1− α)A2]−1[αB1 + (1− α)B2]∗

≤ αB1A
−1
1 B

∗
1 + (1− α)B2A

−1
2 B

∗
2 ,

which shows that φ(A,B) = BA−1B∗ is convex.

Result xv) is given in [978].

Result xvi) follows from Fact 8.20.18.

To prove xvii), let A �=
[
A11 A12
A∗

12 A22

]
∈ Pn+m and B �=

[
B11 B12
B12 B22

] ∈ Pn+m. Then,
it follows from xiv) with A1, B1, A2, B2 replaced by A22, A12, B22, B12, respectively,
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that
[αA12 + (1− α)B12][αA22 + (1− α)B22]−1[αA12 + (1− α)B12]∗

≤ αA12A
−1
22A

∗
12 + (1− α)B12B

−1
22B

∗
12.

Hence,

−[αA22+(1 − α)B22]|[αA+ (1 − α)B]

= [αA12 + (1− α)B12][αA22 + (1− α)B22]−1[αA12 + (1 − α)B12]∗

− [αA11 + (1− α)B11]

≤ α(A12A
−1
22A

∗
12 −A11

)
+ (1− α)(B12B

−1
22B

∗
12 −B11)

= α(−A22|A) + (1− α)(−B22|B),

which shows that φ(A) �= −A22|A is convex. By continuity, the result holds for
A ∈ Nn+m.

To prove xviii), note that φ(A) =(A22|A)−1 = φ2[φ1(A)], where φ1(A) = A22|A
and φ2(B) = B−1. It follows from xv) that φ1 is concave, while it follows from
iv) that φ2 is convex. Furthermore, x) of Proposition 8.6.13 implies that φ2 is
nonincreasing. It thus follows from Lemma 8.6.16 that φ(A) �=(A22|A)−1 is convex.

Result xix) is given in [239, p. 106].

Result xx) is given in by Theorem 9 of [905].

To prove xxi), note that φ(A) = −(trA−r)−p = φ2[φ1(A)], where φ1(A) =
trA−r and φ2(B) = −B−p. Statement iii) implies that φ1 is convex and that φ2 is
concave. Furthermore, ix) of Proposition 8.6.13 implies that φ2 is nondecreasing.
It thus follows from iv) of Lemma 8.6.16 that φ(A) = −(trA−r)−p is convex.

Results xxii) and xxiii) are proved in [286].

Results xxiv)–xxviii) are given by Corollary 1.1, Theorem 1, Corollary 2.1,
Theorem 2, and Theorem 8, respectively, of [286]. A proof of xxiv) in the case
p = 1− r is given in [197, p. 273].

Result xxix) is proved in [197, p. 274] and [286].

Result xxx) is given in [201, p. 113].

Result xxxi) is given in [197, p. 123], [201, p. 113], and [529].

To prove xxxii), note that φ(A) = − log trAr = φ2[φ1(A)], where φ1(A) =
trAr and φ2(x) = − log x. Statement vi) implies that φ1 is concave. Furthermore,
φ2 is convex and nonincreasing. It thus follows from ii) of Lemma 8.6.16 that
φ(A) = − log trAr is convex.

Result xxxiii) is given in [1024].
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Result xxxiv) is given in [197, p. 275].

Result xxxv) is given in [54].

To prove xxxvi), let A1, A2 ∈ Nn. From Corollary 8.4.15 it follows that
(detA1)1/n + (detA2)1/n ≤ [det(A1 + A2)]1/n. Replacing A1 and A2 by αA1 and
(1 − α)A2, respectively, and multiplying by −1 shows that φ(A) = −(detA)1/n is
convex.

Result xxxvii) is proved in [1024].

Result xxxviii) is a special case of result xxxvii). This result is due to Fan.
See [352] or [353, p. 679]. To prove xxxviii), note that φ(A) = −nlog

[
(detA)1/n

]
=

φ2[φ1(A)], where φ1(A) = (detA)1/n and φ2(x) = −nlog x. It follows from xix) that
φ1 is concave. Since φ2 is nonincreasing and convex, it follows from ii) of Lemma
8.6.16 that φ(A) = − log detA is convex.

To prove xxxix), note that φ(A) = detA−1 = φ2[φ1(A)], where φ1(A) =
log detA−1 and φ2(x) = ex. It follows from xx) that φ1 is convex. Since φ2 is
nondecreasing and convex, it follows from i) of Lemma 8.6.16 that φ(A) = detA−1

is convex.

Results xl) and xli) are given in [352] and [353, pp. 684, 685].

Next, xlii) is given in [197, p. 273], [201, p. 114], and [1485, p. 9]. Statement
xliii) is given in [201, p. 114]. Statement xliv) is given in [1485, p. 9].

Finally, xlv) is given in [971, p. 478]. Statement xlvi) follows immediately
from xlv).

The following result is a corollary of xv) of Proposition 8.6.17 for the case
α = 1/2. Versions of this result appear in [290, 658, 896, 922] and [1098, p. 152].

Corollary 8.6.18. Let A �=
[
A11 A12
A∗

12 A22

]
∈ Fn+m and B �=

[
B11 B12
B∗

12 B22

]
∈ Fn+m,

and assume that A and B are positive semidefinite. Then,

A11|A+B11|B ≤ (A11 +B11)|(A +B).

The following corollary of xlv) and xlvi) of Proposition 8.6.17 gives a strong
majorization condition for the eigenvalues of a pair of Hermitian matrices.

Corollary 8.6.19. Let A,B ∈ Hn. Then, for all k = 1, . . . , n,
k∑
i=1

λi(A) +
k∑
i=1

λn−k+i(B)] ≤
k∑
i=1

λi(A+B) ≤
k∑
i=1

[λi(A) + λi(B)] (8.6.12)
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with equality for k = n. Furthermore, for all k = 1, . . . , n,
n∑
i=k

[λi(A) + λi(B)] ≤
n∑
i=k

λi(A+B) (8.6.13)

with equality for k = 1.

Proof. The lower bound in (8.6.12) is given in [1177, p. 116]. See also [197,
p. 69], [320], [711, p. 201], or [971, p. 478].

Equality in Corollary 8.6.19 is discussed in [320].

8.7 Facts on Range and Rank

Fact 8.7.1. Let A,B ∈ F
n×n, and assume that A and B are positive semidef-

inite. Then, there exists α > 0 such that A ≤ αB if and only if R(A) ⊆ R(B). In
this case, rankA ≤ rankB. (Proof: Use Theorem 8.6.2 and Corollary 8.6.11.)

Fact 8.7.2. Let A,B ∈ Fn×n. Then,

R(A) + R(B) = R[(AA∗ +BB∗)1/2].

(Proof: The result follows from Fact 2.11.1 and Theorem 2.4.3.) (Remark: See
[40].)

Fact 8.7.3. Let A,B ∈ Fn×n, and assume that A is positive semidefinite and
B is either positive semidefinite or skew Hermitian. Then, the following identities
hold:

i) R(A +B) = R(A) + R(B).

ii) N(A +B) = N(A) ∩N(B).

(Proof: Use [(N(A) ∩N(B)]⊥ = R(A) + R(B).)

Fact 8.7.4. Let A,B ∈ Fn×n, and assume that A and B are positive semidefi-
nite. Then, (A+B)(A+B)+ is the projector onto R(A)+R(B) = span[R(A)∪R(B)].
(Proof: Use Fact 2.9.13 and Fact 8.7.3.) (Remark: See Fact 6.4.45.)

Fact 8.7.5. Let A ∈ Fn×n, and assume that A+A∗ ≥ 0. Then, the following
identities hold:

i) N(A) = N(A +A∗) ∩N(A−A∗).

ii) R(A) = R(A+A∗) + R(A−A∗).

iii) rankA = rank
[
A+A∗ A−A∗ ].

Fact 8.7.6. Let A,B ∈ Fn×n, and assume that A and B are positive semidef-
inite. Then,

rank(A+B) = rank
[
A B

]
= rank

[
A
B

]
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and
rank

[
A B
0 A

]
= rankA + rank(A+B).

(Proof: Using Fact 8.7.3,

R
([

A B
])

= R

([
A B

][ A
B

])
= R
(
A2 +B2

)
= R
(
A2
)

+ R
(
B2
)

= R(A) + R(B) = R(A+B).

Alternatively, it follows from Fact 6.5.6 that

rank
[
A B

]
= rank

[
A+B B

]
= rank(A+B) + rank[B − (A+B)(A +B)+B].

Next, note that

rank[B − (A+B)(A +B)+B] = rank
(
B1/2
[
I − (A+B)(A+B)+

]
B1/2

)
≤ rank

(
B1/2
[
I −BB+

]
B1/2

)
= 0.

For the second result use Theorem 8.3.4 to simultaneously diagonalize A and B.)

Fact 8.7.7. Let A ∈ F
n×n, and let S ⊆ {1, . . . , n}. If A is either positive

semidefinite or an irreducible, singular M-matrix, then the following statements
hold:

i) If α ⊂ {1, . . . , n}, then

rankA ≤ rankA(α) + rankA(α∼).

ii) If α, β ⊆ {1, . . . , n}, then

rankA(α∪β) ≤ rankA(α) + rankA(β) − rankA(α∩β).

iii) If 1 ≤ k ≤ n− 1, then

k
∑

{α: card(α)=k+1}
detA(α) ≤ (n− k)

∑
{α: card(α)=k}

detA(α).

If, in addition, A is either positive definite, a nonsingular M-matrix, or totally
positive, then all three inclusions hold as identities. (Proof: See [938].) (Remark:
See Fact 8.13.36.) (Remark: Totally positive means that every subdeterminant of
A is positive. See Fact 11.18.23.)

8.8 Facts on Structured Positive-Semidefinite Matrices

Fact 8.8.1. Let φ: R �→ C, and assume that, for all x1, . . . , xn ∈ R, the matrix
A ∈ Cn×n, where A(i,j)

�= φ(xi − xj), is positive semidefinite. (The function φ is
positive semidefinite.) Then, the following statements hold:

i) For all x1, x2 ∈ R, it follows that

|φ(x1)− φ(x2)|2 ≤ 2φ(0)Re[φ(0)− φ(x1 − x2)].
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ii) The function ψ : R �→ C, where, for all x ∈ R, ψ(x) �= φ(x), is positive
semidefinite.

iii) For all α ∈ R, the function ψ : R �→ C, where, for all x ∈ R, ψ(x) �= φ(αx),
is positive semidefinite.

iv) The function ψ : R �→ C, where, for all x ∈ R, ψ(x) �= |φ(x)|, is positive
semidefinite.

v) The function ψ : R �→ C, where, for all x ∈ R, ψ(x) �= Reφ(x), is positive
semidefinite.

vi) If φ1: R �→ C and φ2 : R �→ C are positive semidefinite, then φ3 : R �→ C,

where, for all x ∈ R, φ3(x)
�= φ1(x)φ2(x), is positive semidefinite.

vii) If φ1: R �→ C and φ2 : R �→ C are positive semidefinite and α1, α2 are
positive numbers, then φ3 : R �→ C, where, for all x ∈ R, φ3(x)

�= α1φ1(x)+
α2φ2(x), is positive semidefinite.

viii) Let ψ : R �→ C, for all x, y ∈ R, define K: R × R �→ C by K(x, y) �=
φ(x − y), and assume that K is bounded and continuous. Then, ψ is
positive semidefinite if and only if, for every continuous integrable function
f : R �→ C, it follows that∫

R2
K(x, y)f(x)f(y) dxdy ≥ 0.

(Proof: See [201, pp. 141–144].) (Remark: The function K is a kernel function
associated with a reproducing kernel space. See [546] for extensions to vector ar-
guments. For applications, see [1175] and Fact 8.8.2.)

Fact 8.8.2. Let a1, . . . , an ∈ R, and define A ∈ Cn×n by either of the following
expressions:

i) A(i,j)
�= 1

1+j(ai−aj)
.

ii) A(i,j)
�= 1

1−j(ai−aj)
.

iii) A(i,j)
�= 1

1+(ai−aj)2
.

iv) A(i,j)
�= 1

1+|ai−aj | .

v) A(i,j)
�= ej(ai−aj).

vi) A(i,j)
�= cos(ai − aj).

vii) A(i,j)
�= sin[(ai−aj)]

ai−aj
.

viii) A(i,j)
�= ai−aj

sinh[(ai−aj)]
.

ix) A(i,j)
�= sinh p(ai−aj)

sinh(ai−aj)
, where p ∈ (0, 1).

x) A(i,j)
�= tanh[(ai−aj)]

ai−aj
.
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xi) A(i,j)
�= sinh[(ai−aj)]

(ai−aj)[cosh(ai−aj)+p]
, where p ∈ (−1, 1].

xii) A(i,j)
�= 1

cosh(ai−aj)+p
, where p ∈ (−1, 1].

xiii) A(i,j)
�= cosh p(ai−aj)

cosh(ai−aj)
, where p ∈ [−1, 1].

xiv) A(i,j)
�= e−(ai−aj)

2
.

xv) A(i,j)
�= e−|ai−aj |p, where p ∈ [0, 2].

xvi) A(i,j)
�= 1

1+|ai−aj | .

xvii) A(i,j)
�= 1+p(ai−aj)

2

1+q(ai−aj)2
, where 0 ≤ p ≤ q.

xviii) A(i,j)
�= tr eB+j(ai−aj)C, where B,C ∈ Cn×n are Hermitian and commute.

Then, A is positive semidefinite. Finally, if, α is a nonnegative number and A is
defined by either ix), x), xi), xiii), xvi), or xvii), then A◦α is positive semidefinite.
(Proof: See [201, pp. 141–144, 153, 177, 188], [216], [422, p. 90], and [709, pp.
400, 401, 456, 457, 462, 463].) (Remark: In each case, A is associated with a
positive-semidefinite function. See Fact 8.8.1.) (Remark: xv) is related to the
Bessis-Moussa-Villani conjecture. See Fact 8.12.30 and Fact 8.12.31.) (Problem:
In each case, determine rankA and determine when A is positive definite.)

Fact 8.8.3. Let a1, . . . , an be positive numbers, and define A ∈ Rn×n by either
of the following expressions:

i) A(i,j)
�= min{ai, aj}.

ii) A(i,j)
�= 1

max{ai,aj} .

iii) A(i,j)
�= ai

aj
, where a1 ≤ · · · ≤ an.

iv) A(i,j)
�=

ap
i −ap

j

ai−aj
, where p ∈ [0, 1].

v) A(i,j)
�=

ap
i +ap

j

ai+aj
, where p ∈ [−1, 1].

vi) A(i,j)
�= log ai−log aj

ai−aj
.

Then, A is positive semidefinite. If, in addition, α is a positive number, then A◦α

is positive semidefinite. (Proof: See [199], [201, p. 153, 178, 189], and [422, p. 90].)
(Remark: The matrix A in iii) is the Schur product of the matrices defined in i)
and ii).)

Fact 8.8.4. Let a1 < · · · < an be positive numbers, and define A ∈ Rn×n by
A(i,j)

�= min{ai, aj}. Then, A is positive definite,

detA =
n∏
i=1

(ai − ai−1),
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and, for all x ∈ Rn,

xTA−1x =
n∑
i=1

[x(i) − x(i−1)]2

ai − ai−1
,

where a0
�= 0 and x0

�= 0. (Remark: The matrix A is a covariance matrix arising
in the theory of Brownian motion. See [673, p. 132] and [1454, p. 50].)

Fact 8.8.5. Define A ∈ Rn×n by either of the following expressions:

i) A(i,j)
�=
(
i+j
i

)
.

ii) A(i,j)
�= (i+ j)!.

iii) A(i,j)
�= min{i, j}.

iv) A(i,j)
�= gcd{i, j}.

v) A(i,j)
�= i

j .

Then, A is positive semidefinite. If, in addition, α is a nonnegative number, then
A◦α is positive semidefinite. (Remark: Fact 8.21.2 guarantees the weaker result
that A◦α is positive semidefinite for all α ∈ [0, n − 2].) (Remark: i) is the Pascal
matrix. See [5, 199, 448]. The fact that A is positive semidefinite follows from the
identity (

i+ j

i

)
=

min{i,j}∑
k=0

(
i

k

)(
j

k

)
.)

(Remark: The matrix defined in v), which is a special case of iii) of Fact 8.8.3, is the
Lehmer matrix.) (Remark: The determinant of A defined in iv) can be expressed
in terms of the Euler totient function. See [66, 253].)

Fact 8.8.6. Let a1, . . . , an ≥ 0 and p ∈ R, assume that either a1, . . . , an are
positive or p is positive, and, for all i, j = 1, . . . , n, define A ∈ Rn×n by

A(i,j)
�= (aiaj)p.

Then, A is positive semidefinite. (Proof: Let a �=
[
a1 · · · an

]T and A
�=

a◦pa◦pT.)

Fact 8.8.7. Let a1, . . . , an > 0, let α > 0, and, for all i, j = 1, . . . , n, define
A ∈ R

n×n by
A(i,j)

�=
1

(ai + aj)α
.

Then, A is positive semidefinite. (Proof: See [199], [201, pp. 24, 25], or [1092].)
(Remark: See Fact 5.11.12.) (Remark: For α = 1, A is a Cauchy matrix. See Fact
3.20.14.)

Fact 8.8.8. Let a1, . . . , an > 0, let r ∈ [−1, 1], and, for all i, j = 1, . . . , n,
define A ∈ R

n×n by

A(i,j)
�=
ari + arj
ai + aj

.

Then, A is positive semidefinite. (Proof: See [1485, p. 74].)
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Fact 8.8.9. Let a1, . . . , an > 0, let q > 0, let p ∈ [−q, q], and, for all i, j =
1, . . . , n, define A ∈ Rn×n by

A(i,j)
�=
api + apj
aqi + aqj

.

Then, A is positive semidefinite. (Proof: Let r = p/q and bi = aqi . Then, A(i,j) =
(bri + brj)/(bi + bj). Now, use Fact 8.8.8. See [979] for the case q ≥ p ≥ 0.) (Remark:
The case q = 1 and p = 0 yields a Cauchy matrix. In the case n = 2, A ≥ 0 yields
Fact 1.10.33.) (Problem: When is A positive definite?)

Fact 8.8.10. Let a1, . . . , an > 0, let p ∈ (−2, 2], and define A ∈ R
n×n by

A(i,j)
�=

1
a2
i + paiaj + a2

j

.

Then, A is positive semidefinite. (Proof: See [204].)

Fact 8.8.11. Let a1, . . . , an > 0, let p ∈ (−1,∞), and define A ∈ Rn×n by

A(i,j)
�=

1
a3
i + p(a2

i aj + aia2
j) + a3

j

.

Then, A is positive semidefinite. (Proof: See [204].)

Fact 8.8.12. Let a1, . . . , an > 0, p ∈ [−1, 1], q ∈ (−2, 2], and, for all i, j =
1, . . . , n, define A ∈ Rn×n by

A(i,j)
�=

api + apj
a2
i + qaiaj + a2

j

.

Then, A is positive semidefinite. (Proof: See [1482] or [1485, p. 76].)

Fact 8.8.13. Let A ∈ Rn×n, assume that A is positive semidefinite, assume
that A(i,i) > 0 for all i = 1, . . . , n, and define B ∈ Rn×n by

B(i,j)
�=

A(i,j)

μα(A(i,i), A(j,j))
,

where, for positive scalars α, x, y,

μα(x, y) �=
[
1
2 (xα + yα)

]1/α
.

Then, B is positive semidefinite. If, in addition, A is positive definite, then B is
positive definite. In particular, letting α ↓ 0, α = 1, and α → ∞, respectively, the
matrices C,D,E ∈ Rn×n defined by

C(i,j)
�=

A(i,j)√
A(i,i)A(j,j)

,

D(i,j)
�=

2A(i,j)

A(i,i) +A(j,j)
,

E(i,j)
�=

A(i,j)

max{A(i,i), A(j,j)}
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are positive semidefinite. Finally, if A is positive definite, then C, D, and E are
positive definite. (Proof: See [1151].) (Remark: The assumption that all of the
diagonal entries of A are positive can be weakened. See [1151].) (Remark: See Fact
1.10.34.) (Problem: Extend this result to Hermitian matrices.)

Fact 8.8.14. Let A ∈ F
n×n, and assume that A is Hermitian, A(i,i) > 0 for

all i = 1, . . . , n, and, for all i, j = 1, . . . , n,

|A(i,j)| < 1
n−1

√
A(i,i)A(j,j).

Then, A is positive definite. (Proof: Note that

x∗Ax =
n−1∑
i=1

n∑
j=i+1

[
x(i)

x(j)

]∗[ 1
n−1A(i,i) A(i,j)

A(i,j)
1
n−1A(j,j)

][
x(i)

x(j)

]
.)

(Remark: This result is due to Roup.)

Fact 8.8.15. Let α, β, γ ∈ [0, π], and define A ∈ R3×3 by

A =

⎡
⎣ 1 cosα cos γ

cosα 1 cosβ
cos γ cosβ 1

⎤
⎦.

Then, A is positive semidefinite if and only if the following conditions are satisfied:

i) α ≤ β + γ.

ii) β ≤ α+ γ.

iii) γ ≤ α+ β.

iv) α+ β + γ ≤ 2π.

Furthermore, A is positive definite if and only if all of these inequalities are strict.
(Proof: See [149].)

Fact 8.8.16. Let λ1, . . . , λn ∈ C, assume that, for all i = 1, . . . , n, Reλi < 0,
and, for all i, j = 1, . . . , n, define A ∈ Cn×n by

A(i,j)
�=

−1
λi + λj

.

Then, A is positive definite. (Proof: Note that A = 2B ◦ (1n×n − C)◦−1, where
B(i,j) = 1

(λi−1)(λj−1)
and C(i,j) = (λi+1)(λj+1)

(λi−1)(λj−1)
. Then, note that B is positive

semidefinite and that (1n×n − C)◦−1 = 1n×n + C + C◦2 + C◦3 + · · · . ) (Remark:
A is the solution of a Lyapunov equation. See Fact 12.21.18 and Fact 12.21.19.)
(Remark: A is a Cauchy matrix. See Fact 3.18.4, Fact 3.20.14, and Fact 3.20.15.)
(Remark: A Cauchy matrix is also a Gram matrix defined in terms of the inner
product of the functions fi(t) = e−λit. See [201, p. 3].)

Fact 8.8.17. Let λ1, . . . , λn ∈ OUD, and let w1, . . . , wn ∈ C. Then, there
exists a holomorphic function φ: OUD �→ OUD such that φ(λi) = wi for all i =
1, . . . , n if and only if A ∈ Cn×n is positive semidefinite, where, for all i, j = 1, . . . , n,
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A(i,j)
�=

1− wiwj
1− λiλj

.

(Proof: See [985].) (Remark: A is a Pick matrix.)

Fact 8.8.18. Let α0, . . . , αn > 0, and define the tridiagonal matrix A ∈ R
n×n

by

A
�=

⎡
⎢⎢⎢⎢⎢⎣

α0 + α1 −α1 0 0 · · · 0
−α1 α1 + α2 −α2 0 · · · 0

0 −α2 α2 + α3 −α3 · · · 0
...

...
...

... · · ·.. ...
0 0 0 0 · · · αn−1 + αn

⎤
⎥⎥⎥⎥⎥⎦.

Then, A is positive definite. (Proof: For k = 2, . . . , n, the k × k leading principal
subdeterminant of A is given by

[∑k
i=0 α

−1
i

]
α0α1 · · ·αk. See [146, p. 115].) (Re-

mark: A is a stiffness matrix arising in structural analysis.) (Remark: See Fact
3.20.8.)

8.9 Facts on Identities and Inequalities for One Matrix

Fact 8.9.1. Let n ≤ 3, let A ∈ Fn×n, and assume that A is positive semidef-
inite. Then, |A| is positive semidefinite. (Proof: See [964].) (Remark: |A| denotes
the matrix whose entries are the absolute values of the entries of A.) (Remark: The
result does not hold for n ≥ 4. Let

A =

⎡
⎢⎢⎢⎢⎣

1 1√
3

0 − 1√
3

1√
3

1 1√
3

0

0 1√
3

0 1√
3

− 1√
3

0 1√
3

1

⎤
⎥⎥⎥⎥⎦.

Then, mspec(A) = {1−√6/3, 1−√6/3, 1+
√

6/3, 1+
√

6/3}ms, whereas mspec(|A|)
= {1, 1, 1−√12/3, 1 +

√
12/3}ms.)

Fact 8.9.2. Let x ∈ Fn. Then,

xx∗ ≤ x∗xI.

Fact 8.9.3. Let x ∈ Fn, assume that x is nonzero, and define A �= x∗xI−xx∗.
Then, A is positive semidefinite, mspec(A) = {x∗x, . . . , x∗x, 0}ms, and rankA =
n− 1.

Fact 8.9.4. Let x, y ∈ Fn, assume that x and y are linearly independent, and
define A �= (x∗x+ y∗y)I − xx∗ − yy∗. Then, A is positive definite. Now, let F = R.
Then,
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mspec(A) = {xTx+ yTy, . . . , xTx+ yTy,

1
2 (xTx+ yTy) +

√
1
4 (xTx− yTy)2 + (xTy)2,

1
2 (xTx+ yTy)−

√
1
4 (xTx− yTy)2 + (xTy)2}ms.

(Proof: To show that A is positive definite, write A = B+C, where B �= x∗xI−xx∗
and C �= y∗yI − yy∗. Then, using Fact 8.9.3 it follows that N(B) = span {x} and
N(C) = span {y}. Now, it follows from Fact 8.7.3 that N(A) = N(B)∩N(C) = {0}.
Therefore, A is nonsingular and thus positive definite. The expression for mspec(A)
follows from Fact 4.9.16.)

Fact 8.9.5. Let x1, . . . , xn ∈ R
3, assume that span {x1, . . . , xn} = R

3, and
define A �=

∑n
i=1(x

T
i xiI − xixT

i ). Then, A is positive definite. Furthermore,

λ1(A) < λ2(A) + λ3(A)

and
d1(A) < d2(A) + d3(A).

(Proof: Suppose that d1(A) = A(1,1). Then, d2(A)+d3(A)−d1(A) = 2
∑n
i=1 x

2
i(3) >

0. Now, let S ∈ R3×3 be such that SAST =
∑n

i=1(x̂
T
i x̂iI− x̂ix̂T

i ) is diagonal, where,
for i = 1, . . . , n, x̂i

�= Sxi. Then, for i = 1, 2, 3, di(A) = λi(A).) (Remark: A is the
inertia matrix for a rigid body consisting of n discrete particles. For a homogeneous
continuum body B whose density is ρ, the inertia matrix is given by

I = ρ

∫ ∫∫
B

(rTrI − rrT) dxdydz,

where r �=
[
x
y
z

]
.) (Remark: The eigenvalues and diagonal entries of A represent the

lengths of the sides of triangles. See Fact 1.11.17 and [1069, p. 220].)

Fact 8.9.6. Let A ∈ F2×2, assume that A is positive semidefinite and nonzero,
and define B ∈ F2×2 by

B
�=
(
trA+ 2

√
detA

)−1/2(
A+
√

detAI
)
.

Then, B = A1/2. (Proof: See [629, pp. 84, 266, 267].)

Fact 8.9.7. Let A ∈ Fn×n, and assume that A is Hermitian. Then,

rankA = ν−(A) + ν+(A)

and
def A = ν0(A).

Fact 8.9.8. Let A ∈ Fn×n, assume that A is positive semidefinite, and assume
there exists i ∈ {1, . . . , n} such that A(i,i) = 0. Then, rowi(A) = 0 and coli(A) = 0.

Fact 8.9.9. Let A ∈ Fn×n, and assume that A is positive semidefinite. Then,
A(i,i) ≥ 0 for all i = 1, . . . , n, and |A(i,j)|2 ≤ A(i,i)A(j,j) for all i, j = 1, . . . , n.

Fact 8.9.10. Let A ∈ F
n×n. Then, A ≥ 0 if and only if A ≥ −A.
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Fact 8.9.11. Let A ∈ Fn×n, and assume that A is Hermitian. Then, A2 ≥ 0.

Fact 8.9.12. Let A ∈ Fn×n, and assume that A is skew Hermitian. Then,
A2 ≤ 0.

Fact 8.9.13. Let A ∈ F
n×n, and let α > 0. Then,

A2 +A2∗ ≤ αAA∗ + 1
αA

∗A.

Equality holds if and only if αA = A∗.

Fact 8.9.14. Let A ∈ Fn×n. Then,

(A−A∗)2 ≤ 0 ≤ (A+A∗)2 ≤ 2(AA∗ +A∗A).

Fact 8.9.15. Let A ∈ Fn×n, and let α > 0. Then,

A+A∗ ≤ αI + α−1AA∗.

Equality holds if and only if A = αI.

Fact 8.9.16. Let A ∈ F
n×n, and assume that A is positive definite. Then,

2I ≤ A+A−1.

Equality holds if and only if A = I. Furthermore,

2n ≤ trA+ trA−1.

Fact 8.9.17. Let A ∈ Fn×n, and assume that A is positive definite. Then,(
11×nA−11n×1

)−1
1n×n ≤ A.

(Proof: Set B = 1n×n in Fact 8.21.14. See [1492].)

Fact 8.9.18. Let A ∈ Fn×n, and assume that A is positive definite. Then,[
A I
I A−1

]
is positive semidefinite.

Fact 8.9.19. Let A ∈ Fn×n, and assume that A is Hermitian. Then, A2 ≤ A
if and only if 0 ≤ A ≤ I.

Fact 8.9.20. Let A ∈ Fn×n, and assume that A is Hermitian. Then, αI+A ≥
0 if and only if α ≥ −λmin(A). Furthermore,

A2 +A+ 1
4I ≥ 0.

Fact 8.9.21. Let A ∈ Fn×m. Then, AA∗ ≤ In if and only if A∗A ≤ Im.

Fact 8.9.22. Let A ∈ Fn×n, and assume that either AA∗ ≤ A∗A or A∗A ≤ AA∗.
Then, A is normal. (Proof: Use ii) of Corollary 8.4.10.)

Fact 8.9.23. Let A ∈ Fn×n, and assume that A is a projector. Then,

0 ≤ A ≤ I.
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Fact 8.9.24. Let A ∈ Fn×n, and assume that A is nonsingular. Then,〈
A−1
〉

= 〈A∗〉−1.

Fact 8.9.25. Let A ∈ Fn×m, and assume that A∗A is nonsingular. Then,

〈A∗〉 = A〈A〉−1/2A∗.

Fact 8.9.26. Let A ∈ Fn×n. Then, A is unitary if and only if there exists a
nonsingular matrix B ∈ F

n×n such that

A = 〈B∗〉−1/2B.

If, in addition, A is real, then detB = sign(detA). (Proof: For necessity, setB = A.)
(Remark: See Fact 3.11.10.)

Fact 8.9.27. Let A ∈ Fn×n. Then, A is normal if and only if 〈A〉 = 〈A∗〉.
(Remark: See Fact 3.7.12.)

Fact 8.9.28. Let A ∈ Fn×n. Then,

−〈A〉 − 〈A∗〉 ≤ A+A∗ ≤ 〈A〉 + 〈A∗〉.
(Proof: See [886].)

Fact 8.9.29. Let A ∈ Fn×n, assume that A is normal, and let α, β ∈ (0,∞).
Then, −α〈A〉 − β〈A∗〉 ≤ 〈αA+ βA∗〉 ≤ α〈A〉 + β〈A∗〉.
In particular,

−〈A〉 − 〈A∗〉 ≤ 〈A+A∗〉 ≤ 〈A〉+ 〈A∗〉.
(Proof: See [886, 1494].) (Remark: See Fact 8.11.11.)

Fact 8.9.30. Let A ∈ Fn×n. The following statements hold:

i) If A ∈ Fn×n is positive definite, then I+A is nonsingular and the matrices
I −B and I +B are positive definite, where B �= (I +A)−1(I −A).

ii) If I + A is nonsingular and the matrices I − B and I + B are positive
definite, where B �= (I +A)−1(I −A), then A is positive definite.

(Proof: See [463].) (Remark: For additional results on the Cayley transform, see
Fact 3.11.28, Fact 3.11.29, Fact 3.11.30, Fact 3.19.12, and Fact 11.21.8.)

Fact 8.9.31. Let A ∈ Fn×n, and assume that 1
2j(A −A∗) is positive definite.

Then,
B

�=
[

1
2(A+A∗)

]1/2
A−1A∗[1

2(A+A∗)
]−1/2

is unitary. (Proof: See [466].) (Remark: A is strictly dissipative if 1
2j (A −A∗) is

negative definite. A is strictly dissipative if and only if −jA is dissipative. See
[464, 465].) (Remark: A−1A∗ is similar to a unitary matrix. See Fact 3.11.4.)
(Remark: See Fact 8.13.11 and Fact 8.17.12.)
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Fact 8.9.32. Let A ∈ Rn×n, assume that A is positive definite, assume that
A ≤ I, and define (Bk)∞k=0 by B0

�= 0 and

Bk+1
�= Bk + 1

2

(
A−B2

k

)
.

Then,
lim
k→∞

Bk = A1/2.

(Proof: See [170, p. 181].) (Remark: See Fact 5.15.21.)

Fact 8.9.33. Let A ∈ Rn×n, assume that A is nonsingular, and define (Bk)∞k=0

by B0
�= A and

Bk+1
�= 1

2

(
Bk +B−T

k

)
.

Then,
lim
k→∞

Bk =
(
AAT

)−1/2
A.

(Remark: The limit is unitary. See Fact 8.9.26. See [144, p. 224].)

Fact 8.9.34. Let a, b ∈ R, and define the symmetric, Toeplitz matrix A ∈
Rn×n by

A
�= aIn + b1n×n.

Then, A is positive definite if and only if a+nb > 0 and a > 0. (Remark: See Fact
2.13.12 and Fact 4.10.15.)

Fact 8.9.35. Let x1, . . . , xn ∈ Rm, and define

x �= 1
n

n∑
j=1

xj , S �= 1
n

n∑
j=1

(xj − x)(xj − x)T.

Then, for all i = 1, . . . , n,

(xi − x)(xi − x)T ≤ (n− 1)S.

Furthermore, equality holds if and only if all of the elements of {x1, . . . , xn}\{xi}
are equal. (Proof: See [754, 1043, 1332].) (Remark: This result is an extension of
the Laguerre-Samuelson inequality. See Fact 1.15.12.)

Fact 8.9.36. Let x1, . . . , xn ∈ Fn, and define A ∈ Fn×n by A(i,j)
�= x∗ixj

for all i, j = 1, . . . , n, and B �=
[
x1 · · · xn

]
. Then, A = B∗B. Consequently,

A is positive semidefinite and rankA = rankB. Conversely, let A ∈ Fn×n, and
assume that A is positive semidefinite. Then, there exist x1, . . . , xn ∈ Fn such that
A = B∗B, where B =

[
x1 · · · xn

]
. (Proof: The converse is an immediate

consequence of Corollary 5.4.5.) (Remark: A is the Gram matrix of x1, . . . , xn.)

Fact 8.9.37. Let A ∈ Fn×n, and assume that A is positive semidefinite. Then,
there exists a matrix B ∈ F

n×n such that B is lower triangular, B has nonnegative
diagonal entries, and A = BB∗. If, in addition, A is positive definite, then B is
unique and has positive diagonal entries. (Remark: This result is the Cholesky
decomposition.)
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Fact 8.9.38. Let A ∈ Fn×m, and assume that rankA = m. Then,

0 ≤ A(A∗A)−1A∗ ≤ I.

Fact 8.9.39. Let A ∈ Fn×m. Then, I −A∗A is positive definite if and only if
I −AA∗ is positive definite. In this case,

(I −A∗A)−1 = I +A∗(I −AA∗)−1A.

Fact 8.9.40. Let A ∈ Fn×m, let α be a positive number, and define Aα
�=

(αI + A∗A)−1A∗. Then, the following statements are equivalent:

i) AAα = AαA.

ii) AA∗ = A∗A.

Furthermore, the following statements are equivalent:

iii) AαA
∗ = A∗Aα.

iv) AA∗A2 = A2A∗A.

(Proof: See [1299].) (Remark: Aα is a regularized Tikhonov inverse.)

Fact 8.9.41. Let A ∈ Fn×n, and assume that A is positive definite. Then,

A−1 ≤ α+ β

αβ
I − 1

αβ
A ≤ (α+ β)2

4αβ
A−1,

where α �= λmax(A) and β �= λmin(A). (Proof: See [972].)

Fact 8.9.42. Let A ∈ Fn×n, and assume that A is positive semidefinite. Then,
the following statements hold:

i) If α ∈ [0, 1], then
Aα ≤ αA+ (1− α)I.

ii) If α ∈ [0, 1] and A is positive definite, then

[αA−1 + (1− α)I]−1 ≤ Aα ≤ αA+ (1− α)I.

iii) If α ≥ 1, then
αA + (1− α)I ≤ Aα.

iv) If A is positive definite and either α ≥ 1 or α ≤ 0, then

αA+ (1− α)I ≤ Aα ≤ [αA−1 + (1− α)I]−1.

(Proof: See [530, pp. 122, 123].) (Remark: This result is a special case of the
Young inequality. See Fact 1.9.2 and Fact 8.10.43.) (Remark: See Fact 8.12.26 and
Fact 8.12.27.)

Fact 8.9.43. Let A ∈ Fn×n, and assume that A is positive definite. Then,

I −A−1 ≤ logA ≤ A− I.
Furthermore, if A ≥ I, then logA is positive semidefinite, and, if A > I, then logA
is positive definite. (Proof: See Fact 1.9.22.)
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8.10 Facts on Identities and Inequalities for Two or More
Matrices

Fact 8.10.1. Let {Ai}∞i=1 ⊂Hn and {Bi}∞i=1 ⊂ Hn, assume that, for all i ∈ P,

Ai ≤ Bi, and assume that A �= limi→∞ Ai and B �= limi→∞Bi exist. Then, A ≤ B.

Fact 8.10.2. Let A,B ∈ F
n×n, assume that A and B are positive semidefinite,

and assume that A ≤ B. Then, R(A) ⊆ R(B) and rankA ≤ rankB. Furthermore,
R(A) = R(B) if and only if rankA = rankB.

Fact 8.10.3. Let A,B ∈ Fn×n, and assume that A and B are Hermitian.
Then, the following statements hold:

i) λmin(A) ≤ λmin(B) if and only if λmin(A)I ≤ B.
ii) λmax(A) ≤ λmax(B) if and only if A ≤ λmax(B)I.

Fact 8.10.4. Let A,B ∈ Fn×n, assume that A and B are Hermitian, and
consider the following conditions:

i) A ≤ B.
ii) For all i = 1, . . . , n, λi(A) ≤ λi(B).

iii) There exists a unitary matrix S ∈ Fn×n such that A ≤ SBS∗.

Then, i) =⇒ ii) ⇐⇒ iii). (Remark: i) =⇒ ii) is the monotonicity theorem given
by Theorem 8.4.9.)

Fact 8.10.5. Let A,B ∈ Fn×n, and assume that A and B are positive semidef-
inite. Then, 0 < A ≤ B if and only if sprad

(
AB−1

)
< 1.

Fact 8.10.6. Let A,B ∈ Fn×n, and assume that A and B are positive definite.
Then, (

A−1 +B−1
)−1

= A(A +B)−1B.

Fact 8.10.7. Let A,B ∈ Fn×n, and assume that A and B are positive definite.
Then,

(A+B)−1 ≤ 1
4 (A−1 +B−1).

Equivalently,
A+B ≤ AB−1A+BA−1B.

In both inequalities, equality holds if and only if A = B. (Proof: See [1490, p. 168].)
(Remark: See Fact 1.10.4.)

Fact 8.10.8. Let A,B ∈ Fn×n, and assume that A is positive definite, B is
Hermitian, and A+B is nonsingular. Then,

(A +B)−1 + (A+B)−1B(A+B)−1 ≤ A−1.

If, in addition, B is nonsingular, the inequality is strict. (Proof: This inequality is
equivalent to BA−1B ≥ 0. See [1050].)
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Fact 8.10.9. Let A,B ∈ Fn×n, assume that A and B are positive definite,
and let α ∈ [0, 1]. Then,

β[αA−1 + (1− α)B−1] ≤ [αA+ (1 − α)B]−1,

where
β �= min

μ∈mspec(A−1B)

4μ
(1 + μ)2

.

(Proof: See [1017].) (Remark: This result is a reverse form of a convex inequality.)

Fact 8.10.10. Let A ∈ Fn×m and B ∈ Fm×m, and assume that B is positive
semidefinite. Then, ABA∗ = 0 if and only if AB = 0.

Fact 8.10.11. Let A,B ∈ Fn×n, and assume that A and B are positive
semidefinite. Then, AB is positive semidefinite if and only if AB is normal.

Fact 8.10.12. Let A,B ∈ Fn×n, assume that A and B are Hermitian, and
assume that either i) A and B are positive semidefinite or ii) either A or B is
positive definite. Then, AB is group invertible. (Proof: Use Theorem 8.3.2 and
Theorem 8.3.5.)

Fact 8.10.13. Let A,B ∈ Fn×n, assume that A and B are Hermitian, and
assume that A and AB + BA are (positive semidefinite, positive definite). Then,
B is (positive semidefinite, positive definite). (Proof: See [201, p. 8], [878, p. 120],
or [1430]. Alternatively, the result follows from Corollary 11.9.4.)

Fact 8.10.14. Let A,B,C ∈ Fn×n, assume that A, B, and C are positive
semidefinite, and assume that A = B + C. Then, the following statements are
equivalent:

i) rankA = rankB + rankC.

ii) There exists S ∈ Fm×n such that rankS = m, R(S) ∩ N(A) = {0}, and
either B = AS∗(SAS∗)−1SA or C = AS∗(SAS∗)−1SA.

(Proof: See [285, 331].)

Fact 8.10.15. Let A,B ∈ Fn×n, and assume that A and B are Hermitian and
nonsingular. Then, the following statements hold:

i) If every eigenvalue of AB is positive, then InA = InB.

ii) InA− InB = In(A−B) + In(A−1 −B−1).

iii) If InA = InB and A ≤ B, then B−1 ≤ A−1.

(Proof: See [51, 109, 1047].) (Remark: The identity ii) is due to Styan. See [1047].)
(Remark: An extension to singular A and B is given by Fact 8.20.14.)

Fact 8.10.16. Let A,B ∈ Fn×n, assume that A and B are Hermitian, and
assume that A ≤ B. Then, A(i,i) ≤ B(i,i) for all i = 1, . . . , n.

Fact 8.10.17. Let A,B ∈ F
n×n, assume that A and B are Hermitian, and

assume that A ≤ B. Then, sigA ≤ sigB. (Proof: See [392, p. 148].)
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Fact 8.10.18. Let A,B ∈ Fn×n, assume that A and B are Hermitian, and
assume that 〈A〉 ≤ B. Then, either A ≤ B or −A ≤ B. (Proof: See [1493].)

Fact 8.10.19. Let A,B ∈ Fn×n, and assume that A is positive semidefinite
and B is positive definite. Then, A ≤ B if and only if AB−1A ≤ A.

Fact 8.10.20. Let A,B ∈ Fn×n, assume that A and B are positive semidefi-
nite, and assume that 0 ≤ A ≤ B. Then, there exists a matrix S ∈ Fn×n such that
A = S∗BS and S∗S ≤ I. (Proof: See [447, p. 269].)

Fact 8.10.21. Let A,B,C,D ∈ Fn×n, assume that A,B,C,D are positive
semidefinite, and assume that 0 < D ≤ C and BCB ≤ ADA. Then, B ≤ A.
(Proof: See [84, 300].)

Fact 8.10.22. Let A,B ∈ Fn×n, and assume that A and B are positive defi-
nite. Then, there exists a unitary matrix S ∈ Fn×n such that

〈AB〉 ≤ 1
2S(A2 +B2)S∗.

(Proof: See [90, 209].)

Fact 8.10.23. Let A,B ∈ Fn×n, and assume that A and B are projectors.
Then, ABA ≤ B if and only if AB = BA. (Proof: See [1325].)

Fact 8.10.24. Let A,B ∈ Fn×n, and assume that A is positive definite, 0 ≤
A ≤ I, and B is positive definite. Then,

ABA ≤ (α+ β)2

4αβ
B.

where α �= λmin(B) and β �= λmax(B). (Proof: See [251].) (Remark: This inequality
is related to Fact 1.16.6.)

Fact 8.10.25. Let A,B ∈ Fn×n, and assume that A and B are projectors.
Then,

(A+B)1/2 ≤ A1/2 +B1/2

if and only if AB = BA. (Proof: See [1317, p. 30].)

Fact 8.10.26. Let A,B ∈ F
n×n, assume that A and B are positive semidefi-

nite, and assume that 0 ≤ A ≤ B. Then,(
A+ 1

4A
2
)1/2≤ (B + 1

4B
2
)1/2

.

(Proof: See [1012].)

Fact 8.10.27. Let A ∈ Fn×n, assume that A is positive semidefinite, and let
B ∈ F

l×n. Then, BAB∗ is positive definite if and only if B
(
A+A2

)
B∗ is positive

definite. (Proof: Diagonalize A using a unitary transformation and note that BA1/2

and B
(
A+A2

)1/2 have the same rank.)
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Fact 8.10.28. Let A,B,C ∈ Fn×n, assume that A is positive definite, and
assume that B and C are positive semidefinite. Then,

2tr 〈B1/2C1/2〉 ≤ tr(AB +A−1C).

Furthermore, there exists A such that equality holds if and only if rankB =
rankC = rankB1/2C1/2. (Proof: See [35, 494].) (Remark: A matrix A for which
equality holds is given in [35].) (Remark: Applications to linear systems are given
in [1442].)

Fact 8.10.29. Let A1, . . . , Ak ∈ Fn×n, and assume thatA1, . . . , Ak are positive
definite. Then,

n2

(
k∑
i=1

Ai

)−1

≤
k∑
i=1

A−1
i .

(Remark: This result is an extension of Fact 1.15.37.)

Fact 8.10.30. Let A1, . . . , Ak ∈ Fn×n, assume that A1, . . . , Ak are positive
semidefinite, and let p, q ∈ R satisfy 1 ≤ p ≤ q. Then,(

1
k

k∑
i=1

Api

)1/p
≤
(

1
k

k∑
i=1

Aqi

)1/q
.

(Proof: See [193].)

Fact 8.10.31. Let A,B ∈ Fn×n, assume that A and B are positive definite,
let S ∈ Fn×n be such that SAS∗ = diag(α1, . . . , αn) and SBS∗ = diag(β1, . . . , βn),
and define

Cl
�= S−1diag(min{α1, β1}, . . . ,min{αn, βn})S−∗

and
Cu

�= S−1diag(max{α1, β1}, . . . ,max{αn, βn})S−∗.

Then, Cl and Cu are independent of the choice of S, and

Cl ≤ A ≤ Cu,
Cl ≤ B ≤ Cu.

(Proof: See [900].)

Fact 8.10.32. Let A,B ∈ Hn×n. Then, glb{A,B} exists in Hn with respect
to the ordering “≤” if and only if either A ≤ B or B ≤ A. (Proof: See [784].)
(Remark: Let A = [ 1 0

0 0 ] and B = [ 0 0
0 1 ]. Then, C = 0 is a lower bound for {A,B}.

Furthermore, D =
[
−1

√
2√

2 −1

]
, which has eigenvalues −1−√2 and −1+

√
2, is also a

lower bound for {A,B} but is not comparable with C.)

Fact 8.10.33. Let A,B ∈ Hn×n, and assume that A and B are positive
semidefinite. Then, the following statements hold:

i) {A,B} does not necessarily have a least upper bound in Nn.

ii) If A and B are positive definite, then {A,B} has a greatest lower bound
in Nn if and only if A and B are comparable.
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iii) If A is a projector and 0 ≤ B ≤ I, then {A,B} has a greatest lower bound
in Nn.

iv) If A,B ∈ Nn are projectors, then the greatest lower bound of {A,B} in
Nn is given by

glb{A,B} = 2A(A+B)+B,

which is the projector onto R(A) ∩ R(B).

v) glb{A,B} exists in Nn if and only if glb{A, glb{AA+, BB+}} and
glb{B, glb{AA+, BB+}} are comparable. In this case,

glb{A,B} = min{glb{A, glb{AA+, BB+}}, glb{B, glb{AA+, BB+}}}.
vi) glb{A,B} exists if and only if sh(A,B) and sh(B,A) are comparable, where

sh(A,B) �= limα→∞(αB) :A. In this case,

glb{A,B} = min{sh(A,B), sh(B,A)}.

(Proof: To prove i), let A = [ 1 0
0 0 ] and B = [ 0 0

0 1 ] , and suppose that Z is the
least upper bound for A and B. Hence, A ≤ Z ≤ I and B ≤ Z ≤ I, and thus
Z = I. Next, note that X �=

[
4/3 2/3
2/3 4/3

]
satisfies A ≤ X and B ≤ X. However, it

is not true that Z ≤ X, which implies that {A,B} does not have a least upper
bound. See [239, p. 11]. Statement ii) is given in [441, 550, 1021]. Statements iii)
and v) are given in [1021]. Statement iv) is given in [39]. The expression for the
projector onto R(A) ∩R(B) is given in Fact 6.4.41. Statement vi) is given in [50].)
(Remark: The partially ordered cones Hn and Nn with the ordering “≤” are not
lattices.) (Remark: sh(A,B) is the shorted operator, see Fact 8.20.19. However,
the usage here is more general since B need not be a projector. See [50].) (Remark:
An alternative approach to showing that Nn is not a lattice is given in [900].)
(Remark: The cone N is a partially ordered set under the spectral order, see Fact
8.10.35.)

Fact 8.10.34. Let A,B ∈ Fn×n, assume that A and B are positive semidef-
inite, let p be a real number, and assume that either p ∈ [1, 2] or A and B are
positive definite and p ∈ [−1, 0] ∪ [1, 2]. Then,

[ 12 (A+B)]p ≤ 1
2 (Ap +Bp).

(Proof: See [854].)

Fact 8.10.35. Let A,B ∈ Fn×n, assume that A and B are positive semidefi-
nite, and let p, q ∈ R satisfy p ≥ q ≥ 0. Then,[

1
2(A

q +Bq)
]1/q ≤ [12(Ap +Bp)

]1/p
.

Furthermore,
μ(A,B) �= lim

p→∞
[

1
2(A

p +Bp)
]1/p

exists and satisfies
A ≤ μ(A,B), B ≤ μ(A,B).

(Proof: See [171].) (Remark: μ(A,B) is the least upper bound of A and B with
respect to the spectral order. See [54, 795] and Fact 8.19.4.)
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Fact 8.10.36. Let A,B ∈ Fn×n, assume that A and B are positive semidefi-
nite, let p ∈ (1,∞), and let α ∈ [0, 1]. Then,

α1−1/pA+ (1− α)1−1/pB ≤ (Ap +Bp)1/p.

(Proof: See [54].)

Fact 8.10.37. Let A,B,C ∈ Fn×n. Then,

A∗A+B∗B = (B +CA)∗(I +CC∗)−1(B +CA) + (A−C∗B)(I +C∗C)−1(A−C∗B).

(Proof: See [717].) (Remark: See Fact 8.13.29.)

Fact 8.10.38. Let A ∈ Fn×n, let α ∈ R, and assume that either A is nonsin-
gular or α ≥ 1. Then,

(A∗A)α = A∗(AA∗)α−1A.

(Proof: Use the singular value decomposition.) (Remark: This result is given in
[512, 526].)

Fact 8.10.39. Let A,B ∈ Fn×n, let α ∈ R, assume that A and B are positive
semidefinite, and assume that either A and B are positive definite or α ≥ 1. Then,

(AB2A)α = AB(BA2B)α−1BA.

(Proof: Use Fact 8.10.38.)

Fact 8.10.40. Let A,B,C ∈ Fn×n, assume that A is positive semidefinite, B
is positive definite, and B = C∗C, and let α ∈ [0, 1]. Then,

C∗(C−∗AC−1
)α
C ≤ αA+ (1− α)B.

If, in addition, α ∈ (0, 1), then equality holds if and only if A = B. (Proof: See
[995].)

Fact 8.10.41. Let A,B ∈ Fn×n, assume that A is positive semidefinite, and
let p ∈ R. Furthermore, assume that either A and B are nonsingular or p ≥ 1.
Then,

(BAB∗)p = BA1/2(A1/2B∗BA1/2)p−1A1/2B∗.

(Proof: See [526] or [530, p. 129].)

Fact 8.10.42. Let A,B ∈ Fn×n, assume that A and B are positive definite,
and let p ∈ R. Then,

(BAB)p = BA1/2(A1/2B2A1/2)p−1A1/2B.

(Proof: See [524, 674].)

Fact 8.10.43. Let A,B ∈ Fn×n, and assume that A and B are positive
semidefinite. Furthermore, if A is positive definite, then define

A#B �= A1/2
(
A−1/2BA−1/2

)1/2
A1/2,
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whereas, if A is singular, then define

A#B �= lim
ε↓0

(A+ εI)#B.

Then, the following statements hold:

i) A#B is positive semidefinite.

ii) A#A = A.

iii) A#B = B#A.

iv) R(A#B) = R(A) ∩ R(B).

v) If S ∈ Fm×n is right invertible, then (SAS∗)#(SBS∗) ≤ S(A#B)S∗.

vi) If S ∈ Fn×n is nonsingular, then (SAS∗)#(SBS∗) = S(A#B)S∗.

vii) If C,D ∈ Pn, A ≤ C, and B ≤ D, then A#B ≤ C#D.

viii) If C,D ∈ Pn, then

(A#C) + (C#D) ≤ (A+B)#(C +D).

ix) If A ≤ B, then

4A#(B −A) = [A+A#(4B − 3A)]#[−A+A#(4B − 3A)].

x) If α ∈ [0, 1], then
√
α(A#B) ± 1

2

√
1− α(A−B) ≤ 1

2 (A+B).

xi) A#B = max{X ∈ H: [ A X
X B ] is positive semidefinite}.

xii) Let X ∈ Fn×n, and assume that X is Hermitian and[
A X

X B

]
≥ 0.

Then,
−A#B ≤ X ≤ A#B.

Furthermore,
[

A A#B
A#B B

]
and
[

A −A#B
−A#B B

]
are positive semidefinite.

xiii) If S ∈ Fn×n is unitary and A1/2SB1/2 is positive semidefinite, then A#B =
A1/2SB1/2.

Now, assume that A is positive definite. Then, the following statements hold:

xiv) (A#B)A−1(A#B) = B.

xv) For all α ∈ R, A#B = A1−α(Aα−1BA−α)1/2Aα.
xvi) A#B = A

(
A−1B

)1/2= (BA−1)1/2A.

xvii) A#B = (A+B)
[
(A+B)−1A(A +B)−1B

]1/2
.

Now, assume that A and B are positive definite. Then, the following statements
hold:

xviii) A#B is positive definite.
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xix) S �=
(
A−1/2BA−1/2

)1/2
A1/2B−1/2 is unitary, and A#B = A1/2SB1/2.

xx) detA#B =
√

(detA)detB.

xxi) det (A#B)2 = detAB.

xxii) (A#B)−1 = A−1#B−1.

xxiii) Let A0
�= A and B0

�= B, and, for all k ∈ N, define Ak+1
�= 2(A−1

k +B−1
k )−1

and Bk+1
�= 1

2 (Ak +Bk). Then, for all k ∈ N,

Ak ≤ Ak+1 ≤ A#B ≤ Bk+1 ≤ Bk
and

lim
k→∞

Ak = lim
k→∞

Bk = A#B.

xxiv) For all α ∈ (−1, 1),
[

A αA#B
αA#B B

]
is positive definite.

xxv) rank
[

A A#B
A#B B

]
= rank

[
A −A#B

−A#B B

]
= n.

Furthermore, the following statements hold:

xxvi) If n = 2, then

A#B =
√
αβ√

det(α−1A+ β−1B)
(α−1A+ β−1B).

xxvii) If 0 < A ≤ B, then φ: [0,∞) �→ Pn defined by φ(p) �= A−p#Bp is nonde-
creasing.

xxviii) If B is positive definite and A ≤ B, then

A2#B−2 ≤ A#B−1 ≤ I.
xxix) If A and B are positive semidefinite, then

(BA2B)1/2 ≤ B1/2(B1/2AB1/2)1/2B1/2 ≤ B2.

Finally, let X ∈ Hn. Then, the following statements are equivalent:

xxx) [ A X
X B ] is positive semidefinite.

xxxi) XA−1X ≤ B.
xxxii) XB−1X ≤ A.
xxxiii) −A#B ≤ X ≤ A#B.

(Proof: See [45, 486, 583, 877, 1314]. For xiii), xix), and xxvi), see [201, pp. 108, 109,
111]. For xxvi), see [46]. Statement xxvii) implies xxviii), which, in turn, implies
xxix).) (Remark: The square roots in xvi) indicate a semisimple matrix with positive
diagonal entries.) (Remark: A#B is the geometric mean of A and B. A related
mean is defined in [486]. Alternative means and their differences are considered
in [20]. Geometric means for an arbitrary number of positive-definite matrices are
discussed in [57, 809, 1014, 1084].) (Remark: See Fact 12.23.4.) (Remark: Inverse
problems are considered in [41].) (Remark: xxix) interpolates (8.6.6).) (Remark:
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Compare statements xiii) and xix) with Fact 8.11.6.) (Remark: See Fact 10.10.4.)
(Problem: For singular A and B, express A#B in terms of generalized inverses.)

Fact 8.10.44. Let A,B ∈ Fn×n, and assume that A and B are Hermitian.
Then, the following statements are equivalent:

i) A ≤ B.
ii) For all t ≥ 0, I ≤ e−tA#etB.

iii) φ: [0,∞) �→ Pn defined by φ(t) �= e−tA#etB is nondecreasing.

(Proof: See [46].)

Fact 8.10.45. Let A,B ∈ Fn×n, assume that A and B are positive semidefi-
nite, and let α ∈ [0, 1]. Furthermore, if A is positive definite, then define

A#αB
�= A1/2

(
A−1/2BA−1/2

)α
A1/2,

whereas, if A is singular, then define

A#αB
�= lim

ε↓0
(A+ εI)#αB.

Then, the following statements hold:

i) A#αB = B#1−αA.

ii) (A#αB)−1 = A−1#αB
−1.

Fact 8.10.46. Let A,B ∈ F
n×n, assume that A and B are positive definite,

and let α ∈ [0, 1]. Then,[
αA−1 + (1− α)B−1

]−1 ≤ A1/2
(
A−1/2BA−1/2

)1−α
A1/2 ≤ αA+ (1− α)B,

or, equivalently,[
αA−1 + (1− α)B−1

]−1 ≤ A#1−αB ≤ αA+ (1− α)B,

or, equivalently,

[αA+ (1 − α)B]−1 ≤ A−1/2
(
A−1/2BA−1/2

)α−1

A−1/2 ≤ αA−1 + (1− α)B−1.

Consequently,

tr [αA+ (1− α)B]−1≤ tr
[
A−1
(
A−1/2BA−1/2

)α−1
]
≤ tr
[
αA−1 + (1− α)B−1

]
and

2αβ
(α+β)2 (A+B)≤ 2

(
A−1 +B−1

)−1≤ A#B ≤ 1
2 (A+B)≤ (α+β)2

2αβ

(
A−1 +B−1

)−1
,

where
α �= min{λmin(A), λmin(B)}

and
β

�= max{λmax(A), λmax(B)}.
(Remark: The left-hand inequality in the first string of inequalities is the Young
inequality. See [530, p. 122], Fact 1.10.21, and Fact 8.9.42. Setting B = I yields
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Fact 8.9.42. The fourth string of inequalities improves the fact that φ(A) = A−1 is
convex as shown by iv) of Proposition 8.6.17. The last string of inequalities follows
from the fourth string of inequalities with α = 1/2 along with results given in [1283]
and [1490, p. 174].) (Remark: Related inequalities are given by Fact 8.12.26 and
Fact 8.12.27. See also Fact 8.20.18.)

Fact 8.10.47. Let (xi)∞i=1 ⊂ Rn, assume that
∑∞

i=1xi exists, and let (Ai)∞i=1

⊂ Nn be such that Ai ≤ Ai+1 for all i ∈ P and limi→∞ trAi =∞. Then,

lim
k→∞

(trAk)−1
k∑
i=1

Aixi = 0.

If, in addition Ai is positive definite for all i ∈ P and {λmax(Ai)/λmin(Ai)}∞i=1 is
bounded, then

lim
k→∞

A−1
k

k∑
i=1

Aixi = 0.

(Proof: See [33].) (Remark: These identities are matrix versions of the Kronecker
lemma.) (Remark: Extensions are given in [623].)

Fact 8.10.48. Let A,B ∈ Fn×n, assume that A and B are positive definite,
assume that A ≤ B, and let p ≥ 1. Then,

Ap ≤ K(λmin(A), λmin(A), p)Bp ≤
[
λmax(A)
λmin(A)

]p−1

Bp,

where
K(a, b, p) �=

apb− abp
(p− 1)(a− b)

[
(p− 1)(ap − bp)
p(apb− abp)

]p
.

(Proof: See [249, 528] and [530, pp. 193, 194].) (Remark: K(a, b, p) is the Fan
constant.)

Fact 8.10.49. Let A,B ∈ Fn×n, assume that A is positive definite and B is
positive semidefinite, and let p ≥ 1. Then, there exist unitary matrices U, V ∈ Fn×n

such that
1

K(λmin(A),λmin(A),p)U(BAB)pU∗ ≤ BpApBp ≤ K(λmin(A), λmin(A), p)V (BAB)pV ∗,

where K(a, b, p) is the Fan constant defined in Fact 8.10.48.) (Proof: See [249].)
(Remark: See Fact 8.12.20, Fact 8.18.26, and Fact 9.9.17.)

Fact 8.10.50. Let A,B ∈ Fn×n, assume that A is positive definite, B is
positive semidefinite, and B ≤ A, and let p ≥ 1 and r ≥ 1. Then,[

Ar/2
(
A−1/2BpA−1/2

)r
Ar/2
]1/p
≤ Ar.

In particular, 〈
A−1/2BpA1/2

〉2/p
≤ A2.

(Proof: See [53].)
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Fact 8.10.51. Let A,B ∈ Fn×n, and assume that A is positive definite and
B is positive semidefinite. Then, the following statements are equivalent:

i) B ≤ A.
ii) For all p, q, r, t ∈ R such that p ≥ 1, r ≥ 0, t ≥ 0, and q ∈ [1, 2],[

Ar/2
(
At/2BpAt/2

)q
Ar/2
] r+t+1

r+qt+qp ≤ Ar+t+1.

iii) For all p, q, r, τ ∈ R such that p ≥ 1, r ≥ τ , q ≥ 1, and τ ∈ [0, 1],[
Ar/2
(
A−τ/2BpA−τ/2

)q
Ar/2
] r−τ

r−qτ+qp ≤ Ar−τ.
iv) For all p, q, r, τ ∈ R be such that p ≥ 1, r ≥ τ , τ ∈ [0, 1], and q ≥ 1,[

Ar/2
(
A−τ/2BpA−τ/2

)q
Ar/2
] r−τ+1

r−qτ+qp ≤ Ar−τ+1.

In particular, if B ≤ A, p ≥ 1, and r ≥ 1, then[
Ar/2
(
A−1/2BpA−1/2

)r
Ar/2
]r−1

pr ≤ Ar−1.

(Proof: Condition ii) is given in [512], iii) appears in [531], and iv) appears in [512].
See also [513].) (Remark: Setting q = r and τ = 1 in iv) yields Fact 8.10.50.)

Fact 8.10.52. Let A,B ∈ F
n×n, and assume that A and B are positive defi-

nite. Then, the following statements are equivalent:

i) B ≤ A.
ii) There exist r ∈ [0,∞), p ∈ [1,∞), and a nonnegative integer k such that

(k + 1)(r + 1) = p+ r and

Br ≤
(
Br/2ApBr/2

) 1
k+1
.

iii) There exist r ∈ [0,∞), p ∈ [1,∞), and a nonnegative integer k such that
(k + 1)(r + 1) = p+ r and(

Ar/2BpAr/2
) 1

k+1 ≤ Ar.

(Proof: See [914].) (Remark: See Fact 8.19.1.)

Fact 8.10.53. Each of the following functions φ: (0,∞) �→ (0,∞) yields an
increasing function φ: Pn �→ Pn:

i) φ(x) = xp+1/2

x2p+1 , where p ∈ [0, 1/2].

ii) φ(x) = x(1 + x) log(1 + 1/x).

iii) φ(x) = 1
(1+x) log(1+1/x) .

iv) φ(x) = x−1−log x
(log x)2 .

v) φ(x) = x(log x)2

x−1−log x .
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vi) φ(x) = x(x+2) log(x+2)
(x+1)2 .

vii) φ(x) = x(x+1)
(x+2) log(x+2) .

viii) φ(x) = (x2−1) log(1+x)
x2 .

ix) φ(x) = x(x−1)
(x+1) log(x+1) .

x) φ(x) = (x−1)2

(x+1) log x .

xi) φ(x) = p−1
p

(
xp−1
xp−1−1

)
, where p ∈ [−1, 2].

xii) φ(x) = x−1
log x .

xiii) φ(x) =
√
x.

xiv) φ(x) = 2x
x+1 .

xv) φ(x) = x−1
xp−1 , where p ∈ (0, 1].

(Proof: See [534, 1084]. To obtain xii), xiii), and xiv), set p = 1, 1/2,−1, respec-
tively, in xi).)

Fact 8.10.54. Let A,B ∈ Fn×n, and assume that A and B are positive
semidefinite, A ≤ B, and AB = BA. Then, A2 ≤ B2. (Proof: See [110].)

8.11 Facts on Identities and Inequalities for Partitioned
Matrices

Fact 8.11.1. Let A ∈ Fn×n, and assume that A is positive semidefinite. Then,
the following statements hold:

i) [A A
A A ] and

[
A −A
−A A

]
are positive semidefinite.

ii) If
[
α β

β γ

]
∈ F2×2 is positive semidefinite, then

[
αA βA

βA γA

]
is positive semidef-

inite.

iii) If A and
[
α β

β γ

]
are positive definite, then

[
αA βA

βA γA

]
is positive definite.

(Proof: Use Fact 7.4.16.)

Fact 8.11.2. Let A ∈ Fn×n, B ∈ Fn×m, C ∈ Fm×m, assume that
[
A B
B∗ C

]∈
F

(n+m)×(n+m) is positive semidefinite, and assume that
[
α β

β γ

]
∈ F

2×2 is positive
semidefinite. Then, the following statements hold:

i)
[
α1n×n β1n×m

β1m×n γ1m×m

]
is positive semidefinite.

ii)
[
αA βB

βB∗ γC

]
is positive semidefinite.

iii) If
[
A B
B∗ C

]
is positive definite and α and γ are positive, then

[
αA βB

βB∗ γC

]
is

positive definite.
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(Proof: To prove i), use Proposition 8.2.4. Statements ii) and iii) follow from Fact
8.21.12.)

Fact 8.11.3. Let A,B ∈ Fn×n, assume that A and B are positive semidefinite,
and assume that A and B are partitioned identically as A =

[
A11 A12
A∗

12 A22

]
and B =[

B11 B12
B∗

12 B22

]
. Then,

A22|A+B22|B ≤ (A22 +B22)|(A+B).

Now, assume that A22 andB22 are positive definite. Then, equality holds if and only
if A12A

−1
22 = B12B

−1
22 . (Proof: See [485, 1057].) (Remark: The first inequality, which

follows from xvii) of Proposition 8.6.17, is an extension of Bergstrom’s inequality,
which corresponds to the case in which A11 is a scalar. See Fact 8.15.18.)

Fact 8.11.4. Let A,B ∈ Fn×n, assume that A and B are positive semidef-
inite, assume that A and B are partitioned identically as A =

[
A11 A12
A∗

12 A22

]
and

B =
[
B11 B12
B∗

12 B22

]
, and assume that A11 and B11 are positive definite. Then,

(A12 +B12)∗(A11 +B11)−1(A12 +B12) ≤ A∗
12A

−1
11A12 +B∗

12B
−1
11B12

and

rank[A∗
12A

−1
11A12 +B∗

12B
−1
11B12 − (A12 +B12)∗(A11 +B11)−1(A12 +B12)]

= rank(A12 −A11B
−1
11B12).

Furthermore,

detA
detA11

+
detB

detB11
≤ det(A+B)

det(A11 +B11)
= det[(A11 +B11)|(A+ B)].

(Remark: The last inequality generalizes Fact 8.13.17.)

Fact 8.11.5. Let A ∈ Fn×n, B ∈ Fn×m, and C ∈ Fm×m, and define A
�=[

A B
B∗ C

]
. Then, the following statements hold:

i) If A is positive semidefinite, then

0 ≤ BC+B∗ ≤ A.
ii) If A is positive definite, then C is positive definite and

0 ≤ BC−1B∗ < A.

Now, assume that n = m. Then, the following statements hold:

iii) If A is positive semidefinite, then

−A− C ≤ B +B∗ ≤ A+ C.

iv) If A is positive definite, then

−A− C < B +B∗ < A+ C.

(Proof: The first two statements follow from Proposition 8.2.4. To prove the last
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two statements, consider SAST, where S �=
[
I I

]
and S

�=
[
I −I ].) (Re-

mark: See Fact 8.21.40.)

Fact 8.11.6. Let A ∈ Fn×n, B ∈ Fn×m, and C ∈ Fm×m, and define A
�=[

A B
B∗ C

]
. Then, A is positive semidefinite if and only if A and C are positive semidef-

inite and there exists a semicontractive matrix S ∈ Fn×m such that

B = A1/2SC1/2.

(Proof: See [719].) (Remark: Compare this result with statements xiii) and xix) of
Fact 8.10.43.)

Fact 8.11.7. Let A,B,C ∈ Fn×n, assume that
[
A B
B∗ C

] ∈ F2n×2n is positive
semidefinite, and assume that AB = BA. Then,

B∗B ≤ A1/2CA1/2.

(Proof: See [1492].)

Fact 8.11.8. Let A,B ∈ F
n×n, and assume that A and B are Hermitian.

Then, −A ≤ B ≤ A if and only if [A B
B A ] is positive semidefinite. Furthermore,

−A < B < A if and only if [ A B
B A ] is positive definite. (Proof: Note that

1√
2

[
I −I
I I

][
A B
B A

]
1√
2

[
I I
−I I

]
=
[
A−B 0

0 A+B

]
.)

Fact 8.11.9. Let A ∈ Fn×n, B ∈ Fn×m, and C ∈ Fm×m, assume that
[
A B
B∗ C

]
is positive semidefinite, and let r �= rankB. Then, for all k = 1, . . . , r,

k∏
i=1

σi(B) ≤
k∏
i=1

max{λi(A), λi(C)}.

(Proof: See[1492].)

Fact 8.11.10. Let A ∈ Fn×n, B ∈ Fn×m, and C ∈ Fm×m, define A
�=
[
A B
B∗ C

]
,

and assume that A is positive definite. Then,

trA−1 + trC−1 ≤ tr A−1.

Furthermore, B is nonzero if and only if

trA−1 + trC−1 < tr A−1.

(Proof: Use Proposition 8.2.5 or see [995].)

Fact 8.11.11. Let A ∈ Fn×m, and define

A
�=
[ 〈A∗〉 A

A∗ 〈A〉
]
.

Then, A is positive semidefinite. If, in addition, n = m, then

−〈A∗〉 − 〈A〉 ≤ A+A∗ ≤ 〈A∗〉+ 〈A〉.
(Proof: Use Fact 8.11.5.) (Remark: See Fact 8.9.29 and Fact 8.20.4.)
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Fact 8.11.12. Let A ∈ Fn×n, assume that A is normal, and define

A
�=
[ 〈A〉 A

A∗ 〈A〉
]
.

Then, A is positive semidefinite. (Proof: See [711, p. 213].)

Fact 8.11.13. Let A ∈ Fn×n, and define

A
�=
[

I A

A∗ I

]
.

Then, A is (positive semidefinite, positive definite) if and only if A is (semicontrac-
tive, contractive).

Fact 8.11.14. Let A ∈ Fn×m and B ∈ Fn×l, and define

A
�=

[
A∗A A∗B

B∗A B∗B

]
.

Then, A is positive semidefinite, and

0 ≤ A∗B(B∗B)+B∗A ≤ A∗A.

If m = l, then −A∗A−B∗B ≤ A∗B +B∗A ≤ A∗A+B∗B.

If, in addition, m = l = 1 and B∗B �= 0, then

|A∗B|2 ≤ A∗AB∗B.

(Remark: This result is the Cauchy-Schwarz inequality. See Fact 8.13.22.) (Re-
mark: See Fact 8.21.41.)

Fact 8.11.15. Let A,B ∈ Fn×m, and define

A
�=

[
I +A∗A I −A∗B

I −B∗A I +B∗B

]

and

B
�=

[
I +A∗A I +A∗B

I +B∗A I +B∗B

]
.

Then, A and B are positive semidefinite,

0 ≤ (I −A∗B)(I +B∗B)−1(I −B∗A) ≤ I +A∗A,

and
0 ≤ (I +A∗B)(I +B∗B)−1(I +B∗A) ≤ I +A∗A.

(Remark: See Fact 8.13.25.)

Fact 8.11.16. Let A,B ∈ Fn×m. Then,

I +AA∗ = (A+B)(I +B∗B)−1(A+B)∗ + (I −AB∗)(I +BB∗)−1(I −BA∗).
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Therefore,

(A+B)(I +B∗B)−1(A+B)∗ ≤ I +AA∗.

(Proof: Set C = A in Fact 2.16.23. See also [1490, p. 185].)

Fact 8.11.17. Let A ∈ F
n×n and B ∈ F

n×m, assume that A is positive
semidefinite, and define

A
�=
[

A AB
B∗A B∗AB

]
.

Then,

A =
[

A1/2

B∗A1/2

][
A1/2 A1/2B

]
,

and thus A is positive semidefinite. Furthermore,

0 ≤ AB(B∗AB)+B∗A ≤ A.
Now, assume that n = m. Then,

−A−B∗AB ≤ AB +B∗A ≤ A+B∗AB.

Fact 8.11.18. Let A ∈ Fn×n and B ∈ Fn×m, assume that A is positive
definite, and define

A
�=
[
A B
B∗ B∗A−1B

]
.

Then,

A =
[

A1/2

B∗A−1/2

][
A1/2 A−1/2B

]
,

and thus A is positive semidefinite. Furthermore,

0 ≤ B(B∗A−1B
)+
B∗ ≤ A.

Furthermore, if rankB = m, then

rank
[
A−B(B∗A−1B)−1B∗] = n−m.

Now, assume that n = m. Then,

−A−B∗A−1B ≤ B +B∗ ≤ A+B∗A−1B.

(Proof: Use Fact 8.11.5.) (Remark: See Fact 8.21.42.) (Remark: The matrix
I −A−1/2B(B∗A−1B)+B∗A−1/2 is a projector.)

Fact 8.11.19. Let A ∈ Fn×n and B ∈ Fn×m, assume that A is positive
definite, and define

A
�=

[
B∗AB B∗B

B∗B B∗A−1B

]
.

Then,

A =

[
B∗A1/2

B∗A−1/2

][
A1/2B A−1/2B

]
,

and thus A is positive semidefinite. Furthermore,

0 ≤ B∗B(B∗A−1B)+B∗B ≤ B∗AB.
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Now, assume that n = m. Then,

−B∗AB −B∗A−1B ≤ 2B∗B ≤ B∗AB +B∗A−1B.

(Proof: Use Fact 8.11.5.) (Remark: See Fact 8.13.23 and Fact 8.21.42.)

Fact 8.11.20. Let A,B ∈ F
n×m, let α, β ∈ (0,∞), and define

A
�=

[
β−1I + αA∗A (A+B)∗

A+B α−1I + βBB∗

]
.

Then,

A =

[
β−1/2I α1/2A∗

β1/2B α−1/2I

][
β−1/2I β1/2B∗

α1/2A α−1/2I

]

=

[
αA∗A A∗

A α−1I

]
+

[
β−1I B∗

B βBB∗

]
,

and thus A is positive semidefinite. Furthermore,

(A+B)∗(α−1I + βBB∗)−1(A+B) ≤ β−1I + αA∗A.

Now, assume that n = m. Then,

−
(
β−1/2+ α−1/2

)
I − αA∗A− βBB∗ ≤ A+B + (A +B)∗

≤
(
β−1/2+ α−1/2

)
I + αA∗A+ βBB∗.

(Remark: See Fact 8.13.26 and Fact 8.21.43.)

Fact 8.11.21. Let A,B ∈ Fn×m, and assume that I −A∗A and thus I −AA∗

are nonsingular. Then,

I −B∗B − (I −B∗A)(I −A∗A)−1(I −A∗B) = −(A−B)∗(I −AA∗)−1(A−B).

Now, assume that I −A∗A is positive definite. Then,

I −B∗B ≤ (I −B∗A)(I −A∗A)−1(I −A∗B).

Now, assume that I−B∗B is positive definite. Then, I−A∗B is nonsingular. Next,
define

A
�=

[
(I −A∗A)−1 (I −B∗A)−1

(I −A∗B)−1 (I −B∗B)−1

]
.

Then, A is positive semidefinite. Finally,

−(I −A∗A)−1 − (I −B∗B)−1 ≤ (I −B∗A)−1 + (I −A∗B)−1

≤ (I −A∗A)−1 + (I −B∗B)−1.

(Proof: For the first identity, set D = −B∗ and C = −A∗, and replace B with
−B in Fact 2.16.22. See [47, 1060]. The last statement follows from Fact 8.11.5.)
(Remark: The identity is Hua’s matrix equality. This result does not assume that
either I −A∗A or I −B∗B is positive semidefinite. The inequality and Fact 8.13.25
constitute Hua’s inequalities. See [1060, 1467].) (Remark: Extensions to the case
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in which I −A∗A is singular are considered in [1060].) (Remark: See Fact 8.9.39
and Fact 8.13.25.)

Fact 8.11.22. Let A ∈ Fn×n be semicontractive, and define B ∈ F2n×2n by

B
�=

[
A (I −AA∗)1/2

(I −A∗A)1/2 −A∗

]
.

Then, B is unitary. (Remark: See [508, p. 180].)

Fact 8.11.23. Let A ∈ Fn×m, and define B ∈ F(n+m)×(n+m) by

B
�=

[
(I +A∗A)−1/2 −A∗(I +AA∗)−1/2

(I +AA∗)−1/2A (I +AA∗)−1/2

]
.

Then, B is unitary and satisfies A∗ = ĨAĨ, where Ĩ �= diag(Im,−In). Furthermore,
detB = 1. (Remark: See [638].)

Fact 8.11.24. Let A ∈ Fn×m, assume that A is contractive, and define B ∈
F(n+m)×(n+m) by

B �=

[
(I −A∗A)−1/2 A∗(I −AA∗)−1/2

(I −AA∗)−1/2A (I −AA∗)−1/2

]
.

Then, B is Hermitian and satisfiesA∗ĨA = Ĩ, where Ĩ �= diag(Im,−In). Furthermore,
detB = 1. (Remark: See [638].)

Fact 8.11.25. Let X ∈ F
n×m, and define U ∈ F

(n+m)×(n+m) by

U �=

[
(I +X∗X)−1/2 −X∗(I +XX∗)−1/2

(I +XX∗)−1/2X (I +XX∗)−1/2

]
.

Furthermore, let A ∈ Fn×n, B ∈ Fn×m, C ∈ Fm×n, D ∈ Fm×m. Then, the following
statements hold:

i) Assume that D is nonsingular, and let X �= D−1C. Then,

[
A B
C D

]
=

⎡
⎣ (A−BX)(I +X∗X)−1/2 (B +AX∗)(I +XX∗)−1/2

0 D(I +XX∗)1/2

⎤
⎦U.

ii) Assume that A is nonsingular and let X �= CA−1. Then,

[
A B
C D

]
= U

⎡
⎣ (I +X∗X)1/2A (I +X∗X)−1/2(B +X∗D)

0 (I +XX∗)−1/2(D −XB)

⎤
⎦.

(Remark: See Proposition 2.8.3 and Proposition 2.8.4.) (Proof: See [638].)

Fact 8.11.26. Let X ∈ Fn×m, and define U ∈ F(n+m)×(n+m) by

U �=

[
(I −X∗X)−1/2 X∗(I −XX∗)−1/2

(I −XX∗)−1/2X (I −XX∗)−1/2

]
.
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Furthermore, let A ∈ Fn×n, B ∈ Fn×m, C ∈ Fm×n, D ∈ Fm×m. Then, the following
statements hold:

i) Assume that D is nonsingular, let X �= D−1C, and assume that X∗X < I.
Then,

[
A B
C D

]
=

⎡
⎣ (A−BX)(I −X∗X)−1/2 (B +AX∗)(I −XX∗)−1/2

0 D(I −XX∗)1/2

⎤
⎦U.

ii) Assume that A is nonsingular, let X �= CA−1, and assume that X∗X < I.
Then,

[
A B
C D

]
= U

⎡
⎣ (I −X∗X)1/2A (I −X∗X)−1/2(B −X∗D)

0 (I −XX∗)−1/2(D −XB)

⎤
⎦.

(Proof: See [638].) (Remark: See Proposition 2.8.3 and Proposition 2.8.4.)

Fact 8.11.27. Let A,B ∈ F
n×m and C,D ∈ Fm×m, assume that C and D are

positive definite, and define

A
�=

[
AC−1A∗ +BD−1B∗ A+B

(A+B)∗ C +D

]
.

Then, A is positive semidefinite, and

(A+B)(C +D)−1(A+B)∗ ≤ AC−1A∗ +BD−1B∗.

Now, assume that n = m. Then,

−AC−1A∗ −BD−1B∗ − C −D ≤ A+B + (A+B)∗

≤ AC−1A∗ +BD−1B∗ + C +D.

(Proof: See [658, 907] or [1098, p. 151].) (Remark: Replacing A,B,C,D by
αB1, (1− α)B2, αA1, (1 − α)A2 yields xiv) of Proposition 8.6.17.)

Fact 8.11.28. Let A ∈ Rn×n, assume that A is positive definite, and let
S ⊆ {1, . . . , n}. Then, (

A(S)

)−1 ≤ (A−1
)
(S)
.

(Proof: See [709, p. 474].) (Remark: Generalizations of this result are given in
[328].)

Fact 8.11.29. Let Aij ∈ Fni×nj for all i, j = 1, . . . , k, define

A �=

⎡
⎢⎢⎣
A11 · · · A1k

... · · ·.. ...

A1k · · · Akk

⎤
⎥⎥⎦,
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and assume that A is square and positive definite. Furthermore, define

Â �=

⎡
⎢⎢⎣
Â11 · · · Â1k

... · · ·.. ...

Â1k · · · Âkk

⎤
⎥⎥⎦,

where Âij = 11×niAij1nj×1 is the sum of the entries of Aij for all i, j = 1, . . . , k.
Then, Â is positive definite. (Proof: Â = BABT, where the entries of B ∈
Rk×

∑k
i=1 ni are 0’s and 1’s. See [42].)

Fact 8.11.30. Let A,D ∈ Fn×n, B ∈ Fn×m, and C ∈ Fm×m, and assume that[
A B
B∗ C

] ∈ Fn×n is positive semidefinite, C is positive definite, and D is positive
definite. Then,

[
A+D B
B∗ C

]
is positive definite.

Fact 8.11.31. Let A ∈ F(n+m+l)×(n+m+l), assume that A is positive semidef-
inite, and assume that A is of the form

A =

⎡
⎣ A11 A12 0
A∗

12 A22 A23

0 A∗
32 A33

⎤
⎦.

Then, there exist positive-semidefinite matrices B,C ∈ F(n+m+l)×(n+m+l) such that
A = B + C and such that B and C have the form

B =

⎡
⎣ B11 B12 0
B∗

12 B22 0
0 0 0

⎤
⎦

and

C =

⎡
⎣ 0 0 0

0 C22 C23

0 C∗
23 C33

⎤
⎦.

(Proof: See [669].)

8.12 Facts on the Trace

Fact 8.12.1. Let A ∈ Fn×n, assume that A is positive definite, let p and q be
real numbers, and assume that p ≤ q. Then,(

1
n trAp

)1/p ≤ ( 1
n trAq

)1/q
.

Furthermore,
lim
p↓0
(

1
n trAp

)1/p = detA1/n.

(Proof: Use Fact 1.15.30.)

Fact 8.12.2. Let A ∈ Fn×n, and assume that A is positive definite. Then,

n2 ≤ (trA)trA−1.
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Finally, equality holds if and only if A = In. (Remark: Bounds on trA−1 are given
in [100, 307, 1052, 1132].)

Fact 8.12.3. Let A ∈ Fn×n, and assume that A is positive semidefinite. Then,
the following statements hold:

i) Let r ∈ [0, 1]. Then, for all k = 1, . . . , n,
n∑
i=k

λri (A) ≤
n∑
i=k

dri(A).

In particular,

trAr ≤
n∑
i=1

Ar(i,i).

ii) Let r ≥ 1. Then, for all k = 1, . . . , n,

k∑
i=1

dri(A) ≤
k∑
i=1

λri(A).

In particular,
n∑
i=1

Ar(i,i) ≤ trAr.

iii) If either r = 0 or r = 1, then

trAr =
n∑
i=1

Ar(i,i).

iv) If r �= 0 and r �= 1, then

trAr =
n∑
i=1

Ar(i,i)

if and only if A is diagonal.

(Proof: Use Fact 8.17.8 and Fact 2.21.8. See [946] and [948, p. 217].) (Remark:
See Fact 8.17.8.)

Fact 8.12.4. Let A ∈ Fn×n, and let p, q ∈ [0,∞). Then,

tr (A∗pAp)q ≤ tr (A∗A)pq.

Furthermore, equality holds if and only if trA∗pAp = tr (A∗A)p. (Proof: See [1208].)

Fact 8.12.5. Let A ∈ Fn×n, p ∈ [2,∞), and q ∈ [1,∞). Then, A is normal if
and only if

tr (A∗pAp)q = tr (A∗A)pq.

(Proof: See [1208].)

Fact 8.12.6. Let A,B ∈ Fn×n, and assume that either A and B are Hermitian
or A and B are skew Hermitian. Then, trAB is real. (Proof: trAB = trA∗B∗ =
tr (BA)∗ = trBA = trAB. (Remark: See [1476] or [1490, p. 213].)
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Fact 8.12.7. Let A,B ∈ Fn×n, assume that A and B are Hermitian, and let
k ∈ N. Then, tr (AB)k is real. (Proof: See [55].)

Fact 8.12.8. Let A,B ∈ Fn×n, and assume that A and B are Hermitian.
Then,

trAB ≤ |trAB| ≤
√

(trA2)trB2 ≤ 1
2 tr(A2 +B2).

The second inequality is an equality if and only if A and B are linearly dependent.
The third inequality is an equality if and only if trA2 = trB2. All four terms are
equal if and only if A = B. (Proof: Use the Cauchy-Schwarz inequality Corollary
9.3.9.) (Remark: See Fact 8.12.18.)

Fact 8.12.9. Let A,B ∈ F
n×n, assume that A and B are Hermitian, and

assume that −A ≤ B ≤ A. Then,

trB2 ≤ trA2.

(Proof: 0 ≤ tr[(A−B)(A+B)] = trA2− trB2. See [1318].) (Remark: For 0 ≤ B ≤
A, this result is a special case of xxi) of Proposition 8.6.13.

Fact 8.12.10. Let A,B ∈ Fn×n, and assume that A and B are positive
semidefinite. Then, AB = 0 if and only if trAB = 0.

Fact 8.12.11. Let A,B ∈ Fn×n, assume that A and B are positive semidefi-
nite, and let p, q ≥ 1 satisfy 1/p+ 1/q = 1. Then,

trAB ≤ tr 〈AB〉 ≤ (trAp)1/p(trBq)1/q.

Furthermore, equality holds for both inequalities if and only if Ap−1 and B are
linearly dependent. (Proof: See [946] and [948, pp. 219, 222].) (Remark: This
result is a matrix version of Hölder’s inequality.) (Remark: See Fact 8.12.12 and
Fact 8.12.17.)

Fact 8.12.12. Let A1, . . . , Am ∈ Fn×n, assume that A1, . . . , Am are positive
semidefinite, and let p1, . . . , pm ∈ [1,∞) satisfy 1

p1
+ · · ·+ 1

p1
= 1. Then,

tr 〈A1 · · ·Am〉 ≤
m∏
i=1

(trApi

i )1/pi ≤ tr
m∑
i=1

1
pi
Api

i .

Furthermore, the following statements are equivalent:

i) tr 〈A1 · · ·Am〉 =
∏m
i=1(trA

pi

i )1/pi.

ii) tr 〈A1 · · ·Am〉 = tr
∑m

i=1
1
pi
Api

i .

iii) Ap11 = · · · = Apm
m .

(Proof: See [954].) (Remark: The first inequality is a matrix version of Hölder’s
inequality. The inequality involving the first and third terms is a matrix version of
Young’s inequality. See Fact 1.10.32 and Fact 1.15.31.)

Fact 8.12.13. Let A1, . . . , Am ∈ Fn×n, assume that A1, . . . , Am are positive
semidefinite, let α1, . . . , αm be nonnegative numbers, and assume that

∑m
i=1 αi ≥ 1.
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Then, ∣∣∣∣∣tr
m∏
i=1

Aαi

i

∣∣∣∣∣ ≤
m∏
i=1

(trAi)αi.

Furthermore, if
∑m
i=1 αi = 1, then equality holds if and only if A2, . . . , Am are

scalar multiples of A1, whereas, if
∑m
i=1 αi > 1, then equality holds if and only if

A2, . . . , Am are scalar multiples ofA1 and rankA1 = 1. (Proof: See [317].) (Remark:
See Fact 8.12.11.)

Fact 8.12.14. Let A,B ∈ Fn×n. Then,

|trAB|2 ≤ (trA∗A)trBB∗.

(Proof: See [1490, p. 25] or Corollary 9.3.9.) (Remark: See Fact 8.12.15.)

Fact 8.12.15. Let A ∈ Fn×m and B ∈ Fm×n, and let k ∈ N. Then,

|tr (AB)2k| ≤ tr (A∗ABB∗)k ≤ tr (A∗A)k(BB∗)k ≤ [tr (A∗A)k] tr (BB∗)k.

In particular,
|tr (AB)2| ≤ tr A∗ABB∗ ≤ (tr A∗A)trBB∗.

(Proof: See [1476] for the case n = m. If n �= m, then A and B can be augmented
with 0’s.) (Problem: Show that

|trAB|2
|tr (AB)2|

}
≤ tr A∗ABB∗ ≤ (tr A∗A)trBB∗.

See Fact 8.12.14.)

Fact 8.12.16. Let A,B ∈ Fn×n, assume that A and B are Hermitian, and let
k ≥ 1. Then,

tr
(
A2B2

)k ≤ (trA2B2
)k

and

tr (AB)2k ≤ |tr (AB)2k| ≤
{

tr (A2B2)k

tr 〈(AB)2k〉

}
≤ trA2kB2k.

(Proof: Use Fact 8.12.15 and see [55, 1476].) (Remark: It follows from Fact 8.12.7
that tr (AB)2k and tr (A2B2)k are real.)

Fact 8.12.17. Let A,B ∈ F
n×n, and assume that A and B are positive

semidefinite. Then,

trAB ≤ tr
(
AB2A

)1/2
= tr 〈AB〉 ≤ 1

4 tr (A+B)2

and
tr (AB)2 ≤ trA2B2 ≤ 1

16 tr (A+B)4.

(Proof: See Fact 8.12.20 and Fact 9.9.18.)

Fact 8.12.18. Let A,B ∈ Fn×n, and assume that A and B are positive
semidefinite. Then,
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trAB = trA1/2BA1/2

= tr
[(
A1/2BA1/2

)1/2(
A1/2BA1/2

)1/2]

≤
[
tr
(
A1/2BA1/2

)1/2]2

≤ (trA)(trB)

≤ 1
4 (trA+ trB)2

≤ 1
2

[
(trA)2 + (trB)2

]
and

trAB ≤
√

trA2
√

trB2

≤ 1
4

(√
trA2 +

√
trB2

)2
≤ 1

2

(
trA2 + trB2

)
≤ 1

2

[
(trA)2 + (trB)2

]
.

(Remark: Use Fact 1.10.4.) (Remark: Note that

tr
(
A1/2BA1/2

)1/2
=

n∑
i=1

λ
1/2
i (AB).

The second inequality follows from Proposition 9.3.6 with p = q = 2, r = 1, and A
and B replaced by A1/2 and B1/2.) (Remark: See Fact 2.12.16.)

Fact 8.12.19. Let A,B ∈ Fn×n, assume that A and B are positive semidefi-
nite, and let p ≥ 1. Then,

trAB ≤ tr (Ap/2BpAp/2)1/p.

(Proof: See [521].)

Fact 8.12.20. Let A,B ∈ Fn×n, assume that A and B are positive semidefi-
nite, and let p ≥ 0 and r ≥ 1. Then,

tr
(
A1/2BA1/2

)pr
≤ tr

(
Ar/2BrAr/2

)p
.

In particular,
tr
(
A1/2BA1/2

)2p
≤ tr

(
AB2A

)p
and

trAB ≤ tr (AB2A)1/2 = tr 〈AB〉.
(Proof: Use Fact 8.18.20 and Fact 8.18.27.) (Remark: This result is the Araki-Lieb-
Thirring inequality. See [69, 88] and [197, p. 258]. See Fact 8.10.49, Fact 8.18.26,



480 CHAPTER 8

and Fact 9.9.17.) (Problem: Referring to Fact 8.12.18, compare the upper bounds

trAB ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
tr
(
A1/2BA1/2

)1/2]2
√

trA2
√

trB2

tr
(
AB2A

)1/2
.)

Fact 8.12.21. Let A,B ∈ Fn×n, assume that A and B are positive semidefi-
nite, and let q ≥ 0 and t ∈ [0, 1]. Then,

σ2tq
max(A) trBtq ≤ tr(AtBtAt)q ≤ tr (ABA)tq.

(Proof: See [88].) (Remark: The right-hand inequality is equivalent to the Araki-
Lieb-Thirring inequality, where t = 1/r and q = pr. See Fact 8.12.20.)

Fact 8.12.22. Let A,B ∈ Fn×n, assume that A and B are positive semidefi-
nite, and let k,m ∈ P, where m ≥ k. Then,

tr
(
AkBk

)m ≤ tr (AmBm)k.

In particular,
tr (AB)m ≤ trAmBm.

If, in addition, m is even, then

tr (AB)m ≤ tr
(
A2B2

)m/2 ≤ trAmBm.

(Proof: Use Fact 8.18.20 and Fact 8.18.27.) (Remark: It follows from Fact 8.12.7
that tr (AB)m is real.) (Remark: The result tr (AB)m ≤ trAmBm is the Lieb-
Thirring inequality. See [197, p. 279]. The inequality tr (AB)m ≤ tr

(
A2B2

)m/2
follows from Fact 8.12.20. See [1466, 1476].)

Fact 8.12.23. Let A,B ∈ Fn×n, assume that A and B are positive semidefi-
nite, and let p ≥ r ≥ 0. Then,[

tr
(
A1/2BA1/2

)p]1/p
≤
[
tr
(
A1/2BA1/2

)r]1/r
.

In particular,

[
tr
(
A1/2BA1/2

)2]1/2
≤ trAB ≤

⎧⎪⎨
⎪⎩

tr
(
AB2A

)1/2
[
tr
(
A1/2BA1/2

)1/2]2
.

(Proof: The result follows from the power-sum inequality Fact 1.15.34. See [369].)

Fact 8.12.24. Let A,B ∈ Fn×n, assume that A and B are positive semidefi-
nite, assume that A ≤ B, and let p, q ≥ 0. Then,

trApBq ≤ trBp+q.

If, in addition, A and B are positive definite, then this inequality holds for all
p, q ∈ R satisfying q ≥ −1 and p+ q ≥ 0. (Proof: See [246].)
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Fact 8.12.25. Let A,B ∈ Fn×n, assume that A and B are positive semidef-
inite, assume that A ≤ B, let f : [0,∞) �→ [0,∞), and assume that f(0) = 0, f is
continuous, and f is increasing. Then,

tr f(A) ≤ tr f(B).

Now, let p > 1 and q ≥ max{−1,−p/2}, and, if q < 0, assume that A is positive
definite. Then,

tr f(Aq/2BpAq/2) ≤ tr f(Ap+q).

(Proof: See [527].)

Fact 8.12.26. Let A,B ∈ Fn×n, assume that A and B are positive semidefi-
nite, and let α ∈ [0, 1]. Then,

trAαB1−α ≤ (trA)α(trB)1−α ≤ tr[αA+ (1− α)B].

Furthermore, the first inequality is an equality if and only if A and B are linearly
dependent, while the second inequality is an equality if and only if A = B. (Proof:
Use Fact 8.12.11 or Fact 8.12.13 for the left-hand inequality and Fact 1.10.21 for
the right-hand inequality.)

Fact 8.12.27. Let A,B ∈ F
n×n, assume that A and B are positive definite,

and let α ∈ [0, 1]. Then,

trA−αBα−1

tr [αA+ (1− α)B]−1

}
≤ (trA−1

)α(
trB−1

)1−α ≤ tr
[
αA−1 + (1− α)B−1

]
and

tr [αA+ (1− α)B]−1≤
⎧⎨
⎩
(
trA−1

)α(trB−1
)1−α

tr
[
A−1
(
A−1/2BA−1/2

)α−1
]
⎫⎬
⎭≤ tr

[
αA−1 + (1− α)B−1

]
.

(Remark: In the first string of inequalities, the upper left inequality and right-
hand inequality are equivalent to Fact 8.12.26. The lower left inequality is given by
xxxiii) of Proposition 8.6.17. The second string of inequalities combines the lower
left inequality in the first string of inequalities with the third string of inequalities
in Fact 8.10.46.) (Remark: These inequalities interpolate the convexity of φ(A) =
trA−1. See Fact 1.10.21.)

Fact 8.12.28. Let A,B ∈ Fn×n, and assume that B is positive semidefinite.
Then,

|trAB| ≤ σmax(A)trB.

(Proof: Use Proposition 8.4.13 and σmax(A+A∗) ≤ 2σmax(A).) (Remark: See Fact
5.12.4.)

Fact 8.12.29. Let A,B ∈ Fn×n, assume that A and B are positive semidefi-
nite, and let p ≥ 1. Then,

tr(Ap +Bp) ≤ tr (A+B)p ≤
[
(trAp)1/p + (trBp)1/p

]p
.

Furthermore, the second inequality is an equality if and only if A and B are linearly
independent.(Proof: See [246] and [946].) (Remark: The first inequality is the Mc-
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Carthy inequality. The second inequality is a special case of the triangle inequality
for the norm ‖ · ‖σp and a matrix version of Minkowski’s inequality.)

Fact 8.12.30. Let A,B ∈ Fn×n, assume that A and B are positive semidefi-
nite, let m be a positive integer, and define p ∈ F[s] by

p(s) = tr (A+ sB)m.

Then, all of the coefficients of p are nonnegative. (Remark: This result is the
Bessis-Moussa-Villani trace conjecture. See [687, 908] and Fact 8.12.31.)

Fact 8.12.31. Let A,B ∈ Fn×n, assume that A is Hermitian and B is positive
semidefinite, and define

f(t) = eA+tB.

Then, for all k = 0, 1, . . . and t ≥ 0,

(−1)k+1f (k)(t) ≥ 0.

(Remark: This result is a consequence of the Bessis-Moussa-Villani trace conjecture.
See [687, 908] and Fact 8.12.30.) (Remark: See Fact 8.14.18.)

Fact 8.12.32. Let A,B ∈ Fn×n, assume that A and B are Hermitian, and let
f : R �→ R. Then, the following statements hold:

i) If f is convex, then there exist unitary matrices S1, S2 ∈ Fn×n such that

f [12 (A+B)] ≤ 1
2 [S1(1

2 [f(A) + f(B)])S∗
1 + S2(1

2 [f(A) + f(B)])S∗
2 ].

ii) If f is convex and even, then there exist unitary matrices S1, S2 ∈ Fn×n

such that
f [12 (A+B)] ≤ 1

2 [S1f(A)S∗
1 + S2f(B)S∗

2 ].

iii) If f is convex and increasing, then there exists a unitary matrix S ∈ Fn×n

such that
f [12 (A+B)] ≤ S(1

2 [f(A) + f(B)])S∗.

iv) There exist unitary matrices S1, S2 ∈ Fn×n such that

〈A+B〉 ≤ S1〈A〉S∗
1 + S2〈B〉S∗

2.

v) If f is convex, then

tr f [12 (A+B)] ≤ tr 1
2 [f(A) + f(B)].

(Proof: See [247, 248].) (Remark: Result v), which is a consequence of i), is von
Neumann’s trace inequality.) (Remark: See Fact 8.12.33.)

Fact 8.12.33. Let f : R �→ R, and assume that f is convex. Then, the follow-
ing statements hold:

i) If f(0) ≤ 0, A ∈ Fn×n is Hermitian, and S ∈ Fn×m is a contractive matrix,
then

tr f(S∗AS) ≤ trS∗f(A)S.
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ii) If A1, . . . , Ak ∈ Fn×n are Hermitian and S1, . . . , Sk ∈ Fn×m satisfy∑k
i=1 S

∗
iSi = I, then

tr f

(
k∑
i=1

S∗
iAiSi

)
≤ tr

k∑
i=1

S∗
if(Ai)Si.

iii) If A ∈ F
n×n is Hermitian and S ∈ F

n×n is a projector, then

trSf(SAS)S ≤ trSf(A)S.

(Proof: See [248] and [1039, p. 36].) (Remark: Special cases are considered in
[785].) (Remark: The first result is due to Brown and Kosaki, the second result
is due to Hansen and Pedersen, and the third result is due to Berezin.) (Remark:
The second result generalizes statement v) of Fact 8.12.32.)

Fact 8.12.34. Let A,B ∈ Fn×n, assume that B is positive semidefinite, and
assume that A∗A ≤ B. Then,

|trA| ≤ trB1/2.

(Proof: Corollary 8.6.11 with r = 2 implies that (A∗A)1/2 ≤ trB1/2. Letting
mspec(A) = {λ1, . . . , λn}ms, it follows from Fact 9.11.2 that |trA| ≤ ∑n

i=1 |λi| ≤∑n
i=1σi(A) = tr (A∗A)1/2 ≤ trB1/2. See [167].)

Fact 8.12.35. Let A,B ∈ Fn×n, assume that A is positive definite and B is
positive semidefinite, let α ∈ [0, 1], and let β ≥ 0. Then,

tr(−BA−1B + βBα) ≤ β(1 − α
2 )tr

(
αβ
2 A
)α/(2−α)

.

If, in addition, either A and B commute or B is a multiple of a projector, then

−BA−1B + βBα ≤ β(1− α
2 )
(
αβ
2 A
)α/(2−α)

.

(Proof: See [634, 635].)

Fact 8.12.36. Let A,P ∈ Fn×n, B,Q ∈ Fn×m, and C,R ∈ Fm×m, and assume
that

[
A B

B∗ C

]
,
[
P Q
Q∗ R

]
∈ F(n+m)×(n+m) are positive semidefinite. Then,

|trBQ∗|2 ≤ (trAP )(trCR).

(Proof: See [886, 1494].)

Fact 8.12.37. Let A,B ∈ Fn×m, let X ∈ Fn×n, and assume that X is positive
definite. Then, |trA∗B|2 ≤ (trA∗XA)(trB∗X−1A).

(Proof: Use Fact 8.12.36 with
[
X I
I X−1

]
and
[
AA∗ AB∗
BA∗ BB∗

]
. See [886, 1494].)

Fact 8.12.38. Let A,B,C ∈ Fn×n, and assume that A and B are Hermitian
and C is positive semidefinite. Then,

|trABC2 − trACBC| ≤ 1
4 [λ1(A)− λn(A)][λ1(B)− λn(B)] trC2.

(Proof: See [250].)
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Fact 8.12.39. Let A11 ∈ Rn×n, A12 ∈ Rn×m, and A22 ∈ Rm×m, define A �=[
A11 A12

AT
12 A22

]
∈ R(n+m)×(n+m), and assume that A is symmetric. Then, A is positive

semidefinite if and only if, for all B ∈ Rn×m,

trBAT
12 ≤ tr

(
A

1/2
11 BA22B

TA
1/2
11

)1/2
.

(Proof: See [167].)

Fact 8.12.40. Let A ∈ F
n×n, B ∈ F

n×m, and C ∈ F
m×m, and assume that[

A B
B∗ C

] ∈ F(n+m)×(n+m) is positive semidefinite. Then,

trB∗B ≤
√

(trA2)(trC2) ≤ (trA)(trC).

(Proof: Use Fact 8.12.36 with P = A, Q = B, and R = C.) (Remark: The inequality
involving the first and third terms is given in [1075].) (Remark: See Fact 8.12.41
for the case n = m.)

Fact 8.12.41. Let A,B,C ∈ Fn×n, and assume that
[
A B
B∗ C

] ∈ F2n×2n is
positive semidefinite. Then,

|trB|2 ≤ (trA)(trC)

and
|trB2| ≤ trB∗B ≤

√
(trA2)(trC2) ≤ (trA)(trC).

(Remark: The first result follows from Fact 8.12.42. In the second string, the first
inequality is given by Fact 9.11.3, while the second inequality is given by Fact
8.12.40. The inequality |trB2| ≤√(trA2)(trC2) is given in [964].)

Fact 8.12.42. Let Aij ∈ F
n×n for all i, j = 1, . . . , k, define A ∈ F

kn×kn by

A �=

⎡
⎢⎢⎣
A11 · · · A1k

... · · ·.. ...

A∗
1k · · · Akk

⎤
⎥⎥⎦,

and assume that A is positive semidefinite. Then,⎡
⎢⎣

trA11 · · · trA1k

... · · ·.. ...
trA∗

1k · · · trAkk

⎤
⎥⎦ ≥ 0

and ⎡
⎢⎣

trA2
11 · · · trA∗

1kA1k

... · · ·.. ...
trA∗

1kA1k · · · trA2
kk

⎤
⎥⎦ ≥ 0.

(Proof: See [386, 964, 1075].) (Remark: See Fact 8.13.42.)



POSITIVE-SEMIDEFINITE MATRICES 485

8.13 Facts on the Determinant

Fact 8.13.1. Let A ∈ Fn×n, assume that A is positive semidefinite, and let
mspec(A) = {λ1, . . . , λn}ms. Then,

λmin(A) ≤ λ1/nmax(A)λ(n−1)/n
min (A)

≤ λn
≤ λ1

≤ λ1/nmin(A)λ(n−1)/n
max (A)

≤ λmax(A)

and

λnmin(A) ≤ λmax(A)λn−1
min(A)

≤ detA

≤ λmin(A)λn−1
max(A)

≤ λnmax(A).

(Proof: Use Fact 5.11.29.)

Fact 8.13.2. Let A ∈ Fn×n, and assume that A+A∗ is positive semidefinite.
Then,

det 1
2(A+A∗) ≤ |detA|.

Furthermore, if A + A∗ is positive definite, then equality holds if and only if A
is Hermitian. (Proof: The inequality follows from Fact 5.11.25 and Fact 5.11.28.)
(Remark: This result is the Ostrowski-Taussky inequality.) (Remark: See Fact
8.13.2.)

Fact 8.13.3. Let A ∈ Fn×n, and assume that A+A∗ is positive semidefinite.
Then,

[det 1
2(A+A∗)]2/n + |det 1

2(A−A∗)|2/n ≤ |detA|2/n.
Furthermore, if A+A∗ is positive definite, then equality holds if and only if every
eigenvalue of (A + A∗)−1(A − A∗) has the same absolute value. Finally, if n ≥ 2,
then

det 1
2(A+A∗) ≤ det 1

2(A+A∗) + |det 1
2(A−A∗)| ≤ |detA|.

(Proof: See [466, 760]. To prove the last result, use Fact 1.10.30.) (Remark:
Setting A = 1 + j shows that the last result can fail for n = 1.) (Remark: −A
is semidissipative.) (Remark: The last result interpolates Fact 8.13.2.) (Remark:
Extensions to the case in which A+A∗ is positive definite are considered in [1269].)

Fact 8.13.4. Let A,B ∈ Fn×n, and assume that A is positive semidefinite.
Then,

(detA)2/n + |det(A+B)|2/n ≤ |det(A+B)|2/n.
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Furthermore, if A is positive definite, then equality holds if and only if every eigen-
value of A−1B has the same absolute value. Finally, if n ≥ 2, then

detA ≤ detA+ |detB| ≤ |det(A+B)|.
(Remark: This result is a restatement of Fact 8.13.2 in terms of the Cartesian
decomposition.)

Fact 8.13.5. Let A,B ∈ Fn×n, assume that A is positive semidefinite, assume
that B is positive definite. Then,

n∏
i=1

[λ2
i (A) + λ2

i (B)]1/2 ≤ |det(A+ jB)| ≤
n∏
i=1

[λ2
i (A) + λ2

n−i+1(B)]1/2.

(Proof: See [158].)

Fact 8.13.6. Let A,B ∈ Fn×n, and assume that A is positive semidefinite
and B is skew Hermitian. Then,

detA ≤ |det(A+B)|.
Furthermore, if A and B are real, then

detA ≤ det(A+B).

Finally, if A is positive definite, then equality holds if and only if B = 0. (Proof:
See [654, p. 447] and [1098, pp. 146, 163]. Now, suppose that A and B are real.
If A is positive definite, then A−1/2BA−1/2 is skew symmetric, and thus det(A +
B) = (detA)det

(
I +A−1/2BA−1/2

)
is positive. If A is positive semidefinite, then a

continuity argument implies that det(A+B) is nonnegative.) (Remark: Extensions
of this result are given in [219].)

Fact 8.13.7. Let A,B ∈ Fn×n, and assume that A is positive definite and B
is Hermitian. Then,

det(A+ jB) = (detA)
n∏
i=1

[
1 + σ2

i

(
A−1/2BA−1/2

)]1/2
.

(Proof: See [320].)

Fact 8.13.8. Let A ∈ Fn×n, and assume that A is positive definite. Then,

n+ tr logA = n+ log detA ≤ n(detA)1/n ≤ trA ≤ (ntrA2
)1/2

,

with equality if and only if A = I. (Remark: The inequality

(detA)1/n ≤ 1
n trA

is a consequence of the arithmetic-mean–geometric-mean inequality.)

Fact 8.13.9. Let A,B ∈ Fn×n, assume that A and B are positive semidefinite,
and assume that A ≤ B. Then,

n detA+ detB ≤ det(A+B).
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(Proof: See [1098, pp. 154, 166].) (Remark: Under weaker conditions, Corollary
8.4.15 implies that detA+ detB ≤ det(A+B).)

Fact 8.13.10. Let A,B ∈ Fn×n, and assume that A and B are positive
semidefinite. Then,

detA+ detB + (2n − 2)
√

detAB ≤ det(A+B).

If, in addition, B ≤ A, then

detA+ (2n − 1)detB ≤ detA+ detB + (2n − 2)
√

detAB ≤ det(A+B).

(Proof: See [1057] or [1184, p. 231].)

Fact 8.13.11. Let A ∈ Rn×n, and assume that A+AT is positive semidefinite.
Then, [

1
2

(
A+AT

)]A≤ 1
2

(
AA +AAT

)
.

Now, assume that A+AT is positive definite. Then,[
det 1

2

(
A+AT

)][
1
2

(
A+AT

)]−1≤ (detA)
[

1
2

(
A−1 +A−T

)]
.

Furthermore,[
det 1

2

(
A+AT

)][
1
2

(
A+AT

)]−1
< (detA)

[
1
2

(
A−1 +A−T

)]
if and only if rank

(
A−AT

) ≥ 4. Finally, if n ≥ 4 and A−AT is nonsingular, then

(detA)
[

1
2

(
A−1 +A−T

)]
<
[
detA− det 1

2

(
A−AT

)][
1
2

(
A+AT

)]−1
.

(Proof: See [465, 759].) (Remark: This result does not hold for complex matrices.)
(Remark: See Fact 8.9.31 and Fact 8.17.12.)

Fact 8.13.12. Let A ∈ Rn×n, and assume that A is positive definite. Then,
n∑
i=1

[detA({1,...,i})]1/i ≤ (1 + 1
n )ntrA < etrA.

(Proof: See [29].)

Fact 8.13.13. Let A ∈ Fn×n, assume that A is positive definite and Toeplitz,
and, for all i = 1, . . . , n, define Ai

�= A({1,...,i}) ∈ Fi×i. Then,

(detA)1/n ≤ (detAn−1)1/(n−1) ≤ · · · ≤ (detA2)1/2 ≤ detA1.

Furthermore,

detA
detAn−1

≤ detAn−1

detAn−2
≤ · · · ≤ detA3

detA2
≤ detA2

detA1
.

(Proof: See [352] or [353, p. 682].)

Fact 8.13.14. Let A,B ∈ Fn×n, assume that B is Hermitian, and assume
that A∗BA < A+A∗. Then, detA �= 0.
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Fact 8.13.15. Let A,B ∈ Fn×n, assume that A and B are positive definite,
and let α ∈ [0, 1]. Then,

(detA)α(detB)1−α ≤ det[αA+ (1− α)B].

Furthermore, equality holds if and only if A = B. (Proof: This inequality is a
restatement of xxxviii) of Proposition 8.6.17.) (Remark: This result is due to
Bergstrom.) (Remark: α = 2 yields

√
(detA) detB ≤ det[ 12 (A+B)].)

Fact 8.13.16. Let A,B ∈ Fn×n, assume that A and B are positive semidefi-
nite, assume that either A ≤ B or B ≤ A, and let α ∈ [0, 1]. Then,

det[αA+ (1− α)B] ≤ αdetA+ (1− α)detB.

(Proof: See [1406].)

Fact 8.13.17. Let A,B ∈ Fn×n, and assume that A and B are positive defi-
nite. Then,

detA
detA[1;1]

+
detB

detB[1;1]
≤ det(A+B)

det
(
A[1;1] +B[1;1]

) .
(Proof: See [1098, p. 145].) (Remark: This inequality is a special case of xli) of
Proposition 8.6.17.) (Remark: See Fact 8.11.4.)

Fact 8.13.18. Let A1, . . . , Ak ∈ Fn×n, assume that A1, . . . , Ak are positive
semidefinite, and let λ1, . . . , λk ∈ C. Then,

det

(
k∑
i=1

λiAi

)
≤ det

(
k∑
i=1

|λi|Ai
)
.

(Proof: See [1098, p. 144].)

Fact 8.13.19. Let A,B,C ∈ Rn×n, let D �= A + jB, and assume that CB +
BTCT < D +D∗. Then, detA �= 0.

Fact 8.13.20. Let A,B ∈ Fn×n, assume that A and B are positive semidefi-
nite, and let m ∈ P. Then,

n1/m(detAB)1/n ≤ (trAmBm)1/m.

(Proof: See [369].) (Remark: Assuming detB = 1 and setting m = 1 yields
Proposition 8.4.14.)

Fact 8.13.21. Let A,B,C ∈ Fn×n, define

A
�=
[
A B
B∗ C

]
,

and assume that A is positive semidefinite. Then,

|det(B +B∗)| ≤ det(A+ C).

If, in addition, A is positive definite, then

|det(B +B∗)| < det(A+ C).
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(Remark: Use Fact 8.11.5.)

Fact 8.13.22. Let A,B ∈ Fn×m. Then,

|detA∗B|2 ≤ (detA∗A)(detB∗B).

(Proof: Use Fact 8.11.14 or apply Fact 8.13.42 to
[
A∗A B∗A
A∗B B∗B

]
.) (Remark: This result

is a determinantal version of the Cauchy-Schwarz inequality.)

Fact 8.13.23. Let A ∈ Fn×n, assume that A is positive definite, and let
B ∈ Fm×n, where rankB = m. Then,

(detBB∗)2 ≤ (detBAB∗)detBA−1B∗.

(Proof: Use Fact 8.11.19.)

Fact 8.13.24. Let A,B ∈ Fn×n. Then,

|det(A+ B)|2 + |det(I −AB∗)|2 ≤ det(I +AA∗)det(I +B∗B)

and
|det(A−B)|2 + |det(I +AB∗)|2 ≤ det(I +AA∗)det(I +B∗B).

Furthermore, the first inequality is an identity if and only if either n = 1, A+B = 0,
or AB∗ = I. (Proof: The result follows from Fact 8.11.16. See [1490, p. 184].)

Fact 8.13.25. Let A,B ∈ Fn×m, and assume that I −A∗A and I − B∗B are
positive semidefinite. Then,

0 ≤ det(I −A∗A)det(I −B∗B)

≤
{
|det(I −A∗B)|2
|det(I +A∗B)|2

}

≤ det(I +A∗A)det(I +B∗B).

Now, assume that n = m. Then,

0 ≤ det(I −A∗A)det(I −B∗B)

≤ |det(I −A∗B)|2 − |det(A−B)|2

≤ |det(I −A∗B)|2

≤ |det(I −A∗B)|2 + |det(A+B)|2

≤ det(I +A∗A)det(I +B∗B)

and
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0 ≤ det(I −A∗A)det(I −B∗B)

≤ |det(I +A∗B)|2 − |det(A+B)|2

≤ |det(I +A∗B)|2

≤ |det(I +A∗B)|2 + |det(A−B)|2

≤ det(I +A∗A)det(I +B∗B).

Finally, [
det[(I −A∗A)−1] det[(I −A∗B)−1]

det[(I − B∗A)−1] det[(I −B∗B)−1]

]
≥ 0.

(Proof: The second inequality and Fact 8.11.21 are Hua’s inequalities. See [47].
The third inequality follows from Fact 8.11.15. The first interpolation in the case
n = m is given in [1060].) (Remark: Generalizations of the last result are given in
[1467].) (Remark: See Fact 8.11.21 and Fact 8.15.19.)

Fact 8.13.26. Let A,B ∈ Fn×n, and let α, β ∈ (0,∞). Then,

|det(A+B)|2 ≤ det(β−1I + αA∗A)det(α−1I + βBB∗).

(Proof: Use Fact 8.11.20. See [1491].)

Fact 8.13.27. Let A ∈ Fn×m, B ∈ Fn×l, C ∈ Fn×m, and D ∈ Fn×l. Then,

|det(AC∗ +BD∗)|2 ≤ det(AA∗ +BB∗)det(CC∗ +DD∗).

(Proof: Use Fact 8.13.38 and AA∗ ≥ 0, where A
�= [A B

C D ].) (Remark: See Fact
2.14.22.)

Fact 8.13.28. Let A ∈ Fn×m, B ∈ Fn×m, C ∈ Fk×m, and D ∈ Fk×m. Then,

|det(A∗B + C∗D)|2 ≤ det(A∗A+ C∗C)det(B∗B +D∗D).

(Proof: Use Fact 8.13.38 and A∗A ≥ 0, where A
�= [A B

C D ].) (Remark: See Fact
2.14.18.)

Fact 8.13.29. Let A,B,C ∈ Fn×n. Then,

|det(B + CA)|2 ≤ det(A∗A+ B∗B)det(I + CC∗).

(Proof: See [717].) (Remark: See Fact 8.10.37.)

Fact 8.13.30. Let A,B ∈ Fn×m. Then, there exist unitary matrices S1, S2 ∈
F
n×n such that

I + 〈A+B〉 ≤ S1(I + 〈A〉)1/2S2(I + 〈B〉)S∗
2(I + 〈A〉)1/2S∗

1.

Therefore,
det(I + 〈A+ B〉) ≤ det(I + 〈A〉)det(I + 〈B〉).

(Proof: See [47, 1270].) (Remark: This result is due to Seiler and Simon.)
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Fact 8.13.31. Let A,B ∈ Fn×n, assume that A+A∗ > 0 and B+B∗ ≥ 0, and
let α > 0. Then, αI +AB is nonsingular and has no negative eigenvalues. Hence,

det(αI +AB) > 0.

(Proof: See [613].) (Remark: Equivalently, −A is dissipative and −B is semidissi-
pative.) (Problem: Find a positive lower bound for det(αI +AB) in terms of α, A,
and B.)

Fact 8.13.32. Let A ∈ Fn×n, assume that A is positive definite, and define

α �= 1
n trA

and

β �= 1
n(n−1)

n∑
i,j=1
i�=j

|A(i,j)|.

Then,
|detA| ≤ (α− β)n−1[α+ (n−1)β].

Furthermore, if A = aIn + b1n×n, where a + nb > 0 and a > 0, then α = a + b,
β = b, and equality holds. (Proof: See [1033].) (Remark: See Fact 2.13.12 and Fact
8.9.34.)

Fact 8.13.33. Let A ∈ Fn×n, assume that A is positive definite, and define

β �= 1
n(n−1)

n∑
i,j=1
i�=j

|A(i,j)|√
A(i,i)A(j,j)

.

Then,

|detA| ≤ (1− β)n−1[1 + (n−1)β]
n∏
i=1

A(i,i).

(Proof: See [1033].) (Remark: This inequality strengthens Hadamard’s inequality.
See Fact 8.17.11. See also [412].)

Fact 8.13.34. Let A ∈ Fn×n. Then,

|detA| ≤
n∏
i=1

⎛
⎝ n∑
j=1

|A(i,j)|2
⎞
⎠
1/2

=
n∏
i=1

‖rowi(A)‖2.

Furthermore, equality holds if and only if AA∗ is diagonal. Now, let α > 0 be such
that, for all i, j = 1, . . . , n, |A(i,j)| ≤ α. Then,

|detA| ≤ αnnn/2.
If, in addition, at least one entry of A has absolute value less than α, then

|detA| < αnnn/2.

(Remark: Replace A with AA∗ in Fact 8.17.11.) (Remark: This result is a direct
consequence of Hadamard’s inequality. See Fact 8.17.11.) (Remark: See Fact
2.13.14 and Fact 6.5.26.)
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Fact 8.13.35. Let A ∈ Fn×n, B ∈ Fn×m, and C ∈ Fm×m, define A
�=
[
A B
B∗ C

]∈
F(n+m)×(n+m), and assume that A is positive definite. Then,

detA = (detA)det
(
C −B∗A−1B

) ≤ (detA)detC ≤
n+m∏
i=1

A(i,i).

(Proof: The second inequality is obtained by successive application of the first
inequality.) (Remark: detA ≤ (detA)detC is Fischer’s inequality.)

Fact 8.13.36. Let A ∈ Fn×n, B ∈ Fn×m, and C ∈ Fm×m, define A
�=
[
A B
B∗ C

]∈
F(n+m)×(n+m), assume that A is positive definite, let k �= min{m,n}, and, for
i = 1, . . . , n, let λi

�= λi(A). Then,

n+m∏
i=1

λi ≤ (detA)detC ≤
(
n+m−k∏
i=k+1

λi

)
k∏
i=1

[
1
2 (λi + λn+m−i+1)

]2
.

(Proof: The left-hand inequality is given by Fact 8.13.35. The right-hand inequality
is given in [1025].)

Fact 8.13.37. Let A ∈ Fn×n, and let S ⊆ {1, . . . , n}. Then, the following
statements hold:

i) If α ⊂ {1, . . . , n}, then

detA ≤ [detA(α)] detA(α∼).

ii) If α, β ⊆ {1, . . . , n}, then

detA(α∪β) ≤
[detA(α)] detA(β)

detA(α∩β)
.

iii) If 1 ≤ k ≤ n− 1, then⎛
⎝ ∏

{α: card(α)=k+1}
detA(α)

⎞
⎠
(n−1

k−1)

≤
⎛
⎝ ∏

{α: card(α)=k}
detA(α)

⎞
⎠
(n−1

k )

.

(Proof: See [938].) (Remark: The first result is Fischer’s inequality, see Fact 8.13.35.
The second result is the Hadamard-Fischer inequality. The third result is Szasz’s
inequality. See [353, p. 680], [709, p. 479], and [938].) (Remark: See Fact 8.13.36.)

Fact 8.13.38. Let A,B,C ∈ Fn×n, define A
�=
[
A B
B∗ C

]∈ F2n×2n, and assume
that A is positive semidefinite. Then,

0 ≤ (detA)detC − |detB|2 ≤ detA ≤ (detA)detC.

Hence, |detB|2 ≤ (detA)detC.

Furthermore, A is positive definite if and only if

|detB|2 < (detA)detC.

(Proof: Assuming that A is positive definite, it follows that 0 ≤ B∗A−1B ≤ C, which
implies that |detB|2/detA ≤ detC. Then, use continuity for the case in which A
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is singular. For an alternative proof, see [1098, p. 142]. For the case in which A

is positive definite, note that 0 ≤ B∗A−1B < C, and thus |detB|2/detA < detC.)
(Remark: This result is due to Everitt.) (Remark: See Fact 8.13.42.) (Remark:
When B is nonsquare, it is not necessarily true that |det(B∗B)|2 < (detA)detC.
See [1492].)

Fact 8.13.39. Let A ∈ Fn×n, B ∈ Fn×m, and C ∈ Fm×m, define A
�=
[
A B
B∗ C

]∈
F(n+m)×(n+m), and assume that A is positive semidefinite and A is positive definite.
Then,

B∗A−1B ≤
[
λmax(A)− λmin(A)
λmax(A) + λmin(A)

]2
C.

(Proof: See [886, 1494].)

Fact 8.13.40. Let A,B,C ∈ Fn×n, define A
�=
[
A B
B∗ C

]∈ F2n×2n, and assume
that A is positive semidefinite. Then,

|detB|2 ≤
[
λmax(A)− λmin(A)
λmax(A) + λmin(A)

]2n
(detA)detC.

Hence,

|detB|2 ≤
[
λmax(A)− λmin(A)
λmax(A) + λmin(A)

]2
(detA)detC.

Now, define Â
�=
[

detA detB

detB∗ detC

]
∈ F2×2. Then,

|detB|2 ≤
[
λmax(Â)− λmin(Â)

λmax(Â) + λmin(Â)

]2
(detA)detC.

(Proof: See [886, 1494].) (Remark: The second and third bounds are not compa-
rable. See [886, 1494].)

Fact 8.13.41. Let A ∈ Fn×n, B ∈ Fn×m, and C ∈ Fm×m, define A
�=
[
A B
B∗ C

]∈
F(n+m)×(n+m), assume that A is positive semidefinite, and assume that A and C
are positive definite. Then,

det(A|A)det(C|A) ≤ detA.

(Proof: See [717].) (Remark: This result is the reverse Fischer inequality.)

Fact 8.13.42. Let Aij ∈ Fn×n for all i, j = 1, . . . , k, define

A
�=

⎡
⎢⎢⎣
A11 · · · A1k

... · · ·.. ...

A∗
1k · · · Akk

⎤
⎥⎥⎦,

assume that A is positive semidefinite, let 1 ≤ k ≤ n, and define

Ãk
�=

⎡
⎢⎢⎣

A
(k)
11 · · · A

(k)
1k

... · · ·.. ...
A
∗(k)
1k · · · A

(k)
kk

⎤
⎥⎥⎦.
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Then, Ãk is positive semidefinite. In particular,

Ãn =

⎡
⎢⎣

detA11 · · · detA1k

... · · ·.. ...
detA∗

1k · · · detAkk

⎤
⎥⎦

is positive semidefinite. Furthermore,

detA ≤ det Ã.

Now, assume that A is positive definite. Then, detA = det Ã if and only if, for all
distinct i, j = 1, . . . , k, Aij = 0. (Proof: The first statement is given in [386]. The
inequality as well as the final statement are given in [1267].) (Remark: B(k) is the
kth compound of B. See Fact 7.5.17.) (Remark: Note that every principal subdeter-
minant of Ãn is lower bounded by the determinant of a positive-semidefinite matrix.
Hence, the inequality implies that Ãn is positive semidefinite.) (Remark: A weaker
result is given in [388] and quoted in [961] in terms of elementary symmetric func-

tions of the eigenvalues of each block.) (Remark: The example A =
[

1 0 1 0
0 1 0 0
1 0 1 0
0 0 0 1

]
shows

that Ã can be positive definite while A is singular.) (Remark: The matrix whose
(i, j) entry is detAij is a determinantal compression of A. See [387, 964, 1267].)
(Remark: See Fact 8.12.42.)

8.14 Facts on Convex Sets and Convex Functions

Fact 8.14.1. Let f : Rn �→ Rn, and assume that f is convex. Then, for all
α ∈ R, the sets {x ∈ Rn: f(x) ≤ α} and {x ∈ Rn: f(x) < α} are convex. (Proof:
See [495, p. 108].) (Remark: The converse is not true. Consider the function
f(x) = x3.

Fact 8.14.2. Let A ∈ Fn×n, assume that A is Hermitian, let α ≥ 0, and define
the set S

�= {x ∈ Fn: x∗Ax < α}. Then, the following statements hold:

i) S is open.

ii) S is a blunt cone if and only if α = 0.

iii) S is nonempty if and only if either α > 0 or λmin(A) < 0.

iv) S is convex if and only if A ≥ 0.

v) S is convex and nonempty if and only if α > 0 and A ≥ 0.

vi) The following statements are equivalent:

a) S is bounded.

b) S is convex and bounded.

c) A > 0.

vii) The following statements are equivalent:

a) S is bounded and nonempty.

b) S is convex, bounded, and nonempty.
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c) α > 0 and A > 0.

Fact 8.14.3. Let A ∈ Fn×n, assume that A is Hermitian, let α ≥ 0, and define
the set S

�= {x ∈ Fn: x∗Ax ≤ α}. Then, the following statements hold:

i) S is closed.

ii) 0 ∈ S, and thus S is nonempty.

iii) S is a pointed cone if and only if α = 0 or A ≤ 0.

iv) S is convex if and only if A ≥ 0.

v) The following statements are equivalent:

a) S is bounded.

b) S is convex and bounded.

c) A > 0.

Fact 8.14.4. Let A ∈ Fn×n, assume that A is Hermitian, let α ≥ 0, and define
the set S

�= {x ∈ Fn: x∗Ax = α}. Then, the following statements hold:

i) S is closed.

ii) S is nonempty if and only if either α = 0 or λmax(A) > 0.

iii) The following statements are equivalent:

a) S is a pointed cone.

b) 0 ∈ S.

c) α = 0.

iv) S = {0} if and only if α = 0 and either A > 0 or A < 0.

v) S is bounded if and only if either A > 0 or both α > 0 and A ≤ 0.

vi) S is bounded and nonempty if and only if A > 0.

vii) The following statements are equivalent:

a) S is convex.

b) S is convex and nonempty.

c) α = 0 and either A > 0 or A < 0.

viii) If α > 0, then the following statements are equivalent:

a) S is nonempty.

b) S is not convex.

c) λmax(A) > 0.

ix) The following statements are equivalent:

a) S is convex and bounded.

b) S is convex, bounded, and nonempty.

c) α = 0 and A > 0.
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Fact 8.14.5. Let A ∈ Fn×n, assume that A is Hermitian, let α ≥ 0, and define
the set S

�= {x ∈ Fn: x∗Ax ≥ α}. Then, the following statements hold:

i) S is closed.

ii) S is a pointed cone if and only if α = 0.

iii) S is nonempty if and only if either α = 0 or λmax(A) > 0.

iv) S is bounded if and only if S ⊆ {0}.
v) The following statements are equivalent:

a) S is bounded and nonempty.

b) S = {0}.
c) α = 0 and A < 0.

vi) S is convex if and only if either S is empty or S = Fn.

vii) S is convex and bounded if and only if S is empty.

viii) The following statements are equivalent:

a) S is convex and nonempty.

b) S = Fn.

c) α = 0 and A ≥ 0.

Fact 8.14.6. Let A ∈ Fn×n, assume that A is Hermitian, let α ≥ 0, and define
the set S

�= {x ∈ Fn: x∗Ax > α}. Then, the following statements hold:

i) S is open.

ii) S is a blunt cone if and only if α = 0.

iii) S is nonempty if and only if λmax(A) > 0.

iv) The following statements are equivalent:

a) S is empty.

b) λmax(A) ≤ 0.

c) S is bounded.

d) S is convex.

Fact 8.14.7. Let A ∈ Cn×n, and define the numerical range of A by

Θ1(A) �= {x∗Ax: x ∈ C
n and x∗x = 1}

and the set
Θ(A) �= {x∗Ax: x ∈ C

n}.
Then, the following statements hold:

i) Θ1(A) is a closed, bounded, convex subset of C.

ii) Θ(A) = {0} ∪ coneΘ1(A).

iii) Θ(A) is a pointed, closed, convex cone contained in C.
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iv) If A is Hermitian, then Θ1(A) is a closed, bounded interval contained in R.

v) If A is Hermitian, then Θ(A) is either (−∞, 0], [0,∞), or R.

vi) Θ1(A) satisfies

co spec(A) ⊆ Θ1(A) ⊆ co{ν1 + jμ1, ν1 + jμn, νn + jμ1, νn + jμn},
where

ν1
�= λmax

[
1
2 (A+A∗)

]
, νn

�= λmin

[
1
2 (A+A∗)

]
,

μ1
�= λmax

[
1
2j (A−A∗)

]
, μn

�= λmin

[
1
2j (A−A∗)

]
.

vii) If A is normal, then
Θ1(A) = co spec(A).

viii) If n ≤ 4 and Θ1(A) = co spec(A), then A is normal.

ix) Θ1(A) = co spec(A) if and only if either A is normal or there exist matrices
A1 ∈ Fn1×n1 and A2 ∈ Fn2×n2 such that n1 + n2 = n, Θ1(A1) ⊆ Θ1(A2),
and A is unitarily similar to

[
A1 0
0 A2

]
.

(Proof: See [610] or [711, pp. 11, 52].) (Remark: Θ1(A) is called the field of values
in [711, p. 5].) (Remark: See Fact 4.10.24 and Fact 8.14.7.) (Remark: viii) is an
example of the quartic barrier. See [351], Fact 8.15.37, and Fact 11.17.3.)

Fact 8.14.8. Let A ∈ Rn×n, and define the real numerical range of A by

Ψ1(A) �= {xTAx: x ∈ R
n and xTx = 1}

and the set
Ψ(A) �= {xTAx: x ∈ R

n}.
Then, the following statements hold:

i) Ψ1(A) = Ψ1[12 (A+AT)].

ii) Ψ1(A) = [λmin[12 (A+AT)], λmin[12 (A+AT)]].

iii) If A is symmetric, then Ψ1(A) = [λmin(A), λmax(A)].

iv) Ψ(A) = {0} ∪ cone Ψ1(A).

v) Ψ(A) is either (−∞, 0], [0,∞), or R.

vi) Ψ1(A) = Θ1(A) if and only if A is symmetric.

(Proof: See [711, p. 83].) (Remark: Θ1(A) is defined in Fact 8.14.7.)

Fact 8.14.9. Let A,B ∈ Cn×n, assume that A and B are Hermitian, and
define

Θ1(A,B) �=
{[

x∗Ax
x∗Bx

]
: x ∈ C

n and x∗x = 1
}
⊆ R

2.

Then, Θ1(A,B) is convex. (Proof: See [1090].) (Remark: This result is an imme-
diate consequence of Fact 8.14.7.)

Fact 8.14.10. Let A,B ∈ Rn×n, assume that A and B are symmetric, and
let α, β be real numbers. Then, the following statements are equivalent:



498 CHAPTER 8

i) There exists x ∈ Rn such that xTAx = α and xTBx = β.

ii) There exists a positive-semidefinite matrix X ∈ Rn×n such that trAX = α
and trBX = β.

(Proof: See [153, p. 84].)

Fact 8.14.11. Let A,B ∈ Rn×n, assume that A and B are symmetric, and
define

Ψ1(A,B) �=
{[

xTAx
xTBx

]
: x ∈ R

n and xTx = 1
}
⊆ R

2

and
Ψ(A,B) �=

{[
xTAx
xTBx

]
: x ∈ R

n

}
⊆ R

2.

Then, Ψ(A,B) is a pointed, convex cone. If, in addition, n ≥ 3, then Ψ1(A,B)
is convex. (Proof: See [153, pp. 84, 89] or [406, 1090].) (Remark: Ψ(A,B) =
[coneΨ1(A,B)] ∪ {[ 0

0 ]}.) (Remark: The set Ψ(A,B) is not necessarily closed. See
[406, 1063, 1064].)

Fact 8.14.12. Let A,B ∈ Rn×n, where n ≥ 2, assume that A and B are
symmetric, let a, b ∈ Rn, let a0, b0 ∈ R, assume that there exist real numbers α, β
such that αA+ βB > 0, and define

Ψ(A, a, a0, B, b, b0)
�=
{[

xTAx + aTx+ a0

xTBx+ bTx+ b0

]
: x ∈ R

n

}
⊆ R

2.

Then, Ψ(A, a, a0, B, b, b0) is closed and convex. (Proof: See [1090].)

Fact 8.14.13. Let A,B,C ∈ Rn×n, where n ≥ 3, assume that A, B, and C
are symmetric, and define

Φ1(A,B,C) �=

⎧⎨
⎩
⎡
⎣ xTAx
xTBx
xTCx

⎤
⎦ : x ∈ R

n and xTx = 1

⎫⎬
⎭ ⊆ R

3

and

Φ(A,B,C) �=

⎧⎨
⎩
⎡
⎣ xTAx
xTBx
xTCx

⎤
⎦ : x ∈ R

n

⎫⎬
⎭ ⊆ R

3.

Then, Φ1(A,B,C) is convex and Φ(A,B,C) is a pointed, convex cone. (Proof: See
[260, 1087, 1090].)

Fact 8.14.14. Let A,B,C ∈ Rn×n, where n ≥ 3, assume that A, B, and C
are symmetric, and define

Φ(A,B,C) �=

⎧⎨
⎩
⎡
⎣ xTAx
xTBx
xTCx

⎤
⎦ : x ∈ R

n

⎫⎬
⎭ ⊆ R

3.

Then, the following statements are equivalent:

i) There exist real numbers α, β, γ such that αA+βB+γC is positive definite.



POSITIVE-SEMIDEFINITE MATRICES 499

ii) Φ(A,B,C) is a pointed, one-sided, closed, convex cone, and, if x ∈ Rn

satisfies xTAx = xTBx = xTCx = 0, then x = 0.

(Proof: See [1090].)

Fact 8.14.15. Let A ∈ Fn×n, assume that A is Hermitian, let b ∈ Fn and
c ∈ R, and define f : Fn �→ R by

f(x) �= x∗Ax+ Re(b∗x) + c.

Then, the following statements hold:

i) f is convex if and only if A is positive semidefinite.

ii) f is strictly convex if and only if A is positive definite.

Now, assume that A is positive semidefinite. Then, f has a minimizer if and only
if b ∈ R(A). In this case, the following statements hold.

iii) The vector x0 ∈ Fn is a minimizer of f if and only if x0 satisfies Ax0 = − 1
2b.

iv) x0 ∈ Fm minimizes f if and only if there exists a vector y ∈ Fm such that

x0 = − 1
2A

+b+ (I −A+A)y.

v) The minimum of f is given by

f(x0) = c− x∗0Ax0 = c− 1
4 b

∗A+b.

vi) If A is positive definite, then x0 = − 1
2A

−1b is the unique minimizer of f,
and the minimum of f is given by

f(x0) = c− x∗0Ax0 = c− 1
4b

∗A−1b.

(Proof: Use Proposition 6.1.7 and note that, for every x0 satisfying Ax0 = − 1
2 b, it

follows that

f(x0) = (x− x0)∗A(x − x0) + c− x∗0Ax0

= (x− x0)∗A(x − x0) + c− 1
4b

∗A+b.)

(Remark: This result is the quadratic minimization lemma.) (Remark: See Fact
9.15.1.)

Fact 8.14.16. Let A ∈ Fn×n, assume that A is positive definite, and define
φ: Fm×n �→ R by φ(B) �= trBAB∗. Then, φ is strictly convex. (Proof: tr[α(1 −
α)(B1−B2)A(B1−B2)∗] > 0.)

Fact 8.14.17. Let p, q ∈ R, and define φ: Pn ×Pn → (0,∞) by

φ(A,B) �= trApBq.

Then, the following statements hold:

i) If p, q ∈ (0, 1) and p+ q ≤ 1, then −φ is convex.

ii) If either p, q ∈ [−1, 0) or p ∈ [−1, 0), q ∈ [1, 2], and p+ q ≥ 1, or p ∈ [1, 2],
q ∈ [−1, 0], and p+ q ≥ 1, then φ is convex.
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iii) If p, q do not satisfy the hypotheses of either i) or ii), then neither φ nor
−φ is convex.

(Proof: See [166].)

Fact 8.14.18. Let B ∈ Fn×n, assume that B is Hermitian, let α1, . . . , αk ∈
(0,∞), define r �=

∑k
i=1αi, assume that r ≤ 1, let q ∈ R, and define φ: Pn × · · · ×

Pn → [0,∞) by
φ(A1, . . . , Ak)

�= −
[
tr eB+

∑k
i=1αilogAi

]q
.

If q ∈ (0, 1/r], then φ is convex. Furthermore, if q < 0, then −φ is convex. (Proof:
See [905, 933].) (Remark: See [989] and Fact 8.12.31.)

8.15 Facts on Quadratic Forms

Fact 8.15.1. Let A ∈ Fn×n, and assume that A is Hermitian. Then,

N(A) ⊆ {x ∈ F
n: x∗Ax = 0}.

Furthermore,
N(A) = {x ∈ F

n: x∗Ax = 0}
if and only if either A ≥ 0 or A ≤ 0.

Fact 8.15.2. Let x, y ∈ Fn. Then, xx∗ ≤ yy∗ if and only if there exists α ∈ F

such that |α| ∈ [0, 1] and x = αy.

Fact 8.15.3. Let x, y ∈ Fn. Then, xy∗ + yx∗ ≥ 0 if and only if x and y are
linearly dependent. (Proof: Evaluate the product of the nonzero eigenvalues of
xy∗ + yx∗, and use the Cauchy-Schwarz inequality |x∗y|2 ≤ x∗xy∗y.)

Fact 8.15.4. Let A ∈ Fn×n, assume that A is positive definite, let x ∈ Fn,
and let a ∈ [0,∞). Then, the following statements are equivalent:

i) xx∗ ≤ aA.
ii) x∗A−1x ≤ a.

iii)
[
A x
x∗ a

]
≥ 0.

(Proof: Use Fact 2.14.3 and Proposition 8.2.4. Note that, if a = 0, then x = 0.)

Fact 8.15.5. Let A,B ∈ Fn×n, assume that A and B are Hermitian, assume
that A + B is nonsingular, let x, a, b ∈ Fn, and define c �= (A + B)−1(Aa + Bb).
Then,

(x−a)∗A(x−a)+(x−b)∗B(x−b) = (x−c)∗(A+B)(x−c) = (a−b)∗A(A+B)−1B(a−b).
(Proof: See [1184, p. 278].)



POSITIVE-SEMIDEFINITE MATRICES 501

Fact 8.15.6. Let A,B ∈ Rn×n, assume that A is symmetric and B is skew
symmetric, and let x, y ∈ Rn. Then,[

x
y

]T[
A B
BT A

][
x
y

]
= (x+ jy)∗(A+ jB)(x + jy).

(Remark: See Fact 4.10.26.)

Fact 8.15.7. Let A ∈ Fn×n, assume that A is positive definite, and let x, y ∈
Fn. Then,

2Rex∗y ≤ x∗Ax + y∗A−1y.

Furthermore, if y = Ax, then equality holds. Therefore,

x∗Ax = max
z∈Fn

[2Rex∗z − z∗Az].

(Proof:
(
A1/2x−A−1/2y

)∗(
A1/2x−A−1/2y

) ≥ 0.) (Remark: This result is due to
Bellman. See [886, 1494].)

Fact 8.15.8. Let A ∈ Fn×n, assume that A is positive definite, and let x, y ∈
Fn. Then,

|x∗y|2 ≤ (x∗Ax)
(
y∗A−1y

)
.

(Proof: Use Fact 8.11.14 with A replaced by A1/2x and B replaced by A−1/2y.)

Fact 8.15.9. Let A ∈ F
n×n, assume that A is positive definite, and let x ∈ F

n.
Then,

(x∗x)2 ≤ (x∗Ax)
(
x∗A−1x

) ≤ (α+ β)2

4αβ
(x∗x)2,

where α �= λmin(A) and β
�= λmax(A). (Remark: The second inequality is the

Kantorovich inequality. See Fact 1.15.36 and [22]. See also [927].)

Fact 8.15.10. Let A ∈ Fn×n, assume that A is positive definite, and let
x ∈ Fn. Then,

(x∗x)1/2(x∗Ax)1/2 − x∗Ax ≤ (α− β)2

4(α+ β)
x∗x

and
(x∗x)(x∗A2x)− (x∗Ax)2 ≤ 1

4 (α− β)2(x∗x)2,

where α �= λmin(A) and β �= λmax(A). (Proof: See [1079].) (Remark: Extensions of
these results are given in [748, 1079].)

Fact 8.15.11. Let A ∈ Fn×n, assume that A is positive semidefinite, let
r �= rankA, let x ∈ Fn, and assume that x /∈ N(A). Then,

x∗Ax
x∗x

− x∗x
x∗A+x

≤ [λ1/2
max(A) − λ1/2

r (A)]2.

If, in addition, A is positive definite, then, for all nonzero x ∈ Fn,

0 ≤ x∗Ax
x∗x

− x∗x
x∗A−1x

≤ [λ1/2
max(A) − λ1/2

min(A)]2.
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(Proof: See [1016, 1079]. The left-hand inequality in the last string of inequalities
is given by Fact 8.15.9.)

Fact 8.15.12. Let A ∈ Fn×n, assume that A is positive definite, let y ∈ Fn,

let α > 0, and define f : Fn �→ R by f(x) �= |x∗y|2. Then,

x0 =
√

α

y∗A−1y
A−1y

minimizes f(x) subject to x∗Ax ≤ α. Furthermore, f(x0) = αy∗A−1y. (Proof: See
[31].)

Fact 8.15.13. Let A ∈ Fn×n, assume that A is positive semidefinite, and let
x ∈ Fn. Then, (

x∗A2x
)2 ≤ (x∗Ax)

(
x∗A3x

)
and

(x∗Ax)2 ≤ (x∗x)
(
x∗A2x

)
.

(Proof: Apply the Cauchy-Schwarz inequality Corollary 9.1.7.)

Fact 8.15.14. Let A ∈ F
n×n, assume that A is positive semidefinite, and let

x ∈ Fn. If α ∈ [0, 1], then

x∗Aαx ≤ (x∗x)1−α(x∗Ax)α.

Furthermore, if α > 1, then

(x∗Ax)α ≤ (x∗x)α−1x∗Aαx.

(Remark: The first inequality is the Hölder-McCarthy inequality, which is equiva-
lent to the Young inequality. See Fact 8.9.42, Fact 8.10.43, [530, p. 125], and [532].
Matrix versions of the second inequality are given in [697].)

Fact 8.15.15. Let A ∈ Fn×n, assume that A is positive semidefinite, let
x ∈ Fn, and let α, β ∈ [1,∞), where α ≤ β. Then,

(x∗Aαx)1/α ≤ (x∗Aβx)1/β.

Now, assume that A is positive definite. Then,

x∗(logA)x ≤ log x∗Ax ≤ 1
α log x∗Aαx ≤ 1

β log x∗Aβx.

(Proof: See [509].)

Fact 8.15.16. Let A ∈ Fn×n, x, y ∈ Fn, and α ∈ (0, 1). Then,

|x∗Ay| ≤ ‖〈A〉αx‖2‖〈A∗〉1−αy‖2.
Consequently,

|x∗Ay| ≤ [x∗〈A〉x]1/2[y∗〈A∗〉y]1/2.
(Proof: See [775].)
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Fact 8.15.17. Let A,B ∈ Fn×n, assume that A is positive semidefinite, as-
sume that AB is Hermitian, and let x ∈ Fn. Then,

|x∗ABx| ≤ sprad(B)x∗Ax.

(Proof: See [911].) (Remark: This result is the sharpening by Halmos of Reid’s
inequality. Related results are given in [912].)

Fact 8.15.18. Let A,B ∈ Fn×n, assume that A and B are positive definite,
and let x ∈ Fn. Then,

x∗(A+B)−1x ≤ x∗A−1xx∗B−1x

x∗A−1x+ x∗B−1x
≤ 1

4

(
x∗A−1x+ x∗B−1x

)
.

In particular,
1

(A−1)(i,i)
+

1
(B−1)(i,i)

≤ 1
[(A+B)−1](i,i)

.

(Proof: See [948, p. 201]. The right-hand inequality follows from Fact 1.10.4.)
(Remark: This result is Bergstrom’s inequality.) (Remark: This result is a special
case of Fact 8.11.3, which is a special case of xvii) of Proposition 8.6.17.)

Fact 8.15.19. Let A,B ∈ Fn×m, assume that I−A∗A and I−B∗B are positive
semidefinite, and let x ∈ C

n. Then,

x∗(I −A∗A)xx∗(I −B∗B)x ≤ |x∗(I −A∗B)x|2.
(Remark: This result is due to Marcus. See [1060].) (Remark: See Fact 8.13.25.)

Fact 8.15.20. Let A,B ∈ Rn, and assume that A is Hermitian and B is
positive definite. Then,

λmax

(
AB−1

)
= max{λ ∈ R: det(A−λB) = 0} = min

x∈Fn\{0}
x∗Ax
x∗Bx

.

(Proof: Use Lemma 8.4.3.)

Fact 8.15.21. Let A,B ∈ Fn×n, and assume that A is positive definite and
B is positive semidefinite. Then,

4(x∗x)(x∗Bx) < (x∗Ax)2

for all nonzero x ∈ Fn if and only if there exists α > 0 such that

αI + α−1B < A.

In this case, 4B < A2, and hence 2B1/2 < A. (Proof: Sufficiency follows from
αx∗x+α−1x∗Bx < x∗Ax. Necessity follows from Fact 8.15.22. The last result follows
from (A− 2αI)2 ≥ 0 or 2B1/2 ≤ αI + α−1B.)

Fact 8.15.22. Let A,B,C ∈ Fn×n, assume that A,B,C are positive semidef-
inite, and assume that

4(x∗Cx)(x∗Bx) < (x∗Ax)2

for all nonzero x ∈ Fn. Then, there exists α > 0 such that

αC + α−1B < A.
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(Proof: See [1083].)

Fact 8.15.23. Let A,B ∈ Fn×n, and assume that A is Hermitian and B is
positive semidefinite. Then, x∗Ax < 0 for all x ∈ F

n such that Bx = 0 and x �= 0 if
and only if there exists α > 0 such that A < αB. (Proof: To prove necessity, suppose
that, for every α > 0, there exists a nonzero vector x such that x∗Ax ≥ αx∗Bx.
Now, Bx = 0 implies that x∗Ax ≥ 0. Sufficiency is immediate.)

Fact 8.15.24. Let A,B ∈ Cn×n, and assume that A and B are Hermitian.
Then, the following statements are equivalent:

i) There exist α, β ∈ R such that αA+ βB is positive definite.

ii) {x ∈ Cn: x∗Ax = x∗Bx = 0} = {0}.
(Remark: This result is Finsler’s lemma. See [83, 163, 866, 1340, 1352].) (Remark:
See Fact 8.15.25, Fact 8.16.5, and Fact 8.16.6.)

Fact 8.15.25. Let A,B ∈ R
n×n, and assume that A and B are symmetric.

Then, the following statements are equivalent:

i) There exist α, β ∈ R such that αA+ βB is positive definite.

ii) Either xTAx > 0 for all nonzero x ∈ {y ∈ Fn: yTBy = 0} or xTAx < 0 for
all nonzero x ∈ {y ∈ Fn: yTBy = 0}.

Now, assume that n ≥ 3. Then, the following statement is equivalent to i) and ii):

iii) {x ∈ R
n: xTAx = xTBx = 0} = {0}.

(Remark: This result is related to Finsler’s lemma. See [83, 163, 1352].) (Remark:
See Fact 8.15.24, Fact 8.16.5, and Fact 8.16.6.)

Fact 8.15.26. Let A,B ∈ Cn×n, assume that A and B are Hermitian, and
assume that x∗(A + jB)x is nonzero for all nonzero x ∈ Cn. Then, there exists
t ∈ [0, π) such that (sin t)A + (cos t)B is positive definite. (Proof: See [355] or
[1230, p. 282].)

Fact 8.15.27. Let A ∈ Rn×n, assume that A is symmetric, and let B ∈ Rn×m.
Then, the following statements are equivalent:

i) xTAx > 0 for all nonzero x ∈ N(BT).

ii) ν+

([
A B
BT 0

])
= n.

Furthermore, the following statements are equivalent:

iii) xTAx ≥ 0 for all x ∈ N(BT).

iv) ν−

([
A B
BT 0

])
= rankB.

(Proof: See [299, 945].) (Remark: See Fact 5.8.21 and Fact 8.15.28.)

Fact 8.15.28. Let A ∈ Rn×n, assume that A is symmetric, let B ∈ Rn×m,
where m ≤ n, and assume that

[
Im 0

]
B is nonsingular. Then, the following
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statements are equivalent:

i) xTAx > 0 for all nonzero x ∈ N(BT).

ii) For all i = m+1, . . . , n, the sign of the i×i leading principal subdeterminant
of the matrix

[
0 BT

B A

]
is (−1)m.

(Proof: See [94, p. 20], [936, p. 312], or [955].) (Remark: See Fact 8.15.27.)

Fact 8.15.29. Let A ∈ Fn×n, assume that A is positive semidefinite and
nonzero, let x, y ∈ Fn, and assume that x∗y = 0. Then,

|x∗Ay|2 ≤
[
λmax(A) − λmin(A)
λmax(A) + λmin(A)

]2
(x∗Ax)(y∗Ay).

Furthermore, there exist vectors x, y ∈ Fn satisfying x∗y = 0 for which equality
holds. (Proof: See [711, p. 443] or [886, 1494].) (Remark: This result is the
Wielandt inequality.)

Fact 8.15.30. Let A ∈ Fn×n, B ∈ Fn×m, and C ∈ Fm×m, define A
�=
[
A B
B∗ C

]
,

and assume that A and C are positive semidefinite. Then, the following statements
are equivalent:

i) A is positive semidefinite.

ii) |x∗By|2 ≤ (x∗Ax)(y∗Cy) for all x ∈ Fn and y ∈ Fm.

iii) 2|x∗By| ≤ x∗Ax+ y∗Cy for all x ∈ Fn and y ∈ Fm.

If, in addition, A and C are positive definite, then the following statement is equiv-
alent to i)–iii):

iv) sprad
(
B∗A−1BC−1

) ≤ 1.

Finally, if A is positive semidefinite and nonzero, then, for all x ∈ Fn and y ∈ Fm,

|x∗By|2 ≤
[
λmax(A)− λmin(A)
λmax(A) + λmin(A)

]2
(x∗Ax)(y∗Cy).

(Proof: See [709, p. 473] and [886, 1494].)

Fact 8.15.31. Let A ∈ Fn×n, assume that A is Hermitian, let x, y ∈ Fn, and
assume that x∗x = y∗y = 1 and x∗y = 0. Then,

2|x∗Ay| ≤ λmax(A)− λmin(A).

Furthermore, there exist vectors x, y ∈ Fn satisfying x∗x = y∗y = 1 and x∗y = 0
for which equality holds. (Proof: See [886, 1494].) (Remark: λmax(A)− λmin(A) is
the spread of A. See Fact 9.9.30 and Fact 9.9.31.)

Fact 8.15.32. Let A ∈ Rn×n, and assume that A is positive definite. Then,∫
Rn

e−x
TAx dx =

πn/2√
detA

.
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Fact 8.15.33. Let A ∈ Rn×n, assume that A is positive definite, and define
f : Rn �→ R by

f(x) =
e−

1
2x

TA−1x

(2π)n/2
√

detA
.

Then, ∫
Rn

f(x) dx = 1,

∫
Rn

f(x)xxT dx = A,

and
−
∫

Rn

f(x) log f(x) dx = 1
2 log[(2πe)ndetA].

(Proof: See [352] or use Fact 8.15.35.) (Remark: f is the multivariate normal
density. The last expression is the entropy.)

Fact 8.15.34. Let A,B ∈ Rn×n, assume that A and B are positive definite,
and, for k = 0, 1, 2, 3, define

Ik
�=

1
(2π)n/2

√
detA

∫
Rn

(
xTBx

)k
e−

1
2x

TA−1x dx.

Then,
I0 = 1,

I1 = trAB,

I2 = (trAB)2 + 2 tr (AB)2,

I3 = (trAB)3 + 6(trAB)
[
tr (AB)2

]
+ 8tr (AB)3.

(Proof: See [1002, p. 80].) (Remark: These identities are Lancaster’s formulas.)

Fact 8.15.35. Let A ∈ R
n×n, assume that A is positive definite, let B ∈ R

n×n,
let a, b ∈ Rn, and let α, β ∈ R. Then,∫

Rn

(
xTBx+ bTx+ β

)
e−(xTAx+aTx+α) dx

=
πn/2

2
√

detA

[
2β + tr

(
A−1B

)− bTA−1a+ 1
2a

TA−1BA−1a
]
e

1
4a

TA−1a−α.

(Proof: See [654, p. 322].)

Fact 8.15.36. Let G = (X,R) be a symmetric graph, where X = {x1, . . . , xn}.
Then, for all z ∈ Rn, it follows that

zTLz = 1
2

∑
(z(i) − z(j))2,

where the sum is over the set {(i, j): (xi, xj) ∈ R}. (Proof: See [269, pp. 29, 30] or
[993].)
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Fact 8.15.37. Let n ≤ 4, let A ∈ Rn×n, assume that A is symmetric, and
assume that, for all nonnegative vectors x ∈ Rn, xTAx ≥ 0. Then, there exist
B,C ∈ Rn×n such that B is positive semidefinite, C is symmetric and nonnegative,
and A = B+C. (Remark: The result does not hold for all n > 5. Hence, this result
is an example of the quartic barrier. See [351], Fact 8.14.7, and Fact 11.17.3.)
(Remark: A is copositive.)

8.16 Facts on Simultaneous Diagonalization

Fact 8.16.1. Let A,B ∈ Fn×n, assume that A and B are Hermitian. Then,
the following statements are equivalent:

i) There exists a unitary matrix S ∈ Fn×n such that SAS∗ and SBS∗ are
diagonal.

ii) AB = BA.

iii) AB and BA are Hermitian.

If, in addition, A is nonsingular, then the following condition is equivalent to i)–iii):

iv) A−1B is Hermitian.

(Proof: See [174, p. 208], [447, pp. 188–190], or [709, p. 229].) (Remark: The
equivalence of i) and ii) is given by Fact 5.17.7.)

Fact 8.16.2. Let A,B ∈ Fn×n, assume that A and B are Hermitian, and
assume that A is nonsingular. Then, there exists a nonsingular matrix S ∈ Fn×n

such that SAS∗ and SBS∗ are diagonal if and only if A−1B is diagonalizable over
R. (Proof: See [709, p. 229] or [1098, p. 95].)

Fact 8.16.3. Let A,B ∈ Fn×n, assume that A and B are symmetric, and
assume that A is nonsingular. Then, there exists a nonsingular matrix S ∈ Fn×n

such that SAST and SBST are diagonal if and only ifA−1B is diagonalizable. (Proof:
See [709, p. 229] and [1352].) (Remark: A and B are complex symmetric.)

Fact 8.16.4. Let A,B ∈ Fn×n, and assume that A and B are Hermitian.
Then, there exists a nonsingular matrix S ∈ Fn×n such that SAS∗ and SBS∗ are
diagonal if and only if there exists a positive-definite matrix M ∈ F

n×n such that
AMB = BMA. (Proof: See [83].)

Fact 8.16.5. Let A,B ∈ Fn×n, assume that A and B are Hermitian, and
assume there exist α, β ∈ R such that αA+βB is positive definite. Then, there exists
a nonsingular matrix S ∈ Fn×n such that SAS∗ and SBS∗ are diagonal. (Proof:
See [709, p. 465].) (Remark: This result extends a result due to Weierstrass. See
[1352].) (Remark: Suppose that B is positive definite. Then, by necessity of Fact
8.16.2, it follows that A−1B is diagonalizable over R, which proves iii) =⇒ i) of
Proposition 5.5.12.) (Remark: See Fact 8.16.6.)

Fact 8.16.6. Let A,B ∈ Fn×n, assume that A and B are Hermitian, assume
that {x ∈ Fn: x∗Ax = x∗Bx = 0} = {0}, and, if F = R, assume that n ≥ 3. Then,
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there exists a nonsingular matrix S ∈ Fn×n such that SAS∗ and SBS∗ are diagonal.
(Proof: The result follows from Fact 5.17.9. See [950] or [1098, p. 96].) (Remark:
For F = R, this result is due to Pesonen and Milnor. See [1352].) (Remark: See
Fact 5.17.9, Fact 8.15.24, Fact 8.15.25, and Fact 8.16.5.)

8.17 Facts on Eigenvalues and Singular Values for One Matrix

Fact 8.17.1. Let A =
[
a b
b c

] ∈ F2×2, assume that A is Hermitian, and let
mspec(A) = {λ1, λ2}ms. Then,

2|b| ≤ λ1 − λ2.

Now, assume that A is positive semidefinite. Then,
√

2|b| ≤
(√

λ1 −
√
λ2

)√
λ1 + λ2.

If c > 0, then |b|√
c
≤
√
λ1 −

√
λ2.

If a > 0 and c > 0, then |b|√
ac
≤ λ1 − λ2

λ1 + λ2
.

Finally, if A is positive definite, then

|b|
a
≤ λ1 − λ2

2
√
λ1λ2

and
4|b| ≤ λ21 − λ22√

λ1λ2

.

(Proof: See [886, 1494].) (Remark: These inequalities are useful for deriving in-
equalities involving quadratic forms. See Fact 8.15.29 and Fact 8.15.30.)

Fact 8.17.2. Let A ∈ Fn×m. Then, for all i = 1, . . . ,min{n,m},
λi(〈A〉) = σi(A).

Hence,

tr 〈A〉 =
min{n,m}∑

i=1

σi(A).

Fact 8.17.3. Let A ∈ Fn×n, and define

A
�=

[
σmax(A)I A∗

A σmax(A)I

]
.

Then, A is positive semidefinite. Furthermore,

〈A+A∗〉 ≤
{ 〈A〉+ 〈A∗〉 ≤ 2σmax(A)I

A∗A+ I

}
≤ [σ2

max(A) + 1
]
I.

(Proof: See [1492].)
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Fact 8.17.4. Let A ∈ Fn×n. Then, for all i = 1, . . . , n,

−σi(A) ≤ λi
[
1
2 (A+A∗)

] ≤ σi(A).

Hence,
|trA| ≤ tr 〈A〉.

(Proof: See [1211].) (Remark: See Fact 5.11.25.)

Fact 8.17.5. Let A ∈ Fn×n, and let mspec(A) = {λ1, . . . , λn}ms, where λ1, . . . ,
λn are ordered such that |λ1| ≥ · · · ≥ |λn|. If p > 0, then, for all k = 1, . . . , n,

k∑
i=1

|λi|p ≤
k∑
i=1

σpi (A).

In particular, for all k = 1, . . . , n,
k∑
i=1

|λi| ≤
k∑
i=1

σi(A).

Hence,

|trA| ≤
n∑
i=1

|λi| ≤
n∑
i=1

σi(A) = tr 〈A〉.

Furthermore, for all k = 1, . . . , n,
k∑
i=1

|λi|2 ≤
k∑
i=1

σ2
i(A).

Hence,

Re trA2 ≤ |trA2| ≤
n∑
i=1

|λi|2 ≤
n∑
i=1

σi
(
A2
)

= tr
〈
A2
〉 ≤ n∑

i=1

σ2
i(A) = trA∗A.

(Proof: The result follows from Fact 5.11.28 and Fact 2.21.13. See [197, p. 42],
[711, p. 176], or [1485, p. 19]. See Fact 9.13.17 for the inequality tr 〈A2〉 =
tr
(
A2∗A2

)1/2 ≤ trA∗A.) Furthermore,
n∑
i=1

|λi|2 = trA∗A

if and only if A is normal. (Proof: See Fact 5.14.15.) Finally,
n∑
i=1

λ2
i = trA∗A

if and only if A is Hermitian. (Proof: See Fact 3.7.13.) (Remark: The first result is
Weyl’s inequalities. The result

∑n
i=1 |λi|2 ≤ trA∗A is Schur’s inequality. See Fact

9.11.3.) (Problem: Determine when equality holds for the remaining inequalities.)

Fact 8.17.6. Let A ∈ Fn×n, let mspec(A) = {λ1, . . . , λn}ms, where λ1, . . . ,
λn are ordered such that |λ1| ≥ · · · ≥ |λn|, and let r > 0. Then, for all k = 1, . . . , n,
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k∏
i=1

(1 + r|λi|) ≤
k∏
i=1

[1 + σi(A)].

(Proof: See [447, p. 222].)

Fact 8.17.7. Let A ∈ Fn×n. Then,

|trA2| ≤
{

tr 〈A〉〈A∗〉
tr 〈A2〉 ≤ tr 〈A〉2 = trA∗A.

(Proof: For the upper inequality, see [886, 1494]. For the lower inequalities, use
Fact 8.17.4 and Fact 9.11.3.) (Remark: See Fact 5.11.10, Fact 9.13.17, and Fact
9.13.18.)

Fact 8.17.8. Let A ∈ Fn×n, and assume that A is Hermitian. Then, for all
k = 1, . . . , n,

k∑
i=1

di(A) ≤
k∑
i=1

λi(A)

with equality for k = n, that is,

trA =
n∑
i=1

di(A) =
n∑
i=1

λi(A).

That is,
[
λ1(A) · · · λn(A)

]T strongly majorizes
[

d1(A) · · · dn(A)
]T
, and

thus, for all k = 1, . . . , n,
n∑
i=k

λi(A) ≤
n∑
i=k

di(A).

In particular,
λmin(A) ≤ dmin(A) ≤ dmax(A) ≤ λmax(A).

Furthermore, the vector
[

d1(A) · · · dn(A)
]T is an element of the convex hull of

the n! vectors obtaining by permuting the components of
[
λ1(A) · · · λn(A)

]T
.

(Proof: See [197, p. 35], [709, p. 193], [971, p. 218], or [1485, p. 18]. The last
statement follows from Fact 2.21.7.) (Remark: This result is Schur’s theorem.)
(Remark: See Fact 8.12.3.)

Fact 8.17.9. Let A ∈ F
n×n, assume that A is Hermitian, let k denote the

number of positive diagonal entries of A, and let l denote the number of positive
eigenvalues of A. Then,

k∑
i=1

d2
i (A) ≤

l∑
i=1

λ2
i (A).

(Proof: Write A = B + C, where B is positive semidefinite, C is negative semidef-
inite, and mspec(A) = mspec(B) ∪mspec(C). Furthermore, without loss of gener-
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ality, assume that A(1,1), . . . , A(k,k) are the positive diagonal entries of A. Then,

k∑
i=1

d2
i (A) =

k∑
i=1

A2
(i,i) ≤

k∑
i=1

(A(i,i) − C(i,i))2

=
k∑
i=1

B2
(i,i) ≤

n∑
i=1

B2
(i,i) ≤ trB2 =

l∑
i=1

λ2
i (A).

(Remark: This inequality can be written as

tr (A+ |A|)◦2 ≤ tr (A+ 〈A〉)2.
(Remark: This result is due to Y. Li.)

Fact 8.17.10. Let x, y ∈ Rn, where n ≥ 2. Then, the following statements are
equivalent:

i) y strongly majorizes by x.

ii) x is an element of the convex hull of the vectors y1, . . . , yn! ∈ Rn, where
each of these n! vectors is formed by permuting the components of y.

iii) There exists a Hermitian matrix A ∈ Cn×n such that
[
A(1,1) · · · A(n,n)

]T
= x and mspec(A) = {y(1), . . . , y(n)}ms.

(Remark: This result is the Schur-Horn theorem. Schur’s theorem given by Fact
8.17.8 is iii) =⇒ i), while the result i) =⇒ iii) is due to [708]. The equivalence of ii)
is given by Fact 2.21.7. The significance of this result is discussed in [153, 198, 262].)
(Remark: An equivalent version is given by Fact 3.11.19.)

Fact 8.17.11. Let A ∈ F
n×n, and assume that A is positive semidefinite.

Then, for all k = 1, . . . , n,
n∏
i=k

λi(A) ≤
n∏
i=k

di(A).

In particular,

detA ≤
n∏
i=1

A(i,i).

Now, assume that A is positive definite. Then, equality holds if and only if A
is diagonal. (Proof: See [530, pp. 21–24], [709, pp. 200, 477], or [1485, p. 18].)
(Remark: The case k = 1 is Hadamard’s inequality.) (Remark: See Fact 8.13.34 and
Fact 9.11.1.) (Remark: A strengthened version is given by Fact 8.13.33.) (Remark:
A geometric interpretation is discussed in [539].)

Fact 8.17.12. Let A ∈ Fn×n, define H �= 1
2 (A+A∗) and S �= 1

2 (A−A∗), and
assume that H is positive definite. Then, the following statements hold:

i) A is nonsingular.

ii) 1
2 (A−1 +A−∗) = (H + S∗H−1S)−1.

iii) σmax(A−1) ≤ σmax(H−1).

iv) σmax(A) ≤ σmax(H + S∗H−1S).
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(Proof: See [978].) (Remark: See Fact 8.9.31 and Fact 8.13.11.)

Fact 8.17.13. Let A ∈ Fn×n, and assume that A is Hermitian. Then,
{A(1,1), . . . , A(n,n)}ms = mspec(A) if and only if A is diagonal. (Proof: Apply
Fact 8.17.11 with A+ βI > 0.)

Fact 8.17.14. Let A ∈ Fn×n. Then,
[
I A
A∗ I

]
is positive semidefinite if and only

if σmax(A) ≤ 1. Furthermore,
[
I A
A∗ I

]
is positive definite if and only if σmax(A) < 1.

(Proof: Note that[
I A
A∗ I

]
=
[

I 0
A∗ I

][
I 0
0 I −A∗A

][
I A
0 I

]
.)

Fact 8.17.15. Let A ∈ Fn×n, and assume that A is Hermitian. Then, for all
k = 1, . . . , n,

k∑
i=1

λi = max{trS∗AS: S ∈ F
n×k and S∗S = Ik}

and n∑
i=n+1−k

λi = min{trS∗AS: S ∈ F
n×k and S∗S = Ik}.

(Proof: See [709, p. 191].) (Remark: This result is the minimum principle.)

Fact 8.17.16. Let A ∈ Fn×n, assume that A is Hermitian, and let S ∈ Rk×n

satisfy SS∗ = Ik. Then, for all i = 1, . . . , k,

λi+n−k(A) ≤ λi(SAS∗) ≤ λi(A).

Consequently,
k∑
i=1

λi+n−k(A) ≤ trSAS∗ ≤
k∑
i=1

λi(A)

and
k∏
i=1

λi+n−k(A) ≤ detSAS∗ ≤
k∏
i=1

λi(A).

(Proof: See [709, p. 190].) (Remark: This result is the Poincaré separation theo-
rem.)

8.18 Facts on Eigenvalues and Singular Values for Two or
More Matrices

Fact 8.18.1. Let A ∈ Fn×n, B ∈ Fn×m, and C ∈ Fm×m, and assume that A
and C are positive definite. Then,

[
A B
B∗ C

] ∈ F(n+m)×(n+m) is positive semidefinite
if and only if

σmax(A−1/2BC−1/2) ≤ 1.

Furthermore,
[
A B
B∗ C

] ∈ F(n+m)×(n+m) is positive definite if and only if

σmax(A−1/2BC−1/2) < 1.
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(Proof: See [964].)

Fact 8.18.2. Let A ∈ Fn×n, B ∈ Fn×m, and C ∈ Fm×m, assume that A and
C are positive definite, and assume that

σ2
max(B) ≤ σmin(A)σmin(C).

Then,
[
A B
B∗ C

] ∈ F(n+m)×(n+m) is positive semidefinite. If, in addition,

σ2
max(B) < σmin(A)σmin(C),

then
[
A B
B∗ C

] ∈ F
(n+m)×(n+m) is positive definite. (Proof: Note that

σ2
max(A

−1/2BC−1/2) ≤ λmax(A−1/2BC−1B∗A−1/2)

≤ σmax(C−1)λmax(A−1/2BB∗A−1/2)

≤ 1
σmin(C)

λmax(B∗A−1B)

≤ σmax(A−1)
σmin(C)

λmax(B∗B)

=
1

σmin(A)σmin(C)
σ2

max(B)

≤ 1.

The result now follows from Fact 8.18.1.)

Fact 8.18.3. Let A,B ∈ F
n, assume that A and B are Hermitian, and define

γ
�=
[
γ1 · · ·γn

]
, where the components of γ are the components of[

λ1(A) · · ·λn(A)
]
+
[
λn(B) · · ·λ1(B)

]
arranged in decreasing order. Then, for all

k = 1, . . . , n,
k∑
i=1

γi ≤
k∑
i=1

λi(A+B).

(Proof: The result follows from the Lidskii-Wielandt inequalities. See [197, p. 71] or
[198, 380].) (Remark: This result provides an alternative lower bound for (8.6.12).)

Fact 8.18.4. Let A,B ∈ Hn, let k ∈ {1, . . . , n}, and let 1 ≤ i1 ≤ · · · ≤ ik ≤ n.
Then,

k∑
j=1

λij (A) +
k∑
i=1

λn−k+j(B)] ≤
k∑
j=1

λij (A+B) ≤
k∑
j=1

[λij (A) + λj(B)].

(Proof: See [1177, pp. 115, 116].)

Fact 8.18.5. Let f : R �→ R be convex, define f : Hn �→ Hn by (8.5.1), let
A,B ∈ Fn×n, and assume that A and B are Hermitian. Then, for all α ∈ [0, 1],[

αλ1[f(A)] + (1− α)λ1[f(B)] · · · αλn[f(A)] + (1− α)λn[f(B)]
]
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weakly majorizes[
λ1[f(αA+ (1− α)B)] · · · λn[f(αA+ (1 − α)B)]

]
.

If, in addition, f is either nonincreasing or nondecreasing, then, for all i = 1, . . . , n,
λi[f(αA+ (1− α)B)] ≤ αλi[f(A)] + (1− α)λi[f(B)].

(Proof: See [91].) (Remark: Convexity of f : R �→ R does not imply convexity of
f : Hn �→ Hn.)

Fact 8.18.6. Let A,B ∈ Fn×n, and assume that A and B are positive semidef-
inite. If r ∈ [0, 1], then[

λ1(Ar +Br) · · · λn(Ar +Br)
]

weakly majorizes [
λ1[(A+B)r] · · · λn[(A+B)r]

]
,

and, for all i = 1, . . . , n,

21−rλi[(A+B)r] ≤ λi(Ar +Br).

If r ≥ 1, then [
λ1[(A+B)r] · · · λn[(A+B)r]

]
weakly majorizes [

λ1(Ar +Br) · · · λn(Ar +Br)
]
,

and, for all i = 1, . . . , n,

λi(Ar +Br) ≤ 2r−1λi[(A+B)r].

(Proof: The result follows from Fact 8.18.5. See [58, 89, 91].)

Fact 8.18.7. Let A,B ∈ Fn×n, and assume that A and B are positive semidef-
inite. Then, for all k = 1, . . . , n,

k∑
i=1

σ2
i (A+ jB) ≤

k∑
i=1

[σ2
i (A) + σ2

i (B)],

n∑
i=1

σ2
i (A+ jB) =

n∑
i=1

[σ2
i (A) + σ2

i (B)],

k∑
i=1

[σ2
i (A+ jB) + σ2

n−i(A+ jB)] ≤
k∑
i=1

[σ2
i (A) + σ2

i (B)],

n∑
i=1

[σ2
i (A+ jB) + σ2

n−i(A+ jB)] =
n∑
i=1

[σ2
i (A) + σ2

i (B)],

and
k∑
i=1

[σ2
i (A) + σ2

n−i(B)] ≤
k∑
i=1

σ2
i (A+ jB),
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n∑
i=1

[σ2
i (A) + σ2

n−i(B)] =
n∑
i=1

σ2
i (A+ jB).

(Proof: See [52, 320].) (Remark: The first identity is given by Fact 9.9.40.)

Fact 8.18.8. Let A,B ∈ Fn×n, and assume that A and B are positive semidef-
inite. Then, the following statements hold:

i) If p ∈ [0, 1], then

σmax(Ap −Bp) ≤ σpmax(A−B).

ii) If p ≥ √2, then

σmax(Ap −Bp) ≤ p[max{σmax(A), σmax(B)}]p−1σmax(A−B).

iii) If a and b are positive numbers such that aI ≤ A ≤ bI and aI ≤ B ≤ bI,
then

σmax(Ap −Bp) ≤ b[bp−2 + (p− 1)ap−2]σmax(A−B).

(Proof: See [206, 816].)

Fact 8.18.9. Let A,B ∈ Fn×n, and assume that A and B are positive semidef-
inite. Then, for all i = 1, . . . , n,

σi(A−B) ≤ σi
([

A 0
0 B

])
.

(Proof: See [1255, 1483].)

Fact 8.18.10. Let A ∈ Fn×n, B ∈ Fn×m, and C ∈ Fm×m, and assume that
A ∈ F(n+m)×(n+m) defined by

A
�=
[
A B
B∗ C

]

is positive semidefinite. Then, for all i = 1, . . . ,min{n,m},
2σi(B) ≤ σi(A).

(Proof: See [215, 1255].)

Fact 8.18.11. Let A,B ∈ Fn×n. Then,

max
{
σ2

max(A), σ2
max(B)

} − σmax(AB) ≤ σmax(A∗A−BB∗)

and

σmax(A∗A−BB∗) ≤ max
{
σ2

max(A), σ2
max(B)

}−min
{
σ2
min(A), σ2

min(B)
}
.

Furthermore,

max
{
σ2

max(A), σ2
max(B)

}
+ min

{
σ2
min(A), σ2

min(B)
} ≤ σmax(A∗A+BB∗)

and
σmax(A∗A+BB∗) ≤ max

{
σ2

max(A), σ2
max(B)

}
+ σmax(AB).
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Now, assume that A and B are positive semidefinite. Then,

max{λmax(A), λmax(B)} − σmax(A1/2B1/2) ≤ σmax(A−B)

and

σmax(A−B) ≤ max{λmax(A), λmax(B)} −min{λmin(A), λmin(B)}.
Furthermore,

max{λmax(A), λmax(B)} + min{λmin(A), λmin(B)} ≤ λmax(A+B)

and
λmax(A+B) ≤ max{λmax(A), λmax(B)}+ σmax(A1/2B1/2).

(Proof: See [824, 1486].) (Remark: See Fact 8.18.14 and Fact 9.13.8.)

Fact 8.18.12. Let A,B ∈ Fn×n, and assume that A and B are positive
semidefinite. Then,

max{σmax(A), σmax(B)}−σmax(A1/2B1/2)

≤ σmax(A−B)

≤ max{σmax(A), σmax(B)}
≤ σmax(A+B)

≤
{

max{σmax(A), σmax(B)}+ σmax

(
A1/2B1/2

)
σmax(A) + σmax(B)

}

≤ 2 max{σmax(A), σmax(B)}.
(Proof: See [818, 824] and use Fact 8.18.13.) (Remark: See Fact 8.18.14.)

Fact 8.18.13. Let A,B ∈ F
n×n, and assume that A and B are positive

semidefinite, and let k ≥ 1. Then, for all i = 1, . . . , n,

2σi
[
A1/2(A+B)k−1B1/2

]
≤ λi
[
(A+B)k

]
.

Hence,
2σmax(A1/2B1/2) ≤ λmax(A+B)

and
σmax(A1/2B1/2) ≤ max{λmax(A), λmax(B)}.

(Proof: See Fact 8.18.11 and Fact 9.9.18.)

Fact 8.18.14. Let A,B ∈ Fn×n, and assume that A and B are positive
semidefinite. Then,

max{λmax(A), λmax(B)} − σmax(A1/2B1/2) ≤ σmax(A−B)

and
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λmax(A+B)

≤ 1
2

[
λmax(A) + λmax(B) +

√
[λmax(A)− λmax(B)]2 + 4σ2

max

(
A1/2B1/2

)]

≤
{

max{λmax(A), λmax(B)} + σmax(A1/2B1/2)

λmax(A) + λmax(B).

Furthermore,
λmax(A+B) = λmax(A) + λmax(B)

if and only if
σmax(A1/2B1/2) = λ1/2

max(A)λ1/2
max(B).

(Proof: See [818, 821, 824].) (Remark: See Fact 8.18.11, Fact 8.18.12, Fact 9.14.15,
and Fact 9.9.46.) (Problem: Is σmax(A−B) ≤ σmax(A+B)?)

Fact 8.18.15. Let A,B ∈ Fn×n, and assume that A and B are positive
semidefinite. Then,

σmax

(
A1/2B1/2

)
≤ σ1/2

max(AB).

Equivalently,
λmax

(
A1/2BA1/2

)
≤ λ1/2max

(
AB2A

)
.

Furthermore, AB = 0 if and only if A1/2B1/2 = 0. (Proof: See [818] and [824].)

Fact 8.18.16. Let A,B ∈ Fn×n, and assume that A and B are positive
semidefinite. Then,

trAB ≤ tr
(
AB2A

)1/2 ≤ 1
4 tr (A+B)2,

tr (AB)2 ≤ trA2B2 ≤ 1
16 tr (A+B)4,

and

σmax(AB) ≤ 1
4σmax

[
(A+B)2

]

≤
{

1
2σmax(A2 +B2) ≤ 1

2σmax(A2) + 1
2σmax(B2)

1
4σ

2
max(A+B) ≤ 1

4 [σmax(A) + σmax(B)]2

}

≤ 1
2σ

2
max(A) + 1

2σ
2
max(B).

(Proof: See Fact 9.9.18. The inequalities trAB ≤ tr
(
AB2A

)1/2 and tr (AB)2 ≤
trA2B2 follow from Fact 8.12.20.)

Fact 8.18.17. Let A,B ∈ F
n×n, assume that A is positive semidefinite, and

assume that B is positive definite. Then, for all i, j, k ∈ {1, . . . , n} such that
j + k ≤ i+ 1,

λi(AB) ≤ λj(A)λk(B)

and
λn−j+1(A)λn−k+1(B) ≤ λn−i+1(AB).

In particular, for all i = 1, . . . , n,

λi(A)λn(B) ≤ λi(AB) ≤ λi(A)λ1(B).
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(Proof: See [1177, pp. 126, 127].)

Fact 8.18.18. Let A,B ∈ Fn×n, assume that A is positive semidefinite, and
assume that B is Hermitian. Then, for all k = 1, . . . , n,

k∑
i=1

λi(A)λn−i+1(B) ≤
k∑
i=1

λi(AB)

and
k∑
i=1

λn−i+1(AB) ≤
k∑
i=1

λi(A)λi(B).

In particular,
k∑
i=1

λi(A)λn−i+1(B) ≤ trAB ≤
n∑
i=1

λi(A)λi(B).

(Proof: See [838].) (Remark: See Fact 5.12.4, Fact 5.12.5, Fact 5.12.8, and Propo-
sition 8.4.13.) (Remark: The upper and lower bounds for trAB are related to Fact
1.16.4. See [200, p. 140].)

Fact 8.18.19. Let A,B ∈ Fn×n, assume that A and B are positive semidef-
inite, let λ1(AB) ≥ · · · ≥ λn(AB) ≥ 0 denote the eigenvalues of AB, and let
1 ≤ l1 < · · · < lk ≤ n. Then,

k∑
i=1

λli(A)λn−i+1(B) ≤
k∑
i=1

λli(AB) ≤
k∑
i=1

λli(A)λi(B).

Furthermore,
k∑
i=1

λli(A)λn−li+1(B) ≤
k∑
i=1

λi(AB).

In particular,
k∑
i=1

λi(A)λn−i+1(B) ≤
k∑
i=1

λi(AB) ≤
k∑
i=1

λi(A)λi(B).

(Proof: See [1388].) (Remark: See Fact 8.18.22 and Fact 9.14.27.)

Fact 8.18.20. Let A,B ∈ Fn×n, and assume that A and B are positive
semidefinite. If p ≥ 1, then

n∑
i=1

λpi(A)λpn−i+1(B) ≤ tr
(
B1/2AB1/2

)p
≤ trApBp ≤

n∑
i=1

λpi(A)λpi(B).

If 0 ≤ p ≤ 1, then
n∑
i=1

λpi(A)λpn−i+1(B) ≤ trApBp ≤ tr
(
B1/2AB1/2

)p
≤

n∑
i=1

λpi(A)λpi(B).
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Now, suppose that A and B are positive definite. If p ≤ −1, then
n∑
i=1

λpi(A)λpn−i+1(B) ≤ tr
(
B1/2AB1/2

)p
≤ trApBp ≤

n∑
i=1

λpi(A)λpi(B).

If −1 ≤ p ≤ 0, then
n∑
i=1

λpi(A)λpn−i+1(B) ≤ trApBp ≤ tr
(
B1/2AB1/2

)p
≤

n∑
i=1

λpi(A)λpi(B).

(Proof: See [1389]. See also [278, 881, 909, 1392].) (Remark: See Fact 8.12.20. See
Fact 8.12.15 for the indefinite case.)

Fact 8.18.21. Let A,B ∈ Fn×n, and assume that A and B are positive
semidefinite. Then, for all k = 1, . . . , n,

k∏
i=1

λi(AB) ≤
k∏
i=1

σi(AB) ≤
k∏
i=1

λi(A)λi(B)

with equality for k = n. Furthermore, for all k = 1, . . . , n,
n∏
i=k

λi(A)λi(B) ≤
n∏
i=k

σi(AB) ≤
n∏
i=k

λi(AB)

with equality for k = 1. (Proof: Use Fact 5.11.28 and Fact 9.13.19.)

Fact 8.18.22. Let A,B ∈ Fn×n, assume that A and B are positive semidef-
inite, let λ1(AB) ≥ · · · ≥ λn(AB) ≥ 0 denote the eigenvalues of AB, and let
1 ≤ l1 < · · · < lk ≤ n. Then,

k∏
i=1

λli(AB) ≤
k∏
i=1

λli(A)λi(B)

with equality for k = n. Furthermore,
k∏
i=1

λli(A)λn−li+1(B) ≤
k∏
i=1

λi(AB)

with equality for k = n. In particular,
k∏
i=1

λi(A)λn−i+1(B) ≤
k∏
i=1

λi(AB) ≤
k∏
i=1

λi(A)λi(B)

with equality for k = n. (Proof: See [1388].) (Remark: See Fact 8.18.19 and Fact
9.14.27.)

Fact 8.18.23. Let A,B ∈ Fn×n, assume that A and B are positive definite,
and let λ ∈ spec(A). Then,

2
n

[
λ2

min(A)λ2
min(B)

λ2
min(A) + λ2

min(B)

]
< λ < n

2

[
λ2

max(A) + λ2
max(B)

]
.

(Proof: See [729].)
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Fact 8.18.24. Let A,B ∈ Fn×n, assume that A and B are positive definite,
and define

kA
�=
λmax(A)
λmin(A)

, kB
�=
λmax(B)
λmin(B)

,

and
γ

�=
(
√
kA + 1)2√
kA

− kB(
√
kA − 1)2√
kA

.

Then, if γ < 0, then
1
2λmax(A)λmax(B)γ ≤ λmin(AB +BA) ≤ λmax(AB +BA) ≤ 2λmax(A)λmax(B),

whereas, if γ > 0, then
1
2λmin(A)λmin(B)γ ≤ λmin(AB +BA) ≤ λmax(AB +BA) ≤ 2λmax(A)λmax(B).

Furthermore, if √
kAkB < 1 +

√
kA +

√
kB,

then AB +BA is positive definite. (Proof: See [1038].)

Fact 8.18.25. Let A,B ∈ Fn×n, assume that A is positive definite, assume
that B is positive semidefinite, and let α > 0 and β > 0 be such that αI ≤ A ≤ βI.
Then,

σmax(AB) ≤ α+β
2
√
αβ

sprad(AB) ≤ α+β
2
√
αβ
σmax(AB).

In particular,
σmax(A) ≤ α+β

2
√
αβ

sprad(A) ≤ α+β
2
√
αβ
σmax(A).

(Proof: See [1312].) (Remark: The left-hand inequality is tightest for α = λmin(A)
and β = λmax(A).) (Remark: This result is due to Bourin.)

Fact 8.18.26. Let A,B ∈ Fn×n, and assume that A and B are positive
semidefinite. Then, the following statements hold:

i) If q ∈ [0, 1], then
σmax(AqBq) ≤ σqmax(AB)

and
σmax(BqAqBq) ≤ σqmax(BAB).

ii) If q ∈ [0, 1], then
λmax(AqBq) ≤ λqmax(AB).

iii) If q ≥ 1, then
σqmax(AB) ≤ σmax(AqBq).

iv) If q ≥ 1, then
λqmax(AB) ≤ λmax(AqBq).

v) If p ≥ q > 0, then
σ1/q
max(A

qBq) ≤ σ1/p
max(A

pBp).

vi) If p ≥ q > 0, then
λ1/q

max(A
qBq) ≤ λ1/p

max(A
pBp).

(Proof: See [197, pp. 255–258] and [523].) (Remark: See Fact 8.10.49, Fact 8.12.20,
Fact 9.9.16, and Fact 9.9.17.) (Remark: ii) is the Cordes inequality.)
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Fact 8.18.27. Let A,B ∈ Fn×n, assume that A and B are positive semidefi-
nite, and let p ≥ r ≥ 0. Then,[

λ
1/p
1 (ApBp) · · · λ

1/p
n (ApBp)

]
strongly log majorizes [

λ
1/r
1 (ArBr) · · · λ

1/r
n (ArBr)

]
.

In fact, for all q > 0,
det(AqBq)1/q = (detA)detB.

(Proof: See [197, p. 257] or [1485, p. 20] and Fact 2.21.13.)

Fact 8.18.28. Let A ∈ Fn×n, B ∈ Fn×m, and C ∈ Fm×m, and assume that

A
�=
[
A B
B∗ C

]
∈F

(n+m)×(n+m)

is positive semidefinite. Then,

max{σmax(A), σmax(B)}
≤ σmax(A)

≤ 1
2

[
σmax(A) + σmax(B) +

√
[σmax(A) − σmax(B)]2 + 4σ2

max(C)
]

≤ σmax(A) + σmax(B)

and

max{σmax(A), σmax(B)} ≤ σmax(A) ≤ max{σmax(A), σmax(B)} + σmax(C).

(Proof: See [719].) (Remark: See Fact 9.14.12.)

Fact 8.18.29. Let A,B ∈ Fn×n, and assume that A and B are positive defi-
nite. Then, [

λ1(logA+ logB) · · · λn(logA+ logB)
]

strongly log majorizes[
λ1(logA1/2BA1/2) · · · λn(logA1/2BA1/2)

]
.

Consequently,

log detAB = tr(logA+ logB) = tr logA1/2BA1/2 = log detA1/2BA1/2.

(Proof: See [90].)

Fact 8.18.30. Let A,B ∈ Fn×n, and assume that A and B are positive
semidefinite. Then, the following statements hold:

i) σmax[log(I +A)log(I +B)] ≤
(
log
[
1 + σ

1/2
max(AB)

])2
.

ii) σmax[log(I +B)log(I +A)log(I +B)] ≤
(
log
[
1 + σ

1/3
max(BAB)

])3
.

iii) det[log(I +A)log(I +B)] ≤ det
[
log
(
I + 〈AB〉1/2)]2.
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iv) det[log(I +B)log(I +A)log(I +B)] ≤ det
(
log
[
I + (BAB)1/3

])3
.

(Proof: See [1349].) (Remark: See Fact 11.16.6.)

Fact 8.18.31. Let A,B ∈ Fn×n, and assume that A and B are positive
semidefinite. Then,

σmax

[
(I +A)−1AB(I +B)−1

] ≤ σmax(AB)[
1 + σ

1/2
max(AB)

]2 .
(Proof: See [1349].)

8.19 Facts on Alternative Partial Orderings

Fact 8.19.1. Let A,B ∈ Fn×n, and assume that A and B are positive definite.
Then, the following statements are equivalent:

i) logB ≤ logA.

ii) There exists r ∈ (0,∞) such that

Br ≤
(
Br/2ArBr/2

)1/2
.

iii) There exists r ∈ (0,∞) such that(
Ar/2BrAr/2

)1/2
≤ Ar.

iv) There exist p, r ∈ (0,∞) and a positive integer k such that (k+1)r = p+ r
and

Br ≤
(
Br/2ApBr/2

) 1
k+1

.

v) There exist p, r ∈ (0,∞) and a positive integer k such that (k+1)r = p+ r
and (

Ar/2BpAr/2
) 1

k+1 ≤ Ar.
vi) For all p, r ∈ [0,∞),

Br ≤
(
Br/2ApBr/2

)1/2
.

vii) For all p, r ∈ [0,∞), (
Ar/2BpAr/2

) r
r+p ≤ Ar.

viii) For all p, q, r, t ∈ R such that p ≥ 0, r ≥ 0, t ≥ 0, and q ∈ [1, 2],[
Ar/2
(
At/2BpAt/2

)q
Ar/2
] r+t

r+qt+qp ≤ Ar+t.

(Remark: logB ≤ logA is the chaotic order. This order is weaker than the Löwner
order since A ≤ B implies that logA ≤ logA, but not vice versa.) (Proof: See
[512, 914, 1471] and [530, pp. 139, 200].) (Remark: Additional conditions are given
in [915].)
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Fact 8.19.2. Let A,B ∈ Fn×n, assume that A and B are positive definite,
and assume that B ≤ A. Then, logB ≤ logA. (Proof: Setting τ = 0 and q = 1
in iii) of Fact 8.10.51 yields iii) of Fact 8.19.1.) (Remark: This result is xviii) of
Proposition 8.6.13.)

Fact 8.19.3. Let A,B ∈ F
n×n, assume that A is positive definite and B is

positive semidefinite, and let α > 0. Then, the following statements are equivalent:

i) Bα ≤ Aα.
ii) For all p, q, r, τ ∈ R such that p ≥ α, r ≥ τ , q ≥ 1, and τ ∈ [0, α],[

Ar/2
(
A−τ/2BpA−τ/2

)q
Ar/2
] r−τ

r−qτ+qp ≤ Ar−τ.

(Proof: See [512].)

Fact 8.19.4. Let A,B ∈ Fn×n, and assume that A is positive definite and B
is positive semidefinite. Then, the following statements are equivalent:

i) For all k ∈ N, Bk ≤ Ak.
ii) For all α > 0, Bα ≤ Aα.
iii) For all p, r ∈ R such that p > r ≥ 0,(

A−r/2BpA−r/2
)2p−r

p−r ≤ A2p−r.

iv) For all p, q, r, τ ∈ R such that p ≥ τ , r ≥ τ , q ≥ 1, and τ ≥ 0,[
Ar/2
(
A−τ/2BpA−τ/2

)q
Ar/2
] r−τ

r−qτ+qp ≤ Ar−τ.

(Proof: See [531].) (Remark: A and B are related by the spectral order.)

Fact 8.19.5. Let A,B ∈ Fn×n, and assume that A and B are positive semidef-
inite. Then, if two of the following statements hold, then the remaining statement
also holds:

i) A
rs≤ B.

ii) A2
rs≤ B2.

iii) AB = BA.

(Proof: See [110, 590, 591].) (Remark: The rank subtractivity partial ordering is
defined in Fact 2.10.32.)

Fact 8.19.6. Let A,B,C ∈ Fn×n, and assume that A, B, and C are positive
semidefinite. Then, the following statements hold:

i) If A2 = AB and B2 = BA, then A = B.

ii) If A2 = AB and B2 = BC, then A2 = AC.

(Proof: Use Fact 2.10.33 and Fact 2.10.34.)
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Fact 8.19.7. Let A,B ∈ Fn×n, and assume that A and B are positive semidef-
inite, and define

A
∗≤ B

if and only if
A2 = AB.

Then, “
∗≤” is a partial ordering on Nn×n. (Proof: Use Fact 2.10.35 or Fact 8.19.6.)

(Remark: The relation “
∗≤” is the star partial ordering.)

Fact 8.19.8. Let A,B ∈ Fn×n, and assume that A and B are positive semidef-
inite. Then,

A
∗≤ B

if and only if
B+

∗≤ A+.

(Proof: See [646].) (Remark: The star partial ordering is defined in Fact 8.19.7.)

Fact 8.19.9. Let A,B ∈ Fn×n, and assume that A and B are positive semidef-
inite. Then, the following statements are equivalent:

i) A
∗≤ B.

ii) A
rs≤ B and A2

rs≤ B2.

(Remark: See [601].) (Remark: The star partial ordering is defined in Fact 8.19.7.)

Fact 8.19.10. Let A,B ∈ Fn×m, and define

A
GL≤ B

if and only if the following conditions hold:

i) 〈A〉 ≤ 〈B〉.
ii) R(A∗) ⊆ R(B∗).

iii) AB∗ = 〈A〉〈B〉.

Then, “
GL≤ ” is a partial ordering on F

n×m. Furthermore, the following statements
are equivalent:

iv) A
GL≤ B.

v) A∗ GL≤ B∗.

vi) sprad(B+A) ≤ 1, R(A) ⊆ R(B), R(A∗) ⊆ R(B∗), and AB∗ = 〈A〉〈B〉.

Furthermore, if A
rs≤ B, then A

GL≤ B. Finally, if A,B ∈ Nn, then A ≤ B if and

only if A
GL≤ B. (Proof: See [655].) (Remark: The relation “

GL≤ ” is the generalized
Löwner partial ordering. Remarkably, the Löwner, generalized Löwner, and star
partial orderings are linked through the polar decomposition. See [655].)
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8.20 Facts on Generalized Inverses

Fact 8.20.1. Let A ∈ Fn×n. Then, the following statements are equivalent:

i) A+A∗ ≥ 0.

ii) A+ +A+∗ ≥ 0.

If, in addition, A is group invertible, then the following statement is equivalent to
i) and ii):

iii) A# +A#∗ ≥ 0.

(Proof: See [1329].)

Fact 8.20.2. Let A ∈ Fn×n, and assume that A is positive semidefinite. Then,
the following statements hold:

i) A+ = AD = A# ≥ 0.

ii) rankA = rankA+.

iii) A+1/2 �=
(
A1/2
)+

= (A+)1/2.

iv) A1/2 = A(A+)1/2 = (A+)1/2A.

v) AA+ = A1/2
(
A1/2
)+
.

vi)
[

A AA+

A+A A+

]
is positive semidefinite.

vii) A+A+AA+ ≤ A+A+.

viii) A+A ◦AA+ ≤ A ◦A+.

(Proof: See [1492] or Fact 8.11.5 and Fact 8.21.40 for vi)–viii).)

Fact 8.20.3. Let A ∈ F
n×n, and assume that A is positive semidefinite. Then,

rankA ≤ (trA) trA+.

Furthermore, equality holds if and only if rankA ≤ 1. (Proof: See [113].)

Fact 8.20.4. Let A ∈ Fn×m. Then,

〈A∗〉 = A〈A〉+1/2A∗.

(Remark: See Fact 8.11.11.)

Fact 8.20.5. Let A ∈ Fn×m, and define S ∈ Fn×n by

S
�= 〈A〉+ In −AA+.

Then, S is positive definite, and

SAA+S = 〈A〉AA+〈A〉 = AA∗.

(Proof: See [447, p. 432].) (Remark: This result provides an explicit congruence
transformation for AA+ and AA∗.) (Remark: See Fact 5.8.20.)
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Fact 8.20.6. Let A,B ∈ Fn×n, and assume that A and B are positive semidef-
inite. Then,

A = (A+B)(A +B)+A.

Fact 8.20.7. Let A,B ∈ Fn×n, and assume that A and B are Hermitian.
Then, the following statements are equivalent:

i) A
rs≤ B.

ii) R(A) ⊆ R(B) and AB+A = A.

(Proof: See [590, 591].) (Remark: See Fact 6.5.30.)

Fact 8.20.8. Let A,B ∈ Fn×n, assume that A and B are Hermitian, assume
that ν−(A) = ν−(B), and consider the following statements:

i) A
∗≤ B.

ii) A
rs≤ B.

iii) A ≤ B.
iv) R(A) ⊆ R(B) and AB+A ≤ A.

Then, i) =⇒ ii) =⇒ iii)⇐⇒ iv ). If, in addition, A and B are positive semidefinite,
then the following statement is equivalent to iii) and iv):

v) R(A) ⊆ R(B) and sprad(B+A) ≤ 1.

(Proof: i) =⇒ ii) is given in [652]. See [110, 590, 601, 1223] and [1184, p. 229].)
(Remark: See Fact 8.20.7.)

Fact 8.20.9. Let A,B ∈ Fn×n, and assume that A and B are positive semidef-
inite. Then, the following statements are equivalent:

i) A2 ≤ B2.

ii) R(A) ⊆ R(B) and σmax(B+A) ≤ 1.

(Proof: See [601].)

Fact 8.20.10. Let A,B ∈ Fn×n, assume that A and B are positive semidefi-
nite, and assume that A ≤ B. Then, the following statements are equivalent:

i) B+≤ A+.

ii) rankA = rankB.

iii) R(A) = R(B).

Furthermore, the following statements are equivalent:

iv) A+≤ B+.

v) A2 = AB.

vi) A+
∗≤ B+.

(Proof: See [646, 1003].)
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Fact 8.20.11. Let A,B ∈ Fn×n, and assume that A and B are positive
semidefinite. Then, if two of the following statements hold, then the remaining
statement also holds:

i) A ≤ B.
ii) B+ ≤ A+.

iii) rankA = rankB.

(Proof: See [111, 1003, 1422, 1456].)

Fact 8.20.12. Let A,B ∈ Fn×n, and assume that A and B are Hermitian.
Then, if two of the following statements hold, then the remaining statement also
holds:

i) A ≤ B.
ii) B+ ≤ A+.

iii) InA = InB.

(Proof: See [109].)

Fact 8.20.13. Let A,B ∈ Fn×n, assume that A and B are positive semidefi-
nite, and assume that A ≤ B. Then,

0 ≤ AA+ ≤ BB+.

If, in addition, rankA = rankB, then

AA+ = BB+.

Fact 8.20.14. Let A,B ∈ Fn×n, assume that A and B are Hermitian, and
assume that R(A) = R(B). Then,

InA− InB = In(A−B) + In(A+ − B+).

(Proof: See [1047].) (Remark: See Fact 8.10.15.)

Fact 8.20.15. Let A,B ∈ Fn×n, assume that A and B are positive semidefi-
nite, and assume that A ≤ B. Then,

0 ≤ AB+A ≤ A ≤ A+B
[(
I −AA+

)
B
(
I −AA+

)]+
B ≤ B.

(Proof: See [646].)

Fact 8.20.16. Let A,B ∈ F
n×n, and assume that A and B are positive

semidefinite. Then,
spec
[
(A+B)+A

] ⊂ [0, 1].

(Proof: Let C be positive definite and satisfy B ≤ C. Then,

(A+ C)−1/2C(A+ C)−1/2 ≤ I.
The result now follows from Fact 8.20.17.)
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Fact 8.20.17. Let A,B,C ∈ Fn×n, assume that A,B,C are positive semidef-
inite, and assume that B ≤ C. Then, for all i = 1, . . . , n,

λi
[
(A+B)+B

] ≤ λi[(A+ C)+C
]
.

Consequently,
tr
[
(A+B)+B

] ≤ tr
[
(A+ C)+C

]
.

(Proof: See [1390].) (Remark: See Fact 8.20.16.)

Fact 8.20.18. Let A,B ∈ Fn×n, assume that A and B are positive semidefi-
nite, and define

A :B �= A(A+B)+B.

Then, the following statements hold:

i) A :B is positive semidefinite.

ii) A :B = limε↓0(A+ εI) :(B + εI).

iii) A :A = 1
2A.

iv) A :B = B :A = B −B(A+B)+B = A−A(A+B)+A.

v) A :B ≤ A.
vi) A :B ≤ B.

vii) A :B = −[ 0 0 I
]⎡⎣ A 0 I

0 B I
I I 0

⎤
⎦

+⎡
⎣ 0

0
I

⎤
⎦.

viii) A :B = (A+ +B+)+ if and only if R(A) = R(B).

ix) A(A +B)+B = ACB for every (1)-inverse C of A+B.

x) tr(A :B) ≤ (trB) :(trA).

xi) tr(A :B) = (trB) : (trA) if and only if there exists α ∈ [0,∞) such that
either A = αB or B = αA.

xii) det(A :B) ≤ (detB) :(detA).

xiii) R(A :B) = R(A) ∩ R(B).

xiv) N(A :B) = N(A) + N(B).

xv) rank(A :B) = rankA+ rankB − rank(A+B).

xvi) Let S ∈ Fp×n, and assume that S is right invertible. Then,

S(A :B)S∗ ≤ (SAS∗) :(SBS∗).

xvii) Let S ∈ Fn×n, and assume that S is nonsingular. Then,

S(A :B)S∗ = (SAS∗) :(SBS∗).

xviii) For all positive numbers α, β,(
α−1A

)
:
(
β−1B

) ≤ αA+ βB.
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xix) Let X ∈ Fn×n, and assume that X is Hermitian and[
A+B A

A A−X

]
≥ 0.

Then,
X ≤ A :B.

Furthermore, [
A+B A

A A−A :B

]
≥ 0.

xx) φ: Nn ×Nn �→ −Nn defined by φ(A,B) �= −A :B is convex.

xxi) If A and B are projectors, then 2(A :B) is the projector onto R(A)∩R(B).

xxii) If A+B is positive definite, then

A :B = A(A+B)−1B.

xxiii) A#B = [12 (A+B)]#[2(A :B)].

xxiv) If C,D ∈ Fn×n are positive semidefinite, then

(A :B) :C = A : (B :C)

and
A :C +B :D ≤ (A+B) :(C +D).

xxv) If C,D ∈ Fn×n are positive semidefinite, A ≤ C, and B ≤ D, then

A :B ≤ C :D.

xxvi) If A and B are positive definite, then

A :B =
(
A−1 +B−1

)−1≤ 1
2 (A#B) ≤ 1

4 (A+B).

xxvii) Let x, y ∈ F
n. Then,

(x+ y)∗(A :B)(x + y) ≤ x∗Ax+ y∗By.

xxviii) Let x, y ∈ Fn. Then,

x∗(A :B)x ≤ y∗Ay + (x− y)∗B(x− y).
xxix) Let x ∈ Fn. Then,

x∗(A :B)x = inf
y∈Fn

[y∗Ay + (x− y)∗B(x − y)].

xxx) Let x ∈ F
n. Then,

x∗(A :B)x ≤ (x∗Ax) : (x∗Bx).

(Proof: See [36, 37, 40, 583, 843, 1284], [1118, p. 189], and [1485, p. 9].) (Remark:
A :B is the parallel sum of A and B.) (Remark: See Fact 6.4.41 and Fact 6.4.42.)
(Remark: A symmetric expression for the parallel sum of three or more positive-
semidefinite matrices is given in [1284].)
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Fact 8.20.19. Let A,B ∈ Fn×n, assume that A is positive semidefinite, and
assume that B is a projector. Then,

sh(A,B) �= min{X ∈ Nn : 0 ≤ X ≤ A and R(X) ⊆ R(B)}
exists. Furthermore,

sh(A,B) = A−AB⊥(B⊥AB⊥)+B⊥A.

That is,

sh(A,B) = A

∣∣∣∣∣
[

A AB⊥
B⊥A B⊥AB⊥

]
.

Finally,
sh(A,B) = lim

α→∞(αB) :A.

(Proof: Existence of the minimum is proved in [40]. The expression for sh(A,B) is
given in [568]; a related expression involving the Schur complement is given in [36].
The last identity is shown in [40]. See also [50].) (Remark: sh(A,B) is the shorted
operator.)

Fact 8.20.20. Let B ∈ Rm×n, define

S
�= {A ∈ R

n×n: A ≥ 0 and R(BTBA) ⊆ R(A)},
and define φ: S �→ −Nm by φ(A) �= −(BA+BT)+. Then, S is a convex cone, and φ
is convex. (Proof: See [592].) (Remark: This result generalizes xii) of Proposition
8.6.17 in the case r = p = 1.)

Fact 8.20.21. Let A,B ∈ Fn×n, and assume that A and B are positive
semidefinite. If (AB)+ = B+A+, then AB is range Hermitian. Furthermore, the
following statements are equivalent:

i) AB is range Hermitian.

ii) (AB)# = B+A+.

iii) (AB)+ = B+A+.

(Proof: See [988].) (Remark: See Fact 6.4.28.)

Fact 8.20.22. Let A ∈ Fn×n and C ∈ Fm×m, assume that A and C are
positive semidefinite, let B ∈ Fn×m, and define X �= A+1/2BC+1/2. Then, the
following statements are equivalent:

i)
[
A B
B∗ C

]
is positive semidefinite.

ii) AA+B = B and X∗X ≤ Im.
iii) BC+C = B and X∗X ≤ Im.
iv) B = A1/2XC1/2 and X∗X ≤ Im.
v) There exists a matrix Y ∈ Fn×m such that B = A1/2YC1/2 and Y ∗Y ≤ Im.

(Proof: See [1485, p. 15].)



POSITIVE-SEMIDEFINITE MATRICES 531

Fact 8.20.23. Let A,B ∈ Fn×n, and assume that A and B are positive
semidefinite. Then, the following statements are equivalent:

i) A(A +B)+B = 0.

ii) B(A +B)+A = 0.

iii) A(A +B)+A = A.

iv) B(A +B)+B = B.

v) A(A +B)+B +B(A+B)+A = 0.

vi) A(A +B)+A+B(A+B)+B = A+B.

vii) rank
[
A B

]
= rankA+ rankB.

viii) R(A) ∩ R(B) = {0}.
ix) (A+ B)+ = [(I −BB+)A(I −B+B]+ + [(I −AA+)B(I −A+A]+.

(Proof: See [1302].) (Remark: See Fact 6.4.32.)

8.21 Facts on the Kronecker and Schur Products

Fact 8.21.1. Let A ∈ Fn×n, assume that A is positive semidefinite, and as-
sume that every entry of A is nonzero. Then, A◦−1 is positive semidefinite if and
only if rankA = 1. (Proof: See [889].)

Fact 8.21.2. Let A ∈ Fn×n, assume that A is positive semidefinite, assume
that every entry of A is nonnegative, and let α ∈ [0, n− 2]. Then, A◦α is positive
semidefinite. (Proof: See [199, 491].) (Remark: In many cases, A◦α is positive
semidefinite for all α ≥ 0. See Fact 8.8.5.)

Fact 8.21.3. Let A ∈ Fn×n, assume that A is positive semidefinite, and let
k ≥ 1. If r ∈ [0, 1], then

(Ar)◦k ≤ (A◦k)r.
If r ∈ [1, 2], then (

A◦k)r≤ (Ar)◦k.

If A is positive definite and r ∈ [0, 1], then(
A◦k)−r≤ (A−r)◦k.

(Proof: See [1485, p. 8].)

Fact 8.21.4. Let A ∈ Fn×n, and assume that A is positive semidefinite. Then,

(I ◦A)2 ≤ 1
2 (I ◦A2 +A ◦A) ≤ I ◦A2

and
A ◦A ≤ I ◦A2.
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Hence,
n∑
i=1

A2
(i,i) ≤

n∑
i=1

λ2
i (A).

Now, assume that A is positive definite. Then,

(A ◦A)−1 ≤ A−1 ◦A−1

and (
A ◦A−1

)−1 ≤ I ≤
(
A1/2 ◦A−1/2

)2
≤ 1

2

(
I +A ◦A−1

) ≤ A ◦A−1.

Furthermore, (
A ◦A−1

)
1n×1 = 1n×1

and
1 ∈ spec

(
A ◦A−1

)
.

Next, let α �= λmin(A) and β �= λmax(A). Then,

2αβ
α2 + β2

I ≤ 2αβ
α2 + β2

(
A2 ◦A−2

)1/2 ≤ αβ

α2 + β2

(
I +A2 ◦A−2

)≤ A ◦A−1.

Define Φ(A) �= A ◦A−1, and, for all k ≥ 1, define

Φ(k+1)(A) �= Φ
[
Φ(k)(A)

]
,

where Φ(1)(A) �= Φ(A). Then, for all k ≥ 1,

Φ(k)(A) ≥ I
and

lim
k→∞

Φ(k)(A) = I.

(Proof: See [480, 772, 1383, 1384], [709, p. 475], and set B = A−1 in Fact 8.21.31.)
(Remark: The convergence result also holds if A is an H-matrix [772]. A ◦A−1 is
the relative gain array.) (Remark: See Fact 8.21.38.)

Fact 8.21.5. Let A ∈ Fn×n, and assume that A is positive definite. Then, for
all i = 1, . . . , n,

1 ≤ A(i,i)(A−1)(i,i).

Furthermore,

max
i=1,...,n

√
A(i,i)(A−1)(i,i) − 1 ≤

n∑
i=1

√
A(i,i)(A−1)(i,i) − 1

and

max
i=1,...,n

√
A(i,i)(A−1)(i,i) − 1 ≤

n∑
i=1

[√
A(i,i)(A−1)(i,i) − 1

]
.

(Proof: See [482, p. 66-6].)

Fact 8.21.6. Let A
�=
[
A B
B∗ C

] ∈ Fn+m)×(n+m), assume that A is positive
definite, and partition A−1 =

[
X Y
Y ∗ Z

]
conformably with A. Then,

I ≤
[
A ◦A−1 0

0 Z ◦ Z−1

]
≤ A ◦A−1
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and
I ≤
[
X ◦X−1 0

0 C ◦ C−1

]
≤ A ◦A−1.

(Proof: See [132].)

Fact 8.21.7. Let A ∈ Fn×n, let p, q ∈ R, assume that A is positive semidef-
inite, and assume that either p and q are nonnegative or A is positive definite.
Then,

A(p+q)/2 ◦A(p+q)/2 ≤ Ap ◦Aq.
In particular,

I ≤ A ◦A−1.

(Proof: See [92].)

Fact 8.21.8. Let A ∈ Fn×n, assume that A is positive semidefinite, and as-
sume that In ◦A = In. Then,

detA ≤ λmin(A ◦A).

(Proof: See [1408].)

Fact 8.21.9. Let A ∈ Fn×n. Then,

−A∗A ◦ I ≤ A∗ ◦A ≤ A∗A ◦ I.
(Proof: Use Fact 8.21.41 with B = I.)

Fact 8.21.10. Let A ∈ Fn×n. Then,

〈A ◦A∗〉 ≤
{

A∗A ◦ I
〈A〉 ◦ 〈A∗〉

}
≤ σ2

max(A)I.

(Proof: See [1492] and Fact 8.21.22.)

Fact 8.21.11. Let A �=
[
A11 A12
A∗

12 A22

]
∈ F(n+m)×(n+m) and B �=

[
B11 B12
B12 B22

] ∈
F(n+m)×(n+m), and assume that A and B are positive semidefinite. Then,

(A11|A) ◦ (B11|B) ≤ (A11|A) ◦B22 ≤ (A11 ◦B11)|(A ◦B).

(Proof: See [896].)

Fact 8.21.12. Let A,B ∈ Fn×n, and assume that A and B are positive
semidefinite. Then, A ◦ B is positive semidefinite. If, in addition, B is positive
definite and I ◦A is positive definite, then A ◦B is positive definite. (Proof: By
Fact 7.4.16, A⊗B is positive semidefinite, and the Schur product A◦B is a principal
submatrix of the Kronecker product. If A is positive definite, use Fact 8.21.19 to
obtain det(A ◦B) > 0.) (Remark: The first result is Schur’s theorem. The second
result is Schott’s theorem. See [925] and Fact 8.21.19.)

Fact 8.21.13. Let A ∈ Fn×n, and assume that A is positive definite. Then,
there exist positive-definite matrices B,C ∈ Fn×n such that A = B ◦C. (Remark:
See [1098, pp. 154, 166].) (Remark: This result is due to Djokovic.)
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Fact 8.21.14. Let A,B ∈ Fn×n, and assume that A is positive definite and
B is positive semidefinite. Then,(

11×nA−11n×1

)−1
B ≤ A ◦B.

(Proof: See [484].) (Remark: Setting B = 1n×n yields Fact 8.9.17.)

Fact 8.21.15. Let A,B ∈ Fn×n, and assume that A and B are positive defi-
nite. Then, (

11×nA−11n×111×nB−11n×1

)−1
1n×n ≤ A ◦B.

(Proof: See [1492].)

Fact 8.21.16. Let A ∈ Fn×n, assume that A is positive definite, let B ∈ Fn×n,
and assume that B is positive semidefinite. Then,

rankB ≤ rank(A ◦B) ≤ rank(A⊗B) = (rankA)(rankB).

(Remark: See Fact 7.4.23, Fact 7.6.6, and Fact 8.21.14.) (Remark: The first in-
equality is due to Djokovic. See [1098, pp. 154, 166].)

Fact 8.21.17. Let A,B ∈ Fn×n, and assume that A and B are positive
semidefinite. If p ≥ 1, then

tr (A ◦B)p ≤ trAp ◦Bp.
If 0 ≤ p ≤ 1, then

trAp ◦Bp ≤ tr (A ◦B)p.

Now, assume that A and B are positive definite. If p ≤ 0, then

tr (A ◦B)p ≤ trAp ◦Bp.
(Proof: See [1392].)

Fact 8.21.18. Let A,B ∈ Fn×n, and assume that A and B are positive
semidefinite. Then,

λmin(AB) ≤ λmin(A ◦B).

Hence,
λmin(AB)I ≤ λmin(A ◦B)I ≤ A ◦B.

(Proof: See [765].) (Remark: This result interpolates the penultimate inequality in
Fact 8.21.20.)

Fact 8.21.19. Let A,B ∈ Fn×n, and assume that A and B are positive
semidefinite. Then,

detAB ≤
(

n∏
i=1

A(i,i)

)
detB ≤ det(A ◦B) ≤

n∏
i=1

A(i,i)B(i,i).

Equivalently,

detAB ≤ [det(I ◦A)]detB ≤ det(A ◦B) ≤
n∏
i=1

A(i,i)B(i,i).
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Furthermore,

2 detAB ≤
(

n∏
i=1

A(i,i)

)
detB +

(
n∏
i=1

B(i,i)

)
detA ≤ det(A ◦B) + (detA) detB.

Finally, the following statements hold:

i) If I ◦A and B are positive definite, then A ◦B is positive definite.

ii) If I ◦A and B are positive definite and rankA = 1, then equality holds in
the right-hand equality.

iii) If A and B are positive definite, then equality holds in the right-hand
equality if and only if B is diagonal.

(Proof: See [967, 1477] and [1184, p. 253].) (Remark: In the first string, the
first and third inequalities follow from Hadamard’s inequality Fact 8.17.11, while
the second inequality is Oppenheim’s inequality. See Fact 8.21.12.) (Remark: The
right-hand inequality in the third string of inequalities is valid when A and B are
M-matrices. See [44, 318].) (Problem: Compare the lower bounds det (A#B)2 and(∏n

i=1 A(i,i)

)
detB for det(A ◦B). See Fact 8.21.20.)

Fact 8.21.20. Let A,B ∈ Fn×n, assume that A and B are positive semidefi-
nite, let k ∈ {1, . . . , n}, and let r ∈ (0, 1]. Then,

n∏
i=k

λi(A)λi(B) ≤
n∏
i=k

σi(AB) ≤
n∏
i=k

λi(AB) ≤
n∏
i=k

λ2i(A#B) ≤
n∏
i=k

λi(A ◦B)

and
n∏
i=k

λi(A)λi(B) ≤
n∏
i=k

σi(AB) ≤
n∏
i=k

λi(AB) ≤
n∏
i=k

λ
1/r
i (ArBr)

≤
n∏
i=k

eλi(logA+logB) ≤
n∏
i=k

eλi[I◦(logA+logB)]

≤
n∏
i=k

λ
1/r
i (Ar ◦Br) ≤

n∏
i=k

λi(A ◦B).

Consequently,
λmin(AB)I ≤ A ◦B

and
detAB = det (A#B)2 ≤ det(A ◦B).

(Proof: See [48, 480, 1382], [1485, p. 21], Fact 8.10.43, and Fact 8.18.21.)

Fact 8.21.21. Let A,B ∈ Fn×n, assume that A and B are positive definite,
let k ∈ {1, . . . , n}, and let r > 0. Then,

n∏
i=k

λ−ri (A◦B) ≤
n∏
i=k

λ−ri (AB).

(Proof: See [1381].)
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Fact 8.21.22. Let A,B ∈ Fn×n, let C,D ∈ Fm×m, assume that A,B,C, and
D are Hermitian, A ≤ B, C ≤ D, and that either A and C are positive semidefinite,
A and D are positive semidefinite, or B and D are positive semidefinite. Then,

A⊗C ≤ B ⊗D.
If, in addition, n = m, then

A ◦C ≤ B ◦D.
(Proof: See [43, 111].) (Problem: Under which conditions are these inequalities
strict?)

Fact 8.21.23. Let A,B,C,D ∈ Fn×n, assume that A,B,C,D are positive
semidefinite, and assume that A ≤ B and C ≤ D. Then,

0 ≤ A⊗C ≤ B ⊗D
and

0 ≤ A ◦C ≤ B ◦D.
(Proof: See Fact 8.21.22.)

Fact 8.21.24. Let A,B ∈ Fn×n, and assume that A and B are positive
semidefinite. Then, A ≤ B if and only if A⊗A ≤ B⊗B. (Proof: See [925].)

Fact 8.21.25. Let A,B ∈ Fn×n, assume that A and B are positive semidefi-
nite, assume that 0 ≤ A ≤ B, and let k ≥ 1. Then,

A◦k ≤ B◦k.

(Proof: 0 ≤ (B −A) ◦ (B +A) implies that A ◦A ≤ B ◦B, that is, A◦2 ≤ B◦2.)

Fact 8.21.26. Let A1, . . . , Ak, B1, . . . , Bk ∈ Fn×n, and assume that A1, . . . ,
Ak, B1, . . . , Bk are positive semidefinite. Then,

(A1 +B1)⊗ · · ·⊗ (Ak +Bk) ≤ A1⊗ · · ·⊗Ak +B1⊗ · · · ⊗Bk.
(Proof: See [994, p. 143].)

Fact 8.21.27. Let A1, A2, B1, B2 ∈ F
n×n, assume that A1, A2, B1, B2 are pos-

itive semidefinite, assume that 0 ≤ A1 ≤ B1 and 0 ≤ A2 ≤ B2, and let α ∈ [0, 1].
Then,

[αA1 + (1 − α)B1]⊗ [αA2 + (1− α)B2] ≤ α(A1⊗A2) + (1− α)(B1⊗B2).

(Proof: See [1406].)

Fact 8.21.28. Let A,B ∈ Fn×n, and assume that A and B are Hermitian.
Then, for all i = 1, . . . , n,

λn(A)λn(B) ≤ λi+n2−n(A⊗B) ≤ λi(A ◦B) ≤ λi(A⊗B) ≤ λ1(A)λ1(B).

(Proof: The result follows from Proposition 7.3.1 and Theorem 8.4.5. For A,B
positive semidefinite, the result is given in [962].)

Fact 8.21.29. Let A ∈ Fn×n and B ∈ Fm×m, assume that A and B are
positive semidefinite, let r ∈ R, and assume that either A and B are positive



POSITIVE-SEMIDEFINITE MATRICES 537

definite or r is positive. Then,

(A⊗B)r = Ar ⊗Br.
(Proof: See [1019].)

Fact 8.21.30. Let A ∈ F
n×m and B ∈ F

k×l. Then,

〈A⊗B〉 = 〈A〉⊗ 〈B〉.

Fact 8.21.31. Let A,B ∈ Fn×n, and assume that A and B are positive
semidefinite. If r ∈ [0, 1], then

Ar ◦Br ≤ (A ◦B)r.

If r ∈ [1, 2], then
(A ◦B)r ≤ Ar ◦Br.

If A and B are positive definite and r ∈ [0, 1], then

(A ◦B)−r ≤ A−r ◦B−r.

Therefore,
(A ◦B)2 ≤ A2 ◦B2,

A ◦B ≤ (A2 ◦B2
)1/2

,

A1/2 ◦B1/2 ≤ (A ◦B)1/2.

Furthermore,

A2 ◦B2 − 1
4 (β − α)2I ≤ (A ◦B)2 ≤ 1

2

[
A2 ◦B2 + (AB)◦2

] ≤ A2 ◦B2

and
A ◦B ≤ (A2 ◦B2

)1/2 ≤ α+ β

2
√
αβ

A ◦B,

where α �= λmin(A⊗B) and β �= λmax(A⊗B). Hence,

A ◦B − 1
4

(√
β −√α

)2
I ≤
(
A1/2 ◦B1/2

)2
≤ 1

2

[
A ◦B +

(
A1/2B1/2

)◦2]
≤ A ◦B
≤ (A2 ◦B2

)1/2
≤ α+ β

2
√
αβ

A ◦B.

(Proof: See [43, 1018, 1383], [709, p. 475], and [1485, p. 8].)

Fact 8.21.32. Let A,B ∈ Fn×n, and assume that A and B are Hermitian.
Then, there exist unitary matrices S1, S2 ∈ Fn×n such that

〈A ◦B〉 ≤ 1
2 [S1(〈A〉 ◦ 〈B〉)S∗

1 + S2(〈A〉 ◦ 〈B〉)S∗
2 ].

(Proof: See [90].)
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Fact 8.21.33. Let A,B ∈ Fn×n, assume that A and B are positive definite,
and let k, l be nonzero integers such that k ≤ l. Then,(

Ak ◦Bk)1/k ≤ (Al ◦Bl)1/l.
In particular, (

A−1 ◦B−1
)−1 ≤ A ◦B

and
(A ◦B)−1 ≤ A−1 ◦B−1,

and, for all k ≥ 1,
A ◦B ≤ (Ak ◦Bk)1/k,

and
A1/k ◦B1/k ≤ (A ◦B)1/k.

Furthermore,
(A ◦B)−1 ≤ A−1 ◦B−1 ≤ (α+ β)2

4αβ
(A ◦B)−1,

where α �= λmin(A⊗B) and β �= λmax(A⊗B). (Proof: See [1018].)

Fact 8.21.34. Let A,B ∈ Fn×n, and assume that A is positive definite, B is
positive semidefinite, and I ◦B is positive definite. Then, for all i = 1, . . . , n,

[(A ◦B)−1](i,i) ≤
(A−1)(i,i)
B(i,i)

.

Furthermore, if rankB = 1, then equality holds. (Proof: See [1477].)

Fact 8.21.35. Let A,B ∈ Fn×n. Then, A is positive semidefinite if and only
if, for every positive-semidefinite matrix B ∈ Fn×n,

11×n(A ◦B)1n×1 ≥ 0.

(Proof: See [709, p. 459].) (Remark: This result is Fejer’s theorem.)

Fact 8.21.36. Let A,B ∈ Fn×n, and assume that A and B are positive defi-
nite. Then,

11×n[(A−B) ◦ (A−1 −B−1)]1n×1 ≤ 0.

Furthermore, equality holds if and only if A = B. (Proof: See [148, p. 8-8].)

Fact 8.21.37. Let A,B ∈ Fn×n, assume that A and B are positive semidefi-
nite, let p, q ∈ R, and assume that one of the following conditions is satisfied:

i) p ≤ q ≤ −1, and A and B are positive definite.

ii) p ≤ −1 < 1 ≤ q, and A and B are positive definite.

iii) 1 ≤ p ≤ q.
iv) 1

2 ≤ p ≤ 1 ≤ q.
v) p ≤ −1 ≤ q ≤ − 1

2 , and A and B are positive definite.

Then,
(Ap ◦Bp)1/p ≤ (Aq ◦Bq)1/q.
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(Proof: See [1019]. Consider case iii). Since p/q ≤ 1, it follows from Fact 8.21.31
that Ap ◦Bp = (Aq)p/q ◦ (Aq)p/q ≤ (Aq ◦Bq)p/q. Then, use Corollary 8.6.11 with p
replaced by 1/p. See [1485, p. 8].) (Remark: See [92].)

Fact 8.21.38. Let A,B ∈ Fn×n, and assume that A and B are positive defi-
nite. Then,

2I ≤ A ◦B−1 +B ◦A−1.

(Proof: See [1383, 1492].) (Remark: Setting B = A yields an inequality given by
Fact 8.21.4.)

Fact 8.21.39. Let A,B ∈ Fn×m, and define

A
�=

[
A∗A ◦B∗B (A ◦B)∗

A ◦B I

]
.

Then, A is positive semidefinite. Furthermore,

(A ◦B)∗(A ◦B) ≤ 1
2 (A∗A ◦B∗B +A∗B ◦B∗A) ≤ A∗A ◦B∗B.

(Proof: See [713, 1383, 1492].) (Remark: The inequality (A◦B)∗(A◦B) ≤ A∗A◦B∗B
is Amemiya’s inequality. See [925].)

Fact 8.21.40. Let A,B,C ∈ Fn×n, define

A
�=
[
A B
B∗ C

]
,

and assume that A is positive semidefinite. Then,

−A ◦C ≤ B ◦B∗ ≤ A ◦C
and

|det(B ◦B∗)| ≤ det(A ◦C).

If, in addition, A is positive definite, then

−A ◦C < B ◦B∗ < A ◦C
and

|det(B ◦B∗)| < det(A ◦C).

(Proof: See [1492].) (Remark: See Fact 8.11.5.)

Fact 8.21.41. Let A,B ∈ Fn×m. Then,

−A∗A ◦B∗B ≤ A∗B ◦B∗A ≤ A∗A ◦B∗B

and
|det(A∗B ◦B∗A)| ≤ det(A∗A ◦B∗B).

(Proof: Apply Fact 8.21.40 to
[
A∗A A∗B
B∗A B∗B

]
.) (Remark: See Fact 8.11.14 and Fact

8.21.9.)

Fact 8.21.42. Let A,B ∈ Fn×n, and assume that A is positive definite. Then,

−A ◦B∗A−1B ≤ B ◦B∗ ≤ A ◦B∗A−1B
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and
|det(B ◦B∗)| ≤ det(A ◦B∗A−1B).

(Proof: Use Fact 8.11.19 and Fact 8.21.40.)

Fact 8.21.43. Let A,B ∈ Fn×n, and let α, β ∈ (0,∞).

−
(
β−1/2I + αA∗A

)
◦
(
α−1/2I + βBB∗

)
≤ (A+B) ◦ (A+B)∗

≤
(
β−1/2I + αA∗A

)
◦
(
α−1/2I + βBB∗

)
.

(Remark: See Fact 8.11.20.)

Fact 8.21.44. Let A,B ∈ Fn×m, and define

A
�=

[
A∗A ◦ I (A ◦B)∗

A ◦B BB∗ ◦ I

]
.

Then, A is positive semidefinite. Now, assume that n = m. Then,

−A∗A ◦ I −BB∗ ◦ I ≤ A ◦B + (A ◦B)∗ ≤ A∗A ◦ I +BB∗ ◦ I
and

−A∗A ◦BB∗ ◦ I ≤ A ◦A∗ ◦B ◦B∗ ≤ A∗A ◦BB∗ ◦ I.
(Remark: See Fact 8.21.40.)

Fact 8.21.45. Let A,B ∈ Fn×n, and assume that A and B are positive
semidefinite. Then,

A ◦B ≤ 1
2

(
A2 +B2

) ◦ I.
(Proof: Use Fact 8.21.44.)

Fact 8.21.46. Let A ∈ Fn×n, assume that A is positive semidefinite, and
define e◦A ∈ Fn×n by [e◦A](i,j)

�= eA(i,j) . Then, e◦A is positive semidefinite. (Proof:
Note that e◦A = 1n×n + 1

2A◦A+ 1
3!A◦A◦A+ · · · , and use Fact 8.21.12. See [422,

p. 10].)

Fact 8.21.47. Let A,B ∈ Fn×n, assume that A and B are positive definite,
and let p, q ∈ (0,∞) satisfy p ≤ q. Then,

I ◦ (logA+ logB) ≤ log (Ap ◦Bp)1/p ≤ log (Aq ◦Bq)1/q

and
I ◦ (logA+ logB) = lim

p↓0
log (Ap ◦Bp)1/p.

(Proof: See [1382].) (Remark: log (Ap ◦Bp)1/p = 1
p log(Ap ◦Bp).

Fact 8.21.48. Let A,B ∈ Fn×n, and assume that A and B are positive defi-
nite. Then,

I ◦ (logA+ logB) ≤ log(A ◦B).

(Proof: Set p = 1 in Fact 8.21.47. See [43] and [1485, p. 8].) (Remark: See Fact
11.14.21.)
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Fact 8.21.49. Let A,B ∈ Fn×n, assume that A and B are positive definite,
and let C,D ∈ Fm×n. Then,

(C ◦D)(A ◦B)−1(C ◦D)∗ ≤(CA−1C∗)◦(DB−1D∗).
In particular,

(A ◦B)−1 ≤ A−1 ◦B−1

and
(C ◦D)(C ◦D)∗ ≤ (CC∗) ◦ (DD∗).

(Proof: Form the Schur complement of the lower right block of the Schur product
of the positive-semidefinite matrices

[
A C∗

C CA−1C∗
]

and
[
B D∗

D DB−1D∗
]
. See [966, 1393],

[1485, p. 13], or [1490, p. 198].)

Fact 8.21.50. Let A,B ∈ Fn×n, assume that A and B are positive semidefi-
nite, and let p, q ∈ (1,∞) satisfy 1/p+ 1/q = 1. Then,

(A ◦B) + (C ◦D) ≤ (Ap + Cp)1/p ◦ (Bq +Dq)1/q.

(Proof: Use xxiv) of Proposition 8.6.17 with r = 1/p. See [1485, p. 10].) (Remark:
Note the relationship between the conjugate parameters p, q and the barycentric
coordinates α, 1− α. See Fact 1.16.11.)

Fact 8.21.51. Let A,B,C,D ∈ Fn×n, assume that A, B, C, and D are positive
definite. Then,

(A#C) ◦ (B#D) ≤ (A ◦B)#(C ◦D).

Furthermore,
(A#B) ◦ (A#B) ≤ (A ◦B).

(Proof: See [92].)

8.22 Notes

The ordering A ≤ B is traditionally called the Löwner ordering. Proposition
8.2.4 is given in [14] and [846] with extensions in [167]. The proof of Proposition
8.2.7 is based on [264, p. 120], as suggested in [1249]. The proof given in [540, p.
307] is incomplete.

Theorem 8.3.4 is due to Newcomb [1035]. Proposition 8.4.13 is given in [699,
1022]. Special cases such as Fact 8.12.28 appear in numerous papers. The proofs
of Lemma 8.4.4 and Theorem 8.4.5 are based on [1230]. Theorem 8.4.9 can also be
obtained as a corollary of the Fischer minimax theorem given in [709, 971], which
provides a geometric characterization of the eigenvalues of a symmetric matrix.
Theorem 8.3.5 appears in [1118, p. 121]. Theorem 8.6.2 is given in [40]. Additional
inequalities appear in [1007].

Functions that are nondecreasing on Pn are characterized by the theory of
monotone matrix functions [197, 422]. See [1012] for a summary of the principal
results.
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The literature on convex maps is extensive. Result xiv) of Proposition 8.6.17
is due to Lieb and Ruskai [907]. Result xxiv) is the Lieb concavity theorem. See
[197, p. 271] or [905]. Result xxxiv) is due to Ando. Results xlv) and xlvi) are
due to Fan. Some extensions to strict convexity are considered in [971]. See also
[43, 1024].

Products of positive-definite matrices are studied in [117, 118, 119, 121, 1458].

Essays on the legacy of Issai Schur appear in [780]. Schur complements are
discussed in [288, 290, 658, 896, 922, 1057]. Majorization and eigenvalue inequalities
for sums and products of matrices are discussed in [198].



Chapter Nine

Norms

Norms are used to quantify vectors and matrices, and they play a basic role in
convergence analysis. This chapter introduces vector and matrix norms and their
properties.

9.1 Vector Norms

For many applications it is useful to have a scalar measure of the magnitude
of a vector x or a matrix A. Norms provide such measures.

Definition 9.1.1. A norm ‖ · ‖ on Fn is a function ‖ · ‖: Fn �→ [0,∞) that
satisfies the following conditions:

i) ‖x‖ ≥ 0 for all x ∈ Fn.

ii) ‖x‖ = 0 if and only if x = 0.

iii) ‖αx‖ = |α|‖x‖ for all α ∈ F and x ∈ Fn.

iv) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ F
n.

Condition iv) is the triangle inequality.

A norm ‖ · ‖ on Fn is monotone if |x| ≤≤ |y| implies that ‖x‖ ≤ ‖y‖ for all
x, y ∈ Fn, while ‖ · ‖ is absolute if ‖|x|‖ = ‖x‖ for all x ∈ Fn.

Proposition 9.1.2. Let ‖ · ‖ be a norm on Fn. Then, ‖ · ‖ is monotone if and
only if ‖ · ‖ is absolute.

Proof. First, suppose that ‖ · ‖ is monotone. Let x ∈ Fn, and define y �= |x|.
Then, |y| = |x|, and thus |y| ≤≤ |x| and |x| ≤≤ |y|. Hence, ‖x‖ ≤ ‖y‖ and
‖y‖ ≤ ‖x‖, which implies that ‖x‖ = ‖y‖. Thus, ‖|x|‖ = ‖y‖ = ‖x‖, which proves
that ‖ · ‖ is absolute.

Conversely, suppose that ‖ · ‖ is absolute and, for convenience, let n = 2.
Now, let x, y ∈ F

2 be such that |x| ≤≤ |y|. Then, there exist α1, α2 ∈ [0, 1] and
θ1, θ2 ∈ R such that x(i) = αie

jθiy(i) for i = 1, 2. Since ‖ · ‖ is absolute, it follows
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that

‖x‖ =
∣∣∣∣
∣∣∣∣
[
α1e

jθ1y(1)
α2e

jθ2y(2)

]∣∣∣∣
∣∣∣∣

=
∣∣∣∣
∣∣∣∣
[
α1|y(1)|
α2|y(2)|

]∣∣∣∣
∣∣∣∣

=
∣∣∣∣
∣∣∣∣ 12 (1− α1)

[ −|y(1)|
α2 |y(2)|

]
+ 1

2 (1− α1)
[ |y(1)|
α2|y(2)|

]
+ α1

[ |y(1)|
α2|y(2)|

]∣∣∣∣
∣∣∣∣

≤ [ 12 (1− α1) + 1
2 (1 − α1) + α1

] ∣∣∣∣
∣∣∣∣
[ |y(1)|
α2|y(2)|

]∣∣∣∣
∣∣∣∣

=
∣∣∣∣
∣∣∣∣
[ |y(1)|
α2|y(2)|

]∣∣∣∣
∣∣∣∣

=
∣∣∣∣
∣∣∣∣ 12 (1− α2)

[ |y(1)|
−|y(2)|

]
+ 1

2 (1 − α2)
[ |y(1)|
|y(2)|

]
+ α2

[ |y(1)|
|y(2)|

]∣∣∣∣
∣∣∣∣

≤
∣∣∣∣
∣∣∣∣
[ |y(1)|
|y(2)|

]∣∣∣∣
∣∣∣∣

= ||y|| .
Thus, ‖ · ‖ is monotone.

As we shall see, there are many different norms. For x ∈ Fn, a useful class of
norms consists of the Hölder norms defined by

‖x‖p �=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
n∑
i=1

|x(i)|p
)1/p

, 1 ≤ p <∞,

max
i∈{1,...,n}

|x(i)|, p =∞.
(9.1.1)

Note that, for all x ∈ Cn and p ∈ [1,∞], ‖x‖p = ‖x‖p. These norms depend on
Minkowski’s inequality given by the following result.

Lemma 9.1.3. Let p ∈ [1,∞], and let x, y ∈ Fn. Then,

‖x+ y‖p ≤ ‖x‖p + ‖y‖p. (9.1.2)

If p = 1, then equality holds if and only if, for all i = 1, . . . , n, there exists αi ≥ 0
such that either x(i) = αiy(i) or y(i) = αix(i). If p ∈ (1,∞), then equality holds if
and only if there exists α ≥ 0 such that either x = αy or y = αx.

Proof. See [162, 963] and Fact 1.16.25.

Proposition 9.1.4. Let p ∈ [1,∞]. Then, ‖ · ‖p is a norm on F
n.

For p = 1,

‖x‖1 =
n∑
i=1

|x(i)| (9.1.3)
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is the absolute sum norm; for p = 2,

‖x‖2 =

(
n∑
i=1

|x(i)|2
)1/2

=
√
x∗x (9.1.4)

is the Euclidean norm; and, for p =∞,

‖x‖∞ = max
i∈{1,...,n}

|x(i)| (9.1.5)

is the infinity norm.

The Hölder norms satisfy the following monotonicity property, which is re-
lated to the power-sum inequality given by Fact 1.15.34.

Proposition 9.1.5. Let 1 ≤ p ≤ q ≤ ∞, and let x ∈ Fn. Then,

‖x‖∞ ≤ ‖x‖q ≤ ‖x‖p ≤ ‖x‖1. (9.1.6)

Assume, in addition, that 1 < p < q < ∞. Then, x has at least two nonzero
components if and only if

‖x‖∞ < ‖x‖q < ‖x‖p < ‖x‖1. (9.1.7)

Proof. If either p = q or x = 0 or x has exactly one nonzero component,
then ‖x‖q = ‖x‖p. Hence, to prove both (9.1.6) and (9.1.7), it suffices to prove
(9.1.7) in the case that 1 < p < q <∞ and x has at least two nonzero components.
Thus, let n ≥ 2, let x ∈ Fn have at least two nonzero components, and define
f : [1,∞)→ [0,∞) by f(β) �= ‖x‖β. Hence,

f ′(β) = 1
β ‖x‖1−ββ

n∑
i=1

γi,

where, for all i = 1, . . . , n,

γi
�=

{|xi|β(log |x(i)| − log ‖x‖β
)
, x(i) �= 0,

0, x(i) = 0.

If x(i) �= 0, then log |x(i)| < log ‖x‖β. It thus follows that f ′(β) < 0, which implies
that f is decreasing on [1,∞). Hence, (9.1.7) holds.

The following result is Hölder’s inequality. For this result we interpret 1/∞ =
0. Note that, for all x, y ∈ Fn, |xTy| ≤ |x|T|y| = ‖x ◦ y‖1.

Proposition 9.1.6. Let p, q ∈ [1,∞] satisfy 1/p+ 1/q = 1, and let x, y ∈ Fn.
Then,

|xTy| ≤ ‖x‖p‖y‖q. (9.1.8)

Furthermore, equality holds if and only if |xTy| = |x|T|y| and⎧⎪⎪⎨
⎪⎪⎩
|x| ◦ |y| = ‖y‖∞|x|, p = 1,

‖y‖1/pq |x|◦1/q = ‖x‖1/qp |y|◦1/p, 1 < p <∞,
|x| ◦ |y| = ‖x‖∞|y|, p =∞.

(9.1.9)
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Proof. See [273, p. 127], [709, p. 536], [800, p. 71], Fact 1.16.11, and Fact
1.16.12.

The case p = q = 2 is the Cauchy-Schwarz inequality.

Corollary 9.1.7. Let x, y ∈ F
n. Then,

|xTy| ≤ ‖x‖2‖y‖2. (9.1.10)

Furthermore, equality holds if and only if x and y are linearly dependent.

Proof. Suppose that y �= 0, and define M �=
[ √

y∗yI (y∗y)−1/2y
]
. Since

M∗M
=
[
y∗yI y
y∗ 1

]
is positive semidefinite, it follows from iii) of Proposition 8.2.4 that

yy∗ ≤ y∗yI. Therefore, x∗yy∗x ≤ x∗xy∗y, which is equivalent to (9.1.10) with x
replaced by x.

Now, suppose that x and y are linearly dependent. Then, there exists β ∈ F

such that either x = βy or y = βx. In both cases it follows that |x∗y| = ‖x‖2‖y‖2.
Conversely, define f : Fn×Fn → [0,∞) by f(μ, ν) �= μ∗μν∗ν−|μ∗ν|2. Now, suppose
that f(x, y) = 0 so that (x, y) minimizes f. Then, it follows that fμ(x, y) = 0, which
implies that y∗yx = y∗xy. Hence, x and y are linearly dependent.

The norms ‖ · ‖ and ‖ · ‖′ on Fn are equivalent if there exist α, β > 0 such that

α‖x‖ ≤ ‖x‖′ ≤ β‖x‖ (9.1.11)

for all x ∈ Fn. Note that these inequalities can be written as
1
β ‖x‖′ ≤ ‖x‖ ≤ 1

α‖x‖′. (9.1.12)

Hence, the word “equivalent” is justified.

The following result shows that every pair of norms on Fn is equivalent.

Theorem 9.1.8. Let ‖ · ‖ and ‖ · ‖′ be norms on Fn. Then, ‖ · ‖ and ‖ · ‖′ are
equivalent.

Proof. See [709, p. 272].

9.2 Matrix Norms

One way to define norms for matrices is by viewing a matrix A ∈ Fn×m as a
vector in Fnm, for example, as vecA.

Definition 9.2.1. A norm ‖ · ‖ on Fn×m is a function ‖ · ‖: Fn×m �→ [0,∞)
that satisfies the following conditions:

i) ‖A‖ ≥ 0 for all A ∈ Fn×m.

ii) ‖A‖ = 0 if and only if A = 0.
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iii) ‖αA‖ = |α|‖A‖ for all α ∈ F and A ∈ Fn×m.

iv) ‖A+B‖ ≤ ‖A‖+ ‖B‖ for all A,B ∈ Fn×m.

If ‖ · ‖ is a norm on Fnm, then ‖ · ‖′ defined by ‖A‖′ �= ‖vecA‖ is a norm
on Fn×m. For example, Hölder norms can be defined for matrices by choosing
‖ · ‖ = ‖ · ‖p. Hence, for all A ∈ Fn×m, define

‖A‖p �=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎛
⎝ n∑
i=1

m∑
j=1

|A(i,j)|p
⎞
⎠
1/p

, 1 ≤ p <∞,

max
i∈{1,...,n}
j∈{1,...,m}

|A(i,j)|, p =∞.
(9.2.1)

Note that the same symbol ‖·‖p is used to denote the Hölder norm for both vectors
and matrices. This notation is consistent since, if A ∈ Fn×1, then ‖A‖p coincides
with the vector Hölder norm. Furthermore, if A ∈ Fn×m and 1 ≤ p ≤ ∞, then

‖A‖p = ‖vecA‖p. (9.2.2)

It follows from (9.1.6) that, if A ∈ Fn×m and 1 ≤ p ≤ q ≤ ∞, then

‖A‖∞ ≤ ‖A‖q ≤ ‖A‖p ≤ ‖A‖1. (9.2.3)

If, in addition, 1 < p < q <∞ and A has at least two nonzero entries, then

‖A‖∞ < ‖A‖q < ‖A‖p < ‖A‖1. (9.2.4)

The Hölder norms in the cases p = 1, 2,∞ are the most commonly used. Let
A ∈ Fn×m. For p = 2 we define the Frobenius norm ‖ · ‖F by

‖A‖F �= ‖A‖2. (9.2.5)

Since ‖A‖2 = ‖vecA‖2, it follows that

‖A‖F = ‖A‖2 = ‖vecA‖2 = ‖vecA‖F. (9.2.6)

It is easy to see that
‖A‖F =

√
trA∗A. (9.2.7)

Let ‖ · ‖ be a norm on Fn×m. If ‖S1AS2‖ = ‖A‖ for all A ∈ Fn×m and for
all unitary matrices S1 ∈ Fn×n and S2 ∈ Fm×m, then ‖ · ‖ is unitarily invariant.
Now, let m = n. If ‖A‖ = ‖A∗‖ for all A ∈ Fn×n, then ‖ · ‖ is self-adjoint. If
‖In‖ = 1, then ‖ · ‖ is normalized. Note that the Frobenius norm is not normalized
since ‖In‖F =

√
n. If ‖SAS∗‖ = ‖A‖ for all A ∈ Fn×n and for all unitary S ∈ Fn×n,

then ‖ · ‖ is weakly unitarily invariant.

Matrix norms can be defined in terms of singular values. Let σ1(A) ≥ σ2(A) ≥
· · · denote the singular values of A ∈ Fn×m. The following result gives a weak
majorization condition for singular values.
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Proposition 9.2.2. Let A,B ∈ Fn×m. Then, for all k = 1, . . . ,min{n,m},
k∑
i=1

[σi(A)− σi(B)] ≤
k∑
i=1

σi(A+B) ≤
k∑
i=1

[σi(A) + σi(B)]. (9.2.8)

In particular,

σmax(A)− σmax(B) ≤ σmax(A+B) ≤ σmax(A) + σmax(B) (9.2.9)

and
tr〈A〉 − tr〈B〉 ≤ tr〈A+B〉 ≤ tr〈A〉 + tr〈B〉. (9.2.10)

Proof. Define A,B ∈ Hn+m by A
�=
[

0 A
A∗ 0

]
and B

�=
[

0 B
B∗ 0

]
. Then, Corol-

lary 8.6.19 implies that, for all k = 1, . . . , n+m,
k∑
i=1

λi(A + B) ≤
k∑
i=1

[λi(A) + λi(B)].

Now, consider k ≤ min{n,m}. Then, it follows from Proposition 5.6.6 that, for
all i = 1, . . . , k, λi(A) = σi(A). Setting k = 1 yields (9.2.9), while setting k =
min{n,m} and using Fact 8.17.2 yields (9.2.10).

Proposition 9.2.3. Let p ∈ [1,∞], and let A ∈ Fn×m. Then, ‖ · ‖σp defined
by

‖A‖σp �=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎝min{n,m}∑

i=1

σpi (A)

⎞
⎠
1/p

, 1 ≤ p <∞,

σmax(A), p =∞,
(9.2.11)

is a norm on Fn×m.

Proof. Let p ∈ [1,∞]. Then, it follows from Proposition 9.2.2 and
Minkowski’s inequality Fact 1.16.25 that

‖A+B‖σp =

⎛
⎝min{n,m}∑

i=1

σpi (A+B)

⎞
⎠
1/p

≤
⎛
⎝min{n,m}∑

i=1

[σi(A) + σi(B)]p

⎞
⎠
1/p

≤
⎛
⎝min{n,m}∑

i=1

σpi (A)

⎞
⎠
1/p

+

⎛
⎝min{n,m}∑

i=1

σpi (B)

⎞
⎠
1/p

= ‖A‖σp + ‖B‖σp. �

The norm ‖ · ‖σp is a Schatten norm. Let A ∈ Fn×m. Then, for all p ∈ [1,∞),

‖A‖σp = (tr 〈A〉p)1/p. (9.2.12)
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Special cases are

‖A‖σ1 = σ1(A) + · · ·+ σmin{n,m}(A) = tr 〈A〉, (9.2.13)

‖A‖σ2 =
[
σ2
1(A) + · · ·+ σ2

min{n,m}(A)
]1/2

= (trA∗A)1/2 = ‖A‖F, (9.2.14)

and
‖A‖σ∞ = σ1(A) = σmax(A), (9.2.15)

which are the trace norm, Frobenius norm, and spectral norm, respectively.

By applying Proposition 9.1.5 to the vector
[
σ1(A) · · · σmin{n,m}(A)

]T
, we

obtain the following result.

Proposition 9.2.4. Let p, q ∈ [1,∞), where p ≤ q, and let A ∈ Fn×m. Then,

‖A‖σ∞ ≤ ‖A‖σq ≤ ‖A‖σp ≤ ‖A‖σ1. (9.2.16)

Assume, in addition, that 1 < p < q <∞ and rankA ≥ 2. Then,

‖A‖∞ < ‖A‖q < ‖A‖p < ‖A‖1. (9.2.17)

The norms ‖ · ‖σp are not very interesting when applied to vectors. Let
x ∈ Fn = Fn×1. Then, σmax(x) = (x∗x)1/2 = ‖x‖2, and, since rankx ≤ 1, it follows
that, for all p ∈ [1,∞],

‖x‖σp = ‖x‖2. (9.2.18)

Proposition 9.2.5. Let A ∈ Fn×m. If p ∈ (0, 2], then

‖A‖σp ≤ ‖A‖p. (9.2.19)

If p ≥ 2, then
‖A‖p ≤ ‖A‖σp. (9.2.20)

Proof. See [1485, p. 50].

Proposition 9.2.6. Let ‖ · ‖ be a norm on Fn×n, and let A ∈ Fn×n. Then,

sprad(A) = lim
k→∞

‖Ak‖1/k. (9.2.21)

Proof. See [709, p. 322].

9.3 Compatible Norms

The norms ‖ · ‖, ‖ · ‖′, and ‖ · ‖′′ on Fn×l, Fn×m, and Fm×l, respectively, are
compatible if, for all A ∈ Fn×m and B ∈ Fm×l,

‖AB‖ ≤ ‖A‖′‖B‖′′. (9.3.1)
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For l = 1, the norms ‖ · ‖, ‖ · ‖′, and ‖ · ‖′′ on Fn, Fn×m, and Fm, respectively, are
compatible if, for all A ∈ Fn×m and x ∈ Fm,

‖Ax‖ ≤ ‖A‖′‖x‖′′. (9.3.2)

Furthermore, the norm ‖ · ‖ on Fn is compatible with the norm ‖ · ‖′ on Fn×n if, for
all A ∈ F

n×n and x ∈ F
n,

‖Ax‖ ≤ ‖A‖′‖x‖. (9.3.3)

Note that ‖In‖′ ≥ 1. The norm ‖ · ‖ on Fn×n is submultiplicative if, for all A,B ∈
Fn×n,

‖AB‖ ≤ ‖A‖‖B‖. (9.3.4)

Hence, the norm ‖ · ‖ on F
n×n is submultiplicative if and only if ‖ · ‖, ‖ · ‖, and

‖ · ‖ are compatible. In this case, ‖In‖ ≥ 1, while ‖ · ‖ is normalized if and only if
‖In‖ = 1.

Proposition 9.3.1. Let ‖ · ‖ be a submultiplicative norm on Fn×n, and let
y ∈ F

n be nonzero. Then, ‖x‖′ �= ‖xy∗‖ is a norm on F
n, and ‖ · ‖′ is compatible

with ‖ · ‖.

Proposition 9.3.2. Let ‖ · ‖ be a submultiplicative norm on F
n×n, and let

A ∈ Fn×n. Then,
sprad(A) ≤ ‖A‖. (9.3.5)

Proof. Use Proposition 9.3.1 to construct a norm ‖·‖′ on F
n that is compatible

with ‖ · ‖. Furthermore, let A ∈ Fn×n, let λ ∈ spec(A), and let x ∈ Cn be
an eigenvector of A associated with λ. Then, Ax = λx implies that |λ|‖x‖′ =
‖Ax‖′ ≤ ‖A‖‖x‖′, and thus |λ| ≤ ‖A‖, which implies (9.3.5). Alternatively, under
the additional assumption that ‖·‖ is submultiplicative, it follows from Proposition
9.2.6 that

sprad(A) = lim
k→∞

‖Ak‖1/k ≤ lim
k→∞

‖A‖k/k = ‖A‖. �

Proposition 9.3.3. Let A ∈ Fn×n, and let ε > 0. Then, there exists a
submultiplicative norm ‖ · ‖ on Fn×n such that

sprad(A) ≤ ‖A‖ ≤ sprad(A) + ε. (9.3.6)

Proof. See [709, p. 297].

Corollary 9.3.4. Let A ∈ Fn×n, and assume that sprad(A) < 1. Then, there
exists a submultiplicative norm ‖ · ‖ on Fn×n such that ‖A‖ < 1.

We now identify some compatible norms. We begin with the Hölder norms.

Proposition 9.3.5. Let A ∈ Fn×m and B ∈ Fm×l. If p ∈ [1, 2], then

‖AB‖p ≤ ‖A‖p‖B‖p. (9.3.7)

If p ∈ [2,∞] and q satisfies 1/p+ 1/q = 1, then

‖AB‖p ≤ ‖A‖p‖B‖q (9.3.8)
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and
‖AB‖p ≤ ‖A‖q‖B‖p. (9.3.9)

Proof. First let 1 ≤ p ≤ 2 so that q �= p/(p−1) ≥ 2. Using Hölder’s inequality
(9.1.8) and (9.1.6) with p ≤ q yields

‖AB‖p =

⎛
⎝ n,l∑
i,j=1

|rowi(A)colj(B)|p
⎞
⎠
1/p

≤
⎛
⎝ n,l∑
i,j=1

‖rowi(A)‖pp‖colj(B)‖pq

⎞
⎠
1/p

=

(
n∑
i=1

‖rowi(A)‖pp
)1/p⎛⎝ l∑

j=1

‖colj(B)‖pq

⎞
⎠
1/p

≤
(

n∑
i=1

‖rowi(A)‖pp
)1/p⎛⎝ l∑

j=1

‖colj(B)‖pp

⎞
⎠
1/p

= ‖A‖p‖B‖p.

Next, let 2 ≤ p ≤ ∞ so that q �= p/(p − 1) ≤ 2. Using Hölder’s inequality
(9.1.8) and (9.1.6) with q ≤ p yields

‖AB‖p ≤
(

n∑
i=1

‖rowi(A)‖pp
)1/p⎛⎝ l∑

j=1

‖colj(B)‖pq

⎞
⎠
1/p

≤
(

n∑
i=1

‖rowi(A)‖pp
)1/p⎛⎝ l∑

j=1

‖colj(B)‖qq

⎞
⎠
1/q

= ‖A‖p‖B‖q.
Similarly, it can be shown that (9.3.9) holds.

Proposition 9.3.6. Let A ∈ F
n×m, B ∈ F

m×l, and p, q ∈ [1,∞], define

r �=
1

1
p + 1

q

,

and assume that r ≥ 1. Then,

‖AB‖σr ≤ ‖A‖σp‖B‖σq. (9.3.10)

In particular,

‖AB‖σr ≤ ‖A‖σ2r‖B‖σ2r. (9.3.11)
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Proof. Using Proposition 9.6.2 and Hölder’s inequality with 1/(p/r)+1/(q/r)
= 1, it follows that

‖AB‖σr =

⎛
⎝min{n,m,l}∑

i=1

σri (AB)

⎞
⎠
1/r

≤
⎛
⎝min{n,m,l}∑

i=1

σri (A)σri (B)

⎞
⎠
1/r

≤

⎡
⎢⎣
⎛
⎝min{n,m,l}∑

i=1

σpi (A)

⎞
⎠
r/p⎛
⎝min{n,m,l}∑

i=1

σqi (B)

⎞
⎠
r/q
⎤
⎥⎦
1/r

= ‖A‖σp‖B‖σq. �

Corollary 9.3.7. Let A ∈ Fn×m and B ∈ Fm×l. Then,

‖AB‖σ∞ ≤ ‖AB‖σ2 ≤

⎧⎪⎪⎨
⎪⎪⎩
‖A‖σ∞‖B‖σ2

‖A‖σ2‖B‖σ∞
‖AB‖σ1

⎫⎪⎪⎬
⎪⎪⎭ ≤ ‖A‖σ2‖B‖σ2 (9.3.12)

or, equivalently,

σmax(AB) ≤ ‖AB‖F ≤

⎧⎪⎪⎨
⎪⎪⎩

σmax(A)‖B‖F
‖A‖Fσmax(B)

tr 〈AB〉

⎫⎪⎪⎬
⎪⎪⎭ ≤ ‖A‖F‖B‖F. (9.3.13)

Furthermore, for all r ∈ [1,∞],

‖AB‖σ2r ≤ ‖AB‖σr ≤

⎧⎪⎪⎨
⎪⎪⎩
‖A‖σrσmax(B)

σmax(A)‖B‖σr
‖A‖σ2r‖B‖σ2r

⎫⎪⎪⎬
⎪⎪⎭ ≤ ‖A‖σr‖B‖σr. (9.3.14)

In particular, setting r =∞ yields

σmax(AB) ≤ σmax(A)σmax(B). (9.3.15)

Corollary 9.3.8. Let A ∈ Fn×m and B ∈ Fm×l. Then,

‖AB‖σ1 ≤
{

σmax(A)‖B‖σ1

‖A‖σ1σmax(B).
(9.3.16)

Note that the inequality ‖AB‖F ≤ ‖A‖F‖B‖F in (9.3.13) is equivalent to
(9.3.7) with p = 2 as well as (9.3.8) and (9.3.9) with p = q = 2.

The following result is the matrix version of the Cauchy-Schwarz inequality
Corollary 9.1.7.
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Corollary 9.3.9. Let A ∈ Fn×m and B ∈ Fm×n. Then,

|trA∗B| ≤ ‖A‖F‖B‖F. (9.3.17)

Equality holds if and only if A and B∗ are linearly dependent.

9.4 Induced Norms

In this section we consider the case in which there exists a nonzero vector
x ∈ Fm such that (9.3.3) holds as an equality. This condition characterizes a
special class of norms on Fn×n, namely, the induced norms.

Definition 9.4.1. Let ‖ · ‖′′ and ‖ · ‖ be norms on F
m and F

n, respectively.
Then, ‖ · ‖′: Fn×m �→ F defined by

‖A‖′ = max
x∈Fm\{0}

‖Ax‖
‖x‖′′ (9.4.1)

is an induced norm on Fn×m. In this case, ‖·‖′ is induced by ‖·‖′′ and ‖·‖. If m = n
and ‖ · ‖′′ = ‖ · ‖, then ‖ · ‖′ is induced by ‖ · ‖, and ‖ · ‖′ is an equi-induced norm.

The next result confirms that ‖ · ‖′ defined by (9.4.1) is a norm.

Theorem 9.4.2. Every induced norm is a norm. Furthermore, every equi-
induced norm is normalized.

Proof. See [709, p. 293].

Let A ∈ Fn×m. It can be seen that (9.4.1) is equivalent to

‖A‖′ = max
x∈{y∈Fm: ‖y‖′′=1}

‖Ax‖. (9.4.2)

Theorem 10.3.8 implies that the maximum in (9.4.2) exists. Since, for all x �= 0,

‖A‖′ = max
x∈Fm\{0}

‖Ax‖
‖x‖′′ ≥

‖Ax‖
‖x‖′′ , (9.4.3)

it follows that, for all x ∈ F
m,

‖Ax‖ ≤ ‖A‖′‖x‖′′ (9.4.4)

so that ‖ · ‖, ‖ · ‖′, and ‖ · ‖′′ are compatible. If m = n and ‖ · ‖′′ = ‖ · ‖, then the
norm ‖ · ‖ is compatible with the induced norm ‖ · ‖′. The next result shows that
compatible norms can be obtained from induced norms.

Proposition 9.4.3. Let ‖ · ‖, ‖ · ‖′, and ‖ · ‖′′ be norms on Fl, Fm, and Fn,
respectively. Furthermore, let ‖ ·‖′′′ be the norm on F

m×l induced by ‖ ·‖ and ‖ ·‖′,
let ‖ · ‖′′′′ be the norm on Fn×m induced by ‖ · ‖′ and ‖ · ‖′′, and let ‖ · ‖′′′′′ be the
norm on Fn×l induced by ‖ · ‖ and ‖ · ‖′′. If A ∈ Fn×m and B ∈ Fm×l, then

‖AB‖′′′′′ ≤ ‖A‖′′′′‖B‖′′′. (9.4.5)
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Proof. Note that, for all x ∈ Fl, ‖Bx‖′ ≤ ‖B‖′′′‖x‖, and, for all y ∈ Fm,
‖Ay‖′′ ≤ ‖A‖′′′′‖y‖′. Hence, for all x ∈ Fl, it follows that

‖ABx‖′′ ≤ ‖A‖′′′′‖Bx‖′ ≤ ‖A‖′′′′‖B‖′′′‖x‖,
which implies that

‖AB‖′′′′′ = max
x∈Fl\{0}

‖ABx‖′′
‖x‖ ≤ ‖A‖′′′′‖B‖′′′. �

Corollary 9.4.4. Every equi-induced norm is submultiplicative.

The following result is a consequence of Corollary 9.4.4 and Proposition 9.3.2.

Corollary 9.4.5. Let ‖·‖ be an equi-induced norm on Fn×n, and let A ∈ Fn×n.
Then,

sprad(A) ≤ ‖A‖. (9.4.6)

By assigning ‖ · ‖p to Fm and ‖ · ‖q to Fn, the Hölder-induced norm on Fn×m

is defined by
‖A‖q,p �= max

x∈Fm\{0}
‖Ax‖q
‖x‖p . (9.4.7)

Proposition 9.4.6. Let p, q, p′, q′ ∈ [1,∞], where p ≤ p′ and q ≤ q′, and let
A ∈ F

n×m. Then,
‖A‖q′,p ≤ ‖A‖q,p ≤ ‖A‖q,p′ . (9.4.8)

Proof. The result follows from Proposition 9.1.5.

A subtlety of induced norms is that the value of an induced norm may depend
on the underlying field. In particular, the value of the induced norm of a real matrix
A computed over the complex field may be different from the induced norm of A
computed over the real field. Although the chosen field is usually not made explicit,
we do so in special cases for clarity.

Proposition 9.4.7. Let A ∈ Rn×m, and let ‖A‖p,q,F denote the Hölder-
induced norm of A evaluated over the field F. Then,

‖A‖p,q,R ≤ ‖A‖p,q,C. (9.4.9)

If p ∈ [1,∞], then

‖A‖p,1,R = ‖A‖p,1,C. (9.4.10)

Finally, if p, q ∈ [1,∞] satisfy 1/p+ 1/q = 1, then

‖A‖∞,p,R = ‖A‖∞,p,C. (9.4.11)

Proof. See [690, p. 716].

Example 9.4.8. Let A =
[

1 −1
1 1

]
and x =

[
x1 x2

]T
. Then, ‖Ax‖1 =

|x1 − x2| + |x1 + x2|. Letting x =
[

1 j
]T so that ‖x‖∞ = 1, it follows that
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‖A‖1,∞,C ≥ 2
√

2. On the other hand, ‖A‖1,∞,R = 2. Hence, in this case, the
inequality (9.4.9) is strict. See [690, p. 716].

The following result gives explicit expressions for several Hölder-induced
norms.

Proposition 9.4.9. Let A ∈ Fn×m. Then,

‖A‖2,2 = σmax(A). (9.4.12)

If p ∈ [1,∞], then

‖A‖p,1 = max
i∈{1,...,m}

‖coli(A)‖p. (9.4.13)

Finally, if p, q ∈ [1,∞] satisfy 1/p+ 1/q = 1, then

‖A‖∞,p = max
i∈{1,...,n}

‖rowi(A)‖q. (9.4.14)

Proof. Since A∗A is Hermitian, it follows from Corollary 8.4.2 that, for all
x ∈ Fm,

x∗A∗Ax ≤ λmax(A∗A)x∗x,

which implies that, for all x ∈ F
m, ‖Ax‖2 ≤ σmax(A)‖x‖2, and thus ‖A‖2,2 ≤

σmax(A). Now, let x ∈ Fn×n be an eigenvector associated with λmax(A∗A) so that
‖Ax‖2 = σmax(A)‖x‖2, which implies that σmax(A) ≤ ‖A‖2,2. Hence, (9.4.12)
holds.

Next, note that, for all x ∈ Fm,

‖Ax‖p =

∥∥∥∥∥
m∑
i=1

x(i)coli(A)

∥∥∥∥∥
p

≤
m∑
i=1

|x(i)|‖coli(A)‖p ≤ max
i∈{1,...,m}

‖coli(A)‖p‖x‖1,

and hence ‖A‖p,1 ≤ maxi∈{1,...,m}‖coli(A)‖p. Next, let j ∈ {1, . . . ,m} be such
that ‖colj(A)‖p = maxi∈{1,...,m}‖coli(A)‖p. Now, since ‖ej‖1 = 1, it follows that
‖Aej‖p = ‖colj(A)‖p‖ej‖1, which implies that

max
i∈{1,...,n}

‖coli(A)‖p = ‖colj(A)‖p ≤ ‖A‖p,1,

and hence (9.4.13) holds.

Next, for all x ∈ Fm, it follows from Hölder’s inequality (9.1.8) that

‖Ax‖∞ = max
i∈{1,...,n}

|rowi(A)x| ≤ max
i∈{1,...,n}

‖rowi(A)‖q‖x‖p,

which implies that ‖A‖∞,p ≤ maxi∈{1,...,n}‖rowi(A)‖q. Next, let j ∈ {1, . . . , n} be
such that ‖rowj(A)‖q = maxi∈{1,...,n}‖rowi(A)‖q, and let nonzero x ∈ F

m be such
that |rowj(A)x| = ‖rowj(A)‖q‖x‖p. Hence,

‖Ax‖∞ = max
i∈{1,...,n}

|rowi(A)x| ≥ |rowj(A)x| = ‖rowj(A)‖q‖x‖p,

which implies that
max

i∈{1,...,n}
‖rowi(A)‖q = ‖rowj(A)‖q ≤ ‖A‖∞,p,
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and thus (9.4.14) holds.

Note that
max

i∈{1,...,m}
‖coli(A)‖2 = d1/2

max(A
∗A) (9.4.15)

and
max

i∈{1,...,n}
‖rowi(A)‖2 = d1/2

max(AA
∗). (9.4.16)

Therefore, it follows from Proposition 9.4.9 that

‖A‖1,1 = max
i∈{1,...,m}

‖coli(A)‖1, (9.4.17)

‖A‖2,1 = max
i∈{1,...,m}

‖coli(A)‖2 = d1/2
max(A

∗A), (9.4.18)

‖A‖∞,1 = ‖A‖∞ = max
i∈{1,...,n}
j∈{1,...,m}

|A(i,j)|, (9.4.19)

‖A‖∞,2 = max
i∈{1,...,n}

‖rowi(A)‖2 = d1/2
max(AA

∗), (9.4.20)

‖A‖∞,∞ = max
i∈{1,...,n}

‖rowi(A)‖1. (9.4.21)

For convenience, we define the column norm

‖A‖col �= ‖A‖1,1 (9.4.22)

and the row norm
‖A‖row �= ‖A‖∞,∞. (9.4.23)

The following result follows from Corollary 9.4.5.

Corollary 9.4.10. Let A ∈ Fn×n. Then,

sprad(A) ≤ σmax(A), (9.4.24)

sprad(A) ≤ ‖A‖col, (9.4.25)

sprad(A) ≤ ‖A‖row. (9.4.26)

Proposition 9.4.11. Let p, q ∈ [1,∞] be such that 1/p + 1/q = 1, and let
A ∈ Fn×m. Then,

‖A‖q,p ≤ ‖A‖q. (9.4.27)

Proof. For p = 1 and q = ∞, (9.4.27) follows from (9.4.19). For q < ∞ and
x ∈ Fn, it follows from Hölder’s inequality (9.1.8) that
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‖Ax‖q =

(
n∑
i=1

|rowi(A)x|q
)1/q
≤
(

n∑
i=1

‖rowi(A)‖qq‖x‖qp
)1/q

=

⎛
⎝ n∑
i=1

m∑
j=1

|A(i,j)|q
⎞
⎠
1/q

‖x‖p = ‖A‖q‖x‖p,

which implies (9.4.27).

Next, we specialize Proposition 9.4.3 to the Hölder-induced norms.

Corollary 9.4.12. Let p, q, r ∈ [1,∞], and let A ∈ Fn×m and A ∈ Fm×l. Then,

‖AB‖r,p ≤ ‖A‖r,q‖B‖q,p. (9.4.28)

In particular,
‖AB‖col ≤ ‖A‖col‖B‖col, (9.4.29)

σmax(AB) ≤ σmax(A)σmax(B), (9.4.30)

‖AB‖row ≤ ‖A‖row‖B‖row, (9.4.31)

‖AB‖∞ ≤ ‖A‖∞‖B‖col, (9.4.32)

‖AB‖∞ ≤ ‖A‖row‖B‖∞, (9.4.33)

d1/2
max(B

∗A∗AB) ≤ d1/2
max(A

∗A)‖B‖col, (9.4.34)

d1/2
max(B

∗A∗AB) ≤ σmax(A)d1/2
max(B∗B), (9.4.35)

d1/2
max(ABB

∗A∗) ≤ d1/2
max(AA

∗)σmax(B), (9.4.36)

d1/2
max(ABB

∗A∗) ≤ ‖B‖rowd1/2
max(BB

∗). (9.4.37)

The following result is often useful.

Proposition 9.4.13. Let A ∈ Fn×n, and assume that sprad(A) < 1. Then,
there exists a submultiplicative norm ‖·‖ on Fn×n such that ‖A‖ < 1. Furthermore,
the series

∑∞
k=0A

k converges absolutely, and

(I −A)−1 =
∞∑
k=0

Ak. (9.4.38)

Finally,

1
1 + ‖A‖ ≤

∥∥(I −A)−1
∥∥ ≤ 1

1− ‖A‖ + ‖I‖ −1. (9.4.39)

If, in addition, ‖ · ‖ is normalized, then

1
1 + ‖A‖ ≤

∥∥(I −A)−1
∥∥ ≤ 1

1− ‖A‖ . (9.4.40)
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Proof. Corollary 9.3.4 implies that there exists a submultiplicative norm ‖ · ‖
on Fn×n such that ‖A‖ < 1. It thus follows that∥∥∥∥∥

∞∑
k=0

Ak

∥∥∥∥∥ ≤
∞∑
k=0

‖Ak‖ ≤ ‖I‖ − 1 +
∞∑
k=0

‖A‖k =
1

1− ‖A‖ + ‖I‖ −1,

which proves that the series
∑∞

k=0A
k converges absolutely.

Next, we show that I−A is nonsingular. If I−A is singular, then there exists
a nonzero vector x ∈ Cn such that Ax = x. Hence, 1 ∈ spec(A), which contradicts
sprad(A) < 1. Next, to verify (9.4.38), note that

(I −A)
∞∑
k=0

Ak =
∞∑
k=0

Ak −
∞∑
k=1

Ak = I +
∞∑
k=1

Ak −
∞∑
k=1

Ak = I,

which implies (9.4.38) and thus the right-hand inequality in (9.4.39). Furthermore,

1 ≤ ‖I‖
=
∥∥(I −A)(I −A)−1

∥∥
≤ ‖I −A‖ ∥∥(I −A)−1

∥∥
≤ (1 + ‖A‖)∥∥(I −A)−1

∥∥,
which yields the left-hand inequality in (9.4.39).

9.5 Induced Lower Bound

We now consider a variation of the induced norm.

Definition 9.5.1. Let ‖ · ‖ and ‖ · ‖′ denote norms on Fm and Fn, respectively,
and let A ∈ Fn×m. Then, 
: Fn×m �→ R defined by


(A) �=

⎧⎪⎨
⎪⎩

min
y∈R(A)\{0}

max
x∈{z∈Fm: Az=y}

‖y‖′

‖x‖ , A �= 0,

0, A = 0,
(9.5.1)

is the lower bound induced by ‖ · ‖ and ‖ · ‖′. Equivalently,


(A) �=

⎧⎪⎨
⎪⎩

min
x∈Fm\N(A)

max
z∈N(A)

‖Ax‖′

‖x+z‖, A �= 0,

0, A = 0.
(9.5.2)

Proposition 9.5.2. Let ‖ · ‖ and ‖ · ‖′ be norms on Fm and Fn, respectively,
let ‖ · ‖′′ be the norm induced by ‖ · ‖ and ‖ · ‖′, let ‖ · ‖′′′ be the norm induced by
‖ · ‖′ and ‖ · ‖, and let 
 be the lower bound induced by ‖ · ‖ and ‖ · ‖′. Then, the
following statements hold:

i) 
(A) exists for all A ∈ F
n×m, that is, the minimum in (9.5.1) is attained.

ii) If A ∈ Fn×m, then 
(A) = 0 if and only if A = 0.
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iii) For all A ∈ Fn×m there exists a vector x ∈ Fm such that


(A)‖x‖ = ‖Ax‖′. (9.5.3)

iv) For all A ∈ Fn×m,

(A) ≤ ‖A‖′′. (9.5.4)

v) If A �= 0 and B is a (1)-inverse of A, then

1/‖B‖′′′ ≤ 
(A) ≤ ‖B‖′′′. (9.5.5)

vi) If A,B ∈ Fn×m and either R(A) ⊆ R(A+B) or N(A) ⊆ N(A+B), then


(A)− ‖B‖′′′ ≤ 
(A+B). (9.5.6)

vii) If A,B ∈ Fn×m and either R(A+B) ⊆ R(A) or N(A+B) ⊆ N(A), then


(A+B) ≤ 
(A) + ‖B‖′′′. (9.5.7)

viii) If n = m and A ∈ Fn×n is nonsingular, then


(A) = 1/‖A−1‖′′′. (9.5.8)

Proof. See [582].

Proposition 9.5.3. Let ‖ · ‖, ‖ · ‖′, and ‖ · ‖′′ be norms on F
l, F

m, and F
n,

respectively, let ‖ ·‖′′′ denote the norm on Fm×l induced by ‖ ·‖ and ‖ ·‖′, let ‖ ·‖′′′′
denote the norm on Fn×m induced by ‖ · ‖′ and ‖ · ‖′′, and let ‖ · ‖′′′′′ denote the
norm on Fn×l induced by ‖ · ‖ and ‖ · ‖′′. If A ∈ Fn×m and B ∈ Fm×l, then


(A)
′(B) ≤ 
′′(AB). (9.5.9)

In addition, the following statements hold:

i) If either rankB = rankAB or def B = def AB, then


′′(AB) ≤ ‖A‖′′
(B). (9.5.10)

ii) If rankA = rankAB, then


′′(AB) ≤ 
(A)‖B‖′′′′. (9.5.11)

iii) If rankB = m, then ‖A‖′′
(B) ≤ ‖AB‖′′′′′. (9.5.12)

iv) If rankA = m, then

(A)‖B‖′′′′ ≤ ‖AB‖′′′′′. (9.5.13)

Proof. See [582].

By assigning ‖ · ‖p to Fm and ‖ · ‖q to Fn, the Hölder-induced lower bound on
Fn×m is defined by


q,p(A) �=

⎧⎪⎨
⎪⎩

min
y∈R(A)\{0}

max
x∈{z∈Fm: Az=y}

‖y‖q

‖x‖p
, A �= 0,

0, A = 0.
(9.5.14)

The following result shows that 
2,2(A) is the smallest positive singular value
of A.
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Proposition 9.5.4. Let A ∈ Fn×m, assume that A is nonzero, and let r �=
rankA. Then,


2,2(A) = σr(A). (9.5.15)

Proof. The result follows from the singular value decomposition.

Corollary 9.5.5. Let A ∈ Fn×m. If n ≤ m and A is right invertible, then


2,2(A) = σmin(A) = σn(A). (9.5.16)

If m ≤ n and A is left invertible, then


2,2(A) = σmin(A) = σm(A). (9.5.17)

Finally, if n = m and A is nonsingular, then


2,2
(
A−1
)

= σmin

(
A−1
)

=
1

σmax(A)
. (9.5.18)

Proof. Use Proposition 5.6.2 and Fact 6.3.29.

In contrast to the submultiplicativity condition (9.4.4) satisfied by the induced
norm, the induced lower bound satisfies a supermultiplicativity condition. The
following result is analogous to Proposition 9.4.3.

Proposition 9.5.6. Let ‖ · ‖, ‖ · ‖′, and ‖ · ‖′′ be norms on Fl, Fm, and Fn,
respectively. Let 
(·) be the lower bound induced by ‖ · ‖ and ‖ · ‖′, let 
′(·) be the
lower bound induced by ‖ · ‖′ and ‖ · ‖′′, let 
′′(·) be the lower bound induced by
‖ · ‖ and ‖ · ‖′′, let A ∈ Fn×m and B ∈ Fm×l, and assume that either A or B is right
invertible. Then,


′(A)
(B) ≤ 
′′(AB). (9.5.19)

Furthermore, if 1 ≤ p, q, r ≤ ∞, then


r,q(A)
q,p(B) ≤ 
r,p(AB). (9.5.20)

In particular,
σm(A)σl(B) ≤ σl(AB). (9.5.21)

Proof. See [582] and [867, pp. 369, 370].

9.6 Singular Value Inequalities

Proposition 9.6.1. Let A ∈ Fn×m and B ∈ Fm×l. Then, for all i ∈ {1, . . . ,
min{n,m}} and j ∈ {1, . . . ,min{m, l}} such that i+ j ≤ min{n, l}+ 1,

σi+j−1(AB) ≤ σi(A)σj(B). (9.6.1)

In particular, for all i = 1, . . . ,min{n,m, l},
σi(AB) ≤ σmax(A)σi(B) (9.6.2)

and

σi(AB) ≤ σi(A)σmax(B). (9.6.3)
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Proof. See [711, p. 178].

Proposition 9.6.2. Let A ∈ Fn×m and B ∈ Fm×l. If r ≥ 0, then, for all
k = 1, . . . ,min{n,m, l},

k∑
i=1

σri (AB) ≤
k∑
i=1

σri (A)σri (B). (9.6.4)

In particular, for all k = 1, . . . ,min{n,m, l},
k∑
i=1

σi(AB) ≤
k∑
i=1

σi(A)σi(B). (9.6.5)

If r < 0, n = m = l, and A and B are nonsingular, then
n∑
i=1

σri (AB) ≤
n∑
i=1

σri (A)σri (B). (9.6.6)

Proof. The first statement follows from Proposition 9.6.3 and Fact 2.21.9.
For the case r < 0, use Fact 2.21.12. See [197, p. 94] or [711, p. 177].

Proposition 9.6.3. Let A ∈ F
n×m and B ∈ F

m×l. Then, for all k = 1, . . . ,
min{n,m, l},

k∏
i=1

σi(AB) ≤
k∏
i=1

σi(A)σi(B).

If, in addition, n = m = l, then
n∏
i=1

σi(AB) =
n∏
i=1

σi(A)σi(B).

Proof. See [711, p. 172].

Proposition 9.6.4. Let A ∈ Fn×m and B ∈ Fm×l. If m ≤ n, then, for all
i = 1, . . . ,min{n,m, l},

σmin(A)σi(B) = σm(A)σi(B) ≤ σi(AB). (9.6.7)

If m ≤ l, then, for all i = 1, . . . ,min{n,m, l},
σi(A)σmin(B) = σi(A)σm(B) ≤ σi(AB). (9.6.8)

Proof. Corollary 8.4.2 implies that σ2
m(A)Im = λmin(A∗A)Im ≤ A∗A, which

implies that σ2
m(A)B∗B ≤ B∗A∗AB. Hence, it follows from the monotonicity theorem

Theorem 8.4.9 that, for all i = 1, . . . ,min{n,m, l},
σm(A)σi(B) = λi

[
σ2
m(A)B∗B

]1/2≤ λ1/2i (B∗A∗AB) = σi(AB),

which proves the left-hand inequality in (9.6.7). Similarly, for all i = 1, . . . ,
min{n,m, l},

σi(A)σm(B) = λi
[
σ2
m(B)AA∗]1/2≤ λ1/2i (ABB∗A∗) = σi(AB). �
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Corollary 9.6.5. Let A ∈ Fn×m and B ∈ Fm×l. Then,

σm(A)σmin{n,m,l}(B) ≤ σmin{n,m,l}(AB) ≤ σmax(A)σmin{n,m,l}(B), (9.6.9)

σm(A)σmax(B) ≤ σmax(AB) ≤ σmax(A)σmax(B), (9.6.10)

σmin{n,m,l}(A)σm(B) ≤ σmin{n,m,l}(AB) ≤ σmin{n,m,l}(A)σmax(B), (9.6.11)

σmax(A)σm(B) ≤ σmax(AB) ≤ σmax(A)σmax(B). (9.6.12)

Specializing Corollary 9.6.5 to the case in which A or B is square yields the
following result.

Corollary 9.6.6. Let A ∈ Fn×n and B ∈ Fn×l. Then, for all i = 1, . . . ,
min{n, l},

σmin(A)σi(B) ≤ σi(AB) ≤ σmax(A)σi(B). (9.6.13)

In particular,

σmin(A)σmax(B) ≤ σmax(AB) ≤ σmax(A)σmax(B). (9.6.14)

If A ∈ Fn×m and B ∈ Fm×m, then, for all i = 1, . . . ,min{n,m}},
σi(A)σmin(B) ≤ σi(AB) ≤ σi(A)σmax(B). (9.6.15)

In particular,

σmax(A)σmin(B) ≤ σmax(AB) ≤ σmax(A)σmax(B). (9.6.16)

Corollary 9.6.7. Let A ∈ Fn×m and B ∈ Fm×l. If m ≤ n, then

σmin(A)‖B‖F = σm(A)‖B‖F ≤ ‖AB‖F. (9.6.17)

If m ≤ l, then
‖A‖Fσmin(B) = ‖A‖Fσm(B) ≤ ‖AB‖F. (9.6.18)

Proposition 9.6.8. Let A,B ∈ Fn×m. Then, for all i, j ∈ {1, . . . , min{n,m}}
such that i+ j ≤ min{n,m}+ 1,

σi+j−1(A+B) ≤ σi(A) + σj(B) (9.6.19)

and
σi+j−1(A)− σj(B) ≤ σi(A+B). (9.6.20)

Proof. See [711, p. 178].

Corollary 9.6.9. Let A,B ∈ Fn×m. Then,

σn(A)− σmax(B) ≤ σn(A+B) ≤ σn(A) + σmax(B). (9.6.21)

If, in addition, n = m, then

σmin(A)− σmax(B) ≤ σmin(A+B) ≤ σmin(A) + σmax(B). (9.6.22)

Proof. The result follows from Proposition 9.6.8. Alternatively, it follows
from Lemma 8.4.3 and the Cauchy-Schwarz inequality Corollary 9.1.7 that, for all
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nonzero x ∈ Fn,

λmin[(A+B)(A+B)∗] ≤ x∗(AA∗ +BB∗ + AB∗ +BA∗)x
x∗x

=
x∗AA∗x
‖x‖22

+
x∗BB∗x
‖x‖22

+ Re
2x∗AB∗x
‖x‖22

≤ x∗AA∗x
‖x‖22

+ σ2
max(B) + 2

(x∗AA∗x)1/2

‖x‖2 σmax(B).

Minimizing with respect to x and using Lemma 8.4.3 yields

σ2
n(A+B) = λmin[(A+B)(A+B)∗]

≤ λmin(AA∗) + σ2
max(B) + 2λ1/2min(AA

∗)σmax(B)

= [σn(A) + σmax(B)]2,

which proves the right-hand inequality of (9.6.21). Finally, the left-hand inequality
follows from the right-hand inequality with A and B replaced by A + B and −B,
respectively.

9.7 Facts on Vector Norms

Fact 9.7.1. Let x, y ∈ F
n. Then, x and y are linearly dependent if and only

if |x|◦2 and |y|◦2 are linearly dependent and |x∗y| = |x|T|y|. (Remark: This equiv-
alence clarifies the relationship between (9.1.9) with p = 2 and Corollary 9.1.7.)

Fact 9.7.2. Let x, y ∈ Fn, and let ‖ · ‖ be a norm on Fn. Then,

∣∣‖x‖ − ‖y‖∣∣ ≤
{
‖x+ y‖
‖x− y‖.

Fact 9.7.3. Let x, y ∈ Fn, and let ‖ · ‖ be a norm on Fn. Then, the following
statements hold:

i) If there exists β ≥ 0 such that either x = βy or y = βx, then ‖x + y‖ =
‖x‖+ ‖y‖.

ii) If ‖x + y‖ = ‖x‖ + ‖y‖ and x and y are linearly dependent, then there
exists β ≥ 0 such that either x = βy or y = βx.

iii) If ‖x+ y‖2 = ‖x‖2 + ‖y‖2, then there exists β ≥ 0 such that either x = βy
or y = βx.

(Proof: For iii), use v) of Fact 9.7.4.) (Problem: Consider iii) with alternative
norms.) (Problem: If x and y are linearly independent, then does it follow that
‖x+ y‖ < ‖x‖+ ‖y‖?)

Fact 9.7.4. Let x, y, z ∈ Fn. Then, the following statements hold:

i) 1
2

(‖x+ y‖22 + ‖x− y‖22
)

= ‖x‖22 + ‖y‖22.
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ii) If x and y are nonzero, then

1
2 (‖x‖2 + ‖y‖2)

∥∥∥∥ x

‖x‖2 −
y

‖y‖2

∥∥∥∥
2

≤ ‖x− y‖2.

iii) If x and y are nonzero, then∥∥∥∥ 1
‖x‖2x− ‖x‖2y

∥∥∥∥
2

=
∥∥∥∥ 1
‖y‖2 y − ‖y‖2x

∥∥∥∥
2

.

iv) If F = R, then
4xTy = ‖x+ y‖22 − ‖x− y‖22.

v) If F = C, then

4x∗y = ‖x+ y‖22 − ‖x− y‖22 + j
(‖x+ jy‖22 − ‖x− jy‖22

)
.

vi) Rex∗y = 1
4

(‖x+ y‖22 − ‖x− y‖22
)

= 1
2

(‖x+ y‖22 − ‖x‖22 − ‖y‖22
)
.

vii) If F = C, then Imx∗y = j
4

(‖x+ jy‖22 − ‖x− jy‖22
)
.

viii) ‖x+ y‖2 =
√
‖x‖22 + ‖y‖22 + 2Rex∗y.

ix) ‖x− y‖2 =
√
‖x‖22 + ‖y‖22 − 2Rex∗y.

x) ‖x+ y‖2‖x− y‖2 ≤ ‖x‖22 + ‖y‖22.
xi) If ‖x+ y‖2 = ‖x‖2 + ‖y‖2, then Imx∗y = 0 and Rex∗y ≥ 0.

xii) |x∗y| ≤ ‖x‖2‖y‖2.
xiii) If ‖x+ y‖2 ≤ 2, then

(1− ‖x‖22)(1− ‖y‖22) ≤ |1− Rex∗y|2.
xiv) For all nonzero α ∈ R,

‖x‖22‖y‖22 − |x∗y|2 ≤ α−2‖αy − x‖22‖x‖22.
xv) If Rex∗y �= 0, then, for all nonzero α ∈ R,

‖x‖22‖y‖22 − |x∗y|2 ≤ α−2
0 ‖α0y − x‖22‖x‖22 ≤ α−2‖αy − x‖22‖x‖22,

where α0
�= x∗x/(Re x∗y).

xvi) x, y, z satisfy

‖x+ y‖22 + ‖y + z‖22 + ‖z + x‖22 = ‖x‖22 + ‖y‖22 + ‖z‖22 + ‖x+ y + z‖22
and

‖x+ y‖2 + ‖y + z‖2 + ‖z + x‖2 ≤ ‖x‖2 + ‖y‖2 + ‖z‖2 + ‖x+ y + z‖2.
xvii) |x∗zz∗y − 1

2x
∗y‖z‖22| ≤ 1

2‖x‖2‖y‖2‖z‖22.
xviii) |Re(x∗zz∗y − 1

2x
∗y‖z‖22)| ≤ 1

2‖z‖22
√‖x‖22‖y‖22 − (Imx∗y)2.

xix) |Im(x∗zz∗y − 1
2x

∗y‖z‖22)| ≤ 1
2‖z‖22

√‖x‖22‖y‖22 − (Rex∗y)2.

Furthermore, the following statements are equivalent:

xx) ‖x− y‖2 = ‖x+ y‖2.
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xxi) ‖x+ y‖22 = ‖x‖22 + ‖y‖22.
xxii) Rex∗y = 0.

Now, let x1, . . . , xk ∈ Fn, and assume that x∗ixj = δij for all i, j = 1, . . . , n. Then,
the following statement holds:

xxiii)
∑k

i=1 |y∗xi|2 ≤ ‖y‖22.
If, in addition, k = n, then the following statement holds:

xxiv)
∑n

i=1 |y∗xi|2 = ‖y‖22.
(Remark: i) is the parallelogram law, which relates the diagonals and the sides of
a parallelogram; ii) is the Dunkl-Williams inequality, which compares the distance
between x and y with the distance between the projections of x and y onto the unit
sphere (see [446], [1010, p. 515], and [1490, p. 28]); iv) and v) are the polarization
identity (see [368, p. 54], [1030, p. 276], and Fact 1.18.2); ix) is the cosine law
(see Fact 9.9.13 for a matrix version); xiii) is given in [1467] and implies Aczel’s
inequality given by Fact 1.16.19; xv) is given in [913]; xvi) is Hlawka’s identity and
Hlawka’s inequality (see Fact 1.8.6, Fact 1.18.2, [1010, p. 521], and [1039, p. 100]);
xvii) is Buzano’s inequality (see [514] and Fact 1.17.2); xviii) and xix) are given
in [1093]; the equivalence of xxi) and xxii) is the Pythagorean theorem; xxiii) is
Bessel’s inequality; and xxiv) is Parseval’s identity. Note that xxiv) implies xxiii).)
(Remark: Hlawka’s inequality is called the quadrilateral inequality in [1202], which
gives a geometric interpretation. In addition, [1202] provides an extension and
geometric interpretation to the polygonal inequalities. See Fact 9.7.7.) (Remark:
When F = R and n = 2 the Euclidean norm of ‖ [ xy ] ‖2 is equivalent to the absolute
value |z| = |x+ jy|. See Fact 1.18.2.)

Fact 9.7.5. Let x, y ∈ R3, and let S ⊂ R3 be the parallelogram with vertices
0, x, y, and x+ y. Then,

area(S) = ‖x× y‖2.
(Remark: See Fact 2.20.13, Fact 2.20.14 and Fact 3.10.1.) (Remark: The paral-
lelogram associated with the cross product can be interpreted as a bivector. See
[605, 870] and [426, pp. 86–88].)

Fact 9.7.6. Let x, y ∈ Rn, and assume that x and y are nonzero. Then,

xTy

‖x‖2‖y‖2 (‖x‖2 + ‖y‖2) ≤ ‖x+ y‖2 ≤ ‖x‖2 + ‖y‖2.

Hence, if xTy = ‖x‖2‖y‖2, then ‖x‖2+‖y‖2 = ‖x+y‖2. (Proof: See [1010, p. 517].)
(Remark: This result is a reverse triangle inequality.) (Problem: Extend this result
to complex vectors.)

Fact 9.7.7. Let x1, . . . , xn ∈ Fn, and let α1, . . . , αn be nonnegative numbers.
Then,

n∑
i=1

αi

∥∥∥∥∥∥xi −
n∑
j=1

αjxj

∥∥∥∥∥∥
2

≤
n∑
i=1

αi‖xi‖2 +

[(
n∑
i=1

αi

)
− 2

]∥∥∥∥∥
n∑
i=1

αixi

∥∥∥∥∥
2

.
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In particular,

n∑
i=1

∥∥∥∥∥∥
n∑

j=1,j �=i
xj

∥∥∥∥∥∥
2

≤
n∑
i=1

‖xi‖2 + (n− 2)

∥∥∥∥∥
n∑
i=1

xi

∥∥∥∥∥
2

.

(Remark: The first inequality is the generalized Hlawka inequality or polygonal
inequalities. The second inequality is the Djokovic inequality. See [1254] and Fact
9.7.4.)

Fact 9.7.8. Let x, y ∈ R
n, let α and δ, be positive numbers, and let p, q ∈

(0,∞) satisfy 1/p+ 1/q = 1. Then,(
α

α+ ‖y‖q2

)p−1

δp ≤ |δ − xTy|p + αp−1‖x‖p2.

Equality holds if and only if x = [δ‖y‖q−2
2 /(α+ ‖y‖q2)]y. In particular,

αδ2

α+ ‖y‖22
≤ (δ − xTy)2 + α‖x‖22.

Equality holds if and only if x = [δ/(α + ‖y‖22)]y. (Proof: See [1253].) (Remark:
The first inequality is due to Pecaric. The case p = q = 2 is due to Dragomir and
Yang. These results are generalizations of Hua’s inequality. See Fact 1.15.13 and
Fact 9.7.9.)

Fact 9.7.9. Let x1, . . . , xn, y ∈ Rn, and let α and δ be positive numbers.
Then,

α

α+ n
‖y‖22 ≤

∥∥∥∥∥y −
n∑
i=1

xi

∥∥∥∥∥
2

2

+ α

n∑
i=1

‖xi‖22.

Equality holds if and only if x1 = · · · = xn = [1/(α + n)]y. (Proof: See [1253].)
(Remark: This inequality, which is due to Dragomir and Yang, is a generalization
of Hua’s inequality. See Fact 1.15.13 and Fact 9.7.8.)

Fact 9.7.10. Let x, y ∈ Fn, and assume that x and y are nonzero. Then,

‖x− y‖2 −
∣∣‖x‖2 − ‖y‖2∣∣

min{‖x‖2, ‖y‖2} ≤
∥∥∥∥ x

‖x‖2 −
y

‖y‖2

∥∥∥∥
2

≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
‖x− y‖2 +

∣∣‖x‖2 − ‖y‖2∣∣
max{‖x‖2, ‖y‖2}

2‖x− y‖2
‖x‖2 + ‖y‖2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2‖x− y‖2
max{‖x‖2, ‖y‖2}

2(‖x− y‖2 +
∣∣‖x‖2 − ‖y‖2∣∣)

‖x‖2 + ‖y‖2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

≤ 4‖x− y‖2
‖x‖2 + ‖y‖2 .



NORMS 567

(Proof: See Fact 9.7.13 and [991].) (Remark: In the last string of inequalities, the
first inequality is the reverse Maligranda inequality, the second and upper third
terms constitute the Maligranda inequality, the second and lower third terms con-
stitute the Dunkl-Williams inequality in an inner product space, the second and
upper fourth terms constitute the Massera-Schaffer inequality.) (Remark: See Fact
1.18.5.)

Fact 9.7.11. Let x, y ∈ Fn, and let ‖ · ‖ be a norm on Fn. Then, there exists
a unique number α ∈ [1, 2] such that, for all x, y ∈ Fn, at least one of which is
nonzero,

2
α
≤ ‖x+ y‖2 + ‖x− y‖2

‖x‖2 + ‖y‖2 ≤ 2α.

Furthermore, if ‖ · ‖ = ‖ · ‖p, then

α =

{
2(2−p)/p, 1 ≤ p ≤ 2,
2(p−2)/p, p ≥ 2.

(Proof: See [275, p. 258].) (Remark: This result is the von Neumann–Jordan
inequality.) (Remark: When p = 2, it follows that α = 2, and this result yields i)
of Fact 9.7.4.)

Fact 9.7.12. Let x, y ∈ F
n, and let ‖ · ‖ be a norm on F

n. Then,

‖x+ y‖ ≤ ‖x‖+ ‖y‖ −min{‖x‖, ‖y‖}
(

2−
∥∥∥∥ x

‖x‖ +
y

‖y‖
∥∥∥∥
)
≤ ‖x‖+ ‖y‖,

‖x− y‖ ≤ ‖x‖+ ‖y‖ −min{‖x‖, ‖y‖}
(

2−
∥∥∥∥ x

‖x‖ −
y

‖y‖
∥∥∥∥
)
≤ ‖x‖+ ‖y‖,

‖x‖+ ‖y‖ −max{‖x‖, ‖y‖}
(

2−
∥∥∥∥ x

‖x‖ +
y

‖y‖
∥∥∥∥
)
≤ ‖x+ y‖ ≤ ‖x‖+ ‖y‖,

and

‖x‖+ ‖y‖ −max{‖x‖, ‖y‖}
(

2−
∥∥∥∥ x

‖x‖ −
y

‖y‖
∥∥∥∥
)
≤ ‖x− y‖ ≤ ‖x‖+ ‖y‖.

(Proof: See [951].)

Fact 9.7.13. Let x, y ∈ Fn, assume that x and y are nonzero, and let ‖ · ‖ be
a norm on Fn. Then,

(‖x‖+ ‖y‖)(‖x+ y‖ − ∣∣‖x‖ − ‖y‖∣∣)
4 min{‖x‖, ‖y‖} ≤ 1

4 (‖x‖+ ‖y‖)
∥∥∥∥ x

‖x‖ +
y

‖y‖
∥∥∥∥

≤ 1
2 max{‖x‖, ‖y‖}

∥∥∥∥ x

‖x‖ +
y

‖y‖
∥∥∥∥

≤ 1
2

(‖x+ y‖+ max{‖x‖, ‖y‖}− ‖x‖ − ‖y‖)
≤ 1

2

(‖x+ y‖+
∣∣‖x‖ − ‖y‖∣∣)

≤ ‖x+ y‖
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and

(‖x‖+ ‖y‖)(‖x− y‖ − ∣∣‖x‖ − ‖y‖∣∣)
4 min{‖x‖, ‖y‖} ≤ 1

4 (‖x‖+ ‖y‖)
∥∥∥∥ x

‖x‖ −
y

‖y‖
∥∥∥∥

≤ 1
2 max{‖x‖, ‖y‖}

∥∥∥∥ x

‖x‖ −
y

‖y‖
∥∥∥∥

≤ 1
2

(‖x− y‖+ max{‖x‖, ‖y‖} − ‖x‖ − ‖y‖)
≤ 1

2

(‖x− y‖+
∣∣‖x‖ − ‖y‖∣∣)

≤ ‖x− y‖.
Furthermore,

‖x− y‖ − ∣∣‖x‖ − ‖y‖∣∣
min{‖x‖, ‖y‖} ≤

∥∥∥∥ x

‖x‖ −
y

‖y‖
∥∥∥∥

≤ ‖x− y‖+
∣∣‖x‖ − ‖y‖∣∣

max{‖x‖, ‖y‖}

≤

⎧⎪⎪⎨
⎪⎪⎩

2‖x− y‖
max{‖x‖, ‖y‖}

2(‖x− y‖+
∣∣‖x‖ − ‖y‖∣∣)

‖x‖+ ‖y‖

⎫⎪⎪⎬
⎪⎪⎭

≤ 4‖x− y‖
‖x‖+ ‖y‖ .

(Proof: The result follows from Fact 9.7.12, [951, 991] and [1010, p. 516].) (Re-
mark: In the last string of inequalities, the first inequality is the reverse Maligranda
inequality, the second inequality is the Maligranda inequality, the second and upper
fourth terms constitute the Massera-Schaffer inequality, and the second and fifth
terms constitute the Dunkl-Williams inequality. See Fact 1.18.2 and Fact 9.7.4 for
the case of the Euclidean norm.) (Remark: Extensions to more than two vectors
are given in [794, 1078].)

Fact 9.7.14. Let x, y ∈ Fn, and let ‖ · ‖ be a norm on Fn. Then,

‖x‖2 + ‖y‖2
2‖x‖2 − 4‖x‖‖y‖+ 2‖y‖2

}
≤ ‖x+ y‖2 + ‖x− y‖2
≤ 2‖x‖2 + 4‖x‖‖y‖+ 2‖y‖2
≤ 4
(‖x‖2 + ‖y‖2).

(Proof: See [530, pp. 9, 10] and [1030, p. 278].)

Fact 9.7.15. Let x, y ∈ Fn, let α ∈ [0, 1], and let ‖ · ‖ be a norm on Fn. Then,

‖x+ y‖ ≤ ‖αx+ (1− α)y‖ + ‖(1− α)x+ αy‖ ≤ ‖x‖+ ‖y‖.

Fact 9.7.16. Let x, y ∈ Fn, assume that x and y are nonzero, let ‖ · ‖ be a
norm on Fn, and let p ∈ R. Then, the following statements hold:
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i) If p ≤ 0, then

∥∥‖x‖p−1x− ‖y‖p−1y
∥∥ ≤ (2− p)max{‖x‖p, ‖y‖p}

max{‖x‖, ‖y‖} ‖x− y‖.

ii) If p ∈ [0, 1], then

∥∥‖x‖p−1x− ‖y‖p−1y
∥∥ ≤ (2 − p) ‖x− y‖

[max{‖x‖, ‖y‖}]1−p .

iii) If p ≥ 1, then∥∥‖x‖p−1x− ‖y‖p−1y
∥∥ ≤ p[max{‖x‖, ‖y‖}]p−1‖x− y‖.

(Proof: See [951].)

Fact 9.7.17. Let x, y ∈ Fn, let ‖ · ‖ be a norm on Fn, assume that ‖x‖ �= ‖y‖,
and let p > 0. Then,

∣∣‖x‖ − ‖y‖∣∣ ≤
∥∥‖x‖px− ‖y‖py∥∥∣∣‖x‖p+1 − ‖y‖p+1

∣∣ ∣∣‖x‖ − ‖y‖∣∣ ≤ ‖x− y‖.
(Proof: See [1010, p. 516].)

Fact 9.7.18. Let x ∈ Fn, and let p, q ∈ [1,∞] satisfy 1/p+ 1/q = 1. Then,

‖x‖2 ≤
√
‖x‖p‖x‖q.

Fact 9.7.19. Let x, y ∈ Fn, let p ∈ (0, 1], and define ‖ · ‖p as in (9.1.1). Then,

‖x‖p + ‖y‖p ≤ ‖x+ y‖p .
(Remark: This result is a reverse triangle inequality.)

Fact 9.7.20. Let x, y ∈ Fn, let ‖ · ‖ be a norm on Fn, let p and q be real
numbers, and assume that 1 ≤ p ≤ q. Then,

[ 12 (‖x+ 1√
q−1

y‖q + ‖x− 1√
q−1

y‖q)]1/q ≤ [ 12 (‖x+ 1√
p−1

y‖p + ‖x− 1√
p−1

y‖p)]1/p.
(Proof: See [542, p. 207].) (Remark: This result is Bonami’s inequality. See Fact
1.10.16.)

Fact 9.7.21. Let x, y ∈ Fn×n. If p ∈ [1, 2], then

(‖x‖p + ‖y‖p)p + |‖x‖p − ‖y‖p|p ≤ ‖x+ y‖pp + ‖x− y‖pp
and

(‖x+ y‖p + ‖x− y‖p)p + |‖x+ y‖p + ‖x− y‖p|p ≤ 2p(‖x‖pp + ‖y‖pp).
If p ∈ [2,∞], then

‖x+ y‖pp + ‖x− y‖pp ≤ (‖x‖p + ‖y‖σp)p + |‖x‖p − ‖y‖p|p

and

2p(‖x‖pp + ‖y‖pp) ≤ (‖x+ y‖p + ‖x− y‖p)p + |‖x+ y‖p + ‖x− y‖p|p.
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(Proof: See [116, 906].) (Remark: These inequalities are versions of Hanner’s
inequality. These vector versions follow from inequalities on Lp by appropriate
choice of measure.) (Remark: Matrix versions are given in Fact 9.9.36.)

Fact 9.7.22. Let y ∈ Fn, let ‖ · ‖ be a norm on Fn, let ‖ · ‖′ be the norm on
F
n×n induced by ‖ · ‖, and define

‖y‖D �= max
x∈{z∈Fn: ‖z‖=1}

|y∗x|.

Then, ‖ · ‖D is a norm on F
n. Furthermore,

‖y‖ = max
x∈{z∈Fn: ‖z‖D=1}

|y∗x|.

Hence, for all x ∈ Fn,
|x∗y| ≤ ‖x‖‖y‖D.

In addition,
‖xy∗‖′ = ‖x‖‖y‖D.

Finally, let p ∈ [1,∞], and let 1/p+ 1/q = 1. Then,

‖ · ‖pD = ‖ · ‖q.
Hence, for all x ∈ Fn,

|x∗y| ≤ ‖x‖p‖y‖q
and

‖xy∗‖p,p = ‖x‖p‖y‖q.
(Proof: See [1230, p. 57].) (Remark: ‖ · ‖D is the dual norm of ‖ · ‖.)

Fact 9.7.23. Let ‖ · ‖ be a norm on Fn, and let α > 0. Then, f : Fn �→ [0,∞)
defined by f(x) = ‖x‖ is convex. Furthermore, {x ∈ Fn: ‖x‖ ≤ α} is symmetric,
solid, convex, closed, and bounded. (Remark: See Fact 10.8.22.)

Fact 9.7.24. Let x ∈ R
n, and let ‖ · ‖ be a norm on R

n. Then, xTy > 0 for all
y ∈ B‖x‖(x) = {z ∈ Rn: ‖z − x‖ < ‖x‖}.

Fact 9.7.25. Let x, y ∈ Rn, assume that x and y are nonzero, assume that
xTy = 0, and let ‖·‖ be a norm on Rn. Then, ‖x‖ ≤ ‖x+y‖. (Proof: If ‖x+y‖ < ‖x‖,
then x+ y ∈ B‖x‖(0), and thus y ∈ B‖x‖(−x). By Fact 9.7.24, xTy < 0.) (Remark:
See [218, 901] for related results concerning matrices.)

Fact 9.7.26. Let x ∈ F
n and y ∈ F

m. Then,

σmax(xy∗) = ‖xy∗‖F = ‖x‖2‖y‖2
and

σmax(xx∗) = ‖xx∗‖F = ‖x‖22.
(Remark: See Fact 5.11.16.)

Fact 9.7.27. Let x ∈ Fn and y ∈ Fm. Then,

‖x⊗ y‖2 =
∥∥vec
(
x⊗ yT)∥∥

2
=
∥∥vec
(
yxT
)∥∥

2
=
∥∥yxT

∥∥
2

= ‖x‖2‖y‖2.
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Fact 9.7.28. Let x ∈ Fn, and let 1 ≤ p, q ≤ ∞. Then,

‖x‖p = ‖x‖p,q.

Fact 9.7.29. Let x ∈ Fn, and let p, q ∈ [1,∞), where p ≤ q. Then,

‖x‖q ≤ ‖x‖p ≤ n1/p−1/q‖x‖q.
(Proof: See [680], [681, p. 107].) (Remark: See Fact 1.15.5 and Fact 9.8.21.)

Fact 9.7.30. Let A ∈ Fn×n, and assume that A is positive definite. Then,

‖x‖A �= (x∗Ax)1/2

is a norm on F
n.

Fact 9.7.31. Let ‖ · ‖ and ‖ · ‖′ be norms on Fn, and let α, β > 0. Then,
α‖ · ‖+ β‖ · ‖′ is also a norm on Fn. Furthermore, max{‖ · ‖, ‖ · ‖′} is a norm on Fn.
(Remark: min{‖ · ‖, ‖ · ‖′} is not necessarily a norm.)

Fact 9.7.32. Let A ∈ Fn×n, assume that A is nonsingular, and let ‖ · ‖ be a
norm on Fn. Then, ‖x‖′ �= ‖Ax‖ is a norm on Fn.

Fact 9.7.33. Let x ∈ Fn, and let p ∈ [1,∞]. Then,

‖x‖p = ‖x‖p.

Fact 9.7.34. Let x1, . . . , xk ∈ Fn, let α1, . . . , αk be positive numbers, and
assume that

∑k
i=1αi = 1. Then,

|11×n(x1 ◦ · · · ◦ xk)| ≤
k∏
i=1

‖xi‖1/αi
.

(Remark: This result is the generalized Hölder inequality. See [273, p. 128].)

9.8 Facts on Matrix Norms for One Matrix

Fact 9.8.1. Let S ⊆ Fm, assume that S is bounded, and let A ∈ Fn×m. Then,
AS is bounded.

Fact 9.8.2. Let A ∈ Fn×n, assume that A is a idempotent, and assume that,
for all x ∈ Fn,

‖Ax‖2 ≤ ‖x‖2.
Then, A is a projector. (Proof: See [536, p. 42].)

Fact 9.8.3. Let A,B ∈ F
n×n, and assume that A and B are projectors. Then,

the following statements are equivalent:

i) A ≤ B.
ii) For all x ∈ Fn, ‖Ax‖2 ≤ ‖Bx‖2.
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iii) R(A) ⊆ R(A).

iv) AB = A.

v) BA = A.

vi) B −A is a projector.

(Proof: See [536, p. 43] and [1184, p. 24].) (Remark: See Fact 3.13.14 and Fact
3.13.17.)

Fact 9.8.4. Let A ∈ Fn×n, and assume that sprad(A) < 1. Then, there exists
a submultiplicative matrix norm ‖ · ‖ on Fn×n such that ‖A‖ < 1. Furthermore,

lim
k→∞

Ak = 0.

Fact 9.8.5. Let A ∈ Fn×n, assume that A is nonsingular, and let ‖ · ‖ be a
submultiplicative norm on Fn×n. Then,

‖A−1‖ ≥ ‖In‖/‖A‖.

Fact 9.8.6. Let A ∈ Fn×n, assume that A is nonzero and idempotent, and let
‖ · ‖ be a submultiplicative norm on F

n×n. Then,

‖A‖ ≥ 1.

Fact 9.8.7. Let ‖ · ‖ be a unitarily invariant norm on Fn×n. Then, ‖ · ‖ is
self-adjoint.

Fact 9.8.8. Let A ∈ F
n×m, let ‖ · ‖ be a norm on F

n×m, and define ‖A‖′ �=
‖A∗‖. Then, ‖ · ‖′ is a norm on Fm×n. If, in addition, n = m and ‖ · ‖ is induced
by ‖ · ‖′′, then ‖ · ‖′ is induced by ‖ · ‖′′D. (Proof: See [709, p. 309] and Fact 9.8.10.)
(Remark: See Fact 9.7.22 for the definition of the dual norm. ‖ · ‖′ is the adjoint
norm of ‖ · ‖.) (Problem: Generalize this result to nonsquare matrices and norms
that are not equi-induced.)

Fact 9.8.9. Let 1 ≤ p ≤ ∞. Then, ‖ · ‖σp is unitarily invariant.

Fact 9.8.10. Let A ∈ Fn×m, and let p, q ∈ [1,∞] satisfy 1/p+ 1/q = 1. Then,

‖A∗‖p,p = ‖A‖q,q.
In particular,

‖A∗‖col = ‖A‖row.
(Proof: See Fact 9.8.8.)

Fact 9.8.11. Let A ∈ Fn×m, and let p, q ∈ [1,∞] satisfy 1/p+ 1/q = 1. Then,∥∥∥∥
[

0 A
A∗ 0

]∥∥∥∥
p,p

= max{‖A‖p,p, ‖A‖q,q}.
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In particular,∥∥∥∥
[

0 A
A∗ 0

]∥∥∥∥
col

=
∥∥∥∥
[

0 A
A∗ 0

]∥∥∥∥
row

= max{‖A‖col, ‖A‖row}.

Fact 9.8.12. Let A ∈ Fn×m. Then, the following inequalities hold:

i) ‖A‖F ≤ ‖A‖1≤ √mn‖A‖F.

ii) ‖A‖∞ ≤ ‖A‖1≤ mn‖A‖∞.

iii) ‖A‖col ≤ ‖A‖1≤ m‖A‖col.
iv) ‖A‖row ≤ ‖A‖1≤ n‖A‖row.

v) σmax(A) ≤ ‖A‖1≤
√
mnrankAσmax(A).

vi) ‖A‖∞ ≤ ‖A‖F ≤ √mn‖A‖∞.

vii) 1√
n
‖A‖col ≤ ‖A‖F ≤ √m‖A‖col.

viii) 1√
m
‖A‖row ≤ ‖A‖F ≤ √n‖A‖row.

ix) σmax(A) ≤ ‖A‖F ≤
√

rankAσmax(A).

x) 1
n‖A‖col ≤ ‖A‖∞ ≤ ‖A‖col.

xi) 1
m‖A‖row ≤ ‖A‖∞ ≤ ‖A‖row.

xii) 1√
mn

σmax(A) ≤ ‖A‖∞ ≤ σmax(A).

xiii) 1
m‖A‖row ≤ ‖A‖col ≤ n‖A‖row.

xiv) 1√
m
σmax(A) ≤ ‖A‖col ≤ √nσmax(A).

xv) 1√
n
σmax(A) ≤ ‖A‖row ≤ √mσmax(A).

(Proof: See [709, p. 314] and [1501].) (Remark: See [681, p. 115] for matrices that
attain these bounds.)

Fact 9.8.13. Let A ∈ Fn×m, and assume that A is normal. Then,

1√
mn

σmax(A) ≤ ‖A‖∞ ≤ sprad(A) = σmax(A).

(Proof: Use Fact 5.14.15 and statement xii) of Fact 9.8.12.)

Fact 9.8.14. Let A ∈ Rn×n, assume that A is symmetric, and assume that
every diagonal entry of A is zero. Then, the following conditions are equivalent:

i) For all x ∈ Rn such that 11×nx = 0, it follows that xTAx ≤ 0.

ii) There exists a positive integer k and vectors x1, . . . , xn ∈ R
k such that, for

all i, j = 1, . . . , n, A(i,j) = ‖xi − xj‖22.
(Proof: See [18].) (Remark: This result is due to Schoenberg.) (Remark: A is a
Euclidean distance matrix.)
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Fact 9.8.15. Let A ∈ Fn×n. Then,

‖AA‖F ≤ n(2−n)/2‖A‖n−1
F .

(Proof: See [1098, pp. 151, 165].)

Fact 9.8.16. Let A ∈ F
n×n, let ‖ · ‖ and ‖ · ‖′ be norms on F

n, and define the
induced norms

‖A‖′′ �= max
x∈{y∈Fm: ‖y‖=1}

‖Ax‖

and
‖A‖′′′ �= max

x∈{y∈Fm: ‖y‖′=1}
‖Ax‖′.

Then,

max
A∈{X∈Fn×n: X �=0}

‖A‖′′
‖A‖′′′ = max

A∈{X∈Fn×n: X �=0}
‖A‖′′′
‖A‖′′

= max
x∈{y∈Fn: y �=0}

‖x‖
‖x‖′ max

x∈{y∈Fn: y �=0}
‖x‖′
‖x‖ .

(Proof: See [709, p. 303].) (Remark: This symmetry property is evident in Fact
9.8.12.)

Fact 9.8.17. Let A ∈ Fn×m, let q, r ∈ [1,∞], assume that 1 ≤ q ≤ r, define

p
�=

1
1
q − 1

r

,

and assume that p ≥ 2. Then,

‖A‖p ≤ ‖A‖q,r.
In particular,

‖A‖∞ ≤ ‖A‖∞,∞.

(Proof: See [476].) (Remark: This result is due to Hardy and Littlewood.)

Fact 9.8.18. Let A ∈ Rn×m. Then,∥∥∥∥∥∥∥
⎡
⎢⎣
‖row1(A)‖2

...
‖rown(A)‖2

⎤
⎥⎦
∥∥∥∥∥∥∥

1

≤
√

2‖A‖1,∞,

∥∥∥∥∥∥∥
⎡
⎢⎣
‖row1(A)‖1

...
‖rown(A)‖1

⎤
⎥⎦
∥∥∥∥∥∥∥

2

≤
√

2‖A‖1,∞,

‖A‖3/44/3 ≤
√

2‖A‖1,∞.
(Proof: See [542, p. 303].) (Remark: The first and third results are due to Little-
wood, while the second result is due to Orlicz.)



NORMS 575

Fact 9.8.19. Let A ∈ Fn×n, and assume that A is positive semidefinite. Then,

‖A‖1,∞ = max
x∈{z∈Fn: ‖z‖∞=1}

x∗Ax.

(Remark: This result is due to Tao. See [681, p. 116] and [1138].)

Fact 9.8.20. Let A ∈ Fn×n. If p ∈ [1, 2], then

‖A‖F ≤ ‖A‖σp ≤ n1/p−1/2‖A‖F.
If p ∈ [2,∞], then

‖A‖σp ≤ ‖A‖F ≤ n1/2−1/p‖A‖σp.
(Proof: See [200, p. 174].)

Fact 9.8.21. Let A ∈ Fn×n, and let p, q ∈ [1,∞]. Then,

‖A‖p,p ≤
⎧⎨
⎩
n1/p−1/q‖A‖q,q, p ≤ q,
n1/q−1/p‖A‖q,q, q ≤ p.

Consequently,

n1/p−1‖A‖col ≤ ‖A‖p,p ≤ n1−1/p‖A‖col,

n−|1/p−1/2|σmax(A) ≤ ‖A‖p,p ≤ n|1/p−1/2|σmax(A),

n−1/p‖A‖col ≤ ‖A‖p,p ≤ n1/p‖A‖row.
(Proof: See [680] and [681, p. 112].) (Remark: See Fact 9.7.29.) (Problem: Extend
these inequalities to nonsquare matrices.)

Fact 9.8.22. Let A ∈ Fn×m, p, q ∈ [1,∞], and α ∈ [0, 1], and let r �= pq/[(1−
α)p+ αq]. Then,

‖A‖r,r ≤ ‖A‖αp,p‖A‖1−αq,q .

(Proof: See [680] or [681, p. 113].)

Fact 9.8.23. Let A ∈ Fn×m, and let p ∈ [1,∞]. Then,

‖A‖p,p ≤ ‖A‖1/pcol ‖A‖1−1/p
row .

In particular,
σmax(A) ≤

√
‖A‖col‖A‖row.

(Proof: Set α = 1/p, p = 1, and q =∞ in Fact 9.8.22. See [681, p. 113]. To prove
the special case p = 2 directly, note that λmax(A∗A) ≤ ‖A∗A‖col ≤ ‖A∗‖col‖A‖col =
‖A‖row‖A‖col.)

Fact 9.8.24. Let A ∈ Fn×m. Then,

‖A‖2,1
‖A‖∞,2

}
≤ σmax(A).

(Proof: The result follows from Proposition 9.1.5.)
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Fact 9.8.25. Let A ∈ Fn×m, and let p ∈ [1, 2]. Then,

‖A‖p,p ≤ ‖A‖2/p−1
col σ2−2/p

max (A).

(Proof: Let α = 2/p−1, p = 1, and q = 2 in Fact 9.8.22. See [681, p. 113].)

Fact 9.8.26. Let A ∈ Fn×n, and let p ∈ [1,∞]. Then,

‖A‖p,p ≤ ‖|A|‖p,p ≤ nmin{1/p,1−1/p}‖A‖p,p ≤
√
n‖A‖p,p.

(Remark: See [681, p. 117].)

Fact 9.8.27. Let A ∈ Fn×m, and let p, q ∈ [1,∞]. Then,

‖A‖q,p = ‖A‖q,p.

Fact 9.8.28. Let A ∈ F
n×m, and let p, q ∈ [1,∞]. Then,

‖A∗‖q,p = ‖A‖p/(p−1),q/(q−1).

Fact 9.8.29. Let A ∈ Fn×m, and let p, q ∈ [1,∞]. Then,

‖A‖q,p ≤
{‖A‖p/(p−1), 1/p+ 1/q ≤ 1,

‖A‖q, 1/p+ 1/q ≥ 1.

Fact 9.8.30. Let A ∈ Fn×n, and let ‖ · ‖ be a unitarily invariant norm on
F
n×n. Then,

‖〈A〉‖ = ‖A‖.

Fact 9.8.31. Let A,S ∈ Fn×n, assume that S is nonsingular, and let ‖ · ‖ be
a unitarily invariant norm on F

n×n. Then,

‖A‖ ≤ 1
2‖SAS−1 + S−∗AS∗‖.

(Proof: See [61, 246].)

Fact 9.8.32. Let A ∈ Fn×n, assume that A is positive semidefinite, and let
‖ · ‖ be a submultiplicative norm on Fn×n. Then,

‖A‖1/2 ≤ ‖A1/2‖.
In particular,

σ1/2
max(A) = σmax(A1/2).

Fact 9.8.33. Let A11 ∈ Fn×n, A12 ∈ Fn×m, and A22 ∈ Fm×m, assume that[
A11 A12
A∗

12 A22

]
∈ F(n+m)×(n+m) is positive semidefinite, let ‖ · ‖ and ‖ · ‖′ be unitarily

invariant norms on Fn×n and Fm×m, respectively, and let p > 0. Then,

‖〈A12〉p‖′2 ≤ ‖Ap11‖‖Ap22‖′.
(Proof: See [713].)
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Fact 9.8.34. Let A ∈ Fn×n, let ‖ · ‖ be a norm on Fn, let ‖ · ‖D denote the
dual norm on Fn, and let ‖ · ‖′ denote the norm induced by ‖ · ‖ on Fn×n. Then,

‖A‖′ = max
x,y∈F

n

x,y �=0

Re y∗Ax
‖y‖D‖x‖ .

(Proof: See [681, p. 115].) (Remark: See Fact 9.7.22 for the definition of the dual
norm.) (Problem: Generalize this result to obtain Fact 9.8.35 as a special case.)

Fact 9.8.35. Let A ∈ Fn×m, and let p, q ∈ [1,∞]. Then,

‖A‖q,p = max
x∈F

m,y∈F
n

x,y �=0

|y∗Ax|
‖y‖q/(q−1)‖x‖p .

Fact 9.8.36. Let A ∈ Fn×m, and let p, q ∈ [1,∞] satisfy 1/p+ 1/q = 1. Then,

‖A‖p,p = max
x∈F

m,y∈F
n

x,y �=0

|y∗Ax|
‖y‖q‖x‖p = max

x∈F
m,y∈F

n

x,y �=0

|y∗Ax|
‖y‖p/(p−1)‖x‖p .

(Remark: See Fact 9.13.2 for the case p = 2.)

Fact 9.8.37. Let A ∈ Fn×n, and assume that A is positive definite. Then,

min
x∈Fn\{0}

x∗Ax
‖Ax‖2‖x‖2 =

2
√
αβ

α+ β

and
min
α≥0

σmax(αA− I) =
α− β
α+ β

,

where α �= λmax(A) and β �= λmin(A). (Proof: See [609].) (Remark: These quanti-
ties are antieigenvalues.)

Fact 9.8.38. Let A ∈ Fn×n, and define

nrad(A) �= max {|x∗Ax|: x ∈ C
n and x∗x ≤ 1}.

Then, the following statements hold:

i) nrad(A) = max{|z|: z ∈ Θ(A)}.
ii) sprad(A) ≤ nrad(A) ≤ nrad(|A|) = 1

2 sprad
(|A|+ |A|T).

iii) 1
2σmax(A) ≤ nrad(A) ≤ 1

2

[
σmax(A) + σ

1/2
max

(
A2
)]≤ σmax(A).

iv) If A2 = 0, then nrad(A) = σmax(A).

v) If nrad(A) = σmax(A), then σmax

(
A2
)

= σ2
max(A).

vi) If A is normal, then nrad(A) = sprad(A).

vii) nrad
(
Ak
) ≤ [nrad(A)]k for all k ∈ N.

viii) nrad(·) is a weakly unitarily invariant norm on Fn×n.

ix) nrad(·) is not a submultiplicative norm on Fn×n.
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x) ‖ · ‖ �= αnrad(·) is a submultiplicative norm on Fn×n if and only if α ≥ 4.

xi) nrad(AB) ≤ nrad(A)nrad(B) for all A,B ∈ Fn×n such that A and B are
normal.

xii) nrad(A ◦B) ≤ αnrad(A)nrad(B) for all A,B ∈ Fn×n if and only if α ≥ 2.

xiii) nrad(A⊕B) = max{nrad(A), nrad(B)} for all A ∈ Fn×n and B ∈ Fm×m.

(Proof: See [709, p. 331] and [711, pp. 43, 44]. For iii), see [823].) (Remark:
nrad(A) is the numerical radius of A. Θ(A) is the numerical range. See Fact 8.14.7.)
(Remark: nrad(·) is not submultiplicative. The example A = [ 0 1

0 0 ], B = [ 0 2
2 0 ],

where B is normal, nrad(A) = 1/2, nrad(B) = 2, and nrad(AB) = 2, shows that
xi) is not valid if only one of the matrices A and B is normal, which corrects [711,
pp. 43, 73].) (Remark: vii) is the power inequality.)

Fact 9.8.39. Let A ∈ Fn×m, let γ > σmax(A), and define β
�= σmax(A)/γ.

Then,

‖A‖F ≤
√
− [γ2/(2π)]log det(I − γ−2A∗A) ≤ β−1

√
−log(1− β2)‖A‖F.

(Proof: See [254].)

Fact 9.8.40. Let ‖ · ‖ be a unitarily invariant norm on Fn×n. Then, ‖A‖ = 1
for all A ∈ Fn×n such that rankA = 1 if and only if ‖E1,1‖ = 1. (Proof: ‖A‖ =
‖E1,1‖σmax(A).) (Remark: These equivalent normalizations are used in [1230, p.
74] and [197], respectively.)

Fact 9.8.41. Let ‖ · ‖ be a unitarily invariant norm on F
n×n. Then, the

following statements are equivalent:

i) σmax(A) ≤ ‖A‖ for all A ∈ F
n×n.

ii) ‖ · ‖ is submultiplicative.

iii)
∥∥A2
∥∥ ≤ ‖A‖2 for all A ∈ Fn×n.

iv)
∥∥Ak∥∥ ≤ ‖A‖k for all k ≥ 1 and A ∈ Fn×n.

v) ‖A ◦B‖ ≤ ‖A‖‖B‖ for all A,B ∈ Fn×n.

vi) sprad(A) ≤ ‖A‖ for all A ∈ Fn×n.

vii) ‖Ax‖2 ≤ ‖A‖‖x‖2 for all A ∈ F
n×n and x ∈ F

n.

viii) ‖A‖∞ ≤ ‖A‖ for all A ∈ Fn×n.

ix) ‖E1,1‖ ≥ 1.

x) σmax(A) ≤ ‖A‖ for all A ∈ Fn×n such that rankA = 1.

(Proof: The equivalence of i)–vii) is given in [710] and [711, p. 211]. Since ‖A‖ =
‖E1,1‖σmax(A) for all A ∈ Fn×n such that rankA = 1, it follows that vii) and
viii) are equivalent. To prove ix) =⇒ x), let A ∈ F

n×n satisfy rankA = 1. Then,
‖A‖ = σmax(A)‖E1,1‖ ≥ σmax(A). To show x) =⇒ ii), define ‖ · ‖′ �= ‖E1,1‖−1‖ · ‖.
Since ‖E1,1‖′ = 1, it follows from [197, p. 94] that ‖ · ‖′ is submultiplicative.
Since ‖E1,1‖−1 ≤ 1, it follows that ‖ · ‖ is also submultiplicative. Alternatively,
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‖A‖′ = σmax(A) for all A ∈ Fn×n having rank 1. Then, Corollary 3.10 of [1230, p.
80] implies that ‖ · ‖′, and thus ‖ · ‖, is submultiplicative.)

Fact 9.8.42. Let Φ: Fn �→ [0,∞) satisfy the following conditions:

i) If x �= 0, then Φ(x) > 0.

ii) Φ(αx) = |α|Φ(x) for all α ∈ R.

iii) Φ(x + y) ≤ Φ(x) + Φ(y) for all x, y ∈ Fn.

iv) If A ∈ Fn×n is a permutation matrix, then Φ(Ax) = Φ(x) for all x ∈ Fn.

v) Φ(|x|) = Φ(x) for all x ∈ F
n.

Furthermore, for A ∈ Fn×m, where n ≤ m, define

‖A‖ �= Φ[σ1(A), . . . , σn(A)].

Then, ‖ · ‖ is a unitarily invariant norm on Fn×m. Conversely, if ‖ · ‖ is a unitarily
invariant norm on Fn×m, where n ≤ m, then Φ: Fn �→ [0,∞) defined by

Φ(x) �=

∥∥∥∥∥∥∥
⎡
⎢⎣
x(1) · · · 0 0n×(m−n)

...
. . .

...
...

0 · · · x(n) 0n×(m−n)

⎤
⎥⎦
∥∥∥∥∥∥∥

satisfies i)–v). (Proof: See [1230, pp. 75, 76].) (Remark: Φ is a symmetric gauge
function. This result is due to von Neumann. See Fact 2.21.14.)

Fact 9.8.43. Let ‖ · ‖ and ‖ · ‖′ denote norms on Fm and Fn, respectively, and
define 
̂: Fn×m �→ R by


̂(A) �= min
x∈Fm\{0}

‖Ax‖′
‖x‖ ,

or, equivalently,

̂(A) �= min

x∈{y∈Fm: ‖y‖=1}
‖Ax‖′.

Then, for A ∈ Fn×m, the following statements hold:

i) 
̂(A) ≥ 0.

ii) 
̂(A) > 0 if and only if rankA = m.

iii) 
̂(A) = 
(A) if and only if either A = 0 or rankA = m.

(Proof: See [867, pp. 369, 370].) (Remark: 
̂ is a weaker version of 
.)

Fact 9.8.44. Let A ∈ Fn×n, let ‖ · ‖ be a normalized, submultiplicative norm
on F

n×n, and assume that ‖I −A‖ < 1. Then, A is nonsingular. (Remark: See
Fact 9.9.56.)

Fact 9.8.45. Let ‖·‖ be a normalized, submultiplicative norm on Fn×n. Then,
‖· ‖ is equi-induced if and only if ‖A‖ ≤ ‖A‖′ for all A ∈ Fn×n and for all normalized
submultiplicative norms ‖ · ‖′ on Fn×n. (Proof: See [1234].) (Remark: As shown in
[308, 383], not every normalized submultiplicative norm on Fn×n is equi-induced or
induced.)
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9.9 Facts on Matrix Norms for Two or More Matrices

Fact 9.9.1. ‖ · ‖′∞ �= n‖ · ‖∞ is submultiplicative on Fn×n. (Remark: It is not
necessarily true that ‖AB‖∞ ≤ ‖A‖∞‖B‖∞. For example, let A = B = [ 1 1

1 1 ].)

Fact 9.9.2. Let A ∈ F
n×m and B ∈ F

m×l. Then,

‖AB‖∞ ≤ m‖A‖∞‖B‖∞.
Furthermore, if A = 1n×m and B = 1m×l, then ‖AB‖∞ = m‖A‖∞‖B‖∞.

Fact 9.9.3. Let A,B ∈ Fn×n, and let ‖ · ‖ be a submultiplicative norm on
Fn×n. Then, ‖AB‖ ≤ ‖A‖‖B‖. Hence, if ‖A‖ ≤ 1 and ‖B‖ ≤ 1, then ‖AB‖ ≤ 1.
Finally, if either ‖A‖ < 1 or ‖B‖ < 1, then ‖AB‖ < 1. (Remark: sprad(A) < 1
and sprad(B) < 1 do not imply that sprad(AB) < 1. Let A = BT = [ 0 2

0 0 ].)

Fact 9.9.4. Let ‖ · ‖ be a norm on Fm×m, and let

δ > sup
{ ‖AB‖
‖A‖‖B‖ : A,B ∈ F

m×m, A,B �= 0
}
.

Then, ‖·‖′ �= δ‖·‖ is a submultiplicative norm on F
m×m. (Proof: See [709, p. 323].)

Fact 9.9.5. Let A,B ∈ Fn×n, let ‖ · ‖ be a unitarily invariant norm on Fn×n,
assume that A and B are Hermitian, and assume that A ≤ B. Then,

‖A‖ ≤ ‖B‖.
(Proof: See [215].)

Fact 9.9.6. Let A,B ∈ F
n×n, let ‖ · ‖ be a unitarily invariant norm on F

n×n,
and assume that AB is normal. Then,

‖AB‖ ≤ ‖BA‖.
(Proof: See [197, p. 253].)

Fact 9.9.7. Let A,B ∈ Fn×n, assume that A and B are positive semidefinite
and nonzero, and let ‖ · ‖ be a submultiplicative unitarily invariant norm on Fn×n.
Then, ‖AB‖

‖A‖‖B‖ ≤
‖A+B‖
‖A‖+ ‖B‖

and ‖A ◦B‖
‖A‖‖B‖ ≤

‖A+B‖
‖A‖+ ‖B‖ .

(Proof: See [675].) (Remark: See Fact 9.8.41.)

Fact 9.9.8. Let A,B ∈ Fn×n, and let ‖ · ‖ be a submultiplicative norm on
Fn×n. Then, ‖ · ‖′ �= 2‖ · ‖ is a submultiplicative norm on Fn×n and satisfies

‖[A,B]‖′ ≤ ‖A‖′‖B‖′.
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Fact 9.9.9. Let A ∈ Fn×n. Then, the following statements are equivalent:

i) There exist projectors Q,P ∈ Rn×n such that A = [P,Q].

ii) σmax(A) ≤ 1/2, A and −A are unitarily similar, and A is skew Hermitian.

(Proof: See [903].) (Remark: Extensions are discussed in [984].) (Remark: See
Fact 3.12.16 for the case of idempotent matrices.) (Remark: In the case F = R,
the condition that A is skew symmetric implies that A and −A are orthogonally
similar. See Fact 5.9.10.)

Fact 9.9.10. Let A,B ∈ Fn×n, and let ‖ · ‖ be a unitarily invariant norm on
F
n×n. Then,

‖AB‖ ≤ σmax(A)‖B‖
and

‖AB‖ ≤ ‖A‖σmax(B).

Consequently, if C ∈ Fn×n, then

‖ABC‖ ≤ σmax(A)‖B‖σmax(C).

(Proof: See [820].)

Fact 9.9.11. Let A,B ∈ F
n×m, and let ‖ · ‖ be a unitarily invariant norm on

Fm×m. If p > 0, then

‖〈A∗B〉p‖2 ≤ ‖(A∗A)p‖‖(B∗B)p‖.
In particular,

‖(A∗BB∗A)1/4‖2 ≤ ‖〈A〉‖‖〈B〉‖
and

‖〈A∗B〉‖ = ‖A∗B‖2 ≤ ‖A∗A‖‖B∗B‖.
Furthermore,

tr 〈A∗B〉 ≤ ‖A‖F‖B‖F
and [

tr (A∗BB∗A)1/4
]2
≤ (tr 〈A〉)(tr 〈B〉).

(Proof: See [713] and use Fact 9.8.30.) (Problem: Noting Fact 9.12.1 and Fact
9.12.2, compare the lower bounds for ‖A‖F‖B‖F given by

tr 〈A∗B〉
|trA∗B|√|tr (A∗B)2| ≤ √trAA∗BB∗

⎫⎪⎬
⎪⎭ ≤ ‖A‖F‖B‖F.)

Fact 9.9.12. Let A,B ∈ Fn×n, and assume that A and B are positive semidef-
inite. Then,
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(2‖A‖F‖B‖F)1/2 ≤ (‖A‖2F + ‖B‖2F
)1/2

= ‖(A2 +B2
)1/2‖F

≤ ‖A+B‖F
≤ √2

(‖A‖2F + ‖B‖2F
)1/2

.

Fact 9.9.13. Let A,B ∈ F
n×m. Then,

‖A+B‖F =
√
‖A‖2F + ‖B‖2F + 2trAB∗ ≤ ‖A‖F + ‖B‖F.

In particular,

‖A−B‖F =
√
‖A‖2F + ‖B‖2F − 2trAB∗.

If , in addition, A is Hermitian and B is skew Hermitian, then trAB∗ = 0, and
thus

‖A+B‖2F = ‖A−B‖2F = ‖A‖2F + ‖B‖2F.
(Remark: The second identity is a matrix version of the cosine law given by ix) of
Fact 9.7.4.)

Fact 9.9.14. Let A,B ∈ Fn×n, and let ‖ · ‖ be a unitarily invariant norm on
Fn×n. Then, ‖AB‖ ≤ 1

4‖(〈A〉+ 〈B∗〉)2‖.
(Proof: See [212].)

Fact 9.9.15. Let A,B ∈ Fn×n, assume that A and B are positive semidefinite,
and let ‖ · ‖ be a unitarily invariant norm on Fn×n. Then,

‖AB‖ ≤ 1
4‖(A+B)2‖.

(Proof: See [212] or [1485, p. 77].) (Problem: Noting Fact 9.9.12, compare the
lower bounds for ‖A+B‖F given by

(2‖A‖F‖B‖F)1/2 ≤ ‖(A2 +B2
)1/2‖F ≤ ‖A+B‖F

and
2‖AB‖1/2F ≤ ‖(A+B)2‖1/2F ≤ ‖A+B‖F.)

Fact 9.9.16. Let A,B ∈ Fn×n, assume that A and B are positive semidefinite,
let ‖ · ‖ be a unitarily invariant norm on Fn×n, and let p ∈ (0,∞). If p ∈ [0, 1], then

‖ApBp‖ ≤ ‖AB‖p.
If p ∈ [1,∞), then

‖AB‖p ≤ ‖ApBp‖.
(Proof: See [203, 523].) (Remark: See Fact 8.18.26.)

Fact 9.9.17. Let A,B ∈ Fn×n, assume that A and B are positive semidefinite,
and let ‖ · ‖ be a unitarily invariant norm on Fn×n. If p ∈ [0, 1], then

‖BpApBp‖ ≤ ‖(BAB)p‖.
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Furthermore, if p ≥ 1, then

‖(BAB)p‖ ≤ ‖BpApBp‖.
(Proof: See [69] and [197, p. 258].) (Remark: Extensions and a reverse inequality
are given in Fact 8.10.49.) (Remark: See Fact 8.12.20 and Fact 8.18.26.)

Fact 9.9.18. Let A,B ∈ Fn×n, assume that A and B are positive semidefinite,
and let ‖ · ‖ be a unitarily invariant norm on Fn×n. Then,

‖A1/2B1/2‖ ≤ 1
2‖A+B‖.

Hence,
‖AB‖ ≤ 1

2‖A2 +B2‖,
and thus

‖(A+B)2‖ ≤ 2‖A2 +B2‖.
Consequently,

‖AB‖ ≤ 1
4‖(A+B)2‖ ≤ 1

2‖A2 +B2‖.
(Proof: Let p = 1/2 and X = I in Fact 9.9.49. The last inequality follows from
Fact 9.9.15.) (Remark: See Fact 8.18.13.)

Fact 9.9.19. Let A,B ∈ Fn×n, assume that A and B are positive semidefinite,
and let either p = 1 or p ∈ [2,∞]. Then,

‖〈AB〉1/2‖σp ≤ 1
2‖A+B‖σp.

(Proof: See [90, 212].) (Remark: The inequality holds for all Q-norms. See [197].)
(Remark: See Fact 8.18.13.)

Fact 9.9.20. Let A ∈ Fn×m, B ∈ Fm×l, and p, q, q′, r ∈ [1,∞], and assume
that 1/q + 1/q′ = 1. Then,

‖AB‖p ≤ εpq(n)εpr(l)εq′r(m)‖A‖q‖B‖r,
where

εpq(n) �=

{
1, p ≥ q,
n1/p−1/q, q ≥ p.

Furthermore, there exist matrices A ∈ Fn×m and B ∈ Fm×l such that equality
holds. (Proof: See [564].) (Remark: Related results are given in [475, 476, 564,
565, 566, 828, 1313].)

Fact 9.9.21. Let A,B ∈ Cn×m. Then, there exist unitary matrices S1, S2 ∈
Cm×m such that 〈A+B〉 ≤ S1〈A〉S∗

1 + S2〈B〉S∗
2.

(Remark: This result is a matrix version of the triangle inequality. See [47, 1271].)

Fact 9.9.22. Let A,B ∈ Fn×n, assume that A and B are positive semidefinite,
and let p ∈ [1,∞]. Then,

‖A−B‖2σ2p ≤ ‖A2 −B2‖σp .
(Proof: See [813].) (Remark: The case p = 1 is due to Powers and Stormer.)
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Fact 9.9.23. Let A,B ∈ Fn×n, and let p ∈ [1,∞]. Then,

‖〈A〉 − 〈B〉‖2σp ≤ ‖A+B‖σ2p‖A−B‖σ2p .

(Proof: See [827].)

Fact 9.9.24. Let A,B ∈ F
n×n. Then,

‖〈A〉 − 〈B〉‖2σ1 ≤ 2‖A+B‖σ1‖A−B‖σ1 .

(Proof: See [827].) (Remark: This result is due to Borchers and Kosaki. See [827].)

Fact 9.9.25. Let A,B ∈ Fn×n. Then,

‖〈A〉 − 〈B〉‖F ≤
√

2‖A−B‖F
and

‖〈A〉 − 〈B〉‖2F + ‖〈A∗〉 − 〈B∗〉‖2F ≤ 2‖A−B‖2F.
If, in addition, A and B are normal, then

‖〈A〉 − 〈B〉‖F ≤ ‖A−B‖F.
(Proof: See [47, 70, 812, 827] and [683, pp. 217, 218].)

Fact 9.9.26. Let A,B ∈ Rn×n. Then,

‖AB −BA‖F ≤
√

2‖A‖F‖B‖F.
(Proof: See [242, 1385].) (Remark: The constant

√
2 holds for all n.) (Remark:

Extensions to complex matrices are given in [243].)

Fact 9.9.27. Let A,B ∈ Fn×n, and assume that A and B are positive semidef-
inite. Then,

‖AB −BA‖2F + ‖(A−B)2‖2F ≤ ‖A2 −B2‖2F.
(Proof: See [820].)

Fact 9.9.28. Let A,B ∈ Fn×n, let p be a positive number, and assume that
either A is normal and p ∈ [2,∞], or A is Hermitian and p ≥ 1. Then,

‖〈A〉B −B〈A〉‖σp ≤ ‖AB − BA‖σp.
(Proof: See [1].)

Fact 9.9.29. Let ‖·‖ be a unitarily invariant norm on Fn×n, and let A,X,B ∈
Fn×n. Then,

‖AX −XB‖ ≤ [σmax(A) + σmax(B)]‖X‖.
In particular,

σmax(AX −XA) ≤ 2σmax(A)σmax(X).

Now, assume that A and B are positive semidefinite. Then,

‖AX −XB‖ ≤ max{σmax(A), σmax(B)}‖X‖.
In particular,

σmax(AX −XA) ≤ σmax(A)σmax(X).
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Finally, assume that A and X are positive semidefinite. Then,

‖AX −XA‖ ≤ 1
2σmax(A)

∥∥∥∥
[
X 0
0 X

]∥∥∥∥ .
In particular,

σmax(AX −XA) ≤ 1
2σmax(A)σmax(X).

(Proof: See [214].) (Remark: The first inequality is sharp since equality holds for
A = B =

[
1 0
0 −1

]
and X =

[
0 1−1 0

]
.) (Remark: ‖ · ‖ can be extended to F2n×2n by

considering the n largest singular values of matrices in F2n×2n. For details, see [197,
pp. 90, 98].)

Fact 9.9.30. Let ‖ ·‖ be a unitarily invariant norm on Fn×n, let A,X ∈ Fn×n,
and assume that A is Hermitian. Then,

‖AX −XA‖ ≤ [λmax(A)− λmin(A)]‖X‖.
(Proof: See [214].) (Remark: λmax(A)−λmin(A) is the spread of A. See Fact 8.15.31
and Fact 9.9.31.)

Fact 9.9.31. Let ‖ ·‖ be a unitarily invariant norm on Fn×n, let A,X ∈ Fn×n,
assume that A is normal, let spec(A) = {λ1, . . . , λr}, and define

spd(A) �= max{|λi(A)− λj(A)| : i, j = 1, . . . , r}.
Then,

‖AX −XA‖ ≤
√

2 spd(A)‖X‖.
Furthermore, let p ∈ [1,∞]. Then,

‖AX −XA‖σp ≤ 2|2−p|/(2p)spd(A)‖X‖σp.
In particular,

‖AX −XA‖F ≤ spd(A)‖X‖F
and

σmax(AX −XA) ≤
√

2 spd(A)σmax(X).

(Proof: See [214].) (Remark: spd(A) is the spread of A. See Fact 8.15.31 and Fact
9.9.30.)

Fact 9.9.32. Let A,B ∈ Fn×n. Then,

σmax(〈A〉 − 〈B〉) ≤ 2
π

[
2 + log

σmax(A) + σmax(B)
σmax(A−B)

]
σmax(A−B).

(Remark: This result is due to Kato. See [827].)

Fact 9.9.33. Let A ∈ Fn×m and B ∈ Fm×l, and let r = 1 or r = 2. Then,

‖AB‖σr = ‖A‖σ2r‖B‖σ2r

if and only if there exists α ≥ 0 such that AA∗ = αB∗B. Furthermore,

‖AB‖∞ = ‖A‖∞‖B‖∞
if and only if AA∗ and B∗B have a common eigenvector associated with λ1(AA∗)
and λ1(B∗B). (Proof: See [1442].)
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Fact 9.9.34. Let A,B ∈ Fn×n. If p ∈ (0, 2], then

2p−1(‖A‖pσp + ‖B‖pσp) ≤ ‖A+B‖pσp + ‖A−B‖pσp ≤ 2(‖A‖pσp + ‖B‖pσp).
If p ∈ [2,∞), then

2(‖A‖pσp + ‖B‖pσp) ≤ ‖A+B‖pσp + ‖A−B‖pσp ≤ 2p−1(‖A‖pσp + ‖B‖pσp).
If p ∈ (1, 2] and 1/p+ 1/q = 1, then

‖A+B‖qσp + ‖A−B‖qσp ≤ 2(‖A‖pσp + ‖B‖pσp)q/p.
If p ∈ [2,∞) and 1/p+ 1/q = 1, then

2(‖A‖pσp + ‖B‖pσp)q/p ≤ ‖A+B‖qσp + ‖A−B‖qσp.
(Proof: See [696].) (Remark: These inequalities are versions of the Clarkson in-
equalities. See Fact 1.18.2.) (Remark: See [696] for extensions to unitarily invariant
norms. See [213] for additional extensions.)

Fact 9.9.35. Let A,B ∈ Cn×m. If p ∈ [1, 2], then

[‖A‖2 + (p− 1)‖B‖2]1/2 ≤ [ 12 (‖A+B‖p + ‖A− B‖p)]1/p.
If p ∈ [2,∞], then

[12 (‖A+B‖p + ‖A−B‖p)]1/p ≤ [‖A‖2 + (p− 1)‖B‖2]1/2.
(Proof: See [116, 164].) (Remark: This result is Beckner’s two-point inequality or
optimal 2-uniform convexity.)

Fact 9.9.36. Let A,B ∈ Fn×n. If either p ∈ [1, 4/3] or both p ∈ (4/3, 2] and
A+B and A−B are positive semidefinite, then

(‖A‖σp + ‖B‖σp)p + |‖A‖σp − ‖B‖σp|p ≤ ‖A+B‖pσp + ‖A−B‖pσp.
Furthermore, if either p ∈ [4,∞] or both p ∈ [2, 4) and A and B are positive
semidefinite, then

‖A+B‖pσp + ‖A−B‖pσp ≤ (‖A‖σp + ‖B‖σp)p + |‖A‖σp − ‖B‖σp|p.
(Proof: See [116, 811].) (Remark: These inequalities are versions of Hanner’s
inequality.) (Remark: Vector versions are given in Fact 9.7.21.)

Fact 9.9.37. Let A,B ∈ Cn×n, and assume that A and B are Hermitian. If
p ∈ [1, 2], then

21/2−1/p‖(A2 +B2
)1/2‖p ≤ ‖A+ jB‖σp ≤ ‖

(
A2 +B2

)1/2‖p
and

21−2/p
(‖A‖2σp + ‖B‖2σp

) ≤ ‖A+ jB‖2σp ≤ 22/p−1
(‖A‖2σp + ‖B‖2σp

)
.

Furthermore, if p ∈ [2,∞), then

‖(A2 +B2
)1/2‖p ≤ ‖A+ jB‖σp ≤ 21/2−1/p‖(A2 +B2

)1/2‖p
and

22/p−1
(‖A‖2σp + ‖B‖2σp

) ≤ ‖A+ jB‖2σp ≤ 21−2/p
(‖A‖2σp + ‖B‖2σp

)
.

(Proof: See [211].)



NORMS 587

Fact 9.9.38. Let A,B ∈ Cn×n, and assume that A and B are Hermitian. If
p ∈ [1, 2], then

21−2/p(‖A‖pσp + ‖B‖pσp) ≤ ‖A+ jB‖pσp.
If p ∈ [2,∞], then

‖A+ jB‖pσp ≤ 21−2/p(‖A‖pσp + ‖B‖pσp).
In particular,

‖A+ jB‖2F = ‖A‖2F + ‖B‖2F = ‖(A2 +B2
)1/2‖2F.

(Proof: See [211, 219].)

Fact 9.9.39. Let A,B ∈ Cn×n, and assume that A is positive semidefinite
and B is Hermitian. If p ∈ [1, 2], then

‖A‖2σp + 21−2/p‖B‖2σp ≤ ‖A+ jB‖2σp.
If p ∈ [2,∞], then

‖A+ jB‖2σp ≤ ‖A‖2σp + 21−2/p‖B‖2σp.
In particular,

‖A‖2σ1 + 1
2‖B‖2σ1 ≤ ‖A+ jB‖2σ1,

‖A+ jB‖2F = ‖A‖2F + ‖B‖2F,
and

σ2
max(A+ jB) ≤ σ2

max(A) + 2σ2
max(B).

In fact,
‖A‖2σ1 + ‖B‖2σ1 ≤ ‖A+ jB‖2σ1.

(Proof: See [219].)

Fact 9.9.40. Let A,B ∈ Cn×n, and assume that A and B are positive semidef-
inite. If p ∈ [1, 2], then

‖A‖2σp + ‖B‖2σp ≤ ‖A+ jB‖2σp.
If p ∈ [2,∞], then

‖A+ jB‖2σp ≤ ‖A‖2σp + ‖B‖2σp.
Hence,

‖A‖2σ2 + ‖B‖2σ2 = ‖A+ jB‖2σ2.

In particular,

(tr 〈A〉)2 + 〈B〉)2 ≤ (tr 〈A+ jB〉)2,

σ2
max(A+ jB) ≤ σ2

max(A) + σ2
max(A),

‖A+ jB‖2F = ‖A‖2F + ‖B‖2F.
(Proof: See [219].) (Remark: See Fact 8.18.7.)
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Fact 9.9.41. Let A ∈ Fn×n, let B ∈ Fn×n, assume that B is Hermitian, and
let ‖ · ‖ be a unitarily invariant norm on Fn×n. Then,

‖A− 1
2 (A+A∗)‖ ≤ ‖A−B‖.

In particular,
‖A− 1

2 (A+A∗)‖F ≤ ‖A−B‖F
and

σmax

[
A− 1

2 (A+A∗)
] ≤ σmax(A−B).

(Proof: See [197, p. 275] and [1098, p. 150].)

Fact 9.9.42. Let A,M,S,B ∈ Fn×n, assume that A = MS, M is positive
semidefinite, and S and B are unitary, and let ‖ · ‖ be a unitarily invariant norm
on Fn×n. Then,

‖A− S‖ ≤ ‖A−B‖.
In particular,

‖A− S‖F ≤ ‖A−B‖F.
(Proof: See [197, p. 276] and [1098, p. 150].) (Remark: A = MS is the polar
decomposition of A. See Corollary 5.6.5.)

Fact 9.9.43. Let A,B ∈ Fn×n, assume that A and B are Hermitian, let ‖ · ‖
be a unitarily invariant norm on Fn×n, and let k ∈ N. Then,

‖(A−B)2k+1‖ ≤ 22k‖A2k+1 −B2k+1‖.
(Proof: See [197, p. 294] or [758].)

Fact 9.9.44. Let A,B ∈ Fn×n, and let ‖ · ‖ be a unitarily invariant norm on
F
n×n. Then,

‖〈A〉 − 〈B〉‖ ≤
√

2‖A+B‖‖A−B‖.
(Proof: See [47].) (Remark: This result is due to Kosaki and Bhatia.)

Fact 9.9.45. Let A,B ∈ Fn×n, and let p ≥ 1. Then,

‖〈A〉 − 〈B〉‖σp ≤ max
{
21/p−1/2, 1

}√
‖A+B‖σp‖A−B‖σp .

(Proof: See [47].) (Remark: This result is due to Kittaneh, Kosaki, and Bhatia.)

Fact 9.9.46. Let A,B ∈ Fn×n, assume that A and B are positive semidefinite,
and let ‖ · ‖ be a unitarily invariant norm on F2n×2n. Then,∥∥∥∥

[
A+B 0

0 0

]∥∥∥∥ ≤
∥∥∥∥
[
A 0
0 B

]∥∥∥∥+
∥∥∥∥
[
A1/2B1/2 0

0 A1/2B1/2

]∥∥∥∥.
In particular,

σmax(A+B) ≤ max{σmax(A), σmax(B)} + σmax(A1/2B1/2)

and, for all p ∈ [1,∞),

‖A+B‖σp ≤
(‖A‖pσp + ‖B‖pσp

)1/p + 21/p‖A1/2B1/2‖σp.



NORMS 589

(Proof: See [818, 821, 825].) (Remark: See Fact 9.14.15 for a tighter upper bound
for σmax(A+B).)

Fact 9.9.47. Let A,X,B ∈ Fn×n, and let ‖ · ‖ be a unitarily invariant norm
on Fn×n. Then,

‖A∗XB‖ ≤ 1
2‖AA∗X +XBB∗‖.

In particular,
‖A∗B‖ ≤ 1

2‖AA∗ +BB∗‖.
(Proof: See [61, 202, 209, 525, 815].) (Remark: The first result is McIntosh’s
inequality.) (Remark: See Fact 9.14.23.)

Fact 9.9.48. Let A,X,B ∈ Fn×n, assume that X is positive semidefinite, and
let ‖ · ‖ be a unitarily invariant norm on Fn×n. Then,

‖A∗XB +B∗XA‖ ≤ ‖A∗XA+B∗XB‖.
In particular,

‖A∗B +B∗A‖ ≤ ‖A∗A+B∗B‖.
(Proof: See [819].) (Remark: See [819] for extensions to the case in which X is not
necessarily positive semidefinite.)

Fact 9.9.49. Let A,X,B ∈ F
n×n, assume that A and B are positive semidef-

inite, let p ∈ [0, 1], and let ‖ · ‖ be a unitarily invariant norm on Fn×n. Then,

‖ApXB1−p +A1−pXBp‖ ≤ ‖AX +XB‖
and

‖ApXB1−p −A1−pXBp‖ ≤ |2p−1|‖AX −XB‖.
(Proof: See [61, 203, 216, 510].) (Remark: These results are the Heinz inequalities.)

Fact 9.9.50. Let A,B ∈ Fn×n, assume that A is nonsingular and B is Her-
mitian, and let ‖ · ‖ be a unitarily invariant norm on Fn×n. Then,

‖B‖ ≤ 1
2‖ABA−1 +A−1BA‖.

(Proof: See [347, 517].)

Fact 9.9.51. Let A,B ∈ F
n×n, assume that A and B are positive semidefinite,

and let ‖ · ‖ be a unitarily invariant norm on Fn×n. If r ∈ [0, 1], then

‖Ar−Br‖ ≤ ‖〈A−B〉r‖.
Furthermore, if r ∈ [1,∞), then

‖〈A−B〉r‖ ≤ ‖Ar −Br‖.
In particular,

‖(A−B)2‖ ≤ ‖A2 −B2‖.
(Proof: See [197, pp. 293, 294] and [820].)
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Fact 9.9.52. Let A,B ∈ Fn×n, assume that A and B are positive semidefinite,
let ‖ · ‖ be a unitarily invariant norm on Fn×n, and let z ∈ F. Then,

‖A− |z|B‖ ≤ ‖A+ zB‖ ≤ ‖A+ |z|B‖.
In particular,

‖A−B‖ ≤ ‖A+B‖.
(Proof: See [210].) (Remark: Extensions to weak log majorization are given in
[1483].) (Remark: The special case z = 1 is given in [215].)

Fact 9.9.53. Let A,B ∈ Fn×n, assume that A and B are positive semidefinite,
and let ‖ · ‖ be a unitarily invariant norm on Fn×n. If r ∈ [0, 1], then

‖(A+B)r‖ ≤ ‖Ar +Br‖.
Furthermore, if r ∈ [1,∞), then

‖Ar +Br‖ ≤ ‖(A+B)r‖.
In particular, if k ≥ 1, then

‖Ak +Bk‖ ≤ ‖(A+B)k‖.
(Proof: See [58].)

Fact 9.9.54. Let A,B ∈ Fn×n, assume that A and B are positive semidefinite,
and let ‖ · ‖ be a unitarily invariant norm on Fn×n. Then,

‖ log(I +A)− log(I +B)‖ ≤ ‖ log(I + 〈A−B〉)‖
and

‖ log(I +A+B)‖ ≤ ‖ log(I +A) + log(I +B)‖.
(Proof: See [58] and [197, p. 293].) (Remark: See Fact 11.16.16.)

Fact 9.9.55. Let A,X,B ∈ Fn×n, assume that A and B are positive definite,
and let ‖ · ‖ be a unitarily invariant norm on Fn×n. Then,

‖(logA)X −X(logB)‖ ≤ ‖A1/2XB−1/2 −A−1/2XB1/2‖.
(Proof: See [216].) (Remark: See Fact 11.16.17.)

Fact 9.9.56. Let A,B ∈ Fn×n, assume that A is nonsingular, let ‖ · ‖ be a
normalized submultiplicative norm on Fn×n, and assume that ‖A−B‖ < 1/

∥∥A−1
∥∥.

Then, B is nonsingular. (Remark: See Fact 9.8.44.)

Fact 9.9.57. Let A,B ∈ Fn×n, assume that A is nonsingular, let ‖ · ‖ be a
normalized submultiplicative norm on Fn×n, let γ > 0, and assume that ‖A−1‖ < γ
and ‖A−B‖ < 1/γ. Then, B is nonsingular,

‖B−1‖ ≤ γ

1− γ‖B −A‖ ,

and
‖A−1 −B−1‖ ≤ γ2‖A−B‖.

(Proof: See [447, p. 148].) (Remark: See Fact 9.8.44.)
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Fact 9.9.58. Let A,B ∈ Fn×n, let λ ∈ C, assume that λI −A is nonsingular,
let ‖ · ‖ be a normalized submultiplicative norm on Fn×n, let γ > 0, and assume
that ‖(λI −A)−1‖ < γ and ‖A−B‖ < 1/γ. Then, λI −B is nonsingular,

‖(λI −B)−1‖ ≤ γ

1− γ‖B −A‖ ,

and
‖(λI −A)−1 − (λI −B)−1‖ ≤ γ2‖A−B‖

1− γ‖A−B‖ .

(Proof: See [447, pp. 149, 150].) (Remark: See Fact 9.9.57.)

Fact 9.9.59. Let A,B ∈ Fn×n, assume that A and A + B are nonsingular,
and let ‖ · ‖ be a normalized submultiplicative norm on Fn×n. Then,∥∥A−1 − (A+B)−1

∥∥ ≤ ∥∥A−1
∥∥∥∥(A+B)−1

∥∥‖B‖.
If, in addition, ‖A−1B‖ < 1, then∥∥A−1 + (A+B)−1

∥∥ ≤ ‖A−1‖‖A−1B‖
1− ‖A−1B‖ .

Furthermore, if ‖A−1B‖ < 1 and ‖B‖ < 1/‖A−1‖, then

∥∥A−1 − (A+B)−1
∥∥ ≤ ‖A−1‖2‖B‖

1− ‖A−1‖‖B‖ .

Fact 9.9.60. Let A ∈ Fn×n, assume that A is nonsingular, let E ∈ Fn×n, and
let ‖ · ‖ be a normalized norm on Fn×n. Then,

(A+ E)−1 = A−1
(
I + EA−1

)−1

= A−1 −A−1EA−1 +O
(‖E‖2).

Fact 9.9.61. Let A ∈ Fn×m and B ∈ Fl×k. Then,

‖A⊗B‖col = ‖A‖col‖B‖col,

‖A⊗B‖∞ = ‖A‖∞‖B‖∞,

‖A⊗B‖row = ‖A‖row‖B‖row.
Furthermore, if p ∈ [1,∞], then

‖A⊗B‖p = ‖A‖p‖B‖p.

Fact 9.9.62. Let A,B ∈ Fn×n, and let ‖ · ‖ be a unitarily invariant norm on
Fn×n. Then,

‖A ◦B‖2 ≤ ‖A∗A‖‖B∗B‖.
(Proof: See [712].)

Fact 9.9.63. Let A,B ∈ Fn×n, assume that A and B are normal, and let ‖ · ‖
be a unitarily invariant norm on Fn×n. Then,

‖A+B‖ ≤ ‖〈A〉+ 〈B〉‖
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and
‖A ◦B‖ ≤ ‖〈A〉 ◦ 〈B〉‖.

(Proof: See [90, 825] and [711, p. 213].)

Fact 9.9.64. Let A ∈ Rn×n, assume that A is nonsingular, let b ∈ Rn, and let
x̂ ∈ Rn. Then,

1
κ(A)

‖Ax̂− b‖
‖b‖ ≤ ‖x̂−A

−1b‖
‖A−1b‖ ≤ κ(A)

‖Ax̂− b‖
‖b‖ ,

where κ(A) �= ‖A‖‖A−1‖ and the vector and matrix norms are compatible. Equiv-
alently, letting b̂ �= Ax̂− b and x �= A−1b, it follows that

1
κ(A)

‖b̂‖
‖b‖ ≤

‖x̂− x‖
‖x‖ ≤ κ(A)

‖b̂‖
‖b‖ .

(Remark: This result estimates the accuracy of an approximate solution x̂ to Ax =
b. κ(A) is the condition number of A.) (Remark: See [1501].)

Fact 9.9.65. Let A ∈ Rn×n, assume that A is nonsingular, let Â ∈ Rn×n,
assume that ‖A−1Â‖ < 1, and let b, b̂ ∈ Rn. Furthermore, let x ∈ Rn satisfy Ax = b,

and let x̂ ∈ Rn satisfy (A+ Â)x̂ = b+ b̂. Then,

‖x̂− x‖
‖x‖ ≤ κ(A)

1− ‖A−1Â‖

(
‖b̂‖
‖b‖ +

‖Â‖
‖A‖

)
,

where κ(A) �= ‖A‖‖A−1‖ and the vector and matrix norms are compatible. If, in
addition, ‖A−1‖‖Â‖ < 1, then

1
κ(A) + 1

‖b̂− Âx‖
‖b‖ ≤ ‖x̂− x‖‖x‖ ≤ κ(A)

1− ‖A−1Â‖
‖b̂− Âx‖
‖b‖ .

(Proof: See [407, 408].)

Fact 9.9.66. Let A, Â ∈ R
n×n satisfy ‖A+Â‖ < 1, let b ∈ R(A), let b̂ ∈ R

n,

and assume that b+ b̂ ∈ R(A+Â). Furthermore, let x̂ ∈ Rn satisfy (A+Â)x̂ = b+ b̂.
Then, x �= A+b+ (I −A+A)x̂ satisfies Ax = b and

‖x̂− x‖
‖x‖ ≤ κ(A)

1− ‖A+Â‖

(
‖b̂‖
‖b‖ +

‖Â‖
‖A‖

)
,

where κ(A) �= ‖A‖‖A−1‖ and the vector and matrix norms are compatible. (Proof:
See [407].) (Remark: See [408] for a lower bound.)
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9.10 Facts on Matrix Norms for Partitioned Matrices

Fact 9.10.1. Let A ∈ Fn×m be the partitioned matrix

A =

⎡
⎢⎢⎣
A11 A12 · · · A1k

A21 A22 · · · A2k
...

... · · ·.. ...
Ak1 Ak2 · · · Akk

⎤
⎥⎥⎦,

where Aij ∈ Fni×nj for all i, j = 1, . . . , k. Furthermore, define μ(A) ∈ Rk×k by

μ(A) �=

⎡
⎢⎢⎣
σmax(A11) σmax(A12) · · · σmax(A1k)
σmax(A21) σmax(A22) · · · σmax(A2k)

...
... · · ·.. ...

σmax(Ak1) σmax(Ak2) · · · σmax(Akk)

⎤
⎥⎥⎦.

Finally, let B ∈ Fn×m be partitioned conformally with A. Then, the following
statements hold:

i) For all α ∈ F, μ(αA) ≤ |α|μ(A).

ii) μ(A +B) ≤ μ(A) + μ(B).

iii) μ(AB) ≤ μ(A)μ(B).

iv) sprad(A) ≤ sprad[μ(A)].

v) σmax(A) ≤ σmax[μ(A)].

(Proof: See [400, 1055, 1205].) (Remark: μ(A) is a matricial norm.) (Remark:
This result is a norm-compression inequality.)

Fact 9.10.2. Let A ∈ F
n×m be the partitioned matrix

A =

⎡
⎢⎢⎣
A11 A12 · · · A1k

A21 A22 · · · A2k
...

... · · ·.. ...
Ak1 Ak2 · · · Akk

⎤
⎥⎥⎦,

where Aij ∈ Fni×nj for all i, j = 1, . . . , k. Then, the following statements hold:

i) If p ∈ [1, 2], then

k∑
i,j=1

‖Aij‖2σp ≤ ‖A‖2σp ≤ k4/p−2
k∑

i,j=1

‖Aij‖2σp.

ii) If p ∈ [2,∞], then

k4/p−2
k∑

i,j=1

‖Aij‖2σp ≤ ‖A‖2σp ≤
k∑

i,j=1

‖Aij‖2σp.

iii) If p ∈ [1, 2], then

‖A‖pσp ≤
k∑

i,j=1

‖Aij‖pσp ≤ k2−p‖A‖pσp.
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iv) If p ∈ [2,∞), then

k2−p‖A‖pσp ≤
k∑

i,j=1

‖Aij‖pσp ≤ ‖A‖pσp.

v) ‖A‖2σ2 =
∑k

i,j=1‖Aij‖2σ2.

vi) For all p ∈ [1,∞), (
k∑
i=1

‖Aii‖pσp
)1/p

≤ ‖A‖σp.

vii) For all i = 1, . . . , k,
σmax(Aii) ≤ σmax(A).

(Proof: See [129, 208].)

Fact 9.10.3. Let A,B ∈ Fn×n, and define A ∈ Fkn×kn by

A
�=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A B B · · · B

B A B · · · B

B B A
. . . B

...
...

. . . . . .
...

B B B · · · A

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

Then,
σmax(A) = max{σmax(A+ (k − 1)B), σmax(A−B)}.

Now, let p ∈ [1,∞). Then,

‖A‖σp = (‖A+ (k − 1)B‖pσp + (k − 1)‖A−B‖pσp)1/p.
(Proof: See [129].)

Fact 9.10.4. Let A ∈ Fn×n, and define A ∈ Fkn×kn by

A
�=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A A A · · · A

−A A A · · · A

−A −A A
. . . A

...
...

. . . . . .
...

−A −A −A · · · A

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

Then,

σmax(A) =

√
2

1− cos(π/k)
σmax(A).
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Furthermore, define A0 ∈ Fkn×kn by

A0
�=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 A A · · · A

−A 0 A · · · A

−A −A 0
. . . A

...
...

. . .
. . .

...
−A −A −A · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

Then,

σmax(A0) =

√
1 + cos(π/k)
1− cos(π/k)

σmax(A).

(Proof: See [129].) (Remark: Extensions to Schatten norms are given in [129].)

Fact 9.10.5. Let A,B,C,D ∈ F
n×n. Then,

1
2 max{σmax(A+B + C +D), σmax(A−B − C +D)} ≤ σmax

([
A B
C D

])
.

Now, let p ∈ [1,∞). Then,

1
2 (‖A+B + C +D‖pσp + ‖A−B − C +D‖pσp)1/p ≤

∥∥∥∥
[
A B
C D

]∥∥∥∥
σp

.

(Proof: See [129].)

Fact 9.10.6. Let A,B,C ∈ Fn×n, define

A
�=
[
A B
B∗ C

]
,

assume that A is positive semidefinite, let p ∈ [1,∞], and define

A0
�=

[
‖A‖σp ‖B‖σp
‖B‖σp ‖C‖σp

]
.

If p ∈ [1, 2], then
‖A0‖σp ≤ ‖A‖σp.

Furthermore, if p ∈ [2,∞], then

‖A‖σp ≤ ‖A0‖σp.
Hence, if p = 2, then

‖A0‖σp = ‖A‖σp.
Finally, if A = C, B is Hermitian, and p is an integer, then

‖A‖pσp = ‖A+B‖pσp + ‖A−B‖pσp
and

‖A0‖pσp = (‖A‖σp + ‖B‖σp)p + |‖A‖σp − ‖B‖σp|p.
(Proof: See [810].) (Remark: This result is a norm-compression inequality.)
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Fact 9.10.7. Let A ∈ Fn×n, B ∈ Fn×m, and C ∈ Fm×m, define

A
�=
[
A B
B∗ C

]
,

assume that A is positive semidefinite, and let p ≥ 1. If p ∈ [1, 2], then

‖A‖pσp ≤ ‖A‖pσp + (2p − 2)‖B‖pσp + ‖C‖pσp.
Furthermore, if p ≥ 2, then

‖A‖pσp + (2p − 2)‖B‖pσp + ‖C‖pσp ≤ ‖A‖pσp.
Finally, if p = 2, then

‖A‖pσp = ‖A‖pσp + (2p − 2)‖B‖pσp + ‖C‖pσp.
(Proof: See [86].)

Fact 9.10.8. Let A ∈ Fn×m be the partitioned matrix

A =
[
A11 · · · A1k

A21 · · · A2k

]
,

where Aij ∈ Fni×nj for all i, j = 1, . . . , k. Then, the following statements are
conjectured to hold:

i) If p ∈ [1, 2], then∥∥∥∥∥
[
‖A11‖σp · · · ‖A1k‖σp
‖A21‖σp · · · ‖A2k‖σp

]∥∥∥∥∥
σp

≤ ‖A‖σp.

ii) If p ≥ 2, then

‖A‖σp ≤
∥∥∥∥∥
[
‖A11‖σp · · · ‖A1k‖σp
‖A21‖σp · · · ‖A2k‖σp

]∥∥∥∥∥
σp

.

(Proof: See [87]. The result is true when all blocks have rank 1 or when p ≥ 4.)
(Remark: This result is a norm-compression inequality.)

9.11 Facts on Matrix Norms and Eigenvalues Involving One
Matrix

Fact 9.11.1. Let A ∈ Fn×n. Then,

|detA| ≤
n∏
i=1

‖rowi(A)‖2

and

|detA| ≤
n∏
i=1

‖coli(A)‖2.

(Proof: The result follows from Hadamard’s inequality. See Fact 8.17.11.)
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Fact 9.11.2. Let A ∈ Fn×n, and let mspec(A) = {λ1, . . . , λn}ms. Then,

Re trA ≤ |trA| ≤
n∑
i=1

|λi| ≤ ‖A‖σ1 = tr 〈A〉 =
n∑
i=1

σi(A).

In addition, if A is normal, then

‖A‖σ1 =
n∑
i=1

|λi|.

Finally, A is positive semidefinite if and only if

‖A‖σ1 = trA.

(Proof: See Fact 5.14.15 and Fact 9.13.19.) (Remark: See Fact 5.11.9 and Fact
5.14.15.) (Problem: Refine the second statement for necessity and sufficiency. See
[742].)

Fact 9.11.3. Let A ∈ Fn×n, and let mspec(A) = {λ1, . . . , λn}ms. Then,

Re trA2 ≤ |trA2| ≤
n∑
i=1

|λi|2 ≤ ‖A2‖σ1 = tr 〈A2〉 =
n∑
i=1

σi(A2)

≤
n∑
i=1

σ2
i (A) = trA∗A = tr 〈A〉2 = ‖A‖2σ2 = ‖A‖2F

and

‖A‖2F −
√

n3−n
12 ‖[A,A∗]‖F ≤

n∑
i=1

|λi|2 ≤
√
‖A‖4F − 1

2‖[A,A∗]‖2F ≤‖A‖2F.

Consequently, A is normal if and only if

‖A‖2F =
n∑
i=1

|λi|2.

Furthermore,
n∑
i=1

|λi|2 ≤
√
‖A‖4F − 1

4 (tr |[A,A∗]|)2 ≤‖A‖2F

and n∑
i=1

|λi|2 ≤
√
‖A‖4F − n2

4 |det [A,A∗]|2/n ≤‖A‖2F.

Finally, A is Hermitian if and only if

‖A‖2F = trA2.

(Proof: Use Fact 8.17.5 and Fact 9.11.2. The lower bound involving the commutator
is due to Henrici; the corresponding upper bound is given in [847]. The bounds in
the penultimate statement are given in [847]. The last statement follows from Fact
3.7.13.) (Remark: tr (A + A∗)2 ≥ 0 and tr (A −A∗)2 ≤ 0 yield |trA2| ≤ ‖A‖2F.)
(Remark: The result

∑n
i=1 |λi|2 ≤ ‖A‖2F is Schur’s inequality. See Fact 8.17.5.)

(Remark: See Fact 5.11.10, Fact 9.11.5, Fact 9.13.17, and Fact 9.13.20.) (Problem:
Merge the first two strings.)
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Fact 9.11.4. Let A ∈ Fn×n. Then,

|trA2| ≤ (rankA)
√
‖A‖4F − 1

2‖[A,A∗]‖2F.
(Proof: See [315].)

Fact 9.11.5. Let A ∈ Fn×n, let mspec(A) = {λ1, . . . , λn}ms, and define

α
�=
√(‖A‖2F − 1

n |trA|2
)2 − 1

2‖[A,A∗]‖2F + 1
n |trA|2.

Then,
n∑
i=1

|λi|2 ≤ α ≤
√
‖A‖4F − 1

2‖[A,A∗]‖2F ≤ ‖A‖2F,
n∑
i=1

(Reλi)2 ≤ 1
2 (α + Re trA2),

n∑
i=1

(Im λi)2 ≤ 1
2 (α− Re trA2).

(Proof: See [732].) (Remark: The first string of inequalities interpolates the upper
bound for

∑n
i=1|λi|2 in the second string of inequalities in Fact 9.11.3.)

Fact 9.11.6. Let A ∈ Fn×n, let mspec(A) = {λ1, . . . , λn}ms, and let p ∈ (0, 2].
Then, n∑

i=1

|λi|p ≤
n∑
i=1

σpi (A) = ‖A‖pσp ≤ ‖A‖pp.

(Proof: The left-hand inequality, which holds for all p > 0, follows from Weyl’s
inequality in Fact 8.17.5. The right-hand inequality is given by Proposition 9.2.5.)
(Remark: This result is the generalized Schur inequality.) (Remark: The case of
equality is discussed in [742] for p ∈ [1, 2).)

Fact 9.11.7. Let A ∈ Fn×n, and let mspec(A) = {λ1, . . . , λn}ms. Then,

‖A‖2F −
n∑
i=1

|λi|2 = 2

(
‖ 1

2j (A−A∗)‖2F −
n∑
i=1

|Imλi|2
)
.

(Proof: See Fact 5.11.22.) (Remark: This result is an extension of Browne’s theo-
rem.)

Fact 9.11.8. Let A ∈ Rn×n, and let λ ∈ spec(A). Then, the following in-
equalities hold:

i) |λ| ≤ n‖A‖∞.
ii) |Reλ| ≤ n

2

∥∥A+AT
∥∥
∞.

iii) |Imλ| ≤
√
n2−n
2
√

2

∥∥A−AT
∥∥
∞.

(Proof: See [963, p. 140].) (Remark: i) and ii) are Hirsch’s theorems, while iii) is
Bendixson’s theorem. See Fact 5.11.21.)
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9.12 Facts on Matrix Norms and Eigenvalues Involving Two or
More Matrices

Fact 9.12.1. Let A,B ∈ Fn×m, let mspec(A∗B) = {λ1, . . . , λm}ms, let p, q ∈
[1,∞] satisfy 1/p+ 1/q = 1, and define r �= min{m,n}. Then,

|trA∗B| ≤
m∑
i=1

|λi| ≤ ‖A∗B‖σ1 =
m∑
i=1

σi(A∗B)≤
r∑
i=1

σi(A)σi(B)≤ ‖A‖σp‖B‖σq.

In particular,
|trA∗B| ≤ ‖A‖F‖B‖F.

(Proof: Use Proposition 9.6.2 and Fact 9.11.2. The last inequality in the string
of inequalities is Hölder’s inequality.) (Remark: See Fact 9.9.11.) (Remark: The
result

|trA∗B| ≤
r∑
i=1

σi(A)σi(B)

is von Neumann’s trace inequality. See [250].)

Fact 9.12.2. Let A,B ∈ Fn×m, and let mspec(A∗B) = {λ1, . . . , λm}ms. Then,

|tr (A∗B)2| ≤
m∑
i=1

|λi|2 ≤
m∑
i=1

σ2
i (A

∗B) = trAA∗BB∗ = ‖A∗B‖2F ≤ ‖A‖2F‖B‖2F.

(Proof: Use Fact 8.17.5.)

Fact 9.12.3. Let A,B ∈ Fn×n, assume that A and B are Hermitian, and let
mspec(A+ jB) = {λ1, . . . , λn}ms. Then,

n∑
i=1

|Reλi|2 ≤ ‖A‖2F

and n∑
i=1

|Imλi|2 ≤ ‖B‖2F.

(Proof: See [1098, p. 146].)

Fact 9.12.4. Let A,B ∈ Fn×n, assume that A and B are Hermitian, and let
‖ · ‖ be a weakly unitarily invariant norm on Fn×n. Then,∥∥∥∥∥∥∥

⎡
⎢⎣
λ1(A) 0

. . .
0 λn(A)

⎤
⎥⎦−
⎡
⎢⎣
λ1(B) 0

. . .
0 λn(B)

⎤
⎥⎦
∥∥∥∥∥∥∥ ≤ ‖A−B‖

≤

∥∥∥∥∥∥∥
⎡
⎢⎣
λ1(A) 0

. . .
0 λn(A)

⎤
⎥⎦−
⎡
⎢⎣
λn(B) 0

. . .
0 λ1(B)

⎤
⎥⎦
∥∥∥∥∥∥∥ .
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In particular,

max
i∈{1,...,n}

|λi(A)−λi(B)| ≤ σmax(A−B) ≤ max
i∈{1,...,n}

|λi(A)−λn−i+1(B)|

and n∑
i=1

[λi(A) −λi(B)]2 ≤ ‖A−B‖2F ≤
n∑
i=1

[λi(A)−λn−i+1(B)]2.

(Proof: See [47], [196, p. 38], [197, pp. 63, 69], [200, p. 38], [796, p. 126], [878, p.
134], [895], or [1230, p. 202].) (Remark: The first inequality is the Lidskii-Mirsky-
Wielandt theorem. The result can be stated without norms using Fact 9.8.42. See
[895].) (Remark: See Fact 9.14.29.) (Remark: The case in which A and B are
normal is considered in Fact 9.12.8.)

Fact 9.12.5. Let A,B ∈ Fn×n, let mspec(A) = {λ1, . . . , λn}ms and mspec(B)
= {μ1, . . . , μn}ms, and assume that A and B satisfy at least one of the following
conditions:

i) A and B are Hermitian.

ii) A is Hermitian, and B is skew Hermitian.

iii) A is skew Hermitian, and B is Hermitian.

iv) A and B are unitary.

v) There exist nonzero α, β ∈ C such that αA and βB are unitary.

vi) A, B, and A−B are normal.

Then,

minσmax

⎛
⎜⎝
⎡
⎢⎣
λ1 0

. . .
0 λn

⎤
⎥⎦−
⎡
⎢⎣
μσ(1) 0

. . .
0 μσ(n)

⎤
⎥⎦
⎞
⎟⎠ ≤ σmax(A−B),

where the minimum is taken over all permutations σ of {1, . . . , n}. (Proof: See [200,
pp. 52, 152].)

Fact 9.12.6. Let A,B ∈ Fn×n, let mspec(A) = {λ1, . . . , λn}ms and mspec(B)
= {μ1, . . . , μn}ms, and assume that A is normal. Then,

min

∥∥∥∥∥∥∥
⎡
⎢⎣
λ1 0

. . .
0 λn

⎤
⎥⎦−
⎡
⎢⎣
μσ(1) 0

. . .
0 μσ(n)

⎤
⎥⎦
∥∥∥∥∥∥∥

F

≤ √n‖A−B‖F,

where the minimum is taken over all permutations σ of {1, . . . , n}. If, in addition,
B is normal, then there exists c ∈ (0, 2.9039) such that

minσmax

⎛
⎜⎝
⎡
⎢⎣
λ1 0

. . .
0 λn

⎤
⎥⎦−
⎡
⎢⎣
μσ(1) 0

. . .
0 μσ(n)

⎤
⎥⎦
⎞
⎟⎠ ≤ cσmax(A−B).

(Proof: See [200, pp. 152, 153, 173].) (Remark: Constants c for alternative Schatten
norms are given in [200, p. 159].) (Remark: If, in addition, A− B is normal, then
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it follows from Fact 9.12.5 that the last inequality holds with c = 1.)

Fact 9.12.7. Let A,B ∈ Fn×n, let mspec(A) = {λ1, . . . , λn}ms and mspec(B)
= {μ1, . . . , μn}ms, and assume that A is Hermitian. Then,

min

∥∥∥∥∥∥∥
⎡
⎢⎣
λ1 0

. . .
0 λn

⎤
⎥⎦−
⎡
⎢⎣
μσ(1) 0

. . .
0 μσ(n)

⎤
⎥⎦
∥∥∥∥∥∥∥

F

≤
√

2‖A−B‖F,

where the minimum is taken over all permutations σ of {1, . . . , n}. (Proof: See [200,
p. 174].)

Fact 9.12.8. Let A,B ∈ Fn×n, assume that A and B are normal, and let
spec(A) = {λ1, . . . , λq} and spec(B) = {μ1, . . . , μr}. Then,

σmax(A−B) ≤ max{|λi − λj | : i = 1, . . . , q, j = 1, . . . , r}.
(Proof: See [197, p. 164].) (Remark: The case in which A and B are Hermitian is
considered in Fact 9.12.4.)

Fact 9.12.9. Let A,B ∈ Fn×n, and assume that A and B are normal. Then,
there exists a permutation σ of 1, . . . , n such that

n∑
i=1

|λσ(i)(A)−λi(B)|2 ≤ ‖A−B‖2F.

(Proof: See [709, p. 368] or [1098, pp. 160, 161].) (Remark: This inequality is the
Hoffman-Wielandt theorem.) (Remark: The case in which A and B are Hermitian
is considered in Fact 9.12.4.)

Fact 9.12.10. Let A,B ∈ Fn×n, and assume that A is Hermitian and B is
normal. Furthermore, let mspec(B) = {λ1(B), . . . , λn(B)}ms, where Reλn(B) ≤
· · · ≤ Reλ1(B). Then,

n∑
i=1

|λi(A)−λi(B)|2 ≤ ‖A−B‖2F.

(Proof: See [709, p. 370].) (Remark: This result is a special case of Fact 9.12.9.)
(Remark: The left-hand side has the same value for all orderings that satisfy
Reλn(B) ≤ · · · ≤ Reλ1(B).)

Fact 9.12.11. Let A,B ∈ F
n×n, and let ‖ · ‖ be an induced norm on F

n×n.
Then,

|detA− detB| ≤
{‖A−B‖ ‖A‖n−‖B‖n

‖A‖−‖B‖ , ‖A‖ �= ‖B‖,
n‖A−B‖‖A‖n−1, ‖A‖ = ‖B‖.

(Proof: See [505].) (Remark: See Fact 1.18.2.)
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9.13 Facts on Matrix Norms and Singular Values for One Matrix

Fact 9.13.1. Let A ∈ Fn×m. Then,

σmax(A) = max
x∈Fm\{0}

(
x∗A∗Ax
x∗x

)1/2
,

and thus
‖Ax‖2 ≤ σmax(A)‖x‖2.

Furthermore,

λ
1/2
min(A

∗A) = min
x∈Fn\{0}

(
x∗A∗Ax
x∗x

)1/2
,

and thus
λ

1/2
min(A

∗A)‖x‖2 ≤ ‖Ax‖2.
If, in addition, m ≤ n, then

σm(A) = min
x∈Fn\{0}

(
x∗A∗Ax
x∗x

)1/2
,

and thus
σm(A)‖x‖2 ≤ ‖Ax‖2.

Finally, if m = n, then

σmin(A) = min
x∈Fn\{0}

(
x∗A∗Ax
x∗x

)1/2
,

and thus
σmin(A)‖x‖2 ≤ ‖Ax‖2.

(Proof: See Lemma 8.4.3.)

Fact 9.13.2. Let A ∈ Fn×m. Then,

σmax(A) = max{|y∗Ax|: x ∈ F
m, y ∈ F

n, ‖x‖2 = ‖y‖2 = 1}
= max{|y∗Ax|: x ∈ F

m, y ∈ F
n, ‖x‖2 ≤ 1, ‖y‖2 ≤ 1}.

(Remark: See Fact 9.8.36.)

Fact 9.13.3. Let x ∈ Fn and y ∈ Fm, and define S
�= {A ∈ Fn×m: σmax(A) ≤

1}. Then,
max
A∈S

x∗Ay =
√
x∗xy∗y.

Fact 9.13.4. Let ‖ · ‖ be an equi-induced unitarily invariant norm on Fn×n.
Then, ‖ · ‖ = σmax(·).

Fact 9.13.5. Let ‖ · ‖ be an equi-induced self-adjoint norm on Fn×n. Then,
‖ · ‖ = σmax(·).

Fact 9.13.6. Let A ∈ Fn×n. Then,

σmin(A)− 1 ≤ σmin(A+ I) ≤ σmin(A) + 1.

(Proof: Use Proposition 9.6.8.)
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Fact 9.13.7. Let A ∈ Fn×n, assume that A is normal, and let r ∈ N. Then,

σmax(Ar) = σrmax(A).

(Remark: Matrices that are not normal might also satisfy these conditions. Con-
sider

[
1 0 0
0 0 0
0 1 0

]
.)

Fact 9.13.8. Let A ∈ Fn×n. Then,

σ2
max(A) − σmax

(
A2
) ≤ σmax(A∗A−AA∗) ≤ σ2

max(A)− σ2
min(A)

and
σ2
max(A) + σ2

min(A) ≤ σmax(A∗A+AA∗) ≤ σ2
max(A) + σmax

(
A2
)
.

If A2 = 0, then
σmax(A∗A−AA∗) = σ2

max(A).

(Proof: See [820, 824].) (Remark: See Fact 8.18.11.) (Remark: If A is normal,
then it follows that σ2

max(A) ≤ σmax

(
A2
)
, although Fact 9.13.7 implies that equality

holds.)

Fact 9.13.9. Let A ∈ Fn×n. Then, the following statements are equivalent:

i) sprad(A) = σmax(A).

ii) σmax(Ai) = σimax(A) for all i ∈ P.

iii) σmax(An) = σnmax(A).

(Proof: See [493] and [711, p. 44].) (Remark: The result iii) =⇒ i) is due to Ptak.)
(Remark: Additional conditions are given in [567].)

Fact 9.13.10. Let A ∈ Fn×n. Then,

σmax(A) ≤ σmax(|A|) ≤
√

rankAσmax(A).

(Proof: See [681, p. 111].)

Fact 9.13.11. Let A ∈ Fn×n, and let p ∈ [1,∞) be an even integer. Then,

‖A‖σp ≤ ‖ |A| ‖σp.
In particular,

‖A‖F ≤ ‖ |A| ‖F
and

σmax(A) ≤ σmax(|A|).
Finally, let ‖ · ‖ be a unitarily invariant norm on Cn×m. Then, ‖A‖F = ‖ |A| ‖F for
all A ∈ Cn×m if and only if ‖ · ‖ is a constant multiple of ‖ · ‖F. (Proof: See [712]
and [730].)

Fact 9.13.12. Let A ∈ Rn×n, and assume that r �= rankA ≥ 2. If r trA2 ≤
(trA)2, then √

(trA)2 − trA2

r(r −1)
≤ sprad(A).
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If (trA)2 ≤ r trA2, then

|trA|
r

+

√
r trA2 − (trA)2

r2(r −1)
≤ sprad(A).

If rankA = 2, then equality holds in both cases. Finally, if A is skew symmetric,
then √

3
r(r −1)

‖A‖F ≤ sprad(A).

(Proof: See [718].)

Fact 9.13.13. Let A ∈ Rn×n. Then,√
1

2(n2−n)
(‖A‖2F + trA2) ≤ σmax(A).

Furthermore, if ‖A‖F ≤ trA, then

σmax(A) ≤ 1
ntrA+

√
n−1
n

[‖A‖2F − 1
n (trA)2

]
.

(Proof: See [992], which considers the complex case.)

Fact 9.13.14. Let A ∈ Fn×n. Then, the polynomial p ∈ R[s] defined by

p(s) �= sn − ‖A‖2Fs+ (n−1)|detA|2/(n−1)

has either exactly one or exactly two positive roots 0 < α ≤ β. Furthermore, α and
β satisfy

α(n−1)/2 ≤ σmin(A) ≤ σmax(A) ≤ β(n−1)/2.

(Proof: See [1139].)

Fact 9.13.15. Let A ∈ Fn×n, and, for all k = 1, . . . , n, define

αk
�=

n∑
j=1
j �=k

|A(k,j)|, βk
�=

n∑
i=1
i�=k

|A(i,k)|.

Then,
min

1≤k≤n
{|A(k,k)| − 1

2 (αk + βk)} ≤ σmin(A).

(Proof: See [764, 774].)

Fact 9.13.16. Let A ∈ Fn×n. Then,

tr 〈A〉 = tr 〈A∗〉.

Fact 9.13.17. Let A ∈ Fn×n. Then, for all k = 1, . . . , n,
k∑
i=1

σi
(
A2
) ≤ k∑

i=1

σ2
i (A).

Hence,
tr
(
A2∗A2

)1/2 ≤ trA∗A,
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that is,
tr
〈
A2
〉 ≤ tr 〈A〉2.

(Proof: Let B = A and r = 1 in Proposition 9.6.2. See also Fact 9.11.3.)

Fact 9.13.18. Let A ∈ Fn×n, and let k denote the number of nonzero eigen-
values of A. Then,

|trA2| ≤ tr
〈
A2
〉

tr 〈A〉〈A∗〉
1
k |trA|2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
≤ tr 〈A〉2.

(Proof: The upper bound for |trA2| is given by Fact 9.11.3. The upper bound for
tr
〈
A2
〉

is given by Fact 9.13.17. To prove the center inequality, let A = S1DS2

denote the singular value decomposition of A. Then, tr 〈A〉〈A∗〉 = trS∗
3DS3D,

where S3
�= S1S2, and trA∗A = trD2. The result now follows using Fact 5.12.4.

The remaining inequality is given by Fact 5.11.10.) (Remark: See Fact 5.11.10 and
Fact 9.11.3.)

Fact 9.13.19. Let A ∈ Fn×n, and let mspec(A) = {λ1, . . . , λn}ms, where
λ1, . . . , λn are ordered such that |λ1| ≥ · · · ≥ |λn|. Then, for all k = 1, . . . , n,

k∏
i=1

|λi|2 ≤
k∏
i=1

σi
(
A2
) ≤ k∏

i=1

σ2
i (A)

and n∏
i=1

|λi|2 =
n∏
i=1

σi
(
A2
)

=
n∏
i=1

σ2
i (A) = |detA|2.

Furthermore, for all k = 1, . . . , n,∣∣∣∣∣
k∑
i=1

λi

∣∣∣∣∣ ≤
k∑
i=1

|λi| ≤
k∑
i=1

σi(A),

and thus

|trA| ≤
k∑
i=1

|λi| ≤ tr 〈A〉.

(Proof: See [711, p. 172], and use Fact 5.11.28. For the last statement, use Fact
2.21.13.) (Remark: See Fact 5.11.28, Fact 8.18.21, and Fact 9.11.2.) (Remark:
This result is due to Weyl.)

Fact 9.13.20. Let A ∈ Fn×n, and let mspec(A) = {λ1, . . . , λn}ms, where
λ1, . . . , λn are ordered such that |λn| ≤ · · · ≤ |λ1|, and let p ≥ 0. Then, for all
k = 1, . . . , n, ∣∣∣∣∣

k∑
i=1

λpi

∣∣∣∣∣ ≤
k∑
i=1

|λi|p ≤
k∑
i=1

σpi (A).

(Proof: See [197, p. 42].) (Remark: This result is Weyl’s majorant theorem.)
(Remark: See Fact 9.11.3.)
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Fact 9.13.21. Let A ∈ Fn×n, and define

ri
�=

n∑
j=1

|A(i,j)|, ci
�=

n∑
j=1

|A(j,i)|,

rmin
�= min
i=1,...,n

‖ri‖2, cmin
�= min
i=1,...,n

‖ci‖2,

r̂i
�=

n∑
j=1
j �=i

|A(i,j)|, ĉi
�=

n∑
j=1
j �=i

|A(j,i)|,

and
α

�= min
i=1,...,n

(|A(i,i)| − r̂i
)
, β

�= min
i=1,...,n

(|A(i,i)| − ĉi
)
.

Then, the following statements hold:

i) If α > 0, then A is nonsingular and

‖A−1‖row < 1/α.

ii) If β > 0, then A is nonsingular and

‖A−1‖col < 1/β.

iii) If α > 0 and β > 0, then A is nonsingular, and√
αβ ≤ σmin(A).

iv) σmin(A) satisfies

min
i=1,...,n

1
2

[
2|A(i,i)| − r̂i − ĉi

] ≤ σmin(A).

v) σmin(A) satisfies

min
i=1,...,n

1
2

[(
4|A(i,i)|2 + [r̂i − ĉi]2

)1/2 − r̂i − ĉi] ≤ σmin(A).

vi) σmin(A) satisfies

(
n−1
n

)(n−1)/2 |detA|max
{

cmin∏n
i=1 ci

,
rmin∏n
i=1 ri

}
≤ σmin(A).

(Proof: See Fact 9.8.23, [711, pp. 227, 231], and [707, 763, 1367].)

Fact 9.13.22. Let A ∈ Fn×n, and let mspec(A) = {λ1, · · · , λn}ms, where
λ1, . . . , λn are ordered such that |λn| ≤ · · · ≤ |λ1|. Then, for all i = 1, . . . , n,

lim
k→∞

σ
1/k
i (Ak) = |λi|.

In particular,
lim
k→∞

σ1/k
max(A

k)= sprad(A).

(Proof: See [711, p. 180].) (Remark: This identity is due to Yamamoto.) (Remark:
The expression for sprad(A) is a special case of Proposition 9.2.6.)

Fact 9.13.23. Let A ∈ Fn×n, and assume that A is nonzero. Then,
1

σmax(A) = min
B∈{X∈Fn×n: det(I−AX)=0}

σmax(B).
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Furthermore, there exists B0 ∈ Fn×n such that rankB0 = 1, det(I−AB0) = 0, and
1

σmax(A) = σmax(B0).

(Proof: If σmax(B) < 1/σmax(A), then sprad(AB) ≤ σmax(AB) < 1, and thus
I −AB is nonsingular. Hence,

1
σmax(A) = min

B∈{X∈Fn×n: σmax(X)≥1/σmax(A)}
σmax(B)

= min
B∈{X∈Fn×n: σmax(X)<1/σmax(A)}∼

σmax(B)

≤ min
B∈{X∈Fn×n: det(I−AX)=0}

σmax(B).

Using the singular value decomposition, equality holds by constructing B0 to have
rank 1 and singular value 1/σmax(A).) (Remark: This result is related to the small-
gain theorem. See [1498, pp. 276, 277].)

9.14 Facts on Matrix Norms and Singular Values for Two or
More Matrices

Fact 9.14.1. Let a1, . . . , an ∈ Fn be linearly independent, and, for all i =
1, . . . , n, define

Ai
�= I − (a∗iai)

−1
aia

∗
i.

Then,
σmax(AnAn−1 · · ·A1) < 1.

(Proof: Define A
�= AnAn−1 · · ·A1. Since σmax(Ai) ≤ 1 for all i = 1, . . . , n, it

follows that σmax(A) ≤ 1. Suppose that σmax(A) = 1, and let x ∈ Fn satisfy
x∗x = 1 and ‖Ax‖2 = 1. Then, for all i = 1, . . . , n, ‖AiAi−1 · · ·A1x‖2 = 1. Con-
sequently, ‖A1x‖2 = 1, which implies that a∗1x = 0, and thus A1x = x. Hence,
‖AiAi−1 · · ·A2x‖2 = 1. Repeating this argument implies that, for all i = 1, . . . , n,
a∗ix = 0. Since a1, . . . , an are linearly independent, it follows that x = 0, which is a
contradiction.) (Remark: This result is due to Akers and Djokovic.)

Fact 9.14.2. Let A1, . . . , An ∈ Fn×n, assume that, for all i, j = 1, . . . , n,
[Ai, Aj ] = 0, and assume that, for all i = 1, . . . , n, σmax(Ai) = 1 and sprad(Ai) = 1.
Then,

σmax(AnAn−1 · · ·A1) < 1.

(Proof: See [1479].)

Fact 9.14.3. Let A ∈ Fn×m and B ∈ Fm×n. Then,

|trAB| ≤ ‖AB‖σ1 =
r∑
i=1

σi(AB) ≤
r∑
i=1

σi(A)σi(B).

(Proof: Use Proposition 9.6.2 and Fact 9.11.2.) (Remark: This result generalizes
Fact 5.12.6.) (Remark: Sufficient conditions for equality are given in [1184, p.
107].)
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Fact 9.14.4. Let A ∈ Fn×m and B ∈ Fm×n. Then,

|trAB| ≤ ‖AB‖σ1 ≤ σmax(A)‖B‖σ1.

(Proof: Use Corollary 9.3.8 and Fact 9.11.2.) (Remark: This result generalizes Fact
5.12.7.)

Fact 9.14.5. Let A ∈ Fn×m, B ∈ Fm×n, and p ∈ [1,∞), and assume that AB
is normal. Then, ‖AB‖σp ≤ ‖BA‖σp.
In particular,

tr 〈AB〉 ≤ tr 〈BA〉,
‖AB‖F ≤ ‖BA‖F,

σmax(AB) ≤ σmax(BA).

(Proof: This result is due to Simon. See [246].)

Fact 9.14.6. Let A,B ∈ Rn×n, assume that A is nonsingular, and assume
that B is singular. Then,

σmin(A) ≤ σmax(A− B).

Furthermore, if σmax

(
A−1
)

= sprad
(
A−1
)
, then there exists a singular matrix C ∈

Rn×n such that σmax(A − C) = σmin(A). (Proof: See [1098, p. 151].) (Remark:
This result is due to Franck.)

Fact 9.14.7. Let A ∈ Cn×n, assume that A is nonsingular, let ‖ · ‖ and ‖ · ‖′
be norms on Cn, let ‖ · ‖′′ be the norm on Cn×n induced by ‖ · ‖ and ‖ · ‖′, and let
‖ · ‖′′′ be the norm on C

n×n induced by ‖ · ‖′ and ‖ · ‖. Then,

min{‖B‖′′: B ∈ C
n×n and A+B is nonsingular} = 1/‖A−1‖′′′.

In particular,

min{‖B‖col: B ∈ C
n×n and A+B is singular} = 1/‖A−1‖col,

min{σmax(B) : B ∈ C
n×n and A+B is singular} = σmin(A),

min{‖B‖row: B ∈ C
n×n and A+B is singular} = 1/‖A−1‖row.

(Proof: See [679] and [681, p. 111].) (Remark: This result is due to Gastinel. See
[679].) (Remark: The result involving σmax(B) is equivalent to the inequality in
Fact 9.14.6.)

Fact 9.14.8. Let A,B ∈ F
n×m, and assume that rankA = rankB and α

�=
σmax(A+)σmax(A−B) < 1. Then,

σmax(B+) <
1

1− ασmax(A+).

If, in addition, n = m, A and B are nonsingular, and σmax(A−B) < σmin(A), then

σmax

(
B−1
)
<

σmin(A)
σmin(A) − σmax(A−B)

σmax

(
A−1
)
.
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(Proof: See [681, p. 400].)

Fact 9.14.9. Let A,B ∈ Fn×n. Then,

σmax(I − [A,B]) ≥ 1.

(Proof: Since tr [A,B] = 0, it follows that there exists λ ∈ spec(I−[A,B]) such that
Reλ ≥ 1, and thus |λ| ≥ 1. Hence, Corollary 9.4.5 implies that σmax(I − [A,B]) ≥
sprad(I − [A,B]) ≥ |λ| ≥ 1.)

Fact 9.14.10. Let A ∈ Fn×m, and let B ∈ Fk×l be a submatrix of A. Then,
for all i = 1, . . . ,min{k, l},

σi(B) ≤ σi(A).

(Proof: Use Proposition 9.6.1.) (Remark: Sufficient conditions for singular value
interlacing are given in [709, p. 419].)

Fact 9.14.11. Let

A
�=
[
A B
C D

]
∈ F

(n+m)×(n+m),

assume that A is nonsingular, and define [E F
G H ] ∈ F(n+m)×(n+m) by[

E F
G H

]
�= A−1.

Then, the following statements hold:

i) For all i = 1, . . . ,min{n,m} − 1,

σn−i(A)
σ2

max(A)
≤ σm−i(H) ≤ σn−i(A)

σ2
min(A)

.

ii) Assume that n < m. Then, for all i = 1, . . . ,m− n,
1

σmax(A)
≤ σi(H) ≤ 1

σmin(A)
.

iii) Assume that m < n. Then, for all i = 1, . . . ,m− n,
σmin(A) ≤ σi(H) ≤ σmax(A).

iv) Assume that n = m. Then, for all i = 1, . . . , n,

σi(A)
σ2

max(A)
≤ σi(H) ≤ σi(A)

σ2
min(A)

.

v) Assume that m < n. Then,

σmax(H) ≤ σn−m+1(A)
σ2

min(A)
.

vi) Assume that m < n. Then, H = 0 if and only if def A = m.

Now, assume that A is unitary. Then, the following statements hold:
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vii) If n < m, then

σi(D) =

{
1, 1 ≤ i ≤ m− n,
σi−m+n(A), m− n < i ≤ m.

viii) If n = m, then, for all i = 1, . . . , n,

σi(D) = σi(A).

ix) If n ≤ m, then

|detD| =
m∏
i=1

σi(D) =
n∏
i=1

σi(A) = |detA|.

(Proof: See [575].) (Remark: Statement vi) is a special case of the nullity theorem
given by Fact 2.11.20.) (Remark: Statement ix) follows from Fact 3.11.24 using
Fact 5.11.28.)

Fact 9.14.12. Let A ∈ F
n×m, B ∈ F

n×l, C ∈ F
k×m, and D ∈ F

k×l. Then,

σmax

([
A B
C D

])
≤ σmax

([
σmax(A) σmax(B)

σmax(C) σmax(D)

])
.

(Proof: See [719, 821].) (Remark: This result is due to Tomiyama.) (Remark: See
Fact 8.18.28.)

Fact 9.14.13. Let A ∈ Fn×m, B ∈ Fn×l, and C ∈ Fk×m. Then, for all X ∈
Fk×l,

max
{
σmax

([
A B

])
, σmax

([
A
C

])}
≤ σmax

([
A B
C X

])
.

Furthermore, there exists a matrix X ∈ Fk×l such that equality holds. (Remark:
This result is Parrott’s theorem. See [366], [447, pp. 271, 272], and [1498, pp.
40–42].)

Fact 9.14.14. Let A ∈ Fn×m and B ∈ Fn×l. Then,

max{σmax(A), σmax(B)} ≤ σmax

([
A B

])
≤ [σ2

max(A) + σ2
max(B)

]1/2
≤ √2max{σmax(A), σmax(B)}

and, if n ≤ min{m, l},
[
σ2
n(A) + σ2

n(B)
]1/2 ≤ σn([ A B

]) ≤
⎧⎪⎨
⎪⎩
[
σ2
n(A) + σ2

max(B)
]1/2

[
σ2

max(A) + σ2
n(B)

]1/2
.

(Problem: Obtain analogous bounds for σi(
[
A B

]
).)
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Fact 9.14.15. Let A,B ∈ Fn×n. Then,

σmax(A+B)

≤ 1
2

[
σmax(A) + σmax(B)

+
√

[σmax(A)− σmax(B)]2 + 4 max{σ2
max

(〈A〉1/2〈B〉1/2), σ2
max

(〈A∗〉1/2〈B∗〉1/2)}]
≤ σmax(A) + σmax(B).

(Proof: See [821].) (Remark: See Fact 8.18.14.) (Remark: This result interpolates
the triangle inequality for the maximum singular value.)

Fact 9.14.16. Let A,B ∈ Fn×n, and let α > 0. Then,

σmax(A+B) ≤ [(1 + α)σ2
max(A) +

(
1 + α−1

)
σ2

max(B)
]1/2

and
σmin(A+B) ≤ [(1 + α)σ2

min(A) +
(
1 + α−1

)
σ2

max(B)
]1/2

.

Fact 9.14.17. Let A,B ∈ Fn×n. Then,

σmin(A)− σmax(B) ≤ |det(A+B)|1/n

≤
n∏
i=1

|σi(A) + σn−i+1(B)|1/n

≤ σmax(A) + σmax(B).

(Proof: See [721, p. 63] and [894].)

Fact 9.14.18. Let A,B ∈ Fn×n, and assume that σmax(B) ≤ σmin(A). Then,

0 ≤ [σmin(A)− σmax(B)]n

≤
n∏
i=1

|σi(A)− σn−i+1(B)|

≤ |det(A+B)|

≤
n∏
i=1

|σi(A) + σn−i+1(B)|

≤ [σmax(A) + σmax(B)]n.

Hence, if σmax(B) < σmin(A), then A is nonsingular and A+αB is nonsingular for
all −1 ≤ α ≤ 1. (Proof: See [894].) (Remark: See Fact 11.18.16.) (Remark: See
Fact 5.12.12.)

Fact 9.14.19. Let A,B ∈ Fn×m. Then, the following statements are equiva-
lent:

i) For all k = 1, . . . ,min{n,m},
k∑
i=1

σi(A) ≤
k∑
i=1

σi(B).

ii) For all unitarily invariant norms ‖ · ‖ on Fn×m, ‖A‖ ≤ ‖B‖.



612 CHAPTER 9

(Proof: See [711, pp. 205, 206].) (Remark: This result is the Fan dominance
theorem.)

Fact 9.14.20. Let A,B ∈ Fn×m. Then, for all k = 1, . . . ,min{n,m},
k∑
i=1

[σi(A) + σmin{n,m}+1−i(B)] ≤
k∑
i=1

σi(A+B) ≤
k∑
i=1

[σi(A) + σi(B)].

Furthermore, if either σmax(A) < σmin(B) or σmax(B) < σmin(A), then, for all
k = 1, . . . ,min{n,m},

k∑
i=1

σi(A+B) ≤
k∑
i=1

|σi(A)− σmin{n,m}+1−i(B)|.

(Proof: See Proposition 9.2.2, [711, pp. 196, 197] and [894].)

Fact 9.14.21. Let A,B ∈ Fn×m, and let α ∈ [0, 1]. Then, for all i = 1, . . . ,
min{n,m},

σi[αA+ (1 − α)B] ≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σi

([
A 0
0 B

])

σi

([ √
2αA 0
0

√
2(1− α)B

])
,

and
2σi(AB∗) ≤ σi(〈A〉2 + 〈B〉2).

Furthermore,
〈αA+ (1− α)B〉2 ≤ α〈A〉2 + (1 − α)〈B〉2.

If, in addition, n = m, then, for all i = 1, . . . , n,

1
2σi(A+A∗) ≤ σi

([
A 0
0 A

])
.

(Proof: See [698].) (Remark: See Fact 9.14.23.)

Fact 9.14.22. LetA ∈ F
n×m andB ∈ F

l×m, and let p, q > 1 satisfy 1/p+1/q =
1. Then, for all i = 1, . . . ,min{n,m, l},

σi(AB∗) ≤ σi
(

1
p〈A〉p + 1

q〈B〉q
)
.

Equivalently, there exists a unitary matrix S ∈ Fm×m such that

〈AB∗〉1/2 ≤ S∗
(

1
p〈A〉p + 1

q〈B〉q
)
S.

(Proof: See [47, 49, 694] or [1485, p. 28].) (Remark: This result is a matrix version
of Young’s inequality. See Fact 1.10.32.)

Fact 9.14.23. Let A ∈ Fn×m and B ∈ Fl×m. Then, for all i = 1, . . . ,
min{n,m, l},

σi(AB∗) ≤ 1
2σi(A

∗A+B∗B).
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(Proof: Set p = q = 2 in Fact 9.14.22. See [209].) (Remark: See Fact 9.9.47 and
Fact 9.14.21.)

Fact 9.14.24. Let A,B,C,D ∈ Fn×m. Then, for all i = 1, . . . ,min{n,m},
√

2σi(〈AB∗ + CD∗〉) ≤ σi
([

A B
C D

])
.

(Proof: See [693].)

Fact 9.14.25. Let A,B,C,D,X ∈ Fn×n, assume that A,B,C,D are positive
semidefinite, and assume that 0 ≤ A ≤ C and 0 ≤ B ≤ D. Then, for all i = 1, . . . , n,

σi(A1/2XB1/2) ≤ σi(C1/2XD1/2).

(Proof: See [698, 816].)

Fact 9.14.26. Let A1, . . . , Ak ∈ Fn×n, and let l ∈ {1, . . . , n}. Then,

l∑
i=1

σi

⎛
⎝ k∏
j=1

Aj

⎞
⎠ ≤ l∑

i=1

k∏
j=1

σi(Aj).

(Proof: See [317].) (Remark: This result is a weak majorization relation.)

Fact 9.14.27. Let A,B ∈ Fn×m, and let 1 ≤ l1 < · · · < lk ≤ min{n,m}.
Then,

k∑
i=1

σli(A)σn−i+1(B) ≤
k∑
i=1

σli(AB) ≤
k∑
i=1

σli(A)σi(B)

and
k∑
i=1

σli(A)σn−li+1(B) ≤
k∑
i=1

σi(AB).

In particular,
k∑
i=1

σi(A)σn−i+1(B) ≤
k∑
i=1

σi(AB) ≤
k∑
i=1

σi(A)σi(B).

Furthermore,
k∏
i=1

σli(AB) ≤
k∏
i=1

σli(A)σi(B)

with equality for k = n. Furthermore,
k∏
i=1

σli(A)σn−li+1(B) ≤
k∏
i=1

σi(AB)

with equality for k = n. In particular,
k∏
i=1

σi(A)σn−i+1(B) ≤
k∏
i=1

σi(AB) ≤
k∏
i=1

σi(A)σi(B)
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with equality for k = n. (Proof: See [1388].) (Remark: See Fact 8.18.19 and Fact
8.18.22.) (Remark: The left-hand inequalities in the first and third strings are
conjectures. See [1388].)

Fact 9.14.28. Let A ∈ Fn×m, let k ≥ 1 satisfy k < rankA, and let ‖ · ‖ be a
unitarily invariant norm on F

n×m. Then,

min
B∈{X∈Fn×n: rankX≤k}

‖A−B‖ = ‖A−B0‖,

where B0 is formed by replacing (rankA) − k smallest positive singular values in
the singular value decomposition of A by 0’s. Furthermore,

σmax(A−B0) = σk+1(A)

and

‖A−B0‖F =

√√√√ r∑
i=k+1

σ2
i (A).

Furthermore, B0 is the unique solution if and only if σk+1(A) < σk(A). (Proof: The
result follows from Fact 9.14.29 with Bσ

�= diag[σ1(A), . . . , σk(A),
0(n−k)×(m−k)], S1 = In, and S2 = Im. See [569] and [1230, p. 208].) (Remark:
This result is known as the Schmidt-Mirsky theorem. For the case of the Frobenius
norm, the result is known as the Eckart-Young theorem. See [507] and [1230, p.
210].) (Remark: See Fact 9.15.4.)

Fact 9.14.29. Let A,B ∈ Fn×m, define Aσ, Bσ ∈ Fn×m by

Aσ
�=

⎡
⎢⎢⎢⎣
σ1(A)

. . .
σr(A)

0(n−r)×(m−r)

⎤
⎥⎥⎥⎦,

where r �= rankA, and

Bσ
�=

⎡
⎢⎢⎢⎣
σ1(B)

. . .
σl(B)

0(n−l)×(m−l)

⎤
⎥⎥⎥⎦,

where l �= rankB, let S1 ∈ Fn×n and S2 ∈ Fm×m be unitary matrices, and let ‖ · ‖
be a unitarily invariant norm on Fn×m. Then,

‖Aσ −Bσ‖ ≤ ‖A− S1BS2‖ ≤ ‖Aσ +Bσ‖.
In particular,

max
i∈{1,...,max{r,l}}

|σi(A)− σi(B)| ≤ σmax(A−B) ≤ σmax(A) + σmax(B).

(Proof: See [1390].) (Remark: In the case S1 = In and S2 = Im, the left-hand
inequality is Mirsky’s theorem. See [1230, p. 204].) (Remark: See Fact 9.12.4.)



NORMS 615

Fact 9.14.30. Let A,B ∈ Fn×m, and assume that rankA = rankB. Then,
σmax[AA+(I −BB+)] = σmax[BB+(I −AA+)]

≤ min{σmax(A+), σmax(B+)}σmax(A−B).

(Proof: See [681, p. 400] and [1230, p. 141].)

Fact 9.14.31. Let A,B ∈ Fn×m. Then, for all k = 1, . . . ,min{n,m},
k∑
i=1

σi(A ◦B) ≤
k∑
i=1

d1/2
i (A∗A)d1/2

i (BB∗)

≤
{ ∑k

i=1 d1/2
i (A∗A)σi(B)∑k

i=1 σi(A)d1/2
i (BB∗)

}

≤
k∑
i=1

σi(A)σi(B)

and
k∑
i=1

σi(A ◦B) ≤
k∑
i=1

d1/2
i (AA∗)d1/2

i (B∗B)

≤
{ ∑k

i=1 d1/2
i (AA∗)σi(B)∑k

i=1 σi(A)d1/2
i (B∗B)

}

≤
k∑
i=1

σi(A)σi(B).

In particular,

σmax(A ◦B) ≤ ‖A‖2,1‖B‖∞,2 ≤
{
‖A‖2,1σmax(B)

σmax(A)‖B‖∞,2

}
≤ σmax(A)σmax(B)

and

σmax(A ◦B) ≤ ‖A‖∞,2‖B‖2,1 ≤
{
‖A‖∞,2σmax(B)

σmax(A)‖B‖2,1

}
≤ σmax(A)σmax(B).

(Proof: See [56, 976, 1481] and [711, p. 334], and use Fact 2.21.2, Fact 8.17.8,
and Fact 9.8.24.) (Remark: d1/2

i (A∗A) and d1/2
i (AA∗) are the ith largest Euclidean

norms of the columns and rows of A, respectively.) (Remark: For related results,
see [1345].) (Remark: The case of equality is discussed in [319].)
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Fact 9.14.32. Let A,B ∈ Cn×m. Then,
n∑
i=1

σ2
i (A ◦B) = tr (A ◦B)(A ◦B)T

= tr (A ◦A)(B ◦B)T

≤
n∑
i=1

σi[(A ◦A)(B ◦B)T]

≤
n∑
i=1

σi(A ◦A)σi(B ◦B).

(Proof: See [730].)

Fact 9.14.33. Let A,B ∈ Fn×m. Then,

σmax(A ◦B) ≤ √n‖A‖∞σmax(B).

Now, assume that n = m and that either A is positive semidefinite and B is
Hermitian or A and B are nonnegative and symmetric. Then,

σmax(A ◦B) ≤ ‖A‖∞σmax(B).

Next, assume that A and B are real, let β denote the smallest positive entry of |B|,
and assume that B is symmetric and positive semidefinite. Then,

sprad(A ◦B) ≤ ‖A‖∞‖B‖∞
β

σmax(B)

and
sprad(B) ≤ sprad(|B|) ≤ ‖B‖∞

β
sprad(B).

(Proof: See [1080].)

Fact 9.14.34. Let A,B ∈ Fn×m, and let p ∈ [1,∞) be an even integer. Then,

‖A ◦B‖2σp ≤ ‖A ◦A‖σp‖B ◦B‖σp.
In particular,

‖A ◦B‖2F ≤ ‖A ◦A‖F‖B ◦B‖F
and

σ2
max(A ◦B) ≤ σmax(A ◦A)σmax(B ◦B).

Equality holds if B = A. Furthermore,

‖A ◦A‖σp ≤ ‖A ◦A‖σp.
In particular,

‖A ◦A‖F ≤ ‖A ◦A‖F
and

σmax(A ◦A) ≤ σmax(A ◦A).

Now, assume that n = m. Then,

‖A ◦AT‖σp ≤ ‖A ◦A‖σp.
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In particular,
‖A ◦AT‖F ≤ ‖A ◦A‖F

and
σmax(A ◦AT) ≤ σmax(A ◦A).

Finally,
‖A ◦A∗‖σp ≤ ‖A ◦A‖σp.

In particular,
‖A ◦A∗‖F ≤ ‖A ◦A‖F

and
σmax(A ◦A∗) ≤ σmax(A ◦A).

(Proof: See [712, 1193].) (Remark: See Fact 7.6.16.)

Fact 9.14.35. Let A,B ∈ Rn×n, assume that A and B are nonnegative, and
let α ∈ [0, 1]. Then,

σmax(A◦α ◦B◦(1−α)) ≤ σαmax(A)σ1−α
max (B).

In particular,
σmax(A◦1/2 ◦B◦1/2) ≤

√
σmax(A)σmax(B).

Finally,
σmax(A◦1/2 ◦A◦1/2T) ≤ σmax(A◦α ◦A◦(1−α)T) ≤ σmax(A).

(Proof: See [1193].) (Remark: See Fact 7.6.17.)

Fact 9.14.36. Let ‖·‖ be a unitarily invariant norm on Cn×n, and letA,X,B ∈
Cn×n. Then,

‖A ◦X ◦B‖ ≤ 1
2

√
n‖A ◦X ◦A+B ◦X ◦B‖

and
‖A ◦X ◦B‖2 ≤ n‖A ◦X ◦A‖‖B ◦X ◦B‖.

Furthermore,
‖A ◦X ◦B‖F ≤ 1

2‖A ◦X ◦A+B ◦X ◦B‖F.
(Proof: See [730].)

Fact 9.14.37. Let A ∈ Fn×m, B ∈ Fl×k, and p ∈ [1,∞]. Then,

‖A⊗B‖σp = ‖A‖σp‖B‖σp.
In particular,

σmax(A⊗B) = σmax(A)σmax(B)

and
‖A⊗B‖F = ‖A‖F‖B‖F.

(Proof: See [690, p. 722].)
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9.15 Facts on Least Squares

Fact 9.15.1. Let A ∈ Fn×m and b ∈ Fn, and define

f(x) �= (Ax − b)∗(Ax− b) = ‖Ax− b‖22,
where x ∈ Fm. Then, f has a minimizer. Furthermore, x ∈ Fm minimizes f if and
only if there exists a vector y ∈ F

m such that

x = A+b+ (I −A+A)y.

In this case,
f(x) = b∗(I −AA+)b.

Furthermore, if y ∈ Fm is such that (I −A+A)y is nonzero, then

‖A+b‖2 < ‖A+b+ (I −A+A)y‖2 =
√
‖A+b‖22 + ‖(I −A+A)y‖22.

Finally, A+b is the unique minimizer of f if and only if A is left invertible. (Remark:
The minimization of f is the least squares problem. See [15, 226, 1226]. Note that,
unlike Proposition 6.1.7, consistency is not assumed.) (Remark: This result is a
special case of Fact 8.14.15.)

Fact 9.15.2. Let A ∈ Fn×m, B ∈ Fn×l, and define

f(X) �= tr[(AX −B)∗(AX −B)] = ‖AX −B‖2F,
where X ∈ Fm×l. Then, X = A+B minimizes f. (Problem: Determine all minimiz-
ers.) (Problem: Consider f(X) = tr[(AX −B)∗C(AX −B)], where C ∈ Fn×n is
positive definite.)

Fact 9.15.3. Let A ∈ F
n×m and B ∈ F

l×m, and define

f(X) �= tr[(XA−B)∗(XA−B)] = ‖XA−B‖2F,
where X ∈ Fl×n. Then, X = BA+ minimizes f.

Fact 9.15.4. Let A ∈ Fn×m, B ∈ Fn×p, and C ∈ Fq×m, and let k ≥ 1 satisfy
k < rankA. Then,

min
X∈{Y ∈Fp×q: rankY≤k}

‖A−BXC‖F = ‖A−BX0C‖F,

where X0 = B+SC+ and S is formed by replacing all but the k largest singular
values in the singular value decomposition of BB+AC+C by 0’s. Furthermore, X0

is a solution that minimizes ‖X‖F. Finally, X0 is the unique solution if and only
if either rankBB+AC+C ≤ k or both k ≤ BB+AC+C and σk+1(BB+AC+C) <
σk(BB+AC+C). (Proof: See [507].) (Remark: This result generalizes Fact 9.14.28.)

Fact 9.15.5. Let A,B ∈ Fn×m, and define

f(X) �= tr[(AX −B)∗(AX −B)] = ‖AX −B‖2F,
where X ∈ Fm×m is unitary. Then, X = S1S2 minimizes f, where S1

[
B̂ 0
0 0

]
S2 is the

singular value decomposition of A∗B. (Proof: See [144, p. 224]. See also [971, pp.
269, 270].)
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Fact 9.15.6. Let A,B ∈ Rn×n, and define

f(X1, X2)
�= tr
[
(X1AX2 −B)T(X1AX2 −B)

]
= ‖X1AX2 −B‖2F,

where X1, X2 ∈ Rn×n are orthogonal. Then, (X1, X2) = (V T
2 U

T
1 , V

T
1 U

T
2 ) minimizes

f, where U1

[
Â 0
0 0

]
V1 is the singular value decomposition of A and U2

[
B̂ 0
0 0

]
V2 is the

singular value decomposition of B. (Proof: See [971, p. 270].) (Remark: This result
is due to Kristof.) (Remark: See Fact 3.9.5.) (Problem: Extend this result to C

and nonsquare matrices.)

9.16 Notes

The equivalence of absolute and monotone norms given by Proposition 9.1.2
is due to [155]. More general monotonicity conditions are considered in [768].
Induced lower bounds are treated in [867, pp. 369, 370]. See also [1230, pp. 33,
80]. The induced norms (9.4.13) and (9.4.14) are given in [310] and [681, p. 116].
Alternative norms for the convolution operator are given in [310, 1435]. Proposition
9.3.6 is given in [1127, p. 97]. Norm-related topics are discussed in [169]. Spectral
perturbation theory in finite and infinite dimensions is treated in [796], where the
emphasis is on the regularity of the spectrum as a function of the perturbation
rather than on bounds for finite perturbations.





Chapter Ten

Functions of Matrices and Their
Derivatives

The norms discussed in Chapter 9 provide the foundation for the development
in this chapter of some basic results in topology and analysis.

10.1 Open Sets and Closed Sets

Let ‖ · ‖ be a norm on Fn, let x ∈ Fn, and let ε > 0. Then, define the open
ball of radius ε centered at x by

Bε(x)
�= {y ∈ F

n: ‖x− y‖ < ε} (10.1.1)

and the sphere of radius ε centered at x by

Sε(x)
�= {y ∈ F

n: ‖x− y‖ = ε}. (10.1.2)

Definition 10.1.1. Let S ⊆ Fn. The vector x ∈ S is an interior point of S if
there exists ε > 0 such that Bε(x) ⊆ S. The interior of S is the set

int S
�= {x ∈ S: x is an interior point of S}. (10.1.3)

Finally, S is open if every element of S is an interior point, that is, if S = int S.

Definition 10.1.2. Let S ⊆ S′ ⊆ F
n. The vector x ∈ S is an interior point

of S relative to S′ if there exists ε > 0 such that Bε(x) ∩ S′ ⊆ S or, equivalently,
Bε(x) ∩ S = Bε(x) ∩ S′. The interior of S relative to S′ is the set

intS′ S
�= {x ∈ S: x is an interior point of S relative to S′}. (10.1.4)

Finally, S is open relative to S′ if S = intS′ S.

Definition 10.1.3. Let S ⊆ Fn. The vector x ∈ Fn is a closure point of S if,
for all ε > 0, the set S ∩ Bε(x) is not empty. The closure of S is the set

cl S �= {x ∈ F
n: x is a closure point of S}. (10.1.5)

Finally, the set S is closed if every closure point of S is an element of S, that is, if
S = clS.
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Definition 10.1.4. Let S ⊆ S′ ⊆ Fn. The vector x ∈ S′ is a closure point of
S relative to S′ if, for all ε > 0, the set S ∩ Bε(x) is not empty. The closure of S

relative to S′ is the set

clS′ S
�= {x ∈ F

n: x is a closure point of S relative to S′}. (10.1.6)

Finally, S is closed relative to S′ if S = clS′ S.

It follows from Theorem 9.1.8 on the equivalence of norms on Fn that these
definitions are independent of the norm assigned to Fn.

Let S ⊆ S′ ⊆ Fn. Then,

clS′ S = (cl S) ∩ S′, (10.1.7)

intS′ S = S′\cl(S′\S), (10.1.8)

and
int S ⊆ intS′ S ⊆ S ⊆ clS′ S ⊆ cl S. (10.1.9)

The set S is solid if int S is not empty, while S is completely solid if cl int S = cl S. If
S is completely solid, then S is solid. The boundary of S is the set

bd S
�= cl S\intS, (10.1.10)

while the boundary of S relative to S′ is the set

bdS′ S
�= clS′ S\intS′ S. (10.1.11)

Note that the empty set is both open and closed, although it is not solid.

The set S ⊂ Fn is bounded if there exists δ > 0 such that, for all x, y ∈ S,

‖x− y‖ < δ. (10.1.12)

The set S ⊂ Fn is compact if it is both closed and bounded.

10.2 Limits

Definition 10.2.1. The sequence (x1, x2, . . .) is a tuple with a countably infi-
nite number of components. We write (xi)∞i=1 for (x1, x2, . . .).

Definition 10.2.2. The sequence (αi)∞i=1 ⊂ F converges to α ∈ F if, for all
ε > 0, there exists a positive integer p ∈ P such that |αi − α| < ε for all i > p. In
this case, we write α = limi→∞ αi or αi → α as i → ∞, where i ∈ P. Finally, the
sequence (αi)∞i=1 ⊂ F converges if there exists α ∈ F such that (αi)∞i=1 converges to
α.

Definition 10.2.3. The sequence (xi)∞i=1 ⊂ Fn converges to x ∈ Fn if
limi→∞ ‖x−xi‖ = 0, where ‖·‖ is a norm on Fn. In this case, we write x = limi→∞ xi
or xi → x as i → ∞, where i ∈ P. The sequence (xi)∞i=1 ⊂ Fn converges if there
exists x ∈ Fn such that (xi)∞i=1 converges to x. Similarly, (Ai)∞i=1 ⊂ Fn×m converges
to A ∈ Fn×m if limi→∞ ‖A−Ai‖ = 0, where ‖ · ‖ is a norm on Fn×m. In this case,
we write A = limi→∞ Ai or Ai → A as i → ∞, where i ∈ P. Finally, the sequence
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(Ai)∞i=1 ⊂ Fn×m converges if there exists A ∈ Fn×m such that (Ai)∞i=1 converges to
A.

It follows from Theorem 9.1.8 that convergence of a sequence is independent
of the choice of norm.

Proposition 10.2.4. Let S ⊆ Fn. The vector x ∈ Fn is a closure point of S if
and only if there exists a sequence (xi)∞i=1 ⊆ S that converges to x.

Proof. Suppose that x ∈ Fn is a closure point of S. Then, for all i ∈ P, there
exists a vector xi ∈ S such that ‖x − xi‖ < 1/i. Hence, x − xi → 0 as i → ∞.
Conversely, suppose that (xi)∞i=1 ⊆ S is such that xi → x as i→∞, and let ε > 0.
Then, there exists a positive integer p ∈ P such that ‖x − xi‖ < ε for all i > p.
Therefore, xp+1 ∈ S∩Bε(x), and thus S∩Bε(x) is not empty. Hence, x is a closure
point of S.

Theorem 10.2.5. Let S ⊂ Fn be compact, and let (xi)∞i=1 ⊆ S. Then,
there exists a subsequence {xij}∞j=1 of (xi)∞i=1 such that {xij}∞j=1 converges and
limj→∞ xij ∈ S.

Proof. See [1030, p. 145].

Next, we define convergence for the series
∑∞
i=1xi in terms of the partial sums∑k

i=1xi.

Definition 10.2.6. Let (xi)∞i=1 ⊂ Fn, and let ‖ · ‖ be a norm on Fn. Then, the
series

∑∞
i=1xi converges if {∑k

i=1xi}∞k=1 converges. Furthermore,
∑∞

i=1xi converges
absolutely if the series

∑∞
i=1‖xi‖ converges.

Proposition 10.2.7. Let (xi)∞i=1 ⊂ Fn, and assume that the series
∑∞
i=1xi

converges absolutely. Then, the series
∑∞

i=1xi converges.

Definition 10.2.8. Let (Ai)∞i=1 ⊂ F
n×m, and let ‖·‖ be a norm on F

n×m. Then,
the series

∑∞
i=1Ai converges if {∑k

i=1Ai}∞k=1 converges. Furthermore,∑∞
i=1Ai converges absolutely if the series

∑∞
i=1 ‖Ai‖ converges.

Proposition 10.2.9. Let (Ai)∞i=1 ⊂ Fn×m, and assume that the series∑∞
i=1Ai converges absolutely. Then, the series

∑∞
i=1Ai converges.

10.3 Continuity

Definition 10.3.1. Let D ⊆ Fm, f : D �→ Fn, and x ∈ D. Then, f is continuous
at x if, for every convergent sequence (xi)∞i=1 ⊆ D such that limi→∞ xi = x, it
follows that limi→∞ f(xi) = f(x). Furthermore, let D0 ⊆ D. Then, f is continuous
on D0 if f is continuous at x for all x ∈ D0. Finally, f is continuous if it is
continuous on D.
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Theorem 10.3.2. Let D ⊆ Fn be convex, and let f : D→ F be convex. Then,
f is continuous on intaff D D.

Proof. See [157, p. 81] and [1133, p. 82].

Corollary 10.3.3. Let A ∈ F
n×m, and define f : F

m → F
n by f(x) �= Ax.

Then, f is continuous.

Proof. The result is a consequence of Theorem 10.3.2. Alternatively, let
x ∈ Fm, and let (xi)∞i=1 ⊂ Fm be such that xi → x as i → ∞. Furthermore,
let ‖ · ‖ and ‖ · ‖′ be compatible norms on Fm and Fm×n, respectively. Since
‖Ax−Axi‖ ≤ ‖A‖′‖x− xi‖, it follows that Axi → Ax as i→∞.

Theorem 10.3.4. Let D ⊆ F
m, and let f : D �→ F

n. Then, the following
statements are equivalent:

i) f is continuous.

ii) For all open S ⊆ Fn, the set f−1(S) is open relative to D.

iii) For all closed S ⊆ Fn, the set f−1(S) is closed relative to D.

Proof. See [1030, pp. 87, 110].

Corollary 10.3.5. Let A ∈ Fn×m and S ⊆ Fn, and define S′ �= {x ∈ Fm: Ax ∈
S}. If S is open, then S′ is open. If S is closed, then S′ is closed.

The following result is the open mapping theorem.

Theorem 10.3.6. Let D ⊆ Fm, let A ∈ Fn×m, assume that D is open, and
assume that A is right invertible. Then, AD is open.

The following result is the invariance of domain.

Theorem 10.3.7. Let D ⊆ Fn, let f: D �→ Fn, assume that D is open, and
assume that f is continuous and one-to-one. Then, f(D) is open.

Proof. See [1217, p. 3].

Theorem 10.3.8. Let D ⊂ Fm be compact, and let f: D �→ Fn be continuous.
Then, f(D) is compact.

Proof. See [1030, p. 146].

The following corollary of Theorem 10.3.8 shows that a continuous real-valued
function defined on a compact set has a minimizer.

Corollary 10.3.9. Let D ⊂ Fm be compact, and let f: D �→ R be continuous.
Then, there exists x0 ∈ D such that f(x0) ≤ f(x) for all x ∈ D.
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The following result is the Schauder fixed-point theorem.

Theorem 10.3.10. Let D ⊆ Fm, assume that D is nonempty, closed, and
convex, let f : D → D, assume that f is continuous, and assume that f(D) is
bounded. Then, there exists x ∈ D such that f(x) = x.

Proof. See [1404, p. 167].

The following corollary for the case of a bounded domain is the Brouwer
fixed-point theorem.

Corollary 10.3.11. Let D ⊆ Fm, assume that D is nonempty, compact, and
convex, let f : D→ D, and assume that f is continuous. Then, there exists x ∈ D

such that f(x) = x.

Proof. See [1404, p. 163].

Definition 10.3.12. Let S ⊆ Fn×n. Then, S is pathwise connected if, for all
B1, B2 ∈ S, there exists a continuous function f : [0, 1] �→ S such that f(0) = B1

and f(1) = B2.

10.4 Derivatives

Let D ⊆ Fm, and let x0 ∈ D. Then, the variational cone of D with respect to
x0 is the set

vcone(D, x0)
�= {ξ ∈ F

m: there exists α0 > 0 such that
x0 + αξ ∈ D, α ∈ [0, α0)}. (10.4.1)

Note that vcone(D, x0) is a pointed cone, although it may consist of only the origin
as can be seen from the example x0 = 0 and

D =
{
x ∈ R

2: 0 ≤ x(1) ≤ 1, x3
(1) ≤ x(2) ≤ x2

(1)

}
.

Now, let D ⊆ Fm and f : D → Fn. If ξ ∈ vcone(D, x0), then the one-sided
directional differential of f at x0 in the direction ξ is defined by

D+f(x0; ξ)
�= lim
α↓0

1
α [f(x0 + αξ)− f(x0)] (10.4.2)

if the limit exists. Similarly, if ξ ∈ vcone(D, x0) and −ξ ∈ vcone(D, x0), then the
two-sided directional differential Df(x0; ξ) of f at x0 in the direction ξ is defined by

Df(x0; ξ)
�= lim
α→0

1
α [f(x0 + αξ)− f(x0)] (10.4.3)

if the limit exists. If ξ = ei so that the direction ξ is one of the coordinate axes,
then the partial derivative of f with respect to x(i) at x0, denoted by ∂f(x0)

∂x(i)
, is given

by
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∂f(x0)
∂x(i)

�= lim
α→0

1
α [f(x0 + αei)− f(x0)], (10.4.4)

that is,
∂f(x0)
∂x(i)

= Df(x0; ei), (10.4.5)

when the two-sided directional differential Df(x0; ei) exists.

Proposition 10.4.1. Let D ⊆ Fm be a convex set, let f : D→ Fn be convex,
and let x0 ∈ intD. Then, D+f(x0; ξ) exists for all ξ ∈ Fm.

Proof. See [157, p. 83].

Note that D+f(x0; ξ) = ±∞ is possible if x0 is an element of the boundary of
D. For example, consider the continuous function f : [0,∞) �→ R given by f(x) =
1−√x. In this case, D+f(x0; ξ) = −∞ and thus does not exist.

Next, we consider a stronger form of differentiation.

Proposition 10.4.2. Let D ⊆ Fm be solid and convex, let f : D → Fn, and
let x0 ∈ D. Then, there exists at most one matrix F ∈ Fn×m satisfying

lim
x→x0

x∈D\{x0}
‖x− x0‖−1[f(x) − f(x0)− F (x− x0)] = 0. (10.4.6)

Proof. See [1404, p. 170].

In (10.4.6) the limit is taken over all sequences that are contained in D, do
not include x0, and converge to x0.

Definition 10.4.3. Let D ⊆ Fm be solid and convex, let f : D → Fn, let
x0 ∈ D, and assume there exists a matrix F ∈ Fn×m satisfying (10.4.6). Then, f is
differentiable at x0, and the matrix F is the (Fréchet) derivative of f at x0. In this
case, we write f ′(x0) = F and

lim
x→x0

x∈D\{x0}
‖x− x0‖−1[f(x)− f(x0)− f ′(x0)(x− x0)] = 0. (10.4.7)

Note that Proposition 10.4.2 and Definition 10.4.3 do not require that x0 lie
in the interior of D. We alternatively write df(x0)

dx for f ′(x0).

Proposition 10.4.4. Let D ⊆ Fm be solid and convex, let f : D → Fn, let
x ∈ D, and assume that f is differentiable at x0. Then, f is continuous at x0.

Let D ⊆ Fm be solid and convex, and let f : D �→ Fn. In terms of its scalar
components, f can be written as f =

[
f1 · · · fn

]T
, where fi: D �→ F for all

i = 1, . . . , n and f(x) =
[
f1(x) · · · fn(x)

]T for all x ∈ D. With this notation,
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f ′(x0) can be written as

f ′(x0) =

⎡
⎢⎣
f ′
1(x0)

...
f ′
n(x0)

⎤
⎥⎦, (10.4.8)

where f ′
i(x0) ∈ F1×m is the gradient of fi at x0 and f ′(x0) is the Jacobian of f at

x0. Furthermore, if x ∈ intD, then f ′(x0) is related to the partial derivatives of f
by

f ′(x0) =
[
∂f(x0)
∂x(1)

· · · ∂f(x0)
∂x(m)

]
, (10.4.9)

where ∂f(x0)
∂x(i)

∈ Fn×1 for all i = 1, . . . ,m. Note that the existence of the partial
derivatives of f at x0 does not imply that f is differentiable at x0, that is, f ′(x0)
given by (10.4.9) may not satisfy (10.4.7). Finally, note that the (i, j) entry of the
n×m matrix f ′(x0) is ∂fi(x0)

∂x(j)
. For example, if x ∈ Fn and A ∈ Fn×n, then

d
dx
Ax = A. (10.4.10)

Let D ⊆ Fm and f : D �→ Fn. If f ′(x) exists for all x ∈ D and f ′: D �→ Fn×n

is continuous, then f is continuously differentiable, or C1. The second derivative of
f at x0 ∈ D, denoted by f ′′(x0), is the derivative of f ′: D �→ Fn×n at x0 ∈ D.
For x0 ∈ D it can be seen that f ′′(x0): F

m × F
m �→ F

n is bilinear, that is, for all
η̂ ∈ Fm, the mapping η �→ f ′′(x0)(η, η̂) is linear and, for all η ∈ Fm, the mapping
η̂ �→ f ′′(x0)(η, η̂) is linear. Letting f =

[
f1 · · · fn

]T
, it follows that

f ′′(x0)(η, η̂) =

⎡
⎢⎣
ηTf ′′

1(x0)η̂
...

ηTf ′′
n(x0)η̂

⎤
⎥⎦, (10.4.11)

where, for all i = 1, . . . , n, the matrix f ′′
i (x0) is the m×m Hessian of fi at x0. We

write f (2)(x0) for f ′′(x0) and f (k)(x0) for the kth derivative of f at x0. f is Ck if
f (k)(x) exists for all x ∈ D and f (k) is continuous on D.

The following result is the inverse function theorem.

Theorem 10.4.5. Let D ⊆ Fn be open, let f : D �→ Fn, and assume that f is
Ck. Furthermore, let x0 ∈ D be such that det f ′(x0) �= 0. Then, there exists an open
set N ⊂ Fn containing f(x0) and a Ck function g : N �→ D such that f [g(y)] = y
for all y ∈ N.

Let S: [t0, t1] �→ Fn×m, and assume that every entry of S(t) is differentiable.
Then, define Ṡ(t) �= dS(t)

dt ∈ F
n×m for all t ∈ [t0, t1] entrywise, that is, for all

i = 1, . . . , n and j = 1, . . . ,m,

[Ṡ(t)](i,j)
�=

d
dt
S(i,j)(t). (10.4.12)

If t = t0 or t = t1, then d+/dt or d−/dt (or just d/dt) denotes the right and left
one-sided derivatives, respectively. Finally, define

∫ t1
t0
S(t) dt entrywise, that is, for
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all i = 1, . . . , n and j = 1, . . . ,m,⎡
⎣ t1∫
t0

S(t) dt

⎤
⎦
(i,j)

�=

t1∫
t0

[S(t)](i,j) dt. (10.4.13)

10.5 Functions of a Matrix

Consider the function f : D ⊆ C �→ C defined by the power series

f(s) =
∞∑
i=0

βis
i, (10.5.1)

where βi ∈ C for all i ∈ N, and assume that this series converges for all |s| < γ.
Then, for A ∈ Cn×n, we define

f(A) �=
∞∑
i=1

βiA
i, (10.5.2)

which converges for all A ∈ Cn×n such that sprad(A) < γ. Now, assume that
A = SBS−1, where S ∈ Cn×n is nonsingular, B ∈ Cn×n, and sprad(B) < γ. Then,

f(A) = Sf(B)S−1. (10.5.3)

If, in addition, B = diag(J1, . . . , Jr) is the Jordan form of A, then

f(A) = Sdiag[f(J1), . . . , f(Jr)]S−1. (10.5.4)

Letting J = λIk + Nk denote a k × k Jordan block, expanding and rearranging
the infinite series

∑∞
i=1 βiJ

i shows that f(J) is the k× k upper triangular Toeplitz
matrix

f(J) = f(λ)Nk + f ′(λ)Nk + 1
2f

′′(λ)N2
k + · · ·+ 1

(k −1)!
f (k−1)(λ)Nk−1

k

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f(λ) f ′(λ) 1
2f

′′(λ) · · · 1
(k−1)!f

(k−1)(λ)

0 f(λ) f ′(λ) · · · 1
(k−2)!f

(k−2)(λ)

0 0 f(λ) · · · 1
(k−3)!f

(k−3)(λ)
...

...
. . .

. . .
...

0 0 0 · · · f(λ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (10.5.5)

Next, we extend the definition f(A) to functions f : D ⊆ C �→ C that are not
necessarily of the form (10.5.1).

Definition 10.5.1. Let f : D ⊆ C �→ C, let A ∈ C
n×n, where spec(A) ⊂ D,

and assume that, for all λi ∈ spec(A), f is ki − 1 times differentiable at λi, where
ki

�= indA(λi) is the order of the largest Jordan block associated with λi as given by
Theorem 5.3.3. Then, f is defined at A, and f(A) is given by (10.5.3) and (10.5.4),
where f(Ji) is defined by (10.5.5) with k = ki and λ = λi.
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Theorem 10.5.2. Let A ∈ Fn×n, let spec(A) = {λ1, . . . , λr}, and, for i =
1, . . . , r, let ki

�= indA(λi). Furthermore, suppose that f : D ⊆ C �→ C is defined at
A. Then, there exists a polynomial p ∈ F[s] such that f(A) = p(A). Furthermore,
there exists a unique polynomial p of minimal degree

∑r
i=1 ki satisfying f(A) = p(A)

and such that, for all i = 1, . . . , r and j = 0, 1, . . . , ki − 1,

f (j)(λi) = p(j)(λi). (10.5.6)

This polynomial is given by

p(s) =
r∑
i=1

⎛
⎜⎜⎝
⎡
⎢⎢⎣

r∏
j=1
j �=i

(s−λj)nj

⎤
⎥⎥⎦
ki−1∑
k=0

1
k!

dk

dsk
f(s)∏r

l=1
l �=i

(s−λl)kl

∣∣∣∣∣∣∣∣
s=λi

(s−λi)k

⎞
⎟⎟⎠. (10.5.7)

If, in addition, A is diagonalizable, then p is given by

p(s) =
r∑
i=1

f(λi)
r∏
j=1
j �=i

s−λj
λi −λj . (10.5.8)

Proof. See [359, pp. 263, 264].

The polynomial (10.5.7) is the Lagrange-Hermite interpolation polynomial for
f.

The following result, which is known as the identity theorem, is a special case
of Theorem 10.5.2.

Theorem 10.5.3. Let A ∈ Fn×n, let spec(A) = {λ1, . . . , λr}, and, for i =
1, . . . , r, let ki

�= indA(λi). Furthermore, let f : D ⊆ C �→ C and g: D ⊆ C �→ C be
analytic on a neighborhood of spec(A). Then, f(A) = g(A) if and only if, for all
i = 1, . . . , r and j = 0, 1, . . . , ki − 1,

f (j)(λi) = g(j)(λi). (10.5.9)

Corollary 10.5.4. Let A ∈ F
n×n, and let f : D ⊂ C → C be analytic on a

neighborhood of mspec(A). Then,

mspec[f(A)] = f [mspec(A)]. (10.5.10)

10.6 Matrix Square Root and Matrix Sign Functions

Theorem 10.6.1. Let A ∈ Cn×n, and assume that A is group invertible and
has no eigenvalues in (−∞, 0). Then, there exists a unique matrix B ∈ Cn×n such
that spec(B) ⊂ ORHP ∪ {0} and such that B2 = A. If, in addition, A is real, then
B is real.

Proof. See [683, pp. 20, 31].
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The matrix B given by Theorem 10.6.1 is the principal square root of A. This
matrix is denoted by A1/2. The existence of a square root that is not necessarily
the principal square root is discussed in Fact 5.15.19.

The following result defines the matrix sign function.

Definition 10.6.2. Let A ∈ Cn×n, assume that A has no eigenvalues on the
imaginary axis, and let

A = S

[
J1 0
0 J2

]
S−1,

where S ∈ Cn×n is nonsingular, J1 ∈ Cp×p and J2 ∈ Cq×q are in Jordan canonical
form, and spec(J1) ⊂ OLHP and spec(J1) ⊂ ORHP. Then, the matrix sign of A is
defined by

Sign(A) �= S

[ −Ip 0
0 Iq

]
S−1.

10.7 Matrix Derivatives

In this section we consider derivatives of differentiable scalar-valued func-
tions with matrix arguments. Consider the linear function f : F

m×n �→ F given
by f(X) = trAX, where A ∈ Fn×m and X ∈ Fm×n. In terms of vectors x ∈ Fmn,

we can define the linear function f̂(x) �= (vecA)Tx so that f̂(vecX) = f(X) =
(vecA)TvecX. Consequently, for all Y ∈ Fm×n, f ′(X0) can be represented by
f ′(X0)Y = trAY.

These observations suggest that a convenient representation of the derivative
d

dX f(X) of a differentiable scalar-valued differentiable function f(X) of a matrix
argument X ∈ Fm×n is the n × m matrix whose (i, j) entry is ∂f(X)

∂X(j,i)
. Note the

order of indices.

Proposition 10.7.1. Let x ∈ Fn. Then, the following statements hold:

i) If A ∈ Fn×n, then
d
dx
xTAx = xT

(
A+AT

)
. (10.7.1)

ii) If A ∈ Fn×n is symmetric, then

d
dx
xTAx = 2xTA. (10.7.2)

iii) If A ∈ Fn×n is Hermitian, then

d
dx
x∗Ax = 2x∗A. (10.7.3)

Proposition 10.7.2. Let A ∈ Fn×m and B ∈ Fl×n. Then, the following state-
ments hold:

i) For all X ∈ Fm×n,
d

dX
trAX = A. (10.7.4)
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ii) For all X ∈ Fm×l,
d

dX
trAXB = BA. (10.7.5)

iii) For all X ∈ Fl×m,
d

dX
trAXTB = ATBT. (10.7.6)

iv) For all X ∈ Fm×l and k ≥ 1,

d
dX

tr (AXB)k = kB(AXB)k−1A. (10.7.7)

v) For all X ∈ Fm×l,
d

dX
detAXB = B(AXB)AA. (10.7.8)

vi) For all X ∈ Fm×l such that AXB is nonsingular,

d
dX

log detAXB = B(AXB)−1A. (10.7.9)

Proposition 10.7.3. Let A ∈ Fn×m and B ∈ Fm×n. Then, the following
statements hold:

i) For all X ∈ Fm×m and k ≥ 1,

d
dX

trAXkB =
k−1∑
i=0

Xk−1−iBAX i. (10.7.10)

ii) For all nonsingular X ∈ Fm×m,

d
dX

trAX−1B = −X−1BAX−1. (10.7.11)

iii) For all nonsingular X ∈ F
m×m,

d
dX

detAX−1B = −X−1B(AX−1B)AAX−1. (10.7.12)

iv) For all nonsingular X ∈ Fm×m,

d
dX

log detAX−1B = −X−1B(AX−1B)−1AX−1. (10.7.13)

Proposition 10.7.4. The following statements hold:

i) Let A,B ∈ Fn×m. Then, for all X ∈ Fm×n,

d
dX

trAXBX = AXB +BXA. (10.7.14)

ii) Let A ∈ Fn×n and B ∈ Fm×m. Then, for all X ∈ Fn×m,

d
dX

trAXBXT = BXTA+BTXTAT. (10.7.15)

iii) Let A ∈ Fk×l, B ∈ Fl×m, C ∈ Fn×l, D ∈ Fl×l, and E ∈ Fl×k. Then, for all
X ∈ Fm×n,

d
dX

trA(D +BXC)−1E = −C(D +BXC)−1EA(D +BXC)−1B. (10.7.16)
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iv) Let A ∈ Fk×l, B ∈ Fl×m, C ∈ Fn×l, D ∈ Fl×l, and E ∈ Fl×k. Then, for all
X ∈ Fn×m,

d
dX

trA
(
D +BXTC

)−1
E

= −BT
(
D +BXTC

)−T
ATET

(
D +BXTC

)−T
CT. (10.7.17)

10.8 Facts Involving One Set

Fact 10.8.1. Let x ∈ Fn, and let ε > 0. Then, Bε(x) is completely solid and
convex.

Fact 10.8.2. Let S ⊂ Fn, assume that S is bounded, let δ > 0 satisfy ‖x−y‖ <
δ for all x, y ∈ S, and let x0 ∈ S. Then, S ⊆ Bδ(x0).

Fact 10.8.3. Let S ⊆ Fn. Then, cl S is the smallest closed set containing S,
and int S is the largest open set contained in S.

Fact 10.8.4. Let S ⊆ Fn. If S is (open, closed), then S∼ is (closed, open).

Fact 10.8.5. Let S ⊆ S′ ⊆ Fn. If S is (open relative to S′, closed relative to
S′), then S′\S is (closed relative to S′, open relative to S′).

Fact 10.8.6. Let S ⊆ Fn. Then,

(int S)∼ = cl(S∼)

and
bd S = bd S∼ = (cl S) ∩ (cl S∼) = [(int S) ∪ int(S∼)]∼.

Hence, bd S is closed.

Fact 10.8.7. Let S ⊆ F
n, and assume that S is either open or closed. Then,

int bd S is empty. (Proof: See [68, p. 68].)

Fact 10.8.8. Let S ⊆ Fn, and assume that S is convex. Then, cl S, int S, and
intaff S S are convex. (Proof: See [1133, p. 45] and [1134, p. 64].)

Fact 10.8.9. Let S ⊆ Fn, and assume that S is convex. Then, the following
statements are equivalent:

i) S is solid.

ii) S is completely solid.

iii) dim S = n.

iv) aff S = Fn.

Fact 10.8.10. Let S ⊆ Fn, and assume that S is solid. Then, co S is completely
solid.
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Fact 10.8.11. Let S ⊆ Fn. Then,

cl S ⊆ aff clS = aff S.

(Proof: See [239, p. 7].)

Fact 10.8.12. Let k ≤ n, and let x1, . . . , xk ∈ F
n. Then,

int aff {x1, . . . , xk} = ∅.

(Remark: See Fact 2.9.7.)

Fact 10.8.13. Let S ⊆ Fn. Then,

co cl S ⊆ cl co S.

Now, assume that S is either bounded or convex. Then,

co cl S = cl co S.

(Proof: Use Fact 10.8.8 and Fact 10.8.13.) (Remark: Although

S =
{
x ∈ R

2: x2
(1)x

2
(2) = 1 for all x(1) > 0

}
is closed, co S is not closed. Hence, co clS ⊂ cl co S.)

Fact 10.8.14. Let S ⊆ Fn, and assume that S is open. Then, co S is open.

Fact 10.8.15. Let S ⊆ Fn, and assume that S is compact. Then, co S is
compact.

Fact 10.8.16. Let S ⊆ F
n, and assume that S is solid. Then, dim S = n.

Fact 10.8.17. Let S ⊆ Fm, assume that S is solid, let A ∈ Fn×m, and as-
sume that A is right invertible. Then, AS is solid. (Proof: Use Theorem 10.3.6.)
(Remark: See Fact 2.10.4.)

Fact 10.8.18. Nn is a closed and completely solid subset of Fn(n+1)/2. Fur-
thermore, intNn = Pn.

Fact 10.8.19. Let S ⊆ Fn, and assume that S is convex. Then,

int cl S = int S.

Fact 10.8.20. Let D ⊆ Fn, and let x0 belong to a solid, convex subset of D.
Then,

dim vcone(D, x0) = n.

Fact 10.8.21. Let S ⊆ Fn, and assume that S is a subspace. Then, S is closed.

Fact 10.8.22. Let S ⊂ Fn, assume that S is symmetric, solid, convex, closed,
and bounded, and, for all x ∈ Fn, define

‖x‖ �= min{α ≥ 0: x ∈ αS} = max{α ≥ 0: αx ∈ S}.
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Then, ‖ · ‖ is a norm on Fn, and B1(0) = int S. Conversely, let ‖ · ‖ be a norm on
Fn. Then, B1(0) is convex, bounded, symmetric, and solid. (Proof: See [721, pp.
38, 39].) (Remark: In all cases, B1(0) is defined with respect to ‖ · ‖. This result is
due to Minkowski.) (Remark: See Fact 9.7.23.)

Fact 10.8.23. Let S ⊆ R
m, assume that S is nonempty, closed, and convex,

and define E ⊆ S by

E
�= {x ∈ S : x is not a convex combination of two distinct elements of S}.

Then, E is nonempty, closed, and convex, and

E = co S.

(Proof: See [447, pp. 482–484].) (Remark: E is the set of extreme points of S.)
(Remark: The last result is the Krein-Milman theorem.)

10.9 Facts Involving Two or More Sets

Fact 10.9.1. Let S1 ⊆ S2 ⊆ F
n. Then,

cl S1 ⊆ cl S2

and
int S1 ⊆ int S2.

Fact 10.9.2. Let S1, S2 ⊆ Fn. Then, the following statements hold:

i) (int S1) ∩ (int S2) = int(S1 ∩ S2).

ii) (int S1) ∪ (int S2) ⊆ int(S1 ∪ S2).

iii) (cl S1) ∪ (cl S2) = cl(S1 ∪ S2).

iv) bd(S1 ∪ S2) ⊆ (bd S1) ∪ (bd S2).

v) If (cl S1) ∩ (cl S2) = ∅, then bd(S1 ∪ S2) = (bd S1) ∪ (bd S2).

(Proof: See [68, p. 65].)

Fact 10.9.3. Let S1, S2 ⊆ Fn, assume that either S1 or S2 is closed, and
assume that int S1 = int S2 = ∅. Then, int(S1 ∪ S2) is empty. (Proof: See [68, p.
69].) (Remark: int(S1 ∪ S2) is not necessarily empty if neither S1 nor S2 is closed.
Consider the sets of rational and irrational numbers.)

Fact 10.9.4. Let S1, S2 ⊆ Fn, and assume that S1 is closed and S2 is compact.
Then, S1 + S2 is closed. (Proof: See [442, p. 209].)

Fact 10.9.5. Let S1, S2 ⊆ Fn, and assume that S1 and S2 are closed and
compact. Then, S1 + S2 is closed and compact. (Proof: See [153, p. 34].)

Fact 10.9.6. Let S1, S2, S3 ⊆ F
n, assume that S1, S2, and S3 are closed and

convex, assume that S1 ∩ S2 �= ∅, S2 ∩ S3 �= ∅, and S3 ∩ S1 �= ∅, and assume that
S1 ∪ S2 ∪ S3 is convex. Then, S1 ∩ S2 ∩ S3 �= ∅. (Proof: See [153, p. 32].)



FUNCTIONS OF MATRICES AND THEIR DERIVATIVES 635

Fact 10.9.7. Let S1, S2, S3 ⊆ Fn, assume that S1 and S2 are convex, S2 is
closed, and S3 is bounded, and assume that S1 + S3 ⊆ S2 + S3. Then, S1 ⊆ S2.
(Proof: See [239, p. 5].) (Remark: This result is due to Radstrom.)

Fact 10.9.8. Let S ⊆ Fm, assume that S is closed, let A ∈ Fn×m, and assume
thatA has full row rank. Then, AS is not necessarily closed. (Remark: See Theorem
10.3.6.)

Fact 10.9.9. Let A be a collection of open subsets of Rn. Then, the union of
all elements of A is open. If, in addition, A is finite, then the intersection of all
elements of A is open. (Proof: See [68, p. 50].)

Fact 10.9.10. Let A be a collection of closed subsets of Rn. Then, the inter-
section of all elements of A is closed. If, in addition, A is finite, then the union of
all elements of A is closed. (Proof: See [68, p. 50].)

Fact 10.9.11. Let A = {A1, A2, . . .} be a collection of nonempty, closed sub-
sets of Rn such that A1 is bounded and such that, for all i = 1, 2, . . . , Ai+1 ⊆ Ai.
Then, ∩∞i=1Ai is closed and nonempty. (Proof: See [68, p. 56].) (Remark: This
result is the Cantor intersection theorem.)

Fact 10.9.12. Let ‖ · ‖ be a norm on F
n, let S ⊂ F

n, assume that S is a
subspace, let y ∈ Fn, and define

μ
�= max
x∈{z∈S: ‖z‖=1}

|y∗x|.

Then, there exists a vector z ∈ S⊥ such that

max
x∈{z∈Fn: ‖z‖=1}

|(y + z)∗x| = μ.

(Proof: See [1230, p. 57].) (Remark: This result is a version of the Hahn-Banach
theorem.) (Problem: Find a simple interpretation in R

2.)

Fact 10.9.13. Let S ⊂ Rn, assume that S is a convex cone, let x ∈ Rn, and
assume that x �∈ int S. Then, there exists a nonzero vector λ ∈ Rn such that λTx ≤ 0
and λTz ≥ 0 for all z ∈ S. (Remark: This result is a separation theorem. See [879,
p. 37], [1096, p. 443], [1133, pp. 95–101], and [1235, pp. 96–100].)

Fact 10.9.14. Let S1, S2 ⊂ Rn, and assume that S1 and S2 are convex. Then,
the following statements are equivalent:

i) There exist a nonzero vector λ ∈ Rn and α ∈ R such that λTx ≤ α for all
x ∈ S1, λ

Tx ≥ α for all x ∈ S2, and either S1 or S2 is not contained in the
affine hyperplane {x ∈ Rn: λTx = α}.

ii) intaff S1 S1 and intaff S2 S2 are disjoint.

(Proof: See [180, p. 82].) (Remark: This result is a proper separation theorem.)
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Fact 10.9.15. Let ‖ · ‖ be a norm on Fn, let y ∈ Fn, let S ⊆ Fn, and assume
that S is nonempty and closed. Then, there exists a vector x0 ∈ S such that

‖y − x0‖ = min
x∈S
‖y − x‖.

Now, assume that S is convex. Then, there exists a unique vector x0 ∈ S such that

‖y − x0‖ = min
x∈S
‖y − x‖.

In other words, there exists a vector x0 ∈ S such that, for all x ∈ S\{x0},
‖y − x0‖ < ‖y − x‖.

(Proof: See [447, pp. 470, 471].) (Remark: See Fact 10.9.17.)

Fact 10.9.16. Let ‖·‖ be a norm on Fn, let y1, y2 ∈ Fn, let S ⊆ Fn, assume that
S is nonempty, closed, and convex, and let x1 and x2 denote the unique elements
of S that are closest to y1 and y2, respectively. Then,

‖x1 − x2‖ ≤ ‖y1 − y2‖.
(Proof: See [447, pp. 474, 475].)

Fact 10.9.17. Let S ⊆ Rn, assume that S is a subspace, let A ∈ Fn×n be the
projector onto S, and let x ∈ Fn. Then,

min
y∈S
‖x− y‖2 = ‖A⊥x‖2.

(Proof: See [536, p. 41] or [1230, p. 91].) (Remark: See Fact 10.9.15.)

Fact 10.9.18. Let S1, S2 ⊆ Rn, assume that S1 and S2 are subspaces, let A1

and A2 be the projectors onto S1 and S2, respectively, and define

dist(S1, S2)
�= max

{
max
x∈S1
‖x‖=1

min
y∈S2
‖x− y‖2, max

y∈S2
‖y‖2=1

min
x∈S1

‖x− y‖2
}
.

Then,
dist(S1, S2) = σmax(A1 −A2).

If, in addition, dimS1 = dim S2, then

dist(S1, S2) = sin θ,

where θ is the minimal principal angle defined in Fact 5.11.39. (Proof: See [560,
Chapter 13] and [1230, pp. 92, 93].) (Remark: If ‖ · ‖ is a norm on Fn×n, then

dist(S1, S2)
�= ‖A1 −A2‖2

defines a metric on the set of all subspaces of Fn, yielding the gap topology.) (Re-
mark: See Fact 5.12.17.)
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10.10 Facts on Matrix Functions

Fact 10.10.1. Let A ∈ Cn×n, and assume that A is group invertible and has
no eigenvalues in (−∞, 0). Then,

A1/2 = 2
πA

∫ ∞

0

(t2I +A)−1 dt.

(Proof: See [683, p. 133].)

Fact 10.10.2. Let A ∈ Cn×n, and assume that A has no eigenvalues on the
imaginary axis. Then, the following statements hold:

i) Sign(A) is involutory.

ii) A = Sign(A) if and only if A is involutory.

iii) [A, Sign(A)] = 0.

iv) Sign(A) = Sign(A−1).

v) If A is real, then Sign(A) is real.

vi) Sign(A) = A(A2)−1/2.

vii) Sign(A) is given by

Sign(A) = 2
πA

∫ ∞

0

(t2I +A2)−1 dt.

(Proof: See [683, pp. 39, 40 and Chapter 5] and [803].) (Remark: The square root
in vi) is the principal square root.)

Fact 10.10.3. Let A,B ∈ Cn×n, assume that AB has no eigenvalues on the
imaginary axis, and define C �= A(BA)−1/2. Then,

Sign
([

0 A
B 0

])
=
[

0 C
C−1 0

]
.

If, in addition, A has no eigenvalues on the imaginary axis, then

Sign
([

0 A
I 0

])
=
[

0 A1/2

A−1/2 0

]
.

(Proof: See [683, p. 108].) (Remark: The square root is the principal square root.)

Fact 10.10.4. Let A,B ∈ Cn×n, and assume that A and B are positive defi-
nite. Then,

Sign
([

0 B
A−1 0

])
=
[

0 A#B
(A#B)−1 0

]
.

(Proof: See [683, p. 131].) (Remark: The geometric mean is defined in Fact
8.10.43.)
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10.11 Facts on Functions and Derivatives

Fact 10.11.1. Let (xi)∞i=1 ⊂ Fn. Then, limi→∞ xi = x if and only if
limi→∞ xi(j) = x(j) for all j = 1, . . . , n.

Fact 10.11.2. Let p ∈ C[s], where p(s) = sn + an−1s
n−1 + · · · + a0, define

pε0,...,εn−1(s)
�= sn+(an−1+εn−1)sn−1+· · ·+(a1+ε1)s+a0+ε0, where ε0, . . . , εn−1 ∈

R, let roots(p) = {λ1, . . . , λr}, and, for all i = 1, . . . , r, let αi ∈ R satisfy 0 < αi <
maxj �=i |λi − λj |. Then, there exists ε > 0 such that, for all ε0, . . . , εn−1 satisfying
|εi| < ε, i = 1, . . . , r, the polynomial pε0,...,εn−1 has exactly multp(λi) roots in the
disk {s ∈ C: |s − λi| < αi}. (Proof: See [1005].) (Remark: This result shows that
the roots of a polynomial are continuous functions of the coefficients.)

Fact 10.11.3. Let p ∈ C[s]. Then,

roots(p′) ⊆ co roots(p).

(Proof: See [447, p. 488].) (Remark: p′ is the derivative of p.)

Fact 10.11.4. Let S1 ⊆ Fn, assume that S1 is compact, let S2 ⊂ Fm, let
f : S1 × S2 → R, and assume that f is continuous. Then, g : S2 → R defined by
g(y) �= maxx∈S1 f(x, y) is continuous. (Remark: A related result is given in [442,
p. 208].)

Fact 10.11.5. Let S⊆ Fn, assume that S is pathwise connected, let f : S �→ Fn,
and assume that f is continuous. Then, f(S) is pathwise connected. (Proof: See
[1256, p. 65].)

Fact 10.11.6. Let f : [0,∞) → R, assume that f is continuous, and assume
that limt→∞ f(t) exists. Then,

lim
t→∞

1
t

t∫
0

f(τ) dτ = lim
t→∞ f(t).

(Remark: The assumption that f is continuous can be weakened.)

Fact 10.11.7. Let I ⊆ R be a finite or infinite interval, let f : I→ R, assume
that f is continuous, and assume that, for all x, y ∈ I, it follows that f [12 (x+ y)] ≤
1
2f(x + y). Then, f is convex. (Proof: See [1039, p. 10].) (Remark: This result is
due to Jensen.) (Remark: See Fact 1.8.4.)

Fact 10.11.8. Let A0 ∈ Fn×n, let ‖ · ‖ be a norm on Fn×n, and let ε > 0.
Then, there exists δ > 0 such that, if A ∈ Fn×n and ‖A−A0‖ < δ, then

dist[mspec(A)−mspec(A0)] < ε,

where
dist[mspec(A)−mspec(A0)]

�= min
σ

max
i=1,...,n

|λσ(i)(A) − λi(A0)|

and the minimum is taken over all permutations σ of {1, . . . , n}. (Proof: See [690,
p. 399].)
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Fact 10.11.9. Let I ⊆ R be an interval, let A: I �→ Fn×n, and assume that A
is continuous. Then, for i = 1, . . . , n, there exist continuous functions λi : I �→ C

such that, for all t ∈ I, mspec(A(t)) = {λ1(t), . . . , λn(t)}ms. (Proof: See [690, p.
399].) (Remark: The spectrum cannot always be continuously parameterized by
more than one variable. See [690, p. 399].)

Fact 10.11.10. Let f : R2 → R, g : R→ R, and h: R→ R. Then, assuming
each of the following integrals exists,

d
dα

h(α)∫
g(α)

f(t, α) dt = f(h(α), α)h′(α) − f(g(α), α)g′(α) +

h(α)∫
g(α)

∂

∂α
f(t, α) dt.

(Remark: This identity is Leibniz’s rule.)

Fact 10.11.11. Let D ⊆ Rm, assume that D is a convex set, and let f : D→
R. Then, f is convex if and only if the set {(x, y) ∈ Rn × R: y ≥ f(x)} is convex.

Fact 10.11.12. Let D ⊆ Rm, assume that D is a convex set, let f : D → R,
and assume that f is convex. Then, f is continuous on intaff D D.

Fact 10.11.13. Let D ⊆ Rm, assume that D is a convex set, let f : D → R,
and assume that f is convex. Then, f−1((−∞, α]) = {x ∈ D: f(x) ≤ α} is convex.

Fact 10.11.14. Let D ⊆ Rm, assume that D is open and convex, let f : D→
R, and assume that f is C1 on D. Then, the following statements hold:

i) f is convex if and only if, for all x, y ∈ D,

f(x) + (y − x)Tf ′(x) ≤ f(y).

ii) f is strictly convex if and only if, for all distinct x, y ∈ D,

f(x) + (y − x)Tf ′(x) < f(y).

(Remark: If f is not differentiable, then these inequalities can be stated in terms
of directional differentials of f or the subdifferential of f . See [1039, pp. 29–31,
128–145].)

Fact 10.11.15. Let f : D ⊆ Fm �→ Fn, and assume that D+f(0; ξ) exists.
Then, for all β > 0,

D+f(0;βξ) = βD+f(0; ξ).

Fact 10.11.16. Define f : R→ R by f(x) �= |x|. Then, for all ξ ∈ R,

D+f(0; ξ) = |ξ|.
Now, define f : R

n → R
n by f(x) �=

√
xTx. Then, for all ξ ∈ R

n,

D+f(0; ξ) =
√
ξTξ.
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Fact 10.11.17. Let A,B ∈ Fn×n. Then, for all s ∈ F,

d
ds

(A+ sB)2 = AB +BA+ 2sB.

Hence,
d
ds

(A+ sB)2
∣∣∣∣
s=0

= AB +BA.

Furthermore, for all k ≥ 1,

d
ds

(A+ sB)k
∣∣∣∣
s=0

=
k−1∑
i=0

AiBAi−1−i.

Fact 10.11.18. Let A,B ∈ Fn×n, and let D
�= {s ∈ F: det(A + sB) �= 0}.

Then, for all s ∈ D,

d
ds

(A+ sB)−1 = −(A+ sB)−1B(A+ sB)−1.

Hence, if A is nonsingular, then

d
ds

(A+ sB)−1

∣∣∣∣
s=0

= −A−1BA−1.

Fact 10.11.19. Let D ⊆ F, let A: D −→ Fn×n, and assume that A is differ-
entiable. Then,

d
ds

detA(s) = tr
[
AA(s)

d
ds
A(s)
]

= 1
n−1 tr

[
A(s)

d
ds
AA(s)

]
=

n∑
i=1

detAi(s),

where Ai(s) is obtained by differentiating the entries of the ith row of A(s). If, in
addition, A(s) is nonsingular for all s ∈ D, then

d
ds

log detA(s) = tr
[
A−1(s)

d
ds
A(s)
]
.

If A(s) is positive definite for all s ∈ D, then

d
ds

detA1/n(s) = 1
n[detA1/n(s)] tr

[
A−1(s)

d
ds
A(s)
]
.

Finally, if A(s) is nonsingular and has no negative eigenvalues for all s ∈ D, then

d
ds

log2A(s) = 2 tr
[
[logA(s)]A−1(s)

d
ds
A(s)
]

and
d
ds

logA(s) =
∫ 1

0

[(A(s)− I)t+ I]−1 d
ds
A(s)[(A(s) − I)t+ I]−1 dt.

(Proof: See [359, p. 267], [563], [1014], [1098, pp. 199, 212], [1129, p. 430], and
[1183].) (Remark: See Fact 11.13.4.)
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Fact 10.11.20. Let D ⊆ F, let A: D −→ Fn×n, assume that A is differen-
tiable, and assume that A(s) is nonsingular for all x ∈ D. Then,

d
ds
A−1(s) = −A−1(s)

[
d
ds
A(s)
]
A−1(s)

and
tr
[
A−1(s)

d
ds
A(s)
]

= −tr
[
A(s)

d
ds
A−1(s)

]
.

(Proof: See [711, p. 491] and [1098, pp. 198, 212].)

Fact 10.11.21. Let A,B ∈ F
n×n. Then, for all s ∈ F,

d
ds

det(A+ sB) = tr
[
B(A + sB)A

]
.

Hence,
d
ds

det(A+ sB)
∣∣∣∣
s=0

= tr BAA =
n∑
i=1

det
[
A

i← coli(B)
]
.

(Proof: Use Fact 10.11.19 and Fact 2.16.9.) (Remark: This result generalizes
Lemma 4.4.8.)

Fact 10.11.22. Let A ∈ Fn×n, r ∈ R, and k ≥ 1. Then, for all s ∈ C,

dk

dsk
[det(I + sA)]r = (rtrA)k[det(I + sA)]r.

Hence,
dk

dsk
[det(I + sA)]r

∣∣∣∣
s=0

= (rtrA)k.

Fact 10.11.23. Let A ∈ Rn×n, assume that A is symmetric, let X ∈ Rm×n,
and assume that XAXT is nonsingular. Then,(

d
dX

detXAXT

)
= 2
(
detXAXT

)
ATXT

(
XAXT

)−1
.

(Proof: See [350].)

Fact 10.11.24. The following infinite series converge for A ∈ Fn×n with the
given bounds on sprad(A):

i) For all A ∈ Fn×n,
sinA = A− 1

3!A
3 + 1

5!A
5 − 1

7!A
7 + · · · .

ii) For all A ∈ Fn×n,
cosA = I − 1

2!A
2 + 1

4!A
4 − 1

6!A
6 + · · · .

iii) For all A ∈ Fn×n such that sprad(A) < π/2,

tanA = A+ 1
3A

3 + 2
15A

5 + 17
315A

7 + 62
2835A

9 + · · · .
iv) For all A ∈ Fn×n such that sprad(A) < 1,

eA = I +A+ 1
2!A

2 + 1
3!A

3 + 1
4!A

4 + · · · .
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v) For all A ∈ Fn×n such that sprad(A− I) < 1,

logA = −[I −A+ 1
2 (I −A)2 + 1

3 (I −A)3 + 1
4 (I −A)4 + · · · ].

vi) For all A ∈ Fn×n such that sprad(A) < 1,

log(I −A) = −(A+ 1
2A

2 + 1
3A

3 + 1
4A

4 + · · · ).
vii) For all A ∈ Fn×n such that sprad(A) < 1,

log(I +A) = A− 1
2A

2 + 1
3A

3 − 1
4A

4 + · · · .
viii) For all A ∈ Fn×n such that spec(A) ⊂ ORHP,

logA =
∞∑
i=0

2
2i+ 1

[
(A− I)(A+ I)−1

]2i+1
.

ix) For all A ∈ F
n×n,

sinhA = sin jA = A+ 1
3!A

3 + 1
5!A

5 + 1
7!A

7 + · · · .
x) For all A ∈ Fn×n,

coshA = cos jA = I + 1
2!A

2 + 1
4!A

4 + 1
6!A

6 + · · · .
xi) For all A ∈ Fn×n such that sprad(A) < π/2,

tanhA = tan jA = A− 1
3A

3 + 2
15A

5 − 17
315A

7 + 62
2835A

9 − · · · .
xii) Let α ∈ R. For all A ∈ Fn×n such that sprad(A) < 1,

(I +A)α = I + αA+ α(α−1)
2! A2 + α(α−1)(α−2)

3! A3 + 1
4A

4 + · · ·
= I +

(
α
1

)
A+
(
α
2

)
A2 +

(
α
3

)
A3 +

(
α
4

)
A4 + · · · .

xiii) For all A ∈ Fn×n such that sprad(A) < 1,

(I −A)−1 = I +A+A2 +A3 +A4 + · · · .

(Proof: See Fact 1.18.8.)

10.12 Notes

An introductory treatment of limits and continuity is given in [1030]. Fréchet
and directional derivatives are discussed in [496], while differentiation of matrix
functions is considered in [654, 948, 975, 1089, 1136, 1182]. In [1133, 1134] the
set intaff S S is called the relative interior of S. An extensive treatment of matrix
functions is given in Chapter 6 of [711]; see also [716]. The identity theorem is
discussed in [741]. The chain rule for matrix functions is considered in [948, 980].
Differentiation with respect to complex matrices is discussed in [776]. Extensive
tables of derivatives of matrix functions are given in [374, pp. 586–593].



Chapter Eleven

The Matrix Exponential and Stability
Theory

The matrix exponential function is fundamental to the study of linear ordi-
nary differential equations. This chapter focuses on the properties of the matrix
exponential as well as on stability theory.

11.1 Definition of the Matrix Exponential

The scalar initial value problem

ẋ(t) = ax(t), (11.1.1)
x(0) = x0, (11.1.2)

where t ∈ [0,∞) and a, x(t) ∈ R, has the solution

x(t) = eatx0, (11.1.3)

where t ∈ [0,∞). We are interested in systems of linear differential equations of
the form

ẋ(t) = Ax(t), (11.1.4)
x(0) = x0, (11.1.5)

where t ∈ [0,∞), x(t) ∈ Rn, and A ∈ Rn×n. Here ẋ(t) denotes dx(t)
dt , where the

derivative is one sided for t = 0 and two sided for t > 0. The solution of (11.1.4),
(11.1.5) is given by

x(t) = etAx0, (11.1.6)

where t ∈ [0,∞) and etA is the matrix exponential. The following definition is based
on (10.5.2).

Definition 11.1.1. Let A ∈ F
n×n. Then, the matrix exponential eA ∈ F

n×n

or exp(A) ∈ Fn×n is the matrix

eA �=
∞∑
k=0

1
k!A

k. (11.1.7)

Note that 0! �= 1 and e0n×n = In.
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Proposition 11.1.2. Let A ∈ Fn×n. Then, the following statements hold:

i) The series (11.1.7) converges absolutely.

ii) The series (11.1.7) converges to eA.

iii) Let ‖ · ‖ be a normalized submultiplicative norm on Fn×n. Then,

e−‖A‖ ≤ ‖eA‖ ≤ e‖A‖. (11.1.8)

Proof. To prove i), let ‖ · ‖ be a normalized submultiplicative norm on Fn×n.
Then, for all k ≥ 1,

k∑
i=0

1
i!‖Ai‖ ≤

k∑
i=0

1
i!‖A‖i ≤ e‖A‖.

Since the sequence {∑k
i=0

1
i!‖Ai‖}∞i=0 of partial sums is increasing and bounded,

there exists α > 0 such that the series
∑∞

i=0
1
i!‖Ai‖ converges to α. Hence, the

series
∑∞

i=0
1
i!A

i converges absolutely.

Next, ii) follows from i) using Proposition 10.2.9.

Next, we have

‖eA‖ =

∣∣∣∣∣
∣∣∣∣∣
∞∑
i=0

1
i!A

i

∣∣∣∣∣
∣∣∣∣∣ ≤

∞∑
i=0

1
i!‖Ai‖ ≤

∞∑
i=0

1
i!‖A‖i = e‖A‖,

which verifies (11.1.8). Finally, note that

1 ≤ ‖eA‖‖e−A‖ ≤ ‖eA‖e‖A‖,

and thus
e−‖A‖ ≤ ‖eA‖. �

The following result generalizes the well-known scalar result.

Proposition 11.1.3. Let A ∈ Fn×n. Then,

eA = lim
k→∞

(
I + 1

kA
)k
. (11.1.9)

Proof. It follows from the binomial theorem that

(
I + 1

kA
)k =

k∑
i=0

αi(k)Ai,

where
αi(k)

�=
1
ki

(
k

i

)
=

1
ki

k!
i!(k − i)! .

For all i ∈ P, it follows that αi(k)→ 1/i! as k →∞. Hence,

lim
k→∞

(
I + 1

kA
)k = lim

k→∞

k∑
i=0

αi(k)Ai =
∞∑
i=0

1
i!A

i = eA. �
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Proposition 11.1.4. Let A ∈ Fn×n. Then, for all t ∈ R,

etA − I =

t∫
0

AeτA dτ (11.1.10)

and d
dt
etA = AetA. (11.1.11)

Proof. Note that
t∫

0

AeτA dτ =

t∫
0

∞∑
k=0

1
k!τ

kAk+1 dτ =
∞∑
k=0

1
k!
tk+1

k+1A
k+1 = etA − I,

which yields (11.1.10), while differentiating (11.1.10) with respect to t yields
(11.1.11).

Proposition 11.1.5. Let A,B ∈ Fn×n. Then, AB = BA if and only if, for all
t ∈ [0,∞),

etAetB = et(A+B). (11.1.12)

Proof. Suppose that AB = BA. By expanding etA, etB, and et(A+B), it
can be seen that the expansions of etAetB and et(A+B) are identical. Conversely,
differentiating (11.1.12) twice with respect to t and setting t = 0 yields AB =
BA.

Corollary 11.1.6. Let A,B ∈ Fn×n, and assume that AB = BA. Then,

eAeB = eBeA = eA+B. (11.1.13)

The converse of Corollary 11.1.6 is not true. For example, if A �=
[

0 π−π 0

]
and

B �=
[

0 (7+4
√

3)π

(−7+4
√

3)π 0

]
, then eA = eB = −I and eA+B = I, although AB �= BA.

A partial converse is given by Fact 11.14.2.

Proposition 11.1.7. Let A ∈ F
n×n and B ∈ F

m×m. Then,

eA⊗Im = eA⊗ Im, (11.1.14)

eIn⊗B = In⊗ eB, (11.1.15)

eA⊕B = eA⊗ eB. (11.1.16)

Proof. Note that

eA⊗Im = Inm +A⊗ Im + 1
2!(A⊗ Im)2 + · · ·

= In⊗ Im +A⊗ Im + 1
2!(A

2⊗ Im) + · · ·
= (In +A+ 1

2!A
2 + · · · )⊗ Im

= eA⊗ Im
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and similarly for (11.1.15). To prove (11.1.16), note that (A⊗Im)(In⊗B) = A⊗B
and (In⊗B)(A⊗Im) = A⊗B, which shows that A⊗Im and In⊗B commute. Thus,
by Corollary 11.1.6,

eA⊕B = eA⊗Im+In⊗B = eA⊗ImeIn⊗B =
(
eA⊗ Im

)(
In⊗ eB

)
= eA⊗ eB. �

11.2 Structure of the Matrix Exponential

To elucidate the structure of the matrix exponential, recall that, by Theorem
4.6.1, every term Ak in (11.1.7) for k > r

�= deg μA can be expressed as a linear
combination of I, A, . . . , Ar−1. The following result provides an expression for etA

in terms of I, A, . . . , Ar−1.

Proposition 11.2.1. Let A ∈ Fn×n. Then, for all t ∈ R,

etA = 1
2πj

∮
C

(zI −A)−1etz dz =
n−1∑
i=0

ψi(t)Ai, (11.2.1)

where, for all i = 0, . . . , n−1, ψi(t) is given by

ψi(t)
�= 1

2πj

∮
C

χ
[i+1]
A (z)
χA(z)

etz dz, (11.2.2)

where C is a simple, closed contour in the complex plane enclosing spec(A),

χA(s) = sn + βn−1s
n−1 + · · ·+ β1s+ β0, (11.2.3)

and the polynomials χ[1]
A , . . . , χ

[n]
A are defined by the recursion

sχ
[i+1]
A (s) = χ

[i]
A(s)− βi, i = 0, . . . , n−1,

where χ[0]
A

�= χA and χ
[n]
A (s) = 1. Furthermore, for all i = 0, . . . , n −1 and t ≥ 0,

ψi(t) satisfies

ψ
(n)
i (t) + βn−1ψ

(n−1)
i (t) + · · ·+ β1ψ

′
i(t) + β0ψi(t) = 0, (11.2.4)

where, for all i, j = 0, . . . , n−1,

ψ
(j)
i (0) = δij . (11.2.5)

Proof. See [569, p. 381], [888, 929], [1455, p. 31], and Fact 4.9.11.

The coefficient ψi(t) of Ai in (11.2.1) can be further characterized in terms of
the Laplace transform. Define

x̂(s) �= L{x(t)} �=

∞∫
0

e−stx(t) dt. (11.2.6)

Note that
L{ẋ(t)} = sx̂(s)− x(0) (11.2.7)

and
L{ẍ(t)} = s2x̂(s)− sx(0)− ẋ(0). (11.2.8)
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The following result shows that the resolvent of A is the Laplace transform
of the exponential of A. See (4.4.23).

Proposition 11.2.2. Let A ∈ Fn×n, and define ψ0, . . . , ψn−1 as in Proposition
11.2.1. Then, for all s ∈ C\spec(A),

L
{
etA
}

=

∞∫
0

e−stetA dt = (sI −A)−1. (11.2.9)

Furthermore, for all i = 0, . . . , n −1, the Laplace transform ψ̂i(s) of ψi(t) is given
by

ψ̂i(s) =
χ

[i+1]
A (s)
χA(s)

(11.2.10)

and

(sI −A)−1 =
n−1∑
i=0

ψ̂i(s)Ai. (11.2.11)

Proof. Let s ∈ C satisfy Re s > spabs(A) so that A − sI is asymptotically
stable. Thus, it follows from Lemma 11.9.2 that

L
{
etA
}

=

∞∫
0

e−stetA dt =

∞∫
0

et(A−sI) dt = (sI −A)−1.

By analytic continuation, the expression L
{
etA
}

is given by (11.2.9) for all s ∈
C\spec(A).

Comparing (11.2.11) with (4.4.23) yields
n−1∑
i=0

ψ̂i(s)Ai =
sn−1

χA(s)
I +

sn−2

χA(s)
Bn−2 + · · ·+ s

χA(s)
B1 +B0. (11.2.12)

To further illustrate the structure of etA, where A ∈ Fn×n, let A = SBS−1,
where B = diag(B1, . . . , Bk) is the Jordan form of A. Hence, by Proposition 11.2.8,

etA = SetBS−1, (11.2.13)

where
etB = diag

(
etB1, . . . , etBk

)
. (11.2.14)

The structure of etB can thus be determined by considering the block Bi ∈ Fαi×αi,
which, for all i = 1, . . . , k, has the form

Bi = λiIαi +Nαi . (11.2.15)

Since λiIαi and Nαi commute, it follows from Proposition 11.1.5 that

etBi = et(λiIαi
+Nαi

) = eλitIαietNαi = eλitetNαi. (11.2.16)

Since Nαi
αi

= 0, it follows that etNαi is a finite sum of powers of tNαi. Specifically,

etNαi = Iαi + tNαi + 1
2 t

2N2
αi

+ · · ·+ 1
(αi−1)!

tαi−1Nαi−1
αi

, (11.2.17)
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and thus

etNαi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 t t2

2 · · · tαi−1

(αi−1)!

0 1 t
. . . tαi−2

(αi−2)!

0 0 1
. . . tαi−3

(αi−3)!

...
...

. . . . . .
...

0 0 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (11.2.18)

which is upper triangular and Toeplitz (see Fact 11.13.1). Alternatively, (11.2.18)
follows from (10.5.5) with f(s) = est.

Note that (11.2.16) follows from (10.5.5) with f(λ) = eλt. Furthermore, every
entry of etBi is of the form 1

r! t
reλit, where r ∈ {0, αi −1} and λi is an eigenvalue

of A. Reconstructing A by means of A = SBS−1 shows that every entry of A is
a linear combination of the entries of the blocks etBi. If A is real, then etA is also
real. Thus, the term eλit for complex λi = νi + jωi ∈ spec(A), where νi and ωi are
real, yields terms of the form eνitcosωit and eνitsinωit.

The following result follows from (11.2.18) or Corollary 10.5.4.

Proposition 11.2.3. Let A ∈ Fn×n. Then,

mspec
(
eA
)

=
{
eλ: λ ∈ mspec(A)

}
ms
. (11.2.19)

Proof. It can be seen that every diagonal entry of the Jordan form of eA is
of the form eλ, where λ ∈ spec(A).

Corollary 11.2.4. Let A ∈ F
n×n. Then,

det eA = etrA. (11.2.20)

Corollary 11.2.5. Let A ∈ Fn×n, and assume that trA = 0. Then, det eA = 1.

Corollary 11.2.6. Let A ∈ Fn×n. Then, the following statements hold:

i) If eA is unitary, then, spec(A) ⊂ jR.
ii) spec(eA) is real if and only if Im spec(A) ⊂ πZ.

Proposition 11.2.7. Let A ∈ Fn×n. Then, the following statements hold:

i) A and eA have the same number of Jordan blocks of corresponding sizes.

ii) eA is semisimple if and only if A is semisimple.

iii) If μ ∈ spec(eA), then

amexp(A)(μ) =
∑

{λ∈spec(A): eλ=μ}
amA(λ) (11.2.21)
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and

gmexp(A)(μ) =
∑

{λ∈spec(A): eλ=μ}
gmA(λ). (11.2.22)

iv) If eA is simple, then A is simple.

v) If eA is cyclic, then A is cyclic.

vi) eA is a multiple of the identity if and only if A is semisimple and every
pair of eigenvalues of A differs by an integer multiple of 2πj.

vii) eA is a real multiple of the identity if and only if A is semisimple, every pair
of eigenvalues of A differs by an integer multiple of 2πj, and the imaginary
part of every eigenvalue of A is an integer multiple of πj.

Proof. To prove i), note that, for all t �= 0, def(etNαi − Iαi) = 1, and thus the
geometric multiplicity of (11.2.18) is 1. Since (11.2.18) has one distinct eigenvalue, it
follows that (11.2.18) is cyclic. Hence, by Proposition 5.5.15, (11.2.18) is similar to
a single Jordan block. Now, i) follows by setting t = 1 and applying this argument
to each Jordan block of A. Statements ii)–v) follow by similar arguments.

To prove vi), note that, for all λi, λj ∈ spec(A), it follows that eλi = eλj.
Furthermore, since A is semisimple, it follows from ii) that eA is also semisimple.
Since all of the eigenvalues of eA are equal, it follows that eA is a multiple of the
identity. Finally, viii) is an immediate consequence of vii).

Proposition 11.2.8. Let A ∈ Fn×n. Then, the following statements hold:

i)
(
eA
)T = eA

T
.

ii)
(
eA
)

= eA.

iii)
(
eA
)∗ = eA

∗
.

iv) eA is nonsingular, and
(
eA
)−1 = e−A.

v) If S ∈ Fn×n is nonsingular, then eSAS
−1

= SeAS−1.

vi) If A = diag(A1, . . . , Ak), where Ai ∈ Fni×ni for all i = 1, . . . , k, then
eA = diag

(
eA1, . . . , eAk

)
.

vii) If A is Hermitian, then eA is positive definite.

viii) eA is Hermitian if and only if A is unitarily similar to a block-diagonal
matrix diag(A1, . . . , Ak) such that, for all i = 1, . . . , k, eAi is a real multiple
of the identity and, for all distinct i, j = 1, . . . , k, spec(eAi) �= spec(eAj ).

Furthermore, the following statements are equivalent:

ix) A is normal.

x) tr eA
∗
eA = tr eA

∗+A.

xi) eA
∗
eA = eA

∗+A.

xii) eAeA
∗

= eA
∗
eA = eA

∗+A.
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xiii) A is unitarily similar to a block-diagonal matrix diag(A1, . . . , Ak) such that,
for all i = 1, . . . , k, eAi is a multiple of the identity and, for all distinct
i, j = 1, . . . , k, spec(eAi) �= spec(eAj ).

Finally, the following statements hold:

xiv) If A is normal, then eA is normal.

xv) If eA is normal and no pair of eigenvalues of A differ by an integer multiple
of 2πj, then A is normal.

xvi) A is skew Hermitian if and only if A is normal and eA is unitary.

xvii) If F = R and A is skew symmetric, then eA is orthogonal and det eA = 1.

xviii) eA is unitary if and only if A is unitarily similar to a block-diagonal matrix
diag(A1, . . . , Ak) such that, for all i = 1, . . . , k, eAi is a unit-absolute-value
multiple of the identity and, for all distinct i, j = 1, . . . , k, spec(eAi) �=
spec(eAj ).

xix) If eA is unitary, then either A is skew Hermitian or at least two eigenvalues
of A differ by a nonzero integer multiple of 2πj.

Proof. The equivalence of ix) and x) is given in [452, 1208], while the equiv-
alence of ix) and xii) is given in [1172]. Note that xii) =⇒ xi) =⇒ x). Statement
xiv) follows from the fact that ix) =⇒ xii). The equivalence of ix) and xiii) is
given in [1468]; statement xviii) is analogous. To prove sufficiency in xvi), note that
eA+A∗

= eAeA
∗

= eA(eA)∗ = I = e0. Since A+A∗ is Hermitian, it follows from iii)
of Proposition 11.2.9 that A + A∗ = 0. To prove xix), it follows from xvii) that, if
every block Ai is scalar, then A is skew Hermitian, while, if at least one block Ai
is not scalar, then A has at least two eigenvalues that differ by an integer multiple
of 2πj.

The converse of ix) is false. For example, the matrix A �=
[−2π 4π
−2π 2π

]
satisfies

eA = I but is not normal. Likewise, A =
[ jπ 1

0 −jπ
]

satisfies eA = −I but is not
normal. For both matrices, eA

∗
eA = eAeA

∗
= I, but eA

∗
eA �= eA

∗+A, which is
consistent with xii). Both matrices have eigenvalues ±jπ.

Proposition 11.2.9. The following statements hold:

i) If A,B ∈ Fn×n are similar, then eA and eB are similar.

ii) If A,B ∈ Fn×n are unitarily similar, then eA and eB are unitarily similar.

iii) B ∈ Fn×n is positive definite if and only if there exists a unique Hermitian
matrix A ∈ Fn×n such that eA = B.

iv) B ∈ Fn×n is Hermitian and nonsingular if and only if there exists a normal
matrix A ∈ C

n×n such that, for all λ ∈ spec(A), Imλ is an integer multiple
of πj and eA = B.

v) B ∈ F
n×n is normal and nonsingular if and only if there exists a normal

matrix A ∈ Fn×n such that eA = B.

vi) B ∈ Fn×n is unitary if and only if there exists a normal matrix A ∈ Cn×n
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such that mspec(A) ⊂ jR and eA = B.

vii) B ∈ Fn×n is unitary if and only if there exists a skew-Hermitian matrix
A ∈ C

n×n such that eA = B.

viii) B ∈ Fn×n is unitary if and only if there exists a Hermitian matrix A ∈ Fn×n

such that ejA = B.

ix) B ∈ Rn×n is orthogonal and detB = 1 if and only if there exists a skew-
symmetric matrix A ∈ Rn×n such that eA = B.

x) If A and B are normal and eA = eB, then A+ A∗ = B +B∗.

Proof. Statement iii) is given by Proposition 11.4.5. Statement vii) is given
by v) of Proposition 11.6.7. To prove x), note that eA+A∗

= eB+B∗
, which, by vii)

of Proposition 11.2.8, is positive definite. The result now follows from iii).

The converse of i) is false. For example, A �= [ 0 0
0 0 ] and B �=

[
0 2π−2π 0

]
satisfy

eA = eB = I, although A and B are not similar.

11.3 Explicit Expressions

In this section we present explicit expressions for the exponential of a general
2 × 2 real matrix A. Expressions are given in terms of both the entries of A and
the eigenvalues of A.

Lemma 11.3.1. Let A �=
[
a b
0 d

] ∈ C2×2. Then,

eA =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ea

[
1 b

0 1

]
, a = d,

⎡
⎣ ea b e

a−ed

a−d

0 ed

⎤
⎦, a �= d.

(11.3.1)

The following result gives an expression for eA in terms of the eigenvalues of
A.

Proposition 11.3.2. Let A ∈ C
2×2, and let mspec(A) = {λ, μ}ms. Then,

eA =

⎧⎨
⎩
eλ[(1 −λ)I +A], λ = μ,

μeλ−λeμ

μ−λ I + eμ−eλ

μ−λ A, λ �= μ.
(11.3.2)

Proof. The result follows from Theorem 10.5.2. Alternatively, suppose that
λ = μ. Then, there exists a nonsingular matrix S ∈ C2×2 such that A = S

[
λ α
0 λ

]
S−1,

where α ∈ C. Hence, eA = eλS[ 1 α
0 1 ]S−1 = eλ[(1 − λ)I + A]. Now, suppose that

λ �= μ. Then, there exists a nonsingular matrix S ∈ C2×2 such that A = S
[
λ 0
0 μ

]
S−1.

Hence, eA = S
[
eλ 0
0 eμ

]
S−1. Then, the identity

[
eλ 0
0 eμ

]
= μeλ−λeμ

μ−λ I + eμ−eλ

μ−λ
[
λ 0
0 μ

]
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yields the desired result.

Next, we give an expression for eA in terms of the entries of A ∈ R2×2.

Corollary 11.3.3. Let A �=
[
a b
c d

] ∈ R2×2, and define γ �= (a − d)2 + 4bc and
δ �= 1

2 |γ|1/2. Then,

eA =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e
a+d
2

[
cos δ + a−d

2δ sin δ b
δ sin δ

c
δ sin δ cos δ − a−d

2δ sin δ

]
, γ < 0,

e
a+d
2

[
1 + a−d

2 b

c 1− a−d
2

]
, γ = 0,

e
a+d
2

[
cosh δ + a−d

2δ sinh δ b
δ sinh δ

c
δ sinh δ cosh δ − a−d

2δ sinh δ

]
, γ > 0.

(11.3.3)

Proof. The eigenvalues of A are λ �= 1
2 (a+ d−√γ) and μ �= 1

2 (a+ d+
√
γ).

Hence, λ = μ if and only if γ = 0. The result now follows from Proposition
11.3.2.

Example 11.3.4. Let A �= [ ν ω−ω ν ] ∈ R2×2. Then,

etA = eνt
[

cosωt sinωt
− sinωt cosωt

]
. (11.3.4)

On the other hand, if A �= [ ν ω
ω −ν ], then

etA =

[
cosh δt+ ν

δ sinh δt ω
δ sinh δt

ω
δ sinh δt cosh δt− ν

δ sinh δt

]
, (11.3.5)

where δ �=
√
ω2 + ν2.

Example 11.3.5. Let α ∈ F, and define A �= [ 0 1
0 α ]. Then,

etA =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[
1 α−1(eαt −1)
0 eαt

]
, α �= 0,

[
1 t

0 1

]
, α = 0.

Example 11.3.6. Let θ ∈ R, and define A �=
[

0 θ
−θ 0

]
. Then,

eA =
[

cos θ sin θ
− sin θ cos θ

]
.

Furthermore, define B �=
[

0 π
2 −θ

−π
2 +θ 0

]
. Then,

eB =
[

sin θ cos θ
− cos θ sin θ

]
.
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Example 11.3.7. Consider the second-order mechanical vibration equation

mq̈ + cq̇ + kq = 0, (11.3.6)

where m is positive and c and k are nonnegative. Here m, c, and k denote mass,
damping, and stiffness parameters, respectively. Equation (11.3.6) can be written
in companion form as the system

ẋ = Ax, (11.3.7)

where
x

�=
[
q
q̇

]
, A

�=
[

0 1
−k/m −c/m

]
. (11.3.8)

The inelastic case k = 0 is the simplest one since A is upper triangular. In this
case,

etA =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[
1 t

0 1

]
, k = c = 0,

[
1 m

c (1− e−ct/m)

0 e−ct/m

]
, k = 0, c > 0,

(11.3.9)

where c = 0 and c > 0 correspond to a rigid body and a damped rigid body,
respectively.

Next, we consider the elastic case c ≥ 0 and k > 0. In this case, we define

ωn
�=

√
k

m
, ζ

�=
c

2
√
mk

, (11.3.10)

where ωn > 0 denotes the (undamped) natural frequency of vibration and ζ ≥ 0
denotes the damping ratio. Now, A can be written as

A =
[

0 1
−ω2

n −2ζωn

]
, (11.3.11)

and Corollary 11.3.3 yields

etA (11.3.12)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
cosωnt

1
ωn

sinωnt

−ωnsinωnt cosωnt

]
, ζ = 0,

e−ζωnt

⎡
⎢⎣ cosωdt+ ζ√

1−ζ2 sinωdt
1
ωd

sinωdt

−ωd
1−ζ2 sinωdt cosωdt− ζ√

1−ζ2 sinωdt

⎤
⎥⎦, 0 < ζ < 1,

e−ωnt

[
1 + ωnt t

−ω2
nt 1− ωnt

]
, ζ = 1,

e−ζωnt

⎡
⎢⎣ coshωdt+ ζ√

ζ2−1
sinhωdt

1
ωd

sinhωdt

−ωd
ζ2−1 sinhωdt coshωdt− ζ√

ζ2−1
sinhωdt

⎤
⎥⎦, ζ > 1,
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where ζ = 0, 0 < ζ < 1, ζ = 1, and ζ > 1 correspond to undamped, underdamped,
critically damped, and overdamped oscillators, respectively, and where the damped
natural frequency ωd is the positive number

ωd
�=

⎧⎨
⎩
ωn

√
1− ζ2, 0 < ζ < 1,

ωn

√
ζ2 −1, ζ > 1.

(11.3.13)

Note that m and k are not integers here.

11.4 Matrix Logarithms

Definition 11.4.1. Let A ∈ Fn×n. Then, B ∈ Fn×n is a logarithm of A if
eB = A.

The following result shows that every complex, nonsingular matrix has a
complex logarithm.

Proposition 11.4.2. Let A ∈ Cn×n. Then, there exists a matrix B ∈ Cn×n

such that A = eB if and only if A is nonsingular.

Proof. See [624, pp. 35, 60] or [711, p. 474].

Although the real number −1 does not have a real logarithm, the real matrix
B =

[
0 π−π 0

]
satisfies eB =

[−1 0
0 −1

]
. These examples suggest that only certain real

matrices have a real logarithm.

Proposition 11.4.3. Let A ∈ Rn×n. Then, there exists a matrix B ∈ Rn×n

such that A = eB if and only if A is nonsingular and, for every negative eigenvalue
λ of A and for every positive integer k, the Jordan form of A has an even number
of k × k blocks associated with λ.

Proof. See [711, p. 475].

Replacing A and B in Proposition 11.4.3 by eA and A, respectively, yields
the following result.

Corollary 11.4.4. Let A ∈ Rn×n. Then, for every negative eigenvalue λ of eA

and for every positive integer k, the Jordan form of eA has an even number of k×k
blocks associated with λ.

Since the matrix A �=
[−2π 4π
−2π 2π

]
satisfies eA = I, it follows that a positive-

definite matrix can have a logarithm that is not normal. However, the following
result shows that every positive-definite matrix has exactly one Hermitian loga-
rithm.

Proposition 11.4.5. The function exp: Hn �→ Pn is one-to-one and onto.
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Let A ∈ Rn×n. If there exists a matrix B ∈ Rn×n such that A = eB, then
Corollary 11.2.4 implies that detA = det eB = etrB > 0. However, the converse
is not true. Consider, for example, A �=

[−1 0
0 −2

]
, which satisfies detA > 0. How-

ever, Proposition 11.4.3 implies that there does not exist a matrix B ∈ R2×2 such
that A = eB. On the other hand, note that A = eBeC, where B �=

[
0 π−π 0

]
and

C
�=
[

0 0
0 log 2

]
. While the product of two exponentials of real matrices has positive

determinant, the following result shows that the converse is also true.

Proposition 11.4.6. Let A ∈ Rn×n. Then, there exist matrices B,C ∈ Rn×n

such that A = eBeC if and only if detA > 0.

Proof. Suppose that there exist B,C ∈ Rn×n such that A = eBeC. Then,
detA =

(
det eB

)(
det eC

)
> 0. Conversely, suppose that detA > 0. If A has

no negative eigenvalues, then it follows from Proposition 11.4.3 that there exists
B ∈ Rn×n such that A = eB. Hence, A = eBe0n×n. Now, suppose that A has at
least one negative eigenvalue. Then, Theorem 5.3.5 on the real Jordan form implies
that there exist a nonsingular matrix S ∈ Rn×n and matrices A1 ∈ Rn1×n1 and
A2 ∈ Rn2×n2 such that A = S

[
A1 0
0 A2

]
S−1, where every eigenvalue of A1 is negative

and where none of the eigenvalues of A2 are negative. Since detA and detA2

are positive, it follows that n1 is even. Now, write A = S
[−In1 0

0 In2

][−A1 0

0 A2

]
S−1.

Since the eigenvalue −1 of
[−In1 0

0 In2

]
appears in an even number of 1 × 1 Jordan

blocks, it follows from Proposition 11.4.3 that there exists a matrix B̂ ∈ Rn×n such
that

[−In1 0

0 In2

]
= eB̂. Furthermore, since

[−A1 0
0 A2

]
has no negative eigenvalues,

it follows that there exists a matrix Ĉ ∈ R
n×n such that

[−A1 0
0 A2

]
= eĈ. Hence,

eA = SeB̂eĈS−1 = eSB̂S
−1
eSĈS

−1
.

Although eAeB may be different from eA+B, the following result, known as
the Baker-Campbell-Hausdorff series, provides an expansion for a matrix function
C(t) that satisfies eC(t) = etAetB.

Proposition 11.4.7. Let A1, . . . , Al ∈ Fn×n. Then, there exists ε > 0 such
that, for all t ∈ (−ε, ε),

etA1 · · · etAl = eC(t), (11.4.1)

where

C(t) �=
l∑
i=1

tAi +
∑

1≤i<j≤l

1
2 t

2[Ai, Aj ] +O
(
t3
)
. (11.4.2)

Proof. See [624, Chapter 3], [1162, p. 35], or [1366, p. 97].

To illustrate (11.4.1), let l = 2, A = A1, and B = A2. Then, the first few
terms of the series are given by

etAetB = etA+tB+(t2/2)[A,B]+(t3/12)[[B,A],A+B]+···. (11.4.3)

The radius of convergence of this series is discussed in [379, 1037].
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The following result is the Lie-Trotter product formula.

Corollary 11.4.8. Let A,B ∈ Fn×n. Then,

eA+B = lim
p→∞

[
e

1
pAe

1
pB
]p
. (11.4.4)

Proof. Setting l = 2 and t = 1/p in (11.4.1) yields, as p→∞,[
e

1
pAe

1
pB
]p

=
[
e

1
p (A+B)+O(1/p2)

]p
= eA+B+O(1/p) → eA+B. �

11.5 The Logarithm Function

Let A ∈ Fn×n be positive definite so that A = SBS∗ ∈ Fn×n, where S ∈ Fn×n

is unitary and B ∈ Rn×n is diagonal with positive diagonal entries. In Section 8.5,
logA is defined as logA = S(logB)S∗ ∈ Hn, where (logB)(i,i)

�= logB(i,i). Since
logA satisfies A = elogA, it follows that logA is a logarithm of A. The following
result extends the definition of logA to arbitrary nonsingular matrices A ∈ Cn×n.

Theorem 11.5.1. Let A ∈ Cn×n. Then, the following statements hold:

i) If A is nonsingular, then the principal branch of the log function

log: C\{0} �→ {z : Re z �= 0 and − π < Im z ≤ π}
is defined at A.

ii) If A is nonsingular, then logA is a logarithm of A, that is, elogA = A.

iii) log eA = A if and only if, for all λ ∈ spec(A), it follows that |Imλ| < π.

iv) If A is nonsingular and sprad(A− I) ≤ 1, then logA is given by the series

logA =
∞∑
i=1

(−1)i+1

i
(A− I)i, (11.5.1)

which converges absolutely with respect to every submultiplicative norm
‖ · ‖ such that ‖A− I‖ < 1.

v) If spec(A) ⊂ ORHP, then logA is given by the series

logA =
∞∑
i=0

2
2i+ 1

[
(A− I)(A+ I)−1

]2i+1
.

vi) If A has no eigenvalues in (−∞, 0], then

logA =

1∫
0

(A− I)[t(A− I) + I]−1 dt.

vii) If A has no eigenvalues in (−∞, 0] and α ∈ [−1, 1], then

logAα = α logA.
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In particular,
logA−1 = − logA

and
logA1/2 = 1

2 logA.

viii) If A is real and spec(A) ⊂ ORHP, then logA is real.

ix) If A is real and nonsingular, then logA is real if and only if A is nonsingular
and, for every negative eigenvalue λ of A and for every positive integer k,
the Jordan form of A has an even number of k × k blocks associated with
λ.

Now, let ‖ · ‖ be a submultiplicative norm on Cn×n. Then, the following statements
hold:

x) The function log is continuous on {X ∈ Cn×n: ‖X − I‖ < 1}.
xi) If B ∈ C

n×n and ‖B‖ < log 2, then ‖eB − I‖ < 1 and log eB = B.

xii) exp: Blog 2(0) �→ Fn×n is one-to-one.

xiii) If ‖A− I‖ < 1, then

‖logA‖ ≤ −log(1− ‖A− I‖) ≤ ‖A− I‖
1− ‖A− I‖ .

xiv) If ‖A− I‖ < 2/3, then

‖A− I‖
[
1− ‖A− I‖

2(1− ‖A− I‖)
]
≤ ‖ logA‖.

xv) Assume that A is nonsingular, and let mspec(A) = {λ1, . . . , λn}ms. Then,

mspec(logA) = {logλ1, . . . , logλn}ms.

Proof. Statement i) follows from Definition 10.5.1 as well as the properties of
the principal branch of the log function given by Fact 1.18.7. Statement ii) follows
from the discussion in [711, p. 420].

Statement iii) is given in [683, p. 32].

Statements iv) and v) are given by Fact 10.11.24. See [624, pp. 34–35] and
[683, p. 273].

Statement vi) is given in [683, p. 269].

Statement vii) is given in [683, p. 270].

Statement ix) follows from Proposition 11.4.3 and the discussion in [711, pp.
474–475].

Statements x) and xi) are proved in [624, pp. 34–35]. To prove the inequality
in xi), let ‖B‖ < 2, so that e‖B‖ < 2, and thus
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‖eB − I‖ ≤
∞∑
i=1

(i!)−1‖B‖i = e‖B‖ − 1 < 1.

To prove xii), let B1, B2 ∈ Blog 2(0), and assume that eB1 = eB2. Then, it
follows from ii) that B1 = log eB1 = log eB2 = B2.

Finally, to prove xiii), let α �= ‖A−I‖ < 1. Then, it follows from (11.5.1) and
iv) of Fact 1.18.7 that ‖logA‖ ≤ ∑∞

i=1α
i/i = −log(1 − α). For xiv), see [683, p.

647].

For a nonsingular A ∈ Cn×n, the matrix logA given by Theorem 11.5.1 is the
principal logarithm.

11.6 Lie Groups

Definition 11.6.1. Let S ⊂ Fn×n, and assume that S is a group. Then, S is a
Lie group if S is closed relative to GLF(n).

Proposition 11.6.2. Let S ⊂ Fn×n, and assume that S is a group. Then, S

is a Lie group if and only if the limit of every convergent sequence in S is either an
element of S or is singular.

The groups SLF(n), U(n), O(n), SU(n), SO(n), U(n,m), O(n,m), SU(n,m),
SO(n,m), SpF(n), AffF(n), SEF(n), and TransF(n) defined in Proposition 3.3.6 are
closed sets, and thus are Lie groups. Although the groups GLF(n), PLF(n), and
UT(n) (see Fact 3.21.5) are not closed sets, they are closed relative to GLF(n), and
thus they are Lie groups. Finally, the group S ⊂ C2×2 defined by

S
�=
{[

ejt 0
0 ejπt

]
: t ∈ R

}
(11.6.1)

is not closed relative to GLC(2), and thus is not a Lie group. For details, see [624,
p. 4].

Proposition 11.6.3. Let S ⊂ Fn×n, and assume that S is a Lie group. Fur-
thermore, define

S0
�=
{
A ∈ F

n×n: etA ∈ S for all t ∈ R
}
. (11.6.2)

Then, S0 is a Lie algebra.

Proof. See [624, pp. 39, 43, 44].

The Lie algebra S0 defined by (11.6.2) is the Lie algebra of S.

Proposition 11.6.4. Let S ⊂ Fn×n, assume that S is a Lie group, and let
S0 ⊆ Fn×n be the Lie algebra of S. Furthermore, let S ∈ S and A ∈ S0. Then,
SAS−1 ∈ S0.
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Proof. For all t ∈ R, etA ∈ S, and thus etSAS
−1

= SetAS−1 ∈ S. Hence,
SAS−1 ∈ S0.

Proposition 11.6.5. The following statements hold:

i) glF(n) is the Lie algebra of GLF(n).

ii) glR(n) = plR(n) is the Lie algebra of PLR(n).

iii) plC(n) is the Lie algebra of PLC(n).

iv) slF(n) is the Lie algebra of SLF(n).

v) u(n) is the Lie algebra of U(n).

vi) so(n) is the Lie algebra of O(n).

vii) su(n) is the Lie algebra of SU(n).

viii) so(n) is the Lie algebra of SO(n).

ix) su(n,m) is the Lie algebra of U(n,m).

x) so(n,m) is the Lie algebra of O(n,m).

xi) su(n,m) is the Lie algebra of SU(n,m).

xii) so(n,m) is the Lie algebra of SO(n,m).

xiii) sympF(2n) is the Lie algebra of SympF(2n).

xiv) osympF(2n) is the Lie algebra of OSympF(2n).

xv) affF(n) is the Lie algebra of AffF(n).

xvi) seC(n) is the Lie algebra of SEC(n).

xvii) seR(n) is the Lie algebra of SER(n).

xviii) transF(n) is the Lie algebra of TransF(n).

Proof. See [624, pp. 38–41].

Proposition 11.6.6. Let S ⊂ Fn×n, assume that S is a Lie group, and let
S0 ⊆ Fn×n be the Lie algebra of S. Then, exp: S0 �→ S. Furthermore, if exp is onto,
then S is pathwise connected.

Proof. Let A ∈ S0 so that etA ∈ S for all t ∈ R. Hence, setting t = 1 implies
that exp: S0 �→ S. Now, suppose that exp is onto, let B ∈ S, and let A ∈ S0 be
such that eA = B. Then, f(t) �= etA satisfies f(0) = I and f(1) = B, which implies
that S is pathwise connected.

A Lie group can consist of multiple pathwise-connected components.

Proposition 11.6.7. Let n ≥ 1. Then, the following functions are onto:

i) exp: glC(n) �→ GLC(n).

ii) exp: glR(1) �→ PLR(1).
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iii) exp: plC(n) �→ PLC(n).

iv) exp: slC(n) �→ SLC(n).

v) exp: u(n) �→ U(n).

vi) exp: su(n) �→ SU(n).

vii) exp: so(n) �→ SO(n).

Furthermore, the following functions are not onto:

viii) exp: glR(n) �→ PLR(n), where n ≥ 2.

ix) exp: slR(n) �→ SLR(n).

x) exp: so(n) �→ O(n).

xi) exp: sympR(2n) �→ SympR(2n).

Proof. Statement i) follows from Proposition 11.4.2, while ii) is immediate.
Statements iii)–vii) can be verified by construction; see [1098, pp. 199, 212] for
the proof of v) and vii). The example A �=

[−1 0
0 −2

]
and Proposition 11.4.3 show

that viii) is not onto. For λ < 0, λ �= −1, Proposition 11.4.3 and the example[
λ 0
0 1/λ

]
given in [1162, p. 39] show that ix) is not onto. See also [103, pp. 84, 85].

Statement viii) shows that x) is not onto. For xi), see [404].

Proposition 11.6.8. The Lie groups GLC(n), SLF(n),U(n), SU(n), and SO(n)
are pathwise connected. The Lie groups GLR(n),O(n),O(n, 1), and SO(n, 1) are
not pathwise connected.

Proof. See [624, p. 15].

Proposition 11.6.8 and ix) of Proposition 11.6.7 show that the converse of
Proposition 11.6.6 does not hold, that is, pathwise connectedness does not imply
that exp is onto. See [1162, p. 39].

11.7 Lyapunov Stability Theory

Consider the dynamical system

ẋ(t) = f [x(t)], (11.7.1)

where t ≥ 0, x(t) ∈ D ⊆ Rn, and f : D → Rn is continuous. We assume that,
for all x0 ∈ D and for all T > 0, there exists a unique C1 solution x: [0, T ] �→ D

satisfying (11.7.1). If xe ∈ D satisfies f(xe) = 0, then x(t) ≡ xe is an equilibrium
of (11.7.1). The following definition concerns the stability of an equilibrium of
(11.7.1). Throughout this section, ‖ · ‖ denotes a norm on Rn.

Definition 11.7.1. Let xe ∈ D be an equilibrium of (11.7.1). Then, xe is
Lyapunov stable if, for all ε > 0, there exists δ > 0 such that, if ‖x(0) − xe‖ < δ,
then ‖x(t) − xe‖ < ε for all t ≥ 0. Furthermore, xe is asymptotically stable if
it is Lyapunov stable and there exists ε > 0 such that, if ‖x(0) − xe‖ < ε, then
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limt→∞ x(t) = xe. In addition, xe is globally asymptotically stable if it is Lyapunov
stable, D = Rn, and, for all x(0) ∈ Rn, limt→∞ x(t) = xe. Finally, xe is unstable if
it is not Lyapunov stable.

Note that, if xe ∈ Rn is a globally asymptotically stable equilibrium, then xe

is the only equilibrium of (11.7.1).

The following result, known as Lyapunov’s direct method, gives sufficient con-
ditions for Lyapunov stability and asymptotic stability of an equilibrium of (11.7.1).

Theorem 11.7.2. Let xe ∈ D be an equilibrium of the dynamical system
(11.7.1), and assume there exists a C1 function V : D �→ R such that

V (xe) = 0, (11.7.2)

such that, for all x ∈ D\{xe},
V (x) > 0, (11.7.3)

and such that, for all x ∈ D,
V ′(x)f(x) ≤ 0. (11.7.4)

Then, xe is Lyapunov stable. If, in addition, for all x ∈ D\{xe},
V ′(x)f(x) < 0, (11.7.5)

then xe is asymptotically stable. Finally, if D = Rn and

lim
‖x‖→∞

V (x) =∞, (11.7.6)

then xe is globally asymptotically stable.

Proof. For convenience, let xe = 0. To prove Lyapunov stability, let ε > 0
be such that Bε(0) ⊆ D. Since Sε(0) is compact and V (x) is continuous, it follows
from Theorem 10.3.8 that V [Sε(0)] is compact. Since 0 �∈ Sε(0), V (x) > 0 for all
x ∈ D\{0}, and V [Sε(0)] is compact, it follows that α �= minV [Sε(0)] is positive.
Next, since V is continuous, it follows that there exists δ ∈ (0, ε] such that V (x) < α
for all x ∈ Bδ(0). Now, let x(t) for all t ≥ 0 satisfy (11.7.1), where ‖x(0)‖ < δ.
Hence, V [x(0)] < α. It thus follows from (11.7.4) that, for all t ≥ 0,

V [x(t)] − V [x(0)] =

t∫
0

V ′[x(s)]f [x(s)] ds ≤ 0,

and hence, for all t ≥ 0,
V [x(t)] ≤ V [x(0)] < α.

Now, since V (x) ≥ α for all x ∈ Sε(0), it follows that x(t) �∈ Sε(0) for all t ≥ 0.
Hence, ‖x(t)‖ < ε for all t ≥ 0, which proves that xe = 0 is Lyapunov stable.

To prove that xe = 0 is asymptotically stable, let ε > 0 be such that Bε(0) ⊆
D. Since (11.7.5) implies (11.7.4), it follows that there exists δ > 0 such that, if
‖x(0)‖ < δ, then ‖x(t)‖ < ε for all t ≥ 0. Furthermore, d

dtV [x(t)] = V ′[x(t)]f [x(t)] <
0 for all t ≥ 0, and thus V [x(t)] is decreasing and bounded from below by zero.
Now, suppose that V [x(t)] does not converge to zero. Therefore, there exists L > 0
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such that V [x(t)] ≥ L for all t ≥ 0. Now, let δ′ > 0 be such that V (x) < L
for all x ∈ Bδ′ (0). Therefore, ‖x(t)‖ ≥ δ′ for all t ≥ 0. Next, define γ < 0 by
γ

�= maxδ′≤‖x‖≤εV ′(x)f(x). Therefore, since ‖x(t)‖ < ε for all t ≥ 0, it follows that

V [x(t)]− V [x(0)] =

t∫
0

V ′[x(τ)]f [x(τ)] dτ ≤ γt,

and hence
V (x(t)) ≤ V [x(0)] + γt.

However, t > −V [x(0)]/γ implies that V [x(t)] < 0, which is a contradiction.

To prove that xe = 0 is globally asymptotically stable, let x(0) ∈ R
n, and let

β
�= V [x(0)]. It follows from (11.7.6) that there exists ε > 0 such that V (x) > β

for all x ∈ Rn such that ‖x‖ > ε. Therefore, ‖x(0)‖ ≤ ε, and, since V [x(t)] is
decreasing, it follows that ‖x(t)‖ < ε for all t > 0. The remainder of the proof is
identical to the proof of asymptotic stability.

11.8 Linear Stability Theory

We now specialize Definition 11.7.1 to the linear system

ẋ(t) = Ax(t), (11.8.1)

where t ≥ 0, x(t) ∈ R
n, and A ∈ R

n×n. Note that xe = 0 is an equilibrium of
(11.8.1), and that xe ∈ Rn is an equilibrium of (11.8.1) if and only if xe ∈ N(A).
Hence, if xe is the globally asymptotically stable equilibrium of (11.8.1), then A is
nonsingular and xe = 0.

We consider three types of stability for the linear system (11.8.1). Unlike
Definition 11.7.1, these definitions are stated in terms of the dynamics matrix rather
than the equilibrium.

Definition 11.8.1. For A ∈ Fn×n, define the following classes of matrices:

i) A is Lyapunov stable if spec(A) ⊂ CLHP and, if λ ∈ spec(A) and Reλ = 0,
then λ is semisimple.

ii) A is semistable if spec(A) ⊂ OLHP ∪ {0} and, if 0 ∈ spec(A), then 0 is
semisimple.

iii) A is asymptotically stable if spec(A) ⊂ OLHP.

The following result concerns Lyapunov stability, semistability, and asymp-
totic stability for (11.8.1).

Proposition 11.8.2. Let A ∈ Rn×n. Then, the following statements are equiv-
alent:

i) xe = 0 is a Lyapunov-stable equilibrium of (11.8.1).

ii) At least one equilibrium of (11.8.1) is Lyapunov stable.
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iii) Every equilibrium of (11.8.1) is Lyapunov stable.

iv) A is Lyapunov stable.

v) For every initial condition x(0) ∈ Rn, x(t) is bounded for all t ≥ 0.

vi) ‖etA‖ is bounded for all t ≥ 0, where ‖ · ‖ is a norm on Rn×n.

vii) For every initial condition x(0) ∈ Rn, etAx(0) is bounded for all t ≥ 0.

The following statements are equivalent:

viii) A is semistable.

ix) limt→∞ etA exists.

x) For every initial condition x(0), limt→∞ x(t) exists.

In this case,

lim
t→∞ etA = I −AA#. (11.8.2)

The following statements are equivalent:

xi) xe = 0 is an asymptotically stable equilibrium of (11.8.1).

xii) A is asymptotically stable.

xiii) spabs(A) < 0.

xiv) For every initial condition x(0) ∈ Rn, limt→∞ x(t) = 0.

xv) For every initial condition x(0) ∈ Rn, etAx(0)→ 0 as t→∞.
xvi) etA → 0 as t→∞.

The following definition concerns the stability of a polynomial.

Definition 11.8.3. Let p ∈ R[s]. Then, define the following terminology:

i) p is Lyapunov stable if roots(p) ⊂ CLHP and, if λ is an imaginary root of
p, then mp(λ) = 1.

ii) p is semistable if roots(p) ⊂ OLHP ∪ {0} and, if 0 ∈ roots(p), then mp(0) =
1.

iii) p is asymptotically stable if roots(p) ⊂ OLHP.

For the following result, recall Definition 11.8.1.

Proposition 11.8.4. Let A ∈ Rn×n. Then, the following statements hold:

i) A is Lyapunov stable if and only if μA is Lyapunov stable.

ii) A is semistable if and only if μA is semistable.

Furthermore, the following statements are equivalent:

iii) A is asymptotically stable

iv) μA is asymptotically stable.
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v) χA is asymptotically stable.

Next, consider the factorization of the minimal polynomial μA of A given by
μA = μs

Aμ
u
A, (11.8.3)

where μs
A and μu

A are monic polynomials such that

roots(μs
A) ⊂ OLHP (11.8.4)

and
roots(μu

A) ⊂ CRHP. (11.8.5)

Proposition 11.8.5. Let A ∈ Rn×n, and let S ∈ Rn×n be a nonsingular
matrix such that

A = S

[
A1 A12

0 A2

]
S−1, (11.8.6)

where A1 ∈ Rr×r is asymptotically stable, A12 ∈ Rr×(n−r), and A2 ∈ R(n−r)×(n−r)

satisfies spec(A2) ⊂ CRHP. Then,

μs
A(A) = S

[
0 C12s

0 μs
A(A2)

]
S−1, (11.8.7)

where C12s ∈ Rr×(n−r) and μs
A(A2) is nonsingular, and

μu
A(A) = S

[
μu
A(A1) C12u

0 0

]
S−1, (11.8.8)

where C12u ∈ Rr×(n−r) and μu
A(A1) is nonsingular. Consequently,

N[μs
A(A)] = R[μu

A(A)] = R

(
S

[
Ir
0

])
. (11.8.9)

If, in addition, A12 = 0, then

μs
A(A) = S

[
0 0
0 μs

A(A2)

]
S−1 (11.8.10)

and

μu
A(A) = S

[
μu
A(A1) 0

0 0

]
S−1. (11.8.11)

Consequently,
R[μs

A(A)] = N[μu
A(A)] = R

(
S

[
0

In−r

])
. (11.8.12)

Corollary 11.8.6. Let A ∈ Rn×n. Then,

N[μs
A(A)] = R[μu

A(A)] (11.8.13)

and
N[μu

A(A)] = R[μs
A(A)]. (11.8.14)

Proof. It follows from Theorem 5.3.5 that there exists a nonsingular matrix
S ∈ Rn×n such that (11.8.6) is satisfied, where A1 ∈ Rr×r is asymptotically stable,
A12 = 0, and A2 ∈ R(n−r)×(n−r) satisfies spec(A2) ⊂ CRHP. The result now follows
from Proposition 11.8.5.
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In view of Corollary 11.8.6, we define the asymptotically stable subspace Ss(A)
of A by

Ss(A) �= N[μs
A(A)] = R[μu

A(A)] (11.8.15)

and the unstable subspace Su(A) of A by

Su(A) �= N[μu
A(A)] = R[μs

A(A)]. (11.8.16)

Note that

dim Ss(A) = def μs
A(A) = rankμu

A(A) =
∑

λ∈spec(A)
Reλ<0

amA(λ) (11.8.17)

and
dim Su(A) = def μu

A(A) = rankμs
A(A) =

∑
λ∈spec(A)

Reλ≥0

amA(λ). (11.8.18)

Lemma 11.8.7. Let A ∈ Rn×n, assume that spec(A) ⊂ CRHP, let x ∈ Rn,
and assume that limt→∞ etAx = 0. Then, x = 0.

For the following result, note Proposition 11.8.2, Proposition 3.5.3, Fact
3.12.3, Fact 11.18.3, and Proposition 6.1.7.

Proposition 11.8.8. Let A ∈ Rn×n. Then, the following statements hold:

i) Ss(A) = {x ∈ Rn: limt→∞ etAx = 0}.
ii) μs

A(A) and μu
A(A) are group invertible.

iii) Ps
�= I − μs

A(A)[μs
A(A)]# and Pu

�= I − μu
A(A)[μu

A(A)]# are idempotent.

iv) Ps + Pu = I.

v) Ps⊥ = Pu and Pu⊥ = Ps.

vi) Ss(A) = R(Ps) = N(Pu).

vii) Su(A) = R(Pu) = N(Ps).

viii) Ss(A) and Su(A) are invariant subspaces of A.

ix) Ss(A) and Su(A) are complementary subspaces.

x) Ps is the idempotent matrix onto Ss(A) along Su(A).

xi) Pu is the idempotent matrix onto Su(A) along Ss(A).

Proof. To prove i), let S ∈ Rn×n be a nonsingular matrix such that

A = S

[
A1 0
0 A2

]
S−1,

where A1 ∈ Rr×r is asymptotically stable and spec(A2) ⊂ CRHP. It then follows
from Proposition 11.8.5 that

Ss(A) = N[μs
A(A)] = R

(
S

[
Ir
0

])
.
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Furthermore,

etA = S

[
etA1 0
0 etA2

]
S−1.

To prove Ss(A) ⊆ {z ∈ Rn: limt→∞ etAz = 0}, let x �= S[ x1
0 ] ∈ Ss(A), where x1 ∈

Rr. Then, etAx = S
[
etA1x1

0

]
→ 0 as t→∞. Hence, x ∈ {z ∈ Rn: limt→∞ etAz = 0}.

Conversely, to prove {z ∈ Rn: limt→∞ etAz = 0} ⊆ Ss(A), let x �= S[ x1
x2 ] ∈ Rn

satisfy limt→∞ etAx = 0. Hence, etA2x2 → 0 as t → ∞. Since spec(A2) ⊂ CRHP,
it follows from Lemma 11.8.7 that x2 = 0. Hence, x ∈ R

(
S
[
Ir
0

])
= Ss(A).

The remaining statements follow directly from Proposition 11.8.5.

11.9 The Lyapunov Equation

In this section we specialize Theorem 11.7.2 to the linear system (11.8.1).

Corollary 11.9.1. Let A ∈ Rn×n, and assume there exist a positive-semidef-
inite matrix R ∈ Rn×n and a positive-definite matrix P ∈ Rn×n satisfying

ATP + PA+R = 0. (11.9.1)

Then, A is Lyapunov stable. If, in addition, for all nonzero ω ∈ R,

rank
[
jωI −A

R

]
= n, (11.9.2)

then A is semistable. Finally, if R is positive definite, then A is asymptotically
stable.

Proof. Define V (x) �= xTPx, which satisfies (11.7.2) with xe = 0 and satisfies
(11.7.3) for all nonzero x ∈ D = Rn. Furthermore, Theorem 11.7.2 implies that
V ′(x)f(x) = 2xTPAx = xT

(
ATP + PA

)
x = −xTRx, which satisfies (11.7.4) for all

x ∈ Rn. Thus, Theorem 11.7.2 implies that A is Lyapunov stable. If, in addi-
tion, R is positive definite, then (11.7.5) is satisfied for all x �= 0, and thus A is
asymptotically stable.

Alternatively, we now prove the first and third statements without using The-
orem 11.7.2. Letting λ ∈ spec(A), and letting x ∈ Cn be an associated eigen-
vector, it follows that 0 ≥ −x∗Rx = x∗

(
ATP + PA

)
x = (λ + λ)x∗Px. There-

fore, spec(A) ⊂ CLHP. Now, suppose that jω ∈ spec(A), where ω ∈ R, and let
x ∈ N

[
(jωI −A)2

]
. Defining y �= (jωI −A)x, it follows that (jωI −A)y = 0, and

thus Ay = jωy. Therefore, −y∗Ry = y∗
(
ATP + PA

)
y = −jωy∗Py+jωy∗Py = 0, and

thus Ry = 0. Hence, 0 = x∗Ry = −x∗(ATP + PA
)
y = −x∗(AT + jωI

)
Py = y∗Py.

Since P is positive definite, it follows that y = 0, that is, (jωI−A)x = 0. Therefore,
x ∈ N(jωI −A). Now, Proposition 5.5.8 implies that jω is semisimple. Therefore,
A is Lyapunov stable.

Next, to prove that A is asymptotically stable, let λ ∈ spec(A), and let x ∈ Cn

be an associated eigenvector. Thus, 0 > −x∗Rx = (λ+ λ)x∗Px, which implies that
A is asymptotically stable.
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Finally, to prove that A is semistable, let jω ∈ spec(A), where ω ∈ R is
nonzero, and let x ∈ Cn be an associated eigenvector. Then,

−x∗Rx = x∗
(
ATP + PA

)
x = x∗[(jωI −A)∗P + P (jωI −A]x = 0.

Therefore, Rx = 0, and thus [
jωI −A

R

]
x = 0,

which implies that x = 0, which contradicts x �= 0. Consequently, jω �∈ spec(A) for
all nonzero ω ∈ R, and thus A is semistable.

Equation (11.9.1) is a Lyapunov equation. Converse results for Corollary
11.9.1 are given by Corollary 11.9.4, Proposition 11.9.6, Proposition 11.9.5, Propo-
sition 11.9.6, and Proposition 12.8.3. The following lemma is useful for analyzing
(11.9.1).

Lemma 11.9.2. Assume that A∈Fn×n is asymptotically stable. Then,
∞∫
0

etA dt = −A−1. (11.9.3)

Proof. Proposition 11.1.4 implies that
∫ t
0
eτA dτ = A−1

(
etA − I). Letting t→

∞ yields (11.9.3).

The following result concerns Sylvester’s equation. See Fact 5.10.21 and
Proposition 7.2.4.

Proposition 11.9.3. Let A,B,C ∈ Rn×n. Then, there exists a unique matrix
X ∈ R

n×n satisfying

AX +XB + C = 0 (11.9.4)

if and only if BT⊕A is nonsingular. In this case, X is given by

X = − vec−1
[(
BT⊕A)−1

vecC
]
. (11.9.5)

If, in addition, BT⊕A is asymptotically stable, then X is given by

X =

∞∫
0

etACetB dt. (11.9.6)

Proof. The first two statements follow from Proposition 7.2.4. If BT⊕ A
is asymptotically stable, then it follows from (11.9.5) using Lemma 11.9.2 and
Proposition 11.1.7 that
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X =

∞∫
0

vec−1
(
et(B

T⊕A)vecC
)

dt =

∞∫
0

vec−1
(
etB

T⊗ etA
)
vecC dt

=

∞∫
0

vec−1vec
(
etACetB

)
dt =

∞∫
0

etACetB dt. �

The following result provides a converse to Corollary 11.9.1 for the case of
asymptotic stability.

Corollary 11.9.4. Let A ∈ Rn×n, and let R ∈ Rn×n. Then, there exists a
unique matrix P ∈ R

n×n satisfying (11.9.1) if and only if A⊕A is nonsingular.
In this case, if R is symmetric, then P is symmetric. Now, assume that A is
asymptotically stable. Then, P ∈ Sn is given by

P =

∞∫
0

etA
T
RetA dt. (11.9.7)

Finally, if R is (positive semidefinite, positive definite), then P is (positive semidef-
inite, positive definite).

Proof. First note that A⊕A is nonsingular if and only if (A⊕A)T = AT⊕AT is
nonsingular. Now, the first statement follows from Proposition 11.9.3. To prove the
second statement, note that AT

(
P − PT

)
+
(
P − PT

)
A = 0, which implies that P

is symmetric. Now, suppose that A is asymptotically stable. Then, Fact 11.18.33
implies that A⊕A is asymptotically stable. Consequently, (11.9.7) follows from
(11.9.6).

The following results also include converse statements. We first consider
asymptotic stability.

Proposition 11.9.5. Let A ∈ R
n×n. Then, the following statements are equiv-

alent:

i) A is asymptotically stable.

ii) For every positive-definite matrix R ∈ Rn×n there exists a positive-definite
matrix P ∈ Rn×n such that (11.9.1) is satisfied.

iii) There exist a positive-definite matrix R ∈ Rn×n and a positive-definite
matrix P ∈ Rn×n such that (11.9.1) is satisfied.

Proof. The result i) =⇒ ii) follows from Corollary 11.9.1. The implication ii)
=⇒ iii) is immediate. To prove iii) =⇒ i), note that, since there exists a positive-
semidefinite matrix P satisfying (11.9.1), it follows from Proposition 12.4.3 that
(A,C) is observably asymptotically stable. Thus, there exists a nonsingular matrix
S ∈ R

n×n such that A = S
[
A1 0
A21 A2

]
S−1 and C =

[
C1 0

]
S−1, where (C1, A1)

is observable and A1 is asymptotically stable. Furthermore, since (S−1AS,CS) is
detectable, it follows that A2 is also asymptotically stable. Consequently, A is
asymptotically stable.
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Next, we consider the case of Lyapunov stability.

Proposition 11.9.6. Let A ∈ Rn×n. Then, the following statements hold:

i) If A is Lyapunov stable, then there exist a positive-definite matrix P ∈
Rn×n and a positive-semidefinite matrix R ∈ Rn×n such that rankR =
ν−(A) and such that (11.9.1) is satisfied.

ii) If there exist a positive-definite matrix P ∈ Rn×n and a positive-semidef-
inite matrix R ∈ Rn×n such that (11.9.1) is satisfied, then A is Lyapunov
stable.

Proof. To prove i), suppose that A is Lyapunov stable. Then, it follows
from Theorem 5.3.5 and Definition 11.8.1 that there exists a nonsingular matrix
S ∈ R

n×n such that A = S
[
A1 0
0 A2

]
S−1 is in real Jordan form, where A1 ∈ R

n1×n1,
A2 ∈ Rn2×n2, spec(A1) ⊂ jR, A1 is semisimple, and spec(A2) ⊂ OLHP. Next, it
follows from Fact 5.9.4 that there exists a nonsingular matrix S1 ∈ Rn1×n1 such
that A1 = S1J1S

−1
1 , where J1 ∈ Rn1×n1 is skew symmetric. Then, it follows that

AT
1P1 + P1A1 = S−T

1 (J1 + JT
1 )S−1

1 = 0, where P1
�= S−T

1 S−1
1 is positive definite.

Next, let R2 ∈ Rn2×n2 be positive definite, and let P2 ∈ Rn2×n2 be the positive-
definite solution of AT

2P2 + P2A2 + R2 = 0. Hence, (11.9.1) is satisfied with P
�=

S−T
[
P1 0
0 P2

]
S−1 and R �= S−T

[
0 0
0 R2

]
S−1.

To prove ii), suppose there exist a positive-semidefinite matrix R ∈ Rn×n and
a positive-definite matrix P ∈ Rn×n such that (11.9.1) is satisfied. Let λ ∈ spec(A),
and let x ∈ Rn be an eigenvector of A associated with λ. It thus follows from
(11.9.1) that 0 = x∗ATPx + x∗PAx + x∗Rx = (λ + λ)x∗Px + x∗Rx. Therefore,
Reλ = −x∗Rx/(2x∗Px), which shows that spec(A) ⊂ CLHP. Now, let jω ∈ spec(A),
and suppose that x ∈ Rn satisfies (jωI −A)2x = 0. Then, (jωI −A)y = 0, where
y = (jωI −A)x. Computing 0 = y∗

(
ATP + PA

)
y + y∗Ry yields y∗Ry = 0 and thus

Ry = 0. Therefore,
(
ATP + PA

)
y = 0, and thus y∗Py = (AT + jωI)Py = 0. Since

P is positive definite, it follows that y = (jωI −A)x = 0. Therefore, N(jωI −A) =
N
[
(jωI −A)2

]
. Hence, it follows from Proposition 5.5.8 that jω is semisimple.

Corollary 11.9.7. Let A∈Rn×n. Then, the following statements hold:

i) A is Lyapunov stable if and only if there exists a positive-definite matrix
P ∈ Rn×n such that ATP + PA is negative semidefinite.

ii) A is asymptotically stable if and only if there exists a positive-definite
matrix P ∈ Rn×n such that ATP + PA is negative definite.

11.10 Discrete-Time Stability Theory

The theory of difference equations is concerned with the solutions of discrete-
time dynamical systems of the form

xk+1 = f(xk), (11.10.1)

where f : Rn → Rn, k ∈ N, xk ∈ Rn, and x0 is the initial condition. The solution
xk ≡ xe is an equilibrium of (11.10.1) if xe = f(xe).
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A linear discrete-time system has the form

xk+1 = Axk, (11.10.2)

where A ∈ Rn×n. For k ∈ N, xk is given by

xk = Akx0. (11.10.3)

The behavior of the sequence (xk)∞k=0 is determined by the stability of A. To study
the stability of discrete-time systems it is helpful to define the open unit disk (OUD)
and the closed unit disk (CUD) by

OUD �= {x ∈ C: |x| < 1} (11.10.4)

and
CUD �= {x ∈ C: |x| ≤ 1}. (11.10.5)

Definition 11.10.1. For A ∈ F
n×n, define the following classes of matrices:

i) A is discrete-time Lyapunov stable if spec(A) ⊂ CUD and, if λ ∈ spec(A)
and |λ| = 1, then λ is semisimple.

ii) A is discrete-time semistable if spec(A) ⊂ OUD ∪ {1} and, if 1 ∈ spec(A),
then 1 is semisimple.

iii) A is discrete-time asymptotically stable if spec(A) ⊂ OUD.

Proposition 11.10.2. Let A ∈ Rn×n and consider the linear discrete-time
system (11.10.2). Then, the following statements are equivalent:

i) A is discrete-time Lyapunov stable.

ii) For every initial condition x0 ∈ Rn, the sequence {‖xk‖}∞k=1 is bounded,
where ‖ · ‖ is a norm on Rn.

iii) For every initial condition x0 ∈ Rn, the sequence {‖Akx0‖}∞k=1 is bounded,
where ‖ · ‖ is a norm on Rn.

iv) The sequence {‖Ak‖}∞k=1 is bounded, where ‖ · ‖ is a norm on Rn×n.

The following statements are equivalent:

v) A is discrete-time semistable.

vi) limk→∞ Ak exists. In fact, limk→∞ Ak = I − (I −A)(I −A)#.

vii) For every initial condition x0 ∈ R
n, limk→∞ xk exists.

The following statements are equivalent:

viii) A is discrete-time asymptotically stable.

ix) sprad(A) < 1.

x) For every initial condition x0 ∈ Rn, limk→∞ xk = 0.

xi) For every initial condition x0 ∈ Rn, Akx0 → 0 as k →∞.
xii) Ak → 0 as k →∞.
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The following definition concerns the discrete-time stability of a polynomial.

Definition 11.10.3. Let p ∈ R[s]. Then, define the following terminology:

i) p is discrete-time Lyapunov stable if roots(p) ⊂ CUD and, if λ is an imag-
inary root of p, then mp(λ) = 1.

ii) p is discrete-time semistable if roots(p) ⊂ OUD ∪ {1} and, if 1 ∈ roots(p),
then mp(1) = 1.

iii) p is discrete-time asymptotically stable if roots(p) ⊂ OUD.

Proposition 11.10.4. Let A ∈ R
n×n. Then, the following statements hold:

i) A is discrete-time Lyapunov stable if and only if μA is discrete-time Lya-
punov stable.

ii) A is discrete-time semistable if and only if μA is discrete-time semistable.

Furthermore, the following statements are equivalent:

iii) A is discrete-time asymptotically stable.

iv) μA is discrete-time asymptotically stable.

v) χA is discrete-time asymptotically stable.

We now consider the discrete-time Lyapunov equation

P = ATPA+R = 0. (11.10.6)

Proposition 11.10.5. Let A ∈ Rn×n. Then, the following statements are
equivalent:

i) A is discrete-time asymptotically stable.

ii) For every positive-definite matrix R ∈ Rn×n there exists a positive-definite
matrix P ∈ Rn×n such that (11.10.6) is satisfied.

iii) There exist a positive-definite matrix R ∈ Rn×n and a positive-definite
matrix P ∈ Rn×n such that (11.10.6) is satisfied.

Proposition 11.10.6. Let A ∈ Rn×n. Then, A is discrete-time Lyapunov-
stable if and only if there exist a positive-definite matrix P ∈ Rn×n and a positive-
semidefinite matrix R ∈ Rn×n such that (11.10.6) is satisfied.

11.11 Facts on Matrix Exponential Formulas

Fact 11.11.1. Let A ∈ Rn×n. Then, the following statements hold:

i) If A2 = 0, then etA = I + tA.

ii) If A2 = I, then etA = (cosh t)I + (sinh t)A.

iii) If A2 = −I, then etA = (cos t)I + (sin t)A.
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iv) If A2 = A, then etA = I + (et − 1)A.

v) If A2 = −A, then etA = I + (1− e−t)A.
vi) If rankA = 1 and trA = 0, then etA = I + tA.

vii) If rankA = 1 and trA �= 0, then etA = I + e(tr A)t−1
trA A.

(Remark: See [1085].)

Fact 11.11.2. Let A �=
[

0 In
In 0

]
. Then,

etA = (cosh t)I2n + (sinh t)A.

Furthermore,
etJ2n = (cos t)I2n + (sin t)J2n.

Fact 11.11.3. Let A ∈ Rn×n, and assume that A is skew symmetric. Then,
{eθA: θ ∈ R} ⊆ SO(n) is a group. If, in addition, n = 2, then

{eθJ2: θ ∈ R} = SO(2).

(Remark: Note that eθJ2 =
[

cos θ sin θ
− sin θ cos θ

]
. See Fact 3.11.6.)

Fact 11.11.4. Let A ∈ Rn×n, where

A �=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 · · · 0
0 0 2 0 · · · 0
0 0 0 3 · · · 0
...

...
...

. . .
. . .

...

0 0 0 0
. . . n−1

0 0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Then,

eA =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
0
0

) (
1
0

) (
2
0

) (
3
0

) · · · (n−1
0

)
0
(
1
1

) (
2
1

) (
3
1

) · · · (n−1
1

)
0 0

(
2
2

) (
3
2

) · · · (n−1
2

)
...

...
...

. . . . . .
...

0 0 0 0
. . .

(
n−1
n−2

)
0 0 0 0 · · · (n−1

n−1

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Furthermore, if k ≥ n, then

k∑
i=1

in−1 =
[

1n−1 2n−1 · · · nn−1
]
e−A

⎡
⎢⎣
(
k
1

)
...(
k
n

)
⎤
⎥⎦.

(Proof: See [73].) (Remark: For related results, see [5], where A is called the
creation matrix. See Fact 5.16.3.)
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Fact 11.11.5. Let A ∈ F3×3. If spec(A) = {λ}, then

etA = eλt
[
I + t(A−λI) + 1

2 t
2(A−λI)2].

If mspec(A) = {λ, λ, μ}ms, where μ �= λ, then

etA = eλt[I + t(A−λI)] +
[
eμt − eλt
(μ−λ)2

− teλt

μ−λ
]
(A−λI)2.

If spec(A) = {λ, μ, ν}, then

etA =
eλt

(λ − μ)(λ− ν) (A− μI)(A− νI) +
eμt

(μ−λ)(μ− ν) (A−λI)(A− νI)

+
eνt

(ν −λ)(ν − μ)
(A−λI)(A− μI).

(Proof: See [67].) (Remark: Additional expressions are given in [2, 175, 191, 321,
640, 1085, 1088].)

Fact 11.11.6. Let x ∈ R3, assume that x is nonzero, and define θ �= ‖x‖2.
Then,

eK(x) = I +
sin θ
θ

K(x) +
1− cos θ

θ2
K2(x)

= I +
sin θ
θ

K(x) + 1
2

[
sin(1

2θ)
1
2θ

]2
K2(x)

= (cos θ)I +
sin θ
θ

K(x) +
1− cos θ

θ2
xxT.

Furthermore,
eK(x)x = x,

spec[eK(x)] = {1, ej‖x‖2, e−j‖x‖2},
and

tr eK(x) = 1 + 2cos θ = 1 + 2cos‖x‖2.
(Proof: The Cayley-Hamilton theorem or Fact 3.10.1 implies thatK3(x)+θ2K(x) =
0. Then, every term Kk(x) in the expansion of eK(x) can be expressed in terms
of K(x) or K2(x). Finally, Fact 3.10.1 implies that θ2I +K2(x) = xxT.) (Remark:
Fact 11.11.7 shows that, for all z ∈ R3, eK(x)z is the counterclockwise (right-hand-
rule) rotation of z about the vector x through the angle θ, which is given by the
Euclidean norm of x. In Fact 3.11.8, the cross product is used to construct the pivot
vector x from a given pair of vectors having the same length.)

Fact 11.11.7. Let x, y ∈ R3, and assume that x and y are nonzero. Then,
there exists a skew-symmetric matrix A ∈ R

3×3 such that y = eAx if and only if
xTx = yTy. If x �= −y, then one such matrix is A = θK(z), where

z
�=

1
‖x× y‖2x× y

and
θ

�= cos−1

(
xTy

‖x‖2‖y‖2

)
.
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If x = −y, then one such matrix is A = πK(z), where z �= ‖y‖−1
2 ν× y and ν ∈ {y}⊥

satisfies νTν = 1. (Proof: This result follows from Fact 3.11.8 and Fact 11.11.6,
which provide equivalent expressions for an orthogonal matrix that transforms a
given vector into another given vector having the same length. This result thus
provides a geometric interpretation for Fact 11.11.6.) (Remark: Note that z is the
unit vector perpendicular to the plane containing x and y, where the direction of
z is determined by the right-hand rule. An intuitive proof is to let x be the initial
condition to the differential equation ẇ(t) = K(z)w(t), that is, w(0) = x, where
t ∈ [0, θ]. Then, the derivative ẇ(t) lies in the x, y plane and is perpendicular to w(t)
for all t ∈ [0, θ]. Hence, y = w(θ).) (Remark: Since det eA = etrA = 1, it follows
that every pair of vectors in R3 having the same Euclidean length are related by
a proper rotation. See Fact 3.9.5 and Fact 3.14.4. This is a linear interpolation
problem. See Fact 3.9.5, Fact 3.11.8, and [773].) (Remark: See Fact 3.11.31.)
(Remark: Parameterizations of SO(3) are considered in [1195, 1246].) (Problem:
Extend this result to Rn. See [135, 1164].)

Fact 11.11.8. Let A ∈ SO(3), let z ∈ R3 be an eigenvector of A corresponding
to the eigenvalue 1 of A, assume that ‖z‖2 = 1, assume that trA > −1, and let
θ ∈ (−π, π) satisfy trA = 1 + 2cos θ. Then,

A = eθK(z).

(Remark: See Fact 5.11.2.)

Fact 11.11.9. Let x, y ∈ R3, and assume that x and y are nonzero. Then,
xTx = yTy if and only if

y = e
θ

‖x×y‖2
(yxT−xyT)

x,

where
θ �= cos−1

(
xTy

‖x‖2‖y‖2

)
.

(Proof: Use Fact 11.11.7.) (Remark: Note that K(x× y) = yxT − xyT.)

Fact 11.11.10. Let A ∈ R
3×3, assume that A ∈ SO(3) and trA > −1, and

let θ ∈ (−π, π) satisfy trA = 1 + 2cos θ. Then,

logA =

{
0, θ = 0,
θ

2sin θ (A−AT), θ �= 0.

(Proof: See [746, p. 364] and [1013].) (Remark: See Fact 11.15.10.)

Fact 11.11.11. Let x ∈ R3, assume that x is nonzero, and define θ �= ‖x‖2.
Then,

K(x) = θ
2sin θ [e

K(x) − e−K(x)].

(Proof: Use Fact 11.11.10.) (Remark: See Fact 3.10.1.)

Fact 11.11.12. Let A ∈ SO(3), let x, y ∈ R3, and assume that xTx = yTy.
Then, Ax = y if and only if, for all t ∈ R,

AetK(x)A−1 = etK(y).
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(Proof: See [887].)

Fact 11.11.13. Let x, y, z ∈ R3. Then, the following statements are equiva-
lent:

i) For every A ∈ SO(3), there exist α, β, γ ∈ R such that

A = eαK(x)eβK(y)eγK(z).

ii) yTx = 0 and yTz = 0.

(Proof: See [887].) (Remark: This result is due to Davenport.) (Problem: Given
A ∈ SO(3), determine α, β, γ.)

Fact 11.11.14. Let A ∈ R4×4, and assume that A is skew symmetric with
mspec(A) = {jω,−jω, jμ,−jμ}ms. If ω �= μ, then

eA = a3A
3 + a2A

2 + a1A+ a0I,

where
a3 =

(
ω2− μ2

)−1
(

1
μ sinμ− 1

ω sinω
)
,

a2 =
(
ω2− μ2

)−1
(cosμ− cosω),

a1 =
(
ω2− μ2

)−1
(
ω2

μ sinμ− μ2

ω sinω
)
,

a0 =
(
ω2− μ2

)−1(
ω2cosμ− μ2cosω

)
.

If ω = μ, then
eA = (cosω)I +

sinω
ω

A.

(Proof: See [607, p. 18] and [1088].) (Remark: There are typographical errors in
[607, p. 18] and [1088].) (Remark: See Fact 4.9.20 and Fact 4.10.2.)

Fact 11.11.15. Let a, b, c ∈ R, define the skew-symmetric matrix A ∈ R4×4,
by either

A �=

⎡
⎢⎢⎣

0 a b c
−a 0 −c b
−b c 0 −a
−c −b a 0

⎤
⎥⎥⎦

or

A �=

⎡
⎢⎢⎣

0 a b c
−a 0 c −b
−b −c 0 a
−c b −a 0

⎤
⎥⎥⎦,

and define θ �=
√
a2 + b2 + c2. Then,

mspec(A) = {jθ,−jθ, jθ,−jθ}ms .

Furthermore,

Ak =

⎧⎨
⎩

(−1)k/2θkI, k even,

(−1)(k−1)/2θk−1A, k odd,
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and
eA = (cos θ)I +

sin θ
θ

A.

(Proof: See [1357].) (Remark: (sin 0)/0 = 1.) (Remark: The skew-symmetric
matrix A arises in the kinematic relationship between the angular velocity vector
and quaternion (Euler-parameter) rates. See [152, p. 385].) (Remark: The two
matrices A are similar. To show this, note that Fact 5.9.9 implies that A and
−A are similar. Then, apply the similarity transformation S = diag(−1, 1, 1, 1).)
(Remark: See Fact 4.9.20 and Fact 4.10.2.)

Fact 11.11.16. Let x ∈ R3, and define the skew-symmetric matrix A ∈ R4×4

by

A =

[
0 −xT

x −K(x)

]
.

Then, for all t ∈ R,

e
1
2 tA = cos(1

2‖x‖t)I4 +
sin(1

2‖x‖t)
‖x‖ A.

(Proof: See [733, p. 34].) (Remark: The matrix 1
2A characterizes quaternion rates

in terms of the angular velocity vector.)

Fact 11.11.17. Let a, b ∈ R3, define the skew-symmetric matrix A ∈ R4×4 by

A =

[
K(a) b

−bT 0

]
,

and assume that aTb = 0. Then,

eA = I4 +
sinα
α

A+
1− cosα

α2
A2,

where α �=
√
aTa+ bTb. (Proof: See [1334].) (Remark: See Fact 4.9.20 and Fact

4.10.2.)

Fact 11.11.18. Let a, b ∈ Rn−1, define A ∈ Rn×n by

A
�=
[

0 aT

b 0(n−1)×(n−1)

]
,

and define α �=
√|aTb|. Then, the following statements hold:

i) If aTb < 0, then

etA = I + sinα
α A+ 1

2

[
sin(α/2)
α/2

]2
A2.

ii) If aTb = 0, then
etA = I +A+ 1

2A
2.

iii) If aTb > 0, then

etA = I + sinhα
α A+ 1

2

[
sinh(α/2)
α/2

]2
A2.
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(Proof: See [1480].)

11.12 Facts on the Matrix Sine and Cosine

Fact 11.12.1. Let A ∈ Cn×n, and define

sinA �= A− 1
3!A

3 + 1
5!A

5 − 1
7!A

7 + · · ·
and

cosA �= I − 1
2!A

2 + 1
4!A

4 − 1
6!A

6 + · · · .
Then, the following statements hold:

i) sinA = 1
2j (e

jA − e−jA).

ii) cosA = 1
2 (ejA + e−jA).

iii) sin2 A+ cos2A = I.

iv) sin(2A) = 2(sinA)cosA.

v) cos(2A) = 2(cos2A)− I.
vi) If A is real, then sinA = Re ejA and cosA = Re ejA.

vii) sin(A⊕B) = (sinA)⊗ cosB − (cosA)⊗ sinB.

viii) cos(A⊕B) = (cosA)⊗ cosB − (sinA)⊗ sinB.

ix) If A is involutory and k is an integer, then cos(kπA) = (−1)kI.

Furthermore, the following statements are equivalent:

x) For all t ∈ R, sin[(A+B)t] = sin(tA) cos(tB) + cos(tA) sin(tB).

xi) For all t ∈ R, cos[(A+B)t] = cos(tA) cos(tB)− sin(tA) sin(tB).

xii) AB = BA.

(Proof: See [683, pp. 287, 288, 300].)

11.13 Facts on the Matrix Exponential for One Matrix

Fact 11.13.1. Let A ∈ Fn×n, and assume that A is (lower triangular, upper
triangular). Then, so is eA. If, in addition, A is Toeplitz, then so is eA. (Remark:
See Fact 3.18.7.)

Fact 11.13.2. Let A ∈ F
n×n. Then,

sprad
(
eA
)

= espabs(A).

Fact 11.13.3. Let A ∈ Rn×n, and letX0 ∈ Rn×n. Then, the matrix differential
equation



678 CHAPTER 11

Ẋ(t) = AX(t),

X(0) = X0,

where t ≥ 0, has the unique solution

X(t) = etAX0.

Fact 11.13.4. Let A: [0, T ] �→ Rn×n, assume that A is continuous, and let
X0 ∈ R

n×n. Then, the matrix differential equation

Ẋ(t) = A(t)X(t),
X(0) = X0

has a unique solution X: [0, T ] �→ Rn×n. Furthermore, for all t ∈ [0, T ],

detX(t) = e
∫ t
0 trA(τ) dτdetX0.

Therefore, if X0 is nonsingular, then X(t) is nonsingular for all t ∈ [0, T ]. If, in
addition, for all t1, t2 ∈ [0, T ],

A(t2)

t2∫
t1

A(τ) dτ =

t2∫
t1

A(τ) dτA(t2),

then, for all t ∈ [0, T ],
X(t) = e

∫
t
0A(τ) dτX0.

(Proof: It follows from Fact 10.11.19 that (d/dt) detX = tr(XAẊ) = tr(XAAX) =
tr(XXAA) = (detX)trA. This proof is given in [563]. See also [711, pp. 507,
508] and [1150, pp. 64–66].) (Remark: See Fact 11.13.4.) (Remark: The first
result is Jacobi’s identity.) (Remark: If the commutativity assumption does not
hold, then the solution is given by the Peano-Baker series. See [1150, Chapter 3].
Alternative expressions for X(t) are given by the Magnus, Fer, Baker-Campbell-
Hausdorff-Dynkin, Wei-Norman, Goldberg, and Zassenhaus expansions. See [228,
443, 745, 746, 830, 949, 1056, 1244, 1274, 1414, 1415, 1419] and [621, pp. 118–120].)

Fact 11.13.5. Let A: [0, T ] �→ Rn×n, assume that A is continuous, let
B: [0, T ] �→ Rn×m, assume that B is continuous, let X: [0, T ] �→ Rn×n satisfy
the matrix differential equation

Ẋ(t) = A(t)X(t),
X(0) = I,

define
Φ(t, τ) �= X(t)X−1(τ),

let u: [0, T ] �→ R
m, and assume that u is continuous. Then, the vector differential

equation
ẋ(t) = A(t)x(t) +B(t)u(t),

x(0) = x0

has the unique solution

x(t) = X(t)x0 +

t∫
0

Φ(t, τ)B(τ)u(τ)dτ.
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(Remark: Φ(t, τ) is the state transition matrix.)

Fact 11.13.6. Let A ∈ Rn×n, let λ ∈ spec(A), and let v ∈ Cn be an eigenvec-
tor of A associated with λ. Then, for all t ≥ 0,

x(t) �= Re
(
eλtv
)

satisfies ẋ(t) = Ax(t). (Remark: x(t) is an eigensolution.)

Fact 11.13.7. Let A ∈ Rn×n, let λ ∈ spec(A), and let (v1, . . . , vk) ∈ (Cn)k

be a Jordan chain of A associated with λ. Then, for all t ≥ 0 and all k̂ such that
1 ≤ k̂ ≤ k,

x(t) �= Re
[
eλt( 1

(k̂−1)!
tk̂−1v1 + · · ·+ tvk̂−1 + vk̂)

]
satisfies ẋ(t) = Ax(t). (Remark: See Fact 5.14.8 for the definition of a Jordan
chain.) (Remark: x(t) is a generalized eigensolution.) (Example: Let A = [ 0 1

0 0 ],

λ = 0, k̂ = 2, v1 =
[
β
0

]
, and v2 =

[
0
β

]
. Then, x(t) = tv1 + v2 =

[
βt
β

]
is a

generalized eigensolution. Alternatively, choosing k̂ = 1 yields the eigensolution
x(t) = v1 =

[
β
0

]
. Note that β is represents velocity for the generalized eigensolution

and position for the eigensolution. See [1062].)

Fact 11.13.8. Let S: [t0, t1] → Rn×n be differentiable. Then, for all t ∈
[t0, t1], d

dt
S2(t) = Ṡ(t)S(t) + S(t)Ṡ(t).

Let S1: [t0, t1] → Rn×m and S2: [t0, t1] → Rm×l be differentiable. Then, for all
t ∈ [t0, t1],

d
dt
S1(t)S2(t) = Ṡ1(t)S2(t) + S1(t)Ṡ2(t).

Fact 11.13.9. Let A ∈ Fn×n, and define A1
�= 1

2(A+A∗) and A2
�= 1

2(A−A∗).
Then, A1A2 = A2A1 if and only if A is normal. In this case, eA1eA2 is the polar
decomposition of eA. (Remark: See Fact 3.7.28.) (Problem: Obtain the polar
decomposition of eA when A is not normal.)

Fact 11.13.10. Let A ∈ F
n×m, and assume that rankA = m. Then,

A+ =

∞∫
0

e−tA
∗AA∗ dt.

Fact 11.13.11. Let A ∈ Fn×n, and assume that A is nonsingular. Then,

A−1 =

∞∫
0

e−tA
∗A dtA∗.

Fact 11.13.12. Let A ∈ Fn×n, and let k �= indA. Then,

AD =

∞∫
0

e−tA
kA(2k+1)∗Ak+1

dtAkA(2k+1)∗Ak.
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(Proof: See [570].)

Fact 11.13.13. Let A ∈ Fn×n, and assume that indA = 1. Then,

A# =

∞∫
0

e−tAA
3∗A2

dtAA3∗A.

(Proof: See Fact 11.13.12.)

Fact 11.13.14. Let A ∈ F
n×n, and let k �= indA. Then,

t∫
0

eτA dτ = AD
(
etA − I)+

(
I −AAD

)(
tI + 1

2! t
2A+ · · ·+ 1

k! t
kAk−1

)
.

If, in particular, A is group invertible, then
t∫

0

eτA dτ = A#
(
etA − I)+

(
I −AA#

)
t.

Fact 11.13.15. Let A ∈ Fn×n, let mspec(A) = {λ1, . . . , λr, 0, . . . , 0}ms, where
λ1, . . . , λr are nonzero, and let t > 0. Then,

det

t∫
0

eτA dτ = tn−r
r∏
i=1

λ−1
i

(
eλit −1

)
.

Hence, det
∫ t
0
eτA dτ �= 0 if and only if, for every nonzero integer k, 2kπj/t �∈ spec(A).

Finally, det
(
etA − I) �= 0 if and only if detA �= 0 and det

∫ t
0
eτA dτ �= 0.

Fact 11.13.16. Let A ∈ Fn×n, and assume that there exists α ∈ R such that
spec(A) ⊂ {z ∈ C: α ≤ Im z < 2π + α}. Then, eA is (diagonal, upper triangular,
lower triangular) if and only if A is. (Proof: See [932].)

Fact 11.13.17. Let A ∈ Fn×n. Then, the following statements hold:

i) If A is unipotent, then the series (11.5.1) is finite, logA exists and is nilpo-
tent, and elogA = A.

ii) If A is nilpotent, then eA is unipotent and log eA = A.

(Proof: See [624, p. 60].)

Fact 11.13.18. Let B ∈ Rn×n. Then, there exists a normal matrix A ∈ Rn×n

such that B = eA if and only if B is normal, nonsingular, and every negative
eigenvalue of B has even algebraic multiplicity.

Fact 11.13.19. Let C ∈ Rn×n, assume that C is nonsingular, and let k ≥ 1.
Then, there exists a matrix B ∈ Rn×n such that C2k = eB. (Proof: Use Proposition
11.4.3 with A = C2, and note that every negative eigenvalue −α < 0 of C2 arises
as the square of complex conjugate eigenvalues ±j√α of C.)
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11.14 Facts on the Matrix Exponential for Two or More Matrices

Fact 11.14.1. Let A ∈ Fn×n, B ∈ Fn×m, and C ∈ Fm×m. Then,

et[
A B
0 C ] =

[
etA

∫ t
0 e

(t−τ)ABeτC dτ

0 etC

]
.

Furthermore,
t∫

0

eτA dτ =
[
I 0

]
et[

A I
0 0 ]
[

0
I

]
.

(Remark: The result can be extended to block-k × k matrices. See [1359]. For an
application to sampled-data control, see [1053].)

Fact 11.14.2. Let A,B ∈ F
n×n, and consider the following conditions:

i) A = B.

ii) eA = eB.

iii) AB = BA.

iv) AeB = eBA.

v) eAeB = eBeA.

vi) eAeB = eA+B.

vii) eAeB = eBeA = eA+B.

Then, the following statements hold:

viii) iii) =⇒ iv) =⇒ v).

ix) iii) =⇒ vii).

x) If spec(A) is 2πj congruence free, then ii) =⇒ iii) =⇒ iv) ⇐⇒ v).

xi) If spec(A) and spec(B) are 2πj congruence free, then ii) =⇒ iii) ⇐⇒ iv)
⇐⇒ v).

xii) If spec(A+ B) is 2πj congruence free, then iii) ⇐⇒ vii).

xiii) If, for all λ ∈ spec(A) and all μ ∈ spec(B), it follows that (λ − μ)/(2πj) is
not a nonzero integer, then ii) =⇒ i).

xiv) If A and B are Hermitian, then i) ⇐⇒ ii) =⇒ iii) ⇐⇒ iv) ⇐⇒ v)⇐⇒ vi).

(Remark: The set S ⊂ C is 2πj congruence free if no two elements of S differ
by a nonzero integer multiple of 2πj.) (Proof. See [629, pp. 88, 89, 270–272] and
[1065, 1169, 1170, 1171, 1208, 1420, 1421]. The assumption of normality in operator
versions of some of these statements in [1065, 1171] is not needed in the matrix case.
Statement xiii) is given in [683, p. 32].) (Remark: The matrices A �=

[
0 1
0 2πj

]
and

B �=
[ 2πj 0

0 −2πj

]
do not commute but satisfy eA = eB = eA+B = I. The same
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statement holds for

A = 2π

⎡
⎣ 0 0

√
3/2

0 0 −1/2
−√3/2 1/2 0

⎤
⎦, B = 2π

⎡
⎣ 0 0 −√3/2

0 0 −1/2√
3/2 1/2 0

⎤
⎦.

Consequently, vii) does not imply iii).) (Problem: Does vi) imply vii)? Can vii) be
replaced by vi) in xii)?)

Fact 11.14.3. Let A,B ∈ R
n×n. Then,

d
dt
eA+tB =

1∫
0

eτ(A+tB)Be(1−τ)(A+tB) dτ.

Hence,

Dexp(A;B) =
d
dt
eA+tB

∣∣∣∣∣
t=0

=

1∫
0

eτABe(1−τ)A dτ.

Furthermore,
d
dt

tr eA+tB = tr
(
eA+tBB

)
.

Hence,
d
dt

tr eA+tB

∣∣∣∣
t=0

= tr
(
eAB
)
.

(Proof: See [170, p. 175], [442, p. 371], or [881, 977, 1027].)

Fact 11.14.4. Let A,B ∈ Fn×n. Then,

d
dt
eA+tB

∣∣∣∣
t=0

=
(
eadA − I

adA

)
(B)eA

= eA
(
I − e−adA

adA

)
(B)

=
∞∑
k=0

1
(k+1)!

adkA(B)eA.

(Proof: The second and fourth expressions are given in [103, p. 49] and [746, p.
248], while the third expression appears in [1347]. See also [1366, pp. 107–110].)
(Remark: See Fact 2.18.6.)

Fact 11.14.5. LetA,B ∈ F
n×n, and assume that eA = eB. Then, the following

statements hold:

i) If |λ| < π for all λ ∈ spec(A) ∪ spec(B), then A = B.

ii) If λ−μ �= 2kπj for all λ ∈ spec(A), μ ∈ spec(B), and k ∈ Z, then [A,B] = 0.

iii) If A is normal and σmax(A) < π, then [A,B] = 0.

iv) If A is normal and σmax(A) = π, then [A2, B] = 0.

(Proof: See [1173, 1208] and [1366, p. 111].) (Remark: If [A,B] = 0, then [A2, B] =
0.)
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Fact 11.14.6. Let A,B ∈ Fn×n, and assume thatA andB are skew Hermitian.
Then, etAetB is unitary, and there exists a skew-Hermitian matrix C(t) such that
etAetB = eC(t). (Problem: Does (11.4.1) converge in this case? See [227, 458, 1123].)

Fact 11.14.7. Let A,B ∈ Fn×n, and assume that A and B are Hermitian.
Then,

lim
p→0

(
e

p
2AepBe

p
2A
)1/p

= eA+B.

(Proof: See [53].) (Remark: This result is related to the Lie-Trotter formula given
by Corollary 11.4.8. For extensions, see [9, 533].)

Fact 11.14.8. Let A,B ∈ Fn×n, and assume that A and B are Hermitian.
Then,

lim
p→∞

[
1
2

(
epA + epB

)]1/p
= e

1
2(A+B).

(Proof: See [193].)

Fact 11.14.9. Let A,B ∈ Fn×n. Then,

lim
k→∞

[
e

1
kAe

1
kBe−

1
kAe−

1
kB
]k2

= e[A,B].

Fact 11.14.10. Let A ∈ F
n×m, X ∈ F

m×l, and B ∈ F
l×n. Then,

d
dX

tr eAXB = BeAXBA.

Fact 11.14.11. Let A,B ∈ Fn×n. Then,

d
dt
etAetBe−tAe−tB

∣∣∣∣
t=0

= 0

and
d
dt
e
√
tAe

√
tBe−

√
tAe−

√
tB

∣∣∣∣
t=0

= AB −BA.

Fact 11.14.12. Let A,B,C ∈ Fn×n, assume there exists β ∈ F such that
[A,B] = βB + C, and assume that [A,C] = [B,C] = 0. Then,

eA+B = eAeφ(β)Beψ(β)C,

where

φ(β) �=

{
1
β

(
1− e−β), β �= 0,

1, β = 0,

and

ψ(β) �=

{
1
β2

(
1− β − e−β), β �= 0,

− 1
2 , β = 0.

(Proof: See [556, 1264].)
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Fact 11.14.13. Let A,B ∈ Fn×n, and assume there exist α, β ∈ F such that
[A,B] = αA+ βB. Then,

et(A+B) = eφ(t)Aeψ(t)B,

where

φ(t) �=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
t, α = β = 0,

α−1log(1 + αt), α = β �= 0, 1 + αt > 0,∫ t
0

α−β
αe(α−β)τ−β dτ, α �= β,

and

ψ(t) �=

t∫
0

e−βφ(τ) dτ.

(Proof: See [1265].)

Fact 11.14.14. Let A,B ∈ Fn×n, and assume there exists nonzero β ∈ F such
that [A,B] = αB. Then, for all t > 0,

et(A+B) = etAe[(1−e
−αt)/α]B.

(Proof: Apply Fact 11.14.12 with [tA, tB] = αt(tB) and β = αt.)

Fact 11.14.15. Let A,B ∈ Fn×n, and assume that [[A,B], A] = 0 and
[[A,B], B] = 0. Then, for all t ∈ R,

etAetB = etA+tB+(t2/2)[A,B].

In particular,

eAeB = eA+B+ 1
2 [A,B] = eA+Be

1
2 [A,B] = e

1
2 [A,B]eA+B

and
eBe2AeB = e2A+2B.

(Proof: See [624, pp. 64–66] and [1431].)

Fact 11.14.16. Let A,B ∈ Fn×n, and assume that [A,B] = B2. Then,

eA+B = eA(I +B).

Fact 11.14.17. Let A,B ∈ F
n×n. Then, for all t ∈ [0,∞),

et(A+B) = etAetB +
∞∑
k=2

Ckt
k,

where, for all k ∈ N,

Ck+1
�= 1

k+1 ([A+B]Ck + [B,Dk]), C0
�= 0,

and
Dk+1

�= 1
k+1 (ADk +DkB), D0

�= I.

(Proof: See [1125].)
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Fact 11.14.18. Let A,B ∈ Fn×n. Then, for all t ∈ [0,∞),

et(A+B) = etAetBetC2etC3 · · · ,
where

C2
�= − 1

2 [A,B], C3
�= 1

3 [B, [A,B]] + 1
6 [A, [A,B]].

(Remark: This result is the Zassenhaus product formula. See [683, p. 236] and
[1176].) (Remark: Higher order terms are given in [1176].) (Remark: Conditions
for convergence do not seem to be available.)

Fact 11.14.19. Let A ∈ R2n×2n, and assume that A is symplectic and dis-
crete-time Lyapunov stable. Then, spec(A) ⊂ {s ∈ C: |s| = 1}, amA(1) and
amA(−1) are even, A is semisimple, and there exists a Hamiltonian matrix B ∈
R2n×2n such that A = eB. (Proof: Since A is symplectic and discrete-time Lyapunov
stable, it follows that the spectrum of A is a subset of the unit circle and A is
semisimple. Therefore, the only negative eigenvalue that A can have is −1. Since
all nonreal eigenvalues appear in complex conjugate pairs and A has even order, and
since, by Fact 3.19.10, detA = 1, it follows that the eigenvalues−1 and 1 (if present)
have even algebraic multiplicity. The fact that A has a Hamiltonian logarithm now
follows from Theorem 2.6 of [404].) (Remark: See xiii) of Proposition 11.6.5.)

Fact 11.14.20. Let A,B ∈ Fn×n, assume that A is positive definite, and
assume that B is positive semidefinite. Then,

A+B ≤ A1/2eA
−1/2BA−1/2

A1/2.

Hence,
det(A+B)

detA
≤ etrA−1B.

Furthermore, for each inequality, equality holds if and only if B = 0. (Proof: For
positive-semidefinite A it follows that eA ≤ I +A.)

Fact 11.14.21. Let A,B ∈ Fn×n, and assume that A and B are Hermitian.
Then,

I ◦ (A+B) ≤ log
(
eA ◦ eB).

(Proof: See [43, 1485].) (Remark: See Fact 8.21.48.)

Fact 11.14.22. Let A,B ∈ Fn×n, assume that A and B are Hermitian, assume
that A ≤ B, let α, β ∈ R, assume that either αI ≤ A ≤ βI or αI ≤ B ≤ βI, and let
t > 0. Then,

etA ≤ S(t, eβ−α)etB,

where, for t > 0 and h > 0,

S(t, h) �=

⎧⎪⎨
⎪⎩

(ht −1)ht/(h
t−1)

etlog h
, h �= 1,

1, h = 1.

(Proof: See [518].) (Remark: S(t, h) is Specht’s ratio. See Fact 1.10.22 and Fact
1.15.19.)
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Fact 11.14.23. Let A,B ∈ Fn×n, assume that A and B are Hermitian, let
α, β ∈ R, assume that αI ≤ A ≤ βI and αI ≤ B ≤ βI, and let t > 0. Then,

1
S(1, eβ−α)S1/t(t, eβ−α)

[
αetA + (1− α)etB

]1/t
≤ eαA+(1−α)B

≤ S(1, eβ−α)
[
αetA + (1− α)etB

]1/t
,

where S(t, h) is defined in Fact 11.14.22. (Proof: See [518].)

Fact 11.14.24. Let A,B ∈ Fn×n, and assume that A and B are positive
definite. Then,

log detA = tr logA

and
log detAB = tr(logA+ logB).

Fact 11.14.25. Let A,B ∈ Fn×n, and assume that A and B are positive
definite. Then,

tr(A−B) ≤ tr[A(logA− logB)]

and
(log trA− log trB)trA ≤ tr[A(logA− logB)].

(Proof: See [159] and [197, p. 281].) (Remark: The first inequality is Klein’s
inequality. See [201, p. 118].) (Remark: The second inequality is equivalent to the
thermodynamic inequality. See Fact 11.14.31.) (Remark: tr[A(logA − logB)] is
the relative entropy of Umegaki.)

Fact 11.14.26. Let A,B ∈ Fn×n, assume that A and B are positive definite,
and define

μ(A,B) �= e
1
2 (logA+logB).

Then, the following statements hold:

i) μ(A,A−1) = I.

ii) μ(A,B) = μ(B,A).

iii) If AB = BA, then μ(A,B) = AB.

(Proof: See [74].) (Remark: With multiplication defined by μ, the set of n × n
positive-definite matrices is a commutative Lie group. See [74].)

Fact 11.14.27. Let A,B ∈ Fn×n, assume that A and B are positive definite,
and let p > 0. Then,

1
p tr[Alog(Bp/2ApBp/2)] ≤ tr[A(logA+ logB)] ≤ 1

p tr[Alog(Ap/2BpAp/2)].

Furthermore,

lim
p↓0

1
p tr[Alog(Bp/2ApBp/2)] = tr[A(logA+ logB)] = lim

p↓0
1
p tr[Alog(Ap/2BpAp/2)].

(Proof: See [53, 160, 533, 674].) (Remark: This inequality has applications to
quantum information theory.)
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Fact 11.14.28. Let A,B ∈ Fn×n, assume that A and B are Hermitian, let
q ≥ p > 0, let h �= λmax(eA)/λmin(eB), and define

S(1, h) �=
(h− 1)h1/(h−1)

e log h
.

Then, there exist unitary matrices U, V ∈ Fn×n such that
1

S(1,h)Ue
A+BU∗ ≤ e 1

2AeBe
1
2A ≤ S(1, h)VeA+BV ∗.

Furthermore,

tr eA+B ≤ tr eAeB ≤ S(1, h)tr eA+B,

tr (epA#epB)2/p ≤ tr eA+B ≤ tr (e
p
2BepAe

p
2B)1/p ≤ tr (e

q
2BeqAe

q
2B)1/q,

tr eA+B = lim
p↓0

tr (e
p
2BepAe

p
2B)1/p,

eA+B = lim
p↓0

(epA#epB)2/p.

Moreover, tr eA+B = tr eAeB if and only if AB = BA. Furthermore, for all i =
1, . . . , n,

1
S(1,h)λi(e

A+B) ≤ λi(eAeB) ≤ S(1, h)λi(eA+B).

Finally, let α ∈ [0, 1]. Then,

lim
p↓0

(epA#αe
pB)1/p = e(1−α)A+αB

and
tr (epA#αe

pB)1/p ≤ tr e(1−α)A+αB.

(Proof: See [252].) (Remark: The left-hand inequality in the second string of in-
equalities is the Golden-Thompson inequality. See Fact 11.16.4.) (Remark: Since
S(1, h) > 1 for all h > 1, the left-hand inequality in the first string of inequali-
ties does not imply the Golden-Thompson inequality.) (Remark: For i = 1, the
stronger eigenvalue inequality λmax

(
eA+B

) ≤ λmax

(
eAeB

)
holds. See Fact 11.16.4.)

(Remark: S(1, h) is Specht’s ratio given by Fact 11.14.22.) (Remark: The general-
ized geometric mean is defined in Fact 8.10.45.)

Fact 11.14.29. Let A,B ∈ Fn×n, and assume that A and B are Hermitian.
Then, (

tr eA
)
etr(e

AB)/tr eA ≤ tr eA+B.

(Proof: See [159].) (Remark: This result is the Peierls-Bogoliubov inequality.)
(Remark: This inequality is equivalent to the thermodynamic inequality. See Fact
11.14.31.)

Fact 11.14.30. Let A,B,C ∈ Fn×n, and assume that A,B, and C are positive
definite. Then,

tr elogA−logB+logC ≤ tr

∞∫
0

A(B + xI)−1C(B + xI)−1 dx.
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(Proof: See [905, 933].) (Remark: −logB is correct.) (Remark: tr eA+B+C ≤
|tr eAeBeC | is not necessarily true.)

Fact 11.14.31. Let A,B ∈ Fn×n, and assume that A is positive definite,
trA = 1, and B is Hermitian. Then,

trAB ≤ tr(A logA) + log tr eB.

Furthermore, equality holds if and only if

A =
(
tr eB

)−1
eB.

(Proof: See [159].) (Remark: This result is the thermodynamic inequality. Equiva-
lent forms are given by Fact 11.14.25 and Fact 11.14.29.)

Fact 11.14.32. Let A,B ∈ Fn×n, and assume that A and B are Hermitian.
Then,

‖A−B‖F ≤ ‖ log(e−
1
2AeBe

1
2A)‖F.

(Proof: See [201, p. 203].) (Remark: This result has a distance interpretation in
terms of geodesics. See [201, p. 203] and [207, 1013, 1014].)

Fact 11.14.33. Let A,B ∈ Fn×n, and assume that A and B are skew Hermi-
tian. Then, there exist unitary matrices S1, S2 ∈ Fn×n such that

eAeB = eS1AS
−1
1 +S2BS

−1
2 .

(Proof: See [1210, 1272, 1273].)

Fact 11.14.34. Let A,B ∈ Fn×n, and assume that A and B are Hermitian.
Then, there exist unitary matrices S1, S2 ∈ Fn×n such that

e
1
2AeBe

1
2A = eS1AS

−1
1 +S2BS

−1
2 .

(Proof: See [1209, 1210, 1272, 1273].) (Problem: Determine the relationship be-
tween this result and Fact 11.14.33.)

Fact 11.14.35. Let A,B ∈ Fn×n, assume that A and B are positive semidef-
inite, and assume that B ≤ A. Furthermore, let p, q, r, t ∈ R, and assume that
r ≥ t ≥ 0, p ≥ 0, p+ q ≥ 0, and p+ q + r > 0. Then,[

e
r
2AeqA+pBe

r
2A
]t/(p+q+r) ≤ etA.

(Proof: See [1350].)

Fact 11.14.36. Let A ∈ F
n×n and B ∈ F

m×m. Then,

tr eA⊕B =
(
tr eA

)(
tr eB

)
.

Fact 11.14.37. Let A ∈ Fn×n, B ∈ Fm×m, and C ∈ Fl×l. Then,

eA⊕B⊕C = eA⊗ eB⊗ eC.

Fact 11.14.38. Let A ∈ Fn×n, B ∈ Fm×m, C ∈ Fk×k, and D ∈ Fl×l. Then,

tr eA⊗I⊗B⊗I+I⊗C⊗I⊗D = tr eA⊗Btr eC⊗D.
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(Proof: By Fact 7.4.29, a similarity transformation involving the Kronecker permu-
tation matrix can be used to reorder the inner two terms. See [1220].)

Fact 11.14.39. Let A,B ∈ Rn×n, and assume that A and B are positive def-
inite. Then, A#B is the unique positive-definite solution X of the matrix equation

log(A−1X) + log(B−1X) = 0.

(Proof: See [1014].)

11.15 Facts on the Matrix Exponential and Eigenvalues,
Singular Values, and Norms for One Matrix

Fact 11.15.1. Let A ∈ Fn×n, assume that eA is positive definite, and assume
that σmax(A) < 2π. Then, A is Hermitian. (Proof: See [851, 1172].)

Fact 11.15.2. Let A ∈ F
n×n, and define f : [0,∞) �→ (0,∞) by f(t) �=

σmax

(
eAt
)
. Then,

f ′(0) = 1
2λmax(A+A∗).

Hence, there exists ε > 0 such that f(t) �= σmax

(
etA
)

is decreasing on [0, ε) if and
only if A is dissipative. (Proof: The result follows from iii) of Fact 11.15.7. See
[1402].) (Remark: The derivative is one sided.)

Fact 11.15.3. Let A ∈ Fn×n. Then, for all t ≥ 0,

d
dt
‖etA‖2F = tr etA(A+A∗)etA

∗
.

Hence, if A is dissipative, then f(t) �= ‖etA‖F is decreasing on [0,∞). (Proof: See
[1402].)

Fact 11.15.4. Let A ∈ F
n×n. Then,∣∣tr e2A∣∣ ≤ tr eAeA

∗ ≤ tr eA+A∗ ≤
[
ntr e2(A+A∗)

]1/2
≤ n

2 + 1
2 tr e2(A+A∗).

In addition, tr eAeA
∗

= tr eA+A∗
if and only if A is normal. (Proof: See [184], [711,

p. 515], and [1208].) (Remark: tr eAeA
∗ ≤ tr eA+A∗

is Bernstein’s inequality. See
[47].) (Remark: See Fact 3.7.12.)

Fact 11.15.5. Let A ∈ Fn×n. Then, for all k = 1, . . . , n,
k∏
i=1

σi
(
eA
) ≤ k∏

i=1

λi

[
e

1
2(A+A∗)

]
=

k∏
i=1

eλi[ 1
2(A+A∗)] ≤

k∏
i=1

eσi(A).

Furthermore, for all k = 1, . . . , n,
k∑
i=1

σi
(
eA
) ≤ k∑

i=1

λi

[
e

1
2(A+A∗)

]
=

k∑
i=1

eλi[ 1
2(A+A∗)] ≤

k∑
i=1

eσi(A).
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In particular,

σmax

(
eA
) ≤ λmax

[
e

1
2(A+A∗)

]
= e

1
2λmax(A+A∗) ≤ eσmax(A)

or, equivalently,

λmax(eAeA
∗
) ≤ λmax(eA+A∗

) = eλmax(A+A∗) ≤ e2σmax(A).

Furthermore, ∣∣det eA
∣∣ = ∣∣etrA∣∣ ≤ e|trA| ≤ etr 〈A〉

and

tr
〈
eA
〉 ≤ n∑

i=1

eσi(A).

(Proof: See [1211], Fact 2.21.13, Fact 8.17.4, and Fact 8.17.5.)

Fact 11.15.6. Let A ∈ Fn×n, and let ‖ · ‖ be a unitarily invariant norm on
F
n×n. Then,

‖eAeA∗‖ ≤ ‖eA+A∗‖.
In particular,

λmax(eAeA
∗
) ≤ λmax(eA+A∗

)

and
tr eAeA

∗ ≤ tr eA+A∗
.

(Proof: See [342].)

Fact 11.15.7. Let A,B ∈ Fn×n, let ‖ · ‖ be the norm on Fn×n induced by the
norm ‖ · ‖′ on Fn, let mspec(A) = {λ1, . . . , λn}ms, and define

μ(A) �= lim
ε↓0
‖I + εA‖ −1

ε
.

Then, the following statements hold:

i) μ(A) = D+f(A; I), where f : Fn×n �→ R is defined by f(A) �= ‖A‖.
ii) μ(A) = limt↓0 t−1 log ‖etA‖ = supt>0 t

−1 log ‖etA‖.
iii) μ(A) = d+

dt ‖etA‖
∣∣∣
t=0

= d+

dt log ‖etA‖
∣∣∣
t=0

.

iv) μ(I) = 1, μ(−I) = −1, and μ(0) = 0.

v) spabs(A) = limt→∞ t−1 log ‖etA‖ = inft>0 t
−1 log ‖etA‖.

vi) For all i = 1, . . . , n,

−‖A‖ ≤ −μ(−A) ≤ Reλi ≤ spabs(A) ≤ μ(A) ≤ ‖A‖.
vii) For all α ∈ R, μ(αA) = |α|μ[(signα)A].

viii) For all α ∈ F, μ(A+ αI) = μ(A) + Reα.

ix) max{μ(A)− μ(−B),−μ(−A) + μ(B)} ≤ μ(A+B) ≤ μ(A) + μ(B).

x) μ: Fn×n �→ R is convex.

xi) |μ(A) − μ(B)| ≤ max{|μ(A−B)|, |μ(B −A)|} ≤ ‖A−B‖.
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xii) For all x ∈ Fn, max{−μ(−A),−μ(A)}‖x‖′ ≤ ‖Ax‖′.
xiii) If A is nonsingular, then max{−μ(−A),−μ(A)} ≤ 1/‖A−1‖.
xiv) For all t ≥ 0 and all i = 1, . . . , n,

e−‖A‖t ≤ e−μ(−A)t ≤ e(Reλi)t ≤ espabs(A)t ≤ ‖etA‖ ≤ eμ(A)t ≤ e‖A‖t.

xv) μ(A) = min{β ∈ R: ‖etA‖ ≤ eβt for all t ≥ 0}.
xvi) If ‖ · ‖′ = ‖ · ‖1, and thus ‖ · ‖ = ‖ · ‖col, then

μ(A) = max
j∈{1,...,n}

⎛
⎜⎝ReA(j,j) +

n∑
i=1
i�=j

|A(i,j)|

⎞
⎟⎠.

xvii) If ‖ · ‖′ = ‖ · ‖2 and thus ‖ · ‖ = σmax(·), then

μ(A) =λmax[12 (A+A∗)].

xviii) If ‖ · ‖′ = ‖ · ‖∞, and thus ‖ · ‖ = ‖ · ‖row, then

μ(A) = max
i∈{1,...,n}

⎛
⎜⎜⎝ReA(i,i) +

n∑
j=1
j �=i

|A(i,j)|

⎞
⎟⎟⎠.

(Proof: See [399, 402, 1067, 1245], [690, pp. 653–655], and [1316, p. 150].) (Remark:
μ(·) is the matrix measure or logarithmic derivative or initial growth rate. For
applications, see [690] and [1380]. See Fact 11.18.11 for the logarithmic derivative of
an asymptotically stable matrix.) (Remark: The directional differential D+f(A; I)
is defined in (10.4.2).) (Remark: vi) and xvii) yield Fact 5.11.24.) (Remark: Higher
order logarithmic derivatives are studied in [205].)

Fact 11.15.8. Let A ∈ Fn×n, let β > spabs(A), let γ ≥ 1, and let ‖ · ‖ be a
normalized, submultiplicative norm on Fn×n. Then, for all t ≥ 0,∥∥etA∥∥ ≤ γeβt
if and only if, for all k ≥ 1 and α > β,

‖(αI −A)−k‖ ≤ γ

(α− β)k
.

(Remark: This result is a consequence of the Hille-Yosida theorem. See [361, pp.
26] and [690, p. 672].)

Fact 11.15.9. Let A ∈ Rn×n, let β ∈ R, and assume there exists a positive-
definite matrix P ∈ Rn×n such that

ATP + PA ≤ 2βP.

Then, for all t ≥ 0,

σmax

(
etA
) ≤√σmax(P )/σmin(P )eβt.

(Remark: See [690, p. 665].) (Remark: See Fact 11.18.9.)
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Fact 11.15.10. Let A ∈ SO(3). Then,

θ
�= 2 cos−1(1

2

√
1 + trA).

Then,
θ = σmax(logA) =

1√
2
‖logA‖F.

(Remark: See Fact 3.11.10 and Fact 11.11.10.) (Remark: θ is a Riemannian metric
giving the length of the shortest geodesic curve on SO(3) between A and I. See
[1013].)

11.16 Facts on the Matrix Exponential and Eigenvalues,
Singular Values, and Norms for Two or More Matrices

Fact 11.16.1. Let A,B ∈ F
n×n. Then,∣∣tr eA+B

∣∣ ≤ tr e
1
2(A+B)e

1
2 (A+B)∗

≤ tr e
1
2(A+A∗+B+B∗)

≤ tr e
1
2(A+A∗)e

1
2(B+B∗)

≤
(
tr eA+A∗)1/2(

tr eB+B∗)1/2
≤ 1

2 tr
(
eA+A∗

+ eB+B∗)
and

tr eAeB

1
2 tr
(
e2A + e2B

)
}
≤ 1

2 tr
(
eAeA

∗
+ eBeB

∗) ≤ 1
2 tr
(
eA+A∗

+ eB+B∗)
.

(Proof: See [184, 343, 1075] and [711, p. 514].)

Fact 11.16.2. Let A,B ∈ Fn×n. Then, for all p > 0,

σmax

[
eA+B −

(
e

1
pAe

1
pB
)p]
≤ 1

2pσmax([A,B])eσmax(A)+σmax(B).

(Proof: See [683, p. 237] and [1015].) (Remark: See Corollary 10.8.8 and Fact
11.16.3.)

Fact 11.16.3. Let A ∈ Fn×n, and define AH
�= 1

2 (A+A∗) and AS
�= 1

2 (A−A∗).
Then, for all p > 0,

σmax

[
eA −

(
e

1
pAHe

1
pAS
)p]
≤ 1

4pσmax([A∗, A])e
1
2λmax(A+A∗).

(Proof: See [1015].) (Remark: See Fact 10.8.8.)

Fact 11.16.4. Let A,B ∈ Fn×n, assume that A and B are Hermitian, and let
‖ · ‖ be a unitarily invariant norm on Fn×n. Then,∥∥eA+B

∥∥ ≤ ∥∥∥e 1
2AeBe

1
2A
∥∥∥ ≤ ∥∥eAeB∥∥.
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If, in addition, p > 0, then ∥∥eA+B
∥∥ ≤ ∥∥∥e p

2AeBe
p
2A
∥∥∥1/p

and ∥∥eA+B
∥∥ = lim

p↓0

∥∥∥e p
2AeBe

p
2A
∥∥∥1/p.

Furthermore, for all k = 1, . . . , n,
k∏
i=1

λi
(
eA+B

) ≤ k∏
i=1

λi
(
eAeB

) ≤ k∏
i=1

σi
(
eAeB

)
with equality for k = n, that is,

n∏
i=1

λi
(
eA+B

)
=

n∏
i=1

λi
(
eAeB

)
=

n∏
i=1

σi
(
eAeB

)
= det

(
eAeB

)
.

In fact,

det(eA+B) =
n∏
i=1

λi
(
eA+B

)

=
n∏
i=1

eλi(A+B)

= etr(A+B)

= e(trA)+(trB)

= etrAetrB

= det(eA) det(eB)

= det(eAeB)

=
n∏
i=1

σi
(
eAeB

)
.

Furthermore, for all k = 1, . . . , n,
k∑
i=1

λi
(
eA+B

) ≤ k∑
i=1

λi
(
eAeB

) ≤ k∑
i=1

σi
(
eAeB

)
.

In particular,
λmax

(
eA+B

) ≤ λmax

(
eAeB

) ≤ σmax

(
eAeB

)
,

tr eA+B ≤ tr eAeB ≤ tr
〈
eAeB

〉
,

and, for all p > 0, tr eA+B ≤ tr(e
p
2AeBe

p
2A).

Finally, tr eA+B = tr eAeB if and only if A andB commute. (Proof: See [53], [197, p.
261], Fact 5.11.28, Fact 2.21.13, and Fact 9.11.2. For the last statement, see [1208].)
(Remark: Note that det(eA+B) = det(eA) det(eB) even though eA+B and eAeB

may not be equal. See [683, p. 265] or [711, p. 442].) (Remark: tr eA+B ≤ tr eAeB

is the Golden-Thompson inequality. See Fact 11.14.28.) (Remark: ‖eA+B‖ ≤



694 CHAPTER 11

‖e 1
2AeBe

1
2A‖ is Segal’s inequality. See [47].) (Problem: Compare the upper bound

tr
〈
eAeB

〉
for tr eAeB with the upper bound S(1, h) tr eA+B given by Fact 11.14.28.)

Fact 11.16.5. Let A,B ∈ Fn×n, assume that A and B are Hermitian, let
q, p > 0, where q ≤ p, and let ‖ · ‖ be a unitarily invariant norm on Fn×n. Then,∥∥∥∥(e q

2AeqBe
q
2A
)1/q∥∥∥∥ ≤

∥∥∥∥(e p
2AepBe

p
2A
)1/p∥∥∥∥.

(Proof: See [53].)

Fact 11.16.6. Let A,B ∈ Fn×n, and assume that A and B are positive
semidefinite. Then,

eσ
1/2
max(AB) −1 ≤ σ1/2

max

[
(eA − I)(eB − I)]

and
eσ

1/3
max(BAB) −1 ≤ σ1/3

max

[
(eB − I)(eA − I)(eB − I)].

(Proof: See [1349].) (Remark: See Fact 8.18.30.)

Fact 11.16.7. Let A,B ∈ Fn×n, and let ‖ · ‖ be a submultiplicative norm on
Fn×n. Then, for all t ≥ 0,∥∥etA − etB∥∥ ≤ e‖A‖t

(
e‖A−B‖t −1

)
.

Fact 11.16.8. Let A,B ∈ F
n×n, and let t ≥ 0. Then,

et(A+B) = etA +

t∫
0

e(t−τ)ABeτ(A+B) dτ.

(Proof: See [683, p. 238].)

Fact 11.16.9. Let A,B ∈ Fn×n, let ‖ · ‖ be a normalized submultiplicative
norm on Fn×n, and let t ≥ 0. Then,

‖etA − etB‖ ≤ t‖A−B‖etmax{‖A‖,‖B‖}.

(Proof: See [683, p. 265].)

Fact 11.16.10. Let A,B ∈ Rn×n, and assume that A is normal. Then, for all
t ≥ 0,

σmax

(
etA − etB) ≤ σmax

(
etA
)[
eσmax(A−B)t −1

]
.

(Proof: See [1420].)

Fact 11.16.11. Let A ∈ F
n×n, let ‖ · ‖ be an induced norm on F

n×n, and let
α > 0 and β ∈ R be such that, for all t ≥ 0,

‖etA‖ ≤ αeβt.
Then, for all B ∈ Fn×n and t ≥ 0,

‖et(A+B)‖ ≤ αe(β+α‖B‖)t.
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(Proof: See [690, p. 406].)

Fact 11.16.12. Let A,B ∈ Cn×n, assume that A and B are idempotent,
assume that A �= B, and let ‖ · ‖ be a norm on Cn×n. Then,

‖ejA − ejB‖ = |ej − 1|‖A−B‖ < ‖A−B‖.
(Proof: See [1028].) (Remark: |ej − 1| ≈ 0.96.)

Fact 11.16.13. Let A,B ∈ Cn×n, assume that A and B are Hermitian, let
X ∈ Cn×n, and let ‖ · ‖ be a unitarily invariant norm on Cn×n. Then,

‖ejAX −XejB‖ ≤ ‖AX −XB‖.
(Proof: See [1028].) (Remark: This result is a matrix version of x) of Fact 1.18.6.)

Fact 11.16.14. Let A ∈ Fn×n, and, for all i = 1, . . . , n, define fi: [0,∞) �→ R

by fi(t)
�= log σi

(
etA
)
. Then, A is normal if and only if, for all i = 1, . . . , n, fi is

convex. (Proof: See [93] and [452].) (Remark: The statement in [93] that convexity
holds on R is erroneous. A counterexample is A �=

[
1 0
0 −1

]
for which log σ1(etA) = |t|

and log σ2(etA) = −|t|.)

Fact 11.16.15. Let A ∈ Fn×n, and, for nonzero x ∈ Fn, define fx: R �→ R by
fx(t)

�= log σmax

(
etAx
)
. Then, A is normal if and only if, for all nonzero x ∈ Fn, fx

is convex. (Proof: See [93].) (Remark: This result is due to Friedland.)

Fact 11.16.16. Let A,B ∈ Fn×n, assume that A and B are positive semidef-
inite, and let ‖ · ‖ be a unitarily invariant norm on Fn×n. Then,

‖e〈A−B〉 − I‖ ≤ ‖eA − eB‖
and

‖eA + eB‖ ≤ ‖eA+B + I‖.
(Proof: See [58] and [197, p. 294].) (Remark: See Fact 9.9.54.)

Fact 11.16.17. Let A,X,B ∈ Fn×n, assume that A and B are Hermitian, and
let ‖ · ‖ be a unitarily invariant norm on F

n×n. Then,

‖AX −XB‖ ≤ ‖e 1
2AXe−

1
2B − e− 1

2BXe
1
2A‖.

(Proof: See [216].) (Remark: See Fact 9.9.55.)

11.17 Facts on Stable Polynomials

Fact 11.17.1. Let a1, . . . , an be nonzero real numbers, let

Δ �= {i ∈ {1, . . . , n− 1} : ai+1
ai

< 0},
let b1, . . . , bn be real numbers satisfying b1 < · · · < bn, define f : (0,∞) �→ R by

f(x) = anx
bn + · · ·+ a1x

b1,
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and define
S

�= {x ∈ (0,∞) : f(x) = 0}.
Furthermore, for all x ∈ S, define the multiplicity of x to be the positive integer m
such that f(x) = f ′(x) = · · · = f (m−1) = 0 and f (m)(x) �= 0, and let S′ denote the
multiset consisting of all elements of S counting multiplicity. Then,

card(S′) ≤ card(Δ).

If, in addition, b1, . . . , bn are nonnegative integers, then card(Δ)− card(S′) is even.
(Proof: See [839, 1400].) (Remark: This result is the Descartes rule of signs.)

Fact 11.17.2. Let p ∈ R[s], where p(s) = sn + an−1s
n−1 + · · · + a0. If p is

asymptotically stable, then a0, . . . , an−1 are positive. Now, assume that a0, . . . , an−1

are positive. Then, the following statements hold:

i) If n = 1 or n = 2, then p is asymptotically stable.

ii) If n = 3, then p is asymptotically stable if and only if

a0 < a1a2.

iii) If n = 4, then p is asymptotically stable if and only if

a2
1 + a0a

2
3 < a1a2a3.

iv) If n = 5, then p is asymptotically stable if and only if

a2 < a3a4,

a2
2 + a1a

2
4 < a0a4 + a2a3a4,

a2
0 + a1a

2
2 + a2

1a
2
4 + a0a

2
3a4 < a0a2a3 + 2a0a1a4 + a1a2a3a4.

(Remark: These results are special cases of the Routh criterion, which provides
stability criteria for polynomials of arbitrary degree n. See [301].)

Fact 11.17.3. Let ε ∈ [0, 1], let n ∈ {2, 3, 4}, let pε ∈ R[s], where pε(s) =
sn + an−1s

n−1 + · · ·+ εa0, and assume that p1 is asymptotically stable. Then, for
all ε ∈ (0, 1], pε is asymptotically stable. Furthermore, p0(s)/s is asymptotically
stable. (Remark: The result does not hold for n = 5. A counterexample is p(s) =
s5 + 2s4 + 3s3 + 5s2 + 2s + 2.5ε, which is asymptotically stable if and only if
ε ∈ (4/5, 1]. This result is another instance of the quartic barrier. See [351], Fact
8.14.7, and Fact 8.15.37.)

Fact 11.17.4. Let p ∈ R[s] be monic, and define q(s) �= snp(1/s), where
n

�= deg p. Then, p is asymptotically stable if and only if q is asymptotically stable.
(Remark: See Fact 4.8.1 and Fact 11.17.5.)

Fact 11.17.5. Let p ∈ R[s] be monic, and assume that p is semistable. Then,
q(s) �= p(s)/s and q̂(s) �= snp(1/s) are asymptotically stable. (Remark: See Fact
4.8.1 and Fact 11.17.4.)

Fact 11.17.6. Let p, q ∈ R[s], assume that p is even, assume that q is odd, and
assume that every coefficient of p+q is positive. Then, p+q is asymptotically stable
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if and only if every root of p and every root of q is imaginary, and the roots of p and
the roots of q are interlaced on the imaginary axis. (Proof: See [221, 301, 705].)
(Remark: This result is the Hermite-Biehler or interlacing theorem.) (Example:
s2 + 2s+ 5 = (s2 + 5) + 2s.)

Fact 11.17.7. Let p ∈ R[s] be asymptotically stable, and let p(s) = βns
n +

βn−1s
n−1 + · · ·+ β1s+ β0, where βn > 0. Then, for all i = 1, . . . , n− 2,

βi−1βi+2 < βiβi+1.

(Remark: This result is a necessary condition for asymptotic stability, which can
be used to show that a given polynomial with positive coefficients is unstable.)
(Remark: This result is due to Xie. See [1474]. For alternative conditions, see [221,
p. 68].)

Fact 11.17.8. Let n ∈ P be even, let m �= n/2, let p ∈ R[s], where p(s) =
βns

n + βn−1s
n−1 + · · ·+ β1s+ β0 and βn > 0, and assume that p is asymptotically

stable. Then, for all i = 1, . . . ,m−1,(
m
i

)
β

(m−i)/m
0 βi/mn ≤ β2i.

(Remark: This result is a necessary condition for asymptotic stability, which can
be used to show that a given polynomial with positive coefficients is unstable.)
(Remark: This result is due to Borobia and Dormido. See [1474, 1475] for extensions
to polynomials of odd degree.)

Fact 11.17.9. Let p, q ∈ R[s], where p(s) = αns
n + αn−1s

n−1 + · · · + α1s +
α0 and q(s) = βms

m + βm−1s
m−1 + · · · + β1s + β0. If p and q are (Lyapunov,

asymptotically) stable, then r(s) �= αlβls
l + αl−1βl−1s

l−1 + · · · + α1β1s + α0β0,
where l �= min{m,n}, is (Lyapunov, asymptotically) stable. (Proof: See [543].)
(Remark: The polynomial r is the Schur product of p and q. See [82, 762].)

Fact 11.17.10. Let A ∈ R
n×n, and assume that A is diagonalizable over

R. Then, χA has all positive coefficients if and only if A is asymptotically stable.
(Proof: Sufficiency follows from Fact 11.17.2. For necessity, note that all of the roots
of χA are real and that χA(λ) > 0 for all λ ≥ 0. Hence, roots(χA) ⊂ (−∞, 0).)

Fact 11.17.11. Let A ∈ Rn×n. Then, the following statements are equivalent:

i) χA⊕A has all positive coefficients.

ii) χA⊕A is asymptotically stable.

iii) A⊕A is asymptotically stable.

iv) A is asymptotically stable.

(Proof: If A is not asymptotically stable, then Fact 11.18.32 implies that A⊕A
has a nonnegative eigenvalue λ. Since χA⊕A(λ) = 0, it follows that χA⊕A cannot
have all positive coefficients. See [519, Theorem 5].) (Remark: A similar method
of proof is used in Proposition 8.2.7.)

Fact 11.17.12. Let A ∈ Rn×n. Then, the following statements are equivalent:
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i) χA and χA(2,1) have all positive coefficients.

ii) A is asymptotically stable.

(Proof: See [1243].) (Remark: The additive compound A(2,1) is defined in Fact
7.5.17.)

Fact 11.17.13. For i = 1, . . . , n− 1, let ai, bi ∈ R satisfy 0 < ai ≤ bi, define
φ1, φ2, ψ1, ψ2 ∈ R[s] by

φ1(s) = bns
n + an−2s

n−2 + bn−4s
n−4 + · · · ,

φ2(s) = ans
n + bn−2s

n−2 + an−4s
n−4 + · · · ,

ψ1(s) = bn−1s
n−1 + an−3s

n−3 + bn−5s
n−5 + · · · ,

ψ2(s) = an−1s
n−1 + bn−3s

n−3 + an−5s
n−5 + · · · ,

assume that φ1 + ψ1, φ1 + ψ2, φ2 + ψ1, and φ2 + ψ2 are asymptotically stable, let
p ∈ R[s], where p(s) = βns

n + βn−1s
n−1 + · · ·+ β1s + β0, and assume that, for all

i = 1, . . . , n, ai ≤ βi ≤ bi. Then, p is asymptotically stable. (Proof: See [447, pp.
466, 467].) (Remark: This result is Kharitonov’s theorem.)

11.18 Facts on Stable Matrices

Fact 11.18.1. Let A ∈ Fn×n, and assume that A is semistable. Then, A is
Lyapunov stable.

Fact 11.18.2. Let A ∈ Fn×n, and assume that A is Lyapunov stable. Then,
A is group invertible.

Fact 11.18.3. Let A ∈ F
n×n, and assume that A is semistable. Then, A is

group invertible.

Fact 11.18.4. Let A,B ∈ Fn×n, and assume that A and B are similar. Then,
A is (Lyapunov stable, semistable, asymptotically stable, discrete-time Lyapunov
stable, discrete-time semistable, discrete-time asymptotically stable) if and only if
B is.

Fact 11.18.5. Let A ∈ F
n×n, and assume that A is semistable. Then,

lim
t→∞ etA = I −AA#,

and thus

lim
t→∞

1
t

t∫
0

eτA dτ = I −AA#.

(Remark: See Fact 10.11.6, Fact 11.18.1, and Fact 11.18.2.)
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Fact 11.18.6. Let A ∈ Rn×n, and assume that A is Lyapunov stable. Then,

lim
t→∞

1
t

t∫
0

eτA dτ = I −AA#.

(Remark: See Fact 11.18.2.)

Fact 11.18.7. Let A,B ∈ Fn×n. Then, limα→∞ eA+αB exists if and only if B
is semistable. In this case,

lim
α→∞ eA+αB = e(I−BB

#)A(I −BB#
)

=
(
I −BB#

)
eA(I−BB#).

(Proof: See [284].)

Fact 11.18.8. Let A ∈ Fn×n, assume that A is asymptotically stable, let
β > spabs(A), and let ‖ · ‖ be a submultiplicative norm on F

n×n. Then, there exists
γ > 0 such that, for all t ≥ 0, ∥∥etA∥∥ ≤ γeβt.
(Remark: See [558, pp. 201–206] and [786].)

Fact 11.18.9. Let A ∈ Rn×n, assume that A is asymptotically stable, let
β ∈ (spabs(A), 0), let P ∈ R

n×n be positive definite and satisfy

ATP + PA ≤ 2βP,

and let ‖ · ‖ be a normalized, submultiplicative norm on Rn×n. Then, for all t ≥ 0,∥∥etA∥∥ ≤√‖P‖‖P−1‖eβt.
(Remark: See [689].) (Remark: See Fact 11.15.9.)

Fact 11.18.10. Let A ∈ Fn×n, assume that A is asymptotically stable, let
R ∈ Fn×n, assume that R is positive definite, and let P ∈ Fn×n be the positive-
definite solution of A∗P + PA+R = 0. Then,

σmax

(
etA
) ≤
√
σmax(P )
σmin(P )

e−tλmin(RP−1)/2

and
‖etA‖F ≤

√
‖P‖F‖P−1‖Fe−tλmin(RP−1)/2.

If, in addition, A+A∗ is negative definite, then

‖etA‖F ≤ e−tλmin(−A−A∗)/2.

(Proof: See [952].)

Fact 11.18.11. Let A ∈ Rn×n, assume that A is asymptotically stable, let
R ∈ R

n×n, assume that R is positive definite, and let P ∈ R
n×n be the positive-

definite solution of ATP +PA+R = 0. Furthermore, define the vector norm ‖x‖′ �=√
xTPx on Rn, let ‖ · ‖ denote the induced norm on Rn×n, and let μ(·) denote the

corresponding logarithmic derivative. Then,

μ(A) = −λmin(RP−1)/2.
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Consequently,
‖etA‖ ≤ e−tλmin(RP−1)/2.

(Proof: See [728] and use xiv) of Fact 11.15.7.) (Remark: See Fact 11.15.7 for the
definition and properties of the logarithmic derivative.)

Fact 11.18.12. Let A ∈ F
n×n. Then, A is similar to a skew-Hermitian matrix

if and only if there exists a positive-definite matrix P ∈ Fn×n such that A∗P+PA =
0. (Remark: See Fact 5.9.4.)

Fact 11.18.13. Let A ∈ Rn×n. Then, A and A2 are asymptotically stable if
and only if, for all λ ∈ spec(A), there exist r > 0 and θ ∈ (π2 , 3π

4

) ∪ ( 5π4 , 3π
2

)
such

that λ = rejθ.

Fact 11.18.14. Let A ∈ R
n×n. Then, A is group invertible and 2kπj /∈ spec(A)

for all k ≥ 1 if and only if

AA# =
(
eA − I)(eA − I)#.

In particular, if A is semistable, then this identity holds. (Proof: Use ii) of Fact
11.21.10 and ix) of Proposition 11.8.2.)

Fact 11.18.15. Let A ∈ Fn×n. Then, A is asymptotically stable if and only if
A−1 is asymptotically stable. Hence, etA → 0 as t→ ∞ if and only if etA

−1→ 0 as
t→∞.

Fact 11.18.16. Let A,B ∈ Rn×n, assume that A is asymptotically stable, and
assume that σmax(B ⊕ B) < σmin(A ⊕ A). Then, A + B is asymptotically stable.
(Proof: Since A⊕A is nonsingular, Fact 9.14.18 implies that A⊕A+ α(B⊕B) =
(A + αB)⊕ (A + αB) is nonsingular for all 0 ≤ α ≤ 1. Now, suppose that A + B
is not asymptotically stable. Then, there exists α0 ∈ (0, 1] such that A + α0B has
an imaginary eigenvalue, and thus (A + α0B)⊕ (A + α0B) = A⊕A + α0(B ⊕B)
is singular, which is a contradiction.) (Remark: This result provides a suboptimal
solution of a nearness problem. See [679, Section 7] and Fact 9.14.18.)

Fact 11.18.17. Let A ∈ Cn×n, assume that A is asymptotically stable, let
‖ · ‖ denote either σmax(·) or ‖ · ‖F, and define

β(A) �= {‖B‖: B ∈ C
n×n and A+B is not asymptotically stable}.

Then,
1
2σmin(A⊗A) ≤ β(A)

= min
γ∈R

σmin(A+ γjI)

≤ min{spabs(A), σmin(A), 1
2σmax(A+A∗)}.

Furthermore, let R ∈ Fn×n, assume that R is positive definite, and let P ∈ Fn×n

be the positive-definite solution of A∗P + PA+R = 0. Then,
1
2σmin(R)/‖P‖ ≤ β(A).
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If, in addition, A+A∗ is negative definite, then

− 1
2λmin(A+A∗) ≤ β(A).

(Proof: See [679, 1360].) (Remark: The analogous problem for real matrices and
real perturbations is discussed in [1108].)

Fact 11.18.18. Let A ∈ Fn×n, assume that A is asymptotically stable, let
V ∈ Fn×n, assume that V is positive definite, and let Q ∈ Rn be the positive-
definite solution of AQ+QA∗ + V = 0. Then, for all t ≥ 0,

‖etA‖2F = tr etAetA
∗≤ κ(Q)tr e−tS

−1VS−∗≤ κ(Q)tr e−[t/σmax(Q)]V ,

where S ∈ Fn×n satisfies Q = SS∗ and κ(Q) �= σmax(Q)/σmin(Q). If, in particular,
A satisfies AQ+QA∗ + I = 0, then

‖etA‖2F ≤ nκ(Q)e−t/σmax(Q).

(Proof: See [1468].) (Remark: Fact 11.15.4 yields etAetA
∗≤ et(A+A∗). However, this

bound is poor when A+A∗ is not asymptotically stable. See [185].) (Remark: See
Fact 11.18.19.)

Fact 11.18.19. Let A ∈ Fn×n, assume that A is asymptotically stable, let
V ∈ Fn×n, assume that V is positive definite, and let Q ∈ Rn be the positive-
definite solution of AQ+QA∗ + I = 0. Then, for all t ≥ 0,

σ2
max(e

tA) ≤ κ(Q)e−t/σmax(Q),

where κ(Q) �= σmax(Q)/σmin(Q). (Proof: See references in [1377, 1378].) (Re-
mark: Since ‖etA‖F ≤ √nσmax(etA), it follows that this inequality implies the last
inequality in Fact 11.18.18.)

Fact 11.18.20. Let A ∈ Rn×n, and assume that every entry of A ∈ Rn×n is
positive. Then, A is unstable. (Proof: See Fact 4.11.5.)

Fact 11.18.21. Let A ∈ R
n×n. Then, A is asymptotically stable if and only if

there exist matrices B,C ∈ Rn×n such that B is positive definite, C is dissipative,
and A = BC. (Proof: A = P−1

(−ATP −R).) (Remark: To reverse the order of
factors, consider AT.)

Fact 11.18.22. Let A ∈ Fn×n. Then, the following statements hold:

i) All of the real eigenvalues of A are positive if and only if A is the product
of two dissipative matrices.

ii) A is nonsingular and A �= αI for all α < 0 if and only if A is the product
of two asymptotically stable matrices.

iii) A is nonsingular if and only if A is the product of three or fewer asymp-
totically stable matrices.

(Proof: See [126, 1459].)
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Fact 11.18.23. Let p ∈ R[s], where p(s) = sn+ βn−1s
n−1 + · · ·+ β1s+ β0 and

β0, . . . , βn > 0. Furthermore, define A ∈ Rn×n by

A �=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

βn−1 βn−3 βn−5 βn−7 · · · · · · 0
1 βn−2 βn−4 βn−6 · · · · · · 0
0 βn−1 βn−3 βn−5 · · · · · · 0
0 1 βn−2 βn−4 · · · · · · 0
...

...
...

...
. . .

...
...

0 0 0 · · · · · · β1 0
0 0 0 · · · · · · β2 β0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

If p is Lyapunov stable, then every subdeterminant ofA is nonnegative. (Remark: A
is totally nonnegative.) Furthermore, p is asymptotically stable if and only if every
leading principal subdeterminant of A is positive. (Proof: See [82].) (Remark:
The second statement is due to Hurwitz.) (Remark: The diagonal entries of A are
βn−1, . . . , β0.) (Problem: Show that this condition for stability is equivalent to the
condition given in [481, p. 183] in terms of an alternative matrix Â.)

Fact 11.18.24. Let A ∈ Rn×n, assume that A is tridiagonal, and assume that
A(i,i) > 0 for all i = 1, . . . , n and A(i,i+1)A(i+1,i) > 0 for all i = 1, . . . , n−1. Then,
A is asymptotically stable. (Proof: See [287].) (Remark: This result is due to
Barnett and Storey.)

Fact 11.18.25. Let A ∈ Rn×n, and assume that A is cyclic. Then, there exists
a nonsingular matrix S ∈ Rn×n such that AS

�= SAS−1 is given by the tridiagonal
matrix

AS =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0 0
−αn 0 1 · · · 0 0

0 −αn−1 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 1
0 0 0 · · · −α2 −α1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

where α1, . . . , αn are real numbers. If α1α2 · · ·αn �= 0, then the number of eigenval-
ues of A in the OLHP is equal to the number of positive elements in {α1, α1α2, . . . ,
α1α2 · · ·αn}ms. Furthermore, AT

SP + PAS +R = 0, where

P
�= diag(α1α2 · · ·αn, α1α2 · · ·αn−1, . . . , α1α2, α1)

and
R �= diag

(
0, . . . , 0, 2α2

1

)
.

Finally, AS is asymptotically stable if and only if α1, . . . , αn > 0. (Remark: AS is
in Schwarz form.) (Proof: See [146, pp. 52, 95].) (Remark: See Fact 11.18.27 and
Fact 11.18.26.)
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Fact 11.18.26. Let α1, . . . , αn be real numbers, and define A ∈ Rn×n by

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0 0
−αn 0 1 · · · 0 0

0 −αn−1 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 1
0 0 0 · · · −α2 α1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

Then, spec(A) ⊂ ORHP if and only if α1, . . . , αn > 0. (Proof: See [711, p. 111].)
(Remark: Note the absence of the minus sign in the (n, n) entry compared to the
matrix in Fact 11.18.25. This minus sign changes the sign of all eigenvalues of A.)

Fact 11.18.27. Let α1, α2, α3 > 0, and define AR, P,R ∈ R
3×3 by the tridi-

agonal matrix

AR
�=

⎡
⎢⎢⎣
−α1 α

1/2
2 0

−α1/2
2 0 α

1/2
3

0 −α1/2
3 0

⎤
⎥⎥⎦

and the diagonal matrices

P
�= I, R

�= diag(2α1, 0, 0).

Then, AT
RP +PAR +R = 0. (Remark: The matrix AR is in Routh form. The Routh

form AR and the Schwarz form AS are related by AR = SRSASS
−1
RS, where

SRS
�=

⎡
⎢⎢⎣

0 0 α
1/2
1

0 −(α1α2)1/2 0

(α1α2α3)1/2 0 0

⎤
⎥⎥⎦.)

(Remark: See Fact 11.18.25.)

Fact 11.18.28. Let α1, α2, α3 > 0, and define AC, P,R ∈ R3×3 by the tridi-
agonal matrix

AC
�=

⎡
⎢⎣

0 1/a3 0

−1/a2 0 1/a2

0 −1/a1 −1/a1

⎤
⎥⎦

and the diagonal matrices

P
�= diag(a3, a2, a1), R

�= diag(0, 0, 2),

where a1
�= 1/α1, a2

�= α1/α2, and a3
�= α2/(α1α3). Then, AT

CP + PAC + R = 0.
(Remark: The matrix AC is in Chen form.) The Schwarz form AS and the Chen
form AC are related by AS = SSCACS

−1
SC, where

SSC
�=

⎡
⎢⎣

1/(α1α3) 0 0

0 1/α2 0

0 0 1/α1

⎤
⎥⎦.)
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(Proof: See [313, p. 346].) (Remark: The Schwarz, Routh, and Chen forms provide
the basis for the Routh criterion. See [32, 268, 313, 1073].) (Remark: A circuit
interpretation of the Chen form is given in [965].)

Fact 11.18.29. Let α1, . . . , αn > 0 and β1, . . . , βn > 0, and define A ∈ Rn×n

by

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−α1 0 · · · 0 −β1

β2 −α2 · · · 0 0
...

. . . . . .
...

...

0 0
. . . −αn−1 0

0 0 · · · βn −αn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Then,
χA(s) = (s+ α1)(s+ α2) · · · (s+ αn) + β1β2 · · ·βn.

Furthermore, if
(cos π/n)n <

α1 · · ·αn
β1 · · ·βn ,

then A is asymptotically stable. (Remark: If n = 2, then A is asymptotically
stable for all positive α1, β1, α2, β2.) (Proof: See [1213].) (Remark: This result is
the secant condition.)

Fact 11.18.30. Let A ∈ Fn×n. Then, the following statements are
equivalent:

i) A is asymptotically stable.

ii) There exist a negative-definite matrix B ∈ Fn×n, a skew-Hermitian matrix
C ∈ Fn×n, and a nonsingular matrix S ∈ Fn×n such that A = B + SCS−1.

iii) There exist a negative-definite matrix B ∈ Fn×n, a skew-Hermitian matrix
C ∈ Fn×n, and a nonsingular matrix S ∈ Fn×n such that A = S(B+C)S−1.

(Proof: See [370].)

Fact 11.18.31. Let A ∈ Rn×n, and let k ≥ 2. Then, there exist asymptotically
stable matrices A1, . . . , Ak ∈ Rn×n such that A =

∑k
i=1Ai if and only if trA < 0.

(Proof: See [747].)

Fact 11.18.32. Let A ∈ R
n×n. Then, A is (Lyapunov stable, semistable,

asymptotically stable) if and only if A⊕A is. (Proof: Use Fact 7.5.7 and the fact
that vec

(
etAVetA

∗)
= et(A⊕A)vecV.)

Fact 11.18.33. Let A ∈ Rn×n andB ∈ Rm×m. Then, the following statements
hold:

i) If A and B are (Lyapunov stable, semistable, asymptotically stable), then
so is A⊕B.

ii) If A⊕B is (Lyapunov stable, semistable, asymptotically stable), then so
is either A or B.
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(Proof: Use Fact 7.5.7.)

Fact 11.18.34. Let A ∈ Rn×n, and assume that A is asymptotically stable.
Then,

(A⊕A)−1 =

∞∫
−∞

(jωI −A)−1⊗ (jωI −A)−1 dω

and ∞∫
−∞

(ω2I +A2) dω = −πA−1.

(Proof: Use (jωI −A)−1 + (−jωI −A)−1 = −2A(ω2I +A2)−1.)

Fact 11.18.35. Let A ∈ R2×2. Then, A is asymptotically stable if and only if
trA < 0 and detA > 0.

Fact 11.18.36. Let A ∈ Cn×n. Then, there exists a unique asymptotically
stable matrix B ∈ Cn×n such that B2 = −A. (Remark: This result is stated
in [1231]. The uniqueness of the square root for complex matrices that have no
eigenvalues in (−∞, 0] is implicitly assumed in [1232].) (Remark: See Fact 5.15.19.)

Fact 11.18.37. Let A ∈ R
n×n. Then, the following statements hold:

i) If A is semidissipative, then A is Lyapunov stable.

ii) If A is dissipative, then A is asymptotically stable.

iii) If A is Lyapunov stable and normal, then A is semidissipative.

iv) If A is asymptotically stable and normal, then A is dissipative.

v) If A is discrete-time Lyapunov stable and normal, then A is semicontrac-
tive.

Fact 11.18.38. Let M ∈ R
r×r, assume that M is positive definite, let C,K ∈

Rr×r, assume that C and K are positive semidefinite, and consider the equation

Mq̈ + Cq̇ +Kq = 0.

Furthermore, define
A �=

[
0 I

−M−1K −M−1C

]
.

Then, the following statements hold:

i) A is Lyapunov stable if and only if C +K is positive definite.

ii) A is Lyapunov stable if and only if rank [ CK ] = r.

iii) A is semistable if and only if (M−1K,C) is observable.

iv) A is asymptotically stable if and only if A is semistable and K is positive
definite.

(Proof: See [186].) (Remark: See Fact 5.12.21.)
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11.19 Facts on Almost Nonnegative Matrices

Fact 11.19.1. Let A ∈ Rn×n. Then, etA is nonnegative for all t ≥ 0 if and only
if A is almost nonnegative. (Proof: Let α > 0 be such that αI +A is nonnegative,
and consider et(αI+A). See [181, p. 74], [182, p. 146], [190, 365], or [1197, p. 37].)

Fact 11.19.2. Let A ∈ Rn×n, and assume that A is almost nonnegative.
Then, etA is positive for all t > 0 if and only if A is irreducible. (Proof: See [1184,
p. 208].)

Fact 11.19.3. Let A ∈ Rn×n, where n ≥ 2, and assume that A is almost
nonnegative. Then, the following statements are equivalent:

i) There exist α ∈ (0,∞) and B ∈ Rn×n such that A = B−αI, B is nonneg-
ative, and sprad(B) ≤ α.

ii) spec(A) ⊂ OLHP ∪ {0}.
iii) spec(A) ⊂ CLHP.

iv) If λ ∈ spec(A) is real, then λ ≤ 0.

v) Every principal subdeterminant of −A is nonnegative.

vi) For every diagonal, positive-definite matrix B ∈ R
n×n, it follows that A−B

is nonsingular.

(Example: A = [ 0 1
0 0 ].) (Remark: A is an N-matrix if A is almost nonnegative and

i)–vi) hold.) (Remark: This result follows from Fact 4.11.6.)

Fact 11.19.4. Let A ∈ R
n×n, where n ≥ 2, and assume that A is almost

nonnegative. Then, the following conditions are equivalent:

i) A is a group-invertible N-matrix.

ii) A is a Lyapunov-stable N-matrix.

iii) A is a semistable N-matrix.

iv) A is Lyapunov stable.

v) A is semistable.

vi) A is an N-matrix, and there exist α ∈ (0,∞) and a nonnegative matrix
B ∈ R

n×n such that A = B − αI and α−1B is discrete-time semistable.

vii) There exists a positive-definite matrix P ∈ Rn×n such that ATP + PA is
negative semidefinite.

Furthermore, consider the following statements:

viii) There exists a positive vector p ∈ Rn such that −Ap is nonnegative.

ix) There exists a nonzero nonnegative vector p ∈ Rn such that −Ap is non-
negative.

Then, viii) =⇒ [i)–vii)] =⇒ ix). (Proof: See [182, pp. 152–155] and [183]. The
statement [i)–vii)] =⇒ ix) is given by Fact 4.11.10.) (Remark: The converse of
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viii) =⇒ [i)–vii)] does not hold. For example, A =
[

0 1
0 −1

]
is almost negative and

semistable, but there does not exist a positive vector p ∈ R2 such that −Ap is
nonnegative. However, note that viii) holds for AT, but not for diag(A,AT) or its
transpose.) (Remark: A discrete-time semistable matrix is called semiconvergent in
[182, p. 152].) (Remark: The last statement follows from the fact that the function
V (x) = pTx is a Lyapunov function for the system ẋ = −Ax for x ∈ [0,∞)n with
Lyapunov derivative V̇ (x) = −ATp. See [187, 615].)

Fact 11.19.5. Let A ∈ Rn×n, where n ≥ 2, and assume that A is almost
nonnegative. Then, the following conditions are equivalent:

i) A is a nonsingular N-matrix.

ii) A is asymptotically stable.

iii) A is an asymptotically stable N-matrix.

iv) There exist α ∈ (0,∞) and a nonnegative matrix B ∈ Rn×n such that
A = B − αI and sprad(B) < α.

v) If λ ∈ spec(A) is real, then λ < 0.

vi) If B ∈ Rn×n is nonnegative and diagonal, then A−B is nonsingular.

vii) Every principal subdeterminant of −A is positive.

viii) Every leading principal subdeterminant of −A is positive.

ix) For all i = 1, . . . , n, the sign of the ith leading principal subdeterminant of
A is (−1)i.

x) For all k ∈ {1, . . . , n}, the sum of all k × k principal subdeterminants of
−A is positive.

xi) There exists a positive-definite matrix P ∈ Rn×n such that ATP + PA is
negative definite.

xii) There exists a positive vector p ∈ Rn such that −Ap is positive.

xiii) There exists a nonnegative vector p ∈ Rn such that −Ap is positive.

xiv) If p ∈ Rn and −Ap is nonnegative, then p ≥≥ 0 is nonnegative.

xv) For every nonnegative vector y ∈ Rn, there exists a unique nonnegative
vector x ∈ Rn such that Ax = −y.

xvi) A is nonsingular and −A−1 is nonnegative.

(Proof: See [181, pp. 134–140] or [711, pp. 114–116].) (Remark: −A is a nonsin-
gular M-matrix. See Fact 4.11.6.)

Fact 11.19.6. For i, j = 1, . . . , n, let σij ∈ [0,∞), and define A ∈ R
n×n by

A(i,j)
�= σij for all i �= j and A(i,i)

�= −∑n
j=1 σij . Then, the following statements

hold:

i) A is almost nonnegative.

ii) −A1n×1 =
[
σ11 . . . σnn

]T is nonnegative.



708 CHAPTER 11

iii) spec(A) ⊂ OLHP ∪ {0}.
iv) A is an N-matrix.

v) A is a group-invertible N-matrix.

vi) A is a Lyapunov-stable N-matrix.

vii) A is a semistable N-matrix.

If, in addition, σ11, . . . , σnn are positive, then A is a nonsingular N-matrix. (Proof:
It follows from the Gershgorin circle theorem given by Fact 4.10.16 that every eigen-
value λ of A is an element of a disk in C centered at −∑n

j=1 σij ≤ 0 and with radius∑n
j=1,j �=i σij . Hence, if σii = 0, then either λ = 0 or Reλ < 0, whereas, if σii > 0,

then Reλ ≤ σii < 0. Thus, iii) holds. Statements iv)–vii) follow from ii) and Fact
11.19.4. The last statement follows from the Gershgorin circle theorem.) (Remark:
AT is a compartmental matrix. See [190, 617, 1387].) (Problem: Determine neces-
sary and sufficient conditions on the parameters σij such that A is a nonsingular
N-matrix.)

Fact 11.19.7. Let G = (X,R) be a graph, where X = {x1, . . . , xn}, and let
L ∈ Rn×n denote either the in-Laplacian or the out-Laplacian of G. Then, the
following statements hold:

i) −L is semistable.

ii) limt→∞ e−Lt exists.

(Remark: Use Fact 11.19.6.) (Remark: The spectrum of the Laplacian is discussed
in [7].)

Fact 11.19.8. Let A ∈ Rn×n, and assume that A is asymptotically stable.
Then, at least one of the following statements holds:

i) All of the diagonal entries of A are negative.

ii) At least one diagonal entry of A is negative and at least one off-diagonal
entry of A is negative.

(Proof: See [506].) (Remark: sign stability is discussed in [751].)

11.20 Facts on Discrete-Time-Stable Polynomials

Fact 11.20.1. Let p ∈ R[s], where p(s) = sn + an−1s
n−1 + · · ·+ a0. Then, the

following statements hold:

i) If n = 1, then p is discrete-time asymptotically stable if and only if |a0| < 1.

ii) If n = 2, then p is discrete-time asymptotically stable if and only if |a0| < 1
and |a1| < 1 + a0.

iii) If n = 3, then p is discrete-time asymptotically stable if and only if |a0| < 1,
|a0 + a2| < |1 + a1|, and |a1− a0a2| < 1− a2

0.

(Remark: These results are the Schur-Cohn criterion. See [136, p. 185]. Conditions
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for polynomials of arbitrary degree n follow from the Jury test. See [313, 782].)
(Remark: For n = 3, an alternative form is given in [690, p. 355].)

Fact 11.20.2. Let p ∈ C[s], where p(s) = sn + an−1s
n−1 + · · ·+ a0, and define

p̂ ∈ C[s] by

p̂(s) �= zn−1 +
an−1 − a0a1

1− |a0|2 zn−1 +
an−2 − a0a2

1− |a0|2 zn−2 + · · ·+ a1 − a0an−1

1− |a0|2 .

Then, p is discrete-time asymptotically stable if and only if |a0| < 1 and p̂ is
discrete-time asymptotically stable. (Proof: See [690, p. 354].)

Fact 11.20.3. Let p ∈ R[s], where p(s) = sn + an−1s
n−1 + · · ·+ a0. Then, the

following statements hold:

i) If a0 ≤ · · · ≤ an−1 ≤ 1, then roots(p) ⊂ {z ∈ C : |z| ≤ 1 + |a0| − a0}.
ii) If 0 < a0 ≤ · · · ≤ an−1 ≤ 1, then roots(p) ⊂ CUD.

iii) If 0 < a0 < · · · < an−1 < 1, then p is discrete-time asymptotically stable.

(Proof: For i), see [1189]. For ii), see [1004, p. 272]. For iii), use Fact 11.20.2.
See [690, p. 355].) (Remark: If there exists r > 0 such that 0 < ra0 < · · · <
rn−1an−1 < rn, then roots(p) ⊂ {z ∈ C : |z| ≤ r}.) (Remark: Statement ii) is the
Enestrom-Kakeya theorem.)

Fact 11.20.4. Let p ∈ C[s], where p(s) = sn + an−1s
n−1 + · · · + a0, assume

that a0, . . . , an−1 are nonzero, and let λ ∈ roots(p). Then,

|λ| ≤ max{2|an−1|, 2|an−2/an−1|, . . . , 2|a1/a2|, |a0/a1|}.
(Remark: This result is due to Bourbaki. See [1005].)

Fact 11.20.5. Let p ∈ C[s], where p(s) = sn + an−1s
n−1 + · · · + a0, assume

that a0, . . . , an−1 are nonzero, and let λ ∈ roots(p). Then,

|λ| ≤
n−1∑
i=1

|ai|1/(n−i)

and

|λ+ 1
2an−1| ≤ 1

2 |an−1|+
n−2∑
i=0

|ai|1/(n−i).

(Remark: These results are due to Walsh. See [1005].)

Fact 11.20.6. Let p ∈ C[s], where p(s) = sn + an−1s
n−1 + · · · + a0, and let

λ ∈ roots(p). Then,

|a0|
|a0|+ max{|a1|, . . . , |an−1|, 1} < |λ| ≤ max{|a0|, 1 + |a1|, . . . , 1 + |an−1|}.

(Proof: The lower bound is proved in [1005], while the upper bound is proved in
[401].) (Remark: The upper bound is Cauchy’s estimate.) (Remark: The weaker
upper bound

|λ| < 1 + max
i=0,...,n−1

|ai|
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is given in [136, p. 184] and [1005].)

Fact 11.20.7. Let p ∈ C[s], where p(s) = sn + an−1s
n−1 + · · · + a0, and let

λ ∈ roots(p). Then,

|λ| ≤ 1
2 (1 + |an−1|) +

√
max

i=0,...,n−2
|ai|+ 1

4 (1 − |an−1|)2,

|λ| ≤ max{2, |a0|+ |an−1|, |a1|+ |an−1|, . . . , |an−2|+ |an−1|},

|λ| ≤
√

2 + max
i=0,...,n−2

|ai|2 + |an−1|2.

(Proof: See [401].) (Remark: The first inequality is due to Joyal, Labelle, and
Rahman. See [1005].)

Fact 11.20.8. Let p ∈ C[s], where p(s) = sn + an−1s
n−1 + · · · + a0, assume

that a0, . . . , an−1 are nonzero, define

α
�= max

{∣∣∣∣a0

a1

∣∣∣∣ ,
∣∣∣∣a1

a2

∣∣∣∣ , . . . ,
∣∣∣∣an−2

an−1

∣∣∣∣
}

and
β

�= max
{∣∣∣∣a1

a2

∣∣∣∣ ,
∣∣∣∣a2

a3

∣∣∣∣ , . . . ,
∣∣∣∣an−2

an−1

∣∣∣∣
}
,

and let λ ∈ roots(p). Then,

|λ| ≤ 1
2 (β + |an−1|) +

√
α|an−1|+ 1

4 (β − |an−1|)2,

|λ| ≤ |an−1|+ α,

|λ| ≤ max
{∣∣∣∣a0

a1

∣∣∣∣ , 2β, 2|an−1|
}
,

|λ| ≤ 2 max
i=1,...,n−1

|ai|1/(n−i),

|λ| ≤
√

2|an−1|2 + α2 + β2.

(Proof: See [401, 918].) (Remark: The third inequality is Kojima’s bound, while
the fourth inequality is Fujiwara’s bound.)

Fact 11.20.9. Let p ∈ C[s], where p(s) = sn + an−1s
n−1 + · · · + a0, define

α
�= 1 +

∑n−1
i=0 |ai|2, and let λ ∈ roots(p). Then,

|λ| ≤ 1
n |an−1|+

√√√√ n
n−1

(
n− 1 +

n−1∑
i=0

|ai|2 − 1
n |an−1|2

)
,
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|λ| ≤ 1
2

⎛
⎜⎜⎝|an−1|+ 1 +

√√√√√(|an−1| − 1)2 + 4

√√√√n−2∑
i=0

|ai|2

⎞
⎟⎟⎠,

|λ| ≤ 1
2

⎛
⎝|an−1|+ cos πn +

√√√√(|an−1| − cos πn
)2 + (|an−2|+ 1)2 +

n−3∑
i=0

|ai|2
⎞
⎠,

|λ| ≤ cos π
n+1 + 1

2

⎛
⎝|an−1|+

√√√√n−1∑
i=0

|ai|2
⎞
⎠,

and √
1
2

(
α−
√
α2 − 4|a0|2

)
≤ |λ| ≤

√
1
2

(
α+
√
α2 − 4|a0|2

)
.

Furthermore,

|Reλ| ≤ 1
2

⎛
⎝|Re an−1|+ cos πn +

√√√√(|Rean−1| − cos πn
)2 + (|an−2| − 1)2 +

n−3∑
i=0

|ai|2
⎞
⎠

and

|Imλ| ≤ 1
2

⎛
⎝|Im an−1|+ cos πn +

√√√√(|Iman−1| − cos πn
)2 + (|an−2|+ 1)2 +

n−3∑
i=0

|ai|2
⎞
⎠.

(Proof: See [514, 822, 826, 918].) (Remark: The first bound is due to Linden (see
[826]), the fourth bound is due to Fujii and Kubo, and the upper bound in the fifth
result, which follows from Fact 5.11.21 and Fact 5.11.30, is due to Parodi, see also
[802, 817].) (Remark: The Parodi bound is a refinement of the Carmichael-Mason
Bound. See Fact 11.20.10.)

Fact 11.20.10. Let p ∈ C[s], where p(s) = sn + an−1s
n−1 + · · ·+ a0, let r, q ∈

(1,∞), assume that 1/r+ 1/q = 1, define α �= (
∑n−1
i=0 |ai|r)1/r, and let λ ∈ roots(p).

Then,
|λ| ≤ (1 + αq)1/q.

In particular, if r = q = 2, then

|λ| ≤
√

1 + |an−1|2 + · · ·+ |a0|2.
(Proof: See [918, 1005].) (Remark: Letting r→∞ yields the upper bound in Fact
11.20.6.) (Remark: The result for r = q = 2 is due to Carmichael and Mason.)

Fact 11.20.11. Let p ∈ C[s], where p(s) = sn + an−1s
n−1 + · · · + a0, let

mroots(p) = {λ1, . . . , λn}ms, and let r > 0 be the unique positive root of p̂(s) �=
sn − |an−1|sn−1 − · · · − |a0|. Then,

r( n
√

2− 1) ≤ max
i=1,...,n

|λi| ≤ r.
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Furthermore,

r( n
√

2− 1) ≤ 1
n

n∑
i=1

|λi| < r.

Finally, the third inequality is an equality if and only if λ1 = · · · = λn. (Remark:
The first inequality is due to Cohn, the second inequality is due to Cauchy, and the
third and fourth inequalities are due to Berwald. See [1005] and [1004, p. 245].)

Fact 11.20.12. Let p ∈ C[s], where p(s) = sn + an−1s
n−1 + · · · + a0, define

α
�= 1 +

∑n−1
i=0 |ai|2, and let λ ∈ roots(p). Then,√

1
2

(
α−
√
α2 − 4|a0|2

)
≤ |λ| ≤

√
1
2

(
α+
√
α2 − 4|a0|2

)
.

(Proof: See [823]. The result follows from Fact 5.11.29 and Fact 5.11.30.)

Fact 11.20.13. Let p ∈ R[s], where p(s) = sn + an−1s
n−1 + · · ·+ a0, assume

that a0, . . . , an−1 are nonnegative, and let x1, . . . , xm ∈ [0,∞). Then,

p( m
√
x1 · · ·xm ) ≤ m

√
p(x1) · · · p(xm).

(Proof: See [1040].) (Remark: This result, which is due to Mihet, extends a result
of Huygens for the case p(x) = x+ 1.)

11.21 Facts on Discrete-Time-Stable Matrices

Fact 11.21.1. Let A ∈ R2×2. Then, A is discrete-time asymptotically stable
if and only if |trA| < 1 + detA and |detA| < 1.

Fact 11.21.2. Let A ∈ Fn×n. Then, A is discrete-time (Lyapunov stable,
semistable, asymptotically stable) if and only if A2 is.

Fact 11.21.3. Let A ∈ Rn×n, and let χA(s) = sn + an−1s
n−1 + · · ·+ a1s+ a0.

Then, for all k ≥ 0,

Ak = x1(k)I + x2(k)A+ · · ·+ xn(k)An−1,

where, for all i = 1, . . . , n and all k ≥ 0, xi: N �→ R satisfies

xi(k + n) + an−1xi(k + n−1) + · · ·+ a1xi(k + 1) + a0xi(k) = 0,

with, for all i, j = 1, . . . , n, the initial conditions

xi(j − 1) = δij .

(Proof: See [853].)

Fact 11.21.4. Let A ∈ R
n×n. Then, the following statements hold:

i) If A is semicontractive, then A is discrete-time Lyapunov stable.

ii) If A is contractive, then A is discrete-time asymptotically stable.
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iii) If A is discrete-time Lyapunov stable and normal, then A is semicontrac-
tive.

iv) If A is discrete-time asymptotically stable and normal, then A is contrac-
tive.

(Problem: Prove these results by using Fact 11.15.6.)

Fact 11.21.5. Let A ∈ Fn×n. Then, A is discrete-time (Lyapunov stable,
semistable, asymptotically stable) if and only if A⊗A is. (Proof: Use Fact 7.4.15.)

Fact 11.21.6. Let A ∈ Rn×n and B ∈ Rm×m. Then, the following statements
hold:

i) If A and B are discrete-time (Lyapunov stable, semistable, asymptotically
stable), then A⊗B is discrete-time (Lyapunov stable, semistable, asymp-
totically stable).

ii) If A⊗B is discrete-time (Lyapunov stable, semistable, asymptotically sta-
ble), then either A or B is discrete-time (Lyapunov stable, semistable,
asymptotically stable).

(Proof: Use Fact 7.4.15.)

Fact 11.21.7. Let A ∈ Rn×n, and assume that A is (Lyapunov stable, semi-
stable, asymptotically stable). Then, eA is discrete-time (Lyapunov stable, semi-
stable, asymptotically stable). (Problem: If B ∈ Rn×n is discrete-time (Lyapunov
stable, semistable, asymptotically stable), when does there exist a (Lyapunov-
stable, semistable, asymptotically stable) matrix A ∈ Rn×n such that B = eA?
See Proposition 11.4.3.)

Fact 11.21.8. The following statements hold:

i) If A ∈ R
n×n is discrete-time asymptotically stable, then B �= (A+I)−1(A−

I) is asymptotically stable.

ii) If B ∈ R
n×n is asymptotically stable, then A

�= (I + B)(I − B)−1 is
discrete-time asymptotically stable.

iii) If A ∈ Rn×n is discrete-time asymptotically stable, then there exists a
unique asymptotically stable matrix B ∈ Rn×n such that A = (I +B)(I −
B)−1. In fact, B = (A+ I)−1(A− I).

iv) If B ∈ Rn×n is asymptotically stable, then there exists a unique discrete-
time asymptotically stable matrix A ∈ Rn×n such that B = (A+ I)−1(A−
I). In fact, A = (I +B)(I −B)−1.

(Proof: See [657].) (Remark: For additional results on the Cayley transform, see
Fact 3.11.29, Fact 3.11.28, Fact 3.11.30, Fact 3.19.12, and Fact 8.9.30.) (Problem:
Obtain analogous results for Lyapunov-stable and semistable matrices.)

Fact 11.21.9. Let
[
P1 P12

PT
12 P2

]
∈ R2n×2n be positive definite, where P1, P12, P2 ∈

Rn×n. If P1 ≥ P2, then A �= P−1
1 PT

12 is discrete-time asymptotically stable, while,
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if P2 ≥ P1, then A
�= P−1

2 P12 is discrete-time asymptotically stable. (Proof: If
P1 ≥ P2, then P1 − P12P

−1
1 P1P

−1
1 PT

12 ≥ P1 − P12P
−2
2 PT

12 > 0. See [334].)

Fact 11.21.10. Let A ∈ Rn×n, and let ‖ · ‖ be a norm on Rn×n. Then, the
following statements hold:

i) A is discrete-time Lyapunov stable if and only if
{‖Ak‖}∞

k=0
is bounded.

ii) A is discrete-time semistable if and only if A∞
�= limk→∞ Ak exists.

iii) Assume that A is discrete-time semistable. Then, A∞
�= I−(A−I)(A−I)#

is idempotent and rankA∞ = amultA(1). If, in addition, rankA = 1, then,
for every eigenvector x of A associated with the eigenvalue 1, there exists
y ∈ Fn such that y∗x = 1 and A∞ = xy∗.

iv) A is discrete-time asymptotically stable if and only if limk→∞ Ak = 0.

(Remark: A proof of ii) is given in [998, p. 640]. See Fact 11.21.14.)

Fact 11.21.11. Let A ∈ Fn×n. Then, A is discrete-time Lyapunov stable if
and only if

A∞
�= lim
k→∞

1
k

k−1∑
i=0

Ai

exists. In this case,
A∞ = I − (A− I)(A− I)#.

(Proof: See [998, p. 633].) (Remark: A is Cesaro summable.) (Remark: See Fact
6.3.34.)

Fact 11.21.12. Let A ∈ Fn×n. Then, A is discrete-time asymptotically stable
if and only if

lim
k→∞

Ak = 0.

In this case,

(I −A)−1 =
∞∑
i=1

Ai,

where the series converges absolutely.

Fact 11.21.13. Let A ∈ F
n×n, and assume that A is unitary. Then, A is

discrete-time Lyapunov stable.

Fact 11.21.14. Let A,B ∈ Rn×n, assume that A is discrete-time semistable,
and let A∞

�= limk→∞ Ak. Then,

lim
k→∞

(
A+ 1

kB
)k = A∞eA∞BA∞.

(Proof: See [233, 1429].) (Remark: If A is idempotent, then A∞ = A. The existence
of A∞ is guaranteed by Fact 11.21.10, which also implies that A∞ is idempotent.)

Fact 11.21.15. Let A ∈ Rn×n. Then, the following statements hold:

i) A is discrete-time Lyapunov stable if and only if there exists a positive-
definite matrix P ∈ Rn×n such that P −ATPA is positive semidefinite.



THE MATRIX EXPONENTIAL AND STABILITY THEORY 715

ii) A is discrete-time asymptotically stable if and only if there exists a positive-
definite matrix P ∈ Rn×n such that P −ATPA is positive definite.

(Remark: The discrete-time Lyapunov equation or the Stein equation is P = ATPA+
R.)

Fact 11.21.16. Let (Ak)∞k=0 ⊂ Rn×n and, for k ∈ N, consider the discrete-
time, time-varying system

xk+1 = Akxk.

Furthermore, assume there exist real numbers β ∈ (0, 1), γ > 0, and ε > 0 such
that, for all k ∈ N,

sprad(Ak) < β,

‖Ak‖ < γ,

‖Ak+1 −Ak‖ < ε,

where ‖ · ‖ is a norm on Rn×n. Then, xk → 0 as k → ∞. (Proof: See [642, pp.
170–173].) (Remark: This result arises from the theory of infinite matrix products.
See [76, 230, 231, 375, 608, 704, 861].)

Fact 11.21.17. Let A ∈ Fn×n, and define

r(A) �= sup
{z∈C : |z|>1}

|z| − 1
σmin(zI −A)

.

Then,
r(A) ≤ sup

k≥0
σmax(Ak) ≤ ner(A).

Hence, if A is discrete-time Lyapunov stable, then r(A) is finite. (Proof: See [1413].)
(Remark: This result is the Kreiss matrix theorem.) (Remark: The constant en is
the best possible. See [1413].)

Fact 11.21.18. Let p ∈ R[s], and assume that p is discrete-time semistable.
Then, C(p) is discrete-time semistable, and there exists v ∈ Rn such that

lim
k→∞

Ck(p) = 1n×1v
T.

(Proof: Since C(p) is a companion form matrix, it follows from Proposition 11.10.4
that its minimal polynomial is p. Hence, C(p) is discrete-time semistable. Now, it
follows from Proposition 11.10.2 that limk→∞ Ck(p) exists, and thus the state xk of
the difference equation xk+1 = C(p)xk converges for all initial conditions x0. The
structure of C(p) shows that all components of limk→∞ xk converge to the same
value. Hence, all rows of limk→∞ Ck(p) are equal.)

11.22 Facts on Lie Groups

Fact 11.22.1. The groups UT(n),UT+(n),UT±1(n), SUT(n), and {In} are
Lie groups. Furthermore, ut(n) is the Lie algebra of UT(n), sut(n) is the Lie algebra
of SUT(n), and {0n×n} is the Lie algebra of {In}. (Remark: See Fact 3.21.4 and
Fact 3.21.5.) (Problem: Determine the Lie algebras of UT+(n) and UT±1(n).)
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11.23 Facts on Subspace Decomposition

Fact 11.23.1. Let A ∈ Rn×n, and let S ∈ Rn×n be a nonsingular matrix such
that

A = S

[
A1 A12

0 A2

]
S−1,

where A1 ∈ Rr×r is asymptotically stable, A12 ∈ Rr×(n−r), and A2 ∈ R(n−r)×(n−r).
Then,

μs
A(A) = S

[
0 B12s

0 μs
A(A2)

]
S−1,

where B12s ∈ Rr×(n−r), and

μu
A(A) = S

[
μu
A(A1) B12u

0 μu
A(A2)

]
S−1,

where B12u ∈ Rr×(n−r) and μu
A(A1) is nonsingular. Consequently,

R

(
S

[
Ir
0

])
⊆ Ss(A).

If, in addition, A12 = 0, then

μs
A(A) = S

[
0 0
0 μs

A(A2)

]
S−1,

μu
A(A) = S

[
μu
A(A1) 0

0 μu
A(A2)

]
S−1,

Su(A) ⊆ R

(
S

[
0

In−r

])
.

(Proof: The result follows from Fact 4.10.12.)

Fact 11.23.2. Let A ∈ Rn×n, and let S ∈ Rn×n be a nonsingular matrix such
that

A = S

[
A1 A12

0 A2

]
S−1,

where A1 ∈ Rr×r, A12 ∈ Rr×(n−r), and A2 ∈ R(n−r)×(n−r) satisfies spec(A2) ⊂
CRHP. Then,

μs
A(A) = S

[
μs
A(A1) C12s

0 μs
A(A2)

]
S−1,

where C12s ∈ Rr×(n−r) and μs
A(A2) is nonsingular, and

μu
A(A) = S

[
μu
A(A1) C12u

0 0

]
S−1,

where C12u ∈ Rr×(n−r). Consequently,

Ss(A) ⊆ R

(
S

[
Ir
0

])
.
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If, in addition, A12 = 0, then

μs
A(A) = S

[
μs
A(A1) 0

0 μs
A(A2)

]
S−1,

μu
A(A) = S

[
μu
A(A1) 0

0 0

]
S−1,

R

(
S

[
0

In−r

])
⊆ Su(A).

Fact 11.23.3. Let A ∈ Rn×n, and let S ∈ Rn×n be a nonsingular matrix such
that

A = S

[
A1 A12

0 A2

]
S−1,

where A1 ∈ Rr×r satisfies spec(A1) ⊂ CRHP, A12 ∈ Rr×(n−r), and A2 ∈
R(n−r)×(n−r). Then,

μs
A(A) = S

[
μs
A(A1) B12s

0 μs
A(A2)

]
S−1,

where μs
A(A1) is nonsingular and B12s ∈ Rr×(n−r), and

μu
A(A) = S

[
0 B12u

0 μu
A(A2)

]
S−1,

where B12u ∈ Rr×(n−r). Consequently,

R

(
S

[
Ir
0

])
⊆ Su(A).

If, in addition, A12 = 0, then

μs
A(A) = S

[
μs
A(A1) 0

0 μs
A(A2)

]
S−1,

μu
A(A) = S

[
0 0
0 μu

A(A2)

]
S−1,

Ss(A) ⊆ R

(
S

[
0

In−r

])
.

Fact 11.23.4. Let A ∈ Rn×n, and let S ∈ Rn×n be a nonsingular matrix such
that

A = S

[
A1 A12

0 A2

]
S−1,

where A1 ∈ Rr×r, A12 ∈ Rr×(n−r), and A2 ∈ R(n−r)×(n−r) is asymptotically stable.
Then,

μs
A(A) = S

[
μs
A(A1) C12s

0 0

]
S−1,
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where C12s ∈ Rr×(n−r), and

μu
A(A) = S

[
μu
A(A1) C12u

0 μu
A(A2)

]
S−1,

where μu
A(A2) is nonsingular and C12u ∈ Rr×(n−r). Consequently,

Su(A) ⊆ R

(
S

[
Ir
0

])
.

If, in addition, A12 = 0, then

μs
A(A) = S

[
μs
A(A1) 0

0 0

]
S−1,

μu
A(A) = S

[
μu
A(A1) 0

0 μu
A(A2)

]
S−1,

R

(
S

[
0

In−r

])
⊆ Ss(A).

Fact 11.23.5. Let A ∈ Rn×n, and let S ∈ Rn×n be a nonsingular matrix such
that

A = S

[
A1 A12

0 A2

]
S−1,

where A1 ∈ Rr×r satisfies spec(A1) ⊂ CRHP, A12 ∈ Rr×(n−r), and A2 ∈
R(n−r)×(n−r) is asymptotically stable. Then,

μs
A(A) = S

[
μs
A(A1) C12s

0 0

]
S−1,

where C12s ∈ Rr×(n−r) and μs
A(A1) is nonsingular, and

μu
A(A) = S

[
0 C12u

0 μu
A(A2)

]
S−1,

where C12u ∈ Rr×(n−r) and μu
A(A2) is nonsingular. Consequently,

Su(A) = R

(
S

[
Ir
0

])
.

If, in addition, A12 = 0, then

μs
A(A) = S

[
μs
A(A1) 0

0 0

]
S−1

and

μu
A(A) = S

[
0 0
0 μu

A(A2)

]
S−1,

Consequently,

Ss(A) = R

(
S

[
0

In−r

])
.
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Fact 11.23.6. Let A ∈ Rn×n, and let S ∈ Rn×n be a nonsingular matrix such
that

A = S

[
A1 0
A21 A2

]
S−1,

where A1 ∈ Rr×r is asymptotically stable, A21 ∈ R(n−r)×r, and A2 ∈ R(n−r)×(n−r).
Then,

μs
A(A) = S

[
0 0

B21s μs
A(A2)

]
S−1,

where B21s ∈ R(n−r)×r, and

μu
A(A) = S

[
μu
A(A1) 0
B21u μu

A(A2)

]
S−1,

where B21u ∈ R
(n−r)×r and μu

A(A1) is nonsingular. Consequently,

Su(A) ⊆ R

(
S

[
0

In−r

])
.

If, in addition, A21 = 0, then

μs
A(A) = S

[
0 0
0 μs

A(A2)

]
S−1,

μu
A(A) = S

[
μu
A(A1) 0

0 μu
A(A2)

]
S−1,

R

(
S

[
Ir
0

])
⊆ Ss(A).

Fact 11.23.7. Let A ∈ Rn×n, and let S ∈ Rn×n be a nonsingular matrix such
that

A = S

[
A1 0
A21 A2

]
S−1,

where A1 ∈ Rr×r, A21 ∈ R(n−r)×r, and A2 ∈ R(n−r)×(n−r) satisfies spec(A2) ⊂
CRHP. Then,

μs
A(A) = S

[
μs
A(A1) 0
C21s μs

A(A2)

]
S−1,

where C21s ∈ R(n−r)×r and μs
A(A2) is nonsingular, and

μu
A(A) = S

[
μu
A(A1) 0
C21u 0

]
S−1,

where C21u ∈ R(n−r)×r. Consequently,

R

(
S

[
0

In−r

])
⊆ Su(A).

If, in addition, A21 = 0, then

μs
A(A) = S

[
μs
A(A1) 0

0 μs
A(A2)

]
S−1,
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μu
A(A) = S

[
μu
A(A1) 0

0 0

]
S−1,

Ss(A) ⊆ R

(
S

[
Ir
0

])
.

Fact 11.23.8. Let A ∈ Rn×n, and let S ∈ Rn×n be a nonsingular matrix such
that

A = S

[
A1 0
A21 A2

]
S−1,

where A1 ∈ Rr×r is asymptotically stable, A21 ∈ R(n−r)×r, and A2 ∈ R(n−r)×(n−r)

satisfies spec(A2) ⊂ CRHP. Then,

μs
A(A) = S

[
0 0

C21s μs
A(A2)

]
S−1,

where C21s ∈ Rn−r×r and μs
A(A2) is nonsingular, and

μu
A(A) = S

[
μu
A(A1) 0
C21u 0

]
S−1,

where C21u ∈ R(n−r)×r and μu
A(A1) is nonsingular. Consequently,

Su(A) = R

(
S

[
0

In−r

])
.

If, in addition, A21 = 0, then

μs
A(A) = S

[
0 0
0 μs

A(A2)

]
S−1

and

μu
A(A) = S

[
μu
A(A1) 0

0 0

]
S−1.

Consequently,

Ss(A) = R

(
S

[
Ir
0

])
.

Fact 11.23.9. Let A ∈ Rn×n, and let S ∈ Rn×n be a nonsingular matrix such
that

A = S

[
A1 0
A21 A2

]
S−1,

where A1 ∈ Rr×r, A21 ∈ R(n−r)×r, and A2 ∈ R(n−r)×(n−r) is asymptotically stable.
Then,

μs
A(A) = S

[
μs
A(A1) 0
B21s 0

]
S−1,

where B21s ∈ R(n−r)×r, and

μu
A(A) = S

[
μu
A(A1) 0
B21u μu

A(A2)

]
S−1,
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where B21u ∈ R(n−r)×r and μu
A(A2) is nonsingular. Consequently,

R

(
S

[
0

In−r

])
⊆ S(A).

If, in addition, A21 = 0, then

μs
A(A) = S

[
μs
A(A1) 0

0 0

]
S−1,

μu
A(A) = S

[
μu
A(A1) 0

0 μu
A(A2)

]
S−1,

Su(A) ⊆ R

(
S

[
Ir
0

])
.

Fact 11.23.10. Let A ∈ Rn×n, and let S ∈ Rn×n be a nonsingular matrix
such that

A = S

[
A1 0
A21 A2

]
S−1,

where A1 ∈ Rr×r satisfies spec(A1) ⊂ CRHP, A21 ∈ R(n−r)×r, and A2 ∈
R(n−r)×(n−r). Then,

μs
A(A) = S

[
μs
A(A1) 0
C12s μs

A(A2)

]
S−1,

where C21s ∈ R(n−r)×r and μs
A(A1) is nonsingular, and

μu
A(A) = S

[
0 0

C21u μu
A(A2)

]
S−1,

where C21u ∈ R(n−r)×r. Consequently,

Ss(A) ⊆ R

(
S

[
0

In−r

])
.

If, in addition, A21 = 0, then

μs
A(A) = S

[
μs
A(A1) 0

0 μs
A(A2)

]
S−1,

μu
A(A) = S

[
0 0
0 μu

A(A2)

]
S−1,

R

(
S

[
Ir
0

])
⊆ Su(A).

Fact 11.23.11. Let A ∈ Rn×n, and let S ∈ Rn×n be a nonsingular matrix
such that

A = S

[
A1 0
A21 A2

]
S−1,

where A1 ∈ R
r×r satisfies spec(A1) ⊂ CRHP, A21 ∈ R

(n−r)×r, and A2 ∈
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R(n−r)×(n−r) is asymptotically stable. Then,

μs
A(A) = S

[
μs
A(A1) 0
C21s 0

]
S−1,

where C21s ∈ R(n−r)×r and μs
A(A1) is nonsingular, and

μu
A(A) = S

[
0 0

C21u μu
A(A2)

]
S−1,

where C21u ∈ R(n−r)×r and μu
A(A2) is nonsingular. Consequently,

Ss(A) = R

(
S

[
0

In−r

])
.

If, in addition, A21 = 0, then

μs
A(A) = S

[
μs
A(A1) 0

0 0

]
S−1

and

μu
A(A) = S

[
0 0
0 μu

A(A2)

]
S−1.

Consequently,

Su(A) = R

(
S

[
Ir
0

])
.

11.24 Notes

The Laplace transform (11.2.10) is given in [1201, p. 34]. Computational
methods are discussed in [683, 1015]. An arithmetic-mean–geometric-mean itera-
tion for computing the matrix exponential and matrix logarithm is given in [1232].

The exponential function plays a central role in the theory of Lie groups, see
[168, 295, 624, 724, 740, 1162, 1366]. Applications to robotics and kinematics are
given in [986, 1026, 1070]. Additional applications are discussed in [294].

The real logarithm is discussed in [360, 664, 1048, 1102]. The multiplicity
and properties of logarithms are discussed in [462].

An asymptotically stable polynomial is traditionally called Hurwitz. Semista-
bility is defined in [283] and developed in [186, 195]. Stability theory is treated in
[620, 885, 1094] and [541, Chapter XV]. Solutions of the Lyapunov equation under
weak conditions are considered in [1207]. Structured solutions of the Lyapunov
equation are discussed in [793].



Chapter Twelve

Linear Systems and Control Theory

This chapter considers linear state space systems with inputs and outputs.
These systems are considered in both the time domain and frequency (Laplace)
domain. Some basic results in control theory are also presented.

12.1 State Space and Transfer Function Models

Let A ∈ Rn×n and B ∈ Rn×m, and, for t ≥ t0, consider the state equation

ẋ(t) = Ax(t) +Bu(t), (12.1.1)

with the initial condition
x(t0) = x0. (12.1.2)

In (12.1.1), x(t) ∈ Rn is the state, and u(t) ∈ Rm is the input.

The following result give the solution of (12.1.1) known as the variation of
constants formula.

Proposition 12.1.1. For t ≥ t0 the state x(t) of the dynamical equation
(12.1.1) with initial condition (12.1.2) is given by

x(t) = e(t−t0)Ax0 +

t∫
t0

e(t−τ)ABu(τ) dτ. (12.1.3)

Proof. Multiplying (12.1.1) by e−tA yields

e−tA[ẋ(t)−Ax(t)] = e−tABu(t),

which is equivalent to d
dt
[
e−tAx(t)

]
= e−tABu(t).

Integrating over [t0, t] yields

e−tAx(t) = e−t0Ax(t0) +

t∫
t0

e−τABu(τ) dτ.

Now, multiplying by etA yields (12.1.3).
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Alternatively, let x(t) be given by (12.1.3). Then, it follows from Leibniz’s
rule Fact 10.11.10 that

ẋ(t) =
d
dt
e(t−t0)Ax0 +

d
dt

t∫
t0

e(t−τ)ABu(τ) dτ

= Ae(t−t0)Ax0 +

t∫
t0

Ae(t−τ)ABu(τ) dτ +Bu(t)

= Ax(t) +Bu(t). �

For convenience, we can reset the clock and assume without loss of generality
that t0 = 0. In this case, x(t) for all t ≥ 0 is given by

x(t) = etAx0 +

t∫
0

e(t−τ)ABu(τ) dτ. (12.1.4)

If u(t) = 0 for all t ≥ 0, then, for all t ≥ 0, x(t) is given by

x(t) = etAx0. (12.1.5)

Now, let u(t) = δ(t)v, where δ(t) is the unit impulse at t = 0 and v ∈ Rm.
Then, for all t ≥ 0, x(t) is given by

x(t) = etAx0 + etABv. (12.1.6)

Let a < b. Then, δ(t), which has physical dimensions of 1/time, satisfies

b∫
a

δ(τ) dτ =

{
0, a > 0 or b ≤ 0,

1, a ≤ 0 < b.
(12.1.7)

More generally, if g : D → Rn, where [a, b] ⊆ D ⊆ R, t0 ∈ D, and g is continuous
at t0, then

b∫
a

δ(τ − t0)g(τ) dτ =

{
0, a > t0 or b ≤ t0,
g(t0), a ≤ t0 < b.

(12.1.8)

Alternatively, let the input u(t) be constant or a step function, that is, u(t) = v
for all t ≥ 0, where v ∈ Rm. Then, by a change of variable of integration, it follows
that, for all t ≥ 0,

x(t) = etAx0 +

t∫
0

eτA dτBv. (12.1.9)

Using Fact 11.13.14, (12.1.9) can be written for all t ≥ 0 as

x(t) = etAx0 +

[
AD
(
etA − I)+ (I −AAD

)indA∑
i=1

(i!)−1tiAi−1

]
Bv. (12.1.10)
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If A is group invertible, then, for all t ≥ 0, (12.1.10) becomes

x(t) = etAx0 +
[
A#
(
etA − I)+ t(I −AA#)

]
Bv. (12.1.11)

If, in addition, A is nonsingular, then, for all t ≥ 0, (12.1.11) becomes

x(t) = etAx0 +A−1
(
etA − I)Bv. (12.1.12)

Next, consider the output equation

y(t) = Cx(t) +Du(t), (12.1.13)

where t ≥ 0, y(t) ∈ Rl is the output, C ∈ Rl×n, and D ∈ Rl×m. Then, for all t ≥ 0,
the total response is

y(t) = CetAx0 +

t∫
0

Ce(t−τ)ABu(τ) dτ +Du(t). (12.1.14)

If u(t) = 0 for all t ≥ 0, then the free response is given by

y(t) = CetAx0, (12.1.15)

while, if x0 = 0, then the forced response is given by

y(t) =

t∫
0

Ce(t−τ)ABu(τ) dτ +Du(t). (12.1.16)

Setting u(t) = δ(t)v yields, for all t > 0, the total response

y(t) = CetAx0 +H(t)v, (12.1.17)

where, for all t ≥ 0, the impulse response function H(t) is defined by

H(t) �= CetAB + δ(t)D. (12.1.18)

The corresponding forced response is the impulse response

y(t) = H(t)v = CetABv + δ(t)Dv. (12.1.19)

Alternatively, if u(t) = v for all t ≥ 0, then the total response is

y(t) = CetAx0 +

t∫
0

CeτA dτBv +Dv, (12.1.20)

and the forced response is the step response

y(t) =

t∫
0

H(τ) dτv =

t∫
0

CeτA dτBv +Dv. (12.1.21)

In general, the forced response can be written as

y(t) =

t∫
0

H(t− τ)u(τ) dτ. (12.1.22)
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Setting u(t) = δ(t)v yields (12.1.20) by noting that
t∫

0

δ(t− τ)δ(τ)dτ = δ(t). (12.1.23)

Proposition 12.1.2. Let D = 0 and m = 1, and assume that x0 = Bv. Then,
the free response and the impulse response are equal and given by

y(t) = CetAx0 = CetABv. (12.1.24)

12.2 Laplace Transform Analysis

Now, consider the linear system

ẋ(t) = Ax(t) + Bu(t), (12.2.1)

y(t) = Cx(t) +Du(t), (12.2.2)

with state x(t) ∈ R
n, input u(t) ∈ R

m, and output y(t) ∈ R
l, where t ≥ 0 and

x(0) = x0. Taking Laplace transforms yields

sx̂(s)− x0 = Ax̂(s) +Bû(s), (12.2.3)

ŷ(s) = Cx̂(s) +Dû(s), (12.2.4)

where

x̂(s) �= L{x(t)} =

∞∫
0

e−stx(t) dt, (12.2.5)

û(s) �= L{u(t)}, (12.2.6)

and
ŷ(s) �= L{y(t)}. (12.2.7)

Hence,
x̂(s) = (sI −A)−1x0 + (sI −A)−1Bû(s), (12.2.8)

and thus

ŷ(s) = C(sI −A)−1x0 +
[
C(sI −A)−1B +D

]
û(s). (12.2.9)

We can also obtain (12.2.9) from the time-domain expression for y(t) given
by (12.1.14). Using Proposition 11.2.2, it follows from (12.1.14) that

ŷ(s) = L
{
CetAx0

}
+ L

⎧⎨
⎩

t∫
0

Ce(t−τ)ABu(τ) dτ

⎫⎬
⎭+Dû(s)

= CL
{
etA
}
x0 + CL

{
etA
}
Bû(s) +Dû(s)

= C(sI −A)−1x0 +
[
C(sI −A)−1B +D

]
û(s), (12.2.10)
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which coincides with (12.2.9). We define

G(s) �= C(sI −A)−1B +D. (12.2.11)

Note that G ∈ Rl×m(s), that is, by Definition 4.7.2,G is a rational transfer function.
Since L{δ(t)} = 1, it follows that

G(s) = L{H(t)}. (12.2.12)

Using (4.7.2), G can be written as

G(s) =
1

χA(s)
C(sI −A)AB +D. (12.2.13)

It follows from (4.7.3) that G is a proper rational transfer function. Furthermore,
G is a strictly proper rational transfer function if and only if D = 0, whereas G is
an exactly proper rational transfer function if and only if D �= 0. Finally, if A is
nonsingular, then

G(0) = −CA−1B +D. (12.2.14)

Let A ∈ Rn×n. If |s| > sprad(A), then Proposition 9.4.13 implies that

(sI −A)−1 = 1
s

(
I − 1

sA
)−1 =

∞∑
k=0

1
sk+1A

k, (12.2.15)

where the series is absolutely convergent, and thus

G(s) = D + 1
sCB + 1

s2CAB + · · ·

=
∞∑
k=0

1
sk
Hk, (12.2.16)

where, for k ≥ 0, the Markov parameter Hk ∈ Rl×m is defined by

Hk
�=

{
D, k = 0,

CAk−1B, k ≥ 1.
(12.2.17)

It follows from (12.2.15) that lims→∞(sI −A)−1 = 0, and thus

lim
s→∞G(s) = D. (12.2.18)

Finally, it follows from Definition 4.7.3 that

reldegG = min{k ≥ 0: Hk �= 0}. (12.2.19)

12.3 The Unobservable Subspace and Observability

Let A ∈ R
n×n and C ∈ R

l×n, and, for t ≥ 0, consider the linear system

ẋ(t) = Ax(t), (12.3.1)
x(0) = x0, (12.3.2)
y(t) = Cx(t). (12.3.3)
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Definition 12.3.1. The unobservable subspace Utf(A,C) of (A,C) at time
tf > 0 is the subspace

Utf(A,C) �= {x0 ∈ R
n: y(t) = 0 for all t ∈ [0, tf ]}. (12.3.4)

Let tf > 0. Then, Definition 12.3.1 states that x0 ∈ Utf(A,C) if and only
if y(t) = 0 for all t ∈ [0, tf ]. Since y(t) = 0 for all t ∈ [0, tf ] is the free response
corresponding to x0 = 0, it follows that 0 ∈ Utf(A,C). Now, suppose there exists
a nonzero vector x0 ∈ Utf(A,C). Then, with x(0) = x0, the free response is given
by y(t) = 0 for all t ∈ [0, tf ], and thus x0 cannot be determined from knowledge of
y(t) for all t ∈ [0, tf ].

The following result provides explicit expressions for Utf(A,C).

Lemma 12.3.2. Let tf > 0. Then, the following subspaces are equal:

i) Utf(A,C).

ii)
⋂
t∈[0,tf ]

N
(
CetA

)
.

iii)
⋂n−1
i=0 N

(
CAi
)
.

iv) N

([
C
CA...

CAn−1

])
.

v) N
(∫ tf

0 etA
T
CTCetA dt

)
.

If, in addition, limtf→∞
∫ tf
0
etA

T
CTCetAdt exists, then the following subspace is equal

to i)–v):

vi) N
(∫∞

0
etA

T
CTCetAdt

)
.

Proof. The proof is dual to the proof of Lemma 12.6.2.

Lemma 12.3.2 shows that Utf(A,C) is independent of tf . We thus write
U(A,C) for Utf(A,C), and call U(A,C) the unobservable subspace of (A,C). (A,C)
is observable if U(A,C) = {0}. For convenience, define the nl × n observability
matrix

O(A,C) �=

⎡
⎢⎢⎣

C
CA
...

CAn−1

⎤
⎥⎥⎦ (12.3.5)

so that
U(A,C) = N[O(A,C)]. (12.3.6)

Define
p �= n− dimU(A,C) = n− def O(A,C). (12.3.7)
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Corollary 12.3.3. For all tf > 0,

p = dimU(A,C)⊥ = rankO(A,C) = rank

tf∫
0

etA
T
CTCetAdt. (12.3.8)

If, in addition, limtf→∞
∫ tf
0
etA

T
CTCetAdt exists, then

p = rank

∞∫
0

etA
T
CTCetAdt. (12.3.9)

Corollary 12.3.4. U(A,C) is an invariant subspace of A.

The following result shows that the unobservable subspace U(A,C) is un-
changed by output injection

ẋ(t) = Ax(t) + Fy(t). (12.3.10)

Proposition 12.3.5. Let F ∈ Rn×l. Then,

U(A+ FC,C) = U(A,C). (12.3.11)

In particular, (A,C) is observable if and only if (A+ FC,C) is observable.

Proof. The proof is dual to the proof of Proposition 12.6.5.

Let Ũ(A,C) ⊆ Rn be a subspace that is complementary to U(A,C). Then,
Ũ(A,C) is an observable subspace in the sense that, if x0 = x′0 + x′′0 , where x′0 ∈
Ũ(A,C) is nonzero and x′′0 ∈ U(A,C), then it is possible to determine x′0 from
knowledge of y(t) for t ∈ [0, tf ]. Using Proposition 3.5.3, let P ∈ Rn×n be the
unique idempotent matrix such that R(P) = Ũ(A,C) and N(P) = U(A,C). Then,
x′0 = Px0. The following result constructs P and provides an expression for x′0 in
terms of y(t) for Ũ(A,C) �= U(A,C)⊥. In this case, P is a projector.

Lemma 12.3.6. Let tf > 0, and define P ∈ Rn×n by

P
�=

⎛
⎝ tf∫

0

etA
T
CTCetA dt

⎞
⎠
+ tf∫

0

etA
T
CTCetA dt. (12.3.12)

Then, P is the projector onto U(A,C)⊥, and P⊥ is the projector onto U(A,C).
Hence,

R(P) = N(P⊥) = U(A,C)⊥, (12.3.13)

N(P) = R(P⊥) = U(A,C), (12.3.14)

rankP = def P⊥ = dimU(A,C)⊥ = p, (12.3.15)

def P = rankP⊥ = dimU(A,C) = n− p. (12.3.16)
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If x0 = x′0 + x′′0 , where x′0 ∈ U(A,C)⊥ and x′′0 ∈ U(A,C), then

x′0 = Px0 =

⎛
⎝ tf∫

0

etA
T
CTCetA dt

⎞
⎠
+ tf∫

0

etA
T
CTy(t) dt. (12.3.17)

Finally, (A,C) is observable if and only if P = In. In this case, for all x0 ∈ Rn,

x0 =

⎛
⎝ tf∫

0

etA
T
CTCetA dt

⎞
⎠
−1 tf∫

0

etA
T
CTy(t) dt. (12.3.18)

Lemma 12.3.7. Let α ∈ R. Then,

U(A+ αI,C) = U(A,C). (12.3.19)

The following result uses a coordinate transformation to characterize the ob-
servable dynamics of a system.

Theorem 12.3.8. There exists an orthogonal matrix S ∈ Rn×n such that

A = S

[
A1 0
A21 A2

]
S−1, C =

[
C1 0

]
S−1, (12.3.20)

where A1 ∈ Rp×p, C1 ∈ Rl×p, and (A1, C1) is observable.

Proof. The proof is dual to the proof of Theorem 12.6.8.

Proposition 12.3.9. Let S ∈ Rn×n, and assume that S is orthogonal. Then,
the following conditions are equivalent:

i) A and C have the form (12.3.20), where A1 ∈ Rp×p, C1 ∈ Rl×p, and
(A1, C1) is observable.

ii) U(A,C) = R
(
S
[

0
In−p

])
.

iii) U(A,C)⊥ = R
(
S
[
Ip
0

])
.

iv) P = S

[
Ip 0
0 0

]
ST.

Proposition 12.3.10. Let S ∈ R
n×n, and assume that S is nonsingular. Then,

the following conditions are equivalent:

i) A and C have the form (12.3.20), where A1 ∈ R
p×p, C1 ∈ R

l×p, and
(A1, C1) is observable.

ii) U(A,C) = R
(
S
[

0
In−p

])
.

iii) U(A,C)⊥ = R
(
S−T
[
Ip

0

])
.

Definition 12.3.11. Let S ∈ Rn×n, assume that S is nonsingular, and let A
and C have the form (12.3.20), where A1 ∈ Rp×p, C1 ∈ Rl×p, and (A1, C1) is observ-
able. Then, the unobservable spectrum of (A,C) is spec(A2), while the unobservable
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multispectrum of (A,C) is mspec(A2). Furthermore, λ ∈ C is an unobservable eigen-
value of (A,C) if λ ∈ spec(A2).

Definition 12.3.12. The observability pencil OA,C(s) is the pencil

OA,C = P[ A
−C
]
,[ I0 ], (12.3.21)

that is,

OA,C(s) =
[
sI −A
C

]
. (12.3.22)

Proposition 12.3.13. Let λ ∈ spec(A). Then, λ is an unobservable eigenvalue
of (A,C) if and only if

rank
[
λI −A
C

]
< n. (12.3.23)

Proof. The proof is dual to the proof of Proposition 12.6.13.

Proposition 12.3.14. Let λ ∈ mspec(A) and F ∈ Rn×m. Then, λ is an
unobservable eigenvalue of (A,C) if and only if λ is an unobservable eigenvalue of
(A+ FC,C).

Proof. The proof is dual to the proof of Proposition 12.6.14.

Proposition 12.3.15. Assume that (A,C) is observable. Then, the Smith

form of OA,C is
[

In
0l×n

]
.

Proof. The proof is dual to the proof of Proposition 12.6.15.

Proposition 12.3.16. Let p1, . . . , pn−p be the similarity invariants of A2,
where, for all i = 1, . . . , n − p − 1, pi divides pi+1. Then, there exist unimodu-
lar matrices S1 ∈ R(n+l)×(n+l)[s] and S2 ∈ Rn×n[s] and such that, for all s ∈ C,

[
sI −A
C

]
= S1(s)

⎡
⎢⎢⎢⎢⎢⎣

Ip
p1(s)

. . .
pn−p(s)

0l×n

⎤
⎥⎥⎥⎥⎥⎦S2(s). (12.3.24)

Consequently,

Szeros(OA,C) =
n−p⋃
i=1

roots(pi) = roots(χA2) = spec(A2) (12.3.25)

and

mSzeros(OA,C) =
n−p⋃
i=1

mroots(pi) = mroots(χA2) = mspec(A2). (12.3.26)

Proof. The proof is dual to the proof of Proposition 12.6.16.
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Proposition 12.3.17. Let s ∈ C. Then,

O(A,C) ⊆ Re R

([
sI −A
C

])
. (12.3.27)

Proof. The proof is dual to the proof of Proposition 12.6.17.

The next result characterizes observability in several equivalent ways.

Theorem 12.3.18. The following statements are equivalent:

i) (A,C) is observable.

ii) There exists t > 0 such that
∫ t
0
eτA

T
CTCeτA dτ is positive definite.

iii)
∫ t
0
eτA

T
CTCeτA dτ is positive definite for all t > 0.

iv) rankO(A,C) = n.

v) Every eigenvalue of (A,C) is observable.

If, in addition, limt→∞
∫ t
0
eτA

T
CTCeτAdτ exists, then the following condition is

equivalent to i)–v):

vi)
∫∞
0
etA

T
CTCetAdt is positive definite.

Proof. The proof is dual to the proof of Theorem 12.6.18.

The following result implies that arbitrary eigenvalue placement is possible
for (12.3.10) when (A,C) is observable.

Proposition 12.3.19. The pair (A,C) is observable if and only if, for every
polynomial p ∈ R[s] such that deg p = n, there exists a matrix F ∈ Rm×n such that
mspec(A+ FC) = mroots(p).

Proof. The proof is dual to the proof of Proposition 12.6.19.

12.4 Observable Asymptotic Stability

Let A ∈ Rn×n and C ∈ Rl×n, and define p �= n− dimU(A,C).

Definition 12.4.1. (A,C) is observably asymptotically stable if

Su(A) ⊆ U(A,C). (12.4.1)

Proposition 12.4.2. Let F ∈ Rn×l. Then, (A,C) is observably asymptotically
stable if and only if (A+ FC,C) is observably asymptotically stable.

Proposition 12.4.3. The following statements are equivalent:

i) (A,C) is observably asymptotically stable.

ii) There exists an orthogonal matrix S ∈ R
n×n such that (12.3.20) holds,
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where A1 ∈ Rp×p is asymptotically stable and C1 ∈ Rl×p.

iii) There exists a nonsingular matrix S ∈ Rn×n such that (12.3.20) holds,
where A1 ∈ R

p×p is asymptotically stable and C1 ∈ R
l×p.

iv) limt→∞CetA = 0.

v) The positive-semidefinite matrix P ∈ Rn×n defined by

P �=

∞∫
0

etA
T
CTCetA dt (12.4.2)

exists.

vi) There exists a positive-semidefinite matrix P ∈ Rn×n satisfying

ATP + PA+ CTC = 0. (12.4.3)

In this case, the positive-semidefinite matrix P ∈ Rn×n defined by (12.4.2) satisfies
(12.4.3).

Proof. The proof is dual to the proof of Proposition 12.7.3.

The matrix P defined by (12.4.2) is the observability Gramian, and (12.4.3)
is the observation Lyapunov equation.

Proposition 12.4.4. Assume that (A,C) is observably asymptotically stable,
let P ∈ Rn×n be the positive-semidefinite matrix defined by (12.4.2), and define
P ∈ Rn×n by (12.3.12). Then, the following statements hold:

i) PP+ = P.

ii) R(P ) = R(P) = U(A,C)⊥.

iii) N(P ) = N(P) = U(A,C).

iv) rankP = rankP = p.

v) P is the only positive-semidefinite solution of (12.4.3) whose rank is p.

Proof. The proof is dual to the proof of Proposition 12.7.4.

Proposition 12.4.5. Assume that (A,C) is observably asymptotically stable,
let P ∈ Rn×n be the positive-semidefinite matrix defined by (12.4.2), and let P̂ ∈
Rn×n. Then, the following statements are equivalent:

i) P̂ is positive semidefinite and satisfies (12.4.3).

ii) There exists a positive-semidefinite matrix P0 ∈ Rn×n such that P̂ = P+P0

and ATP0 + P0A = 0.

In this case,
rank P̂ = p+ rankP0 (12.4.4)

and
rankP0 ≤

∑
λ∈spec(A)

λ∈jR

gmultA(λ). (12.4.5)
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Proof. The proof is dual to the proof of Proposition 12.7.5.

Proposition 12.4.6. The following statements are equivalent:

i) (A,C) is observably asymptotically stable, every imaginary eigenvalue of
A is semisimple, and A has no ORHP eigenvalues.

ii) (12.4.3) has a positive-definite solution P ∈ Rn×n.

Proof. The proof is dual to the proof of Proposition 12.7.6.

Proposition 12.4.7. The following statements are equivalent:

i) (A,C) is observably asymptotically stable, and A has no imaginary eigen-
values.

ii) (12.4.3) has exactly one positive-semidefinite solution P ∈Rn×n.

In this case, P ∈ Rn×n is given by (12.4.2) and satisfies rankP = p.

Proof. The proof is dual to the proof of Proposition 12.7.7.

Corollary 12.4.8. Assume that A is asymptotically stable. Then, the pos-
itive-semidefinite matrix P ∈ Rn×n defined by (12.4.2) is the unique solution of
(12.4.3) and satisfies rankP = p.

Proof. The proof is dual to the proof of Corollary 12.7.4.

Proposition 12.4.9. The following statements are equivalent:

i) (A,C) is observable, and A is asymptotically stable.

ii) (12.4.3) has exactly one positive-semidefinite solution P ∈Rn×n, and P is
positive definite.

In this case, P ∈ Rn×n is given by (12.4.2).

Proof. The proof is dual to the proof of Proposition 12.7.9.

Corollary 12.4.10. Assume that A is asymptotically stable. Then, the pos-
itive-semidefinite matrix P ∈ Rn×n defined by (12.4.2) exists. Furthermore, P is
positive definite if and only if (A,C) is observable.

12.5 Detectability

Let A ∈ Rn×n and C ∈ Rl×n, and define p �= n− dimU(A,C).

Definition 12.5.1. (A,C) is detectable if

U(A,C) ⊆ Ss(A). (12.5.1)
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Proposition 12.5.2. Let F ∈ Rn×l. Then, (A,C) is detectable if and only if
(A+ FC,C) is detectable.

Proposition 12.5.3. The following statements are equivalent:

i) A is asymptotically stable.

ii) (A,C) is detectable and observably asymptotically stable.

Proof. The proof is dual to the proof of Proposition 12.8.3.

Proposition 12.5.4. The following statements are equivalent:

i) (A,C) is detectable.

ii) There exists an orthogonal matrix S ∈ R
n×n such that (12.3.20) holds,

where A1 ∈ Rp×p, C1 ∈ Rl×p, (A1, C1) is observable, and A2 ∈
R(n−p)×(n−p) is asymptotically stable.

iii) There exists a nonsingular matrix S ∈ Rn×n such that (12.3.20) holds,
where A1 ∈ Rp×p, C1 ∈ Rl×p, (A1, C1) is observable, and A2 ∈
R

(n−p)×(n−p) is asymptotically stable.

iv) Every CRHP eigenvalue of (A,C) is observable.

Proof. The proof is dual to the proof of Proposition 12.8.4.

Proposition 12.5.5. The following statements are equivalent:

i) (A,C) is observably asymptotically stable and detectable.

ii) A is asymptotically stable.

Proof. The proof is dual to the proof of Proposition 12.8.5.

Corollary 12.5.6. The following statements are equivalent:

i) There exists a positive-semidefinite matrix P ∈ Rn×n satisfying (12.4.3),
and (A,C) is detectable.

ii) A is asymptotically stable.

Proof. The proof is dual to the proof of Proposition 12.8.6.

12.6 The Controllable Subspace and Controllability

Let A∈Rn×n and B ∈Rn×m, and, for t≥ 0, consider the linear system

ẋ(t) = Ax(t) +Bu(t), (12.6.1)
x(0) = 0. (12.6.2)

Definition 12.6.1. The controllable subspace Ctf(A,B) of (A,B) at time tf > 0
is the subspace
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Ctf(A,B) �= {xf ∈ R
n: there exists a continuous control u: [0, tf ] �→ R

m

such that the solution x(·) of (12.6.1), (12.6.2) satisfies x(tf) = xf}. (12.6.3)

Let tf > 0. Then, Definition 12.6.1 states that xf ∈ Ctf(A,B) if and only if
there exists a continuous control u: [0, tf ] �→ Rm such that

xf =

tf∫
0

e(tf−t)ABu(t) dt. (12.6.4)

The following result provides explicit expressions for Ctf(A,B).

Lemma 12.6.2. Let tf > 0. Then, the following subspaces are equal:

i) Ctf(A,B).

ii)
[⋂

t∈[0,tf ]
N
(
BTetA

T
)]⊥

.

iii)
[⋂n−1

i=0 N
(
BTAiT

)]⊥
.

iv) R
([

B AB · · · An−1B
])
.

v) R
(∫ tf

0
etABBTetA

T
dt
)
.

If, in addition, limtf→∞
∫ tf
0 etABBTetA

T
dt exists, then the following subspace is equal

to i)–v):

vi) R
(∫∞

0 etABBTetA
T
dt
)
.

Proof. To prove that i) ⊆ ii), let η ∈⋂t∈[0,tf ]
N
(
BTetA

T
)

so that ηTetAB = 0

for all t ∈ [0, tf ].Now, let u: [0, tf ] �→ Rm be continuous. Then, ηT
∫ tf
0
e(tf−t)ABu(t) dt

= 0, which implies that η ∈ Ctf(A,B)⊥.

To prove that ii) ⊆ iii), let η ∈ ⋂n−1
i=0 N

(
BTAiT

)
so that ηTAiB = 0 for all

i = 0, 1, . . . , n−1. It follows from the Cayley-Hamilton theorem Theorem 4.4.7 that
ηTAiB = 0 for all i ≥ 0. Now, let t ∈ [0, tf ]. Then, ηTetAB =

∑∞
i=0 t

i(i!)−1ηTAiB = 0,

and thus η ∈ N
(
BTetA

T
)
.

To show that iii) ⊆ iv), let η ∈ R
([

B AB · · · An−1B
])⊥

. Then, η ∈
N
([

B AB · · · An−1B
]T)

, which implies that ηTAiB = 0 for all i = 0, 1, . . . ,
n−1.

To prove that iv) ⊆ v), let η ∈ N
(∫ tf

0
etABBTetA

T
dt
)
. Then,

ηT
tf∫

0

etABBTetA
T
dtη = 0,
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which implies that ηTetAB = 0 for all t ∈ [0, tf ]. Differentiating with respect to
t and setting t = 0 implies that ηTAiB = 0 for all i = 0, 1, . . . , n − 1. Hence,
η ∈ R

([
B AB · · · An−1B

])⊥
.

To prove that v) ⊆ i), let η ∈ Ctf(A,B)⊥. Then, ηT
∫ tf
0
e(tf−t)ABu(t) dt = 0

for all continuous u: [0, tf ] �→ Rm. Letting u(t) = BTe(tf−t)A
T
ηT, implies that

ηT
∫ tf
0 etABBTetA

T
dtη = 0, and thus η ∈ N

(∫ tf
0 etABBTetA

T
dt
)
.

Lemma 12.6.2 shows that Ctf(A,B) is independent of tf . We thus write
C(A,B) for Ctf(A,B), and call C(A,B) the controllable subspace of (A,B). (A,B)
is controllable if C(A,B) = Rn. For convenience, define the m× nm controllability
matrix

K(A,B) �=
[
B AB · · · An−1B

]
(12.6.5)

so that
C(A,B) = R[K(A,B)]. (12.6.6)

Define
q �= dimC(A,B) = rankK(A,B). (12.6.7)

Corollary 12.6.3. For all tf > 0,

q = dimC(A,B) = rankK(A,B) = rank

tf∫
0

etABBTetA
T
dt. (12.6.8)

If, in addition, limtf→∞
∫ tf
0
etABBTetA

T
dt exists, then

q = rank

∞∫
0

etABBTetA
T
dt. (12.6.9)

Corollary 12.6.4. C(A,B) is an invariant subspace of A.

The following result shows that the controllable subspace C(A,B) is un-
changed by full-state feedback u(t) = Kx(t) + v(t).

Proposition 12.6.5. Let K ∈ Rm×n. Then,

C(A+BK,B) = C(A,B). (12.6.10)

In particular, (A,B) is controllable if and only if (A+BK,B) is controllable.

Proof. Note that

C(A+BK,B)
= R[K(A +BK,B)]

= R
([

B AB +BKB A2B +ABKB +BKAB +BKBKB · · · ])
= R[K(A,B)] = C(A,B). �
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Let C̃(A,B) ⊆ Rn be a subspace that is complementary to C(A,B). Then,
C̃(A,B) is an uncontrollable subspace in the sense that, if xf = x′f + x′′f ∈ Rn, where
x′f ∈ C(A,B) and x′′f ∈ C̃(A,B) is nonzero, then there exists a continuous control
u: [0, tf ] → R

m such that x(tf) = x′f , but there exists no continuous control such
that x(tf) = xf . Using Proposition 3.5.3, let Q ∈ Rn×n be the unique idempotent
matrix such that R(Q) = C(A,B) and N(Q) = C̃(A,B). Then, x′f = Qxf . The
following result constructs Q and a continuous control u(·) that yields x(tf) = x′f
for C̃(A,B) �= C(A,B)⊥. In this case, Q is a projector.

Lemma 12.6.6. Let tf > 0, and define Q ∈ Rn×n by

Q
�=

⎛
⎝ tf∫

0

etABBTetA
T
dt

⎞
⎠
+ tf∫

0

etABBTetA
T
dt. (12.6.11)

Then, Q is the projector onto C(A,B), and Q⊥ is the projector onto C(A,B)⊥.
Hence,

R(Q) = N(Q⊥) = C(A,B), (12.6.12)

N(Q) = R(Q) = C(A,B)⊥, (12.6.13)
rankQ = def Q⊥ = dimC(A,B) = q, (12.6.14)

def Q = rankQ⊥ = dimC(A,B)⊥ = n− q. (12.6.15)

Now, define u: [0, tf ] �→ Rm by

u(t) �= BTe(tf−t)A
T

⎛
⎝ tf∫

0

eτABBTeτA
T
dτ

⎞
⎠
+

xf . (12.6.16)

If xf = x′f + x′′f , where x′f ∈ C(A,B) and x′′f ∈ C(A,B)⊥, then

x′f = Qxf =

tf∫
0

e(tf−t)ABu(t) dt. (12.6.17)

Finally, (A,B) is controllable if and only if Q = In. In this case, for all xf ∈ R
n,

xf =

tf∫
0

e(tf−t)ABu(t) dt, (12.6.18)

where u: [0, tf ] �→ Rm is given by

u(t) = BTe(tf−t)A
T

⎛
⎝ tf∫

0

eτABBTeτA
T
dτ

⎞
⎠
−1

xf . (12.6.19)

Lemma 12.6.7. Let α ∈ R. Then,

C(A+ αI,B) = C(A,B). (12.6.20)

The following result uses a coordinate transformation to characterize the con-
trollable dynamics of (12.6.1).
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Theorem 12.6.8. There exists an orthogonal matrix S ∈ Rn×n such that

A = S

[
A1 A12

0 A2

]
S−1, B = S

[
B1

0

]
, (12.6.21)

where A1 ∈ Rq×q, B1 ∈ Rq×m, and (A1, B1) is controllable.

Proof. Let α < 0 be such that Aα
�= A+αI is asymptotically stable, and let

Q ∈ Rn×n be the positive-semidefinite solution of

AαQ+QAT
α +BBT = 0 (12.6.22)

given by

Q =

∞∫
0

etAαBBTetA
T
α dt.

It now follows from Lemma 12.6.2 and Lemma 12.6.7 that

R(Q) = R[C(Aα, B)] = R[C(A,B)].

Hence,
rankQ = dim C(Aα, B) = dimC(A,B) = q.

Next, let S ∈ Rn×n be an orthogonal matrix such that Q = S
[
Q1 0
0 0

]
ST, where

Q1 ∈ Rq×q is positive definite. Writing Aα = S
[
Â1 Â12

Â21 Â2

]
S−1 and B = S

[
B1
B2

]
, where

Â1 ∈ Rq×q and B1 ∈ Rq×m, it follows from (12.6.22) that

Â1Q1 +Q1Â
T
1 +B1B

T
1 = 0,

Â21Q1 +B2B
T
1 = 0,

B2B
T
2 = 0.

Therefore, B2 = 0 and Â21 = 0, and thus

Aα = S

[
Â1 Â12

0 Â2

]
S−1, B = S

[
B1

0

]
.

Furthermore,

A = S

[
Â1 Â12

0 Â2

]
S−1 − αI = S

([
Â1 Â12

0 Â2

]
− αI

)
S−1.

Hence,

A = S

[
A1 A12

0 A2

]
S−1,

where A1
�= Â1 − αIq, A12

�= Â12, and A2
�= Â2 − αIn−q .

Proposition 12.6.9. Let S ∈ Rn×n, and assume that S is orthogonal. Then,
the following conditions are equivalent:

i) A and B have the form (12.6.21), where A1 ∈ Rq×q, B1 ∈ Rq×m, and
(A1, B1) is controllable.

ii) C(A,B) = R
(
S
[
Iq
0

])
.
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iii) C(A,B)⊥ = R
(
S
[

0
In−q

])
.

iv) Q = S

[
Iq 0
0 0

]
ST.

Proposition 12.6.10. Let S ∈ Rn×n, and assume that S is nonsingular. Then,
the following conditions are equivalent:

i) A and B have the form (12.6.21), where A1 ∈ Rq×q, B1 ∈ Rq×m, and
(A1, B1) is controllable.

ii) C(A,B) = R
(
S
[
Iq
0

])
.

iii) C(A,B)⊥ = R
(
S−T
[

0
In−q

])
.

Definition 12.6.11. Let S ∈ R
n×n, assume that S is nonsingular, and let

A and B have the form (12.6.21), where A1 ∈ Rq×q, B1 ∈ Rq×m, and (A1, B1) is
controllable. Then, the uncontrollable spectrum of (A,B) is spec(A2), while the
uncontrollable multispectrum of (A,B) is mspec(A2). Furthermore, λ ∈ C is an
uncontrollable eigenvalue of (A,B) if λ ∈ spec(A2).

Definition 12.6.12. The controllability pencil CA,B(s) is the pencil

CA,B = P[A −B ],[ I 0 ], (12.6.23)

that is,

CA,B(s) =
[
sI −A B

]
. (12.6.24)

Proposition 12.6.13. Let λ ∈ spec(A). Then, λ is an uncontrollable eigen-
value of (A,B) if and only if

rank
[
λI −A B

]
< n. (12.6.25)

Proof. Since (A1, B1) is controllable, it follows from (12.6.21) that

rank
[
λI −A B

]
= rank

[
λI −A1 A12 B1

0 λI −A2 0

]

= rank
[
λI −A1 B1

]
+ rank(λI − A2)

= q + rank(λI −A2).

Hence, rank
[
λI −A B

]
< n if and only if rank(λI − A2) < n − q, that is, if

and only if λ ∈ spec(A2).

Proposition 12.6.14. Let λ ∈ mspec(A) and K ∈ Rn×m. Then, λ is an
uncontrollable eigenvalue of (A,B) if and only if λ is an uncontrollable eigenvalue
of (A+BK,B).
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Proof. In the notation of Theorem 12.6.8, partition B1 =
[
B11 B12

]
,

where B11 ∈ Fq×m, and partition K =
[
K1

K2

]
, where K1 ∈ Rq×m. Then,

A+BK =

[
A1 +B11K1 A12 +B12K2

0 A2

]
.

Consequently, the uncontrollable spectrum of A+BK is spec(A2).

Proposition 12.6.15. Assume that (A,B) is controllable. Then, the Smith
form of CA,B is

[
In 0n×m

]
.

Proof. First, note that, if λ ∈ C is not an eigenvalue of A, then n =
rank(λI −A) = rank

[
λI −A B

]
= rankCA,B(λ). Therefore, rankCA,B = n,

and thus CA,B has n Smith polynomials. Furthermore, since (A,B) is controllable,
it follows that (A,B) has no uncontrollable eigenvalues. Therefore, it follows from
Proposition 12.6.13 that, for all λ ∈ spec(A), rank

[
λI −A B

]
= n. Conse-

quently, rankCA,B(λ) = n for all λ ∈ C. Thus, every Smith polynomial CA,B is
1.

Proposition 12.6.16. Let p1, . . . , pn−q be the similarity invariants of A2,
where, for all i = 1, . . . , n − q − 1, pi divides pi+1. Then, there exist unimodu-
lar matrices S1 ∈ Rn×n[s] and S2 ∈ R(n+m)×(n+m)[s] such that, for all s ∈ C,

[
sI −A B

]
= S1(s)

⎡
⎢⎢⎢⎣
Iq

p1(s) 0n×m
. . .

pn−q(s)

⎤
⎥⎥⎥⎦S2(s). (12.6.26)

Consequently,

Szeros(CA,B) =
n−q⋃
i=1

roots(pi) = roots(χA2) = spec(A2) (12.6.27)

and

mSzeros(CA,B) =
n−q⋃
i=1

mroots(pi) = mroots(χA2) = mspec(A2). (12.6.28)

Proof. Let S ∈ R
n×n be as in Theorem 12.6.8, let Ŝ1 ∈ R

q×q[s] and Ŝ2 ∈
R(q+m)×(q+m)[s] be unimodular matrices such that

Ŝ1(s)
[
sIq −A1 B1

]
Ŝ2(s) =

[
Iq 0q×m

]
,

and let Ŝ3, Ŝ4 ∈ R(n−q)×(n−q) be unimodular matrices such that

Ŝ3(s)(sI −A2)Ŝ4(s) = P̂ (s),
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where P̂ �= diag(p1, . . . , pn−q). Then,

[
sI −A B

]
= S

[
Ŝ−1

1 (s) 0
0 Ŝ−1

3 (s)

][
Iq 0 0q×m
0 P̂ (s) 0

]

×
⎡
⎣ Iq 0 −Ŝ1(s)A12

0 0 Ŝ−1
4 (s)

0 Im 0

⎤
⎦[ Ŝ−1

2 (s) 0
0 In−q

]⎡⎣ Iq 0 0q×m
0 0 Im
0 In−q 0

⎤
⎦[ S−1 0

0 Im

]
.

Proposition 12.6.17. Let s ∈ C. Then,

C(A,B) ⊆ Re R
([

sI −A B
])
. (12.6.29)

Proof. Using Proposition 12.6.9 and the notation in the proof of Proposition
12.6.16, it follows that, for all s ∈ C,

C(A,B) = R
(
S
[
Iq

0

]) ⊆ R

(
S

[
Ŝ−1

1 (s) 0
0 Ŝ−1

3 (s)P̂ (s)

])
= R
([

sI −A B
])
. �

The next result characterizes controllability in several equivalent ways.

Theorem 12.6.18. The following statements are equivalent:

i) (A,B) is controllable.

ii) There exists t > 0 such that
∫ t
0 e

τABBTeτA
T
dτ is positive definite.

iii)
∫ t
0 e

τABBTeτA
T
dτ is positive definite for all t > 0.

iv) rankK(A,B) = n.

v) Every eigenvalue of (A,B) is controllable.

If, in addition, limt→∞
∫ t
0 e

τABBTeτA
T
dτ exists, then the following condition is

equivalent to i)–v):

vi)
∫∞
0 etABBTetA

T
dt is positive definite.

Proof. The equivalence of i)–iv) follows from Lemma 12.6.2.

To prove iv) =⇒ v), suppose that v) does not hold, that is, there exist λ ∈
spec(A) and a nonzero vector x ∈ Cn such that x∗A = λx∗ and x∗B = 0. It thus
follows that x∗AB = λx∗B = 0. Similarly, x∗AiB = 0 for all i = 0, 1, . . . , n−1. Hence,
(Rex)TK(A,B) = 0 and (Imx)TK(A,B) = 0. Since Rex and Imx are not both
zero, it follows that dimC(A,B) < n.

Conversely, to show that v) implies iv), suppose that rankK(A,B) < n. Then,
there exists a nonzero vector x ∈ Rn such that xTAiB = 0 for all i = 0, . . . , n −1.
Now, let p ∈ R[s] be a nonzero polynomial of minimal degree such that xTp(A) = 0.
Note that p is not a constant polynomial and that xTμA(A) = 0. Thus, 1 ≤ deg p ≤
degμA. Now, let λ ∈ C be such that p(λ) = 0, and let q ∈ R[s] be such that
p(s) = q(s)(s − λ) for all s ∈ C. Since deg q < deg p, it follows that xTq(A) �= 0.
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Therefore, η �= q(A)x is nonzero. Furthermore, ηT(A − λI) = xTp(A) = 0. Since
xTAiB = 0 for all i = 0, . . . , n−1, it follows that ηTB = xTq(A)B = 0. Consequently,
v) does not hold.

The following result implies that arbitrary eigenvalue placement is possible
for (12.6.1) when (A,B) is controllable.

Proposition 12.6.19. The pair (A,B) is controllable if and only if, for every
polynomial p ∈ R[s] such that deg p = n, there exists a matrix K ∈ Rm×n such
that mspec(A+BK) = mroots(p).

Proof. For the case m = 1 let Ac
�= C(χA) and Bc

�= en as in (12.9.5). Then,
Proposition 12.9.3 implies that K(Ac, Bc) is nonsingular, while Corollary 12.9.9
implies that Ac = S−1AS and Bc = S−1B. Now, let mroots(p) = {λ1, . . . , λn}ms ⊂
C. Letting K �= eTn [C(p)−Ac]S−1 it follows that

A+BK = S(Ac +BcKS)S−1

= S(Ac + En,n[C(p)−Ac])S−1

= SC(p)S−1.

The case m > 1 requires the multivariable controllable canonical form. See [1150,
p. 248].

12.7 Controllable Asymptotic Stability

Let A ∈ Rn×n and B ∈ Rn×m, and define q �= dimC(A,C).

Definition 12.7.1. (A,B) is controllably asymptotically stable if

C(A,B) ⊆ Ss(A). (12.7.1)

Proposition 12.7.2. Let K ∈ R
m×n. Then, (A,B) is controllably asymptot-

ically stable if and only if (A+BK,B) is controllably asymptotically stable.

Proposition 12.7.3. The following statements are equivalent:

i) (A,B) is controllably asymptotically stable.

ii) There exists an orthogonal matrix S ∈ Rn×n such that (12.6.21) holds,
where A1 ∈ Rq×q is asymptotically stable and B1 ∈ Rq×m.

iii) There exists a nonsingular matrix S ∈ Rn×n such that (12.6.21) holds,
where A1 ∈ Rq×q is asymptotically stable and B1 ∈ Rq×m.

iv) limt→∞ etAB = 0.

v) The positive-semidefinite matrix Q ∈ Rn×n defined by

Q
�=

∞∫
0

etABBTetA
T
dt (12.7.2)
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exists.

vi) There exists a positive-semidefinite matrix Q ∈ Rn×n satisfying

AQ+QAT +BBT = 0. (12.7.3)

In this case, the positive-semidefinite matrix Q ∈ Rn×n defined by (12.7.2) satisfies
(12.7.3).

Proof. To prove i) =⇒ ii), assume that (A,B) is controllably asymptotically
stable so that C(A,B) ⊆ Ss(A) = N[μs

A(A)] = R[μu
A(A)]. Using Theorem 12.6.8,

it follows that there exists an orthogonal matrix S ∈ Rn×n such that (12.6.21)
is satisfied, where A1 ∈ Rq×q and (A1, B1) is controllable. Thus, R

(
S
[
Iq
0

])
=

C(A,B) ⊆ R[μs
A(A)].

Next, note that

μs
A(A) = S

[
μs
A(A1) B12s

0 μs
A(A2)

]
S−1,

where B12s ∈ Rq×(n−q), and suppose that A1 is not asymptotically stable with
CRHP eigenvalue λ. Then, λ /∈ roots(μs

A), and thus μs
A(A1) �= 0. Let x1 ∈ Rn−q

satisfy μs
A(A1)x1 �= 0. Then,[

x1

0

]
∈ R

(
S

[
Iq
0

])
= C(A,B)

and
μs
A(A)S

[
x1

0

]
= S

[
μs
A(A1)x1

0

]
,

and thus [ x1
0 ] /∈ N[μs

A(A)] = Ss(A), which implies that C(A,B) is not contained in
Ss(A). Hence, A1 is asymptotically stable.

To prove iii) =⇒ iv), assume there exists a nonsingular matrix S ∈ Rn×n such
that (12.6.21) holds, where A1 ∈ Rk×k is asymptotically stable and B1 ∈ Rk×m.
Thus, etAB =

[
etA1B1

0

]
S → 0 as t→∞.

Next, to prove that iv) implies v), assume that etAB → 0 as t → ∞. Then,
every entry of etAB involves exponentials of t, where the coefficients of t have
negative real part. Hence, so does every entry of etABBTetA

T
, which implies that∫∞

0
etABBTetA

T
dt exists.

To prove v) =⇒ vi), note that, since Q =
∫∞
0 etABBTetA

T
dt exists, it follows

that etABBTetA
T → 0 as t→∞. Thus,
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AQ+QAT =

∞∫
0

[
AetABBTetA

T
+ etABBTetA

T
A
]
dt

=

∞∫
0

d
dt
etABBTetA

T
dt

= lim
t→∞ etABBTetA

T −BBT = −BBT,

which shows that Q satisfies (12.4.3).

To prove vi) =⇒ i), suppose there exists a positive-semidefinite matrix Q ∈
Rn×n satisfying (12.7.3). Then,

t∫
0

etABBTetA
T

dτ = −
t∫

0

eτA
(
AQ+QAT

)
etA

T
dτ = −

t∫
0

d
dτ
eτAQAT dτ

= Q− etAQetAT ≤ Q.
Next, it follows from Theorem 12.6.8 that there exists an orthogonal matrix S ∈
Rn×n such that (12.6.21) is satisfied, where A1 ∈ Rq×q, B1 ∈ Rq×m, and (A1, B1)
is controllable. Consequently, we have

t∫
0

eτA1B1B
T
1e
τAT

1 dτ =
[
I 0

]
S

t∫
0

eτABBTeτA
T

dτST

[
I
0

]

≤ [ I 0
]
SQST

[
I
0

]
.

Thus, it follows from Proposition 8.6.3 that Q1
�=
∫∞
0 etA1B1B

T
1e
tAT

1 dt exists. Since
(A1, B1) is controllable, it follows from vii) of Theorem 12.6.18 that Q1 is positive
definite.

Now, let λ be an eigenvalue of AT
1 , and let x1 ∈ Cn be an associated eigen-

vector. Consequently, α �= x∗1Q1x1 is positive, and

α = x∗1

∞∫
0

eλtBBT
1e
λt dtx1 = x∗1B1B

T
1x1

∞∫
0

e2(Reλ)t dt.

Hence,
∫∞
0
e2(Reλ)t dt = α/x∗1B1B

T
1x1 exists, and thus Reλ < 0. Consequently, A1

is asymptotically stable, and thus C(A,B) ⊆ Ss(A), that is, (A,B) is controllably
asymptotically stable.

The matrix Q∈Rn×n defined by (12.7.2) is the controllability Gramian, and
(12.7.3) is the control Lyapunov equation.

Proposition 12.7.4. Assume that (A,B) is controllably asymptotically sta-
ble, let Q ∈ Rn×n be the positive-semidefinite matrix defined by (12.7.2), and define
Q ∈ Rn×n by (12.6.11). Then, the following statements hold:

i) QQ+ = Q.
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ii) R(Q) = R(Q) = C(A,B).

iii) N(Q) = N(Q) = C(A,B)⊥.

iv) rankQ = rankQ = q.

v) Q is the only positive-semidefinite solution of (12.7.3) whose rank is q.

Proof. See [1207] for the proof of v).

Proposition 12.7.5. Assume that (A,B) is controllably asymptotically sta-
ble, let Q ∈ Rn×n be the positive-semidefinite matrix defined by (12.7.2), and let
Q̂ ∈ R

n×n. Then, the following statements are equivalent:

i) Q̂ is positive semidefinite and satisfies (12.7.3).

ii) There exists a positive-semidefinite matrix Q0 ∈ Rn×n such that Q̂ =
Q+Q0 and AQ0 +Q0A

T = 0.

In this case,
rank Q̂ = q + rankQ0 (12.7.4)

and
rankQ0 ≤

∑
λ∈spec(A)

λ∈jR

gmultA(λ). (12.7.5)

Proof. See [1207].

Proposition 12.7.6. The following statements are equivalent:

i) (A,B) is controllably asymptotically stable, every imaginary eigenvalue of
A is semisimple, and A has no ORHP eigenvalues.

ii) (12.7.3) has a positive-definite solution Q ∈ R
n×n.

Proof. See [1207].

Proposition 12.7.7. The following statements are equivalent:

i) (A,B) is controllably asymptotically stable, and A has no imaginary eigen-
values.

ii) (12.7.3) has exactly one positive-semidefinite solution Q∈R
n×n.

In this case, Q ∈ Rn×n is given by (12.7.2) and satisfies rankQ = q.

Proof. See [1207].

Corollary 12.7.8. Assume that A is asymptotically stable. Then, the pos-
itive-semidefinite matrix Q ∈ Rn×n defined by (12.7.2) is the unique solution of
(12.7.3) and satisfies rankQ = q.

Proof. See [1207].
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Proposition 12.7.9. The following statements are equivalent:

i) (A,B) is controllable, and A is asymptotically stable.

ii) (12.7.3) has exactly one positive-semidefinite solution Q∈Rn×n, and Q is
positive definite.

In this case, Q ∈ Rn×n is given by (12.7.2).

Proof. See [1207].

Corollary 12.7.10. Assume that A is asymptotically stable. Then, the pos-
itive-semidefinite matrix Q ∈ R

n×n defined by (12.7.2) exists. Furthermore, Q is
positive definite if and only if (A,B) is controllable.

12.8 Stabilizability

Let A ∈ Rn×n and B ∈ Rn×m, and define q �= dimC(A,B).

Definition 12.8.1. (A,B) is stabilizable if

Su(A) ⊆ C(A,B). (12.8.1)

Proposition 12.8.2. Let K ∈ Rm×n. Then, (A,B) is stabilizable if and only
if (A+BK,B) is stabilizable.

Proposition 12.8.3. The following statements are equivalent:

i) A is asymptotically stable.

ii) (A,B) is stabilizable and controllably asymptotically stable.

Proof. Suppose that A is asymptotically stable. Then, Su(A) = {0}, and
Ss(A) = R

n. Thus, Su(A) ⊆ C(A,B), and C(A,B) ⊆ Ss(A). Conversely, assume
that (A,B) is stabilizable and controllably asymptotically stable. Then, Su(A) ⊆
C(A,B) ⊆ Ss(A), and thus Su(A) = {0}.

Proposition 12.8.4. The following statements are equivalent:

i) (A,B) is stabilizable.

ii) There exists an orthogonal matrix S ∈ Rn×n such that (12.6.21) holds,
where A1 ∈ R

q×q, B1 ∈ R
q×m, (A1, B1) is controllable, and A2 ∈

R(n−q)×(n−q) is asymptotically stable.

iii) There exists a nonsingular matrix S ∈ Rn×n such that (12.6.21) holds,
where A1 ∈ Rq×q, B1 ∈ Rq×m, (A1, B1) is controllable, and A2 ∈
R(n−q)×(n−q) is asymptotically stable.

iv) Every CRHP eigenvalue of (A,B) is controllable.

Proof. To prove i) =⇒ ii), assume that (A,B) is stabilizable so that Su(A) =
N[μu

A(A)] = R[μs
A(A)] ⊆ C(A,B). Using Theorem 12.6.8, it follows that there exists
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an orthogonal matrix S ∈ Rn×n such that (12.6.21) is satisfied, where A1 ∈ Rq×q

and (A1, B1) is controllable. Thus, R[μs
A(A)] ⊆ C(A,B) = R

(
S
[
Iq
0

])
.

Next, note that

μs
A(A) = S

[
μs
A(A1) B12s

0 μs
A(A2)

]
S−1,

where B12s ∈ Rq×(n−q), and suppose that A2 is not asymptotically stable with
CRHP eigenvalue λ. Then, λ /∈ roots(μs

A), and thus μs
A(A2) �= 0. Let x2 ∈ Rn−q

satisfy μs
A(A2)x2 �= 0. Then,

μs
A(A)S

[
0
x2

]
= S

[
B12sx2

μs
A(A2)x2

]
/∈ R

(
S

[
Iq
0

])
= C(A,B),

which implies that Su(A) is not contained in C(A,B). Hence, A2 is asymptotically
stable.

The statement ii) implies iii) is immediate.

To prove iii) =⇒ iv), let λ ∈ spec(A) be a CRHP eigenvalue of A. Since A2

is asymptotically stable, it follows that λ /∈ spec(A2). Consequently, Proposition
12.6.13 implies that λ is not an uncontrollable eigenvalue of (A,B), and thus λ is
a controllable eigenvalue of (A,B).

To prove iv) =⇒ i), let S ∈ Rn×n be nonsingular and such that A and B
have the form (12.6.21), where A1 ∈ R

q×q, B1 ∈ R
q×m, and (A1, B1) is controllable.

Since every CRHP eigenvalue of (A,B) is controllable, it follows from Proposition
12.6.13 that A2 is asymptotically stable. From Fact 11.23.4 it follows that Su(A) ⊆
R
(
S
[
Iq
0

])
= C(A,B), which implies that (A,B) is stabilizable.

Proposition 12.8.5. The following statements are equivalent:

i) (A,B) is controllably asymptotically stable and stabilizable.

ii) A is asymptotically stable.

Proof. Since (A,B) is stabilizable, it follows from Proposition 12.5.4 that
there exists a nonsingular matrix S ∈ R

n×n such that (12.6.21) holds, where A1 ∈
Rq×q, B1 ∈ Rq×m, (A1, B1) is controllable, and A2 ∈ R(n−q)×(n−q) is asymptotically
stable. Then,

∞∫
0

etABBTetA
T

dt = S

[ ∫∞
0
etA1B1B

T
1e
tAT

1 dt 0

0 0

]
S−1.

Since the integral on the left-hand side exists by assumption, the integral on the
right-hand side also exists. Since (A1, B1) is controllable, it follows from vii) of
Theorem 12.6.18 that Q1

�=
∫∞
0
etA1B1B

T
1e
tAT

1 dt is positive definite.

Now, let λ be an eigenvalue of AT
1 , and let x1 ∈ Cq be an associated eigen-

vector. Consequently, α �= x∗1Q1x1 is positive, and
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α = x∗1

∞∫
0

eλtB1B
T
1e
λt dtx1 = x∗1B1B

T
1x1

∞∫
0

e2(Reλ)t dt.

Hence,
∫∞
0
e2(Reλ)t dt exists, and thus Reλ < 0. Consequently, A1 is asymptotically

stable, and thus A is asymptotically stable.

Corollary 12.8.6. The following statements are equivalent:

i) There exists a positive-semidefinite matrix Q ∈ R
n×n satisfying (12.7.3),

and (A,B) is stabilizable.

ii) A is asymptotically stable.

Proof. The result follows from Proposition 12.7.3 and Proposition 12.8.5.

12.9 Realization Theory

Given a proper rational transfer function G we wish to determine (A,B,C,D)
such that (12.2.11) holds. The following terminology is convenient.

Definition 12.9.1. Let G ∈ Rl×m(s). If l = m = 1, then G is a single-
input/single-output (SISO) rational transfer function; if l = 1 and m > 1, then G
is a multiple-input/single-output (MISO) rational transfer function; if l > 1 and
m = 1, then G is a single-input/multiple-output (SIMO) rational transfer function;
and, if l > 1 or m > 1, then G is a multiple-input/multiple output (MIMO) rational
transfer function.

Definition 12.9.2. Let G ∈ Rl×mprop(s), and assume that A ∈ Rn×n, B ∈ Rn×m,

C ∈ Rl×n, and D ∈ Rl×m satisfy G(s) = C(sI −A)−1B +D. Then,
[
A B

C D

]
is a

realization of G, which is written as

G ∼
[
A B

C D

]
. (12.9.1)

The order of the realization (12.9.1) is the order of A. Finally, the realization
(12.9.1) is controllable and observable if (A,B) is controllable and (A,C) is observ-
able.

Suppose that n = 0. Then, A, B, and C are empty matrices, and G ∈ R
l×m
prop(s)

is given by

G(s) = 0l×0(sI0×0 − 00×0)−100×m +D = 0l×m +D = D. (12.9.2)

Therefore, the order of the realization
[

00×0 00×m

0l×0 D

]
is zero.

Although the realization (12.9.1) is not unique, the matrix D is unique and
is given by

D = G(∞). (12.9.3)
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Furthermore, note that G ∼
[
A B

C D

]
if and only if G−D ∼

[
A B

C 0

]
. Therefore,

it suffices to construct realizations for strictly proper transfer functions.

The following result shows that every strictly proper, SISO rational transfer
function G has a realization. In fact, two realizations are the controllable canonical
form G ∼

[
Ac Bc

Cc 0

]
and the observable canonical form G ∼

[
Ao Bo

Co 0

]
. If G is

exactly proper, then a realization can be obtained for G−G(∞).

Proposition 12.9.3. Let G ∈ Rprop(s) be the SISO strictly proper rational
transfer function

G(s) =
αn−1s

n−1 + αn−2s
n−2 + · · ·+ α1s+ α0

sn + βn−1sn−1 + · · ·+ β1s+ β0
. (12.9.4)

Then, G ∼
[
Ac Bc

Cc 0

]
, where Ac, Bc, Cc are defined by

Ac
�=

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−β0 −β1 −β2 · · · −βn−1

⎤
⎥⎥⎥⎥⎥⎦, Bc

�=

⎡
⎢⎢⎢⎢⎢⎣

0
0
...
0
1

⎤
⎥⎥⎥⎥⎥⎦, (12.9.5)

Cc
�=
[
α0 α1 α2 · · · αn−1

]
, (12.9.6)

and G ∼
[
Ao Bo

Co 0

]
, where Ao, Bo, Co are defined by

Ao
�=

⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · 0 −β0

1 0 · · · 0 −β1

0 1 · · · 0 −β2

...
...

. . .
...

0 0 · · · 1 −βn−1

⎤
⎥⎥⎥⎥⎥⎦, Bo

�=

⎡
⎢⎢⎢⎢⎢⎣

α0

α1

α2

...
αn−1

⎤
⎥⎥⎥⎥⎥⎦, (12.9.7)

Co
�=
[

0 0 · · · 0 1
]
. (12.9.8)

Furthermore, (Ac, Bc) is controllable, and (Ao, Co) is observable. Finally, the fol-
lowing statements are equivalent:

i) The numerator and denominator of G given in (12.9.4) are coprime.

ii) (Ac, Cc) is observable.

iii) (Ac, Bc, Cc) is controllable and observable.

iv) (Ao, Bo) is controllable.

v) (Ao, Bo, Co) is controllable and observable.
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Proof. The realizations can be verified directly. Furthermore, note that

K(Ac, Bc) = O(Ao, Co) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0 1

0 0 0 . .. 1 −βn−1

...
... . .. . .. . ..

...

0 0 1 . .. −β3 −β2

0 1 −βn−1 · · · −β2 −β1

1 −βn−1 −βn−2 · · · −β1 −β0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

It follows from Fact 2.13.8 that det K(Ac, Bc) = detO(Ao, Co) = (−1)�n/2�, which
implies that (Ac, Bc) is controllable and (Ao, Co) is observable.

To prove the last statement, let p, q ∈ R[s] denote the numerator and denom-
inator, respectively, of G in (12.9.4). Then, for n = 2,

K(Ao, Bo) = OT(Ac, Cc) = B(p, q)Î
[

1 −β1

0 1

]
,

where B(p, q) is the Bezout matrix of p and q. It follows from ix) of Fact 4.8.6 that
B(p, q) is nonsingular if and only if p and q are coprime.

The following result shows that every proper rational transfer function has a
realization.

Theorem 12.9.4. Let G ∈ Rl×mprop(s). Then, there exist A ∈ Rn×n, B ∈ Rn×m,

C ∈ Rl×n, and D ∈ Rl×m such that G ∼
[
A B

C D

]
.

Proof. By Proposition 12.9.3, every entry G(i,j) of G has a realizationG(i,j) ∼[
Aij Bij

Cij Dij

]
. Combining these realizations yields a realization of G.

Proposition 12.9.5. Let G ∈ Rl×mprop(s) have the nth-order realization[
A B

C D

]
, let S ∈ Rn×n, and assume that S is nonsingular. Then,

G ∼
[
SAS−1 SB

CS−1 D

]
. (12.9.9)

If, in addition,
[
A B

C D

]
is controllable and observable, then so is

[
SAS−1 SB

CS−1 D

]
.

Definition 12.9.6. Let G ∈ Rl×mprop(s), and let
[
A B

C D

]
and
[
Â B̂

Ĉ D

]
be nth-

order realizations of G. Then,
[
A B

C D

]
and
[
Â B̂

Ĉ D

]
are equivalent if there exists

a nonsingular matrix S ∈ Rn×n such that Â = SAS−1, B̂ = SB, and Ĉ = CS−1.

The following result shows that the Markov parameters of a rational transfer
function are independent of the realization.
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Proposition 12.9.7. LetG ∈Rl×mprop(s), and assume thatG∼
[
A B

C D

]
, where

A ∈ Rn×n, and G ∼
[
Â B̂

Ĉ D̂

]
, where A ∈ Rn̂×n̂. Then, D = D̂, and, for all k ≥ 0,

CAkB = ĈÂkB̂.

Proposition 12.9.8. Let G ∈ Rl×mprop(s), assume that G has the nth-order real-

izations
[
A1 B1

C1 D

]
and
[
A2 B2

C2 D

]
, and assume that both of these realizations are

controllable and observable. Then, these realizations are equivalent. Furthermore,
there exists a unique matrix S ∈ Rn×n such that[

A2 B2

C2 D

]
=

[
SA1S

−1 SB1

C1S
−1 D

]
. (12.9.10)

In fact,

S =
(
OT

2O2

)−1
OT

2O1, S−1 = K1K
T
2

(
K2K

T
2

)−1
, (12.9.11)

where, for i = 1, 2, Ki
�= K(Ai, Bi) and Oi

�= O(Ai, Ci).

Proof. By Proposition 12.9.7, the realizations
[
A1 B1

C1 D

]
and

[
A2 B2

C2 D

]
generate the same Markov parameters. Hence, O1A1K1 = O2A2K2, O1B1 = O2B2,
and C1K1 = C2K2. Since

[
A2 B2

C2 D

]
is controllable and observable, it follows that

the n× n matrices K2K
T
2 and OT

2O2 are nonsingular. Consequently, A2 = SA1S
−1,

B2 = SB1, and C2 = C1S
−1.

To prove uniqueness, assume there exists a matrix Ŝ ∈ Rn×n such that A2 =
ŜA1Ŝ

−1, B2 = ŜB1, and C2 = C1Ŝ
−1. Then, it follows that O1Ŝ = O2. Since

O1S = O2, it follows that O1(S − Ŝ) = 0. Consequently, S = Ŝ.

Corollary 12.9.9. Let G ∈ Rprop(s) be given by (12.9.4), assume that G

has the nth-order controllable and observable realization
[
A B

C 0

]
, and define

Ac, Bc, Cc by (12.9.5), (12.9.6) and Ao, Bo, Co by (12.9.7), (12.9.8). Furthermore,
define Sc

�= [O(A,B)]−1O(Ac, Bc). Then,

S−1
c = K(A,B)[K(Ac, Bc)]−1 (12.9.12)

and [
ScAS

−1
c ScB

CS−1
c 0

]
=

[
Ac Bc

Cc 0

]
. (12.9.13)

Furthermore, define So
�= [O(A,B)]−1O(Ao, Bo). Then,

S−1
o = K(A,B)[K(Ao, Bo)]−1 (12.9.14)

and [
SoAS

−1
o SoB

CS−1
o 0

]
=

[
Ao Bo

Co 0

]
. (12.9.15)
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The following result, known as the Kalman decomposition, is useful for con-
structing controllable and observable realizations.

Proposition 12.9.10. Let G ∈ Rl×mprop(s), where G ∼
[
A B

C D

]
. Then, there

exists a nonsingular matrix S ∈ Rn×n such that

A = S

⎡
⎢⎢⎣

A1 0 A13 0
A21 A2 A23 A24

0 0 A3 0
0 0 A43 A4

⎤
⎥⎥⎦S−1, B = S

⎡
⎢⎢⎣
B1

B2

0
0

⎤
⎥⎥⎦, (12.9.16)

C =
[
C1 0 C3 0

]
S−1, (12.9.17)

where, for i = 1, . . . , 4, Ai ∈ Rni×ni,
([

A1 0
A21 A2

]
,
[
B1
B2

])
is controllable, and([

A1 A13
0 A3

]
, [C1 C3 ]

)
is observable. Furthermore, the following statements hold:

i) (A,B) is stabilizable if and only if A3 and A4 are asymptotically stable.

ii) (A,B) is controllable if and only if A3 and A4 are empty.

iii) (A,C) is detectable if and only if A2 and A4 are asymptotically stable.

iv) (A,C) is observable if and only if A2 and A4 are empty.

v) G ∼
[
A1 B1

C1 D

]
.

vi) The realization
[
A1 B1

C1 D

]
is controllable and observable.

Proof. Let α ≤ 0 be such that A + αI is asymptotically stable, and let
Q ∈ Rn×n and P ∈ Rn×n denote the controllability and observability Gramians
of the system (A + αI,B,C). Then, Theorem 8.3.4 implies that there exists a
nonsingular matrix S ∈ Rn×n such that

Q = S

⎡
⎢⎢⎣
Q1 0

Q2

0
0 0

⎤
⎥⎥⎦ST, P = S−T

⎡
⎢⎢⎣
P1 0

0
P2

0 0

⎤
⎥⎥⎦S−1,

where Q1 and P1 are the same order, and where Q1, Q2, P1, and P2 are positive
definite and diagonal. The form of SAS−1, SB, and CS−1 given by (12.9.17) now
follows from (12.7.3) and (12.4.3) with A replaced by A + αI, where, as in the
proof of Theorem 12.6.8, SAS−1 = S(A + αI)S−1 − αI. Finally, statements i)–v)
are immediate, while it can be verified directly that

[
A1 B1

C1 D1

]
is a realization of

G.

Note that the uncontrollable multispectrum of (A,B) is given by mspec(A3)∪
mspec(A4), while the unobservable multispectrum of (A,C) is given by mspec(A2)∪
mspec(A4). Likewise, the uncontrollable-unobservable multispectrum of (A,B,C) is
given by mspec(A4).

Let G ∼
[
A B

C 0

]
. Then, define the i-step observability matrix Oi(A,C) ∈
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Ril×n by

Oi(A,C) �=

⎡
⎢⎢⎣

C
CA
...

CAi−1

⎤
⎥⎥⎦ (12.9.18)

and the j-step controllability matrix Kj(A,B) ∈ R
n×jm by

Kj(A,B) �=
[
B AB · · · Aj−1B

]
. (12.9.19)

Note that O(A,C) = On(A,C) and K(A,B) = Kn(A,B). Furthermore, define the
Markov block-Hankel matrix Hi,j,k(G) ∈ Ril×jm of G by

Hi,j,k(G) �= Oi(A,C)AkKj(A,B). (12.9.20)

Note that Hi,j,k(G) is the block-Hankel matrix of Markov parameters given by

Hi,j,k(G) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

CAkB CAk+1B CAk+2B · · · CAk+j−1B

CAk+1B CAk+2B . .. . .. . ..

CAk+2B . .. . .. . .. . ..

... . .. . .. . .. . ..

... . .. . .. . .. . ..

CAk+i−1B . .. . .. . .. CAk+j+i−2B

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Hk+1 Hk+2 Hk+3 · · · Hk+j

Hk+2 Hk+3 . .. . .. . ..

Hk+3 . .. . .. . .. . ..

... . .. . .. . .. . ..

... . .
.

. .
.

. .
.

. .
.

Hk+i . .. . .. . .. Hk+j+i−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (12.9.21)

Note that

Hi,j,0(G) = Oi(A,C)Kj(A,B) (12.9.22)

and

Hi,j,1(G) = Oi(A,C)AKj(A,B). (12.9.23)

Furthermore, define

H(G) �= Hn,n,0(G) = O(A,C)K(A,B). (12.9.24)

The following result provides a MIMO extension of Fact 4.8.8.

Proposition 12.9.11. Let G ∼
[
A B

C 0

]
, where A ∈ Rn×n. Then, the fol-

lowing statements are equivalent:
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i) The realization
[
A B

C 0

]
is controllable and observable.

ii) rankH(G) = n.

iii) For all i, j ≥ n, rankHi,j,0(G) = n.

iv) There exist i, j ≥ n such that rankHi,j,0(G) = n.

Proof. The equivalence of ii), iii), and iv) follows from Fact 2.11.7. To prove
i) =⇒ ii), note that, since the n×nmatrices OT(A,C)O(A,C) and K(A,B)KT(A,B)
are positive definite, it follows that

n = rankOT(A,C)O(A,C)K(A,B)KT(A,B) ≤ rankH(G) ≤ n.
Conversely, n = rankH(G) ≤ min{rankO(A,C), rankK(A,B)} ≤ n.

Proposition 12.9.12. Let G ∼
[
A B

C 0

]
, where A ∈ Rn×n, assume that[

A B

C 0

]
is controllable and observable, and let i, j ≥ 1 be such that rankOi(A,C)

= rankKj(A,B) = n. Then,

A = O+
i (A,C)Hi,j,1(G)K+

j (A,B), (12.9.25)

B = Kj(A,B)
[

Im
0(j−1)n×m

]
, (12.9.26)

C =
[
Il 0l×(i−1)l

]
Oi(A,C). (12.9.27)

Proposition 12.9.13. Let G ∈ Rl×mprop(s), let i, j ≥ 1, define n �=
rankHi,j,0(G), and let L ∈ Ril×n and R ∈ Rn×jm be such that Hi,j,0(G) = LR.
Then, the realization

G ∼

⎡
⎢⎢⎣

L+Hi,j,1(G)R+ R

[
Im

0(j−1)n×m

]
[
Il 0l×(i−1)l

]
L 0

⎤
⎥⎥⎦ (12.9.28)

is controllable and observable.

A rational transfer function G ∈ R
l×m
prop(s) can have realizations of different

orders. For example, letting

A = 1, B = 1, C = 1, D = 0

and
Â =

[
1 0
0 1

]
, B̂ =

[
1
0

]
, Ĉ =

[
1 0

]
, D̂ = 0,

it follows that

G(s) = C(sI −A)−1B +D = Ĉ(sI − Â)−1B̂ + D̂ =
1

s−1
.

Generally, it is desirable to find realizations whose order is as small as possible.
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Definition 12.9.14. Let G ∈ Rl×mprop(s), and assume that G ∼
[
A B

C D

]
. Then,[

A B

C D

]
is a minimal realization of G if its order is less than or equal to the order

of every realization of G. In this case, we write

G
min∼
[
A B

C D

]
. (12.9.29)

Note that the minimality of a realization is independent of D.

The following result show that the controllable and observable realization[
A1 B1

C1 D1

]
of G in Proposition 12.9.10 is, in fact, minimal.

Corollary 12.9.15. Let G ∈ R
l×m(s), and assume that G ∼

[
A B

C D

]
. Then,[

A B

C D

]
is minimal if and only if it is controllable and observable.

Proof. To prove necessity, suppose that
[
A B

C D

]
is either not controllable

or not observable. Then, Proposition 12.9.10 can be used to construct a realization
of G of order less than n. Hence,

[
A B

C D

]
is not minimal.

To prove sufficiency, assume that A ∈ Rn×n, and assume that
[
A B

C D

]
is

not minimal. Hence, G has a minimal realization
[
Â B̂

Ĉ D

]
of order n̂ < n. Since

the Markov parameters of G are independent of the realization, it follows from
Proposition 12.9.11 that rankH(G) = n̂ < n.However, since

[
A B

C D

]
is observable

and controllable, it follows from Proposition 12.9.11 that rankH(G) = n, which is
a contradiction.

Theorem 12.9.16. Let G ∈ Rl×mprop(s), where G ∼
[
A B

C D

]
and A ∈ Rn×n.

Then,

poles(G) ⊆ spec(A) (12.9.30)

and

mpoles(G) ⊆ mspec(A). (12.9.31)

Furthermore, the following statements are equivalent:

i) G min∼
[
A B

C D

]
.

ii) Mcdeg(G) = n.

iii) mpoles(G) = mspec(A).

Proof. See [1150, p. 319].
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Definition 12.9.17. Let G ∈ Rl×mprop(s), where G min∼
[
A B

C D

]
. Then, G is

(asymptotically stable, semistable, Lyapunov stable) if A is.

Proposition 12.9.18. Let G = p/q ∈ Rprop(s), where p, q ∈ R[s], and assume
that p and q are coprime. Then, G is (asymptotically stable, semistable, Lyapunov
stable) if and only if q is.

Proposition 12.9.19. Let G ∈ Rl×mprop(s). Then, G is (asymptotically stable,
semistable, Lyapunov stable) if and only if every entry of G is.

Definition 12.9.20. Let G ∈ Rl×mprop(s), whereG min∼
[
A B

C D

]
and A is asymp-

totically stable. Then, the realization
[
A B

C D

]
is balanced if the controllability and

observability Gramians (12.7.2) and (12.4.2) are diagonal and equal.

Proposition 12.9.21. Let G ∈ Rl×mprop(s), where G min∼
[
A B

C D

]
and A is

asymptotically stable. Then, there exists a nonsingular matrix S ∈ Rn×n such that
the realization G ∼

[
SAS−1 SB

CS−1 D

]
is balanced.

Proof. It follows from Corollary 8.3.7 that there exists a nonsingular matrix
S ∈ Rn×n such that SQST and S−TPS−1 are diagonal, where Q and P are the con-
trollability and observability Gramians (12.7.2) and (12.4.2). Hence, the realization[
SAS−1 SB

CS−1 D

]
is balanced.

12.10 Zeros

In Section 4.7 the Smith-McMillan decomposition is used to define trans-
mission zeros and blocking zeros of a transfer function G(s). We now define the
invariant zeros of a realization of G(s) and relate these zeros to the transmission
zeros. These zeros are related to the Smith zeros of a polynomial matrix as well as
the spectrum of a pencil.

Definition 12.10.1. Let G ∈ R
l×m
prop(s), where G ∼

[
A B

C D

]
. Then, the

Rosenbrock system matrix Z ∈ R(n+l)×(n+m)[s] is the polynomial matrix

Z(s) �=

[
sI −A B

C −D

]
. (12.10.1)

Furthermore, z ∈ C is an invariant zero of the realization
[
A B

C D

]
if

rankZ(z) < rankZ. (12.10.2)

Let G ∈ R
l×m
prop(s), where G ∼

[
A B

C D

]
and A ∈ R

n×n, and note that Z is
the pencil
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Z(s) = P[ A −B
−C D

]
,
[
In 0
0 0

](s) (12.10.3)

= s

[
In 0

0 0

]
−
[

A −B
−C D

]
. (12.10.4)

Thus,

Szeros(Z) = spec
([

A −B
−C D

]
,
[
In 0
0 0

])
(12.10.5)

and

mSzeros(Z) = mspec
([

A −B
−C D

]
,
[
In 0
0 0

])
. (12.10.6)

Hence, we define the set of invariant zeros of
[
A B

C D

]
by

izeros
([

A B

C D

])
�= Szeros(Z)

and the multiset of invariant zeros of
[
A B

C D

]
by

mizeros
([

A B

C D

])
�= Szeros(Z).

Note that P[ A −B
−C D

]
,
[
In 0
0 0

] is regular if and only if rankZ = n+ min{l,m}.

The following result shows that a strictly proper transfer function with full-
state observation or full-state actuation has no invariant zeros.

Proposition 12.10.2. Let G ∈ Rl×mprop(s), where G ∼
[
A B

C 0

]
and A ∈ Rn×n.

Then, the following statements hold:

i) If m = n and B is nonsingular, then rankZ = n + rankC and
[
A B

C 0

]
has no invariant zeros.

ii) If l = n and C is nonsingular, then rankZ = n+rankB and
[
A B

C 0

]
has

no invariant zeros.

iii) If m = n and B is nonsingular, then P[ In 0
0 0

]
,
[
A −B
−C 0

] is regular if and only

if rankC = min{l, n}.
iv) If l = n and C is nonsingular, then P[ In 0

0 0

]
,
[
A −B
−C 0

] is regular if and only

if rankB = min{m,n}.

It is useful to note that, for all s �∈ spec(A),

Z(s) =

[
I 0

C(sI −A)−1 I

][
sI −A B

0 −G(s)

]
(12.10.7)

=

[
sI −A 0

C −G(s)

][
I (sI −A)−1B

0 I

]
. (12.10.8)
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Proposition 12.10.3. Let G ∈ Rl×mprop(s), whereG ∼
[
A B

C D

]
. If s �∈ spec(A),

then
rankZ(s) = n+ rankG(s). (12.10.9)

Furthermore,
rankZ = n+ rankG. (12.10.10)

Proof. For s �∈ spec(A), (12.10.9) follows from (12.10.7). Therefore, it follows
from Proposition 4.3.6 and Proposition 4.7.8 that

rankZ = max
s∈C

rankZ(s)

= max
s∈C\spec(A)

rankZ(s)

= n+ max
s∈C\spec(A)

rankG(s)

= n+ rankG. �

Note that the realization in Proposition 12.10.3 is not assumed to be minimal.
Therefore, P[ A −B

−C D

]
,
[
In 0
0 0

] is (regular, singular) for one realization ofG if and only

if it is (regular, singular) for every realization ofG. In fact, the following result shows
that P[ A −B

−C D

]
,
[
In 0
0 0

] is regular if and only if G has full rank.

Corollary 12.10.4. Let G ∈ Rl×mprop(s), where G ∼
[
A B

C D

]
. Then,

P[ A −B
−C D

]
,
[
In 0
0 0

] is regular if and only if rankG = min{l,m}.

In the SISO case, it follows from (12.10.7) and (12.10.8) that, for all s ∈
C\ spec(A),

detZ(s) = −[det(sI −A)]G(s). (12.10.11)

Consequently, for all s ∈ C,

detZ(s) = −C(sI −A)AB − det(sI −A)D. (12.10.12)

The identity (12.10.12) also follows from Fact 2.14.2.

In particular, if s ∈ spec(A), then

detZ(s) = −C(sI −A)AB. (12.10.13)

If, in addition, n ≥ 2 and rank(sI − A) ≤ n − 2, then it follows from Fact 2.16.8
that (sI −A)A = 0, and thus

detZ(s) = 0. (12.10.14)

Alternatively, in the case n = 1, it follows that, for all s ∈ C, (sI − A)A = 1, and
thus, for all s ∈ C,

detZ(s) = −CB − (sI −A)D. (12.10.15)
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Next, it follows from (12.10.11) and (12.10.12) that

G(s) =
C(sI −A)AB + det(sI −A)D

det(sI −A)
(12.10.16)

=
− detZ(s)

det(sI −A)
. (12.10.17)

Consequently, G �= 0 if and only if detZ �= 0.

We now have the following result for scalar transfer functions.

Corollary 12.10.5. Let G ∈ Rprop(s), where G ∼
[
A B

C D

]
. Then, the fol-

lowing statements are equivalent:

i) P[ A −B
−C D

]
,
[
In 0
0 0

] is regular.

ii) G �= 0.

iii) rankG = 1.

iv) detZ �= 0.

v) rankZ = n+ 1.

vi) C(sI −A)AB + det(sI − A)D is not the zero polynomial.

In this case,

mizeros
([

A B

C D

])
= mroots(detZ) (12.10.18)

and

mizeros
([

A B

C D

])
= mtzeros(G) ∪ [mspec(A)\mpoles(G)]. (12.10.19)

If, in addition, G min∼
[
A B

C D

]
, then

mizeros
([

A B

C D

])
= mtzeros(G). (12.10.20)

Now, suppose that G is square, that is, l = m. Then, it follows from (12.10.7)
and (12.10.8) that, for all s ∈ C\ spec(A),

detZ(s) = (−1)ldet(sI −A) detG(s), (12.10.21)

and thus

detG(s) =
(−1)ldetZ(s)
det(sI −A)

. (12.10.22)

Furthermore, for all s ∈ C,

[det(sI −A)]l−1detZ(s) = (−1)ldet
[
C(sI −A)AB + det(sI −A)D

]
. (12.10.23)

Hence, for all s ∈ spec(A), it follows that

det
[
C(sI −A)AB

]
= 0. (12.10.24)
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We thus have the following result for square transfer functions G that satisfy
detG �= 0.

Corollary 12.10.6. Let G ∈ Rl×lprop(s), where G ∼
[
A B

C D

]
. Then, the fol-

lowing statements are equivalent:

i) P[ A −B
−C D

]
,
[
In 0
0 0

] is regular.

ii) detG �= 0.

iii) rankG = l.

iv) det Z �= 0.

v) rankZ = n+ l.

vi) det[C(sI −A)AB + det(sI −A)D] is not the zero polynomial.

In this case,

mizeros
([

A B

C D

])
= mroots(det Z), (12.10.25)

mizeros
([

A B

C D

])
= mtzeros(G) ∪ [mspec(A)\mpoles(G)] , (12.10.26)

and

izeros
([

A B

C D

])
= tzeros(G) ∪ [spec(A)\poles(G)] . (12.10.27)

If, in addition, G min∼
[
A B

C D

]
, then

mizeros
([

A B

C D

])
= mtzeros(G). (12.10.28)

Example 12.10.7. Consider G ∈ R2×2(s) defined by

G(s) �=

[
s−1
s+1 0

0 s+1
s−1

]
. (12.10.29)

Then, the Smith-McMillan form of G is given by

G(s) �= S1(s)

[
1

s2−1
0

0 s2 − 1

]
S2(s), (12.10.30)

where S1, S2 ∈ R
2×2[s] are the unimodular matrices

S1(s)
�=

[
(s− 1)2 −1

− 1
4 (s+ 1)2(s− 2) 1

4 (s+ 2)

]
(12.10.31)

and

S2(s)
�=

[
1
4 (s− 1)2(s+ 2) (s+ 1)2

1
4 (s− 2) 1

]
. (12.10.32)
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Thus, mpoles(G) = mtzeros(G) = {1,−1}. Furthermore, a minimal realization of
G is given by

G
min∼

⎡
⎢⎢⎣
−1 0 1 0
0 1 0 1
− 2 0 1 0
0 2 0 1

⎤
⎥⎥⎦. (12.10.33)

Finally, note that detZ(s) = (−1)2 det(sI − A) detG = s2 − 1, which confirms
(12.10.28).

Theorem 12.10.8. Let G ∈ Rl×mprop(s), where G ∼
[
A B

C D

]
. Then,

izeros
([

A B

C D

])
\spec(A) ⊆ tzeros(G) (12.10.34)

and

tzeros(G)\poles(G) ⊆ izeros
([

A B

C D

])
. (12.10.35)

If, in addition, G min∼
[
A B

C D

]
, then

izeros
([

A B

C D

])
\poles(G) = tzeros(G)\poles(G). (12.10.36)

Proof. To prove (12.10.34), let z ∈ izeros
([

A B

C D

])
\ spec(A). Since z /∈

spec(A) it follows from Theorem 12.9.16 that z /∈ poles(G). It now follows from
Proposition 12.10.3 that n + rankG(z) = rankZ(z) < rankZ = n+ rankG, which
implies that rankG(z) < rankG. Thus, z ∈ tzeros(G).

To prove (12.10.35), let z ∈ tzeros(G)\poles(G). Then, it follows from Propo-
sition 12.10.3 that rankZ(z) = n+rankG(z) < n+rankG = rankZ, which implies
that z ∈ izeros

([
A B

C D

])
. The last statement follows from (12.10.34), (12.10.35),

and Theorem 12.9.16.

The following result is a stronger form of Theorem 12.10.8.

Theorem 12.10.9. Let G ∈ Rl×mprop(s), where G ∼
[
A B

C D

]
, let S ∈ Rn×n,

assume that S is nonsingular, and letA, B, and C have the form (12.9.16), (12.9.17),
where

([
A1 0
A21 A2

]
,
[
B1
B2

])
is controllable and

([
A1 A13
0 A3

]
, [C1 C3 ]

)
is observable. Then,

mtzeros(G) = mizeros
([

A1 B1

C1 D

])
(12.10.37)

and

mizeros
([

A B

C D

])
= mspec(A2) ∪mspec(A3) ∪mspec(A4) ∪mtzeros(G).

(12.10.38)

Proof. Defining Z by (12.10.1), note that, in the notation of Proposition
12.9.10, Z has the same Smith form as
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Z̃
�=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sI −A4 −A43 0 0 0

0 sI −A3 0 0 0

−A24 −A23 sI −A2 −A21 B2

0 −A13 0 sI −A1 B1

0 C3 0 C1 −D

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

Hence, it follows from Proposition 12.10.3 that rankZ = rank Z̃ = n + r, where
r

�= rankG. Let p̃1, . . . , p̃n+r be the Smith polynomials of Z̃. Then, since p̃n+r is
the monic greatest common divisor of all (n + r) × (n + r) subdeterminants of
Z̃, it follows that p̃n+r = χA1χA2χA3pr, where pr is the rth Smith polynomial of[
sI−A1 B1
C1 −D

]
. Therefore,

mSzeros(Z) = mspec(A2) ∪mspec(A3) ∪mspec(A4) ∪mSzeros
([
sI−A1 B1
C1 −D

])
.

Next, using the Smith-McMillan decomposition Theorem 4.7.5, it follows that
there exist unimodular matrices S1 ∈ Rl×l[s] and S2 ∈ Rm×m[s] such that G =
S1D

−1
0 N0S2, where

D0
�=

⎡
⎢⎢⎢⎣
q1 0

. . .
qr

0 Il−r

⎤
⎥⎥⎥⎦, N0

�=

⎡
⎢⎢⎢⎣
p1 0

. . .
pr

0 0(l−r)×(m−r)

⎤
⎥⎥⎥⎦.

Now, define the polynomial matrix Ẑ ∈ R(n+l)×(n+m)[s] by

Ẑ
�=

⎡
⎢⎣

In−l 0(n−l)×l 0(n−l)×m
0l×(n−l) D0 N0S2

0l×(n−l) S1 0l×m

⎤
⎥⎦.

Since S1 is unimodular, it follows that the Smith form S of Ẑ is given by

S =

[
In 0n×m

0l×n N0

]
.

Consequently, mSzeros(Ẑ) = mSzeros(S) = mtzeros(G).

Next, note that

rank

[
In−l 0(n−l)×l 0(n−l)×m

0l×(n−l) D0 N0S2

]
= rank

⎡
⎢⎣

In−l 0(n−l)×l
0l×(n−l) D0

0l×(n−l) S1

⎤
⎥⎦ = n

and that

G =
[

0l×(n−l) S1 0l×m
][ In−l 0(n−l)×l

0l×(n−l) D0

]−1[
0(n−l)×m
N0S2

]
.

Furthermore, G min∼
[
A1 B1

C1 D

]
, Consequently, Ẑ and

[
sI−A1 B1
C1 D

]
have no decou-

pling zeros [1144, pp. 64–70], and it thus follows from Theorem 3.1 of [1144, p.
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106] that Ẑ and
[
sI−A1 B1
C1 D

]
have the same Smith form. Thus,

mSzeros
([

sI −A1 B1

C1 −D
])

= mSzeros(Ẑ) = mtzeros(G).

Consequently,

mizeros
([

A1 B1

C1 D

])
= mSzeros

([
sI−A1 B1
C1 −D

])
= mtzeros(G),

which proves (12.10.37).

Finally, to prove (12.10.34) note that

mizeros
([

A B

C D

])
= mSzeros(Z)
= mspec(A2) ∪mspec(A3) ∪mspec(A4) ∪mSzeros

([
sI−A1 B1
−C1 −D

])
= mspec(A2) ∪mspec(A3) ∪mspec(A4) ∪mtzeros(G).

Proposition 12.10.10. Equivalent realizations have the same invariant zeros.
Furthermore, invariant zeros are not changed by full-state feedback.

Proof. Let u = Kx+ v, which leads to the rational transfer function

GK ∼
[
A+BK B

C +DK D

]
. (12.10.39)

Since [
zI − (A+BK) B

C +DK −D
]

=
[
zI −A B
C −D

][
I 0
−K I

]
, (12.10.40)

it follows that
[
A B

C D

]
and
[
A+BK B

C +DK D

]
have the same invariant zeros.

The following result provides an interpretation of condition i) of Theorem
12.17.9.

Proposition 12.10.11. Let G ∈ Rl×mprop(s), where G ∼
[
A B

C D

]
, and assume

that R �= DTD is positive definite. Then, the following statements hold:

i) rankZ = n+m.

ii) z ∈ C is an invariant zero of
[
A B

C D

]
if and only if z is an unobservable

eigenvalue of
(
A−BR−1DTC,

[
I −DR−1DT

]
C
)
.

Proof. To prove i), assume that rankZ < n + m. Then, for every s ∈ C,
there exists a nonzero vector [ xy ] ∈ N[Z(s)], that is,[

sI −A B
C −D

][
x
y

]
= 0.

Consequently, Cx − Dy = 0, which implies that DTCx − Ry = 0, and thus y =
R−1DTCx. Furthermore, since

(
sI −A+BR−1DTC

)
x = 0, choosing s �∈
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spec
(
A−BR−1DTC

)
yields x = 0, and thus y = 0, which is a contradiction.

To prove ii), note that z is an invariant zero of
[
A B

C D

]
if and only if

rankZ(z) < n + m, which holds if and only if there exists a nonzero vector [ xy ] ∈
N[Z(z)]. This condition is equivalent to[

sI −A+BR−1DTC(
I −DR−1DT

)
C

]
x = 0,

where x �= 0. This last condition is equivalent to the fact that z is an unobservable
eigenvalue of

(
A−BR−1DTC,

[
I −DR−1DT

]
C
)
.

Corollary 12.10.12. Assume that R �= DTD is positive definite, and assume
that

(
A−BR−1DTC,

[
I −DR−1DT

]
C
)

is observable. Then,
[
A B

C D

]
has no in-

variant zeros.

12.11 H2 System Norm

Consider the system

ẋ(t) = Ax(t) +Bu(t), (12.11.1)
y(t) = Cx(t), (12.11.2)

where A ∈ Rn×n is asymptotically stable, B ∈ Rn×m, and C ∈ Rl×n. Then, for all
t ≥ 0, the impulse response function defined by (12.1.18) is given by

H(t) = CetAB. (12.11.3)

The L2 norm of H(·) is given by

‖H‖L2
�=

⎛
⎝ ∞∫

0

‖H(t)‖2F dt

⎞
⎠
1/2

. (12.11.4)

The following result provides expressions for ‖H(·)‖L2 in terms of the controllability
and observability Gramians.

Theorem 12.11.1. Assume that A is asymptotically stable. Then, the L2

norm of H is given by

‖H‖2L2
= trCQCT = trBTPB, (12.11.5)

where Q,P ∈ Rn×n satisfy

AQ+QAT+BBT = 0, (12.11.6)

ATP + PA+ CTC = 0. (12.11.7)

Proof. Note that

‖H‖2L2
=

∞∫
0

trCetABBTetA
T
CTdt = trCQCT,
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where Q satisfies (12.11.6). The dual expression (12.11.7) follows in a similar man-
ner or by noting that

trCQCT = trCTCQ = − tr
(
ATP + PA

)
Q

= − tr
(
AQ+QAT

)
P = trBBTP = trBTPB. �

For the following definition, note that

‖G(s)‖F = [trG(s)G∗(s)]1/2. (12.11.8)

Definition 12.11.2. The H2 norm of G ∈ R
l×m(s) is the nonnegative number

‖G‖H2
�=

⎛
⎝ 1

2π

∞∫
−∞
‖G(jω)‖2F dω

⎞
⎠
1/2

. (12.11.9)

The following result is Parseval’s theorem, which relates the L2 norm of the
impulse response function to the H2 norm of its transform.

Theorem 12.11.3. Let G ∈ Rl×mprop(s), where G ∼
[
A B

C 0

]
, and assume that

A ∈ Rn×n is asymptotically stable. Then,
∞∫
0

H(t)HT(t) dt = 1
2π

∞∫
−∞

G(jω)G∗(jω) dω. (12.11.10)

Therefore,

‖H‖L2 = ‖G‖H2 . (12.11.11)

Proof. First note that

G(s) = L{H(t)} =

∞∫
0

H(t)e−st dt

and that

H(t) = 1
2π

∞∫
−∞

G(jω)ejωt dω.

Hence,
∞∫
0

H(t)HT(t)e−st dt =

∞∫
0

⎛
⎝ 1

2π

∞∫
−∞

G(jω)ejωt dω

⎞
⎠HT(t)e−st dt

= 1
2π

∞∫
−∞

G(jω)

⎛
⎝ ∞∫

0

HT(t)e−(s−jω)t dt

⎞
⎠dω

= 1
2π

∞∫
−∞

G(jω)GT(s− jω) dω.



LINEAR SYSTEMS AND CONTROL THEORY 767

Setting s = 0 yields (12.11.7), while taking the trace of (12.11.10) yields (12.11.11).

Corollary 12.11.4. Let G ∈ Rl×mprop(s), where G ∼
[
A B

C 0

]
, and assume that

A ∈ Rn×n is asymptotically stable. Then,

‖G‖2H2
= ‖H‖2L2

= trCQCT = trBTPB, (12.11.12)

where Q,P ∈ Rn×n satisfy (12.11.6) and (12.11.7), respectively.

The following corollary of Theorem 12.11.3 provides a frequency domain ex-
pression for the solution of the Lyapunov equation.

Corollary 12.11.5. Let A ∈ Rn×n, assume that A is asymptotically stable,
let B ∈ Rn×m, and define Q ∈ Rn×n by

Q = 1
2π

∞∫
−∞

(jωI −A)−1BBT(jωI −A)−∗ dω. (12.11.13)

Then, Q satisfies

AQ+QAT+BBT = 0. (12.11.14)

Proof. The result follows directly from Theorem 12.11.3 with H(t) = etAB
and G(s) = (sI −A)−1B. Alternatively, it follows from (12.11.14) that

∞∫
−∞

(jωI −A)−1 dωQ+Q

∞∫
−∞

(jωI −A)−∗ dω =

∞∫
−∞

(jωI −A)−1BBT(jωI −A)−∗ dω.

Assuming that A is diagonalizable with eigenvalues λi = −σi + jωi, it follows that
∞∫

−∞

dω
jω −λi =

∞∫
−∞

σi − jω
σ2
i + ω2

dω =
σiπ

|σi| − j lim
r→∞

r∫
−r

ω

σ2
i + ω2

dω = π,

which implies that ∞∫
−∞

(jωI −A)−1 dω = πIn,

which yields (12.11.13). See [309] for a proof of the general case.

Proposition 12.11.6. Let G1, G2 ∈ R
l×m
prop(s) be asymptotically stable rational

transfer functions. Then,

‖G1 +G2‖H2 ≤ ‖G1‖H2 + ‖G2‖H2 . (12.11.15)

Proof. Let G1
min∼
[
A1 B1

C1 0

]
and G2

min∼
[
A2 B2

C2 0

]
, where A1 ∈ Rn1×n1

and A2 ∈ Rn2×n2. It follows from Proposition 12.13.2 that

G1 +G2 ∼
⎡
⎣ A1 0 B1

0 A2 B2

C1 C2 0

⎤
⎦.
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Now, Theorem 12.11.3 implies that ‖G1‖H2 =
√

trC1Q1CT
1 and ‖G2‖H2 =√

trC2Q2CT
2 , where Q1 ∈ Rn1×n1 and Q2 ∈ Rn2×n2 are the unique positive-definite

matrices satisfying A1Q1 + Q1A
T
1 + B1B

T
1 = 0 and A2Q2 + Q2A

T
2 + B2B

T
2 = 0.

Furthermore,

‖G2 +G2‖2H2
= tr
[
C1 C2

]
Q

[
CT

1

CT
2

]
,

where Q ∈ R(n1+n2)×(n1+n2) is the unique, positive-semidefinite matrix satisfying[
A1 0
0 A2

]
Q+Q

[
A1 0
0 A2

]T
+
[
B1

B2

][
B1

B2

]T
= 0.

It can be seen that Q =
[

Q1 Q12
QT

12 Q2

]
, where Q1 and Q2 are as given above and

where Q12 satisfies A1Q12 +Q12A
T
2 + B1B

T
2 = 0. Now, using the Cauchy-Schwarz

inequality (9.3.17) and iii) of Proposition 8.2.4, it follows that

‖G1 +G2‖2H2
= tr
(
C1Q1C

T
1 + C2Q2C

T
2 + C2Q

T
12C

T
1 + C1Q12C

T
2

)
= ‖G1‖2H2

+ ‖G2‖2H2
+ 2tr C1Q12Q

−1/2
2 Q

1/2
2 CT

2

≤ ‖G1‖2H2
+ ‖G2‖2H2

+ 2tr
(
C1Q12Q

−1
2 QT

12C
T
1

)
tr
(
C2Q2C

T
2

)
≤ ‖G1‖2H2

+ ‖G2‖2H2
+ 2tr

(
C1Q1C

T
1

)
tr
(
C2Q2C

T
2

)
= (‖G1‖H2 + ‖G2‖H2)

2. �

12.12 Harmonic Steady-State Response

The following result concerns the response of a linear system to a harmonic
input.

Theorem 12.12.1. For t ≥ 0, consider the linear system

ẋ(t) = Ax(t) + Bu(t), (12.12.1)

with harmonic input
u(t) = Reu0e

jω0t, (12.12.2)

where u0 ∈ Cm and ω0 ∈ R is such that jω0 �∈ spec(A). Then, x(t) is given by

x(t) = etA
(
x(0)− Re

[
(jω0I −A)−1Bu0

])
+ Re

[
(jω0I −A)−1Bu0e

jω0t
]
. (12.12.3)
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Proof. We have

x(t) = etAx(0) +

t∫
0

e(t−τ)ABRe(u0e
jω0τ ) dτ

= etAx(0) + etARe

⎡
⎣ t∫

0

e−τAejω0τ dτBu0

⎤
⎦

= etAx(0) + etARe

⎡
⎣ t∫

0

eτ(jω0I−A) dτBu0

⎤
⎦

= etAx(0) + etARe
[
(jω0I −A)−1

(
et(jω0I−A) − I

)
Bu0

]
= etAx(0) + Re

[
(jω0I −A)−1

(
ejω0tI − etA)Bu0

]
= etAx(0) + Re

[
(jω0I −A)−1

(−etA)Bu0

]
+ Re

[
(jω0I −A)−1ejω0tBu0

]
= etA

(
x(0)− Re

[
(jω0I −A)−1Bu0

])
+ Re

[
(jω0I −A)−1Bu0e

jω0t
]
. �

Theorem 12.12.1 shows that the total response y(t) of the linear system G ∼[
A B

C 0

]
to a harmonic input can be written as y(t) = ytrans(t) + yhss(t), where

the transient component

ytrans(t)
�= CetA

(
x(0)− Re

[
(jω0I −A)−1Bu0

])
(12.12.4)

depends on the initial condition and the input, and the harmonic steady-state
component

yhss(t) = Re
[
G(jω0)u0e

jω0t
]

(12.12.5)

depends only on the input.

If A is asymptotically stable, then limt→∞ ytrans(t) = 0, and thus y(t) ap-
proaches its harmonic steady-state component yhss(t) for large t. Since the har-
monic steady-state component is sinusoidal, it follows that y(t) does not converge
in the usual sense.

Finally, if A is semistable, then it follows from vii) of Proposition 11.8.2 that

lim
t→∞ ytrans(t) = C(I −AA#)

(
x(0)− Re

[
(jω0I −A)−1Bu0

])
, (12.12.6)

which represents a constant offset to the harmonic steady-state component.

In the SISO case, let u0
�= a0(sinφ0 + j cosφ0), and consider the input

u(t) = a0 sin(ω0t+ φ0) = Reu0e
jω0t. (12.12.7)

Then, writing G(jω0) = ReMejθ, it follows that

yhss(t) = a0Msin(ω0t+ φ0 + θ). (12.12.8)
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12.13 System Interconnections

Let G ∈ Rl×mprop(s). We define the parahermitian conjugate G∼ of G by

G∼ �= GT(−s). (12.13.1)

The following result provides realizations for GT, G∼, and G−1.

Proposition 12.13.1. Let Gl×mprop(s), and assume that G ∼
[
A B

C D

]
. Then,

GT ∼
[
AT CT

BT DT

]
(12.13.2)

and

G∼ ∼
[
−AT −CT

BT DT

]
. (12.13.3)

Furthermore, if G is square and D is nonsingular, then

G−1 ∼
[
A−BD−1C BD−1

−D−1C D−1

]
. (12.13.4)

Proof. Since y = Gu, it follows that G−1 satisfies u = G−1y. Since ẋ =
Ax + Bu and y = Cx + Du, it follows that u = −D−1Cx + D−1y, and thus ẋ =
Ax+B

(−D−1Cx+D−1y
)

=
(
A−BD−1C

)
x+BD−1y.

Note that, if G ∈ Rprop(s) and G ∼
[
A B

C D

]
, then G ∼

[
AT BT

CT D

]
.

Let G1 ∈ Rl1×m1
prop (s) and G2 ∈ Rl2×m2

prop (s). If m2 = l2, then the cascade
interconnection of G1 and G2 shown in Figure 12.13.1 is the product G2G1, while
the parallel interconnection shown in Figure 12.13.2 is the sum G1 +G2. Note that
G2G1 is defined only if m2 = l1, whereas G1 + G2 requires that m1 = m2 and
l1 = l2.

� G1
� G2

�u1 y1 = u2 y2

Figure 12.13.1
Cascade Interconnection of Linear Systems

Proposition 12.13.2. Let G1 ∼
[
A1 B1

C1 D1

]
and G2 ∼

[
A2 B2

C2 D2

]
. Then,

G2G1 ∼
⎡
⎣ A1 0 B1

B2C1 A2 B2D1

D2C1 C2 D2D1

⎤
⎦ (12.13.5)
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u1

�

�

G1

G2

�

�� �y2

+
+

Figure 12.13.2
Parallel Interconnection of Linear Systems

and

G1 +G2 ∼
⎡
⎣ A1 0 B1

0 A2 B2

C1 C2 D1 +D2

⎤
⎦. (12.13.6)

Proof. Consider the state space equations

ẋ1 = A1x1 +B1u1, ẋ2 = A2x2 +B2u2,

y1 = C1x1 +D1u1, y2 = C2x2 +D2u2.

Since u2 = y1, it follows that

ẋ2 = A2x2 +B2C1x1 +B2D1u1,

y2 = C2x2 +D2C1x1 +D2D1u1,

and thus [
ẋ1

ẋ2

]
=
[

A1 0
B2C1 A2

][
x1

x2

]
+
[

B1

B2D1

]
u1,

y2 =
[
D2C1 C2

][ x1

x2

]
+D2D1u1,

which yields the realization (12.13.5) of G2G1. The realization (12.13.6) for G1 +G2

can be obtained by similar techniques.

It is sometimes useful to combine transfer functions by concatenating them
into row, column, or block-diagonal transfer functions.

Proposition 12.13.3. Let G1 ∼
[
A1 B1

C1 D1

]
and G2 ∼

[
A2 B2

C2 D2

]
. Then,

[
G1 G2

] ∼
⎡
⎣ A1 0 B1 0

0 A2 0 B2

C1 C2 D1 D2

⎤
⎦, (12.13.7)

[
G1

G2

]
∼

⎡
⎢⎢⎣
A1 0 B1

0 A2 B2

C1 0 D1

0 C2 D2

⎤
⎥⎥⎦, (12.13.8)
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[
G1 0
0 G2

]
∼

⎡
⎢⎢⎣
A1 0 B1 0
0 A2 0 B2

C1 0 D1 0
0 C2 0 D2

⎤
⎥⎥⎦. (12.13.9)

Next, we interconnect a pair of systems G1, G2 by means of feedback as shown
in Figure 12.13.3. It can be seen that u and y are related by

ŷ = (I +G1G2)−1G1û (12.13.10)

or

ŷ = G1(I +G2G1)−1û. (12.13.11)

The equivalence of (12.13.10) and (12.13.11) follows from the push-through identity
given by Fact 2.16.16,

(I +G1G2)−1G1 = G1(I +G2G1)−1. (12.13.12)

A realization of this rational transfer function is given by the following result.

� � �
�

�

u

−
y

G2

G1

Figure 12.13.3
Feedback Interconnection of Linear Systems

Proposition 12.13.4. Let G1 ∼
[
A1 B1

C1 D1

]
and G2 ∼

[
A2 B2

C2 D2

]
, and as-

sume that det(I +D1D2) �= 0. Then,

[I +G1G2]
−1
G1

∼

⎡
⎢⎣

A1 − B1(I +D2D1)−1D2C1 −B1(I +D2D1)
−1C2 B1(I +D2D1)

−1

B2(I +D1D2)
−1C1 A2 − B2(I +D1D2)−1D1C2 B2(I +D1D2)−1D1

(I +D1D2)
−1C1 −(I +D1D2)

−1D1C2 (I +D1D2)
−1D1

⎤
⎥⎦.

(12.13.13)

12.14 Standard Control Problem

The standard control problem shown in Figure 12.14.1 involves four distinct
signals, namely, an exogenous input w, a control input u, a performance variable z,
and a feedback signal y. This system can be written as[

ẑ(s)
ŷ(s)

]
= G̃(s)

[
ŵ(s)
û(s)

]
, (12.14.1)
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where G(s) is partitioned as

G
�=
[
G11 G12

G21 G22

]
(12.14.2)

with the realization

G ∼
⎡
⎣ A D1 B

E1 E0 E2

C D2 D

⎤
⎦, (12.14.3)

which represents the equations

ẋ = Ax+D1w +Bu, (12.14.4)

z = E1x+ E0w + E2u, (12.14.5)

y = Cx+D2w +Du. (12.14.6)

Consequently,

G(s) =

[
E1(sI −A)−1D1 + E0 E1(sI −A)−1B + E2

C(sI −A)−1D1 +D2 C(sI −A)−1B +D

]
, (12.14.7)

which shows that G11, G12, G21, and G22 have the realizations

G11∼
[
A D1

E1 E0

]
, G12 ∼

[
A B

E1 E2

]
, (12.14.8)

G21∼
[
A D1

C D2

]
, G22 ∼

[
A B

C D

]
. (12.14.9)

� �

�

�

y

Gzw Gzu

Gyw Gyu

Gc

zw

u

Figure 12.14.1
Standard Control Problem

Letting Gc denote a feedback controller with realization

Gc ∼
[
Ac Bc

Cc Dc

]
, (12.14.10)

we interconnect G and Gc according to

û(s) = Gc(s)ŷ(s). (12.14.11)
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The resulting rational transfer function G̃ satisfying ẑ(s) = G̃(s)ŵ(s) is thus given
by

G̃ = G11 +G12Gc(I −G22Gc)−1G21 (12.14.12)

or
G̃ = G11 +G12(I −GcG22)−1GcG21. (12.14.13)

A realization of G̃ is given by the following result.

Proposition 12.14.1. Let G and Gc have the realizations (12.14.3) and
(12.14.10), and assume that det(I −DDc) �= 0. Then,

G̃ ∼

⎡
⎢⎣

A+BDc(I −DDc)
−1C B(I −DcD)−1Cc D1 +BDc(I +DDc)

−1D2

Bc(I −DDc)
−1C Ac +Bc(I −DDc)

−1DCc Bc(I −DDc)
−1D2

E1 + E2Dc(I −DDc)
−1C E2(I −DcD)−1Cc E0 + E2Dc(I −DDc)

−1D2

⎤
⎥⎦.

(12.14.14)

The realization (12.14.14) can be simplified when DDc = 0. For example, if
D = 0, then

G̃ ∼
⎡
⎣ A+BDcC BCc D1 +BDcD2

BcC Ac BcD2

E1 + E2DcC E2Cc E0 + E2DcD2

⎤
⎦, (12.14.15)

whereas, if Dc = 0, then

G̃ ∼
⎡
⎣ A BCc D1

BcC Ac +BcDCc BcD2

E1 E2Cc E0

⎤
⎦. (12.14.16)

Finally, if both D = 0 and Dc = 0, then

G̃ ∼
⎡
⎣ A BCc D1

BcC Ac BcD2

E1 E2Cc E0

⎤
⎦. (12.14.17)

The feedback interconnection shown in Figure 12.14.1 forms the basis for the
standard control problem in feedback control. For this problem the signal w is an
exogenous signal representing a command or a disturbance, while the signal z is the
performance variable, that is, the variable whose behavior reflects the performance
of the closed-loop system. The performance variable may or may not be physically
measured. The controlled input or the control u is the output of the feedback
controller Gc, while the measurement signal y serves as the input to the feedback
controller Gc. The standard control problem is the following: Given knowledge of
w, determine Gc to minimize a performance criterion J(Gc).
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12.15 Linear-Quadratic Control

Let A ∈ Rn×n and B ∈ Rn×m, and consider the system

ẋ(t) = Ax(t) +Bu(t), (12.15.1)
x(0) = x0, (12.15.2)

where t ≥ 0. Furthermore, let K ∈ Rm×n, and consider the full-state-feedback
control law

u(t) = Kx(t). (12.15.3)

The objective of the linear-quadratic control problem is to minimize the quadratic
performance measure

J(K,x0) =

∞∫
0

[
xT(t)R1x(t) + 2xT(t)R12u(t) + uT(t)R2u(t)

]
dt, (12.15.4)

where R1 ∈ Rn×n, R12 ∈ Rn×m, and R2 ∈ Rm×m. We assume that
[
R1 R12

RT
12 R2

]
is

positive semidefinite and R2 is positive definite.

The performance measure (12.15.4) indicates the desire to maintain the state
vector x(t) close to the zero equilibrium without an excessive expenditure of control
effort. Specifically, the term xT(t)R1x(t) is a measure of the deviation of the state
x(t) from the zero state, where the n×n positive-semidefinite matrix R1 determines
how much weighting is associated with each component of the state. Likewise, the
m × m positive-definite matrix R2 weights the magnitude of the control input.
Finally, the cross-weighting term R12 arises naturally when additional filters are
used to shape the system response or in specialized applications.

Using (12.15.1) and (12.15.3), the closed-loop dynamic system can be written
as

ẋ(t) = (A+BK)x(t) (12.15.5)

so that
x(t) = etÃx0, (12.15.6)

where Ã �= A+BK. Thus, the performance measure (12.15.4) becomes

J(K,x0) =

∞∫
0

xT(t)R̃x(t) dt =

∞∫
0

xT0e
tÃT
R̃etÃx0 dt

= trxT0

∞∫
0

etÃ
T
R̃etÃ dtx0 = tr

∞∫
0

etÃ
T
R̃etÃ dtx0x

T
0 , (12.15.7)

where
R̃ �= R1 +R12K +KTRT

12 +KTR2K. (12.15.8)
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Now, consider the standard control problem with plant

G ∼
⎡
⎣ A D1 B

E1 0 E2

In 0 0

⎤
⎦ (12.15.9)

and full-state feedback u = Kx. Then, the closed-loop transfer function is given by

G̃ ∼
[

A+BK D1

E1 + E2K 0

]
. (12.15.10)

The following result shows that the quadratic performance measure (12.15.4)
is equal to the H2 norm of a transfer function.

Proposition 12.15.1. Assume that D1 = x0 and[
R1 R12

RT
12 R2

]
=

[
ET

1

ET
2

][
E1 E2

]
, (12.15.11)

and let G̃ be given by (12.15.10). Then,

J(K,x0) = ‖G̃‖2H2
. (12.15.12)

Proof. The result follows from Proposition 12.1.2.

For the following development, we assume that (12.15.11) holds so that R1,
R12, and R2 are given by

R1 = ET
1E1, R12 = ET

1E2, R2 = ET
2E2. (12.15.13)

To develop necessary conditions for the linear-quadratic control problem, we
restrict K to the set of stabilizing gains

S
�= {K ∈ R

m×n: A+BK is asymptotically stable}. (12.15.14)

Obviously, S is nonempty if and only if (A,B) is stabilizable. The following result
gives necessary conditions that characterize a stabilizing solution K of the linear-
quadratic control problem.

Theorem 12.15.2. Assume that (A,B) is stabilizable, assume that K ∈ S

solves the linear-quadratic control problem, and assume that (A+BK,D1) is con-
trollable. Then, there exists an n × n positive-semidefinite matrix P such that K
is given by

K = −R−1
2

(
BTP +RT

12

)
(12.15.15)

and such that P satisfies

ÂT
RP + PÂR + R̂1 − PBR−1

2 B
TP = 0, (12.15.16)

where
ÂR

�= A−BR−1
2 R

T
12 (12.15.17)
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and
R̂1

�= R1 −R12R
−1
2 R

T
12. (12.15.18)

Furthermore, the minimal cost is given by

J(K) = trPV, (12.15.19)

where V �= D1D
T
1 .

Proof. Since K ∈ S, it follows that Ã is asymptotically stable. It then follows
that J(K) is given by (12.15.19), where P �=

∫∞
0
etÃ

T
R̃etÃ dt is positive semidefinite

and satisfies the Lyapunov equation

ÃTP + PÃ + R̃ = 0. (12.15.20)

Note that (12.15.20) can be written as

(A+BK)TP + P (A+BK) +R1 +R12K +KTRT
12 +KTR2K = 0. (12.15.21)

To optimize (12.15.19) subject to the constraint (12.15.20) over the open set
S, form the Lagrangian

L(K,P,Q, λ0)
�= tr
[
λ0PV +Q

(
ÃTP + PÃ+ R̃

)]
, (12.15.22)

where the Lagrange multipliers λ0 ≥ 0 and Q ∈ Rn×n are not both zero. Note
that the n × n Lagrange multiplier Q accounts for the n × n constraint equation
(12.15.20).

The necessary condition ∂L/∂P = 0 implies

ÃQ+QÃT + λ0V = 0. (12.15.23)

Since Ã is asymptotically stable, it follows from Proposition 11.9.3 that, for all λ0 ≥
0, (12.15.23) has a unique solution Q and, furthermore, Q is positive semidefinite.
In particular, if λ0 = 0, then Q = 0. Since λ0 and Q are not both zero, we can set
λ0 = 1 so that (12.15.23) becomes

ÃQ+QÃT + V = 0. (12.15.24)

Since (Ã,D1) is controllable, it follows from Corollary 12.7.10 that Q is positive
definite.

Next, evaluating ∂L/∂K = 0 yields

R2KQ+
(
BTP +RT

12

)
Q = 0. (12.15.25)

Since Q is positive definite, it follows from (12.15.25) that (12.15.15) is satisfied.
Furthermore, using (12.15.15), it follows that (12.15.20) is equivalent to (12.15.16).

With K given by (12.15.15) the closed-loop dynamics matrix Ã = A+BK is
given by

Ã = A−BR−1
2

(
BTP +RT

12

)
, (12.15.26)

where P is the solution of the Riccati equation (12.15.16).
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12.16 Solutions of the Riccati Equation

For convenience in the following development, we assume that R12 = 0. With
this assumption, the gain K given by (12.15.15) becomes

K = −R−1
2 B

TP. (12.16.1)

Defining
Σ

�= BR−1
2 B

T, (12.16.2)

(12.15.26) becomes
Ã = A−ΣP, (12.16.3)

while the Riccati equation (12.15.16) can be written as

ATP + PA+R1 − PΣP = 0. (12.16.4)

Note that (12.16.4) has the alternative representation

(A−ΣP )TP + P (A−ΣP ) +R1 + PΣP = 0, (12.16.5)

which is equivalent to the Lyapunov equation

ÃTP + PÃ+ R̃ = 0, (12.16.6)

where
R̃

�= R1 + PΣP. (12.16.7)

By comparing (12.15.16) and (12.16.4), it can be seen that the linear-quadratic
control problems with (A,B,R1, R12, R2) and (ÂR, B, R̂1, 0, R2) are equivalent.
Hence, there is no loss of generality in assuming that R12 = 0 in the following
development, where A and R1 take the place of ÂR and R̂1, respectively.

To motivate the subsequent development, the following examples demonstrate
the existence of solutions under various assumptions on (A,B,E1). In the following
four examples, (A,B) is not stabilizable.

Example 12.16.1. Let n = 1, A = 1, B = 0, E1 = 0, and R2 > 0. Hence,
(A,B,E1) has an ORHP eigenvalue that is uncontrollable and unobservable. In
this case, (12.16.4) has the unique solution P = 0. Furthermore, since B = 0, it
follows that Ã = A.

Example 12.16.2. Let n = 1, A = 1, B = 0, E1 = 1, and R2 > 0. Hence,
(A,B,E1) has an ORHP eigenvalue that is uncontrollable and observable. In this
case, (12.16.4) has the unique solution P = −1/2 < 0. Furthermore, since B = 0, it
follows that Ã = A.

Example 12.16.3. Let n = 1, A = 0, B = 0, E1 = 0, and R2 > 0. Hence,
(A,B,E1) has an imaginary eigenvalue that is uncontrollable and unobservable. In
this case, (12.16.4) has infinitely many solutions P ∈ R. Hence, (12.16.4) has no
maximal solution. Furthermore, since B = 0, it follows that, for every solution P,
Ã = A.
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Example 12.16.4. Let n = 1, A = 0, B = 0, E1 = 1, and R2 > 0. Hence,
(A,B,E1) has an imaginary eigenvalue that is uncontrollable and observable. In
this case, (12.16.4) becomes R1 = 0. Thus, (12.16.4) has no solution.

In the remaining examples, (A,B) is controllable.

Example 12.16.5. Let n = 1, A = 1, B = 1, E1 = 0, and R2 > 0. Hence,
(A,B,E1) has an ORHP eigenvalue that is controllable and unobservable. In this
case, (12.16.4) has the solutions P = 0 and P = 2R2 > 0. The corresponding
closed-loop dynamics matrices are Ã = 1 > 0 and Ã = −1 < 0. Hence, the solution
P = 2R2 is stabilizing, and the closed-loop eigenvalue 1, which does not depend on
R2, is the reflection of the open-loop eigenvalue −1 across the imaginary axis.

Example 12.16.6. Let n = 1, A = 1, B = 1, E1 = 1, and R2 > 0. Hence,
(A,B,E1) has an ORHP eigenvalue that is controllable and observable. In this case,
(12.16.4) has the solutions P = R2−

√
R2

2 +R2 < 0 and P = R2 +
√
R2

2 +R2 > 0.
The corresponding closed-loop dynamics matrices are Ã =

√
1 + 1/R2 > 0 and

Ã = −√1 + 1/R2 < 0. Hence, the positive-definite solution P = R2 +
√
R2

2 +R2 is
stabilizing.

Example 12.16.7. Let n = 1, A = 0, B = 1, E1 = 0, and R2 > 0. Hence,
(A,B,E1) has an imaginary eigenvalue that is controllable and unobservable. In
this case, (12.16.4) has the unique solution P = 0, which is not stabilizing.

Example 12.16.8. Let n = 1, A = 0, B = 1, E1 = 1, and R2 > 0. Hence,
(A,B,E1) has an imaginary eigenvalue that is controllable and observable. In
this case, (12.16.4) has the solutions P = −√R2 < 0 and P =

√
R2 > 0. The

corresponding closed-loop dynamics matrices are Ã =
√
R2 > 0 and Ã = −√R2 <

0. Hence, the positive-definite solution P =
√
R2 is stabilizing.

Example 12.16.9. Let n = 2, A =
[

0 1−1 0

]
, B = I2, E1 = 0, and R2 =

1. Hence, as in Example 12.16.7, both eigenvalues of (A,B,E1) are imaginary,
controllable, and unobservable. Taking the trace of (12.16.4) yields trP 2 = 0.
Thus, the only symmetric matrix P satisfying (12.16.4) is P = 0, which implies that
Ã = A. Consequently, the open-loop eigenvalues ±j are unmoved by the feedback
gain (12.15.15) even though (A,B) is controllable.

Example 12.16.10. Let n = 2, A = 0, B = I2, E1 = I2, and R2 = I. Hence,
as in Example 12.16.8, both eigenvalues of (A,B,E1) are imaginary, controllable,
and observable. Furthermore, (12.16.4) becomes P 2 = I. Requiring that P be
symmetric, it follows that P is a reflector. Hence, P = I is the only positive-
semidefinite solution. In fact, P is positive definite and stabilizing since Ã = −I.

Example 12.16.11. Let A = [ 1 0
0 2 ], B = [ 1

1 ], E1 = 0, and R2 = 1 so that
(A,B) is controllable, although neither of the states is weighted. In this case,
(12.16.4) has four positive-semidefinite solutions, which are given by

P1 =
[

18 −24
−24 36

]
, P2 =

[
2 0
0 0

]
, P3 =

[
0 0
0 4

]
, P4 =

[
0 0
0 0

]
.
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The corresponding feedback matrices are given by K1 =
[

6 −12
]
,

K2 =
[ −2 0

]
, K3 =

[
0 −4

]
, and K4 =

[
0 0

]
. Letting Ãi = A − ΣPi,

it follows that spec(Ã1) = {−1,−2}, spec(Ã2) = {−1, 2}, spec(Ã3) = {1,−2}, and
spec(Ã4) = {1, 2}. Thus, P1 is the only solution that stabilizes the closed-loop
system, while the solutions P2 and P3 partially stabilize the closed-loop system.
Note also that the closed-loop poles that differ from those of the open-loop system
are mirror images of the open-loop poles as reflected across the imaginary axis.
Finally, note that these solutions satisfy the partial ordering P1 ≥ P2 ≥ P4 and
P1 ≥ P3 ≥ P4, and that “larger” solutions are more stabilizing than “smaller” so-
lutions. Moreover, letting J(Ki) = trPiV, it can be seen that larger solutions incur
a greater closed-loop cost, with the greatest cost incurred by the stabilizing solu-
tion P4. However, the cost expression J(K) = trPV does not follow from (12.15.4)
when A+BK is not asymptotically stable.

The following definition concerns solutions of the Riccati equation.

Definition 12.16.12. A matrix P ∈ Rn×n is a solution of the Riccati equation
(12.16.4) if P is symmetric and satisfies (12.16.4). Furthermore, P is the stabilizing
solution of (12.16.4) if Ã = A − ΣP is asymptotically stable. Finally, a solution
Pmax of (12.16.4) is the maximal solution to (12.16.4) if P ≤ Pmax for every solution
P to (12.16.4).

Since the ordering “≤” is antisymmetric, it follows that (12.16.4) has at most
one maximal solution. The uniqueness of the stabilizing solution is shown in the
following section.

Next, define the 2n× 2n Hamiltonian

H
�=
[
A Σ
R1 −AT

]
. (12.16.8)

Proposition 12.16.13. The following statements hold:

i) H is Hamiltonian.

ii) χH has a spectral factorization, that is, there exists a monic polynomial
p ∈ R[s] such that, for all s ∈ C, χH(s) = p(s)p(−s).

iii) χH(jω) ≥ 0 for all ω ∈ R.

iv) If either R1 = 0 or Σ = 0, then mspec(H) = mspec(A) ∪ mspec(−A).

v) χH is even.

vi) λ ∈ spec(H) if and only if −λ ∈ spec(H).

vii) If λ ∈ spec(H), then amultH(λ) = amultH(−λ).

viii) Every imaginary root of χH has even multiplicity.

ix) Every imaginary eigenvalue of H has even algebraic multiplicity.

Proof. The result follows from Proposition 4.1.1 and Fact 4.9.23.



LINEAR SYSTEMS AND CONTROL THEORY 781

It is helpful to keep in mind that spectral factorizations are not unique. For
example, if χH(s) = (s + 1)(s + 2)(−s + 1)(−s + 2), then χH(s) = p(s)p(−s) =
p̂(s)p̂(−s), where p(s) = (s+ 1)(s+ 2) and p̂(s) = (s+ 1)(s− 2). Thus, the spectral
factors p(s) and p(−s) can “trade” roots. These roots are the eigenvalues of H.

The following result shows that the Hamiltonian matrix H is closely linked
to the Riccati equation (12.16.4).

Proposition 12.16.14. Let P ∈ Rn×n be symmetric. Then, the following
statements are equivalent:

i) P is a solution of (12.16.4).

ii) P satisfies [
P I

]
H

[
I
−P

]
= 0. (12.16.9)

iii) P satisfies
H

[
I
−P

]
=
[

I
−P

]
(A−ΣP ). (12.16.10)

iv) P satisfies

H =
[

I 0
−P I

][
A−ΣP Σ

0 −(A−ΣP )T

][
I 0
P I

]
. (12.16.11)

In this case, the following statements hold:

v) mspec(H) = mspec(A−ΣP )∪mspec[−(A−ΣP )].

vi) χH(s) = (−1)nχA−ΣP (s)χA−ΣP (−s).
vii) R

([
I

−P
])

is an invariant subspace of H.

Corollary 12.16.15. Assume that (12.16.4) has a stabilizing solution. Then,
H has no imaginary eigenvalues.

For the next two results, P is not necessarily a solution of (12.16.4).

Lemma 12.16.16. Assume that λ ∈ spec(A) is an observable eigenvalue of
(A,R1), and let P ∈ Rn×n be symmetric. Then, λ ∈ spec(A) is an observable
eigenvalue of (Ã, R̃).

Proof. Suppose that rank
[
λI−Ã
R̃

]
< n. Then, there exists a nonzero vector

v ∈ Cn such that Ãv = λv and R̃v = 0. Hence, v∗R1v = −v∗PΣPv ≤ 0, which
implies that R1v = 0 and PΣPv = 0. Hence, ΣPv = 0, and thus Av = λv.
Therefore, rank

[
λI−A
R1

]
< n.

Lemma 12.16.17. Assume that (A,R1) is (observable, detectable), and let
P ∈ Rn×n be symmetric. Then, (Ã, R̃) is (observable, detectable).

Lemma 12.16.18. Assume that (A,E1) is observable, and assume that
(12.16.4) has a solution P. Then, the following statements hold:
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i) ν−(Ã) = ν+(P ).

ii) ν0(Ã) = ν0(P ) = 0.

iii) ν+(Ã) = ν−(P ).

Proof. Since (A,R1) is observable, it follows from Lemma 12.16.17 that (Ã, R̃)
is observable. By writing (12.16.4) as the Lyapunov equation (12.16.6), the result
now follows from Fact 12.21.1.

12.17 The Stabilizing Solution of the Riccati Equation

Proposition 12.17.1. The following statements hold:

i) (12.16.4) has at most one stabilizing solution.

ii) If P is the stabilizing solution of (12.16.4), then P is positive semidefinite.

iii) If P is the stabilizing solution of (12.16.4), then

rankP = rankO(Ã, R̃). (12.17.1)

Proof. To prove i), suppose that (12.16.4) has stabilizing solutions P1 and
P2. Then,

ATP1 + P1A+R1 − P1ΣP1 = 0,

ATP2 + P2A+R1 − P2ΣP2 = 0.

Subtracting these equations and rearranging yields

(A−ΣP1)T(P1 − P2) + (P1 − P2)(A −ΣP2) = 0.

Since A−ΣP1 and A−ΣP2 are asymptotically stable, it follows from Proposition
11.9.3 and Fact 11.18.33 that P1 − P2 = 0. Hence, (12.16.4) has at most one
stabilizing solution.

Next, to prove ii), suppose that P is a stabilizing solution of (12.16.4). Then,
it follows from (12.16.4) that

P =

∞∫
0

et(A−ΣP )T(R1 + PΣP )et(A−ΣP ) dt,

which shows that P is positive semidefinite.

Finally, iii) follows from Corollary 12.3.3.

Theorem 12.17.2. Assume that (12.16.4) has a positive-semidefinite solution
P, and assume that (A,E1) is detectable. Then, P is the stabilizing solution of
(12.16.4), and thus P is the only positive-semidefinite solution of (12.16.4). If, in
addition, (A,E1) is observable, then P is positive definite.

Proof. Since (A,R1) is detectable, it follows from Lemma 12.16.17 that (Ã, R̃)
is detectable. Next, since (12.16.4) has a positive-semidefinite solution P, it follows
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from Corollary 12.8.6 that Ã is asymptotically stable. Hence, P is the stabilizing
solution of (12.16.4). The last statement follows from Lemma 12.16.18.

Corollary 12.17.3. Assume that (A,E1) is detectable. Then, (12.16.4) has
at most one positive-semidefinite solution.

Lemma 12.17.4. Let λ ∈ C, and assume that λ is either an uncontrollable
eigenvalue of (A,B) or an unobservable eigenvalue of (A,E1). Then, λ ∈ spec(H).

Proof. Note that

λI −H =

[
λI −A −Σ
−R1 λI +AT

]
.

If λ is an uncontrollable eigenvalue of (A,B), then the first n rows of λI−H are lin-
early dependent, and thus λ ∈ spec(H). On the other hand, if λ is an unobservable
eigenvalue of (A,E1), then the first n columns of λI −H are linearly dependent,
and thus λ ∈ spec(H).

The following result is a consequence of Lemma 12.17.4.

Proposition 12.17.5. Let S ∈ Rn×n be a nonsingular matrix such that

A = S

⎡
⎢⎢⎣

A1 0 A13 0
A21 A2 A23 A24

0 0 A3 0
0 0 A43 A4

⎤
⎥⎥⎦S−1, B = S

⎡
⎢⎢⎣
B1

B2

0
0

⎤
⎥⎥⎦, (12.17.2)

E1 =
[
E11 0 E13 0

]
S−1, (12.17.3)

where
([

A1 0
A21 A2

]
,
[
B1
B2

])
is controllable and

([
A1 A13
0 A3

]
, [E11 E13 ]

)
is observable.

Then,

mspec(A2) ∪mspec(−A2) ⊆ mspec(H), (12.17.4)
mspec(A3) ∪mspec(−A3) ⊆ mspec(H), (12.17.5)
mspec(A4) ∪mspec(−A4) ⊆ mspec(H). (12.17.6)

Next, we present a partial converse of Lemma 12.17.4.

Lemma 12.17.6. Let λ ∈ spec(H), and assume that Reλ = 0. Then, λ
is either an uncontrollable eigenvalue of (A,B) or an unobservable eigenvalue of
(A,E1).

Proof. Suppose that λ = jω is an eigenvalue of H, where ω ∈ R. Then, there
exist x, y ∈ Cn such that [ xy ] �= 0 and H[ xy ] = jω[ xy ]. Consequently,

Ax+Σy = jωx, R1x−ATy = jωy.

Rewriting these identities as

(A− jωI)x = −Σy, (A− jωI)∗y = R1x



784 CHAPTER 12

yields
y∗(A− jωI)x = −y∗Σy, x∗(A− jωI)∗y = x∗R1x.

Since x∗(A − jωI)∗y is real, it follows that −y∗Σy = x∗R1x, and thus y∗Σy =
x∗R1x = 0, which implies that BTy = 0 and E1x = 0. Therefore,

(A− jωI)x = 0, (A− jωI)∗y = 0,

and hence [
A− jωI
E1

]
x = 0, y∗

[
A− jωI B

]
= 0.

Since [ xy ] �= 0, it follows that either x �= 0 or y �= 0, and thus either rank
[
A−jωI
E1

]
<

n or rank
[
A− jωI B

]
< n.

The following result is a restatement of Lemma 12.17.6.

Proposition 12.17.7. Let S ∈ Rn×n be a nonsingular matrix such that
(12.17.2) and (12.17.3) are satisfied, where

([
A1 0
A21 A2

]
,
[
B1
B2

])
is controllable and([

A1 A13
0 A3

]
, [E11 E13 ]

)
is observable. Then,

mspec(H) ∩ jR ⊆mspec(A2) ∪mspec(−A2) ∪mspec(A3)
∪mspec(−A3) ∪mspec(A4) ∪mspec(−A4). (12.17.7)

Combining Lemma 12.17.4 and Lemma 12.17.6 yields the following result.

Proposition 12.17.8. Let λ ∈ C, assume that Reλ = 0, and let S ∈ Rn×n

be a nonsingular matrix such that (12.17.2) and (12.17.3) are satisfied, where
(A1, B1, E11) is controllable and observable, (A2, B2) is controllable, and (A3, E13)
is observable. Then, the following statements are equivalent:

i) λ is either an uncontrollable eigenvalue of (A,B) or an unobservable eigen-
value of (A,E1).

ii) λ ∈ mspec(A2) ∪mspec(A3) ∪mspec(A4).

iii) λ is an eigenvalue of H.

The next result gives necessary and sufficient conditions under which (12.16.4)
has a stabilizing solution. This result also provides a constructive characterization
of the stabilizing solution. Result ii) of Proposition 12.10.11 shows that the condi-
tion in i) that every imaginary eigenvalue of (A,E1) is observable is equivalent to
the condition that

[
A B

E1 E2

]
has no imaginary invariant zeros.

Theorem 12.17.9. The following statements are equivalent:

i) (A,B) is stabilizable, and every imaginary eigenvalue of (A,E1) is observ-
able.

ii) There exists a nonsingular matrix S ∈ Rn×n such that (12.17.2) and
(12.17.3) are satisfied, where

([
A1 0
A21 A2

]
,
[
B1
B2

])
is controllable,([

A1 A13
0 A3

]
, [E11 E13 ]

)
is observable, ν0(A2) = 0, and A3 and A4 are asymp-
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totically stable.

iii) (12.16.4) has a stabilizing solution.

In this case, let

M =
[
M1 M12

M21 M2

]
∈ R

2n×2n (12.17.8)

be a nonsingular matrix such that H = MZM−1, where

Z =
[
Z1 Z12

0 Z2

]
∈ R

2n×2n (12.17.9)

and Z1 ∈ Rn×n is asymptotically stable. Then, M1 is nonsingular, and

P
�= −M21M

−1
1 (12.17.10)

is the stabilizing solution of (12.16.4).

Proof. The equivalence of i) and ii) is immediate.

To prove i) =⇒ iii), first note that Lemma 12.17.6 implies that H has no
imaginary eigenvalues. Hence, since H is Hamiltonian, it follows that there exists
a matrix M ∈ R2n×2n of the form (12.17.8) such that M is nonsingular and H =
MZM−1, where Z ∈ Rn×n is of the form (12.17.9) and Z1 ∈ Rn×n is asymptotically
stable.

Next, note that HM = MZ implies that

H

[
M1

M21

]
= M

[
Z1

0

]
=
[
M1

M21

]
Z1.

Therefore, [
M1

M21

]T
JnH

[
M1

M21

]
=
[
M1

M21

]T
Jn

[
M1

M21

]
Z1

=
[
MT

1 MT
21

][ M21

−M1

]
Z1

= LZ1,

where L �= MT
1M21−MT

21M1. Since JnH = (JnH)T, it follows that LZ1 is symmetric,
that is, LZ1 = ZT

1L
T. Since, in addition, L is skew symmetric, it follows that

0 = ZT
1L + LZ1. Now, since Z1 is asymptotically stable, it follows that L = 0.

Hence, MT
1M21 = MT

21M1, which shows that MT
21M1 is symmetric.

To show that M1 is nonsingular, note that it follows from the identity

[
I 0

]
H

[
M1

M21

]
=
[
I 0

][ M1

M21

]
Z1

that
AM1 +ΣM21 = M1Z1.

Now, let x ∈ Rn satisfy M1x = 0. We thus have
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xTM21ΣM21x = xTMT
21(AM1 +ΣM21)x

= xTMT
21M1Z1x

= xTMT
1M21Z1x

= 0,

which implies that BTM21x = 0. Hence, M1Z1x = (AM1 + ΣM21)x = 0. Thus,
Z1N(M1) ⊆ N(M1).

Now, suppose that M1 is singular. Since Z1N(M1) ⊆ N(M1), it follows that
there exists λ ∈ spec(Z1) and x ∈ Cn such that Z1x = λx and M1x = 0. Forming

[
0 I

]
H

[
M1

M21

]
x =
[

0 I
][ M1

M21

]
Z1x

yields −ATM21x = M21λZ, and thus
(
λI +AT

)
M21x = 0. Since, in addition, as

shown above, BTM21x = 0, it follows that x∗MT
21

[ −λI −A B
]

= 0. Since
λ ∈ spec(Z1), it follows that Re(−λ) > 0. Furthermore, since, by assumption,
(A,B) is stabilizable, it follows that rank

[
λI −A B

]
= n. Therefore, M21x = 0.

Combining this fact with M1x = 0 yields
[
M1
M21

]
x = 0. Since x is nonzero, it follows

that M is singular, which is a contradiction. Consequently, M1 is nonsingular.
Next, define P �= −M21M

−1
1 and note that, since MT

1M21 is symmetric, it follows
that P = −M−T

1 (MT
1M21)M−1

1 is also symmetric.

Since H
[
M1
M21

]
=
[
M1
M21

]
Z1, it follows that

H

[
I

M21M
−1
1

]
=
[

I
M21M

−1
1

]
M1Z1M

−1
1 ,

and thus
H

[
I
−P

]
=
[

I
−P

]
M1Z1M

−1
1 .

Multiplying on the left by
[
P I

]
yields

0 =
[
P I

]
H

[
I
−P

]
= ATP + PA+R1 − PΣP,

which shows that P is a solution of (12.16.4). Similarly, multiplying on the left by[
I 0

]
yields A−ΣP = M1Z1M

−1
1 . Since Z1 is asymptotically stable, it follows

that A−ΣP is also asymptotically stable.

To prove iii) =⇒ i), note that the existence of a stabilizing solution P implies
that (A,B) is stabilizable, and that (12.16.11) implies that H has no imaginary
eigenvalues.

Corollary 12.17.10. Assume that (A,B) is stabilizable and (A,E1) is de-
tectable. Then, (12.16.4) has a stabilizing solution.
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12.18 The Maximal Solution of the Riccati Equation

In this section we consider the existence of the maximal solution of (12.16.4).
Example 12.16.3 shows that the assumptions of Proposition 12.19.1 are not sufficient
to guarantee that (12.16.4) has a maximal solution.

Theorem 12.18.1. The following statements are equivalent:

i) (A,B) is stabilizable.

ii) (12.16.4) has a solution Pmax that is positive semidefinite, maximal, and
satisfies spec(A−ΣPmax) ⊂ CLHP.

Proof. The result i) =⇒ ii) is given by Theorem 2.1 and Theorem 2.2 of [561].
See also (i) of Theorem 13.11 of [1498]. The converse result follows from Corollary
3 of [1166].

Proposition 12.18.2. Assume that (12.16.4) has a maximal solution Pmax,
let P be a solution of (12.16.4), and assume that spec(A − ΣPmax) ⊂ CLHP and
spec(A−ΣP ) ⊂ CLHP. Then, P = Pmax.

Proof. It follows from i) of Proposition 12.16.14 that spec(A−ΣP ) = spec(A−
ΣPmax). Since Pmax is the maximal solution of (12.16.4), it follows that P ≤ Pmax.
Consequently, it follows from the contrapositive form of the second statement of
Theorem 8.4.9 that P = Pmax.

Proposition 12.18.3. Assume that (12.16.4) has a solution P such that
spec(A − ΣP ) ⊂ CLHP. Then, P is stabilizing if and only if H has no imaginary
eigenvalues

It follows from Proposition 12.18.2 that (12.16.4) has at most one positive-
semidefinite solution P such that spec(A −ΣP ) ⊂ CLHP. Consequently, (12.16.4)
has at most one positive-semidefinite stabilizing solution.

Theorem 12.18.4. The following statements hold:

i) (12.16.4) has at most one stabilizing solution.

ii) If P is the stabilizing solution of (12.16.4), then P is positive semidefinite.

iii) If P is the stabilizing solution of (12.16.4), then P is maximal.

Proof. To prove i), assume that (12.16.4) has stabilizing solutions P1 and
P2. Then, (A,B) is stabilizable, and Theorem 12.18.1 implies that (12.16.4) has
a maximal solution Pmax such that spec(A − ΣPmax) ⊂ CLHP. Now, Proposition
12.18.2 implies that P1 = Pmax and P2 = Pmax. Hence, P1 = P2.

Alternatively, suppose that (12.16.4) has the stabilizing solutions P1 and P2.
Then,

ATP1 + P1A+R1 − P1ΣP1 = 0,

ATP2 + P2A+R1 − P2ΣP2 = 0.
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Subtracting these equations and rearranging yields

(A−ΣP1)T(P1 − P2) + (P1 − P2)(A−ΣP2) = 0.

Since A−ΣP1 and A−ΣP2 are asymptotically stable, it follows from Proposition
11.9.3 and Fact 11.18.33 that P1 − P2 = 0. Hence, (12.16.4) has at most one
stabilizing solution.

Next, to prove ii), suppose that P is a stabilizing solution of (12.16.4). Then,
it follows from (12.16.4) that

P =

∞∫
0

et(A−ΣP )T(R1 + PΣP )et(A−ΣP ) dt,

which shows that P is positive semidefinite.

To prove iii), let P ′ be a solution of (12.16.4). Then, it follows that

(A−ΣP )T(P − P ′) + (P − P ′)(A−ΣP ) + (P − P ′)Σ(P − P ′) = 0,

which implies that P ′ ≤ P. Thus, P is also the maximal solution of (12.16.4).

The following results concerns the monotonicity of solutions of the Riccati
equation (12.16.4).

Proposition 12.18.5. Assume that (A,B) is stabilizable, and let Pmax de-
note the maximal solution of (12.16.4). Furthermore, let R̂1 ∈ Rn×n be positive
semidefinite, let R̂2 ∈ R

m×m be positive definite, let Â ∈ R
n×n, let B̂ ∈ R

n×m,
define Σ̂ �= B̂R̂−1

2 B
T, assume that[

R̂1 ÂT

Â −Σ̂
]
≤
[
R1 AT

A −Σ
]
,

and let P̂ be a solution of

ÂTP̂ + P̂Â+ R̂1 − P̂Σ̂P̂ = 0. (12.18.1)

Then,
P̂ ≤ Pmax. (12.18.2)

Proof. The result is given by Theorem 1 of [1441].

Corollary 12.18.6. Assume that (A,B) is stabilizable, let R̂1 ∈ Rn×n be posi-
tive semidefinite, assume that R̂1 ≤ R1, and let Pmax and P̂max denote, respectively,
the maximal solutions of (12.16.4) and

ATP + PA+ R̂1 − PΣP = 0. (12.18.3)

Then,
P̂max ≤ Pmax. (12.18.4)

Proof. The result follows from Proposition 12.18.5 or Theorem 2.3 of [561].
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The following result shows that, if R1 = 0, then the closed-loop eigenvalues of
the closed-loop dynamics obtained from the maximal solution consist of the CLHP
open-loop eigenvalues and reflections of the ORHP open-loop eigenvalues.

Proposition 12.18.7. Assume that (A,B) is stabilizable, assume that R1 = 0,
and let P ∈ R

n×n be a positive-semidefinite solution of (12.16.4). Then, P is the
maximal solution of (12.16.4) if and only if

mspec(A−ΣP ) = [mspec(A) ∩ CLHP] ∪ [mspec(−A) ∩OLHP]. (12.18.5)

Proof. Sufficiency follows from Proposition 12.18.2. To prove necessity, note
that it follows from the definition (12.16.8) of H with R1 = 0 and from iv) of
Proposition 12.16.14 that

mspec(A) ∪mspec(−A) = mspec(A−ΣP ) ∪mspec[−(A−ΣP )].

Now, Theorem 12.18.1 implies that mspec(A − ΣP ) ⊆ CLHP, which implies that
(12.18.5) is satisfied.

Corollary 12.18.8. Let R1 = 0, and assume that spec(A) ⊂ CLHP. Then,
P = 0 is the only positive-semidefinite solution of (12.16.4).

12.19 Positive-Semidefinite and Positive-Definite Solutions of
the Riccati Equation

The following result gives sufficient conditions under which (12.16.4) has a
positive-semidefinite solution.

Proposition 12.19.1. Assume that there exists a nonsingular matrix S ∈
Rn×n such that (12.17.2) and (12.17.3) are satisfied, where

([
A1 0
A21 A2

]
,
[
B1
B2

])
is

controllable,
([
A1 A13
0 A3

]
, [E11 E13 ]

)
is observable, and A3 is asymptotically stable.

Then, (12.16.4) has a positive-semidefinite solution.

Proof. First, rewrite (12.17.2) and (12.17.3) as

A = S

⎡
⎢⎢⎣

A1 A13 0 0
0 A3 0 0
A21 A23 A2 A24

0 A43 0 A4

⎤
⎥⎥⎦S−1, B = S

⎡
⎢⎢⎣
B1

0
B2

0

⎤
⎥⎥⎦,

E1 =
[
E11 E13 0 0

]
S−1,

where
([

A1 0
A21 A2

]
,
[
B1
B2

])
is controllable,

([
A1 A13
0 A3

]
, [E11 E13 ]

)
is observable, and A3

is asymptotically stable. Since
([
A1 A13
0 A3

]
,
[
B1
0

])
is stabilizable, it follows from The-

orem 12.18.1 that there exists a positive-semidefinite matrix P̂1 that satisfies[
A1 A13
0 A3

]T
P̂1 + P̂1

[
A1 A13
0 A3

]
+
[
ET

11E11 ET
11E13

ET
13E11 ET

13E13

]
− P̂1

[
B1R

−1
2 B

T
1 0

0 0

]
P̂1 = 0.

Consequently, P �= STdiag(P̂1, 0, 0)S is a positive-semidefinite solution of (12.16.4).
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Corollary 12.19.2. Assume that (A,B) is stabilizable. Then, (12.16.4) has
a positive-semidefinite solution P. If, in addition, (A,E1) is detectable, then P is
the stabilizing solution of (12.16.4), and thus P is the only positive-semidefinite
solution of (12.16.4). Finally, if (A,E1) is observable, then P is positive definite.

Proof. The first statement is given by Theorem 12.18.1. Next, assume that
(A,E1) is detectable. Then, Theorem 12.17.2 implies that P is a stabilizing solution
of (12.16.4), which is the only positive-semidefinite solution of (12.16.4). Finally,
Theorem 12.17.2 implies that, if (A,E1) is observable, then P is positive definite.

The next result gives necessary and sufficient conditions under which (12.16.4)
has a positive-definite solution.

Proposition 12.19.3. The following statements are equivalent:

i) (12.16.4) has a positive-definite solution.

ii) There exists a nonsingular matrix S ∈ Rn×n such that (12.17.2) and
(12.17.3) are satisfied, where

([
A1 0
A21 A2

]
,
[
B1
B2

])
is controllable,([

A1 A13
0 A3

]
, [E11 E13 ]

)
is observable, A3 is asymptotically stable, −A2 is

asymptotically stable, spec(A4) ⊂ jR, and A4 is semisimple.

In this case, (12.16.4) has exactly one positive-definite solution if and only if A4 is
empty, and infinitely many positive-definite solutions if and only if A4 is not empty.

Proof. See [1124].

Proposition 12.19.4. Assume that (12.16.4) has a stabilizing solution P, and
let S ∈ R

n×n be a nonsingular matrix such that (12.17.2) and (12.17.3) are satisfied,
where (A1, B1, E11) is controllable and observable, (A2, B2) is controllable, (A3, E13)
is observable, ν0(A2) = 0, and A3 and A4 are asymptotically stable. Then,

def P = ν−(A2). (12.19.1)

Hence, P is positive definite if and only if spec(A2) ⊂ ORHP.

12.20 Facts on Stability, Observability, and Controllability

Fact 12.20.1. Let A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rp×n, and assume that
(A,B) is controllable and (A,C) is observable. Then, for all v ∈ Rm, the step
response

y(t) =

t∫
0

CetA dτBv +Dv

is bounded on [0,∞) if and only if A is Lyapunov stable and nonsingular.
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Fact 12.20.2. Let A ∈ Rn×n and C ∈ Rp×n, assume that (A,C) is detectable,
and let x(t) and y(t) satisfy ẋ(t) = Ax(t) and y(t) = Cx(t) for t ∈ [0,∞). Then,
the following statements hold:

i) y is bounded if and only if x is bounded.

ii) limt→∞ y(t) exists if and only if limt→∞ x(t) exists.

iii) y(t)→ 0 as t→∞ if and only if x(t)→ 0 as t→∞.

Fact 12.20.3. Let x(0) = x0, and let xf − etfAx0 ∈ C(A,B). Then, for all
t ∈ [0, tf ], the control u: [0, tf ] �→ Rm defined by

u(t) �= BTe(tf−t)A
T

⎛
⎝ tf∫

0

eτABBTeτA
T
dτ

⎞
⎠
+(
xf − etfAx0

)

yields x(tf) = xf .

Fact 12.20.4. Let x(0) = x0, let xf ∈ Rn, and assume that (A,B) is control-
lable. Then, for all t ∈ [0, tf ], the control u: [0, tf ] �→ Rm defined by

u(t) �= BTe(tf−t)A
T

⎛
⎝ tf∫

0

eτABBTeτA
T
dτ

⎞
⎠
−1(

xf − etfAx0

)

yields x(tf) = xf .

Fact 12.20.5. Let A ∈ Rn×n, let B ∈ Rn×m, assume that A is skew sym-
metric, and assume that (A,B) is controllable. Then, for all α > 0, A − αBBT is
asymptotically stable.

Fact 12.20.6. Let A ∈ Rn×n and B ∈ Rn×m. Then, (A,B) is (controllable,
stabilizable) if and only if (A,BBT) is (controllable, stabilizable). Now, assume
that B is positive semidefinite. Then, (A,B) is (controllable, stabilizable) if and
only if (A,B1/2) is (controllable, stabilizable).

Fact 12.20.7. Let A ∈ Rn×n, B ∈ Rn×m, and B̂ ∈ Rn×m̂, and assume that
(A,B) is (controllable, stabilizable) and R(B) ⊆ R(B̂). Then, (A, B̂) is also (con-
trollable, stabilizable).

Fact 12.20.8. Let A ∈ Rn×n, B ∈ Rn×m, and B̂ ∈ Rn×m̂, and assume that
(A,B) is (controllable, stabilizable) and BBT ≤ B̂B̂T. Then, (A, B̂) is also (con-
trollable, stabilizable). (Proof: Use Lemma 8.6.1 and Fact 12.20.7.)

Fact 12.20.9. Let A ∈ Rn×n, B ∈ Rn×m, B̂ ∈ Rn×m̂, and Ĉ ∈ Rm̂×n, and
assume that (A,B) is (controllable, stabilizable). Then,(

A+ B̂Ĉ, [BBT + B̂B̂T]1/2
)

is also (controllable, stabilizable). (Proof: See [1455, p. 79].)
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Fact 12.20.10. Let A ∈ Rn×n and B ∈ Rn×m. Then, the following statements
are equivalent:

i) (A,B) is controllable.

ii) There exists α ∈ R such that (A+ αI,B) is controllable.

iii) (A+ αI,B) is controllable for all α ∈ R.

Fact 12.20.11. Let A ∈ Rn×n and B ∈ Rn×m. Then, the following statements
are equivalent:

i) (A,B) is stabilizable.

ii) There exists α ≤ max{0,− spabs(A)} such that (A+αI,B) is stabilizable.

iii) (A+ αI,B) is stabilizable for all α ≤ max{0,− spabs(A)}.

Fact 12.20.12. Let A ∈ Rn×n, assume that A is diagonal, and let B ∈ Rn×1.
Then, (A,B) is controllable if and only if the diagonal entries of A are distinct and
every entry of B is nonzero. (Proof: Note that

detK(A,B) = det

⎡
⎢⎣
b1 0

. . .
0 bn

⎤
⎥⎦
⎡
⎢⎣

1 a1 · · · an−1
1

...
... · · ·.. ...

1 an · · · an−1
n

⎤
⎥⎦

=

(
n∏
i=1

bi

)∏
i<j

(ai − aj).)

Fact 12.20.13. Let A ∈ Rn×n and B ∈ Rn×1, and assume that (A,B) is
controllable. Then, A is cyclic. (Proof: See Fact 5.14.9.)

Fact 12.20.14. Let A ∈ Rn×n and B ∈ Rn×m, and assume that (A,B) is
controllable. Then,

max
λ∈spec(A)

gmultA(λ) ≤ m.

Fact 12.20.15. Let A ∈ Rn×n and B ∈ Rn×m. Then, the following conditions
are equivalent:

i) (A,B) is (controllable, stabilizable) and A is nonsingular.

ii) (A,AB) is (controllable, stabilizable).

Fact 12.20.16. Let A ∈ Rn×n and B ∈ Rn×m, and assume that (A,B) is
controllable. Then, (A,BTS−T) is observable, where S ∈ Rn×n is a nonsingular
matrix satisfying AT = S−1AS.

Fact 12.20.17. Let (A,B) be controllable, let t1 > 0, and define

P =

⎛
⎝ t1∫

0

e−tABBTe−tA
T
dt

⎞
⎠
−1

.
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Then, A− BBTP is asymptotically stable. (Proof: P satisfies

(A−BBTP )TP + P (A−BBTP ) + P
(
BBT + et1ABBTet1A

T
)
P = 0.

Since
(
A−BBTP,BBT + et1ABBTet1A

T
)

is observable and P is positive definite,

Proposition 11.9.5 implies that A − BBTP is asymptotically stable.) (Remark:
This result is due to Lukes and Kleinman. See [1152, pp. 113, 114].)

Fact 12.20.18. Let A ∈ Rn×n and B ∈ Rn×m, assume that A is asymptoti-
cally stable, and, for t ≥ 0, consider the linear system ẋ = Ax + Bu. Then, if u is
bounded, then x is bounded. Furthermore, if u(t)→ 0 as t→∞, then x(t)→ 0 as
t → ∞. (Proof: See [1212, p. 330].) (Remark: These results are consequences of
input-to-state stability.)

Fact 12.20.19. Let A ∈ Rn×n and C ∈ Rl×n, assume that (A,C) is observ-
able, define

Ok(A,C) �=

⎡
⎢⎢⎢⎢⎢⎣

C
CA
CA2

...
CAk

⎤
⎥⎥⎥⎥⎥⎦,

and assume that k ≥ n− 1. Then,

A =

[
0l×n

Ok(A,C)

]+
Ok+1(A,C).

(Remark: This result is due to Palanthandalam-Madapusi.)

12.21 Facts on the Lyapunov Equation and Inertia

Fact 12.21.1. Let A,P ∈ Fn×n, assume that P is Hermitian, let C ∈ Fl×n,
and assume that A∗P + PA+ C∗C = 0. Then, the following statements hold:

i) |ν−(A)− ν+(P )| ≤ n− rankO(A,C).

ii) |ν+(A)− ν−(P )| ≤ n− rankO(A,C).

iii) If ν0(A) = 0, then

|ν−(A)− ν+(P )|+ |ν+(A)− ν−(P )| ≤ n− rankO(A,C).

If, in addition, (A,C) is observable, then the following statements hold:

iv) ν−(A) = ν+(P ).

v) ν0(A) = ν0(P ) = 0.

vi) ν+(A) = ν−(P ).

vii) If P is positive definite, then A is asymptotically stable.

(Proof: See [64, 312, 930, 1437] and [867, p. 448].) (Remark: v) does not follow
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from i)–iii).) (Remark: For related results, see [1054] and references given in [930].
See also [289, 372].)

Fact 12.21.2. Let A,P ∈ Fn×n, assume that P is nonsingular and Hermitian,
and assume that A∗P +PA is negative semidefinite. Then, the following statements
hold:

i) ν−(A) ≤ ν+(P ).

ii) ν+(A) ≤ ν−(P ).

iii) If P is positive definite, then spec(A) ⊂ CLHP.

(Proof: See [867, p. 447].) (Remark: If P is positive definite, then A is Lyapunov
stable, although this result does not follow from i) and ii).)

Fact 12.21.3. Let A,P ∈ Fn×n, and assume that ν0(A) = 0, P is Hermitian,
and A∗P + PA is negative semidefinite. Then, the following statements hold:

i) ν−(P ) ≤ ν+(A).

ii) ν+(P ) ≤ ν−(A).

iii) If P is nonsingular, then ν−(P ) = ν+(A) and ν+(P ) = ν−(A).

iv) If P is positive definite, then A is asymptotically stable.

(Proof: See [867, p. 447].)

Fact 12.21.4. Let A,P ∈ Fn×n, and assume that ν0(A) = 0, P is nonsin-
gular and Hermitian, and A∗P + PA is negative semidefinite. Then, the following
statements hold:

i) ν−(A) = ν+(P ).

ii) ν+(A) = ν−(P ).

(Proof: Combine Fact 12.21.2 and Fact 12.21.3. See [867, p. 448].) (Remark: This
result is due to Carlson and Schneider.)

Fact 12.21.5. Let A,P ∈ Fn×n, assume that P is Hermitian, and assume
that A∗P + PA is negative definite. Then, the following statements hold:

i) ν−(A) = ν+(P ).

ii) ν0(A) = 0.

iii) ν+(A) = ν−(P ).

iv) P is nonsingular.

v) If P is positive definite, then A is asymptotically stable.

(Proof: See [447, pp. 441, 442], [867, p. 445], or [1054]. This result follows from Fact
12.21.1 with positive-definite C = −(A∗P + PA)1/2.) (Remark: This result is due
to Krein, Ostrowski, and Schneider.) (Remark: These conditions are the classical
constraints. An analogous result holds for the discrete-time Lyapunov equation,
where the analogous definition of inertia counts the numbers of eigenvalues inside
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the open unit disk, outside the open unit disk, and on the unit circle. See [280, 393].)

Fact 12.21.6. Let A ∈ Fn×n. Then, the following statements are equivalent:

i) ν0(A) = 0.

ii) There exists a nonsingular Hermitian matrix P ∈ F
n×n such that A∗P+PA

is negative definite.

iii) There exists a Hermitian matrix P ∈ Fn×n such that A∗P +PA is negative
definite.

In this case, the following statements hold for P given by ii) and iii):

iv) ν−(A) = ν+(P ).

v) ν0(A) = ν0(P ) = 0.

vi) ν+(A) = ν−(P ).

vii) P is nonsingular.

viii) If P is positive definite, then A is asymptotically stable.

(Proof: For the result i) =⇒ ii), see [867, p. 445]. The result iii) =⇒ i) follows
from Fact 12.21.5. See [51, 280, 291].)

Fact 12.21.7. Let A ∈ Fn×n. Then, the following statements are equivalent:

i) A is Lyapunov stable.

ii) There exists a positive-definite matrix P ∈ Fn×n such that A∗P + PA is
negative semidefinite.

Furthermore, the following statements are equivalent:

iii) A is asymptotically stable.

iv) There exists a positive-definite matrix P ∈ Fn×n such that A∗P + PA is
negative definite.

v) For every positive-definite matrix R ∈ Fn×n, there exists a positive-definite
matrix P ∈ Fn×n such that A∗P + PA is negative definite.

(Remark: See Proposition 11.9.5 and Proposition 11.9.6.)

Fact 12.21.8. Let A,P ∈ Fn×n, and assume P is Hermitian. Then, the
following statements hold:

i) ν+(A∗P + PA) ≤ rankP.

ii) ν−(A∗P + PA) ≤ rankP.

If, in addition, A is asymptotically stable, then the following statement holds:

iii) 1 ≤ ν−(A∗P + PA) ≤ rankP.

(Proof: See [120, 393].)
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Fact 12.21.9. Let A,P ∈ Rn×n, assume that ν0(A) = n, and assume that P
is positive semidefinite. Then, exactly one of the following statements holds:

i) ATP + PA = 0.

ii) ν−(ATP + PA) ≥ 1 and ν+(ATP + PA) ≥ 1.

(Proof: See [1348].)

Fact 12.21.10. Let R ∈ Fn×n, and assume that R is Hermitian and ν+(R) ≥
1. Then, there exist an asymptotically stable matrix A ∈ Fn×n and a positive-
definite matrix P ∈ Fn×n such that A∗P + PA+R = 0. (Proof: See [120].)

Fact 12.21.11. Let A ∈ Fn×n, assume that A is cyclic, and let a, b, c, d, e be
nonnegative integers such that a+ b = c+ d+ e = n, c ≥ 1, and e ≥ 1. Then, there
exists a nonsingular, Hermitian matrix P ∈ Fn×n such that

InP =

⎡
⎣ a

0
b

⎤
⎦

and

In(A∗P + PA) =

⎡
⎣ c
d
e

⎤
⎦.

(Proof: See [1199].) (Remark: See also [1198].)

Fact 12.21.12. Let P,R ∈ F
n×n, and assume that P is positive and R is

Hermitian. Then, the following statements are equivalent:

i) trRP−1 > 0.

ii) There exists an asymptotically stable matrix A ∈ Fn×n such that A∗P +
PA+R = 0.

(Proof: See [120].)

Fact 12.21.13. Let A1 ∈ Rn1×n1, A2 ∈ Rn2×n2, B ∈ Rn1×m, and C ∈ Rm×n2 ,
assume that A1 ⊕ A2 is nonsingular, and assume that rankB = rankC = m.
Furthermore, let X ∈ R

n1×n2 be the unique solution of

A1X +XA2 +BC = 0.

Then,
rankX ≤ min{rankK(A1, B), rankO(A2, C)}.

Furthermore, equality holds if m = 1. (Proof: See [390].) (Remark: Related results
are given in [1437, 1443].)

Fact 12.21.14. Let A1, A2 ∈ Rn×n, B ∈ Rn, C ∈ R1×n, assume that A1 ⊕A2

is nonsingular, let X ∈ Rn×n satisfy

A1X +XA2 +BC = 0,

and assume that (A1, B) is controllable and (A2, C) is observable. Then, X is
nonsingular. (Proof: See Fact 12.21.13 and [1443].)
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Fact 12.21.15. Let A,P,R ∈ Rn×n, and assume that P and R are positive
semidefinite, ATP + PA + R = 0, and N[O(A,R)] = N(A). Then, A is semistable.
(Proof: See [195].)

Fact 12.21.16. Let A, V ∈ Rn×n, assume that A is asymptotically stable,
assume that V is positive semidefinite, and let Q ∈ R

n×n be the unique, positive-
definite solution to AQ + QAT + V = 0. Furthermore, let C ∈ Rl×n, and assume
that CVCT is positive definite. Then, CQCT is positive definite.

Fact 12.21.17. Let A,R ∈ Rn×n, assume that A is asymptotically stable,
assume that R ∈ Rn×n is positive semidefinite, and let P ∈ Rn×n satisfy ATP +
PA+R = 0. Then, for all i, j = 1, . . . , n, there exist αij ∈ R such that

P =
n∑

i,j=1

αijA
(i−1)TRAj−1.

In particular, for all i, j = 1, . . . , n, αij = P̂(i,j), where P̂ ∈ Rn×n satisfies ÂTP̂ +
P̂Â+ R̂ = 0, where Â = C(χA) and R̂ = E1,1. (Proof: See [1204].) (Remark: This
identity is Smith’s method. See [391, 413, 644, 940] for finite-sum solutions of linear
matrix equations.)

Fact 12.21.18. Let λ1, . . . , λn ∈ C, assume that, for all i = 1, . . . , n, Reλi < 0,
define Λ �= diag(λ1, . . . , λn), let k be a nonnegative integer, and, for all i, j =
1, . . . , n, define P ∈ Cn×n by

P
�=

1
k!

∫ ∞

0

tkeΛteΛt dt.

Then, P is positive definite, P satisfies the Lyapunov equation

ΛP + PΛ + I = 0,

and, for all i, j = 1, . . . , n,

P(i,j) =
( −1
λi + λj

)k+1

.

(Proof: For all nonzero x ∈ Cn, it follows that

x∗Px =
∫ ∞

0

tk‖eΛtx‖22 dt,

is positive. Hence, P is positive definite. Furthermore, note that

P(i,j) =
∫ ∞

0

tkeλiteλjt dt =
(−1)k+1k!

(λi + λj)k+1
.

(Remark: See [262] and [711, p. 348].) (Remark: See Fact 8.8.16 and Fact 12.21.19.)

Fact 12.21.19. Let λ1, . . . , λn ∈ C, assume that, for all i = 1, . . . , n, Reλi < 0,
define Λ �= diag(λ1, . . . , λn), let k be a nonnegative integer, let R ∈ Cn×n, assume
that R is positive semidefinite, and, for all i, j = 1, . . . , n, define P ∈ Cn×n by

P
�=

1
k!

∫ ∞

0

tkeΛtReΛt dt.
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Then, P is positive semidefinite, P satisfies the Lyapunov equation

ΛP + PΛ +R = 0,

and, for all i, j = 1, . . . , n,

P(i,j) = R(i,j)

( −1
λi + λj

)k+1

.

If, in addition, I ◦ R is positive definite, then P is positive definite. (Proof: Use
Fact 8.21.12 and Fact 12.21.18.) (Remark: See Fact 8.8.16 and Fact 12.21.18. Note
that P = P̂ ◦R, where P̂ is the solution to the Lyapunov equation with R = I.)

Fact 12.21.20. Let A,R ∈ R
n×n, assume that R ∈ R

n×n is positive semidef-
inite, let q, r ∈ R, where r > 0, and assume that there exists a positive-definite
matrix P ∈ Rn×n satisfying

[A− (q + r)I]TP + P [A− (q + r)I] + 1
rA

TPA+R = 0.

Then, the spectrum of A is contained in a disk centered at q + j0 with radius
r. (Remark: The disk is an eigenvalue inclusion region. See [141, 614, 1401] for
related results concerning elliptical, parabolic, hyperbolic, sector, and vertical strip
regions.)

12.22 Facts on Realizations and the H2 System Norm

Fact 12.22.1. Let x: [0,∞) �→ Rn and y : [0,∞) �→ Rn, assume that∫∞
0 xT(t)x(t) dt and

∫∞
0 yT(t)y(t) dt exist, and let x̂: jR �→ Cn and ŷ : jR �→ Cn

denote the Fourier transforms of x and y, respectively. Then,∫ ∞

0

xT(t)x(t) dt =
∫ ∞

−∞
x̂∗(jω)x̂(jω) dω

and ∫ ∞

0

xT(t)y(t) dt =
∫ ∞

−∞
x̂∗(jω)ŷ(jω) dω.

(Remark: These identities are equivalent versions of Parseval’s theorem. The second
identity follows from the first identity by replacing x with x+ y.)

Fact 12.22.2. Let G ∈ Rl×mprop(s), where G min∼
[
A B

C D

]
, and assume that,

for all i = 1, . . . , l and j = 1, . . . ,m, G(i,j) = pi,j/qi,j , where pi,j , qi,j ∈ R[s] are
coprime. Then,

spec(A) =
l,m⋃
i,j=1

roots(pi,j).

Fact 12.22.3. Let G ∼
[
A B

C D

]
, let a, b ∈ R, where a �= 0, and define

H(s) �= G(as+ b). Then,

H ∼
[
a−1(A− bI) B

a−1C D

]
.
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Fact 12.22.4. Let G ∼
[
A B

C D

]
, where A is nonsingular, and define H(s) �=

G(1/s). Then,
H ∼

[
A−1 −A−1B

CA−1 D − CA−1B

]
.

Fact 12.22.5. Let G(s) = C(sI −A)−1B. Then,

G(jω) = −CA(ω2I +A2
)−1
B − jωC(ω2I +A2

)−1
B.

Fact 12.22.6. Let G ∼
[
A B

C 0

]
and H(s) = sG(s). Then,

H ∼
[

A B

CA CB

]
.

Consequently,
sC(sI −A)−1B = CA(sI −A)−1B + CB.

Fact 12.22.7. Let G =
[
G11 G12
G21 G22

]
, where Gij ∼

[
Aij Bij

Cij Dij

]
for all i, j =

1, 2. Then,

[
G11 G12

G21 G22

]
∼

⎡
⎢⎢⎢⎢⎢⎢⎣

A11 0 0 0 B11 0
0 A12 0 0 0 B12

0 0 A21 0 B21 0
0 0 0 A22 0 B22

C11 C12 0 0 D11 D12

0 0 C21 C22 D21 D22

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Fact 12.22.8. Let G ∼
[
A B

C 0

]
, where G ∈ Rl×m(s), and let M ∈ Rm×l.

Then,

[I +GM ]−1 ∼
[
A−BMC B

− C I

]

and

[I +GM ]−1G ∼
[
A−BMC B

C 0

]
.

Fact 12.22.9. Let G ∼
[
A B

C D

]
, where G ∈ Rl×m(s). If D has a left inverse

DL ∈ Rm×l, then

GL ∼
[
A−BDLC BDL

−DLC DL

]

satisfies GLG = I. If D has a right inverse DR ∈ Rm×l, then

GR ∼
[
A−BDRC BDR

−DRC DR

]

satisfies GGR = I.
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Fact 12.22.10. Let G ∼
[
A B

C 0

]
be a SISO rational transfer function, and

let λ ∈ C. Then, there exists a rational function H such that

G(s) =
1

(s+ λ)r
H(s)

and such that λ is neither a pole nor a zero of H if and only if the Jordan form of
A has exactly one block associated with λ, which is of order r.

Fact 12.22.11. Let G ∼
[
A B

C D

]
. Then, G(s) is given by the Schur comple-

ment

G(s) = (A− sI)
∣∣∣∣∣
[
A− sI B
C D

]
.

(Remark: See [151].)

Fact 12.22.12. Let G ∈ Fn×m(s), where G min∼
[
A B

C D

]
, and, for all i =

1, . . . , n and j = 1, . . . ,m, let G(i,j) = pij/qij, where pij, qij ∈ F[s] are coprime.
Then,

n,m⋃
i,j=1

roots(qij) = spec(A).

Fact 12.22.13. Let A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rm×n. Then,

det[sI − (A+BC)] = det
[
I − C(sI −A)−1B

]
det(sI −A).

If, in addition, n = m = 1, then

det[sI − (A+BC)] = det(sI −A)− C(sI −A)AB.

(Remark: The last expression is used in [1009] to compute the frequency response
of a transfer function.) (Proof: Note that

det
[
I − C(sI −A)−1B

]
det(sI −A) = det

[
sI −A B
C I

]

= det
[
sI −A B
C I

][
I 0
−C I

]

= det
[
sI −A−BC B

0 I

]
= det(sI −A−BC).)

Fact 12.22.14. Let A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n, and K ∈ Rm×n, and
assume that A+BK is nonsingular. Then,

det
[
A B
C 0

]
= (−1)mdet(A+BK)det

[
C(A+BK)−1B

]
.

Hence, [A B
C 0 ] is nonsingular if and only if C(A + BK)−1B is nonsingular. (Proof:

Note that
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det
[
A B
C 0

]
= det

[
A B
C 0

][
I 0
K I

]

= det
[
A+BK B

C 0

]
= det(A+BK)det

[−C(A+BK)−1B
]
.)

Fact 12.22.15. Let A1 ∈ Rn×n, C1 ∈ R1×n, A2 ∈ Rm×m, and B2 ∈ Rm×1,
let λ ∈ C, assume that λ is an observable eigenvalue of (A1, C1) and a controllable
eigenvalue of (A2, B2), and define the dynamics matrix A of the cascaded system
by

A
�=
[

A1 0
B2C1 A2

]
.

Then,
amultA(λ) = amultA1(λ) + amultA2(λ)

and
gmultA(λ) = 1.

(Remark: The eigenvalue λ is a cyclic eigenvalue of both subsystems as well as the
cascaded system. In other words, λ, which occurs in a single Jordan block of each
subsystem, occurs in a single Jordan block in the cascaded system. Effectively, the
Jordan blocks of the subsystems corresponding to λ are merged.)

Fact 12.22.16. Let G1 ∈ Rl1×m(s) and G2 ∈ Rl2×m(s) be strictly proper.
Then, ∥∥∥∥

[
G1

G2

]∥∥∥∥
2

H2

= ‖G1‖2H2
+ ‖G2‖2H2

.

Fact 12.22.17. Let G1, G2 ∈ Rm×m(s) be strictly proper. Then,∥∥∥∥
[
G1

G2

]∥∥∥∥
H2

=
∥∥[ G1 G2

]∥∥
H2
.

Fact 12.22.18. Let G(s) �= α
s+β , where β > 0. Then,

‖G‖H2 =
|α|√
2β
.

Fact 12.22.19. Let G(s) �= α1s+α0
s2+β1s+β0

, where β0, β1 > 0. Then,

‖G‖H2 =

√
α2

0

2β0β1
+

α2
1

2β1
.

Fact 12.22.20. Let G1(s) = α1
s+β1

and G2(s) = α2
s+β2

, where β1, β2 > 0. Then,

‖G1G2‖H2 ≤ ‖G1‖H2‖G2‖H2

if and only if β1 + β2 ≥ 2. (Remark: The H2 norm is not submultiplicative.)
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12.23 Facts on the Riccati Equation

Fact 12.23.1. Assume that (A,B) is stabilizable, and assume that H defined
by (12.16.8) has an imaginary eigenvalue λ. Then, every Jordan block of H asso-
ciated with λ has even order. (Proof: Let P be a solution of (12.16.4), and let
J denote the Jordan form of A − ΣP. Then, there exists a nonsingular 2n × 2n
block-diagonal matrix S such that Ĥ

�= S−1HS =
[

J Σ̂

0 −JT

]
, where Σ̂ is positive

semidefinite. Next, let Jλ
�= λIr +Nr be a Jordan block of J associated with λ, and

consider the submatrix of λI−Ĥ consisting of the rows and columns of λI−Jλ and
λI + JT

λ . Since (A,B) is stabilizable, it follows that the rank of this submatrix is
2r−1. Hence, every Jordan block of H associated with λ has even order.) (Remark:
Canonical forms for symplectic and Hamiltonian matrices are discussed in [873].)

Fact 12.23.2. Let A,B ∈ Cn×n, assume that A and B are positive definite,
let S ∈ Cn×n, satisfy A = S∗S, and define

X �= S−1(SBS∗)1/2S−∗.

Then, X satisfies XAX = B. (Proof: See [683, p. 52].)

Fact 12.23.3. Let A,B ∈ Cn×n, and assume that the 2n× 2n matrix[
A −2I

2B − 1
2A

2 A

]

is simple. Then, there exists a matrix X ∈ Cn×n satisfying

X2 +AX +B = 0.

(Proof: See [1337].)

Fact 12.23.4. Let A,B ∈ Fn×n, and assume that A and B are positive
semidefinite. Then, the following statements hold:

i) If A is positive definite, then X = A#B is the unique positive-definite
solution of

XA−1X −B = 0.

ii) If A is positive definite, then X = 1
2 [−A + A#(A + 4B)] is the unique

positive-definite solution of

XA−1X +X −B = 0.

iii) If A is positive definite, then X = 1
2 [A + A#(A + 4B)] is the unique

positive-definite solution of

XA−1X −X −B = 0.

iv) If B is positive definite, then X = A#B is the unique positive-definite
solution of

XB−1X = A.

v) If A is positive definite, then X = 1
2 [A+ A#(A + 4BA−1B)] is the unique

positive-definite solution of

BX−1B −X +A = 0.
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vi) If A is positive definite, then X = 1
2 [−A+A#(A+4BA−1B)] is the unique

positive-definite solution of

BX−1B −X −A = 0.

vii) If 0 < A ≤ B, then X = 1
2 [A+A#(4B−3A)] is the unique positive-definite

solution of
XA−1X −X − (B −A) = 0.

viii) If 0 < A ≤ B, then X = 1
2 [−A + A#(4B − 3A)] is the unique positive-

definite solution of

XA−1X +X − (B −A) = 0.

ix) If 0 < A < B, X(0) is positive definite, and X(t) satisfies

Ẋ = −XA−1X +X + (B −A),

then
lim
t→∞X(t) = 1

2 [A+A#(4B − 3A)].

x) If 0 < A < B, X(0) is positive definite, and X(t) satisfies

Ẋ = −XA−1X −X + (B −A),

then
lim
t→∞X(t) = 1

2 [A+A#(4B − 3A)].

xi) If 0 < A < B, X(0) and Y (0) are positive definite, X(t) satisfies

Ẋ = −XA−1X +X + (B −A)

and Y (t) satisfies
Ẏ = −YA−1Y − Y + (B −A),

then
lim
t→∞X(t)#Y (t) = A#(B −A).

(Proof: See [910].) (Remark: See Fact 8.10.43.) (Remark: The solution X given
by vii) is the golden mean of A and B. In the scalar case with A = 1 and B = 2,
the solution X of X2 −X − 1 = 0 is the golden ratio 1

2 (1 +
√

5). See Fact 4.11.12.)

Fact 12.23.5. Let P0 ∈ R
n×n, assume that P0 is positive definite, and, for all

t ≥ 0, let P (t) ∈ Rn×n satisfy

Ṗ (t) = ATP (t) + P (t)A+ P (t)VP (t),

P (0) = P0.

Then, for all t ≥ 0,

P (t) = etA
T

⎡
⎣P−1

0 −
t∫

0

eτAVeτA
T
dτ

⎤
⎦
−1

etA.

(Remark: P (t) satisfies a Riccati differential equation.)
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Fact 12.23.6. Let Gc ∼
[
Ac Bc

Cc 0

]
denote an nth-order dynamic controller

for the standard control problem. If Gc minimizes ‖G̃‖2, then Gc is given by

Ac
�= A+BCc −BcC −BcDCc,

Bc
�=
(
QCT + V12

)
V −1
2 ,

Cc
�= −R−1

2

(
BTP +RT

12

)
,

where P and Q are positive-semidefinite solutions to the algebraic Riccati equations

ÂT
RP + PÂR − PBR−1

2 B
TP + R̂1 = 0,

ÂEQ+QÂT
E −QCTV −1

2 CQ+ V̂1 = 0,

where ÂR and R̂1 are defined by

ÂR
�= A−BR−1

2 R
T
12, R̂1

�= R1 −R12R
−1
2 R

T
12,

and ÂE and V̂1 are defined by

ÂE
�= A− V12V

−1
2 C, V̂1

�= V1 − V12V
−1

2 V T
12.

Furthermore, the eigenvalues of the closed-loop system are given by

mspec
([

A BCc

BcC Ac +BcDCc

])
= mspec(A+BCc) ∪mspec(A−BcC).

Fact 12.23.7. Let Gc ∼
[
Ac Bc

Cc 0

]
denote an nth-order dynamic controller

for the discrete-time standard control problem. If Gc minimizes ‖G̃‖2, then Gc is
given by

Ac
�= A+BCc −BcC −BcDCc,

Bc
�=
(
AQCT + V12

)(
V2 + CQCT

)−1
,

Cc
�= −(R2 +BTPB

)−1(
RT

12 +BTPA
)
,

Dc
�= 0,

and the eigenvalues of the closed-loop system are given by

mspec
([

A BCc

BcC Ac +BcDCc

])
= mspec(A+BCc) ∪mspec(A−BcC).

Now, assume that D = 0 and Gc ∼
[
Ac Bc

Cc Dc

]
. Then,

Ac
�= A+BCc −BcC −BDcC,

Bc
�=
(
AQCT + V12

)(
V2 + CQCT

)−1
+BDc,

Cc
�= −(R2 +BTPB

)−1(
RT

12 +BTPA
)−DcC,

Dc
�=
(
R2 +BTPB

)−1[
BTPAQCT +RT

12QC
T +BTPV12

](
V2 + CQCT

)−1
,

and the eigenvalues of the closed-loop system are given by

mspec
([

A+BDcC BCc

BcC Ac

])
= mspec(A+BCc) ∪mspec(A−BcC).
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In both cases, P and Q are positive-semidefinite solutions to the discrete-time
algebraic Riccati equations

P = ÂT
RPÂR − ÂT

RPB
(
R2 +BTPB

)−1
BTPÂR + R̂1,

Q = ÂEQÂ
T
E − ÂEQC

T
(
V2 + CQCT

)−1
CQÂT

E + V̂1,

where ÂR and R̂1 are defined by

ÂR
�= A−BR−1

2 R
T
12, R̂1

�= R1 −R12R
−1
2 R

T
12,

and ÂE and V̂1 are defined by

ÂE
�= A− V12V

−1
2 C, V̂1

�= V1 − V12V
−1

2 V T
12.

(Proof: See [618].)

12.24 Notes

Linear system theory is treated in [261, 1150, 1336, 1450]. Time-varying linear
systems are considered in [367, 1150], while discrete-time systems are emphasized
in [660]. The equivalence of iv) and v) of Theorem 12.6.18 is the PBH test, due
to [656]. Spectral factorization results are given in [337]. Stabilization aspects are
discussed in [429]. Observable asymptotic stability and controllable asymptotic
stability were introduced and used to analyze Lyapunov equations in [1207]. Zeros
are treated in [21, 478, 787, 791, 943, 1074, 1154, 1178]. Matrix-based methods
for linear system identification are developed in [1363], while stochastic theory is
considered in [633].

Solutions of the LQR problem under weak conditions are given in [544]. So-
lutions of the Riccati equation are considered in [562, 845, 848, 864, 865, 974, 1124,
1434, 1441, 1446]. Proposition 12.16.16 is based on Theorem 3.6 of [1455, p. 79].
A variation of Theorem 12.18.1 is given without proof by Theorem 7.2.1 of [749, p.
125].

There are numerous extensions to the results given in this chapter relating to
various generalizations of (12.16.4). These generalizations include the case in which
R1 is indefinite [561, 1438, 1440] as well as the case in which Σ is indefinite [1166].
The latter case is relevant to H∞ optimal control theory [188]. Additional extensions
include the Riccati inequality ATP + PA+R1−PΣP ≥ 0 [1116, 1165, 1166, 1167],
the discrete-time Riccati equation [8, 661, 743, 864, 1116, 1445], and fixed-order
control [738].
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Symbols

0n×m

n×m zero matrix
definition, 83

1n×m

n×m ones matrix
definition, 84

2× 2 matrices
commutator
Fact 2.18.1, 149

2× 2 matrix
discrete-time
asymptotically
stable matrix
Fact 11.21.1, 712

eigenvalue inequality
Fact 8.17.1, 508

singular value
Fact 5.11.31, 328

2× 2
positive-semidefinite
matrix

square root
Fact 8.9.6, 451

2× 2 trace
Fact 2.12.9, 126

3× 3 matrix identity
trace
Fact 4.9.5, 261

3× 3 symmetric matrix
eigenvalue
Fact 4.10.1, 265

A⊕ B
Kronecker sum

definition, 403

A#B
geometric mean
definition, 461

A#αB
generalized
geometric mean
definition, 464

A−1

inverse matrix
definition, 101

A
GL

≤ B
generalized Löwner
partial ordering
definition, 524

A
rs

≤ B
rank subtractivity
partial ordering
definition, 119

A
∗
≤ B

star partial ordering
definition, 120

A
i← b

column replacement
definition, 80

A ◦B
Schur product
definition, 404

A⊗B
Kronecker product
definition, 400

A :B

parallel sum
definition, 528

A∗̂

reverse complex
conjugate transpose
definition, 88

A◦α

Schur power
definition, 404

A+

generalized inverse
definition, 363

A1/2

positive-semidefinite
matrix square root
definition, 431

A#

group generalized
inverse
definition, 369

AA

adjugate
definition, 105

AD

Drazin generalized
inverse
definition, 367

AL

left inverse
definition, 98

AR

right inverse
definition, 98
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AT

transpose
definition, 86

AT̂

reverse transpose
definition, 88

A[i;j]

submatrix
definition, 105

A⊥
complementary
idempotent matrix
definition, 176

complementary
projector
definition, 175

B(p, q)
Bezout matrix
definition, 255

C(p)
companion matrix
definition, 283

C∗

complex conjugate
transpose
definition, 87

D|A
Schur complement
definition, 367

Ei,j,n×m

n×m matrix with a
single unit entry
definition, 84

Ei,j

matrix with a single
unit entry
definition, 84

H(g)
Hankel matrix
definition, 257

In

identity matrix
definition, 83

J[
0 I
−I 0

]
definition, 169

J2n[
0 In

−In 0

]
definition, 169

K(x)
cross-product matrix
definition, 82

N
standard nilpotent
matrix
definition, 166

Nn

n× n standard
nilpotent matrix
definition, 166

PA,B

pencil
definition, 304

Pn,m

Kronecker
permutation matrix
definition, 402

V (λ1, . . . , λn)
Vandermonde matrix
definition, 354

[A, B]
commutator
definition, 82

Bε(x)
open ball
definition, 621

Cn×m

n×m complex
matrices
definition, 79

F

real or complex
numbers
definition, 78

F(s)
rational functions

definition, 249

F[s]
polynomials with
coefficients in F

definition, 231

F
n×m

n×m real or
complex matrices
definition, 79

Fn×m[s]
polynomial matrices
with coefficients in
Fn×m

definition, 234

Fn×m(s)
n×m rational
transfer functions
definition, 249

Fn×m
prop (s)
n×m proper rational
transfer functions
definition, 249

Fprop(s)
proper rational
functions
definition, 249

R

complex numbers
definition, 78

real numbers
definition, 78

Rn×m

n×m real matrices
definition, 79

Sε(x)
sphere
definition, 621

Hn

n× n Hermitian
matrices
definition, 417

Nn
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n× n positive-
semidefinite
matrices
definition, 417

Pn

n×n positive-definite
matrices
definition, 417

Im x
imaginary part
definition, 77

In A
inertia
definition, 245

Re x
real part
definition, 77

C(A, B)
controllable subspace
definition, 737

H

Hamiltonian
definition, 780

H(G)
Markov
block-Hankel
matrix
definition, 754

Hl(q)
hypercompanion
matrix
definition, 288

Hi,j,k(G)
Markov
block-Hankel
matrix
definition, 754

Jl(q)
real Jordan matrix
definition, 289

K(A, B)
controllability
matrix
definition, 737

L{x(t)}
Laplace transform
definition, 646

N(A)
null space
definition, 94

O(A, C)
observability matrix
definition, 728

R(A)
range
definition, 93

S⊥

orthogonal
complement
definition, 91

Ss(A)
asymptotically stable
subspace
definition, 665

Su(A)
unstable subspace
definition, 665

U(A, C)
unobservable
subspace
definition, 728

X∼

complement
definition, 2

Y\X
relative complement
definition, 2

‖A‖p
Hölder norm
definition, 547

‖A‖F
Frobenius norm
definition, 547

‖A‖col

column norm
definition, 556

‖A‖row

row norm
definition, 556

‖A‖σp

Schatten norm
definition, 548

‖A‖q,p

Hölder-induced
norm
definition, 554

‖x‖p
Hölder norm
definition, 544

‖y‖D
dual norm
definition, 570

adA

adjoint operator
definition, 82

aff S

affine hull
definition, 90

bd S

boundary
definition, 622

bdS′ S

relative boundary
definition, 622

χA

characteristic
equation
definition, 240

χA,B

characteristic
polynomial
definition, 305

cl S

closure
definition, 621

clS′ S

relative closure
definition, 622

co S

convex hull
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definition, 89

coco S

convex conical hull
definition, 89

coli(A)
column
definition, 79

cone S

conical hull
definition, 89

dcone S

dual cone
definition, 91

def A
defect
definition, 96

deg p
degree
definition, 231

det A
determinant
definition, 103

diag(A1, . . . , Ak)
block-diagonal
matrix
definition, 167

diag(a1, . . . , an)
diagonal matrix
definition, 167

dim S

dimension of a set
definition, 90

�(A)
lower bound
definition, 558

�q,p(A)
Hölder-induced
lower bound
definition, 559

În

reverse identity
matrix
definition, 84

ind A
index of a matrix
definition, 176

indA(λ)
index of an
eigenvalue
definition, 295

int S

interior
definition, 621

intS′ S

relative interior
definition, 621

λ1(A)
maximum eigenvalue
definition, 240

minimum eigenvalue
definition, 240

λi(A)
eigenvalue
definition, 240

log(A)
matrix logarithm
definition, 654

mroots(p)
multiset of roots
definition, 232

mspec(A)
multispectrum
definition, 240

μA

minimal polynomial
definition, 247

ν−(A), ν0(A)
inertia
definition, 245

C
complex conjugate
definition, 87

π
prime numbers
Fact 1.7.8, 19

polar S

dual cone
definition, 91

rank A

rank
definition, 95

rank G

normal rank for a
rational transfer
function
definition, 249

rank P

normal rank for a
polynomial matrix
definition, 235

reldeg G

relative degree
definition, 249

revdiag(a1, . . . , an)
reverse diagonal
matrix
definition, 167

dmax(A)
maximum diagonal
entry
definition, 80

dmin(A)
minimum diagonal
entry
definition, 80

di(A)
diagonal entry
definition, 80

roots(p)
set of roots
definition, 232

rowi(A)
row
definition, 79

sig A

signature
definition, 245

σmax(A)
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maximum singular
value
definition, 301

σmin(A)
minimum singular
value
definition, 301

σi(A)
singular value
definition, 301

sign x
sign
definition, 89

sign α
sign
definition, xxi

spabs(A)
spectral abscissa
definition, 245

spec(A)
spectrum
definition, 240

sprad(A)
spectral abscissa
definition, 245

tr A
trace
definition, 86

vcone(D, x0)
variational cone
definition, 625

vec A
column-stacking
operator
definition, 399

|x|
absolute value
definition, 88

eA

matrix exponential
definition, 643

ei

ith column of the
identity matrix
definition, 84

ei,n

ith column of the
n× n identity
matrix
definition, 84

f (k)(x0)
kth Fréchet
derivative
definition, 627

f ′(x0)
Fréchet derivative
definition, 626

kth Fréchet derivative
definition, 627

n-tuple
definition, 3

x >> 0
positive vector
definition, 79

x ≥≥ 0
nonnegative vector
definition, 79

SO(3)
logarithm
Fact 11.15.10, 692

SO(n)
eigenvalue
Fact 5.11.2, 321

amultA(λ)
algebraic multiplicity
definition, 240

circ(a0, . . . , an−1)
circulant matrix
definition, 355

exp(A)
matrix exponential
definition, 643

glb(S)
greatest lower bound
definition, 7

gmultA
geometric
multiplicity
definition, 245

inf(S)
infimum
definition, 7

lub(S)
least upper bound
definition, 7

multp(λ)
multiplicity
definition, 232

sh(A, B)
shorted operator
definition, 530

sup(S)
supremum
definition, 7

D+f(x0; ξ)
one-sided directional
differential
definition, 625

(1)-inverse
definition, 364
determinant
Fact 6.5.28, 393

left inverse
Proposition 6.1.3, 364

right inverse
Proposition 6.1.2, 364

(1,2)-inverse
definition, 364

A

Abel
quintic polynomial
Fact 3.21.7, 223

Abelian group
definition
Definition 3.3.3, 172

equivalence relation
Proposition 3.4.2, 173
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absolute norm
monotone norm
Proposition 9.1.2, 543

absolute sum norm
definition, 545

absolute value
Frobenius norm
Fact 9.13.11, 603

Hölder-induced
norm
Fact 9.8.26, 576

inequality
Fact 1.11.24, 45
Fact 1.11.25, 45

irreducible matrix
Fact 3.20.4, 218

matrix, 88
maximum singular
value
Fact 9.13.10, 603

reducible matrix
Fact 3.20.4, 218

scalar inequality
Fact 1.11.1, 39
Fact 1.11.12, 43
Fact 1.12.3, 46

Schatten norm
Fact 9.13.11, 603

spectral radius
Fact 4.11.16, 279

vector, 88

absolute-value function
Niculescu’s
inequality
Fact 1.10.19, 33

absolute-value matrix
positive-semidefinite
matrix
Fact 8.9.1, 450

absolutely convergent
sequence

convergent sequence
Proposition 10.2.7, 623
Proposition 10.2.9, 623

absolutely convergent
series

definition
Definition 10.2.6, 623
Definition 10.2.8, 623

Aczel’s inequality
norm inequality
Fact 9.7.4, 563

quadratic inequality
Fact 1.16.19, 64

additive compound
asymptotically stable
polynomial
Fact 11.17.12, 697

additive decomposition
diagonalizable
matrix
Fact 5.9.3, 311

Hermitian matrix
Fact 3.7.29, 183

nilpotent matrix
Fact 5.9.3, 311

orthogonal matrix
Fact 5.19.2, 360
Fact 5.19.3, 360

unitary matrix
Fact 5.19.1, 360

adjacency matrix
definition
Definition 3.2.1, 170

graph of a matrix
Proposition 3.2.5, 171

inbound Laplacian
matrix
Theorem 3.2.2, 170

Laplacian matrix
Theorem 3.2.2, 170
Theorem 3.2.3, 171
Fact 4.11.11, 277

outbound Laplacian
matrix
Theorem 3.2.2, 170

symmetric graph
Fact 4.11.1, 272

adjacent
Definition 1.4.2, 8

adjoint norm
definition

Fact 9.8.8, 572
dual norm
Fact 9.8.8, 572

Hölder-induced
norm
Fact 9.8.10, 572

adjoint operator
commutator
Fact 2.18.5, 149
Fact 2.18.6, 150

adjugate
basic properties, 106
characteristic
polynomial
Fact 4.9.8, 261

cross product
Fact 6.5.16, 389

defect
Fact 2.16.7, 143

definition, 105
derivative
Fact 10.11.19, 640
Fact 10.11.21, 641

determinant
Fact 2.14.27, 139
Fact 2.16.3, 141
Fact 2.16.5, 142
Fact 2.16.6, 142

diagonalizable
matrix
Fact 5.14.5, 339

eigenvalue
Fact 4.10.7, 267

eigenvector
Fact 5.14.26, 342

elementary matrix
Fact 2.16.1, 141

factor
Fact 2.16.9, 143

Frobenius norm
Fact 9.8.15, 573

generalized inverse
Fact 6.3.6, 370
Fact 6.3.7, 371
Fact 6.5.16, 389

Hermitian matrix
Fact 3.7.10, 179

iterated
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Fact 2.16.5, 142
matrix powers
Fact 4.9.8, 261

matrix product
Fact 2.16.10, 143

nilpotent matrix
Fact 6.3.6, 370

null space
Fact 2.16.7, 143

outer-product
perturbation
Fact 2.16.3, 141

partitioned matrix
Fact 2.14.27, 139

range
Fact 2.16.7, 143

rank
Fact 2.16.7, 143
Fact 2.16.8, 143

scalar factor
Fact 2.16.5, 142

singular value
Fact 5.11.36, 328

skew-Hermitian
matrix
Fact 3.7.10, 179
Fact 3.7.11, 179

skew-symmetric
matrix
Fact 4.9.20, 263

spectrum
Fact 4.10.7, 267

trace
Fact 4.9.8, 261

transpose
Fact 2.16.5, 142

affine closed half space
closed half space
Fact 2.9.6, 111

definition, 91

affine function
definition, 81

affine hull
closure
Fact 10.8.11, 633

constructive
characterization
Theorem 2.3.5, 91

convex hull
Fact 2.9.3, 110

convex set
Theorem 10.3.2, 624
Fact 10.8.8, 632

definition, 90
linear mapping
Fact 2.10.4, 115

affine hyperplane
affine subspace
Fact 2.9.6, 111

definition, 91
determinant
Fact 2.20.3, 154

affine mapping
Hermitian matrix
Fact 3.7.14, 181

normal matrix
Fact 3.7.14, 181

affine open half space
definition, 91
open half space
Fact 2.9.6, 111

affine subspace
affine hull of image
Fact 2.9.26, 113

affine hyperplane
Fact 2.9.6, 111

definition, 89
image under linear
mapping
Fact 2.9.26, 113

left inverse
Fact 2.9.26, 113

span
Fact 2.9.7, 111
Fact 2.20.4, 154
Fact 10.8.12, 633

subspace
Fact 2.9.8, 111

Afriat
spectrum of a
product of
projectors
Fact 5.12.15, 335

Akers

maximum singular
value of a product
of elementary
projectors
Fact 9.14.1, 607

algebraic multiplicity
block-triangular
matrix
Proposition 5.5.13, 298

definition
Definition 4.4.4, 240

geometric
multiplicity
Proposition 5.5.3, 295

index of an
eigenvalue
Proposition 5.5.6, 296

orthogonal matrix
Fact 5.11.2, 321

outer-product
matrix
Fact 5.14.3, 338

almost nonnegative
matrix

asymptotically stable
matrix
Fact 11.19.5, 707

definition, 230
Definition 3.1.4, 168

group-invertible
matrix
Fact 11.19.4, 706

irreducible matrix
Fact 11.19.2, 706

Lyapunov-stable
matrix
Fact 11.19.4, 706

matrix exponential
Fact 11.19.1, 706
Fact 11.19.2, 706

N-matrix
Fact 11.19.3, 706
Fact 11.19.5, 707

nonnegative matrix
Fact 11.19.1, 706

positive matrix
Fact 11.19.2, 706

alternating group



910 Alzer’s inequality

group
Fact 3.21.7, 223

Alzer’s inequality
sum of integers
Fact 1.9.31, 30

Amemiya’s inequality
Schur product
Fact 8.21.39, 539

Anderson
rank of a tripotent
matrix
Fact 2.10.23, 118

Ando
convex function
Proposition 8.6.17, 542

inertia of congruent,
normal matrices
Fact 5.10.17, 319

angle
definition, 85

angular velocity vector
quaternions
Fact 11.11.15, 675

antieigenvalue
definition
Fact 9.8.37, 577

antisymmetric graph
Laplacian
Fact 4.11.1, 272

antisymmetric relation
definition
Definition 1.3.8, 7

one-sided cone
induced by
Proposition 2.3.6, 93

positive-semidefinite
matrix
Proposition 8.1.1, 417

aperiodic graph
Definition 1.4.3, 9
nonnegative matrix
Fact 4.11.5, 273

Araki

positive-semidefinite
matrix inequality
Fact 8.12.21, 480

Araki-Lieb-Thirring
inequality

positive-semidefinite
matrix inequality
Fact 8.12.20, 479

arc
definition, 8

area
parallelogram
Fact 2.20.17, 160
Fact 9.7.5, 565

polygon
Fact 2.20.14, 159

triangle
Fact 2.20.7, 155
Fact 2.20.8, 156
Fact 2.20.10, 156

arithmetic mean
Carleman’s
inequality
Fact 1.15.40, 58

geometric mean
Fact 1.10.36, 37
Fact 1.15.21, 53
Fact 1.15.23, 53
Fact 1.15.24, 54
Fact 1.15.25, 54
Fact 1.15.26, 54
Fact 1.15.27, 54

identric mean
Fact 1.10.36, 37

logarithmic mean
Fact 1.15.26, 54

mixed arithmetic-
geometric mean
inequality
Fact 1.15.39, 58

Muirhead’s theorem
Fact 1.15.25, 54

positive-definite
matrix
Fact 8.10.34, 460

scalar inequality
Fact 1.11.6, 39

Fact 1.11.7, 39
Fact 1.11.8, 40
Fact 1.11.9, 41
Fact 1.11.10, 41

arithmetic-mean
inequality

harmonic mean
Fact 1.15.16, 52
Fact 1.15.17, 52

arithmetic-mean–
geometric-mean
inequality

alternative form
Fact 1.15.33, 56

difference
Fact 1.15.29, 55

harmonic mean
Fact 1.15.15, 52

Jensen’s inequality
Fact 1.8.4, 21

main form
Fact 1.15.14, 51
Fact 1.15.28, 54

Popoviciu
Fact 1.15.29, 55

positive-definite
matrix
Fact 8.13.8, 486

quartic identity
Fact 1.12.5, 47

Rado
Fact 1.15.29, 55

ratio
Fact 1.15.29, 55

reverse inequality
Fact 1.15.18, 52
Fact 1.15.19, 52

sextic identity
Fact 1.13.1, 47

variation
Fact 1.10.13, 32

weighted
arithmetic-mean–
geometric-mean
inequality
Fact 1.15.32, 56
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arithmetic-mean–
harmonic-mean
inequality

scalar inequality
Fact 1.15.37, 57

associative identities
definition, 82

associativity
composition
Proposition 1.2.1, 3

asymptotic stability
eigenvalue
Proposition 11.8.2, 662

input-to-state
stability
Fact 12.20.18, 793

linear dynamical
system
Proposition 11.8.2, 662

Lyapunov equation
Corollary 11.9.1, 666

matrix exponential
Proposition 11.8.2, 662

nonlinear system
Theorem 11.7.2, 661

asymptotically stable
equilibrium

definition
Definition 11.7.1, 660

asymptotically stable
matrix

2× 2 matrix
Fact 11.18.35, 705

almost nonnegative
matrix
Fact 11.19.5, 707

asymptotically stable
polynomial
Proposition 11.8.4, 663

Cayley transform
Fact 11.21.8, 713

compartmental
matrix
Fact 11.19.6, 707

controllability
Fact 12.20.5, 791

controllability
Gramian
Proposition 12.7.9, 747
Corollary 12.7.10, 747

controllable pair
Proposition 12.7.9, 747
Corollary 12.7.10, 747

controllably
asymptotically
stable
Proposition 12.8.3, 747
Proposition 12.8.5, 748

cyclic matrix
Fact 11.18.25, 702

definition
Definition 11.8.1, 662

detectability
Proposition 12.5.5, 735
Corollary 12.5.6, 735

diagonalizable over R

Fact 11.17.10, 697
discrete-time
asymptotically
stable matrix
Fact 11.21.8, 713

dissipative matrix
Fact 11.18.21, 701
Fact 11.18.37, 705

factorization
Fact 11.18.22, 701

integral
Lemma 11.9.2, 667

inverse matrix
Fact 11.18.15, 700

Kronecker sum
Fact 11.18.32, 704
Fact 11.18.33, 704
Fact 11.18.34, 705

linear matrix
equation
Proposition 11.9.3, 667

logarithmic
derivative
Fact 11.18.11, 699

Lyapunov equation
Proposition 11.9.5, 668
Corollary 11.9.4, 668
Corollary 11.9.7, 669
Corollary 12.4.4, 734

Corollary 12.5.6, 735
Corollary 12.7.4, 746
Corollary 12.8.6, 749
Fact 12.21.7, 795
Fact 12.21.17, 797

matrix exponential
Lemma 11.9.2, 667
Fact 11.18.8, 699
Fact 11.18.9, 699
Fact 11.18.10, 699
Fact 11.18.15, 700
Fact 11.18.18, 701
Fact 11.18.19, 701
Fact 11.21.7, 713

minimal realization
Definition 12.9.17, 757

negative-definite
matrix
Fact 11.18.30, 704

nonsingular
N-matrix
Fact 11.19.5, 707

normal matrix
Fact 11.18.37, 705

observability
Gramian
Corollary 12.4.10, 734

observable pair
Proposition 12.4.9, 734
Corollary 12.4.10, 734

observably
asymptotically
stable
Proposition 11.9.5, 735
Proposition 12.5.5, 735

perturbation
Fact 11.18.16, 700

positive-definite
matrix
Proposition 11.9.5, 668
Proposition 12.4.9, 734
Corollary 11.9.7, 669
Fact 11.18.21, 701

secant condition
Fact 11.18.29, 704

sign of entries
Fact 11.19.5, 708

sign stability
Fact 11.19.5, 708
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similar matrices
Fact 11.18.4, 698

skew-Hermitian
matrix
Fact 11.18.30, 704

spectrum
Fact 11.18.13, 700

square root
Fact 11.18.36, 705

stability radius
Fact 11.18.17, 700

stabilizability
Proposition 11.9.5, 735
Proposition 12.8.3, 747
Proposition 12.8.5, 748
Corollary 12.8.6, 749

subdeterminant
Fact 11.19.1, 707

trace
Fact 11.18.31, 704

tridiagonal matrix
Fact 11.18.24, 702
Fact 11.18.25, 702
Fact 11.18.26, 702
Fact 11.18.27, 703
Fact 11.18.28, 703

asymptotically stable
polynomial

additive compound
Fact 11.17.12, 697

asymptotically stable
matrix
Proposition 11.8.4, 663

definition
Definition 11.8.3, 663

even polynomial
Fact 11.17.6, 696

Hermite-Biehler
theorem
Fact 11.17.6, 696

interlacing theorem
Fact 11.17.6, 696

Kharitonov’s
theorem
Fact 11.17.13, 698

Kronecker sum
Fact 11.17.11, 697

odd polynomial
Fact 11.17.6, 696

polynomial
coefficients
Fact 11.17.2, 696
Fact 11.17.3, 696
Fact 11.17.7, 697
Fact 11.17.8, 697
Fact 11.17.10, 697
Fact 11.17.11, 697
Fact 11.17.12, 697

reciprocal argument
Fact 11.17.4, 696

Schur product of
polynomials
Fact 11.17.9, 697

subdeterminant
Fact 11.18.23, 702

asymptotically stable
subspace

definition, 665

asymptotically stable
transfer function

minimal realization
Proposition 12.9.18,
757

SISO entries
Proposition 12.9.19,
757

average
positive-semidefinite
matrix
Fact 5.19.5, 360

averaged limit
integral
Fact 10.11.6, 638

B

Baker-Campbell-
Hausdorff
series

matrix exponential
Proposition 11.4.7, 655

Baker-Campbell-
Hausdorff-Dynkin
expansion

time-varying
dynamics
Fact 11.13.4, 678

balanced realization
definition
Definition 12.9.20, 757

minimal realization
Proposition 12.9.21,
757

balancing
transformation

existence
Corollary 8.3.3, 423

Bandila’s inequality
triangle
Fact 2.20.11, 156

Barnett
asymptotic stability
of a tridiagonal
matrix
Fact 11.18.24, 702

Barnett factorization
Bezout matrix
Fact 4.8.6, 255

barycentric
coordinates

conjugate
parameters
Fact 1.16.11, 62

definition, 89

basis
definition, 90

Beckner’s two-point
inequality

powers
Fact 1.10.15, 33
Fact 9.9.35, 586

Bellman
quadratic form
inequality
Fact 8.15.7, 501

Ben-Israel
generalized inverse
Fact 6.3.35, 376
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Bencze
arithmetic-mean–
geometric-mean–
logarithmic-mean
inequality
Fact 1.15.26, 54

Bendixson’s theorem
eigenvalue bound
Fact 5.11.21, 325
Fact 9.11.8, 598

Berezin
trace of a convex
function
Fact 8.12.33, 482

Bergstrom
positive-definite
matrix determinant
Fact 8.13.15, 488

Bergstrom’s inequality
quadratic form
Fact 8.11.3, 468
Fact 8.15.18, 503

Bernoulli matrix
Vandermonde matrix
Fact 5.16.3, 354

Bernoulli’s inequality
scalar inequality
Fact 1.9.1, 22
Fact 1.9.2, 23

Bernstein matrix
Vandermonde matrix
Fact 5.16.3, 354

Bernstein’s inequality
matrix exponential
Fact 11.15.4, 689

Berwald
polynomial root
bounds
Fact 11.20.11, 711

Bessel’s inequality
norm inequality
Fact 9.7.4, 563

Bessis-Moussa-Villani
trace conjecture

derivative of a
matrix exponential
Fact 8.12.31, 482

power of a positive-
semidefinite
matrix
Fact 8.12.30, 482

Bezout equation
coprime polynomials
Fact 4.8.5, 255

Bezout identity
right coprime
polynomial
matrices
Theorem 4.7.14, 252

Bezout matrix
coprime polynomials
Fact 4.8.6, 255
Fact 4.8.7, 257
Fact 4.8.8, 257

definition
Fact 4.8.6, 255

distinct roots
Fact 4.8.9, 258

factorization
Fact 5.15.24, 349

polynomial roots
Fact 4.8.9, 258

Bhatia
Schatten norm
inequality
Fact 9.9.45, 588

unitarily invariant
norm inequality
Fact 9.9.44, 588

bialternate product
compound matrix
Fact 7.5.17, 411

Kronecker product,
416

bidiagonal matrix
singular value
Fact 5.11.47, 332

biequivalent matrices
congruent matrices
Proposition 3.4.5, 174

definition
Definition 3.4.3, 174

Kronecker product
Fact 7.4.11, 405

rank
Proposition 5.1.3, 283

similar matrices
Proposition 3.4.5, 174

Smith form
Theorem 5.1.1, 283
Corollary 5.1.2, 283

unitarily similar
matrices
Proposition 3.4.5, 174

bijective function
definition, 76

bilinear function
definition, 627

Binet-Cauchy formula
determinant
Fact 2.13.4, 129

Binet-Cauchy theorem
compound of a
matrix product
Fact 7.5.17, 411

binomial identity
sum
Fact 1.7.1, 14
Fact 1.7.2, 17

binomial series
infinite series
Fact 1.18.8, 73

bivector
parallelogram
Fact 9.7.5, 565

block
definition, 80

block decomposition
Hamiltonian
Proposition 12.17.5,
783

minimal realization
Proposition 12.9.10,
753



914 block-circulant matrix

block-circulant matrix
circulant matrix
Fact 3.18.3, 215

Drazin generalized
inverse
Fact 6.6.1, 393

generalized inverse
Fact 6.5.2, 386

inverse matrix
Fact 2.17.6, 148

block-diagonal matrix
companion matrix
Proposition 5.2.8, 286
Lemma 5.2.2, 285

definition
Definition 3.1.3, 167

geometric
multiplicity
Proposition 5.5.13, 298

Hermitian matrix
Fact 3.7.8, 179

least common
multiple
Lemma 5.2.7, 286

matrix exponential
Proposition 11.2.8, 649

maximum singular
value
Fact 5.11.33, 328

minimal polynomial
Lemma 5.2.7, 286

normal matrix
Fact 3.7.8, 179

shifted-unitary
matrix
Fact 3.11.25, 196

similar matrices
Theorem 5.3.2, 288
Theorem 5.3.3, 289

singular value
Fact 8.18.9, 515
Fact 8.18.10, 515
Fact 9.14.21, 612
Fact 9.14.25, 613

skew-Hermitian
matrix
Fact 3.7.8, 179

unitary matrix
Fact 3.11.25, 196

block-Hankel matrix
definition
Definition 3.1.3, 167

Hankel matrix
Fact 3.18.3, 215

Markov
block-Hankel
matrix
definition, 754

block-Kronecker
product

Kronecker product,
416

block-Toeplitz matrix
definition
Definition 3.1.3, 167

Toeplitz matrix
Fact 3.18.3, 215

block-triangular matrix
algebraic multiplicity
Proposition 5.5.13, 298

controllable
dynamics
Theorem 12.6.8, 739

controllable subspace
Proposition 12.6.9, 739
Proposition 12.6.10,
740

controllably
asymptotically
stable
Proposition 12.7.3, 743

detectability
Proposition 12.5.4, 735

determinant
Fact 2.14.8, 134

index of a matrix
Fact 5.14.32, 343
Fact 6.6.13, 395

inverse matrix
Fact 2.17.1, 146

maximum singular
value
Fact 5.11.32, 328

minimal polynomial
Fact 4.10.12, 268

observable dynamics
Theorem 12.3.8, 730

observably
asymptotically
stable
Proposition 12.4.3, 732

spectrum
Proposition 5.5.13, 298

stabilizability
Proposition 12.8.4, 747

unobservable
subspace
Proposition 12.3.9, 730
Proposition 12.3.10,
730

blocking zero
definition
Definition 4.7.10, 251

rational transfer
function
Definition 4.7.4, 249

Smith-McMillan
form
Proposition 4.7.11, 251

Blundon
triangle inequality
Fact 2.20.11, 156

blunt cone
definition, 89

Bonami’s inequality
powers
Fact 1.10.16, 33
Fact 9.7.20, 569

Borchers
trace norm of a
matrix difference
Fact 9.9.24, 584

Borobia
asymptotically stable
polynomial
Fact 11.17.8, 697

both
definition, 1

boundary
definition, 622
interior
Fact 10.8.7, 632
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union
Fact 10.9.2, 634

boundary relative to a
set

definition, 622

bounded set
continuous function
Theorem 10.3.10, 625
Corollary 10.3.11, 625

definition, 622
image under linear
mapping
Fact 9.8.1, 571

open ball
Fact 10.8.2, 632

Bourbaki
polynomial root
bound
Fact 11.20.4, 709

Bourin
spectral radius of a
product
Fact 8.18.25, 520

Brahmagupta’s formula
quadrilateral
Fact 2.20.13, 159

Brauer
spectrum bounds
Fact 4.10.21, 271

Brouwer fixed-point
theorem

image of a
continuous function
Corollary 10.3.11, 625

Brown
trace of a convex
function
Fact 8.12.33, 482

Browne’s theorem
eigenvalue bound
Fact 5.11.21, 325
Fact 5.11.22, 325
Fact 9.11.7, 598

Brownian motion

positive-semidefinite
matrix
Fact 8.8.4, 446

Buzano’s inequality
Cauchy-Schwarz
inequality
Fact 1.17.2, 67

norm inequality
Fact 9.7.4, 563

C

Callan
determinant of a
partitioned matrix
Fact 2.14.15, 136

Callebaut
monotonicity
Fact 1.16.1, 60

Callebaut’s inequality
refined
Cauchy-Schwarz
inequality
Fact 1.16.16, 63

canonical form
definition, 4

canonical mapping
definition, 4

Cantor intersection
theorem

intersection of closed
sets
Fact 10.9.11, 635

Cardano’s
trigonometric
solution

cubic polynomial
Fact 4.10.1, 265

eigenvalue
Fact 4.10.1, 265

cardinality
definition, 2
inclusion-exclusion
principle
Fact 1.5.5, 11

union
Fact 1.5.5, 11

Carleman’s inequality
arithmetic mean
Fact 1.15.40, 58

Carlson
inertia of a
Hermitian matrix
Fact 12.21.4, 794

Carlson inequality
sum of powers
Fact 1.15.41, 58

Carmichael
polynomial root
bound
Fact 11.20.10, 711

Cartesian
decomposition

determinant
Fact 8.13.4, 485
Fact 8.13.11, 486

eigenvalue
Fact 5.11.21, 325

Hermitian matrix
Fact 3.7.27, 182
Fact 3.7.28, 183
Fact 3.7.29, 183

positive-semidefinite
matrix
Fact 9.9.40, 587

Schatten norm
Fact 9.9.37, 586
Fact 9.9.38, 587
Fact 9.9.39, 587
Fact 9.9.40, 587

singular value
Fact 8.18.7, 514

skew-Hermitian
matrix
Fact 3.7.27, 182
Fact 3.7.28, 183
Fact 3.7.29, 183

spectrum
Fact 5.11.21, 325

Cartesian product
definition, 3
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cascade
interconnection

definition, 770
transfer function
Proposition 12.13.2,
770

cascaded systems
geometric
multiplicity
Fact 12.22.15, 801

Cauchy
polynomial root
bounds
Fact 11.20.11, 711

Cauchy interlacing
theorem

Hermitian matrix
eigenvalue
Lemma 8.4.4, 425

Cauchy matrix
determinant
Fact 3.20.14, 220
Fact 3.20.15, 221

positive-definite
matrix
Fact 8.8.16, 449
Fact 12.21.18, 797

positive-semidefinite
matrix
Fact 8.8.7, 447
Fact 8.8.9, 448
Fact 12.21.19, 797

Cauchy’s estimate
polynomial root
bound
Fact 11.20.6, 709

Cauchy-Schwarz
inequality

Buzano’s inequality
Fact 1.17.2, 67

Callebaut’s
inequality
Fact 1.16.16, 63

De Bruijn’s
inequality
Fact 1.16.20, 64

determinant
Fact 8.13.22, 489

Frobenius norm
Corollary 9.3.9, 553

inner product bound
Corollary 9.1.7, 546

McLaughlin’s
inequality
Fact 1.16.17, 64

Milne’s inequality
Fact 1.16.15, 63

Ozeki’s inequality
Fact 1.16.23, 65

Polya-Szego
inequality
Fact 1.16.21, 64

positive-semidefinite
matrix
Fact 8.11.14, 470
Fact 8.11.15, 470
Fact 8.15.8, 501

vector case
Fact 1.16.9, 62

Cayley transform
asymptotically stable
matrix
Fact 11.21.8, 713

cross product
Fact 3.11.8, 190

cross-product matrix
Fact 3.10.1, 186

definition
Fact 3.11.29, 197

discrete-time
asymptotically
stable matrix
Fact 11.21.8, 713

Hamiltonian matrix
Fact 3.19.12, 217

Hermitian matrix
Fact 3.11.29, 197

orthogonal matrix
Fact 3.11.8, 190
Fact 3.11.28, 196
Fact 3.11.30, 197
Fact 3.11.31, 198

positive-definite
matrix
Fact 8.9.30, 453

skew-Hermitian
matrix
Fact 3.11.28, 196

skew-symmetric
matrix
Fact 3.11.8, 190
Fact 3.11.28, 196
Fact 3.11.30, 197
Fact 3.11.31, 198

symplectic matrix
Fact 3.19.12, 217

unitary matrix
Fact 3.11.28, 196

Cayley-Hamilton
theorem

characteristic
polynomial
Theorem 4.4.7, 243

generalized version
Fact 4.9.7, 261

center subgroup
commutator
Fact 2.18.10, 150

centralizer
commutator
Fact 2.18.9, 150
Fact 7.5.2, 409

commuting matrices
Fact 5.14.22, 341
Fact 5.14.24, 342

centrohermitian matrix
complex conjugate
transpose
Fact 3.20.16, 221

definition
Definition 3.1.2, 166

generalized inverse
Fact 6.3.31, 376

matrix product
Fact 3.20.17, 221

centrosymmetric
matrix

definition
Definition 3.1.2, 166

matrix product
Fact 3.20.17, 221

matrix transpose
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Fact 3.20.16, 221

Cesaro summable
discrete-time
Lyapunov-stable
matrix
Fact 11.21.11, 714

chaotic order
matrix logarithm
Fact 8.19.1, 522
Fact 8.19.2, 523

positive-semidefinite
order
Fact 8.19.2, 523

characteristic equation
definition, 240

characteristic
polynomial

2× 2 matrix
Fact 4.9.1, 260

3× 3 matrix
Fact 4.9.2, 260

adjugate
Fact 4.9.8, 261

Cayley-Hamilton
theorem
Theorem 4.4.7, 243

companion matrix
Proposition 5.2.1, 284
Corollary 5.2.4, 286
Corollary 5.2.5, 286

cross-product matrix
Fact 4.9.19, 263
Fact 4.9.20, 263

cyclic matrix
Proposition 5.5.15, 299

definition
Definition 4.4.1, 239

degree
Proposition 4.4.3, 240

derivative
Lemma 4.4.8, 244

eigenvalue
Proposition 4.4.6, 242

generalized inverse
Fact 6.3.20, 374

Hamiltonian matrix
Fact 4.9.21, 264

Fact 4.9.23, 264
identities
Proposition 4.4.5, 241

inverse matrix
Fact 4.9.9, 261

Leverrier’s algorithm
Proposition 4.4.9, 244

matrix product
Proposition 4.4.10, 244
Corollary 4.4.11, 245

minimal polynomial
Fact 4.9.24, 265

monic
Proposition 4.4.3, 240

outer-product
matrix
Fact 4.9.16, 262
Fact 4.9.18, 263

output feedback
Fact 12.22.13, 800

partitioned matrix
Fact 4.9.14, 262
Fact 4.9.15, 262
Fact 4.9.17, 263
Fact 4.9.18, 263
Fact 4.9.22, 264
Fact 4.9.23, 264

similar matrices
Fact 4.9.10, 262

similarity invariant
Proposition 4.4.2, 240
Proposition 4.6.2, 248

skew-Hermitian
matrix
Fact 4.9.13, 262

skew-symmetric
matrix
Fact 4.9.12, 262
Fact 4.9.19, 263
Fact 4.9.20, 263
Fact 5.14.34, 343

sum of derivatives
Fact 4.9.11, 262

upper
block-triangular
matrix
Fact 4.10.11, 267

Chebyshev’s inequality
rearrangement

Fact 1.16.3, 60

Chen form
tridiagonal matrix
Fact 11.18.27, 703

child
Definition 1.4.2, 8

Cholesky
decomposition

existence
Fact 8.9.37, 454

circle
complex numbers
Fact 2.20.12, 158

circulant matrix
block-circulant
matrix
Fact 3.18.3, 215

companion matrix
Fact 5.16.7, 355

Fourier matrix
Fact 5.16.7, 355

group
Fact 3.21.7, 224
Fact 3.21.8, 224

permutation matrix
Fact 5.16.8, 357

primary circulant
Fact 5.16.7, 355

spectrum
Fact 5.16.7, 355

Clarkson inequalities
complex numbers
Fact 1.18.2, 69

Schatten norm
Fact 9.9.34, 586

CLHP
closed left half plane
definition, 77

Clifford algebra
real matrix
representation
Fact 3.22.1, 225

Cline
factorization
expression for the
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group generalized
inverse
Fact 6.6.12, 395

generalized inverse
of a matrix product
Fact 6.4.10, 379

closed half space
affine closed half
space
Fact 2.9.6, 111

definition, 91

closed relative to a set
continuous function
Theorem 10.3.4, 624

definition
Definition 10.1.4, 622

closed set
complement
Fact 10.8.4, 632

continuous function
Theorem 10.3.10, 625
Corollary 10.3.5, 624
Corollary 10.3.11, 625

definition
Definition 10.1.3, 621

image under linear
mapping
Fact 10.9.8, 635

intersection
Fact 10.9.10, 635
Fact 10.9.11, 635

polar
Fact 2.9.4, 110

positive-semidefinite
matrix
Fact 10.8.18, 633

subspace
Fact 10.8.21, 633

union
Fact 10.9.10, 635

closed-loop spectrum
detectability
Lemma 12.16.17, 781

Hamiltonian
Proposition 12.16.14,
781

maximal solution of
the Riccati
equation
Proposition 12.18.2,
787

observability
Lemma 12.16.17, 781

observable
eigenvalue
Lemma 12.16.16, 781

Riccati equation
Proposition 12.16.14,
781

Proposition 12.18.2,
787

Proposition 12.18.3,
787

Proposition 12.18.7,
789

closure
affine hull
Fact 10.8.11, 633

complement
Fact 10.8.6, 632

convex hull
Fact 10.8.13, 633

convex set
Fact 10.8.8, 632
Fact 10.8.19, 633

definition
Definition 10.1.3, 621

smallest closed set
Fact 10.8.3, 632

subset
Fact 10.9.1, 634

union
Fact 10.9.2, 634

closure point
definition
Definition 10.1.3, 621

closure point relative to
a set

definition
Definition 10.1.4, 622

closure relative to a set
definition
Definition 10.1.4, 622

codomain
definition, 3

cofactor
definition, 105
determinant
expansion
Proposition 2.7.5, 105

cogredient
diagonalization

commuting matrices
Fact 8.16.1, 507

definition, 422
diagonalizable
matrix
Fact 8.16.2, 507
Fact 8.16.3, 507

positive-definite
matrix
Theorem 8.3.1, 423
Fact 8.16.5, 507

positive-semidefinite
matrix
Theorem 8.3.4, 423

unitary matrix
Fact 8.16.1, 507

cogredient
diagonalization of
positive-definite
matrices

Weierstrass
Fact 8.16.2, 507

cogredient
transformation

Hermitian matrix
Fact 8.16.4, 507
Fact 8.16.6, 507

simultaneous
diagonalization
Fact 8.16.4, 507
Fact 8.16.6, 507

simultaneous
triangularization
Fact 5.17.9, 358

Cohn
polynomial root
bounds
Fact 11.20.11, 711
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colinear
determinant
Fact 2.20.1, 154
Fact 2.20.5, 155
Fact 2.20.9, 156

colleague form
definition, 362

column
definition, 79

column norm
definition, 556
Hölder-induced
norm
Fact 9.8.21, 575
Fact 9.8.23, 575

Kronecker product
Fact 9.9.61, 591

partitioned matrix
Fact 9.8.11, 572

row norm
Fact 9.8.10, 572

spectral radius
Corollary 9.4.10, 556

column vector
definition, 78

column-stacking
operator, see vec

common divisor
definition, 233

common eigenvector
commuting matrices
Fact 5.14.28, 342

norm equality
Fact 9.9.33, 585

simultaneous
triangularization
Fact 5.17.1, 358

subspace
Fact 5.14.27, 342

common multiple
definition, 234

commutant
commutator
Fact 2.18.9, 150
Fact 7.5.2, 409

commutator
2× 2 matrices
Fact 2.18.1, 149

adjoint operator
Fact 2.18.5, 149
Fact 2.18.6, 150

center subgroup
Fact 2.18.10, 150

centralizer
Fact 2.18.9, 150
Fact 7.5.2, 409

convergent sequence
Fact 11.14.9, 683

definition, 82
derivative of a
matrix
Fact 11.14.11, 683

determinant
Fact 2.18.7, 150

dimension
Fact 2.18.9, 150
Fact 2.18.10, 150
Fact 2.18.11, 150
Fact 7.5.2, 409

factorization
Fact 5.15.33, 351

Frobenius norm
Fact 9.9.26, 584
Fact 9.9.27, 584

Hermitian matrix
Fact 3.8.1, 184
Fact 3.8.3, 185
Fact 9.9.30, 585

idempotent matrix
Fact 3.12.16, 200
Fact 3.12.17, 200
Fact 3.12.30, 204
Fact 3.12.31, 204
Fact 3.12.32, 205
Fact 3.15.4, 200

identities
Fact 2.12.19, 127
Fact 2.18.4, 149

infinite product
Fact 11.14.18, 685

involutory matrix
Fact 3.15.4, 212

lower triangular
matrix

Fact 3.17.11, 214
matrix exponential
Fact 11.14.9, 683
Fact 11.14.11, 683
Fact 11.14.12, 683
Fact 11.14.13, 684
Fact 11.14.14, 684
Fact 11.14.15, 684
Fact 11.14.16, 684
Fact 11.14.17, 684
Fact 11.14.18, 685

maximum eigenvalue
Fact 9.9.30, 585
Fact 9.9.31, 585

maximum singular
value
Fact 9.9.29, 584
Fact 9.14.9, 609

nilpotent matrix
Fact 3.12.16, 200
Fact 3.17.11, 214
Fact 3.17.12, 214
Fact 3.17.13, 214

normal matrix
Fact 3.8.6, 185
Fact 3.8.7, 185
Fact 9.9.31, 585

power
Fact 2.18.2, 149

powers
Fact 2.18.3, 149

projector
Fact 3.13.23, 210
Fact 9.9.9, 581

rank
Fact 3.12.31, 204
Fact 3.13.23, 210
Fact 5.17.5, 358
Fact 6.3.9, 371

Schatten norm
Fact 9.9.27, 584

series
Fact 11.14.17, 684

simultaneous
triangularization
Fact 5.17.5, 358
Fact 5.17.6, 358

skew-Hermitian
matrix
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Fact 3.8.1, 184
Fact 3.8.4, 185

skew-symmetric
matrix
Fact 3.8.5, 185

spectrum
Fact 5.12.14, 335

spread
Fact 9.9.30, 585
Fact 9.9.31, 585

submultiplicative
norm
Fact 9.9.8, 580

subspace
Fact 2.18.9, 150
Fact 2.18.10, 150
Fact 2.18.12, 151

sum
Fact 2.18.12, 151

trace
Fact 2.18.1, 149
Fact 2.18.2, 149
Fact 5.9.18, 313

triangularization
Fact 5.17.5, 358

unitarily invariant
norm
Fact 9.9.29, 584
Fact 9.9.30, 585
Fact 9.9.31, 585

upper triangular
matrix
Fact 3.17.11, 214

zero diagonal
Fact 3.8.2, 184

zero trace
Fact 2.18.11, 150

commutator realization
Shoda’s theorem
Fact 5.9.18, 313

commuting matrices
centralizer
Fact 5.14.22, 341
Fact 5.14.24, 342

cogredient
diagonalization
Fact 8.16.1, 507

common eigenvector

Fact 5.14.28, 342
cyclic matrix
Fact 5.14.22, 341

diagonalizable
matrix
Fact 5.17.8, 358

dimension
Fact 5.10.15, 319
Fact 5.10.16, 319

Drazin generalized
inverse
Fact 6.6.4, 394
Fact 6.6.5, 394

eigenvector
Fact 5.14.25, 342

generalized
Cayley-Hamilton
theorem
Fact 4.9.7, 261

Hermitian matrix
Fact 5.14.29, 342

idempotent matrix
Fact 3.16.5, 213

Kronecker sum
Fact 7.5.4, 409

matrix exponential
Proposition 11.1.5, 645
Corollary 11.1.6, 645
Fact 11.14.2, 681
Fact 11.14.5, 682

nilpotent matrix
Fact 3.17.9, 214
Fact 3.17.10, 214

normal matrix
Fact 3.7.28, 183
Fact 3.7.29, 183
Fact 5.14.29, 342
Fact 5.17.7, 358
Fact 11.14.5, 682

polynomial
representation
Fact 5.14.22, 341
Fact 5.14.23, 342
Fact 5.14.24, 342

positive-definite
matrix
Fact 8.9.40, 455

positive-semidefinite
matrix

Fact 8.19.5, 467, 523
projector
Fact 6.4.33, 383
Fact 8.10.23, 458
Fact 8.10.25, 458

range-Hermitian
matrix
Fact 6.4.26, 382
Fact 6.4.27, 382

rank subtractivity
partial ordering
Fact 8.19.5, 523

simple matrix
Fact 5.14.23, 342

simultaneous
diagonalization
Fact 8.16.1, 507

simultaneous
triangularization
Fact 5.17.4, 358

spectral radius
Fact 5.12.11, 334

spectrum
Fact 5.12.14, 335

square root
Fact 5.18.1, 359
Fact 8.10.25, 458

star partial ordering
Fact 2.10.36, 120

time-varying
dynamics
Fact 11.13.4, 678

triangularization
Fact 5.17.4, 358

compact set
continuous function
Theorem 10.3.8, 624

convergent
subsequence
Theorem 10.2.5, 623

convex hull
Fact 10.8.15, 633

definition, 622
existence of
minimizer
Corollary 10.3.9, 624

companion form matrix
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discrete-time
semistable matrix
Fact 11.21.18, 715

companion matrix
block-diagonal
matrix
Proposition 5.2.8, 286
Lemma 5.2.2, 285

bottom, right, top,
left
Fact 5.16.1, 352

characteristic
polynomial
Proposition 5.2.1, 284
Corollary 5.2.4, 286
Corollary 5.2.5, 286

circulant matrix
Fact 5.16.7, 355

cyclic matrix
Fact 5.16.5, 354

definition, 283
elementary divisor
Theorem 5.2.9, 287

example
Example 5.3.6, 290
Example 5.3.7, 291

hypercompanion
matrix
Corollary 5.3.4, 289
Lemma 5.3.1, 288

inverse matrix
Fact 5.16.2, 353

minimal polynomial
Proposition 5.2.1, 284
Corollary 5.2.4, 286
Corollary 5.2.5, 286

nonnegative matrix
Fact 4.11.13, 279

oscillator
Fact 5.14.35, 344

similar matrices
Fact 5.16.5, 354

singular value
Fact 5.11.30, 327

Vandermonde matrix
Fact 5.16.4, 354

compartmental matrix

asymptotically stable
matrix
Fact 11.19.6, 707

Lyapunov-stable
matrix
Fact 11.19.6, 707

semistable matrix
Fact 11.19.6, 707

compatible norm
induced norm
Proposition 9.4.3, 553

compatible norms
definition, 549
Hölder norm
Proposition 9.3.5, 550

Schatten norm
Proposition 9.3.6, 551
Corollary 9.3.7, 552
Corollary 9.3.8, 552

submultiplicative
norm
Proposition 9.3.1, 550

trace norm
Corollary 9.3.8, 552

complement
closed set
Fact 10.8.4, 632

closure
Fact 10.8.6, 632

definition, 2
interior
Fact 10.8.6, 632

open set
Fact 10.8.4, 632

relatively closed set
Fact 10.8.5, 632

relatively open set
Fact 10.8.5, 632

complement of a graph
Definition 1.4.1, 8

complement of a
relation

definition
Definition 1.3.4, 5

complementary
relation

relation
Proposition 1.3.5, 6

complementary
submatrix

defect
Fact 2.11.20, 125

complementary
subspaces

complex conjugate
transpose
Fact 3.12.1, 198

definition, 90
group-invertible
matrix
Corollary 3.5.8, 176

idempotent matrix
Proposition 3.5.3, 176
Proposition 3.5.4, 176
Fact 3.12.1, 198
Fact 3.12.33, 205

index of a matrix
Proposition 3.5.7, 176

partitioned matrix
Fact 3.12.33, 205

projector
Fact 3.13.24, 210

simultaneous
Fact 2.9.23, 113

stable subspace
Proposition 11.8.8, 665

sum of dimensions
Corollary 2.3.2, 90

unstable subspace
Proposition 11.8.8, 665

completely solid set
convex set
Fact 10.8.9, 632

definition, 622
open ball
Fact 10.8.1, 632

positive-semidefinite
matrix
Fact 10.8.18, 633

solid set
Fact 10.8.9, 632

complex conjugate
determinant
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Fact 2.19.8, 153
Fact 2.19.9, 153

matrix exponential
Proposition 11.2.8, 649

partitioned matrix
Fact 2.19.9, 153

similar matrices
Fact 5.9.31, 316

complex conjugate of a
matrix

definition, 87

complex conjugate of a
vector

definition, 85

complex conjugate
transpose

complementary
subspaces
Fact 3.12.1, 198

definition, 87
determinant
Fact 9.11.1, 596

diagonalizable
matrix
Fact 5.14.5, 339

factorization
Fact 5.15.23, 349

generalized inverse
Fact 6.3.9, 371
Fact 6.3.10, 371
Fact 6.3.13, 372
Fact 6.3.16, 373
Fact 6.3.17, 373
Fact 6.3.18, 373
Fact 6.3.22, 374
Fact 6.3.27, 375
Fact 6.3.28, 375
Fact 6.4.7, 379
Fact 6.6.16, 396
Fact 6.6.17, 397
Fact 6.6.18, 397

group generalized
inverse
Fact 6.6.10, 394

Hermitian matrix
Fact 3.7.13, 180
Fact 5.9.8, 312
Fact 6.6.18, 397

idempotent matrix
Fact 5.9.21, 314

identity
Fact 2.10.33, 119
Fact 2.10.34, 120

Kronecker product
Proposition 7.1.3, 400

left inverse
Fact 2.15.1, 140
Fact 2.15.2, 140

matrix exponential
Proposition 11.2.8, 649
Fact 11.15.4, 689
Fact 11.15.6, 690

maximum singular
value
Fact 8.17.3, 508
Fact 8.18.11, 515
Fact 8.21.10, 533

nonsingular matrix
Fact 2.16.30, 146

norm
Fact 9.8.8, 572

normal matrix
Fact 5.14.30, 343
Fact 6.3.16, 373
Fact 6.3.17, 373
Fact 6.6.10, 394
Fact 6.6.17, 397

partitioned matrix
Fact 6.5.3, 386

positive-definite
matrix
Fact 8.9.39, 455

projector
Fact 3.13.1, 206

range
Fact 6.5.3, 386
Fact 8.7.2, 443

range-Hermitian
matrix
Fact 3.6.4, 178
Fact 6.3.10, 371
Fact 6.6.16, 396

Schur product
Fact 8.21.9, 533

similarity
transformation
Fact 5.9.8, 312

Fact 5.15.4, 345
singular value
Fact 5.11.34, 328

subspace
Fact 2.9.28, 114

trace
Fact 8.12.4, 476
Fact 8.12.5, 476
Fact 9.13.16, 604

unitarily invariant
norm
Fact 9.8.30, 576

unitarily
left-equivalent
matrices
Fact 5.10.18, 319
Fact 5.10.19, 319

unitarily
right-equivalent
matrices
Fact 5.10.18, 319

unitarily similar
matrices
Fact 5.9.20, 314
Fact 5.9.21, 314

complex conjugate
transpose of a vector

definition, 85

complex inequality
Petrovich
Fact 1.18.2, 69

complex matrix
block 2× 2
representation
Fact 2.19.3, 151

complex conjugate
Fact 2.19.4, 152

determinant
Fact 2.19.3, 151
Fact 2.19.10, 153

partitioned matrix
Fact 2.19.4, 152
Fact 2.19.5, 152
Fact 2.19.6, 152
Fact 2.19.7, 153
Fact 3.11.27, 196

positive-definite
matrix
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Fact 3.7.9, 179
positive-semidefinite
matrix
Fact 3.7.9, 179

rank
Fact 2.19.3, 151

complex numbers
2× 2 representation
Fact 2.19.1, 151

circle
Fact 2.20.12, 158

Clarkson inequalities
Fact 1.18.2, 69

Dunkl-Williams
inequality
Fact 1.18.5, 71

equilateral triangle
Fact 2.20.6, 155

exponential function
Fact 1.18.6, 71

identities
Fact 1.18.1, 68
Fact 1.18.2, 69

identity
Fact 1.18.4, 71

inequalities
Fact 1.18.1, 68
Fact 1.18.2, 69
Fact 1.18.5, 71

inequality
Fact 1.12.4, 47

infinite series
Fact 1.18.8, 73

logarithm function
Fact 1.18.7, 72

Maligranda
inequality
Fact 1.18.5, 71

Massera-Schaffer
inequality
Fact 1.18.5, 71

parallelogram law
Fact 1.18.2, 69

polarization identity
Fact 1.18.2, 69

quadratic formula
Fact 1.18.3, 70

trigonometric
function

Fact 1.19.3, 76

complex symmetric
Jordan form

similarity
transformation
Fact 5.15.2, 345
Fact 5.15.3, 345

complex-symmetric
matrix

T-congruence
Fact 5.9.22, 314

T-congruent
diagonalization
Fact 5.9.22, 314

unitary matrix
Fact 5.9.22, 314

component
definition, 78

composition
associativity
Proposition 1.2.1, 3

definition, 3

composition of
functions

one-to-one function
Fact 1.5.16, 13

onto function
Fact 1.5.16, 13

compound matrix
matrix product
Fact 7.5.17, 411

compound of a matrix
product

Binet-Cauchy
theorem
Fact 7.5.17, 411

comrade form
definition, 362

concave function
definition
Definition 8.6.14, 436

function composition
Lemma 8.6.16, 436

nonincreasing
function

Lemma 8.6.16, 436

condition number
linear system
solution
Fact 9.9.64, 592
Fact 9.9.65, 592
Fact 9.9.66, 592

cone
blunt
definition, 89

cone of image
Fact 2.9.26, 113

constructive
characterization
Theorem 2.3.5, 91

definition, 89
dictionary ordering
Fact 2.9.31, 115

image under linear
mapping
Fact 2.9.26, 113

intersection
Fact 2.9.9, 111

left inverse
Fact 2.9.26, 113

lexicographic
ordering
Fact 2.9.31, 115

one-sided
definition, 89

pointed
definition, 89

quadratic form
Fact 8.14.11, 498
Fact 8.14.13, 498
Fact 8.14.14, 498

sum
Fact 2.9.9, 111

variational
definition, 625

confederate form
definition, 362

congenial matrix
definition, 362

congruence
equivalence relation
Fact 5.10.3, 317
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generalized inverse
Fact 8.20.5, 525

congruence
transformation

normal matrix
Fact 5.10.17, 319

congruent matrices
biequivalent matrices
Proposition 3.4.5, 174

definition
Definition 3.4.4, 174

Hermitian matrix
Proposition 3.4.5, 174
Corollary 5.4.7, 294

inertia
Corollary 5.4.7, 294
Fact 5.8.22, 311

Kronecker product
Fact 7.4.12, 406

matrix classes
Proposition 3.4.5, 174

positive-definite
matrix
Proposition 3.4.5, 174
Corollary 8.1.3, 419

positive-semidefinite
matrix
Proposition 3.4.5, 174
Corollary 8.1.3, 419

range-Hermitian
matrix
Proposition 3.4.5, 174
Fact 5.9.6, 312

skew-Hermitian
matrix
Proposition 3.4.5, 174

skew-symmetric
matrix
Fact 3.7.34, 184
Fact 5.9.16, 313

Sylvester’s law of
inertia, 294

symmetric matrix
Fact 5.9.16, 313

unit imaginary
matrix
Fact 3.7.34, 184

conical hull

definition, 89

conjugate parameters
barycentric
coordinates
Fact 1.16.11, 62

connected graph
Definition 1.4.3, 9
irreducible matrix
Fact 4.11.2, 273

walk
Fact 4.11.4, 273

constant polynomial
definition, 231

contained
definition, 2

continuity
spectrum
Fact 10.11.8, 638
Fact 10.11.9, 639

continuity of roots
coefficients

polynomial
Fact 10.11.2, 638

continuous function
bounded set
Theorem 10.3.10, 625
Corollary 10.3.11, 625

closed relative to a
set
Theorem 10.3.4, 624

closed set
Theorem 10.3.10, 625
Corollary 10.3.5, 624
Corollary 10.3.11, 625

compact set
Theorem 10.3.8, 624

convex function
Theorem 10.3.2, 624
Fact 10.11.12, 639

convex set
Theorem 10.3.10, 625
Corollary 10.3.11, 625

definition
Definition 10.3.1, 623

differentiable
function

Proposition 10.4.4, 626
existence of
minimizer
Corollary 10.3.9, 624

fixed-point theorem
Theorem 10.3.10, 625
Corollary 10.3.11, 625

linear function
Corollary 10.3.3, 624

maximization
Fact 10.11.4, 638

open relative to a set
Theorem 10.3.4, 624

open set
Corollary 10.3.5, 624

open set image
Theorem 10.3.7, 624

pathwise-connected
set
Fact 10.11.5, 638

continuous-time
control problem

LQG controller
Fact 12.23.6, 804

continuously
differentiable
function

definition, 627

contractive matrix
complex conjugate
transpose
Fact 3.20.12, 220

definition
Definition 3.1.2, 166

partitioned matrix
Fact 8.11.24, 473

positive-definite
matrix
Fact 8.11.13, 470

contradiction
definition, 1

contragredient
diagonalization

definition, 422
positive-definite
matrix
Theorem 8.3.2, 423
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Corollary 8.3.3, 423
positive-semidefinite
matrix
Theorem 8.3.5, 424
Corollary 8.3.7, 424

contrapositive
definition, 1

controllability
asymptotically stable
matrix
Fact 12.20.5, 791

cyclic matrix
Fact 12.20.13, 792

diagonal matrix
Fact 12.20.12, 792

final state
Fact 12.20.4, 791

geometric
multiplicity
Fact 12.20.14, 792

Gramian
Fact 12.20.17, 792

input matrix
Fact 12.20.15, 792

positive-semidefinite
matrix
Fact 12.20.6, 791

positive-semidefinite
ordering
Fact 12.20.8, 791

range
Fact 12.20.7, 791

shift
Fact 12.20.10, 792

shifted dynamics
Fact 12.20.9, 791

skew-symmetric
matrix
Fact 12.20.5, 791

stabilization
Fact 12.20.17, 792

Sylvester’s equation
Fact 12.21.14, 796

transpose
Fact 12.20.16, 792

controllability Gramian
asymptotically stable
matrix

Proposition 12.7.9, 747
Corollary 12.7.10, 747

controllably
asymptotically
stable
Proposition 12.7.3, 743
Proposition 12.7.4, 745
Proposition 12.7.5, 746
Proposition 12.7.6, 746
Proposition 12.7.7, 746

frequency domain
Corollary 12.11.5, 767

H2 norm
Corollary 12.11.4, 767
Corollary 12.11.5, 767

L2 norm
Theorem 12.11.1, 765

controllability matrix
controllable pair
Theorem 12.6.18, 742

definition, 737
rank
Corollary 12.6.3, 737

Sylvester’s equation
Fact 12.21.13, 796

controllability pencil
definition
Definition 12.6.12, 740

Smith form
Proposition 12.6.15,
741

Smith zeros
Proposition 12.6.16,
741

uncontrollable
eigenvalue
Proposition 12.6.13,
740

uncontrollable
spectrum
Proposition 12.6.16,
741

controllable canonical
form

definition, 750
equivalent
realizations
Corollary 12.9.9, 752

realization
Proposition 12.9.3, 750

controllable dynamics
block-triangular
matrix
Theorem 12.6.8, 739

orthogonal matrix
Theorem 12.6.8, 739

controllable eigenvalue
controllable subspace
Proposition 12.6.17,
742

controllable pair
asymptotically stable
matrix
Proposition 12.7.9, 747
Corollary 12.7.10, 747

controllability
matrix
Theorem 12.6.18, 742

cyclic matrix
Fact 5.14.9, 340

eigenvalue placement
Proposition 12.6.19,
743

equivalent
realizations
Proposition 12.9.8, 752

Markov
block-Hankel
matrix
Proposition 12.9.11,
754

minimal realization
Proposition 12.9.10,
753

Corollary 12.9.15, 756
positive-definite
matrix
Theorem 12.6.18, 742

rank
Fact 5.14.10, 340

controllable subspace
block-triangular
matrix
Proposition 12.6.9, 739
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Proposition 12.6.10,
740

controllable
eigenvalue
Proposition 12.6.17,
742

definition
Definition 12.6.1, 735

equivalent
expressions
Lemma 12.6.2, 736

final state
Fact 12.20.3, 791

full-state feedback
Proposition 12.6.5, 737

identity shift
Lemma 12.6.7, 738

invariant subspace
Corollary 12.6.4, 737

nonsingular matrix
Proposition 12.6.10,
740

orthogonal matrix
Proposition 12.6.9, 739

projector
Lemma 12.6.6, 738

controllably
asymptotically stable

asymptotically stable
matrix
Proposition 12.8.3, 747
Proposition 12.8.5, 748

block-triangular
matrix
Proposition 12.7.3, 743

controllability
Gramian
Proposition 12.7.3, 743
Proposition 12.7.4, 745
Proposition 12.7.5, 746
Proposition 12.7.6, 746
Proposition 12.7.7, 746

definition
Definition 12.7.1, 743

full-state feedback
Proposition 12.7.2, 743

Lyapunov equation
Proposition 12.7.3, 743

orthogonal matrix

Proposition 12.7.3, 743
rank
Proposition 12.7.4, 745
Proposition 12.7.5, 746

stabilizability
Proposition 12.8.3, 747
Proposition 12.8.5, 748

convergent sequence
absolutely
convergent
sequence
Proposition 10.2.7, 623
Proposition 10.2.9, 623

closure point
Proposition 10.2.4, 623

commutator
Fact 11.14.9, 683

discrete-time
semistable matrix
Fact 11.21.14, 714

generalized inverse
Fact 6.3.35, 376
Fact 6.3.36, 377

Hermitian matrix
Fact 11.14.7, 683
Fact 11.14.8, 683

inverse matrix
Fact 2.16.29, 146
Fact 4.10.5, 266

matrix exponential
Proposition 11.1.3, 644
Fact 11.14.7, 683
Fact 11.14.8, 683
Fact 11.14.9, 683
Fact 11.21.14, 714

matrix sign function
Fact 5.15.21, 348

spectral radius
Fact 4.10.5, 266
Fact 9.8.4, 572

square root
Fact 5.15.21, 348
Fact 8.9.32, 454

unitary matrix
Fact 8.9.33, 454

vectors
Fact 10.11.1, 638

convergent sequence
of matrices

definition
Definition 10.2.3, 622

convergent sequence
of scalars

definition
Definition 10.2.2, 622

convergent sequence
of vectors

definition
Definition 10.2.3, 622

convergent series
definition
Definition 10.2.6, 623
Definition 10.2.8, 623

matrix exponential
Proposition 11.1.2, 644

convergent
subsequence

compact set
Theorem 10.2.5, 623

converse
definition, 1

convex combination
definition, 89
determinant
Fact 8.13.16, 488

norm inequality
Fact 9.7.15, 568

positive-semidefinite
matrix
Fact 5.19.6, 360
Fact 8.13.16, 488

convex cone
definition, 89
induced by transitive
relation
Proposition 2.3.6, 93

inner product
Fact 10.9.13, 635

intersection
Fact 2.9.9, 111

polar
Fact 2.9.4, 110



stable subspace 927

positive-semidefinite
matrix, 417

quadratic form
Fact 8.14.11, 498
Fact 8.14.13, 498
Fact 8.14.14, 498

separation theorem
Fact 10.9.13, 635

sum
Fact 2.9.9, 111

union
Fact 2.9.10, 111

convex conical hull
constructive
characterization
Theorem 2.3.5, 91

convex hull
Fact 2.9.3, 110

definition, 89
dual cone
Fact 2.9.3, 110

convex function
constant function
Fact 1.8.3, 21

continuous function
Theorem 10.3.2, 624
Fact 10.11.12, 639

convex set
Fact 10.11.11, 639
Fact 10.11.12, 639
Fact 10.11.13, 639

definition
Definition 1.2.3, 5
Definition 8.6.14, 436

derivative
Fact 10.11.14, 639

determinant
Proposition 8.6.17, 437
Fact 2.13.17, 132

directional
differential
Fact 10.11.14, 639

eigenvalue
Corollary 8.6.19, 442
Fact 8.18.5, 513

function composition
Lemma 8.6.16, 436

Hermite-Hadamard
inequality
Fact 1.8.6, 22

Hermitian matrix
Fact 8.12.32, 482
Fact 8.12.33, 482

increasing function
Theorem 8.6.15, 436

Jensen
Fact 10.11.7, 638

Jensen’s inequality
Fact 1.8.4, 21
Fact 1.15.35, 57

Kronecker product
Proposition 8.6.17, 437

log majorization
Fact 2.21.12, 163

logarithm
Fact 11.16.14, 695
Fact 11.16.15, 695

logarithm of
determinant
Proposition 8.6.17, 437

logarithm of trace
Proposition 8.6.17, 437

matrix exponential
Fact 8.14.18, 500
Fact 11.16.14, 695
Fact 11.16.15, 695

matrix functions
Proposition 8.6.17, 437

matrix logarithm
Proposition 8.6.17, 437

midpoint convex
Fact 10.11.7, 638

minimizer
Fact 8.14.15, 499

Niculescu’s
inequality
Fact 1.8.5, 22

nondecreasing
function
Lemma 8.6.16, 436

one-sided directional
differential
Proposition 10.4.1, 626

Popoviciu’s
inequality
Fact 1.8.6, 22

positive-definite
matrix
Fact 8.14.17, 499

positive-semidefinite
matrix
Fact 8.14.15, 499
Fact 8.20.20, 530

reverse inequality
Fact 8.10.9, 457

scalar inequality
Fact 1.8.1, 21

Schur complement
Proposition 8.6.17, 437
Lemma 8.6.16, 436

singular value
Fact 11.16.14, 695
Fact 11.16.15, 695

strong log
majorization
Fact 2.21.9, 163

strong majorization
Fact 2.21.8, 163
Fact 2.21.11, 163

subdifferential
Fact 10.11.14, 639

trace
Proposition 8.6.17, 437
Fact 8.14.17, 499

transformation
Fact 1.8.2, 21

weak majorization
Fact 2.21.8, 163
Fact 2.21.9, 163
Fact 2.21.10, 163
Fact 2.21.11, 163
Fact 8.18.5, 513

convex hull
affine hull
Fact 2.9.3, 110

closure
Fact 10.8.13, 633

compact set
Fact 10.8.15, 633

constructive
characterization
Theorem 2.3.5, 91

definition, 89
Hermitian matrix
diagonal
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Fact 8.17.8, 510
open set
Fact 10.8.14, 633

simplex
Fact 2.20.4, 154

solid set
Fact 10.8.10, 632

spectrum
Fact 8.14.7, 496
Fact 8.14.8, 497

strong majorization
Fact 2.21.7, 163

convex polyhedron
volume
Fact 2.20.20, 160

convex set
affine hull
Theorem 10.3.2, 624
Fact 10.8.8, 632

closure
Fact 10.8.8, 632
Fact 10.8.19, 633

completely solid set
Fact 10.8.9, 632

continuous function
Theorem 10.3.10, 625
Corollary 10.3.11, 625

convexity of image
Fact 2.9.26, 113

definition, 89
distance from a point
Fact 10.9.15, 636
Fact 10.9.16, 636

extreme point
Fact 10.8.23, 634

image under linear
mapping
Fact 2.9.26, 113

interior
Fact 10.8.8, 632
Fact 10.8.19, 633

intersection
Fact 2.9.9, 111
Fact 10.9.6, 634

left inverse
Fact 2.9.26, 113

norm
Fact 9.7.23, 570

open ball
Fact 10.8.1, 632

positive-semidefinite
matrix
Fact 8.14.2, 494
Fact 8.14.3, 495
Fact 8.14.4, 495
Fact 8.14.5, 495
Fact 8.14.6, 496

quadratic form
Fact 8.14.2, 494
Fact 8.14.3, 495
Fact 8.14.4, 495
Fact 8.14.5, 495
Fact 8.14.6, 496
Fact 8.14.9, 497
Fact 8.14.11, 498
Fact 8.14.12, 498
Fact 8.14.13, 498
Fact 8.14.14, 498

set cancellation
Fact 10.9.7, 635

solid set
Fact 10.8.9, 632

sublevel set
Fact 8.14.1, 494

sum
Fact 2.9.9, 111

sum of sets
Fact 2.9.1, 110
Fact 2.9.2, 110
Fact 10.9.4, 634
Fact 10.9.5, 634
Fact 10.9.7, 635

union
Fact 10.9.7, 634

convex sets
proper separation
theorem
Fact 10.9.14, 635

coplanar
determinant
Fact 2.20.2, 154

copositive matrix
nonnegative matrix
Fact 8.15.37, 507

positive-semidefinite
matrix

Fact 8.15.37, 507
quadratic form
Fact 8.15.37, 507

coprime
polynomial
Fact 4.8.3, 254
Fact 4.8.4, 254

coprime polynomials
Bezout matrix
Fact 4.8.6, 255
Fact 4.8.7, 257
Fact 4.8.8, 257

definition, 233
resultant
Fact 4.8.4, 254

Smith-McMillan
form
Fact 4.8.15, 259

Sylvester matrix
Fact 4.8.4, 254

coprime right
polynomial fraction
description

Smith-McMillan
form
Proposition 4.7.16, 253

unimodular matrix
Proposition 4.7.15, 253

Copson inequality
sum of powers
Fact 1.15.43, 59

Cordes inequality
maximum singular
value
Fact 8.18.26, 520

corollary
definition, 1

cosine law
vector identity
Fact 9.7.4, 563

cosine rule
triangle
Fact 2.20.11, 156

Crabtree
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Schur complement of
a partitioned
matrix
Fact 6.5.29, 393

Crabtree-Haynsworth
quotient formula

Schur complement of
a partitioned
matrix
Fact 6.5.29, 393

Cramer’s rule
linear system
solution
Fact 2.13.6, 129

creation matrix
upper triangular
matrix
Fact 11.11.4, 672

CRHP
closed right half
plane
definition, 77

Crimmins
product of projectors
Fact 6.3.32, 376

cross product
adjugate
Fact 6.5.16, 389

Cayley transform
Fact 3.11.8, 190

identities
Fact 3.10.1, 186

matrix exponential
Fact 11.11.7, 673
Fact 11.11.8, 674
Fact 11.11.9, 674

orthogonal matrix
Fact 3.10.2, 189
Fact 3.10.3, 189
Fact 3.11.8, 190

outer-product
matrix
Fact 3.11.8, 190

parallelogram
Fact 9.7.5, 565

cross-product matrix

Cayley transform
Fact 3.10.1, 186

characteristic
polynomial
Fact 4.9.19, 263
Fact 4.9.20, 263

identities
Fact 3.10.1, 186

matrix exponential
Fact 11.11.6, 673
Fact 11.11.12, 674
Fact 11.11.13, 675
Fact 11.11.16, 676
Fact 11.11.17, 676

orthogonal matrix
Fact 11.11.12, 674
Fact 11.11.13, 675

spectrum
Fact 4.9.19, 263

CS decomposition
unitary matrix
Fact 5.9.29, 316

cube root
identity
Fact 2.12.23, 128

cubes
identity
Fact 2.12.24, 128

cubic
scalar inequality
Fact 1.11.14, 43
Fact 1.11.15, 43
Fact 1.11.16, 43

cubic polynomial
Cardano’s
trigonometric
solution
Fact 4.10.1, 265

CUD
closed unit disk
definition, 670

cycle
definition
Definition 1.4.3, 9

graph
Fact 1.6.4, 13

symmetric graph
Fact 1.6.5, 14

cyclic eigenvalue
definition
Definition 5.5.4, 296

eigenvector
Fact 5.14.2, 338

semisimple
eigenvalue
Proposition 5.5.5, 296

simple eigenvalue
Proposition 5.5.5, 296

cyclic group
group
Fact 3.21.7, 223

cyclic inequality
scalar inequality
Fact 1.11.11, 42

cyclic matrix
asymptotically stable
matrix
Fact 11.18.25, 702

campanion matrix
Fact 5.16.5, 354

characteristic
polynomial
Proposition 5.5.15, 299

commuting matrices
Fact 5.14.22, 341

controllability
Fact 12.20.13, 792

controllable pair
Fact 5.14.9, 340

definition
Definition 5.5.4, 296

determinant
Fact 5.14.9, 340

identity perturbation
Fact 5.14.16, 341

linear independence
Fact 5.14.9, 340

matrix power
Fact 5.14.9, 340

minimal polynomial
Proposition 5.5.15, 299

nonsingular matrix
Fact 5.14.9, 340
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rank
Fact 5.11.1, 321

semisimple matrix
Fact 5.14.11, 340

similar matrices
Fact 5.16.5, 354

simple matrix
Fact 5.14.11, 340

tridiagonal matrix
Fact 11.18.25, 702

D

damped natural
frequency

definition, 654
Fact 5.14.35, 344

damping
definition, 654

damping matrix
partitioned matrix
Fact 5.12.21, 337

damping ratio
definition, 654
Fact 5.14.35, 344

Davenport
orthogonal matrices
and matrix
exponentials
Fact 11.11.13, 675

De Bruijn’s inequality
refined
Cauchy-Schwarz
inequality
Fact 1.16.20, 64

De Morgan’s laws
logical equivalents
Fact 1.5.1, 10

Decell
generalized inverse
Fact 6.4.31, 382

decreasing function
definition
Definition 8.6.12, 434

defect
adjugate
Fact 2.16.7, 143

definition, 96
geometric
multiplicity
Proposition 4.5.2, 246

group-invertible
matrix
Fact 3.6.1, 177

Hermitian matrix
Fact 5.8.7, 308
Fact 8.9.7, 451

identity
Fact 2.10.20, 117

identity involving
defect
Corollary 2.5.5, 97

identity with powers
Proposition 2.5.8, 97

identity with
transpose
Corollary 2.5.3, 96

Kronecker sum
Fact 7.5.2, 409

partitioned matrix
Fact 2.11.3, 121
Fact 2.11.8, 122
Fact 2.11.11, 123

product
Proposition 2.6.3, 99

product of matrices
Fact 2.10.14, 116

semisimple
eigenvalue
Proposition 5.5.8, 296

submatrix
Fact 2.11.20, 125

Sylvester’s law of
nullity
Fact 2.10.15, 117

defective eigenvalue
definition
Definition 5.5.4, 296

defective matrix
definition
Definition 5.5.4, 296

identity perturbation

Fact 5.14.16, 341
nilpotent matrix
Fact 5.14.18, 341

outer-product
matrix
Fact 5.14.3, 338

deflating subspace
pencil
Fact 5.13.1, 338

degree
graph
Definition 1.4.3, 9

degree matrix
definition
Definition 3.2.1, 170

symmetric graph
Fact 4.11.1, 272

degree of a polynomial
definition, 231

degree of a polynomial
matrix

definition, 234

derivative
adjugate
Fact 10.11.19, 640
Fact 10.11.21, 641

convex function
Fact 10.11.14, 639

determinant
Proposition 10.7.3, 631
Fact 10.11.19, 640
Fact 10.11.21, 641
Fact 10.11.22, 641
Fact 10.11.23, 641

inverse matrix
Proposition 10.7.2, 630
Fact 10.11.18, 640
Fact 10.11.19, 641

logarithm of
determinant
Proposition 10.7.3, 631

matrix
definition, 628

matrix exponential
Fact 8.12.31, 482
Fact 11.14.3, 682
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Fact 11.14.4, 682
Fact 11.14.10, 683
Fact 11.15.2, 689

matrix power
Proposition 10.7.2, 630

maximum singular
value
Fact 11.15.2, 689

realization
Fact 12.22.6, 799

squared matrix
Fact 10.11.17, 640

trace
Proposition 10.7.4, 631
Fact 11.14.3, 682

transfer function
Fact 12.22.6, 799

derivative of a matrix
commutator
Fact 11.14.11, 683

matrix exponential
Fact 11.14.11, 683

matrix product
Fact 11.13.8, 679

derivative of a matrix
exponential

Bessis-Moussa-
Villani trace
conjecture
Fact 8.12.31, 482

derivative of an integral
Leibniz’s rule
Fact 10.11.10, 639

derogatory eigenvalue
definition
Definition 5.5.4, 296

derogatory matrix
definition
Definition 5.5.4, 296

identity perturbation
Fact 5.14.16, 341

Descartes rule of signs
polynomial
Fact 11.17.1, 695

detectability

asymptotically stable
matrix
Proposition 12.5.5, 735
Corollary 12.5.6, 735

block-triangular
matrix
Proposition 12.5.4, 735

closed-loop spectrum
Lemma 12.16.17, 781

definition
Definition 12.5.1, 734

Lyapunov equation
Corollary 12.5.6, 735

observably
asymptotically
stable
Proposition 12.5.5, 735

orthogonal matrix
Proposition 12.5.4, 735

output convergence
Fact 12.20.2, 791

output injection
Proposition 12.5.2, 734

Riccati equation
Corollary 12.17.3, 783
Corollary 12.19.2, 790

state convergence
Fact 12.20.2, 791

determinant
(1)-inverse
Fact 6.5.28, 393

adjugate
Fact 2.14.27, 139
Fact 2.16.3, 141
Fact 2.16.5, 142

affine hyperplane
Fact 2.20.3, 154

basic properties
Proposition 2.7.2, 103

Binet-Cauchy
formula
Fact 2.13.4, 129

block-triangular
matrix
Fact 2.14.8, 134

Cartesian
decomposition
Fact 8.13.4, 485
Fact 8.13.11, 486

Cauchy matrix
Fact 3.20.14, 220
Fact 3.20.15, 221

Cauchy-Schwarz
inequality
Fact 8.13.22, 489

cofactor expansion
Proposition 2.7.5, 105

colinear
Fact 2.20.1, 154
Fact 2.20.5, 155
Fact 2.20.9, 156

column interchange
Proposition 2.7.2, 103

commutator
Fact 2.18.7, 150

complex conjugate
Fact 2.19.8, 153
Fact 2.19.9, 153

complex conjugate
transpose
Proposition 2.7.1, 103
Fact 9.11.1, 596

complex matrix
Fact 2.19.3, 151
Fact 2.19.10, 153

convex combination
Fact 8.13.16, 488

convex function
Proposition 8.6.17, 437
Fact 2.13.17, 132

coplanar
Fact 2.20.2, 154

cyclic matrix
Fact 5.14.9, 340

definition, 103
derivative
Proposition 10.7.3, 631
Fact 10.11.19, 640
Fact 10.11.21, 641
Fact 10.11.22, 641
Fact 10.11.23, 641

dissipative matrix
Fact 8.13.2, 485
Fact 8.13.11, 486, 487
Fact 8.13.31, 491

eigenvalue
Fact 5.11.28, 326
Fact 5.11.29, 327
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Fact 8.13.1, 485
elementary matrix
Fact 2.16.1, 141

factorization
Fact 5.15.7, 346
Fact 5.15.34, 351

Fibonacci numbers
Fact 4.11.12, 277

Frobenius norm
Fact 9.8.39, 578

full-state feedback
Fact 12.22.14, 800

generalized inverse
Fact 6.5.26, 392
Fact 6.5.27, 392
Fact 6.5.28, 393

geometric mean
Fact 8.10.43, 461

group
Proposition 3.3.6, 172

Hadamard’s
inequality
Fact 8.13.33, 491
Fact 8.13.34, 491

Hankel matrix
Fact 3.18.4, 215

Hermitian matrix
Corollary 8.4.10, 427
Fact 3.7.21, 182
Fact 8.13.7, 486

Hua’s inequalities
Fact 8.13.25, 489

identity
Fact 2.13.10, 130
Fact 2.13.11, 130
Fact 2.13.12, 130
Fact 2.13.13, 131

induced norm
Fact 9.12.11, 601

inequality
Fact 8.13.24, 489
Fact 8.13.25, 489
Fact 8.13.26, 490
Fact 8.13.27, 490
Fact 8.13.28, 490
Fact 8.13.30, 490
Fact 8.21.19, 534

integral
Fact 11.13.15, 680

invariant zero
Fact 12.22.14, 800

inverse
Fact 2.13.5, 129

inverse function
theorem
Theorem 10.4.5, 627

involutory matrix
Fact 3.15.1, 212
Fact 5.15.32, 351

Kronecker product
Proposition 7.1.11, 402

Kronecker sum
Fact 7.5.11, 410

linear combination
Fact 8.13.18, 488

lower
block-triangular
matrix
Proposition 2.7.1, 103

lower
reverse-triangular
matrix
Fact 2.13.8, 130

matrix exponential
Proposition 11.4.6, 655
Corollary 11.2.4, 648
Corollary 11.2.5, 648
Fact 11.13.15, 680
Fact 11.15.5, 689

matrix logarithm
Fact 8.13.8, 486
Fact 8.18.30, 521
Fact 9.8.39, 578
Fact 11.14.24, 686

maximum singular
value
Fact 9.14.17, 611
Fact 9.14.18, 611

minimum singular
value
Fact 9.14.18, 611

nilpotent matrix
Fact 3.17.9, 214

nonsingular matrix
Corollary 2.7.4, 104
Lemma 2.8.6, 108

normal matrix
Fact 5.12.12, 335

ones matrix
Fact 2.13.2, 129

ones matrix
perturbation
Fact 2.16.6, 142

orthogonal matrix
Fact 3.11.21, 196
Fact 3.11.22, 196

Ostrowski-Taussky
inequality
Fact 8.13.2, 485

outer-product
perturbation
Fact 2.16.3, 141

output feedback
Fact 12.22.13, 800

partitioned matrix
Corollary 2.8.5, 107
Lemma 8.2.6, 421
Fact 2.14.2, 133
Fact 2.14.3, 133
Fact 2.14.4, 133
Fact 2.14.5, 134
Fact 2.14.6, 134
Fact 2.14.7, 134
Fact 2.14.9, 134
Fact 2.14.10, 135
Fact 2.14.11, 135
Fact 2.14.13, 135
Fact 2.14.14, 136
Fact 2.14.15, 136
Fact 2.14.16, 136
Fact 2.14.17, 136
Fact 2.14.18, 137
Fact 2.14.19, 137
Fact 2.14.20, 137
Fact 2.14.21, 137
Fact 2.14.22, 138
Fact 2.14.23, 138
Fact 2.14.24, 138
Fact 2.14.25, 138
Fact 2.14.26, 139
Fact 2.14.28, 139
Fact 2.17.5, 147
Fact 2.19.3, 151
Fact 2.19.9, 153
Fact 5.12.21, 337
Fact 6.5.26, 392
Fact 6.5.27, 392
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Fact 6.5.28, 393
Fact 8.13.35, 492
Fact 8.13.36, 492
Fact 8.13.38, 492
Fact 8.13.39, 493
Fact 8.13.40, 493
Fact 8.13.41, 493
Fact 8.13.42, 493

partitioned positive-
semidefinite
matrix
Proposition 8.2.3, 420

permutation matrix
Fact 2.13.9, 130

positive-definite
matrix
Proposition 8.4.14, 429
Fact 8.12.1, 475
Fact 8.13.6, 486
Fact 8.13.7, 486
Fact 8.13.8, 486
Fact 8.13.9, 486
Fact 8.13.10, 487
Fact 8.13.12, 487
Fact 8.13.13, 487
Fact 8.13.14, 487
Fact 8.13.15, 488
Fact 8.13.17, 488
Fact 8.13.19, 488
Fact 8.13.21, 488
Fact 8.13.23, 489

positive-semidefinite
matrix
Corollary 8.4.15, 429
Fact 8.13.16, 488
Fact 8.13.18, 488
Fact 8.13.20, 488
Fact 8.13.21, 488
Fact 8.13.24, 489
Fact 8.13.29, 490
Fact 8.13.35, 492
Fact 8.13.36, 492
Fact 8.13.38, 492
Fact 8.13.39, 493
Fact 8.13.40, 493
Fact 8.13.41, 493
Fact 8.17.11, 511
Fact 8.18.30, 521
Fact 8.21.8, 533

Fact 8.21.19, 534
Fact 8.21.20, 535
Fact 9.8.39, 578

product
Proposition 2.7.3, 104

rank-deficient matrix
Fact 2.13.3, 129

reverse identity
matrix
Fact 2.13.1, 128

row interchange
Proposition 2.7.2, 103

Schur complement
Proposition 8.2.3, 420

semidissipative
matrix
Fact 8.13.3, 485
Fact 8.13.4, 485
Fact 8.13.11, 486, 487

singular value
Fact 5.11.28, 326
Fact 5.11.29, 327
Fact 8.13.1, 485
Fact 9.13.23, 606

singular values
Fact 5.12.13, 335

skew-Hermitian
matrix
Fact 3.7.11, 179
Fact 3.7.16, 181
Fact 8.13.6, 486

skew-symmetric
matrix
Fact 3.7.15, 181
Fact 3.7.33, 184
Fact 4.8.14, 259
Fact 4.9.20, 263
Fact 4.10.2, 266

strongly increasing
function
Proposition 8.6.13, 435

subdeterminant
Fact 2.13.4, 129
Fact 2.14.12, 135

subdeterminant
expansion
Corollary 2.7.6, 106

submatrix
Fact 2.14.1, 132

sum of Kronecker
product
Fact 7.5.12, 410
Fact 7.5.13, 410

sum of matrices
Fact 5.12.12, 335
Fact 9.14.18, 611

sum of orthogonal
matrices
Fact 3.11.22, 196

Sylvester’s identity
Fact 2.14.1, 132

symplectic matrix
Fact 3.19.10, 217
Fact 3.19.11, 217

time-varying
dynamics
Fact 11.13.4, 678

Toeplitz matrix
Fact 2.13.13, 131
Fact 3.20.7, 219

trace
Proposition 8.4.14, 429
Corollary 11.2.4, 648
Corollary 11.2.5, 648
Fact 2.13.16, 132
Fact 8.12.1, 475
Fact 8.13.20, 488
Fact 11.14.20, 685

transpose
Proposition 2.7.1, 103

tridiagonal matrix
Fact 3.20.6, 218
Fact 3.20.7, 219
Fact 3.20.8, 219
Fact 3.20.9, 219
Fact 3.20.11, 220

unimodular matrix
Proposition 4.3.7, 238

unitary matrix
Fact 3.11.15, 194
Fact 3.11.20, 196
Fact 3.11.23, 196
Fact 3.11.24, 196

upper bound
Fact 2.13.14, 131
Fact 2.13.15, 131
Fact 8.13.32, 491
Fact 8.13.33, 491
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Fact 8.13.34, 491
Vandermonde matrix
Fact 5.16.3, 354

determinant identities
Magnus
Fact 2.13.16, 132

determinant inequality
Hua’s inequalities
Fact 8.11.21, 472

determinant lower
bound

nonsingular matrix
Fact 4.10.18, 269

determinant of a
partitioned matrix

Hadamard’s
inequality
Fact 6.5.26, 392

determinant of an
outer-product
perturbation

Sherman-Morrison-
Woodbury
formula
Fact 2.16.3, 141

determinantal
compression

partitioned matrix
Fact 8.13.42, 493

diagonal
eigenvalue
Fact 8.12.3, 476

positive-semidefinite
matrix
Fact 8.12.3, 476

zero
Fact 5.9.18, 313

diagonal dominance
rank
Fact 4.10.23, 271

diagonal dominance
theorem

nonsingular matrix
Fact 4.10.17, 269
Fact 4.10.18, 269

diagonal entries
definition, 80
Hermitian matrix
Fact 8.17.13, 512

similar matrices
Fact 5.9.13, 313

unitarily similar
matrices
Fact 5.9.17, 313
Fact 5.9.19, 313

unitary matrix
Fact 3.11.19, 195
Fact 8.17.10, 511

diagonal entries of a
unitary matrix

Schur-Horn theorem
Fact 3.11.19, 195
Fact 8.17.10, 511

diagonal entry
eigenvalue
Fact 8.17.8, 510

Hermitian matrix
Corollary 8.4.7, 427
Fact 8.17.8, 510
Fact 8.17.9, 510

positive-semidefinite
matrix
Fact 8.10.16, 457

strong majorization
Fact 8.17.8, 510

diagonal matrix
controllability
Fact 12.20.12, 792

definition
Definition 3.1.3, 167

Hermitian matrix
Corollary 5.4.5, 294

Kronecker product
Fact 7.4.3, 405

matrix exponential
Fact 11.13.16, 680

orthogonally similar
matrices
Fact 5.9.15, 313

unitary matrix
Theorem 5.6.4, 302

diagonalizable matrix

S −N decomposition
Fact 5.9.3, 311

additive
decomposition
Fact 5.9.3, 311

adjugate
Fact 5.14.5, 339

cogredient
diagonalization
Fact 8.16.2, 507
Fact 8.16.3, 507

commuting matrices
Fact 5.17.8, 358

complex conjugate
transpose
Fact 5.14.5, 339

eigenvector
Fact 5.14.6, 339

example
Example 5.5.18, 299

factorization
Fact 5.15.27, 350

involutory matrix
Fact 5.14.20, 341

Jordan-Chevalley
decomposition
Fact 5.9.3, 311

simultaneous
diagonalization
Fact 8.16.2, 507
Fact 8.16.3, 507

transpose
Fact 5.14.5, 339

diagonalizable over C

definition
Definition 5.5.4, 296

diagonalizable over F

identity perturbation
Fact 5.14.16, 341

diagonalizable over R

asymptotically stable
matrix
Fact 11.17.10, 697

definition
Definition 5.5.4, 296

factorization
Proposition 5.5.12, 297
Corollary 5.5.22, 301
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similar matrices
Proposition 5.5.12, 297
Corollary 5.5.22, 301

diagonally dominant
matrix

nonsingular matrix
Fact 4.10.17, 269

diagonally located
block

definition, 80

Diaz-Goldman-Metcalf
inequality

Hölder’s inequality
Fact 1.16.22, 65

dictionary ordering
cone
Fact 2.9.31, 115

total ordering
Fact 1.5.8, 12

difference
Frobenius norm
Fact 9.9.25, 584

generalized inverse
Fact 6.4.37, 384

idempotent matrix
Fact 5.12.19, 337

maximum singular
value
Fact 8.18.8, 515
Fact 9.9.32, 585

projector
Fact 3.13.24, 210
Fact 5.12.17, 335
Fact 6.4.20, 381

Schatten norm
Fact 9.9.23, 584

singular value
Fact 8.18.9, 515
Fact 8.18.10, 515

trace norm
Fact 9.9.24, 584

difference equation
golden ratio
Fact 4.11.12, 277

nonnegative matrix
Fact 4.11.12, 277

difference of
idempotent matrices

Makelainen
Fact 5.12.19, 337

Styan
Fact 5.12.19, 337

difference of matrices
idempotent matrix
Fact 3.12.25, 202
Fact 3.12.27, 203
Fact 3.12.28, 203
Fact 3.12.30, 204
Fact 3.12.32, 205

differentiable function
continuous function
Proposition 10.4.4, 626

definition
Definition 10.4.3, 626

dihedral group
group
Fact 3.21.7, 223

Klein four-group
Fact 3.21.7, 223

dimension
commuting matrices
Fact 5.10.15, 319
Fact 5.10.16, 319

product of matrices
Fact 2.10.14, 116

rank inequality
Fact 2.10.4, 115

solid set
Fact 10.8.16, 633

subspace
Fact 2.10.4, 115

subspace dimension
theorem
Theorem 2.3.1, 90

subspace intersection
Fact 2.9.20, 112
Fact 2.9.21, 113
Fact 2.9.22, 113

variational cone
Fact 10.8.20, 633

zero trace
Fact 2.18.11, 150

dimension of a
subspace

definition, 90

dimension of an affine
subspace

definition, 90

dimension of an
arbitrary set

definition, 90

dimension theorem
rank and defect
Corollary 2.5.5, 97

directed cut
graph
Fact 4.11.2, 273

direction cosines
Euler parameters
Fact 3.11.10, 192

orthogonal matrix
Fact 3.11.10, 192

directional differential
convex function
Fact 10.11.14, 639

discrete Fourier
analysis

circulant matrix
Fact 5.16.7, 355

discrete-time
asymptotic stability

eigenvalue
Proposition 11.10.2,
670

linear dynamical
system
Proposition 11.10.2,
670

matrix exponential
Proposition 11.10.2,
670

discrete-time
asymptotically
stable matrix

2× 2 matrix
Fact 11.21.1, 712
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asymptotically stable
matrix
Fact 11.21.8, 713

Cayley transform
Fact 11.21.8, 713

definition
Definition 11.10.1, 670

discrete-time
asymptotically
stable polynomial
Proposition 11.10.4,
671

dissipative matrix
Fact 11.21.4, 712

Kronecker product
Fact 11.21.5, 713
Fact 11.21.6, 713

Lyapunov equation
Proposition 11.10.5,
671

matrix exponential
Fact 11.21.7, 713

matrix limit
Fact 11.21.12, 714

matrix power
Fact 11.21.2, 712

normal matrix
Fact 11.21.4, 712

partitioned matrix
Fact 11.21.9, 713

positive-definite
matrix
Proposition 11.10.5,
671

Fact 11.21.9, 713
Fact 11.21.15, 714

similar matrices
Fact 11.18.4, 698

discrete-time
asymptotically
stable polynomial

definition
Definition 11.10.3, 671

discrete-time
asymptotically
stable matrix
Proposition 11.10.4,
671

polynomial
coefficients
Fact 11.20.1, 708
Fact 11.20.2, 709
Fact 11.20.3, 709

discrete-time control
problem

LQG controller
Fact 12.23.7, 804

discrete-time dynamics
matrix power
Fact 11.21.3, 712

discrete-time Lyapunov
equation

discrete-time
asymptotically
stable matrix
Fact 11.21.15, 714

discrete-time
Lyapunov-stable
matrix
Proposition 11.10.6,
671

Stein equation
Fact 11.21.15, 714

discrete-time Lyapunov
stability

eigenvalue
Proposition 11.10.2,
670

linear dynamical
system
Proposition 11.10.2,
670

matrix exponential
Proposition 11.10.2,
670

discrete-time
Lyapunov-stable
matrix

definition
Definition 11.10.1, 670

discrete-time
Lyapunov equation
Proposition 11.10.6,
671

discrete-time
Lyapunov-stable
polynomial
Proposition 11.10.4,
671

group generalized
inverse
Fact 11.21.11, 714

Kreiss matrix
theorem
Fact 11.21.17, 715

Kronecker product
Fact 11.21.5, 713
Fact 11.21.6, 713

logarithm
Fact 11.14.19, 685

matrix exponential
Fact 11.21.7, 713

matrix limit
Fact 11.21.11, 714

matrix power
Fact 11.21.2, 712
Fact 11.21.10, 714

maximum singular
value
Fact 11.21.17, 715

normal matrix
Fact 11.21.4, 712

positive-definite
matrix
Proposition 11.10.6,
671

positive-semidefinite
matrix
Fact 11.21.15, 714

semicontractive
matrix
Fact 11.21.4, 712

semidissipative
matrix
Fact 11.21.4, 712

similar matrices
Fact 11.18.4, 698

unitary matrix
Fact 11.21.13, 714

discrete-time
Lyapunov-stable
polynomial

definition
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Definition 11.10.3, 671
discrete-time
Lyapunov-stable
matrix
Proposition 11.10.4,
671

discrete-time
semistability

eigenvalue
Proposition 11.10.2,
670

linear dynamical
system
Proposition 11.10.2,
670

matrix exponential
Proposition 11.10.2,
670

discrete-time
semistable matrix

companion form
matrix
Fact 11.21.18, 715

convergent sequence
Fact 11.21.14, 714

definition
Definition 11.10.1, 670

discrete-time
semistable
polynomial
Proposition 11.10.4,
671

idempotent matrix
Fact 11.21.10, 714

Kronecker product
Fact 11.21.5, 713
Fact 11.21.6, 713

limit
Fact 11.21.10, 714

matrix exponential
Fact 11.21.7, 713
Fact 11.21.14, 714

similar matrices
Fact 11.18.4, 698

discrete-time
semistable
polynomial

definition

Definition 11.10.3, 671
discrete-time
semistable matrix
Proposition 11.10.4,
671

discrete-time
time-varying system

state convergence
Fact 11.21.16, 715

discriminant
compound matrix
Fact 7.5.17, 411

disjoint
definition, 3

dissipative matrix
asymptotically stable
matrix
Fact 11.18.21, 701
Fact 11.18.37, 705

definition
Definition 3.1.1, 165

determinant
Fact 8.13.2, 485
Fact 8.13.11, 486, 487
Fact 8.13.31, 491

discrete-time
asymptotically
stable matrix
Fact 11.21.4, 712

Frobenius norm
Fact 11.15.3, 689

inertia
Fact 5.8.12, 309

Kronecker sum
Fact 7.5.8, 409

matrix exponential
Fact 11.15.3, 689

maximum singular
value
Fact 8.17.12, 511

nonsingular matrix
Fact 3.20.13, 220

normal matrix
Fact 11.18.37, 705

positive-definite
matrix
Fact 8.17.12, 511

Fact 11.18.21, 701
range-Hermitian
matrix
Fact 5.14.31, 343

semidissipative
matrix
Fact 8.13.31, 491

spectrum
Fact 8.13.31, 491

strictly dissipative
matrix
Fact 8.9.31, 453

unitary matrix
Fact 8.9.31, 453

distance from a point
set
Fact 10.9.15, 636
Fact 10.9.16, 636

distance to singularity
nonsingular matrix
Fact 9.14.7, 608

distinct eigenvalues
eigenvector
Proposition 4.5.4, 246

distinct roots
Bezout matrix
Fact 4.8.9, 258

distributive identities
definition, 82

divides
definition, 233

division of polynomial
matrices

quotient and
remainder
Lemma 4.2.1, 234

Dixmier
projectors and
unitarily similar
matrices
Fact 5.10.12, 319

Djokovic
maximum singular
value of a product
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of elementary
projectors
Fact 9.14.1, 607

rank of a Kronecker
product
Fact 8.21.16, 534

Schur product of
positive-definite
matrices
Fact 8.21.13, 533

Djokovic inequality
Euclidean norm
Fact 9.7.7, 565

domain
definition, 3

Dormido
asymptotically stable
polynomial
Fact 11.17.8, 697

double cover
orthogonal matrix
parameterization
Fact 3.11.10, 192

spin group
Fact 3.11.10, 192

doublet
definition
Fact 2.10.24, 118

outer-product
matrix
Fact 2.10.24, 118
Fact 2.12.6, 126

spectrum
Fact 5.11.13, 323

doubly stochastic
matrix

strong majorization
Fact 2.21.7, 163

Douglas-Fillmore-
Williams
lemma

factorization
Theorem 8.6.2, 431

Dragomir’s inequality
harmonic mean

Fact 1.16.24, 65

Dragomir-Yang
inequalities

Euclidean norm
Fact 9.7.8, 566
Fact 9.7.9, 566

Drazin
real eigenvalues
Fact 5.14.13, 340

Drazin generalized
inverse

block-circulant
matrix
Fact 6.6.1, 393

commuting matrices
Fact 6.6.4, 394
Fact 6.6.5, 394

definition, 367
idempotent matrix
Proposition 6.2.2, 368

integral
Fact 11.13.12, 679
Fact 11.13.14, 680

Kronecker product
Fact 7.4.31, 408

matrix exponential
Fact 11.13.12, 679
Fact 11.13.14, 680

matrix limit
Fact 6.6.11, 395

matrix product
Fact 6.6.3, 393
Fact 6.6.4, 394

matrix sum
Fact 6.6.5, 394

null space
Proposition 6.2.2, 368

partitioned matrix
Fact 6.6.1, 393
Fact 6.6.2, 393

positive-semidefinite
matrix
Fact 8.20.2, 525

range
Proposition 6.2.2, 368

sum
Fact 6.6.1, 393

tripotent matrix

Proposition 6.2.2, 368
uniqueness
Theorem 6.2.1, 367

dual cone
convex conical hull
Fact 2.9.3, 110

definition, 91
intersection
Fact 2.9.5, 111

sum of sets
Fact 2.9.5, 111

dual norm
adjoint norm
Fact 9.8.8, 572

definition
Fact 9.7.22, 570

induced norm
Fact 9.7.22, 570

quadratic form
Fact 9.8.34, 577

Dunkl-Williams
inequality

complex numbers
Fact 1.18.5, 71

norm
Fact 9.7.10, 566
Fact 9.7.13, 567

dynamic compensator
LQG controller
Fact 12.23.6, 804
Fact 12.23.7, 804

E

Eckart-Young theorem
fixed-rank
approximation
Fact 9.14.28, 614

eigensolution
eigenvector
Fact 11.13.6, 679
Fact 11.13.7, 679

eigenvalue
SO(n)
Fact 5.11.2, 321

adjugate



Young inequality 939

Fact 4.10.7, 267
asymptotic spectrum
Fact 4.10.28, 272

asymptotic stability
Proposition 11.8.2, 662

bound
Fact 4.10.22, 271
Fact 5.11.22, 325
Fact 5.11.23, 325
Fact 9.11.7, 598

bounds
Fact 4.10.16, 269
Fact 4.10.20, 270

Cardano’s
trigonometric
solution
Fact 4.10.1, 265

Cartesian
decomposition
Fact 5.11.21, 325

convex function
Corollary 8.6.19, 442
Fact 8.18.5, 513

definition, 240
determinant
Fact 5.11.28, 326, 327
Fact 8.13.1, 485

diagonal entry
Fact 8.12.3, 476
Fact 8.17.8, 510

discrete-time
asymptotic stability
Proposition 11.10.2,
670

discrete-time
Lyapunov stability
Proposition 11.10.2,
670

discrete-time
semistability
Proposition 11.10.2,
670

Frobenius norm
Fact 9.11.3, 597
Fact 9.11.5, 598

generalized
eigenvector
Fact 5.14.8, 339

generalized Schur
inequality
Fact 9.11.6, 598

Hermitian matrix
Theorem 8.4.5, 426
Theorem 8.4.9, 427
Theorem 8.4.11, 428
Corollary 8.4.2, 425
Corollary 8.4.6, 426
Corollary 8.4.7, 427
Corollary 8.6.19, 442
Lemma 8.4.3, 425
Lemma 8.4.4, 425
Fact 8.10.4, 456
Fact 8.15.20, 503
Fact 8.15.31, 505
Fact 8.17.8, 510
Fact 8.17.9, 510
Fact 8.17.13, 512
Fact 8.17.15, 512
Fact 8.17.16, 512
Fact 8.18.4, 513
Fact 8.18.17, 517
Fact 8.21.28, 536

Hermitian part
Fact 5.11.24, 325

Hölder matrix norm
Fact 9.11.6, 598

Kronecker product
Proposition 7.1.10, 401
Fact 7.4.13, 406
Fact 7.4.15, 406
Fact 7.4.21, 406
Fact 7.4.28, 407
Fact 7.4.32, 408

Kronecker sum
Proposition 7.2.3, 403
Fact 7.5.5, 409
Fact 7.5.7, 409
Fact 7.5.16, 411

Lyapunov stability
Proposition 11.8.2, 662

matrix logarithm
Theorem 11.5.1, 656

matrix sum
Fact 5.12.2, 333
Fact 5.12.3, 333

normal matrix
Fact 5.14.15, 341

orthogonal matrix
Fact 5.11.2, 321

partitioned matrix
Proposition 5.6.6, 303
Fact 5.12.20, 337
Fact 5.12.21, 337
Fact 5.12.22, 338

positive-definite
matrix
Fact 8.10.24, 458
Fact 8.15.20, 503
Fact 8.15.29, 505
Fact 8.15.30, 505
Fact 8.18.29, 521
Fact 8.21.21, 535

positive-semidefinite
matrix
Fact 8.12.3, 476
Fact 8.15.11, 501
Fact 8.18.6, 514
Fact 8.18.19, 518
Fact 8.18.20, 518
Fact 8.18.22, 519
Fact 8.18.23, 519
Fact 8.18.24, 520
Fact 8.18.27, 521
Fact 8.20.17, 528
Fact 8.21.18, 534
Fact 8.21.20, 535

quadratic form
Lemma 8.4.3, 425
Fact 8.15.20, 503

root locus
Fact 4.10.28, 272

Schatten norm
Fact 9.11.6, 598

Schur product
Fact 8.21.18, 534

Schur’s inequality
Fact 8.17.5, 509
Fact 9.11.3, 597

semistability
Proposition 11.8.2, 662

singular value
Fact 8.17.5, 509
Fact 8.17.6, 509
Fact 9.13.22, 606

skew-Hermitian
matrix



940 asymptotically stable polynomial

Fact 5.11.6, 321
skew-symmetric
matrix
Fact 4.10.2, 266

spectral abscissa
Fact 5.11.24, 325

strong majorization
Corollary 8.6.19, 442
Fact 8.17.8, 510
Fact 8.18.4, 513
Fact 8.18.29, 521

subscript convention,
240

symmetric matrix
Fact 4.10.1, 265

trace
Proposition 8.4.13, 428
Fact 5.11.11, 322
Fact 8.17.5, 509
Fact 8.18.18, 518

weak log
majorization
Fact 8.18.27, 521

weak majorization
Fact 8.17.5, 509
Fact 8.18.5, 513
Fact 8.18.6, 514
Fact 8.18.27, 521

eigenvalue bound
Bendixson’s theorem
Fact 5.11.21, 325
Fact 9.11.8, 598

Browne’s theorem
Fact 5.11.21, 325

Frobenius norm
Fact 9.12.3, 599

Henrici
Fact 9.11.3, 597

Hermitian matrix
Fact 9.12.3, 599

Hirsch’s theorem
Fact 5.11.21, 325

Hirsch’s theorems
Fact 9.11.8, 598

Hölder norm
Fact 9.11.8, 598

trace
Fact 5.11.45, 331

eigenvalue bounds
ovals of Cassini
Fact 4.10.21, 271

eigenvalue
characterization

minimum principle
Fact 8.17.15, 512

eigenvalue inclusion
region

Lyapunov equation
Fact 12.21.20, 798

eigenvalue inequality
2× 2 matrix
Fact 8.17.1, 508

Hermitian matrix
Lemma 8.4.1, 424
Fact 8.18.3, 513

Poincaré separation
theorem
Fact 8.17.16, 512

eigenvalue of Hermitian
part

maximum singular
value
Fact 5.11.25, 326

minimum singular
value
Fact 5.11.25, 326

singular value
Fact 5.11.27, 326
Fact 8.17.4, 509

weak majorization
Fact 5.11.27, 326

eigenvalue
perturbation

Frobenius norm
Fact 9.12.4, 599
Fact 9.12.9, 601
Fact 9.12.10, 601

Hermitian matrix
Fact 4.10.27, 272

maximum singular
value
Fact 9.12.4, 599
Fact 9.12.8, 601

normal matrix
Fact 9.12.8, 601

partitioned matrix
Fact 4.10.27, 272

unitarily invariant
norm
Fact 9.12.4, 599

eigenvalue placement
controllable pair
Proposition 12.6.19,
743

observable pair
Proposition 12.3.19,
732

eigenvector
adjugate
Fact 5.14.26, 342

commuting matrices
Fact 5.14.25, 342

cyclic eigenvalue
Fact 5.14.2, 338

definition, 245
diagonalizable
matrix
Fact 5.14.6, 339

distinct eigenvalues
Proposition 4.5.4, 246

eigensolution
Fact 11.13.6, 679
Fact 11.13.7, 679

generalized
eigensolution
Fact 11.13.7, 679

Kronecker product
Proposition 7.1.10, 401
Fact 7.4.21, 406
Fact 7.4.32, 408

Kronecker sum
Proposition 7.2.3, 403
Fact 7.5.16, 411

M-matrix
Fact 4.11.10, 276

normal matrix
Proposition 4.5.4, 246
Lemma 4.5.3, 246

similarity
transformation
Fact 5.14.6, 339
Fact 5.14.7, 339



Brownian motion 941

upper triangular
matrix
Fact 5.17.1, 358

either
definition, 1

element
definition, 2

elementary divisor
companion matrix
Theorem 5.2.9, 287

definition, 287
factorization
Fact 5.15.37, 351

hypercompanion
matrix
Lemma 5.3.1, 288

elementary matrix
definition
Definition 3.1.2, 166

inverse matrix
Fact 3.7.20, 182

nonsingular matrix
Fact 5.15.12, 347

properties and
matrix types
Fact 3.7.19, 181

semisimple matrix
Fact 5.14.17, 341

spectrum
Proposition 5.5.21, 300

unitarily similar
matrices
Proposition 5.6.3, 302

elementary
multicompanion
form

definition, 287

elementary polynomial
matrix

definition, 236

elementary projector
definition
Definition 3.1.1, 165

elementary reflector
Fact 3.13.7, 207
Fact 3.14.3, 211

hyperplane
Fact 3.13.8, 207

maximum singular
value
Fact 9.14.1, 607

reflector
Fact 5.15.13, 347

spectrum
Proposition 5.5.21, 300

trace
Fact 5.8.11, 309

unitarily similar
matrices
Proposition 5.6.3, 302

elementary reflector
definition
Definition 3.1.1, 165

elementary projector
Fact 3.13.7, 207
Fact 3.14.3, 211

hyperplane
Fact 3.14.5, 211

null space
Fact 3.13.7, 207

orthogonal matrix
Fact 5.15.15, 347

range
Fact 3.13.7, 207

rank
Fact 3.13.7, 207

reflection theorem
Fact 3.14.4, 211

reflector
Fact 5.15.14, 347

spectrum
Proposition 5.5.21, 300

trace
Fact 5.8.11, 309

unitarily similar
matrices
Proposition 5.6.3, 302

elementary symmetric
function

Schur concave
function
Fact 1.15.20, 53

elementary symmetric
mean

Newton’s inequality
Fact 1.15.11, 50

elementary symmetric
polynomial

inequality
Fact 1.15.11, 50

Newton’s identities
Fact 4.8.2, 254

ellipsoid
positive-definite
matrix
Fact 3.7.35, 184

volume
Fact 3.7.35, 184

Embry
commuting matrices
Fact 5.12.14, 335

empty matrix
definition, 83

empty set
definition, 2

Enestrom-Kakeya
theorem

polynomial root
locations
Fact 11.20.3, 709

entropy
logarithm
Fact 1.15.45, 59
Fact 1.15.46, 59
Fact 1.15.47, 59
Fact 1.16.30, 67

Schur concave
function
Fact 2.21.6, 162

strong majorization
Fact 2.21.6, 162

entry
definition, 79

EP matrix, see
range-Hermitian
matrix

definition, 229

equi-induced norm



942 Callan

definition
Definition 9.4.1, 553

normalized norm
Theorem 9.4.2, 553

spectral radius
Corollary 9.4.5, 554

submultiplicative
norm
Corollary 9.4.4, 554
Fact 9.8.45, 579

equi-induced
self-adjoint norm

maximum singular
value
Fact 9.13.5, 602

equi-induced unitarily
invariant norm

maximum singular
value
Fact 9.13.4, 602

equilateral triangle
complex numbers
Fact 2.20.6, 155

equilibrium
definition, 660

equivalence
equivalence relation
Fact 5.10.3, 317

equivalence class
equivalent matrices
Fact 5.10.4, 317

induced by
equivalence relation
Theorem 1.3.6, 6

similar matrices
Fact 5.10.4, 317

unitarily similar
matrices
Fact 5.10.4, 317

equivalence class
induced by

definition, 6

equivalence hull
definition
Definition 1.3.4, 5

relation
Proposition 1.3.5, 6

equivalence relation
Abelian group
Proposition 3.4.2, 173

congruence
Fact 5.10.3, 317

definition
Definition 1.3.2, 5

equivalence
Fact 5.10.3, 317

equivalence class
Theorem 1.3.6, 6

group
Proposition 3.4.1, 173
Proposition 3.4.2, 173

intersection
Proposition 1.3.3, 5

left equivalence
Fact 5.10.3, 317

partition
Theorem 1.3.7, 7

right equivalence
Fact 5.10.3, 317

similarity
Fact 5.10.3, 317

unitary
biequivalence
Fact 5.10.3, 317

unitary left
equivalence
Fact 5.10.3, 317

unitary right
equivalence
Fact 5.10.3, 317

unitary similarity
Fact 5.10.3, 317

equivalent matrices
equivalence class
Fact 5.10.4, 317

equivalent norms
equivalence
Theorem 9.1.8, 546

norms
Fact 9.8.12, 573

equivalent realizations

controllable
canonical form
Corollary 12.9.9, 752

controllable pair
Proposition 12.9.8, 752

invariant zero
Proposition 12.10.10,
764

observable canonical
form
Corollary 12.9.9, 752

observable pair
Proposition 12.9.8, 752

similar matrices
Definition 12.9.6, 751

ergodic theorem
unitary matrix limit
Fact 6.3.34, 376

Euclidean distance
matrix

negative-semidefinite
matrix
Fact 9.8.14, 573

Schoenberg
Fact 9.8.14, 573

Euclidean norm
Cauchy-Schwarz
inequality
Corollary 9.1.7, 546

definition, 545
Djokovic inequality
Fact 9.7.7, 565

Dragomir-Yang
inequalities
Fact 9.7.8, 566
Fact 9.7.9, 566

generalized Hlawka
inequality
Fact 9.7.7, 565

inequality
Fact 9.7.4, 563
Fact 9.7.6, 565
Fact 9.7.7, 565
Fact 9.7.8, 566
Fact 9.7.9, 566
Fact 9.7.18, 569

Kronecker product
Fact 9.7.27, 570



closed-loop spectrum 943

outer-product
matrix
Fact 9.7.27, 570

projector
Fact 9.8.2, 571
Fact 9.8.3, 571
Fact 10.9.17, 636

reverse triangle
inequality
Fact 9.7.6, 565

Euler constant
logarithm
Fact 1.7.5, 18

Euler parameters
direction cosines
Fact 3.11.10, 192

orthogonal matrix
Fact 3.11.10, 192
Fact 3.11.11, 193

Rodrigues’s formulas
Fact 3.11.11, 193

Euler product formula
prime numbers
Fact 1.7.8, 19

zeta function
Fact 1.7.8, 19

Euler totient function
positive-semidefinite
matrix
Fact 8.8.5, 447

Euler’s inequality
triangle
Fact 2.20.11, 156

Euler’s polyhedron
formula

face
Fact 1.6.7, 14

even polynomial
asymptotically stable
polynomial
Fact 11.17.6, 696

definition, 232

Everitt
determinant of a
partitioned

positive-
semidefinite
matrix
Fact 8.13.38, 492

exactly proper rational
function

definition
Definition 4.7.1, 249

exactly proper rational
transfer function

definition
Definition 4.7.2, 249

existence of
transformation

Hermitian matrix
Fact 3.9.2, 185

orthogonal matrix
Fact 3.9.5, 186

outer-product
matrix
Fact 3.9.1, 185

skew-Hermitian
matrix
Fact 3.9.4, 186

existential statement
definition, 2
logical equivalents
Fact 1.5.4, 11

exogenous input
definition, 772

exponent
scalar inequality
Fact 1.9.1, 22

exponential, see matrix
exponential

inequality
Fact 1.15.48, 60

matrix logarithm
Fact 11.14.26, 686

positive-definite
matrix
Fact 11.14.26, 686

exponential function
complex numbers
Fact 1.18.6, 71

convex function
Fact 1.10.26, 34

inequality
Fact 1.10.27, 34

limit
Fact 1.9.18, 26

scalar inequalities
Fact 1.10.28, 35

scalar inequality
Fact 1.9.14, 25
Fact 1.9.15, 25
Fact 1.9.16, 25
Fact 1.9.17, 26

exponential inequality
scalar case
Fact 1.9.13, 24

extended infinite
interval

definition, xxxv

extreme point
convex set
Fact 10.8.23, 634

Krein-Milman
theorem
Fact 10.8.23, 634

F

face
Euler’s polyhedron
formula
Fact 1.6.7, 14

fact
definition, 1

factorial
bounds
Fact 1.9.20, 26

inequality
Fact 1.9.31, 30

Stirling’s formula
Fact 1.9.19, 26

factorization
asymptotically stable
matrix
Fact 11.18.22, 701

Bezout matrix



944 closed-loop spectrum

Fact 5.15.24, 349
commutator
Fact 5.15.33, 351

complex conjugate
transpose
Fact 5.15.23, 349

determinant
Fact 5.15.7, 346
Fact 5.15.34, 351

diagonalizable
matrix
Fact 5.15.27, 350

diagonalizable over R

Proposition 5.5.12, 297
Corollary 5.5.22, 301

Douglas-Fillmore-
Williams
lemma
Theorem 8.6.2, 431

elementary divisor
Fact 5.15.37, 351

full rank
Fact 5.15.40, 351

generalized inverse
Fact 6.5.25, 392

group generalized
inverse
Fact 6.6.12, 395

Hermitian matrix
Fact 5.15.17, 348
Fact 5.15.25, 349
Fact 5.15.26, 349
Fact 5.15.41, 351
Fact 8.16.1, 507

idempotent matrix
Fact 5.15.28, 350
Fact 5.15.30, 350

involutory matrix
Fact 5.15.18, 348
Fact 5.15.31, 350
Fact 5.15.32, 351

Jordan form
Fact 5.15.5, 346

lower triangular
matrix
Fact 5.15.10, 346

LULU
decomposition
Fact 5.15.11, 346

nilpotent matrix
Fact 5.15.29, 350

nonsingular matrix
Fact 5.15.12, 347
Fact 5.15.36, 351

orthogonal matrix
Fact 5.15.15, 347
Fact 5.15.16, 347
Fact 5.15.31, 350
Fact 5.15.35, 351

partitioned matrix,
420
Proposition 2.8.3, 107
Proposition 2.8.4, 107
Fact 2.14.9, 134
Fact 2.16.2, 141
Fact 2.17.3, 147
Fact 2.17.4, 147
Fact 2.17.5, 147
Fact 6.5.25, 392
Fact 8.11.25, 473
Fact 8.11.26, 473

positive-definite
matrix
Fact 5.15.26, 349
Fact 5.18.4, 359
Fact 5.18.5, 359
Fact 5.18.6, 359
Fact 5.18.8, 360

positive-semidefinite
matrix
Fact 5.15.22, 349
Fact 5.15.26, 349
Fact 5.18.2, 359
Fact 5.18.3, 359
Fact 5.18.7, 359
Fact 8.9.36, 454
Fact 8.9.37, 454

projector
Fact 5.15.13, 347
Fact 5.15.17, 348
Fact 6.3.32, 376

range
Theorem 8.6.2, 431

reflector
Fact 5.15.14, 347

reverse-symmetric
matrix
Fact 5.9.12, 313

rotation-dilation
Fact 2.19.2, 151

shear
Fact 5.15.11, 346

similar matrices
Fact 5.15.6, 346

skew-symmetric
matrix
Fact 5.15.37, 351
Fact 5.15.38, 351

symmetric matrix
Corollary 5.3.9, 292
Fact 5.15.24, 349

ULU decomposition
Fact 5.15.11, 346

unitary matrix
Fact 5.15.8, 346
Fact 5.18.6, 359

upper triangular
matrix
Fact 5.15.8, 346
Fact 5.15.10, 346

Fan
convex function
Proposition 8.6.17, 542

trace of a Hermitian
matrix product
Fact 5.12.4, 333

trace of a product of
orthogonal matrices
Fact 5.12.10, 334

Fan constant
definition
Fact 8.10.48, 465

Fan dominance
theorem

singular value
Fact 9.14.19, 611

Farkas theorem
linear system
solution
Fact 4.11.14, 279

fast Fourier transform
circulant matrix
Fact 5.16.7, 355



companion matrix 945

feedback
interconnection

realization
Proposition 12.13.4,
772

Proposition 12.14.1,
774

Fact 12.22.8, 799
transfer function
Fact 12.22.8, 799

feedback signal
definition, 772

Fejer’s theorem
positive-semidefinite
matrix
Fact 8.21.35, 538

Fer expansion
time-varying
dynamics
Fact 11.13.4, 678

Fibonacci numbers
determinant
Fact 4.11.12, 277

generating function
Fact 4.11.12, 277

nonnegative matrix
Fact 4.11.12, 277

field of values
spectrum of convex
hull
Fact 8.14.7, 496
Fact 8.14.8, 497

final state
controllability
Fact 12.20.4, 791

controllable subspace
Fact 12.20.3, 791

finite group
group
Fact 3.21.7, 223

representation
Fact 3.21.9, 224

finite interval
definition, xxxv

finite-sum solution

Lyapunov equation
Fact 12.21.17, 797

Finsler’s lemma
positive-definite
linear combination
Fact 8.15.24, 504
Fact 8.15.25, 504

Fischer’s inequality
positive-semidefinite
matrix determinant
Fact 8.13.35, 492
Fact 8.13.36, 492

positive-semidefinite
matrix determinant
reverse inequality
Fact 8.13.41, 493

fixed-point theorem
continuous function
Theorem 10.3.10, 625
Corollary 10.3.11, 625

fixed-rank
approximation

Eckart-Young
theorem
Fact 9.14.28, 614

Frobenius norm
Fact 9.14.28, 614
Fact 9.15.4, 618

least squares
Fact 9.14.28, 614
Fact 9.15.4, 618

Schmidt-Mirsky
theorem
Fact 9.14.28, 614

singular value
Fact 9.14.28, 614
Fact 9.15.4, 618

unitarily invariant
norm
Fact 9.14.28, 614

forced response
definition, 725

forest
symmetric graph
Fact 1.6.5, 14

Fourier matrix

circulant matrix
Fact 5.16.7, 355

Vandermonde matrix
Fact 5.16.7, 355

Fourier transform
Parseval’s theorem
Fact 12.22.1, 798

Frame
finite sequence for
inverse matrix
Fact 2.16.28, 146

Franck
maximum singular
value lower bound
on distance to
singularity
Fact 9.14.6, 608

Fréchet derivative
definition
Definition 10.4.3, 626

uniqueness
Proposition 10.4.2, 626

free response
definition, 725

frequency domain
controllability
Gramian
Corollary 12.11.5, 767

frequency response
imaginary part
Fact 12.22.5, 799

real part
Fact 12.22.5, 799

transfer function
Fact 12.22.5, 799

Friedland
matrix exponential
and singular value
Fact 11.16.15, 695

Frobenius
similar to transpose
Corollary 5.3.8, 291

singular value
Corollary 9.6.7, 562



946 companion matrix

symmetric matrix
factorization
Fact 5.15.24, 349

Frobenius canonical
form, see
multicompanion
form

definition, 362

Frobenius inequality
rank of partitioned
matrix
Fact 2.11.14, 123
Fact 6.5.15, 389

Frobenius matrix
definition, 362

Frobenius norm
absolute value
Fact 9.13.11, 603

adjugate
Fact 9.8.15, 573

Cauchy-Schwarz
inequality
Corollary 9.3.9, 553

commutator
Fact 9.9.26, 584
Fact 9.9.27, 584

definition, 547
determinant
Fact 9.8.39, 578

dissipative matrix
Fact 11.15.3, 689

eigenvalue
Fact 9.11.3, 597
Fact 9.11.5, 598

eigenvalue bound
Fact 9.12.3, 599

eigenvalue
perturbation
Fact 9.12.4, 599
Fact 9.12.9, 601
Fact 9.12.10, 601

fixed-rank
approximation
Fact 9.14.28, 614
Fact 9.15.4, 618

Hermitian matrix
Fact 9.9.41, 588

inequality
Fact 9.9.25, 584

Kronecker product
Fact 9.14.37, 617

matrix difference
Fact 9.9.25, 584

matrix exponential
Fact 11.14.32, 688
Fact 11.15.3, 689

maximum singular
value bound
Fact 9.13.13, 604

normal matrix
Fact 9.12.9, 601

outer-product
matrix
Fact 9.7.26, 570

polar decomposition
Fact 9.9.42, 588

positive-semidefinite
matrix
Fact 9.8.39, 578
Fact 9.9.12, 581
Fact 9.9.15, 582
Fact 9.9.27, 584

rank
Fact 9.11.4, 598
Fact 9.14.28, 614
Fact 9.15.4, 618

Schatten norm, 549
Fact 9.8.20, 575

Schur product
Fact 9.14.34, 616

Schur’s inequality
Fact 9.11.3, 597

spectral radius
Fact 9.13.12, 603

trace
Fact 9.11.3, 597
Fact 9.11.4, 598
Fact 9.11.5, 598
Fact 9.12.2, 599

trace norm
Fact 9.9.11, 581

triangle inequality
Fact 9.9.13, 582

unitarily invariant
norm
Fact 9.14.34, 616

unitary matrix
Fact 9.9.42, 588

Fujii-Kubo
polynomial root
bound
Fact 11.20.9, 710

Fujiwara’s bound
polynomial
Fact 11.20.8, 710

full column rank
definition, 95
equivalent properties
Theorem 2.6.1, 98

nonsingular
equivalence
Corollary 2.6.6, 101

full rank
definition, 96

full row rank
definition, 95
equivalent properties
Theorem 2.6.1, 98

nonsingular
equivalence
Corollary 2.6.6, 101

full-rank factorization
generalized inverse
Fact 6.4.9, 379

idempotent matrix
Fact 3.12.23, 202

full-state feedback
controllable subspace
Proposition 12.6.5, 737

controllably
asymptotically
stable
Proposition 12.7.2, 743

determinant
Fact 12.22.14, 800

invariant zero
Proposition 12.10.10,
764

Fact 12.22.14, 800
stabilizability
Proposition 12.8.2, 747



continuous function 947

uncontrollable
eigenvalue
Proposition 12.6.14,
740

unobservable
eigenvalue
Proposition 12.3.14,
731

unobservable
subspace
Proposition 12.3.5, 729

function
definition, 3
graph
Fact 1.6.1, 13
Fact 1.6.2, 13
Fact 1.6.3, 13

intersection
Fact 1.5.11, 12
Fact 1.5.12, 12

relation
Proposition 1.3.1, 5

union
Fact 1.5.11, 12
Fact 1.5.12, 12

function composition
matrix
multiplication
Theorem 2.1.3, 81

fundamental theorem
of algebra

definition, 232

fundamental triangle
inequality

Ramus
Fact 2.20.11, 156

triangle
Fact 2.20.11, 156

Wu
Fact 2.20.11, 156

Furuta inequality
positive-definite
matrix
Fact 8.10.50, 465

positive-semidefinite
matrix inequality
Proposition 8.6.7, 433

spectral order
Fact 8.19.4, 523

G

Galois
quintic polynomial
Fact 3.21.7, 223

gamma
logarithm
Fact 1.7.5, 18

gap topology
minimal principal
angle
Fact 10.9.18, 636

subspace
Fact 10.9.18, 636

Gastinel
distance to
singularity of a
nonsingular matrix
Fact 9.14.7, 608

generalized algebraic
multiplicity

definition, 305

generalized
Cayley-Hamilton
theorem

commuting matrices
Fact 4.9.7, 261

generalized
eigensolution

eigenvector
Fact 11.13.7, 679

generalized eigenvalue
definition, 304
pencil
Proposition 5.7.3, 305
Proposition 5.7.4, 306

regular pencil
Proposition 5.7.3, 305
Proposition 5.7.4, 306

singular pencil
Proposition 5.7.3, 305

generalized
eigenvector

eigenvalue
Fact 5.14.8, 339

generalized geometric
mean

positive-definite
matrix
Fact 8.10.45, 464

generalized geometric
multiplicity

definition, 305

generalized Hölder
inequality

vector
Fact 9.7.34, 571

generalized inverse
(1,3) inverse
Fact 6.3.14, 372

(1,4) inverse
Fact 6.3.14, 372

adjugate
Fact 6.3.6, 370
Fact 6.3.7, 371
Fact 6.5.16, 389

basic properties
Proposition 6.1.6, 365

block-circulant
matrix
Fact 6.5.2, 386

centrohermitian
matrix
Fact 6.3.31, 376

characteristic
polynomial
Fact 6.3.20, 374

characterization
Fact 6.4.1, 377

complex conjugate
transpose
Fact 6.3.9, 371
Fact 6.3.10, 371
Fact 6.3.13, 372
Fact 6.3.16, 373
Fact 6.3.17, 373
Fact 6.3.18, 373
Fact 6.3.22, 374
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Fact 6.3.27, 375
Fact 6.3.28, 375
Fact 6.4.7, 379
Fact 6.6.16, 396
Fact 6.6.17, 397
Fact 6.6.18, 397

congruence
Fact 8.20.5, 525

convergent sequence
Fact 6.3.35, 376
Fact 6.3.36, 377

definition, 363
determinant
Fact 6.5.26, 392
Fact 6.5.27, 392
Fact 6.5.28, 393

difference
Fact 6.4.33, 383

factorization
Fact 6.5.25, 392

full-rank
factorization
Fact 6.4.9, 379

group generalized
inverse
Fact 6.6.7, 394

Hermitian matrix
Fact 6.3.21, 374
Fact 6.4.3, 378
Fact 8.20.12, 527

idempotent matrix
Fact 5.12.18, 336
Fact 6.3.22, 374
Fact 6.3.23, 374
Fact 6.3.24, 374
Fact 6.3.25, 375
Fact 6.3.26, 375
Fact 6.3.27, 375
Fact 6.4.18, 381
Fact 6.4.19, 381
Fact 6.4.20, 381
Fact 6.4.22, 381
Fact 6.4.25, 381

identity
Fact 6.3.33, 376

inertia
Fact 6.3.21, 374
Fact 8.20.12, 527

integral

Fact 11.13.10, 679
Jordan canonical
form
Fact 6.6.9, 394

Kronecker product
Fact 7.4.30, 408

least squares
Fact 9.15.1, 618
Fact 9.15.2, 618
Fact 9.15.3, 618

left inverse
Corollary 6.1.4, 364
Fact 6.4.39, 384
Fact 6.4.40, 384

left-inner matrix
Fact 6.3.8, 371

left-invertible matrix
Proposition 6.1.5, 364

linear matrix
equation
Fact 6.4.38, 384

linear system
Proposition 6.1.7, 366

matrix difference
Fact 6.4.37, 384

matrix exponential
Fact 11.13.10, 679

matrix inversion
lemma
Fact 6.4.4, 378

matrix limit
Fact 6.3.19, 374

matrix product
Fact 6.4.5, 378
Fact 6.4.6, 378
Fact 6.4.8, 379
Fact 6.4.9, 379
Fact 6.4.10, 379
Fact 6.4.11, 379
Fact 6.4.12, 379
Fact 6.4.13, 380
Fact 6.4.14, 380
Fact 6.4.16, 380
Fact 6.4.17, 380
Fact 6.4.21, 381
Fact 6.4.22, 381
Fact 6.4.23, 381
Fact 6.4.30, 382
Fact 6.4.31, 382

matrix sum
Fact 6.4.34, 383
Fact 6.4.35, 383
Fact 6.4.36, 383

maximum singular
value
Fact 9.14.8, 608
Fact 9.14.30, 615

Newton-Raphson
algorithm
Fact 6.3.35, 376

normal matrix
Proposition 6.1.6, 365
Fact 6.3.16, 373
Fact 6.3.17, 373

null space
Proposition 6.1.6, 365
Fact 6.3.24, 374

observability matrix
Fact 12.20.19, 793

outer-product
matrix
Fact 6.3.2, 370

outer-product
perturbation
Fact 6.4.2, 377

partial isometry
Fact 6.3.28, 375

partitioned matrix
Fact 6.3.30, 376
Fact 6.5.1, 385
Fact 6.5.2, 386
Fact 6.5.3, 386
Fact 6.5.4, 386
Fact 6.5.13, 388
Fact 6.5.17, 390
Fact 6.5.18, 390
Fact 6.5.19, 390
Fact 6.5.20, 391
Fact 6.5.21, 391
Fact 6.5.22, 391
Fact 6.5.23, 391
Fact 6.5.24, 391
Fact 8.20.22, 530

positive-definite
matrix
Proposition 6.1.6, 365
Fact 6.4.7, 379
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positive-semidefinite
matrix
Proposition 6.1.6, 365
Fact 6.4.4, 378
Fact 8.20.1, 525
Fact 8.20.2, 525
Fact 8.20.3, 525
Fact 8.20.4, 525
Fact 8.20.6, 526
Fact 8.20.7, 526
Fact 8.20.8, 526
Fact 8.20.9, 526
Fact 8.20.10, 526
Fact 8.20.11, 527
Fact 8.20.13, 527
Fact 8.20.15, 527
Fact 8.20.16, 527
Fact 8.20.17, 528
Fact 8.20.18, 528
Fact 8.20.19, 530
Fact 8.20.20, 530
Fact 8.20.22, 530
Fact 8.20.23, 531

projector
Fact 6.3.3, 370
Fact 6.3.4, 370
Fact 6.3.5, 370
Fact 6.3.26, 375
Fact 6.3.27, 375
Fact 6.3.32, 376
Fact 6.4.15, 380
Fact 6.4.16, 380
Fact 6.4.17, 380
Fact 6.4.18, 381
Fact 6.4.19, 381
Fact 6.4.21, 381
Fact 6.4.23, 381
Fact 6.4.24, 381
Fact 6.4.25, 381
Fact 6.4.33, 383
Fact 6.4.41, 384
Fact 6.4.46, 385
Fact 6.5.10, 388

range
Proposition 6.1.6, 365
Fact 6.3.24, 374
Fact 6.4.42, 384
Fact 6.4.43, 385
Fact 6.5.3, 386

range-Hermitian
matrix
Proposition 6.1.6, 365
Fact 6.3.10, 371
Fact 6.3.11, 372
Fact 6.3.12, 372
Fact 6.3.16, 373
Fact 6.3.17, 373
Fact 6.4.26, 382
Fact 6.4.27, 382
Fact 6.4.28, 382
Fact 6.4.29, 382

rank
Fact 6.3.9, 371
Fact 6.3.22, 374
Fact 6.3.36, 377
Fact 6.4.2, 377
Fact 6.4.44, 385
Fact 6.5.6, 386
Fact 6.5.8, 387
Fact 6.5.9, 387
Fact 6.5.12, 388
Fact 6.5.13, 388
Fact 6.5.14, 388

rank subtractivity
partial ordering
Fact 6.5.30, 393

right inverse
Corollary 6.1.4, 364

right-inner matrix
Fact 6.3.8, 371

right-invertible
matrix
Proposition 6.1.5, 364

sequence
Fact 6.3.36, 377

singular value
Fact 6.3.29, 376

singular value
decomposition
Fact 6.3.15, 373

square root
Fact 8.20.4, 525

star partial ordering
Fact 8.19.8, 524

star-dagger matrix
Fact 6.3.13, 372

sum
Fact 6.5.1, 385

Fact 6.5.2, 386
trace
Fact 6.3.22, 374

uniqueness
Theorem 6.1.1, 363

unitary matrix
Fact 6.3.34, 376

Urquhart
Fact 6.3.14, 372

generalized Löwner
partial ordering

definition
Fact 8.19.10, 524

generalized
multispectrum

definition, 304

generalized projector
range-Hermitian
matrix
Fact 3.6.4, 178

generalized Schur
inequality

eigenvalues
Fact 9.11.6, 598

generalized spectrum
definition, 304

generating function
Fibonacci numbers
Fact 4.11.12, 277

geometric mean
arithmetic mean
Fact 1.15.21, 53
Fact 1.15.23, 53
Fact 1.15.24, 54
Fact 1.15.25, 54
Fact 1.15.26, 54
Fact 1.15.27, 54

determinant
Fact 8.10.43, 461

matrix exponential
Fact 8.10.44, 464

matrix logarithm
Fact 11.14.39, 689

Muirhead’s theorem
Fact 1.15.25, 54
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nondecreasing
function
Fact 8.10.43, 461
Fact 8.10.44, 464

positive-definite
matrix
Fact 8.10.43, 461
Fact 8.10.46, 464
Fact 8.21.51, 541

positive-semidefinite
matrix
Fact 8.10.43, 461

Riccati equation
Fact 12.23.4, 802

scalar inequality
Fact 1.11.6, 39

Schur product
Fact 8.21.51, 541

geometric multiplicity
algebraic multiplicity
Proposition 5.5.3, 295

block-diagonal
matrix
Proposition 5.5.13, 298

cascaded systems
Fact 12.22.15, 801

controllability
Fact 12.20.14, 792

defect
Proposition 4.5.2, 246

definition
Definition 4.5.1, 245

partitioned matrix
Proposition 5.5.14, 298

rank
Proposition 4.5.2, 246

similar matrices
Proposition 5.5.10, 297

geometric-mean
decomposition

unitary matrix
Fact 5.9.30, 316

Gershgorin circle
theorem

eigenvalue bounds
Fact 4.10.16, 269
Fact 4.10.20, 270

Gerstenhaber
dimension of the
algebra generated
by two commuting
matrices
Fact 5.10.21, 319

Gibson
diagonal entries of
similar matrices
Fact 5.9.13, 313

Givens rotation
orthogonal matrix
Fact 5.15.16, 347

global asymptotic
stability

nonlinear system
Theorem 11.7.2, 661

globally asymptotically
stable equilibrium

definition
Definition 11.7.1, 660

Gohberg-Semencul
formulas

Bezout matrix
Fact 4.8.6, 255

golden mean
positive-definite
solution of a
Riccati equation
Fact 12.23.4, 802

Riccati equation
Fact 12.23.4, 802

golden ratio
difference equation
Fact 4.11.12, 277

Riccati equation
Fact 12.23.4, 802

Golden-Thompson
inequality

matrix exponential
Fact 11.14.28, 687
Fact 11.16.4, 692

Gordan’s theorem
positive vector
Fact 4.11.15, 279

gradient
definition, 627

Gram matrix
positive-semidefinite
matrix
Fact 8.9.36, 454

Gram-Schmidt
orthonormalization

upper triangular
matrix factorization
Fact 5.15.9, 346

Gramian
controllability
Fact 12.20.17, 792

stabilization
Fact 12.20.17, 792

Graph
definition, 3

graph
antisymmetric graph
Fact 4.11.1, 272

cycle
Fact 1.6.4, 13

definition, 8
directed cut
Fact 4.11.2, 273

function
Fact 1.6.1, 13
Fact 1.6.2, 13
Fact 1.6.3, 13

Hamiltonian cycle
Fact 1.6.6, 14

irreducible matrix
Fact 4.11.2, 273

Laplacian matrix
Fact 8.15.36, 506

spanning path
Fact 1.6.6, 14

symmetric graph
Fact 4.11.1, 272

tournament
Fact 1.6.6, 14

walk
Fact 4.11.3, 273

graph of a matrix
adjacency matrix
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Proposition 3.2.5, 171
definition
Definition 3.2.4, 171

greatest common
divisor

definition, 233

greatest lower bound
projector
Fact 6.4.41, 384

greatest upper bound
for a partial ordering

definition
Definition 1.3.9, 7

Gregory’s series
infinite series
Fact 1.18.8, 73

Greville
generalized inverse
of a matrix product
Fact 6.4.10, 379
Fact 6.4.12, 379

generalized inverse
of a partitioned
matrix
Fact 6.5.17, 390

group
alternating group
Fact 3.21.7, 223

circulant matrix
Fact 3.21.7, 224
Fact 3.21.8, 224

classical
Proposition 3.3.6, 172

cyclic group
Fact 3.21.7, 223

definition
Definition 3.3.3, 172

dihedral group
Fact 3.21.7, 223

equivalence relation
Proposition 3.4.1, 173
Proposition 3.4.2, 173

finite group
Fact 3.21.7, 223
Fact 3.21.9, 224

icosahedral group

Fact 3.21.7, 223
isomorphism
Proposition 3.3.5, 172

Lie group
Definition 11.6.1, 658
Proposition 11.6.2, 658

matrix exponential
Proposition 11.6.7, 659

octahedral group
Fact 3.21.7, 223

orthogonal matrix
Fact 3.21.11, 225

pathwise connected
Proposition 11.6.8, 660

permutation group
Fact 3.21.7, 223

real numbers
Fact 3.21.1, 221

symmetry group
Fact 3.21.7, 223

tetrahedral group
Fact 3.21.7, 223

transpose
Fact 3.21.10, 225

unipotent matrix
Fact 3.21.5, 222
Fact 11.22.1, 715

unit sphere
Fact 3.21.2, 221

upper triangular
matrix
Fact 3.21.5, 222
Fact 11.22.1, 715

group generalized
inverse

complex conjugate
transpose
Fact 6.6.10, 394

definition, 369
discrete-time
Lyapunov-stable
matrix
Fact 11.21.11, 714

factorization
Fact 6.6.12, 395

generalized inverse
Fact 6.6.7, 394

idempotent matrix
Proposition 6.2.3, 369

integral
Fact 11.13.13, 680
Fact 11.13.14, 680

irreducible matrix
Fact 6.6.20, 398

Kronecker product
Fact 7.4.31, 408

limit
Fact 6.6.14, 395

matrix exponential
Fact 11.13.13, 680
Fact 11.13.14, 680
Fact 11.18.5, 698
Fact 11.18.6, 698

normal matrix
Fact 6.6.10, 394

null space
Proposition 6.2.3, 369

positive-semidefinite
matrix
Fact 8.20.1, 525

range
Proposition 6.2.3, 369

range-Hermitian
matrix
Fact 6.6.8, 394

singular value
decomposition
Fact 6.6.15, 395

trace
Fact 6.6.6, 394

group-invertible matrix
almost nonnegative
matrix
Fact 11.19.4, 706

complementary
subspaces
Corollary 3.5.8, 176

definition
Definition 3.1.1, 165

equivalent
characterizations
Fact 3.6.1, 177

Hermitian matrix
Fact 6.6.18, 397

idempotent matrix
Proposition 3.1.6, 169
Proposition 3.5.9, 176
Proposition 6.2.3, 369
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Fact 5.11.8, 322
index of a matrix
Proposition 3.5.6, 176
Corollary 5.5.9, 297
Fact 5.14.4, 339

inertia
Fact 5.8.5, 308

Jordan canonical
form
Fact 6.6.9, 394

Kronecker product
Fact 7.4.16, 406
Fact 7.4.31, 408

Lyapunov-stable
matrix
Fact 11.18.2, 698

matrix exponential
Fact 11.18.14, 700

matrix power
Fact 3.6.2, 177
Fact 6.6.19, 398

N-matrix
Fact 11.19.4, 706

normal matrix
Fact 6.6.17, 397

outer-product
matrix
Fact 5.14.3, 338

positive-definite
matrix
Fact 8.10.12, 457

positive-semidefinite
matrix
Fact 8.10.12, 457

projector
Fact 3.13.21, 209

range
Fact 5.14.4, 339

range-Hermitian
matrix
Proposition 3.1.6, 169
Fact 6.6.16, 396

rank
Fact 5.8.5, 308
Fact 5.14.4, 339

semistable matrix
Fact 11.18.3, 698

similar matrices
Proposition 3.4.5, 174

Fact 5.9.5, 312
spectrum
Proposition 5.5.21, 300

square root
Fact 5.15.20, 348

stable subspace
Proposition 11.8.8, 665

tripotent matrix
Proposition 3.1.6, 169

unitarily similar
matrices
Proposition 3.4.5, 174

groups
complex
representation
Fact 3.21.8, 224

representation
Fact 3.21.8, 224

H

H2 norm
controllability
Gramian
Corollary 12.11.4, 767
Corollary 12.11.5, 767

definition
Definition 12.11.2, 766

observability
Gramian
Corollary 12.11.4, 767

Parseval’s theorem
Theorem 12.11.3, 766

partitioned transfer
function
Fact 12.22.16, 801
Fact 12.22.17, 801

quadratic
performance
measure
Proposition 12.15.1,
776

submultiplicative
norm
Fact 12.22.20, 801

sum of transfer
functions

Proposition 12.11.6,
767

transfer function
Fact 12.22.16, 801
Fact 12.22.17, 801
Fact 12.22.18, 801
Fact 12.22.19, 801

Hadamard product, see
Schur product

Hadamard’s inequality
determinant
Fact 8.13.33, 491
Fact 8.13.34, 491

determinant bound
Fact 9.11.1, 596

determinant of a
partitioned matrix
Fact 6.5.26, 392

positive-semidefinite
matrix determinant
Fact 8.17.11, 511

Hadamard-Fischer
inequality

positive-semidefinite
matrix
Fact 8.13.36, 492

Hahn-Banach theorem
inner product
inequality
Fact 10.9.12, 635

half-vectorization
operator

Kronecker product,
416

Hamiltonian
block decomposition
Proposition 12.17.5,
783

closed-loop spectrum
Proposition 12.16.14,
781

definition, 780
Jordan form
Fact 12.23.1, 802

Riccati equation
Theorem 12.17.9, 784
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Proposition 12.16.14,
781

Corollary 12.16.15, 781
spectral factorization
Proposition 12.16.13,
780

spectrum
Theorem 12.17.9, 784
Proposition 12.16.13,
780

Proposition 12.17.5,
783

Proposition 12.17.7,
784

Proposition 12.17.8,
784

Lemma 12.17.4, 783
Lemma 12.17.6, 783

stabilizability
Fact 12.23.1, 802

stabilizing solution
Corollary 12.16.15, 781

uncontrollable
eigenvalue
Proposition 12.17.7,
784

Proposition 12.17.8,
784

Lemma 12.17.4, 783
Lemma 12.17.6, 783

unobservable
eigenvalue
Proposition 12.17.7,
784

Proposition 12.17.8,
784

Lemma 12.17.4, 783
Lemma 12.17.6, 783

Hamiltonian cycle
definition
Definition 1.4.3, 9

graph
Fact 1.6.6, 14

tournament
Fact 1.6.6, 14

Hamiltonian graph
definition
Definition 1.4.3, 9

Hamiltonian matrix
Cayley transform
Fact 3.19.12, 217

characteristic
polynomial
Fact 4.9.21, 264
Fact 4.9.23, 264

definition
Definition 3.1.5, 169

identity
Fact 3.19.1, 216

inverse matrix
Fact 3.19.5, 216

matrix exponential
Proposition 11.6.7, 659

matrix logarithm
Fact 11.14.19, 685

matrix sum
Fact 3.19.5, 216

orthogonal matrix
Fact 3.19.13, 217

orthosymplectic
matrix
Fact 3.19.13, 217

partitioned matrix
Proposition 3.1.7, 169
Fact 3.19.6, 216
Fact 3.19.8, 217
Fact 4.9.22, 264
Fact 5.12.21, 337

skew reflector
Fact 3.19.3, 216

skew-involutory
matrix
Fact 3.19.2, 216
Fact 3.19.3, 216

skew-symmetric
matrix
Fact 3.7.34, 184
Fact 3.19.3, 216
Fact 3.19.8, 217

spectrum
Proposition 5.5.21, 300

symplectic matrix
Fact 3.19.2, 216
Fact 3.19.12, 217
Fact 3.19.13, 217

symplectic similarity
Fact 3.19.4, 216

trace
Fact 3.19.7, 216

unit imaginary
matrix
Fact 3.19.3, 216

Hamiltonian path
definition
Definition 1.4.3, 9

Hankel matrix
block-Hankel matrix
Fact 3.18.3, 215

definition
Definition 3.1.3, 167

Hilbert matrix
Fact 3.18.4, 215

Markov
block-Hankel
matrix
definition, 754

rational function
Fact 4.8.8, 257

symmetric matrix
Fact 3.18.2, 215

Toeplitz matrix
Fact 3.18.1, 215

Hanner inequality
Hölder norm
Fact 9.7.21, 569

Schatten norm
Fact 9.9.36, 586

Hansen
trace of a convex
function
Fact 8.12.33, 482

Hardy
Hölder-induced
norm
Fact 9.8.17, 574

Hardy inequality
sum of powers
Fact 1.15.42, 58

Hardy-Hilbert inequality
sum of powers
Fact 1.16.13, 63
Fact 1.16.14, 63
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Hardy-Littlewood
rearrangement
inequality

sum of products
Fact 1.16.4, 60

sum of products
inequality
Fact 1.16.5, 60

Hardy-Littlewood-Polya
theorem

doubly stochastic
matrix
Fact 2.21.7, 163

harmonic mean
arithmetic-mean
inequality
Fact 1.15.16, 52
Fact 1.15.17, 52

arithmetic-mean–
geometric-mean
inequality
Fact 1.15.15, 52

Dragomir’s
inequality
Fact 1.16.24, 65

harmonic steady-state
response

linear system
Theorem 12.12.1, 768

Hartwig
rank of an
idempotent matrix
Fact 3.12.27, 203

Haynsworth
positive-semidefinite
matrix
Fact 5.14.13, 340

Schur complement of
a partitioned
matrix
Fact 6.5.29, 393

Haynsworth inertia
additivity formula

Schur complement
Fact 6.5.5, 386

Heinz inequality

unitarily invariant
norm
Fact 9.9.49, 589

Heinz mean
scalar inequality
Fact 1.10.38, 38

Heisenberg group
unipotent matrix
Fact 3.21.5, 222
Fact 11.22.1, 715

upper triangular
matrix
Fact 3.21.5, 222
Fact 11.22.1, 715

Henrici
eigenvalue bound
Fact 9.11.3, 597

Hermite-Biehler
theorem

asymptotically stable
polynomial
Fact 11.17.6, 696

Hermite-Hadamard
inequality

convex function
Fact 1.8.6, 22

Hermitian matrix
additive
decomposition
Fact 3.7.29, 183

adjugate
Fact 3.7.10, 179

affine mapping
Fact 3.7.14, 181

block-diagonal
matrix
Fact 3.7.8, 179

Cartesian
decomposition
Fact 3.7.27, 182
Fact 3.7.28, 183
Fact 3.7.29, 183

cogredient
transformation
Fact 8.16.4, 507
Fact 8.16.6, 507

commutator
Fact 3.8.1, 184
Fact 3.8.3, 185
Fact 9.9.30, 585

commuting matrices
Fact 5.14.29, 342

complex conjugate
transpose
Fact 3.7.13, 180
Fact 5.9.8, 312
Fact 6.6.18, 397

congruent matrices
Proposition 3.4.5, 174
Corollary 5.4.7, 294

convergent sequence
Fact 11.14.7, 683
Fact 11.14.8, 683

convex function
Fact 8.12.32, 482
Fact 8.12.33, 482

convex hull
Fact 8.17.8, 510

defect
Fact 5.8.7, 308
Fact 8.9.7, 451

definition
Definition 3.1.1, 165

determinant
Corollary 8.4.10, 427
Fact 3.7.21, 182
Fact 8.13.7, 486

diagonal
Fact 8.17.8, 510

diagonal entries
Fact 8.17.13, 512

diagonal entry
Corollary 8.4.7, 427
Fact 8.17.8, 510
Fact 8.17.9, 510

diagonal matrix
Corollary 5.4.5, 294

eigenvalue
Theorem 8.4.5, 426
Theorem 8.4.9, 427
Theorem 8.4.11, 428
Corollary 8.4.2, 425
Corollary 8.4.6, 426
Corollary 8.4.7, 427
Corollary 8.6.19, 442



discrete-time asymptotic stability 955

Lemma 8.4.3, 425
Lemma 8.4.4, 425
Fact 8.10.4, 456
Fact 8.15.20, 503
Fact 8.15.31, 505
Fact 8.17.8, 510
Fact 8.17.9, 510
Fact 8.17.15, 512
Fact 8.17.16, 512
Fact 8.18.4, 513
Fact 8.18.17, 517
Fact 8.21.28, 536

eigenvalue bound
Fact 9.12.3, 599

eigenvalue inequality
Lemma 8.4.1, 424
Fact 8.18.3, 513

eigenvalue
perturbation
Fact 4.10.27, 272

eigenvalues
Fact 8.17.13, 512

existence of
transformation
Fact 3.9.2, 185

factorization
Fact 5.15.17, 348
Fact 5.15.25, 349
Fact 5.15.26, 349
Fact 5.15.41, 351
Fact 8.16.1, 507

Frobenius norm
Fact 9.9.41, 588

generalized inverse
Fact 6.3.21, 374
Fact 6.4.3, 378
Fact 8.20.12, 527

group-invertible
matrix
Fact 6.6.18, 397

inequality
Fact 8.9.13, 452
Fact 8.9.15, 452
Fact 8.9.20, 452
Fact 8.13.26, 490
Fact 8.13.30, 490

inertia
Theorem 8.4.11, 428
Proposition 5.4.6, 294

Fact 5.8.6, 308
Fact 5.8.8, 308
Fact 5.8.12, 309
Fact 5.8.13, 309
Fact 5.8.14, 309
Fact 5.8.15, 309
Fact 5.8.16, 310
Fact 5.8.17, 310
Fact 5.8.18, 310
Fact 5.8.19, 310
Fact 5.12.1, 333
Fact 6.3.21, 374
Fact 8.10.15, 457
Fact 8.20.12, 527
Fact 8.20.14, 527
Fact 12.21.1, 793
Fact 12.21.2, 794
Fact 12.21.3, 794
Fact 12.21.4, 794
Fact 12.21.5, 794
Fact 12.21.6, 795
Fact 12.21.7, 795
Fact 12.21.8, 795
Fact 12.21.10, 796
Fact 12.21.11, 796
Fact 12.21.12, 796

Kronecker product
Fact 7.4.16, 406
Fact 8.21.28, 536

Kronecker sum
Fact 7.5.8, 409

limit
Fact 8.10.1, 456

linear combination
Fact 8.15.24, 504
Fact 8.15.25, 504
Fact 8.15.26, 504

linear combination of
projectors
Fact 5.19.10, 361

matrix exponential
Proposition 11.2.8, 649
Proposition 11.2.9, 650
Proposition 11.4.5, 654
Corollary 11.2.6, 648
Fact 11.14.7, 683
Fact 11.14.8, 683
Fact 11.14.21, 685
Fact 11.14.28, 687

Fact 11.14.29, 687
Fact 11.14.31, 688
Fact 11.14.32, 688
Fact 11.14.34, 688
Fact 11.15.1, 689
Fact 11.16.4, 692
Fact 11.16.5, 694
Fact 11.16.13, 695
Fact 11.16.17, 695

maximum eigenvalue
Lemma 8.4.3, 425
Fact 5.11.5, 321
Fact 8.10.3, 456

maximum singular
value
Fact 5.11.5, 321
Fact 9.9.41, 588

minimum eigenvalue
Lemma 8.4.3, 425
Fact 8.10.3, 456

normal matrix
Proposition 3.1.6, 169

outer-product
matrix
Fact 3.7.18, 181
Fact 3.9.2, 185

partitioned matrix
Fact 3.7.27, 182
Fact 4.10.27, 272
Fact 5.8.19, 310
Fact 5.12.1, 333
Fact 6.5.5, 386

positive-definite
matrix
Fact 5.15.41, 351
Fact 8.10.13, 457
Fact 8.13.7, 486

positive-semidefinite
matrix
Fact 5.15.41, 351
Fact 8.9.11, 452
Fact 8.10.13, 457

product
Example 5.5.19, 300

projector
Fact 3.13.2, 206
Fact 3.13.13, 208
Fact 3.13.20, 209
Fact 5.15.17, 348
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properties of < and
≤
Proposition 8.1.2, 418

quadratic form
Fact 3.7.6, 178
Fact 3.7.7, 179
Fact 8.15.24, 504
Fact 8.15.25, 504
Fact 8.15.26, 504
Fact 8.15.31, 505

quadratic matrix
equation
Fact 5.11.4, 321

range
Lemma 8.6.1, 431

rank
Fact 3.7.22, 182
Fact 3.7.30, 183
Fact 5.8.6, 308
Fact 5.8.7, 308
Fact 8.9.7, 451

Rayleigh quotient
Lemma 8.4.3, 425

reflector
Fact 3.14.2, 211

Schatten norm
Fact 9.9.27, 584
Fact 9.9.39, 587

Schur decomposition
Corollary 5.4.5, 294

Schur product
Fact 8.21.28, 536
Fact 8.21.32, 537

signature
Fact 5.8.6, 308
Fact 5.8.7, 308
Fact 8.10.17, 457

similar matrices
Proposition 5.5.12, 297

simultaneous
diagonalization
Fact 8.16.1, 507
Fact 8.16.4, 507
Fact 8.16.6, 507

skew-Hermitian
matrix
Fact 3.7.9, 179
Fact 3.7.28, 183

skew-symmetric
matrix
Fact 3.7.9, 179

spectral abscissa
Fact 5.11.5, 321

spectral radius
Fact 5.11.5, 321

spectral variation
Fact 9.12.5, 600
Fact 9.12.7, 601

spectrum
Proposition 5.5.21, 300
Lemma 8.4.8, 427

spread
Fact 8.15.31, 505

strong majorization
Fact 8.17.8, 510

submatrix
Theorem 8.4.5, 426
Corollary 8.4.6, 426
Lemma 8.4.4, 425
Fact 5.8.8, 308

symmetric matrix
Fact 3.7.9, 179

trace
Proposition 8.4.13, 428
Corollary 8.4.10, 427
Lemma 8.4.12, 428
Fact 3.7.13, 180
Fact 3.7.22, 182
Fact 8.12.38, 483

trace of a product
Fact 8.12.6, 476
Fact 8.12.7, 477
Fact 8.12.8, 477
Fact 8.12.16, 478

trace of product
Fact 5.12.4, 333
Fact 5.12.5, 333
Fact 8.18.18, 518

tripotent matrix
Fact 3.16.3, 213

unitarily invariant
norm
Fact 9.9.5, 580
Fact 9.9.41, 588
Fact 9.9.43, 588
Fact 11.16.13, 695

unitarily similar
matrices
Proposition 3.4.5, 174
Proposition 5.6.3, 302
Corollary 5.4.5, 294

unitary matrix
Fact 3.11.29, 197
Fact 8.16.1, 507
Fact 11.14.34, 688

Hermitian matrix
eigenvalue

Cauchy interlacing
theorem
Lemma 8.4.4, 425

inclusion principle
Theorem 8.4.5, 426

Hermitian matrix
eigenvalues

monotonicity
theorem
Theorem 8.4.9, 427
Fact 8.10.4, 456

Weyl’s inequality
Theorem 8.4.9, 427
Fact 8.10.4, 456

Hermitian matrix inertia
identity

Styan
Fact 8.10.15, 457

Hermitian part
eigenvalue
Fact 5.11.24, 325

Hermitian perturbation
Lidskii-Mirsky-
Wielandt
theorem
Fact 9.12.4, 599

Heron mean
logarithmic mean
Fact 1.10.37, 37

Heron’s formula
triangle
Fact 2.20.11, 156

Hessenberg matrix
lower or upper
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Definition 3.1.3, 167

Hessian
definition, 627

hidden convexity
quadratic form
Fact 8.14.11, 498

Hilbert matrix
Hankel matrix
Fact 3.18.4, 215

positive-definite
matrix
Fact 3.18.4, 215

Hille-Yosida theorem
matrix exponential
bound
Fact 11.15.8, 691

Hirsch’s theorem
eigenvalue bound
Fact 5.11.21, 325
Fact 9.11.8, 598

Hlawka’s equality
norm identity
Fact 9.7.4, 563

Hlawka’s inequality
Euclidean norm
Fact 9.7.7, 565

norm inequality
Fact 9.7.4, 563

Hoffman
eigenvalue
perturbation
Fact 9.12.9, 601

Hoffman-Wielandt
theorem

eigenvalue
perturbation
Fact 9.12.9, 601

Hölder norm
compatible norms
Proposition 9.3.5, 550

complex conjugate
Fact 9.7.33, 571

definition, 544
eigenvalue

Fact 9.11.6, 598
eigenvalue bound
Fact 9.11.8, 598

Hanner inequality
Fact 9.7.21, 569

Hölder-induced
norm
Proposition 9.4.11, 556
Fact 9.7.28, 571
Fact 9.8.12, 573
Fact 9.8.17, 574
Fact 9.8.18, 574
Fact 9.8.19, 575
Fact 9.8.29, 576

inequality
Proposition 9.1.5, 545
Proposition 9.1.6, 545
Fact 9.7.18, 569
Fact 9.7.19, 569
Fact 9.7.21, 569
Fact 9.7.29, 571

Kronecker product
Fact 9.9.61, 591

matrix
definition, 547

Minkowski’s
inequality
Lemma 9.1.3, 544

monotonicity
Proposition 9.1.5, 545

power-sum
inequality
Fact 1.15.34, 57

Schatten norm
Proposition 9.2.5, 549
Fact 9.11.6, 598

submultiplicative
norm
Fact 9.9.20, 583

vector
Fact 9.7.34, 571

vector norm
Proposition 9.1.4, 544

Hölder’s inequality
Diaz-Goldman-
Metcalf
inequality
Fact 1.16.22, 65

positive-semidefinite
matrix
Fact 8.12.12, 477

positive-semidefinite
matrix trace
Fact 8.12.11, 477

reversal
Fact 1.16.22, 65

scalar case
Fact 1.16.11, 62
Fact 1.16.12, 62

vector inequality
Proposition 9.1.6, 545

Hölder-induced lower
bound

definition, 559

Hölder-induced norm
absolute value
Fact 9.8.26, 576

adjoint norm
Fact 9.8.10, 572

column norm
Fact 9.8.21, 575
Fact 9.8.23, 575
Fact 9.8.25, 576

complex conjugate
Fact 9.8.27, 576

complex conjugate
transpose
Fact 9.8.28, 576

definition, 554
field
Proposition 9.4.7, 554

formulas
Proposition 9.4.9, 555

Hardy
Fact 9.8.17, 574

Hölder norm
Proposition 9.4.11, 556
Fact 9.7.28, 571
Fact 9.8.12, 573
Fact 9.8.17, 574
Fact 9.8.18, 574
Fact 9.8.19, 575
Fact 9.8.29, 576

inequality
Fact 9.8.21, 575
Fact 9.8.22, 575
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Littlewood
Fact 9.8.17, 574
Fact 9.8.18, 574

maximum singular
value
Fact 9.8.21, 575

monotonicity
Proposition 9.4.6, 554

Orlicz
Fact 9.8.18, 574

partitioned matrix
Fact 9.8.11, 572

quadratic form
Fact 9.8.35, 577
Fact 9.8.36, 577

row norm
Fact 9.8.21, 575
Fact 9.8.23, 575
Fact 9.8.25, 576

Hölder-McCarthy
inequality

quadratic form
Fact 8.15.14, 502

Hopf’s theorem
eigenvalues of a
positive matrix
Fact 4.11.20, 280

Horn
diagonal entries of a
unitary matrix
Fact 8.17.10, 511

Householder matrix,
see elementary
reflector

definition, 229

Householder reflector,
see elementary
reflector

definition, 229

Hsu
orthogonally similar
matrices
Fact 5.9.15, 313

Hua’s inequalities
determinant
Fact 8.13.25, 489

determinant
inequality
Fact 8.11.21, 472

positive-semidefinite
matrix
Fact 8.11.21, 472

Hua’s inequality
scalar inequality
Fact 1.15.13, 51

Hua’s matrix equality
positive-semidefinite
matrix
Fact 8.11.21, 472

Hurwitz matrix, see
asymptotically
stable matrix

Hurwitz polynomial,
see asymptotically
stable polynomial

asymptotically stable
polynomial
Fact 11.18.23, 702

Huygens
polynomial bound
Fact 11.20.13, 712

Huygens’s inequality
trigonometric
inequality
Fact 1.9.29, 28

hyperbolic identities
Fact 1.19.2, 75

hyperbolic inequality
scalar
Fact 1.9.29, 28
Fact 1.10.29, 35

hypercompanion form
existence
Theorem 5.3.2, 288
Theorem 5.3.3, 289

hypercompanion
matrix

companion matrix
Corollary 5.3.4, 289
Lemma 5.3.1, 288

definition, 288
elementary divisor
Lemma 5.3.1, 288

example
Example 5.3.6, 290
Example 5.3.7, 291

real Jordan form
Fact 5.10.1, 316

similarity
transformation
Fact 5.10.1, 316

hyperellipsoid
volume
Fact 3.7.35, 184

hyperplane
definition, 91
elementary projector
Fact 3.13.8, 207

elementary reflector
Fact 3.14.5, 211

I

icosahedral group
group
Fact 3.21.7, 223

idempotent matrix
commutator
Fact 3.12.16, 200
Fact 3.12.17, 200
Fact 3.12.30, 204
Fact 3.12.31, 204
Fact 3.12.32, 205
Fact 3.15.4, 200

commuting matrices
Fact 3.16.5, 213

complementary
idempotent matrix
Fact 3.12.12, 199

complementary
subspaces
Proposition 3.5.3, 176
Proposition 3.5.4, 176
Fact 3.12.1, 198
Fact 3.12.33, 205

complex conjugate
Fact 3.12.7, 199
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complex conjugate
transpose
Fact 3.12.7, 199
Fact 5.9.21, 314

definition
Definition 3.1.1, 165

difference
Fact 3.12.25, 202
Fact 3.12.30, 204
Fact 5.12.19, 337

difference of
matrices
Fact 3.12.27, 203
Fact 3.12.28, 203
Fact 3.12.32, 205

discrete-time
semistable matrix
Fact 11.21.10, 714

Drazin generalized
inverse
Proposition 6.2.2, 368

factorization
Fact 5.15.28, 350
Fact 5.15.30, 350

full-rank
factorization
Fact 3.12.23, 202

generalized inverse
Fact 5.12.18, 336
Fact 6.3.22, 374
Fact 6.3.23, 374
Fact 6.3.24, 374
Fact 6.3.25, 375
Fact 6.3.26, 375
Fact 6.3.27, 375
Fact 6.4.18, 381
Fact 6.4.19, 381
Fact 6.4.20, 381
Fact 6.4.22, 381
Fact 6.4.25, 381

group generalized
inverse
Proposition 6.2.3, 369

group-invertible
matrix
Proposition 3.1.6, 169
Proposition 3.5.9, 176
Proposition 6.2.3, 369
Fact 5.11.8, 322

identities
Fact 3.12.18, 200

identity perturbation
Fact 3.12.13, 199

inertia
Fact 5.8.1, 307

involutory matrix
Fact 3.15.2, 212

Kronecker product
Fact 7.4.16, 406

left inverse
Fact 3.12.10, 199

linear combination
Fact 3.12.26, 203
Fact 3.12.28, 203
Fact 5.19.9, 361

matrix exponential
Fact 11.11.1, 671
Fact 11.16.12, 695

matrix product
Fact 3.12.21, 201
Fact 3.12.23, 202

matrix sum
Fact 3.12.26, 203
Fact 5.19.7, 361
Fact 5.19.8, 361
Fact 5.19.9, 361

maximum singular
value
Fact 5.11.38, 328
Fact 5.11.39, 329
Fact 5.12.18, 336

nilpotent matrix
Fact 3.12.16, 200

nonsingular matrix
Fact 3.12.11, 199
Fact 3.12.26, 203
Fact 3.12.28, 203
Fact 3.12.32, 205

norm
Fact 11.16.12, 695

normal matrix
Fact 3.13.3, 206

null space
Fact 3.12.3, 199
Fact 3.15.4, 200
Fact 6.3.24, 374

onto a subspace
along another
subspace
definition, 176

outer-product
matrix
Fact 3.7.18, 181
Fact 3.12.6, 199

partitioned matrix
Fact 3.12.14, 200
Fact 3.12.20, 201
Fact 3.12.33, 205
Fact 5.10.22, 320

positive-definite
matrix
Fact 5.15.30, 350

positive-semidefinite
matrix
Fact 5.15.30, 350

power
Fact 3.12.3, 198

product
Fact 3.12.29, 203

projector
Fact 3.13.3, 206
Fact 3.13.13, 208
Fact 3.13.20, 209
Fact 3.13.24, 210
Fact 5.10.13, 319
Fact 5.12.18, 336
Fact 6.3.26, 375
Fact 6.4.18, 381
Fact 6.4.19, 381
Fact 6.4.20, 381
Fact 6.4.25, 381

quadratic form
Fact 3.13.11, 208

range
Fact 3.12.3, 199
Fact 3.12.4, 199
Fact 3.15.4, 200
Fact 6.3.24, 374

range-Hermitian
matrix
Fact 3.13.3, 206
Fact 6.3.27, 375

rank
Fact 3.12.6, 199
Fact 3.12.9, 199
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Fact 3.12.19, 201
Fact 3.12.20, 201
Fact 3.12.22, 201
Fact 3.12.24, 202
Fact 3.12.25, 202
Fact 3.12.27, 203
Fact 3.12.31, 204
Fact 5.8.1, 307
Fact 5.11.7, 322

right inverse
Fact 3.12.10, 199

semisimple matrix
Fact 5.14.21, 341

similar matrices
Proposition 3.4.5, 174
Proposition 5.6.3, 302
Corollary 5.5.22, 301
Fact 5.10.9, 318
Fact 5.10.13, 319
Fact 5.10.14, 319
Fact 5.10.22, 320

singular value
Fact 5.11.38, 328

skew-Hermitian
matrix
Fact 3.12.8, 199

skew-idempotent
matrix
Fact 3.12.5, 199

spectrum
Proposition 5.5.21, 300
Fact 5.11.7, 322

stable subspace
Proposition 11.8.8, 665

submultiplicative
norm
Fact 9.8.6, 572

sum
Fact 3.12.22, 201

trace
Fact 5.8.1, 307
Fact 5.11.7, 322

transpose
Fact 3.12.7, 199

tripotent matrix
Fact 3.16.1, 212
Fact 3.16.5, 213

unitarily similar
matrices

Proposition 3.4.5, 174
Fact 5.9.21, 314
Fact 5.9.26, 315
Fact 5.9.27, 315
Fact 5.10.10, 318

unstable subspace
Proposition 11.8.8, 665

idempotent matrix onto
a subspace along
another subspace

definition, 176

identity
cube root
Fact 2.12.23, 128

identity function
definition, 3

identity matrix
definition, 83
symplectic matrix
Fact 3.19.3, 216

identity perturbation
cyclic matrix
Fact 5.14.16, 341

defective matrix
Fact 5.14.16, 341

derogatory matrix
Fact 5.14.16, 341

diagonalizable over F

Fact 5.14.16, 341
inverse matrix
Fact 4.8.12, 259

semisimple matrix
Fact 5.14.16, 341

simple matrix
Fact 5.14.16, 341

spectrum
Fact 4.10.13, 268
Fact 4.10.14, 269

identity shift
controllable subspace
Lemma 12.6.7, 738

unobservable
subspace
Lemma 12.3.7, 730

identity theorem

matrix function
evaluation
Theorem 10.5.3, 629

identric mean
arithmetic mean
Fact 1.10.36, 37

logarithmic mean
Fact 1.10.36, 37

image
definition, 3

imaginary part
frequency response
Fact 12.22.5, 799

transfer function
Fact 12.22.5, 799

imaginary vector
definition, 85

implication
definition, 1

improper rational
function

definition
Definition 4.7.1, 249

improper rational
transfer function

definition
Definition 4.7.2, 249

impulse function
definition, 724

impulse response
definition, 725

impulse response
function

definition, 725

inbound Laplacian
matrix

adjacency matrix
Theorem 3.2.2, 170

definition
Definition 3.2.1, 170

incidence matrix
definition
Definition 3.2.1, 170
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Laplacian matrix
Theorem 3.2.2, 170
Theorem 3.2.3, 171

inclusion principle
Hermitian matrix
eigenvalue
Theorem 8.4.5, 426

inclusion-exclusion
principle

cardinality
Fact 1.5.5, 11

increasing function
convex function
Theorem 8.6.15, 436

definition
Definition 8.6.12, 434

log majorization
Fact 2.21.12, 163

logarithm
Proposition 8.6.13, 435

matrix functions
Proposition 8.6.13, 435

positive-definite
matrix
Fact 8.10.53, 466

Schur complement
Proposition 8.6.13, 435

weak majorization
Fact 2.21.10, 163

increasing sequence
positive-semidefinite
matrix
Proposition 8.6.3, 432

indecomposable
matrix, see
irreducible matrix

definition, 229

indegree
graph
Definition 1.4.3, 9

indegree matrix
definition
Definition 3.2.1, 170

index of a matrix

block-triangular
matrix
Fact 5.14.32, 343
Fact 6.6.13, 395

complementary
subspaces
Proposition 3.5.7, 176

definition
Definition 3.5.5, 176

group-invertible
matrix
Proposition 3.5.6, 176
Corollary 5.5.9, 297
Fact 5.14.4, 339

Kronecker product
Fact 7.4.26, 407

outer-product
matrix
Fact 5.14.3, 338

partitioned matrix
Fact 5.14.32, 343
Fact 6.6.13, 395

range
Fact 5.14.4, 339

rank
Proposition 5.5.2, 295

index of an eigenvalue
algebraic multiplicity
Proposition 5.5.6, 296

definition
Definition 5.5.1, 295

Jordan block
Proposition 5.5.3, 295

minimal polynomial
Proposition 5.5.15, 299

rank
Proposition 5.5.2, 295

semisimple
eigenvalue
Proposition 5.5.8, 296

induced lower bound
definition
Definition 9.5.1, 558
Proposition 9.5.2, 558

lower bound
Fact 9.8.43, 579

maximum singular
value

Corollary 9.5.5, 560
minimum singular
value
Corollary 9.5.5, 560

properties
Proposition 9.5.2, 558

Proposition 9.5.3,
559

singular value
Proposition 9.5.4, 560

supermultiplicativity
Proposition 9.5.6, 560

induced norm
compatible norm
Proposition 9.4.3, 553

definition
Definition 9.4.1, 553

determinant
Fact 9.12.11, 601

dual norm
Fact 9.7.22, 570

field
Example 9.4.8, 554

maximum singular
value
Fact 9.8.24, 575

norm
Theorem 9.4.2, 553

quadratic form
Fact 9.8.34, 577

spectral radius
Corollary 9.4.5, 554
Corollary 9.4.10, 556

induced norms
symmetry property
Fact 9.8.16, 574

inequality
elementary
symmetric function
Fact 1.15.20, 53

sum of products
Fact 1.15.20, 53

inertia
congruent matrices
Corollary 5.4.7, 294
Fact 5.8.22, 311

definition, 245
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dissipative matrix
Fact 5.8.12, 309

generalized inverse
Fact 6.3.21, 374
Fact 8.20.12, 527

group-invertible
matrix
Fact 5.8.5, 308

Hermitian matrix
Theorem 8.4.11, 428
Proposition 5.4.6, 294
Fact 5.8.6, 308
Fact 5.8.8, 308
Fact 5.8.12, 309
Fact 5.8.13, 309
Fact 5.8.14, 309
Fact 5.8.15, 309
Fact 5.8.16, 310
Fact 5.8.17, 310
Fact 5.8.18, 310
Fact 5.8.19, 310
Fact 5.12.1, 333
Fact 6.3.21, 374
Fact 8.10.15, 457
Fact 8.20.12, 527
Fact 8.20.14, 527
Fact 12.21.1, 793
Fact 12.21.2, 794
Fact 12.21.3, 794
Fact 12.21.4, 794
Fact 12.21.5, 794
Fact 12.21.6, 795
Fact 12.21.7, 795
Fact 12.21.8, 795
Fact 12.21.10, 796
Fact 12.21.11, 796
Fact 12.21.12, 796

idempotent matrix
Fact 5.8.1, 307

inequalities
Fact 5.8.16, 310

involutory matrix
Fact 5.8.2, 307

Lyapunov equation
Fact 12.21.1, 793
Fact 12.21.2, 794
Fact 12.21.3, 794
Fact 12.21.4, 794
Fact 12.21.5, 794

Fact 12.21.6, 795
Fact 12.21.7, 795
Fact 12.21.8, 795
Fact 12.21.9, 796
Fact 12.21.10, 796
Fact 12.21.11, 796
Fact 12.21.12, 796

nilpotent matrix
Fact 5.8.4, 307

normal matrix
Fact 5.10.17, 319

partitioned matrix
Fact 5.8.19, 310
Fact 5.8.20, 310
Fact 5.8.21, 311
Fact 5.12.1, 333
Fact 6.5.5, 386

positive-definite
matrix
Fact 5.8.10, 308

positive-semidefinite
matrix
Fact 5.8.9, 308
Fact 5.8.10, 308
Fact 12.21.9, 796

rank
Fact 5.8.5, 308
Fact 5.8.18, 310

Riccati equation
Lemma 12.16.18, 781

Schur complement
Fact 6.5.5, 386

skew-Hermitian
matrix
Fact 5.8.4, 307

skew-involutory
matrix
Fact 5.8.4, 307

submatrix
Fact 5.8.8, 308

tripotent matrix
Fact 5.8.3, 307

inertia matrix
positive-definite
matrix
Fact 8.9.5, 451

rigid body
Fact 8.9.5, 451

infinite finite interval
definition, xxxv

infinite matrix product
convergence
Fact 11.21.16, 715

infinite product
commutator
Fact 11.14.18, 685

convergence
Fact 11.21.16, 715

identity
Fact 1.7.10, 20
Fact 1.7.11, 20

matrix exponential
Fact 11.14.18, 685

infinite series
binomial series
Fact 1.18.8, 73

complex numbers
Fact 1.18.8, 73

Gregory’s series
Fact 1.18.8, 73

identity
Fact 1.7.6, 18
Fact 1.7.7, 19
Fact 1.7.9, 19

Mercator’s series
Fact 1.18.8, 73

spectral radius
Fact 10.11.24, 641

infinity norm
definition, 545
Kronecker product
Fact 9.9.61, 591

submultiplicative
norm
Fact 9.9.1, 580
Fact 9.9.2, 580

injective function
definition, 76

inner product
convex cone
Fact 10.9.13, 635

inequality
Fact 2.12.1, 126

open ball
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Fact 9.7.24, 570
separation theorem
Fact 10.9.13, 635
Fact 10.9.14, 635

subspace
Fact 10.9.12, 635

inner product of
complex matrices

definition, 87

inner product of
complex vectors

definition, 85

inner product of real
matrices

definition, 86

inner product of real
vectors

definition, 85

inner-product
minimization

positive-definite
matrix
Fact 8.15.12, 502

input matrix
controllability
Fact 12.20.15, 792

stabilizability
Fact 12.20.15, 792

input-to-state stability
asymptotic stability
Fact 12.20.18, 793

integers
identity
Fact 1.10.1, 30
Fact 1.10.2, 30

integral
asymptotically stable
matrix
Lemma 11.9.2, 667

averaged limit
Fact 10.11.6, 638

determinant
Fact 11.13.15, 680

Drazin generalized
inverse

Fact 11.13.12, 679
Fact 11.13.14, 680

generalized inverse
Fact 11.13.10, 679

group generalized
inverse
Fact 11.13.13, 680
Fact 11.13.14, 680

inverse matrix
Fact 11.13.11, 679

matrix
definition, 628

matrix exponential
Proposition 11.1.4, 645
Lemma 11.9.2, 667
Fact 11.13.10, 679
Fact 11.13.11, 679
Fact 11.13.12, 679
Fact 11.13.13, 680
Fact 11.13.14, 680
Fact 11.13.15, 680
Fact 11.14.1, 681
Fact 11.18.5, 698
Fact 11.18.6, 698

positive-definite
matrix
Fact 8.15.32, 505
Fact 8.15.33, 506
Fact 8.15.34, 506
Fact 8.15.35, 506

positive-semidefinite
matrix
Proposition 8.6.10, 433

quadratic form
Fact 8.15.34, 506
Fact 8.15.35, 506

integral representation
Kronecker sum
Fact 11.18.34, 705

interior
boundary
Fact 10.8.7, 632

complement
Fact 10.8.6, 632

convex set
Fact 10.8.8, 632
Fact 10.8.19, 633

definition

Definition 10.1.1, 621
intersection
Fact 10.9.2, 634

largest open set
Fact 10.8.3, 632

simplex
Fact 2.20.4, 154

subset
Fact 10.9.1, 634

union
Fact 10.9.2, 634
Fact 10.9.3, 634

interior point
definition
Definition 10.1.1, 621

interior point relative to
a set

definition
Definition 10.1.2, 621

interior relative to a set
definition
Definition 10.1.2, 621

interlacing
singular value
Fact 9.14.10, 609

interlacing theorem
asymptotically stable
polynomial
Fact 11.17.6, 696

interpolation
polynomial
Fact 4.8.11, 259

intersection
closed set
Fact 10.9.10, 635
Fact 10.9.11, 635

convex set
Fact 10.9.7, 634

definition, 2
dual cone
Fact 2.9.5, 111

equivalence relation
Proposition 1.3.3, 5

interior
Fact 10.9.2, 634

open set
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Fact 10.9.9, 635
reflexive relation
Proposition 1.3.3, 5

span
Fact 2.9.12, 111

symmetric relation
Proposition 1.3.3, 5

transitive relation
Proposition 1.3.3, 5

intersection of closed
sets

Cantor intersection
theorem
Fact 10.9.11, 635

intersection of ranges
projector
Fact 6.4.41, 384

intersection of
subspaces

subspace dimension
theorem
Theorem 2.3.1, 90

interval
definition, xxxv

invariance of domain
open set image
Theorem 10.3.7, 624

invariant subspace
controllable subspace
Corollary 12.6.4, 737

definition, 94
lower triangular
matrix
Fact 5.9.2, 311

matrix
representation
Fact 2.9.25, 113

stable subspace
Proposition 11.8.8, 665

unobservable
subspace
Corollary 12.3.4, 729

unstable subspace
Proposition 11.8.8, 665

upper triangular
matrix

Fact 5.9.2, 311

invariant zero
definition
Definition 12.10.1, 757

determinant
Fact 12.22.14, 800

equivalent
realizations
Proposition 12.10.10,
764

full actuation
Definition 12.10.2, 758

full observation
Definition 12.10.2, 758

full-state feedback
Proposition 12.10.10,
764

Fact 12.22.14, 800
observable pair
Corollary 12.10.12, 765

pencil
Corollary 12.10.4, 759
Corollary 12.10.5, 760
Corollary 12.10.6, 761

regular pencil
Corollary 12.10.4, 759
Corollary 12.10.5, 760
Corollary 12.10.6, 761

transmission zero
Theorem 12.10.8, 762
Theorem 12.10.9, 762

uncontrollable
spectrum
Theorem 12.10.9, 762

uncontrollable-
unobservable
spectrum
Theorem 12.10.9, 762

unobservable
eigenvalue
Proposition 12.10.11,
764

unobservable
spectrum
Theorem 12.10.9, 762

inverse
determinant
Fact 2.13.5, 129

left-invertible matrix
Proposition 2.6.5, 101

polynomial matrix
definition, 235

positive-definite
matrix
Fact 8.11.10, 469

rank
Fact 2.11.21, 125
Fact 2.11.22, 125

right-invertible
matrix
Proposition 2.6.5, 101

subdeterminant
Fact 2.13.5, 129

inverse function
definition, 4
uniqueness
Theorem 1.2.2, 4

inverse function
theorem

determinant
Theorem 10.4.5, 627

existence of local
inverse
Theorem 10.4.5, 627

inverse image
definition, 4
subspace intersection
Fact 2.9.30, 114

subspace sum
Fact 2.9.30, 114

inverse matrix
2× 2
Fact 2.16.12, 143

2× 2 block triangular
Lemma 2.8.2, 107

3× 3
Fact 2.16.12, 143

asymptotically stable
matrix
Fact 11.18.15, 700

block-circulant
matrix
Fact 2.17.6, 148

block-triangular
matrix
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Fact 2.17.1, 146
characteristic
polynomial
Fact 4.9.9, 261

companion matrix
Fact 5.16.2, 353

convergent sequence
Fact 2.16.29, 146
Fact 4.10.5, 266

definition, 101
derivative
Proposition 10.7.2, 630
Fact 10.11.19, 641

elementary matrix
Fact 2.16.1, 141
Fact 3.7.20, 182

finite sequence
Fact 2.16.28, 146

Hamiltonian matrix
Fact 3.19.5, 216

Hankel matrix
Fact 3.18.4, 215

identity
Fact 2.16.13, 143
Fact 2.16.14, 144
Fact 2.16.15, 144
Fact 2.16.16, 144
Fact 2.16.17, 144
Fact 2.16.18, 144
Fact 2.16.19, 144
Fact 2.16.20, 144
Fact 2.16.21, 145
Fact 2.16.22, 145
Fact 2.16.23, 145
Fact 2.16.24, 145
Fact 2.16.25, 145
Fact 2.16.26, 145
Fact 2.16.27, 146

identity perturbation
Fact 4.8.12, 259

integral
Fact 11.13.11, 679

Kronecker product
Proposition 7.1.7, 401

lower bound
Fact 8.9.17, 452

matrix exponential
Proposition 11.2.8, 649
Fact 11.13.11, 679

matrix inversion
lemma
Corollary 2.8.8, 108

matrix sum
Corollary 2.8.10, 110

maximum singular
value
Fact 9.14.8, 608

Newton-Raphson
algorithm
Fact 2.16.29, 146

normalized
submultiplicative
norm
Fact 9.8.44, 579
Fact 9.9.56, 590
Fact 9.9.57, 590
Fact 9.9.58, 591
Fact 9.9.59, 591

outer-product
perturbation
Fact 2.16.3, 141

partitioned matrix
Fact 2.16.4, 142
Fact 2.17.2, 146
Fact 2.17.3, 147
Fact 2.17.4, 147
Fact 2.17.5, 147
Fact 2.17.6, 148
Fact 2.17.8, 148
Fact 5.12.21, 337

perturbation
Fact 9.9.60, 591

polynomial
representation
Fact 4.8.13, 259

positive-definite
matrix
Proposition 8.6.6, 432
Lemma 8.6.5, 432
Fact 8.9.17, 452
Fact 8.9.41, 455

positive-semidefinite
matrix
Fact 8.10.37, 461

product
Proposition 2.6.9, 102

rank
Fact 2.17.10, 149

Fact 6.5.11, 388
series
Proposition 9.4.13, 557

similar matrices
Fact 5.15.31, 350

similarity
transformation
Fact 5.15.4, 345

spectral radius
Proposition 9.4.13, 557

spectrum
Fact 5.11.14, 324

sum
Fact 2.17.6, 148

tridiagonal matrix
Fact 3.20.9, 219
Fact 3.20.10, 219
Fact 3.20.11, 220

upper
block-triangular
matrix
Fact 2.17.7, 148
Fact 2.17.9, 148

inverse operation
composition
Fact 1.5.10, 12

iterated
Fact 1.5.9, 12

invertible function
definition, 4

involutory matrix
commutator
Fact 3.15.4, 212

definition
Definition 3.1.1, 165

determinant
Fact 3.15.1, 212
Fact 5.15.32, 351

diagonalizable
matrix
Fact 5.14.20, 341

factorization
Fact 5.15.18, 348
Fact 5.15.31, 350
Fact 5.15.32, 351

idempotent matrix
Fact 3.15.2, 212

identity
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Fact 3.15.3, 212
inertia
Fact 5.8.2, 307

Kronecker product
Fact 7.4.16, 406

matrix exponential
Fact 11.11.1, 671

normal matrix
Fact 5.9.9, 312
Fact 5.9.10, 312

null space
Fact 3.15.4, 212

partitioned matrix
Fact 3.15.5, 212

range
Fact 3.15.4, 212

reflector
Fact 3.14.2, 211

semisimple matrix
Fact 5.14.19, 341

signature
Fact 5.8.2, 307

similar matrices
Proposition 3.4.5, 174
Corollary 5.5.22, 301
Fact 5.15.31, 350

spectrum
Proposition 5.5.21, 300

symmetric matrix
Fact 5.15.36, 351

trace
Fact 5.8.2, 307

transpose
Fact 5.9.7, 312

tripotent matrix
Fact 3.16.2, 212

unitarily similar
matrices
Proposition 3.4.5, 174

irreducible matrix
absolute value
Fact 3.20.4, 218

almost nonnegative
matrix
Fact 11.19.2, 706

connected graph
Fact 4.11.2, 273

definition
Definition 3.1.1, 165

graph
Fact 4.11.2, 273

group generalized
inverse
Fact 6.6.20, 398

M-matrix
Fact 4.11.10, 276

permutation matrix
Fact 3.20.3, 217

positive matrix
Fact 4.11.5, 273

primary circulant
Fact 3.20.3, 217

spectral radius
convexity
Fact 4.11.18, 280

spectral radius
monotonicity
Fact 4.11.18, 280

irreducible polynomial
definition, 233

isomorphic groups
symplectic group
and unitary group
Fact 3.21.3, 222

isomorphism
definition
Definition 3.3.4, 172

group
Proposition 3.3.5, 172

J

Jacobi identity
commutator
Fact 2.18.4, 149

Jacobi’s identity
determinant
Fact 2.14.28, 139

matrix differential
equation
Fact 11.13.4, 678

Jacobian
definition, 627

Jacobson

nilpotent
commutator
Fact 3.17.12, 214

Jensen
convex function
Fact 10.11.7, 638

Jensen’s inequality
arithmetic-mean–
geometric-mean
inequality
Fact 1.8.4, 21

convex function
Fact 1.8.4, 21
Fact 1.15.35, 57

JLL inequality
trace of a matrix
power
Fact 4.11.22, 281

Jordan block
index of an
eigenvalue
Proposition 5.5.3, 295

Jordan canonical form
generalized inverse
Fact 6.6.9, 394

group-invertible
matrix
Fact 6.6.9, 394

Jordan form
existence
Theorem 5.3.3, 289

factorization
Fact 5.15.5, 346

Hamiltonian
Fact 12.23.1, 802

minimal polynomial
Proposition 5.5.15, 299

normal matrix
Fact 5.10.6, 317

real Jordan form
Fact 5.10.2, 317

Schur decomposition
Fact 5.10.6, 317

square root
Fact 5.15.19, 348

transfer function
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Fact 12.22.10, 800

Jordan matrix
example
Example 5.3.6, 290
Example 5.3.7, 291

Jordan structure
logarithm
Corollary 11.4.4, 654

matrix exponential
Corollary 11.4.4, 654

Jordan’s inequality
trigonometric
inequality
Fact 1.9.29, 28

Jordan-Chevalley
decomposition

diagonalizable
matrix
Fact 5.9.3, 311

nilpotent matrix
Fact 5.9.3, 311

Joyal
polynomial root
bound
Fact 11.20.7, 710

Jury test
discrete-time
asymptotically
stable polynomial
Fact 11.20.1, 708

K

Kalman decomposition
minimal realization
Proposition 12.9.10,
753

Kantorovich inequality
positive-semidefinite
matrix
Fact 8.15.9, 501

quadratic form
Fact 8.15.9, 501

scalar case
Fact 1.15.36, 57

Kato
maximum singular
value of a matrix
difference
Fact 9.9.32, 585

kernel function
positive-semidefinite
matrix
Fact 8.8.1, 444
Fact 8.8.2, 445

Kharitonov’s theorem
asymptotically stable
polynomial
Fact 11.17.13, 698

Khatri-Rao product
Kronecker product,
416

Kittaneh
Schatten norm
inequality
Fact 9.9.45, 588

Klamkin’s inequality
triangle
Fact 2.20.11, 156

Klein four-group
dihedral group
Fact 3.21.7, 223

Klein’s inequality
trace of a matrix
logarithm
Fact 11.14.25, 686

Kleinman
stabilization and
Gramian
Fact 12.20.17, 792

Kojima’s bound
polynomial
Fact 11.20.8, 710

Kosaki
Schatten norm
inequality
Fact 9.9.45, 588

trace norm of a
matrix difference

Fact 9.9.24, 584
trace of a convex
function
Fact 8.12.33, 482

unitarily invariant
norm inequality
Fact 9.9.44, 588

Krein
inertia of a
Hermitian matrix
Fact 12.21.5, 794

Krein-Milman theorem
extreme points of a
convex set
Fact 10.8.23, 634

Kreiss matrix theorem
maximum singular
value
Fact 11.21.17, 715

Kristof
least squares and
unitary
biequivalence
Fact 9.15.6, 619

Kronecker canonical
form

pencil
Theorem 5.7.1, 304

regular pencil
Proposition 5.7.2, 305

Kronecker permutation
matrix

definition, 402
Kronecker product
Fact 7.4.29, 407

orthogonal matrix
Fact 7.4.29, 407

trace
Fact 7.4.29, 407

transpose
Proposition 7.1.13, 402

vec
Fact 7.4.29, 407

Kronecker product
biequivalent matrices
Fact 7.4.11, 405
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column norm
Fact 9.9.61, 591

complex conjugate
transpose
Proposition 7.1.3, 400

congruent matrices
Fact 7.4.12, 406

convex function
Proposition 8.6.17, 437

definition
Definition 7.1.2, 400

determinant
Proposition 7.1.11, 402
Fact 7.5.12, 410
Fact 7.5.13, 410

diagonal matrix
Fact 7.4.3, 405

discrete-time
asymptotically
stable matrix
Fact 11.21.5, 713
Fact 11.21.6, 713

discrete-time
Lyapunov-stable
matrix
Fact 11.21.5, 713
Fact 11.21.6, 713

discrete-time
semistable matrix
Fact 11.21.5, 713
Fact 11.21.6, 713

Drazin generalized
inverse
Fact 7.4.31, 408

eigenvalue
Proposition 7.1.10, 401
Fact 7.4.13, 406
Fact 7.4.15, 406
Fact 7.4.21, 406
Fact 7.4.28, 407
Fact 7.4.32, 408

eigenvector
Proposition 7.1.10, 401
Fact 7.4.21, 406
Fact 7.4.32, 408

Euclidean norm
Fact 9.7.27, 570

Frobenius norm
Fact 9.14.37, 617

generalized inverse
Fact 7.4.30, 408

group generalized
inverse
Fact 7.4.31, 408

group-invertible
matrix
Fact 7.4.16, 406
Fact 7.4.31, 408

Hermitian matrix
Fact 7.4.16, 406
Fact 8.21.28, 536

Hölder norm
Fact 9.9.61, 591

idempotent matrix
Fact 7.4.16, 406

index of a matrix
Fact 7.4.26, 407

infinity norm
Fact 9.9.61, 591

inverse matrix
Proposition 7.1.7, 401

involutory matrix
Fact 7.4.16, 406

Kronecker
permutation matrix
Fact 7.4.29, 407

Kronecker sum
Fact 11.14.37, 688

left-equivalent
matrices
Fact 7.4.11, 405

lower triangular
matrix
Fact 7.4.3, 405

matrix exponential
Proposition 11.1.7, 645
Fact 11.14.37, 688
Fact 11.14.38, 688

matrix
multiplication
Proposition 7.1.6, 400

matrix power
Fact 7.4.4, 405
Fact 7.4.10, 405
Fact 7.4.21, 406

matrix sum
Proposition 7.1.4, 400

maximum singular
value
Fact 9.14.37, 617

nilpotent matrix
Fact 7.4.16, 406

normal matrix
Fact 7.4.16, 406

orthogonal matrix
Fact 7.4.16, 406

outer-product
matrix
Proposition 7.1.8, 401

partitioned matrix
Fact 7.4.18, 406
Fact 7.4.19, 406
Fact 7.4.24, 407

positive-definite
matrix
Fact 7.4.16, 406

positive-semidefinite
matrix
Fact 7.4.16, 406
Fact 8.21.16, 534
Fact 8.21.22, 536
Fact 8.21.23, 536
Fact 8.21.24, 536
Fact 8.21.26, 536
Fact 8.21.27, 536
Fact 8.21.29, 536

projector
Fact 7.4.16, 406

range
Fact 7.4.22, 407

range-Hermitian
matrix
Fact 7.4.16, 406

rank
Fact 7.4.23, 407
Fact 7.4.24, 407
Fact 7.4.25, 407
Fact 8.21.16, 534

reflector
Fact 7.4.16, 406

right-equivalent
matrices
Fact 7.4.11, 405

row norm
Fact 9.9.61, 591

Schatten norm
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Fact 9.14.37, 617
Schur product
Proposition 7.3.1, 404

semisimple matrix
Fact 7.4.16, 406

similar matrices
Fact 7.4.12, 406

singular matrix
Fact 7.4.27, 407

skew-Hermitian
matrix
Fact 7.4.17, 406

spectral radius
Fact 7.4.14, 406

square root
Fact 8.21.29, 536
Fact 8.21.30, 537

submatrix
Proposition 7.3.1, 404

trace
Proposition 7.1.12, 402
Fact 11.14.38, 688

transpose
Proposition 7.1.3, 400

triple product
Proposition 7.1.5, 400
Fact 7.4.7, 405

tripotent matrix
Fact 7.4.16, 406

unitarily similar
matrices
Fact 7.4.12, 406

unitary matrix
Fact 7.4.16, 406

upper triangular
matrix
Fact 7.4.3, 405

vec
Fact 7.4.5, 405
Fact 7.4.6, 405
Fact 7.4.8, 405

vector
Fact 7.4.1, 405
Fact 7.4.2, 405
Fact 7.4.20, 406

Kronecker sum
associativity
Proposition 7.2.2, 403

asymptotically stable
matrix
Fact 11.18.32, 704
Fact 11.18.33, 704
Fact 11.18.34, 705

asymptotically stable
polynomial
Fact 11.17.11, 697

commuting matrices
Fact 7.5.4, 409

defect
Fact 7.5.2, 409

definition
Definition 7.2.1, 403

determinant
Fact 7.5.11, 410

dissipative matrix
Fact 7.5.8, 409

eigenvalue
Proposition 7.2.3, 403
Fact 7.5.5, 409
Fact 7.5.7, 409
Fact 7.5.16, 411

eigenvector
Proposition 7.2.3, 403
Fact 7.5.16, 411

Hermitian matrix
Fact 7.5.8, 409

integral
representation
Fact 11.18.34, 705

Kronecker product
Fact 11.14.37, 688

linear matrix
equation
Proposition 11.9.3, 667

linear system
Fact 7.5.15, 411

Lyapunov equation
Corollary 11.9.4, 668

Lyapunov-stable
matrix
Fact 11.18.32, 704
Fact 11.18.33, 704

matrix exponential
Proposition 11.1.7, 645
Fact 11.14.36, 688
Fact 11.14.37, 688

matrix power

Fact 7.5.1, 409
nilpotent matrix
Fact 7.5.3, 409
Fact 7.5.8, 409

normal matrix
Fact 7.5.8, 409

positive matrix
Fact 7.5.8, 409

positive-semidefinite
matrix
Fact 7.5.8, 409

range-Hermitian
matrix
Fact 7.5.8, 409

rank
Fact 7.5.2, 409
Fact 7.5.9, 409
Fact 7.5.10, 410

semidissipative
matrix
Fact 7.5.8, 409

semistable matrix
Fact 11.18.32, 704
Fact 11.18.33, 704

similar matrices
Fact 7.5.9, 409

skew-Hermitian
matrix
Fact 7.5.8, 409

spectral abscissa
Fact 7.5.6, 409

trace
Fact 11.14.36, 688

L

L2 norm
controllability
Gramian
Theorem 12.11.1, 765

definition, 765
observability
Gramian
Theorem 12.11.1, 765

Löwner-Heinz
inequality

positive-semidefinite
matrix inequality
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Corollary 8.6.11, 434

Labelle
polynomial root
bound
Fact 11.20.7, 710

Laffey
simultaneous
triangularization
Fact 5.17.5, 358

Lagrange identity
product identity
Fact 1.16.8, 61

Lagrange interpolation
formula

polynomial
interpolation
Fact 4.8.11, 259

Lagrange-Hermite
interpolation
polynomial

matrix function
Theorem 10.5.2, 629

Laguerre-Samuelson
inequality

mean
Fact 1.15.12, 51
Fact 8.9.35, 454

Lancaster’s formulas
quadratic form
integral
Fact 8.15.34, 506

Laplace transform
matrix exponential
Proposition 11.2.2, 647

resolvent
Proposition 11.2.2, 647

Laplacian
symmetric graph
Fact 4.11.1, 272

Laplacian matrix
adjacency matrix
Theorem 3.2.2, 170
Theorem 3.2.3, 171
Fact 4.11.11, 277

definition
Definition 3.2.1, 170

incidence matrix
Theorem 3.2.2, 170
Theorem 3.2.3, 171

quadratic form
Fact 8.15.36, 506

spectrum
Fact 11.19.7, 708

symmetric graph
Fact 8.15.36, 506

lattice
definition
Definition 1.3.9, 7

positive-semidefinite
matrix
Fact 8.10.32, 459
Fact 8.10.33, 459

leading principal
submatrix

definition, 80

leaf
Definition 1.4.2, 8

least common multiple
block-diagonal
matrix
Lemma 5.2.7, 286

definition, 234

least lower bound for a
partial ordering

definition
Definition 1.3.9, 7

least squares
fixed-rank
approximation
Fact 9.14.28, 614
Fact 9.15.4, 618

generalized inverse
Fact 9.15.1, 618
Fact 9.15.2, 618
Fact 9.15.3, 618

singular value
decomposition
Fact 9.14.28, 614
Fact 9.15.4, 618
Fact 9.15.5, 618

Fact 9.15.6, 619

least squares and
unitary
biequivalence

Kristof
Fact 9.15.6, 619

least upper bound
projector
Fact 6.4.41, 385

left divides
definition, 234

left equivalence
equivalence relation
Fact 5.10.3, 317

left inverse
(1)-inverse
Proposition 6.1.3, 364

affine subspace
Fact 2.9.26, 113

complex conjugate
transpose
Fact 2.15.1, 140
Fact 2.15.2, 140

cone
Fact 2.9.26, 113

convex set
Fact 2.9.26, 113

definition, 4
generalized inverse
Corollary 6.1.4, 364
Fact 6.4.39, 384
Fact 6.4.40, 384

idempotent matrix
Fact 3.12.10, 199

left-inner matrix
Fact 3.11.5, 190

matrix product
Fact 2.15.5, 141

positive-definite
matrix
Fact 3.7.25, 182

representation
Fact 2.15.3, 140

subspace
Fact 2.9.26, 113

uniqueness
Theorem 1.2.2, 4
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left-equivalent matrices
definition
Definition 3.4.3, 174

group-invertible
matrix
Fact 3.6.1, 177

Kronecker product
Fact 7.4.11, 405

null space
Proposition 5.1.3, 283

positive-semidefinite
matrix
Fact 5.10.19, 319

left-inner matrix
definition
Definition 3.1.2, 166

generalized inverse
Fact 6.3.8, 371

left inverse
Fact 3.11.5, 190

left-invertible function
definition, 4

left-invertible matrix
definition, 98
equivalent properties
Theorem 2.6.1, 98

generalized inverse
Proposition 6.1.5, 364

inverse
Proposition 2.6.5, 101

matrix product
Fact 2.10.3, 115

nonsingular
equivalence
Corollary 2.6.6, 101

unique left inverse
Proposition 2.6.2, 99

Lehmer matrix
positive-semidefinite
matrix
Fact 8.8.5, 447

Lehmer mean
power inequality
Fact 1.10.35, 36

Leibniz’s rule

derivative of an
integral
Fact 10.11.10, 639

lemma
definition, 1

Leslie matrix
definition, 362

Leverrier’s algorithm
characteristic
polynomial
Proposition 4.4.9, 244

lexicographic ordering
cone
Fact 2.9.31, 115

total ordering
Fact 1.5.8, 12

Lidskii-Mirsky-Wielandt
theorem

Hermitian
perturbation
Fact 9.12.4, 599

Lidskii-Wielandt
inequalities

eigenvalue inequality
for Hermitian
matrices
Fact 8.18.3, 513

Lie algebra
classical examples
Proposition 3.3.2, 171

definition
Definition 3.3.1, 171

Lie group
Proposition 11.6.4, 658
Proposition 11.6.5, 659
Proposition 11.6.6, 659

matrix exponential
Proposition 11.6.7, 659

strictly upper
triangular matrix
Fact 3.21.4, 222
Fact 11.22.1, 715

upper triangular
matrix
Fact 3.21.4, 222
Fact 11.22.1, 715

Lie algebra of a Lie
group

matrix exponential
Proposition 11.6.3, 658

Lie group
definition
Definition 11.6.1, 658

group
Proposition 11.6.2, 658

Lie algebra
Proposition 11.6.4, 658
Proposition 11.6.5, 659
Proposition 11.6.6, 659

Lie-Trotter formula
matrix exponential
Fact 11.14.7, 683

Lie-Trotter product
formula

matrix exponential
Corollary 11.4.8, 656
Fact 11.16.2, 692
Fact 11.16.3, 692

Lieb concavity
theorem, 542

Lieb-Thirring inequality
positive-semidefinite
matrix
Fact 8.12.22, 480
Fact 8.18.20, 518

limit
discrete-time
semistable matrix
Fact 11.21.10, 714

Drazin generalized
inverse
Fact 6.6.11, 395

Hermitian matrix
Fact 8.10.1, 456

matrix exponential
Fact 11.18.5, 698
Fact 11.18.6, 698
Fact 11.18.7, 699

matrix logarithm
Proposition 8.6.4, 432

positive-definite
matrix
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Fact 8.10.47, 465
positive-semidefinite
matrix
Proposition 8.6.3, 432
Fact 8.10.47, 465

projector
Fact 6.4.41, 384
Fact 6.4.46, 385

semistable matrix
Fact 11.18.7, 699

Linden
polynomial root
bound
Fact 11.20.9, 710

linear combination
determinant
Fact 8.13.18, 488

Hermitian matrix
Fact 8.15.24, 504
Fact 8.15.25, 504
Fact 8.15.26, 504

idempotent matrix
Fact 5.19.9, 361

positive-semidefinite
matrix
Fact 8.13.18, 488

linear combination of
projectors

Hermitian matrix
Fact 5.19.10, 361

linear combination of
two vectors

definition, 79

linear constraint
quadratic form
Fact 8.14.10, 497

linear dependence
absolute value
Fact 9.7.1, 563

triangle inequality
Fact 9.7.3, 563

linear dependence of
two matrices

definition, 80

linear dependence of
two vectors

definition, 79

linear dependence of
vectors

definition, 90

linear dynamical
system

asymptotically stable
Proposition 11.8.2, 662

discrete-time
asymptotically
stable
Proposition 11.10.2,
670

discrete-time
Lyapunov stable
Proposition 11.10.2,
670

discrete-time
semistable
Proposition 11.10.2,
670

Lyapunov stable
Proposition 11.8.2, 662

semistable
Proposition 11.8.2, 662

linear function
continuous function
Corollary 10.3.3, 624

definition, 81

linear independence
cyclic matrix
Fact 5.14.9, 340

definition, 90
outer-product
matrix
Fact 2.12.8, 126

linear matrix equation
asymptotically stable
matrix
Proposition 11.9.3, 667

existence of solutions
Fact 5.10.20, 320
Fact 5.10.21, 320

generalized inverse
Fact 6.4.38, 384

Kronecker sum
Proposition 11.9.3, 667

matrix exponential
Proposition 11.9.3, 667

rank
Fact 2.10.16, 117

skew-symmetric
matrix
Fact 3.7.3, 178

solution
Fact 6.4.38, 384

Sylvester’s equation
Proposition 7.2.4, 403
Proposition 11.9.3, 667
Fact 5.10.20, 320
Fact 5.10.21, 320
Fact 6.5.7, 387

symmetric matrix
Fact 3.7.3, 178

linear system
generalized inverse
Proposition 6.1.7, 366

harmonic
steady-state
response
Theorem 12.12.1, 768

Kronecker sum
Fact 7.5.15, 411

right inverse
Fact 6.3.1, 369

solutions
Proposition 6.1.7, 366
Fact 2.10.6, 116

linear system solution
Cramer’s rule
Fact 2.13.6, 129

nonnegative vector
Fact 4.11.14, 279

norm
Fact 9.9.64, 592
Fact 9.9.65, 592
Fact 9.9.66, 592

rank
Theorem 2.6.4, 100
Corollary 2.6.7, 101

right-invertible
matrix
Fact 2.13.7, 129
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linear-quadratic control
problem

definition, 775
Riccati equation
Theorem 12.15.2, 776

solution
Theorem 12.15.2, 776

linearly independent
rational functions

definition, 250

Littlewood
Hölder-induced
norm
Fact 9.8.17, 574
Fact 9.8.18, 574

Ljance
minimal principal
angle and subspaces
Fact 5.11.39, 329

log majorization
convex function
Fact 2.21.12, 163

increasing function
Fact 2.21.12, 163

positive-semidefinite
matrix
Fact 8.11.9, 469

logarithm, see matrix
logarithm

SO(3)
Fact 11.15.10, 692

convex function
Fact 11.16.14, 695
Fact 11.16.15, 695

determinant
Fact 8.13.8, 486

determinant and
convex function
Proposition 8.6.17, 437

entropy
Fact 1.15.45, 59
Fact 1.15.46, 59
Fact 1.15.47, 59
Fact 1.16.30, 67

Euler constant
Fact 1.7.5, 18

gamma

Fact 1.7.5, 18
increasing function
Proposition 8.6.13, 435

inequality
Fact 1.15.45, 59
Fact 1.15.46, 59
Fact 1.15.47, 59

Jordan structure
Corollary 11.4.4, 654

orthogonal matrix
Fact 11.15.10, 692

rotation matrix
Fact 11.15.10, 692

scalar inequalities
Fact 1.9.21, 26
Fact 1.9.22, 26
Fact 1.9.23, 27
Fact 1.9.24, 27
Fact 1.9.25, 27
Fact 1.10.24, 34
Fact 1.10.25, 34
Fact 1.10.40, 38

Shannon’s inequality
Fact 1.16.30, 67

trace and convex
function
Proposition 8.6.17, 437

logarithm function
complex numbers
Fact 1.18.7, 72

principal branch
Fact 1.18.7, 72

scalar inequalities
Fact 1.9.26, 27
Fact 1.9.27, 27
Fact 1.9.28, 27

logarithmic derivative
asymptotically stable
matrix
Fact 11.18.11, 699

Lyapunov equation
Fact 11.18.11, 699

properties
Fact 11.15.7, 690

logarithmic mean
arithmetic mean
Fact 1.15.26, 54

Heron mean

Fact 1.10.37, 37
identric mean
Fact 1.10.36, 37

Polya’s inequality
Fact 1.10.36, 37

logical equivalents
De Morgan’s laws
Fact 1.5.1, 10

existential statement
Fact 1.5.4, 11

implication
Fact 1.5.1, 10
Fact 1.5.2, 10
Fact 1.5.3, 11

universal statement
Fact 1.5.4, 11

loop
Definition 1.4.2, 8

lower block-triangular
matrix

definition
Definition 3.1.3, 167

determinant
Proposition 2.7.1, 103

lower bound
induced lower bound
Fact 9.8.43, 579

minimum singular
value
Fact 9.13.15, 604
Fact 9.13.21, 606

lower bound for a
partial ordering

definition
Definition 1.3.9, 7

lower Hessenberg
matrix

definition
Definition 3.1.3, 167

lower
reverse-triangular
matrix

definition
Fact 2.13.8, 130

determinant
Fact 2.13.8, 130
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lower triangular matrix
commutator
Fact 3.17.11, 214

definition
Definition 3.1.3, 167

factorization
Fact 5.15.10, 346

invariant subspace
Fact 5.9.2, 311

Kronecker product
Fact 7.4.3, 405

matrix exponential
Fact 11.13.1, 677
Fact 11.13.16, 680

matrix power
Fact 3.18.7, 216

matrix product
Fact 3.20.18, 221

nilpotent matrix
Fact 3.17.11, 214

similar matrices
Fact 5.9.2, 311

Toeplitz matrix
Fact 3.18.7, 216
Fact 11.13.1, 677

LQG controller
continuous-time
control problem
Fact 12.23.6, 804

discrete-time control
problem
Fact 12.23.7, 804

dynamic
compensator
Fact 12.23.6, 804
Fact 12.23.7, 804

LU decomposition
existence
Fact 5.15.10, 346

Lucas numbers
nonnegative matrix
Fact 4.11.12, 277

Lukes
stabilization and
Gramian
Fact 12.20.17, 792

LULU decomposition

factorization
Fact 5.15.11, 346

Lyapunov equation
asymptotic stability
Corollary 11.9.1, 666

asymptotically stable
matrix
Proposition 11.9.5, 668
Corollary 11.9.4, 668
Corollary 11.9.7, 669
Corollary 12.4.4, 734
Corollary 12.5.6, 735
Corollary 12.7.4, 746
Corollary 12.8.6, 749
Fact 12.21.7, 795
Fact 12.21.17, 797

controllably
asymptotically
stable
Proposition 12.7.3, 743

detectability
Corollary 12.5.6, 735

discrete-time
asymptotically
stable matrix
Proposition 11.10.5,
671

eigenvalue inclusion
region
Fact 12.21.20, 798

finite-sum solution
Fact 12.21.17, 797

inertia
Fact 12.21.1, 793
Fact 12.21.2, 794
Fact 12.21.3, 794
Fact 12.21.4, 794
Fact 12.21.5, 794
Fact 12.21.6, 795
Fact 12.21.7, 795
Fact 12.21.8, 795
Fact 12.21.9, 796
Fact 12.21.10, 796
Fact 12.21.11, 796
Fact 12.21.12, 796

Kronecker sum
Corollary 11.9.4, 668

logarithmic
derivative

Fact 11.18.11, 699
Lyapunov stability
Corollary 11.9.1, 666

Lyapunov-stable
matrix
Proposition 11.9.6, 669
Corollary 11.9.7, 669

matrix exponential
Corollary 11.9.4, 668
Fact 11.18.18, 701
Fact 11.18.19, 701

null space
Fact 12.21.15, 797

observability matrix
Fact 12.21.15, 797

observably
asymptotically
stable
Proposition 12.4.3, 732

positive-definite
matrix
Fact 12.21.16, 797
Fact 12.21.18, 797

positive-semidefinite
matrix
Fact 12.21.15, 797
Fact 12.21.19, 797

Schur power
Fact 8.8.16, 449

semistability
Corollary 11.9.1, 666

semistable matrix
Fact 12.21.15, 797

skew-Hermitian
matrix
Fact 11.18.12, 700

stabilizability
Corollary 12.8.6, 749

Lyapunov stability
eigenvalue
Proposition 11.8.2, 662

linear dynamical
system
Proposition 11.8.2, 662

Lyapunov equation
Corollary 11.9.1, 666

matrix exponential
Proposition 11.8.2, 662

nonlinear system
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Theorem 11.7.2, 661

Lyapunov’s direct
method

stability theory
Theorem 11.7.2, 661

Lyapunov-stable
equilibrium

definition
Definition 11.7.1, 660

Lyapunov-stable matrix
almost nonnegative
matrix
Fact 11.19.4, 706

compartmental
matrix
Fact 11.19.6, 707

definition
Definition 11.8.1, 662

group-invertible
matrix
Fact 11.18.2, 698

Kronecker sum
Fact 11.18.32, 704
Fact 11.18.33, 704

Lyapunov equation
Proposition 11.9.6, 669
Corollary 11.9.7, 669

Lyapunov-stable
polynomial
Proposition 11.8.4, 663

matrix exponential
Fact 11.18.6, 698
Fact 11.21.7, 713

minimal realization
Definition 12.9.17, 757

N-matrix
Fact 11.19.4, 706

normal matrix
Fact 11.18.37, 705

positive-definite
matrix
Proposition 11.9.6, 669
Corollary 11.9.7, 669

semidissipative
matrix
Fact 11.18.37, 705

semistable matrix
Fact 11.18.1, 698

similar matrices
Fact 11.18.4, 698

step response
Fact 12.20.1, 790

Lyapunov-stable
polynomial

definition
Definition 11.8.3, 663

Lyapunov-stable
matrix
Proposition 11.8.4, 663

subdeterminant
Fact 11.18.23, 702

Lyapunov-stable
transfer function

minimal realization
Proposition 12.9.18,
757

SISO entries
Proposition 12.9.19,
757

M

M-matrix
definition
Fact 4.11.6, 275

determinant
Fact 4.11.8, 276

eigenvector
Fact 4.11.10, 276

inverse
Fact 4.11.8, 276

irreducible matrix
Fact 4.11.10, 276

nonnegative matrix
Fact 4.11.6, 275

rank
Fact 8.7.7, 444

Schur product
Fact 7.6.15, 415

submatrix
Fact 4.11.7, 276

Z-matrix
Fact 4.11.6, 275
Fact 4.11.8, 276

Magnus

determinant
identities
Fact 2.13.16, 132

Magnus expansion
time-varying
dynamics
Fact 11.13.4, 678

Makelainen
difference of
idempotent
matrices
Fact 5.12.19, 337

Maligranda inequality
complex numbers
Fact 1.18.5, 71

norm
Fact 9.7.10, 566
Fact 9.7.13, 567

Mann
positivity of a
quadratic form on a
subspace
Fact 8.15.27, 504

Marcus
quadratic form
inequality
Fact 8.15.19, 503

similar matrices and
nonzero diagonal
entries
Fact 5.9.14, 313

Markov block-Hankel
matrix

controllable pair
Proposition 12.9.11,
754

definition, 754
minimal realization
Proposition 12.9.12,
755

observable pair
Proposition 12.9.11,
754

rational transfer
function
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Proposition 12.9.11,
754

Proposition 12.9.12,
755

Proposition 12.9.13,
755

Markov parameter
definition, 727
rational transfer
function
Proposition 12.9.7, 751

Martins’s inequality
sum of integers
Fact 1.9.31, 30

Mason
polynomial root
bound
Fact 11.20.10, 711

mass
definition, 654

mass matrix
partitioned matrix
Fact 5.12.21, 337

mass-spring system
spectrum
Fact 5.12.21, 337

stability
Fact 11.18.38, 705

Massera-Schaffer
inequality

complex numbers
Fact 1.18.5, 71

norm
Fact 9.7.10, 566
Fact 9.7.13, 567

matricial norm
partitioned matrix
Fact 9.10.1, 593

matrix
definition, 79

matrix cosine
matrix exponential
Fact 11.12.1, 677

matrix sine

Fact 11.12.1, 677

matrix derivative
definition, 630

matrix differential
equation

Jacobi’s identity
Fact 11.13.4, 678

matrix exponential
Fact 11.13.3, 677

Riccati differential
equation
Fact 12.23.5, 803

time-varying
dynamics
Fact 11.13.4, 678
Fact 11.13.5, 678

matrix exponential
2× 2 matrix
Proposition 11.3.2, 651
Corollary 11.3.3, 652
Lemma 11.3.1, 651
Example 11.3.4, 652
Example 11.3.5, 652

3× 3 matrix
Fact 11.11.5, 673

3× 3 orthogonal
matrix
Fact 11.11.10, 674
Fact 11.11.11, 674

3× 3 skew-symmetric
matrix
Fact 11.11.6, 673
Fact 11.11.10, 674
Fact 11.11.11, 674

4× 4 skew-symmetric
matrix
Fact 11.11.14, 675
Fact 11.11.15, 675
Fact 11.11.16, 676
Fact 11.11.17, 676

SO(n)
Fact 11.11.3, 672

almost nonnegative
matrix
Fact 11.19.1, 706
Fact 11.19.2, 706

asymptotic stability
Proposition 11.8.2, 662

asymptotically stable
matrix
Lemma 11.9.2, 667
Fact 11.18.8, 699
Fact 11.18.9, 699
Fact 11.18.10, 699
Fact 11.18.15, 700
Fact 11.18.18, 701
Fact 11.18.19, 701
Fact 11.21.7, 713

block-diagonal
matrix
Proposition 11.2.8, 649

commutator
Fact 11.14.9, 683
Fact 11.14.11, 683
Fact 11.14.12, 683
Fact 11.14.13, 684
Fact 11.14.14, 684
Fact 11.14.15, 684
Fact 11.14.16, 684
Fact 11.14.17, 684
Fact 11.14.18, 685

commuting matrices
Proposition 11.1.5, 645
Corollary 11.1.6, 645
Fact 11.14.2, 681
Fact 11.14.5, 682

complex conjugate
Proposition 11.2.8, 649

complex conjugate
transpose
Proposition 11.2.8, 649
Fact 11.15.4, 689
Fact 11.15.6, 690

convergence in time
Proposition 11.8.7, 665

convergent sequence
Proposition 11.1.3, 644
Fact 11.14.7, 683
Fact 11.14.8, 683
Fact 11.14.9, 683
Fact 11.21.14, 714

convergent series
Proposition 11.1.2, 644

convex function
Fact 8.14.18, 500
Fact 11.16.14, 695
Fact 11.16.15, 695
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cross product
Fact 11.11.7, 673
Fact 11.11.8, 674
Fact 11.11.9, 674

cross-product matrix
Fact 11.11.6, 673
Fact 11.11.12, 674
Fact 11.11.13, 675
Fact 11.11.16, 676
Fact 11.11.17, 676

definition
Definition 11.1.1, 643

derivative
Fact 8.12.31, 482
Fact 11.14.3, 682
Fact 11.14.4, 682
Fact 11.14.10, 683
Fact 11.15.2, 689

derivative of a
matrix
Fact 11.14.11, 683

determinant
Proposition 11.4.6, 655
Corollary 11.2.4, 648
Corollary 11.2.5, 648
Fact 11.13.15, 680
Fact 11.15.5, 689

diagonal matrix
Fact 11.13.16, 680

discrete-time
asymptotic stability
Proposition 11.10.2,
670

discrete-time
asymptotically
stable matrix
Fact 11.21.7, 713

discrete-time
Lyapunov stability
Proposition 11.10.2,
670

discrete-time
Lyapunov-stable
matrix
Fact 11.21.7, 713

discrete-time
semistability
Proposition 11.10.2,
670

discrete-time
semistable matrix
Fact 11.21.7, 713
Fact 11.21.14, 714

dissipative matrix
Fact 11.15.3, 689

Drazin generalized
inverse
Fact 11.13.12, 679
Fact 11.13.14, 680

eigenstructure
Proposition 11.2.7, 648

Frobenius norm
Fact 11.14.32, 688
Fact 11.15.3, 689

generalized inverse
Fact 11.13.10, 679

geometric mean
Fact 8.10.44, 464

Golden-Thompson
inequality
Fact 11.14.28, 687
Fact 11.16.4, 692

group
Proposition 11.6.7, 659

group generalized
inverse
Fact 11.13.13, 680
Fact 11.13.14, 680
Fact 11.18.5, 698
Fact 11.18.6, 698

group-invertible
matrix
Fact 11.18.14, 700

Hamiltonian matrix
Proposition 11.6.7, 659

Hermitian matrix
Proposition 11.2.8, 649
Proposition 11.2.9, 650
Proposition 11.4.5, 654
Corollary 11.2.6, 648
Fact 11.14.7, 683
Fact 11.14.8, 683
Fact 11.14.21, 685
Fact 11.14.28, 687
Fact 11.14.29, 687
Fact 11.14.31, 688
Fact 11.14.32, 688
Fact 11.14.34, 688

Fact 11.15.1, 689
Fact 11.16.4, 692
Fact 11.16.5, 694
Fact 11.16.13, 695
Fact 11.16.17, 695

idempotent matrix
Fact 11.11.1, 671
Fact 11.16.12, 695

infinite product
Fact 11.14.18, 685

integral
Proposition 11.1.4, 645
Lemma 11.9.2, 667
Fact 11.13.10, 679
Fact 11.13.11, 679
Fact 11.13.12, 679
Fact 11.13.13, 680
Fact 11.13.14, 680
Fact 11.13.15, 680
Fact 11.14.1, 681
Fact 11.16.8, 694
Fact 11.18.5, 698
Fact 11.18.6, 698

inverse matrix
Proposition 11.2.8, 649
Fact 11.13.11, 679

involutory matrix
Fact 11.11.1, 671

Jordan structure
Corollary 11.4.4, 654

Kronecker product
Proposition 11.1.7, 645
Fact 11.14.37, 688
Fact 11.14.38, 688

Kronecker sum
Proposition 11.1.7, 645
Fact 11.14.36, 688
Fact 11.14.37, 688

Laplace transform
Proposition 11.2.2, 647

Lie algebra
Proposition 11.6.7, 659

Lie algebra of a Lie
group
Proposition 11.6.3, 658

Lie-Trotter formula
Fact 11.14.7, 683

Lie-Trotter product
formula
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Corollary 11.4.8, 656
Fact 11.16.2, 692
Fact 11.16.3, 692

limit
Fact 11.18.5, 698
Fact 11.18.6, 698
Fact 11.18.7, 699

linear matrix
equation
Proposition 11.9.3, 667

logarithm
Fact 11.14.21, 685

lower triangular
matrix
Fact 11.13.1, 677
Fact 11.13.16, 680

Lyapunov equation
Corollary 11.9.4, 668
Fact 11.18.18, 701
Fact 11.18.19, 701

Lyapunov stability
Proposition 11.8.2, 662

Lyapunov-stable
matrix
Fact 11.18.6, 698
Fact 11.21.7, 713

matrix cosine
Fact 11.12.1, 677

matrix differential
equation
Fact 11.13.3, 677

matrix logarithm
Theorem 11.5.1, 656
Proposition 11.4.2, 654
Fact 11.13.17, 680
Fact 11.14.31, 688

matrix power
Fact 11.13.19, 680

matrix sine
Fact 11.12.1, 677

maximum eigenvalue
Fact 11.16.4, 692

maximum singular
value
Fact 11.15.1, 689
Fact 11.15.2, 689
Fact 11.15.5, 689
Fact 11.16.6, 694
Fact 11.16.10, 694

nilpotent matrix
Fact 11.11.1, 671
Fact 11.13.17, 680

nondecreasing
function
Fact 8.10.44, 464

norm
Fact 11.16.9, 694
Fact 11.16.11, 694
Fact 11.16.12, 695

norm bound
Fact 11.18.10, 699

normal matrix
Proposition 11.2.8, 649
Fact 11.13.18, 680
Fact 11.14.5, 682
Fact 11.16.10, 694

orthogonal matrix
Proposition 11.6.7, 659
Fact 11.11.6, 673
Fact 11.11.7, 673
Fact 11.11.8, 674
Fact 11.11.9, 674
Fact 11.11.12, 674
Fact 11.11.13, 675
Fact 11.15.10, 692

outer-product
matrix
Fact 11.11.1, 671

partitioned matrix
Fact 11.11.2, 672
Fact 11.14.1, 681

Peierls-Bogoliubov
inequality
Fact 11.14.29, 687

polar decomposition
Fact 11.13.9, 679

polynomial matrix
Proposition 11.2.1, 646

positive-definite
matrix
Proposition 11.2.8, 649
Proposition 11.2.9, 650
Fact 11.14.20, 685
Fact 11.14.22, 685
Fact 11.14.23, 686
Fact 11.15.1, 689

positive-semidefinite
matrix

Fact 11.14.20, 685
Fact 11.14.35, 688
Fact 11.16.6, 694
Fact 11.16.16, 695

quaternions
Fact 11.11.15, 675

rank-two matrix
Fact 11.11.18, 676

resolvent
Proposition 11.2.2, 647

Schur product
Fact 11.14.21, 685

semisimple matrix
Proposition 11.2.7, 648

semistability
Proposition 11.8.2, 662

semistable matrix
Fact 11.18.5, 698
Fact 11.18.7, 699
Fact 11.21.7, 713

series
Proposition 11.4.7, 655
Fact 11.14.17, 684

similar matrices
Proposition 11.2.9, 650

singular value
Fact 11.15.5, 689
Fact 11.16.14, 695
Fact 11.16.15, 695

skew-Hermitian
matrix
Proposition 11.2.8, 649
Proposition 11.2.9, 650
Fact 11.14.6, 683
Fact 11.14.33, 688

skew-involutory
matrix
Fact 11.11.1, 671

skew-symmetric
matrix
Example 11.3.6, 652
Fact 11.11.3, 672
Fact 11.11.6, 673
Fact 11.11.7, 673
Fact 11.11.8, 674
Fact 11.11.9, 674
Fact 11.11.15, 675

Specht’s ratio
Fact 11.14.28, 687
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spectral abscissa
Fact 11.13.2, 677
Fact 11.15.8, 691
Fact 11.15.9, 691
Fact 11.18.8, 699
Fact 11.18.9, 699

spectral radius
Fact 11.13.2, 677

spectrum
Proposition 11.2.3, 648
Corollary 11.2.6, 648

stable subspace
Proposition 11.8.8, 665

state equation
Proposition 12.1.1, 723

strong log
majorization
Fact 11.16.4, 692

submultiplicative
norm
Proposition 11.1.2, 644
Fact 11.15.8, 691
Fact 11.15.9, 691
Fact 11.16.7, 694
Fact 11.18.8, 699
Fact 11.18.9, 699

sum of integer
powers
Fact 11.11.4, 672

symplectic matrix
Proposition 11.6.7, 659

thermodynamic
inequality
Fact 11.14.31, 688

trace
Corollary 11.2.4, 648
Corollary 11.2.5, 648
Fact 8.14.18, 500
Fact 11.11.6, 673
Fact 11.14.3, 682
Fact 11.14.10, 683
Fact 11.14.28, 687
Fact 11.14.29, 687
Fact 11.14.30, 687
Fact 11.14.31, 688
Fact 11.14.36, 688
Fact 11.14.38, 688
Fact 11.15.4, 689
Fact 11.15.5, 689

Fact 11.16.1, 692
Fact 11.16.4, 692

transpose
Proposition 11.2.8, 649

unipotent matrix
Fact 11.13.17, 680

unitarily invariant
norm
Fact 11.15.6, 690
Fact 11.16.4, 692
Fact 11.16.5, 694
Fact 11.16.13, 695
Fact 11.16.16, 695
Fact 11.16.17, 695

unitary matrix
Proposition 11.2.8, 649
Proposition 11.2.9, 650
Proposition 11.6.7, 659
Corollary 11.2.6, 648
Fact 11.14.6, 683
Fact 11.14.33, 688
Fact 11.14.34, 688

upper triangular
matrix
Fact 11.11.4, 672
Fact 11.13.1, 677
Fact 11.13.16, 680

vibration equation
Example 11.3.7, 653

weak majorization
Fact 11.16.4, 692

Z-matrix
Fact 11.19.1, 706

Zassenhaus product
formula
Fact 11.14.18, 685

matrix function
definition, 628
Lagrange-Hermite
interpolation
polynomial
Theorem 10.5.2, 629

spectrum
Corollary 10.5.4, 629

matrix function defined
at a point

definition
Definition 10.5.1, 628

matrix function
evaluation

identity theorem
Theorem 10.5.3, 629

matrix inequality
matrix logarithm
Proposition 8.6.4, 432

matrix inversion lemma
generalization
Fact 2.16.21, 145

generalized inverse
Fact 6.4.4, 378

inverse matrix
Corollary 2.8.8, 108

matrix logarithm
chaotic order
Fact 8.19.1, 522

complex matrix
Definition 11.4.1, 654

convergent series
Theorem 11.5.1, 656

convex function
Proposition 8.6.17, 437

determinant
Fact 8.18.30, 521
Fact 9.8.39, 578
Fact 11.14.24, 686

determinant and
derivative
Proposition 10.7.3, 631

discrete-time
Lyapunov-stable
matrix
Fact 11.14.19, 685

eigenvalues
Theorem 11.5.1, 656

exponential
Fact 11.14.26, 686

geometric mean
Fact 11.14.39, 689

Hamiltonian matrix
Fact 11.14.19, 685

Klein’s inequality
Fact 11.14.25, 686

limit
Proposition 8.6.4, 432

matrix exponential
Theorem 11.5.1, 656
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Proposition 11.4.2, 654
Fact 11.13.17, 680
Fact 11.14.21, 685
Fact 11.14.31, 688

matrix inequality
Proposition 8.6.4, 432

maximum singular
value
Fact 8.18.30, 521

nonsingular matrix
Proposition 11.4.2, 654

norm
Theorem 11.5.1, 656

positive-definite
matrix
Proposition 8.6.4, 432
Proposition 11.4.5, 654
Fact 8.9.43, 455
Fact 8.13.8, 486
Fact 8.18.29, 521
Fact 8.19.1, 522
Fact 8.19.2, 523
Fact 9.9.55, 590
Fact 11.14.24, 686
Fact 11.14.25, 686
Fact 11.14.26, 686
Fact 11.14.27, 686

positive-semidefinite
matrix
Fact 9.9.54, 590

quadratic form
Fact 8.15.15, 502

real matrix
Proposition 11.4.3, 654
Fact 11.14.19, 685

relative entropy
Fact 11.14.25, 686

Schur product
Fact 8.21.47, 540
Fact 8.21.48, 540

spectrum
Theorem 11.5.1, 656

symplectic matrix
Fact 11.14.19, 685

trace
Fact 11.14.24, 686
Fact 11.14.25, 686
Fact 11.14.27, 686
Fact 11.14.31, 688

unitarily invariant
norm
Fact 9.9.54, 590

matrix measure
properties
Fact 11.15.7, 690

matrix polynomial
definition, 234

matrix power
outer-product
perturbation
Fact 2.12.18, 127

positive-definite
matrix inequality
Fact 8.10.51, 466
Fact 8.19.3, 523

positive-semidefinite
matrix
Fact 8.12.30, 482
Fact 8.15.16, 502

matrix product
lower triangular
matrix
Fact 3.20.18, 221

normal matrix
Fact 9.9.6, 580

strictly lower
triangular matrix
Fact 3.20.18, 221

strictly upper
triangular matrix
Fact 3.20.18, 221

unitarily invariant
norm
Fact 9.9.6, 580

upper triangular
matrix
Fact 3.20.18, 221

matrix sign function
convergent sequence
Fact 5.15.21, 348

definition
Definition 10.6.2, 630

partitioned matrix
Fact 10.10.3, 637

positive-definite
matrix

Fact 10.10.4, 637
properties
Fact 10.10.2, 637

square root
Fact 5.15.21, 348

matrix sine
matrix cosine
Fact 11.12.1, 677

matrix exponential
Fact 11.12.1, 677

maximal solution
Riccati equation
Definition 12.16.12,
780

Theorem 12.18.1, 787
Theorem 12.18.4, 787
Proposition 12.18.2,
787

Proposition 12.18.7,
789

maximal solution of the
Riccati equation

closed-loop spectrum
Proposition 12.18.2,
787

stabilizability
Theorem 12.18.1, 787

maximization
continuous function
Fact 10.11.4, 638

maximum eigenvalue
commutator
Fact 9.9.30, 585
Fact 9.9.31, 585

Hermitian matrix
Lemma 8.4.3, 425
Fact 5.11.5, 321
Fact 8.10.3, 456

matrix exponential
Fact 11.16.4, 692

positive-semidefinite
matrix
Fact 8.18.11, 515
Fact 8.18.13, 516
Fact 8.18.14, 516

quadratic form
Lemma 8.4.3, 425
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spectral abscissa
Fact 5.11.5, 321

unitarily invariant
norm
Fact 9.9.30, 585
Fact 9.9.31, 585

maximum singular
value

absolute value
Fact 9.13.10, 603

block-diagonal
matrix
Fact 5.11.33, 328

block-triangular
matrix
Fact 5.11.32, 328

bound
Fact 5.11.35, 328

commutator
Fact 9.9.29, 584
Fact 9.14.9, 609

complex conjugate
transpose
Fact 8.17.3, 508
Fact 8.18.11, 515
Fact 8.21.10, 533

Cordes inequality
Fact 8.18.26, 520

derivative
Fact 11.15.2, 689

determinant
Fact 9.14.17, 611
Fact 9.14.18, 611

discrete-time
Lyapunov-stable
matrix
Fact 11.21.17, 715

dissipative matrix
Fact 8.17.12, 511

eigenvalue of
Hermitian part
Fact 5.11.25, 326

eigenvalue
perturbation
Fact 9.12.4, 599
Fact 9.12.8, 601

elementary projector
Fact 9.14.1, 607

equi-induced
self-adjoint norm
Fact 9.13.5, 602

equi-induced
unitarily invariant
norm
Fact 9.13.4, 602

generalized inverse
Fact 9.14.8, 608
Fact 9.14.30, 615

Hermitian matrix
Fact 5.11.5, 321
Fact 9.9.41, 588

Hölder-induced
norm
Fact 9.8.21, 575

idempotent matrix
Fact 5.11.38, 328
Fact 5.11.39, 329
Fact 5.12.18, 336

induced lower bound
Corollary 9.5.5, 560

induced norm
Fact 9.8.24, 575

inequality
Proposition 9.2.2, 548
Corollary 9.6.5, 562
Corollary 9.6.9, 562
Fact 9.9.32, 585
Fact 9.14.16, 611

inverse matrix
Fact 9.14.8, 608

Kreiss matrix
theorem
Fact 11.21.17, 715

Kronecker product
Fact 9.14.37, 617

matrix difference
Fact 8.18.8, 515
Fact 9.9.32, 585

matrix exponential
Fact 11.15.1, 689
Fact 11.15.2, 689
Fact 11.15.5, 689
Fact 11.16.6, 694
Fact 11.16.10, 694

matrix logarithm
Fact 8.18.30, 521

matrix power

Fact 8.18.26, 520
Fact 9.13.7, 603
Fact 9.13.9, 603

normal matrix
Fact 5.14.15, 341
Fact 9.8.13, 573
Fact 9.12.8, 601
Fact 9.13.7, 603
Fact 9.13.8, 603
Fact 9.14.5, 608
Fact 11.16.10, 694

outer-product
matrix
Fact 5.11.16, 324
Fact 5.11.18, 324
Fact 9.7.26, 570

partitioned matrix
Fact 8.17.3, 508
Fact 8.17.14, 512
Fact 8.18.1, 512
Fact 8.18.2, 513
Fact 9.10.1, 593
Fact 9.10.3, 594
Fact 9.10.4, 594
Fact 9.10.5, 595
Fact 9.14.12, 610
Fact 9.14.13, 610
Fact 9.14.14, 610

positive-definite
matrix
Fact 8.18.25, 520

positive-semidefinite
matrix
Fact 8.18.1, 512
Fact 8.18.2, 513
Fact 8.18.8, 515
Fact 8.18.12, 516
Fact 8.18.13, 516
Fact 8.18.14, 516
Fact 8.18.15, 517
Fact 8.18.16, 517
Fact 8.18.25, 520
Fact 8.18.26, 520
Fact 8.18.28, 521
Fact 8.18.30, 521
Fact 8.18.31, 522
Fact 8.20.9, 526
Fact 11.16.6, 694

power
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Fact 11.21.17, 715
product
Fact 9.14.2, 607

projector
Fact 5.11.38, 328
Fact 5.12.17, 335
Fact 5.12.18, 336
Fact 9.14.1, 607
Fact 9.14.30, 615

quadratic form
Fact 9.13.1, 602
Fact 9.13.2, 602

Schur product
Fact 8.21.10, 533
Fact 9.14.31, 615
Fact 9.14.33, 616
Fact 9.14.35, 617

spectral abscissa
Fact 5.11.26, 326

spectral radius
Corollary 9.4.10, 556
Fact 5.11.5, 321
Fact 5.11.26, 326
Fact 8.18.25, 520
Fact 9.8.13, 573
Fact 9.13.9, 603

square root
Fact 8.18.14, 516
Fact 9.8.32, 576
Fact 9.14.15, 611

sum of matrices
Fact 9.14.15, 611

trace
Fact 5.12.7, 334
Fact 9.14.4, 608

trace norm
Corollary 9.3.8, 552

unitarily invariant
norm
Fact 9.9.10, 581
Fact 9.9.29, 584

maximum singular
value bound

Frobenius norm
Fact 9.13.13, 604

minimum singular
value bound
Fact 9.13.14, 604

polynomial root

Fact 9.13.14, 604
trace
Fact 9.13.13, 604

maximum singular
value of a matrix
difference

Kato
Fact 9.9.32, 585

maximum singular
value of a partitioned
matrix

Parrott’s theorem
Fact 9.14.13, 610

Tomiyama
Fact 9.14.12, 610

McCarthy inequality
positive-semidefinite
matrix
Fact 8.12.29, 481

McCoy
simultaneous
triangularization
Fact 5.17.5, 358

McIntosh’s inequality
unitarily invariant
norm
Fact 9.9.47, 589

McLaughlin’s inequality
refined
Cauchy-Schwarz
inequality
Fact 1.16.17, 64

McMillan degree
Definition 4.7.10, 251
minimal realization
Theorem 12.9.16, 756

mean
inequality
Fact 1.16.18, 64

Laguerre-Samuelson
inequality
Fact 1.15.12, 51
Fact 8.9.35, 454

variance inequality
Fact 1.15.12, 51

Fact 8.9.35, 454

mean-value inequality
product of means
Fact 1.15.38, 57
Fact 1.15.44, 59

Mercator’s series
infinite series
Fact 1.18.8, 73

Mihet
polynomial bound
Fact 11.20.13, 712

Milne’s inequality
refined
Cauchy-Schwarz
inequality
Fact 1.16.15, 63

Milnor
simultaneous
diagonalization of
symmetric matrices
Fact 8.16.6, 507

MIMO transfer function
definition
Definition 12.9.1, 749

minimal polynomial
block-diagonal
matrix
Lemma 5.2.7, 286

block-triangular
matrix
Fact 4.10.12, 268

characteristic
polynomial
Fact 4.9.24, 265

companion matrix
Proposition 5.2.1, 284
Corollary 5.2.4, 286
Corollary 5.2.5, 286

cyclic matrix
Proposition 5.5.15, 299

definition, 247
existence
Theorem 4.6.1, 247

index of an
eigenvalue
Proposition 5.5.15, 299
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Jordan form
Proposition 5.5.15, 299

null space
Corollary 11.8.6, 664

partitioned matrix
Fact 4.10.12, 268

range
Corollary 11.8.6, 664

similar matrices
Proposition 4.6.3, 248
Fact 11.23.3, 717
Fact 11.23.4, 717
Fact 11.23.5, 718
Fact 11.23.6, 719
Fact 11.23.7, 719
Fact 11.23.8, 720
Fact 11.23.9, 720
Fact 11.23.10, 721
Fact 11.23.11, 721

spectrum
Fact 4.10.8, 267

stable subspace
Proposition 11.8.5, 664
Fact 11.23.1, 716
Fact 11.23.2, 716

upper
block-triangular
matrix
Fact 4.10.12, 268

minimal realization
asymptotically stable
matrix
Definition 12.9.17, 757

asymptotically stable
transfer function
Proposition 12.9.18,
757

balanced realization
Proposition 12.9.21,
757

block decomposition
Proposition 12.9.10,
753

controllable pair
Proposition 12.9.10,
753

Corollary 12.9.15, 756
definition
Definition 12.9.14, 756

Kalman
decomposition
Proposition 12.9.10,
753

Lyapunov-stable
matrix
Definition 12.9.17, 757

Lyapunov-stable
transfer function
Proposition 12.9.18,
757

Markov
block-Hankel
matrix
Proposition 12.9.12,
755

McMillan degree
Theorem 12.9.16, 756

observable pair
Proposition 12.9.10,
753

Corollary 12.9.15, 756
pole
Fact 12.22.2, 798
Fact 12.22.12, 800

rational transfer
function
Fact 12.22.12, 800

semistable matrix
Definition 12.9.17, 757

semistable transfer
function
Proposition 12.9.18,
757

minimal-rank identity
partitioned matrix
Fact 6.5.7, 387

minimum eigenvalue
Hermitian matrix
Lemma 8.4.3, 425
Fact 8.10.3, 456

nonnegative matrix
Fact 4.11.9, 276

quadratic form
Lemma 8.4.3, 425

Z-matrix
Fact 4.11.9, 276

minimum principle

eigenvalue
characterization
Fact 8.17.15, 512

minimum singular
value

determinant
Fact 9.14.18, 611

eigenvalue of
Hermitian part
Fact 5.11.25, 326

induced lower bound
Corollary 9.5.5, 560

inequality
Corollary 9.6.6, 562
Fact 9.13.6, 602

lower bound
Fact 9.13.15, 604
Fact 9.13.21, 606

quadratic form
Fact 9.13.1, 602

spectral abscissa
Fact 5.11.26, 326

spectral radius
Fact 5.11.26, 326

minimum singular
value bound

maximum singular
value bound
Fact 9.13.14, 604

polynomial root
Fact 9.13.14, 604

Minkowski
set-defined norm
Fact 10.8.22, 633

Minkowski’s
determinant theorem

positive-semidefinite
matrix determinant
Corollary 8.4.15, 429

Minkowski’s inequality
Hölder norm
Lemma 9.1.3, 544

positive-semidefinite
matrix
Fact 8.12.29, 481

scalar case
Fact 1.16.25, 66



984 inertia

minor, see
subdeterminant

Mircea’s inequality
triangle
Fact 2.20.11, 156

Mirsky
singular value trace
bound
Fact 5.12.6, 334

Mirsky’s theorem
singular value
perturbation
Fact 9.14.29, 614

MISO transfer function
definition
Definition 12.9.1, 749

mixed
arithmetic-geometric
mean inequality

arithmetic mean
Fact 1.15.39, 58

ML-matrix
definition, 230

Moler
regular pencil
Fact 5.17.3, 358

monic polynomial
definition, 231

monic polynomial
matrix

definition, 234

monotone norm
absolute norm
Proposition 9.1.2, 543

definition, 543

monotonicity
Callebaut
Fact 1.16.1, 60

power inequality
Fact 1.10.33, 36

power mean
inequality
Fact 1.15.30, 55

Riccati equation

Proposition 12.18.5,
788

Corollary 12.18.6, 788

monotonicity theorem
Hermitian matrix
eigenvalues
Theorem 8.4.9, 427
Fact 8.10.4, 456

Moore-Penrose
generalized inverse,
see generalized
inverse

Muirhead’s theorem
Schur convex
function
Fact 1.15.25, 54

strong majorization
Fact 2.21.5, 162

multicompanion form
definition, 285
existence
Theorem 5.2.3, 285

similar matrices
Corollary 5.2.6, 286

similarity invariant
Corollary 5.2.6, 286

multigraph
definition, 8

multinomial theorem
power of sum
Fact 1.15.1, 48

multiple
definition, 233

multiplication
definition, 81
function composition
Theorem 2.1.3, 81

Kronecker product
Proposition 7.1.6, 400

multiplicative
commutator

realization
Fact 5.15.34, 351

reflector realization
Fact 5.15.35, 351

multiplicative
perturbation

small-gain theorem
Fact 9.13.23, 606

multiplicity of a root
definition, 232

multirelation
definition, 5

multiset
definition, 2

multispectrum
definition
Definition 4.4.4, 240

properties
Proposition 4.4.5, 241

N

N-matrix
almost nonnegative
matrix
Fact 11.19.3, 706
Fact 11.19.5, 707

asymptotically stable
matrix
Fact 11.19.5, 707

definition
Fact 11.19.3, 706

group-invertible
matrix
Fact 11.19.4, 706

Lyapunov-stable
matrix
Fact 11.19.4, 706

nonnegative matrix
Fact 11.19.3, 706

Nanjundiah
mixed arithmetic-
geometric mean
inequality
Fact 1.15.39, 58

natural frequency
definition, 654
Fact 5.14.35, 344

necessity
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definition, 1

negation
definition, 1

negative-definite matrix
asymptotically stable
matrix
Fact 11.18.30, 704

definition
Definition 3.1.1, 165

negative-semidefinite
matrix

definition
Definition 3.1.1, 165

Euclidean distance
matrix
Fact 9.8.14, 573

Nesbitt’s inequality
scalar inequality
Fact 1.11.21, 44

Newcomb
simultaneous
cogredient
diagonalization, 541

Newton’s identities
elementary
symmetric
polynomial
Fact 4.8.2, 254

polynomial roots
Fact 4.8.2, 254

spectrum
Fact 4.10.6, 267

Newton’s inequality
elementary
symmetric
polynomial
Fact 1.15.11, 50

Newton-Raphson
algorithm

generalized inverse
Fact 6.3.35, 376

inverse matrix
Fact 2.16.29, 146

square root
Fact 5.15.21, 348

Niculescu’s inequality
absolute-value
function
Fact 1.10.19, 33

convex function
Fact 1.8.5, 22

square-root function
Fact 1.10.20, 33

nilpotent matrix
additive
decomposition
Fact 5.9.3, 311

adjugate
Fact 6.3.6, 370

commutator
Fact 3.12.16, 200
Fact 3.17.11, 214
Fact 3.17.12, 214
Fact 3.17.13, 214

commuting matrices
Fact 3.17.9, 214
Fact 3.17.10, 214

defective matrix
Fact 5.14.18, 341

definition
Definition 3.1.1, 165

determinant
Fact 3.17.9, 214

example
Example 5.5.17, 299

factorization
Fact 5.15.29, 350

idempotent matrix
Fact 3.12.16, 200

identity perturbation
Fact 3.17.7, 214
Fact 3.17.8, 214

inertia
Fact 5.8.4, 307

Jordan-Chevalley
decomposition
Fact 5.9.3, 311

Kronecker product
Fact 7.4.16, 406

Kronecker sum
Fact 7.5.3, 409
Fact 7.5.8, 409

lower triangular
matrix

Fact 3.17.11, 214
matrix exponential
Fact 11.11.1, 671
Fact 11.13.17, 680

matrix sum
Fact 3.17.10, 214

null space
Fact 3.17.1, 213
Fact 3.17.2, 213
Fact 3.17.3, 213

outer-product
matrix
Fact 5.14.3, 338

partitioned matrix
Fact 3.12.14, 200
Fact 5.10.23, 321

range
Fact 3.17.1, 213
Fact 3.17.2, 213
Fact 3.17.3, 213

rank
Fact 3.17.4, 213
Fact 3.17.5, 213

S-N decomposition
Fact 5.9.3, 311

similar matrices
Proposition 3.4.5, 174
Fact 5.10.23, 321

simultaneous
triangularization
Fact 5.17.6, 358

spectrum
Proposition 5.5.21, 300

Toeplitz matrix
Fact 3.18.6, 216

trace
Fact 3.17.6, 214

triangular matrix
Fact 5.17.6, 358

unitarily similar
matrices
Proposition 3.4.5, 174

upper triangular
matrix
Fact 3.17.11, 214

node
definition, 8
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nondecreasing
function

convex function
Lemma 8.6.16, 436

definition
Definition 8.6.12, 434

function composition
Lemma 8.6.16, 436

geometric mean
Fact 8.10.43, 461
Fact 8.10.44, 464

matrix exponential
Fact 8.10.44, 464

matrix functions
Proposition 8.6.13, 435

Schur complement
Proposition 8.6.13, 435

nonderogatory
eigenvalue

definition
Definition 5.5.4, 296

nonderogatory matrix
definition
Definition 5.5.4, 296

nonempty set
definition, 2

nonincreasing function
concave function
Lemma 8.6.16, 436

definition
Definition 8.6.12, 434

function composition
Lemma 8.6.16, 436

nonnegative matrix
almost nonnegative
matrix
Fact 11.19.1, 706

aperiodic graph
Fact 4.11.5, 273

companion matrix
Fact 4.11.13, 279

copositive matrix
Fact 8.15.37, 507

definition, 81
Definition 3.1.4, 168

difference equation
Fact 4.11.12, 277

eigenvalue
Fact 4.11.5, 273

Fibonacci numbers
Fact 4.11.12, 277

limit of matrix
powers
Fact 4.11.21, 280

Lucas numbers
Fact 4.11.12, 277

M-matrix
Fact 4.11.6, 275

matrix power
Fact 4.11.22, 281

minimum eigenvalue
Fact 4.11.9, 276

N-matrix
Fact 11.19.3, 706

spectral radius
Fact 4.11.5, 273
Fact 4.11.6, 275
Fact 4.11.16, 279
Fact 4.11.17, 280
Fact 7.6.13, 415
Fact 11.19.3, 706

spectral radius
convexity
Fact 4.11.19, 280

spectral radius
monotonicity
Fact 4.11.18, 280

trace
Fact 4.11.22, 281

nonnegative matrix
eigenvalues

Perron-Frobenius
theorem
Fact 4.11.5, 273

nonnegative vector
definition, 79
linear system
solution
Fact 4.11.14, 279

null space
Fact 4.11.15, 279

nonsingular matrix
complex conjugate
Proposition 2.6.8, 102

complex conjugate
transpose
Proposition 2.6.8, 102
Fact 2.16.30, 146

controllable subspace
Proposition 12.6.10,
740

cyclic matrix
Fact 5.14.9, 340

definition, 100
determinant
Corollary 2.7.4, 104
Lemma 2.8.6, 108

determinant lower
bound
Fact 4.10.18, 269

diagonal dominance
theorem
Fact 4.10.17, 269
Fact 4.10.18, 269

diagonally dominant
matrix
Fact 4.10.17, 269

dissipative matrix
Fact 3.20.13, 220

distance to
singularity
Fact 9.14.7, 608

elementary matrix
Fact 5.15.12, 347

factorization
Fact 5.15.12, 347
Fact 5.15.36, 351

group
Proposition 3.3.6, 172

idempotent matrix
Fact 3.12.11, 199
Fact 3.12.26, 203
Fact 3.12.28, 203
Fact 3.12.32, 205

inverse matrix
Fact 3.7.1, 178

matrix logarithm
Proposition 11.4.2, 654

norm
Fact 9.7.32, 571

normal matrix
Fact 3.7.1, 178

perturbation
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Fact 9.14.6, 608
Fact 9.14.18, 611

range-Hermitian
matrix
Proposition 3.1.6, 169

similar matrices
Fact 5.10.11, 318

simplex
Fact 2.20.4, 154

skew Hermitian
matrix
Fact 3.7.1, 178

spectral radius
Fact 4.10.29, 272

submultiplicative
norm
Fact 9.8.5, 572

Sylvester’s equation
Fact 12.21.14, 796

transpose
Proposition 2.6.8, 102

unitary matrix
Fact 3.7.1, 178

unobservable
subspace
Proposition 12.3.10,
730

weak diagonal
dominance theorem
Fact 4.10.19, 270

nonsingular matrix
transformation

Smith polynomial
Proposition 4.3.8, 238

nonsingular polynomial
matrix

Definition 4.2.5, 235
regular polynomial
matrix
Proposition 4.2.5, 235

nonzero diagonal
entries

similar matrices
Fact 5.9.14, 313

norm
absolute
definition, 543

absolute sum
definition, 545

column
definition, 556

compatible
definition, 549

complex conjugate
transpose
Fact 9.8.8, 572

convex set
Fact 9.7.23, 570

Dunkl-Williams
inequality
Fact 9.7.10, 566
Fact 9.7.13, 567

equi-induced
Definition 9.4.1, 553

equivalent
Theorem 9.1.8, 546

Euclidean
definition, 545

Euclidean-norm
inequality
Fact 9.7.4, 563
Fact 9.7.18, 569

Frobenius
definition, 547

Hölder-norm
inequality
Fact 9.7.18, 569

idempotent matrix
Fact 11.16.12, 695

induced
Definition 9.4.1, 553

induced norm
Theorem 9.4.2, 553

inequality
Fact 9.7.2, 563
Fact 9.7.4, 563
Fact 9.7.10, 566
Fact 9.7.13, 567
Fact 9.7.16, 568
Fact 9.7.17, 569

infinity
definition, 545

linear combination of
norms
Fact 9.7.31, 571

linear system
solution
Fact 9.9.64, 592
Fact 9.9.65, 592
Fact 9.9.66, 592

Maligranda
inequality
Fact 9.7.10, 566
Fact 9.7.13, 567

Massera-Schaffer
inequality
Fact 9.7.10, 566
Fact 9.7.13, 567

matrix
Definition 9.2.1, 546

matrix exponential
Fact 11.16.9, 694
Fact 11.16.11, 694
Fact 11.16.12, 695

matrix logarithm
Theorem 11.5.1, 656

monotone
definition, 543

nonsingular matrix
Fact 9.7.32, 571

normalized
definition, 547

partitioned matrix
Fact 9.10.1, 593
Fact 9.10.2, 593
Fact 9.10.8, 596

positive-definite
matrix
Fact 9.7.30, 571

quadratic form
Fact 9.7.30, 571

row
definition, 556

self-adjoint
definition, 547

set-defined
Fact 10.8.22, 633

spectral
definition, 549

spectral radius
Proposition 9.2.6, 549

submultiplicative
definition, 550

trace
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definition, 549
triangle inequality
Definition 9.1.1, 543

unitarily invariant
definition, 547

vector
Definition 9.1.1, 543

weakly unitarily
invariant
definition, 547

norm bound
matrix exponential
Fact 11.18.10, 699

norm equality
common eigenvector
Fact 9.9.33, 585

Schatten norm
Fact 9.9.33, 585

norm identity
Hlawka’s equality
Fact 9.7.4, 563

polarization identity
Fact 9.7.4, 563

Pythagorean
theorem
Fact 9.7.4, 563

norm inequality
Aczel’s inequality
Fact 9.7.4, 563

Bessel’s inequality
Fact 9.7.4, 563

Buzano’s inequality
Fact 9.7.4, 563

convex combination
Fact 9.7.15, 568

Hlawka’s inequality
Fact 9.7.4, 563

Hölder norm
Fact 9.7.21, 569

orthogonal vectors
Fact 9.7.25, 570

Parseval’s inequality
Fact 9.7.4, 563

polygonal
inequalities
Fact 9.7.4, 563

quadrilateral
inequality
Fact 9.7.4, 563

Schatten norm
Fact 9.9.34, 586
Fact 9.9.36, 586
Fact 9.9.37, 586
Fact 9.9.38, 587

unitarily invariant
norm
Fact 9.9.47, 589
Fact 9.9.48, 589
Fact 9.9.49, 589
Fact 9.9.50, 589

vector inequality
Fact 9.7.11, 567
Fact 9.7.12, 567
Fact 9.7.14, 568
Fact 9.7.15, 568

von
Neumann–Jordan
inequality
Fact 9.7.11, 567

norm monotonicity
power-sum
inequality
Fact 1.10.30, 35
Fact 1.15.34, 57

norm-compression
inequality

partitioned matrix
Fact 9.10.1, 593
Fact 9.10.8, 596

positive-semidefinite
matrix
Fact 9.10.6, 595

normal matrix
affine mapping
Fact 3.7.14, 181

asymptotically stable
matrix
Fact 11.18.37, 705

block-diagonal
matrix
Fact 3.7.8, 179

characterizations
Fact 3.7.12, 180

commutator

Fact 3.8.6, 185
Fact 3.8.7, 185
Fact 9.9.31, 585

commuting matrices
Fact 3.7.28, 183
Fact 3.7.29, 183
Fact 5.14.29, 342
Fact 5.17.7, 358
Fact 11.14.5, 682

complex conjugate
transpose
Fact 5.14.30, 343
Fact 6.3.16, 373
Fact 6.3.17, 373
Fact 6.6.10, 394
Fact 6.6.17, 397

congruence
transformation
Fact 5.10.17, 319

definition
Definition 3.1.1, 165

determinant
Fact 5.12.12, 335

discrete-time
asymptotically
stable matrix
Fact 11.21.4, 712

discrete-time
Lyapunov-stable
matrix
Fact 11.21.4, 712

dissipative matrix
Fact 11.18.37, 705

eigenvalue
Fact 5.14.15, 341

eigenvalue
perturbation
Fact 9.12.8, 601

eigenvector
Proposition 4.5.4, 246
Lemma 4.5.3, 246

example
Example 5.5.17, 299

Frobenius norm
Fact 9.12.9, 601

generalized inverse
Proposition 6.1.6, 365
Fact 6.3.16, 373
Fact 6.3.17, 373
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group generalized
inverse
Fact 6.6.10, 394

group-invertible
matrix
Fact 6.6.17, 397

Hermitian matrix
Proposition 3.1.6, 169

idempotent matrix
Fact 3.13.3, 206

inertia
Fact 5.10.17, 319

involutory matrix
Fact 5.9.9, 312
Fact 5.9.10, 312

Jordan form
Fact 5.10.6, 317

Kronecker product
Fact 7.4.16, 406

Kronecker sum
Fact 7.5.8, 409

Lyapunov-stable
matrix
Fact 11.18.37, 705

matrix exponential
Proposition 11.2.8, 649
Fact 11.13.18, 680
Fact 11.14.5, 682
Fact 11.16.10, 694

matrix power
Fact 9.13.7, 603

matrix product
Fact 9.9.6, 580

maximum singular
value
Fact 5.14.15, 341
Fact 9.8.13, 573
Fact 9.12.8, 601
Fact 9.13.7, 603
Fact 9.13.8, 603
Fact 9.14.5, 608
Fact 11.16.10, 694

orthogonal
eigenvectors
Corollary 5.4.8, 294

partitioned matrix
Fact 3.12.14, 200
Fact 8.11.12, 470

polar decomposition

Fact 11.13.9, 679
positive-semidefinite
matrix
Fact 8.9.22, 452
Fact 8.10.11, 457
Fact 8.11.12, 470

projector
Fact 3.13.3, 206
Fact 3.13.20, 209

Putnam-Fuglede
theorem
Fact 5.14.30, 343

range-Hermitian
matrix
Proposition 3.1.6, 169

reflector
Fact 5.9.9, 312
Fact 5.9.10, 312

Schatten norm
Fact 9.9.27, 584
Fact 9.14.5, 608

Schur decomposition
Corollary 5.4.4, 293
Fact 5.10.6, 317

Schur product
Fact 9.9.63, 591

semidissipative
matrix
Fact 11.18.37, 705

semisimple matrix
Proposition 5.5.11, 297

shifted-unitary
matrix
Fact 3.11.34, 198

similar matrices
Proposition 5.5.11, 297
Fact 5.9.9, 312
Fact 5.9.10, 312
Fact 5.10.7, 317

similarity
transformation
Fact 5.15.3, 345

singular value
Fact 5.14.15, 341

skew-Hermitian
matrix
Proposition 3.1.6, 169

spectral
decomposition

Fact 5.14.14, 340
spectral radius
Fact 5.14.15, 341

spectral variation
Fact 9.12.5, 600
Fact 9.12.6, 600

spectrum
Fact 4.10.24, 271
Fact 8.14.7, 496
Fact 8.14.8, 497

square root
Fact 8.9.27, 453
Fact 8.9.28, 453
Fact 8.9.29, 453

trace
Fact 3.7.12, 180
Fact 8.12.5, 476

trace of product
Fact 5.12.4, 333

transpose
Fact 5.9.9, 312
Fact 5.9.10, 312

unitarily invariant
norm
Fact 9.9.6, 580

unitarily similar
matrices
Proposition 3.4.5, 174
Corollary 5.4.4, 293
Fact 5.10.6, 317
Fact 5.10.7, 317

unitary matrix
Proposition 3.1.6, 169
Fact 3.11.4, 189
Fact 5.15.1, 345

normal rank
definition for a
polynomial matrix
Definition 4.2.4, 235

definition for a
rational transfer
function
Definition 4.7.4, 249

rational transfer
function, 281

normalized norm
definition, 547
equi-induced norm
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Theorem 9.4.2, 553

normalized
submultiplicative
norm

inverse matrix
Fact 9.8.44, 579
Fact 9.9.56, 590
Fact 9.9.57, 590
Fact 9.9.58, 591
Fact 9.9.59, 591

null space
adjugate
Fact 2.16.7, 143

definition, 94
Drazin generalized
inverse
Proposition 6.2.2, 368

generalized inverse
Proposition 6.1.6, 365
Fact 6.3.24, 374

group generalized
inverse
Proposition 6.2.3, 369

group-invertible
matrix
Fact 3.6.1, 177

idempotent matrix
Fact 3.12.3, 199
Fact 3.15.4, 200
Fact 6.3.24, 374

identity
Fact 2.10.20, 117

inclusion
Fact 2.10.5, 116
Fact 2.10.7, 116

inclusion for a
matrix power
Corollary 2.4.2, 94

inclusion for a
matrix product
Lemma 2.4.1, 94
Fact 2.10.2, 115

intersection
Fact 2.10.9, 116

involutory matrix
Fact 3.15.4, 212

left-equivalent
matrices

Proposition 5.1.3, 283
Lyapunov equation
Fact 12.21.15, 797

matrix sum
Fact 2.10.10, 116

minimal polynomial
Corollary 11.8.6, 664

nilpotent matrix
Fact 3.17.1, 213
Fact 3.17.2, 213
Fact 3.17.3, 213

outer-product
matrix
Fact 2.10.11, 116

partitioned matrix
Fact 2.11.3, 121

positive-semidefinite
matrix
Fact 8.7.3, 443
Fact 8.7.5, 443
Fact 8.15.1, 500

quadratic form
Fact 8.15.1, 500

range
Corollary 2.5.6, 97
Fact 2.10.1, 115

range inclusions
Theorem 2.4.3, 94

range-Hermitian
matrix
Fact 3.6.3, 177

semisimple
eigenvalue
Proposition 5.5.8, 296

skew-Hermitian
matrix
Fact 8.7.3, 443

symmetric matrix
Fact 3.7.4, 178

nullity, see defect

nullity theorem
defect of a submatrix
Fact 2.11.20, 125

partitioned matrix
Fact 9.14.11, 609

numerical radius
weakly unitarily
invariant norm

Fact 9.8.38, 577

numerical range
spectrum of convex
hull
Fact 8.14.7, 496
Fact 8.14.8, 497

O

oblique projector, see
idempotent matrix

observability
closed-loop spectrum
Lemma 12.16.17, 781

Riccati equation
Lemma 12.16.18, 781

Sylvester’s equation
Fact 12.21.14, 796

observability Gramian
asymptotically stable
matrix
Corollary 12.4.10, 734

H2 norm
Corollary 12.11.4, 767

L2 norm
Theorem 12.11.1, 765

observably
asymptotically
stable
Proposition 12.4.3, 732
Proposition 12.4.4, 733
Proposition 12.4.5, 733
Proposition 12.4.6, 734
Proposition 12.4.7, 734

observability matrix
definition, 728
generalized inverse
Fact 12.20.19, 793

Lyapunov equation
Fact 12.21.15, 797

observable pair
Theorem 12.3.18, 732
Fact 12.20.19, 793

rank
Corollary 12.3.3, 729

Sylvester’s equation
Fact 12.21.13, 796
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observability pencil
definition
Definition 12.3.12, 731

Smith form
Proposition 12.3.15,
731

Smith zeros
Proposition 12.3.16,
731

unobservable
eigenvalue
Proposition 12.3.13,
731

unobservable
spectrum
Proposition 12.3.16,
731

observable canonical
form

definition, 750
equivalent
realizations
Corollary 12.9.9, 752

realization
Proposition 12.9.3, 750

observable dynamics
block-triangular
matrix
Theorem 12.3.8, 730

orthogonal matrix
Theorem 12.3.8, 730

observable eigenvalue
closed-loop spectrum
Lemma 12.16.16, 781

observable subspace
Proposition 12.3.17,
732

observable pair
asymptotically stable
matrix
Proposition 12.4.9, 734
Corollary 12.4.10, 734

eigenvalue placement
Proposition 12.3.19,
732

equivalent
realizations

Proposition 12.9.8, 752
invariant zero
Corollary 12.10.12, 765

Markov
block-Hankel
matrix
Proposition 12.9.11,
754

minimal realization
Proposition 12.9.10,
753

Corollary 12.9.15, 756
observability matrix
Theorem 12.3.18, 732
Fact 12.20.19, 793

positive-definite
matrix
Theorem 12.3.18, 732

observable subspace
observable
eigenvalue
Proposition 12.3.17,
732

observably
asymptotically stable

asymptotically stable
matrix
Proposition 11.9.5, 735
Proposition 12.5.5, 735

block-triangular
matrix
Proposition 12.4.3, 732

definition
Definition 12.4.1, 732

detectability
Proposition 12.5.5, 735

Lyapunov equation
Proposition 12.4.3, 732

observability
Gramian
Proposition 12.4.3, 732
Proposition 12.4.4, 733
Proposition 12.4.5, 733
Proposition 12.4.6, 734
Proposition 12.4.7, 734

orthogonal matrix
Proposition 12.4.3, 732

output injection

Proposition 12.4.2, 732
rank
Proposition 12.4.4, 733

stabilizability
Proposition 11.9.5, 735

octahedral group
group
Fact 3.21.7, 223

octonions
inequality
Fact 1.14.1, 47

real matrix
representation
Fact 3.22.1, 225

odd polynomial
asymptotically stable
polynomial
Fact 11.17.6, 696

definition, 232

off-diagonal entries
definition, 80

off-diagonally located
block

definition, 80

OLHP
open left half plane
definition, 77

one-sided cone
definition, 89
induced by
antisymmetric
relation
Proposition 2.3.6, 93

positive-semidefinite
matrix, 417

quadratic form
Fact 8.14.14, 498

one-sided directional
differential

convex function
Proposition 10.4.1, 626

definition, 625
example
Fact 10.11.16, 639

homogeneity
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Fact 10.11.15, 639

one-to-one
definition, 3
inverse function
Theorem 1.2.2, 4

one-to-one function
composition of
functions
Fact 1.5.16, 13

equivalent conditions
Fact 1.5.14, 12

finite domain
Fact 1.5.13, 12

one-to-one matrix
equivalent properties
Theorem 2.6.1, 98

nonsingular
equivalence
Corollary 2.6.6, 101

ones matrix
definition, 84
rank
Fact 2.10.18, 117

onto
definition, 3
inverse function
Theorem 1.2.2, 4

onto function
composition of
functions
Fact 1.5.16, 13

equivalent conditions
Fact 1.5.15, 13

finite domain
Fact 1.5.13, 12

onto matrix
equivalent properties
Theorem 2.6.1, 98

nonsingular
equivalence
Corollary 2.6.6, 101

open ball
bounded set
Fact 10.8.2, 632

completely solid set

Fact 10.8.1, 632
convex set
Fact 10.8.1, 632

inner product
Fact 9.7.24, 570

open ball of radius ε
definition, 621

open half space
affine open half
space
Fact 2.9.6, 111

definition, 91

open mapping theorem
open set image
Theorem 10.3.6, 624

open relative to a set
continuous function
Theorem 10.3.4, 624

definition
Definition 10.1.2, 621

open set
complement
Fact 10.8.4, 632

continuous function
Theorem 10.3.7, 624
Corollary 10.3.5, 624

convex hull
Fact 10.8.14, 633

definition
Definition 10.1.1, 621

intersection
Fact 10.9.9, 635

invariance of domain
Theorem 10.3.7, 624

right-invertible
matrix
Theorem 10.3.6, 624

union
Fact 10.9.9, 635

Oppenheim’s inequality
determinant
inequality
Fact 8.21.19, 534

optimal 2-uniform
convexity

powers

Fact 1.10.15, 33
Fact 9.9.35, 586

order
definition, 79
Definition 12.9.2, 749

ORHP
open right half plane
definition, 77

Orlicz
Hölder-induced
norm
Fact 9.8.18, 574

orthogonal
complement

definition, 91
intersection
Fact 2.9.15, 112

projector
Proposition 3.5.2, 175

subspace
Proposition 3.5.2, 175
Fact 2.9.16, 112
Fact 2.9.27, 114

sum
Fact 2.9.15, 112

orthogonal
eigenvectors

normal matrix
Corollary 5.4.8, 294

orthogonal matrices
and matrix
exponentials

Davenport
Fact 11.11.13, 675

orthogonal matrix, see
unitary matrix

2× 2
parameterization
Fact 3.11.6, 190

3× 3 skew-symmetric
matrix
Fact 11.11.10, 674
Fact 11.11.11, 674

additive
decomposition
Fact 5.19.2, 360
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algebraic multiplicity
Fact 5.11.2, 321

Cayley transform
Fact 3.11.8, 190
Fact 3.11.28, 196
Fact 3.11.30, 197
Fact 3.11.31, 198

controllable
dynamics
Theorem 12.6.8, 739

controllable subspace
Proposition 12.6.9, 739

controllably
asymptotically
stable
Proposition 12.7.3, 743

convex combination
Fact 5.19.3, 360

cross product
Fact 3.10.2, 189
Fact 3.10.3, 189
Fact 3.11.8, 190

cross-product matrix
Fact 11.11.12, 674
Fact 11.11.13, 675

definition
Definition 3.1.1, 165

detectability
Proposition 12.5.4, 735

determinant
Fact 3.11.21, 196
Fact 3.11.22, 196

direction cosines
Fact 3.11.10, 192

eigenvalue
Fact 5.11.2, 321

elementary reflector
Fact 5.15.15, 347

Euler parameters
Fact 3.11.10, 192
Fact 3.11.11, 193

existence of
transformation
Fact 3.9.5, 186

factorization
Fact 5.15.15, 347
Fact 5.15.16, 347
Fact 5.15.31, 350
Fact 5.15.35, 351

group
Proposition 3.3.6, 172

Hamiltonian matrix
Fact 3.19.13, 217

Kronecker
permutation matrix
Fact 7.4.29, 407

Kronecker product
Fact 7.4.16, 406

logarithm
Fact 11.15.10, 692

matrix exponential
Proposition 11.6.7, 659
Fact 11.11.6, 673
Fact 11.11.7, 673
Fact 11.11.8, 674
Fact 11.11.9, 674
Fact 11.11.10, 674
Fact 11.11.11, 674
Fact 11.11.12, 674
Fact 11.11.13, 675
Fact 11.15.10, 692

observable dynamics
Theorem 12.3.8, 730

observably
asymptotically
stable
Proposition 12.4.3, 732

orthosymplectic
matrix
Fact 3.19.13, 217

parameterization
Fact 3.11.9, 191
Fact 3.11.10, 192

partitioned matrix
Fact 3.11.27, 196

permutation matrix
Proposition 3.1.6, 169

quaternions
Fact 3.11.10, 192

reflector
Fact 3.11.9, 191
Fact 5.15.31, 350
Fact 5.15.35, 351

Rodrigues
Fact 3.11.10, 192

Rodrigues’s formulas
Fact 3.11.11, 193

rotation matrix

Fact 3.11.9, 191
Fact 3.11.10, 192
Fact 3.11.11, 193
Fact 3.11.12, 194
Fact 3.11.31, 198

skew-symmetric
matrix
Fact 3.11.28, 196
Fact 3.11.30, 197
Fact 3.11.31, 198

SO(3)
Fact 3.11.7, 190

square root
Fact 8.9.26, 453

stabilizability
Proposition 12.8.4, 747

subspace
Fact 3.11.1, 189
Fact 3.11.2, 189

trace
Fact 3.11.17, 195
Fact 3.11.18, 195
Fact 5.12.9, 334
Fact 5.12.10, 334

unobservable
subspace
Proposition 12.3.9, 730

orthogonal projector,
see projector

orthogonal vectors
norm inequality
Fact 9.7.25, 570

unitary matrix
Fact 3.11.14, 194

vector sum and
difference
Fact 2.12.2, 126

orthogonality
single complex
matrix
Lemma 2.2.4, 87

single complex
vector
Lemma 2.2.2, 85

single real matrix
Lemma 2.2.3, 86

single real vector
Lemma 2.2.1, 85
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orthogonality of
complex matrices

definition, 87

orthogonality of
complex vectors

definition, 85

orthogonality of real
matrices

definition, 86

orthogonality of real
vectors

definition, 85

orthogonally
complementary
subspaces

definition, 91
orthogonal
complement
Proposition 2.3.3, 91

orthogonally similar
matrices

definition
Definition 3.4.4, 174

diagonal matrix
Fact 5.9.15, 313

skew-symmetric
matrix
Fact 5.14.33, 343

symmetric matrix
Fact 5.9.15, 313

upper
block-triangular
matrix
Corollary 5.4.2, 293

upper triangular
matrix
Corollary 5.4.3, 293

orthosymplectic matrix
group
Proposition 3.3.6, 172

Hamiltonian matrix
Fact 3.19.13, 217

orthogonal matrix
Fact 3.19.13, 217

oscillator
companion matrix

Fact 5.14.35, 344
definition, 654

Ostrowski
inertia of a
Hermitian matrix
Fact 12.21.5, 794

quantitative form of
Sylvester’s law of
inertia
Fact 5.8.17, 310

Ostrowski-Taussky
inequality

determinant
Fact 8.13.2, 485

OUD
open unit disk
definition, 670

outbound Laplacian
matrix

adjacency matrix
Theorem 3.2.2, 170

definition
Definition 3.2.1, 170

outdegree
graph
Definition 1.4.3, 9

outdegree matrix
definition
Definition 3.2.1, 170

outer-product matrix
algebraic multiplicity
Fact 5.14.3, 338

characteristic
polynomial
Fact 4.9.16, 262
Fact 4.9.18, 263

cross product
Fact 3.11.8, 190

defective matrix
Fact 5.14.3, 338

definition, 86
Definition 3.1.2, 166

doublet
Fact 2.10.24, 118
Fact 2.12.6, 126

Euclidean norm

Fact 9.7.27, 570
existence of
transformation
Fact 3.9.1, 185

Frobenius norm
Fact 9.7.26, 570

generalized inverse
Fact 6.3.2, 370

group-invertible
matrix
Fact 5.14.3, 338

Hermitian matrix
Fact 3.7.18, 181
Fact 3.9.2, 185

idempotent matrix
Fact 3.7.18, 181
Fact 3.12.6, 199

identity
Fact 2.12.3, 126
Fact 2.12.5, 126

index of a matrix
Fact 5.14.3, 338

Kronecker product
Proposition 7.1.8, 401

linear independence
Fact 2.12.4, 126
Fact 2.12.8, 126

matrix exponential
Fact 11.11.1, 671

matrix power
Fact 2.12.7, 126

maximum singular
value
Fact 5.11.16, 324
Fact 5.11.18, 324
Fact 9.7.26, 570

nilpotent matrix
Fact 5.14.3, 338

null space
Fact 2.10.11, 116

partitioned matrix
Fact 4.9.18, 263

positive-definite
matrix
Fact 3.9.3, 186

positive-semidefinite
matrix
Fact 8.9.2, 450
Fact 8.9.3, 450
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Fact 8.9.4, 450
Fact 8.15.2, 500
Fact 8.15.3, 500

quadratic form
Fact 9.13.3, 602

range
Fact 2.10.11, 116

rank
Fact 2.10.19, 117
Fact 2.10.24, 118
Fact 3.7.17, 181
Fact 3.12.6, 199

semisimple matrix
Fact 5.14.3, 338

singular value
Fact 5.11.17, 324

skew-Hermitian
matrix
Fact 3.7.17, 181
Fact 3.9.4, 186

spectral abscissa
Fact 5.11.13, 323

spectral radius
Fact 5.11.13, 323

spectrum
Fact 5.11.13, 323
Fact 5.14.1, 338

sum
Fact 2.10.24, 118

trace
Fact 5.14.3, 338

unitarily invariant
norm
Fact 9.8.40, 578

outer-product
perturbation

adjugate
Fact 2.16.3, 141

determinant
Fact 2.16.3, 141

elementary matrix
Fact 3.7.19, 181

generalized inverse
Fact 6.4.2, 377

inverse matrix
Fact 2.16.3, 141

matrix power
Fact 2.12.18, 127

rank

Fact 2.10.25, 118
Fact 6.4.2, 377

unitary matrix
Fact 3.11.15, 194

output convergence
detectability
Fact 12.20.2, 791

output equation
definition, 725

output feedback
characteristic
polynomial
Fact 12.22.13, 800

determinant
Fact 12.22.13, 800

output injection
detectability
Proposition 12.5.2, 734

observably
asymptotically
stable
Proposition 12.4.2, 732

ovals of Cassini
spectrum bounds
Fact 4.10.21, 271

Ozeki’s inequality
reversed
Cauchy-Schwarz
inequality
Fact 1.16.23, 65

P

parallel affine
subspaces

definition, 89

parallel interconnection
definition, 770
transfer function
Proposition 12.13.2,
770

parallel sum
definition
Fact 8.20.18, 528

parallelepiped
volume
Fact 2.20.16, 160
Fact 2.20.17, 160

parallelogram
area
Fact 2.20.17, 160
Fact 9.7.5, 565

bivector
Fact 9.7.5, 565

cross product
Fact 9.7.5, 565

parallelogram law
complex numbers
Fact 1.18.2, 69

vector identity
Fact 9.7.4, 563

parent
Definition 1.4.2, 8

Parker
equal diagonal
entries by unitary
similarity
Fact 5.9.17, 313

Parodi
polynomial root
bound
Fact 11.20.9, 710

Parrott’s theorem
maximum singular
value of a
partitioned matrix
Fact 9.14.13, 610

Parseval’s inequality
norm inequality
Fact 9.7.4, 563

Parseval’s theorem
Fourier transform
Fact 12.22.1, 798

H2 norm
Theorem 12.11.3, 766

partial derivative
definition, 625

partial isometry
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generalized inverse
Fact 6.3.28, 375

partial ordering
definition
Definition 1.3.8, 7

generalized Löwner
ordering
Fact 8.19.10, 524

planar case
Fact 1.5.7, 12

positive-semidefinite
matrix
Proposition 8.1.1, 417

rank subtractivity
Fact 2.10.32, 119

partition
definition, 3
equivalence relation
Theorem 1.3.7, 7

partitioned matrix
adjugate
Fact 2.14.27, 139

characteristic
polynomial
Fact 4.9.14, 262
Fact 4.9.15, 262
Fact 4.9.17, 263
Fact 4.9.18, 263
Fact 4.9.22, 264
Fact 4.9.23, 264

column norm
Fact 9.8.11, 572

complementary
subspaces
Fact 3.12.33, 205

complex conjugate
Fact 2.19.9, 153

complex conjugate
transpose
Proposition 2.8.1, 106
Fact 6.5.3, 386

complex matrix
Fact 2.19.4, 152
Fact 2.19.5, 152
Fact 2.19.6, 152
Fact 2.19.7, 153
Fact 3.11.27, 196

contractive matrix

Fact 8.11.24, 473
damping matrix
Fact 5.12.21, 337

defect
Fact 2.11.3, 121
Fact 2.11.8, 122
Fact 2.11.11, 123

definition, 80
determinant
Proposition 2.8.1, 106
Corollary 2.8.5, 107
Lemma 8.2.6, 421
Fact 2.14.2, 133
Fact 2.14.3, 133
Fact 2.14.4, 133
Fact 2.14.5, 134
Fact 2.14.6, 134
Fact 2.14.7, 134
Fact 2.14.9, 134
Fact 2.14.10, 135
Fact 2.14.11, 135
Fact 2.14.13, 135
Fact 2.14.14, 136
Fact 2.14.15, 136
Fact 2.14.16, 136
Fact 2.14.17, 136
Fact 2.14.18, 137
Fact 2.14.19, 137
Fact 2.14.20, 137
Fact 2.14.21, 137
Fact 2.14.22, 138
Fact 2.14.23, 138
Fact 2.14.24, 138
Fact 2.14.25, 138
Fact 2.14.26, 139
Fact 2.14.28, 139
Fact 2.17.5, 147
Fact 2.19.3, 151
Fact 2.19.9, 153
Fact 5.12.21, 337
Fact 6.5.26, 392
Fact 6.5.27, 392
Fact 6.5.28, 393
Fact 8.13.35, 492
Fact 8.13.36, 492
Fact 8.13.38, 492
Fact 8.13.39, 493
Fact 8.13.40, 493
Fact 8.13.41, 493

Fact 8.13.42, 493
determinant of block
2× 2
Proposition 2.8.3, 107
Proposition 2.8.4, 107

discrete-time
asymptotically
stable matrix
Fact 11.21.9, 713

Drazin generalized
inverse
Fact 6.6.1, 393
Fact 6.6.2, 393

eigenvalue
Proposition 5.6.6, 303
Fact 5.12.20, 337
Fact 5.12.21, 337
Fact 5.12.22, 338

eigenvalue
perturbation
Fact 4.10.27, 272

factorization, 420
Fact 2.14.9, 134
Fact 2.16.2, 141
Fact 2.17.3, 147
Fact 2.17.4, 147
Fact 2.17.5, 147
Fact 6.5.25, 392
Fact 8.11.25, 473
Fact 8.11.26, 473

factorization of block
2× 2
Proposition 2.8.3, 107
Proposition 2.8.4, 107

generalized inverse
Fact 6.3.30, 376
Fact 6.5.1, 385
Fact 6.5.2, 386
Fact 6.5.3, 386
Fact 6.5.4, 386
Fact 6.5.13, 388
Fact 6.5.17, 390
Fact 6.5.18, 390
Fact 6.5.19, 390
Fact 6.5.20, 391
Fact 6.5.21, 391
Fact 6.5.22, 391
Fact 6.5.23, 391
Fact 6.5.24, 391
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Fact 8.20.22, 530
geometric
multiplicity
Proposition 5.5.14, 298

Hamiltonian matrix
Proposition 3.1.7, 169
Fact 3.19.6, 216
Fact 3.19.8, 217
Fact 4.9.22, 264
Fact 5.12.21, 337

Hermitian matrix
Fact 3.7.27, 182
Fact 4.10.27, 272
Fact 5.8.19, 310
Fact 5.12.1, 333
Fact 6.5.5, 386

Hölder-induced
norm
Fact 9.8.11, 572

idempotent matrix
Fact 3.12.14, 200
Fact 3.12.20, 201
Fact 3.12.33, 205
Fact 5.10.22, 320

index of a matrix
Fact 5.14.32, 343
Fact 6.6.13, 395

inertia
Fact 5.8.19, 310
Fact 5.8.20, 310
Fact 5.8.21, 311
Fact 5.12.1, 333
Fact 6.5.5, 386

inverse matrix
Fact 2.16.4, 142
Fact 2.17.2, 146
Fact 2.17.3, 147
Fact 2.17.4, 147
Fact 2.17.5, 147
Fact 2.17.6, 148
Fact 2.17.8, 148
Fact 2.17.9, 148
Fact 5.12.21, 337

inverse of block 2× 2
Proposition 2.8.7, 108
Corollary 2.8.9, 109

involutory matrix
Fact 3.15.5, 212

Kronecker product

Fact 7.4.18, 406
Fact 7.4.19, 406
Fact 7.4.24, 407

mass matrix
Fact 5.12.21, 337

matricial norm
Fact 9.10.1, 593

matrix exponential
Fact 11.11.2, 672
Fact 11.14.1, 681

matrix sign function
Fact 10.10.3, 637

maximum eigenvalue
Fact 5.12.20, 337

maximum singular
value
Fact 8.17.3, 508
Fact 8.17.14, 512
Fact 8.18.1, 512
Fact 8.18.2, 513
Fact 9.10.1, 593
Fact 9.10.3, 594
Fact 9.10.4, 594
Fact 9.10.5, 595
Fact 9.14.12, 610
Fact 9.14.13, 610
Fact 9.14.14, 610

minimal polynomial
Fact 4.10.12, 268

minimal-rank
identity
Fact 6.5.7, 387

minimum eigenvalue
Fact 5.12.20, 337

multiplicative
identities, 82

nilpotent matrix
Fact 3.12.14, 200
Fact 5.10.23, 321

norm
Fact 9.10.1, 593
Fact 9.10.2, 593
Fact 9.10.8, 596

norm-compression
inequality
Fact 9.10.1, 593
Fact 9.10.8, 596

normal matrix
Fact 3.12.14, 200

Fact 8.11.12, 470
null space
Fact 2.11.3, 121

orthogonal matrix
Fact 3.11.27, 196

outer-product
matrix
Fact 4.9.18, 263

polynomial
Fact 4.10.10, 267

positive-definite
matrix
Proposition 8.2.4, 420
Proposition 8.2.5, 420
Lemma 8.2.6, 421
Fact 8.9.18, 452
Fact 8.11.1, 467
Fact 8.11.2, 467
Fact 8.11.5, 468
Fact 8.11.8, 469
Fact 8.11.10, 469
Fact 8.11.13, 470
Fact 8.11.29, 474
Fact 8.11.30, 475
Fact 8.13.21, 488
Fact 8.17.14, 512
Fact 8.21.6, 532
Fact 11.21.9, 713

positive-semidefinite
matrix
Proposition 8.2.3, 420
Proposition 8.2.4, 420
Corollary 8.2.2, 419
Lemma 8.2.1, 419
Lemma 8.2.6, 421
Fact 5.12.22, 338
Fact 8.7.6, 443
Fact 8.9.18, 452
Fact 8.11.1, 467
Fact 8.11.2, 467
Fact 8.11.5, 468
Fact 8.11.6, 469
Fact 8.11.7, 469
Fact 8.11.8, 469
Fact 8.11.9, 469
Fact 8.11.11, 469
Fact 8.11.12, 470
Fact 8.11.13, 470
Fact 8.11.14, 470
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Fact 8.11.15, 470
Fact 8.11.17, 471
Fact 8.11.18, 471
Fact 8.11.19, 471
Fact 8.11.20, 472
Fact 8.11.21, 472
Fact 8.11.30, 475
Fact 8.11.31, 475
Fact 8.12.36, 483
Fact 8.12.39, 484
Fact 8.12.40, 484
Fact 8.12.41, 484
Fact 8.13.21, 488
Fact 8.13.35, 492
Fact 8.13.36, 492
Fact 8.13.38, 492
Fact 8.13.39, 493
Fact 8.13.40, 493
Fact 8.13.41, 493
Fact 8.13.42, 493
Fact 8.15.4, 500
Fact 8.17.14, 512
Fact 8.18.1, 512
Fact 8.18.2, 513
Fact 8.18.28, 521
Fact 8.20.22, 530
Fact 8.21.39, 539
Fact 8.21.40, 539
Fact 8.21.43, 540
Fact 8.21.44, 540
Fact 9.8.33, 576
Fact 9.10.6, 595
Fact 9.10.7, 596

power
Fact 2.12.21, 128

product
Fact 2.12.22, 128

projector
Fact 3.13.12, 208
Fact 3.13.22, 210
Fact 3.13.23, 210
Fact 6.5.13, 388

quadratic form
Fact 8.15.5, 500
Fact 8.15.6, 501

range
Fact 2.11.1, 120
Fact 2.11.2, 121
Fact 6.5.3, 386

rank
Corollary 2.8.5, 107
Fact 2.11.6, 121
Fact 2.11.8, 122
Fact 2.11.9, 122
Fact 2.11.10, 122
Fact 2.11.11, 123
Fact 2.11.12, 123
Fact 2.11.13, 123
Fact 2.11.14, 123
Fact 2.11.15, 124
Fact 2.11.16, 124
Fact 2.11.18, 124
Fact 2.11.19, 125
Fact 2.14.4, 133
Fact 2.14.5, 134
Fact 2.14.11, 135
Fact 2.17.5, 147
Fact 2.17.10, 149
Fact 3.12.20, 201
Fact 3.13.12, 208
Fact 3.13.22, 210
Fact 5.12.21, 337
Fact 6.3.30, 376
Fact 6.5.6, 386
Fact 6.5.7, 387
Fact 6.5.8, 387
Fact 6.5.9, 387
Fact 6.5.10, 388
Fact 6.5.12, 388
Fact 6.5.13, 388
Fact 6.5.14, 388
Fact 6.5.15, 389
Fact 6.6.2, 393
Fact 8.7.6, 443
Fact 8.7.7, 444

rank of block 2× 2
Proposition 2.8.3, 107
Proposition 2.8.4, 107

row norm
Fact 9.8.11, 572

Schatten norm
Fact 9.10.2, 593
Fact 9.10.3, 594
Fact 9.10.4, 594
Fact 9.10.5, 595
Fact 9.10.6, 595
Fact 9.10.7, 596
Fact 9.10.8, 596

Schur complement
Fact 6.5.4, 386
Fact 6.5.5, 386
Fact 6.5.6, 386
Fact 6.5.8, 387
Fact 6.5.12, 388
Fact 6.5.29, 393
Fact 8.21.39, 539

Schur product
Fact 8.21.6, 532
Fact 8.21.39, 539
Fact 8.21.40, 539

semicontractive
matrix
Fact 8.11.6, 469
Fact 8.11.22, 473

similar matrices
Fact 5.10.21, 320
Fact 5.10.22, 320
Fact 5.10.23, 321

singular value
Proposition 5.6.6, 303
Fact 9.14.11, 609
Fact 9.14.24, 613

skew-Hermitian
matrix
Fact 3.7.27, 182

skew-symmetric
matrix
Fact 3.11.27, 196

spectrum
Fact 2.19.3, 151
Fact 4.10.25, 271
Fact 4.10.26, 271

stability
Fact 11.18.38, 705

stiffness matrix
Fact 5.12.21, 337

Sylvester’s equation
Fact 5.10.20, 320
Fact 5.10.21, 320
Fact 6.5.7, 387

symmetric matrix
Fact 3.11.27, 196

symplectic matrix
Fact 3.19.9, 217

trace
Proposition 2.8.1, 106
Fact 8.12.36, 483
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Fact 8.12.39, 484
Fact 8.12.40, 484
Fact 8.12.41, 484
Fact 8.12.42, 484

transpose
Proposition 2.8.1, 106

unitarily invariant
norm
Fact 9.8.33, 576

unitarily similar
matrices
Fact 5.9.23, 314

unitary matrix
Fact 3.11.24, 196
Fact 3.11.26, 196
Fact 3.11.27, 196
Fact 8.11.22, 473
Fact 8.11.23, 473
Fact 8.11.24, 473
Fact 9.14.11, 609

partitioned
positive-semidefinite
matrix

determinant
Proposition 8.2.3, 420

rank
Proposition 8.2.3, 420

partitioned transfer
function

H2 norm
Fact 12.22.16, 801
Fact 12.22.17, 801

realization
Proposition 12.13.3,
771

Fact 12.22.7, 799
transfer function
Fact 12.22.7, 799

Pascal matrix
positive-semidefinite
matrix
Fact 8.8.5, 447

Vandermonde matrix
Fact 5.16.3, 354

path
definition
Definition 1.4.3, 9

pathwise connected
continuous function
Fact 10.11.5, 638

definition
Definition 10.3.12, 625

group
Proposition 11.6.8, 660

Pauli spin matrices
quaternions
Fact 3.22.6, 227

PBH test
definition, 805

Pecaric
Euclidean norm
inequality
Fact 9.7.8, 566

Pedersen
trace of a convex
function
Fact 8.12.33, 482

Peierls-Bogoliubov
inequality

matrix exponential
Fact 11.14.29, 687

pencil
definition, 304
deflating subspace
Fact 5.13.1, 338

generalized
eigenvalue
Proposition 5.7.3, 305
Proposition 5.7.4, 306

invariant zero
Corollary 12.10.4, 759
Corollary 12.10.5, 760
Corollary 12.10.6, 761

Kronecker canonical
form
Theorem 5.7.1, 304

Weierstrass
canonical form
Proposition 5.7.3, 305

Penrose
generalized inverse
of a matrix sum
Fact 6.4.34, 383

period
definition
Definition 1.4.3, 9

graph
Definition 1.4.3, 9

permutation
definition, 103

permutation group
group
Fact 3.21.7, 223

permutation matrix
circulant matrix
Fact 5.16.8, 357

definition
Definition 3.1.1, 165

determinant
Fact 2.13.9, 130

irreducible matrix
Fact 3.20.3, 217

orthogonal matrix
Proposition 3.1.6, 169

spectrum
Fact 5.16.8, 357

transposition matrix
Fact 3.21.6, 222

Perron-Frobenius
theorem

nonnegative matrix
eigenvalues
Fact 4.11.5, 273

perturbation
asymptotically stable
matrix
Fact 11.18.16, 700

inverse matrix
Fact 9.9.60, 591

nonsingular matrix
Fact 9.14.18, 611

perturbed matrix
spectrum
Fact 4.10.3, 266

Pesonen
simultaneous
diagonalization of
symmetric matrices
Fact 8.16.6, 507
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Petrovich
complex inequality
Fact 1.18.2, 69

Pfaff’s theorem
determinant of a
skew-symmetric
matrix
Fact 4.8.14, 259

Pfaffian
skew-symmetric
matrix
Fact 4.8.14, 259

Pick matrix
positive-semidefinite
matrix
Fact 8.8.17, 449

plane rotation
orthogonal matrix
Fact 5.15.16, 347

Poincaré separation
theorem

eigenvalue inequality
Fact 8.17.16, 512

pointed cone
definition, 89
induced by reflexive
relation
Proposition 2.3.6, 93

positive-semidefinite
matrix, 417

polar
closed set
Fact 2.9.4, 110

convex cone
Fact 2.9.4, 110

definition, 91

polar cone
definition, 164

polar decomposition
existence
Corollary 5.6.5, 303

Frobenius norm
Fact 9.9.42, 588

matrix exponential
Fact 11.13.9, 679

normal matrix
Fact 5.18.8, 360
Fact 11.13.9, 679

uniqueness
Fact 5.18.2, 359
Fact 5.18.3, 359
Fact 5.18.4, 359
Fact 5.18.5, 359
Fact 5.18.6, 359
Fact 5.18.7, 359

unitarily invariant
norm
Fact 9.9.42, 588

unitary matrix
Fact 5.18.8, 360

polarization identity
complex numbers
Fact 1.18.2, 69

norm identity
Fact 9.7.4, 563

vector identity
Fact 9.7.4, 563

polarized
Cayley-Hamilton
theorem

trace
Fact 4.9.3, 260

triple product
identity
Fact 4.9.4, 260
Fact 4.9.6, 261

pole
minimal realization
Fact 12.22.2, 798
Fact 12.22.12, 800

rational transfer
function
Definition 4.7.4, 249

Smith-McMillan
form
Proposition 4.7.11, 251

pole of a rational
function

definition
Definition 4.7.1, 249

pole of a transfer
function

definition
Definition 4.7.10, 251

Polya’s inequality
logarithmic mean
Fact 1.10.36, 37

Polya-Szego inequality
reversed
Cauchy-Schwarz
inequality
Fact 1.16.21, 64

polygon
area
Fact 2.20.14, 159

polygonal inequalities
Euclidean norm
Fact 9.7.4, 563
Fact 9.7.7, 565

polyhedral convex
cone

definition, 90

polynomial
asymptotically stable
Definition 11.8.3, 663

Bezout matrix
Fact 4.8.6, 255
Fact 4.8.8, 257

bound
Fact 11.20.13, 712

continuity of roots
Fact 10.11.2, 638

coprime
Fact 4.8.3, 254
Fact 4.8.4, 254
Fact 4.8.5, 255

definition, 231
Descartes rule of
signs
Fact 11.17.1, 695

discrete-time
asymptotically
stable
Definition 11.10.3, 671

discrete-time
Lyapunov stable
Definition 11.10.3, 671
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discrete-time
semistable
Definition 11.10.3, 671

Fujiwara’s bound
Fact 11.20.8, 710

greatest common
divisor
Fact 4.8.5, 255

interpolation
Fact 4.8.11, 259

Kojima’s bound
Fact 11.20.8, 710

least common
multiple
Fact 4.8.3, 254

Lyapunov stable
Definition 11.8.3, 663

partitioned matrix
Fact 4.10.10, 267

root bound
Fact 11.20.4, 709
Fact 11.20.5, 709
Fact 11.20.6, 709
Fact 11.20.7, 710
Fact 11.20.8, 710
Fact 11.20.9, 710
Fact 11.20.10, 711

root bounds
Fact 11.20.11, 711
Fact 11.20.12, 712

roots
Fact 4.8.1, 253
Fact 4.8.2, 254

roots of derivative
Fact 10.11.3, 638

semistable
Definition 11.8.3, 663

spectrum
Fact 4.10.9, 267
Fact 4.10.10, 267

Vandermonde matrix
Fact 5.16.6, 355

polynomial bound
Huygens
Fact 11.20.13, 712

Mihet
Fact 11.20.13, 712

polynomial coefficients

asymptotically stable
polynomial
Fact 11.17.2, 696
Fact 11.17.3, 696
Fact 11.17.7, 697
Fact 11.17.8, 697
Fact 11.17.10, 697
Fact 11.17.11, 697
Fact 11.17.12, 697

discrete-time
asymptotically
stable polynomial
Fact 11.20.1, 708
Fact 11.20.2, 709
Fact 11.20.3, 709

polynomial division
quotient and
remainder
Lemma 4.1.2, 233

polynomial matrix
definition, 234
matrix exponential
Proposition 11.2.1, 646

Smith form
Proposition 4.3.4, 237

polynomial matrix
division

linear divisor
Corollary 4.2.3, 235
Lemma 4.2.2, 235

polynomial
multiplication

Toeplitz matrix
Fact 4.8.10, 258

polynomial
representation

commuting matrices
Fact 5.14.22, 341
Fact 5.14.23, 342
Fact 5.14.24, 342

inverse matrix
Fact 4.8.13, 259

polynomial root
maximum singular
value bound
Fact 9.13.14, 604

minimum singular
value bound
Fact 9.13.14, 604

polynomial root bound
Bourbaki
Fact 11.20.4, 709

Carmichael
Fact 11.20.10, 711

Fujii-Kubo
Fact 11.20.9, 710

Joyal
Fact 11.20.7, 710

Labelle
Fact 11.20.7, 710

Linden
Fact 11.20.9, 710

Mason
Fact 11.20.10, 711

Parodi
Fact 11.20.9, 710

Rahman
Fact 11.20.7, 710

Walsh
Fact 11.20.5, 709

polynomial root
bounds

Berwald
Fact 11.20.11, 711

Cauchy
Fact 11.20.11, 711

Cohn
Fact 11.20.11, 711

polynomial root
locations

Enestrom-Kakeya
theorem
Fact 11.20.3, 709

polynomial roots
Bezout matrix
Fact 4.8.9, 258

Newton’s identities
Fact 4.8.2, 254

polytope
definition, 90

Popoviciu
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arithmetic-mean–
geometric-mean
inequality
Fact 1.15.29, 55

Popoviciu’s inequality
convex function
Fact 1.8.6, 22

positive diagonal
upper triangular
matrix
Fact 5.15.9, 346

positive matrix
almost nonnegative
matrix
Fact 11.19.2, 706

definition, 81
Definition 3.1.4, 168

eigenvalue
Fact 4.11.20, 280

Kronecker sum
Fact 7.5.8, 409

Schur product
Fact 7.6.13, 415
Fact 7.6.14, 415

spectral radius
Fact 7.6.14, 415

spectrum
Fact 5.11.12, 323

unstable matrix
Fact 11.18.20, 701

positive vector
definition, 79
null space
Fact 4.11.15, 279

positive-definite matrix
arithmetic mean
Fact 8.10.34, 460

arithmetic-mean–
geometric-mean
inequality
Fact 8.13.8, 486

asymptotically stable
matrix
Proposition 11.9.5, 668
Proposition 12.4.9, 734
Corollary 11.9.7, 669
Fact 11.18.21, 701

Cauchy matrix
Fact 8.8.16, 449
Fact 12.21.18, 797

Cayley transform
Fact 8.9.30, 453

cogredient
diagonalization
Theorem 8.3.1, 423
Fact 8.16.5, 507

commuting matrices
Fact 8.9.40, 455

complex conjugate
transpose
Fact 8.9.39, 455

complex matrix
Fact 3.7.9, 179

congruent matrices
Proposition 3.4.5, 174
Corollary 8.1.3, 419

contractive matrix
Fact 8.11.13, 470

contragredient
diagonalization
Theorem 8.3.2, 423
Corollary 8.3.3, 423

controllable pair
Theorem 12.6.18, 742

convex function
Fact 8.14.17, 499

definition
Definition 3.1.1, 165

determinant
Proposition 8.4.14, 429
Fact 8.12.1, 475
Fact 8.13.6, 486
Fact 8.13.7, 486
Fact 8.13.8, 486
Fact 8.13.9, 486
Fact 8.13.10, 487
Fact 8.13.12, 487
Fact 8.13.13, 487
Fact 8.13.14, 487
Fact 8.13.15, 488
Fact 8.13.17, 488
Fact 8.13.19, 488
Fact 8.13.21, 488
Fact 8.13.23, 489

discrete-time
asymptotically
stable matrix
Proposition 11.10.5,
671

Fact 11.21.9, 713
Fact 11.21.15, 714

discrete-time
Lyapunov-stable
matrix
Proposition 11.10.6,
671

dissipative matrix
Fact 8.17.12, 511
Fact 11.18.21, 701

eigenvalue
Fact 8.10.24, 458
Fact 8.15.20, 503
Fact 8.15.29, 505
Fact 8.15.30, 505
Fact 8.18.29, 521
Fact 8.21.21, 535

ellipsoid
Fact 3.7.35, 184

exponential
Fact 11.14.26, 686

factorization
Fact 5.15.26, 349
Fact 5.18.4, 359
Fact 5.18.5, 359
Fact 5.18.6, 359
Fact 5.18.8, 360

Furuta inequality
Fact 8.10.50, 465

generalized
geometric mean
Fact 8.10.45, 464

generalized inverse
Proposition 6.1.6, 365
Fact 6.4.7, 379

geometric mean
Fact 8.10.43, 461
Fact 8.10.46, 464
Fact 8.21.51, 541

group-invertible
matrix
Fact 8.10.12, 457

Hermitian matrix
Fact 5.15.41, 351
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Fact 8.10.13, 457
Fact 8.13.7, 486

Hilbert matrix
Fact 3.18.4, 215

idempotent matrix
Fact 5.15.30, 350

identity
Fact 8.10.6, 456
Fact 8.10.7, 456

increasing function
Fact 8.10.53, 466

inequality
Fact 8.9.41, 455
Fact 8.9.42, 455
Fact 8.10.8, 456
Fact 8.10.9, 457
Fact 8.10.19, 458
Fact 8.10.20, 458
Fact 8.10.21, 458
Fact 8.10.22, 458
Fact 8.10.28, 459
Fact 8.10.40, 461
Fact 8.10.48, 465
Fact 8.10.51, 466
Fact 8.11.27, 474
Fact 8.15.21, 503
Fact 8.15.22, 503
Fact 8.19.3, 523
Fact 8.21.42, 539

inertia
Fact 5.8.10, 308

inertia matrix
Fact 8.9.5, 451

inner-product
minimization
Fact 8.15.12, 502

integral
Fact 8.15.32, 505
Fact 8.15.33, 506
Fact 8.15.34, 506
Fact 8.15.35, 506

inverse
Fact 8.11.10, 469

inverse matrix
Proposition 8.6.6, 432
Lemma 8.6.5, 432
Fact 8.9.17, 452
Fact 8.9.41, 455

Kronecker product

Fact 7.4.16, 406
left inverse
Fact 3.7.25, 182

limit
Fact 8.10.47, 465

Lyapunov equation
Fact 12.21.16, 797
Fact 12.21.18, 797

Lyapunov-stable
matrix
Proposition 11.9.6, 669
Corollary 11.9.7, 669

matrix exponential
Proposition 11.2.8, 649
Proposition 11.2.9, 650
Fact 11.14.20, 685
Fact 11.14.22, 685
Fact 11.14.23, 686
Fact 11.15.1, 689

matrix logarithm
Proposition 8.6.4, 432
Proposition 11.4.5, 654
Fact 8.9.43, 455
Fact 8.13.8, 486
Fact 8.18.29, 521
Fact 8.19.1, 522
Fact 8.19.2, 523
Fact 9.9.55, 590
Fact 11.14.24, 686
Fact 11.14.25, 686
Fact 11.14.26, 686
Fact 11.14.27, 686

matrix power
Fact 8.10.41, 461
Fact 8.10.42, 461

matrix product
Corollary 8.3.6, 424

matrix sign function
Fact 10.10.4, 637

maximum singular
value
Fact 8.18.8, 515
Fact 8.18.25, 520

norm
Fact 9.7.30, 571

observable pair
Theorem 12.3.18, 732

outer-product
matrix

Fact 3.9.3, 186
partitioned matrix
Proposition 8.2.4, 420
Proposition 8.2.5, 420
Lemma 8.2.6, 421
Fact 8.9.18, 452
Fact 8.11.1, 467
Fact 8.11.2, 467
Fact 8.11.5, 468
Fact 8.11.8, 469
Fact 8.11.10, 469
Fact 8.11.13, 470
Fact 8.11.29, 474
Fact 8.11.30, 475
Fact 8.13.21, 488
Fact 8.17.14, 512
Fact 8.21.6, 532
Fact 11.21.9, 713

positive-semidefinite
matrix
Fact 8.8.13, 448
Fact 8.8.14, 449
Fact 8.10.27, 458
Fact 8.12.25, 481

power
Fact 8.9.42, 455
Fact 8.10.38, 461
Fact 8.10.39, 461
Fact 8.10.48, 465

power inequality
Fact 8.10.52, 466

properties of < and
≤
Proposition 8.1.2, 418

quadratic form
Fact 8.15.24, 504
Fact 8.15.25, 504
Fact 8.15.26, 504
Fact 8.15.29, 505
Fact 8.15.30, 505
Fact 9.8.37, 577

quadratic form
inequality
Fact 8.15.4, 500

regularized Tikhonov
inverse
Fact 8.9.40, 455

Riccati equation
Fact 12.23.4, 802
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Schur product
Fact 8.21.4, 531
Fact 8.21.5, 532
Fact 8.21.6, 532
Fact 8.21.7, 533
Fact 8.21.13, 533
Fact 8.21.14, 534
Fact 8.21.15, 534
Fact 8.21.21, 535
Fact 8.21.33, 538
Fact 8.21.34, 538
Fact 8.21.36, 538
Fact 8.21.38, 539
Fact 8.21.42, 539
Fact 8.21.47, 540
Fact 8.21.49, 541
Fact 8.21.50, 541
Fact 8.21.51, 541

simultaneous
diagonalization
Fact 8.16.5, 507

skew-Hermitian
matrix
Fact 8.13.6, 486
Fact 11.18.12, 700

spectral order
Fact 8.19.4, 523

spectral radius
Fact 8.10.5, 456
Fact 8.18.25, 520

spectrum
Proposition 5.5.21, 300

strictly convex
function
Fact 8.14.15, 499
Fact 8.14.16, 499

subdeterminant
Proposition 8.2.8, 422
Fact 8.13.17, 488

submatrix
Proposition 8.2.8, 422
Fact 8.11.28, 474

Toeplitz matrix
Fact 8.13.13, 487

trace
Proposition 8.4.14, 429
Fact 8.9.16, 452
Fact 8.10.46, 464
Fact 8.11.10, 469

Fact 8.12.1, 475
Fact 8.12.2, 475
Fact 8.12.24, 480
Fact 8.12.27, 481
Fact 8.12.37, 483
Fact 8.13.12, 487
Fact 11.14.24, 686
Fact 11.14.25, 686
Fact 11.14.27, 686

tridiagonal matrix
Fact 8.8.18, 450

unitarily similar
matrices
Proposition 3.4.5, 174
Proposition 5.6.3, 302

upper bound
Fact 8.10.31, 459

positive-definite matrix
product

inequality
Fact 8.10.43, 461
Fact 8.10.45, 464

positive-definite
solution

Riccati equation
Theorem 12.17.2, 782
Proposition 12.19.3,
790

Corollary 12.19.2, 790

positive-semidefinite
function

positive-semidefinite
matrix
Fact 8.8.1, 444

positive-semidefinite
matrix

absolute-value
matrix
Fact 8.9.1, 450

antisymmetric
relation
Proposition 8.1.1, 417

average
Fact 5.19.5, 360

Brownian motion
Fact 8.8.4, 446

Cartesian
decomposition
Fact 9.9.40, 587

Cauchy matrix
Fact 8.8.7, 447
Fact 8.8.9, 448
Fact 12.21.19, 797

Cauchy-Schwarz
inequality
Fact 8.11.14, 470
Fact 8.11.15, 470
Fact 8.15.8, 501

closed set
Fact 10.8.18, 633

cogredient
diagonalization
Theorem 8.3.4, 423

commuting matrices
Fact 8.19.5, 467, 523

completely solid set
Fact 10.8.18, 633

complex matrix
Fact 3.7.9, 179

congruent matrices
Proposition 3.4.5, 174
Corollary 8.1.3, 419

contragredient
diagonalization
Theorem 8.3.5, 424
Corollary 8.3.7, 424

controllability
Fact 12.20.6, 791

convex combination
Fact 5.19.6, 360
Fact 8.13.16, 488

convex cone, 417
convex function
Fact 8.14.15, 499
Fact 8.20.20, 530

convex set
Fact 8.14.2, 494
Fact 8.14.3, 495
Fact 8.14.4, 495
Fact 8.14.5, 495
Fact 8.14.6, 496

copositive matrix
Fact 8.15.37, 507

cosines
Fact 8.8.15, 449
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definition
Definition 3.1.1, 165

determinant
Corollary 8.4.15, 429
Fact 8.13.16, 488
Fact 8.13.18, 488
Fact 8.13.20, 488
Fact 8.13.21, 488
Fact 8.13.24, 489
Fact 8.13.29, 490
Fact 8.13.35, 492
Fact 8.13.36, 492
Fact 8.13.38, 492
Fact 8.13.39, 493
Fact 8.13.40, 493
Fact 8.13.41, 493
Fact 8.17.11, 511
Fact 8.18.30, 521
Fact 8.21.8, 533
Fact 8.21.19, 534
Fact 8.21.20, 535
Fact 9.8.39, 578

diagonal entries
Fact 8.9.8, 451
Fact 8.9.9, 451

diagonal entry
Fact 8.10.16, 457
Fact 8.12.3, 476

discrete-time
Lyapunov-stable
matrix
Fact 11.21.15, 714

Drazin generalized
inverse
Fact 8.20.2, 525

eigenvalue
Fact 8.12.3, 476
Fact 8.15.11, 501
Fact 8.18.6, 514
Fact 8.18.19, 518
Fact 8.18.20, 518
Fact 8.18.22, 519
Fact 8.18.23, 519
Fact 8.18.24, 520
Fact 8.18.27, 521
Fact 8.20.17, 528
Fact 8.21.18, 534
Fact 8.21.20, 535

Euler totient
function
Fact 8.8.5, 447

factorization
Fact 5.15.22, 349
Fact 5.15.26, 349
Fact 5.18.2, 359
Fact 5.18.3, 359
Fact 5.18.7, 359
Fact 8.9.36, 454
Fact 8.9.37, 454

Fejer’s theorem
Fact 8.21.35, 538

Frobenius norm
Fact 9.8.39, 578
Fact 9.9.12, 581
Fact 9.9.15, 582
Fact 9.9.27, 584

Furuta inequality
Proposition 8.6.7, 433

generalized inverse
Proposition 6.1.6, 365
Fact 6.4.4, 378
Fact 8.20.1, 525
Fact 8.20.2, 525
Fact 8.20.3, 525
Fact 8.20.4, 525
Fact 8.20.6, 526
Fact 8.20.7, 526
Fact 8.20.8, 526
Fact 8.20.9, 526
Fact 8.20.10, 526
Fact 8.20.11, 527
Fact 8.20.13, 527
Fact 8.20.15, 527
Fact 8.20.16, 527
Fact 8.20.17, 528
Fact 8.20.18, 528
Fact 8.20.19, 530
Fact 8.20.20, 530
Fact 8.20.22, 530
Fact 8.20.23, 531

geometric mean
Fact 8.10.43, 461

group generalized
inverse
Fact 8.20.1, 525

group-invertible
matrix

Fact 8.10.12, 457
Hadamard-Fischer
inequality
Fact 8.13.36, 492

Hermitian matrix
Fact 5.15.41, 351
Fact 8.9.11, 452
Fact 8.10.13, 457

Hölder’s inequality
Fact 8.12.11, 477
Fact 8.12.12, 477

Hua’s inequalities
Fact 8.11.21, 472

Hua’s matrix
equality
Fact 8.11.21, 472

idempotent matrix
Fact 5.15.30, 350

identity
Fact 8.11.16, 470
Fact 8.19.6, 523

increasing sequence
Proposition 8.6.3, 432

inequality
Proposition 8.6.7, 433
Corollary 8.6.8, 433
Corollary 8.6.9, 433
Fact 8.9.10, 451
Fact 8.9.19, 452
Fact 8.9.21, 452
Fact 8.9.38, 455
Fact 8.10.19, 458
Fact 8.10.20, 458
Fact 8.10.21, 458
Fact 8.10.28, 459
Fact 8.10.29, 459
Fact 8.10.30, 459
Fact 8.15.21, 503
Fact 8.15.22, 503
Fact 8.21.42, 539
Fact 9.14.22, 612

inertia
Fact 5.8.9, 308
Fact 5.8.10, 308
Fact 12.21.9, 796

integral
Proposition 8.6.10, 433

inverse matrix
Fact 8.10.37, 461



1006 inertia

Kantorovich
inequality
Fact 8.15.9, 501

kernel function
Fact 8.8.1, 444
Fact 8.8.2, 445

Kronecker product
Fact 7.4.16, 406
Fact 8.21.16, 534
Fact 8.21.22, 536
Fact 8.21.23, 536
Fact 8.21.24, 536
Fact 8.21.26, 536
Fact 8.21.27, 536
Fact 8.21.29, 536

Kronecker sum
Fact 7.5.8, 409

lattice
Fact 8.10.32, 459
Fact 8.10.33, 459

left-equivalent
matrices
Fact 5.10.19, 319

Lehmer matrix
Fact 8.8.5, 447

limit
Proposition 8.6.3, 432
Fact 8.10.47, 465

linear combination
Fact 8.13.18, 488

log majorization
Fact 8.11.9, 469

Lyapunov equation
Fact 12.21.15, 797
Fact 12.21.19, 797

matrix exponential
Fact 11.14.20, 685
Fact 11.14.35, 688
Fact 11.16.6, 694
Fact 11.16.16, 695

matrix logarithm
Fact 9.9.54, 590

matrix power
Corollary 8.6.11, 434
Fact 8.9.14, 452
Fact 8.10.36, 461
Fact 8.10.49, 465
Fact 8.12.30, 482
Fact 8.15.13, 502

Fact 8.15.14, 502
Fact 8.15.15, 502
Fact 8.15.16, 502
Fact 9.9.17, 582

matrix product
Corollary 8.3.6, 424

maximum eigenvalue
Fact 8.18.14, 516

maximum singular
value
Fact 8.18.1, 512
Fact 8.18.2, 513
Fact 8.18.11, 515
Fact 8.18.12, 516
Fact 8.18.13, 516
Fact 8.18.14, 516
Fact 8.18.15, 517
Fact 8.18.16, 517
Fact 8.18.25, 520
Fact 8.18.26, 520
Fact 8.18.28, 521
Fact 8.18.30, 521
Fact 8.18.31, 522
Fact 8.20.9, 526
Fact 11.16.6, 694

McCarthy inequality
Fact 8.12.29, 481

Minkowski’s
inequality
Fact 8.12.29, 481

norm-compression
inequality
Fact 9.10.6, 595

normal matrix
Fact 8.9.22, 452
Fact 8.10.11, 457
Fact 8.11.12, 470

null space
Fact 8.7.3, 443
Fact 8.7.5, 443
Fact 8.15.1, 500
Fact 8.15.23, 504

one-sided cone, 417
outer-product
Fact 8.9.3, 450

outer-product
matrix
Fact 8.9.2, 450
Fact 8.9.4, 450

Fact 8.15.2, 500
Fact 8.15.3, 500

partial ordering
Proposition 8.1.1, 417
Fact 8.19.9, 524

partitioned matrix
Proposition 8.2.3, 420
Proposition 8.2.4, 420
Corollary 8.2.2, 419
Lemma 8.2.1, 419
Lemma 8.2.6, 421
Fact 5.12.22, 338
Fact 8.7.6, 443
Fact 8.9.18, 452
Fact 8.11.1, 467
Fact 8.11.2, 467
Fact 8.11.5, 468
Fact 8.11.6, 469
Fact 8.11.7, 469
Fact 8.11.8, 469
Fact 8.11.9, 469
Fact 8.11.11, 469
Fact 8.11.12, 470
Fact 8.11.13, 470
Fact 8.11.14, 470
Fact 8.11.15, 470
Fact 8.11.17, 471
Fact 8.11.18, 471
Fact 8.11.19, 471
Fact 8.11.20, 472
Fact 8.11.21, 472
Fact 8.11.30, 475
Fact 8.11.31, 475
Fact 8.12.36, 483
Fact 8.12.39, 484
Fact 8.12.40, 484
Fact 8.12.41, 484
Fact 8.13.21, 488
Fact 8.13.35, 492
Fact 8.13.36, 492
Fact 8.13.38, 492
Fact 8.13.39, 493
Fact 8.13.40, 493
Fact 8.13.41, 493
Fact 8.13.42, 493
Fact 8.15.4, 500
Fact 8.17.14, 512
Fact 8.18.1, 512
Fact 8.18.2, 513
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Fact 8.18.28, 521
Fact 8.20.22, 530
Fact 8.21.39, 539
Fact 8.21.40, 539
Fact 8.21.43, 540
Fact 8.21.44, 540
Fact 9.8.33, 576
Fact 9.10.6, 595
Fact 9.10.7, 596

Pascal matrix
Fact 8.8.5, 447

Pick matrix
Fact 8.8.17, 449

pointed cone, 417
positive-definite
matrix
Fact 8.8.13, 448
Fact 8.8.14, 449
Fact 8.10.27, 458
Fact 8.12.25, 481

positive-semidefinite
function
Fact 8.8.1, 444

power
Fact 8.10.38, 461
Fact 8.10.39, 461

projector
Fact 3.13.4, 207

properties of < and
≤
Proposition 8.1.2, 418

quadratic form
Fact 8.14.2, 494
Fact 8.14.3, 495
Fact 8.14.4, 495
Fact 8.14.5, 495
Fact 8.14.6, 496
Fact 8.15.1, 500
Fact 8.15.9, 501
Fact 8.15.10, 501
Fact 8.15.11, 501
Fact 8.15.13, 502
Fact 8.15.14, 502
Fact 8.15.15, 502
Fact 8.15.16, 502
Fact 8.15.17, 503
Fact 8.15.18, 503
Fact 8.15.23, 504

quadratic form
inequality
Fact 8.15.4, 500
Fact 8.15.7, 501

range
Theorem 8.6.2, 431
Corollary 8.2.2, 419
Fact 8.7.1, 443
Fact 8.7.2, 443
Fact 8.7.3, 443
Fact 8.7.4, 443
Fact 8.7.5, 443
Fact 8.10.2, 456
Fact 8.20.7, 526
Fact 8.20.8, 526
Fact 8.20.10, 526
Fact 8.20.11, 527

range-Hermitian
matrix
Fact 8.20.21, 530

rank
Fact 5.8.9, 308
Fact 8.7.1, 443
Fact 8.7.5, 443
Fact 8.7.6, 443
Fact 8.7.7, 444
Fact 8.10.2, 456
Fact 8.10.14, 457
Fact 8.20.11, 527
Fact 8.21.16, 534

rank subtractivity
partial ordering
Fact 8.19.5, 523
Fact 8.20.7, 526
Fact 8.20.8, 526

real eigenvalues
Fact 5.14.13, 340

reflexive relation
Proposition 8.1.1, 417

reproducing kernel
space
Fact 8.8.2, 445

right inverse
Fact 3.7.26, 182

Schatten norm
Fact 9.9.22, 583
Fact 9.9.39, 587
Fact 9.9.40, 587
Fact 9.10.6, 595

Fact 9.10.7, 596
Schur complement
Corollary 8.6.18, 442
Fact 8.11.3, 468
Fact 8.11.4, 468
Fact 8.11.17, 471
Fact 8.11.18, 471
Fact 8.11.19, 471
Fact 8.11.20, 472
Fact 8.11.27, 474
Fact 8.20.19, 530
Fact 8.21.11, 533

Schur inverse
Fact 8.21.1, 531

Schur power
Fact 8.21.2, 531
Fact 8.21.3, 531
Fact 8.21.25, 536

Schur product
Fact 8.21.4, 531
Fact 8.21.7, 533
Fact 8.21.11, 533
Fact 8.21.12, 533
Fact 8.21.14, 534
Fact 8.21.17, 534
Fact 8.21.18, 534
Fact 8.21.20, 535
Fact 8.21.22, 536
Fact 8.21.23, 536
Fact 8.21.31, 537
Fact 8.21.35, 538
Fact 8.21.37, 538
Fact 8.21.39, 539
Fact 8.21.40, 539
Fact 8.21.41, 539
Fact 8.21.42, 539
Fact 8.21.43, 540
Fact 8.21.44, 540
Fact 8.21.45, 540
Fact 8.21.46, 540

semicontractive
matrix
Fact 8.11.6, 469
Fact 8.11.13, 470

semisimple matrix
Corollary 8.3.6, 424

shorted operator
Fact 8.20.19, 530

signature
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Fact 5.8.9, 308
singular value
Fact 8.18.7, 514
Fact 9.14.27, 613

singular values
Fact 8.11.9, 469

skew-Hermitian
matrix
Fact 8.9.12, 452

spectral order
Fact 8.19.4, 523

spectral radius
Fact 8.18.25, 520
Fact 8.20.8, 526

spectrum
Proposition 5.5.21, 300
Fact 8.20.16, 527

square root
Fact 8.9.6, 451
Fact 8.10.18, 458
Fact 8.10.26, 458
Fact 8.21.29, 536
Fact 9.8.32, 576

stabilizability
Fact 12.20.6, 791

star partial ordering
Fact 8.19.8, 524
Fact 8.20.8, 526

structured matrix
Fact 8.8.2, 445
Fact 8.8.3, 446
Fact 8.8.4, 446
Fact 8.8.5, 447
Fact 8.8.6, 447
Fact 8.8.7, 447
Fact 8.8.8, 447
Fact 8.8.9, 448
Fact 8.8.10, 448
Fact 8.8.11, 448
Fact 8.8.12, 448

subdeterminant
Proposition 8.2.7, 421

submatrix
Proposition 8.2.7, 421
Fact 8.7.7, 444
Fact 8.13.36, 492

submultiplicative
norm
Fact 9.9.7, 580

Szasz’s inequality
Fact 8.13.36, 492

trace
Proposition 8.4.13, 428
Fact 2.12.16, 127
Fact 8.12.3, 476
Fact 8.12.9, 477
Fact 8.12.10, 477
Fact 8.12.11, 477
Fact 8.12.12, 477
Fact 8.12.13, 477
Fact 8.12.17, 478
Fact 8.12.18, 478
Fact 8.12.19, 479
Fact 8.12.20, 479
Fact 8.12.21, 480
Fact 8.12.22, 480
Fact 8.12.23, 480
Fact 8.12.24, 480
Fact 8.12.26, 481
Fact 8.12.28, 481
Fact 8.12.29, 481
Fact 8.12.34, 483
Fact 8.12.35, 483
Fact 8.12.36, 483
Fact 8.12.38, 483
Fact 8.12.39, 484
Fact 8.12.40, 484
Fact 8.12.41, 484
Fact 8.13.20, 488
Fact 8.18.16, 517
Fact 8.18.20, 518
Fact 8.20.3, 525
Fact 8.20.17, 528

trace norm
Fact 9.9.15, 582

transitive relation
Proposition 8.1.1, 417

triangle inequality
Fact 9.9.21, 583

unitarily invariant
norm
Fact 9.9.7, 580
Fact 9.9.14, 582
Fact 9.9.15, 582
Fact 9.9.16, 582
Fact 9.9.17, 582
Fact 9.9.27, 584
Fact 9.9.46, 588

Fact 9.9.51, 589
Fact 9.9.52, 590
Fact 9.9.53, 590
Fact 9.9.54, 590
Fact 11.16.16, 695
Fact 11.16.17, 695

unitarily
left-equivalent
matrices
Fact 5.10.18, 319
Fact 5.10.19, 319

unitarily
right-equivalent
matrices
Fact 5.10.18, 319

unitarily similar
matrices
Proposition 3.4.5, 174
Proposition 5.6.3, 302

upper bound
Fact 8.10.35, 460

upper triangular
matrix
Fact 8.9.37, 454

weak majorization
Fact 8.18.6, 514

Young’s inequality
Fact 8.12.12, 477

zero matrix
Fact 8.10.10, 457

positive-semidefinite
matrix determinant

Fischer’s inequality
Fact 8.13.35, 492
Fact 8.13.36, 492

Minkowski’s
determinant
theorem
Corollary 8.4.15, 429

reverse Fischer
inequality
Fact 8.13.41, 493

positive-semidefinite
matrix inequality

Araki
Fact 8.12.21, 480

Araki-Lieb-Thirring
inequality
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Fact 8.12.20, 479

positive-semidefinite
matrix root

definition, 431

positive-semidefinite
matrix square root

definition, 431

positive-semidefinite
solution

Riccati equation
Theorem 12.17.2, 782
Theorem 12.18.4, 787
Proposition 12.17.1,
782

Proposition 12.19.1,
789

Corollary 12.17.3, 783
Corollary 12.18.8, 789
Corollary 12.19.2, 790

positive-semidefinite
square root

definition, 431

positivity
quadratic form on a
subspace
Fact 8.15.27, 504
Fact 8.15.28, 504

power
adjugate
Fact 4.9.8, 261

cyclic matrix
Fact 5.14.9, 340

derivative
Proposition 10.7.2, 630

discrete-time
asymptotically
stable matrix
Fact 11.21.2, 712

discrete-time
dynamics
Fact 11.21.3, 712

discrete-time
Lyapunov-stable
matrix
Fact 11.21.10, 714

discrete-time
semistable matrix
Fact 11.21.2, 712

group-invertible
matrix
Fact 3.6.2, 177
Fact 6.6.19, 398

idempotent matrix
Fact 3.12.3, 198

identities
Fact 7.6.11, 414

inequality
Fact 1.9.7, 24
Fact 1.10.12, 32
Fact 1.10.31, 36
Fact 1.15.2, 48
Fact 1.15.4, 48
Fact 1.15.5, 49
Fact 1.15.6, 49
Fact 1.15.7, 49
Fact 1.15.8, 49
Fact 1.15.9, 49
Fact 1.15.11, 50
Fact 1.15.22, 53

Kronecker product
Fact 7.4.4, 405
Fact 7.4.10, 405
Fact 7.4.21, 406

Kronecker sum
Fact 7.5.1, 409

lower triangular
matrix
Fact 3.18.7, 216

matrix classes
Fact 3.7.32, 183

matrix exponential
Fact 11.13.19, 680

maximum singular
value
Fact 8.18.26, 520
Fact 9.13.7, 603
Fact 9.13.9, 603
Fact 11.21.17, 715

nonnegative matrix
Fact 4.11.22, 281

normal matrix
Fact 9.13.7, 603

outer-product
matrix

Fact 2.12.7, 126
positive-definite
matrix
Fact 8.10.41, 461
Fact 8.10.42, 461

positive-semidefinite
matrix
Corollary 8.6.11, 434
Fact 8.9.14, 452
Fact 8.10.36, 461
Fact 8.10.49, 465
Fact 9.9.17, 582

scalar inequality
Fact 1.9.3, 23
Fact 1.9.4, 23
Fact 1.9.5, 23
Fact 1.9.8, 24
Fact 1.9.9, 24
Fact 1.9.10, 24
Fact 1.10.18, 33
Fact 1.11.5, 39

Schur product
Fact 7.6.11, 414

similar matrices
Fact 5.9.1, 311

singular value
inequality
Fact 9.13.19, 605
Fact 9.13.20, 605

skew-Hermitian
matrix
Fact 8.9.14, 452

strictly lower
triangular matrix
Fact 3.18.7, 216

strictly upper
triangular matrix
Fact 3.18.7, 216

symmetric matrix
Fact 3.7.4, 178

trace
Fact 2.12.13, 127
Fact 2.12.17, 127
Fact 4.10.22, 271
Fact 4.11.22, 281
Fact 5.11.9, 322
Fact 5.11.10, 322
Fact 8.12.4, 476
Fact 8.12.5, 476
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unitarily invariant
norm
Fact 9.9.17, 582

upper triangular
matrix
Fact 3.18.7, 216

power difference
expansion
Fact 2.12.20, 128

power function
scalar inequalities
Fact 1.10.23, 34

power inequality
Lehmer mean
Fact 1.10.35, 36

monotonicity
Fact 1.10.33, 36
Fact 1.10.34, 36
Fact 1.10.35, 36

positive-definite
matrix
Fact 8.10.52, 466

scalar case
Fact 1.9.11, 24
Fact 1.9.12, 24
Fact 1.10.41, 38

sum inequality
Fact 1.16.28, 66
Fact 1.16.29, 66

two-variable
Fact 1.10.21, 33
Fact 1.10.22, 34

power mean
monotonicity
Fact 1.15.30, 55

power of a
positive-semidefinite
matrix

Bessis-Moussa-
Villani trace
conjecture
Fact 8.12.30, 482

power-sum inequality
Hölder norm
Fact 1.15.34, 57

norm monotonicity

Fact 1.10.30, 35
Fact 1.15.34, 57

Powers
Schatten norm for
positive-
semidefinite
matrices
Fact 9.9.22, 583

powers
Beckner’s two-point
inequality
Fact 1.10.15, 33
Fact 9.9.35, 586

inequality
Fact 1.10.8, 31
Fact 1.10.9, 32
Fact 1.10.10, 32
Fact 1.10.14, 33
Fact 1.10.15, 33
Fact 1.10.16, 33
Fact 9.7.20, 569
Fact 9.9.35, 586

optimal 2-uniform
convexity
Fact 1.10.15, 33
Fact 9.9.35, 586

primary circulant
circulant matrix
Fact 5.16.7, 355

irreducible matrix
Fact 3.20.3, 217

prime numbers
Euler product
formula
Fact 1.7.8, 19

factorization
involving π
Fact 1.7.8, 19

primitive matrix
definition
Fact 4.11.5, 273

principal angle
gap topology
Fact 10.9.18, 636

subspace
Fact 2.9.19, 112

Fact 5.11.39, 329
Fact 5.12.17, 335
Fact 10.9.18, 636

principal angle and
subspaces

Ljance
Fact 5.11.39, 329

principal branch
logarithm function
Fact 1.18.7, 72

principal square root
definition, 630
integral formula
Fact 10.10.1, 637

square root
Theorem 10.6.1, 629

principal submatrix
definition, 80

problem
absolute value
inequality
Fact 1.11.1, 39
Fact 1.11.12, 43
Fact 1.12.3, 46

adjoint norm
Fact 9.8.8, 572

adjugate of a normal
matrix
Fact 3.7.10, 179

asymptotic stability
of a compartmental
matrix
Fact 11.19.6, 707

bialternate product
and compound
matrix
Fact 7.5.17, 411

Cayley transform of
a Lyapunov-stable
matrix
Fact 11.21.8, 713

commutator
realization
Fact 3.8.2, 184

commuting
projectors
Fact 3.13.20, 209
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convergence of the
Baker-Campbell-
Hausdorff
series
Fact 11.14.6, 683

convergent sequence
for the generalized
inverse
Fact 6.3.35, 376

cross product of
complex vectors
Fact 3.10.1, 186

determinant lower
bound
Fact 8.13.31, 491

determinant of
partitioned matrix
Fact 2.14.13, 135

determinant of the
geometric mean
Fact 8.21.19, 534

dimension of the
centralizer
Fact 7.5.2, 409

discrete-time
Lyapunov-stable
matrix and the
matrix exponential
Fact 11.21.4, 712

entries of an
orthogonal matrix
Fact 3.11.9, 191

equality in the
triangle inequality
Fact 9.7.3, 563

exponential
representation of a
discrete-time
Lyapunov-stable
matrix
Fact 11.21.7, 713

factorization of a
partitioned matrix
Fact 6.5.25, 392

factorization of a
unitary matrix
Fact 5.15.16, 347

factorization of an
orthogonal matrix
by reflectors
Fact 5.15.31, 350

factorization of
nonsingular matrix
by elementary
matrices
Fact 5.15.12, 347

Frobenius norm
lower bound
Fact 9.9.11, 581
Fact 9.9.15, 582

generalized inverse
least squares
solution
Fact 9.15.2, 618

generalized inverse
of a partitioned
matrix
Fact 6.5.24, 391

geometric mean and
generalized inverses
Fact 8.10.43, 461

Hahn-Banach
theorem
interpretation
Fact 10.9.12, 635

Hölder-induced
norm inequality
Fact 9.8.21, 575

Hurwitz stability
test
Fact 11.18.23, 702

inequalities involving
the trace and
Frobenius norm
Fact 9.11.3, 597

inverse image of a
subspace
Fact 2.9.30, 114

inverse matrix
Fact 2.17.8, 148

Kronecker product
of positive-
semidefinite
matrices
Fact 8.21.22, 536

least squares and
unitary
biequivalence
Fact 9.15.6, 619

Lie algebra of upper
triangular Lie
groups
Fact 11.22.1, 715

lower bounds for the
difference of
complex numbers
Fact 1.18.2, 69

Lyapunov-stable
matrix and the
matrix exponential
Fact 11.18.37, 705

majorization and
singular values
Fact 8.17.5, 509

matrix exponential
Fact 11.14.2, 681

matrix exponential
and proper rotation
Fact 11.11.7, 673
Fact 11.11.8, 674
Fact 11.11.9, 674

matrix exponential
formula
Fact 11.14.34, 688

maximum eigenvalue
of the difference of
positive-
semidefinite
matrices
Fact 8.18.14, 516

maximum singular
value of an
idempotent matrix
Fact 5.11.38, 328

modification of a
positive-
semidefinite
matrix
Fact 8.8.13, 448

orthogonal
complement
Fact 2.9.15, 112

orthogonal matrix
Fact 3.9.5, 186
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polar decomposition
of a matrix
exponential
Fact 11.13.9, 679

Popoviciu’s
inequality and
Hlawka’s inequality
Fact 1.8.6, 22

positive-definite
matrix
Fact 8.8.9, 448

positive-semidefinite
matrix trace upper
bound
Fact 8.12.20, 479

power inequality
Fact 1.9.2, 23
Fact 1.10.41, 38
Fact 1.15.7, 49

quadrilateral with an
inscribed circle
Fact 2.20.13, 159

rank of a positive-
semidefinite
matrix
Fact 8.8.2, 445

reflector
Fact 3.14.7, 211

reverse triangle
inequality
Fact 9.7.6, 565

simisimple imaginary
eigenvalues of a
partitioned matrix
Fact 5.12.21, 337

singular value of a
partitioned matrix
Fact 9.14.14, 610

singular values of a
normal matrix
Fact 9.11.2, 597

special orthogonal
group and matrix
exponentials
Fact 11.11.13, 675

spectrum of a
partitioned
positive-

semidefinite
matrix
Fact 5.12.22, 338

spectrum of a sum of
outer products
Fact 5.11.13, 323

spectrum of the
Laplacian matrix
Fact 4.11.11, 277

sum of commutators
Fact 2.18.12, 151

trace of a
positive-definite
matrix
Fact 8.12.27, 481

upper bounds for the
trace of a product
of matrix
exponentials
Fact 11.16.4, 692

product
adjugate
Fact 2.16.10, 143

characteristic
polynomial
Corollary 4.4.11, 245

compound matrix
Fact 7.5.17, 411

Drazin generalized
inverse
Fact 6.6.3, 393
Fact 6.6.4, 394

generalized inverse
Fact 6.4.5, 378
Fact 6.4.6, 378
Fact 6.4.8, 379
Fact 6.4.9, 379
Fact 6.4.10, 379
Fact 6.4.11, 379
Fact 6.4.12, 379
Fact 6.4.13, 380
Fact 6.4.14, 380
Fact 6.4.16, 380
Fact 6.4.17, 380
Fact 6.4.21, 381
Fact 6.4.22, 381
Fact 6.4.23, 381
Fact 6.4.30, 382

idempotent matrix

Fact 3.12.29, 203
identities
Fact 2.12.19, 127

induced lower bound
Proposition 9.5.3, 559

left inverse
Fact 2.15.5, 141

left-invertible matrix
Fact 2.10.3, 115

maximum singular
value
Fact 9.14.2, 607

positive-definite
matrix
Corollary 8.3.6, 424

positive-semidefinite
matrix
Corollary 8.3.6, 424

projector
Fact 3.13.18, 209
Fact 3.13.20, 209
Fact 3.13.21, 209
Fact 6.4.16, 380
Fact 6.4.17, 380
Fact 6.4.21, 381
Fact 6.4.23, 381
Fact 8.10.23, 458

quadruple
Fact 2.16.11, 143

rank
Fact 3.7.30, 183

right inverse
Fact 2.15.6, 141

right-invertible
matrix
Fact 2.10.3, 115

singular value
Proposition 9.6.1, 560
Proposition 9.6.2, 561
Proposition 9.6.3, 561
Proposition 9.6.4, 561
Fact 8.18.21, 519
Fact 9.14.26, 613

singular value
inequality
Fact 9.13.17, 604
Fact 9.13.18, 605

skew-symmetric
matrix
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Fact 5.15.37, 351
trace
Fact 5.12.6, 334
Fact 5.12.7, 334
Fact 8.12.14, 478
Fact 8.12.15, 478
Fact 9.14.3, 607
Fact 9.14.4, 608

vec
Fact 7.4.6, 405

product identity
Lagrange identity
Fact 1.16.8, 61

product of matrices
definition, 81

product of projectors
Crimmins
Fact 6.3.32, 376

product of sums
inequality
Fact 1.16.10, 62

projector
commutator
Fact 3.13.23, 210
Fact 9.9.9, 581

commuting matrices
Fact 6.4.33, 383
Fact 8.10.23, 458
Fact 8.10.25, 458

complementary
subspaces
Fact 3.13.24, 210

complex conjugate
transpose
Fact 3.13.1, 206

controllable subspace
Lemma 12.6.6, 738

definition
Definition 3.1.1, 165

difference
Fact 3.13.24, 210
Fact 5.12.17, 335
Fact 6.4.33, 383

elementary reflector
Fact 5.15.13, 347

Euclidean norm
Fact 9.8.2, 571

Fact 9.8.3, 571
Fact 10.9.17, 636

factorization
Fact 5.15.13, 347
Fact 5.15.17, 348
Fact 6.3.32, 376

generalized inverse
Fact 6.3.3, 370
Fact 6.3.4, 370
Fact 6.3.5, 370
Fact 6.3.26, 375
Fact 6.3.27, 375
Fact 6.3.32, 376
Fact 6.4.15, 380
Fact 6.4.16, 380
Fact 6.4.17, 380
Fact 6.4.18, 381
Fact 6.4.19, 381
Fact 6.4.21, 381
Fact 6.4.23, 381
Fact 6.4.24, 381
Fact 6.4.25, 381
Fact 6.4.33, 383
Fact 6.4.41, 384
Fact 6.4.46, 385
Fact 6.5.10, 388

greatest lower bound
Fact 6.4.41, 384

group-invertible
matrix
Fact 3.13.21, 209

Hermitian matrix
Fact 3.13.2, 206
Fact 3.13.13, 208
Fact 3.13.20, 209
Fact 5.15.17, 348

idempotent matrix
Fact 3.13.3, 206
Fact 3.13.13, 208
Fact 3.13.20, 209
Fact 3.13.24, 210
Fact 5.10.13, 319
Fact 5.12.18, 336
Fact 6.3.26, 375
Fact 6.4.18, 381
Fact 6.4.19, 381
Fact 6.4.20, 381
Fact 6.4.25, 381

identity

Fact 3.13.9, 207
inequality
Fact 8.9.23, 452

intersection of
ranges
Fact 6.4.41, 384

Kronecker product
Fact 7.4.16, 406

least upper bound
Fact 6.4.41, 385

matrix difference
Fact 3.13.24, 210
Fact 6.4.20, 381

matrix limit
Fact 6.4.41, 384
Fact 6.4.46, 385

matrix product
Fact 3.13.18, 209
Fact 3.13.20, 209
Fact 3.13.21, 209
Fact 6.4.16, 380
Fact 6.4.17, 380
Fact 6.4.21, 381
Fact 6.4.23, 381

matrix sum
Fact 5.19.4, 360

maximum singular
value
Fact 5.11.38, 328
Fact 5.12.17, 335
Fact 5.12.18, 336
Fact 9.14.1, 607
Fact 9.14.30, 615

normal matrix
Fact 3.13.3, 206
Fact 3.13.20, 209

onto a subspace
definition, 175

orthogonal
complement
Proposition 3.5.2, 175

partitioned matrix
Fact 3.13.12, 208
Fact 3.13.22, 210
Fact 3.13.23, 210
Fact 6.5.13, 388

positive-semidefinite
matrix
Fact 3.13.4, 207
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product
Fact 3.13.24, 210
Fact 5.12.16, 335
Fact 6.4.19, 381
Fact 8.10.23, 458

quadratic form
Fact 3.13.10, 208
Fact 3.13.11, 208

range
Proposition 3.5.1, 175
Fact 3.13.5, 207
Fact 3.13.14, 208
Fact 3.13.15, 208
Fact 3.13.17, 208
Fact 3.13.18, 209
Fact 3.13.19, 209
Fact 3.13.20, 209
Fact 6.4.41, 384
Fact 6.4.45, 385
Fact 6.4.46, 385

range-Hermitian
matrix
Fact 3.13.3, 206
Fact 3.13.20, 209

rank
Fact 3.13.9, 207
Fact 3.13.12, 208
Fact 3.13.22, 210
Fact 3.13.23, 210
Fact 5.12.17, 335

reflector
Fact 3.13.16, 208
Fact 3.14.1, 211

right inverse
Fact 3.13.6, 207

similar matrices
Corollary 5.5.22, 301
Fact 5.10.13, 319

simultaneous
triangularization
Fact 5.17.6, 358

skew-Hermitian
matrix
Fact 9.9.9, 581

spectrum
Proposition 5.5.21, 300
Fact 5.12.15, 335
Fact 5.12.16, 335

square root

Fact 8.10.25, 458
subspace
Proposition 3.5.2, 175
Fact 9.8.3, 571
Fact 10.9.17, 636

sum
Fact 3.13.23, 210
Fact 5.12.17, 335

trace
Fact 5.8.11, 309

tripotent matrix
Fact 6.4.33, 383

union of ranges
Fact 6.4.41, 385

unitarily similar
matrices
Fact 5.10.12, 319

unobservable
subspace
Lemma 12.3.6, 729

projector onto a
subspace

definition, 175

proper rational function
definition
Definition 4.7.1, 249

proper rational transfer
function

definition
Definition 4.7.2, 249

realization
Theorem 12.9.4, 751

proper rotation
matrix exponential
Fact 11.11.7, 673
Fact 11.11.8, 674
Fact 11.11.9, 674

proper separation
theorem

convex sets
Fact 10.9.14, 635

proper subset
definition, 3

proposition
definition, 1

Ptak
maximum singular
value
Fact 9.13.9, 603

Ptolemy’s inequality
quadrilateral
Fact 2.20.13, 159

Ptolemy’s theorem
quadrilateral
Fact 2.20.13, 159

Purves
similar matrices and
nonzero diagonal
entries
Fact 5.9.14, 313

Putnam-Fuglede
theorem

normal matrix
Fact 5.14.30, 343

Pythagorean theorem
norm identity
Fact 9.7.4, 563

vector identity
Fact 9.7.4, 563

Pythagorean triples
quadratic identity
Fact 1.10.1, 30

Q

QR decomposition
existence
Fact 5.15.8, 346

quadratic
identity
Fact 1.11.2, 39

inequality
Fact 1.10.4, 31
Fact 1.10.5, 31
Fact 1.10.6, 31
Fact 1.10.7, 31
Fact 1.11.3, 39
Fact 1.11.4, 39

quadratic form
cone
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Fact 8.14.11, 498
Fact 8.14.13, 498
Fact 8.14.14, 498

convex cone
Fact 8.14.11, 498
Fact 8.14.13, 498
Fact 8.14.14, 498

convex set
Fact 8.14.2, 494
Fact 8.14.3, 495
Fact 8.14.4, 495
Fact 8.14.5, 495
Fact 8.14.6, 496
Fact 8.14.9, 497
Fact 8.14.11, 498
Fact 8.14.12, 498
Fact 8.14.13, 498
Fact 8.14.14, 498

copositive matrix
Fact 8.15.37, 507

definition, 166
dual norm
Fact 9.8.34, 577

eigenvalue
Lemma 8.4.3, 425
Fact 8.15.20, 503

field
Fact 3.7.7, 179

Hermitian matrix
Fact 3.7.6, 178
Fact 3.7.7, 179
Fact 8.15.24, 504
Fact 8.15.25, 504
Fact 8.15.26, 504
Fact 8.15.31, 505

hidden convexity
Fact 8.14.11, 498

Hölder-induced
norm
Fact 9.8.35, 577
Fact 9.8.36, 577

idempotent matrix
Fact 3.13.11, 208

induced norm
Fact 9.8.34, 577

inequality
Fact 8.15.7, 501
Fact 8.15.8, 501
Fact 8.15.13, 502

Fact 8.15.14, 502
Fact 8.15.15, 502
Fact 8.15.16, 502
Fact 8.15.18, 503
Fact 8.15.19, 503
Fact 8.15.21, 503
Fact 8.15.22, 503

integral
Fact 8.15.34, 506
Fact 8.15.35, 506

Kantorovich
inequality
Fact 8.15.9, 501

Laplacian matrix
Fact 8.15.36, 506

linear constraint
Fact 8.14.10, 497

matrix logarithm
Fact 8.15.15, 502

maximum eigenvalue
Lemma 8.4.3, 425

maximum singular
value
Fact 9.13.1, 602
Fact 9.13.2, 602

minimum eigenvalue
Lemma 8.4.3, 425

minimum singular
value
Fact 9.13.1, 602

norm
Fact 9.7.30, 571

null space
Fact 8.15.1, 500
Fact 8.15.23, 504

one-sided cone
Fact 8.14.14, 498

outer-product
matrix
Fact 9.13.3, 602

partitioned matrix
Fact 8.15.5, 500
Fact 8.15.6, 501

positive-definite
matrix
Fact 8.15.24, 504
Fact 8.15.25, 504
Fact 8.15.26, 504
Fact 8.15.29, 505

Fact 8.15.30, 505
Fact 9.8.37, 577

positive-definite
matrix inequality
Fact 8.15.4, 500

positive-semidefinite
matrix
Fact 8.14.2, 494
Fact 8.14.3, 495
Fact 8.14.4, 495
Fact 8.14.5, 495
Fact 8.14.6, 496
Fact 8.15.1, 500
Fact 8.15.9, 501
Fact 8.15.10, 501
Fact 8.15.11, 501
Fact 8.15.13, 502
Fact 8.15.14, 502
Fact 8.15.15, 502
Fact 8.15.16, 502
Fact 8.15.17, 503
Fact 8.15.18, 503

positive-semidefinite
matrix inequality
Fact 8.15.4, 500
Fact 8.15.7, 501

projector
Fact 3.13.10, 208
Fact 3.13.11, 208

quadratic
minimization
lemma
Fact 8.14.15, 499

Rayleigh quotient
Lemma 8.4.3, 425

Reid’s inequality
Fact 8.15.18, 503

skew-Hermitian
matrix
Fact 3.7.6, 178

skew-symmetric
matrix
Fact 3.7.5, 178

spectrum
Fact 8.14.7, 496
Fact 8.14.8, 497

subspace
Fact 8.15.27, 504
Fact 8.15.28, 504
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symmetric matrix
Fact 3.7.5, 178

vector derivative
Proposition 10.7.1, 630

quadratic form
inequality

Marcus
Fact 8.15.19, 503

quadratic form on a
subspace

positivity
Fact 8.15.27, 504
Fact 8.15.28, 504

quadratic formula
complex numbers
Fact 1.18.3, 70

quadratic inequality
Aczel’s inequality
Fact 1.16.19, 64

sum
Fact 1.10.17, 33

sum of squares
Fact 1.12.4, 47
Fact 1.14.1, 47

quadratic matrix
equation

spectrum
Fact 5.11.3, 321
Fact 5.11.4, 321

quadratic minimization
lemma

quadratic form
Fact 8.14.15, 499

quadratic performance
measure

definition, 775
H2 norm
Proposition 12.15.1,
776

quadrilateral
Brahmagupta’s
formula
Fact 2.20.13, 159

Ptolemy’s inequality
Fact 2.20.13, 159

Ptolemy’s theorem
Fact 2.20.13, 159

semiperimeter
Fact 2.20.13, 159

quadrilateral inequality
Euclidean norm
Fact 9.7.4, 563

quadruple product
trace
Fact 7.4.9, 405

vec
Fact 7.4.9, 405

quantum information
matrix logarithm
Fact 11.14.27, 686

quartic
arithmetic-mean–
geometric-mean
inequality
Fact 1.12.5, 47

identity
Fact 1.10.3, 30

inequality
Fact 1.17.1, 67

quaternion group
symplectic group
Fact 3.22.4, 227

quaternions
2× 2 matrix
representation
Fact 3.22.6, 227

4× 4 matrix
representation
Fact 3.22.3, 227

angular velocity
vector
Fact 11.11.15, 675

complex
decomposition
Fact 3.22.2, 227

complex matrix
representation
Fact 3.22.7, 229

inequality
Fact 1.14.1, 47

matrix exponential

Fact 11.11.15, 675
orthogonal matrix
Fact 3.11.10, 192

Pauli spin matrices
Fact 3.22.6, 227

real matrix
representation
Fact 3.22.1, 225
Fact 3.22.8, 229

Rodrigues’s formulas
Fact 3.11.11, 193

unitary matrix
Fact 3.22.9, 229

quintic
inequality
Fact 1.10.11, 32

quintic polynomial
Abel
Fact 3.21.7, 223

Galois
Fact 3.21.7, 223

quotient
definition, 233

R

Rado
arithmetic-mean–
geometric-mean
inequality
Fact 1.15.29, 55

convex hull
interpretation of
strong majorization
Fact 2.21.7, 163

Radstrom
set cancellation
Fact 10.9.7, 635

Rahman
polynomial root
bound
Fact 11.20.7, 710

Ramanujan
cube identity
Fact 2.12.24, 128
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Ramus
fundamental triangle
inequality
Fact 2.20.11, 156

range
adjugate
Fact 2.16.7, 143

complex conjugate
transpose
Fact 6.5.3, 386
Fact 8.7.2, 443

controllability
Fact 12.20.7, 791

Drazin generalized
inverse
Proposition 6.2.2, 368

factorization
Theorem 8.6.2, 431

generalized inverse
Proposition 6.1.6, 365
Fact 6.3.24, 374
Fact 6.4.42, 384
Fact 6.4.43, 385
Fact 6.5.3, 386

group generalized
inverse
Proposition 6.2.3, 369

group-invertible
matrix
Fact 3.6.1, 177
Fact 5.14.4, 339

Hermitian matrix
Lemma 8.6.1, 431

idempotent matrix
Fact 3.12.3, 199
Fact 3.12.4, 199
Fact 3.15.4, 200
Fact 6.3.24, 374

identity
Fact 2.10.8, 116
Fact 2.10.12, 116
Fact 2.10.20, 117

inclusion
Fact 2.10.7, 116
Fact 2.10.8, 116

inclusion for a
matrix power
Corollary 2.4.2, 94

inclusion for a
matrix product
Lemma 2.4.1, 94
Fact 2.10.2, 115

index of a matrix
Fact 5.14.4, 339

involutory matrix
Fact 3.15.4, 212

Kronecker product
Fact 7.4.22, 407

minimal polynomial
Corollary 11.8.6, 664

nilpotent matrix
Fact 3.17.1, 213
Fact 3.17.2, 213
Fact 3.17.3, 213

null space
Corollary 2.5.6, 97
Fact 2.10.1, 115

null space inclusions
Theorem 2.4.3, 94

outer-product
matrix
Fact 2.10.11, 116

partitioned matrix
Fact 2.11.1, 120
Fact 2.11.2, 121
Fact 6.5.3, 386

positive-semidefinite
matrix
Theorem 8.6.2, 431
Corollary 8.2.2, 419
Fact 8.7.1, 443
Fact 8.7.2, 443
Fact 8.7.3, 443
Fact 8.7.4, 443
Fact 8.7.5, 443
Fact 8.10.2, 456
Fact 8.20.7, 526
Fact 8.20.8, 526
Fact 8.20.10, 526
Fact 8.20.11, 527

projector
Proposition 3.5.1, 175
Fact 3.13.14, 208
Fact 3.13.15, 208
Fact 3.13.17, 208
Fact 3.13.18, 209
Fact 3.13.19, 209

Fact 3.13.20, 209
Fact 6.4.41, 384
Fact 6.4.45, 385
Fact 6.4.46, 385

rank
Fact 2.11.5, 121

right-equivalent
matrices
Proposition 5.1.3, 283

Schur product
Fact 7.6.5, 413

skew-Hermitian
matrix
Fact 8.7.3, 443

square root
Fact 8.7.2, 443

stabilizability
Fact 12.20.7, 791

subspace
Fact 2.9.24, 113

symmetric matrix
Fact 3.7.4, 178

range of a function
definition, 3

range of a matrix
definition, 93

range-Hermitian matrix
commuting matrices
Fact 6.4.26, 382
Fact 6.4.27, 382

complex conjugate
transpose
Fact 3.6.4, 178
Fact 6.3.10, 371
Fact 6.6.16, 396

congruent matrices
Proposition 3.4.5, 174
Fact 5.9.6, 312

definition
Definition 3.1.1, 165

dissipative matrix
Fact 5.14.31, 343

generalized inverse
Proposition 6.1.6, 365
Fact 6.3.10, 371
Fact 6.3.11, 372
Fact 6.3.12, 372
Fact 6.3.16, 373
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Fact 6.3.17, 373
Fact 6.4.26, 382
Fact 6.4.27, 382
Fact 6.4.28, 382
Fact 6.4.29, 382

generalized projector
Fact 3.6.4, 178

group generalized
inverse
Fact 6.6.8, 394

group-invertible
matrix
Proposition 3.1.6, 169
Fact 6.6.16, 396

idempotent matrix
Fact 3.13.3, 206
Fact 6.3.27, 375

Kronecker product
Fact 7.4.16, 406

Kronecker sum
Fact 7.5.8, 409

nonsingular matrix
Proposition 3.1.6, 169

normal matrix
Proposition 3.1.6, 169

null space
Fact 3.6.3, 177

positive-semidefinite
matrix
Fact 8.20.21, 530

product
Fact 6.4.29, 382

projector
Fact 3.13.3, 206
Fact 3.13.20, 209

rank
Fact 3.6.3, 177
Fact 3.6.5, 178

right-equivalent
matrices
Fact 3.6.3, 177

Schur decomposition
Corollary 5.4.4, 293

unitarily similar
matrices
Proposition 3.4.5, 174
Corollary 5.4.4, 293

rank
additivity

Fact 2.11.4, 121
Fact 6.4.32, 382

adjugate
Fact 2.16.7, 143
Fact 2.16.8, 143

biequivalent matrices
Proposition 5.1.3, 283

commutator
Fact 3.12.31, 204
Fact 3.13.23, 210
Fact 5.17.5, 358
Fact 6.3.9, 371

complex conjugate
transpose
Fact 2.10.21, 117

complex matrix
Fact 2.19.3, 151

controllability
matrix
Corollary 12.6.3, 737

controllable pair
Fact 5.14.10, 340

controllably
asymptotically
stable
Proposition 12.7.4, 745
Proposition 12.7.5, 746

cyclic matrix
Fact 5.11.1, 321

definition, 95
diagonal dominance
Fact 4.10.23, 271

difference
Fact 2.10.31, 119

dimension inequality
Fact 2.10.4, 115

factorization
Fact 5.15.40, 351

Frobenius norm
Fact 9.11.4, 598
Fact 9.14.28, 614
Fact 9.15.4, 618

generalized inverse
Fact 6.3.9, 371
Fact 6.3.22, 374
Fact 6.3.36, 377
Fact 6.4.2, 377
Fact 6.4.32, 382
Fact 6.4.44, 385

Fact 6.5.6, 386
Fact 6.5.8, 387
Fact 6.5.9, 387
Fact 6.5.12, 388
Fact 6.5.13, 388
Fact 6.5.14, 388

geometric
multiplicity
Proposition 4.5.2, 246

group-invertible
matrix
Fact 3.6.1, 177
Fact 5.8.5, 308
Fact 5.14.4, 339

Hermitian matrix
Fact 3.7.22, 182
Fact 3.7.30, 183
Fact 5.8.6, 308
Fact 5.8.7, 308
Fact 8.9.7, 451

idempotent matrix
Fact 3.12.6, 199
Fact 3.12.9, 199
Fact 3.12.19, 201
Fact 3.12.20, 201
Fact 3.12.22, 201
Fact 3.12.24, 202
Fact 3.12.25, 202
Fact 3.12.27, 203
Fact 3.12.31, 204
Fact 5.8.1, 307
Fact 5.11.7, 322

identities with defect
Corollary 2.5.1, 96

identities with
transpose
Corollary 2.5.3, 96

identity
Fact 2.10.12, 116
Fact 2.10.13, 116
Fact 2.10.17, 117
Fact 2.10.20, 117
Fact 2.10.23, 118

identity with defect
Corollary 2.5.5, 97

identity with powers
Proposition 2.5.8, 97

inequality
Fact 2.10.22, 118
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inertia
Fact 5.8.5, 308
Fact 5.8.18, 310

inverse
Fact 2.11.21, 125
Fact 2.11.22, 125

inverse matrix
Fact 2.17.10, 149
Fact 6.5.11, 388

Kronecker product
Fact 7.4.23, 407
Fact 7.4.24, 407
Fact 7.4.25, 407
Fact 8.21.16, 534

Kronecker sum
Fact 7.5.2, 409
Fact 7.5.9, 409
Fact 7.5.10, 410

linear matrix
equation
Fact 2.10.16, 117

linear system
solution
Theorem 2.6.4, 100
Corollary 2.6.7, 101

lower bound for
product
Proposition 2.5.9, 97
Corollary 2.5.10, 98

M-matrix
Fact 8.7.7, 444

matrix difference
Fact 2.10.27, 118
Fact 2.10.30, 119

matrix power
Fact 2.10.22, 118

matrix powers
Corollary 2.5.7, 97
Fact 3.17.5, 213

matrix sum
Fact 2.10.27, 118
Fact 2.10.28, 118
Fact 2.10.29, 119
Fact 2.11.4, 121

nilpotent matrix
Fact 3.17.4, 213
Fact 3.17.5, 213

nonsingular
submatrices

Proposition 2.7.7, 106
observability matrix
Corollary 12.3.3, 729

observably
asymptotically
stable
Proposition 12.4.4, 733

ones matrix
Fact 2.10.18, 117

outer-product
matrix
Fact 2.10.19, 117
Fact 2.10.24, 118
Fact 3.12.6, 199

outer-product
perturbation
Fact 2.10.25, 118
Fact 6.4.2, 377

partitioned matrix
Corollary 2.8.5, 107
Fact 2.11.7, 121
Fact 2.11.8, 122
Fact 2.11.9, 122
Fact 2.11.10, 122
Fact 2.11.11, 123
Fact 2.11.12, 123
Fact 2.11.13, 123
Fact 2.11.14, 123
Fact 2.11.15, 124
Fact 2.11.16, 124
Fact 2.11.18, 124
Fact 2.11.19, 125
Fact 2.14.4, 133
Fact 2.14.5, 134
Fact 2.14.11, 135
Fact 2.17.5, 147
Fact 2.17.10, 149
Fact 3.12.20, 201
Fact 3.13.12, 208
Fact 3.13.22, 210
Fact 5.12.21, 337
Fact 6.3.30, 376
Fact 6.5.6, 386
Fact 6.5.7, 387
Fact 6.5.8, 387
Fact 6.5.9, 387
Fact 6.5.10, 388
Fact 6.5.12, 388
Fact 6.5.13, 388

Fact 6.5.14, 388
Fact 6.5.15, 389
Fact 6.6.2, 393
Fact 8.7.6, 443
Fact 8.7.7, 444

partitioned positive-
semidefinite
matrix
Proposition 8.2.3, 420

positive-semidefinite
matrix
Fact 5.8.9, 308
Fact 8.7.1, 443
Fact 8.7.5, 443
Fact 8.7.6, 443
Fact 8.7.7, 444
Fact 8.10.2, 456
Fact 8.10.14, 457
Fact 8.20.11, 527
Fact 8.21.16, 534

product
Proposition 2.6.3, 99
Fact 3.7.30, 183

product of matrices
Fact 2.10.14, 116
Fact 2.10.26, 118

projector
Fact 3.13.9, 207
Fact 3.13.12, 208
Fact 3.13.22, 210
Fact 3.13.23, 210
Fact 5.12.17, 335

range
Fact 2.11.5, 121

range-Hermitian
matrix
Fact 3.6.3, 177
Fact 3.6.5, 178

rational transfer
function
Definition 4.7.4, 249

Riccati equation
Proposition 12.19.4,
790

Rosenbrock system
matrix
Proposition 12.10.3,
759
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Proposition 12.10.11,
764

Schur complement
Proposition 8.2.3, 420
Fact 6.5.6, 386
Fact 6.5.8, 387
Fact 6.5.11, 388

Schur product
Fact 7.6.6, 413
Fact 8.21.16, 534

simple matrix
Fact 5.11.1, 321

singular value
Proposition 5.6.2, 302
Fact 9.14.28, 614
Fact 9.15.4, 618

skew-Hermitian
matrix
Fact 3.7.17, 181
Fact 3.7.30, 183

Smith form
Proposition 4.3.5, 237
Proposition 4.3.6, 238

Smith-McMillan
form
Proposition 4.7.7, 250
Proposition 4.7.8, 250

subapce dimension
theorem
Fact 2.11.10, 122

submatrix
Proposition 4.3.5, 237
Proposition 4.7.7, 250
Fact 2.11.6, 121
Fact 2.11.17, 124
Fact 2.11.20, 125
Fact 2.11.21, 125
Fact 2.11.22, 125
Fact 3.20.5, 218

subspace dimension
theorem
Fact 2.11.9, 122

subtractivity
Fact 2.10.30, 119
Fact 2.10.31, 119

Sylvester’s equation
Fact 12.21.13, 796

totally positive
matrix

Fact 8.7.7, 444
trace
Fact 5.11.10, 322
Fact 9.11.4, 598

tripotent matrix
Fact 2.10.23, 118
Fact 3.16.3, 213
Fact 3.16.4, 213

unitarily invariant
norm
Fact 9.14.28, 614

upper bound for
product
Corollary 2.5.10, 98

upper bound on
rank of a product
Lemma 2.5.2, 96

upper bound with
dimensions
Corollary 2.5.4, 97

rank of a polynomial
matrix

definition
Definition 4.2.4, 235
Definition 4.3.3, 237

submatrix
Proposition 4.2.7, 236

rank of a rational
function

linearly independent
columns
Proposition 4.7.6, 250
Proposition 4.7.9, 251

rank subtractivity
equivalent conditions
Fact 2.10.30, 119

transitivity
Fact 2.10.31, 119

rank subtractivity
partial ordering

commuting matrices
Fact 8.19.5, 523

definition
Fact 2.10.32, 119

generalized inverse
Fact 6.5.30, 393

positive-semidefinite
matrix
Fact 8.19.5, 523
Fact 8.19.9, 524
Fact 8.20.7, 526
Fact 8.20.8, 526

rank-deficient matrix
determinant
Fact 2.13.3, 129

rank-two matrix
matrix exponential
Fact 11.11.18, 676

ratio of powers
scalar inequalities
Fact 1.10.39, 38

rational canonical form,
see multicompanion
form or elementary
multicompanion
form

rational function
complex conjugate
Fact 4.8.17, 260

definition
Definition 4.7.1, 249

Hankel matrix
Fact 4.8.8, 257

imaginary part
Fact 4.8.17, 260

spectrum
Fact 5.11.15, 324

rational transfer
function

blocking zero
Definition 4.7.4, 249

definition
Definition 4.7.2, 249

Markov
block-Hankel
matrix
Proposition 12.9.11,
754

Proposition 12.9.12,
755

Proposition 12.9.13,
755
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Markov parameter
Proposition 12.9.7, 751

minimal realization
Fact 12.22.12, 800

normal rank
Definition 4.7.4, 249

poles
Definition 4.7.4, 249

rank
Definition 4.7.4, 249

realization
Fact 12.22.11, 800

Rayleigh quotient
Hermitian matrix
Lemma 8.4.3, 425

quadratic form
Lemma 8.4.3, 425

real eigenvalues
positive-semidefinite
matrix
Fact 5.14.13, 340

real hypercompanion
form

definition, 289

real Jordan form
existence
Theorem 5.3.5, 290

hypercompanion
matrix
Fact 5.10.1, 316

Jordan form
Fact 5.10.2, 317

similarity
transformation
Fact 5.10.1, 316
Fact 5.10.2, 317

real Jordan matrix
definition, 289

real normal form
existence
Corollary 5.4.9, 295

real part
frequency response
Fact 12.22.5, 799

transfer function
Fact 12.22.5, 799

real Schur
decomposition

definition, 293
existence
Corollary 5.4.2, 293
Corollary 5.4.3, 293

real symplectic group
special orthogonal
group
Fact 3.22.5, 227

real vector
definition, 85

realization
controllable
canonical form
Proposition 12.9.3, 750

definition
Definition 12.9.2, 749

derivative
Fact 12.22.6, 799

feedback
interconnection
Proposition 12.13.4,
772

Proposition 12.14.1,
774

Fact 12.22.8, 799
observable canonical
form
Proposition 12.9.3, 750

partitioned transfer
function
Proposition 12.13.3,
771

Fact 12.22.7, 799
proper rational
transfer function
Theorem 12.9.4, 751

rational transfer
function
Fact 12.22.11, 800

similar matrices
Proposition 12.9.5, 751

transfer function
Proposition 12.13.1,
770

Fact 12.22.3, 798
Fact 12.22.4, 799

Fact 12.22.6, 799
Fact 12.22.7, 799
Fact 12.22.8, 799

rearrangement
inequality

Chebyshev’s
inequality
Fact 1.16.3, 60

product of sums
Fact 1.16.4, 60

reverse inequality
Fact 1.16.6, 61

sum of differences
Fact 1.16.4, 60

sum of products
Fact 1.16.4, 60

sum of products
inequality
Fact 1.16.5, 60

reciprocal
scalar inequality
Fact 1.11.13, 43
Fact 1.11.18, 44
Fact 1.11.19, 44
Fact 1.11.20, 44

reciprocal argument
transfer function
Fact 12.22.4, 799

reciprocal powers
inequality
Fact 1.16.26, 66
Fact 1.16.27, 66

reciprocals
scalar inequality
Fact 1.11.23, 45
Fact 1.11.26, 45

Walker’s inequality
Fact 1.11.22, 45

reducible matrix
absolute value
Fact 3.20.4, 218

definition
Definition 3.1.1, 165

zero entry
Fact 3.20.1, 217
Fact 3.20.2, 217
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redundant
assumptions

definition, 2

reflection theorem
elementary reflector
Fact 3.14.4, 211

reflector
definition
Definition 3.1.1, 165

elementary reflector
Fact 5.15.14, 347

factorization
Fact 5.15.14, 347

Hermitian matrix
Fact 3.14.2, 211

identity
Fact 3.14.8, 212

involutory matrix
Fact 3.14.2, 211

Kronecker product
Fact 7.4.16, 406

normal matrix
Fact 5.9.9, 312
Fact 5.9.10, 312

orthogonal matrix
Fact 3.11.9, 191
Fact 5.15.31, 350
Fact 5.15.35, 351

projector
Fact 3.13.16, 208
Fact 3.14.1, 211

rotation matrix
Fact 3.11.9, 191

similar matrices
Corollary 5.5.22, 301

skew reflector
Fact 3.14.7, 211

spectrum
Proposition 5.5.21, 300

trace
Fact 5.8.11, 309

tripotent matrix
Proposition 3.1.6, 169

unitary matrix
Fact 3.14.2, 211

reflexive hull
definition
Definition 1.3.4, 5

relation
Proposition 1.3.5, 6

reflexive relation
definition
Definition 1.3.2, 5

graph
Definition 1.4.1, 8

intersection
Proposition 1.3.3, 5

pointed cone
induced by
Proposition 2.3.6, 93

positive-semidefinite
matrix
Proposition 8.1.1, 417

regular pencil
definition, 304
generalized
eigenvalue
Proposition 5.7.3, 305
Proposition 5.7.4, 306

invariant zero
Corollary 12.10.4, 759
Corollary 12.10.5, 760
Corollary 12.10.6, 761

Kronecker canonical
form
Proposition 5.7.2, 305

Moler
Fact 5.17.3, 358

simultaneous
triangularization
Fact 5.17.2, 358

Stewart
Fact 5.17.3, 358

upper Hessenberg
Fact 5.17.3, 358

upper triangular
Fact 5.17.3, 358

regular polynomial
matrix

definition, 234
nonsingular
polynomial matrix
Proposition 4.2.5, 235

regularized Tikhonov
inverse

positive-definite
matrix
Fact 8.9.40, 455

Reid’s inequality
quadratic form
Fact 8.15.18, 503

relation
definition, 5
function
Proposition 1.3.1, 5

relative complement
definition, 2

relative degree
definition
Definition 4.7.1, 249
Definition 4.7.3, 249

relative entropy
matrix logarithm
Fact 11.14.25, 686

relative gain array
definition
Fact 8.21.4, 531

relatively closed set
complement
Fact 10.8.5, 632

relatively open set
complement
Fact 10.8.5, 632

remainder
definition, 233

representation
groups
Fact 3.21.8, 224

reproducing kernel
space

positive-semidefinite
matrix
Fact 8.8.2, 445

resolvent
definition, 243
Laplace transform
Proposition 11.2.2, 647

matrix exponential
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Proposition 11.2.2, 647

resultant
coprime polynomials
Fact 4.8.4, 254

reversal of a graph
Definition 1.4.1, 8

reversal of a relation
definition
Definition 1.3.4, 5

reverse
arithmetic-mean–
geometric-mean
inequality

Specht
Fact 1.15.19, 52

Specht’s ratio
Fact 1.15.19, 52

reverse complex
conjugate transpose

definition, 88

reverse identity matrix
definition, 84
determinant
Fact 2.13.1, 128

spectrum
Fact 5.9.24, 314

symplectic matrix
Fact 3.19.3, 216

reverse inequality
arithmetic-mean–
geometric-mean
inequality
Fact 1.15.18, 52
Fact 1.15.19, 52

Euclidean norm
triangle inequality
Fact 9.7.6, 565

Fischer’s inequality
Fact 8.13.41, 493

Hölder norm triangle
inequality
Fact 9.7.19, 569

Young inequality
Fact 1.10.22, 34

reverse transpose

definition, 88
similar matrices
Fact 5.9.11, 313

reverse-diagonal
entries

definition, 80

reverse-diagonal matrix
definition
Definition 3.1.3, 167

semisimple matrix
Fact 5.14.12, 340

reverse-Hermitian
matrix

definition
Definition 3.1.1, 165

reverse-symmetric
matrix

definition
Definition 3.1.1, 165

factorization
Fact 5.9.12, 313

similar matrices
Fact 5.9.11, 313

Toeplitz matrix
Fact 3.18.5, 215

reversed relation
relation
Proposition 1.3.5, 6

Riccati differential
equation

matrix differential
equation
Fact 12.23.5, 803

Riccati equation
closed-loop spectrum
Proposition 12.16.14,
781

Proposition 12.18.2,
787

Proposition 12.18.3,
787

Proposition 12.18.7,
789

detectability
Corollary 12.17.3, 783
Corollary 12.19.2, 790

existence
Fact 12.23.3, 802

geometric mean
Fact 12.23.4, 802

golden mean
Fact 12.23.4, 802

golden ratio
Fact 12.23.4, 802

Hamiltonian
Theorem 12.17.9, 784
Proposition 12.16.14,
781

Corollary 12.16.15, 781
inertia
Lemma 12.16.18, 781

linear-quadratic
control problem
Theorem 12.15.2, 776

maximal solution
Definition 12.16.12,
780

Theorem 12.18.1, 787
Theorem 12.18.4, 787
Proposition 12.18.2,
787

Proposition 12.18.7,
789

monotonicity
Proposition 12.18.5,
788

Corollary 12.18.6, 788
observability
Lemma 12.16.18, 781

positive-definite
matrix
Fact 12.23.4, 802

positive-definite
solution
Theorem 12.17.2, 782
Proposition 12.19.3,
790

Corollary 12.19.2, 790
positive-semidefinite
solution
Theorem 12.17.2, 782
Theorem 12.18.4, 787
Proposition 12.17.1,
782
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Proposition 12.19.1,
789

Corollary 12.17.3, 783
Corollary 12.18.8, 789
Corollary 12.19.2, 790

rank
Proposition 12.19.4,
790

solution
Definition 12.16.12,
780

Fact 12.23.2, 802
stabilizability
Theorem 12.17.9, 784
Theorem 12.18.1, 787
Corollary 12.19.2, 790

stabilizing solution
Definition 12.16.12,
780

Theorem 12.17.2, 782
Theorem 12.17.9, 784
Theorem 12.18.4, 787
Proposition 12.17.1,
782

Proposition 12.18.3,
787

Proposition 12.19.4,
790

Corollary 12.16.15, 781

right divides
definition, 234

right coprime
polynomial matrices

Bezout identity
Theorem 4.7.14, 252

right equivalence
equivalence relation
Fact 5.10.3, 317

right inverse
(1)-inverse
Proposition 6.1.2, 364

definition, 4
generalized inverse
Corollary 6.1.4, 364

idempotent matrix
Fact 3.12.10, 199

linear system

Fact 6.3.1, 369
matrix product
Fact 2.15.6, 141

positive-semidefinite
matrix
Fact 3.7.26, 182

projector
Fact 3.13.6, 207

representation
Fact 2.15.4, 140

right-inner matrix
Fact 3.11.5, 190

transfer function
Fact 12.22.9, 799

uniqueness
Theorem 1.2.2, 4

right-equivalent
matrices

definition
Definition 3.4.3, 174

group-invertible
matrix
Fact 3.6.1, 177

Kronecker product
Fact 7.4.11, 405

range
Proposition 5.1.3, 283

range-Hermitian
matrix
Fact 3.6.3, 177

right-inner matrix
definition
Definition 3.1.2, 166

generalized inverse
Fact 6.3.8, 371

right inverse
Fact 3.11.5, 190

right-invertible function
definition, 4

right-invertible matrix
definition, 98
equivalent properties
Theorem 2.6.1, 98

generalized inverse
Proposition 6.1.5, 364

inverse
Proposition 2.6.5, 101

linear system
solution
Fact 2.13.7, 129

matrix product
Fact 2.10.3, 115

nonsingular
equivalence
Corollary 2.6.6, 101

open set
Theorem 10.3.6, 624

unique right inverse
Proposition 2.6.2, 99

rigid body
inertia matrix
Fact 8.9.5, 451

rigid-body rotation
matrix exponential
Fact 11.11.6, 673

Rodrigues
orthogonal matrix
Fact 3.11.10, 192

Rodrigues’s formulas
Euler parameters
Fact 3.11.11, 193

orthogonal matrix
Fact 3.11.11, 193

quaternions
Fact 3.11.11, 193

Rogers-Hölder
inequality

scalar case
Fact 1.16.12, 62

root
Definition 1.4.2, 8
polynomial
Fact 11.20.4, 709
Fact 11.20.5, 709
Fact 11.20.6, 709
Fact 11.20.7, 710
Fact 11.20.8, 710
Fact 11.20.9, 710
Fact 11.20.10, 711

root bounds
polynomial
Fact 11.20.11, 711
Fact 11.20.12, 712
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root locus
eigenvalue
Fact 4.10.28, 272

roots
polynomial
Fact 4.8.1, 253
Fact 4.8.2, 254

roots of polynomial
convex hull
Fact 10.11.3, 638

Rosenbrock system
matrix

definition
Definition 12.10.1, 757

rank
Proposition 12.10.3,
759

Proposition 12.10.11,
764

rotation
vector
Fact 3.11.13, 194

rotation matrix
definition, 172
logarithm
Fact 11.15.10, 692

orthogonal matrix
Fact 3.11.9, 191
Fact 3.11.10, 192
Fact 3.11.11, 193
Fact 3.11.12, 194
Fact 3.11.31, 198

reflector
Fact 3.11.9, 191

trace
Fact 3.11.17, 195

rotation-dilation
factorization
Fact 2.19.2, 151

Roth
solutions of
Sylvester’s equation
Fact 5.10.20, 320
Fact 5.10.21, 320

Roup

positive-definite
matrix
Fact 8.8.14, 449

Routh criterion
asymptotically stable
polynomial
Fact 11.17.2, 696

Routh form
tridiagonal matrix
Fact 11.18.27, 703

row
definition, 79

row norm
column norm
Fact 9.8.10, 572

definition, 556
Hölder-induced
norm
Fact 9.8.21, 575
Fact 9.8.23, 575

Kronecker product
Fact 9.9.61, 591

partitioned matrix
Fact 9.8.11, 572

spectral radius
Corollary 9.4.10, 556

S

S-N decomposition
diagonalizable
matrix
Fact 5.9.3, 311

nilpotent matrix
Fact 5.9.3, 311

scalar inequality
arithmetic mean
Fact 1.11.6, 39

Bernoulli’s
inequality
Fact 1.9.1, 22

Cauchy-Schwarz
inequality
Fact 1.16.9, 62

exponential function
Fact 1.9.14, 25

Fact 1.9.15, 25
Fact 1.9.16, 25
Fact 1.9.17, 26

geometric mean
Fact 1.11.6, 39

Hölder’s inequality
Fact 1.16.11, 62
Fact 1.16.12, 62

Hua’s inequality
Fact 1.15.13, 51

Kantorovich
inequality
Fact 1.15.36, 57

logarithm
Fact 1.15.45, 59
Fact 1.15.46, 59
Fact 1.15.47, 59

Minkowski’s
inequality
Fact 1.16.25, 66

rearrangement
inequality
Fact 1.16.7, 61

reciprocal powers
Fact 1.16.26, 66
Fact 1.16.27, 66

reversal of Hölder’s
inequality
Fact 1.16.22, 65

Rogers-Hölder
inequality
Fact 1.16.12, 62

Schweitzer’s
inequality
Fact 1.15.37, 57

Wang’s inequality
Fact 1.15.13, 51

Young inequality
Fact 1.10.21, 33

Young’s inequality
Fact 1.10.32, 36
Fact 1.15.31, 56

Schatten norm
absolute value
Fact 9.13.11, 603

Cartesian
decomposition
Fact 9.9.37, 586
Fact 9.9.39, 587
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Fact 9.9.40, 587
Clarkson inequalities
Fact 9.9.34, 586

commutator
Fact 9.9.27, 584

compatible norms
Proposition 9.3.6, 551
Corollary 9.3.7, 552
Corollary 9.3.8, 552

definition
Proposition 9.2.3, 548

eigenvalue
Fact 9.11.6, 598

equality
Fact 9.9.33, 585

Frobenius norm
Fact 9.8.20, 575

Hanner inequality
Fact 9.9.36, 586

Hermitian matrix
Fact 9.9.27, 584
Fact 9.9.39, 587

Hölder matrix norm
Fact 9.11.6, 598

Hölder norm
Proposition 9.2.5, 549

inequality
Fact 9.9.34, 586
Fact 9.9.36, 586
Fact 9.9.37, 586
Fact 9.9.38, 587
Fact 9.9.45, 588

Kronecker product
Fact 9.14.37, 617

matrix difference
Fact 9.9.23, 584

monotonicity
Proposition 9.2.4, 549

normal matrix
Fact 9.9.27, 584
Fact 9.14.5, 608

partitioned matrix
Fact 9.10.2, 593
Fact 9.10.3, 594
Fact 9.10.4, 594
Fact 9.10.5, 595
Fact 9.10.6, 595
Fact 9.10.7, 596
Fact 9.10.8, 596

positive-semidefinite
matrix
Fact 9.9.22, 583
Fact 9.9.39, 587
Fact 9.9.40, 587
Fact 9.10.6, 595
Fact 9.10.7, 596

Schur product
Fact 9.14.34, 616

trace
Fact 9.12.1, 599

unitarily invariant
norm
Fact 9.8.9, 572

Schauder fixed-point
theorem

image of a
continuous function
Theorem 10.3.10, 625

Schinzel
determinant upper
bound
Fact 2.13.15, 131

Schmidt-Mirsky
theorem

fixed-rank
approximation
Fact 9.14.28, 614

Schneider
inertia of a
Hermitian matrix
Fact 12.21.4, 794
Fact 12.21.5, 794

Schoenberg
Euclidean distance
matrix
Fact 9.8.14, 573

Schott’s theorem
Schur product of
positive-
semidefinite
matrices
Fact 8.21.12, 533

Schur
dimension of the
algebra generated

by commuting
matrices
Fact 5.10.15, 319

Schur complement
convex function
Proposition 8.6.17, 437
Lemma 8.6.16, 436

definition
Definition 6.1.8, 367

determinant
Proposition 8.2.3, 420

increasing function
Proposition 8.6.13, 435

inequality
Fact 8.11.17, 471

inertia
Fact 6.5.5, 386

nondecreasing
function
Proposition 8.6.13, 435

partitioned matrix
Fact 6.5.4, 386
Fact 6.5.5, 386
Fact 6.5.6, 386
Fact 6.5.8, 387
Fact 6.5.12, 388
Fact 6.5.29, 393
Fact 8.21.39, 539

positive-semidefinite
matrix
Corollary 8.6.18, 442
Fact 8.11.3, 468
Fact 8.11.4, 468
Fact 8.11.18, 471
Fact 8.11.19, 471
Fact 8.11.20, 472
Fact 8.11.27, 474
Fact 8.20.19, 530
Fact 8.21.11, 533

rank
Proposition 8.2.3, 420
Fact 6.5.6, 386
Fact 6.5.8, 387
Fact 6.5.11, 388

Schur product
Fact 8.21.11, 533

Schur concave function
definition
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Definition 2.1.2, 78
elementary
symmetric function
Fact 1.15.20, 53

entropy
Fact 2.21.6, 162

strong majorization
Fact 2.21.6, 162

Schur convex function
definition
Definition 2.1.2, 78

Muirhead’s theorem
Fact 1.15.25, 54

strong majorization
Fact 2.21.4, 162
Fact 2.21.5, 162

Schur decomposition
Hermitian matrix
Corollary 5.4.5, 294

Jordan form
Fact 5.10.6, 317

normal matrix
Corollary 5.4.4, 293
Fact 5.10.6, 317

range-Hermitian
matrix
Corollary 5.4.4, 293

Schur inverse
positive-semidefinite
matrix
Fact 8.21.1, 531

Schur power
definition, 404
Lyapunov equation
Fact 8.8.16, 449

positive-semidefinite
matrix
Fact 8.21.2, 531
Fact 8.21.3, 531
Fact 8.21.25, 536

Schur product
associative identities,
404

commutative
identities, 404

complex conjugate
transpose

Fact 8.21.9, 533
definition, 404
distributive
identities, 404

eigenvalue
Fact 8.21.18, 534

Frobenius norm
Fact 9.14.34, 616

geometric mean
Fact 8.21.51, 541

Hermitian matrix
Fact 8.21.28, 536
Fact 8.21.32, 537

Kronecker product
Proposition 7.3.1, 404

lower bound
Fact 8.21.14, 534

M-matrix
Fact 7.6.15, 415

matrix exponential
Fact 11.14.21, 685

matrix identity
Fact 7.6.3, 413
Fact 7.6.4, 413
Fact 7.6.10, 414

matrix logarithm
Fact 8.21.47, 540
Fact 8.21.48, 540

matrix power
Fact 7.6.11, 414

matrix-vector
identity
Fact 7.6.9, 414

maximum singular
value
Fact 8.21.10, 533
Fact 9.14.31, 615
Fact 9.14.33, 616
Fact 9.14.35, 617

nonnegative matrix
Fact 7.6.13, 415

normal matrix
Fact 9.9.63, 591

partitioned matrix
Fact 8.21.6, 532
Fact 8.21.39, 539
Fact 8.21.40, 539

positive matrix
Fact 7.6.14, 415

positive-definite
matrix
Fact 8.21.4, 531
Fact 8.21.5, 532
Fact 8.21.6, 532
Fact 8.21.7, 533
Fact 8.21.13, 533
Fact 8.21.14, 534
Fact 8.21.15, 534
Fact 8.21.21, 535
Fact 8.21.33, 538
Fact 8.21.34, 538
Fact 8.21.36, 538
Fact 8.21.38, 539
Fact 8.21.42, 539
Fact 8.21.47, 540
Fact 8.21.49, 541
Fact 8.21.50, 541
Fact 8.21.51, 541

positive-semidefinite
matrix
Fact 8.21.4, 531
Fact 8.21.7, 533
Fact 8.21.11, 533
Fact 8.21.12, 533
Fact 8.21.14, 534
Fact 8.21.17, 534
Fact 8.21.18, 534
Fact 8.21.20, 535
Fact 8.21.22, 536
Fact 8.21.23, 536
Fact 8.21.31, 537
Fact 8.21.35, 538
Fact 8.21.37, 538
Fact 8.21.39, 539
Fact 8.21.40, 539
Fact 8.21.41, 539
Fact 8.21.42, 539
Fact 8.21.43, 540
Fact 8.21.44, 540
Fact 8.21.45, 540
Fact 8.21.46, 540

quadratic form
Fact 7.6.7, 413

range
Fact 7.6.5, 413

rank
Fact 7.6.6, 413
Fact 8.21.16, 534
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Schatten norm
Fact 9.14.34, 616

Schur complement
Fact 8.21.11, 533

singular value
Fact 9.14.31, 615
Fact 9.14.32, 615
Fact 9.14.33, 616

spectral radius
Fact 7.6.13, 415
Fact 7.6.14, 415
Fact 7.6.16, 416
Fact 7.6.17, 416
Fact 9.14.33, 616

submultiplicative
norm
Fact 9.8.41, 578

trace
Fact 7.6.8, 413
Fact 8.21.17, 534
Fact 9.14.32, 615

transpose
Fact 7.6.12, 414

unitarily invariant
norm
Fact 9.8.41, 578
Fact 9.9.62, 591
Fact 9.9.63, 591
Fact 9.14.36, 617

vector identity
Fact 7.6.1, 413
Fact 7.6.2, 413

weak majorization
Fact 9.14.31, 615

Schur product of
polynomials

asymptotically stable
polynomial
Fact 11.17.9, 697

Schur’s formulas
determinant of
partitioned matrix
Fact 2.14.13, 135

Schur’s inequality
eigenvalue
Fact 8.17.5, 509

eigenvalues and the
Frobenius norm

Fact 9.11.3, 597

Schur’s theorem
eigenvalue inequality
Fact 8.17.8, 510

Schur product of
positive-
semidefinite
matrices
Fact 8.21.12, 533

Schur-Cohn criterion
discrete-time
asymptotically
stable polynomial
Fact 11.20.1, 708

Schur-Horn theorem
diagonal entries of a
unitary matrix
Fact 3.11.19, 195
Fact 8.17.10, 511

Schwarz form
tridiagonal matrix
Fact 11.18.25, 702
Fact 11.18.26, 702

Schweitzer’s inequality
scalar inequality
Fact 1.15.37, 57

secant condition
asymptotically stable
matrix
Fact 11.18.29, 704

second derivative
definition, 627

Seiler
determinant
inequality
Fact 8.13.30, 490

self-adjoint norm
definition, 547
unitarily invariant
norm
Fact 9.8.7, 572

self-conjugate set
definition, 232

semicontractive matrix

complex conjugate
transpose
Fact 3.20.12, 220

definition
Definition 3.1.2, 166

discrete-time
Lyapunov-stable
matrix
Fact 11.21.4, 712

partitioned matrix
Fact 8.11.6, 469
Fact 8.11.22, 473

positive-semidefinite
matrix
Fact 8.11.6, 469
Fact 8.11.13, 470

unitary matrix
Fact 8.11.22, 473

semidissipative matrix
definition
Definition 3.1.1, 165

determinant
Fact 8.13.3, 485
Fact 8.13.4, 485
Fact 8.13.11, 486, 487

discrete-time
Lyapunov-stable
matrix
Fact 11.21.4, 712

dissipative matrix
Fact 8.13.31, 491

Kronecker sum
Fact 7.5.8, 409

Lyapunov-stable
matrix
Fact 11.18.37, 705

normal matrix
Fact 11.18.37, 705

semiperimeter
quadrilateral
Fact 2.20.13, 159

triangle
Fact 2.20.11, 156

semisimple eigenvalue
cyclic eigenvalue
Proposition 5.5.5, 296

defect
Proposition 5.5.8, 296
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definition
Definition 5.5.4, 296

index of an
eigenvalue
Proposition 5.5.8, 296

null space
Proposition 5.5.8, 296

simple eigenvalue
Proposition 5.5.5, 296

semisimple matrix
cyclic matrix
Fact 5.14.11, 340

definition
Definition 5.5.4, 296

elementary matrix
Fact 5.14.17, 341

idempotent matrix
Fact 5.14.21, 341

identity perturbation
Fact 5.14.16, 341

involutory matrix
Fact 5.14.19, 341

Kronecker product
Fact 7.4.16, 406

matrix exponential
Proposition 11.2.7, 648

normal matrix
Proposition 5.5.11, 297

outer-product
matrix
Fact 5.14.3, 338

positive-semidefinite
matrix
Corollary 8.3.6, 424

reverse-diagonal
matrix
Fact 5.14.12, 340

similar matrices
Proposition 5.5.11, 297
Fact 5.9.4, 312
Fact 5.10.5, 317

simple matrix
Fact 5.14.11, 340

skew-involutory
matrix
Fact 5.14.19, 341

semistability
eigenvalue

Proposition 11.8.2, 662
linear dynamical
system
Proposition 11.8.2, 662

Lyapunov equation
Corollary 11.9.1, 666

matrix exponential
Proposition 11.8.2, 662

semistable matrix
compartmental
matrix
Fact 11.19.6, 707

definition
Definition 11.8.1, 662

group-invertible
matrix
Fact 11.18.3, 698

Kronecker sum
Fact 11.18.32, 704
Fact 11.18.33, 704

limit
Fact 11.18.7, 699

Lyapunov equation
Fact 12.21.15, 797

Lyapunov-stable
matrix
Fact 11.18.1, 698

matrix exponential
Fact 11.18.5, 698
Fact 11.18.7, 699
Fact 11.21.7, 713

minimal realization
Definition 12.9.17, 757

semistable
polynomial
Proposition 11.8.4, 663

similar matrices
Fact 11.18.4, 698

unstable subspace
Proposition 11.8.8, 665

semistable polynomial
definition
Definition 11.8.3, 663

reciprocal argument
Fact 11.17.5, 696

semistable matrix
Proposition 11.8.4, 663

semistable transfer
function

minimal realization
Proposition 12.9.18,
757

SISO entries
Proposition 12.9.19,
757

separation theorem
convex cone
Fact 10.9.13, 635

inner product
Fact 10.9.13, 635
Fact 10.9.14, 635

sequence
definition
Definition 10.2.1, 622

generalized inverse
Fact 6.3.36, 377

series
commutator
Fact 11.14.17, 684

definition
Definition 10.2.6, 623
Definition 10.2.8, 623

inverse matrix
Proposition 9.4.13, 557

matrix exponential
Fact 11.14.17, 684

set
definition, 2
distance from a point
Fact 10.9.15, 636
Fact 10.9.16, 636

set cancellation
convex set
Fact 10.9.7, 635

Radstrom
Fact 10.9.7, 635

set identities
intersection
Fact 1.5.6, 11

union
Fact 1.5.6, 11

sextic
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arithmetic-mean–
geometric-mean
inequality
Fact 1.13.1, 47

Shannon’s inequality
logarithm
Fact 1.16.30, 67

shear
factorization
Fact 5.15.11, 346

Shemesh
common eigenvector
Fact 5.14.27, 342

Sherman-Morrison-
Woodbury
formula

determinant of an
outer-product
perturbation
Fact 2.16.3, 141

shift
controllability
Fact 12.20.10, 792

stabilizability
Fact 12.20.11, 792

shifted argument
transfer function
Fact 12.22.3, 798

shifted-orthogonal
matrix

definition
Definition 3.1.1, 165

shifted-unitary matrix
block-diagonal
matrix
Fact 3.11.25, 196

definition
Definition 3.1.1, 165

normal matrix
Fact 3.11.34, 198

spectrum
Proposition 5.5.21, 300

unitary matrix
Fact 3.11.33, 198

Shoda

factorization
Fact 5.15.7, 346
Fact 5.15.34, 351

Shoda’s theorem
commutator
realization
Fact 5.9.18, 313

zero trace
Fact 5.9.18, 313

shortcut of a relation
definition
Definition 1.3.4, 5

shorted operator
definition
Fact 8.20.19, 530

positive-semidefinite
matrix
Fact 8.20.19, 530

sign
matrix, 89
vector, 89

sign of entries
asymptotically stable
matrix
Fact 11.19.5, 708

sign stability
asymptotically stable
matrix
Fact 11.19.5, 708

signature
definition, 245
Hermitian matrix
Fact 5.8.6, 308
Fact 5.8.7, 308
Fact 8.10.17, 457

involutory matrix
Fact 5.8.2, 307

positive-semidefinite
matrix
Fact 5.8.9, 308

tripotent matrix
Fact 5.8.3, 307

signed volume
simplex
Fact 2.20.15, 160

similar matrices
asymptotically stable
matrix
Fact 11.18.4, 698

biequivalent matrices
Proposition 3.4.5, 174

block-diagonal
matrix
Theorem 5.3.2, 288
Theorem 5.3.3, 289

campanion matrix
Fact 5.16.5, 354

characteristic
polynomial
Fact 4.9.10, 262

complex conjugate
Fact 5.9.31, 316

cyclic matrix
Fact 5.16.5, 354

definition
Definition 3.4.4, 174

diagonal entries
Fact 5.9.13, 313

diagonalizable over R

Proposition 5.5.12, 297
Corollary 5.5.22, 301

discrete-time
asymptotically
stable matrix
Fact 11.18.4, 698

discrete-time
Lyapunov-stable
matrix
Fact 11.18.4, 698

discrete-time
semistable matrix
Fact 11.18.4, 698

equivalence class
Fact 5.10.4, 317

equivalent
realizations
Definition 12.9.6, 751

example
Example 5.5.20, 300

factorization
Fact 5.15.6, 346

geometric
multiplicity
Proposition 5.5.10, 297
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group-invertible
matrix
Proposition 3.4.5, 174
Fact 5.9.5, 312

Hermitian matrix
Proposition 5.5.12, 297

idempotent matrix
Proposition 3.4.5, 174
Proposition 5.6.3, 302
Corollary 5.5.22, 301
Fact 5.10.9, 318
Fact 5.10.13, 319
Fact 5.10.14, 319
Fact 5.10.22, 320

inverse matrix
Fact 5.15.31, 350

involutory matrix
Proposition 3.4.5, 174
Corollary 5.5.22, 301
Fact 5.15.31, 350

Kronecker product
Fact 7.4.12, 406

Kronecker sum
Fact 7.5.9, 409

lower triangular
matrix
Fact 5.9.2, 311

Lyapunov-stable
matrix
Fact 11.18.4, 698

matrix classes
Proposition 3.4.5, 174

matrix exponential
Proposition 11.2.9, 650

matrix power
Fact 5.9.1, 311

minimal polynomial
Proposition 4.6.3, 248
Fact 11.23.3, 717
Fact 11.23.4, 717
Fact 11.23.5, 718
Fact 11.23.6, 719
Fact 11.23.7, 719
Fact 11.23.8, 720
Fact 11.23.9, 720
Fact 11.23.10, 721
Fact 11.23.11, 721

multicompanion
form

Corollary 5.2.6, 286
nilpotent matrix
Proposition 3.4.5, 174
Fact 5.10.23, 321

nonsingular matrix
Fact 5.10.11, 318

nonzero diagonal
entries
Fact 5.9.14, 313

normal matrix
Proposition 5.5.11, 297
Fact 5.9.9, 312
Fact 5.9.10, 312
Fact 5.10.7, 317

partitioned matrix
Fact 5.10.21, 320
Fact 5.10.22, 320
Fact 5.10.23, 321

projector
Corollary 5.5.22, 301
Fact 5.10.13, 319

realization
Proposition 12.9.5, 751

reflector
Corollary 5.5.22, 301

reverse transpose
Fact 5.9.11, 313

reverse-symmetric
matrix
Fact 5.9.11, 313

semisimple matrix
Proposition 5.5.11, 297
Fact 5.9.4, 312
Fact 5.10.5, 317

semistable matrix
Fact 11.18.4, 698

similarity invariant
Theorem 4.3.10, 239
Corollary 5.2.6, 286

simultaneous
diagonalization
Fact 5.17.8, 358

skew-Hermitian
matrix
Fact 5.9.4, 312
Fact 11.18.12, 700

skew-idempotent
matrix
Corollary 5.5.22, 301

skew-involutory
matrix
Proposition 3.4.5, 174

skew-symmetric
matrix
Fact 5.15.39, 351

Sylvester’s equation
Corollary 7.2.5, 404
Fact 7.5.14, 410

symmetric matrix
Fact 5.15.39, 351

transpose
Proposition 5.5.12, 297
Corollary 4.3.11, 239
Corollary 5.3.8, 291
Corollary 5.5.22, 301
Fact 5.9.9, 312
Fact 5.9.10, 312

tripotent matrix
Proposition 3.4.5, 174
Corollary 5.5.22, 301

unitarily invariant
norm
Fact 9.8.31, 576

unitarily similar
matrices
Fact 5.10.7, 317

upper triangular
matrix
Fact 5.9.2, 311

Vandermonde matrix
Fact 5.16.5, 354

similarity
equivalence relation
Fact 5.10.3, 317

similarity invariant
characteristic
polynomial
Proposition 4.4.2, 240
Proposition 4.6.2, 248

definition
Definition 4.3.9, 239

multicompanion
form
Corollary 5.2.6, 286

similar matrices
Theorem 4.3.10, 239
Corollary 5.2.6, 286
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similarity
transformation

complex conjugate
transpose
Fact 5.9.8, 312
Fact 5.15.4, 345

complex symmetric
Jordan form
Fact 5.15.2, 345
Fact 5.15.3, 345

eigenvector
Fact 5.14.6, 339
Fact 5.14.7, 339

hypercompanion
matrix
Fact 5.10.1, 316

inverse matrix
Fact 5.15.4, 345

normal matrix
Fact 5.15.3, 345

real Jordan form
Fact 5.10.1, 316
Fact 5.10.2, 317

symmetric matrix
Fact 5.15.2, 345
Fact 5.15.3, 345

SIMO transfer function
definition
Definition 12.9.1, 749

Simon
determinant
inequality
Fact 8.13.30, 490

normal product and
Schatten norm
Fact 9.14.5, 608

simple eigenvalue
cyclic eigenvalue
Proposition 5.5.5, 296

definition
Definition 5.5.4, 296

semisimple
eigenvalue
Proposition 5.5.5, 296

simple graph
definition
Definition 1.4.3, 9

simple matrix
commuting matrices
Fact 5.14.23, 342

cyclic matrix
Fact 5.14.11, 340

definition
Definition 5.5.4, 296

identity perturbation
Fact 5.14.16, 341

rank
Fact 5.11.1, 321

semisimple matrix
Fact 5.14.11, 340

simplex
convex hull
Fact 2.20.4, 154

definition, 90
interior
Fact 2.20.4, 154

nonsingular matrix
Fact 2.20.4, 154

signed volume
Fact 2.20.15, 160

volume
Fact 2.20.19, 160

simultaneous
diagonalization

cogredient
transformation
Fact 8.16.4, 507
Fact 8.16.6, 507

commuting matrices
Fact 8.16.1, 507

definition, 422
diagonalizable
matrix
Fact 8.16.2, 507
Fact 8.16.3, 507

Hermitian matrix
Fact 8.16.1, 507
Fact 8.16.4, 507
Fact 8.16.6, 507

positive-definite
matrix
Fact 8.16.5, 507

similar matrices
Fact 5.17.8, 358

unitarily similar
matrices
Fact 5.17.7, 358

unitary matrix
Fact 8.16.1, 507

simultaneous
diagonalization of
symmetric matrices

Milnor
Fact 8.16.6, 507

Pesonen
Fact 8.16.6, 507

simultaneous
orthogonal
biequivalence
transformation

upper Hessenberg
Fact 5.17.3, 358

upper triangular
Fact 5.17.3, 358

simultaneous
triangularization

cogredient
transformation
Fact 5.17.9, 358

common eigenvector
Fact 5.17.1, 358

commutator
Fact 5.17.5, 358
Fact 5.17.6, 358

commuting matrices
Fact 5.17.4, 358

nilpotent matrix
Fact 5.17.6, 358

projector
Fact 5.17.6, 358

regular pencil
Fact 5.17.2, 358

simultaneous unitary
biequivalence
transformation
Fact 5.17.2, 358

unitarily similar
matrices
Fact 5.17.4, 358
Fact 5.17.6, 358
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simultaneous unitary
biequivalence
transformation

simultaneous
triangularization
Fact 5.17.2, 358

sine rule
triangle
Fact 2.20.11, 156

singular matrix
definition, 101
Kronecker product
Fact 7.4.27, 407

spectrum
Proposition 5.5.21, 300

singular pencil
definition, 304
generalized
eigenvalue
Proposition 5.7.3, 305

singular polynomial
matrix

Definition 4.2.5, 235

singular value
2× 2 matrix
Fact 5.11.31, 328

adjugate
Fact 5.11.36, 328

bidiagonal matrix
Fact 5.11.47, 332

block-diagonal
matrix
Fact 8.18.9, 515
Fact 8.18.10, 515
Fact 9.14.21, 612
Fact 9.14.25, 613

Cartesian
decomposition
Fact 8.18.7, 514

companion matrix
Fact 5.11.30, 327

complex conjugate
transpose
Fact 5.11.20, 324
Fact 5.11.34, 328

convex function
Fact 11.16.14, 695

Fact 11.16.15, 695
definition
Definition 5.6.1, 301

determinant
Fact 5.11.28, 326
Fact 5.11.29, 327
Fact 8.13.1, 485
Fact 9.13.23, 606

eigenvalue
Fact 8.17.5, 509
Fact 8.17.6, 509
Fact 9.13.22, 606

eigenvalue of
Hermitian part
Fact 5.11.27, 326
Fact 8.17.4, 509

Fan dominance
theorem
Fact 9.14.19, 611

fixed-rank
approximation
Fact 9.14.28, 614
Fact 9.15.4, 618

Frobenius
Corollary 9.6.7, 562

generalized inverse
Fact 6.3.29, 376

homogeneity
Fact 5.11.19, 324

idempotent matrix
Fact 5.11.38, 328

induced lower bound
Proposition 9.5.4, 560

inequality
Proposition 9.2.2, 548
Corollary 9.6.5, 562
Fact 9.14.23, 612
Fact 9.14.24, 613

interlacing
Fact 9.14.10, 609

matrix difference
Fact 8.18.9, 515
Fact 8.18.10, 515

matrix exponential
Fact 11.15.5, 689
Fact 11.16.14, 695
Fact 11.16.15, 695

matrix power
Fact 9.13.19, 605

Fact 9.13.20, 605
matrix product
Proposition 9.6.1, 560
Proposition 9.6.2, 561
Proposition 9.6.3, 561
Proposition 9.6.4, 561
Fact 8.18.21, 519
Fact 9.13.17, 604
Fact 9.13.18, 605
Fact 9.14.26, 613

matrix sum
Proposition 9.6.8, 562
Fact 9.14.20, 612
Fact 9.14.21, 612
Fact 9.14.25, 613

normal matrix
Fact 5.14.15, 341

outer-product
matrix
Fact 5.11.17, 324

partitioned matrix
Proposition 5.6.6, 303
Fact 9.14.11, 609
Fact 9.14.24, 613

perturbation
Fact 9.14.6, 608

positive-semidefinite
matrix
Fact 8.18.7, 514
Fact 9.14.27, 613

rank
Proposition 5.6.2, 302
Fact 9.14.28, 614
Fact 9.15.4, 618

Schur product
Fact 9.14.31, 615
Fact 9.14.32, 615
Fact 9.14.33, 616

strong log
majorization
Fact 9.13.19, 605

submatrix
Fact 9.14.10, 609

trace
Fact 5.12.6, 334
Fact 8.17.2, 508
Fact 9.12.1, 599
Fact 9.13.16, 604
Fact 9.14.3, 607
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Fact 9.14.32, 615
unitarily invariant
norm
Fact 9.14.28, 614

unitary matrix
Fact 5.11.37, 328
Fact 9.14.11, 609

weak log
majorization
Proposition 9.6.2, 561

weak majorization
Proposition 9.2.2, 548
Proposition 9.6.3, 561
Fact 5.11.27, 326
Fact 8.17.5, 509
Fact 8.18.7, 514
Fact 8.18.21, 519
Fact 9.13.17, 604
Fact 9.13.18, 605
Fact 9.13.20, 605
Fact 9.14.19, 611
Fact 9.14.20, 612
Fact 9.14.31, 615

Weyl majorant
theorem
Fact 9.13.20, 605

singular value
decomposition

existence
Theorem 5.6.4, 302

generalized inverse
Fact 6.3.15, 373

group generalized
inverse
Fact 6.6.15, 395

least squares
Fact 9.14.28, 614
Fact 9.15.4, 618
Fact 9.15.5, 618
Fact 9.15.6, 619

unitary similarity
Fact 5.9.28, 315
Fact 6.3.15, 373
Fact 6.6.15, 395

singular value
perturbation

unitarily invariant
norm

Fact 9.14.29, 614

singular values
determinant
Fact 5.12.13, 335

positive-semidefinite
matrix
Fact 8.11.9, 469

unitarily
biequivalent
matrices
Fact 5.10.18, 319

SISO transfer function
definition
Definition 12.9.1, 749

size
definition, 79

skew reflector
Hamiltonian matrix
Fact 3.19.3, 216

reflector
Fact 3.14.7, 211

skew-Hermitian
matrix
Fact 3.14.6, 211

skew-involutory
matrix
Fact 3.14.6, 211

spectrum
Proposition 5.5.21, 300

unitary matrix
Fact 3.14.6, 211

skew-Hermitian matrix,
see skew-symmetric
matrix

adjugate
Fact 3.7.10, 179
Fact 3.7.11, 179

asymptotically stable
matrix
Fact 11.18.30, 704

block-diagonal
matrix
Fact 3.7.8, 179

Cartesian
decomposition
Fact 3.7.27, 182
Fact 3.7.28, 183

Fact 3.7.29, 183
Cayley transform
Fact 3.11.28, 196

characteristic
polynomial
Fact 4.9.13, 262

commutator
Fact 3.8.1, 184
Fact 3.8.4, 185

complex conjugate
Fact 3.12.8, 199

congruent matrices
Proposition 3.4.5, 174

definition
Definition 3.1.1, 165

determinant
Fact 3.7.11, 179
Fact 3.7.16, 181
Fact 8.13.6, 486

eigenvalue
Fact 5.11.6, 321

existence of
transformation
Fact 3.9.4, 186

Hermitian matrix
Fact 3.7.9, 179
Fact 3.7.28, 183

inertia
Fact 5.8.4, 307

Kronecker product
Fact 7.4.17, 406

Kronecker sum
Fact 7.5.8, 409

Lyapunov equation
Fact 11.18.12, 700

matrix exponential
Proposition 11.2.8, 649
Proposition 11.2.9, 650
Fact 11.14.6, 683
Fact 11.14.33, 688

matrix power
Fact 8.9.14, 452

normal matrix
Proposition 3.1.6, 169

null space
Fact 8.7.3, 443

outer-product
matrix
Fact 3.7.17, 181
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Fact 3.9.4, 186
partitioned matrix
Fact 3.7.27, 182

positive-definite
matrix
Fact 8.13.6, 486
Fact 11.18.12, 700

positive-semidefinite
matrix
Fact 8.9.12, 452

projector
Fact 9.9.9, 581

quadratic form
Fact 3.7.6, 178

range
Fact 8.7.3, 443

rank
Fact 3.7.17, 181
Fact 3.7.30, 183

similar matrices
Fact 5.9.4, 312
Fact 11.18.12, 700

skew reflector
Fact 3.14.6, 211

skew-involutory
matrix
Fact 3.14.6, 211

skew-symmetric
matrix
Fact 3.7.9, 179

spectrum
Proposition 5.5.21, 300

symmetric matrix
Fact 3.7.9, 179

trace
Fact 3.7.24, 182

trace of a product
Fact 8.12.6, 476

unitarily similar
matrices
Proposition 3.4.5, 174
Proposition 5.6.3, 302

unitary matrix
Fact 3.11.28, 196
Fact 3.14.6, 211
Fact 11.14.33, 688

skew-idempotent
matrix

idempotent matrix

Fact 3.12.5, 199
similar matrices
Corollary 5.5.22, 301

skew-involutory matrix
definition
Definition 3.1.1, 165

Hamiltonian matrix
Fact 3.19.2, 216
Fact 3.19.3, 216

inertia
Fact 5.8.4, 307

matrix exponential
Fact 11.11.1, 671

semisimple matrix
Fact 5.14.19, 341

similar matrices
Proposition 3.4.5, 174

size
Fact 3.15.6, 212

skew reflector
Fact 3.14.6, 211

skew-Hermitian
matrix
Fact 3.14.6, 211

skew-symmetric
matrix
Fact 3.19.3, 216

spectrum
Proposition 5.5.21, 300

symplectic matrix
Fact 3.19.2, 216

unitarily similar
matrices
Proposition 3.4.5, 174

unitary matrix
Fact 3.14.6, 211

skew-symmetric
matrix, see
skew-Hermitian
matrix

adjugate
Fact 4.9.20, 263

Cayley transform
Fact 3.11.8, 190
Fact 3.11.28, 196
Fact 3.11.30, 197
Fact 3.11.31, 198

characteristic
polynomial
Fact 4.9.12, 262
Fact 4.9.19, 263
Fact 4.9.20, 263
Fact 5.14.34, 343

commutator
Fact 3.8.5, 185

congruent matrices
Fact 3.7.34, 184
Fact 5.9.16, 313

controllability
Fact 12.20.5, 791

definition
Definition 3.1.1, 165

determinant
Fact 3.7.15, 181
Fact 3.7.33, 184
Fact 4.8.14, 259
Fact 4.9.20, 263
Fact 4.10.2, 266

eigenvalue
Fact 4.10.2, 266

factorization
Fact 5.15.37, 351
Fact 5.15.38, 351

Hamiltonian matrix
Fact 3.7.34, 184
Fact 3.19.3, 216
Fact 3.19.8, 217

Hermitian matrix
Fact 3.7.9, 179

linear matrix
equation
Fact 3.7.3, 178

matrix exponential
Example 11.3.6, 652
Fact 11.11.3, 672
Fact 11.11.6, 673
Fact 11.11.7, 673
Fact 11.11.8, 674
Fact 11.11.9, 674
Fact 11.11.10, 674
Fact 11.11.11, 674
Fact 11.11.14, 675
Fact 11.11.15, 675
Fact 11.11.16, 676
Fact 11.11.17, 676

matrix product
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Fact 5.15.37, 351
orthogonal matrix
Fact 3.11.28, 196
Fact 3.11.30, 197
Fact 3.11.31, 198
Fact 11.11.10, 674
Fact 11.11.11, 674

orthogonally similar
matrices
Fact 5.14.33, 343

partitioned matrix
Fact 3.11.27, 196

Pfaffian
Fact 4.8.14, 259

quadratic form
Fact 3.7.5, 178

similar matrices
Fact 5.15.39, 351

skew-Hermitian
matrix
Fact 3.7.9, 179

skew-involutory
matrix
Fact 3.19.3, 216

spectrum
Fact 4.9.20, 263
Fact 4.10.2, 266
Fact 5.14.33, 343

symmetric matrix
Fact 5.9.16, 313
Fact 5.15.39, 351

trace
Fact 3.7.23, 182
Fact 3.7.31, 183

unit imaginary
matrix
Fact 3.7.34, 184

small-gain theorem
multiplicative
perturbation
Fact 9.13.23, 606

Smith form
biequivalent matrices
Theorem 5.1.1, 283
Corollary 5.1.2, 283

controllability pencil
Proposition 12.6.15,
741

existence
Theorem 4.3.2, 237

observability pencil
Proposition 12.3.15,
731

polynomial matrix
Proposition 4.3.4, 237

rank
Proposition 4.3.5, 237
Proposition 4.3.6, 238

submatrix
Proposition 4.3.5, 237

unimodular matrix
Proposition 4.3.7, 238

Smith polynomial
nonsingular matrix
transformation
Proposition 4.3.8, 238

Smith polynomials
definition
Definition 4.3.3, 237

Smith zeros
controllability pencil
Proposition 12.6.16,
741

definition
Definition 4.3.3, 237

observability pencil
Proposition 12.3.16,
731

uncontrollable
spectrum
Proposition 12.6.16,
741

unobservable
spectrum
Proposition 12.3.16,
731

Smith’s method
finite-sum solution of
Lyapunov equation
Fact 12.21.17, 797

Smith-McMillan form
blocking zero
Proposition 4.7.11, 251

coprime polynomials
Fact 4.8.15, 259

coprime right
polynomial fraction
description
Proposition 4.7.16, 253

existence
Theorem 4.7.5, 250

poles
Proposition 4.7.11, 251

rank
Proposition 4.7.7, 250
Proposition 4.7.8, 250

submatrix
Proposition 4.7.7, 250

SO(2)
parameterization
Fact 3.11.6, 190

solid angle
circular cone
Fact 2.20.22, 161
Fact 2.20.23, 161

cone
Fact 2.20.21, 161

solid set
completely solid set
Fact 10.8.9, 632

convex hull
Fact 10.8.10, 632

convex set
Fact 10.8.9, 632

definition, 622
dimension
Fact 10.8.16, 633

image
Fact 10.8.17, 633

solution
Riccati equation
Definition 12.16.12,
780

span
affine subspace
Fact 2.9.7, 111
Fact 2.20.4, 154
Fact 10.8.12, 633

constructive
characterization
Theorem 2.3.5, 91

convex conical hull
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Fact 2.9.3, 110
definition, 90
intersection
Fact 2.9.12, 111

union
Fact 2.9.12, 111

spanning path
graph
Fact 1.6.6, 14

tournament
Fact 1.6.6, 14

spanning subgraph
Definition 1.4.3, 9

Specht
reverse
arithmetic-mean–
geometric-mean
inequality
Fact 1.15.19, 52

Specht’s ratio
matrix exponential
Fact 11.14.28, 687

power of a
positive-definite
matrix
Fact 11.14.22, 685
Fact 11.14.23, 686

reverse
arithmetic-mean–
geometric-mean
inequality
Fact 1.15.19, 52

reverse Young
inequality
Fact 1.10.22, 34

special orthogonal
group

real symplectic
group
Fact 3.22.5, 227

spectral abscissa
definition, 245
eigenvalue
Fact 5.11.24, 325

Hermitian matrix
Fact 5.11.5, 321

Kronecker sum
Fact 7.5.6, 409

matrix exponential
Fact 11.13.2, 677
Fact 11.15.8, 691
Fact 11.15.9, 691
Fact 11.18.8, 699
Fact 11.18.9, 699

maximum eigenvalue
Fact 5.11.5, 321

maximum singular
value
Fact 5.11.26, 326

minimum singular
value
Fact 5.11.26, 326

outer-product
matrix
Fact 5.11.13, 323

spectral radius
Fact 4.10.4, 266
Fact 11.13.2, 677

spectral decomposition
normal matrix
Fact 5.14.14, 340

spectral factorization
definition, 232
Hamiltonian
Proposition 12.16.13,
780

polynomial roots
Proposition 4.1.1, 232

spectral norm
definition, 549

spectral order
positive-definite
matrix
Fact 8.19.4, 523

positive-semidefinite
matrix
Fact 8.19.4, 523

spectral radius
bound
Fact 4.10.22, 271

column norm
Corollary 9.4.10, 556

commuting matrices

Fact 5.12.11, 334
convergent sequence
Fact 4.10.5, 266
Fact 9.8.4, 572

convexity for
nonnegative
matrices
Fact 4.11.19, 280

definition, 245
equi-induced norm
Corollary 9.4.5, 554

Frobenius norm
Fact 9.13.12, 603

Hermitian matrix
Fact 5.11.5, 321

induced norm
Corollary 9.4.5, 554
Corollary 9.4.10, 556

infinite series
Fact 10.11.24, 641

inverse matrix
Proposition 9.4.13, 557

Kronecker product
Fact 7.4.14, 406

lower bound
Fact 9.13.12, 603

matrix exponential
Fact 11.13.2, 677

matrix sum
Fact 5.12.2, 333
Fact 5.12.3, 333

maximum singular
value
Corollary 9.4.10, 556
Fact 5.11.5, 321
Fact 5.11.26, 326
Fact 8.18.25, 520
Fact 9.8.13, 573
Fact 9.13.9, 603

minimum singular
value
Fact 5.11.26, 326

monotonicity for
nonnegative
matrices
Fact 4.11.18, 280

nonnegative matrix
Fact 4.11.6, 275
Fact 4.11.16, 279
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Fact 4.11.17, 280
Fact 7.6.13, 415
Fact 11.19.3, 706

nonsingular matrix
Fact 4.10.29, 272

norm
Proposition 9.2.6, 549

normal matrix
Fact 5.14.15, 341

outer-product
matrix
Fact 5.11.13, 323

perturbation
Fact 9.14.6, 608

positive matrix
Fact 7.6.14, 415

positive-definite
matrix
Fact 8.10.5, 456
Fact 8.18.25, 520

positive-semidefinite
matrix
Fact 8.18.25, 520
Fact 8.20.8, 526

row norm
Corollary 9.4.10, 556

Schur product
Fact 7.6.13, 415
Fact 7.6.14, 415
Fact 7.6.16, 416
Fact 7.6.17, 416
Fact 9.14.33, 616

spectral abscissa
Fact 4.10.4, 266
Fact 11.13.2, 677

submultiplicative
norm
Proposition 9.3.2, 550
Proposition 9.3.3, 550
Corollary 9.3.4, 550
Fact 9.8.4, 572
Fact 9.9.3, 580

trace
Fact 4.10.22, 271
Fact 5.11.46, 332
Fact 9.13.12, 603

spectral radius of a
product

Bourin

Fact 8.18.25, 520

spectral variation
Hermitian matrix
Fact 9.12.5, 600
Fact 9.12.7, 601

normal matrix
Fact 9.12.5, 600
Fact 9.12.6, 600

spectrum
adjugate
Fact 4.10.7, 267

asymptotic
eigenvalue
Fact 4.10.28, 272

asymptotically stable
matrix
Fact 11.18.13, 700

block-triangular
matrix
Proposition 5.5.13, 298

bounds
Fact 4.10.16, 269
Fact 4.10.20, 270
Fact 4.10.21, 271

Cartesian
decomposition
Fact 5.11.21, 325

circulant matrix
Fact 5.16.7, 355

commutator
Fact 5.12.14, 335

commuting matrices
Fact 5.12.14, 335

continuity
Fact 10.11.8, 638
Fact 10.11.9, 639

convex hull
Fact 8.14.7, 496
Fact 8.14.8, 497

cross-product matrix
Fact 4.9.19, 263

definition
Definition 4.4.4, 240

dissipative matrix
Fact 8.13.31, 491

doublet
Fact 5.11.13, 323

elementary matrix

Proposition 5.5.21, 300
elementary projector
Proposition 5.5.21, 300

elementary reflector
Proposition 5.5.21, 300

group-invertible
matrix
Proposition 5.5.21, 300

Hamiltonian
Theorem 12.17.9, 784
Proposition 12.16.13,
780

Proposition 12.17.5,
783

Proposition 12.17.7,
784

Proposition 12.17.8,
784

Lemma 12.17.4, 783
Lemma 12.17.6, 783

Hamiltonian matrix
Proposition 5.5.21, 300

Hermitian matrix
Proposition 5.5.21, 300
Lemma 8.4.8, 427

idempotent matrix
Proposition 5.5.21, 300
Fact 5.11.7, 322

identity perturbation
Fact 4.10.13, 268
Fact 4.10.14, 269

inverse matrix
Fact 5.11.14, 324

involutory matrix
Proposition 5.5.21, 300

Laplacian matrix
Fact 11.19.7, 708

mass-spring system
Fact 5.12.21, 337

matrix exponential
Proposition 11.2.3, 648
Corollary 11.2.6, 648

matrix function
Corollary 10.5.4, 629

matrix logarithm
Theorem 11.5.1, 656

minimal polynomial
Fact 4.10.8, 267

nilpotent matrix
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Proposition 5.5.21, 300
normal matrix
Fact 4.10.24, 271
Fact 8.14.7, 496
Fact 8.14.8, 497

outer-product
matrix
Fact 5.11.13, 323
Fact 5.14.1, 338

partitioned matrix
Fact 2.19.3, 151
Fact 4.10.25, 271
Fact 4.10.26, 271

permutation matrix
Fact 5.16.8, 357

perturbed matrix
Fact 4.10.3, 266

polynomial
Fact 4.10.9, 267
Fact 4.10.10, 267

positive matrix
Fact 5.11.12, 323

positive-definite
matrix
Proposition 5.5.21, 300

positive-semidefinite
matrix
Proposition 5.5.21, 300
Fact 8.20.16, 527

projector
Proposition 5.5.21, 300
Fact 5.12.15, 335
Fact 5.12.16, 335

properties
Proposition 4.4.5, 241

quadratic form
Fact 8.14.7, 496
Fact 8.14.8, 497

quadratic matrix
equation
Fact 5.11.3, 321
Fact 5.11.4, 321

rational function
Fact 5.11.15, 324

reflector
Proposition 5.5.21, 300

reverse identity
matrix
Fact 5.9.24, 314

shifted-unitary
matrix
Proposition 5.5.21, 300

singular matrix
Proposition 5.5.21, 300

skew reflector
Proposition 5.5.21, 300

skew-Hermitian
matrix
Proposition 5.5.21, 300

skew-involutory
matrix
Proposition 5.5.21, 300

skew-symmetric
matrix
Fact 4.9.20, 263
Fact 4.10.2, 266
Fact 5.14.33, 343

subspace
decomposition
Proposition 5.5.7, 296

Sylvester’s equation
Corollary 7.2.5, 404
Fact 7.5.14, 410

symplectic matrix
Proposition 5.5.21, 300

Toeplitz matrix
Fact 4.10.15, 269
Fact 5.11.43, 331
Fact 5.11.44, 331
Fact 8.9.34, 454

trace
Fact 4.10.6, 267

tridiagonal matrix
Fact 5.11.40, 329
Fact 5.11.41, 329
Fact 5.11.42, 330
Fact 5.11.43, 331
Fact 5.11.44, 331

tripotent matrix
Proposition 5.5.21, 300

unipotent matrix
Proposition 5.5.21, 300

unit imaginary
matrix
Fact 5.9.25, 315

unitary matrix
Proposition 5.5.21, 300

spectrum bounds

Brauer
Fact 4.10.21, 271

ovals of Cassini
Fact 4.10.21, 271

spectrum of convex
hull

field of values
Fact 8.14.7, 496
Fact 8.14.8, 497

numerical range
Fact 8.14.7, 496
Fact 8.14.8, 497

sphere of radius ε
definition, 621

spin group
double cover
Fact 3.11.10, 192

spread
commutator
Fact 9.9.30, 585
Fact 9.9.31, 585

Hermitian matrix
Fact 8.15.31, 505

square
definition, 79
trace
Fact 8.17.7, 510

square root
2× 2 positive-
semidefinite
matrix
Fact 8.9.6, 451

asymptotically stable
matrix
Fact 11.18.36, 705

commuting matrices
Fact 5.18.1, 359
Fact 8.10.25, 458

convergent sequence
Fact 5.15.21, 348
Fact 8.9.32, 454

definition, 431
generalized inverse
Fact 8.20.4, 525

group-invertible
matrix
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Fact 5.15.20, 348
identity
Fact 8.9.24, 453
Fact 8.9.25, 453

Jordan form
Fact 5.15.19, 348

Kronecker product
Fact 8.21.29, 536
Fact 8.21.30, 537

matrix sign function
Fact 5.15.21, 348

maximum singular
value
Fact 8.18.14, 516
Fact 9.8.32, 576
Fact 9.14.15, 611

Newton-Raphson
algorithm
Fact 5.15.21, 348

normal matrix
Fact 8.9.27, 453
Fact 8.9.28, 453
Fact 8.9.29, 453

orthogonal matrix
Fact 8.9.26, 453

positive-semidefinite
matrix
Fact 8.10.18, 458
Fact 8.10.26, 458
Fact 8.21.29, 536
Fact 9.8.32, 576

principal square root
Theorem 10.6.1, 629

projector
Fact 8.10.25, 458

range
Fact 8.7.2, 443

scalar inequality
Fact 1.9.6, 24
Fact 1.12.1, 46
Fact 1.12.2, 46

submultiplicative
norm
Fact 9.8.32, 576

sum of squares
Fact 2.18.8, 150

unitarily invariant
norm
Fact 9.9.18, 583

Fact 9.9.19, 583
unitary matrix
Fact 8.9.26, 453

square-root function
Niculescu’s
inequality
Fact 1.10.20, 33

squares
scalar inequality
Fact 1.11.21, 44

stability
mass-spring system
Fact 11.18.38, 705

partitioned matrix
Fact 11.18.38, 705

stability radius
asymptotically stable
matrix
Fact 11.18.17, 700

stabilizability
asymptotically stable
matrix
Proposition 11.9.5, 735
Proposition 12.8.3, 747
Proposition 12.8.5, 748
Corollary 12.8.6, 749

block-triangular
matrix
Proposition 12.8.4, 747

controllably
asymptotically
stable
Proposition 12.8.3, 747
Proposition 12.8.5, 748

definition
Definition 12.8.1, 747

full-state feedback
Proposition 12.8.2, 747

Hamiltonian
Fact 12.23.1, 802

input matrix
Fact 12.20.15, 792

Lyapunov equation
Corollary 12.8.6, 749

maximal solution of
the Riccati
equation

Theorem 12.18.1, 787
observably
asymptotically
stable
Proposition 11.9.5, 735

orthogonal matrix
Proposition 12.8.4, 747

positive-semidefinite
matrix
Fact 12.20.6, 791

positive-semidefinite
ordering
Fact 12.20.8, 791

range
Fact 12.20.7, 791

Riccati equation
Theorem 12.17.9, 784
Theorem 12.18.1, 787
Corollary 12.19.2, 790

shift
Fact 12.20.11, 792

stabilization
controllability
Fact 12.20.17, 792

Gramian
Fact 12.20.17, 792

stabilizing solution
Hamiltonian
Corollary 12.16.15, 781

Riccati equation
Definition 12.16.12,
780

Theorem 12.17.2, 782
Theorem 12.17.9, 784
Theorem 12.18.4, 787
Proposition 12.17.1,
782

Proposition 12.18.3,
787

Proposition 12.19.4,
790

Corollary 12.16.15, 781

stable subspace
complementary
subspaces
Proposition 11.8.8, 665

group-invertible
matrix
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Proposition 11.8.8, 665
idempotent matrix
Proposition 11.8.8, 665

invariant subspace
Proposition 11.8.8, 665

matrix exponential
Proposition 11.8.8, 665

minimal polynomial
Proposition 11.8.5, 664
Fact 11.23.1, 716
Fact 11.23.2, 716

standard control
problem

definition, 774

standard nilpotent
matrix

definition, 166

star partial ordering
characterization
Fact 6.4.47, 385

commuting matrices
Fact 2.10.36, 120

definition
Fact 2.10.35, 120
Fact 8.19.7, 524

generalized inverse
Fact 8.19.8, 524

positive-semidefinite
matrix
Fact 8.19.8, 524
Fact 8.19.9, 524
Fact 8.20.8, 526

star-dagger matrix
generalized inverse
Fact 6.3.13, 372

state convergence
detectability
Fact 12.20.2, 791

discrete-time
time-varying
system
Fact 11.21.16, 715

state equation
definition, 723
matrix exponential
Proposition 12.1.1, 723

variation of
constants formula
Proposition 12.1.1, 723

state transition matrix
time-varying
dynamics
Fact 11.13.5, 678

statement
definition, 1

Stein equation
discrete-time
Lyapunov equation
Fact 11.21.15, 714

step function, 724

step response
definition, 725
Lyapunov-stable
matrix
Fact 12.20.1, 790

step-down matrix
resultant
Fact 4.8.4, 254

Stephanos
eigenvector of a
Kronecker product
Fact 7.4.21, 406

Stewart
regular pencil
Fact 5.17.3, 358

stiffness
definition, 654

stiffness matrix
partitioned matrix
Fact 5.12.21, 337

Stirling matrix
Vandermonde matrix
Fact 5.16.3, 354

Stirling’s formula
factorial
Fact 1.9.19, 26

Storey

asymptotic stability
of a tridiagonal
matrix
Fact 11.18.24, 702

Stormer
Schatten norm for
positive-
semidefinite
matrices
Fact 9.9.22, 583

strengthening
definition, 2

strictly concave
function

definition
Definition 8.6.14, 436

strictly convex function
definition
Definition 8.6.14, 436

positive-definite
matrix
Fact 8.14.15, 499
Fact 8.14.16, 499

trace
Fact 8.14.16, 499

transformation
Fact 1.8.2, 21

strictly dissipative
matrix

dissipative matrix
Fact 8.9.31, 453

strictly lower triangular
matrix

definition
Definition 3.1.3, 167

matrix power
Fact 3.18.7, 216

matrix product
Fact 3.20.18, 221

strictly proper rational
function

definition
Definition 4.7.1, 249

strictly proper rational
transfer function
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definition
Definition 4.7.2, 249

strictly upper triangular
matrix

definition
Definition 3.1.3, 167

Lie algebra
Fact 3.21.4, 222
Fact 11.22.1, 715

matrix power
Fact 3.18.7, 216

matrix product
Fact 3.20.18, 221

strong Kronecker
product

Kronecker product,
416

strong log majorization
convex function
Fact 2.21.9, 163

definition
Definition 2.1.1, 78

matrix exponential
Fact 11.16.4, 692

singular value
inequality
Fact 9.13.19, 605

strong majorization
convex function
Fact 2.21.8, 163
Fact 2.21.11, 163

convex hull
Fact 2.21.7, 163

definition
Definition 2.1.1, 78

diagonal entry
Fact 8.17.8, 510

doubly stochastic
matrix
Fact 2.21.7, 163

eigenvalue
Corollary 8.6.19, 442
Fact 8.18.4, 513
Fact 8.18.29, 521

entropy
Fact 2.21.6, 162

Hermitian matrix

Fact 8.17.8, 510
Muirhead’s theorem
Fact 2.21.5, 162

ones vector
Fact 2.21.1, 162

Schur concave
function
Fact 2.21.6, 162

Schur convex
function
Fact 2.21.4, 162
Fact 2.21.5, 162

strongly decreasing
function

definition
Definition 8.6.12, 434

strongly increasing
function

definition
Definition 8.6.12, 434

determinant
Proposition 8.6.13, 435

matrix functions
Proposition 8.6.13, 435

structured matrix
positive-semidefinite
matrix
Fact 8.8.2, 445
Fact 8.8.3, 446
Fact 8.8.4, 446
Fact 8.8.5, 447
Fact 8.8.6, 447
Fact 8.8.7, 447
Fact 8.8.8, 447
Fact 8.8.9, 448
Fact 8.8.10, 448
Fact 8.8.11, 448
Fact 8.8.12, 448

Styan
difference of
idempotent
matrices
Fact 5.12.19, 337

Hermitian matrix
inertia identity
Fact 8.10.15, 457

rank of a tripotent
matrix
Fact 2.10.23, 118

rank of an
idempotent matrix
Fact 3.12.27, 203

SU(2)
quaternions
Fact 3.22.6, 227

subdeterminant
asymptotically stable
matrix
Fact 11.19.1, 707

asymptotically stable
polynomial
Fact 11.18.23, 702

definition, 105
inverse
Fact 2.13.5, 129

Lyapunov-stable
polynomial
Fact 11.18.23, 702

positive-definite
matrix
Proposition 8.2.8, 422
Fact 8.13.17, 488

positive-semidefinite
matrix
Proposition 8.2.7, 421

subdiagonal
definition, 80

subdifferential
convex function
Fact 10.11.14, 639

subgraph
Definition 1.4.3, 9

sublevel set
convex set
Fact 8.14.1, 494

submatrix
complementary
Fact 2.11.20, 125

defect
Fact 2.11.20, 125

definition, 80
determinant
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Fact 2.14.1, 132
Hermitian matrix
Theorem 8.4.5, 426
Corollary 8.4.6, 426
Lemma 8.4.4, 425
Fact 5.8.8, 308

inertia
Fact 5.8.8, 308

Kronecker product
Proposition 7.3.1, 404

M-matrix
Fact 4.11.7, 276

positive-definite
matrix
Proposition 8.2.8, 422

positive-semidefinite
matrix
Proposition 8.2.7, 421
Fact 8.7.7, 444
Fact 8.13.36, 492

rank
Proposition 4.3.5, 237
Proposition 4.7.7, 250
Fact 2.11.6, 121
Fact 2.11.17, 124
Fact 2.11.20, 125
Fact 2.11.21, 125
Fact 2.11.22, 125
Fact 3.20.5, 218

singular value
Fact 9.14.10, 609

Smith form
Proposition 4.3.5, 237

Smith-McMillan
form
Proposition 4.7.7, 250

Z-matrix
Fact 4.11.7, 276

submultiplicative norm
commutator
Fact 9.9.8, 580

compatible norms
Proposition 9.3.1, 550

equi-induced norm
Corollary 9.4.4, 554
Fact 9.8.45, 579

H2 norm
Fact 12.22.20, 801

Hölder norm

Fact 9.9.20, 583
idempotent matrix
Fact 9.8.6, 572

infinity norm
Fact 9.9.1, 580
Fact 9.9.2, 580

matrix exponential
Proposition 11.1.2, 644
Fact 11.15.8, 691
Fact 11.15.9, 691
Fact 11.16.7, 694
Fact 11.18.8, 699
Fact 11.18.9, 699

matrix norm
Fact 9.9.4, 580

nonsingular matrix
Fact 9.8.5, 572

positive-semidefinite
matrix
Fact 9.9.7, 580

Schur product
Fact 9.8.41, 578

spectral radius
Proposition 9.3.2, 550
Proposition 9.3.3, 550
Corollary 9.3.4, 550
Fact 9.8.4, 572
Fact 9.9.3, 580

square root
Fact 9.8.32, 576

unitarily invariant
norm
Fact 9.8.41, 578
Fact 9.9.7, 580

submultiplicative
norms

definition, 550

subset
closure
Fact 10.9.1, 634

definition, 2
interior
Fact 10.9.1, 634

subset operation
induced partial
ordering
Fact 1.5.17, 13

transitivity

Fact 1.5.17, 13

subspace
affine
definition, 89

affine subspace
Fact 2.9.8, 111

closed set
Fact 10.8.21, 633

common eigenvector
Fact 5.14.27, 342

complementary
Fact 2.9.18, 112
Fact 2.9.23, 113

complex conjugate
transpose
Fact 2.9.28, 114

definition, 89
dimension
Fact 2.9.20, 112
Fact 2.9.21, 113
Fact 2.9.22, 113

dimension inequality
Fact 2.10.4, 115

gap topology
Fact 10.9.18, 636

image under linear
mapping
Fact 2.9.26, 113

inclusion
Fact 2.9.11, 111
Fact 2.9.14, 112
Fact 2.9.28, 114

inclusion and
dimension ordering
Lemma 2.3.4, 91

inner product
Fact 10.9.12, 635

intersection
Fact 2.9.9, 111
Fact 2.9.16, 112
Fact 2.9.17, 112
Fact 2.9.29, 114
Fact 2.9.30, 114

left inverse
Fact 2.9.26, 113

minimal principal
angle
Fact 5.11.39, 329
Fact 5.12.17, 335
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Fact 10.9.18, 636
orthogonal
complement
Proposition 3.5.2, 175
Fact 2.9.14, 112
Fact 2.9.16, 112
Fact 2.9.18, 112
Fact 2.9.27, 114

orthogonal matrix
Fact 3.11.1, 189
Fact 3.11.2, 189

principal angle
Fact 2.9.19, 112

projector
Proposition 3.5.1, 175
Proposition 3.5.2, 175
Fact 9.8.3, 571
Fact 10.9.17, 636

quadratic form
Fact 8.15.27, 504
Fact 8.15.28, 504

range
Proposition 3.5.1, 175
Fact 2.9.24, 113

span
Fact 2.9.13, 111

span of image
Fact 2.9.26, 113

sum
Fact 2.9.9, 111
Fact 2.9.13, 111
Fact 2.9.16, 112
Fact 2.9.17, 112
Fact 2.9.29, 114
Fact 2.9.30, 114

union
Fact 2.9.11, 111
Fact 2.9.13, 111

unitary matrix
Fact 3.11.1, 189
Fact 3.11.2, 189

subspace
decomposition

spectrum
Proposition 5.5.7, 296

subspace dimension
theorem

dimension

Theorem 2.3.1, 90
rank
Fact 2.11.9, 122
Fact 2.11.10, 122

subspace intersection
inverse image
Fact 2.9.30, 114

subspace sum
inverse image
Fact 2.9.30, 114

sufficiency
definition, 1

sum
Drazin generalized
inverse
Fact 6.6.5, 394

eigenvalue
Fact 5.12.2, 333
Fact 5.12.3, 333

generalized inverse
Fact 6.4.34, 383
Fact 6.4.35, 383
Fact 6.4.36, 383

Hamiltonian matrix
Fact 3.19.5, 216

outer-product
matrix
Fact 2.10.24, 118

projector
Fact 5.12.17, 335

singular value
Fact 9.14.20, 612
Fact 9.14.21, 612
Fact 9.14.25, 613

spectral radius
Fact 5.12.2, 333
Fact 5.12.3, 333

sum inequality
power inequality
Fact 1.16.28, 66
Fact 1.16.29, 66

sum of integer powers
inequality
Fact 1.9.31, 30

matrix exponential
Fact 11.11.4, 672

sum of matrices
determinant
Fact 5.12.12, 335
Fact 9.14.18, 611

idempotent matrix
Fact 3.12.22, 201
Fact 3.12.26, 203
Fact 5.19.7, 361
Fact 5.19.8, 361
Fact 5.19.9, 361

inverse matrix
Corollary 2.8.10, 110

Kronecker product
Proposition 7.1.4, 400

nilpotent matrix
Fact 3.17.10, 214

projector
Fact 3.13.23, 210
Fact 5.19.4, 360

sum of orthogonal
matrices

determinant
Fact 3.11.22, 196

sum of powers
Carlson inequality
Fact 1.15.41, 58

Copson inequality
Fact 1.15.43, 59

Hardy inequality
Fact 1.15.42, 58

sum of products
Hardy-Hilbert
inequality
Fact 1.16.13, 63
Fact 1.16.14, 63

inequality
Fact 1.15.20, 53

sum of products
inequality

Hardy-Littlewood
rearrangement
inequality
Fact 1.16.4, 60
Fact 1.16.5, 60

sum of sets
convex set
Fact 2.9.1, 110
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Fact 2.9.2, 110
Fact 10.9.4, 634
Fact 10.9.5, 634
Fact 10.9.7, 635

dual cone
Fact 2.9.5, 111

sum of squares
square root
Fact 2.18.8, 150

sum of subspaces
subspace dimension
theorem
Theorem 2.3.1, 90

sum of transfer
functions

H2 norm
Proposition 12.11.6,
767

sum-of-squares
inequality

square-of-sum
inequality
Fact 1.15.14, 48

summation
identity
Fact 1.7.3, 17
Fact 1.7.4, 18
Fact 1.7.5, 18

superdiagonal
definition, 80

supermultiplicativity
induced lower bound
Proposition 9.5.6, 560

support of a relation
definition
Definition 1.3.4, 5

surjective function
definition, 76

Sylvester matrix
coprime polynomials
Fact 4.8.4, 254

Sylvester’s equation
controllability
Fact 12.21.14, 796

controllability
matrix
Fact 12.21.13, 796

linear matrix
equation
Proposition 7.2.4, 403
Proposition 11.9.3, 667
Fact 5.10.20, 320
Fact 5.10.21, 320
Fact 6.5.7, 387

nonsingular matrix
Fact 12.21.14, 796

observability
Fact 12.21.14, 796

observability matrix
Fact 12.21.13, 796

partitioned matrix
Fact 5.10.20, 320
Fact 5.10.21, 320
Fact 6.5.7, 387

rank
Fact 12.21.13, 796

similar matrices
Corollary 7.2.5, 404
Fact 7.5.14, 410

spectrum
Corollary 7.2.5, 404
Fact 7.5.14, 410

Sylvester’s identity
determinant
Fact 2.14.1, 132

Sylvester’s inequality
rank of a product, 97

Sylvester’s law of
inertia

definition, 294
Ostrowski
Fact 5.8.17, 310

Sylvester’s law of
nullity

defect
Fact 2.10.15, 117

symmetric cone
induced by
symmetric relation
Proposition 2.3.6, 93

symmetric gauge
function

unitarily invariant
norm
Fact 9.8.42, 579

weak majorization
Fact 2.21.14, 164

symmetric graph
adjacency matrix
Fact 4.11.1, 272

cycle
Fact 1.6.5, 14

degree matrix
Fact 4.11.1, 272

forest
Fact 1.6.5, 14

Laplacian
Fact 4.11.1, 272

Laplacian matrix
Fact 8.15.36, 506

symmetric hull
definition
Definition 1.3.4, 5

relation
Proposition 1.3.5, 6

symmetric matrix
congruent matrices
Fact 5.9.16, 313

definition
Definition 3.1.1, 165

eigenvalue
Fact 4.10.1, 265

factorization
Corollary 5.3.9, 292
Fact 5.15.24, 349

Hankel matrix
Fact 3.18.2, 215

Hermitian matrix
Fact 3.7.9, 179

involutory matrix
Fact 5.15.36, 351

linear matrix
equation
Fact 3.7.3, 178

matrix power
Fact 3.7.4, 178

matrix transpose
Fact 3.7.2, 178
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maximum eigenvalue
Fact 5.12.20, 337

minimum eigenvalue
Fact 5.12.20, 337

orthogonally similar
matrices
Fact 5.9.15, 313

partitioned matrix
Fact 3.11.27, 196

quadratic form
Fact 3.7.5, 178

similar matrices
Fact 5.15.39, 351

similarity
transformation
Fact 5.15.2, 345
Fact 5.15.3, 345

skew-Hermitian
matrix
Fact 3.7.9, 179

skew-symmetric
matrix
Fact 5.9.16, 313
Fact 5.15.39, 351

trace
Fact 5.12.8, 334

symmetric relation
definition
Definition 1.3.2, 5

graph
Definition 1.4.1, 8

intersection
Proposition 1.3.3, 5

symmetric cone
induced by
Proposition 2.3.6, 93

symmetric set
definition, 89

symmetry group
group
Fact 3.21.7, 223

symplectic group
determinant
Fact 3.19.11, 217

quaternion group
Fact 3.22.4, 227

special orthogonal
group
Fact 3.22.5, 227

unitary group
Fact 3.21.3, 222

symplectic matrix
Cayley transform
Fact 3.19.12, 217

definition
Definition 3.1.5, 169

determinant
Fact 3.19.10, 217
Fact 3.19.11, 217

group
Proposition 3.3.6, 172

Hamiltonian matrix
Fact 3.19.2, 216
Fact 3.19.12, 217
Fact 3.19.13, 217

identity
Fact 3.19.1, 216

identity matrix
Fact 3.19.3, 216

matrix exponential
Proposition 11.6.7, 659

matrix logarithm
Fact 11.14.19, 685

partitioned matrix
Fact 3.19.9, 217

reverse identity
matrix
Fact 3.19.3, 216

skew-involutory
matrix
Fact 3.19.2, 216

spectrum
Proposition 5.5.21, 300

unit imaginary
matrix
Fact 3.19.3, 216

symplectic similarity
Hamiltonian matrix
Fact 3.19.4, 216

Szasz’s inequality
positive-semidefinite
matrix
Fact 8.13.36, 492

T

T-congruence
complex-symmetric
matrix
Fact 5.9.22, 314

T-congruent
diagonalization

complex-symmetric
matrix
Fact 5.9.22, 314

T-congruent matrices
definition
Definition 3.4.4, 174

Tao
Hölder-induced
norm
Fact 9.8.19, 575

Taussky-Todd
factorization
Fact 5.15.7, 346

tautology
definition, 1

tetrahedral group
group
Fact 3.21.7, 223

tetrahedron
volume
Fact 2.20.15, 160

theorem
definition, 1

thermodynamic
inequality

matrix exponential
Fact 11.14.31, 688

relative entropy
Fact 11.14.25, 686

Tian
idempotent matrix
and similar
matrices
Fact 5.10.22, 320

range of a
partitioned matrix
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Fact 6.5.3, 386

Tikhonov inverse
positive-definite
matrix
Fact 8.9.40, 455

time-varying dynamics
commuting matrices
Fact 11.13.4, 678

determinant
Fact 11.13.4, 678

matrix differential
equation
Fact 11.13.4, 678
Fact 11.13.5, 678

state transition
matrix
Fact 11.13.5, 678

trace
Fact 11.13.4, 678

Toeplitz matrix
block-Toeplitz
matrix
Fact 3.18.3, 215

definition
Definition 3.1.3, 167

determinant
Fact 2.13.13, 131
Fact 3.20.7, 219

Hankel matrix
Fact 3.18.1, 215

lower triangular
matrix
Fact 3.18.7, 216
Fact 11.13.1, 677

nilpotent matrix
Fact 3.18.6, 216

polynomial
multiplication
Fact 4.8.10, 258

positive-definite
matrix
Fact 8.13.13, 487

reverse-symmetric
matrix
Fact 3.18.5, 215

spectrum
Fact 4.10.15, 269
Fact 5.11.43, 331

Fact 5.11.44, 331
Fact 8.9.34, 454

tridiagonal matrix
Fact 3.20.7, 219
Fact 5.11.43, 331
Fact 5.11.44, 331

upper triangular
matrix
Fact 3.18.7, 216
Fact 11.13.1, 677

Tomiyama
maximum singular
value of a
partitioned matrix
Fact 9.14.12, 610

total ordering
definition
Definition 1.3.9, 7

dictionary ordering
Fact 1.5.8, 12

lexicographic
ordering
Fact 1.5.8, 12

planar example
Fact 1.5.8, 12

total response, 725

totally nonnegative
matrix

definition
Fact 11.18.23, 702

totally positive matrix
rank
Fact 8.7.7, 444

tournament
graph
Fact 1.6.6, 14

Hamiltonian cycle
Fact 1.6.6, 14

spanning path
Fact 1.6.6, 14

trace
2× 2 matrices
Fact 2.12.9, 126

2× 2 matrix identity
Fact 4.9.3, 260
Fact 4.9.4, 260

3× 3 matrix identity
Fact 4.9.5, 261
Fact 4.9.6, 261

adjugate
Fact 4.9.8, 261

asymptotically stable
matrix
Fact 11.18.31, 704

commutator
Fact 2.18.1, 149
Fact 2.18.2, 149
Fact 5.9.18, 313

complex conjugate
transpose
Fact 8.12.4, 476
Fact 8.12.5, 476
Fact 9.13.16, 604

convex function
Proposition 8.6.17, 437
Fact 8.14.17, 499

definition, 86
derivative
Proposition 10.7.4, 631
Fact 11.14.3, 682

determinant
Proposition 8.4.14, 429
Corollary 11.2.4, 648
Corollary 11.2.5, 648
Fact 2.13.16, 132
Fact 8.12.1, 475
Fact 8.13.20, 488
Fact 11.14.20, 685

dimension
Fact 2.18.11, 150

eigenvalue
Proposition 8.4.13, 428
Fact 5.11.11, 322
Fact 8.17.5, 509
Fact 8.18.18, 518

eigenvalue bound
Fact 5.11.45, 331

elementary projector
Fact 5.8.11, 309

elementary reflector
Fact 5.8.11, 309

Frobenius norm
Fact 9.11.3, 597
Fact 9.11.4, 598
Fact 9.11.5, 598
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Fact 9.12.2, 599
generalized inverse
Fact 6.3.22, 374

group generalized
inverse
Fact 6.6.6, 394

Hamiltonian matrix
Fact 3.19.7, 216

Hermitian matrix
Proposition 8.4.13, 428
Corollary 8.4.10, 427
Lemma 8.4.12, 428
Fact 3.7.13, 180
Fact 3.7.22, 182
Fact 8.12.38, 483

Hermitian matrix
product
Fact 5.12.4, 333
Fact 5.12.5, 333
Fact 8.12.6, 476
Fact 8.12.7, 477
Fact 8.12.8, 477
Fact 8.12.16, 478
Fact 8.18.18, 518

idempotent matrix
Fact 5.8.1, 307
Fact 5.11.7, 322

identities, 86
inequality
Fact 5.12.9, 334

involutory matrix
Fact 5.8.2, 307

Klein’s inequality
Fact 11.14.25, 686

Kronecker
permutation matrix
Fact 7.4.29, 407

Kronecker product
Proposition 7.1.12, 402
Fact 11.14.38, 688

Kronecker sum
Fact 11.14.36, 688

matrix exponential
Corollary 11.2.4, 648
Corollary 11.2.5, 648
Fact 8.14.18, 500
Fact 11.11.6, 673
Fact 11.14.3, 682
Fact 11.14.10, 683

Fact 11.14.28, 687
Fact 11.14.29, 687
Fact 11.14.30, 687
Fact 11.14.31, 688
Fact 11.14.36, 688
Fact 11.14.38, 688
Fact 11.15.4, 689
Fact 11.15.5, 689
Fact 11.16.1, 692
Fact 11.16.4, 692

matrix logarithm
Fact 11.14.24, 686
Fact 11.14.25, 686
Fact 11.14.27, 686
Fact 11.14.31, 688

matrix power
Fact 2.12.13, 127
Fact 2.12.17, 127
Fact 4.10.22, 271
Fact 4.11.22, 281
Fact 5.11.9, 322
Fact 5.11.10, 322
Fact 8.12.4, 476
Fact 8.12.5, 476

matrix product
Fact 2.12.16, 127
Fact 5.12.6, 334
Fact 5.12.7, 334
Fact 8.12.14, 478
Fact 8.12.15, 478
Fact 9.14.3, 607
Fact 9.14.4, 608

matrix squared
Fact 5.11.9, 322
Fact 5.11.10, 322

maximum singular
value
Fact 5.12.7, 334
Fact 9.14.4, 608

maximum singular
value bound
Fact 9.13.13, 604

nilpotent matrix
Fact 3.17.6, 214

nonnegative matrix
Fact 4.11.22, 281

normal matrix
Fact 3.7.12, 180
Fact 8.12.5, 476

normal matrix
product
Fact 5.12.4, 333

orthogonal matrix
Fact 3.11.17, 195
Fact 3.11.18, 195
Fact 5.12.9, 334
Fact 5.12.10, 334

outer-product
matrix
Fact 5.14.3, 338

partitioned matrix
Fact 8.12.36, 483
Fact 8.12.39, 484
Fact 8.12.40, 484
Fact 8.12.41, 484
Fact 8.12.42, 484

polarized
Cayley-Hamilton
theorem
Fact 4.9.3, 260

positive-definite
matrix
Proposition 8.4.14, 429
Fact 8.9.16, 452
Fact 8.10.46, 464
Fact 8.11.10, 469
Fact 8.12.1, 475
Fact 8.12.2, 475
Fact 8.12.24, 480
Fact 8.12.27, 481
Fact 8.12.37, 483
Fact 8.13.12, 487
Fact 11.14.24, 686
Fact 11.14.25, 686
Fact 11.14.27, 686

positive-semidefinite
matrix
Proposition 8.4.13, 428
Fact 8.12.3, 476
Fact 8.12.9, 477
Fact 8.12.10, 477
Fact 8.12.11, 477
Fact 8.12.12, 477
Fact 8.12.13, 477
Fact 8.12.17, 478
Fact 8.12.18, 478
Fact 8.12.19, 479
Fact 8.12.20, 479
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Fact 8.12.21, 480
Fact 8.12.22, 480
Fact 8.12.23, 480
Fact 8.12.24, 480
Fact 8.12.26, 481
Fact 8.12.28, 481
Fact 8.12.29, 481
Fact 8.12.34, 483
Fact 8.12.35, 483
Fact 8.12.36, 483
Fact 8.12.38, 483
Fact 8.12.39, 484
Fact 8.12.40, 484
Fact 8.12.41, 484
Fact 8.13.20, 488
Fact 8.18.16, 517
Fact 8.18.20, 518
Fact 8.20.3, 525
Fact 8.20.17, 528

projector
Fact 5.8.11, 309

quadruple product
Fact 7.4.9, 405

rank
Fact 5.11.10, 322
Fact 9.11.4, 598

reflector
Fact 5.8.11, 309

rotation matrix
Fact 3.11.17, 195

Schatten norm
Fact 9.12.1, 599

Schur product
Fact 8.21.17, 534
Fact 9.14.32, 615

singular value
Fact 5.12.6, 334
Fact 8.17.2, 508
Fact 9.12.1, 599
Fact 9.13.16, 604
Fact 9.14.3, 607
Fact 9.14.32, 615

skew-Hermitian
matrix
Fact 3.7.24, 182

skew-Hermitian
matrix product
Fact 8.12.6, 476

skew-symmetric
matrix
Fact 3.7.23, 182
Fact 3.7.31, 183

spectral radius
Fact 4.10.22, 271
Fact 5.11.46, 332
Fact 9.13.12, 603

spectrum
Fact 4.10.6, 267

square
Fact 8.17.7, 510

strictly convex
function
Fact 8.14.16, 499

symmetric matrix
Fact 5.12.8, 334

time-varying
dynamics
Fact 11.13.4, 678

trace norm
Fact 9.11.2, 597

triple product
Fact 2.12.11, 127
Fact 7.4.7, 405

tripotent matrix
Fact 3.16.4, 213
Fact 5.8.3, 307

unitarily similar
matrices
Fact 5.10.8, 318

unitary matrix
Fact 3.11.16, 194
Fact 3.11.32, 198

vec
Proposition 7.1.1, 399
Fact 7.4.7, 405
Fact 7.4.9, 405

zero matrix
Fact 2.12.14, 127
Fact 2.12.15, 127

trace and singular
value

von Neumann’s trace
inequality
Fact 9.12.1, 599

trace norm
compatible norms

Corollary 9.3.8, 552
definition, 549
Frobenius norm
Fact 9.9.11, 581

matrix difference
Fact 9.9.24, 584

maximum singular
value
Corollary 9.3.8, 552

positive-semidefinite
matrix
Fact 9.9.15, 582

trace
Fact 9.11.2, 597

trace of a convex
function

Berezin
Fact 8.12.33, 482

Brown
Fact 8.12.33, 482

Hansen
Fact 8.12.33, 482

Kosaki
Fact 8.12.33, 482

Pedersen
Fact 8.12.33, 482

trace of a Hermitian
matrix product

Fan
Fact 5.12.4, 333

trace of a product
Fan
Fact 5.12.10, 334

traceable graph
definition
Definition 1.4.3, 9

Tracy-Singh product
Kronecker product,
416

trail
definition
Definition 1.4.3, 9

transfer function
cascade
interconnection



1050 inertia

Proposition 12.13.2,
770

derivative
Fact 12.22.6, 799

feedback
interconnection
Fact 12.22.8, 799

frequency response
Fact 12.22.5, 799

H2 norm
Fact 12.22.16, 801
Fact 12.22.17, 801
Fact 12.22.18, 801
Fact 12.22.19, 801

imaginary part
Fact 12.22.5, 799

Jordan form
Fact 12.22.10, 800

parallel
interconnection
Proposition 12.13.2,
770

partitioned transfer
function
Fact 12.22.7, 799

real part
Fact 12.22.5, 799

realization
Fact 12.22.3, 798
Fact 12.22.4, 799
Fact 12.22.6, 799
Fact 12.22.7, 799
Fact 12.22.8, 799

realization of inverse
Proposition 12.13.1,
770

realization of
parahermitian
conjugate
Proposition 12.13.1,
770

realization of
transpose
Proposition 12.13.1,
770

reciprocal argument
Fact 12.22.4, 799

right inverse
Fact 12.22.9, 799

shifted argument
Fact 12.22.3, 798

transitive hull
definition
Definition 1.3.4, 5

relation
Proposition 1.3.5, 6

transitive relation
convex cone induced
by
Proposition 2.3.6, 93

definition
Definition 1.3.2, 5

graph
Definition 1.4.1, 8

intersection
Proposition 1.3.3, 5

positive-semidefinite
matrix
Proposition 8.1.1, 417

transmission zero
definition
Definition 4.7.10, 251
Definition 4.7.13, 252

invariant zero
Theorem 12.10.8, 762
Theorem 12.10.9, 762

null space
Fact 4.8.16, 260

rank
Proposition 4.7.12, 251

transpose
controllability
Fact 12.20.16, 792

diagonalizable
matrix
Fact 5.14.5, 339

involutory matrix
Fact 5.9.7, 312

Kronecker
permutation matrix
Proposition 7.1.13, 402

Kronecker product
Proposition 7.1.3, 400

matrix exponential
Proposition 11.2.8, 649

normal matrix

Fact 5.9.9, 312
Fact 5.9.10, 312

similar matrices
Proposition 5.5.12, 297
Corollary 4.3.11, 239
Corollary 5.3.8, 291
Corollary 5.5.22, 301
Fact 5.9.9, 312
Fact 5.9.10, 312

transpose of a matrix
definition, 86

transpose of a vector
definition, 84

transposition matrix
permutation matrix
Fact 3.21.6, 222

triangle
area
Fact 2.20.7, 155
Fact 2.20.8, 156
Fact 2.20.10, 156

Bandila’s inequality
Fact 2.20.11, 156

cosine rule
Fact 2.20.11, 156

Euler’s inequality
Fact 2.20.11, 156

fundamental triangle
inequality
Fact 2.20.11, 156

Heron’s formula
Fact 2.20.11, 156

inequality
Fact 1.11.17, 43

Klamkin’s inequality
Fact 2.20.11, 156

Mircea’s inequality
Fact 2.20.11, 156

semiperimeter
Fact 2.20.11, 156

sine rule
Fact 2.20.11, 156

triangle inequality
Blundon
Fact 2.20.11, 156

definition
Definition 9.1.1, 543
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equality
Fact 9.7.3, 563

Frobenius norm
Fact 9.9.13, 582

linear dependence
Fact 9.7.3, 563

positive-semidefinite
matrix
Fact 9.9.21, 583

reverse Hölder norm
inequality
Fact 9.7.19, 569

Satnoianu
Fact 2.20.11, 156

triangular matrix
nilpotent matrix
Fact 5.17.6, 358

triangularization
commutator
Fact 5.17.5, 358

commuting matrices
Fact 5.17.4, 358

tridiagonal matrix
asymptotically stable
matrix
Fact 11.18.24, 702
Fact 11.18.25, 702
Fact 11.18.26, 702
Fact 11.18.27, 703
Fact 11.18.28, 703

cyclic matrix
Fact 11.18.25, 702

definition
Definition 3.1.3, 167

determinant
Fact 3.20.6, 218
Fact 3.20.7, 219
Fact 3.20.8, 219
Fact 3.20.9, 219
Fact 3.20.11, 220

inverse matrix
Fact 3.20.9, 219
Fact 3.20.10, 219
Fact 3.20.11, 220

positive-definite
matrix
Fact 8.8.18, 450

Routh form

Fact 11.18.27, 703
Schwarz form
Fact 11.18.25, 702
Fact 11.18.26, 702

spectrum
Fact 5.11.40, 329
Fact 5.11.41, 329
Fact 5.11.42, 330
Fact 5.11.43, 331
Fact 5.11.44, 331

Toeplitz matrix
Fact 3.20.7, 219
Fact 5.11.43, 331
Fact 5.11.44, 331

trigonometric identities
Fact 1.19.1, 74

trigonometric
inequality

Huygens’s inequality
Fact 1.9.29, 28

Jordan’s inequality
Fact 1.9.29, 28

scalar
Fact 1.9.29, 28
Fact 1.9.30, 29
Fact 1.10.29, 35

triple product
identity
Fact 2.12.10, 126

Kronecker product
Proposition 7.1.5, 400
Fact 7.4.7, 405

trace
Fact 4.9.4, 260
Fact 4.9.6, 261
Fact 7.4.7, 405

vec
Proposition 7.1.9, 401

tripotent matrix
definition
Definition 3.1.1, 165

Drazin generalized
inverse
Proposition 6.2.2, 368

group-invertible
matrix
Proposition 3.1.6, 169

Hermitian matrix
Fact 3.16.3, 213

idempotent matrix
Fact 3.16.1, 212
Fact 3.16.5, 213

inertia
Fact 5.8.3, 307

involutory matrix
Fact 3.16.2, 212

Kronecker product
Fact 7.4.16, 406

projector
Fact 6.4.33, 383

rank
Fact 2.10.23, 118
Fact 3.16.3, 213
Fact 3.16.4, 213

reflector
Proposition 3.1.6, 169

signature
Fact 5.8.3, 307

similar matrices
Proposition 3.4.5, 174
Corollary 5.5.22, 301

spectrum
Proposition 5.5.21, 300

trace
Fact 3.16.4, 213
Fact 5.8.3, 307

unitarily similar
matrices
Proposition 3.4.5, 174

tuple
definition, 3

Turan’s inequalities
spectral radius
bound
Fact 4.10.22, 271

two-sided directional
differential

definition, 625

U

ULU decomposition
factorization
Fact 5.15.11, 346
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Umegaki
relative entropy
Fact 11.14.25, 686

uncontrollable
eigenvalue

controllability pencil
Proposition 12.6.13,
740

full-state feedback
Proposition 12.6.14,
740

Hamiltonian
Proposition 12.17.7,
784

Proposition 12.17.8,
784

Lemma 12.17.4, 783
Lemma 12.17.6, 783

uncontrollable
multispectrum

definition
Definition 12.6.11, 740

uncontrollable
spectrum

controllability pencil
Proposition 12.6.16,
741

definition
Definition 12.6.11, 740

invariant zero
Theorem 12.10.9, 762

Smith zeros
Proposition 12.6.16,
741

uncontrollable-
unobservable
spectrum

invariant zero
Theorem 12.10.9, 762

unimodular matrix
coprime right
polynomial fraction
description
Proposition 4.7.15, 253

definition
Definition 4.3.1, 236

determinant

Proposition 4.3.7, 238
Smith form
Proposition 4.3.7, 238

union
boundary
Fact 10.9.2, 634

cardinality
Fact 1.5.5, 11

closed set
Fact 10.9.10, 635

closure
Fact 10.9.2, 634

convex cone
Fact 2.9.10, 111

convex set
Fact 10.9.7, 634

definition, 2
interior
Fact 10.9.2, 634
Fact 10.9.3, 634

open set
Fact 10.9.9, 635

span
Fact 2.9.12, 111

union of ranges
projector
Fact 6.4.41, 385

unipotent matrix
definition
Definition 3.1.1, 165

group
Fact 3.21.5, 222
Fact 11.22.1, 715

Heisenberg group
Fact 3.21.5, 222
Fact 11.22.1, 715

matrix exponential
Fact 11.13.17, 680

spectrum
Proposition 5.5.21, 300

unit imaginary matrix
congruent matrices
Fact 3.7.34, 184

definition, 169
Hamiltonian matrix
Fact 3.19.3, 216

skew-symmetric
matrix
Fact 3.7.34, 184

spectrum
Fact 5.9.25, 315

symplectic matrix
Fact 3.19.3, 216

unit impulse function
definition, 724

unit sphere
group
Fact 3.21.2, 221

unit-length quaternions
Sp(1)
Fact 3.22.1, 225

unitarily biequivalent
matrices

definition
Definition 3.4.3, 174

singular values
Fact 5.10.18, 319

unitarily invariant norm
commutator
Fact 9.9.29, 584
Fact 9.9.30, 585
Fact 9.9.31, 585

complex conjugate
transpose
Fact 9.8.30, 576

definition, 547
fixed-rank
approximation
Fact 9.14.28, 614

Frobenius norm
Fact 9.14.34, 616

Heinz inequality
Fact 9.9.49, 589

Hermitian matrix
Fact 9.9.5, 580
Fact 9.9.41, 588
Fact 9.9.43, 588
Fact 11.16.13, 695

Hermitian
perturbation
Fact 9.12.4, 599

inequality
Fact 9.9.11, 581
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Fact 9.9.44, 588
Fact 9.9.47, 589
Fact 9.9.48, 589
Fact 9.9.49, 589
Fact 9.9.50, 589

matrix exponential
Fact 11.15.6, 690
Fact 11.16.4, 692
Fact 11.16.5, 694
Fact 11.16.13, 695
Fact 11.16.16, 695
Fact 11.16.17, 695

matrix logarithm
Fact 9.9.54, 590

matrix power
Fact 9.9.17, 582

matrix product
Fact 9.9.6, 580

maximum eigenvalue
Fact 9.9.30, 585
Fact 9.9.31, 585

maximum singular
value
Fact 9.9.10, 581
Fact 9.9.29, 584

McIntosh’s
inequality
Fact 9.9.47, 589

normal matrix
Fact 9.9.6, 580

outer-product
matrix
Fact 9.8.40, 578

partitioned matrix
Fact 9.8.33, 576

polar decomposition
Fact 9.9.42, 588

positive-semidefinite
matrix
Fact 9.9.7, 580
Fact 9.9.14, 582
Fact 9.9.15, 582
Fact 9.9.16, 582
Fact 9.9.17, 582
Fact 9.9.27, 584
Fact 9.9.46, 588
Fact 9.9.51, 589
Fact 9.9.52, 590
Fact 9.9.53, 590

Fact 9.9.54, 590
Fact 11.16.16, 695
Fact 11.16.17, 695

properties
Fact 9.8.41, 578

rank
Fact 9.14.28, 614

Schatten norm
Fact 9.8.9, 572

Schur product
Fact 9.8.41, 578
Fact 9.9.62, 591
Fact 9.9.63, 591
Fact 9.14.36, 617

self-adjoint norm
Fact 9.8.7, 572

similar matrices
Fact 9.8.31, 576

singular value
Fact 9.14.28, 614

singular value
perturbation
Fact 9.14.29, 614

square root
Fact 9.9.18, 583
Fact 9.9.19, 583

submultiplicative
norm
Fact 9.8.41, 578
Fact 9.9.7, 580

symmetric gauge
function
Fact 9.8.42, 579

unitarily left-equivalent
matrices

complex conjugate
transpose
Fact 5.10.18, 319
Fact 5.10.19, 319

definition
Definition 3.4.3, 174

positive-semidefinite
matrix
Fact 5.10.18, 319
Fact 5.10.19, 319

unitarily
right-equivalent
matrices

complex conjugate
transpose
Fact 5.10.18, 319

definition
Definition 3.4.3, 174

positive-semidefinite
matrix
Fact 5.10.18, 319

unitarily similar
matrices

biequivalent matrices
Proposition 3.4.5, 174

complex conjugate
transpose
Fact 5.9.20, 314
Fact 5.9.21, 314

definition
Definition 3.4.4, 174

diagonal entries
Fact 5.9.17, 313
Fact 5.9.19, 313

elementary matrix
Proposition 5.6.3, 302

elementary projector
Proposition 5.6.3, 302

elementary reflector
Proposition 5.6.3, 302

group-invertible
matrix
Proposition 3.4.5, 174

Hermitian matrix
Proposition 3.4.5, 174
Proposition 5.6.3, 302
Corollary 5.4.5, 294

idempotent matrix
Proposition 3.4.5, 174
Fact 5.9.21, 314
Fact 5.9.26, 315
Fact 5.9.27, 315
Fact 5.10.10, 318

involutory matrix
Proposition 3.4.5, 174

Kronecker product
Fact 7.4.12, 406

matrix classes
Proposition 3.4.5, 174

nilpotent matrix
Proposition 3.4.5, 174

normal matrix
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Proposition 3.4.5, 174
Corollary 5.4.4, 293
Fact 5.10.6, 317
Fact 5.10.7, 317

partitioned matrix
Fact 5.9.23, 314

positive-definite
matrix
Proposition 3.4.5, 174
Proposition 5.6.3, 302

positive-semidefinite
matrix
Proposition 3.4.5, 174
Proposition 5.6.3, 302

projector
Fact 5.10.12, 319

range-Hermitian
matrix
Proposition 3.4.5, 174
Corollary 5.4.4, 293

similar matrices
Fact 5.10.7, 317

simultaneous
diagonalization
Fact 5.17.7, 358

simultaneous
triangularization
Fact 5.17.4, 358
Fact 5.17.6, 358

skew-Hermitian
matrix
Proposition 3.4.5, 174
Proposition 5.6.3, 302

skew-involutory
matrix
Proposition 3.4.5, 174

trace
Fact 5.10.8, 318

tripotent matrix
Proposition 3.4.5, 174

unitary matrix
Proposition 3.4.5, 174
Proposition 5.6.3, 302

upper triangular
matrix
Theorem 5.4.1, 292

unitary biequivalence
equivalence relation
Fact 5.10.3, 317

unitary group
symplectic group
Fact 3.21.3, 222

unitary left equivalence
equivalence relation
Fact 5.10.3, 317

unitary matrix, see
orthogonal matrix

additive
decomposition
Fact 5.19.1, 360

block-diagonal
matrix
Fact 3.11.25, 196

Cayley transform
Fact 3.11.28, 196

cogredient
diagonalization
Fact 8.16.1, 507

complex-symmetric
matrix
Fact 5.9.22, 314

convergent sequence
Fact 8.9.33, 454

CS decomposition
Fact 5.9.29, 316

definition
Definition 3.1.1, 165

determinant
Fact 3.11.15, 194
Fact 3.11.20, 196
Fact 3.11.23, 196
Fact 3.11.24, 196

diagonal entries
Fact 3.11.19, 195
Fact 8.17.10, 511

diagonal matrix
Theorem 5.6.4, 302

discrete-time
Lyapunov-stable
matrix
Fact 11.21.13, 714

dissipative matrix
Fact 8.9.31, 453

factorization
Fact 5.15.8, 346
Fact 5.18.6, 359

Frobenius norm

Fact 9.9.42, 588
geometric-mean
decomposition
Fact 5.9.30, 316

group
Proposition 3.3.6, 172

group generalized
inverse
Fact 6.3.34, 376

Hermitian matrix
Fact 3.11.29, 197
Fact 8.16.1, 507
Fact 11.14.34, 688

identities
Fact 3.11.3, 189

Kronecker product
Fact 7.4.16, 406

matrix exponential
Proposition 11.2.8, 649
Proposition 11.2.9, 650
Proposition 11.6.7, 659
Corollary 11.2.6, 648
Fact 11.14.6, 683
Fact 11.14.33, 688
Fact 11.14.34, 688

matrix limit
Fact 6.3.34, 376

normal matrix
Proposition 3.1.6, 169
Fact 3.11.4, 189
Fact 5.15.1, 345

orthogonal vectors
Fact 3.11.14, 194

outer-product
perturbation
Fact 3.11.15, 194

partitioned matrix
Fact 3.11.24, 196
Fact 3.11.26, 196
Fact 3.11.27, 196
Fact 8.11.22, 473
Fact 8.11.23, 473
Fact 8.11.24, 473
Fact 9.14.11, 609

polar decomposition
Fact 5.18.8, 360

quaternions
Fact 3.22.9, 229

reflector
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Fact 3.14.2, 211
semicontractive
matrix
Fact 8.11.22, 473

shifted-unitary
matrix
Fact 3.11.33, 198

simultaneous
diagonalization
Fact 8.16.1, 507

singular value
Fact 5.11.37, 328
Fact 9.14.11, 609

skew reflector
Fact 3.14.6, 211

skew-Hermitian
matrix
Fact 3.11.28, 196
Fact 3.14.6, 211
Fact 11.14.33, 688

skew-involutory
matrix
Fact 3.14.6, 211

spectrum
Proposition 5.5.21, 300

square root
Fact 8.9.26, 453

subspace
Fact 3.11.1, 189
Fact 3.11.2, 189

sum
Fact 3.11.23, 196

trace
Fact 3.11.16, 194
Fact 3.11.32, 198

unitarily similar
matrices
Proposition 3.4.5, 174
Proposition 5.6.3, 302

upper triangular
matrix
Fact 5.15.8, 346

unitary right
equivalence

equivalence relation
Fact 5.10.3, 317

unitary similarity
equivalence relation

Fact 5.10.3, 317
singular value
decomposition
Fact 5.9.28, 315
Fact 6.3.15, 373
Fact 6.6.15, 395

universal statement
definition, 2
logical equivalents
Fact 1.5.4, 11

unobservable
eigenvalue

definition
Definition 12.3.11, 730

full-state feedback
Proposition 12.3.14,
731

Hamiltonian
Proposition 12.17.7,
784

Proposition 12.17.8,
784

Lemma 12.17.4, 783
Lemma 12.17.6, 783

invariant zero
Proposition 12.10.11,
764

observability pencil
Proposition 12.3.13,
731

unobservable
multispectrum

definition
Definition 12.3.11, 730

unobservable spectrum
definition
Definition 12.3.11, 730

invariant zero
Theorem 12.10.9, 762

observability pencil
Proposition 12.3.16,
731

Smith zeros
Proposition 12.3.16,
731

unobservable
subspace

block-triangular
matrix
Proposition 12.3.9, 730
Proposition 12.3.10,
730

definition
Definition 12.3.1, 728

equivalent
expressions
Lemma 12.3.2, 728

full-state feedback
Proposition 12.3.5, 729

identity shift
Lemma 12.3.7, 730

invariant subspace
Corollary 12.3.4, 729

nonsingular matrix
Proposition 12.3.10,
730

orthogonal matrix
Proposition 12.3.9, 730

projector
Lemma 12.3.6, 729

unstable equilibrium
definition
Definition 11.7.1, 660

unstable matrix
positive matrix
Fact 11.18.20, 701

unstable subspace
complementary
subspaces
Proposition 11.8.8, 665

definition, 665
idempotent matrix
Proposition 11.8.8, 665

invariant subspace
Proposition 11.8.8, 665

semistable matrix
Proposition 11.8.8, 665

upper block-triangular
matrix

characteristic
polynomial
Fact 4.10.11, 267

definition
Definition 3.1.3, 167
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inverse matrix
Fact 2.17.7, 148
Fact 2.17.9, 148

minimal polynomial
Fact 4.10.12, 268

orthogonally similar
matrices
Corollary 5.4.2, 293

power
Fact 2.12.21, 128

upper bound
positive-definite
matrix
Fact 8.10.31, 459

upper bound for a
partial ordering

definition
Definition 1.3.9, 7

upper Hessenberg
regular pencil
Fact 5.17.3, 358

simultaneous
orthogonal
biequivalence
transformation
Fact 5.17.3, 358

upper Hessenberg
matrix

definition
Definition 3.1.3, 167

upper triangular
regular pencil
Fact 5.17.3, 358

simultaneous
orthogonal
biequivalence
transformation
Fact 5.17.3, 358

upper triangular matrix
commutator
Fact 3.17.11, 214

definition
Definition 3.1.3, 167

factorization
Fact 5.15.8, 346
Fact 5.15.10, 346

group
Fact 3.21.5, 222
Fact 11.22.1, 715

Heisenberg group
Fact 3.21.5, 222
Fact 11.22.1, 715

invariant subspace
Fact 5.9.2, 311

Kronecker product
Fact 7.4.3, 405

Lie algebra
Fact 3.21.4, 222
Fact 11.22.1, 715

matrix exponential
Fact 11.11.4, 672
Fact 11.13.1, 677
Fact 11.13.16, 680

matrix power
Fact 3.18.7, 216

matrix product
Fact 3.20.18, 221

nilpotent matrix
Fact 3.17.11, 214

orthogonally similar
matrices
Corollary 5.4.3, 293

positive diagonal
Fact 5.15.9, 346

positive-semidefinite
matrix
Fact 8.9.37, 454

similar matrices
Fact 5.9.2, 311

Toeplitz matrix
Fact 3.18.7, 216
Fact 11.13.1, 677

unitarily similar
matrices
Theorem 5.4.1, 292

unitary matrix
Fact 5.15.8, 346

Urquhart
generalized inverse
Fact 6.3.14, 372

V

Vandermonde matrix

companion matrix
Fact 5.16.4, 354

determinant
Fact 5.16.3, 354

Fourier matrix
Fact 5.16.7, 355

polynomial
Fact 5.16.6, 355

similar matrices
Fact 5.16.5, 354

variance
Laguerre-Samuelson
inequality
Fact 1.15.12, 51
Fact 8.9.35, 454

variance inequality
mean
Fact 1.15.12, 51
Fact 8.9.35, 454

variation of constants
formula

state equation
Proposition 12.1.1, 723

variational cone
definition, 625
dimension
Fact 10.8.20, 633

vec
definition, 399
Kronecker
permutation matrix
Fact 7.4.29, 407

Kronecker product
Fact 7.4.5, 405
Fact 7.4.6, 405
Fact 7.4.8, 405

matrix product
Fact 7.4.6, 405

quadruple product
Fact 7.4.9, 405

trace
Proposition 7.1.1, 399
Fact 7.4.7, 405
Fact 7.4.9, 405

triple product
Proposition 7.1.9, 401
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vector
definition, 78
Hölder norm
Fact 9.7.34, 571

vector derivative
quadratic form
Proposition 10.7.1, 630

vector identity
cosine law
Fact 9.7.4, 563

parallelogram law
Fact 9.7.4, 563

polarization identity
Fact 9.7.4, 563

Pythagorean
theorem
Fact 9.7.4, 563

vector inequality
Hölder’s inequality
Proposition 9.1.6, 545

norm inequality
Fact 9.7.11, 567
Fact 9.7.12, 567
Fact 9.7.14, 568
Fact 9.7.15, 568

vibration equation
matrix exponential
Example 11.3.7, 653

volume
convex polyhedron
Fact 2.20.20, 160

ellipsoid
Fact 3.7.35, 184

hyperellipsoid
Fact 3.7.35, 184

parallelepiped
Fact 2.20.16, 160
Fact 2.20.17, 160

simplex
Fact 2.20.19, 160

tetrahedron
Fact 2.20.15, 160

transformed set
Fact 2.20.18, 160

von Neumann

symmetric gauge
function and
unitarily invariant
norm
Fact 9.8.42, 579

von Neumann’s trace
inequality

trace and singular
value
Fact 9.12.1, 599

von Neumann–Jordan
inequality

norm inequality
Fact 9.7.11, 567

W

walk
connected graph
Fact 4.11.4, 273

definition
Definition 1.4.3, 9

graph
Fact 4.11.3, 273

Walker’s inequality
scalar inequality
Fact 1.11.22, 45

Walsh
polynomial root
bound
Fact 11.20.5, 709

Wang’s inequality
scalar inequality
Fact 1.15.13, 51

weak diagonal
dominance theorem

nonsingular matrix
Fact 4.10.19, 270

weak log majorization
definition
Definition 2.1.1, 78

eigenvalue
Fact 8.18.27, 521

singular value
Proposition 9.6.2, 561

weak majorization
Fact 2.21.13, 164

weak majorization
convex function
Fact 2.21.8, 163
Fact 2.21.9, 163
Fact 2.21.10, 163
Fact 2.21.11, 163
Fact 8.18.5, 513

definition
Definition 2.1.1, 78

eigenvalue
Fact 8.17.5, 509
Fact 8.18.5, 513
Fact 8.18.6, 514
Fact 8.18.27, 521

eigenvalue of
Hermitian part
Fact 5.11.27, 326

increasing function
Fact 2.21.10, 163

matrix exponential
Fact 11.16.4, 692

positive-semidefinite
matrix
Fact 8.18.6, 514

powers
Fact 2.21.14, 164

scalar inequality
Fact 2.21.2, 162
Fact 2.21.3, 162

Schur product
Fact 9.14.31, 615

singular value
Proposition 9.2.2, 548
Proposition 9.6.3, 561
Fact 5.11.27, 326
Fact 8.17.5, 509
Fact 8.18.7, 514
Fact 9.14.19, 611
Fact 9.14.20, 612

singular value
inequality
Fact 8.18.21, 519
Fact 9.13.17, 604
Fact 9.13.18, 605
Fact 9.13.20, 605
Fact 9.14.31, 615
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symmetric gauge
function
Fact 2.21.14, 164

weak log
majorization
Fact 2.21.13, 164

Weyl majorant
theorem
Fact 9.13.20, 605

Weyl’s inequalities
Fact 8.17.5, 509

weakly unitarily
invariant norm

definition, 547
matrix power
Fact 9.8.38, 577

numerical radius
Fact 9.8.38, 577

Wei-Norman expansion
time-varying
dynamics
Fact 11.13.4, 678

Weierstrass
cogredient
diagonalization of
positive-definite
matrices
Fact 8.16.2, 507

Weierstrass canonical
form

pencil
Proposition 5.7.3, 305

weighted
arithmetic-mean–
geometric-mean
inequality

arithmetic-mean–
geometric-mean
inequality
Fact 1.15.32, 56

Weyl, 428
singular value
inequality
Fact 5.11.28, 326

singular values and
strong log
majorization
Fact 9.13.19, 605

Weyl majorant theorem
singular values and
weak majorization
Fact 9.13.20, 605

Weyl’s inequalities
weak majorization
and singular values
Fact 8.17.5, 509

Weyl’s inequality
Hermitian matrix
eigenvalues
Theorem 8.4.9, 427
Fact 8.10.4, 456

Wielandt
eigenvalue
perturbation
Fact 9.12.9, 601

positive power of a
primitive matrix
Fact 4.11.5, 273

Wielandt inequality
quadratic form
inequality
Fact 8.15.29, 505

X

Xie
asymptotically stable
polynomial
Fact 11.17.7, 697

Y

Yamamoto
singular value limit
Fact 9.13.22, 606

Young inequality
positive-definite
matrix
Fact 8.9.42, 455

Fact 8.10.46, 464
reverse inequality
Fact 1.10.22, 34

scalar inequality
Fact 1.10.21, 33

Specht’s ratio
Fact 1.10.22, 34

Young’s inequality
positive-semidefinite
matrix
Fact 8.12.12, 477

positive-semidefinite
matrix inequality
Fact 9.14.22, 612

scalar case
Fact 1.10.32, 36
Fact 1.15.31, 56

Z

Z-matrix
definition
Definition 3.1.4, 168

M-matrix
Fact 4.11.6, 275
Fact 4.11.8, 276

M-matrix inequality
Fact 4.11.8, 276

matrix exponential
Fact 11.19.1, 706

minimum eigenvalue
Fact 4.11.9, 276

submatrix
Fact 4.11.7, 276

Zassenhaus expansion
time-varying
dynamics
Fact 11.13.4, 678

Zassenhaus product
formula

matrix exponential
Fact 11.14.18, 685

zero
blocking
Definition 4.7.10, 251

invariant
Definition 12.10.1, 757
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invariant and
determinant
Fact 12.22.14, 800

invariant and
equivalent
realizations
Proposition 12.10.10,
764

invariant and
full-state feedback
Proposition 12.10.10,
764

Fact 12.22.14, 800
invariant and
observable pair
Corollary 12.10.12, 765

invariant and
transmission
Theorem 12.10.8, 762

invariant and
unobservable
eigenvalue

Proposition 12.10.11,
764

transmission
Definition 4.7.10, 251
Proposition 4.7.12, 251

transmission and
invariant
Theorem 12.10.8, 762

zero diagonal
commutator
Fact 3.8.2, 184

zero entry
reducible matrix
Fact 3.20.1, 217
Fact 3.20.2, 217

zero matrix
definition, 83
positive-semidefinite
matrix
Fact 8.10.10, 457

trace
Fact 2.12.14, 127
Fact 2.12.15, 127

zero of a rational
function

definition
Definition 4.7.1, 249

zero trace
Shoda’s theorem
Fact 5.9.18, 313

zeros matrix
maximal null space
Fact 2.12.12, 127

zeta function
Euler product
formula
Fact 1.7.8, 19
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