Matrix Mathematics

Matrix Mathematics

Theory, Facts, and Formulas

Dennis S. Bernstein

PRINCETON UNIVERSITY PRESS
PRINCETON AND OXFORD

Copyright © 2009 by Princeton University Press
Published by Princeton University Press,
41 William Street, Princeton, New Jersey 08540

In the United Kingdom: Princeton University Press,
6 Oxford Street, Woodstock, Oxfordshire, 0X20 1TW
All Rights Reserved

Library of Congress Cataloging-in-Publication Data

Bernstein, Dennis S., 1954-
Matrix mathematics: theory, facts, and formulas / Dennis S. Bernstein. - 2nd ed. p. cm .

Includes bibliographical references and index.
ISBN 978-0-691-13287-7 (hardcover : alk. paper)
ISBN 978-0-691-14039-1 (pbk. : alk. paper)

1. Matrices. 2. Linear systems. I. Title.

QA188.B475 2008
512.9'434-dc22

British Library Cataloging-in-Publication Data is available
This book has been composed in Computer Modern and Helvetica.
The publisher would like to acknowledge the author of this volume for providing the camera-ready copy from which this book was printed.

Printed on acid-free paper. ∞
www.press.princeton.edu

Printed in the United States of America
$\begin{array}{llllllllll}10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1\end{array}$

To the memory of my parents
... vessels, unable to contain the great light flowing into them, shatter and break. ... the remains of the broken vessels fall... into the lowest world, where they remain scattered and hidden

- D. W. Menzi and Z. Padeh, The Tree of Life, Chayyim Vital's Introduction to the Kabbalah of Isaac Luria, Jason Aaronson, Northvale, 1999

Thor ... placed the horn to his lips ... He drank with all his might and kept drinking as long as ever he was able; when he paused to look, he could see that the level had sunk a little, ... for the other end lay out in the ocean itself.

- P. A. Munch, Norse Mythology,

AMS Press, New York, 1970

Contents

Preface to the Second Edition xv
Preface to the First Edition xvii
Special Symbols xxi
Conventions, Notation, and Terminology xxxiii

1. Preliminaries 1
1.1 Logic and Sets 1
1.2 Functions 3
1.3 Relations 5
1.4 Graphs 8
1.5 Facts on Logic, Sets, Functions, and Relations 10
1.6 Facts on Graphs 13
1.7 Facts on Binomial Identities and Sums 14
1.8 Facts on Convex Functions 21
1.9 Facts on Scalar Identities and Inequalities in One Variable 22
1.10 Facts on Scalar Identities and Inequalities in Two Variables 30
1.11 Facts on Scalar Identities and Inequalities in Three Variables 39
1.12 Facts on Scalar Identities and Inequalities in Four Variables 46
1.13 Facts on Scalar Identities and Inequalities in Six Variables 47
1.14 Facts on Scalar Identities and Inequalities in Eight Variables 47
1.15 Facts on Scalar Identities and Inequalities in n Variables 48
1.16 Facts on Scalar Identities and Inequalities in $2 n$ Variables 60
1.17 Facts on Scalar Identities and Inequalities in $3 n$ Variables 67
1.18 Facts on Scalar Identities and Inequalities in Complex Variables 68
1.19 Facts on Trigonometric and Hyperbolic Identities 74
1.20 Notes 76
2. Basic Matrix Properties 77
2.1 Matrix Algebra 77
2.2 Transpose and Inner Product 84
2.3 Convex Sets, Cones, and Subspaces 89
2.4 Range and Null Space 93
2.5 Rank and Defect 95
2.6 Invertibility 98
2.7 The Determinant 102
2.8 Partitioned Matrices 106
2.9 Facts on Polars, Cones, Dual Cones, Convex Hulls, and Sub- spaces 110
2.10 Facts on Range, Null Space, Rank, and Defect 115
2.11 Facts on the Range, Rank, Null Space, and Defect of Partitioned Matrices 120
2.12 Facts on the Inner Product, Outer Product, Trace, and Matrix Powers 126
2.13 Facts on the Determinant 128
2.14 Facts on the Determinant of Partitioned Matrices 132
2.15 Facts on Left and Right Inverses 140
2.16 Facts on the Adjugate and Inverses 141
2.17 Facts on the Inverse of Partitioned Matrices 146
2.18 Facts on Commutators 149
2.19 Facts on Complex Matrices 151
2.20 Facts on Geometry 154
2.21 Facts on Majorization 162
2.22 Notes 164
3. Matrix Classes and Transformations 165
3.1 Matrix Classes 165
3.2 Matrices Based on Graphs 170
3.3 Lie Algebras and Groups 171
3.4 Matrix Transformations 173
3.5 Proiectors, Idempotent Matrices, and Subspaces 175
3.6 Facts on Group-Invertible and Range-Hermitian Matrices 177
3.7 Facts on Normal, Hermitian, and Skew-Hermitian Matrices 178
3.8 Facts on Commutators 184
3.9 Facts on Linear Interpolation 185
3.10 Facts on the Cross Product 186
3.11 Facts on Unitary and Shifted-Unitary Matrices 189
3.12 Facts on Idempotent Matrices 198
3.13 Facts on Projectors 206
3.14 Facts on Reflectors 211
3.15 Facts on Involutory Matrices 212
3.16 Facts on Tripotent Matrices 212
3.17 Facts on Nilpotent Matrices 213
3.18 Facts on Hankel and Toeplitz Matrices 215
3.19 Facts on Hamiltonian and Symplectic Matrices 216
3.20 Facts on Miscellaneous Types of Matrices 217
3.21 Facts on Groups 221
3.22 Facts on Quaternions 225
3.23 Notes 229
4. Polynomial Matrices and Rational Transfer Functions 231
4.1 Polynomials 231
4.2 Polynomial Matrices 234
4.3 The Smith Decomposition and Similarity Invariants 236
4.4 Eigenvalues 239
4.5 Eigenvectors 245
4.6 The Minimal Polynomial 247
4.7 Rational Transfer Functions and the Smith-McMillan Decomposition 249
4.8 Facts on Polvnomials and Rational Functions 253
4.9 Facts on the Characteristic and Minimal Polynomials 260
4.10 Facts on the Spectrum 265
4.11 Facts on Graphs and Nonnegative Matrices 272
4.12 Notes 281
5. Matrix Decompositions 283
5.1 Smith Form 283
5.2 Multicompanion Form 283
5.3 Hypercompanion Form and Jordan Form 287
5.4 Schur Decomposition 292
5.5 Eigenstructure Properties 295
5.6 Singular Value Decomposition 301
5.7 Pencils and the Kronecker Canonical Form 304
5.8 Facts on the Inertia 307
5.9 Facts on Matrix Transformations for One Matrix 311
5.10 Facts on Matrix Transformations for Two or More Matrices 316
5.11 Facts on Eigenvalues and Singular Values for One Matrix 321
5.12 Facts on Eigenvalues and Singular Values for Two or More Matrices 333
5.13 Facts on Matrix Pencils 338
5.14 Facts on Matrix Eigenstructure 338
5.15 Facts on Matrix Factorizations 345
5.16 Facts on Companion, Vandermonde, and Circulant Matrices 352
5.17 Facts on Simultaneous Transformations 358
5.18 Facts on the Polar Decomposition 359
5.19 Facts on Additive Decompositions 360
5.20 Notes 361
6. Generalized Inverses 363
6.1 Moore-Penrose Generalized Inverse 363
6.2 Drazin Generalized Inverse 367
6.3 Facts on the Moore-Penrose Generalized Inverse for One Matrix 369
6.4 Facts on the Moore-Penrose Generalized Inverse for Two or More Matrices 377
6.5 Facts on the Moore-Penrose Generalized Inverse for Partitioned Matrices 385
6.6 Facts on the Drazin and Group Generalized Inverses 393
6.7 Notes 398
7. Kronecker and Schur Algebra 399
7.1 Kronecker Product 399
7.2 Kronecker Sum and Linear Matrix Equations 402
7.3 Schur Product 404
7.4 Facts on the Kronecker Product 405
7.5 Facts on the Kronecker Sum 409
7.6 Facts on the Schur Product 413
7.7 Notes 416
8. Positive-Semidefinite Matrices 417
8.1 Positive-Semidefinite and Positive-Definite Orderings 417
8.2 Submatrices 419
8.3 Simultaneous Diagonalization 422
8.4 Eiqenvalue Inequalities 424
8.5 Exponential, Square Root, and Logarithm of Hermitian Matrices 430
8.6 Matrix Inequalities 431
8.7 Facts on Range and Rank 443
8.8 Facts on Structured Positive-Semidefinite Matrices 444
8.9 Facts on Identities and Inequalities for One Matrix 450
8.10 Facts on Identities and Inequalities for Two or More Matrices 456
8.11 Facts on Identities and Inequalities for Partitioned Matrices 467
8.12 Facts on the Trace 475
8.13 Facts on the Determinant 485
8.14 Facts on Convex Sets and Convex Functions 494
8.15 Facts on Quadratic Forms 500
8.16 Facts on Simultaneous Diagonalization 507
8.17 Facts on Eigenvalues and Singular Values for One Matrix 508
8.18 Facts on Eigenvalues and Singular Values for Two or More Matrices 512
8.19 Facts on Alternative Partial Orderings 522
8.20 Facts on Generalized Inverses 525
8.21 Facts on the Kronecker and Schur Products 531
8.22 Notes 541
9. Norms 543
9.1 Vector Norms 543
9.2 Matrix Norms 546
9.3 Compatible Norms 549
9.4 Induced Norms 553
9.5 Induced Lower Bound 558
9.6 Sinqular Value Inequalities 560
9.7 Facts on Vector Norms 563
9.8 Facts on Matrix Norms for One Matrix 571
9.9 Facts on Matrix Norms for Two or More Matrices 580
9.10 Facts on Matrix Norms for Partitioned Matrices 593
9.11 Facts on Matrix Norms and Eigenvalues Involving One Matrix 596
9.12 Facts on Matrix Norms and Eigenvalues Involving Two or More Matrices 599
9.13 Facts on Matrix Norms and Singular Values for One Matrix 602
9.14 Facts on Matrix Norms and Singular Values for Two or More Matrices 607
9.15 Facts on Least Squares 618
CONTENTS xiii
9.16 Notes 619
10. Functions of Matrices and Their Derivatives 621
10.1 Open Sets and Closed Sets 621
10.2 Limits 622
10.3 Continuity 623
10.4 Derivatives 625
10.5 Functions of a Matrix 628
10.6 Matrix Square Root and Matrix Sign Functions 629
10.7 Matrix Derivatives 630
10.8 Facts Involving One Set 632
10.9 Facts Involving Two or More Sets 634
10.10 Facts on Matrix Functions 637
10.11 Facts on Functions and Derivatives 638
10.12 Notes 642
11.The Matrix Exponential and Stability Theory 643
11.1 Definition of the Matrix Exponential 643
11.2 Structure of the Matrix Exponential 646
11.3 Explicit Expressions 651
11.4 Matrix Logarithms 654
11.5 The Logarithm Function 656
11.6 Lie Groups 658
11.7 Lvapunov Stability Theory 660
11.8 Linear Stability Theory 662
11.9 The Lyapunov Equation 666
11.10 Discrete-Time Stability Theory 669
11.11 Facts on Matrix Exponential Formulas 671
11.12 Facts on the Matrix Sine and Cosine 677
11.13 Facts on the Matrix Exponential for One Matrix 677
11.14 Facts on the Matrix Exponential for Two or More Matrices 681
11.15 Facts on the Matrix Exponential and Eigenvalues, Singular Values, and Norms for One Matrix 689
11.16 Facts on the Matrix Exponential and Eigenvalues, Singular Values, and Norms for Two or More Matrices 692
11.17 Facts on Stable Polynomials 695
11.18 Facts on Stable Matrices 698
11.19 Facts on Almost Nonnegative Matrices 706
11.20 Facts on Discrete-Time-Stable Polynomials 708
11.21 Facts on Discrete-Time-Stable Matrices 712
11.22 Facts on Lie Groups 715
11.23 Facts on Subspace Decomposition 716
11.24 Notes 722
11. Linear Systems and Control Theory 723
12.1 State Space and Transfer Function Models 723
12.2 Laplace Transform Analysis 726
12.3 The Unobservable Subspace and Observability 727
12.4 Observable Asymptotic Stability 732
12.5 Detectability 734
12.6 The Controllable Subspace and Controllability 735
12.7 Controllable Asymptotic Stability 743
12.8 Stabilizability 747
12.9 Realization Theory 749
12.10 Zeros 757
12.11 H, System Norm 765
12.12 Harmonic Steady-State Response 768
12.13 System Interconnections 770
12.14 Standard Control Problem 772
12.15 Linear-Quadratic Control 775
12.16 Solutions of the Riccati Equation 778
12.17 The Stabilizing Solution of the Riccati Equation 782
12.18 The Maximal Solution of the Riccati Equation 787
12.19 Positive-Semidefinite and Positive-Definite Solutions of the Riccati Equation 789
12.20 Facts on Stability, Observability, and Controllability 790
12.21 Facts on the Lvapunov Equation and Inertia 793
12.22 Facts on Realizations and the H_{2} System Norm 798
12.23 Facts on the Riccati Equation 802
12.24 Notes 805
Bibliography 807
Author Index 891
Index 903

Preface to the Second Edition

This second edition of Matrix Mathematics represents a major expansion of the original work. While the total number of pages is increased 46% from 752 to 1100 , the increase is actually greater since this edition is typeset in a smaller font to facilitate a manageable physical size.

The second edition expands on the first edition in several ways. For example, the new version includes material on graphs (developed within the framework of relations and partially ordered sets), as well as alternative partial orderings of matrices, such as rank subtractivity, star, and generalized Löwner. This edition also includes additional material on the Kronecker canonical form and matrix pencils; realizations of finite groups; zeros of multi-input, multi-output transfer functions; identities and inequalities for real and complex numbers; bounds on the roots of polynomials; convex functions; and vector and matrix norms.

The additional material as well as works published subsequent to the first edition increased the number of cited works from 820 to 1503 , an increase of 83%. To increase the utility of the bibliography, this edition uses the "back reference" feature of LATEX, which indicates where each reference is cited in the text. As in the first edition, the second edition includes an author index. The expansion of the first edition resulted in an increase in the size of the index from 108 pages to 156 pages.

The first edition included 57 problems, while the current edition has 73. These problems represent various extensions or generalizations of known results, sometimes motivated by gaps in the literature.

In this edition, I have attempted to correct all errors that appeared in the first edition. As with the first edition, readers are encouraged to contact me about errors or omissions in the current edition, which I will periodically update on my home page.

Acknowledgments

I am grateful to many individuals who graciously provided useful advice and material for this edition. Some readers alerted me to errors, while others suggested additional material. In other cases I sought out researchers to help me understand the precise nature of interesting results. At the risk of omitting those who were helpful, I am pleased to acknowledge the following: Mark Balas, Jason Bernstein, Vijay Chellaboina, Sever Dragomir, Harry Dym, Masatoshi Fujii, Rishi Graham, Wassim Haddad, Nicholas Higham, Diederich Hinrichsen, Iman Izadi, Pierre Kabamba,

Marthe Kassouf, Christopher King, Michael Margliot, Roy Mathias, Peter Mercer, Paul Otanez, Bela Palancz, Harish Palanthandalam-Madapusi, Fotios Paliogiannis, Wei Ren, Mario Santillo, Christoph Schmoeger, Wasin So, Robert Sullivan, Yongge Tian, Panagiotis Tsiotras, Götz Trenkler, Chenwei Zhang, and Fuzhen Zhang.

As with the first edition, I am especially indebted to my family, who endured three more years of my consistent absence to make this revision a reality. It is clear that any attempt to fully embrace the enormous body of mathematics known as matrix theory is a neverending task. After committing almost two decades to the project, I remain, like Thor, barely able to perceive a dent in the vast knowledge that resides in the hundreds of thousands of pages devoted to this fascinating and incredibly useful subject. Yet, it my hope, that this book will prove to be valuable to all of those who use matrices, and will inspire interest in a mathematical construction whose secrets and mysteries know no bounds.

Dennis S. Bernstein
Ann Arbor, Michigan
dsbaero@umich.edu
October 2008

Preface to the First Edition

The idea for this book began with the realization that at the heart of the solution to many problems in science, mathematics, and engineering often lies a "matrix fact," that is, an identity, inequality, or property of matrices that is crucial to the solution of the problem. Although there are numerous excellent books on linear algebra and matrix theory, no one book contains all or even most of the vast number of matrix facts that appear throughout the scientific, mathematical, and engineering literature. This book is an attempt to organize many of these facts into a reference source for users of matrix theory in diverse applications areas.

Viewed as an extension of scalar mathematics, matrix mathematics provides the means to manipulate and analyze multidimensional quantities. Matrix mathematics thus provides powerful tools for a broad range of problems in science and engineering. For example, the matrix-based analysis of systems of ordinary differential equations accounts for interaction among all of the state variables. The discretization of partial differential equations by means of finite differences and finite elements yields linear algebraic or differential equations whose matrix structure reflects the nature of physical solutions [1238. Multivariate probability theory and statistical analysis use matrix methods to represent probability distributions, to compute moments, and to perform linear regression for data analysis [504, 606, 654, 702, 947, 1181. The study of linear differential equations 691, 692, 727] depends heavily on matrix analysis, while linear systems and control theory are matrix-intensive areas of engineering [3, 65, 142, 146, 311, 313, 348, 371, 373, 444, 502, 616, 743, 852, 865, 935, 1094 1145, 1153, 1197, 1201, 1212, 1336, 1368, 1455, 1498. In addition, matrices are widely used in rigid body dynamics [26, 726, 733, 789, 806, 850, 970, 1026 $10681069,1185,1200,122211351$, structural mechanics [863, 990, 1100, computational fluid dynamics [305, 479, 1426, circuit theory [30], queuing and stochastic systems [642, 919, 1034, econometrics [403, 948, 1119], geodesy [1241, game theory [225, 898, 1233, computer graphics 62, 498, computer vision 941, optimization [255, 374, 253], signal processing [702, 1163, 1361], classical and quantum information theory [353, 702, 1042, 1086, communications systems [778, 779], statistics [580, 654, 948, 1119, 1177, statistical mechanics 16, 159, 160, 1372, demography [297, 805], combinatorics, networks, and graph theory [165, 128, 179, 223, 235, 266 [269, 302, 303, 335, 363, 405, 428, 481, 501, 557, 602, 702, 844, 920, 931, 1143, 1387, optics [549, 659, 798, dimensional analysis 641, 1252, and number theory 841 .

In all applications involving matrices, computational techniques are essential for obtaining numerical solutions. The development of efficient and reliable algorithms for matrix computations is therefore an important area of research that has been
extensively developed [95, 304, 396, 569, 681, 683, [721, 752, 1224, 1225, 1227, 1229 131513691427,143114331478 . To facilitate the solution of matrix problems, entire computer packages have been developed using the language of matrices. However, this book is concerned with the analytical properties of matrices rather than their computational aspects.

This book encompasses a broad range of fundamental questions in matrix theory, which, in many cases can be viewed as extensions of related questions in scalar mathematics. A few such questions follow.

What are the basic properties of matrices? How can matrices be characterized, classified, and quantified?

How can a matrix be decomposed into simpler matrices? A matrix decomposition may involve addition, multiplication, and partition. Decomposing a matrix into its fundamental components provides insight into its algebraic and geometric properties. For example, the polar decomposition states that every square matrix can be written as the product of a rotation and a dilation analogous to the polar representation of a complex number.

Given a pair of matrices having certain properties, what can be inferred about the sum, product, and concatenation of these matrices? In particular, if a matrix has a given property, to what extent does that property change or remain unchanged if the matrix is perturbed by another matrix of a certain type by means of addition, multiplication, or concatenation? For example, if a matrix is nonsingular, how large can an additive perturbation to that matrix be without the sum becoming singular?

How can properties of a matrix be determined by means of simple operations? For example, how can the location of the eigenvalues of a matrix be estimated directly in terms of the entries of the matrix?

To what extent do matrices satisfy the formal properties of the real numbers? For example, while $0 \leq a \leq b$ implies that $a^{r} \leq b^{r}$ for real numbers a, b and a positive integer r, when does $0 \leq A \leq B$ imply $A^{r} \leq B^{r}$ for positive-semidefinite matrices A and B and with the positive-semidefinite ordering?

Questions of these types have occupied matrix theorists for at least a century, with motivation from diverse applications. The existing scope and depth of knowledge are enormous. Taken together, this body of knowledge provides a powerful framework for developing and analyzing models for scientific and engineering applications.

This book is intended to be useful to at least four groups of readers. Since linear algebra is a standard course in the mathematical sciences and engineering, graduate students in these fields can use this book to expand the scope of their
linear algebra text. For instructors, many of the facts can be used as exercises to augment standard material in matrix courses. For researchers in the mathematical sciences, including statistics, physics, and engineering, this book can be used as a general reference on matrix theory. Finally, for users of matrices in the applied sciences, this book will provide access to a large body of results in matrix theory. By collecting these results in a single source, it is my hope that this book will prove to be convenient and useful for a broad range of applications. The material in this book is thus intended to complement the large number of classical and modern texts and reference works on linear algebra and matrix theory [10, 376, 503, 540, 541, [558, 586, 701, 790, 872, 939, 956, 963, 1008, 1045, 1051, $1098,1143,1194,1238$.

After a review of mathematical preliminaries in Chapter 1, fundamental properties of matrices are described in Chapter 2. Chapter 3 summarizes the major classes of matrices and various matrix transformations. In Chapter 4 we turn to polynomial and rational matrices whose basic properties are essential for understanding the structure of constant matrices. Chapter 5 is concerned with various decompositions of matrices including the Jordan, Schur, and singular value decompositions. Chapter 6 provides a brief treatment of generalized inverses, while Chapter 7 describes the Kronecker and Schur product operations. Chapter 8 is concerned with the properties of positive-semidefinite matrices. A detailed treatment of vector and matrix norms is given in Chapter 9, while formulas for matrix derivatives are given in Chapter 10. Next, Chapter 11 focuses on the matrix exponential and stability theory, which are central to the study of linear differential equations. In Chapter 12 we apply matrix theory to the analysis of linear systems, their state space realizations, and their transfer function representation. This chapter also includes a discussion of the matrix Riccati equation of control theory.

Each chapter provides a core of results with, in many cases, complete proofs. Sections at the end of each chapter provide a collection of Facts organized to correspond to the order of topics in the chapter. These Facts include corollaries and special cases of results presented in the chapter, as well as related results that go beyond the results of the chapter. In some cases the Facts include open problems, illuminating remarks, and hints regarding proofs. The Facts are intended to provide the reader with a useful reference collection of matrix results as well as a gateway to the matrix theory literature.

Acknowledgments

The writing of this book spanned more than a decade and a half, during which time numerous individuals contributed both directly and indirectly. I am grateful for the helpful comments of many people who contributed technical material and insightful suggestions, all of which greatly improved the presentation and content of the book. In addition, numerous individuals generously agreed to read sections or chapters of the book for clarity and accuracy. I wish to thank Jasim Ahmed, Suhail Akhtar, David Bayard, Sanjay Bhat, Tony Bloch, Peter Bullen, Steve Campbell, Agostino Capponi, Ramu Chandra, Jaganath Chandrasekhar, Nalin Chaturvedi, Vijay Chellaboina, Jie Chen, David Clements, Dan Davison, Dimitris Dimogianopoulos, Jiu Ding, D. Z. Djokovic, R. Scott Erwin, R. W. Farebrother, Danny Georgiev, Joseph Grcar, Wassim Haddad, Yoram Halevi, Jesse Hoagg, Roger Horn, David Hyland, Iman Izadi, Pierre Kabamba, Vikram Kapila,

Fuad Kittaneh, Seth Lacy, Thomas Laffey, Cedric Langbort, Alan Laub, Alexander Leonessa, Kai-Yew Lum, Pertti Makila, Roy Mathias, N. Harris McClamroch, Boris Mordukhovich, Sergei Nersesov, JinHyoung Oh, Concetta Pilotto, Harish Palanthandalum-Madapusi, Michael Piovoso, Leiba Rodman, Phil Roe, Carsten Scherer, Wasin So, Andy Sparks, Edward Tate, Yongge Tian, Panagiotis Tsiotras, Feng Tyan, Ravi Venugopal, Jan Willems, Hong Wong, Vera Zeidan, Xingzhi Zhan, and Fuzhen Zhang for their assistance. Nevertheless, I take full responsibility for any remaining errors, and I encourage readers to alert me to any mistakes, corrections of which will be posted on the web. Solutions to the open problems are also welcome.

Portions of the manuscript were typed by Jill Straehla and Linda Smith at Harris Corporation, and by Debbie Laird, Kathy Stolaruk, and Suzanne Smith at the University of Michigan. John Rogosich of Techsetters, Inc., provided invaluable assistance with LATEX issues, and Jennifer Slater carefully copyedited the entire manuscript. I also thank JinHyoung Oh and Joshua Kang for writing C code to refine the index.

I especially thank Vickie Kearn of Princeton University Press for her wise guidance and constant encouragement. Vickie managed to address all of my concerns and anxieties, and helped me improve the manuscript in many ways.

Finally, I extend my greatest appreciation for the (uncountably) infinite patience of my family, who endured the days, weeks, months, and years that this project consumed. The writing of this book began with toddlers and ended with a teenager and a twenty-year old. We can all be thankful it is finally finished.

Dennis S. Bernstein
Ann Arbor, Michigan
dsbaero@umich.edu
January 2005

Special Symbols

General Notation

π
e
\triangleq
$\lim _{\varepsilon \downarrow 0}$
$\binom{\alpha}{m}$
$\binom{n}{m}$
$\lfloor a\rfloor$
$\delta_{i j}$
\log
$\operatorname{sign} \alpha$

Chapter 1

正
3.14159 ...
2.71828 ...
equals by definition
limit from the right
$\frac{\alpha(\alpha-1) \cdots(\alpha-m+1)}{m!}$
$\frac{n!}{m!(n-m)!}$
largest integer less than or equal to a
1 if $i=j, 0$ if $i \neq j$ (Kronecker delta)
logarithm with base e
1 if $\alpha>0,-1$ if $\alpha<0,0$ if $\alpha=0$
set (p. 2)
is an element of (p. 2)
is not an element of (p. 2)
empty set (p. 2)
multiset (p. 2)
cardinality (p. 2)
intersection (p. (2)
union (p. 2)
complement of X relative to y (p. (2)
complement of X (p. 2)

\subseteq	is a subset of (p. 2)
\subset	is a proper subset of (p. 3)
$\left(x_{1}, \ldots, x_{n}\right)$	tuple or n-tuple (p. 3)
Graph (f)	$\{(x, f(x)): x \in \mathcal{X}\}$ (p. 3)
$f: X \mapsto y$	f is a function with domain X and codomain y (p. 3)
$f \bullet g$	composition of functions f and g (p. 3)
$f^{-1}(\mathcal{S})$	inverse image of \mathcal{S} (p.4)
$\operatorname{rev}(\mathcal{R})$	reversal of the relation \mathcal{R} (p. 5)
\mathcal{R}^{\sim}	complement of the relation \mathcal{R} (p. 5)
$\operatorname{ref}(\mathcal{R})$	reflexive hull of the relation \mathcal{R} (p. 50)
$\operatorname{sym}(\mathcal{R})$	symmetric hull of the relation \mathcal{R} (p. 5)
$\operatorname{trans}(\mathcal{R})$	transitive hull of the relation \mathcal{R} (p. 5])
$\operatorname{equiv}(\mathcal{R})$	equivalence hull of the relation \mathcal{R} (p. 5)
$x \stackrel{\mathcal{R}}{=} y$	(x, y) is an element of the equivalence relation \mathcal{R} (p. 6)
$\operatorname{glb}(\mathcal{S})$	greatest lower bound of \mathcal{S} (p. 7) Definition 1.3.9)
$\operatorname{lub}(\mathcal{S})$	least upper bound of \mathcal{S} (p. 7 , Definition 1.3.9)
$\inf (\mathcal{S})$	infimum of \mathcal{S} (p. 7 Definition 1.3.9)
$\sup (\mathcal{S})$	supremum of \mathcal{S} (p. 7, Definition 1.3.9)
$\operatorname{rev}(\mathcal{G})$	reversal of the graph \mathcal{G} (p. 8)
\mathcal{G}^{\sim}	complement of the graph \mathcal{G} (p. 8)
$\operatorname{ref}(\mathcal{G})$	reflexive hull of the graph \mathcal{G} (p. 8)
$\operatorname{sym}(\mathcal{G})$	symmetric hull of the graph \mathcal{G} (p. 8)
$\operatorname{trans}(\mathcal{G})$	transitive hull of the graph \mathcal{G} (p. 8)
$\operatorname{equiv}(\mathcal{G})$	equivalence hull of the graph \mathcal{G} (p. 8)
indeg (x)	indegree of the node x (p. 9)
outdeg (x)	outdegree of the node x (p. 9)
$\operatorname{deg}(x)$	degree of the node x (p.9)

Chapter 2

integers (p. 77)
nonnegative integers (p. 77)

\mathbb{P}	positive integers (p. 77)
\mathbb{R}	real numbers (p. 77)
\mathbb{C}	complex numbers (p.77)
F	\mathbb{R} or \mathbb{C} (p. 77)
\jmath	$\sqrt{-1}$ (p. 77)
\bar{z}	complex conjugate of $z \in \mathbb{C}$ (p. 77)
$\operatorname{Re} z$	real part of $z \in \mathbb{C}(\mathrm{p} .77)$
$\operatorname{Im} z$	imaginary part of $z \in \mathbb{C}$ (p. 77)
$\|z\|$	absolute value of $z \in \mathbb{C}$ (p. 77)
OLHP	open left half plane in $\mathbb{C}(\mathrm{p} .77)$
CLHP	closed left half plane in $\mathbb{C}(\mathrm{p} .777)$
ORHP	open right half plane in $\mathbb{C}(\mathrm{p} .777)$
CRHP	closed right half plane in \mathbb{C} (p. 77)
„R	imaginary numbers (p. 77)
\mathbb{R}^{n}	$\mathbb{R}^{n \times 1}$ (real column vectors) (p. 78)
\mathbb{C}^{n}	$\mathbb{C}^{n \times 1}$ (complex column vectors) (p. 78)
\mathbb{F}^{n}	\mathbb{R}^{n} or \mathbb{C}^{n} (p. 78)
$x_{(i)}$	i th component of $x \in \mathbb{F}^{n}$ (p. 78)
$x \geq \geq y$	$x_{(i)} \geq y_{(i)}$ for all $i(x-y$ is nonnegative) (p. 79)
$x \gg y$	$x_{(i)}>y_{(i)}$ for all $i(x-y$ is positive) (p. 79)
$\mathbb{R}^{n \times m}$	$n \times m$ real matrices (p. 79)
$\mathbb{C}^{n \times m}$	$n \times m$ complex matrices (p. 79)
$\mathbb{F}^{n \times m}$	$\mathbb{R}^{n \times m}$ or $\mathbb{C}^{n \times m}(\mathrm{p} .79)$
$\operatorname{row}_{i}(A)$	i th row of A (p. 79)
$\operatorname{col}_{i}(A)$	i th column of A (p. 79)
$A_{(i, j)}$	(i, j) entry of A (p.79)
$A \stackrel{i}{\leftarrow} b$	matrix obtained from $A \in \mathbb{F}^{n \times m}$ by replacing $\operatorname{col}_{i}(A)$ with $b \in \mathbb{F}^{n}$ or $\operatorname{row}_{i}(A)$ with $b \in \mathbb{F}^{1 \times m}$ (p. 80)
$\mathrm{d}_{\max }(A) \triangleq \mathrm{d}_{1}(A)$	largest diagonal entry of $A \in \mathbb{F}^{n \times n}$ having real diagonal entries (p. 80)
$\mathrm{d}_{i}(A)$	i th largest diagonal entry of $A \in \mathbb{F}^{n \times n}$ having real diagonal entries (p. 80)

$\mathrm{d}_{\text {min }}(A) \triangleq \mathrm{d}_{n}(A)$	smallest diagonal entry of $A \in \mathbb{F}^{n \times n}$ having real diagonal entries (p. 80)
$A_{\left(\mathcal{S}_{1}, S_{2}\right)}$	submatrix of A formed by retaining the rows of A listed in \mathcal{S}_{1} and the columns of A listed in \mathcal{S}_{2} (p. 80)
$A_{(S)}$	$A_{(\delta, 8)}$ (p. 80)
$A \geq \geq B$	$A_{(i, j)} \geq B_{(i, j)}$ for all $i, j \quad(A-B$ is nonnegative) (p. 81)
$A \gg B$	$A_{(i, j)}>B_{(i, j)}$ for all $i, j(A-B$ is positive $)$ (p. 81)
[$A, B]$	commutator $A B-B A$ (p. 82)
$\operatorname{ad}_{A}(X)$	adjoint operator $[A, X]$ (p. 82)
$x \times y$	cross product of vectors $x, y \in \mathbb{R}^{3}$ (p. 82)
$K(x)$	cross-product matrix for $x \in \mathbb{R}^{3}$ (p. 82)
$0_{n \times m}, 0$	$n \times m$ zero matrix (p. 83)
I_{n}, I	$n \times n$ identity matrix (p.83)
$e_{i, n}, e_{i}$	$\operatorname{col}_{i}\left(I_{n}\right)\left(\mathrm{p} .8\right.$ 84) $\quad\left[\begin{array}{cc}0 & 1\end{array}\right]$
\hat{I}_{n}, \hat{I}	$n \times n$ reverse identity matrix $\left[\begin{array}{lll}0 & & \\ \text { (p. 84) } & & \\ 1 & & 0\end{array}\right]$
$E_{i, j, n \times m}, E_{i, j}$	$e_{i, n} e_{j, m}^{\mathrm{T}}$ (p.84)
$1_{n \times m}, 1$	$n \times m$ ones matrix (p. 84)
$A^{\text {T }}$	transpose of A (p. 86)
$\operatorname{tr} A$	trace of A (p. 86)
\bar{C}	complex conjugate of $C \in \mathbb{C}^{n \times m}$ (p. 87)
A^{*}	\bar{A}^{T} conjugate transpose of A (p. 87)
$\operatorname{Re} A$	real part of $A \in \mathbb{F}^{n \times m}$ (p. 87)
$\operatorname{Im} A$	imaginary part of $A \in \mathbb{F}^{n \times m}$ (p. 87)
$\overline{\mathcal{S}}$	$\{\bar{Z}: Z \in \mathcal{S}\}$ or $\{\bar{Z}: Z \in \mathcal{S}\}_{\mathrm{ms}}$ (p. 87)
$A^{\hat{\mathrm{T}}}$	$\hat{I} A^{\mathrm{T}} \hat{I}$ reverse transpose of A (p. 88)
$A^{\hat{*}}$	$\hat{I} A^{*} \hat{I}$ reverse complex conjugate transpose of A (p. 88)
$\|x\|$	absolute value of $x \in \mathbb{F}^{n}$ (p. 88)
$\|A\|$	absolute value of $A \in \mathbb{F}^{n \times n}$ (p. 88)
$\operatorname{sign} x$	sign of $x \in \mathbb{R}^{n}(\mathrm{p} .89)$
$\operatorname{sign} A$	sign of $A \in \mathbb{R}^{n \times n}(\mathrm{p} .89)$

$\cos \quad$ convex hull of \mathcal{S} (p. 89)
cone $\mathcal{S} \quad$ conical hull of $\mathcal{S}(\mathrm{p} .89)$
cocos
span S
aff S
$\operatorname{dim} S$
\mathcal{S}^{\perp}
polar S
dcone \mathcal{S}
$\mathcal{R}(A)$
$\mathcal{N}(A)$
$\operatorname{rank} A$
$\operatorname{def} A$
A^{L}
A^{R}
A^{-1}
$A^{-\mathrm{T}}$
A^{-*}
$\operatorname{det} A$
$A_{[i ; j]}$
A^{A}
$A \stackrel{\mathrm{rs}}{\leq} B$
$A \stackrel{*}{\leq} B$
$n \times n$ standard nilpotent matrix (p. 166)
$\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right)$
$\operatorname{revdiag}\left(a_{1}, \ldots, a_{n}\right)$
$\operatorname{diag}\left(A_{1}, \ldots, A_{k}\right)$
$J_{2 n}, J$
$\mathrm{gl}_{\mathbb{F}}(n), \operatorname{pl}_{\mathbb{C}}(n), \mathrm{sl}_{\mathbb{F}}(n)$, $\mathrm{u}(n), \operatorname{su}(n), \operatorname{so}(n)$, $\operatorname{symp}_{\mathbb{F}}(2 n), \operatorname{osymp}_{\mathbb{F}}(2 n)$, $\operatorname{aff}_{\mathbb{F}}(n), \operatorname{se}_{\mathbb{F}}(n), \operatorname{trans}_{\mathbb{F}}(n)$
$\mathrm{GL}_{\mathbb{F}}(n), \mathrm{PL}_{\mathbb{F}}(n), \mathrm{SL}_{\mathbb{F}}(n)$,
$\mathrm{U}(n), \mathrm{O}(n), \mathrm{U}(n, m)$, $\mathrm{O}(n, m), \mathrm{SU}(n), \mathrm{SO}(n)$, $\operatorname{Symp}_{\mathbb{F}}(2 n), \operatorname{OSymp}_{\mathbb{F}}(2 n)$, $\operatorname{Aff}_{\mathbb{F}}(n), \mathrm{SE}_{\mathbb{F}}(n), \operatorname{Trans}_{\mathbb{F}}(n)$
A_{\perp}
ind A
\mathbb{H}

Chapter 4

```
F}[s
deg}
mroots(p)
roots(p)
mult
\mp@subsup{\mathbb{F}}{}{n\timesm}[s]
rank P
Szeros(P)
mSzeros(P)
\chiA
\lambdamax}(A)\triangleq\mp@subsup{\lambda}{1}{}(A
```

block-diagonal matrix $\left[\begin{array}{ccc}A_{1} & & 0 \\ & \ddots & \\ 0 & & A_{k}\end{array}\right]$, where $A_{i} \in \mathbb{F}^{n_{i} \times m_{i}}(\mathrm{p} .167)$
$\left[\begin{array}{cc}0 & I_{n} \\ -I_{n} & 0\end{array}\right](\mathrm{p} .169)$
Lie algebras (p. 171)
groups (p. 172)
complementary idempotent matrix or projector $I-A$ corresponding to the idempotent matrix or projector A (p. 175)
index of A (p. 176)
quaternions (p. 225, Fact 3.22.1)
polynomials with coefficients in \mathbb{F} (p. 231)
degree of $p \in \mathbb{F}[s]$ (p. 231)
multiset of roots of $p \in \mathbb{F}[s]$ (p. 232)
set of roots of $p \in \mathbb{F}[s]$ (p. 232)
multiplicity of λ as a root of $p \in \mathbb{F}[s]$ (p. 232)
$n \times m$ matrices with entries in $\mathbb{F}[s](n \times m$ polynomial matrices with coefficients in \mathbb{F}) (p. 234)
rank of $P \in \mathbb{F}^{n \times m}[s]$ (p. 235)
set of Smith zeros of $P \in \mathbb{F}^{n \times m}[s]$ (p. 2377)
multiset of Smith zeros of $P \in \mathbb{F}^{n \times m}[s]$
(p. 237)
characteristic polynomial of A (p. 240)
largest eigenvalue of $A \in \mathbb{F}^{n \times n}$ having real eigenvalues (p. 240)

$\lambda_{i}(A)$
$\lambda_{\text {min }}(A) \triangleq \lambda_{n}(A)$
$\operatorname{amult}_{A}(\lambda)$
$\operatorname{spec}(A)$
$\operatorname{mspec}(A)$
$\operatorname{gmult}_{A}(\lambda)$
$\operatorname{spabs}(A)$
$\operatorname{sprad}(A)$
$\nu_{-}(A), \nu_{0}(A), \nu_{+}(A)$
In A
$\operatorname{sig} A$
μ_{A}
$\mathbb{F}(s)$
$\mathbb{F}_{\text {prop }}(s)$
reldeg g
$\mathbb{F}^{n \times m}(s)$
$\mathbb{F}_{\text {prop }}^{n \times m}(s)$
reldeg G
$\operatorname{rank} G$
poles(G)
$\operatorname{bzeros}(G)$
Mcdeg G
tzeros(G)
mpoles (G)
mtzeros(G)

i th largest eigenvalue of $A \in \mathbb{F}^{n \times n}$ having real eigenvalues (p. 240)
smallest eigenvalue of $A \in \mathbb{F}^{n \times n}$ having real eigenvalues (p. 240)
algebraic multiplicity of $\lambda \in \operatorname{spec}(A)(\mathrm{p} .240)$
spectrum of A (p. 240)
multispectrum of A (p. 240)
geometric multiplicity of $\lambda \in \operatorname{spec}(A)$ (p. 245)
spectral abscissa of A (p. 245)
spectral radius of A (p. 245)
number of eigenvalues of A counting algebraic multiplicity having negative, zero, and positive real part, respectively (p. 245)
inertia of A, that is, $\left[\nu_{-}(A) \nu_{0}(A) \nu_{+}(A)\right]^{\mathrm{T}}$ (p. 245)
signature of A, that is, $\nu_{+}(A)-\nu_{-}(A)$ (p. 245)
minimal polynomial of A (p. 247)
rational functions with coefficients in \mathbb{F} (SISO rational transfer functions) (p. 249)
proper rational functions with coefficients in \mathbb{F} (SISO proper rational transfer functions) (p. 249)
relative degree of $g \in \mathbb{F}_{\text {prop }}(s)$ (p. 249)
$n \times m$ matrices with entries in $\mathbb{F}(s)$ (MIMO rational transfer functions) (p. 249)
$n \times m$ matrices with entries in $\mathbb{F}_{\text {prop }}(s)$ (MIMO proper rational transfer functions) (p. 249)
relative degree of $G \in \mathbb{F}_{\text {prop }}^{n \times m}(s)(\mathrm{p} .249)$
rank of $G \in \mathbb{F}^{n \times m}(s)($ p. 249)
set of poles of $G \in \mathbb{F}^{n \times m}(s)$ (p. 249)
set of blocking zeros of $G \in \mathbb{F}^{n \times m}(s)$ (p. 249)
McMillan degree of $G \in \mathbb{F}^{n \times m}(s)$ (p. 251)
set of transmission zeros of $G \in \mathbb{F}^{n \times m}(s)$ (p. 251)
multiset of poles of $G \in \mathbb{F}^{n \times m}(s)(\mathrm{p} .251)$
multiset of transmission zeros of $G \in \mathbb{F}^{n \times m}(s)$ (p. 251)
xxviii
$\operatorname{mbzeros}(G)$
$B(p, q)$
$H(g)$

Chapter 5

$C(p)$
$\mathcal{H}_{l}(q)$
$\mathcal{J}_{l}(q)$
$\operatorname{ind}_{A}(\lambda)$
$\sigma_{i}(A)$
$\sigma_{\text {max }}(A) \triangleq \sigma_{1}(A)$
$\sigma_{\min }(A) \triangleq \sigma_{n}(A)$
$P_{A, B}$
$\operatorname{spec}(A, B)$
$\operatorname{mspec}(A, B)$
$\chi_{A, B}$
$V\left(\lambda_{1}, \ldots, \lambda_{n}\right)$
$\operatorname{circ}\left(a_{0}, \ldots, a_{n-1}\right)$
multiset of blocking zeros of $G \in \mathbb{F}^{n \times m}(s)$ (p. 251)

Bezout matrix of $p, q \in \mathbb{F}[s]$ (p. 255, Fact 4.8.6)
Hankel matrix of $g \in \mathbb{F}(s)$ (p. 257, Fact 4.8.8)
companion matrix for monic polynomial p (p. 283)
$l \times l$ or $2 l \times 2 l$ hypercompanion matrix (p. 288)
$l \times l$ or $2 l \times 2 l$ real Jordan matrix (p. 289)
index of λ with respect to A (p. 295)
i th largest singular value of $A \in \mathbb{F}^{n \times m}$ (p. 301)
largest singular value of $A \in \mathbb{F}^{n \times m}$ (p. 301)
minimum singular value of $A \in \mathbb{F}^{n \times n}$ (p. 301)
pencil of (A, B), where $A, B \in \mathbb{F}^{n \times n}($ p. 304)
generalized spectrum of (A, B), where
$A, B \in \mathbb{F}^{n \times n}(\mathrm{p} .304)$
generalized multispectrum of (A, B), where $A, B \in \mathbb{F}^{n \times n}(\mathrm{p} .304)$
characteristic polynomial of (A, B), where $A, B \in \mathbb{F}^{n \times n}$ (p. 305)

Vandermonde matrix (p. 354, Fact 5.16.1)
circulant matrix of $a_{0}, \ldots, a_{n-1} \in \mathbb{F}$ (p. 355, Fact 5.16.7)
(Moore-Penrose) generalized inverse of A (p. 363)

Schur complement of D with respect to \mathcal{A} (p. 367)

Drazin generalized inverse of A (p. 367)
group generalized inverse of A (p. 369)

Chapter 7

vec A	vector formed by stacking columns of A (p. 399)
\otimes	Kronecker product (p. 400)
$P_{n, m}$	Kronecker permutation matrix (p.402)
\oplus	Kronecker sum (p. 403)
$A \circ B$	Schur product of A and B (p. 404)
$A^{\circ \alpha}$	Schur power of $A,\left(A^{\circ \alpha}\right)_{(i, j)}=\left(A_{(i, j)}\right)^{\alpha}$ (p. 404)

Chapter 8

\mathbf{H}^{n}
\mathbf{N}^{n}
\mathbf{P}^{n}
$A \geq B$
$A>B$
$\langle A\rangle$
$A \# B$
$A \#{ }_{\alpha} B$
$A: B$
$\operatorname{sh}(A, B)$

Chapter 9

$\|x\|_{p}$
$\|A\|_{p}$
$\|A\|_{\mathrm{F}}$
$\|A\|_{\sigma p}$
$\|A\|_{q, p}$
$n \times n$ Hermitian matrices (p. 417)
$n \times n$ positive-semidefinite matrices (p. 417)
$n \times n$ positive-definite matrices (p. 417)
$A-B \in \mathbf{N}^{n}(\mathrm{p} .417)$
$A-B \in \mathbf{P}^{n}$ (p. 417)
$\left(A^{*} A\right)^{1 / 2}$ (p. 431)
geometric mean of A and B (p. 461,
Fact 8.10.43)
generalized geometric mean of A and B
(p. 464, Fact 8.10.45)
parallel sum of A and B (p. 528, Fact 8.20.18)
shorted operator (p. 530, Fact 8.20.19)

Hölder norm $\left[\sum_{i=1}^{n}\left|x_{(i)}\right|^{p}\right]^{1 / p}$ (p. 544)
Hölder norm $\left[\sum_{i, j=1}^{n, m}\left|A_{(i, j)}\right|^{p}\right]^{1 / p}$ (p. [547)
Frobenius norm $\sqrt{\operatorname{tr} A^{*} A}$ (p. 547)
Schatten norm $\left[\sum_{i=1}^{\operatorname{rank} A} \sigma_{i}^{p}(A)\right]^{1 / p}$ (p. 548)
Hölder-induced norm (p.554)
$\|A\|_{\mathrm{col}}$
$\|A\|_{\text {row }}$
$\ell(A)$
$\ell_{q, p}(A)$
$\|\cdot\|_{D}$

Chapter 10
$\mathbb{B}_{\varepsilon}(x)$
$\mathbb{S}_{\varepsilon}(x)$
int S
ints ${ }^{\prime} S$
cl S
$\mathrm{cl}_{\mathrm{S}^{\prime}} \mathrm{S}$
bd S
$b_{8^{\prime}}$ S
$\left(x_{i}\right)_{i=1}^{\infty}$
vcone \mathcal{D}
$\mathrm{D}_{+} f\left(x_{0} ; \xi\right)$
$\frac{\partial f\left(x_{0}\right)}{\partial x_{(i)}}$
$f^{\prime}(x)$
$\frac{\mathrm{d} f\left(x_{0}\right)}{\mathrm{d} x_{(i)}}$
$f^{(k)}(x)$
$\frac{\mathrm{d}^{+} f\left(x_{0}\right)}{\mathrm{d} x_{(i)}}$
$\frac{\mathrm{d}^{-} f\left(x_{0}\right)}{\mathrm{d} x_{(i)}}$
$\operatorname{Sign}(A)$

Chapter 11

e^{A} or $\exp (A)$
column norm
$\|A\|_{1,1}=\max _{i \in\{1, \ldots, m\}}\left\|\operatorname{col}_{i}(A)\right\|_{1}($ p. 556) $)$
row norm $\|A\|_{\infty, \infty}=\max _{i \in\{1, \ldots, n\}}\left\|\operatorname{row}_{i}(A)\right\|_{1}$ (p. 556)
induced lower bound of A (p. 558)
Hölder-induced lower bound of A (p. 559)
dual norm (p.570, Fact 9.7.22)
open ball of radius ε centered at x (p. 621)
sphere of radius ε centered at x (p. 621)
interior of \mathcal{S} (p. 621)
interior of S relative to \mathcal{S}^{\prime} (p. 621)
closure of \mathcal{S} (p. 621)
closure of S relative to \mathcal{S}^{\prime} (p. 622)
boundary of \mathcal{S} (p.622)
boundary of \mathcal{S} relative to \mathcal{S}^{\prime} (p. 622)
sequence (x_{1}, x_{2}, \ldots) (p. 622)
variational cone of \mathcal{D} (p. 625)
one-sided directional derivative of f at x_{0} in the direction ξ (p. 625)
partial derivative of f with respect to $x_{(i)}$ at x_{0} (p. 625)

Fréchet derivative of f at x (p. 626)
$f^{\prime}\left(x_{0}\right)$ (p. 626)
k th Fréchet derivative of f at x (p. 627)
right one-sided derivative (p. 627)
left one-sided derivative (p. 627)
matrix sign of $A \in \mathbb{C}^{n \times n}$ (p. 630)
matrix exponential (p. 643)
\mathcal{L}
$S_{\mathrm{s}}(A)$
$\mathcal{S}_{\mathrm{u}}(A)$
OUD
CUD

Chapter 12

$\mathcal{U}(A, C)$
$\mathcal{O}(A, C)$
$\mathcal{C}(A, B)$
$\mathcal{K}(A, B)$
$G \sim\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$
$\mathcal{H}_{i, j, k}(G)$
$\mathcal{H}(G)$
$G \stackrel{\min }{\sim}\left[\begin{array}{c|c}A & B \\ \hline C & D\end{array}\right]$
\mathcal{H}

Laplace transform (p. 646)
asymptotically stable subspace of A (p. 665) unstable subspace of A (p. 665)
open unit disk in \mathbb{C} (p. 670)
closed unit disk in $\mathbb{C}(\mathrm{p} .670)$
unobservable subspace of (A, C) (p. 728)
$\left[\begin{array}{c}C \\ C A \\ C A^{2} \\ \vdots \\ C A^{n-1}\end{array}\right]$ (p. (728)
controllable subspace of (A, B) (p. 737)
$\left[\begin{array}{lllll}B & A B & A^{2} B & \cdots & A^{n-1} B\end{array}\right]$ (p. 737)
state space realization of $G \in \mathbb{F}_{\text {prop }}^{l \times m}[s]$ (p. 749)
Markov block-Hankel matrix
$\mathcal{O}_{i}(A, C) \mathcal{K}_{j}(A, B)(\mathrm{p} .754)$
Markov block-Hankel matrix $\mathcal{O}(A, C) \mathcal{K}(A, B)$ (p. 754)
state space realization of $G \in \mathbb{F}_{\text {prop }}^{l \times m}[s](\mathrm{p} .756)$
Hamiltonian $\left[\begin{array}{cc}A & \Sigma \\ R_{1} & -A^{\mathrm{T}}\end{array}\right]$ (p. 780)

Conventions, Notation, and Terminology

When a word is defined, it is italicized.
The definition of a word, phrase, or symbol should always be understood as an "if and only if" statement, although for brevity "only if" is omitted. The symbol \triangleq means equal by definition, where $A \triangleq B$ means that the left-hand expression A is defined to be the right-hand expression B.

Analogous statements are written in parallel using the following style: If n is (even, odd), then $n+1$ is (odd, even).

The variables i, j, k, l, m, n always denote integers. Hence, $k \geq 0$ denotes a nonnegative integer, $k \geq 1$ denotes a positive integer, and the $\operatorname{limit}_{\lim }^{k \rightarrow \infty}$ A^{k} is taken over positive integers.

The imaginary unit $\sqrt{-1}$ is always denoted by dotless \jmath.
The letter s always represents a complex scalar. The letter z may or may not represent a complex scalar.

The inequalities $c \leq a \leq d$ and $c \leq b \leq d$ are written simultaneously as

$$
c \leq\left\{\begin{array}{c}
a \\
b
\end{array}\right\} \leq d .
$$

The prefix "non" means "not" in the words nonconstant, nonempty, nonintegral, nonnegative, nonreal, nonsingular, nonsquare, nonunique, and nonzero. In some traditional usage, "non" may mean "not necessarily."
"Increasing" and "decreasing" indicate strict change for a change in the argument. The word "strict" is superfluous, and thus is omitted. Nonincreasing means nowhere increasing, while nondecreasing means nowhere decreasing.

Multisets can have repeated elements. Hence, $\{x\}_{\mathrm{ms}}$ and $\{x, x\}_{\mathrm{ms}}$ are different. The listed elements α, β, γ of the conventional set $\{\alpha, \beta, \gamma\}$ need not be distinct. For example, $\{\alpha, \beta, \alpha\}=\{\alpha, \beta\}$.

The order in which the elements of the set $\left\{x_{1}, \ldots, x_{n}\right\}$ and the elements of the multiset $\left\{x_{1}, \ldots, x_{n}\right\}_{\mathrm{ms}}$ are listed has no significance. The components of the n tuple $\left(x_{1}, \ldots, x_{n}\right)$ are ordered.

The notation $\left(x_{i}\right)_{i=1}^{\infty}$ denotes the sequence $\left(x_{1}, x_{2}, \ldots\right)$. A sequence can be viewed as an infinite-tuple, where the order of components is relevant and the components need not be distinct.

The composition of functions f and g is denoted by $f \bullet g$. The traditional notation $f \circ g$ is reserved for the Schur product.
$\mathcal{S}_{1} \subset \mathcal{S}_{2}$ means that \mathcal{S}_{1} is a proper subset of \mathcal{S}_{2}, whereas $\mathcal{S}_{1} \subseteq \mathcal{S}_{2}$ means that \mathcal{S}_{1} is either a proper subset of \mathcal{S}_{2} or is equal to \mathcal{S}_{2}. Hence, $\mathcal{S}_{1} \subset \mathcal{S}_{2}$ is equivalent to $\mathcal{S}_{1} \subseteq \mathcal{S}_{2}$ and $\mathcal{S}_{1} \neq \mathcal{S}_{2}$, while $\mathcal{S}_{1} \subseteq \mathcal{S}_{2}$ is equivalent to either $\mathcal{S}_{1} \subset \mathcal{S}_{2}$ or $\mathcal{S}_{1}=\mathcal{S}_{2}$.

The terminology "graph" corresponds to what is commonly called a "simple directed graph," while the terminology "symmetric graph" corresponds to a "simple undirected graph."

The range of $\cos ^{-1}$ is $[0, \pi]$, the range of $\sin ^{-1}$ is $[-\pi / 2, \pi / 2]$, and the range of $\tan ^{-1}$ is $(-\pi / 2, \pi / 2)$. The angle between two vectors is an element of $[0, \pi]$. Therefore, the inner product of two vectors can be used to compute the angle between two vectors.
$0!\triangleq 1$.
For all $\alpha \in \mathbb{C},\binom{\alpha}{0} \triangleq 1$. For all $k \in \mathbb{N},\binom{0}{k} \triangleq 1$.
$0 / 0=(\sin 0) / 0=(\sinh 0) / 0 \triangleq 1$.
For all square matrices $A, A^{0} \triangleq I$. In particular, $0_{n \times n}^{0} \triangleq I_{n}$. With this convention, it is possible to write

$$
\sum_{i=0}^{\infty} \alpha^{i}=\frac{1}{1-\alpha}
$$

for all $-1<\alpha<1$. Of course, $\lim _{x \downarrow 0} 0^{x}=0, \lim _{x \downarrow 0} x^{0}=1$, and $\lim _{x \downarrow 0} x^{x}=1$.

Neither ∞ nor $-\infty$ is a real number. However, some operations are defined for these objects as extended real numbers, such as $\infty+\infty=\infty, \infty \infty=\infty$, and, for all nonzero real numbers $\alpha, \alpha \infty=\operatorname{sign}(\alpha) \infty .0 \infty$ and $\infty-\infty$ are not defined. See [68, pp. 14, 15].
$1 / \infty \triangleq 0$.

Let a and b be real numbers such that $a<b$. A finite interval is of the form (a, b), $[a, b),(a, b]$, or $[a, b]$, whereas an infinite interval is of the form $(-\infty, a),(-\infty, a]$, $(a, \infty),[a, \infty)$, or $(-\infty, \infty)$. An interval is either a finite interval or an infinite interval. An extended infinite interval includes either ∞ or $-\infty$. For example, $[-\infty, a)$ and $[-\infty, a]$ include $-\infty,(a, \infty]$ and $[a, \infty]$ include ∞, and $[-\infty, \infty]$ includes $-\infty$ and ∞.

The symbol \mathbb{F} denotes either \mathbb{R} or \mathbb{C} consistently in each result. For example, in Theorem 5.6.4 the three appearances of " \mathbb{F} " can be read as either all " \mathbb{C} " or all " \mathbb{R}."

The imaginary numbers are denoted by $\jmath \mathbb{R}$. Hence, 0 is both a real number and an imaginary number.

The notation $\operatorname{Re} A$ and $\operatorname{Im} A$ represents the real and imaginary parts of A, respectively. Some books use $\operatorname{Re} A$ and $\operatorname{Im} A$ to denote the Hermitian and skew-Hermitian matrices $\frac{1}{2}\left(A+A^{*}\right)$ and $\frac{1}{2}\left(A-A^{*}\right)$.

For the scalar ordering " \leq," if $x \leq y$, then $x<y$ if and only if $x \neq y$. For the entrywise vector and matrix orderings, $x \leq y$ and $x \neq y$ do not imply that $x<y$.

Operations denoted by superscripts are applied before operations represented by preceding operators. For example, $\operatorname{tr}(A+B)^{2}$ means $\operatorname{tr}\left[(A+B)^{2}\right]$ and $\operatorname{cl} \mathcal{S}^{\sim}$ means $\mathrm{cl}\left(\mathcal{S}^{\sim}\right)$. This convention simplifies many formulas.

A vector in \mathbb{F}^{n} is a column vector, which is also a matrix with one column. In mathematics, "vector" generally refers to an abstract vector not resolved in coordinates.

Sets have elements, vectors have components, and matrices have entries. This terminology has no mathematical consequence.

The notation $x_{(i)}$ represents the i th component of the vector x.

The notation $A_{(i, j)}$ represents the scalar (i, j) entry of $A . A_{i, j}$ or $A_{i j}$ denotes a block or submatrix of A.

All matrices have nonnegative integral dimensions. If at least one of the dimensions of a matrix is zero, then the matrix is empty.

The entries of a submatrix \hat{A} of a matrix A are the entries of A lying in specified rows and columns. \hat{A} is a block of A if \hat{A} is a submatrix of A whose entries are entries of adjacent rows and columns of A. Every matrix is both a submatrix and block of itself.

The determinant of a submatrix is a subdeterminant. Some books use "minor." The determinant of a matrix is also a subdeterminant of the matrix.

The dimension of the null space of a matrix is its defect. Some books use "nullity."

A block of a square matrix is diagonally located if the block is square and the diagonal entries of the block are also diagonal entries of the matrix; otherwise, the block is off-diagonally located. This terminology avoids confusion with a "diagonal block," which is a block that is also a square, diagonal submatrix.

For the partitioned matrix $\left[\begin{array}{cc}A & B \\ C & D\end{array}\right] \in \mathbb{F}^{(n+m) \times(k+l)}$, it can be inferred that $A \in \mathbb{F}^{n \times k}$ and similarly for B, C, and D.

The Schur product of matrices A and B is denoted by $A \circ B$. Matrix multiplication is given priority over Schur multiplication, that is, $A \circ B C$ means $A \circ(B C)$.

The adjugate of $A \in \mathbb{F}^{n \times n}$ is denoted by A^{A}. The traditional notation is adj A, while the notation A^{A} is used in 1228 . If $A \in \mathbb{F}$ is a scalar then $A^{\mathrm{A}}=1$. In particular, $0_{1 \times 1}^{\mathrm{A}}=1$. However, for all $n \geq 2,0_{n \times n}^{\mathrm{A}}=0_{n \times n}$.

If $\mathbb{F}=\mathbb{R}$, then \bar{A} becomes A, A^{*} becomes A^{T}, "Hermitian" becomes "symmetric," "unitary" becomes "orthogonal," "unitarily" becomes "orthogonally," and "congruence" becomes "T-congruence." A square complex matrix A is symmetric if $A^{\mathrm{T}}=A$ and orthogonal if $A^{\mathrm{T}} A=I$.

The diagonal entries of a matrix $A \in \mathbb{F}^{n \times n}$ all of whose diagonal entries are real are ordered as $\mathrm{d}_{\max }(A)=\mathrm{d}_{1}(A) \geq \mathrm{d}_{2}(A) \geq \cdots \geq \mathrm{d}_{n}(A)=\mathrm{d}_{\min }(A)$.

Every $n \times n$ matrix has n eigenvalues. Hence, eigenvalues are counted in accordance with their algebraic multiplicity. The phrase "distinct eigenvalues" ignores algebraic multiplicity.

The eigenvalues of a matrix $A \in \mathbb{F}^{n \times n}$ all of whose eigenvalues are real are ordered as $\lambda_{\max }(A)=\lambda_{1}(A) \geq \lambda_{2}(A) \geq \cdots \geq \lambda_{n}(A)=\lambda_{\min }(A)$.

The inertia of a matrix is written as

$$
\operatorname{In} A \triangleq\left[\begin{array}{c}
\nu_{-}(A) \\
\nu_{0}(A) \\
\nu_{+}(A)
\end{array}\right]
$$

Some books use the notation $(\nu(A), \delta(A), \pi(A))$.

For $A \in \mathbb{F}^{n \times n}$, $\operatorname{amult}_{A}(\lambda)$ is the number of copies of λ in the multispectrum of A, $\operatorname{gmult}_{A}(\lambda)$ is the number of Jordan blocks of A associated with λ, and $\operatorname{ind}_{A}(\lambda)$ is the order of the largest Jordan block of A associated with λ. The index of A, denoted by ind $A=\operatorname{ind}_{A}(0)$, is the order of the largest Jordan block of A associated with the eigenvalue 0 .

The matrix $A \in \mathbb{F}^{n \times n}$ is semisimple if the order of every Jordan block of A is 1 , and cyclic if A has exactly one Jordan associated with each of its eigenvalues. Defective means not semisimple, while derogatory means not cyclic.

An $n \times m$ matrix has exactly $\min \{n, m\}$ singular values, exactly $\operatorname{rank} A$ of which are positive.

The $\min \{n, m\}$ singular values of a matrix $A \in \mathbb{F}^{n \times m}$ are ordered as $\sigma_{\max }(A) \triangleq$ $\sigma_{1}(A) \geq \sigma_{2}(A) \geq \cdots \geq \sigma_{\min \{n, m\}}(A)$. If $n=m$, then $\sigma_{\min }(A) \triangleq \sigma_{n}(A)$. The notation $\sigma_{\min }(A)$ is defined only for square matrices.

Positive-semidefinite and positive-definite matrices are Hermitian.

A square matrix with entries in \mathbb{F} is diagonalizable over \mathbb{F} if and only if it can be transformed into a diagonal matrix whose entries are in \mathbb{F} by means of a similarity transformation whose entries are in \mathbb{F}. Therefore, a complex matrix is diagonalizable over \mathbb{C} if and only if all of its eigenvalues are semisimple, whereas a real matrix is diagonalizable over \mathbb{R} if and only if all of its eigenvalues are semisimple and real. The real matrix $\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$ is diagonalizable over \mathbb{C}, although it is not diagonalizable over \mathbb{R}. The Hermitian matrix $\left[\begin{array}{cc}1 & \jmath \\ -\jmath & 2\end{array}\right]$ is diagonalizable over \mathbb{C}, and also has real eigenvalues.

An idempotent matrix $A \in \mathbb{F}^{n \times n}$ satisfies $A^{2}=A$, while a projector is a Hermitian, idempotent matrix. Some books use "projector" for idempotent and "orthogonal projector" for projector. A reflector is a Hermitian, involutory matrix. A projector is a normal matrix each of whose eigenvalues is 1 or 0 , while a reflector is a normal matrix each of whose eigenvalues is 1 or -1 .

An elementary matrix is a nonsingular matrix formed by adding an outer-product matrix to the identity matrix. An elementary reflector is a reflector exactly one of whose eigenvalues is -1 . An elementary projector is a projector exactly one of whose eigenvalues is 0 . Elementary reflectors are elementary matrices. However, elementary projectors are not elementary matrices since elementary projectors are singular.

A range-Hermitian matrix is a square matrix whose range is equal to the range of its complex conjugate transpose. These matrices are also called "EP" matrices.

The polynomials 1 and $s^{3}+5 s^{2}-4$ are monic. The zero polynomial is not monic.

The rank of a polynomial matrix P is the maximum rank of $P(s)$ over \mathbb{C}. This quantity is also called the normal rank. We denote this quantity by rank P as distinct from rank $P(s)$, which denotes the rank of the matrix $P(s)$.

The rank of a rational transfer function G is the maximum rank of $G(s)$ over \mathbb{C} excluding poles of the entries of G. This quantity is also called the normal rank. We denote this quantity by $\operatorname{rank} G$ as distinct from $\operatorname{rank} G(s)$, which denotes the rank of the matrix $G(s)$.

The symbol \oplus denotes the Kronecker sum. Some books use \oplus to denote the direct sum of matrices or subspaces.

The notation $|A|$ represents the matrix obtained by replacing every entry of A by its absolute value.

The notation $\langle A\rangle$ represents the matrix $\left(A^{*} A\right)^{1 / 2}$. Some books use $|A|$ to denote this matrix.

The Hölder norms for vectors and matrices are denoted by $\|\cdot\|_{p}$. The matrix norm induced by $\|\cdot\|_{q}$ on the domain and $\|\cdot\|_{p}$ on the codomain is denoted by $\|\cdot\|_{p, q}$.

The Schatten norms for matrices are denoted by $\|\cdot\|_{\sigma p}$, and the Frobenius norm is denoted by $\|\cdot\|_{\mathrm{F}}$. Hence, $\|\cdot\|_{\sigma \infty}=\|\cdot\|_{2,2}=\sigma_{\max }(\cdot),\|\cdot\|_{\sigma 2}=\|\cdot\|_{\mathrm{F}}$, and $\|\cdot\|_{\sigma 1}=\operatorname{tr}\langle\cdot\rangle$.

Let " \leq " be a partial ordering, let X be a set, and consider the inequality

$$
\begin{equation*}
f(x) \leq g(x) \text { for all } x \in X \tag{1}
\end{equation*}
$$

Inequality (1) is sharp if there exists $x_{0} \in X$ such that $f\left(x_{0}\right)=g\left(x_{0}\right)$.

The inequality

$$
\begin{equation*}
f(x) \leq f(y) \text { for all } x \leq y \tag{2}
\end{equation*}
$$

is a monotonicity result.

The inequality

$$
\begin{equation*}
f(x) \leq p(x) \leq g(x) \text { for all } x \in X \tag{3}
\end{equation*}
$$

where p is not identically equal to either f or g on X, is an interpolation or refinement of (1). The inequality

$$
\begin{equation*}
g(x) \leq \alpha f(x) \text { for all } x \in X \tag{4}
\end{equation*}
$$

where $\alpha>1$, is a reversal of (1).

Defining $h(x) \triangleq g(x)-f(x)$, it follows that (1) is equivalent to

$$
\begin{equation*}
h(x) \geq 0 \text { for all } x \in X \tag{5}
\end{equation*}
$$

Now, suppose that h has a global minimizer $x_{0} \in X$. Then, (5) implies that

$$
\begin{equation*}
0 \leq h\left(x_{0}\right)=\min _{x \in X} h(x) \leq h(y) \text { for all } y \in X \tag{6}
\end{equation*}
$$

Consequently, inequalities are often expressed equivalently in terms of optimization problems, and vice versa.

Many inequalities are based on a single function that is either monotonic or convex.

Matrix Mathematics

Chapter One

Preliminaries

In this chapter we review some basic terminology and results concerning logic, sets, functions, and related concepts. This material is used throughout the book.

1.1 Logic and Sets

Let A and B be statements. The negation of A is the statement (not A), the both of A and B is the statement $(A$ and $B)$, and the either of A and B is the statement $(A$ or $B)$. The statement $(A$ or $B)$ does not contradict $(A$ and $B)$, that is, the word "or" is inclusive. Every statement is assumed to be either true or false; likewise, no statement can be both true and false.

The statements " A and B or C " and " A or B and C " are ambiguous. We therefore write " A and either B or C " and "either A or both B and C."

Let A and B be statements. The implication statement "if A is satisfied, then B is satisfied" or, equivalently, " A implies B " is written as $A \Longrightarrow B$, while $A \Longleftrightarrow B$ is equivalent to $[(A \Longrightarrow B)$ and $(A \Longleftarrow B)]$. Of course, $A \Longleftarrow B$ means $B \Longrightarrow A$. A tautology is a statement that is true regardless of whether the component statements are true or false. For example, the statement " A and B) implies A " is a tautology. A contradiction is a statement that is false regardless of whether the component statements are true or false.

Suppose that $A \Longleftrightarrow B$. Then, A is satisfied if and only if B is satisfied. The implication $A \Longrightarrow B$ (the "only if" part) is necessity, while $B \Longrightarrow A$ (the "if" part) is sufficiency. The converse statement of $A \Longrightarrow B$ is $B \Longrightarrow A$. The statement $A \Longrightarrow B$ is equivalent to its contrapositive statement (not $B) \Longrightarrow($ not $A)$.

A theorem is a significant statement, while a proposition is a theorem of less significance. The primary role of a lemma is to support the proof of a theorem or proposition. Furthermore, a corollary is a consequence of a theorem or proposition. Finally, a fact is either a theorem, proposition, lemma, or corollary. Theorems, propositions, lemmas, corollaries, and facts are provably true statements.

Suppose that $A^{\prime} \Longrightarrow A \Longrightarrow B \Longrightarrow B^{\prime}$. Then, $A^{\prime} \Longrightarrow B^{\prime}$ is a corollary of $A \Longrightarrow B$.

Let A, B, and C be statements, and assume that $A \Longrightarrow B$. Then, $A \Longrightarrow B$ is a strengthening of the statement $(A$ and $C) \Longrightarrow B$. If, in addition, $A \Longrightarrow C$, then the statement $(A$ and $C) \Longrightarrow B$ has a redundant assumption.

Let $X \triangleq\{x, y, z\}$ be a set. Then,

$$
\begin{equation*}
x \in X \tag{1.1.1}
\end{equation*}
$$

means that x is an element of \mathcal{X}. If w is not an element of \mathcal{X}, then we write

$$
\begin{equation*}
w \notin X \tag{1.1.2}
\end{equation*}
$$

The set with no elements, denoted by \varnothing, is the empty set. If $X \neq \varnothing$, then X is nonempty.

A set cannot have repeated elements. For example, $\{x, x\}=\{x\}$. However, a multiset is a collection of elements that allows for repetition. The multiset consisting of two copies of x is written as $\{x, x\}_{\mathrm{ms}}$. However, we do not assume that the listed elements x, y of the conventional set $\{x, y\}$ are distinct. The number of distinct elements of the set \mathcal{S} or not-necessarily-distinct elements of the multiset \mathcal{S} is the cardinality of \mathcal{S}, which is denoted by card (\mathcal{S}).

There are two basic types of mathematical statements involving quantifiers. An existential statement is of the form
there exists $x \in \mathcal{X}$ such that statement Z is satisfied,
while a universal statement has the structure

$$
\begin{equation*}
\text { for all } x \in \mathcal{X} \text {, it follows that statement } Z \text { is satisfied, } \tag{1.1.4}
\end{equation*}
$$ or, equivalently,

$$
\begin{equation*}
\text { statement } Z \text { is satisfied for all } x \in X \tag{1.1.5}
\end{equation*}
$$

Let X and y be sets. The intersection of X and y is the set of common elements of X and y given by

$$
\begin{align*}
X \cap y & \triangleq\{x: x \in X \text { and } x \in y\}=\{x \in X: x \in y\} \tag{1.1.6}\\
& =\{x \in y: x \in X\}=y \cap X \tag{1.1.7}
\end{align*}
$$

while the set of elements in either \mathcal{X} or \mathscr{y} (the union of X and y) is

$$
\begin{equation*}
X \cup y \triangleq\{x: \quad x \in X \text { or } x \in y\}=y \cup X \tag{1.1.8}
\end{equation*}
$$

The complement of X relative to y is

$$
\begin{equation*}
y \backslash X \triangleq\{x \in y: x \notin \mathcal{X}\} \tag{1.1.9}
\end{equation*}
$$

If y is specified, then the complement of X is

$$
\begin{equation*}
x^{\sim} \triangleq y \backslash x . \tag{1.1.10}
\end{equation*}
$$

If $x \in \mathcal{X}$ implies that $x \in \mathcal{Y}$, then \mathcal{X} is contained in \mathcal{y} (\mathcal{X} is a subset of \mathcal{Y}), which is written as

$$
\begin{equation*}
x \subseteq y \tag{1.1.11}
\end{equation*}
$$

The statement $X=y$ is equivalent to the validity of both $x \subseteq y$ and $y \subseteq x$. If $x \subseteq y$ and $x \neq y$, then x is a proper subset of y and we write $x \subset y$. The sets x and \mathcal{y} are disjoint if $\mathcal{X} \cap \mathcal{y}=\varnothing$. A partition of \mathcal{X} is a set of pairwise-disjoint and nonempty subsets of X whose union is equal to X.

The operations " \cap," " \cup," and " \backslash " and the relations " \subset " and " \subseteq " extend directly to multisets. For example,

$$
\begin{equation*}
\{x, x\}_{\mathrm{ms}} \cup\{x\}_{\mathrm{ms}}=\{x, x, x\}_{\mathrm{ms}} \tag{1.1.12}
\end{equation*}
$$

By ignoring repetitions, a multiset can be converted to a set, while a set can be viewed as a multiset with distinct elements.

The Cartesian product $X_{1} \times \cdots \times X_{n}$ of sets X_{1}, \ldots, X_{n} is the set consisting of tuples of the form $\left(x_{1}, \ldots, x_{n}\right)$, where $x_{i} \in X_{i}$ for all $i=1, \ldots, n$. A tuple with n components is an n-tuple. Note that the components of an n-tuple are ordered but need not be distinct.

By replacing the logical operations " \Longrightarrow," "and," "or," and "not" by " \subseteq," " \cup," " \cap," and " \sim," respectively, statements about statements A and B can be transformed into statements about sets \mathcal{A} and \mathcal{B}, and vice versa. For example, the identity

$$
A \text { and }(B \text { or } C)=(A \text { and } B) \text { or }(A \text { and } C)
$$

is equivalent to

$$
\mathcal{A} \cap(\mathcal{B} \cup \mathcal{C})=(\mathcal{A} \cap \mathcal{B}) \cup(\mathcal{A} \cap \mathcal{C})
$$

1.2 Functions

Let X and y be sets. Then, a function f that maps X into y is a rule $f: X \mapsto y$ that assigns a unique element $f(x)$ (the image of x) of y to each element x of \mathcal{X}. Equivalently, a function $f: \mathcal{X} \mapsto y$ can be viewed as a subset \mathcal{F} of $\mathcal{X} \times \mathcal{y}$ such that, for all $x \in \mathcal{X}$, it follows that there exists $y \in \mathcal{y}$ such that $(x, y) \in \mathcal{F}$ and such that, if $\left(x, y_{1}\right),\left(x, y_{2}\right) \in \mathcal{F}$, then $y_{1}=y_{2}$. In this case, $\mathcal{F}=\operatorname{Graph}(f) \triangleq\{(x, f(x)): x \in \mathcal{X}\}$. The set \mathcal{X} is the domain of f, while the set \mathcal{y} is the codomain of f. If $f: \mathcal{X} \mapsto \mathcal{X}$, then f is a function on \mathcal{X}. For $X_{1} \subseteq \mathcal{X}$, it is convenient to define $f\left(X_{1}\right) \triangleq\left\{f(x): x \in X_{1}\right\}$. The set $f(\mathcal{X})$, which is denoted by $\mathcal{R}(f)$, is the range of f. If, in addition, \mathcal{Z} is a set and $g: \mathcal{Y} \mapsto \mathcal{Z}$, then $g \bullet f: X \mapsto Z$ (the composition of g and f) is the function $(g \bullet f)(x) \triangleq g[f(x)]$. If $x_{1}, x_{2} \in \mathcal{X}$ and $f\left(x_{1}\right)=f\left(x_{2}\right)$ implies that $x_{1}=x_{2}$, then f is one-to-one; if $\mathcal{R}(f)=\mathcal{Y}$, then f is onto. The function $I_{X}: \mathcal{X} \mapsto X$ defined by $I_{X}(x) \triangleq x$ for all $x \in \mathcal{X}$ is the identity on \mathcal{X}. Finally, $x \in \mathcal{X}$ is a fixed point of the function $f: X \mapsto X$ if $f(x)=x$.

The following result shows that function composition is associative.
Proposition 1.2.1. Let X, y, z, and \mathcal{W} be sets, and let $f: X \mapsto y, g: y \mapsto z$, $h: \mathcal{Z} \mapsto \mathcal{W}$. Then,

$$
\begin{equation*}
h \bullet(g \bullet f)=(h \bullet g) \bullet f \tag{1.2.1}
\end{equation*}
$$

Hence, we write $h \bullet g \bullet f$ for $h \bullet(g \bullet f)$ and $(h \bullet g) \bullet f$.
Let X be a set, and let \hat{X} be a partition of \mathcal{X}. Furthermore, let $f: \hat{X} \mapsto \mathcal{X}$, where, for all $\mathcal{S} \in \hat{X}$, it follows that $f(\mathcal{S}) \in \mathcal{S}$. Then, f is a canonical mapping, and $f(\mathcal{S})$ is a canonical form. That is, for all components \mathcal{S} of the partition \hat{X} of \mathcal{X}, it follows that the function f assigns an element of \mathcal{S} to the set \mathcal{S}.

Let $f: X \mapsto y$. Then, f is left invertible if there exists a function $g: \mathcal{Y} \mapsto X$ (a left inverse of f) such that $g \bullet f=I X$, whereas f is right invertible if there exists a function $h: \quad y \mapsto \mathcal{X}$ (a right inverse of f) such that $f \bullet h=I y$. In addition, the function $f: X \mapsto y$ is invertible if there exists a function $f^{-1}: y \mapsto X$ (the inverse of f) such that $f^{-1} \bullet f=I X$ and $f \bullet f^{-1}=I$. The inverse image $f^{-1}(\mathcal{S})$ of $\mathcal{S} \subseteq y$ is defined by

$$
\begin{equation*}
f^{-1}(\mathcal{S}) \triangleq\{x \in \mathcal{X}: \quad f(x) \in \mathcal{S}\} \tag{1.2.2}
\end{equation*}
$$

Theorem 1.2.2. Let X and y be sets, and let $f: X \mapsto y$. Then, the following statements hold:
i) f is left invertible if and only if f is one-to-one.
ii) f is right invertible if and only if f is onto.

Furthermore, the following statements are equivalent:
iii) f is invertible.
iv) f has a unique inverse.
v) f is one-to-one and onto.
vi) f is left invertible and right invertible.
vii) f has a unique left inverse.
viii) f has a unique right inverse.

Proof. To prove i), suppose that f is left invertible with left inverse $g: y \mapsto X$. Furthermore, suppose that $x_{1}, x_{2} \in \mathcal{X}$ satisfy $f\left(x_{1}\right)=f\left(x_{2}\right)$. Then, $x_{1}=g\left[f\left(x_{1}\right)\right]=$ $g\left[f\left(x_{2}\right)\right]=x_{2}$, which shows that f is one-to-one. Conversely, suppose that f is one-to-one so that, for all $y \in \mathcal{R}(f)$, there exists a unique $x \in \mathcal{X}$ such that $f(x)=y$. Hence, define the function $g: \mathcal{y} \mapsto \mathcal{X}$ by $g(y) \triangleq x$ for all $y=f(x) \in \mathcal{R}(f)$ and by $g(y)$ arbitrary for all $y \in \mathcal{y} \backslash \mathcal{R}(f)$. Consequently, $g[f(x)]=x$ for all $x \in \mathcal{X}$, which shows that g is a left inverse of f.

To prove $i i$), suppose that f is right invertible with right inverse $g: y \mapsto$ X. Then, for all $y \in \mathcal{y}$, it follows that $f[g(y)]=y$, which shows that f is onto. Conversely, suppose that f is onto so that, for all $y \in \mathcal{Y}$, there exists at least one $x \in X$ such that $f(x)=y$. Selecting one such x arbitrarily, define $g: y \mapsto X$ by $g(y) \triangleq x$. Consequently, $f[g(y)]=y$ for all $y \in \mathcal{y}$, which shows that g is a right inverse of f.

Definition 1.2.3. Let $\mathcal{J} \subset \mathbb{R}$ be a finite or infinite interval, and let $f: \mathcal{J} \mapsto \mathbb{R}$. Then, f is convex if, for all $\alpha \in[0,1]$ and for all $x, y \in \mathcal{J}$, it follows that

$$
\begin{equation*}
f[\alpha x+(1-\alpha) y] \leq \alpha f(x)+(1-\alpha) f(y) \tag{1.2.3}
\end{equation*}
$$

Furthermore, f is strictly convex if, for all $\alpha \in(0,1)$ and for all distinct $x, y \in \mathcal{J}$, it follows that

$$
f[\alpha x+(1-\alpha) y]<\alpha f(x)+(1-\alpha) f(y)
$$

A more general definition of convexity is given by Definition 8.6.14,

1.3 Relations

Let \mathcal{X}, X_{1}, and X_{2} be sets. A relation \mathcal{R} on $X_{1} \times X_{2}$ is a subset of $X_{1} \times X_{2}$. A relation \mathcal{R} on \mathcal{X} is a relation on $\mathcal{X} \times \mathcal{X}$. Likewise, a multirelation \mathcal{R} on $X_{1} \times X_{2}$ is a multisubset of $X_{1} \times \mathcal{X}_{2}$, while a multirelation \mathcal{R} on \mathcal{X} is a multirelation on $\mathcal{X} \times \mathcal{X}$.

Let \mathcal{X} be a set, and let \mathcal{R}_{1} and \mathcal{R}_{2} be relations on \mathcal{X}. Then, $\mathcal{R}_{1} \cap \mathcal{R}_{2}, \mathcal{R}_{1} \backslash \mathcal{R}_{2}$, and $\mathcal{R}_{1} \cup \mathcal{R}_{2}$ are relations on \mathcal{X}. Furthermore, if \mathcal{R} is a relation on \mathcal{X} and $\mathcal{X}_{0} \subseteq \mathcal{X}$, then we define $\left.\mathcal{R}\right|_{X_{0}} \triangleq \mathcal{R} \cap\left(X_{0} \times X_{0}\right)$, which is a relation on X_{0}.

The following result shows that relations can be viewed as generalizations of functions.

Proposition 1.3.1. Let X_{1} and X_{2} be sets, and let \mathcal{R} be a relation $X_{1} \times X_{2}$. Then, there exists a function $f: \mathcal{X}_{1} \mapsto X_{2}$ such that $\mathcal{R}=\operatorname{Graph}(f)$ if and only if, for all $x \in X_{1}$, there exists a unique $y \in X_{2}$ such that $(x, y) \in \mathcal{R}$. In this case, $f(x)=y$.

Definition 1.3.2. Let \mathcal{R} be a relation on \mathcal{X}. Then, the following terminology is defined:
i) \mathcal{R} is reflexive if, for all $x \in \mathcal{X}$, it follows that $(x, x) \in \mathcal{R}$.
ii) \mathcal{R} is symmetric if, for all $\left(x_{1}, x_{2}\right) \in \mathcal{R}$, it follows that $\left(x_{2}, x_{1}\right) \in \mathcal{R}$.
iii) \mathcal{R} is transitive if, for all $\left(x_{1}, x_{2}\right) \in \mathcal{R}$ and $\left(x_{2}, x_{3}\right) \in \mathcal{R}$, it follows that $\left(x_{1}, x_{3}\right) \in \mathcal{R}$.
iv) \mathcal{R} is an equivalence relation if \mathcal{R} is reflexive, symmetric, and transitive.

Proposition 1.3.3. Let \mathcal{R}_{1} and \mathcal{R}_{2} be relations on \mathcal{X}. If \mathcal{R}_{1} and \mathcal{R}_{2} are (reflexive, symmetric) relations, then so are $\mathcal{R}_{1} \cap \mathcal{R}_{2}$ and $\mathcal{R}_{1} \cup \mathcal{R}_{2}$. If \mathcal{R}_{1} and \mathcal{R}_{2} are (transitive, equivalence) relations, then so is $\mathcal{R}_{1} \cap \mathcal{R}_{2}$.

Definition 1.3.4. Let \mathcal{R} be a relation on \mathcal{X}. Then, the following terminology is defined:
i) The complement \mathcal{R}^{\sim} of \mathcal{R} is the relation $\mathcal{R}^{\sim} \triangleq(\mathcal{X} \times \mathcal{X}) \backslash \mathcal{R}$.
ii) The support $\operatorname{supp}(\mathcal{R})$ of \mathcal{R} is the smallest subset \mathcal{X}_{0} of \mathcal{X} such that \mathcal{R} is a relation on X_{0}.
iii) The reversal $\operatorname{rev}(\mathcal{R})$ of \mathcal{R} is the relation $\operatorname{rev}(\mathcal{R}) \triangleq\{(y, x):(x, y) \in \mathcal{R}\}$.
iv) The shortcut $\operatorname{shortcut}(\mathcal{R})$ of \mathcal{R} is the relation $\operatorname{shortcut}(\mathcal{R}) \triangleq\{(x, y) \in \mathcal{X} \times$ $\mathcal{X}: x$ and y are distinct and there exist $k \geq 1$ and $x_{1}, \ldots, x_{k} \in X$ such that $\left.\left(x, x_{1}\right),\left(x_{1}, x_{2}\right), \ldots,\left(x_{k}, y\right) \in \mathcal{R}\right\}$.
$v)$ The reflexive hull $\operatorname{ref}(\mathcal{R})$ of \mathcal{R} is the smallest reflexive relation on \mathcal{X} that contains \mathcal{R}.
vi) The symmetric hull $\operatorname{sym}(\mathcal{R})$ of \mathcal{R} is the smallest symmetric relation on \mathcal{X} that contains \mathcal{R}.
vii) The transitive hull $\operatorname{trans}(\mathcal{R})$ of \mathcal{R} is the smallest transitive relation on \mathcal{X} that contains \mathcal{R}.
viii) The equivalence hull $\operatorname{equiv}(\mathcal{R})$ of \mathcal{R} is the smallest equivalence relation on \mathcal{X} that contains \mathcal{R}.

Proposition 1.3.5. Let \mathcal{R} be a relation on \mathcal{X}. Then, the following statements hold:
i) $\operatorname{ref}(\mathcal{R})=\mathcal{R} \cup\{(x, x): x \in \mathcal{X}\}$.
ii) $\operatorname{sym}(\mathcal{R})=\mathcal{R} \cup \operatorname{rev}(\mathcal{R})$.
iii) $\operatorname{trans}(\mathcal{R})=\mathcal{R} \cup \operatorname{shortcut}(\mathcal{R})$.
iv) $\operatorname{equiv}(\mathcal{R})=\mathcal{R} \cup \operatorname{ref}(\mathcal{R}) \cup \operatorname{sym}(\mathcal{R}) \cup \operatorname{trans}(\mathcal{R})$.
$v) \operatorname{equiv}(\mathcal{R})=\mathcal{R} \cup \operatorname{ref}(\mathcal{R}) \cup \operatorname{rev}(\mathcal{R}) \cup \operatorname{shortcut}(\mathcal{R})$.
Furthermore, the following statements hold:
vi) \mathcal{R} is reflexive if and only if $\mathcal{R}=\operatorname{ref}(\mathcal{R})$.
vii) \mathcal{R} is symmetric if and only if $\mathcal{R}=\operatorname{rev}(\mathcal{R})$.
viii) \mathcal{R} is transitive if and only if $\mathcal{R}=\operatorname{trans}(\mathcal{R})$
ix) \mathcal{R} is an equivalence relation if and only if $\mathcal{R}=\operatorname{equiv}(\mathcal{R})$.

For an equivalence relation \mathcal{R} on $\mathcal{X},\left(x_{1}, x_{2}\right) \in \mathcal{R}$ is denoted by $x_{1} \stackrel{\mathcal{R}}{=} x_{2}$. If \mathcal{R} is an equivalence relation and $x \in \mathcal{X}$, then the subset $\mathcal{E}_{x} \triangleq\{y \in \mathcal{X}: y \stackrel{\mathcal{R}}{=} x\}$ of \mathcal{X} is the equivalence class of x induced by \mathcal{R}.

Theorem 1.3.6. Let \mathcal{R} be an equivalence relation on a set X. Then, the set $\left\{\mathcal{E}_{x}: x \in \mathcal{X}\right\}$ of equivalence classes induced by \mathcal{R} is a partition of \mathcal{X}.

Proof. Since $\mathcal{X}=\bigcup_{x \in X} \mathcal{E}_{x}$, it suffices to show that if $x, y \in \mathcal{X}$, then either $\mathcal{E}_{x}=\mathcal{E}_{y}$ or $\mathcal{E}_{x} \cap \mathcal{E}_{y}=\varnothing$. Hence, let $x, y \in \mathcal{X}$, and suppose that \mathcal{E}_{x} and \mathcal{E}_{y} are not disjoint so that there exists $z \in \mathcal{E}_{x} \cap \mathcal{E}_{y}$. Thus, $(x, z) \in \mathcal{R}$ and $(z, y) \in \mathcal{R}$. Now, let $w \in \mathcal{E}_{x}$. Then, $(w, x) \in \mathcal{R},(x, z) \in \mathcal{R}$, and $(z, y) \in \mathcal{R}$ imply that $(w, y) \in \mathcal{R}$. Hence, $w \in \mathcal{E}_{y}$, which implies that $\mathcal{E}_{x} \subseteq \mathcal{E}_{y}$. By a similar argument, $\mathcal{E}_{y} \subseteq \mathcal{E}_{x}$. Consequently, $\mathcal{E}_{x}=\mathcal{E}_{y}$.

The following result, which is the converse of Theorem 1.3.6, shows that a partition of a set X defines an equivalence relation on X.

Theorem 1.3.7. Let X be a set, consider a partition of X, and define the relation \mathcal{R} on \mathcal{X} by $(x, y) \in \mathcal{R}$ if and only if x and y belong to the same partition subset of \mathcal{X}. Then, \mathcal{R} is an equivalence relation on \mathcal{X}.

Definition 1.3.8. Let \mathcal{R} be a relation on \mathcal{X}. Then, the following terminology is defined:
i) \mathcal{R} is antisymmetric if $\left(x_{1}, x_{2}\right) \in \mathcal{R}$ and $\left(x_{2}, x_{1}\right) \in \mathcal{R}$ imply that $x_{1}=x_{2}$.
ii) \mathcal{R} is a partial ordering on \mathcal{X} if \mathcal{R} is reflexive, antisymmetric, and transitive.

Let \mathcal{R} be a partial ordering on X. Then, $\left(x_{1}, x_{2}\right) \in \mathcal{R}$ is denoted by $x_{1} \stackrel{\mathcal{R}}{\leq} x_{2}$. If $x_{1} \stackrel{\mathcal{R}}{\leq} x_{2}$ and $x_{2} \leq x_{1}$, then, since \mathcal{R} is antisymmetric, it follows that $x_{1}=x_{2}$. Furthermore, if $x_{1} \stackrel{\mathcal{R}}{\leq} x_{2}$ and $x_{2} \stackrel{\mathcal{R}}{\leq} x_{3}$, then, since \mathcal{R} is transitive, it follows that $x_{1} \stackrel{R}{\leq} x_{3}$.

Definition 1.3.9. Let " ${ }^{\mathcal{R}}$ " be a partial ordering on X. Then, the following terminology is defined:
i) Let $\mathcal{S} \subseteq \mathcal{X}$. Then, $y \in \mathcal{X}$ is a lower bound for \mathcal{S} if, for all $x \in \mathcal{S}$, it follows that $y \leq x$.
ii) Let $\mathcal{S} \subseteq \mathcal{X}$. Then, $y \in \mathcal{X}$ is an upper bound for \mathcal{S} if, for all $x \in \mathcal{S}$, it follows that $x \stackrel{\mathcal{R}}{\leq} y$.
iii) Let $\mathcal{S} \subseteq X$. Then, $y \in X$ is the least upper bound $\operatorname{lub}(\mathcal{S})$ for \mathcal{S} if y is an upper bound for \mathcal{S} and, for all upper bounds $x \in \mathcal{X}$ for \mathcal{S}, it follows that $y \stackrel{\mathcal{R}}{\leq} x$. In this case, we write $y=\operatorname{lub}(\mathcal{S})$.
$i v)$ Let $\mathcal{S} \subseteq X$. Then, $y \in X$ is the greatest lower bound for \mathcal{S} if y is a lower bound for \mathcal{S} and, for all lower bounds $x \in \mathcal{X}$ for \mathcal{S}, it follows that $x \leq \frac{\mathcal{R}}{\leq} y$. In this case, we write $y=\operatorname{glb}(\mathcal{S})$.
$v) \stackrel{\mathcal{R}}{\leq}$ is a lattice on X if, for all distinct $x, y \in X$, the set $\{x, y\}$ has a least upper bound and a greatest lower bound.
vi) \mathcal{R} is a total ordering on \mathcal{X} if, for all $x, y \in \mathcal{X}$, it follows that either $(x, y) \in \mathcal{R}$ or $(y, x) \in \mathcal{R}$.

For a subset \mathcal{S} of the real numbers, it is traditional to write $\inf \mathcal{S}$ and $\sup \mathcal{S}$ for $\operatorname{glb}(\mathcal{S})$ and $\operatorname{lub}(\mathcal{S})$, respectively, where "inf" and "sup" denote infimum and supremum, respectively.

1.4 Graphs

Let \mathcal{X} be a finite, nonempty set, and let \mathcal{R} be a relation on \mathcal{X}. Then, the pair $\mathcal{G}=(\mathcal{X}, \mathcal{R})$ is a graph. The elements of \mathcal{X} are the nodes of \mathcal{G}, while the elements of \mathcal{R} are the arcs of \mathcal{G}. If \mathcal{R} is a multirelation on \mathcal{X}, then $\mathcal{G}=(\mathcal{X}, \mathcal{R})$ is a multigraph.

The graph $\mathcal{G}=(\mathcal{X}, \mathcal{R})$ can be visualized as a set of points in the plane representing the nodes in \mathcal{X} connected by the arcs in \mathcal{R}. Specifically, the $\operatorname{arc}(x, y) \in \mathcal{R}$ from x to y can be visualized as a directed line segment or curve connecting node x to node y. The direction of an arc can be denoted by an arrow head. For example, consider a graph that represents a city with streets (arcs) connecting houses (nodes). Then, a symmetric relation is a street plan with no one-way streets, whereas an antisymmetric relation is a street plan with no two-way streets.

Definition 1.4.1. Let $\mathcal{G}=(X, \mathcal{R})$ be a graph. Then, the following terminology is defined:
i) The reversal of \mathcal{G} is the $\operatorname{graph} \operatorname{rev}(\mathcal{G}) \triangleq(\mathcal{X}, \operatorname{rev}(\mathcal{R}))$.
ii) The complement of \mathcal{G} is the graph $\mathcal{G}^{\sim} \triangleq\left(\mathcal{X}, \mathcal{R}^{\sim}\right)$.
iii) The reflexive hull of \mathcal{G} is the graph $\operatorname{ref}(\mathcal{G}) \triangleq(X, \operatorname{ref}(\mathcal{R}))$.
iv) The symmetric hull of \mathcal{G} is the $\operatorname{graph} \operatorname{sym}(\mathcal{G}) \triangleq(X, \operatorname{sym}(\mathcal{R}))$.
$v)$ The transitive hull of \mathcal{G} is the $\operatorname{graph} \operatorname{trans}(\mathcal{G}) \triangleq(X, \operatorname{trans}(\mathcal{R}))$.
vi) The equivalence hull of \mathcal{G} is the $\operatorname{graph} \operatorname{equiv}(\mathcal{G}) \triangleq(X, \operatorname{equiv}(\mathcal{R}))$.
vii) \mathcal{G} is reflexive if \mathcal{R} is reflexive.
viii) \mathcal{G} is symmetric if \mathcal{R} is symmetric. In this case, the $\operatorname{arcs}(x, y)$ and (y, x) in \mathcal{R} are denoted by the subset $\{x, y\}$ of \mathcal{X}, called an edge.
ix) \mathcal{G} is transitive if \mathcal{R} is transitive.
x) \mathcal{G} is an equivalence graph if \mathcal{R} is an equivalence relation.
xi) \mathcal{G} is antisymmetric if \mathcal{R} is antisymmetric.
xii) \mathcal{G} is partially ordered if \mathcal{R} is a partial ordering on \mathcal{X}.
xiii) \mathcal{G} is totally ordered if \mathcal{R} is a total ordering on \mathcal{X}.
xiv) \mathcal{G} is a tournament if \mathcal{G} has no self-loops, is antisymmetric, and $\operatorname{sym}(\mathcal{R})=$ $X \times X$.

Definition 1.4.2. Let $\mathcal{G}=(\mathcal{X}, \mathcal{R})$ be a graph. Then, the following terminology is defined:
i) The $\operatorname{arc}(x, x) \in \mathcal{R}$ is a self-loop.
ii) The reversal of $(x, y) \in \mathcal{R}$ is (y, x).
iii) If $x, y \in \mathcal{X}$ and $(x, y) \in \mathcal{R}$, then y is the head of (x, y) and x is the tail of (x, y).
iv) If $x, y \in \mathcal{X}$ and $(x, y) \in \mathcal{R}$, then x is a parent of y, and y is a child of x.
v) If $x, y \in \mathcal{X}$ and either $(x, y) \in \mathcal{R}$ or $(y, x) \in \mathcal{R}$, then x and y are adjacent.
$v i)$ If $x \in \mathcal{X}$ has no parent, then x is a root.
vii) If $x \in \mathcal{X}$ has no child, then x is a leaf.

Suppose that $(x, x) \in \mathcal{R}$. Then, x is both the head and the tail of (x, x), and thus x is a parent and child of itself. Consequently, x is neither a root nor a leaf. Furthermore, x is adjacent to itself.

Definition 1.4.3. Let $\mathcal{G}=(X, \mathcal{R})$ be a graph. Then, the following terminology is defined:
i) The graph $\mathcal{G}^{\prime}=\left(\mathcal{X}^{\prime}, \mathcal{R}^{\prime}\right)$ is a subgraph of \mathcal{G} if $\mathcal{X}^{\prime} \subseteq \mathcal{X}$ and $\mathcal{R}^{\prime} \subseteq \mathcal{R}$.
ii) The subgraph $\mathcal{G}^{\prime}=\left(\mathcal{X}^{\prime}, \mathcal{R}^{\prime}\right)$ of \mathcal{G} is a spanning subgraph of \mathcal{G} if $\operatorname{supp}(\mathcal{R})=$ $\operatorname{supp}\left(\mathcal{R}^{\prime}\right)$.
iii) For $x, y \in \mathcal{X}$, a walk in \mathcal{G} from x to y is an n-tuple of arcs of the form $((x, y)) \in \mathcal{R}$ for $n=1$ and $\left(\left(x, x_{1}\right),\left(x_{1}, x_{2}\right), \ldots,\left(x_{n-1}, y\right)\right) \in \mathcal{R}^{n}$ for $n \geq 2$. The length of the walk is n. The nodes $x, x_{1}, \ldots, x_{n-1}, y$ are the nodes of the walk. Furthermore, if $n \geq 2$, then the nodes x_{1}, \ldots, x_{n-1} are the intermediate nodes of the walk.
iv) \mathcal{G} is connected if, for all distinct $x, y \in \mathcal{X}$, there exists a walk in \mathcal{G} from x to y.
v) For $x, y \in \mathcal{X}$, a trail in \mathcal{G} from x to y is a walk in \mathcal{G} from x to y whose arcs are distinct and such that no reversed arc is also an arc of \mathcal{G}.
vi) For $x, y \in \mathcal{X}$, a path in \mathcal{G} from x to y is a trail in \mathcal{G} from x to y whose intermediate nodes (if any) are distinct.
vii) \mathcal{G} is traceable if \mathcal{G} has a path such that every node in X is a node of the path. Such a path is called a Hamiltonian path.
viii) For $x \in \mathcal{X}$, a cycle in \mathcal{G} at x is a path in \mathcal{G} from x to x whose length is greater than 1.
$i x)$ The period of \mathcal{G} is the greatest common divisor of the lengths of the cycles in \mathcal{G}. Furthermore, \mathcal{G} is aperiodic if the period of \mathcal{G} is 1 .
x) \mathcal{G} is Hamiltonian if \mathcal{G} has a cycle such that every node in \mathcal{X} is a node of the cycle. Such a cycle is called a Hamiltonian cycle.
xi) \mathcal{G} is a forest if \mathcal{G} is symmetric and has no cycles.
xii) \mathcal{G} is a tree if \mathcal{G} is a forest and is connected.
xiii) The indegree of $x \in \mathcal{X}$ is $\operatorname{indeg}(x) \triangleq \operatorname{card}\{y \in X: y$ is a parent of $x\}$.
xiv) The outdegree of $x \in \mathcal{X}$ is outdeg $(x) \triangleq \operatorname{card}\{y \in \mathcal{X}: y$ is a child of $x\}$.
$x v)$ If \mathcal{G} is symmetric, then the degree of $x \in X$ is $\operatorname{deg}(x) \triangleq \operatorname{indeg}(x)=$ outdeg (x).
svi) If $X_{0} \subseteq \mathcal{X}$, then,

$$
\left.\mathcal{G}\right|_{x_{0}} \triangleq\left(\mathcal{X}_{0},\left.\mathcal{R}\right|_{X_{0}}\right)
$$

xvii) If $\mathcal{G}^{\prime}=\left(\mathcal{X}^{\prime}, \mathcal{R}^{\prime}\right)$ is a graph, then $\mathcal{G} \cup \mathcal{G}^{\prime} \triangleq\left(\mathcal{X} \cup \mathcal{X}^{\prime}, \mathcal{R} \cup \mathcal{R}^{\prime}\right)$ and $\mathcal{G} \cap \mathcal{G}^{\prime} \triangleq$ $\left(X \cap X^{\prime}, \mathcal{R} \cap \mathcal{R}^{\prime}\right)$.
sviii) Let $X=X_{1} \cup X_{2}$, where X_{1} and X_{2} are nonempty and disjoint, and assume that $\mathcal{X}=\operatorname{supp}(\mathcal{G})$. Then, $\left(X_{1}, X_{2}\right)$ is a directed cut of \mathcal{G} if, for all $x_{1} \in X_{1}$ and $x_{2} \in \mathcal{X}_{2}$, there does not exist a walk from x_{1} to x_{2}.

Let $\mathcal{G}=(X, \mathcal{R})$ be a graph, and let $w: \mathcal{X} \times \mathcal{X} \mapsto[0, \infty)$, where $w(x, y)>0$ if $(x, y) \in \mathcal{R}$ and $w(x, y)=0$ if $(x, y) \notin \mathcal{R}$. For each $\operatorname{arc}(x, y) \in \mathcal{R}, w(x, y)$ is the weight associated with the arc (x, y), and the triple $\mathcal{G}=(\mathcal{X}, \mathcal{R}, w)$ is a weighted graph. Every graph can be viewed as a weighted graph by defining $w[(x, y)] \triangleq 1$ for all $(x, y) \in \mathcal{R}$ and $w[(x, y)] \triangleq 0$ for all $(x, y) \notin \mathcal{R}$. The graph $\mathcal{G}^{\prime}=\left(\mathcal{X}^{\prime}, \mathcal{R}^{\prime}, w^{\prime}\right)$ is a weighted subgraph of \mathcal{G} if $\mathcal{X} \subseteq X^{\prime}, \mathcal{R}^{\prime}$ is a relation on $X^{\prime}, \mathcal{R}^{\prime} \subseteq \mathcal{R}$, and w^{\prime} is the restriction of w to \mathcal{R}^{\prime}. Finally, if \mathcal{G} is symmetric, then w is defined on edges $\{x, y\}$ of \mathcal{G}.

1.5 Facts on Logic, Sets, Functions, and Relations

Fact 1.5.1. Let A and B be statements. Then, the following statements hold:
i) $\operatorname{not}(A$ or $B) \Longleftrightarrow[(\operatorname{not} A)$ and $(\operatorname{not} B)]$.
ii) $\operatorname{not}(A$ and $B) \Longleftrightarrow(\operatorname{not} A)$ or $(\operatorname{not} B)$.
iii) $(A$ or $B) \Longleftrightarrow[(\operatorname{not} A) \Longrightarrow B]$.
iv) $[(\operatorname{not} A)$ or $B] \Longleftrightarrow(A \Longrightarrow B)$.
$v)[A$ and $(\operatorname{not} B)] \Longleftrightarrow[\operatorname{not}(A \Longrightarrow B)]$.
(Remark: Each statement is a tautology.) (Remark: Statements i) and $i i$) are $D e$ Morgan's laws. See [229, p. 24].)

Fact 1.5.2. The following statements are equivalent:
i) $A \Longrightarrow(B$ or $C)$.
ii) $[A$ and $(\operatorname{not} B)] \Longrightarrow C$.
(Remark: The statement that i) and $i i$) are equivalent is a tautology.)

Fact 1.5.3. The following statements are equivalent:
i) $A \Longleftrightarrow B$.
ii) $[A$ or $(\operatorname{not} B)]$ and $(\operatorname{not}[A$ and $(\operatorname{not} B)])$.
(Remark: The statement that i) and $i i$) are equivalent is a tautology.)
Fact 1.5.4. The following statements are equivalent:
i) Not [for all x, there exists y such that statement Z is satisfied].
ii) There exists x such that, for all y, statement Z is not satisfied.

Fact 1.5.5. Let \mathcal{A}, \mathcal{B}, and \mathcal{C} be sets, and assume that each of these sets has a finite number of elements. Then,

$$
\operatorname{card}(\mathcal{A} \cup \mathcal{B})=\operatorname{card}(\mathcal{A})+\operatorname{card}(\mathcal{B})-\operatorname{card}(\mathcal{A} \cap \mathcal{B})
$$

and

$$
\begin{aligned}
\operatorname{card}(\mathcal{A} \cup \mathcal{B} \cup \mathcal{C})= & \operatorname{card}(\mathcal{A})+\operatorname{card}(\mathcal{B})+\operatorname{card}(\mathcal{C}) \\
& -\operatorname{card}(\mathcal{A} \cap \mathcal{B})-\operatorname{card}(\mathcal{A} \cap \mathcal{C})-\operatorname{card}(\mathcal{B} \cap \mathcal{C}) \\
& +\operatorname{card}(\mathcal{A} \cap \mathcal{B} \cap \mathcal{C})
\end{aligned}
$$

(Remark: This result is the inclusion-exclusion principle. See [177, p. 82] or [1218, pp. 64-67].)

Fact 1.5.6. Let $\mathcal{A}, \mathcal{B}, \mathcal{C}$ be subsets of a set \mathcal{X}. Then, the following identities hold:
i) $\mathcal{A} \cap \mathcal{A}=\mathcal{A} \cup \mathcal{A}=\mathcal{A}$.
ii) $(\mathcal{A} \cup \mathcal{B})^{\sim}=\mathcal{A}^{\sim} \cap \mathcal{B}^{\sim}$.
iii) $(\mathcal{A} \cap \mathcal{B})^{\sim}=\mathcal{A}^{\sim} \cup \mathcal{B}^{\sim}$.
iv) $\mathcal{A}=(\mathcal{A} \backslash \mathcal{B}) \cup(\mathcal{A} \cap \mathcal{B})$.
v) $[\mathcal{A} \backslash(\mathcal{A} \cap \mathcal{B})] \cup \mathcal{B}=\mathcal{A} \cup \mathcal{B}$.
vi) $(\mathcal{A} \cup \mathcal{B}) \backslash(\mathcal{A} \cap \mathcal{B})=\left(\mathcal{A} \cap \mathcal{B}^{\sim}\right) \cup\left(\mathcal{A}^{\sim} \cap \mathcal{B}\right)$.
vii) $\mathcal{A} \cap(\mathcal{B} \cup \mathcal{C})=(\mathcal{A} \cap \mathcal{B}) \cup(\mathcal{A} \cap \mathcal{C})$.
viii) $\mathcal{A} \cup(\mathcal{B} \cap \mathcal{C})=(\mathcal{A} \cup \mathcal{B}) \cap(\mathcal{A} \cup \mathcal{C})$.
ix) $(\mathcal{A} \backslash \mathcal{B}) \backslash \mathcal{C}=\mathcal{A} \backslash(\mathcal{B} \cup \mathcal{C})$.
x) $(\mathcal{A} \cap \mathcal{B}) \backslash \mathcal{C}=(\mathcal{A} \backslash \mathcal{C}) \cap(\mathcal{B} \backslash \mathcal{C})$.
xi) $(\mathcal{A} \cap \mathcal{B}) \backslash(\mathcal{C} \cap \mathcal{B})=(\mathcal{A} \backslash \mathcal{C}) \cap \mathcal{B}$.
xii) $(\mathcal{A} \cup \mathcal{B}) \backslash \mathcal{C}=(\mathcal{A} \backslash \mathcal{C}) \cup(\mathcal{B} \backslash \mathcal{C})=[\mathcal{A} \backslash(\mathcal{B} \cup \mathcal{C})] \cup(\mathcal{B} \backslash \mathcal{C})$.
xiii) $(\mathcal{A} \cup \mathcal{B}) \backslash(\mathcal{C} \cap \mathcal{B})=(\mathcal{A} \backslash \mathcal{B}) \cup(\mathcal{B} \backslash \mathcal{C})$.
xiv) $(\mathcal{A} \cup \mathcal{B}) \cap\left(\mathcal{A} \cup \mathcal{B}^{\sim}\right)=\mathcal{A}$.
xv) $(\mathcal{A} \cup \mathcal{B}) \cap\left(\mathcal{A}^{\sim} \cup \mathcal{B}\right) \cap\left(\mathcal{A} \cup \mathcal{B}^{\sim}\right)=\mathcal{A} \cap \mathcal{B}$.

Fact 1.5.7. Define the relation \mathcal{R} on $\mathbb{R} \times \mathbb{R}$ by

$$
\mathcal{R} \triangleq\left\{\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) \in(\mathbb{R} \times \mathbb{R}) \times(\mathbb{R} \times \mathbb{R}): x_{1} \leq x_{2} \text { and } y_{1} \leq y_{2}\right\}
$$

Then, \mathcal{R} is a partial ordering.

Fact 1.5.8. Define the relation \mathcal{L} on $\mathbb{R} \times \mathbb{R}$ by

$$
\begin{aligned}
\mathcal{L} \triangleq\left\{\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)\right. & \in(\mathbb{R} \times \mathbb{R}) \times(\mathbb{R} \times \mathbb{R}): \\
& \left.x_{1} \leq x_{2} \text { and, if } x_{1}=x_{2}, \text { then } y_{1} \leq y_{2}\right\}
\end{aligned}
$$

Then, \mathcal{L} is a total ordering on $\mathbb{R} \times \mathbb{R}$. (Remark: Denoting this total ordering by " $\stackrel{\mathrm{d}}{\leq}$," note that $(1,4) \stackrel{\mathrm{d}}{\leq}(2,3)$ and $(1,4) \stackrel{\mathrm{d}}{\leq}(1,5)$.) (Remark: This ordering is the lexicographic ordering or dictionary ordering, where 'book' $\stackrel{\text { d }}{\leq}$ 'box'. Note that the ordering of words in a dictionary is reflexive, antisymmetric, and transitive, and that every pair of words can be ordered.) (Remark: See Fact 2.9.31)

Fact 1.5.9. Let $f: X \mapsto y$, and assume that f is invertible. Then,

$$
\left(f^{-1}\right)^{-1}=f
$$

Fact 1.5.10. Let $f: X \mapsto y$ and $g: y \mapsto z$, and assume that f and g are invertible. Then, $g \bullet f$ is invertible and

$$
(g \bullet f)^{-1}=f^{-1} \bullet g^{-1}
$$

Fact 1.5.11. Let $f: X \mapsto y$, and let $A, B \subseteq X$. Then, the following statements hold:
i) If $A \subseteq B$, then $f(A) \subseteq f(B)$.
ii) $f(A \cup B)=f(A) \cup f(B)$.
iii) $f(A \cap B) \subseteq f(A) \cap f(B)$.

Fact 1.5.12. Let $f: X \mapsto y$, and let $A, B \subseteq y$. Then, the following statements hold:
i) $f\left[f^{-1}(A)\right] \subseteq A \subseteq f^{-1}[f(A)]$.
ii) $f^{-1}(A \cup B)=f^{-1}\left(B_{1}\right) \cup f^{-1}\left(B_{2}\right)$.
iii) $f^{-1}\left(A_{1} \cap A_{2}\right)=f^{-1}\left(A_{1}\right) \cap f^{-1}\left(A_{2}\right)$.

Fact 1.5.13. Let X and y be finite sets, assume that $\operatorname{card}(X)=\operatorname{card}(y)$, and let $f: X \mapsto y$. Then, f is one-to-one if and only if f is onto. (Remark: See Fact 1.6.1.)

Fact 1.5.14. Let $f: X \mapsto y$. Then, the following statements are equivalent:
i) f is one-to-one.
ii) For all $A \subseteq X$ and $B \subseteq y$, it follows that $f(A \cap B)=f(A) \cap f(B)$.
iii) For all $A \subseteq X$, it follows that $f^{-1}[f(A)]=A$.
iv) For all disjoint $A \subseteq X$ and $B \subseteq \mathcal{y}$, it follows that $f(A)$ and $f(B)$ are disjoint.
$v)$ For all $A \subseteq X$ and $B \subseteq y$ such that $A \subseteq B$, it follows that $f(A \backslash B)=$ $f(A) \backslash f(B)$.
(Proof: See [68, pp. 44, 45].)
Fact 1.5.15. Let $f: X \mapsto y$. Then, the following statements are equivalent:
i) f is onto.
ii) For all $A \subseteq X$, it follows that $f\left[f^{-1}(A)\right]=A$.

Fact 1.5.16. Let $f: X \mapsto y$, and let $g: y \mapsto z$. Then, the following statements hold:
i) If f and g are one-to-one, then $f \bullet g$ is one-to-one.
ii) If f and g are onto, then $f \bullet g$ is onto.
(Remark: A matrix version of this result is given by Fact 2.10.3.)
Fact 1.5.17. Let \mathcal{X} be a set, and let \mathfrak{X} denote the class of subsets of \mathcal{X}. Then, " \subset " and " \subseteq " are transitive relations on \mathfrak{X}, and " \subseteq " is a partial ordering on \mathfrak{X}.

1.6 Facts on Graphs

Fact 1.6.1. Let $\mathcal{G}=(\mathcal{X}, \mathcal{R})$ be a graph. Then, the following statements hold:
i) \mathcal{R} is the graph of a function on \mathcal{X} if and only if every node in \mathcal{X} has exactly one child.

Furthermore, the following statements are equivalent:
ii) \mathcal{R} is the graph of a one-to-one function on \mathcal{X}.
iii) \mathcal{R} is the graph of an onto function on \mathcal{X}.
iv) \mathcal{R} is the graph of a one-to-one and onto function on \mathcal{X}.
$v)$ Every node in X has exactly one child and not more than one parent.
vi) Every node in \mathcal{X} has exactly one child and at least one parent.
vii) Every node in X has exactly one child and exactly one parent.
(Remark: See Fact 1.5.13)
Fact 1.6.2. Let $\mathcal{G}=(\mathcal{X}, \mathcal{R})$ be a graph, and assume that \mathcal{R} is the graph of a function $f: X \mapsto X$. Then, either f is the identity map or \mathcal{G} has a cycle.

Fact 1.6.3. Let $\mathcal{G}=(\mathcal{X}, \mathcal{R})$ be a graph, and assume that \mathcal{G} has a Hamiltonian cycle. Then, \mathcal{G} has no roots and no leaves.

Fact 1.6.4. Let $\mathcal{G}=(\mathcal{X}, \mathcal{R})$ be a graph. Then, \mathcal{G} has either a root or a cycle.
Fact 1.6.5. Let $\mathcal{G}=(\mathcal{X}, \mathcal{R})$ be a symmetric graph. Then, the following statements are equivalent:
i) \mathcal{G} is a forest.
ii) \mathcal{G} has no cycles.
iii) No pair of nodes is connected by more than one path.

Furthermore, the following statements are equivalent:
iv) \mathcal{G} is a tree.
v) \mathcal{G} is a connected forest.
vi) \mathcal{G} is connected and has no cycles.
vii) \mathcal{G} is connected and has $\operatorname{card}(\mathcal{X})-1$ edges.
viii) \mathcal{G} has no cycles and has $\operatorname{card}(X)-1$ edges.
ix) Every pair of nodes is connected by exactly one path.

Fact 1.6.6. Let $\mathcal{G}=(X, \mathcal{R})$ be a tournament. Then, \mathcal{G} has a Hamiltonian path. Furthermore, the Hamiltonian path is a Hamiltonian cycle if and only if \mathcal{G} is connected.

Fact 1.6.7. Let $\mathcal{G}=(\mathcal{X}, \mathcal{R})$ be a symmetric graph, where $\mathcal{X} \subset \mathbb{R}^{2}$, assume that $n \triangleq \operatorname{card}(\mathcal{X}) \geq 3$, and assume that the edges in \mathcal{R} can be represented by line segments lying in a plane that are either disjoint or intersect at a node. Furthermore, let m denote the number of edges of \mathcal{G}, and let f denote the number of disjoint regions in \mathbb{R}^{2} whose boundaries are the edges of \mathcal{G}. Then,

$$
n-m+f=2
$$

Consequently, if $n \geq 3$, then

$$
m \leq 3(n-2)
$$

(Remark: The identity is Euler's polyhedron formula.)

1.7 Facts on Binomial Identities and Sums

Fact 1.7.1. The following identities hold:
i Let $0 \leq k \leq n$. Then,

$$
\binom{n}{k}=\binom{n}{n-k}
$$

ii) Let $1 \leq k \leq n$. Then,

$$
k\binom{n}{k}=n\binom{n-1}{k-1} .
$$

iii) Let $2 \leq k \leq n$. Then,

$$
k(k-1)\binom{n}{k}=n(n-1)\binom{n-2}{k-2}
$$

iv) Let $0 \leq k<n$. Then,

$$
(n-k)\binom{n}{k}=n\binom{n-1}{k}
$$

$v)$ Let $1 \leq k \leq n$. Then,

$$
\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}
$$

vi) Let $0 \leq m \leq k \leq n$. Then,

$$
\binom{n}{k}\binom{k}{m}=\binom{n}{m}\binom{n-m}{k-m}
$$

vii) Let $m, n \geq 0$. Then,

$$
\sum_{i=0}^{m}\binom{n+i}{n}=\binom{n+m+1}{m}
$$

viii) Let $k \geq 0$ and $n \geq 1$. Then,

$$
\sum_{i=0}^{n-1} \frac{(k+i)!}{i!}=k!\binom{k+n}{k+1}
$$

ix) Let $0 \leq k \leq n$. Then,

$$
\sum_{i=k}^{n}\binom{i}{k}=\binom{n+1}{k+1}
$$

x) Let $n, m \geq 0$, and let $0 \leq k \leq \min \{n, m\}$. Then,

$$
\sum_{i=0}^{k}\binom{n}{i}\binom{m}{k-i}=\binom{n+m}{k}
$$

xi) Let $n \geq 0$. Then,

$$
\sum_{i=1}^{n}\binom{n}{i}\binom{n}{i-1}=\binom{2 n}{n+1}
$$

xii) Let $0 \leq k \leq n$. Then,

$$
\sum_{i=0}^{n-k}\binom{n}{i}\binom{n}{k+i}=\frac{(2 n)!}{(n-k)!(n+k)!}
$$

xiii) Let $0 \leq k \leq n / 2$. Then,

$$
\sum_{i=k}^{n-k}\binom{i}{k}\binom{n-i}{k}=\binom{n+1}{2 k+1}
$$

xiv) Let $n \geq 0$. Then,

$$
\sum_{i=0}^{n}\binom{n}{i}^{2}=\binom{2 n}{n}
$$

$x v$ Let $n \geq 1$. Then,

$$
\sum_{i=0}^{n} i\binom{n}{i}^{2}=n\binom{2 n-1}{n-1}
$$

$x v i$ For all $x, y \in \mathbb{C}$ and $n \geq 0$,

$$
(x+y)^{n}=\sum_{i=0}^{n}\binom{n}{i} x^{n-i} y^{i}
$$

xvii) Let $n \geq 0$. Then,

$$
\sum_{i=0}^{n}\binom{n}{i}=2^{n}
$$

xviii) Let $n \geq 0$. Then,

$$
\sum_{i=0}^{n} \frac{1}{i+1}\binom{n}{i}=\frac{2^{n+1}-1}{n+1}
$$

xix) Let $n \geq 0$. Then,

$$
\sum_{i=0}^{n}\binom{2 n+1}{i}=\sum_{i=0}^{2 n}\binom{2 n}{i}=4^{n}
$$

$x x)$ Let $n>1$. Then,

$$
\sum_{i=0}^{n-1}(n-i)^{2}\binom{2 n}{i}=4^{n-1} n
$$

$x x i$) Let $n \geq 0$. Then,

$$
\sum_{i=0}^{\lfloor n / 2\rfloor}\binom{n}{2 i}=2^{n-1}
$$

xxii) Let $n \geq 0$. Then,

$$
\sum_{i=0}^{\lfloor(n-1) / 2\rfloor}\binom{n}{2 i+1}=2^{n-1}
$$

xxiii) Let $n \geq 0$. Then,

$$
\sum_{i=0}^{\lfloor n / 2\rfloor}(-1)^{i}\binom{n}{2 i}=2^{n / 2} \cos \frac{n \pi}{4}
$$

xxiv) Let $n \geq 0$. Then,

$$
\sum_{i=0}^{\lfloor(n-1) / 2\rfloor}(-1)^{i}\binom{n}{2 i+1}=2^{n / 2} \sin \frac{n \pi}{4}
$$

$x x v$) Let $n \geq 1$. Then,

$$
\sum_{i=1}^{n} i\binom{n}{i}=n 2^{n-1}
$$

$x x v i)$ Let $n \geq 1$. Then,

$$
\sum_{i=0}^{n}\binom{n}{2 i}=2^{n-1}
$$

xxvii) Let $0 \leq k<n$. Then,

$$
\sum_{i=0}^{k}(-1)^{i}\binom{n}{i}=(-1)^{k}\binom{n-1}{k}
$$

xxviii) Let $n \geq 1$. Then,

$$
\sum_{i=0}^{n}(-1)^{i}\binom{n}{i}=0
$$

xxix) Let $n \geq 1$. Then,

$$
\sum_{i=0}^{n} \frac{2^{i}}{i+1}=\frac{2^{n}}{n+1} \sum_{i=0}^{n} \frac{1}{\binom{n}{i}}
$$

(Proof: See [177, pp. 64-68, 78], [332], 584, pp. 1, 2], and [668, pp. 2-10, 74]. Statement xxix) is given in [238] p. 55].) (Remark: Statement x) is Vandermonde's identity.)

Fact 1.7.2. The following inequalities hold:
i Let $n \geq 2$. Then,

$$
\frac{4^{n}}{n+1}<\binom{2 n}{n}<4^{n}
$$

ii) Let $n \geq 7$. Then,

$$
\left(\frac{n}{3}\right)^{n}<n!<\left(\frac{n}{2}\right)^{n}
$$

iii) Let $1 \leq k \leq n$. Then,

$$
\left(\frac{n}{k}\right)^{k} \leq\binom{ n}{k} \leq \min \left\{\frac{n^{k}}{k!},\left(\frac{n e}{k}\right)^{k}\right\}
$$

$i v)$ Let $0 \leq k \leq n$. Then,

$$
(n+1)^{k}\binom{n}{k} \leq n^{k}\binom{n+1}{k}
$$

v) Let $1 \leq k \leq n-1$. Then,

$$
\sum_{i=1}^{k} i(i+1)\binom{2 n}{k-i}<\frac{2^{2 n-2} k(k+1)}{n}
$$

vi) Let $1 \leq k \leq n$. Then,

$$
n^{k} \leq k^{k / 2}(k+1)^{(k-1) / 2}\binom{n}{k}
$$

(Proof: Statements i) and $i)^{\text {) }}$ are given in [238, p. 210]. Statement $i v$) is given in [668, p. 111]. Statement $v i$) is given in 451.)

Fact 1.7.3. Let n be a positive integer. Then,

$$
\sum_{i=1}^{n} i=\frac{1}{2} n(n+1)
$$

$$
\begin{gathered}
\sum_{i=1}^{n}(2 i-1)=n^{2} \\
\sum_{i=1}^{n} i^{2}=\frac{1}{6} n(n+1)(2 n+1) \\
\sum_{i=1}^{n} i^{3}=\frac{1}{4} n^{2}(n+1)^{2}=\left(\sum_{i=1}^{n} i\right)^{2} \\
\sum_{i=1}^{n} i^{4}=\frac{1}{30} n(n+1)(2 n+1)\left(3 n^{2}+3 n-1\right) \\
\sum_{i=1}^{n} i^{5}=\frac{1}{12} n^{2}(n+1)^{2}\left(2 n^{2}+2 n-1\right)
\end{gathered}
$$

(Remark: See Fact 1.15 .9 and [668, p. 11].)
Fact 1.7.4. Let $n \geq 2$. Then,

$$
n(\sqrt[n]{n+1}-1)<\sum_{i=1}^{n} \frac{1}{i}<1+n\left(1-\frac{1}{\sqrt[n]{n}}\right)
$$

(Proof: See [668, pp. 158, 161].)
Fact 1.7.5. Let n be a positive integer. Then,

$$
0<\sum_{i=1}^{n} \frac{1}{i}<\log n
$$

and

$$
\lim _{n \rightarrow \infty}\left[\left(\sum_{i=1}^{n} \frac{1}{i}\right)-\log n\right]=\gamma \approx 0.57721 \ldots .
$$

Hence,

$$
\lim _{n \rightarrow \infty} \frac{\sum_{i=1}^{n} \frac{1}{i}}{\log n}=1
$$

(Remark: γ is the Euler constant.)
Fact 1.7.6. The following statements hold:

$$
\sum_{i=1}^{\infty} \frac{1}{i^{i}}=\int_{0}^{1} \frac{1}{x^{x}} \mathrm{~d} x \approx 1.291
$$

and

$$
\sum_{i=1}^{\infty}(-1)^{i+1} \frac{1}{i^{i}}=\int_{0}^{1} x^{x} \mathrm{~d} x
$$

(Proof: See [238, pp. 4, 44].)

Fact 1.7.7. The following statements hold:

$$
\begin{gathered}
\sum_{i=0}^{\infty} \frac{1}{i!}=e, \\
\sum_{i=1}^{\infty} \frac{1}{i^{2}}=\frac{\pi^{2}}{6}, \\
\sum_{i=1}^{\infty} \frac{1}{i^{4}}=\frac{\pi^{4}}{90}, \\
\sum_{i=1}^{\infty} \frac{1}{i^{6}}=\frac{\pi^{6}}{945}, \\
\sum_{i=1}^{\infty} \frac{1}{(2 i-1)^{2}}=\frac{\pi^{2}}{8}, \\
\sum_{i=1}^{\infty} \frac{1}{(2 i-1)^{4}}=\frac{\pi^{4}}{96}, \\
\sum_{i=1}^{\infty} \frac{1}{(2 i-1)^{6}}=\frac{\pi^{6}}{960}, \\
\sum_{i=1}^{\infty}(-1)^{i+1} \frac{1}{i^{2}}=\frac{\pi^{2}}{12}, \\
\sum_{i=1}^{\infty}(-1)^{i+1} \frac{1}{i^{4}}=\frac{7 \pi^{4}}{720}, \\
\sum_{i=1}^{\infty}(-1)^{i+1} \frac{1}{i^{6}}=\frac{31 \pi^{6}}{30240}, \\
\sum_{i=1}^{\infty}(-1)^{i+1} \frac{1}{2 i-1}=\frac{\pi}{4} \\
\sum_{i=1}^{\infty}(-1)^{i+1} \frac{1}{(2 i-1)^{3}}=\frac{5 \pi^{5}}{1536} \\
\sum_{i=1}^{\infty}(-1)^{i+1} \frac{1}{(2 i-1)^{5}}=\frac{61 \pi^{7}}{184320}
\end{gathered} .
$$

Fact 1.7.8. For $i=1,2, \ldots$, let p_{i} denote the i th prime number, where $p_{1}=2$. Then,

$$
\frac{\pi^{2}}{6}=\prod_{i=1}^{\infty} \frac{1}{1-p_{i}^{-2}} \approx 1.6449
$$

(Remark: This identity is the Euler product formula for $\zeta(2)$, where ζ is the zeta function.)

Fact 1.7.9. The following statements hold:

$$
\begin{gathered}
\sum_{i=1}^{\infty} \frac{1}{\binom{2 i}{i}}=\frac{1}{3}+\frac{2 \pi}{9 \sqrt{3}}, \\
\sum_{i=1}^{\infty} \frac{i}{\binom{2 i}{i}}=\frac{2}{3}+\frac{2 \pi}{9 \sqrt{3}}, \\
\sum_{i=1}^{\infty} \frac{i^{2}}{\binom{2 i}{i}}=\frac{4}{3}+\frac{10 \pi}{27 \sqrt{3}}, \\
\sum_{i=1}^{\infty} \frac{1}{i\binom{2 i}{i}}=\frac{\pi}{3 \sqrt{3}}, \\
\sum_{i=1}^{\infty} \frac{1}{i^{2}\binom{2 i}{i}}=\frac{\pi^{2}}{18}, \\
\sum_{i=1}^{\infty} \frac{2-i}{\binom{2 i}{i}}=\frac{2 \pi}{9 \sqrt{3}}, \\
\sum_{i=0}^{\infty} \frac{25 i-3}{2^{i-1}\binom{3 i}{i}}=\pi
\end{gathered}
$$

(Proof: See [238, pp. 20, 25, 26].)
Fact 1.7.10. The following statements hold:

$$
\begin{aligned}
& \prod_{i=2}^{\infty} \frac{i^{2}-1}{i^{2}+1}= \frac{1}{2} \prod_{i=2}^{\infty} \frac{i^{2}}{i^{2}+1}=\frac{\pi}{\sinh \pi} \approx 0.2720 \\
& \prod_{i=2}^{\infty} \frac{i^{2}-1}{i^{2}}=\frac{1}{2} \\
& \prod_{i=2}^{\infty} \frac{i^{3}-1}{i^{3}+1}=\frac{2}{3} \\
& \prod_{i=2}^{\infty} \frac{i^{4}-1}{i^{4}+1}=\frac{\pi \sinh \pi}{\cosh (\sqrt{2} \pi)-\cos (\sqrt{2} \pi)} \approx 0.8480
\end{aligned}
$$

(Proof: See [238, pp. 4, 5].)

Fact 1.7.11. The following statements hold for all $x \in \mathbb{R}$:

$$
\begin{gathered}
\sin x=x \prod_{i=1}^{\infty}\left(1-\frac{x^{2}}{i^{2} \pi^{2}}\right) \\
\cos x=\prod_{i=1}^{\infty}\left(1-\frac{4 x^{2}}{(2 i-1)^{2} \pi^{2}}\right) \\
\sinh x=x \prod_{i=1}^{\infty}\left(1+\frac{x^{2}}{i^{2} \pi^{2}}\right) \\
\cosh x=\prod_{i=1}^{\infty}\left(1+\frac{4 x^{2}}{(2 i-1)^{2} \pi^{2}}\right) \\
\sin x=x \prod_{i=1}^{\infty} \cos \frac{x}{2^{i}}
\end{gathered}
$$

1.8 Facts on Convex Functions

Fact 1.8.1. Let \mathcal{J} be a finite or infinite interval, and let $f: \mathcal{J} \mapsto \mathbb{R}$. Then, in each case below, f is convex:
i) $\mathcal{J}=(0, \infty), f(x)=-\log x$.
ii) $\mathcal{J}=(0, \infty), f(x)=x \log x$.
iii) $\mathcal{J}=(0, \infty), f(x)=x^{p}$, where $p<0$.
iv) $\mathcal{J}=[0, \infty), f(x)=-x^{p}$, where $p \in(0,1)$.
v) $\mathcal{J}=[0, \infty), f(x)=x^{p}$, where $p \in(1, \infty)$.
vi) $\mathcal{J}=[0, \infty), f(x)=\left(1+x^{p}\right)^{1 / p}$, where $p \in(1, \infty)$.
vii) $\mathcal{J}=\mathbb{R}, f(x)=\frac{a^{x}-b^{x}}{c^{x}-d^{x}}$, where $0<d<c<b<a$.
viii) $\mathcal{J}=\mathbb{R}, f(x)=\log \frac{a^{x}-b^{x}}{c^{x}-d^{x}}$, where $0<d<c<b<a$ and $a d \geq b c$.
(Proof: Statements vii) and viii) are given in [238 p. 39].)
Fact 1.8.2. Let $\mathcal{J} \subseteq(0, \infty)$ be a finite or infinite interval, let $f: \mathcal{J} \mapsto \mathbb{R}$, and define $g: \mathcal{J} \mapsto \mathbb{R}$ by $g(x)=x f(1 / x)$. Then, f is (convex, strictly convex) if and only if g is (convex, strictly convex). (Proof: See [1039, p. 13].)

Fact 1.8.3. Let $f: \mathbb{R} \mapsto \mathbb{R}$, assume that f is convex, and assume that there exists $\alpha \in \mathbb{R}$ such that, for all $x \in \mathbb{R}, f(x) \leq \alpha$. Then, f is constant. (Proof: See [1039, p. 35].)

Fact 1.8.4. Let $\mathcal{J} \subseteq \mathbb{R}$ be a finite or infinite interval, let $f: \mathcal{J} \mapsto \mathbb{R}$, and assume that f is continuous. Then, the following statements are equivalent:
i) f is convex.
ii) For all $k \in \mathbb{P}, x_{1}, \ldots, x_{k} \in \mathcal{J}$, and $\alpha_{1}, \ldots, \alpha_{n} \in[0,1]$ such that $\sum_{i=1}^{n} \alpha_{i}=1$,
it follows that

$$
f\left(\sum_{i=1}^{n} \alpha_{i} x_{i}\right) \leq \sum_{i=1}^{n} \alpha_{i} f\left(x_{i}\right)
$$

(Remark: This result is Jensen's inequality.) (Remark: Setting $f(x)=x^{p}$ yields Fact 1.15.35, whereas setting $f(x)=\log x$ for $x \in(0, \infty)$ yields the arithmetic-mean-geometric-mean inequality given by Fact 1.15.14) (Remark: See Fact 10.11.7)

Fact 1.8.5. Let $[a, b] \subset \mathbb{R}$, let $f:[a, b] \mapsto \mathbb{R}$ be convex, and let $x, y \in[a, b]$. Then,

$$
\frac{1}{2}[f(x)+f(y)]-f\left[\frac{1}{2}(x+y)\right] \leq \frac{1}{2}[f(a)+f(b)]-f\left[\frac{1}{2}(a+b)\right]
$$

(Remark: This result is Niculescu's inequality. See [99, p. 13].)
Fact 1.8.6. Let $\mathcal{J} \subseteq \mathbb{R}$ be a finite or infinite interval, let $f: \mathcal{J} \mapsto \mathbb{R}$. Then, the following statements are equivalent:
i) f is convex.
ii) f is continuous, and, for all $x, y \in \mathcal{J}$,

$$
\frac{2}{3}\left(f\left[\frac{1}{2}(x+y)\right]+f\left[\frac{1}{2}(y+z)\right]+f\left[\frac{1}{2}(x+z)\right] \leq \frac{1}{3}[f(x)+f(y)+f(z)]+f\left[\frac{1}{3}(x+y+z)\right.\right.
$$

(Remark: This result is Popoviciu's inequality. See [1039, p. 12].) (Remark: For the case of a scalar argument and $f(x)=|x|$, this result implies Hlawka's inequality given by Fact 9.7.4. See Fact 1.18 .2 and 1041 .) (Problem: Extend this result so that it yields Hlawka's inequality for vector arguments.)

Fact 1.8.7. Let $[a, b] \subset \mathbb{R}$, let $f:[a, b] \mapsto \mathbb{R}$, and assume that f is convex. Then,

$$
f\left[\frac{1}{2}(a+b)\right] \leq \frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d} x \leq \frac{1}{2}[f(a)+f(b)]
$$

(Proof: See [1039, pp. 50-53] and [1156, 1158].) (Remark: This result is the Hermite-Hadamard inequality.)

1.9 Facts on Scalar Identities and Inequalities in One Variable

Fact 1.9.1. Let x and α be real numbers, and assume that $x \geq-1$. Then, the following statements hold:
i) If $\alpha \leq 0$, then

$$
1+\alpha x \leq(1+x)^{\alpha}
$$

Furthermore, equality holds if and only if either $x=0$ or $\alpha=0$.
ii) If $\alpha \in[0,1]$, then

$$
(1+x)^{\alpha} \leq 1+\alpha x
$$

Furthermore, equality holds if and only if either $x=0, \alpha=0$, or $\alpha=1$.
iii) If $\alpha \geq 1$, then

$$
1+\alpha x \leq(1+x)^{\alpha}
$$

Furthermore, equality holds if and only if either $x=0$ or $\alpha=1$.
(Proof: See [34, [274, p. 4], and [1010, p. 65]. Alternatively, the result follows from Fact 1.9.26 See [1447].) (Remark: These results are Bernoulli's inequality. An equivalent version is given by Fact 1.9.2, (Remark: The proof of i) and $i i i$) in [34] is based on the fact that, for $x \geq-1$, the function $f(x) \triangleq \frac{(1+x)^{\alpha}-1}{x}$ for $x \neq 0$ and $f(0) \triangleq \alpha$, is increasing.)

Fact 1.9.2. Let x be a nonnegative number, and let α be a real number. If $\alpha \in[0,1]$, then

$$
\alpha+x^{\alpha} \leq 1+\alpha x
$$

whereas, if either $\alpha \leq 0$ or $\alpha \geq 1$, then

$$
1+\alpha x \leq \alpha+x^{\alpha}
$$

(Proof: Set $y=x+1$ in Fact 1.9.1. Alternatively, for the case $\alpha \in[0,1]$, set $y=1$ in the right-hand inequality in Fact 1.10.21. For the case $\alpha \geq 1$, note that $f(x) \triangleq \alpha+x^{\alpha}-1-\alpha x$ satisfies $f(1)=0, f^{\prime}(1)=0$, and, for all $x \geq 0$, $f^{\prime \prime}(x)=\alpha(\alpha-1) x^{\alpha-2}>0$.) (Remark: This result is equivalent to Bernoulli's inequality. See Fact 1.9.1.) (Remark: For $\alpha \in[0,1]$ a matrix version is given by Fact 8.9.42) (Problem: Compare the second inequality to Fact 1.10 .22 with $y=1$.)

Fact 1.9.3. Let x and α be real numbers, assume that either $\alpha \leq 0$ or $\alpha \geq 1$, and assume that $x \in[0,1]$. Then,

$$
(1+x)^{\alpha} \leq 1+\left(2^{\alpha}-1\right) x
$$

Furthermore, equality holds if and only if either $\alpha=0, \alpha=1, x=0$, or $x=1$. (Proof: See 34.)

Fact 1.9.4. Let $x \in(0,1)$, and let k be a positive integer. Then,

$$
(1-x)^{k}<\frac{1}{1+k x}
$$

(Proof: See [668, p. 137].)
Fact 1.9.5. Let x be a nonnegative number. Then,

$$
\begin{gathered}
8 x<x^{4}+9 \\
3 x^{2} \leq x^{3}+4, \\
4 x^{2}<x^{4}+x^{3}+x+1, \\
8 x^{2}<x^{4}+x^{3}+4 x+4, \\
3 x^{5}<x^{11}+x^{4}+1 .
\end{gathered}
$$

Now, let n be a positive integer. Then,

$$
(2 n+1) x^{n} \leq \sum_{i=1}^{2 n} x^{i}
$$

(Proof: See [668, pp. 117, 123, 152, 153, 155].)

Fact 1.9.6. Let x be a positive number. Then,

$$
1+\frac{1}{2} x-\frac{1}{8} x^{2}<\sqrt{1+x}<1+\frac{1}{2} x-\frac{1}{8} x^{2}+\frac{1}{16} x^{3}
$$

(Proof: See [783, p. 55].)
Fact 1.9.7. Let $x \in(0,1)$. Then,

$$
\frac{1}{2-x}<x^{x}<x^{2}-x+1
$$

(Proof: See [668, p. 164].)
Fact 1.9.8. Let $x, p \in[1, \infty)$. Then,

$$
x^{1 / p}(x-1)<p x\left(x^{1 / p}-1\right) .
$$

Furthermore, equality holds if and only if either $p=1$ or $x=1$. (Proof: See [530, p. 194].)

Fact 1.9.9. If $p \in[\sqrt{2}, 2)$, then, for all $x \in(0,1)$, it follows that

$$
\left[\frac{1-x^{p}}{p(1-x)}\right]^{2} \leq \frac{1}{2}\left(1+x^{p-1}\right)
$$

Furthermore, if $p \in(1, \sqrt{2})$, then there exists $x \in(0,1)$, such that

$$
\frac{1}{2}\left(1+x^{p-1}\right)<\left[\frac{1-x^{p}}{p(1-x)}\right]^{2}
$$

(Proof: See [206].)
Fact 1.9.10. Let $x, p \in[1, \infty)$. Then,

$$
(p-1)^{p-1}\left(x^{p}-1\right)^{p} \leq p^{p}(x-1)\left(x^{p}-x\right)^{p-1} x^{p-1}
$$

Furthermore, equality holds if and only if either $p=1$ or $x=1$. (Proof: See [530, p. 194].)

Fact 1.9.11. Let $x \in[1, \infty)$, and let $p, q \in(1, \infty)$ satisfy $1 / p+1 / q=1$. Then,

$$
p x^{1 / q} \leq 1+(p-1) x
$$

Furthermore, equality holds if and only if $x=1$. (Proof: See [530, p. 194].)
Fact 1.9.12. Let $x \in[1, \infty)$, and let $p, q \in(1, \infty)$ satisfy $1 / p+1 / q=1$. Then,

$$
x-1 \leq p^{1 / p} q^{1 / q}\left(x^{1 / p}-1\right)^{1 / p}\left(x^{1 / q}-1\right)^{1 / q} x^{2 /(p q)}
$$

Furthermore, equality holds if and only if $x=1$. (Proof: See [530, p. 195].)
Fact 1.9.13. Let x be a real number, and let $p, q \in(1, \infty)$ satisfy $1 / p+1 / q=1$. Then,

$$
\frac{1}{p} e^{p x}+\frac{1}{q} e^{-q x} \leq e^{p^{2} q^{2} x^{2} / 8}
$$

(Proof: See [868, p. 260].)

Fact 1.9.14. Let x and y be positive numbers. If $x \in(0,1]$ and $y \in[0, x]$, then

$$
\left(1+\frac{1}{x}\right)^{y} \leq 1+\frac{y}{x}
$$

Equality holds if and only if either $y=0$ or $x=y=1$. If $x \in(0,1)$, then

$$
\left(1+\frac{1}{x}\right)^{x}<2
$$

If $x>1$ and $y \in[1, x]$, then

$$
1+\frac{y}{x} \leq\left(1+\frac{1}{x}\right)^{y}<1+\frac{y}{x}+\frac{y^{2}}{x^{2}}
$$

The left-hand inequality is an equality if and only if $y=1$. Finally, if $x>1$, then

$$
2<\left(1+\frac{1}{x}\right)^{x}<3
$$

(Proof: See 668, p. 137].)
Fact 1.9.15. Let x be a nonnegative number, and let p and q be real numbers such that $0<p \leq q$. Then,

$$
e^{x}\left(1+\frac{1}{p}\right)^{-x} \leq\left(1+\frac{x}{p}\right)^{p} \leq\left(1+\frac{x}{q}\right)^{q} \leq e^{x}
$$

Furthermore, if $p<q$, then equality holds if and only if $x=0$. Finally,

$$
\lim _{q \rightarrow \infty}\left(1+\frac{x}{q}\right)^{q}=e^{x}
$$

(Proof: See [274, pp. 7, 8].) (Remark: For $q \rightarrow \infty,(1+1 / q)^{q}=e+O(1 / q)$, whereas $(1+1 / q)^{q}[1+1 /(2 q)]=e+O\left(1 / q^{2}\right)$. See 829 .)

Fact 1.9.16. Let x be a positive number. Then,

$$
\sqrt{\frac{x}{x+1}} e<\left(1+\frac{1}{x}\right)^{x}<\frac{2 x+1}{2 x+2} e
$$

and

$$
\begin{aligned}
\sqrt{1+\frac{1}{x}} e^{-1 /[12 x(x+1)]} & <\frac{2 x+2}{2 x+1} e^{1 /\left[6(2 x+1)^{2}\right]} \\
& <\frac{e}{\left(1+\frac{1}{x}\right)^{x}} \\
& <\sqrt{1+\frac{1}{x}} e^{-1 /\left[3(2 x+1)^{2}\right]}
\end{aligned}
$$

(Proof: See 1160 .)

Fact 1.9.17. Let x be a positive number. Then,

$$
\begin{aligned}
\left(1+\frac{1}{x+\frac{1}{5}}\right)^{1 / 2} & <\left(1+\frac{2}{3 x+1}\right)^{3 / 4} \\
& <\left(1+\frac{1}{\frac{5}{4} x+\frac{1}{3}}\right)^{5 / 8} \\
& <\frac{e}{\left(1+\frac{1}{x}\right)^{x}} \\
& <\left(1+\frac{1}{x+\frac{1}{6}}\right)^{1 / 2}
\end{aligned}
$$

(Proof: See 921.)
Fact 1.9.18. e is given by

$$
\lim _{q \rightarrow \infty}\left(\frac{q+1}{q-1}\right)^{q / 2}=e
$$

and

$$
\lim _{q \rightarrow \infty}\left[\frac{q^{q}}{(q-1)^{q-1}}-\frac{(q-1)^{q-1}}{(q-2)^{q-2}}\right]=e
$$

(Proof: These expressions are given in [1157] and [829, respectively.)
Fact 1.9.19. Let $n \geq 2$ be a positive integer. Then,
$e\left(\frac{n}{e}\right)^{n}<\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}<n!<\sqrt{\frac{n}{n-1}} \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}<\left(\frac{n+1}{2}\right)^{n}<\frac{n^{n+1}}{e^{n-1}}<e\left(\frac{n}{2}\right)^{n}$.
(Proof: See 1160.) (Remark: The lower bound for n ! is Stirling's formula.) (Remark: $(e / 2)^{n}<n$ and $\sqrt{2 \pi}<e$.)

Fact 1.9.20. Let n be a positive integer. If $n \geq 3$, then

$$
n!<2^{n(n-1) / 2}
$$

If $n \geq 6$, then

$$
\left(\frac{n}{3}\right)^{2}<n!<\left(\frac{n}{2}\right)^{2}
$$

(Proof: See 668, p. 137].)
Fact 1.9.21. Let x and a be positive numbers. Then,

$$
\log x \leq a x-\log a-1
$$

In particular,

$$
\log x \leq \frac{x}{e}
$$

Fact 1.9.22. Let x be a positive number. Then,

$$
\frac{x-1}{x} \leq \log x \leq x-1
$$

Furthermore, equality holds if and only if $x=1$.
Fact 1.9.23. Let x be a positive number such that $x \neq 1$. Then,

$$
\frac{1}{x^{2}+1} \leq \frac{\log x}{x^{2}-1} \leq \frac{1}{2 x}
$$

Furthermore, equality holds if and only if $x=1$.
Fact 1.9.24. Let x be a positive number. Then,

$$
\frac{2|x-1|}{x+1} \leq|\log x| \leq \frac{|x-1|\left(1+x^{1 / 3}\right)}{x+x^{1 / 3}} \leq \frac{|x-1|}{\sqrt{x}} .
$$

Furthermore, equality holds if and only if $x=1$. (Proof: See [274, p. 8].)
Fact 1.9.25. If $x \in(0,1]$, then
$\frac{x-1}{x} \leq \frac{x^{2}-1}{2 x} \leq \frac{x-1}{\sqrt{x}} \leq \frac{(x-1)\left(1+x^{1 / 3}\right)}{x+x^{1 / 3}} \leq \log x \leq \frac{2(x-1)}{x+1} \leq \frac{x^{2}-1}{x^{2}+1} \leq x-1$.
If $x \geq 1$, then
$\frac{x-1}{x} \leq \frac{x^{2}-1}{x^{2}+1} \leq \frac{2(x-1)}{x+1} \leq \log x \leq \frac{(x-1)\left(1+x^{1 / 3}\right)}{x+x^{1 / 3}} \leq \frac{x-1}{\sqrt{x}} \leq \frac{x^{2}-1}{2 x} \leq x-1$.
Furthermore, equality holds in all cases if and only if $x=1$. (Proof: See [274, p. 8] and [625.)

Fact 1.9.26. Let x be a positive number, and let p and q be real numbers such that $0<p \leq q$. Then,

$$
\log x \leq \frac{x^{p}-1}{p} \leq \frac{x^{q}-1}{q} \leq x^{q} \log x .
$$

In particular,

$$
\log x \leq 2(\sqrt{x}-1) \leq x-1
$$

Furthermore, equality holds in the second inequality if and only if either $p=q$ or $x=1$. Finally,

$$
\lim _{p \downarrow 0} \frac{x^{p}-1}{p}=\log x .
$$

(Proof: See [34, 1447] and [274, p. 8].) (Remark: See Proposition 8.6.4.) (Remark: See Fact 8.13.1.)

Fact 1.9.27. Let $x>0$. Then,

$$
x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}-\frac{1}{4} x^{4}<\log (1+x)<x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3} .
$$

(Proof: See [783, p. 55].)
Fact 1.9.28. Let $x>1$. Then,

$$
\frac{x-1}{\log x}<\left(\frac{x^{1 / 2}+x^{1 / 4}+1}{3}\right)^{2}<\left(\frac{x^{1 / 3}+1}{2}\right)^{3}
$$

(Proof: See [756].)

Fact 1.9.29. Let x be a real number. Then, the following statements hold:
i If $x \in[0, \pi / 2]$, then

$$
\left.\begin{array}{c}
x \cos x \\
\frac{2}{\pi} x \leq \frac{2}{\pi} x+\frac{1}{\pi^{3}} x\left(\pi^{2}-4 x^{2}\right) \\
\frac{x}{\sqrt{\left(1-4 / \pi^{2}\right) x^{2}+1}}
\end{array}\right\} \leq \sin x \leq\left\{\begin{array}{c}
\frac{2}{\pi} x+\frac{\pi-2}{\pi^{3}} x\left(\pi^{2}-4 x^{2}\right) \\
x \leq \tan x \\
1
\end{array}\right.
$$

ii) If $x \in(0, \pi / 2]$, then

$$
\cot ^{2} x<\frac{1}{x^{2}}<1+\cot ^{2} x
$$

iii) If $x \in(0, \pi)$, then

$$
\frac{1}{\pi} x(\pi-x) \leq \sin x \leq \frac{4}{\pi^{2}} x(\pi-x)
$$

iv) If $x \in[-4,4]$, then

$$
\cos x \leq \frac{\sin x}{x} \leq 1
$$

$v)$ If $x \in[-\pi / 2, \pi / 2]$ and $p \in[0,3]$, then

$$
\cos x \leq\left(\frac{\sin x}{x}\right)^{p} \leq 1
$$

vi) If $x \neq 0$, then

$$
x-\frac{1}{6} x^{3}<\sin x<x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5} .
$$

vii) If $x \neq 0$, then

$$
1-\frac{1}{2} x^{2}<\cos x<1-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}
$$

viii) If $x \geq \sqrt{3}$, then

$$
1+x \cos \frac{\pi}{x}<(x+1) \cos \frac{\pi}{x+1} .
$$

$i x)$ If $x \in[0, \pi / 2)$,

$$
\frac{4 x}{\pi-2 x} \leq \pi \tan x
$$

$x)$ If $x \in[0, \pi / 2)$, then

$$
2 \leq \frac{16}{\pi^{4}} x^{3} \tan x+2 \leq\left(\frac{\sin x}{x}\right)^{2}+\frac{\tan x}{x} \leq \frac{8}{45} x^{3} \tan x+2
$$

$x i)$ If $x \in(0, \pi / 2)$, then

$$
3 x<2 \sin x+\tan x
$$

xii) For all $x>0$,

$$
3 \sin x<(2+\cos x) x
$$

xiii) If $x \in[0, \pi / 2]$,

$$
2 \log \sec x \leq(\sin x) \tan x
$$

xiv) If $x \in(0,1)$, then

$$
\sin ^{-1} x<\frac{x}{1-x^{2}}
$$

$x v$) If $x>0$, then

$$
\left.\begin{array}{c}
\frac{x}{x^{2}+1} \\
\frac{3 x}{1+2 \sqrt{x^{2}+1}}
\end{array}\right\}<\tan ^{-1} x
$$

$x v i)$ If $x \in(0, \pi / 2)$, then

$$
\sinh x<2 \tan x
$$

xvii) If $x \in \mathbb{R}$, then

$$
1 \leq \frac{\sinh x}{x} \leq \cosh x \leq\left(\frac{\sinh x}{x}\right)^{3}
$$

xviii) If $x>0$ and $p \geq 3$, then

$$
\cosh x<\left(\frac{\sinh x}{x}\right)^{p}
$$

xix) If $x>0$, then

$$
2 \leq \frac{8}{45} x^{3} \tan x+2 \leq\left(\frac{\sinh x}{x}\right)^{2}+\frac{\tanh x}{x}
$$

$x x)$ If $x>0$, then

$$
\frac{\sinh x}{\sqrt{\sinh ^{2} x+\cosh ^{2} x}}<\tanh x<x<\sinh x<\frac{1}{2} \sinh 2 x .
$$

(Proof: Statements i, $i v$), viii), $i x$), and $x i i i$) are given in [273, pp. 250, 251]. For i, see also [783, p. 75] and [902. Statement i) follows from $\sin x<x<\tan x$ in statement i). Statement iii) is given in [783 p. 72]. Statement v) is given in [1500. Statements $v i$) and $v i i$) are given in [783, p. 68]. Statement x) is given in [34, 1432. See also [274 p. 9], 868, pp. 270-271], and [1499, 1500. Statement xi) is Huygens's inequality. See [783, p. 71] and [868, p. 266]. Statement xii) is given in [783, p. 71] and [868, p. 266]. Statement xiv) is given in [868, p. 271]. Statements $x v$) and $x v i$) are given in [783, pp. 70, 75]. Statement xvii) is given in [273, pp. 131] and [673, p. 71]. Statements xviii) and xix) are given in [1500]. Statement $x x$) is given in [783, p. 74].) (Remark: The inequality $2 / \pi \leq(\sin x) / x$ is Jordan's inequality. See 902 .)

Fact 1.9.30. The following statements hold:
i) If $x \in \mathbb{R}$, then

$$
\frac{1-x^{2}}{1+x^{2}} \leq \frac{\sin \pi x}{\pi x}
$$

ii) If $|x| \geq 1$, then

$$
\frac{1-x^{2}}{1+x^{2}}+\frac{(1-x)^{2}}{x\left(1+x^{2}\right)} \leq \frac{\sin \pi x}{\pi x}
$$

iii) If $x \in(0,1)$, then

$$
\frac{\left(1-x^{2}\right)\left(4-x^{2}\right)\left(9-x^{2}\right)}{x^{6}-2 x^{4}+13 x^{2}+36} \leq \frac{\sin \pi x}{\pi x} \leq \frac{1-x^{2}}{\sqrt{1+3 x^{4}}}
$$

(Proof: See 902].)

Fact 1.9.31. Let n be a positive integer, and let r be a positive number.
Then,

$$
\frac{n}{n+1} \leq\left[\frac{(n+1) \sum_{i=1}^{n} i^{r}}{n \sum_{i=1}^{n+1} i^{r}}\right]^{1 / r} \leq \frac{\sqrt[n]{n!}}{\sqrt[n+1]{(n+1)!}}
$$

(Proof: See [4].) (Remark: The left-hand inequality is Alzer's inequality, while the right-hand inequality is Martins's inequality.)

1.10 Facts on Scalar Identities and Inequalities in Two Variables

Fact 1.10.1. Let m and n be positive integers. Then,

$$
\left(m^{2}-n^{2}\right)^{2}+(2 m n)^{2}=\left(m^{2}+n^{2}\right)^{2}
$$

In particular, if $m=2$ and $n=1$, then

$$
3^{2}+4^{2}=5^{2}
$$

while, if $m=3$ and $n=2$, then

$$
5^{2}+12^{2}=13^{2}
$$

Furthermore, if $m=4$ and $n=1$, then

$$
8^{2}+15^{2}=17^{2}
$$

whereas, if $m=4$ and $n=3$, then

$$
7^{2}+24^{2}=25^{2}
$$

(Remark: This result characterizes all Pythagorean triples within an integer multiple.)

Fact 1.10.2. The following integer identities hold:
i) $3^{3}+4^{3}+5^{3}=6^{3}$.
ii) $1^{3}+12^{3}=9^{3}+10^{3}$.
iii) $10^{2}+11^{2}+12^{2}=13^{2}+14^{2}$.
iv) $21^{2}+22^{2}+23^{2}+24^{2}=25^{2}+26^{2}+27^{2}$.
(Remark: The cube of a positive integer cannot be the sum of the cubes of two positive integers. See [477, p. 7].)

Fact 1.10.3. Let $x, y \in \mathbb{R}$. Then,

$$
\begin{gathered}
x^{2}-y^{2}=(x-y)(x+y), \\
x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right), \\
x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right), \\
x^{4}-y^{4}=(x-y)(x+y)\left(x^{2}+y^{2}\right), \\
x^{4}+x^{2} y^{2}+y^{4}=\left(x^{2}+x y+y^{2}\right)\left(x^{2}-x y+y^{2}\right),
\end{gathered}
$$

$$
\begin{gathered}
x^{4}+(x+y)^{4}+y^{4}=2\left(x^{2}+x y+y^{2}\right)^{2}, \\
x^{5}-y^{5}=(x-y)\left(x^{4}+x^{3} y+x^{2} y^{2}+x y^{3}+y^{4}\right), \\
x^{5}+y^{5}=(x+y)\left(x^{4}-x^{3} y+x^{2} y^{2}-x y^{3}+y^{4}\right), \\
x^{6}-y^{6}=(x-y)(x+y)\left(x^{2}+x y+y^{2}\right)\left(x^{2}-x y+y^{2}\right) .
\end{gathered}
$$

Fact 1.10.4. Let x and y be real numbers. Then,

$$
x y \leq \frac{1}{4}(x+y)^{2} \leq \frac{1}{2}\left(x^{2}+y^{2}\right)
$$

If, in addition, x and y are positive, then

$$
2 \leq \frac{x}{y}+\frac{y}{x}
$$

and

$$
\frac{2}{\frac{1}{x}+\frac{1}{y}} \leq \sqrt{x y} \leq \frac{1}{2}(x+y)
$$

(Remark: See Fact 8.10.7)
Fact 1.10.5. Let x and y be positive numbers, and assume that $0<x<y$.
Then,

$$
\frac{(x-y)^{2}}{8 y}<\frac{(x-y)^{2}}{4(x+y)}<\frac{1}{2}(x+y)-\sqrt{x y}<\frac{(x-y)^{2}}{8 x}
$$

(Proof: See [136, p. 231] and 457, p. 183].)
Fact 1.10.6. Let x and y be real numbers, and let $\alpha \in[0,1]$. Then,

$$
\sqrt{\alpha} x+\sqrt{1-\alpha} y \leq\left(x^{2}+y^{2}\right)^{1 / 2}
$$

Furthermore, equality holds if and only if one of the following conditions holds:
i) $x=y=0$.
ii) $x=0, y>0$, and $\alpha=0$.
iii) $x>0, y=0$, and $\alpha=1$.
iv) $x>0, y>0$, and $\alpha=\frac{x^{2}}{x^{2}+y^{2}}$.

Fact 1.10.7. Let α be a real number. Then,

$$
0 \leq x^{2}+\alpha x y+y^{2}
$$

for all real numbers x, y if and only if $\alpha \in[-2,2]$.
Fact 1.10.8. Let x and y be nonnegative numbers. Then,

$$
\begin{gathered}
9 x y^{2} \leq 3 x^{3}+7 y^{3} \\
27 x^{2} y \leq 4(x+y)^{3} \\
6 x y^{2} \leq x^{3}+y^{6}+8 \\
x^{2} y+y^{2} x \leq x^{3}+y^{3} \\
x^{3} y+y^{3} x \leq x^{4}+y^{4}, \\
x^{4} y+y^{4} x \leq x^{5}+y^{5}
\end{gathered}
$$

$$
\begin{gathered}
5 x^{6} y^{6} \leq 2 x^{15}+3 y^{10}, \\
8\left(x^{3} y+y^{3} x\right) \leq(x+y)^{4}, \\
4 x^{2} y \leq x^{4}+x^{3} y+y^{2}+x y, \\
4 x^{2} y \leq x^{4}+x^{3} y^{2}+y^{2}+x, \\
12 x y \leq 4 x^{2} y+4 y^{2} x+4 x+y, \\
9 x y \leq\left(x^{2}+x+1\right)\left(y^{2}+y+1\right), \\
6 x^{2} y^{2} \leq x^{4}+2 x^{3} y+2 y^{3} x+y^{4}, \\
4\left(x^{2} y+y^{2} x\right) \leq 2\left(x^{2}+y^{2}\right)^{2}+x^{2}+y^{2}, \\
2\left(x^{2} y+y^{2} x+x^{2} y^{2}\right) \leq 2\left(x^{4}+y^{4}\right)+x^{2}+y^{2} .
\end{gathered}
$$

(Proof: See Fact 1.15.8, [457, p. 183], 668, pp. 117, 120, 123, 124, 150, 153, 155].)
Fact 1.10.9. Let x and y be real numbers. Then,

$$
\begin{gathered}
x^{3} y+y^{3} x \leq x^{4}+y^{4} \\
4 x y(x-y)^{2} \leq\left(x^{2}-y^{2}\right)^{2}, \\
2 x+2 x y \leq x^{2} y^{2}+x^{2}+2, \\
3(x+y+x y) \leq(x+y+1)^{2} .
\end{gathered}
$$

(Proof: See [668, p. 117].)
Fact 1.10.10. Let x and y be real numbers. Then,

$$
2|(x+y)(1-x y)| \leq\left(1+x^{2}\right)\left(1+y^{2}\right) .
$$

(Proof: See [457, p. 185].)
Fact 1.10.11. Let x and y be real numbers, and assume that $x y(x+y) \geq 0$.
Then,

$$
\left(x^{2}+y^{2}\right)\left(x^{3}+y^{3}\right) \leq(x+y)\left(x^{4}+y^{4}\right) .
$$

(Proof: See [457, p. 183].)
Fact 1.10.12. Let x and y be real numbers. Then,

$$
\left[x^{2}+y^{2}+(x+y)^{2}\right]^{2}=2\left[x^{4}+y^{4}+(x+y)^{4}\right] .
$$

Therefore,

$$
\frac{1}{2}\left(x^{2}+y^{2}\right)^{2} \leq x^{4}+y^{4}+(x+y)^{4}
$$

and

$$
x^{4}+y^{4} \leq \frac{1}{2}\left[x^{2}+y^{2}+(x+y)^{2}\right]^{2} .
$$

(Remark: This result is Candido's identity. See [25].)
Fact 1.10.13. Let x and y be real numbers. Then,

$$
54 x^{2} y^{2}(x+y)^{2} \leq\left[x^{2}+y^{2}+(x+y)^{2}\right]^{3} .
$$

Equivalently,

$$
\left[x^{2} y^{2}(x+y)^{2}\right]^{1 / 3} \leq \frac{1}{\sqrt[3]{2}} \frac{1}{3}\left[x^{2}+y^{2}+(x+y)^{2}\right]^{3} .
$$

(Remark: This result interpolates the arithmetic-mean-geometric-mean inequality due to the factor $1 / \sqrt[3]{2}$.) (Remark: This inequality is used in Fact 4.10.1.)

Fact 1.10.14. Let x and y be real numbers, and let $p \in[1, \infty)$. Then, $(p-1)(x-y)^{2}+\left[\frac{1}{2}(x+y)\right]^{2} \leq\left[\frac{1}{2}\left(|x|^{p}+|y|^{p}\right)\right]^{2 / p}$.
(Proof: See [542, p. 148].)
Fact 1.10.15. Let x and y be complex numbers. If $p \in[1,2]$, then

$$
\left[|x|^{2}+(p-1)|y|^{2}\right]^{1 / 2} \leq\left[\frac{1}{2}\left(|x+y|^{p}+|x-y|^{p}\right)\right]^{1 / p} .
$$

If $p \in[2, \infty]$, then

$$
\left[\frac{1}{2}\left(|x+y|^{p}+|x-y|^{p}\right)\right]^{1 / p} \leq\left[|x|^{2}+(p-1)|y|^{2}\right]^{1 / 2}
$$

(Proof: See Fact 9.9.35.)
Fact 1.10.16. Let x and y be real numbers, let p and q be real numbers, and assume that $1 \leq p \leq q$. Then,

$$
\left[\frac{1}{2}\left(\left|x+\frac{y}{\sqrt{q-1}}\right|^{q}+\left|x-\frac{y}{\sqrt{q-1}}\right|^{q}\right)\right]^{1 / q} \leq\left[\frac{1}{2}\left(\left|x+\frac{y}{\sqrt{p-1}}\right|^{p}+\left|x-\frac{y}{\sqrt{p-1}}\right|^{p}\right)\right]^{1 / p}
$$

(Proof: See [542, p. 206].) (Remark: This result is the scalar version of Bonami's inequality. See Fact 9.7.20)

Fact 1.10.17. Let x and y be positive numbers, and let n be a positive integer. Then,

$$
(n+1)\left(x y^{n}\right)^{1 /(n+1)}<x+n y
$$

(Proof: See [868, p. 252].)
Fact 1.10.18. Let x and y be positive numbers such that $x<y$, and let n be a positive integer. Then,

$$
(n+1)(y-x) x^{n}<y^{n+1}-x^{n+1}<(n+1)(y-x) y^{n}
$$

(Proof: See [868, p. 248].)
Fact 1.10.19. Let $[a, b] \subset \mathbb{R}$, and let $x, y \in[a, b]$. Then,

$$
|x|+|y|-|x+y| \leq|a|+|b|-|a+b| .
$$

(Proof: Use Fact 1.8.5)
Fact 1.10.20. Let $[a, b] \subset(0, \infty)$, and let $x, y \in[a, b]$. Then,

$$
\sqrt{\frac{x}{y}}+\sqrt{\frac{y}{x}} \leq \sqrt{\frac{a}{b}}+\sqrt{\frac{b}{a}}
$$

(Proof: Use Fact 1.8.5])
Fact 1.10.21. Let x and y be nonnegative numbers, and let $\alpha \in[0,1]$. Then,

$$
\left[\alpha x^{-1}+(1-\alpha) y^{-1}\right]^{-1} \leq x^{\alpha} y^{1-\alpha} \leq \alpha x+(1-\alpha) y
$$

(Remark: The right-hand inequality follows from the concavity of the logarithm function.) (Remark: The left-hand inequality is the scalar Young inequality. See Fact 8.10.46, Fact 8.12.26, and Fact 8.12.27.)

Fact 1.10.22. Let x and y be distinct positive numbers, and let $\alpha \in[0,1]$. Then,

$$
\alpha x+(1-\alpha) y \leq \gamma x^{\alpha} y^{1-\alpha}
$$

where $\gamma>0$ is defined by

$$
\gamma \triangleq \frac{(h-1) h^{1 /(h-1)}}{e \log h}
$$

and $h \triangleq \max \{y / x, x / y\}$. In particular,

$$
\sqrt{x y} \leq \frac{1}{2}(x+y) \leq \gamma \sqrt{x y}
$$

(Remark: This result is the reverse Young inequality. See Fact 1.10.21. The case $\alpha=1 / 2$ is the reverse arithmetic-mean-geometric mean inequality. See Fact 1.15.19, (Remark: $\gamma=S(1, h)$ is Specht's ratio. See Fact 1.15.19 and Fact 11.14.22) (Remark: This result is due to Tominaga. See 515.)

Fact 1.10.23. Let x and y be positive numbers. Then,

$$
1<x^{y}+y^{x} .
$$

(Proof: See [457, p. 184] or [783, p. 75].)
Fact 1.10.24. Let x and y be positive numbers. Then,

$$
(x+y) \log \left[\frac{1}{2}(x+y)\right] \leq x \log x+y \log y
$$

(Proof: The result follows from the fact that $f(x)=x \log x$ is convex on $(0, \infty)$. See [783, p. 62].)

Fact 1.10.25. Let x be a positive number and let y be a real number. Then,

$$
y-\frac{e^{y-1}}{x} \leq \log x
$$

Furthermore, equality holds if $x=y=1$.
Fact 1.10.26. Let x and y be real numbers, and let $\alpha \in[0,1]$. Then,

$$
\left[\alpha e^{-x}+(1-\alpha) e^{-y}\right]^{-1} \leq e^{\alpha x+(1-\alpha) y} \leq \alpha e^{x}+(1-\alpha) e^{y}
$$

(Proof: Replace x and y by e^{x} and e^{y}, respectively, in Fact 1.10.21.) (Remark: The right-hand inequality follows from the convexity of the exponential function.)

Fact 1.10.27. Let x and y be real numbers, and assume that $x \neq y$. Then,

$$
e^{(x+y) / 2} \leq \frac{e^{x}-e^{y}}{x-y} \leq \frac{1}{2}\left(e^{x}+e^{y}\right)
$$

(Proof: See [24].) (Remark: See Fact 1.10.36)

Fact 1.10.28. Let x and y be real numbers. Then,

$$
2-y-e^{-x-y} \leq 1+x \leq y+e^{x-y}
$$

Furthermore, equality holds on the left if and only if $x=-y$, and on the right if and only if $x=y$. In particular,

$$
2-e^{-x} \leq 1+x \leq e^{x}
$$

Fact 1.10.29. Let x and y be real numbers. Then, the following statements hold:
i) If $0 \leq x \leq y \leq \pi / 2$, then

$$
\frac{x}{y} \leq \frac{\sin x}{\sin y} \leq \frac{\pi}{2}\left(\frac{x}{y}\right)
$$

ii) If either $x, y \in[0,1]$ or $x, y \in[1, \pi / 2]$, then

$$
(\tan x) \tan y \leq(\tan 1) \tan x y
$$

iii) If $x, y \in[0,1]$, then

$$
\left(\sin ^{-1} x\right) \sin ^{-1} y \leq \frac{1}{2} \sin ^{-1} x y
$$

$i v)$ If $y \in(0, \pi / 2]$ and $x \in[0, y]$, then

$$
\left(\frac{\sin y}{y}\right) x \leq \sin x \leq \sin \left[y\left(\frac{x}{y}\right)^{y \cot y}\right] .
$$

$v)$ If $x, y \in[0, \pi]$ are distinct, then

$$
\frac{1}{2}(\sin x+\sin y)<\frac{\cos x-\cos y}{y-x}<\sin \left[\frac{1}{2}(x+y)\right]
$$

vi) If $0 \leq x<y<\pi / 2$, then

$$
\frac{1}{\cos ^{2} x}<\frac{\tan x-\tan y}{x-y}<\frac{1}{\cos ^{2} y}
$$

vii) If x and y are positive numbers, then

$$
(\sinh x) \sinh x y \leq x y \sinh (x+x y)
$$

viii) If $0<y<x<\pi / 2$, then

$$
\frac{\sin x}{\sin y}<\frac{x}{y}<\frac{\tan x}{\tan y}
$$

(Proof: Statements i - $-i i i$) are given in [273, pp. 250, 251]. Statement $i v$) is given in [1039, p. 26]. Statement v) is a consequence of the Hermite-Hadamard inequality given by Fact 1.8.6, See [1039, p. 51]. Statement vi) follows from the mean value theorem and monotonicity of the cosine function. See [868, p. 264]. Statement $v i i)$ is given in [673, p. 71]. Statement viii) is given in [868, p. 267].) (Remark: $(\sin 0) / 0=(\sinh 0) / 0=1$.

Fact 1.10.30. Let x and y be positive numbers. If $p \in[1, \infty)$, then

$$
x^{p}+y^{p} \leq(x+y)^{p} .
$$

Furthermore, if $p \in[0,1)$, then

$$
(x+y)^{p} \leq x^{p}+y^{p} .
$$

(Proof: For the first statement, set $p=1$ in Fact 1.15.34. For the second statement, set $q=1$ in Fact (1.15.34)

Fact 1.10.31. Let x, y, p, q be nonnegative numbers. Then,

$$
x^{p} y^{q}+x^{q} y^{p} \leq x^{p+q}+y^{p+q} .
$$

Furthermore, equality holds if and only if either $p q=0$ or $x=y$. (Proof: See 668, p. 96].)

Fact 1.10.32. Let x and y be nonnegative numbers, and let $p, q \in(1, \infty)$ satisfy $1 / p+1 / q=1$. Then,

$$
x y \leq \frac{x^{p}}{p}+\frac{y^{q}}{q} .
$$

Furthermore, equality holds if and only if $x^{p}=y^{q}$. (Proof: See 430 p. 12] or 431, p. 10].) (Remark: This result is Young's inequality. An extension is given by Fact 1.15.31. Matrix versions are given by Fact 8.12.12 and Fact 9.14.22.) (Remark: $1 / p+1 / q=1$ is equivalent to $(p-1)(q-1)=1$.)

Fact 1.10.33. Let x and y be positive numbers, and let p and q be real numbers such that $0 \leq p \leq q$. Then,

$$
\frac{x^{p}+y^{p}}{(x y)^{p / 2}} \leq \frac{x^{q}+y^{q}}{(x y)^{q / 2}} .
$$

(Remark: See Fact 8.8.9.)
Fact 1.10.34. Let x and y be positive numbers, and let p and q be nonzero real numbers such that $p \leq q$. Then,

$$
\left(\frac{x^{p}+y^{p}}{2}\right)^{1 / p} \leq\left(\frac{x^{q}+y^{q}}{2}\right)^{1 / q} .
$$

Furthermore, equality holds if and only if either $p=q$ or $x=y$. Finally,

$$
\sqrt{x y}=\lim _{p \rightarrow 0}\left(\frac{x^{p}+y^{p}}{2}\right)^{1 / p} .
$$

Hence, if $p<0<q$, then

$$
\left(\frac{x^{p}+y^{p}}{2}\right)^{1 / p} \leq \sqrt{x y} \leq\left(\frac{x^{q}+y^{q}}{2}\right)^{1 / q}
$$

where equality holds if and only if $x=y$. (Proof: See [800 pp. 63-65] and [916].) (Remark: This result is a power mean inequality. Letting $q=1$ yields the arithmetic-mean-geometric-mean inequality $\sqrt{x y} \leq \frac{1}{2}(x+y)$.)

Fact 1.10.35. Let x and y be positive numbers, and let p and q be nonzero real numbers such that $p \leq q$. Then,

$$
\frac{x^{p}+y^{p}}{x^{p-1}+y^{p-1}} \leq \frac{x^{q}+y^{q}}{x^{q-1}+y^{q-1}} .
$$

Furthermore, equality holds if and only if either $x=y$ or $p=q$. (Proof: See [99, p. 23].) (Remark: The quantity $\frac{x^{p}+y^{p}}{x^{p-1}+y^{p-1}}$ is the Lehmer mean.)

Fact 1.10.36. Let x and y be positive numbers such that $x<y$, and define

$$
G \triangleq \sqrt{x y}, \quad L \triangleq \frac{y-x}{\log y-\log x}, \quad I \triangleq \frac{1}{e}\left(\frac{x^{x}}{y^{y}}\right)^{1 /(y-x)}, \quad A \triangleq \frac{1}{2}(x+y)
$$

Then,

$$
G<\sqrt{G A}<\sqrt[3]{G^{2} A}<\sqrt[3]{\frac{1}{4}(G+A)^{2} G}<L<\left\{\begin{array}{c}
\frac{1}{3}(2 G+A)<\frac{1}{3}(G+2 A) \\
\sqrt{L A}<\frac{1}{2}(L+A)
\end{array}\right\}<I<A
$$

and

$$
G+\frac{(x-y)^{2}(x+3 y)(y+3 x)}{8(x+y)\left(x^{2}+6 x y+y^{2}\right)} \leq A
$$

Now, let p and q be real numbers such that $1 / 3 \leq p<1<q$. Then,

$$
L<\left(\frac{x^{p}+y^{p}}{2}\right)^{1 / p}<A<\left(\frac{x^{q}+y^{q}}{2}\right)^{1 / q}
$$

(Proof: See [916, 1155, 1236] and [668, p. 106]. The inequality $L<\frac{1}{3}(2 G+A)$ is Polya's inequality. See [1039, p. 53]. The inequality $\frac{1}{3}(G+2 A)<I$ is due to Sandor. See [99, p. 24].) (Remark: These inequalities refine the arithmetic-mean-geometric-mean inequality Fact 1.15.14) (Remark: L is the logarithmic mean. Note that $L=\int_{0}^{1} x^{t} y^{1-t} \mathrm{~d} t$.) (Remark: I is the identric mean. See [1236.) (Remark: See Fact 1.15.26) (Remark: See Fact 1.10.26.)

Fact 1.10.37. Let x and y be positive numbers, and define

$$
L \triangleq \frac{y-x}{\log y-\log x}, \quad H_{p} \triangleq\left(\frac{x^{p}+(x y)^{p / 2}+y^{p}}{3}\right)^{1 / p}, \quad M_{p} \triangleq\left(\frac{x^{p}+y^{p}}{2}\right)^{1 / p}
$$

If p, q are positive numbers such that $p<q$, then

$$
M_{p}<M_{q}
$$

and

$$
H_{p}<H_{q}
$$

Now, let p, q, r be positive numbers such that $0.5283 \approx(\log 3) /(3 \log 2) \leq p \leq 3 q / 2$ and $1 / 3<r<[(\log 2) / \log 3] p \approx 0.6309 p$. Then,

$$
L<H_{1 / 2}<M_{1 / 3}<M_{r}<H_{p}<M_{q}
$$

In particular, if $r \leq(\log 2) / \log 3 \approx 0.6309$ and $q \geq 2 / 3 \approx 0.6667$, then

$$
\left(\frac{x^{r}+y^{r}}{2}\right)^{1 / r}<\frac{x+\sqrt{x y}+y}{3}<\left(\frac{x^{q}+y^{q}}{2}\right)^{1 / q}
$$

Finally, if $1 / 2 \leq p \leq 3 q / 2$, then

$$
\frac{y-x}{\log y-\log x}<\left(\frac{x^{p}+(x y)^{p / 2}+y^{p}}{3}\right)^{1 / p}<\left(\frac{x^{q}+y^{q}}{2}\right)^{1 / q}
$$

(Proof: See [275] p. 350] and [604, 756].) (Remark: The center term is the Heron mean.)

Fact 1.10.38. Let x and y be distinct positive numbers, and let $\alpha \in[0,1]$. Then,

$$
\sqrt{x y} \leq \frac{1}{2}\left(x^{1-\alpha} y^{\alpha}+x^{\alpha} y^{1-\alpha}\right) \leq \frac{1}{2}(x+y)
$$

Furthermore,

$$
\frac{1}{2}\left(x^{1-\alpha} y^{\alpha}+x^{\alpha} y^{1-\alpha}\right) \leq \frac{y-x}{\log y-\log x}
$$

if and only if $\alpha \in\left[\frac{1}{2}(1-1 / \sqrt{3}), \frac{1}{2}(1+1 / \sqrt{3})\right]$, whereas

$$
\frac{y-x}{\log y-\log x} \leq \frac{1}{2}\left(x^{1-\alpha} y^{\alpha}+x^{\alpha} y^{1-\alpha}\right)
$$

if and only if $\alpha \in\left[0, \frac{1}{2}(1-1 / \sqrt{3})\right] \cup\left[\frac{1}{2}(1+1 / \sqrt{3})\right]$. (Proof: See 437].) (Remark: The first string of inequalities refines the arithmetic-mean-geometric-mean inequality Fact 1.15 .14 . The center term is the Heinz mean. Monotonicity is considered in Fact 1.16.1, while matrix extensions are given by Fact 9.9.49)

Fact 1.10.39. Let x and y be positive numbers. Then,

$$
\left(\frac{x}{y}\right)^{y} \leq\left(\frac{x+1}{y+1}\right)^{y+1}
$$

Furthermore, equality holds if and only if $x=y$. (Proof: See [868, p. 267].)
Fact 1.10.40. Let x and y be real numbers. If either $0<x<y<1$ or $1<x<y$, then

$$
\frac{y^{x}}{x^{y}}<\frac{y}{x}
$$

and

$$
\frac{y^{y}}{x^{x}}<\left(\frac{y}{x}\right)^{x y}
$$

If $0<x<1<y$, then both inequalities are reversed. If either $0<x<1<y$ or $0<x<y<e$, then

$$
1<\left(\frac{y \log x}{x \log y}\right)\left(\frac{y^{x}-1}{x^{y}-1}\right)<\frac{y^{x}}{x^{y}}
$$

If $e<x<y$, then both inequalities are reversed. (Proof: See [1105.)
Fact 1.10.41. Let x and y be real numbers. If $k \geq 1$, then

$$
|x-y|^{2 k+1} \leq 2^{2 k}\left|x^{2 k+1}-y^{2 k+1}\right|
$$

Now, assume that x and y are nonnegative. If $r \geq 1$, then

$$
|x-y|^{r} \leq\left|x^{r}-y^{r}\right| .
$$

(Proof: See 695].) (Remark: Matrix versions of these results are given in 695. Applications to nonlinear control appear in [1106.) (Problem: Merge these inequalities.)

1.11 Facts on Scalar Identities and Inequalities in Three Variables

Fact 1.11.1. Let x, y, z be real numbers. Then,

$$
|x|+|y|+|z| \leq|x+y-z|+|y+z-x|+|z+x-y|
$$

and

$$
\frac{|x+y|}{1+|x+y|} \leq \frac{|x|}{1+|x|}+\frac{|y|}{1+|y|}
$$

(Proof: See [457] pp. 181, 183].) (Problem: Extend these results to \mathbb{C} and vector arguments.) (Remark: Equality holds in the first result if x, y, z represent the lengths of the sides of a triangle. See Fact 1.11.17)

Fact 1.11.2. Let x, y, z be real numbers. Then,
$2[(x-y)(x-z)+(y-z)(y-x)+(z-x)(z-y)]=(x-y)^{2}+(y-z)^{2}+(z-x)^{2}$.
(Proof: See [136] pp. 242, 402].)
Fact 1.11.3. Let x, y, z be real numbers. Then,

$$
(x+y) z \leq \frac{1}{2}\left(x^{2}+y^{2}\right)+z^{2}
$$

(Proof: See [136, p. 230].)
Fact 1.11.4. Let x, y, z be real numbers. Then,

$$
\left(\frac{1}{2} x+\frac{1}{3} y+\frac{1}{6} z\right)^{2} \leq \frac{1}{2} x^{2}+\frac{1}{3} y^{2}+\frac{1}{6} z^{2} .
$$

(Proof: See [668, p. 129].)
Fact 1.11.5. Let x, y be nonnegative numbers, and let z be a positive number. Then,

$$
x+y \leq z^{y} x+z^{-x} y
$$

(Proof: See [668, p. 163].)
Fact 1.11.6. Let x, y, z be nonnegative numbers. Then,

$$
\sqrt[3]{x y z} \leq \frac{1}{3}(\sqrt{x y}+\sqrt{y z}+\sqrt{z x}) \leq \frac{1}{6}(x+y+z)+\frac{1}{2} \sqrt[3]{x y z} \leq \frac{1}{3}(x+y+z)
$$

(Proof: The first inequality is given by Fact 1.15 .21 , while the second inequality is given in [1040].)

Fact 1.11.7. Let x, y, z be nonnegative numbers. Then,

$$
\begin{aligned}
x y+y z+z x & \leq(\sqrt{x y}+\sqrt{y z}+\sqrt{z x})^{2} \\
& \leq 3(x y+y z+z x) \\
& \leq(x+y+z)^{2} \\
& \leq 3\left(x^{2}+y^{2}+z^{2}\right),
\end{aligned}
$$

$$
\begin{gathered}
4(x y+y z) \leq(x+y+z)^{2} \\
2(x+y+z) \leq x^{2}+y^{2}+z^{2}+3, \\
2(x y+y z-z x) \leq x^{2}+y^{2}+z^{2} \\
5 x y+3 y z+7 z x \leq 6 x^{2}+4 y^{2}+5 z^{2} .
\end{gathered}
$$

(Proof: See Fact 1.15.7 and [668, pp. 117, 126].)
Fact 1.11.8. Let x, y, z be nonnegative numbers. Then,

$$
\begin{gathered}
12 x y+6 x y z \leq 6 x^{2}+y^{2}(z+2)(2 z+3), \\
(x+y-z)(y+z-x)(z+x-y) \leq x y z, \\
8 x y z \leq(x+y)(y+z)(z+x), \\
6 x y z \leq x^{2} y^{2}+y^{2} z^{2}+z^{2} x^{2}+x^{2}+y^{2}+z^{2}, \\
15 x y z \leq x^{3}+y^{3}+z^{3}+2\left(x^{2} y+y^{2} z+z^{2} x+x y^{2}+y z^{2}+z x^{2}\right), \\
15 x y z+x^{3}+y^{3}+z^{3} \leq 2(x+y+z)\left(x^{2}+y^{2}+z^{2}\right), \\
16 x y z \leq(x+1)(y+1)(x+z)(y+z), \\
27 x y z \leq\left(x^{2}+x+1\right)\left(y^{2}+y+1\right)\left(z^{2}+z+1\right), \\
4 x y z \leq x^{2} y^{2} z^{2}+x y+y z+z x, \\
x^{2} y+y^{2} z+z^{2} x \leq x^{3}+y^{3}+z^{3}, \\
x^{2}(z+y-x)+y^{2}(z+x-y)+z^{2}(x+y-z) \\
\leq 3 x y z \\
\leq x y^{2}+y z^{2}+z x^{2} \\
\leq x^{3}+y^{3}+z^{3}, \\
\leq(x+y+z)^{3} \\
\leq 3(x+y+z)\left(x^{2}+y^{2}+z^{2}\right) \\
\leq 9\left(x^{3}+y^{3}+z^{3}\right) .
\end{gathered}
$$

(Proof: See Fact 1.11.11] [457] pp. 166, 169, 179, 182], 668, pp. 117, 120, 152], and [868, pp. 247, 257].) (Remark: Note the factorization

$$
x^{3}+y^{3}+z^{3}-3 x y z=(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right),
$$

where both sides are nonnegative due to the arithmetic-mean-geometric-mean inequality.) (Remark: For positive x, y, z, the inequality $9 x y z \leq(x+y+z)(x y+$ $y z+z x)$ is given by Fact 1.15.16]) (Remark: For positive x, y, z, the inequality $3 x y z \leq x y^{2}+y z^{2}+z x^{2}$ is given by Fact 1.15.17)

Fact 1.11.9. Let x, y, z be nonnegative numbers. Then,

$$
\begin{aligned}
& x y z(x+y+z) \\
& \left.\begin{array}{rl}
\left.\begin{array}{c}
2 x y z|x+y-z| \\
2 x y z|x-y+z|
\end{array}\right\} & \leq\left\{\begin{array}{c}
x^{2} y^{2}+y^{2} z^{2}+z^{2} x^{2} \\
3 x y z(x+y+z)
\end{array}\right\} \\
2 x y z|-x+y+z|
\end{array}\right\} \\
& \leq(x y+y z+z x)^{2} \\
& \leq 3\left(x^{2} y^{2}+y^{2} z^{2}+z^{2} x^{2}\right) \\
& \leq\left(x^{2}+y^{2}+z^{2}\right)^{2} \\
& \leq(x+y+z)\left(x^{3}+y^{3}+z^{3}\right) \\
& \leq\left\{\begin{array}{c}
3\left(x^{4}+y^{4}+z^{4}\right) \\
(x+y+z)^{4}
\end{array}\right\} \\
& \leq 27\left(x^{4}+y^{4}+z^{4}\right), \\
& x^{2} y^{2}+y^{2} z^{2}+z^{2} x^{2} \leq \frac{1}{2}\left[x^{4}+y^{4}+z^{4}+x y z(x+y+z)\right] \\
& \leq x^{4}+y^{4}+z^{4} \\
& \leq\left(x^{2}+y^{2}+z^{2}\right)^{2} \text {, } \\
& x y z(x+y+z) \leq x^{3} y+y^{3} z+z^{3} x \leq x^{4}+y^{4}+z^{4}, \\
& \left.\begin{array}{r}
2 x y z|x+y-z| \\
2 x y z|x-y+z| \\
2 x y z|-x+y+z|
\end{array}\right\} \leq 3\left(x^{3} y+y^{3} z+z^{3} x\right) \leq\left(x^{2}+y^{2}+z^{2}\right)^{2}, \\
& \left(x^{2}+y^{2}+z^{2}\right)\left(x^{3}+y^{3}+z^{3}\right) \leq 3\left(x^{5}+y^{5}+z^{5}\right) .
\end{aligned}
$$

Furthermore,

$$
\frac{1}{3}(x+y+z) \leq \frac{x^{3}}{x^{2}+x y+y^{2}}+\frac{y^{3}}{y^{2}+y z+z^{2}}+\frac{z^{3}}{z^{2}+z x+x^{2}}
$$

(Proof: See [457, pp. 170, 180], [668, pp. 106, 108, 149], [868, pp. 247, 257], Fact 1.15.2 Fact 1.15.4 and Fact 1.15.22) (Remark: The inequality $2 x y z(x+y-z) \leq$ $x^{2} y^{2}+y^{2} z^{2}+z^{2} x^{2}$ follows from $(x y-y z-z x)^{2}$, and thus is valid for all real x, y, z. See [457, p. 194].) (Remark: The inequality $3 x y z(x+y+z) \leq(x y+y z+z x)^{2}$ follows from Newton's inequality. See Fact 1.15.11.)

Fact 1.11.10. Let x, y, z be nonnegative numbers. Then,

$$
9 x^{2} y^{2} z^{2} \leq\left(x^{2} y+y^{2} z+z^{2} x\right)\left(x y^{2}+y z^{2}+z x^{2}\right)
$$

$$
\begin{aligned}
& 27 x^{2} y^{2} z^{2} \leq 3 x y z(x+y+z)(x y+y z+z x) \\
& \leq\left\{\begin{array}{l}
x y z(x+y+z)^{3} \\
(x y+y z+z x)^{3}
\end{array}\right\} \\
& \leq \frac{27}{64}(x+y)^{2}(y+z)^{2}(z+x)^{2} \\
& \leq \frac{9}{64}\left[(x+y)^{6}+(y+z)^{6}+(z+x)^{6}\right] \\
& \leq \frac{1}{27}(x+y+z)^{6} \\
& \leq 9\left(x^{6}+y^{6}+z^{6}\right) \text {, } \\
& 432 x y^{2} z^{3} \leq(x+y+z)^{6}, \\
& 3 x^{2} y^{2} z^{2} \leq\left\{\begin{array}{l}
x^{3} y z^{2}+x^{2} y^{3} z+x y^{2} z^{3} \\
x y^{3} z^{2}+x^{2} y z^{3}+x^{3} y^{2} z
\end{array}\right\} \leq x^{2} y^{4}+y^{2} z^{4}+z^{2} x^{4}, \\
& 9\left(x^{2}+y z\right)\left(y^{2}+z x\right)\left(z^{2}+x y\right) \leq 8\left(x^{3}+y^{3}+z^{3}\right)^{2}, \\
& 3 x y z\left(x^{3}+y^{3}+z^{3}\right) \leq(x y+y z+z x)\left(x^{4}+y^{4}+z^{4}\right) \text {, } \\
& 2\left(x^{3} y^{3}+y^{3} z^{3}+z^{3} x^{3}\right) \leq x^{6}+y^{6}+z^{6}+3 x^{2} y^{2} z^{2}, \\
& x y z(x+y+z)\left(x^{3}+y^{3}+z^{3}\right) \leq(x y+y z+z x)\left(x^{5}+y^{5}+z^{5}\right), \\
& (x y+y z+z x) x^{2} y^{2} z^{2} \leq x^{8}+y^{8}+z^{8}, \\
& (x y+y z+z x)^{2}\left(x y z^{2}+x^{2} y z+x y^{2} z\right) \leq 3\left(y^{2} z^{2}+z^{2} x^{2}+x^{2} y^{2}\right)^{2}, \\
& (x y z+1)^{3} \leq\left(x^{3}+1\right)\left(y^{3}+1\right)\left(z^{3}+1\right) .
\end{aligned}
$$

Finally, if $\alpha \in[3 / 7,7 / 3]$, then

$$
(\alpha+1)^{6}(x y+y z+z x)^{3} \leq 27(\alpha x+y)^{2}(\alpha y+z)^{2}(\alpha z+x)^{2} .
$$

In particular,

$$
64(x y+y z+z x)^{3} \leq(x+y)^{2}(y+z)^{2}(z+x)^{2}
$$

and

$$
27(x y+y z+z x)^{3} \leq(2 x+y)^{2}(2 y+z)^{2}(2 z+x)^{2}
$$

(Proof: See [136, p. 229], [273, p. 244], 326, p. 114], [457, pp. 179, 182], 668, pp. 105, 134, 150, 155, 169], [868, pp. 247, 252, 257], [1039, p. 14], [1374, Fact 1.11.11, Fact 1.11.21, Fact 1.15.2, Fact 1.15.4 and Fact 1.15.8, For the last inequality, see 63.) (Remark: The inequality $(x y+y z+z x)^{2}\left(x y z^{2}+x^{2} y z+x y^{2} z\right) \leq$ $3\left(y^{2} z^{2}+z^{2} x^{2}+x^{2} y^{2}\right)^{2}$ is due to Klamkin. See Fact 2.20.11 and [1374].)

Fact 1.11.11. Let x, y, z be positive numbers. Then,

$$
6 \leq \frac{9}{2}+\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y} \leq \frac{x+y}{z}+\frac{y+z}{x}+\frac{z+x}{y}
$$

(Proof: See [99, pp. 33, 34].)

Fact 1.11.12. Let x, y, z be real numbers. Then,

$$
2 x y z \leq x^{2}+y^{2} z^{2}
$$

and

$$
3 x^{2} y^{2} z^{2} \leq x^{4} y^{2}+x^{2} y^{4}+z^{6}
$$

(Proof: See [668, p. 117] and [153, p. 78].)
Fact 1.11.13. Let x, y, z be positive numbers, and assume that $x<y+z$. Then,

$$
\frac{x}{1+x}<\frac{y}{1+y}+\frac{z}{1+z}
$$

(Proof: See [868, p. 44].)
Fact 1.11.14. Let x, y, z be nonnegative numbers. Then,

$$
x y(x+y)+y z(y+z)+z x(z+x) \leq x^{3}+y^{3}+z^{3}+3 x y z
$$

(Proof: See [668, p. 98].)
Fact 1.11.15. Let x, y, z be nonnegative numbers, and assume that $x+y<z$.
Then,

$$
2(x+y)^{2} z \leq x^{3}+y^{3}+z^{3}+3 x y z
$$

(Proof: See [668, p. 98].)
Fact 1.11.16. Let x, y, z be nonnegative numbers, and assume that $z<x+y$. Then,

$$
2(x+y) z^{2} \leq x^{3}+y^{3}+z^{3}+3 x y z
$$

(Proof: See [668, p. 100].)
Fact 1.11.17. Let x, y, z be positive numbers. Then, the following statements are equivalent:
i) x, y, z represent the lengths of the sides of a triangle.
ii) $z<x+y, x<y+z$, and $y<z+x$.
iii) $(x+y-z)(y+z-x)(z+x-y)>0$.
iv) $x>|y-z|, y>|z-x|$, and $z>|x-y|$.
v) $|y-z|<x<y+z$.
vi) There exist positive numbers a, b, c such that $x=a+b, y=b+c$, and $z=c+a$.
vii) $2\left(x^{4}+y^{4}+z^{4}\right)<\left(x^{2}+y^{2}+z^{2}\right)^{2}$.

In this case, a, b, c in v) are given by

$$
a=\frac{1}{2}(z+x-y), \quad b=\frac{1}{2}(x+y-z), \quad c=\frac{1}{2}(y+z-x)
$$

(Proof: See [457, p. 164]. Statements v) and vii) are given in [668, p. 125].) (Remark: See Fact 8.9.5)

Fact 1.11.18. Let $n \geq 2$, let x, y, z be positive numbers, and assume that $x^{n}+y^{n}=z^{n}$. Then, x, y, z represent the lengths of the sides of a triangle. (Proof: See [668, p. 112].) (Remark: For $n \geq 3$, a lengthy proof shows that the equation $x^{n}+y^{n}=z^{n}$ has no solution in integers.)

Fact 1.11.19. Let x, y, z be positive numbers that represent the lengths of the sides of a triangle. Then, $1 /(x+y), 1 /(y+z)$, and $1 /(z+x)$ represent the lengths of the sides of a triangle. (Proof: See [868, p. 44].) (Remark: See Fact 1.11.17 and Fact 1.11 .20)

Fact 1.11.20. Let x, y, z be positive numbers that represent the lengths of the sides of a triangle. Then, \sqrt{x}, \sqrt{y}, and \sqrt{z}, represent the lengths of the sides of a triangle. (Proof: See [668, p. 99].) (Remark: See Fact 1.11.17 and Fact 1.11.19.)

Fact 1.11.21. Let x, y, z be positive numbers that represent the lengths of the sides of a triangle. Then,

$$
\begin{gathered}
3(x y+y z+z x)<(x+y+z)^{2}<4(x y+y z+z x) \\
2\left(x^{2}+y^{2}+z^{2}\right)<(x+y+z)^{2}<3\left(x^{2}+y^{2}+z^{2}\right) \\
\frac{1}{4}(x+y+z)^{2} \leq\left\{\begin{array}{c}
x y+y z+z x \\
\frac{1}{3}(x+y+z)^{2}
\end{array}\right\} \leq x^{2}+y^{2}+z^{2} \leq 2(x y+y z+z x), \\
3<\frac{2 x}{y+z}+\frac{2 y}{z+x}+\frac{2 z}{x+y}<4, \\
x\left(y^{2}+z^{2}\right)+y\left(z^{2}+x^{2}\right)+z\left(x^{2}+y^{2}\right) \leq 3 x y z+x^{3}+y^{3}+z^{3} \\
\frac{1}{4}(x+y+z)^{3} \leq(x+y)(y+z)(z+x) \leq \frac{8}{27}(x+y+z)^{3} \\
\frac{13}{27}(x+y+z)^{3} \leq\left(x^{2}+y^{2}+z^{2}\right)(x+y+z)+4 x y z \leq \frac{1}{2}(x+y+z)^{3} \\
x y z(x+y+z) \leq x^{2} y^{2}+y^{2} z^{2}+z^{2} x^{2} \leq x^{3} y+y^{3} z+z^{3} x \\
x y z \leq \frac{1}{8}(x+y)(y+z)(z+x) .
\end{gathered}
$$

If, in addition, the triangle is isosceles, then

$$
\begin{gathered}
3(x y+y z+z x)<(x+y+z)^{2}<\frac{16}{5}(x y+y z+z x) \\
\frac{8}{3}\left(x^{2}+y^{2}+z^{2}\right)<(x+y+z)^{2}<3\left(x^{2}+y^{2}+z^{2}\right) \\
\frac{9}{32}(x+y+z)^{3} \leq(x+y)(y+z)(z+x) \leq \frac{8}{27}(x+y+z)^{3} .
\end{gathered}
$$

(Proof: The first string is given in [868, p. 42]. In the second string, the lower bound is given in [457, p. 179], while the upper bound, which holds for all positive x, y, z, is given in Fact 1.11.8. Both the first and second strings are given in 971, p. 199]. In the third string, the upper leftmost inequality follows from Fact 1.11.21; the upper inequality second from the left follows from Fact 1.11 .7 whether or not x, y, z represent the lengths of the sides of a triangle; the rightmost inequality is given in [457] p. 179]; the lower leftmost inequality is immediate; and the lower inequality second from the left follows from Fact 1.15.2. The fourth string is given in [868, pp. 267]. The fifth string is given in [457, p. 183]. This result can be
written as 457, p. 186]

$$
3 \leq \frac{x}{y+z-x}+\frac{y}{z+x-y}+\frac{z}{x+y-z} .
$$

The sixth string is given in [971, p. 199]. The seventh string is given in 1411. In the eighth string, the left-hand inequality holds for all positive x, y, z. See Fact 1.11.9 The right-hand inequality, which is given in 457 p. 183], orders and interpolates two upper bounds for $x y z(x+y+z)$ given in Fact 1.11.9. The ninth string is given in [971, p. 201]. The inequalities for the case of an obtuse triangle are given in given in [236] and 971, p. 199].) (Remark: In the fourth string, the lower left inequality is Nesbitt's inequality. See 457 p. 163].) (Remark: See Fact 1.11.17 and Fact 2.20.11,

Fact 1.11.22. Let x, y, z represent the lengths of the sides of a triangle, then

$$
\frac{9}{x+y+z} \leq \frac{1}{x}+\frac{1}{y}+\frac{1}{z} \leq \frac{1}{x+y-z}+\frac{1}{x+z-y}+\frac{1}{y+z-x}
$$

(Proof: The lower bound, which holds for all x, y, z, follows from Fact 1.11.21 The upper bound is given in [971, p. 72].) (Remark: The upper bound is Walker's inequality.)

Fact 1.11.23. Let x, y, z be positive numbers such that $x+y+z=1$. Then,

$$
\frac{25}{1+48 x y z} \leq \frac{1}{x}+\frac{1}{y}+\frac{1}{z}
$$

(Proof: See 1469.)
Fact 1.11.24. Let x, y, z be positive numbers that represent the lengths of the sides of a triangle. Then,

$$
\left|\frac{x}{y}+\frac{y}{z}+\frac{z}{x}-\left(\frac{y}{x}+\frac{z}{y}+\frac{x}{z}\right)\right|<1 .
$$

(Proof: See [457] p. 181].)
Fact 1.11.25. Let x, y, z be positive numbers that represent the lengths of the sides of a triangle. Then,

$$
\left|\frac{x-y}{x+y}+\frac{y-z}{y+z}+\frac{z-x}{z+x}\right|<\frac{1}{8} .
$$

(Proof: See [457, p. 183].)
Fact 1.11.26. Let x, y, z be real numbers. Then,

$$
\frac{|x-z|}{\sqrt{1+x^{2}} \sqrt{1+z^{2}}} \leq \frac{|x-y|}{\sqrt{1+x^{2}} \sqrt{1+y^{2}}}+\frac{|y-z|}{\sqrt{1+y^{2}} \sqrt{1+z^{2}}}
$$

(Proof: See [457] p. 184].)

1.12 Facts on Scalar Identities and Inequalities in Four Variables

Fact 1.12.1. Let w, x, y, z be nonnegative numbers. Then,

$$
\sqrt{w x}+\sqrt{y z} \leq \sqrt{(w+y)(x+z)}
$$

and

$$
6 \sqrt[4]{w x y z} \leq \sqrt{(w+x)(y+z)}+\sqrt{(w+y)(x+z)}+\sqrt{(w+z)(x+y)} .
$$

(Proof: Use Fact 1.10 .4 and see [668, p. 120].)
Fact 1.12.2. Let w, x, y, z be nonnegative numbers. Then,

$$
\begin{gathered}
4(w x+x y+y z+z w) \leq(w+x+y+z)^{2}, \\
8(w x+x y+y z+z w+w y+x z) \leq 3(w+x+y+z)^{2}, \\
16(w x y+x y z+y z w+z w x) \leq(w+x+y+z)^{3}, \\
256 w x y z \leq 16(w+x+y+z)(w x y+x y z+y z w+z w x) \\
\leq(w+x+y+z)^{4} \\
\leq 16(w+x+y+z)\left(w^{3}+x^{3}+y^{3}+z^{3}\right), \\
4 w x y z \leq w^{2} x y+x y z^{2}+y^{2} z w+z w x^{2}=(w x+y z)(w y+x z), \\
4 w x y z \leq w x^{2} z+x y^{2} w+y z^{2} x+z w^{2} y, \\
8 w x y z \leq(w x+y z)(w+x)(y+z), \\
(w x+w y+w z+x y+x z+y z)^{2} \leq 6\left(w^{2} x^{2}+w^{2} y^{2}+w^{2} z^{2}+x^{2} y^{2}+x^{2} z^{2}+y^{2} z^{2}\right), \\
4(w x y+x y z+y z w+z w x)^{2} \leq\left(w^{2}+x^{2}+y^{2}+z^{2}\right)^{3}, \\
81 w x y z \leq\left(w^{2}+w+1\right)\left(x^{2}+x+1\right)\left(y^{2}+y+1\right)\left(z^{2}+z+1\right), \\
w^{3} x^{3} y^{3}+x^{3} y^{3} z^{3}+y^{3} z^{3} w^{3}+z^{3} w^{3} x^{3} \leq(w x y+x y z+y z w+z w x)^{3} \\
\leq 16\left(w^{3} x^{3} y^{3}+x^{3} y^{3} z^{3}+y^{3} z^{3} w^{3}+z^{3} w^{3} x^{3}\right), \\
\frac{1}{3(w+x+y+z)} \leq \frac{1}{w+x+y}+\frac{1}{x+y+z}+\frac{1}{y+z+w}+\frac{1}{z+w+x} .
\end{gathered}
$$

(Proof: See [457, p. 179], [668, pp. 120, 123, 124, 134, 144, 161], [797, Fact [1.15.22, and Fact 1.15 .20) (Remark: The inequality $(w+x+y+z)^{3} \leq 16\left(w^{3}+x^{3}+y^{3}+z^{3}\right)$ is given by Fact 1.15.2) (Remark: The inequality $16 w x y z \leq(w+x+y+z)(w x y+$ $x y z+y z w+z w x)$ is given by Fact [1.15.16]) (Remark: The inequality $4 w x y z \leq$ $w^{2} x y+x y z^{2}+y^{2} z w+z w x^{2}$ follows from Fact 1.15 .17 with $n=2$.) (Remark: The inequality $4 w x y z \leq w x^{2} z+x y^{2} w+y z^{2} x+z w^{2} y$ is given by Fact 1.15.17.)

Fact 1.12.3. Let w, x, y, z be real numbers. Then,

$$
4 w x y z \leq w^{2} x^{2}+x^{2} y^{2}+y^{2} w^{2}+z^{4}
$$

and

$$
(w x y z+1)^{3} \leq\left(w^{3}+1\right)\left(x^{3}+1\right)\left(y^{3}+1\right)\left(z^{3}+1\right)
$$

(Proof: See [153, p. 78] and [668, p. 134].)
Fact 1.12.4. Let w, x, y, z be real numbers. Then,

$$
\begin{aligned}
\left(w^{2}+x^{2}\right)\left(y^{2}+z^{2}\right) & =(w z+x y)^{2}+(w y-x z)^{2} \\
& =(w z-x y)^{2}+(w y+x z)^{2}
\end{aligned}
$$

Hence,

$$
\left.\begin{array}{l}
(w z+x y)^{2} \\
(w y-x z)^{2} \\
(w z-x y)^{2} \\
(w y+x z)^{2}
\end{array}\right\} \leq\left(w^{2}+x^{2}\right)\left(y^{2}+z^{2}\right)
$$

(Remark: The identity is a statement of the fact that, for complex numbers z_{1}, z_{2}, $\left|z_{1}\right|^{2}\left|z_{2}\right|^{2}=\left|z_{1} z_{2}\right|^{2}=\left|\operatorname{Re}\left(z_{1} z_{2}\right)\right|^{2}+\left|\operatorname{Im}\left(z_{1} z_{2}\right)\right|^{2}$. See [346, p. 77].)

Fact 1.12.5. Let w, x, y, z be real numbers. Then,

$$
w^{4}+x^{4}+y^{4}+z^{4}-4 w x y z=\left(w^{2}-x^{2}\right)^{2}+\left(y^{2}+z^{2}\right)^{2}+2(w x-y z)^{2}
$$

(Remark: This result yields the arithmetic-mean-geometric-mean inequality for four variables. See [136, pp. 226, 367].)

1.13 Facts on Scalar Identities and Inequalities in Six Variables

Fact 1.13.1. Let x, y, z, u, v, w be real numbers. Then,

$$
\begin{aligned}
x^{6}+ & y^{6}+z^{6}+u^{6}+v^{6}+w^{6}-6 x y z u v w \\
= & \frac{1}{2}\left(x^{2}+y^{2}+z^{2}\right)^{2}\left[\left(x^{2}-y^{2}\right)^{2}+\left(y^{2}-z^{2}\right)^{2}+\left(z^{2}-x^{2}\right)^{2}\right] \\
& +\frac{1}{2}\left(u^{2}+v^{2}+w^{2}\right)^{2}\left[\left(u^{2}-v^{2}\right)^{2}+\left(v^{2}-w^{2}\right)^{2}+\left(w^{2}-u^{2}\right)^{2}\right] \\
& +3(x y z-u v w)^{2} .
\end{aligned}
$$

(Remark: This result yields the arithmetic-mean-geometric-mean inequality for six variables. See [136, p. 226].)

1.14 Facts on Scalar Identities and Inequalities in Eight Variables

Fact 1.14.1. Let $x_{1}, x_{2}, x_{3}, x_{4}, y_{1}, y_{2}, y_{3}, y_{4}$ be real numbers. Then,

$$
\begin{aligned}
\left(x_{1}^{2}+\right. & \left.x_{2}^{2}+x_{3}^{2}+x_{4}^{2}\right)\left(y_{1}^{2}+y_{2}^{2}+y_{3}^{2}+y_{4}^{2}\right) \\
= & \left(x_{1} y_{1}-x_{2} y_{2}-x_{3} y_{3}-x_{4} y_{4}\right)^{2}+\left(x_{1} y_{2}+x_{2} y_{1}+x_{3} y_{4}-x_{4} y_{3}\right)^{2} \\
& \quad+\left(x_{1} y_{3}-x_{2} y_{4}+x_{3} y_{1}+x_{4} y_{2}\right)^{2}+\left(x_{1} y_{4}+x_{2} y_{3}-x_{3} y_{2}+x_{4} y_{1}\right)^{2}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
&\left(x_{1} y_{1}-x_{2} y_{2}-x_{3} y_{3}\right.\left.-x_{4} y_{4}\right)^{2}+\left(x_{1} y_{2}+x_{2} y_{1}+x_{3} y_{4}-x_{4} y_{3}\right)^{2} \\
&+\left(x_{1} y_{3}-x_{2} y_{4}+x_{3} y_{1}+x_{4} y_{2}\right)^{2} \\
&\left(x_{1} y_{1}-x_{2} y_{2}-x_{3} y_{3}\right.\left.-x_{4} y_{4}\right)^{2}+\left(x_{1} y_{2}+x_{2} y_{1}+x_{3} y_{4}-x_{4} y_{3}\right)^{2} \\
&+\left(x_{1} y_{4}+x_{2} y_{3}-x_{3} y_{2}+x_{4} y_{1}\right)^{2} \\
&\left(x_{1} y_{1}-x_{2} y_{2}-x_{3} y_{3}\right.\left.-x_{4} y_{4}\right)^{2}+\left(x_{1} y_{3}-x_{2} y_{4}+x_{3} y_{1}+x_{4} y_{2}\right)^{2} \\
&+\left(x_{1} y_{4}+x_{2} y_{3}-x_{3} y_{2}+x_{4} y_{1}\right)^{2} \\
&\left(x_{1} y_{2}+x_{2} y_{1}+x_{3} y_{4}-x_{4} y_{3}\right)^{2}+\left(x_{1} y_{3}-x_{2} y_{4}+x_{3} y_{1}+x_{4} y_{2}\right)^{2} \\
&+\left(x_{1} y_{4}+x_{2} y_{3}-x_{3} y_{2}+x_{4} y_{1}\right)^{2} \\
& \leq\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}\right)\left(y_{1}^{2}+y_{2}^{2}+y_{3}^{2}+y_{4}^{2}\right)
\end{aligned}
$$

(Remark: The identity represents a relationship between a pair of quaternions. An analogous identity holds for two sets of eight variables representing a pair of octonions. See [346, p. 77].)

1.15 Facts on Scalar Identities and Inequalities in n Variables

Fact 1.15.1. Let x_{1}, \ldots, x_{n} be real numbers, and let k be a positive integer. Then,

$$
\left(\sum_{i=1}^{n} x_{i}\right)^{k}=\sum_{i_{1}+\cdots+i_{n}=k} \frac{k!}{i_{1}!\cdots i_{n}!} x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}
$$

(Remark: This result is the multinomial theorem.)
Fact 1.15.2. Let x_{1}, \ldots, x_{n} be nonnegative numbers, and let k be a positive integer. Then,

$$
\sum_{i=1}^{n} x_{i}^{k} \leq\left(\sum_{i=1}^{n} x_{i}\right)^{k} \leq n^{k-1} \sum_{i=1}^{n} x_{i}^{k}
$$

Furthermore, equality holds in the second inequality if and only if $x_{1}=\cdots=x_{n}$. (Remark: The case $n=4, k=3$ is given by the inequality $(w+x+y+z)^{3} \leq$ $16\left(w^{3}+x^{3}+y^{3}+z^{3}\right)$ of Fact 1.12.2, $)$

Fact 1.15.3. Let x_{1}, \ldots, x_{n} be nonnegative numbers. Then,

$$
\left(\sum_{i=1}^{n} x_{i}\right)^{2} \leq n \sum_{i=1}^{n} x_{i}^{2}
$$

Furthermore, equality holds if and only if $x_{1}=\cdots=x_{n}$. (Remark: This result is equivalent to i) of Fact 9.8 .12 with $m=1$.)

Fact 1.15.4. Let x_{1}, \ldots, x_{n} be nonnegative numbers, and let k be a positive integer. Then,

$$
\sum_{i=1}^{n} x_{i}^{k} \leq\left(\sum_{i=1}^{n} x_{i}\right)\left(\sum_{i=1}^{n} x_{i}^{k-1}\right) \leq n \sum_{i=1}^{n} x_{i}^{k}
$$

(Proof: See [868, pp. 257, 258].)
Fact 1.15.5. Let x_{1}, \ldots, x_{n} be nonnegative numbers, and let $p, q \in[1, \infty)$, where $p \leq q$. Then,

$$
\left(\sum_{i=1}^{n} x_{i}^{q}\right)^{1 / q} \leq\left(\sum_{i=1}^{n} x_{i}^{p}\right)^{1 / p} \leq n^{1 / p-1 / q}\left(\sum_{i=1}^{n} x_{i}^{q}\right)^{1 / q}
$$

Equivalently,

$$
\sum_{i=1}^{n} x_{i}^{q} \leq\left(\sum_{i=1}^{n} x_{i}^{p}\right)^{q / p} \leq n^{q / p-1} \sum_{i=1}^{n} x_{i}^{q}
$$

(Proof: See Fact 9.7.29) (Remark: Setting $p=1$ and $q=k$ yields Fact 1.15.2)
Fact 1.15.6. Let x_{1}, \ldots, x_{n} be nonnegative numbers. Then,

$$
\left(\sum_{i=1}^{n} x_{i}^{3}\right)^{2} \leq\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{3} \leq n\left(\sum_{i=1}^{n} x_{i}^{3}\right)^{2}
$$

(Proof: Set $p=2$ and $q=3$ in Fact 1.15.5 and square all terms.)
Fact 1.15.7. Let x_{1}, \ldots, x_{n} be nonnegative numbers. For $n=2$,

$$
2\left(x_{1} x_{2}+x_{2} x_{1}\right) \leq\left(x_{1}+x_{2}\right)^{2}
$$

For $n=3$,

$$
3\left(x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{1}\right) \leq\left(x_{1}+x_{2}+x_{3}\right)^{2}
$$

If $n \geq 4$, then

$$
4\left(x_{1} x_{2}+x_{2} x_{3}+\cdots+x_{n} x_{1}\right) \leq\left(\sum_{i=1}^{n} x_{i}\right)^{2}
$$

(Proof: See [668, p. 144]. The cases $n=2,3,4$ are given by Fact 1.10.4, Fact 1.11.7, and Fact 1.12.2, (Problem: Is 4 the best constant for $n \geq 5$?)

Fact 1.15.8. Let x_{1}, \ldots, x_{n} be nonnegative numbers. Then,

$$
\left(\sum_{i=1}^{n} x_{i}\right)\left(\sum_{i=1}^{n} x_{i}^{3}\right) \leq\left(\sum_{i=1}^{n} x_{i}^{5}\right)\left(\sum_{i=1}^{n} \frac{1}{x_{i}}\right)
$$

(Proof: See [668, p. 150].)
Fact 1.15.9. Let x_{1}, \ldots, x_{n} be positive numbers, and assume that, for all $i=1, \ldots, n-1, x_{i}<x_{i+1} \leq x_{i}+1$. Then,

$$
\sum_{i=1}^{n} x_{i}^{3} \leq\left(\sum_{i=1}^{n} x_{i}\right)^{2}
$$

(Proof: See [457, p. 183].) (Remark: Equality holds in Fact 1.7.3.)

Fact 1.15.10. Let x_{1}, \ldots, x_{n} be complex numbers, define $E_{0} \triangleq 1$, and, for $1 \leq k \leq n$, define

$$
E_{k} \triangleq \sum_{i_{1}<\cdots<i_{k}} \prod_{j=1}^{k} x_{i_{j}}
$$

Furthermore, for each positive integer k define

$$
\mu_{k} \triangleq \sum_{i=1}^{n} x_{i}^{k}
$$

Then, for all $k=1, \ldots, n$,

$$
k E_{k}=\sum_{i=1}^{k}(-1)^{i-1} E_{k-i} \mu_{i} .
$$

In particular,

$$
\begin{gathered}
E_{1}=\mu_{1}, \\
2 E_{2}=E_{1} \mu_{1}-\mu_{2}, \\
3 E_{3}=E_{2} \mu_{2}-E_{1} \mu_{2}+\mu_{3} .
\end{gathered}
$$

Furthermore,

$$
\begin{gathered}
E_{1}=\mu_{1} \\
E_{2}=\frac{1}{2}\left(\mu_{1}^{2}-\mu_{2}\right) \\
E_{3}=\frac{1}{6}\left(\mu_{1}^{3}-3 \mu_{1} \mu_{2}+2 \mu_{3}\right)
\end{gathered}
$$

and

$$
\begin{gathered}
\mu_{1}=E_{1}, \\
\mu_{2}=E_{1}^{2}-2 E_{2} \\
\mu_{3}=E_{1}^{3}-3 E_{1} E_{2}+3 E_{3} .
\end{gathered}
$$

(Remark: This result is Newton's identity. An application to roots of polynomials is given by Fact 4.8.2.) (Remark: E_{k} is the k th elementary symmetric polynomial.) (Remark: See Fact 1.15.11),

Fact 1.15.11. Let x_{1}, \ldots, x_{n} be complex numbers, let k be a positive integer such that $1<k<n$, and define

$$
S_{k} \triangleq\binom{n}{k}^{-1} \sum_{i_{1}<\cdots<i_{k}} \prod_{j=1}^{k} x_{i_{j}}
$$

Then,

$$
S_{k-1} S_{k+1} \leq S_{k}^{2}
$$

(Remark: This result is Newton's inequality. The case $n=3, k=2$ is given by Fact 1.11.9) (Remark: S_{k} is the k th elementary symmetric mean.) (Remark: See Fact 1.15.10.)

Fact 1.15.12. Let x_{1}, \ldots, x_{n} be real numbers, and define

$$
\bar{x} \triangleq \frac{1}{n} \sum_{j=1}^{n} x_{j}
$$

and

$$
\sigma \triangleq \sqrt{\frac{1}{n} \sum_{j=1}^{n}\left(x_{j}-\bar{x}\right)^{2}}=\sqrt{\left(\frac{1}{n} \sum_{j=1}^{n} x_{j}^{2}\right)-\bar{x}^{2}}
$$

Then, for all $i=1, \ldots, n$,

$$
\left|x_{i}-\bar{x}\right| \leq \sqrt{n-1} \sigma
$$

Equality holds if and only if all of the elements of $\left\{x_{1}, \ldots, x_{n}\right\}_{\mathrm{ms}} \backslash\left\{x_{i}\right\}$ are equal. In addition,

$$
\frac{\sigma}{\sqrt{n-1}} \leq \max \left\{x_{1}, \ldots, x_{n}\right\}-\bar{x} \leq \sqrt{n-1} \sigma
$$

Equality holds in either the left-hand inequality or the right-hand inequality if and only if all of the elements of $\left\{x_{1}, \ldots, x_{n}\right\}_{\operatorname{ms}} \backslash \max \left\{x_{1}, \ldots, x_{n}\right\}$ are equal. Finally,

$$
\frac{\sigma}{\sqrt{n-1}} \leq \bar{x}-\min \left\{x_{1}, \ldots, x_{n}\right\} \leq \sqrt{n-1} \sigma
$$

Equality holds in either the left-hand inequality or the right-hand inequality if and only if all of the elements of $\left\{x_{1}, \ldots, x_{n}\right\}_{\mathrm{ms}} \backslash \min \left\{x_{1}, \ldots, x_{n}\right\}$ are equal. (Proof: The first result is the Laguerre-Samuelson inequality. See [574, 732, 754, 1043, 1140 , 1332 . The lower bounds in the second and third strings are given in 1448. See also [1140].) (Remark: A vector extension of the Laguerre-Samuelson inequality is given by Fact 8.9.35. An application to eigenvalue bounds is given by Fact 5.11.45.)

Fact 1.15.13. Let x_{1}, \ldots, x_{n} be real numbers, and let α, δ, and p be positive numbers. If $p \geq 1$, then

$$
\left(\frac{\alpha}{\alpha+n}\right)^{p-1} \delta^{p} \leq\left|\delta-\sum_{i=1}^{n} x_{i}\right|^{p}+\alpha^{p-1} \sum_{i=1}^{n}\left|x_{i}\right|^{p}
$$

In particular,

$$
\frac{\alpha \delta^{2}}{\alpha+n} \leq\left(\delta-\sum_{i=1}^{n} x_{i}\right)^{2}+\alpha \sum_{i=1}^{n} x_{i}^{2}
$$

Furthermore, if $p \leq 1, x_{1}, \ldots, x_{n}$ are nonnegative, and $\sum_{i=1}^{n} x_{i} \leq \delta$, then

$$
\left|\delta-\sum_{i=1}^{n} x_{i}\right|^{p}+\alpha^{p-1} \sum_{i=1}^{n}\left|x_{i}\right|^{p} \leq\left(\frac{\alpha}{\alpha+n}\right)^{p-1} \delta^{p} .
$$

Finally, equality holds in all cases if and only if $x_{1}=\cdots=x_{n}=\delta /(\alpha+n)$. (Proof: See [1253].) (Remark: This result is Wang's inequality. The special case $p=2$ is Hua's inequality. Generalizations are given by Fact 9.7 .8 and Fact 9.7.9)

Fact 1.15.14. Let x_{1}, \ldots, x_{n} be nonnegative numbers. Then,

$$
\left(\prod_{i=1}^{n} x_{i}\right)^{1 / n} \leq \frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

Furthermore, equality holds if and only if $x_{1}=x_{2}=\cdots=x_{n}$. (Remark: This result is the arithmetic-mean-geometric-mean inequality. Several proofs are given in 275]. See also [314]. Bounds for the difference between these quantities are given in [28, 295, 1343].)

Fact 1.15.15. Let x_{1}, \ldots, x_{n} be positive numbers. Then,

$$
\frac{n}{\frac{1}{x_{1}}+\cdots+\frac{1}{x_{n}}} \leq \sqrt[n]{x_{1} \cdots x_{n}} \leq \frac{1}{n}\left(x_{1}+\cdots+x_{n}\right) \leq \sqrt{\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}}
$$

Furthermore, equality holds in each inequality if and only if $x_{1}=x_{2}=\cdots=x_{n}$. (Remark: The lower bound for the geometric mean is the harmonic mean, while the left-hand inequality is the arithmetic-mean-harmonic-mean inequality. See Fact 1.15.37.) (Remark: The upper bound for the arithmetic mean is the quadratic mean. See 612 and Fact 1.15.32.)

Fact 1.15.16. Let x_{1}, \ldots, x_{n} be positive numbers. Then,

$$
\frac{n^{2}}{x_{1}+\cdots+x_{n}} \leq \frac{1}{x_{1}}+\cdots+\frac{1}{x_{n}}
$$

(Proof: Use Fact 1.15.15, See also [668, p. 130].) (Remark: The case $n=3$ yields the inequality $9 x y z \leq(x+y+z)(x y+y z+z x)$ of Fact 1.11.8) (Remark: The case $n=4$ yields the inequality $16 w x y z \leq(w+x+y+z)(w x y+x y z+y z w+z w x)$ of Fact 1.12.2,

Fact 1.15.17. Let x_{1}, \ldots, x_{n} be positive numbers. Then,

$$
n \leq \frac{x_{1}}{x_{2}}+\frac{x_{2}}{x_{3}}+\cdots+\frac{x_{n-1}}{x_{n}}+\frac{x_{n}}{x_{1}} .
$$

(Remark: The case $n=3$ yields the inequality $3 x y z \leq x y^{2}+y z^{2}+z x^{2}$ of Fact 1.11.8) (Remark: The case $n=4$ yields the inequality $4 w x y z \leq w x^{2} z+x y^{2} w+$ $y z^{2} x+z w^{2} y$ of Fact 1.12.2,

Fact 1.15.18. Let x_{1}, \ldots, x_{n} be nonnegative numbers. Then,

$$
\left(\prod_{i=1}^{n} x_{i}\right)^{1 / n} \leq \frac{1}{n} \sum_{i=1}^{n} x_{i} \leq\left(\prod_{i=1}^{n} x_{i}\right)^{1 / n}+\frac{1}{n} \sum_{i<j}\left|x_{i}-x_{j}\right|
$$

(Proof: See 457, p. 186].)
Fact 1.15.19. Let x_{1}, \ldots, x_{n} be positive numbers contained in $[a, b]$, where $a>0$. Then,

$$
\left(\prod_{i=1}^{n} x_{i}\right)^{1 / n} \leq \frac{1}{n} \sum_{i=1}^{n} x_{i} \leq \gamma\left(\prod_{i=1}^{n} x_{i}\right)^{1 / n}
$$

where γ is defined by

$$
\gamma \triangleq \frac{(h-1) h^{1 /(h-1)}}{e \log h}
$$

and $h \triangleq b / a$. (Remark: The right-hand inequality is a reverse arithmetic-mean-
geometric mean inequality; see [511, 516, 1470]. This result is due to Specht. For the case $n=2$, see Fact 1.10 .22) (Remark: $\gamma=S(1, h)$ is Specht's ratio. See Fact 1.10 .22 and Fact 11.14 .22) (Remark: Matrix extensions are considered in [19, 809.)

Fact 1.15.20. Let x_{1}, \ldots, x_{n} be positive numbers, and let k satisfy $1 \leq k \leq n$. Then,

$$
\left(\binom{n}{k}^{-1} \sum_{i_{1}<\cdots<i_{k}} \prod_{j=1}^{k} x_{i_{j}}\right)^{1 / k} \leq \frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

Equivalently,

$$
\sum_{i_{1}<\cdots<i_{k}} \prod_{j=1}^{k} x_{i_{j}} \leq\binom{ n}{k}\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right)^{k}
$$

(Proof: The result follows from the fact that the k th elementary symmetric function is Schur concave. See [542, p. 102, Exercise 7.11].) (Remark: Equality holds if $k=1$. The case $n=k$ is the arithmetic-mean-geometric-mean inequality. The case $n=3, k=2$ yields the third inequality in Fact 1.11.7. The cases $n=4, k=3$ and $n=4, k=2$ are given in Fact 1.12.2)

Fact 1.15.21. Let x_{1}, \ldots, x_{n} be positive numbers, and let k and k^{\prime} satisfy $1 \leq k \leq k^{\prime} \leq n$. Then,

$$
\left(\prod_{i=1}^{n} x_{i}\right)^{1 / n} \leq\binom{ n}{k^{\prime}}^{-1} \sum_{i_{1}<\cdots<i_{k}^{\prime}} \prod_{j=1}^{k^{\prime}} x_{i_{j}}^{1 / k^{\prime}} \leq\binom{ n}{k}^{-1} \sum_{i_{1}<\cdots<i_{k}} \prod_{j=1}^{k} x_{i_{j}}^{1 / k} \leq \frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

(Proof: See [542, p. 23] and [797.) (Remark: This result is an interpolation of the arithmetic-mean-geometric-mean inequality. An alternative interpolation is given by Fact 1.15 .25) (Remark: If $k=1$, then the right-hand inequality is an equality. If $k=n$, then the left-hand inequality is an equality. The case $n=3$ and $k=2$ is given by Fact 1.11 .6)

Fact 1.15.22. Let x_{1}, \ldots, x_{n} be nonnegative numbers, and let k be a positive integer such that $1 \leq k \leq n$. Then,

$$
\left(\sum_{i_{1}<\cdots<i_{k}} \prod_{j=1}^{k} x_{i_{j}}\right)^{k} \leq\binom{ n}{k}^{k-1} \sum_{i_{1}<\cdots<i_{k}} \prod_{j=1}^{k} x_{i_{j}}^{k}
$$

(Remark: Equality holds if $k=1$ or $k=n$. The case $n=3, k=2$ is given by Fact 1.11.9. The cases $n=4, k=3$ and $n=4, k=2$ are given by Fact 1.12.2)

Fact 1.15.23. Let x_{1}, \ldots, x_{n} be positive numbers, and let k satisfy $1 \leq k \leq n$. Then,

$$
\left(\prod_{i=1}^{n} x_{i}\right)^{1 / n} \leq\binom{ n}{k}^{-1} \sum_{i_{1}<\cdots<i_{k}} \prod_{j=1}^{k} x_{i_{j}}^{1 / k} \leq\left(\binom{n}{k}^{-1} \sum_{i_{1}<\cdots<i_{k}} \prod_{j=1}^{k} x_{i_{j}}\right)^{1 / k} \leq \frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

(Proof: Use Fact 1.15 .22 to merge Fact 1.15 .20 and Fact 1.15.21.)

Fact 1.15.24. Let x_{1}, \ldots, x_{n} be positive numbers, and let k and k^{\prime} satisfy $1 \leq k \leq k^{\prime} \leq n$. Then,

$$
\left.\left.\left(\prod_{i=1}^{n} x_{i}\right)^{1 / n} \leq\binom{ n}{k^{\prime}}^{-1} \sum_{i_{1}<\cdots<i_{k}^{\prime}} \prod_{j=1}^{k^{\prime}} x_{i_{j}}\right)^{1 / k^{\prime}} \leq\binom{ n}{k}^{-1} \sum_{i_{1}<\cdots<i_{k}} \prod_{j=1}^{k} x_{i_{j}}\right)^{1 / k} \leq \frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

(Proof: See [797].)
Fact 1.15.25. Let x_{1}, \ldots, x_{n} be positive numbers, let $\alpha_{1}, \ldots, \alpha_{n}$ be nonnegative numbers, and assume that $\sum_{i=1}^{n} \alpha_{i}=1$. Then,

$$
\left(\prod_{i=1}^{n} x_{i}\right)^{1 / n} \leq \frac{1}{n!} \sum \prod_{j=1}^{n} x_{i_{j}}^{\alpha_{j}} \leq \frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

where the summation is taken over all n ! permutations $\left\{i_{1}, \ldots, i_{n}\right\}$ of $\{1, \ldots, n\}$. (Proof: See [542, p. 100].) (Remark: This result is a consequence of Muirhead's theorem, which states that the middle expression is a Schur convex function of the exponents. See Fact 2.21.5)

Fact 1.15.26. Let x_{1}, \ldots, x_{n} be positive numbers. Then,

$$
\left(\prod_{i=1}^{n} x_{i}\right)^{1 / n}<\frac{1}{n}\left(\frac{x_{2}-x_{1}}{\log x_{2}-\log x_{1}}+\frac{x_{3}-x_{2}}{\log x_{3}-\log x_{2}}+\cdots+\frac{x_{1}-x_{n}}{\log x_{1}-\log x_{n}}\right)<\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

(Proof: See [99, p. 44].) (Remark: This result is due to Bencze.) (Remark: This result extends Fact 1.10.36 to n variables. See also 1465.)

Fact 1.15.27. Let x_{1}, \ldots, x_{n} be positive numbers contained in $[a, b]$, where $a>0$. Then,

$$
\frac{a}{2 n^{2}} \sum_{i<j}\left(\log x_{i}-\log x_{j}\right)^{2} \leq \frac{1}{n} \sum_{i=1}^{n} x_{i}-\left(\prod_{i=1}^{n} x_{i}\right)^{1 / n} \leq \frac{b}{2 n^{2}} \sum_{i<j}\left(\log x_{i}-\log x_{j}\right)^{2}
$$

(Proof: See [1039, p. 86] or [1040].)
Fact 1.15.28. Let x_{1}, \ldots, x_{n} be nonnegative numbers contained in $(0,1 / 2]$. Furthermore, define

$$
A \triangleq \frac{1}{n} \sum_{i=1}^{n} x_{i}, \quad G \triangleq \prod_{i=1}^{n} x_{i}^{1 / n}, \quad H \triangleq \frac{n}{\sum_{i=1}^{n} \frac{1}{x_{i}}}
$$

and

$$
A^{\prime} \triangleq \frac{1}{n} \sum_{i=1}^{n}\left(1-x_{i}\right), \quad G^{\prime} \triangleq \prod_{i=1}^{n}\left(1-x_{i}\right)^{1 / n}, \quad H^{\prime} \triangleq \frac{n}{\sum_{i=1}^{n} \frac{1}{1-x_{i}}}
$$

Then, the following statements hold:
i) $A^{\prime} / G^{\prime} \leq A / G$. Furthermore, equality holds if and only if $x_{1}=\cdots=x_{n}$.
ii) $A^{\prime}-G^{\prime} \leq A-G$. Furthermore, equality holds if and only if $x_{1}=\cdots=x_{n}$.
iii) $A^{n}-G^{n} \leq A^{\prime n}-G^{\prime n}$. Furthermore, equality holds for $n=1$ and $n=2$, and, for $n \geq 3$, if and only if $x_{1}=\cdots=x_{n}$.
iv) $G^{\prime} / H^{\prime} \leq G / H$.
(Proof: See [1141. For a proof of $i v$), see 1159.) (Remark: Result i) is due to Fan. See 1159.)

Fact 1.15.29. Let x_{1}, \ldots, x_{n} be positive numbers, and, for all $k=1, \ldots, n$, define

$$
A_{k} \triangleq \frac{1}{k} \sum_{i=1}^{k} x_{i}, \quad G_{k} \triangleq \prod_{i=1}^{k} x_{i}^{1 / k}
$$

Then,

$$
1=\left(\frac{A_{1}}{G_{1}}\right)^{1} \leq\left(\frac{A_{2}}{G_{2}}\right)^{2} \leq \cdots \leq\left(\frac{A_{n}}{G_{n}}\right)^{n}
$$

and

$$
0=1\left(A_{1}-G_{1}\right) \leq 2\left(A_{2}-G_{2}\right) \leq \cdots \leq n\left(A_{n}-G_{n}\right)
$$

(Proof: See [1039, p. 13].) (Remark: The first result is due to Popoviciu, while the second result is due to Rado.)

Fact 1.15.30. Let x_{1}, \ldots, x_{n} be positive numbers, let p be a real number, and define

$$
M_{p} \triangleq \begin{cases}\left(\prod_{i=1}^{n} x_{i}\right)^{1 / n}, & p=0 \\ \left(\frac{1}{n} \sum_{i=1}^{n} x_{i}^{p}\right)^{1 / p}, & p \neq 0\end{cases}
$$

Now, let p and q be real numbers such that $p \leq q$. Then,

$$
M_{p} \leq M_{q}
$$

and

$$
\lim _{r \rightarrow-\infty} M_{r}=\min \left\{x_{1}, \ldots, x_{n}\right\} \leq \lim _{r \rightarrow 0} M_{r}=M_{0} \leq \lim _{r \rightarrow \infty} M_{r}=\max \left\{x_{1}, \ldots, x_{n}\right\}
$$

Finally, $p<q$ and at least two of the numbers x_{1}, \ldots, x_{n} are distinct if and only if

$$
M_{p}<M_{q}
$$

(Proof: See [273, p. 210] and [963, p. 105].) If p and q are nonzero and $p \leq q$, then

$$
\left(\sum_{i=1}^{n} x_{i}^{p}\right)^{1 / p} \leq\left(\frac{1}{n}\right)^{1 / q-1 / p}\left(\sum_{i=1}^{n} x_{i}^{q}\right)^{1 / q}
$$

which is a reverse form of Fact 1.15 .34 . (Proof: To verify the limit, take the log of both sides and use l'Hôpital's rule.) (Remark: This result is a power mean inequality. $M_{0} \leq M_{1}$ is the arithmetic-mean-geometric-mean inequality given by Fact 1.15.14.) (Remark: A matrix application of this result is given by Fact 8.12.1.)

Fact 1.15.31. Let x_{1}, \ldots, x_{n} be nonnegative numbers, let $\alpha_{1}, \ldots, \alpha_{n}$ be nonnegative numbers, and assume that $\sum_{i=1}^{n} \alpha_{i}=1$. Then,

$$
\prod_{i=1}^{n} x_{i} \leq \sum_{i=1}^{n} \alpha_{i} x_{i}^{1 / \alpha_{i}}
$$

Furthermore, equality holds if and only if $x_{1}=x_{2}=\cdots=x_{n}$. (Proof: See 447.) (Remark: This result is a generalization of Young's inequality. See Fact 1.10.32, Matrix versions are given by Fact 8.12.12 and Fact 9.14.22, (Remark: This result is equivalent to Fact 1.15.32,)

Fact 1.15.32. Let x_{1}, \ldots, x_{n} be positive numbers, let $\alpha_{1}, \ldots, \alpha_{n}$ be nonnegative numbers, and assume that $\sum_{i=1}^{n} \alpha_{i}=1$. Then,

$$
\frac{1}{\sum_{i=1}^{n} \frac{\alpha_{i}}{x_{i}}} \leq \prod_{i=1}^{n} x_{i}^{\alpha_{i}} \leq \sum_{i=1}^{n} \alpha_{i} x_{i}
$$

Now, let r be a real number, define

$$
M_{r} \triangleq\left(\sum_{i=1}^{n} \alpha_{i} x_{i}^{r}\right)^{1 / r}
$$

and let p and q be real numbers such that $p \leq q$. Then,

$$
M_{p} \leq M_{q}
$$

and

$$
\lim _{r \rightarrow-\infty} M_{r}=\min \left\{x_{1}, \ldots, x_{n}\right\} \leq \lim _{r \rightarrow 0} M_{r}=M_{0} \leq \lim _{r \rightarrow \infty} M_{r}=\max \left\{x_{1}, \ldots, x_{n}\right\}
$$

Furthermore, equality holds if and only if $x_{1}=x_{2}=\cdots=x_{n}$. (Remark: This result is the weighted arithmetic-mean-geometric-mean inequality. Setting $\alpha_{1}=\cdots=$ $\alpha_{n}=1 / n$ yields Fact 1.15.14.) (Proof: Since $f(x)=-\log x$ is convex, it follows that

$$
\log \prod_{i=1}^{n} x_{i}^{\alpha_{i}}=\sum_{i=1}^{n} \alpha_{i} \log x_{i} \leq \log \sum_{i=1}^{n} \alpha_{i} x_{i}
$$

To prove the second statement, define $f:[0, \infty)^{n} \mapsto[0, \infty)$ by $f\left(\mu_{1}, \ldots, \mu_{n}\right) \triangleq$ $\sum_{i=1}^{n} \alpha_{i} \mu_{i}-\prod_{i=1}^{n} \mu_{i}^{\alpha_{i}}$. Note that $f(\mu, \ldots, \mu)=0$ for all $\mu \geq 0$. If x_{1}, \ldots, x_{n} minimizes f, then $\partial f / \partial \mu_{i}\left(x_{1}, \ldots, x_{n}\right)=0$ for all $i=1, \ldots, n$, which implies that $x_{1}=x_{2}=\cdots=x_{n}$.) (Remark: This result is equivalent to Fact 1.15.31) (Remark: See 1039 p. 11].)

Fact 1.15.33. Let x_{1}, \ldots, x_{n} be nonnegative numbers. Then,

$$
1+\left(\prod_{i=1}^{n} x_{i}\right)^{1 / n} \leq\left[\prod_{i=1}^{n}\left(1+x_{i}\right)\right]^{1 / n}
$$

Furthermore, equality holds if and only if $x_{1}=x_{2}=\cdots=x_{n}$. (Proof: Use Fact 1.15.14 See [238, p. 210].) (Remark: This inequality is used to prove Corollary 8.4.15.)

Fact 1.15.34. Let x_{1}, \ldots, x_{n} be nonnegative numbers, and let p, q be positive numbers such that $p \leq q$. Then,

$$
\left(\sum_{i=1}^{n} x_{i}^{q}\right)^{1 / q} \leq\left(\sum_{i=1}^{n} x_{i}^{p}\right)^{1 / p} .
$$

Furthermore, the inequality is strict if and only if $p<q$ and at least two of the numbers x_{1}, \ldots, x_{n} are nonzero. (Proof: See Proposition 9.1.5.) (Remark: This result is the power-sum inequality. See [273, p. 213]. This result implies that the Hölder norm is a monotonic function of the exponent.)

Fact 1.15.35. Let x_{1}, \ldots, x_{n} be positive numbers, and let $\alpha_{1}, \ldots, \alpha_{n} \in[0,1]$ be such that $\sum_{i=1}^{n} \alpha_{i}=1$. If $p \leq 0$ or $p \geq 1$, then

$$
\left(\sum_{i=1}^{n} \alpha_{i} x_{i}\right)^{p} \leq \sum_{i=1}^{n} \alpha_{i} x_{i}^{p} .
$$

Alternatively, if $p \in[0,1]$, then

$$
\sum_{i=1}^{n} \alpha_{i} x_{i}^{p} \leq\left(\sum_{i=1}^{n} \alpha_{i} x_{i}\right)^{p} .
$$

Finally, equality in both cases holds if and only if either $p=0$ or $p=1$ or $x_{1}=$ $\cdots=x_{n}$. (Remark: This result is a consequence of Jensen's inequality given by Fact 1.8.4)

Fact 1.15.36. Let $0<x_{1}<\cdots<x_{n}$, and let $\alpha_{1}, \ldots, \alpha_{n} \geq 0$ satisfy $\sum_{i=1}^{n} \alpha_{i}=$ 1. Then,

$$
1 \leq\left(\sum_{i=1}^{n} \alpha_{i} x_{i}\right)\left(\sum_{i=1}^{n} \frac{\alpha_{i}}{x_{i}}\right) \leq \frac{\left(x_{1}+x_{n}\right)^{2}}{4 x_{1} x_{n}} .
$$

(Remark: This result is the Kantorovich inequality. See Fact 8.15 .9 and 927 .) (Remark: See Fact 1.15.37)

Fact 1.15.37. Let x_{1}, \ldots, x_{n} be positive numbers, and define $\alpha \triangleq$ $\min _{i=1, \ldots, n} x_{i}$ and $\beta \triangleq \max _{i=1, \ldots, n} x_{i}$. Then,

$$
1 \leq\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right)\left(\frac{1}{n} \sum_{i=1}^{n} \frac{1}{x_{i}}\right) \leq \frac{(\alpha+\beta)^{2}}{4 \alpha \beta} .
$$

(Proof: Use Fact 1.15.36] or Fact 1.16.21 See [430 p. 94] or [431 p. 119].) (Remark: The left-hand inequality is the arithmetic-mean-harmonic-mean inequality. See Fact 1.15.12 The right-hand inequality is Schweitzer's inequality. See [1394, 1409] for historical details.) (Remark: A matrix extension is given by Fact 8.10.29)

Fact 1.15.38. Let x_{1}, \ldots, x_{n} be positive numbers, and let p and q be positive numbers. Then,

$$
\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}^{p}\right)\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}^{q}\right) \leq \frac{1}{n} \sum_{i=1}^{n} x_{i}^{p+q}
$$

In particular, if $p \in[0,1]$, Then,

$$
\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}^{p}\right)\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}^{1-p}\right) \leq \frac{1}{n} \sum_{i=1}^{n} x_{i}^{p}
$$

(Proof: See [1398.) (Remark: These inequalities are interpolated in 1398.)
Fact 1.15.39. Let x_{1}, \ldots, x_{n} be positive numbers. Then,

$$
\frac{1}{n} \sum_{k=1}^{n}\left(\prod_{i=1}^{k} x_{i}\right)^{1 / k} \leq\left[\prod_{k=1}^{n}\left(\frac{1}{k} \sum_{i=1}^{k} x_{i}\right)\right]^{1 / k}
$$

Furthermore, equality holds if and only if $x_{1}=\cdots=x_{n}$. (Remark: The result can be expressed as $\frac{1}{n}\left(z_{1}+\cdots+z_{n}\right) \leq \sqrt[n]{y_{1} \cdots y_{n}}$, where $z_{k} \triangleq \sqrt[k]{x_{1} \cdots x_{k}} \leq y_{k} \triangleq$ $\frac{1}{k}\left(x_{1}+\cdots+x_{k}\right)$.) (Remark: This result is the mixed arithmetic-geometric mean inequality. This result is due to Nanjundiah. See [336, 983].)

Fact 1.15.40. Let x_{1}, \ldots, x_{n} be positive numbers, where $n \geq 2$. Then,

$$
\sum_{k=1}^{n}\left(\prod_{i=1}^{k} x_{i}\right)^{1 / k} \leq \frac{n}{\sqrt[n]{n!}} \sum_{k=1}^{n} x_{k} \leq e^{(n-1) / n} \sum_{k=1}^{n} x_{k} \leq e \sum_{k=1}^{n} x_{k}
$$

Furthermore, equality holds in all of these inequalities if and only if $x_{1}=\cdots=x_{n}=$ 0 . (Remark: The inequality $\frac{n}{\sqrt[n]{n!}}<e^{(n-1) / n}$, which is equivalent to $e(n / e)^{n}<n$!, follows from Fact 1.9.19) (Remark: This result is a finite version of Carleman's inequality. See [336] and [542, p. 22].)

Fact 1.15.41. Let x_{1}, \ldots, x_{n} be positive numbers, not all of which are zero. Then,

$$
\left(\sum_{i=1}^{n} x_{i}\right)^{4}<\left(2 \tan ^{-1} n\right)^{2}\left(\sum_{i=1}^{n} x_{i}^{2}\right) \sum_{i=1}^{n} i^{2} x_{i}^{2}<\pi^{2}\left(\sum_{i=1}^{n} x_{i}^{2}\right) \sum_{i=1}^{n} i^{2} x_{i}^{2}
$$

Furthermore,

$$
\left(\sum_{i=1}^{n} x_{i}\right)^{2}<\frac{\pi^{2}}{6} \sum_{i=1}^{n} i^{2} x_{i}^{2}
$$

(Proof: See [154] or [869, p. 18].) (Remark: The first and third terms in the first inequality constitute a finite version of the Carlson inequality. The last inequality follows from the Cauchy-Schwarz inequality. See [457, p. 175].)

Fact 1.15.42. Let x_{1}, \ldots, x_{n} be nonnegative numbers, and let $p>1$. Then,

$$
\sum_{k=1}^{n}\left(\frac{1}{k} \sum_{i=1}^{k} x_{i}\right)^{p} \leq\left(\frac{p}{p-1}\right)^{p} \sum_{k=1}^{n} x_{k}^{p}
$$

(Proof: See 849 .) (Remark: This result is the Hardy inequality. See 336, 849.)

Fact 1.15.43. Let x_{1}, \ldots, x_{n} be nonnegative numbers, and let $p>1$. Then,

$$
\sum_{k=1}^{n}\left(\sum_{i=k}^{n} \frac{x_{i}}{i}\right)^{p} \leq p^{p} \sum_{k=1}^{n} x_{k}^{p}
$$

(Proof: See [849].) (Remark: This result is the Copson inequality.)
Fact 1.15.44. Let $x_{1}, \ldots, x_{n}, \alpha$, and β be positive numbers, let p and q be real numbers, and assume that one of the following conditions is satisfied:
i) $p \in(-\infty, 1] \backslash\{0\}$ and $(n-1) \alpha \leq \beta$.
ii) $p \geq 1$ and $\left(n^{p}-1\right) \alpha \leq \beta$.

Then,

$$
\frac{n}{(\alpha+\beta)^{1 / p}} \leq \sum_{i=1}^{n}\left(\frac{x_{i}^{q}}{\alpha x_{i}^{q}+\beta \prod_{k=1}^{n} x_{k}^{q / n}}\right)^{1 / p}
$$

(Proof: See 1461.)
Fact 1.15.45. Let x_{1}, \ldots, x_{n} be nonnegative numbers, and assume that $\sum_{i=1}^{n} x_{i}=1$. Then,

$$
0 \leq \log n-\sum_{i=1}^{n} x_{i} \log \frac{1}{x_{i}} \leq \frac{1}{2}\left(n^{2}-n\right)_{i, j=1, \ldots, n}\left|x_{i}-x_{j}\right|^{2}
$$

Furthermore, $\sum_{i=1}^{n} x_{i} \log \frac{1}{x_{i}}=0$ if and only if $x_{i}=1$ for some i, while $\sum_{i=1}^{n} x_{i} \log \frac{1}{x_{i}}$ $=\log n$ if and only if $x_{1} \xlongequal{=} \cdots=x_{n}=1 / n$. (Proof: See 433.) (Remark: Define $0 \log \frac{1}{0} \triangleq 0$.) (Remark: Alternative entropy bounds involving $\max _{i, j=1, \ldots, n} x_{i} / x_{j}$ are given in 434.)

Fact 1.15.46. Let x_{1}, \ldots, x_{n} be positive numbers, and assume that $\sum_{i=1}^{n} x_{i}=$ 1. Then,

$$
0 \leq \log n-\sum_{i=1}^{n} x_{i} \log \frac{1}{x_{i}} \leq\left(n \sum_{i=1}^{n} x_{i}^{2}\right)-1 \leq\left(\sum_{i=1}^{n} x_{i}^{3}\right)^{1 / 2}\left[\left(\sum_{i=1}^{n} \frac{1}{x_{i}}\right)-n^{2}\right]^{1 / 2}
$$

Consequently,

$$
\log n+1-n \sum_{i=1}^{n} x_{i}^{2} \leq \sum_{i=1}^{n} x_{i} \log \frac{1}{x_{i}} \leq \log n
$$

(Proof: See 433, 982.) (Remark: It follows from Fact 1.15.37 that $n^{2} \leq \sum_{i=1}^{n} \frac{1}{x_{i}}$.)
Fact 1.15.47. Let x_{1}, \ldots, x_{n} be positive numbers, assume that $\sum_{i=1}^{n} x_{i}=1$, and define $a \triangleq \min _{i=1, \ldots, n} x_{i}$ and $b \triangleq \max _{i=1, \ldots, n} x_{i}$. Then,

$$
0 \leq \log n-\sum_{i=1}^{n} x_{i} \log \frac{1}{x_{i}} \leq \frac{1}{n}\left\lfloor\frac{n^{2}}{4}\right\rfloor(b-a) \log \frac{b}{a} \leq \frac{1}{n}\left\lfloor\frac{n^{2}}{4}\right\rfloor \frac{(b-a)^{2}}{\sqrt{a b}}
$$

(Proof: See 435.) (Remark: This result is based on Fact 1.16.18) (Remark: See Fact 2.21.6.)

Fact 1.15.48. Let x_{1}, \ldots, x_{n} be nonnegative numbers. Then,

$$
\frac{e^{2}}{4} \sum_{i=1}^{n} x_{i}^{2} \leq \prod_{i=1}^{n} e^{x_{i}}
$$

Furthermore, equality holds for $n=1$ and $x_{1}=2$. (Proof: See 1104.)

1.16 Facts on Scalar Identities and Inequalities in $2 n$ Variables

Fact 1.16.1. Let x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} be nonnegative numbers, let α, β $\in \mathbb{R}$, and assume that either $0 \leq \beta \leq \alpha \leq \frac{1}{2}$ or $\frac{1}{2} \leq \alpha \leq \beta \leq 1$. Then,

$$
\sum_{i=1}^{n} x_{i}^{1-\alpha} y_{i}^{\alpha} \sum_{i=1}^{n} x_{i}^{\alpha} y_{i}^{1-\alpha} \leq \sum_{i=1}^{n} x_{i}^{1-\beta} y_{i}^{\beta} \sum_{i=1}^{n} x_{i}^{\beta} y_{i}^{1-\beta}
$$

Furthermore, if x and y are nonnegative numbers, then

$$
x^{1-\alpha} y^{\alpha}+x^{\alpha} y^{1-\alpha} \leq x^{1-\beta} y^{\beta}+x^{\beta} y^{1-\beta}
$$

(Remark: This monotonicity inequality is due to Callebaut. See [1386.)
Fact 1.16.2. Let x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} be real numbers. Furthermore, let $x_{[1]}, \ldots, x_{[n]}$ denote a rearrangement of x_{1}, \ldots, x_{n} such that $x_{[1]} \geq \cdots \geq x_{[n]}$. Then,

$$
\sum_{i=1}^{n}\left(x_{[i]}-y_{[i]}\right)^{2} \leq \sum_{i=1}^{n}\left(x_{[i]}-y_{i}\right)^{2}
$$

(Proof: See [457, p. 180].)
Fact 1.16.3. Let x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} be real numbers, and assume that $x_{1} \leq \cdots \leq x_{n}$ and $y_{1} \leq \cdots \leq y_{n}$. Furthermore, let $x_{[1]}, \ldots, x_{[n]}$ denote a rearrangement of x_{1}, \ldots, x_{n} such that $x_{[1]} \geq \cdots \geq x_{[n]}$. Then,

$$
n \sum_{i=1}^{n} x_{[i]} y_{[n-i+1]} \leq\left(\sum_{i=1}^{n} x_{i}\right)\left(\sum_{i=1}^{n} y_{i}\right) \leq n \sum_{i=1}^{n} x_{[i]} y_{[i]}
$$

Furthermore, each inequality is an equality if and only if either $x_{1}=\cdots=x_{n}$ or $y_{1}=\cdots=y_{n}$. (Proof: See [668, pp. 148, 149].) (Remark: This result is Chebyshev's inequality.)

Fact 1.16.4. Let x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} be real numbers. Furthermore, let $x_{[1]}, \ldots, x_{[n]}$ denote a rearrangement of x_{1}, \ldots, x_{n} such that $x_{[1]} \geq \cdots \geq x_{[n]}$. Then,

$$
\sum_{i=1}^{n} x_{[i]} y_{[n-i+1]} \leq \sum_{i=1}^{n} x_{i} y_{i} \leq \sum_{i=1}^{n} x_{[i]} y_{[i]}
$$

(Proof: See [236, p. 127] and [971, p. 141].) (Remark: This result is the HardyLittlewood rearrangement inequality.) (Remark: See Fact 8.18.18)

Fact 1.16.5. Let x_{1}, \ldots, x_{n} be nonnegative numbers, and let y_{1}, \ldots, y_{n} be real numbers. Furthermore, let $y_{[1]}, \ldots, y_{[n]}$ denote a rearrangement of y_{1}, \ldots, y_{n}
such that $y_{[1]} \geq \cdots \geq y_{[n]}$. Then, for all $k=1, \ldots, n$, it follows that

$$
\sum_{i=1}^{k} x_{[i]} y_{i} \leq \sum_{i=1}^{k} x_{[i]} y_{[i]}
$$

and

$$
\sum_{i=1}^{k} x_{[i]} y_{[n-i+1]} \leq \sum_{i=1}^{k} x_{i} y_{i}
$$

Now, assume that y_{1}, \ldots, y_{n} are nonnegative numbers. Then, for all $k=1, \ldots, n$, it follows that

$$
\sum_{i=1}^{k} x_{[i]} y_{[n-i+1]} \leq \sum_{i=1}^{k} x_{i} y_{i} \leq \sum_{i=1}^{k} x_{[i]} y_{i} \leq \sum_{i=1}^{k} x_{[i]} y_{[i]}
$$

(Proof: See [381, 838] and [971, p. 141].) (Remark: This result is an extension of the Hardy-Littlewood rearrangement inequality.)

Fact 1.16.6. Let x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} be positive numbers, and let p, q be positive numbers such that, for all $i=1, \ldots, n$,

$$
q \leq \frac{x_{i}}{y_{i}} \leq p
$$

Furthermore, let $x_{[1]}, \ldots, x_{[n]}$ denote a rearrangement of x_{1}, \ldots, x_{n} such that $x_{[1]} \geq$ $\cdots \geq x_{[n]}$. Then,

$$
\sum_{i=1}^{n} x_{[i]} y_{[i]} \leq \frac{p+q}{2 \sqrt{p q}} \sum_{i=1}^{n} x_{i} y_{i}
$$

(Remark: This result is a reverse rearrangement inequality.) (Remark: Equality holds for $x_{1}=2, x_{2}=1, y_{1}=1 / 2, y_{2}=2, q=1$, and $p=4$. Consequently, if $q=\min _{i=1, \ldots, n} x_{i} / y_{i}$ and $p=\max _{i=1, \ldots, n} x_{i} / y_{i}$, then the coefficient $\frac{p+q}{2 \sqrt{p q}}$ is the best possible.) (Proof: See [251].)

Fact 1.16.7. Let x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} be nonnegative numbers, and assume that $x_{1} \geq \cdots \geq x_{n}$ and $y_{1} \geq \cdots \geq y_{n}$. Then,

$$
\prod_{i=1}^{n}\left(x_{i}^{2}+y_{i}^{2}\right) \leq \prod_{i=1}^{n}\left(x_{i}^{2}+y_{n-i+1}^{2}\right)
$$

(Remark: See Fact 8.13.11)
Fact 1.16.8. Let x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} be complex numbers. Then,

$$
\left|\sum_{i=1}^{n} x_{i} y_{i}\right|^{2}=\sum_{i=1}^{n}\left|x_{i}\right|^{2} \sum_{i=1}^{n}\left|y_{i}\right|^{2}-\sum_{i<j}\left|\bar{x}_{i} y_{j}-\bar{x}_{j} y_{i}\right|^{2}
$$

(Remark: This result is the Lagrange identity. For the complex case, see 430 p. 6] or [431, p. 3]. For the real case, see [1322, 314.)

Fact 1.16.9. Let x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} be real numbers. Then,

$$
\sum_{i=1}^{n} x_{i} y_{i} \leq\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{1 / 2}\left(\sum_{i=1}^{n} y_{i}^{2}\right)^{1 / 2}
$$

Furthermore, equality holds if and only if $\left[\begin{array}{lll}x_{1} & \cdots & x_{n}\end{array}\right]^{\mathrm{T}}$ and $\left[\begin{array}{lll}y_{1} & \cdots & y_{n}\end{array}\right]^{\mathrm{T}}$ are linearly dependent. (Remark: This result is the Cauchy-Schwarz inequality.)

Fact 1.16.10. Let x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} be real numbers, and assume that $x_{1} \leq \cdots \leq x_{n}$ and $y_{1} \leq \cdots \leq y_{n}$. Then,

$$
\left(\sum_{i=1}^{n} x_{i}\right)\left(\sum_{i=1}^{n} y_{i}\right) \leq n \sum_{i=1}^{n} x_{i} y_{i}
$$

(Proof: See [68, p. 27].)
Fact 1.16.11. Let x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} be nonnegative numbers, and let $\alpha \in[0,1]$. Then,

$$
\sum_{i=1}^{n} x_{i}^{\alpha} y_{i}^{1-\alpha} \leq\left(\sum_{i=1}^{n} x_{i}\right)^{\alpha}\left(\sum_{i=1}^{n} y_{i}\right)^{1-\alpha}
$$

Now, let $p, q \in[1, \infty]$ satisfy $1 / p+1 / q=1$. Then, equivalently,

$$
\sum_{i=1}^{n} x_{i} y_{i} \leq\left(\sum_{i=1}^{n} x_{i}^{p}\right)^{1 / p}\left(\sum_{i=1}^{n} y_{i}^{q}\right)^{1 / q}
$$

Furthermore, equality holds if and only if $\left[\begin{array}{lll}x_{1}^{p} & \cdots & x_{n}^{p}\end{array}\right]^{\mathrm{T}}$ and $\left[\begin{array}{lll}y_{1}^{q} & \cdots & y_{n}^{q}\end{array}\right]^{\mathrm{T}}$ are linearly dependent. (Remark: This result is Hölder's inequality.) (Remark: Note the relationship between the conjugate parameters p, q and the barycentric coordinates $\alpha, 1-\alpha$. See Fact 8.21.50) (Remark: See Fact 9.7.34,

Fact 1.16.12. Let x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} be complex numbers, let p, q, r be positive numbers, and assume that $1 / p+1 / q=1 / r$. If $p \in(0,1), q<0$, and $r=1$, then

$$
\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}\left(\sum_{i=1}^{n}\left|y_{i}\right|^{q}\right)^{1 / q} \leq \sum_{i=1}^{n}\left|x_{i} y_{i}\right|
$$

Furthermore, if $p, q, r>0$, then

$$
\left(\sum_{i=1}^{n}\left|x_{i} y_{i}\right|^{r}\right)^{1 / r} \leq\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}\left(\sum_{i=1}^{n}\left|y_{i}\right|^{q}\right)^{1 / q}
$$

(Proof: See [1039, p. 19].) (Remark: This result is the Rogers-Hölder inequality.) (Remark: Extensions of this result involving negative values of p, q, and r are considered in [1039, p. 19].) (Remark: See Proposition 9.1.6])

Fact 1.16.13. Let x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} be nonnegative numbers, and let $p, q \in[1, \infty]$ satisfy $1 / p+1 / q=1$. Then,

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{x_{i} y_{j}}{i+j-1} \leq \frac{\pi}{\sin (\pi / p)}\left(\sum_{i=1}^{n} x_{i}^{p}\right)^{1 / p}\left(\sum_{i=1}^{n} y_{i}^{q}\right)^{1 / q}
$$

In particular,

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{x_{i} y_{j}}{i+j-1} \leq \pi\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{1 / 2}\left(\sum_{i=1}^{n} y_{i}^{2}\right)^{1 / 2}
$$

(Proof: See [542, p. 66] or [849].) (Remark: This result is the Hardy-Hilbert inequality.) (Remark: It follows from Fact 1.16.11 that

$$
\left.\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} y_{j} \leq n\left(\sum_{i=1}^{n} x_{i}^{p}\right)^{1 / p}\left(\sum_{i=1}^{n} y_{i}^{q}\right)^{1 / q} .\right)
$$

Fact 1.16.14. Let x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} be nonnegative numbers, and let $p, q \in[1, \infty]$ satisfy $1 / p+1 / q=1$. Then,

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{x_{i} y_{j}}{\max \{i, j\}} \leq p q\left(\sum_{i=1}^{n} x_{i}^{p}\right)^{1 / p}\left(\sum_{i=1}^{n} y_{i}^{q}\right)^{1 / q}
$$

Furthermore,

$$
\sum_{i=2}^{n} \sum_{j=2}^{n} \frac{x_{i} y_{j}}{\log i j} \leq \frac{\pi}{\sin (\pi / p)}\left(\sum_{i=2}^{n} i^{p-1} x_{i}^{p}\right)^{1 / p}\left(\sum_{i=2}^{n} i^{q-1} y_{i}^{q}\right)^{1 / q}
$$

In particular,

$$
\sum_{i=2}^{n} \sum_{j=2}^{n} \frac{x_{i} y_{j}}{\log i j} \leq \pi\left(\sum_{i=2}^{n} i x_{i}^{2}\right)^{1 / 2}\left(\sum_{i=2}^{n} i y_{i}^{2}\right)^{1 / 2}
$$

(Proof: For the first result, see [96]. For the second result see 1472].) (Remark: Related inequalities are given in 1473 .)

Fact 1.16.15. Let x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} be nonnegative numbers, and assume that, for all $i=1, \ldots, n, x_{i}+y_{i}>0$. Then,

$$
\left(\sum_{i=1}^{n} x_{i} y_{i}\right)^{2} \leq \sum_{i=1}^{n}\left(x_{i}^{2}+y_{i}^{2}\right) \sum_{i=1}^{n} \frac{x_{i}^{2} y_{i}^{2}}{x_{i}^{2}+y_{i}^{2}} \leq \sum_{i=1}^{n} x_{i}^{2} \sum_{i=1}^{n} y_{i}^{2}
$$

(Proof: See [430, p. 37], 431, p. 51], or [1386].) (Remark: This interpolation of the Cauchy-Schwarz inequality is Milne's inequality.)

Fact 1.16.16. Let x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} be nonnegative numbers, and let $\alpha \in[0,1]$. Then,

$$
\left(\sum_{i=1}^{n} x_{i} y_{i}\right)^{2} \leq \sum_{i=1}^{n} x_{i}^{1+\alpha} y_{i}^{1-\alpha} \sum_{i=1}^{n} x_{i}^{1-\alpha} y_{i}^{1+\alpha} \leq \sum_{i=1}^{n} x_{i}^{2} \sum_{i=1}^{n} y_{i}^{2}
$$

(Proof: See [430, p. 43], 431, p. 51], or [1386].) (Remark: This interpolation of the Cauchy-Schwarz inequality is Callebaut's inequality.)

Fact 1.16.17. Let $x_{1}, \ldots, x_{2 n}$ and $y_{1}, \ldots, y_{2 n}$ be real numbers. Then,

$$
\left(\sum_{i=1}^{2 n} x_{i} y_{i}\right)^{2} \leq\left(\sum_{i=1}^{2 n} x_{i} y_{i}\right)^{2}+\left[\sum_{i=1}^{n}\left(x_{i} y_{n+i}-x_{n+i} y_{i}\right)\right]^{2} \leq \sum_{i=1}^{2 n} x_{i}^{2} \sum_{i=1}^{2 n} y_{i}^{2}
$$

(Proof: See 430, p. 41] or [431 p. 49].) (Remark: This interpolation of the Cauchy-Schwarz inequality is McLaughlin's inequality.)

Fact 1.16.18. Let x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} be nonnegative numbers, and define $a \triangleq \min _{i=1, \ldots, n} x_{i}$, and $b \triangleq \max _{i=1, \ldots, n} x_{i}, c \triangleq \min _{i=1, \ldots, n} y_{i}$, and $d \triangleq$ $\max _{i=1, \ldots, n} y_{i}$. Then,

$$
\left|\sum_{i=1}^{n} x_{i} y_{i}-\frac{1}{n} \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} y_{i}\right| \leq\left\lfloor\frac{n}{2}\right\rfloor\left(1-\frac{1}{n}\left\lfloor\frac{n}{2}\right\rfloor\right)(b-a)(d-c) .
$$

(Proof: See 435].) (Remark: This result is used in Fact 1.15.45.)
Fact 1.16.19. Let x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} be positive numbers, and assume that $\sum_{i=2}^{n} x_{i}^{2}<x_{1}^{2}$. Then,

$$
\left(x_{1}^{2}-\sum_{i=2}^{n} x_{i}^{2}\right)\left(y_{1}^{2}-\sum_{i=2}^{n} y_{i}^{2}\right) \leq\left(x_{1} y_{1}-\sum_{i=2}^{n} x_{i} y_{i}\right)^{2} .
$$

(Remark: This result is Aczels's inequality. See [273, p. 16]. Extensions are given in 1462 and Fact 9.7.4.)

Fact 1.16.20. Let x_{1}, \ldots, x_{n} be real numbers, and let z_{1}, \ldots, z_{n} be complex numbers. Then,

$$
\left|\sum_{i=1}^{n} x_{i} z_{i}\right|^{2} \leq \frac{1}{2} \sum_{i=1}^{n} x_{i}^{2}\left(\sum_{i=1}^{n}\left|z_{i}\right|^{2}+\left|\sum_{i=1}^{n} z_{i}^{2}\right|\right) \leq \sum_{i=1}^{n} x_{i}^{2} \sum_{i=1}^{n}\left|z_{i}\right|^{2}
$$

(Proof: See [430, p. 40] or [431, p. 48].) (Remark: Conditions for equality in the left-hand inequality are given in [430, p. 40] or [431, p. 48].) (Remark: This interpolation of the Cauchy-Schwarz inequality is De Bruijn's inequality.)

Fact 1.16.21. Let x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} be positive numbers, and define $\alpha \triangleq \min _{i=1, \ldots, n} x_{i} / y_{i}$ and $\beta \triangleq \max _{i=1, \ldots, n} x_{i} / y_{i}$. Then,

$$
\left(\sum_{i=1}^{n} x_{i} y_{i}\right)^{2} \leq \sum_{i=1}^{n} x_{i}^{2} \sum_{i=1}^{n} y_{i}^{2} \leq \frac{(\alpha+\beta)^{2}}{4 \alpha \beta}\left(\sum_{i=1}^{n} x_{i} y_{i}\right)^{2}
$$

Equivalently, let $a \triangleq \min _{i=1, \ldots, n} x_{i}, A \triangleq \max _{i=1, \ldots, n} x_{i}, b \triangleq \min _{i=1, \ldots, n} y_{i}$, and $B \triangleq \max _{i=1, \ldots, n} y_{i}$. Then,

$$
\left(\sum_{i=1}^{n} x_{i} y_{i}\right)^{2} \leq \sum_{i=1}^{n} x_{i}^{2} \sum_{i=1}^{n} y_{i}^{2} \leq \frac{(a b+A B)^{2}}{4 a b A B}\left(\sum_{i=1}^{n} x_{i} y_{i}\right)^{2}
$$

(Proof: See [430, p. 73] or [431, p. 92].) (Remark: This reversal of the CauchySchwarz inequality is the Polya-Szego inequality.)

Fact 1.16.22. Let x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} be positive numbers, let $a \triangleq$ $\min _{i=1, \ldots, n} x_{i}, A \triangleq \max _{i=1, \ldots, n} x_{i}, b \triangleq \min _{i=1, \ldots, n} y_{i}$, and $B \triangleq \max _{i=1, \ldots, n} y_{i}$, let p, q be positive numbers, and assume that $1 / p+1 / q=1$. Then,

$$
\sum_{i=1}^{n} x_{i} y_{i} \leq\left(\sum_{i=1}^{n} x_{i}^{p}\right)^{1 / p}\left(\sum_{i=1}^{n} y_{i}^{q}\right)^{1 / q} \leq \gamma \sum_{i=1}^{n} x_{i} y_{i}
$$

where

$$
\gamma \triangleq \frac{A^{p} B^{q}-a^{p} b^{q}}{\left[p\left(A b B^{q}-a B b^{q}\right)\right]^{1 / p}\left[q\left(a B A^{p}-A b a^{p}\right)\right]^{1 / q}}
$$

(Proof: See [1394].) (Remark: The left-hand inequality, which is a reversal of Hölder's inequality, is the Diaz-Goldman-Metcalf inequality.) (Remark: Setting $p=q=1 / 2$ yields Fact 1.16 .21) (Remark: The case in which $1 / p+1 / q=1 / r$ is discussed in [1394.)

Fact 1.16.23. Let x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} be nonnegative numbers, and define $m_{x} \triangleq \min _{i=1, \ldots, n} x_{i} m_{y} \triangleq \min _{i=1, \ldots, n} y_{i} M_{x} \triangleq \max _{i=1, \ldots, n} x_{i}$, and $M_{y} \triangleq$ $\max _{i=1, \ldots, n} y_{i}$. Then,

$$
\left(\sum_{i=1}^{n} x_{i} y_{i}\right)^{2} \leq \sum_{i=1}^{n} x_{i}^{2} \sum_{i=1}^{n} y_{i}^{2} \leq\left(\sum_{i=1}^{n} x_{i} y_{i}\right)^{2}+\frac{n^{2}}{3}\left(M_{x} M_{y}-m_{x} m_{y}\right)^{2}
$$

(Proof: See [748.) (Remark: This reversal of the Cauchy-Schwarz inequality is Ozeki's inequality.)

Fact 1.16.24. Let x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} be nonnegative numbers, and assume that, for all $i=1, \ldots, n, x_{i}+y_{i}>0$. Then,

$$
\sum_{i=1}^{n} \frac{x_{i} y_{i}}{x_{i}+y_{i}} \sum_{i=1}^{n}\left(x_{i}+y_{i}\right) \leq \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} y_{i}
$$

(Proof: See [430, p. 36] or [431, p. 42].) (Remark: For positive numbers x and y, define the harmonic mean $H(x, y)$ of x and y by

$$
H(x, y) \triangleq \frac{2}{\frac{1}{x}+\frac{1}{y}}
$$

Then, this result is equivalent to

$$
\sum_{i=1}^{n} H\left(x_{i}, y_{i}\right) \leq H\left(\sum_{i=1}^{n} x_{i}, \sum_{i=1}^{n} y_{i}\right)
$$

See [430, p. 37] or 431, p. 43]. The factor of 2 appearing on the right-hand side in [430, 431 is not needed.) (Remark: This result is Dragomir's inequality.) (Remark: Letting α, β be positive numbers and defining the arithmetic mean $A(\alpha, \beta) \triangleq \frac{1}{2}(\alpha+$ β), it follows that

$$
\frac{(\alpha+\beta)^{2}}{4 \alpha \beta}=\frac{A(\alpha, \beta)}{H(\alpha, \beta)}
$$

For details, see [1409].)
Fact 1.16.25. Let x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} be nonnegative numbers. If $p \in$ $(0,1]$, then

$$
\left[\sum_{i=1}^{n}\left(x_{i}+y_{i}\right)^{p}\right]^{1 / p} \geq\left(\sum_{i=1}^{n} x_{i}^{p}\right)^{1 / p}+\left(\sum_{i=1}^{n} y_{i}^{p}\right)^{1 / p}
$$

If $p \geq 1$, then

$$
\left[\sum_{i=1}^{n}\left(x_{i}+y_{i}\right)^{p}\right]^{1 / p} \leq\left(\sum_{i=1}^{n} x_{i}^{p}\right)^{1 / p}+\left(\sum_{i=1}^{n} y_{i}^{p}\right)^{1 / p}
$$

Furthermore, equality holds if and only if either $p=1$ or $\left[\begin{array}{lll}x_{1} & \cdots & x_{n}\end{array}\right]^{\mathrm{T}}$ and $\left[\begin{array}{lll}y_{1} & \cdots & y_{n}\end{array}\right]^{\mathrm{T}}$ are linearly dependent. (Remark: This result is Minkowski's inequality.) (Proof: See 263.)

Fact 1.16.26. Let x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} be nonnegative numbers, let α_{1}, \ldots, α_{n} be nonnegative numbers, and assume that $\sum_{i=1}^{n} \alpha_{i}=1$. Then,

$$
x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}+y_{1}^{\alpha_{1}} \cdots y_{n}^{\alpha_{n}} \leq\left(x_{1}+y_{1}\right)^{\alpha_{1}} \cdots\left(x_{n}+y_{n}\right)^{\alpha_{n}} .
$$

(Proof: See [783, p. 64].)
Fact 1.16.27. Let $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n} \in(-1,1)$, and let m be a positive integer. Then,

$$
\left[\sum_{i=1}^{n} \frac{1}{\left(1-x_{i} y_{i}\right)^{m}}\right]^{2} \leq\left[\sum_{i=1}^{n} \frac{1}{\left(1-x_{i}^{2}\right)^{m}}\right]\left[\sum_{i=1}^{n} \frac{1}{\left(1-y_{i}^{2}\right)^{m}}\right]
$$

(Proof: See [430, p. 19] or [431, p. 19].)
Fact 1.16.28. Let x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} be nonnegative numbers, and assume that $\sum_{i=1}^{n} x_{i}$ and $\sum_{i=1}^{n} y_{i}$ are nonzero. Then,

$$
\left(\frac{\sum_{i=1}^{n} x_{i}}{\sum_{i=1}^{n} y_{i}}\right)^{\sum_{i=1}^{n} x_{i}} \prod_{i=1}^{n} y_{i}^{x_{i}} \leq \prod_{i=1}^{n} x_{i}^{x_{i}}
$$

Furthermore, equality holds if and only if there exists $\alpha>0$ such that, for all $i=1, \ldots, n, x_{i}=\alpha y_{i}$. (Proof: See [130].)

Fact 1.16.29. Let x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} be nonnegative numbers, and assume that $\sum_{i=1}^{n} x_{i}=\sum_{i=1}^{n} y_{i}$. Then,

$$
\prod_{i=1}^{n} y_{i}^{x_{i}} \leq \prod_{i=1}^{n} x_{i}^{x_{i}}
$$

In particular,

$$
\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right)^{\sum_{i=1}^{n} x_{i}} \leq \prod_{i=1}^{n} x_{i}^{x_{i}}
$$

(Proof: See Fact 1.16.28 and 1160.)

Fact 1.16.30. Let x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} be positive numbers. Then,

$$
\sum_{i=1}^{n} x_{i} \log \frac{\sum_{j=1}^{n} x_{j}}{\sum_{j=1}^{n} y_{j}} \leq \sum_{i=1}^{n} x_{i} \log \frac{x_{i}}{y_{i}} .
$$

If $\sum_{i=1}^{n} x_{i}=1$, then

$$
\sum_{i=1}^{n} x_{i} \log \frac{1}{x_{i}} \leq \sum_{i=1}^{n} x_{i} \log \frac{1}{y_{i}}+\log \sum_{i=1}^{n} y_{i} .
$$

On the other hand, if $\sum_{i=1}^{n} x_{i}=\sum_{i=1}^{n} y_{i}$, then

$$
0 \leq \sum_{i=1}^{n} x_{i} \log \frac{1}{y_{i}}+\log \sum_{i=1}^{n} y_{i} .
$$

Finally, if $\sum_{i=1}^{n} x_{i}=\sum_{i=1}^{n} y_{i}=1$, then

$$
\sum_{i=1}^{n} x_{i} \log \frac{1}{x_{i}} \leq \sum_{i=1}^{n} x_{i} \log \frac{1}{y_{i}},
$$

or, equivalently,

$$
0 \leq \sum_{i=1}^{n} x_{i} \log \frac{x_{i}}{y_{i}} .
$$

(Proof: See 982].) (Remark: $\sum_{i=1}^{n} x_{i} \log \frac{1}{x_{i}}$ is the entropy.) (Remark: A refined upper bound and positive lower bound for $\sum_{i=1}^{n} x_{i} \log \frac{x_{i}}{y_{i}}$ are given in 625].) (Remark: See Fact 2.21.6) (Remark: Related results are given in [1184, p. 276].)

1.17 Facts on Scalar Identities and Inequalities in $3 n$ Variables

Fact 1.17.1. Let $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}, z_{1}, \ldots, z_{n}$ be real numbers. Then,

$$
\left(\sum_{i=1}^{n} x_{i} y_{i} z_{i}\right)^{4} \leq\left(\sum_{i=1}^{n} x_{i}^{4}\right)\left(\sum_{i=1}^{n} y_{i}^{2}\right)^{2}\left(\sum_{i=1}^{n} z_{i}^{4}\right) .
$$

(Proof: See [68, p. 27].)
Fact 1.17.2. Let $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}, z_{1}, \ldots, z_{n}$ be complex numbers. Then,

$$
\left|\sum_{i=1}^{n} x_{i} \overline{z_{i}} \sum_{i=1}^{n} z_{i} \overline{y_{i}}\right| \leq \frac{1}{2}\left(\sqrt{\sum_{i=1}^{n}\left|x_{i}\right|^{2} \sum_{i=1}^{n}\left|y_{i}\right|^{2}}+\left|\sum_{i=1}^{n} x_{i} \overline{y_{i}}\right|\right) \sum_{i=1}^{n}\left|z_{i}\right|^{2} .
$$

(Proof: See [514.) (Remark: This extension of the Cauchy-Schwarz inequality is Buzano's inequality.) (Remark: See $x v$) of Fact 0.7.4)

1.18 Facts on Scalar Identities and Inequalities in Complex Variables

Fact 1.18.1. Let z be a complex number with complex conjugate \bar{z}, real part $\operatorname{Re} z$, and imaginary part $\operatorname{Im} z$. Then, the following statements hold:
i) $-|z| \leq \operatorname{Re} z \leq|\operatorname{Re} z| \leq|z|$.
ii) $-|z| \leq \operatorname{Im} z \leq|\operatorname{Im} z| \leq|z|$.
iii) $0 \leq|z|=|-z|=|\bar{z}|$.
iv) $\operatorname{Re} z=|\operatorname{Re} z|=|z|$ if and only if $\operatorname{Re} z \geq 0$ and $\operatorname{Im} z=0$.
v) $\operatorname{Im} z=|\operatorname{Im} z|=|z|$ if and only if $\operatorname{Im} z \geq 0$ and $\operatorname{Re} z=0$.
vi) If $z \neq 0$, then $\overline{z^{-1}}=\bar{z}^{-1}$.
vii) If $z \neq 0$, then $z^{-1}=\bar{z} /|z|^{2}$.
viii) If $z \neq 0$, then $\left|z^{-1}\right|=1 /|z|$.
$i x)$ If $|z|=1$, then $z^{-1}=\bar{z}$.
$x)$ If $z \neq 0$, then $\operatorname{Re} z^{-1}=(\operatorname{Re} z) /|z|^{2}$.
xi) $\operatorname{Re} z \neq 0$ if and only if $\operatorname{Re} z^{-1} \neq 0$.
xii) If $\operatorname{Re} z \neq 0$, then $|z|=\sqrt{(\operatorname{Re} z) /\left(\operatorname{Re} z^{-1}\right)}$.
xiii) $\left|z^{2}\right|=|z|^{2}=z \bar{z}$.
xiv) $z^{2} \geq 0$ if and only if $\operatorname{Im} z=0$.
$x v) z^{2} \leq 0$ if and only if $\operatorname{Re} z=0$.
xvi) $z^{2}+\bar{z}^{2}+4(\operatorname{Im} z)^{2}=2|z|^{2}$.
xvii) $z^{2}+\bar{z}^{2}+2|z|^{2}=4(\operatorname{Re} z)^{2}$.
xviii) $z^{2}+\bar{z}^{2}+2(\operatorname{Im} z)^{2}=2(\operatorname{Re} z)^{2}$.
xix) $z^{2}+\bar{z}^{2} \leq\left\{\begin{array}{c}\left|z^{2}+\bar{z}^{2}\right| \\ (\operatorname{Re} z)^{2}\end{array}\right\} \leq 2|z|^{2}$.
xx) $z^{2}+\bar{z}^{2}=\left|z^{2}+\bar{z}^{2}\right|=(\operatorname{Re} z)^{2}=2|z|^{2}$ if and only if $\operatorname{Im} z=0$.
$x x i$) Let n be a positive integer. If $z \neq 1$, then

$$
\frac{1-z^{n}}{1-z}=\sum_{i=0}^{n-1} z^{i}=1+z+\cdots+z^{n-1}
$$

Furthermore,

$$
\lim _{z \rightarrow 1} \frac{1-z^{n}}{1-z}=n
$$

(Remark: A matrix version of i) is given in [1271.)

Fact 1.18.2. Let z_{1} and z_{2} be complex numbers. Then, the following statements hold:
i) $\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|$.
ii) If $z_{2} \neq 0$, then $\left|z_{1} / z_{2}\right|=\left|z_{1}\right| /\left|z_{2}\right|$.
iii) $\left|\left|z_{1}\right|-\left|z_{2}\right|\right| \leq\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$.
iv) $\left|z_{1}+z_{2}\right|=\left|z_{1}\right|+\left|z_{2}\right|$ if and only if $\operatorname{Re}\left(z_{1} \overline{z_{2}}\right)=\left|z_{1}\right|\left|z_{2}\right|$.
v) $\left|z_{1}+z_{2}\right|=\left|z_{1}\right|+\left|z_{2}\right|$ if and only if there exists $\alpha \geq 0$ such that either $z_{1}=\alpha z_{2}$ or $z_{2}=\alpha z_{1}$, that is, if and only if z_{1} and z_{2} have the same phase angle.
vi) $\left|\left|z_{1}\right|-\left|z_{2}\right|\right| \leq\left|z_{1}-z_{2}\right|$.
vii) $\left|\left|z_{1}\right|-\left|z_{2}\right|\right|=\left|z_{1}-z_{2}\right|$ if and only if there exists $\alpha \geq 0$ such that either $z_{1}=\alpha z_{2}$ or $z_{2}=\alpha z_{1}$, that is, if and only if z_{1} and z_{2} have the same phase angle.
viii) $\left|1+\overline{z_{1}} z_{2}\right|^{2}=\left(1-\left|z_{1}\right|\right)^{2}\left(1-\left|z_{2}\right|\right)^{2}+\left|z_{1}+z_{2}\right|^{2}=\left(1+\left|z_{1}\right|^{2}\right)\left(1+\left|z_{2}\right|^{2}\right)-\left|z_{1}-z_{2}\right|^{2}$.
ix) $\left|z_{1}-z_{2}\right|^{2} \leq\left(1+\left|z_{1}\right|^{2}\right)\left(1+\left|z_{2}\right|^{2}\right)$.
x) $\frac{1}{2}\left|z_{1}-z_{2}+\left|\frac{z_{2}}{z_{1}}\right| z_{1}-\left|\frac{z_{1}}{z_{2}}\right| z_{2}\right|=\frac{1}{2}\left(\left|z_{1}\right|+\left|z_{2}\right|\right)\left|\frac{z_{1}}{\left|z_{1}\right|}-\frac{z_{2}}{\left|z_{2}\right|}\right| \leq\left|z_{1}-z_{2}\right|$.
xi) $2 \operatorname{Re}\left(z_{1} z_{2}\right) \leq\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}$.
xii) $2 \operatorname{Re}\left(z_{1} z_{2}\right)=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}$ if and only if $z_{1}=\bar{z}_{2}$.
xiii) $\frac{1}{2}\left(\left|z_{1}+z_{2}\right|^{2}+\left|z_{1}-z_{2}\right|^{2}\right)=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}$.
xiv) $z_{1} \overline{z_{2}}=\frac{1}{4}\left(\left|z_{1}+z_{2}\right|^{2}-\left|z_{1}-z_{2}\right|^{2}+\jmath\left|z_{1}+\jmath z_{2}\right|^{2}-\jmath\left|z_{1}-\jmath z_{2}\right|^{2}\right)$.
$x v)$ If $a, b \in \mathbb{C},|a| \neq|b|$, and $z_{2}=a z_{1}+b \overline{z_{1}}$, then

$$
z_{1}=\frac{\bar{a} z_{2}-b \overline{z_{2}}}{|a|^{2}-|b|^{2}}
$$

$x v i)$ If $p \geq 1$, then

$$
\left|z_{1}+z_{2}\right|^{p} \leq 2^{p-1}\left(\left|z_{1}\right|^{p}+\left|z_{2}\right|^{p}\right)
$$

xvii) If $p \geq 2$, then

$$
2\left(\left|z_{1}\right|^{p}+\left|z_{2}\right|^{p}\right) \leq\left|z_{1}+z_{2}\right|^{p}+\left|z_{1}-z_{2}\right|^{p} \leq 2^{p-1}\left(\left|z_{1}\right|^{p}+\left|z_{2}\right|^{p}\right)
$$

xviii) If $p \geq 2, q>0$, and $1 / p+1 / q=1$, then

$$
2\left(\left|z_{1}\right|^{p}+\left|z_{2}\right|^{p}\right)^{q-1} \leq\left|z_{1}+z_{2}\right|^{q}+\left|z_{1}-z_{2}\right|^{q}
$$

xix) If $p \in(1,2], q>0$, and $1 / p+1 / q=1$, then

$$
\left|z_{1}+z_{2}\right|^{q}+\left|z_{1}-z_{2}\right|^{q} \leq 2\left(\left|z_{1}\right|^{p}+\left|z_{2}\right|^{p}\right)^{q-1} .
$$

$x x)$ Let n be a positive integer. If $z_{1} \neq z_{2}$, then

$$
\frac{z_{1}^{n}-z_{2}^{n}}{z_{1}-z_{2}}=z_{1}^{n-1}+z_{2} z_{1}^{n-2}+\cdots+z_{2}^{n-1}
$$

Furthermore,

$$
\lim _{z_{2} \rightarrow z_{1}} \frac{z_{1}^{n}-z_{2}^{n}}{z_{1}-z_{2}}=n z_{1}^{n-1}
$$

Now, let z_{1}, z_{2}, and z_{3} be complex numbers. Then, the following statements hold:
xxi) $\left|z_{1}+z_{2}\right|^{2}+\left|z_{2}+z_{3}\right|^{2}+\left|z_{3}+z_{1}\right|^{2}=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+\left|z_{3}\right|^{2}+\left|z_{1}+z_{2}+z_{2}\right|^{2}$.
xxii) $\left|z_{1}+z_{2}\right|+\left|z_{2}+z_{3}\right|+\left|z_{3}+z_{1}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|+\left|z_{3}\right|+\left|z_{1}+z_{2}+z_{2}\right|$.
xxiii) $4\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+\left|z_{3}\right|^{2}\right) \leq\left|z_{1}+z_{2}+z_{3}\right|^{2}+\left|z_{1}+z_{2}-z_{3}\right|^{2}+\left|z_{1}-z_{2}+z_{3}\right|^{2}+$ $\left|z_{1}-z_{2}-z_{3}\right|^{2}$
xxiv) If z_{1}, z_{2}, z_{3} are nonzero and $z_{1}^{7}+z_{2}^{7}+z_{3}^{7}=0$, then $\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right|$.

Finally, for $i=1, \ldots, n$, let $z_{i}=r_{i} e^{\jmath \phi_{i}}$ be complex numbers, where $r_{i} \geq 0$ and $\phi_{i} \in \mathbb{R}$, and assume that there exist $\theta_{1}, \theta_{2} \in \mathbb{R}$ such that $0<\theta_{2}-\theta_{1}<\pi$ and such that, for all $i=1, \ldots, n, \theta_{1} \leq \phi_{i} \leq \theta_{2}$. Then, the following inequality holds:
$x x v) \cos \left[\frac{1}{2}\left(\theta_{2}-\theta_{1}\right)\right] \sum_{i=1}^{n}\left|z_{i}\right| \leq\left|\sum_{i=1}^{n} z_{i}\right|$.
(Remark: Matrix versions of i, $i i i$), v)-vii) are given in [1271. Result viii) is given in [59, p. 19] and [1467]. Result x) is the Dunkl-Williams inequality. See [430, p. 43] or [431, p. 52] and $i i$) of Fact 9.7.4. Result xiii) is the parallelogram law; see [449] and Fact 9.7.4. Result xiv) is the polarization identity; see [368, p. 54], [1030, p. 276], and Fact 9.7.4. Result $x v$) is given in [734]. Result $x v i$) is given in 695]. Results $x v i i$)-xix) are due to Clarkson; see [695, [1010, p. 536], and Fact 9.9.34. Result $x x i$) is given in [59, p. 19]. Result xxii) is Hlawka's inequality. See Fact 1.8.6 and Fact 9.7.4. Result xxiii) is given in 449. Result $x x i v$) is given in 59, pp. 186, 187]. Result $x x v$) is due to Petrovich; see [432.) (Remark: The absolute value $|z|=|x+\jmath y|$, where x and y are real, is identical to the Euclidean norm $\left\|\left[\begin{array}{l}x \\ y\end{array}\right]\right\|_{2}$. Therefore, each result in Section 9.7 involving the Euclidean norm on \mathbb{R}^{2} can be recast in terms of complex numbers.) (Problem: Compare the lower bounds for $\left|z_{1}-z_{2}\right|$ given by $\left.i v\right)$ and $\left.v i i\right)$.)

Fact 1.18.3. Let a, b, c be complex numbers, and assume that $a \neq 0$. Then, $z \in \mathbb{C}$ satisfies

$$
a z^{2}+b z+c=0
$$

if and only if

$$
z=\frac{1}{2 a}(y-b),
$$

where

$$
y= \pm \frac{1}{\sqrt{2}}(\sqrt{|\Delta|+\operatorname{Re} \Delta}+\jmath \operatorname{sign}(\operatorname{Im} \Delta) \sqrt{|\Delta|+\operatorname{Re} \Delta})
$$

and

$$
\Delta \triangleq b^{2}-4 a c
$$

If, in addition, a, b, c are real, then $z \in \mathbb{C}$ satisfies

$$
a z^{2}+b z+c=0
$$

if and only if

$$
z=\frac{1}{2 a}\left(-b \pm \sqrt{b^{2}-4 a c}\right)
$$

(Proof: See [59, pp. 15, 16].)

Fact 1.18.4. Let z, z_{1}, \ldots, z_{n} be complex numbers. Then,

$$
\frac{1}{n} \sum_{i=1}^{n}\left|z-z_{i}\right|^{2}=\left|z-\frac{1}{n} \sum_{i=1}^{n} z_{i}\right|^{2}+\frac{1}{n} \sum_{1 \leq i<j \leq n}\left|z_{i}-z_{j}\right|^{2}
$$

(Proof: See [59, pp. 146].)
Fact 1.18.5. let z_{1} and z_{2} be complex numbers. Then,

$$
\begin{aligned}
\frac{\left|z_{1}-z_{2}\right|-\left|\left|z_{1}\right|-\left|z_{2}\right|\right|}{\min \left\{\left|z_{1}\right|,\left|z_{2}\right|\right\}} & \leq\left|\frac{z_{1}}{\left|z_{1}\right|}-\frac{z_{2}}{\left|z_{2}\right|}\right| \\
& \leq\left\{\begin{array}{c}
\frac{\left|z_{1}-z_{2}\right|+\left|\left|z_{1}\right|-\left|z_{2}\right|\right|}{\max \left\{\left|z_{1}\right|,\left|z_{2}\right|\right\}} \\
\frac{2\left|z_{1}-z_{2}\right|}{\left|z_{1}\right|+\left|z_{2}\right|}
\end{array}\right\} \\
& \leq\left\{\begin{array}{c}
\frac{2\left|z_{1}-z_{2}\right|}{\max \left\{\left|z_{1}\right|,\left|z_{2}\right|\right\}} \\
\frac{2\left(\left|z_{1}-z_{2}\right|+\left|\left|z_{1}\right|-\left|z_{2}\right|\right|\right)}{\left|z_{1}\right|+\left|z_{2}\right|}
\end{array}\right\} \\
& \leq \frac{4\left|z_{1}-z_{2}\right|}{\left|z_{1}\right|+\left|z_{2}\right|} .
\end{aligned}
$$

(Proof: See Fact 9.7.10) (Remark: The second and lower third terms constitute the Dunkl-Williams inequality given by Fact 1.18.2,

Fact 1.18.6. Let z be a complex number. Then, the following statements hold:
i) $0<\left|e^{z}\right| \leq e^{|z|}$.
ii) $\left|e^{z}\right|=e^{|z|}$ if and only if $\operatorname{Im} z=0$ and $\operatorname{Re} z \geq 0$.
iii) $\left|e^{z}\right|=1$ if and only if $\operatorname{Re} z=0$.
iv) $\left|\left|e^{z}\right|-1\right| \leq\left|e^{z}-1\right| \leq e^{|z|}-1$.
v) If $|z|<\log 2$, then $\left|e^{z}-1\right| \leq e^{|z|}-1<1$.
vi) $e^{z}=e^{\operatorname{Re} z}[\cos (\operatorname{Im} z)+\jmath \sin (\operatorname{Im} z)]$.
vii) $\operatorname{Re} e^{z}=0$ if and only if $\operatorname{Im} z$ is an odd integer multiple of $\pm \pi / 2$.
viii) $\operatorname{Im} e^{z}=0$ if and only if $\operatorname{Im} z$ is an integer multiple of $\pm \pi$.
$i x)$ If z is nonzero, then $\left|z^{3}\right|<e^{\pi}$.
Furthermore, let θ_{1} and θ_{2} be real numbers. Then, the following statements hold:
x) $\left|e^{\jmath \theta_{1}}-e^{\jmath \theta_{2}}\right| \leq\left|\theta_{1}-\theta_{2}\right|$.
xi) $\left|e^{\jmath \theta_{1}}-e^{\jmath \theta_{2}}\right|=\left|\theta_{1}-\theta_{2}\right|$ if and only if $\theta_{1}=\theta_{2}$.

Finally, let r_{1} and r_{2} be nonnegative numbers, at least one of which is positive.

Then, the following statement holds:
xii) $\left|e^{\jmath \theta_{1}}-e^{\jmath \theta_{2}}\right| \leq \frac{2\left|r_{1} e^{\jmath \theta_{1}}-r_{2} e^{\jmath \theta_{2}}\right|}{r_{1}+r_{2}}$.
(Proof: Statement xii) is given in [683, p. 218].) (Remark: A matrix version of x) is given by Fact 11.16.13,

Fact 1.18.7. Let z be a complex number. Then, for all nonzero $z \in \mathbb{C}$, there exist infinitely many $s \in \mathbb{C}$ such that $e^{s}=z$. Specifically, let $z=r e^{J \phi}$, where $r>0$ and $\phi \in \mathbb{R}$. Then, for all $k \in \mathbb{Z}, s=\log r+\jmath(\phi+2 \pi k)$ satisfies $e^{s}=z$, where $\log r$ is the positive logarithm of r. In particular, for all odd integers $k, e^{ \pm j \pi k}=-1$, while, for all even integers $k, e^{ \pm j \pi k}=1$. To obtain a single-valued definition of log, let $z \in \mathbb{C}$ be nonzero, and write z uniquely as $z=r e^{\jmath \phi}$, where $r>0$ and $\phi \in(-\pi, \pi]$. Then, the principal branch of the \log function $\log z \in \mathbb{C}$ is defined as

$$
\log z \triangleq \log r+\jmath \phi
$$

The principal branch of the \log function

$$
\log : \mathbb{C} \backslash\{0\} \mapsto\{z: \operatorname{Re} z \neq 0 \text { and }-\pi<\operatorname{Im} z \leq \pi\}
$$

has the following properties:
i) If $z \in \mathbb{C}$ is nonzero, then

$$
e^{\log z}=z
$$

ii) Let $z=r e^{\jmath \phi} \in \mathbb{C}$, where $r \geq 0$ and $\phi \in(-\pi, \pi]$, and assume that $r \sin \phi \in$ $(-\pi, \pi]$. Then,

$$
\log e^{z}=z
$$

iii) Let $z_{1}=r_{1} e^{\jmath \phi_{1}}$ and $z_{2}=r_{2} e^{\jmath \phi_{2}}$, where $r_{1}, r_{2}>0$ and $\phi_{1}, \phi_{2} \in(-\pi, \pi]$, and assume that $\phi_{1}+\phi_{2} \in(-\pi, \pi]$. Then,

$$
\log z_{1} z_{2}=\log z_{1}+\log z_{2}
$$

Now, define $\mathcal{D} \triangleq\{z \in \mathbb{C}:|z-1|<1\}$. Then, the following statements hold:
$i v)$ For all $z \in \mathcal{D}, \log z$ is given by the convergent series

$$
\log z=\sum_{i=1}^{\infty} \frac{(-1)^{i+1}}{i}(z-1)^{i}
$$

$v)$ If $z \in \mathcal{D}$, then

$$
\log e^{z}=z
$$

vi) If $z_{1}, z_{2} \in \mathcal{D}$, then

$$
\log z_{1} z_{2}=\log z_{1}+\log z_{2}
$$

vi) If $|z|<1$, then

$$
|\log (1+z)| \leq-\log (1-|z|)
$$

and

$$
\frac{|z|}{1+|z|} \leq|\log (1+z)| \leq \frac{|z|(1+|z|)}{|1+z|}
$$

(Remark: Let $z=r e^{\jmath \theta} \in \mathbb{C}$ satisfy $|z-1|<1$. Then, $-\pi / 2<\theta<\pi / 2$. Furthermore, $\log z=(\log r)+\jmath \theta$, and thus $-\pi / 2<\operatorname{Im} \log z<\pi / 2$. Consequently, the infinite series in $i v$) gives the principal \log of z.)

Fact 1.18.8. The following infinite series converge for the given values of the complex argument z :
i) For all $z \in \mathbb{C}$,

$$
\begin{aligned}
& \sin z=z-\frac{1}{3!} z^{3}+\frac{1}{5!} z^{5}-\frac{1}{7!} z^{7}+\cdots \\
& \cos z=1-\frac{1}{2!} z^{2}+\frac{1}{4!} z^{4}-\frac{1}{6!} z^{6}+\cdots
\end{aligned}
$$

iii) For all $|z|<\pi / 2$,

$$
\tan z=z+\frac{1}{3} z^{3}+\frac{2}{15} z^{5}+\frac{17}{315} z^{7}+\frac{62}{2835} z^{9}+\cdots
$$

iv) For all $z \in \mathbb{C}$,

$$
e^{z}=1+z+\frac{1}{2!} z^{2}+\frac{1}{3!} z^{3}+\frac{1}{4!} z^{4}+\cdots
$$

$v)$ For all nonzero $z \in \mathbb{C}$ such that $|z-1| \leq 1$,

$$
\log z=-\left[1-z+\frac{1}{2}(1-z)^{2}+\frac{1}{3}(1-z)^{3}+\frac{1}{4}(1-z)^{4}+\cdots\right]
$$

vi) For all $z \in \operatorname{CUD} \backslash\{1\}$,

$$
\log (1-z)=-\left(z+\frac{1}{2} z^{2}+\frac{1}{3} z^{3}+\frac{1}{4} z^{4}+\cdots\right)
$$

vii) For all $z \in \mathrm{CUD} \backslash\{-1\}$,

$$
\log (1+z)=z-\frac{1}{2} z^{2}+\frac{1}{3} z^{3}-\frac{1}{4} z^{4}+\cdots
$$

viii) For all $z \in \mathrm{CUD} \backslash\{-1,1\}$,

$$
\log \frac{1+z}{1-z}=2\left(z+\frac{1}{3} z^{3}+\frac{1}{5} z^{5}+\cdots\right)
$$

$i x)$ For all $z \in \mathbb{C}$ such that $\operatorname{Re} z>0$,

$$
\log z=\sum_{i=0}^{\infty} \frac{2}{2 i+1}\left(\frac{z-1}{z+1}\right)^{2 i+1}
$$

x) For all $z \in \mathbb{C}$,

$$
\sinh z=\sin \jmath z=z+\frac{1}{3!} z^{3}+\frac{1}{5!} z^{5}+\frac{1}{7!} z^{7}+\cdots
$$

xi) For all $z \in \mathbb{C}$,

$$
\cosh z=\cos \jmath z=1+\frac{1}{2!} z^{2}+\frac{1}{4!} z^{4}+\frac{1}{6!} z^{6}+\cdots
$$

xii) For all $|z|<\pi / 2$,

$$
\tanh z=\tan \jmath z=z-\frac{1}{3} z^{3}+\frac{2}{15} z^{5}-\frac{17}{315} z^{7}+\frac{62}{2835} z^{9}-\cdots
$$

xiii) For all $\alpha \in \mathbb{C}$ and $|z| \leq 1$ such that either $|z|<1$ or both $\operatorname{Re} \alpha>-1$ and $|z| \neq-1$,

$$
\begin{aligned}
(1+z)^{\alpha} & =1+\alpha z+\frac{\alpha(\alpha-1)}{2!} z^{2}+\frac{\alpha(\alpha-1)(\alpha-2)}{3!} z^{3}+\frac{\alpha(\alpha-1)(\alpha-2)(\alpha-3)}{4!} z^{4}+\cdots \\
& =\binom{\alpha}{0}+\binom{\alpha}{1} z+\binom{\alpha}{2} z^{2}+\binom{\alpha}{3} z^{3}+\binom{\alpha}{4} z^{4}+\cdots
\end{aligned}
$$

xiv) For all $\alpha \in \mathbb{C}$ and $|z|<1$,

$$
\frac{1}{(1-z)^{\alpha+1}}=\binom{\alpha}{0}+\binom{1+\alpha}{1} z+\binom{2+\alpha}{2} z^{2}+\binom{3+\alpha}{3} z^{3}+\binom{4+\alpha}{4} z^{4}+\cdots
$$

$x v)$ For all $|z|<1$,

$$
(1-z)^{-1}=1+z+z^{2}+z^{3}+z^{4}+\cdots
$$

(Proof: See [750, pp. 11, 12]. For $x \in \mathbb{R}$ such that $|x|<1$, it follows that

$$
\frac{\mathrm{d}}{\mathrm{~d} x} \log (1-x)=\frac{-1}{1-x}=-\left(1+x+x^{2}+\cdots\right)
$$

Integrating yields

$$
\log (1-x)=-\left(x+\frac{1}{2} x^{2}+\frac{1}{3} x^{3}+\cdots\right)
$$

Using analytic continuation to replace $x \in \mathbb{R}$ satisfying $|x|<1$ with $z \in \mathbb{C}$ satisfying $|z|<1$ yields vii).) (Remark: vii) is Mercator's series, while viii) and $i x$) are equivalent forms of Gregory's series. See [683, p. 273].) (Remark: xiii) is the binomial series.) (Remark: CUD $=\{z \in \mathbb{C}:|z| \leq 1\}$.)

1.19 Facts on Trigonometric and Hyperbolic Identities

Fact 1.19.1. Let x be a real number such that the expressions below are defined. Then, the following identities hold:
i) $\sin x=\frac{1}{2 \jmath}\left(e^{\jmath x}-e^{-\jmath x}\right)$.
ii) $\cos x=\frac{1}{2}\left(e^{j x}+e^{-\jmath x}\right)$.
iii) $\sin (x+y)=(\sin x)(\cos y)+(\cos x) \sin y$.
iv) $\sin (x-y)=(\sin x)(\cos y)-(\cos x) \sin y$.
v) $\cos (x+y)=(\cos x)(\cos y)-(\sin x) \sin y$.
vi) $\cos (x-y)=(\cos x)(\cos y)+(\sin x) \sin y$.
vii) $(\sin x) \sin y=\frac{1}{2}[\cos (x-y)-\cos (x+y)]$.
viii) $(\sin x) \cos y=\frac{1}{2}[\sin (x+y)+\sin (x-y)]$.
$i x)(\cos x) \cos y=\frac{1}{2}[\cos (x+y)+\cos (x-y)]$.
x) $\sin ^{2} x-\sin ^{2} y=[\sin (x+y)] \sin (x-y)$.
xi) $\cos ^{2} x-\sin ^{2} y=[\cos (x+y)] \cos (x-y)$.
xii) $\cos ^{2} x-\cos ^{2} y=[\sin (x+y)] \sin (y-x)$.
xiii) $\sin x+\sin y=2\left[\sin \frac{1}{2}(x+y)\right] \cos \frac{1}{2}(x-y)$.
xiv) $\sin x-\sin y=2\left[\sin \frac{1}{2}(x-y)\right] \cos \frac{1}{2}(x+y)$.
$x v) \cos x+\cos y=2\left[\cos \frac{1}{2}(x+y)\right] \cos \frac{1}{2}(x-y)$.
xvi) $\cos x-\cos y=2\left[\sin \frac{1}{2}(x+y)\right] \sin \frac{1}{2}(y-x)$.
xvii) $\tan (x+y)=\frac{(\tan x)+\tan y}{1-(\tan x) \tan y}$.
xviii) $\tan (x-y)=\frac{(\tan x)-\tan y}{1+(\tan x) \tan y}$.
xix) $\tan x+\tan y=\frac{\sin (x+y)}{(\cos x) \cos y}$.

```
    xx) \(\tan x-\tan y=\frac{\sin (x-y)}{(\cos x) \cos y}\).
    xxi) \(\sin x=2\left(\sin \frac{x}{2}\right) \cos \frac{x}{2}\).
    xxii) \(\cos x=2\left(\cos ^{2} \frac{x}{2}\right)-1\).
    xxiii) \(\sin 2 x=2(\sin x) \cos x\).
    xxiv) \(\cos 2 x=2\left(\cos ^{2} x\right)-1\).
    \(x x v) \tan 2 x=\frac{2 \tan x}{1-\tan ^{2} x}\).
    xxvi) \(\sin 3 x=3(\sin x)-4 \sin ^{3} x\).
xxvii) \(\cos 3 x=4\left(\cos ^{3} x\right)-3 \cos x\).
xxviii) \(\tan 3 x=\frac{3(\tan x)-\tan ^{3} x}{1-3 \tan ^{2} x}\).
    xxix) \(\sin ^{2} x=\frac{1}{2}(1-\cos 2 x)\).
    \(x x x) \cos ^{2} x=\frac{1}{2}(1+\cos 2 x)\).
    xxxi) \(\tan ^{2} x=\frac{1-\cos 2 x}{1+\cos 2 x}\).
xxxii) \(\tan x=\frac{\sin 2 x}{1+\cos 2 x}=\frac{1-\cos 2 x}{\sin 2 x}=\frac{2 \tan \frac{x}{2}}{1-\tan ^{2} \frac{x}{2}}\).
xxxiii) \(\sin ^{2} \frac{x}{2}=\frac{1}{2}(1-\cos x)\).
xxxiv) \(\cos ^{2} \frac{x}{2}=\frac{1}{2}(1+\cos x)\).
\(x x x v) \tan \frac{1}{2} x=\frac{\sin x}{1+\cos x}=\frac{1-\cos x}{\sin x}\).
xxxvi) For all \(t \geq 0\) and \(\alpha \in(0,1)\),
```

$$
\int_{0}^{\infty} \frac{t x^{\alpha-1}}{t+x} \mathrm{~d} x=\frac{t^{\alpha} \pi}{\sin \alpha \pi}
$$

(Remark: See [750, pp. 114-116]. The last result is given in [1503, p. 448, formula 589]. See also [542, p. 69].)

Fact 1.19.2. Let x be a real number such that the expressions below are defined. Then, the following identities hold:
i) $\sinh x=\frac{1}{2}\left(e^{x}-e^{-x}\right)$.
ii) $\cosh x=\frac{1}{2}\left(e^{x}+e^{-x}\right)$.
iii) $\tanh x=\frac{\sinh x}{\cosh x}$.
iv) $\sin \jmath x=\jmath \sinh x$.
v) $\cos \jmath x=\jmath \cosh x$.
vi) $\tan \jmath x=\jmath \tanh x$.
vii) $\sinh \jmath x=\jmath \sin x$.
viii) $\cosh \jmath x=\jmath \cos x$.
ix) $\tanh \jmath x=\jmath \tan x$.
x) $\sinh (x+y)=(\sinh x)(\cosh y)+(\cosh x) \sinh y$.
xi) $\cosh (x+y)=(\cosh x)(\cosh y)+(\sinh x) \sinh y$.
xii) $\tanh (x+y)=\frac{(\tanh x)+\tanh y}{1+(\tanh x) \tanh y}$.
(Remark: See [750, pp. 117-119].)
Fact 1.19.3. Let $z=x+\jmath y$, where z is a complex number and x and y are real numbers. Then, the following identities hold:
i) $\sin z=(\sin x)(\cosh y)+\jmath(\cos x) \sinh y$.
ii) $\cos z=(\cos x)(\cosh y)-\jmath(\sin x) \sinh y$.
iii) $\tan z=\frac{(\sin 2 x)+\jmath \sinh 2 y}{(\cos 2 x)+\cosh 2 y}$.

1.20 Notes

Much of the preliminary material in this chapter can be found in 1030. A related treatment of mathematical preliminaries is given in [1129. An extensive introduction to logic and mathematical fundamentals is given in [229]. In [229], the notation " $A \rightarrow B$ " is used to denote an implication, which is called a disjunction, while " $A \Longrightarrow B$ " indicates a tautology.

An extensive treatment of partially ordered sets is given in 1179. Lattices are discussed in 229].

Alternative terminology for "one-to-one" and "onto" is injective and surjective, respectively, while a function that is injective and surjective is bijective.

Reference works on inequalities include [162, 273, 274, 275, 340, 637, 963, 971 1010, 1221. Recommended texts on complex variables include [725, 1031, 1066.

Chapter Two

Basic Matrix Properties

In this chapter we provide a detailed treatment of the basic properties of matrices such as range, null space, rank, and invertibility. We also consider properties of convex sets, cones, and subspaces.

2.1 Matrix Algebra

The symbols \mathbb{Z}, \mathbb{N}, and \mathbb{P} denote the sets of integers, nonnegative integers, and positive integers, respectively. The symbols \mathbb{R} and \mathbb{C} denote the real and complex number fields, respectively, whose elements are scalars. Since \mathbb{R} is a proper subset of \mathbb{C}, we state many results for \mathbb{C}. In other cases, we treat \mathbb{R} and \mathbb{C} separately. To do this efficiently, we use the symbol \mathbb{F} to consistently denote either \mathbb{R} or \mathbb{C}.

Let $x \in \mathbb{C}$. Then, $x=y+\jmath z$, where $y, z \in \mathbb{R}$ and $\jmath \triangleq \sqrt{-1}$. Define the complex conjugate \bar{x} of x by

$$
\begin{equation*}
\bar{x} \triangleq y-\jmath z \tag{2.1.1}
\end{equation*}
$$

and the real part $\operatorname{Re} x$ of x and the imaginary part $\operatorname{Im} x$ of x by

$$
\begin{equation*}
\operatorname{Re} x \triangleq \frac{1}{2}(x+\bar{x})=y \tag{2.1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Im} x \triangleq \frac{1}{2 \jmath}(x-\bar{x})=z \tag{2.1.3}
\end{equation*}
$$

Furthermore, the absolute value $|x|$ of x is defined by

$$
\begin{equation*}
|x| \triangleq \sqrt{y^{2}+z^{2}} \tag{2.1.4}
\end{equation*}
$$

The closed left half plane (CLHP), open left half plane (OLHP), closed right half plane (CRHP), and open right half plane (ORHP) are the subsets of \mathbb{C} defined by

$$
\begin{align*}
& \mathrm{OLHP} \triangleq\{s \in \mathbb{C}: \quad \operatorname{Re} s<0\} \tag{2.1.5}\\
& \mathrm{CLHP} \triangleq\{s \in \mathbb{C}: \quad \operatorname{Re} s \leq 0\} \tag{2.1.6}\\
& \mathrm{ORHP} \triangleq\{s \in \mathbb{C}: \quad \operatorname{Re} s>0\} \tag{2.1.7}\\
& \mathrm{CRHP} \triangleq\{s \in \mathbb{C}: \quad \operatorname{Re} s \geq 0\} \tag{2.1.8}
\end{align*}
$$

The imaginary numbers are represented by $\jmath \mathbb{R}$. Note that 0 is both a real number and an imaginary number.

The set \mathbb{F}^{n} consists of vectors x of the form

$$
x=\left[\begin{array}{c}
x_{(1)} \tag{2.1.9}\\
\vdots \\
x_{(n)}
\end{array}\right]
$$

where $x_{(1)}, \ldots, x_{(n)} \in \mathbb{F}$ are the components of x. Hence, the elements of \mathbb{F}^{n} are column vectors. Since $\mathbb{F}^{1}=\mathbb{F}$, it follows that every scalar is also a vector. If $x \in \mathbb{R}^{n}$ and every component of x is nonnegative, then x is nonnegative, while, if every component of x is positive, then x is positive.

Definition 2.1.1. Let $x, y \in \mathbb{R}^{n}$, and assume that $x_{(1)} \geq \cdots \geq x_{(n)}$ and $y_{(1)} \geq \cdots \geq y_{(n)}$. Then, the following terminology is defined:
i) y weakly majorizes x if, for all $k=1, \ldots, n$, it follows that

$$
\begin{equation*}
\sum_{i=1}^{k} x_{(i)} \leq \sum_{i=1}^{k} y_{(i)} \tag{2.1.10}
\end{equation*}
$$

ii) y strongly majorizes x if y weakly majorizes x and

$$
\begin{equation*}
\sum_{i=1}^{n} x_{(i)}=\sum_{i=1}^{n} y_{(i)} \tag{2.1.11}
\end{equation*}
$$

Now, assume that x and y are nonnegative. Then, the following terminology is defined:
iii) y weakly log majorizes x if, for all $k=1, \ldots, n$, it follows that

$$
\begin{equation*}
\prod_{i=1}^{k} x_{(i)} \leq \prod_{i=1}^{k} y_{(i)} \tag{2.1.12}
\end{equation*}
$$

iv) y strongly \log majorizes x if y weakly \log majorizes x and

$$
\begin{equation*}
\prod_{i=1}^{n} x_{(i)}=\prod_{i=1}^{n} y_{(i)} \tag{2.1.13}
\end{equation*}
$$

Clearly, if y strongly majorizes x, then y weakly majorizes x, and, if y strongly \log majorizes x, then y weakly \log majorizes x. Fact 2.21.13states that, if y weakly \log majorizes x, then y weakly majorizes x. Finally, in the notation of Definition 2.1.1, if y majorizes x, then $x_{(1)} \leq y_{(1)}$, while, if y strongly majorizes x, then $y_{(n)} \leq x_{(n)}$.

Definition 2.1.2. Let $\mathcal{S} \subseteq \mathbb{R}^{n}$, and let $f: \mathcal{S} \mapsto \mathbb{R}$. Then, f is Schur convex if, for all $x, y \in \mathcal{S}$ such that y strongly majorizes x, it follows that $f(x) \leq f(y)$. Furthermore, f is Schur concave if $-f$ is Schur convex.

If $\alpha \in \mathbb{F}$ and $x \in \mathbb{F}^{n}$, then $\alpha x \in \mathbb{F}^{n}$ is given by

$$
\alpha x=\left[\begin{array}{c}
\alpha x_{(1)} \tag{2.1.14}\\
\vdots \\
\alpha x_{(n)}
\end{array}\right] .
$$

If $x, y \in \mathbb{F}^{n}$, then x and y are linearly dependent if there exists $\alpha \in \mathbb{F}$ such that either $x=\alpha y$ or $y=\alpha x$. Linear dependence for a set of two or more vectors is defined in Section 2.3. Furthermore, vectors add component by component, that is, if $x, y \in \mathbb{F}^{n}$, then

$$
x+y=\left[\begin{array}{c}
x_{(1)}+y_{(1)} \tag{2.1.15}\\
\vdots \\
x_{(n)}+y_{(n)}
\end{array}\right]
$$

Thus, if $\alpha, \beta \in \mathbb{F}$, then the linear combination $\alpha x+\beta y$ is given by

$$
\alpha x+\beta y=\left[\begin{array}{c}
\alpha x_{(1)}+\beta y_{(1)} \tag{2.1.16}\\
\vdots \\
\alpha x_{(n)}+\beta y_{(n)}
\end{array}\right]
$$

If $x \in \mathbb{R}^{n}$ and x is nonnegative, then we write $x \geq \geq 0$, while, if x is positive, then we write $x \gg 0$. If $x, y \in \mathbb{R}^{n}$, then $x \geq \geq y$ means that $x-y \geq \geq 0$, while $x \gg y$ means that $x-y \gg 0$.

The vectors $x_{1}, \ldots, x_{m} \in \mathbb{F}^{n}$ placed side by side form the matrix

$$
A \triangleq\left[\begin{array}{lll}
x_{1} & \cdots & x_{m} \tag{2.1.17}
\end{array}\right]
$$

which has n rows and m columns. The components of the vectors x_{1}, \ldots, x_{m} are the entries of A. We write $A \in \mathbb{F}^{n \times m}$ and say that A has size $n \times m$. Since $\mathbb{F}^{n}=\mathbb{F}^{n \times 1}$, it follows that every vector is also a matrix. Note that $\mathbb{F}^{1 \times 1}=\mathbb{F}^{1}=\mathbb{F}$. If $n=m$, then n is the order of A, and A is square. The i th row of A and the j th column of A are denoted by $\operatorname{row}_{i}(A)$ and $\operatorname{col}_{j}(A)$, respectively. Hence,

$$
A=\left[\begin{array}{c}
\operatorname{row}_{1}(A) \tag{2.1.18}\\
\vdots \\
\operatorname{row}_{n}(A)
\end{array}\right]=\left[\begin{array}{lll}
\operatorname{col}_{1}(A) & \cdots & \operatorname{col}_{m}(A)
\end{array}\right] .
$$

The entry $x_{j(i)}$ of A in both the i th row of A and the j th column of A is denoted by $A_{(i, j)}$. Therefore, $x \in \mathbb{F}^{n}$ can be written as

$$
x=\left[\begin{array}{c}
x_{(1)} \tag{2.1.19}\\
\vdots \\
x_{(n)}
\end{array}\right]=\left[\begin{array}{c}
x_{(1,1)} \\
\vdots \\
x_{(n, 1)}
\end{array}\right] .
$$

Let $A \in \mathbb{F}^{n \times m}$. For $b \in \mathbb{F}^{n}$, the matrix obtained from A by replacing $\operatorname{col}_{i}(A)$ with b is denoted by

$$
\begin{equation*}
A \stackrel{i}{\leftarrow} b \tag{2.1.20}
\end{equation*}
$$

Likewise, for $b \in \mathbb{F}^{1 \times m}$, the matrix obtained from A by replacing $\operatorname{row}_{i}(A)$ with b is denoted by (2.1.20).

Let $A \in \mathbb{F}^{n \times m}$, and let $l \triangleq \min \{n, m\}$. Then, the entries $A_{(i, i)}$ for all $i=$ $1, \ldots, l$ and $A_{(i, j)}$ for all $i \neq j$ are the diagonal entries and off-diagonal entries of A, respectively. Moreover, for all $i=1, \ldots, l-1$, the entries $A_{(i, i+1)}$ and $A_{(i+1, i)}$ are the superdiagonal entries and subdiagonal entries of A, respectively. In addition, the entries $A_{(i, l+1-i)}$ for all $i=1, \ldots, l$ are the reverse-diagonal entries of A. If the diagonal entries $A_{(1,1)}, \ldots, A_{(l, l)}$ of A are real, then the diagonal entries of A are labeled from largest to smallest as

$$
\begin{equation*}
\mathrm{d}_{1}(A) \geq \cdots \geq \mathrm{d}_{l}(A) \tag{2.1.21}
\end{equation*}
$$

and we define

$$
\begin{equation*}
\mathrm{d}_{\max }(A) \triangleq \mathrm{d}_{1}(A), \quad \mathrm{d}_{\min }(A) \triangleq \mathrm{d}_{l}(A) \tag{2.1.22}
\end{equation*}
$$

Partitioned matrices are of the form

$$
\left[\begin{array}{ccc}
A_{11} & \cdots & A_{1 l} \tag{2.1.23}\\
\vdots & \vdots & \vdots \\
A_{k 1} & \cdots & A_{k l}
\end{array}\right]
$$

where, for all $i=1, \ldots, k$ and $j=1, \ldots, l$, the block $A_{i j}$ of A is a matrix of size $n_{i} \times m_{j}$. If $n_{i}=m_{j}$ and the diagonal entries of $A_{i j}$ lie on the diagonal of A, then the square matrix $A_{i j}$ is a diagonally located block; otherwise, $A_{i j}$ is an off-diagonally located block.

Let $A \in \mathbb{F}^{n \times m}$. Then, a submatrix of A is formed by deleting rows and columns of A. By convention, A is a submatrix of A. If A is a partitioned matrix, then every block of A is a submatrix of A. A block is thus a submatrix whose entries are entries of adjacent rows and adjacent columns. A submatrix can be specified in terms of the rows and columns that are retained. If like-numbered rows and columns of A are retained, then the resulting square submatrix of A is a principal submatrix of A. Every diagonally located block is a principal submatrix. Finally, if rows and columns $1, \ldots, j$ of A are retained, then the resulting $j \times j$ submatrix of A is a leading principal submatrix of A.

Let $A \in \mathbb{F}^{n \times m}$, and let \mathcal{S}_{1} and \mathcal{S}_{2} be subsets of $\{1, \ldots, n\}$ and $\{1, \ldots, m\}$, respectively. Then, $A_{\left(\mathcal{S}_{1}, \delta_{2}\right)}$ is the $\operatorname{card}\left(\mathcal{S}_{1}\right) \times \operatorname{card}\left(\mathcal{S}_{2}\right)$ submatrix of A formed by retaining the rows of A listed in \mathcal{S}_{1} and the columns of A listed in \mathcal{S}_{2}. Therefore, $A_{\left(\mathcal{S}_{1}, \mathcal{S}_{2}^{\sim}\right)}$ is the $\left[n-\operatorname{card}\left(\mathcal{S}_{1}\right)\right] \times\left[m-\operatorname{card}\left(\mathcal{S}_{2}\right)\right]$ submatrix of A formed by deleting the rows of A listed in \mathcal{S}_{1} and the columns of A listed in \mathcal{S}_{2}. If $\mathcal{S} \subseteq\{1, \ldots, \min \{n, m\}\}$, then we define $A_{(\delta)} \triangleq A_{(\delta, \delta)}$, which is a principal submatrix of A.

Matrices of the same size add entry by entry, that is, if $A, B \in \mathbb{F}^{n \times m}$, then, for all $i=1, \ldots, n$ and $j=1, \ldots, m,(A+B)_{(i, j)}=A_{(i, j)}+B_{(i, j)}$. Furthermore, for all $i=1, \ldots, n$ and $j=1, \ldots, m,(\alpha A)_{(i, j)}=\alpha A_{(i, j)}$ for all $\alpha \in \mathbb{F}$ so that $(\alpha A+\beta B)_{(i, j)}=\alpha A_{(i, j)}+\beta B_{(i, j)}$ for all $\alpha, \beta \in \mathbb{F}$. If $A, B \in \mathbb{F}^{n \times m}$, then A and B are linearly dependent if there exists $\alpha \in \mathbb{F}$ such that either $A=\alpha B$ or $B=\alpha A$.

Let $A \in \mathbb{R}^{n \times m}$. If every entry of A is nonnegative, then A is nonnegative, which is written as $A \geq \geq 0$. If every entry of A is positive, then A is positive, which is written as $A \gg 0$. If $A, B \in \mathbb{R}^{n \times m}$, then $A \geq \geq B$ means that $A-B \geq \geq 0$, while $A \gg B$ means that $A-B \gg 0$.

Let $z \in \mathbb{F}^{1 \times n}$ and $y \in \mathbb{F}^{n}=\mathbb{F}^{n \times 1}$. Then, the scalar $z y \in \mathbb{F}$ is defined by

$$
\begin{equation*}
z y \triangleq \sum_{i=1}^{n} z_{(1, i)} y_{(i)} \tag{2.1.24}
\end{equation*}
$$

Now, let $A \in \mathbb{F}^{n \times m}$ and $x \in \mathbb{F}^{m}$. Then, the matrix-vector product $A x$ is defined by

$$
A x \triangleq\left[\begin{array}{c}
\operatorname{row}_{1}(A) x \tag{2.1.25}\\
\vdots \\
\operatorname{row}_{n}(A) x
\end{array}\right] .
$$

It can be seen that $A x$ is a linear combination of the columns of A, that is,

$$
\begin{equation*}
A x=\sum_{i=1}^{m} x_{(i)} \operatorname{col}_{i}(A) \tag{2.1.26}
\end{equation*}
$$

The matrix A can be associated with the function $f: \mathbb{F}^{m} \mapsto \mathbb{F}^{n}$ defined by $f(x) \triangleq$ $A x$ for all $x \in \mathbb{F}^{m}$. The function $f: \mathbb{F}^{m} \mapsto \mathbb{F}^{n}$ is linear since, for all $\alpha, \beta \in \mathbb{F}$ and $x, y \in \mathbb{F}^{m}$, it follows that

$$
\begin{equation*}
f(\alpha x+\beta y)=\alpha A x+\beta A y \tag{2.1.27}
\end{equation*}
$$

The function $f: \mathbb{F}^{m} \mapsto \mathbb{F}^{n}$ defined by

$$
\begin{equation*}
f(x) \triangleq A x+z \tag{2.1.28}
\end{equation*}
$$

where $z \in \mathbb{F}^{n}$, is affine.
Theorem 2.1.3. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times l}$, and define $f: \mathbb{F}^{m} \mapsto \mathbb{F}^{n}$ and $g: \mathbb{F}^{l} \mapsto \mathbb{F}^{m}$ by $f(x) \triangleq A x$ and $g(y) \triangleq B y$. Furthermore, define the composition $h \triangleq f \bullet g: \mathbb{F}^{l} \mapsto \mathbb{F}^{n}$. Then, for all $y \in \mathbb{R}^{l}$,

$$
\begin{equation*}
h(y)=f[g(y)]=A(B y)=(A B) y \tag{2.1.29}
\end{equation*}
$$

where, for all $i=1, \ldots, n$ and $j=1, \ldots, l, A B \in \mathbb{F}^{n \times l}$ is defined by

$$
\begin{equation*}
(A B)_{(i, j)} \triangleq \sum_{k=1}^{m} A_{(i, k)} B_{(k, j)} \tag{2.1.30}
\end{equation*}
$$

Hence, we write $A B y$ for $(A B) y$ and $A(B y)$.
Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times l}$. Then, $A B \in \mathbb{F}^{n \times l}$ is the product of A and B. The matrices A and B are conformable, and the product (2.1.30) defines matrix multiplication.

Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times l}$. Then, $A B$ can be written as

$$
A B=\left[\begin{array}{lll}
A \operatorname{col}_{1}(B) & \cdots & A \operatorname{col}_{l}(B)
\end{array}\right]=\left[\begin{array}{c}
\operatorname{row}_{1}(A) B \tag{2.1.31}\\
\vdots \\
\operatorname{row}_{n}(A) B
\end{array}\right]
$$

Thus, for all $i=1, \ldots, n$ and $j=1, \ldots, l$,

$$
\begin{gather*}
(A B)_{(i, j)}=\operatorname{row}_{i}(A) \operatorname{col}_{j}(B) \tag{2.1.32}\\
\operatorname{col}_{j}(A B)=A \operatorname{col}_{j}(B) \tag{2.1.33}\\
\operatorname{row}_{i}(A B)=\operatorname{row}_{i}(A) B \tag{2.1.34}
\end{gather*}
$$

For conformable matrices A, B, C, the associative and distributive identities

$$
\begin{align*}
(A B) C & =A(B C) \tag{2.1.35}\\
A(B+C) & =A B+A C \tag{2.1.36}\\
(A+B) C & =A C+B C \tag{2.1.37}
\end{align*}
$$

are valid. Hence, we write $A B C$ for $(A B) C$ and $A(B C)$. Note that (2.1.35) is a special case of (1.2.1).

Let $A, B \in \mathbb{F}^{n \times n}$. Then, the commutator $[A, B] \in \mathbb{F}^{n \times n}$ of A and B is the matrix

$$
\begin{equation*}
[A, B] \triangleq A B-B A \tag{2.1.38}
\end{equation*}
$$

The adjoint operator $\operatorname{ad}_{A}: \mathbb{F}^{n \times n} \mapsto \mathbb{F}^{n \times n}$ is defined by

$$
\begin{equation*}
\operatorname{ad}_{A}(X) \triangleq[A, X] \tag{2.1.39}
\end{equation*}
$$

Let $x, y \in \mathbb{R}^{3}$. Then, the cross product $x \times y \in \mathbb{R}^{3}$ of x and y is defined by

$$
x \times y \triangleq\left[\begin{array}{l}
x_{(2)} y_{(3)}-x_{(3)} y_{(2)} \tag{2.1.40}\\
x_{(3)} y_{(1)}-x_{(1)} y_{(3)} \\
x_{(1)} y_{(2)}-x_{(2)} y_{(1)}
\end{array}\right]
$$

Furthermore, the 3×3 cross-product matrix is defined by

$$
K(x) \triangleq\left[\begin{array}{ccc}
0 & -x_{(3)} & x_{(2)} \tag{2.1.41}\\
x_{(3)} & 0 & -x_{(1)} \\
-x_{(2)} & x_{(1)} & 0
\end{array}\right] .
$$

Note that

$$
\begin{equation*}
x \times y=K(x) y \tag{2.1.42}
\end{equation*}
$$

Multiplication of partitioned matrices is analogous to matrix multiplication with scalar entries. For example, for matrices with conformable blocks,

$$
\left[\begin{array}{ll}
A & B
\end{array}\right]\left[\begin{array}{l}
C \tag{2.1.43}\\
D
\end{array}\right]=A C+B D
$$

$$
\begin{gather*}
{\left[\begin{array}{l}
A \\
B
\end{array}\right] C=\left[\begin{array}{l}
A C \\
B C
\end{array}\right],} \tag{2.1.44}\\
{\left[\begin{array}{l}
A \\
B
\end{array}\right]\left[\begin{array}{ll}
C & D
\end{array}\right]=\left[\begin{array}{cc}
A C & A D \\
B C & B D
\end{array}\right],} \tag{2.1.45}\\
{\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{ll}
E & F \\
G & H
\end{array}\right]=\left[\begin{array}{cc}
A E+B G & A F+B H \\
C E+D G & C F+D H
\end{array}\right] .} \tag{2.1.46}
\end{gather*}
$$

The $n \times m$ zero matrix, all of whose entries are zero, is written as $0_{n \times m}$. If the dimensions are unambiguous, then we write just 0 . Let $x \in \mathbb{F}^{m}$ and $A \in \mathbb{F}^{n \times m}$. Then, the zero matrix satisfies

$$
\begin{gather*}
0_{k \times m} x=0_{k}, \tag{2.1.47}\\
A 0_{m \times l}=0_{n \times l}, \tag{2.1.48}\\
0_{k \times n} A=0_{k \times m} . \tag{2.1.49}
\end{gather*}
$$

Another special matrix is the empty matrix. For $n \in \mathbb{N}$, the $0 \times n$ empty matrix, which is written as $0_{0 \times n}$, has zero rows and n columns, while the $n \times 0$ empty matrix, which is written as $0_{n \times 0}$, has n rows and zero columns. For $A \in \mathbb{F}^{n \times m}$, where $n, m \in \mathbb{N}$, the empty matrix satisfies the multiplication rules

$$
\begin{equation*}
0_{0 \times n} A=0_{0 \times m} \tag{2.1.50}
\end{equation*}
$$

and

$$
\begin{equation*}
A 0_{m \times 0}=0_{n \times 0} \tag{2.1.51}
\end{equation*}
$$

Although empty matrices have no entries, it is useful to define the product

$$
\begin{equation*}
0_{n \times 0} 0_{0 \times m} \triangleq 0_{n \times m} \tag{2.1.52}
\end{equation*}
$$

Also, we define

$$
\begin{equation*}
I_{0} \triangleq \hat{I}_{0} \triangleq 0_{0 \times 0} \tag{2.1.53}
\end{equation*}
$$

For $n, m \in \mathbb{N}$, we define $\mathbb{F}^{0 \times m} \triangleq\left\{0_{0 \times m}\right\}, \mathbb{F}^{n \times 0} \triangleq\left\{0_{n \times 0}\right\}$, and $\mathbb{F}^{0} \triangleq \mathbb{F}^{0 \times 1}$. Note that

$$
\left[\begin{array}{ll}
0_{n \times 0} & 0_{n \times m} \tag{2.1.54}\\
0_{0 \times 0} & 0_{0 \times m}
\end{array}\right]=0_{n \times m}
$$

The empty matrix can be viewed as a useful device for matrices just as 0 is for real numbers and \varnothing is for sets.

The $n \times n$ identity matrix, which has 1's on the diagonal and 0's elsewhere, is denoted by I_{n} or just I. Let $x \in \mathbb{F}^{n}$ and $A \in \mathbb{F}^{n \times m}$. Then, the identity matrix satisfies

$$
\begin{equation*}
I_{n} x=x \tag{2.1.55}
\end{equation*}
$$

and

$$
\begin{equation*}
A I_{m}=I_{n} A=A \tag{2.1.56}
\end{equation*}
$$

Let $A \in \mathbb{F}^{n \times n}$. Then, $A^{2} \triangleq A A$ and, for all $k \geq 1, A^{k} \triangleq A A^{k-1}$. We use the convention $A^{0} \triangleq I$ even if A is the zero matrix.

The $n \times n$ reverse identity matrix, which has 1's on the reverse diagonal and 0 's elsewhere, is denoted by \hat{I}_{n} or just \hat{I}. Left multiplication of $A \in \mathbb{F}^{n \times m}$ by \hat{I}_{n} reverses the rows of A, while right multiplication of A by \hat{I}_{m} reverses the columns of A. Note that

$$
\begin{equation*}
\hat{I}_{n}^{2}=I_{n} \tag{2.1.57}
\end{equation*}
$$

2.2 Transpose and Inner Product

A fundamental vector and matrix operation is the transpose. If $x \in \mathbb{F}^{n}$, then the transpose x^{T} of x is defined to be the row vector

$$
x^{T} \triangleq\left[\begin{array}{lll}
x_{(1)} & \cdots & x_{(n)} \tag{2.2.1}
\end{array}\right] \in \mathbb{F}^{1 \times n}
$$

Similarly, if $x=\left[\begin{array}{lll}x_{(1,1)} & \cdots & x_{(1, n)}\end{array}\right] \in \mathbb{F}^{1 \times n}$, then

$$
x^{T}=\left[\begin{array}{c}
x_{(1,1)} \tag{2.2.2}\\
\vdots \\
x_{(1, n)}
\end{array}\right] \in \mathbb{F}^{n \times 1}
$$

Let $x, y \in \mathbb{F}^{n}$. Then, $x^{\mathrm{T}} y \in \mathbb{F}$ is a scalar, and

$$
\begin{equation*}
x^{\mathrm{T}} y=y^{\mathrm{T}} x=\sum_{i=1}^{n} x_{(i)} y_{(i)} \tag{2.2.3}
\end{equation*}
$$

Note that

$$
\begin{equation*}
x^{\mathrm{T}} x=\sum_{i=1}^{n} x_{(i)}^{2} \tag{2.2.4}
\end{equation*}
$$

The vector $e_{i, n} \in \mathbb{R}^{n}$, or just e_{i}, has 1 as its i th component and 0 's elsewhere. Thus,

$$
\begin{equation*}
e_{i, n}=\operatorname{col}_{i}\left(I_{n}\right) \tag{2.2.5}
\end{equation*}
$$

Let $A \in \mathbb{F}^{n \times m}$. Then, $e_{i}^{\mathrm{T}} A=\operatorname{row}_{i}(A)$ and $A e_{i}=\operatorname{col}_{i}(A)$. Furthermore, the (i, j) entry of A can be written as

$$
\begin{equation*}
A_{(i, j)}=e_{i}^{\mathrm{T}} A e_{j} \tag{2.2.6}
\end{equation*}
$$

The $n \times m$ matrix $E_{i, j, n \times m} \in \mathbb{R}^{n \times m}$, or just $E_{i, j}$, has 1 as its (i, j) entry and 0 's elsewhere. Thus,

$$
\begin{equation*}
E_{i, j, n \times m}=e_{i, n} e_{j, m}^{\mathrm{T}} \tag{2.2.7}
\end{equation*}
$$

Note that $E_{i, 1, n \times 1}=e_{i, n}$ and

$$
\begin{equation*}
I_{n}=E_{1,1}+\cdots+E_{n, n}=\sum_{i=1}^{n} e_{i} e_{i}^{\mathrm{T}} \tag{2.2.8}
\end{equation*}
$$

Finally, the $n \times m$ ones matrix, all of whose entries are 1 , is written as $1_{n \times m}$ or just 1. Thus,

$$
\begin{equation*}
1_{n \times m}=\sum_{i, j=1}^{n, m} E_{i, j, n \times m} \tag{2.2.9}
\end{equation*}
$$

Note that

$$
1_{n \times 1}=\sum_{i=1}^{n} e_{i, n}=\left[\begin{array}{c}
1 \tag{2.2.10}\\
\vdots \\
1
\end{array}\right]
$$

and

$$
\begin{equation*}
1_{n \times m}=1_{n \times 1} 1_{1 \times m} . \tag{2.2.11}
\end{equation*}
$$

Lemma 2.2.1. Let $x \in \mathbb{R}$. Then, $x^{\mathrm{T}} x=0$ if and only if $x=0$.
Let $x, y \in \mathbb{R}^{n}$. Then, $x^{\mathrm{T}} y \in \mathbb{R}$ is the inner product of x and y. Furthermore, x and y are orthogonal if $x^{\mathrm{T}} y=0$. If x and y are nonzero, then the angle $\theta \in[0, \pi]$ between x and y is defined by

$$
\begin{equation*}
\theta \triangleq \cos ^{-1} \frac{x^{\mathrm{T}} y}{\sqrt{x^{\mathrm{T}} x y^{\mathrm{T}} y}} \tag{2.2.12}
\end{equation*}
$$

Note that x and y are orthogonal if and only if $\theta=\pi / 2$.
Let $x \in \mathbb{C}^{n}$. Then, $x=y+\jmath z$, where $y, z \in \mathbb{R}^{n}$. Therefore, the transpose x^{T} of x is given by

$$
\begin{equation*}
x^{\mathrm{T}}=y^{\mathrm{T}}+j z^{\mathrm{T}} . \tag{2.2.13}
\end{equation*}
$$

The complex conjugate \bar{x} of x is defined by

$$
\begin{equation*}
\bar{x} \triangleq y-\jmath z \tag{2.2.14}
\end{equation*}
$$

while the complex conjugate transpose x^{*} of x is defined by

$$
\begin{equation*}
x^{*} \triangleq \bar{x}^{\mathrm{T}}=y^{\mathrm{T}}-\jmath z^{\mathrm{T}} . \tag{2.2.15}
\end{equation*}
$$

The vectors y and z are the real and imaginary parts $\operatorname{Re} x$ and $\operatorname{Im} x$ of x, respectively, which are defined by

$$
\begin{equation*}
\operatorname{Re} x \triangleq \frac{1}{2}(x+\bar{x})=y \tag{2.2.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Im} x \triangleq \frac{1}{2 \jmath}(x-\bar{x})=z . \tag{2.2.17}
\end{equation*}
$$

Note that

$$
\begin{equation*}
x^{*} x=\sum_{i=1}^{n} \bar{x}_{(i)} x_{(i)}=\sum_{i=1}^{n}\left|x_{(i)}\right|^{2}=\sum_{i=1}^{n}\left[y_{(i)}^{2}+z_{(i)}^{2}\right] . \tag{2.2.18}
\end{equation*}
$$

If $w, x \in \mathbb{C}^{n}$, then $w^{\mathrm{T}} x=x^{\mathrm{T}} w$.
Lemma 2.2.2. Let $x \in \mathbb{C}^{n}$. Then, $x^{*} x=0$ if and only if $x=0$.
Let $x, y \in \mathbb{C}^{n}$. Then, $x^{*} y \in \mathbb{C}$ is the inner product of x and y, which is given by

$$
\begin{equation*}
x^{*} y=\sum_{i=1}^{n} \bar{x}_{(i)} y_{(i)} \tag{2.2.19}
\end{equation*}
$$

Furthermore, x and y are orthogonal if $x^{*} y=0$.

Let $A \in \mathbb{F}^{n \times m}$. Then, the transpose $A^{\mathrm{T}} \in \mathbb{F}^{m \times n}$ of A is defined by

$$
\left.A^{\mathrm{T}} \triangleq\left[\begin{array}{lll}
{\left[\operatorname{row}_{1}(A)\right]^{\mathrm{T}}} & \cdots & {\left[\operatorname{row}_{n}(A)\right.}
\end{array}\right]^{\mathrm{T}}\right]=\left[\begin{array}{c}
{\left[\operatorname{col}_{1}(A)\right]^{\mathrm{T}}} \tag{2.2.20}\\
\vdots \\
{\left[\operatorname{col}_{m}(A)\right]^{\mathrm{T}}}
\end{array}\right]
$$

that is, $\operatorname{col}_{i}\left(A^{\mathrm{T}}\right)=\left[\operatorname{row}_{i}(A)\right]^{\mathrm{T}}$ for all $i=1, \ldots, n$ and $\operatorname{row}_{i}\left(A^{\mathrm{T}}\right)=\left[\operatorname{col}_{i}(A)\right]^{\mathrm{T}}$ for all $i=1, \ldots, m$. Hence, $\left(A^{\mathrm{T}}\right)_{(i, j)}=A_{(j, i)}$ and $\left(A^{\mathrm{T}}\right)^{\mathrm{T}}=A$. If $B \in \mathbb{F}^{m \times l}$, then

$$
\begin{equation*}
(A B)^{\mathrm{T}}=B^{\mathrm{T}} A^{\mathrm{T}} \tag{2.2.21}
\end{equation*}
$$

In particular, if $x \in \mathbb{F}^{m}$, then

$$
\begin{equation*}
(A x)^{\mathrm{T}}=x^{\mathrm{T}} A^{\mathrm{T}} \tag{2.2.22}
\end{equation*}
$$

while, if, in addition, $y \in \mathbb{F}^{n}$, then $y^{\mathrm{T}} A x$ is a scalar and

$$
\begin{equation*}
y^{\mathrm{T}} A x=\left(y^{\mathrm{T}} A x\right)^{\mathrm{T}}=x^{\mathrm{T}} A^{\mathrm{T}} y . \tag{2.2.23}
\end{equation*}
$$

If $B \in \mathbb{F}^{n \times m}$, then, for all $\alpha, \beta \in \mathbb{F}$,

$$
\begin{equation*}
(\alpha A+\beta B)^{\mathrm{T}}=\alpha A^{\mathrm{T}}+\beta B^{\mathrm{T}} \tag{2.2.24}
\end{equation*}
$$

Let $x \in \mathbb{F}^{n}$ and $y \in \mathbb{F}^{m}$. Then, the matrix $x y^{T} \in \mathbb{F}^{n \times m}$ is the outer product of x and y. The outer product $x y^{\mathrm{T}}$ is nonzero if and only if both x and y are nonzero.

The trace of a square matrix $A \in \mathbb{F}^{n \times n}$, denoted by $\operatorname{tr} A$, is defined to be the sum of its diagonal entries, that is,

$$
\begin{equation*}
\operatorname{tr} A \triangleq \sum_{i=1}^{n} A_{(i, i)} \tag{2.2.25}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\operatorname{tr} A=\operatorname{tr} A^{\mathrm{T}} \tag{2.2.26}
\end{equation*}
$$

Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times n}$. Then, $A B$ and $B A$ are square,

$$
\begin{equation*}
\operatorname{tr} A B=\operatorname{tr} B A=\operatorname{tr} A^{\mathrm{T}} B^{\mathrm{T}}=\operatorname{tr} B^{\mathrm{T}} A^{\mathrm{T}}=\sum_{i, j=1}^{n, m} A_{(i, j)} B_{(j, i)}, \tag{2.2.27}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{tr} A A^{\mathrm{T}}=\operatorname{tr} A^{\mathrm{T}} A=\sum_{i, j=1}^{n, m} A_{(i, j)}^{2} \tag{2.2.28}
\end{equation*}
$$

Furthermore, if $n=m$, then, for all $\alpha, \beta \in \mathbb{F}$,

$$
\begin{equation*}
\operatorname{tr}(\alpha A+\beta B)=\alpha \operatorname{tr} A+\beta \operatorname{tr} B \tag{2.2.29}
\end{equation*}
$$

Lemma 2.2.3. Let $A \in \mathbb{R}^{n \times m}$. Then, $\operatorname{tr} A^{\mathrm{T}} A=0$ if and only if $A=0$.
Let $A, B \in \mathbb{R}^{n \times m}$. Then, the inner product of A and B is $\operatorname{tr} A^{\mathrm{T}} B$. Furthermore, A is orthogonal to B if $\operatorname{tr} A^{\mathrm{T}} B=0$.

Let $C \in \mathbb{C}^{n \times m}$. Then, $C=A+\jmath B$, where $A, B \in \mathbb{R}^{n \times m}$. Therefore, the transpose C^{T} of C is given by

$$
\begin{equation*}
C^{\mathrm{T}}=A^{\mathrm{T}}+\jmath B^{\mathrm{T}} \tag{2.2.30}
\end{equation*}
$$

The complex conjugate \bar{C} of C is

$$
\begin{equation*}
\bar{C} \triangleq A-\jmath B \tag{2.2.31}
\end{equation*}
$$

while the complex conjugate transpose C^{*} of C is

$$
\begin{equation*}
C^{*} \triangleq \bar{C}^{\mathrm{T}}=A^{\mathrm{T}}-{ }_{\jmath} B^{\mathrm{T}} \tag{2.2.32}
\end{equation*}
$$

Note that $\bar{C}=C$ if and only if $B=0$, and that

$$
\begin{equation*}
\left(C^{\mathrm{T}}\right)^{\mathrm{T}}=\overline{\bar{C}}=\left(C^{*}\right)^{*}=C \tag{2.2.33}
\end{equation*}
$$

The matrices A and B are the real and imaginary parts $\operatorname{Re} C$ and $\operatorname{Im} C$ of C, respectively, which are denoted by

$$
\begin{equation*}
\operatorname{Re} C \triangleq \frac{1}{2}(C+\bar{C})=A \tag{2.2.34}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Im} C \triangleq \frac{1}{2 \jmath}(C-\bar{C})=B \tag{2.2.35}
\end{equation*}
$$

If C is square, then

$$
\begin{equation*}
\operatorname{tr} C=\operatorname{tr} A+\jmath \operatorname{tr} B \tag{2.2.36}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{tr} C=\operatorname{tr} C^{\mathrm{T}}=\overline{\operatorname{tr} \bar{C}}=\overline{\operatorname{tr} C^{*}} \tag{2.2.37}
\end{equation*}
$$

If $\mathcal{S} \subseteq \mathbb{C}^{n \times m}$, then

$$
\begin{equation*}
\overline{\mathfrak{S}} \triangleq\{\bar{A}: \quad A \in \mathcal{S}\} . \tag{2.2.38}
\end{equation*}
$$

If \mathcal{S} is a multiset with elements in $\mathbb{C}^{n \times m}$, then

$$
\begin{equation*}
\overline{\mathcal{S}}=\{\bar{A}: \quad A \in \mathcal{S}\}_{\mathrm{ms}} . \tag{2.2.39}
\end{equation*}
$$

Let $A \in \mathbb{F}^{n \times n}$. Then, for all $k \in \mathbb{N}$,

$$
\begin{gather*}
A^{k \mathrm{~T}} \triangleq\left(A^{k}\right)^{\mathrm{T}}=\left(A^{\mathrm{T}}\right)^{k}, \tag{2.2.40}\\
\overline{A^{k}}=\bar{A}^{k}, \tag{2.2.41}
\end{gather*}
$$

and

$$
\begin{equation*}
A^{k *} \triangleq\left(A^{k}\right)^{*}=\left(A^{*}\right)^{k} \tag{2.2.42}
\end{equation*}
$$

Lemma 2.2.4. Let $A \in \mathbb{C}^{n \times m}$. Then, $\operatorname{tr} A^{*} A=0$ if and only if $A=0$.
Let $A, B \in \mathbb{C}^{n \times m}$. Then, the inner product of A and B is $\operatorname{tr} A^{*} B$. Furthermore, A is orthogonal to B if $\operatorname{tr} A^{*} B=0$.

If $A, B \in \mathbb{C}^{n \times m}$, then, for all $\alpha, \beta \in \mathbb{C}$,

$$
\begin{equation*}
(\alpha A+\beta B)^{*}=\bar{\alpha} A^{*}+\bar{\beta} B^{*} \tag{2.2.43}
\end{equation*}
$$

while, if $A \in \mathbb{C}^{n \times m}$ and $B \in \mathbb{C}^{m \times l}$, then

$$
\begin{equation*}
\overline{A B}=\bar{A} \bar{B} \tag{2.2.44}
\end{equation*}
$$

and

$$
\begin{equation*}
(A B)^{*}=B^{*} A^{*} \tag{2.2.45}
\end{equation*}
$$

In particular, if $A \in \mathbb{C}^{n \times m}$ and $x \in \mathbb{C}^{m}$, then

$$
\begin{equation*}
(A x)^{*}=x^{*} A^{*} \tag{2.2.46}
\end{equation*}
$$

while, if, in addition, $y \in \mathbb{C}^{n}$, then

$$
\begin{equation*}
y^{*} A x=\left(y^{*} A x\right)^{\mathrm{T}}=x^{\mathrm{T}} A^{\mathrm{T}} \bar{y} \tag{2.2.47}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(y^{*} A x\right)^{*}=\left(\overline{y^{*} A x}\right)^{\mathrm{T}}=\left(y^{\mathrm{T}} \bar{A} \bar{x}\right)^{\mathrm{T}}=x^{*} A^{*} y . \tag{2.2.48}
\end{equation*}
$$

For $A \in \mathbb{F}^{n \times m}$, define the reverse transpose of A by

$$
\begin{equation*}
A^{\hat{\mathrm{T}}} \triangleq \hat{I}_{m} A^{\mathrm{T}} \hat{I}_{n} \tag{2.2.49}
\end{equation*}
$$

and the reverse complex conjugate transpose of A by

$$
\begin{equation*}
A^{\hat{*}} \triangleq \hat{I}_{m} A^{*} \hat{I}_{n} . \tag{2.2.50}
\end{equation*}
$$

For example,

$$
\left[\begin{array}{lll}
1 & 2 & 3 \tag{2.2.51}\\
4 & 5 & 6
\end{array}\right]^{\hat{\mathrm{T}}}=\left[\begin{array}{ll}
6 & 3 \\
5 & 2 \\
4 & 1
\end{array}\right]
$$

In general,

$$
\begin{equation*}
\left(A^{*}\right)^{\hat{*}}=\left(A^{\hat{*}}\right)^{*}=\left(A^{\mathrm{T}}\right)^{\hat{\mathrm{T}}}=\left(A^{\hat{\mathrm{T}}}\right)^{\mathrm{T}}=\hat{I}_{n} A \hat{I}_{m} \tag{2.2.52}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(A^{\hat{*}}\right)^{\hat{x}}=\left(A^{\hat{\mathrm{T}}}\right)^{\hat{\mathrm{T}}}=A \tag{2.2.53}
\end{equation*}
$$

Note that, if $B \in \mathbb{F}^{m \times l}$, then

$$
\begin{equation*}
(A B)^{\hat{x}}=B^{\hat{*}} A^{\hat{*}} \tag{2.2.54}
\end{equation*}
$$

and

$$
\begin{equation*}
(A B)^{\hat{\mathrm{T}}}=B^{\hat{\mathrm{T}}} A^{\hat{\mathrm{T}}} \tag{2.2.55}
\end{equation*}
$$

For $x \in \mathbb{F}^{m}$ and $A \in \mathbb{F}^{n \times m}$, every component of x and every entry of A can be replaced by its absolute value to obtain $|x| \in \mathbb{R}^{m}$ and $|A| \in \mathbb{R}^{n \times m}$ defined by

$$
\begin{equation*}
|x|_{(i)} \triangleq\left|x_{(i)}\right| \tag{2.2.56}
\end{equation*}
$$

for all $i=1, \ldots, n$ and

$$
\begin{equation*}
|A|_{(i, j)} \triangleq\left|A_{(i, j)}\right| \tag{2.2.57}
\end{equation*}
$$

for all $i=1, \ldots, n$ and $j=1, \ldots, m$. Note that

$$
\begin{equation*}
|A x| \leq \leq|A||x| \tag{2.2.58}
\end{equation*}
$$

Furthermore, if $B \in \mathbb{F}^{m \times l}$, then

$$
\begin{equation*}
|A B| \leq \leq|A||B| \tag{2.2.59}
\end{equation*}
$$

For $x \in \mathbb{R}^{n}$ and $A \in \mathbb{R}^{n \times m}$, every component of x and every entry of A can be replaced by its sign to obtain $\operatorname{sign} x \in \mathbb{R}^{n}$ and $\operatorname{sign} A \in \mathbb{R}^{n \times m}$ defined by

$$
\begin{equation*}
(\operatorname{sign} x)_{(i)} \triangleq \operatorname{sign} x_{(i)} \tag{2.2.60}
\end{equation*}
$$

for all $i=1, \ldots, n$, and

$$
\begin{equation*}
(\operatorname{sign} A)_{(i, j)} \triangleq \operatorname{sign} A_{(i, j)} \tag{2.2.61}
\end{equation*}
$$

for all $i=1, \ldots, n$ and $j=1, \ldots, m$.

2.3 Convex Sets, Cones, and Subspaces

The definitions in this section are stated for subsets of \mathbb{F}^{n}. All of these definitions apply to subsets of $\mathbb{F}^{n \times m}$.

Let $\mathcal{S} \subseteq \mathbb{F}^{n}$. If $\alpha \in \mathbb{F}$, then $\alpha \mathcal{S} \triangleq\{\alpha x: x \in \mathcal{S}\}$ and, if $y \in \mathbb{F}^{n}$, then $y+\mathcal{S}=$ $\mathcal{S}+y \triangleq\{y+x: x \in \mathcal{S}\}$. We write $-\mathcal{S}$ for $(-1) \mathcal{S}$. The set \mathcal{S} is symmetric if $\mathcal{S}=-\mathcal{S}$, that is, $x \in \mathcal{S}$ if and only if $-x \in \mathcal{S}$. For $\mathcal{S}_{1}, \mathcal{S}_{2} \subseteq \mathbb{F}^{n}$ define $\mathcal{S}_{1}+\mathcal{S}_{2} \triangleq\{x+y: x \in$ \mathcal{S}_{1} and $\left.y \in \mathcal{S}_{2}\right\}$. Note that, for all $\alpha_{1}, \alpha_{2} \in \mathbb{F},(\alpha+\beta) \mathcal{S} \subseteq \alpha \mathcal{S}+\beta \mathcal{S}$. Trivially, $S+\varnothing=\varnothing$.

If $x, y \in \mathbb{F}^{n}$ and $\alpha \in[0,1]$, then $\alpha x+(1-\alpha) y$ is a convex combination of x and y with barycentric coordinates α and $1-\alpha$. The set $\mathcal{S} \subseteq \mathbb{F}^{n}$ is convex if, for all $x, y \in \mathcal{S}$, every convex combination of x and y is an element of \mathcal{S}. Trivially, the empty set is convex.

Let $\mathcal{S} \subseteq \mathbb{F}^{n}$. Then, \mathcal{S} is a cone if, for all $x \in \mathcal{S}$ and all $\alpha>0$, the vector αx is an element of \mathcal{S}. Now, assume that \mathcal{S} is a cone. Then, \mathcal{S} is pointed if $0 \in \mathcal{S}$, while \mathcal{S} is blunt if $0 \notin \mathcal{S}$. Furthermore, \mathcal{S} is one-sided if $x,-x \in \mathcal{S}$ implies that $x=0$. Hence, \mathcal{S} is one-sided if and only if $\mathcal{S} \cap-\mathcal{S} \subseteq\{0\}$. Furthermore, \mathcal{S} is a convex cone if it is convex. Trivially, the empty set is a convex cone.

Let $\mathcal{S} \subseteq \mathbb{F}^{n}$. Then, \mathcal{S} is a subspace if, for all $x, y \in \mathcal{S}$ and $\alpha, \beta \in \mathbb{F}$, the vector $\alpha x+\beta y$ is an element of \mathcal{S}. Note that, if $\left\{x_{1}, \ldots, x_{r}\right\} \subset \mathbb{F}^{n}$, then the set $\left\{\sum_{i=1}^{r} \alpha_{i} x_{i}: \quad \alpha_{1}, \ldots, \alpha_{r} \in \mathbb{F}\right\}$ is a subspace. In addition, \mathcal{S} is an affine subspace if there exists a vector $z \in \mathbb{F}^{n}$ such that $\mathcal{S}+z$ is a subspace. Affine subspaces $\mathcal{S}_{1}, \mathcal{S}_{2} \subseteq \mathbb{F}^{n}$ are parallel if there exists a vector $z \in \mathbb{F}^{n}$ such that $\mathcal{S}_{1}+z=\mathcal{S}_{2}$. If \mathcal{S} is an affine subspace, then there exists a unique subspace parallel to \mathcal{S}. Trivially, the empty set is a subspace and an affine subspace.

Let $\mathcal{S} \subseteq \mathbb{F}^{n}$. The convex hull of \mathcal{S}, denoted by co \mathcal{S}, is the smallest convex set containing \mathcal{S}. Hence, co \mathcal{S} is the intersection of all convex subsets of \mathbb{F}^{n} that contain \mathcal{S}. The conical hull of \mathcal{S}, denoted by cone \mathcal{S}, is the smallest cone in \mathbb{F}^{n} containing \mathcal{S}, while the convex conical hull of \mathcal{S}, denoted by coco \mathcal{S}, is the smallest convex cone in \mathbb{F}^{n} containing \mathcal{S}. If \mathcal{S} has a finite number of elements, then $\operatorname{co} \mathcal{S}$ is a polytope
and coco \mathcal{S} is a polyhedral convex cone. The span of \mathcal{S}, denoted by span \mathcal{S}, is the smallest subspace in \mathbb{F}^{n} containing \mathcal{S}, while, if \mathcal{S} is nonempty, then the affine hull of \mathcal{S}, denoted by aff \mathcal{S}, is the smallest affine subspace in \mathbb{F}^{n} containing \mathcal{S}. Note that \mathcal{S} is convex if and only if $\mathcal{S}=\operatorname{co} \mathcal{S}$, while similar statements hold for cone \mathcal{S}, coco \mathcal{S}, $\operatorname{span} \mathcal{S}$, and aff \mathcal{S}. Trivially, $\operatorname{co} \varnothing=\operatorname{cone} \varnothing=\operatorname{coco} \varnothing=\operatorname{span} \varnothing=\operatorname{aff} \varnothing=\varnothing$.

Let $x_{1}, \ldots, x_{r} \in \mathbb{F}^{n}$. Then, x_{1}, \ldots, x_{r} are linearly independent if $\alpha_{1}, \ldots, \alpha_{r} \in \mathbb{F}$ and

$$
\begin{equation*}
\sum_{i=1}^{r} \alpha_{i} x_{i}=0 \tag{2.3.1}
\end{equation*}
$$

imply that $\alpha_{1}=\alpha_{2}=\cdots=\alpha_{r}=0$. Clearly, x_{1}, \ldots, x_{r} is linearly independent if and only if $\overline{x_{1}}, \ldots, \overline{x_{r}}$ are linearly independent. If x_{1}, \ldots, x_{r} are not linearly independent, then x_{1}, \ldots, x_{r} are linearly dependent. Note that $0_{n \times 1}$ is linearly dependent.

Let $\mathcal{S} \subseteq \mathbb{F}^{n}$, and assume that \mathcal{S} is not empty. If \mathcal{S} is not equal to $\left\{0_{n \times 1}\right\}$, then there exist $r \geq 1$ vectors $x_{1}, \ldots, x_{r} \in \mathbb{F}^{n}$ such that x_{1}, \ldots, x_{r} are linearly independent over \mathbb{F} and such that $\operatorname{span}\left\{x_{1}, \ldots, x_{r}\right\}=\mathcal{S}$. The set of vectors $\left\{x_{1}, \ldots, x_{r}\right\}$ is a basis for \mathcal{S}. The positive integer r, which is the dimension $\operatorname{dim} \mathcal{S}$ of \mathcal{S}, is uniquely defined. We define $\operatorname{dim}\left\{0_{n \times 1}\right\}=0$. If \mathcal{S} is an affine subspace, then the dimension $\operatorname{dim} \mathcal{S}$ of \mathcal{S} is the dimension of the subspace parallel to \mathcal{S}. If \mathcal{S} is not an affine subspace, then the dimension $\operatorname{dim} \mathcal{S}$ of \mathcal{S} is the dimension of aff \mathcal{S}. We define $\operatorname{dim} \varnothing \triangleq-\infty$.

Let $x_{1}, \ldots, x_{n+1} \in \mathbb{R}^{n}$, and define $\mathcal{S} \triangleq \operatorname{co}\left\{x_{1}, \ldots, x_{n+1}\right\}$. The set \mathcal{S} is a simplex if $\operatorname{dim} \mathcal{S}=n$.

The following result is the subspace dimension theorem.
Theorem 2.3.1. Let $\mathcal{S}_{1}, \mathcal{S}_{2} \subseteq \mathbb{F}^{n}$ be subspaces. Then,

$$
\begin{equation*}
\operatorname{dim}\left(\mathcal{S}_{1}+\mathcal{S}_{2}\right)+\operatorname{dim}\left(\mathcal{S}_{1} \cap \mathcal{S}_{2}\right)=\operatorname{dim} \mathcal{S}_{1}+\operatorname{dim} \mathcal{S}_{2} \tag{2.3.2}
\end{equation*}
$$

Proof. See [630, p. 227].
Let $\mathcal{S}_{1}, \mathcal{S}_{2} \subseteq \mathbb{F}^{n}$ be subspaces. Then, \mathcal{S}_{1} and \mathcal{S}_{2} are complementary if $\mathcal{S}_{1}+\mathcal{S}_{2}=$ \mathbb{F}^{n} and $\mathcal{S}_{1} \cap \mathcal{S}_{2}=\{0\}$. In this case, we say that \mathcal{S}_{1} is complementary to \mathcal{S}_{2}, or vice versa.

Corollary 2.3.2. Let $\mathcal{S}_{1}, \mathcal{S}_{2} \subseteq \mathbb{F}^{n}$ be subspaces, and consider the following conditions:
i) $\operatorname{dim}\left(\mathcal{S}_{1}+\mathcal{S}_{2}\right)=n$.
ii) $\mathcal{S}_{1} \cap \mathcal{S}_{2}=\{0\}$.
iii) $\operatorname{dim} \mathcal{S}_{1}+\operatorname{dim} \mathcal{S}_{2}=n$.
iv) \mathcal{S}_{1} and \mathcal{S}_{2} are complementary subspaces.

Then,

$$
[i), i i)] \Longleftrightarrow[i), i i i)] \Longleftrightarrow[i i), i i i)] \Longleftrightarrow[i), i i), i i i)] \Longleftrightarrow[i v)]
$$

Let $\mathcal{S} \subseteq \mathbb{F}^{n}$ be nonempty. Then, the orthogonal complement \mathcal{S}^{\perp} of \mathcal{S} is defined by

$$
\begin{equation*}
\mathcal{S}^{\perp} \triangleq\left\{x \in \mathbb{F}^{n}: x^{*} y=0 \text { for all } y \in \mathcal{S}\right\} \tag{2.3.3}
\end{equation*}
$$

The orthogonal complement \mathcal{S}^{\perp} of \mathcal{S} is a subspace even if \mathcal{S} is not.
Let $y \in \mathbb{F}^{n}$ be nonzero. Then, the subspace $\{y\}^{\perp}$, whose dimension is $n-1$, is a hyperplane. Furthermore, \mathcal{S} is an affine hyperplane if there exists a vector $z \in \mathbb{F}^{n}$ such that $\mathcal{S}+z$ is a hyperplane. The set $\left\{x \in \mathbb{F}^{n}: \operatorname{Re} x^{*} y \leq 0\right\}$ is a closed half space, while the set $\left\{x \in \mathbb{F}^{n}: \operatorname{Re} x^{*} y<0\right\}$ is an open half space. Finally, \mathcal{S} is an affine (closed, open) half space if there exists a vector $z \in \mathbb{F}^{n}$ such that $\mathcal{S}+z$ is a (closed, open) half space.

Let $\mathcal{S} \subseteq \mathbb{F}^{n}$. Then,

$$
\begin{equation*}
\text { polar } \mathcal{S} \triangleq\left\{x \in \mathbb{F}^{n}: \quad \operatorname{Re} x^{*} y \leq 1 \text { for all } y \in \mathcal{S}\right\} \tag{2.3.4}
\end{equation*}
$$

is the polar of \mathcal{S}. Note that polar \mathcal{S} is a convex set. Furthermore,

$$
\begin{equation*}
\text { polar } \mathcal{S}=\text { polar co } \mathcal{S} . \tag{2.3.5}
\end{equation*}
$$

Let $\mathcal{S} \subseteq \mathbb{F}^{n}$. Then,

$$
\begin{equation*}
\text { dcone } \mathcal{S} \triangleq\left\{x \in \mathbb{F}^{n}: \quad \operatorname{Re} x^{*} y \leq 0 \text { for all } y \in \mathcal{S}\right\} \tag{2.3.6}
\end{equation*}
$$

is the dual cone of \mathcal{S}. Note that dcone \mathcal{S} is a pointed convex cone. Furthermore,

$$
\begin{equation*}
\text { dcone } \mathcal{S}=\text { dcone cone } \mathcal{S}=\text { dcone coco } \mathcal{S} \tag{2.3.7}
\end{equation*}
$$

Let $\mathcal{S}_{1}, \mathcal{S}_{2} \subseteq \mathbb{F}^{n}$ be subspaces. Then, \mathcal{S}_{1} and \mathcal{S}_{2} are orthogonally complementary if \mathcal{S}_{1} and \mathcal{S}_{2} are complementary and $x^{*} y=0$ for all $x \in \mathcal{S}_{1}$ and $y \in \mathcal{S}_{2}$.

Proposition 2.3.3. Let $\mathcal{S}_{1}, \mathcal{S}_{2} \subseteq \mathbb{F}^{n}$ be subspaces. Then, \mathcal{S}_{1} and \mathcal{S}_{2} are orthogonally complementary if and only if $\mathcal{S}_{1}=\mathcal{S}_{2}^{\perp}$.

For the next result, note that " \subset " indicates proper inclusion.
Lemma 2.3.4. Let $\mathcal{S}_{1}, \mathcal{S}_{2} \subseteq \mathbb{F}^{n}$ be subspaces such that $\mathcal{S}_{1} \subseteq \mathcal{S}_{2}$. Then, $\mathcal{S}_{1} \subset \mathcal{S}_{2}$ if and only if $\operatorname{dim} \mathcal{S}_{1}<\operatorname{dim} \mathcal{S}_{2}$. Equivalently, $\mathcal{S}_{1}=\mathcal{S}_{2}$ if and only if $\operatorname{dim} \mathcal{S}_{1}=\operatorname{dim} \mathcal{S}_{2}$.

The following result provides constructive characterizations of co \mathcal{S}, cone \mathcal{S}, $\operatorname{coco} \mathcal{S}, \operatorname{span} \mathcal{S}$, and aff \mathcal{S}.

Theorem 2.3.5. Let $\mathcal{S} \subseteq \mathbb{R}^{n}$ be nonempty. Then,

$$
\begin{align*}
\operatorname{coS} & =\bigcup_{k \in \mathbb{P}}\left\{\sum_{i=1}^{k} \alpha_{i} x_{i}: \alpha_{i} \geq 0, x_{i} \in \mathcal{S}, \text { and } \sum_{i=1}^{k} \alpha_{i}=1\right\} \tag{2.3.8}\\
& =\left\{\sum_{i=1}^{n+1} \alpha_{i} x_{i}: \alpha_{i} \geq 0, x_{i} \in \mathcal{S}, \text { and } \sum_{i=1}^{n+1} \alpha_{i}=1\right\}, \tag{2.3.9}
\end{align*}
$$

$$
\begin{gather*}
\text { cone } \mathcal{S}=\{\alpha x: x \in \mathcal{S} \text { and } \alpha>0\}, \tag{2.3.10}\\
\operatorname{coco} \mathcal{S}=\bigcup_{k \in \mathbb{P}}\left\{\sum_{i=1}^{k} \alpha_{i} x_{i}: \alpha_{i} \geq 0, x_{i} \in \mathcal{S}, \text { and } \sum_{i=1}^{k} \alpha_{i}>0\right\} \tag{2.3.11}\\
=\left\{\sum_{i=1}^{n+1} \alpha_{i} x_{i}: \alpha_{i} \geq 0, x_{i} \in \mathcal{S}, \text { and } \sum_{i=1}^{n} \alpha_{i}>0\right\} \tag{2.3.12}\\
\operatorname{span} \mathcal{S}=\bigcup_{k \in \mathbb{P}}\left\{\sum_{i=1}^{k} \alpha_{i} x_{i}: \alpha_{i} \in \mathbb{R} \text { and } x_{i} \in \mathcal{S}\right\} \tag{2.3.13}\\
=\left\{\sum_{i=1}^{n} \alpha_{i} x_{i}: \alpha_{i} \in \mathbb{R} \text { and } x_{i} \in \mathcal{S}\right\} \tag{2.3.14}\\
\text { aff } \mathcal{S}=\bigcup_{k \in \mathbb{P}}\left\{\sum_{i=1}^{k} \alpha_{i} x_{i}: \alpha_{i} \in \mathbb{R}, x_{i} \in \mathcal{S}, \text { and } \sum_{i=1}^{k} \alpha_{i}=1\right\} \tag{2.3.15}\\
=\left\{\sum_{i=1}^{n+1} \alpha_{i} x_{i}: \alpha_{i} \in \mathbb{R}, x_{i} \in \mathcal{S}, \text { and } \sum_{i=1}^{n+1} \alpha_{i}=1\right\} \tag{2.3.16}
\end{gather*}
$$

Now, let $\mathcal{S} \subseteq \mathbb{C}^{n}$. Then,

$$
\begin{gather*}
\cos =\bigcup_{k \in \mathbb{P}}\left\{\sum_{i=1}^{k} \alpha_{i} x_{i}: \alpha_{i} \geq 0, x_{i} \in \mathcal{S}, \text { and } \sum_{i=1}^{k} \alpha_{i}=1\right\} \tag{2.3.17}\\
=\left\{\sum_{i=1}^{2 n+1} \alpha_{i} x_{i}: \alpha_{i} \geq 0, x_{i} \in \mathcal{S}, \text { and } \sum_{i=1}^{2 n+1} \alpha_{i}=1\right\} \tag{2.3.18}\\
\operatorname{cone} \mathcal{S}=\{\alpha x: x \in \mathcal{S} \text { and } \alpha>0\}, \tag{2.3.19}\\
\operatorname{coco} \mathcal{S}=\bigcup_{k \in \mathbb{P}}\left\{\sum_{i=1}^{k} \alpha_{i} x_{i}: \alpha_{i} \geq 0, x_{i} \in \mathcal{S}, \text { and } \sum_{i=1}^{k} \alpha_{i}>0\right\} \tag{2.3.20}\\
=\left\{\sum_{i=1}^{2 n+1} \alpha_{i} x_{i}: \alpha_{i} \geq 0, x_{i} \in \mathcal{S}, \text { and } \sum_{i=1}^{2 n} \alpha_{i}>0\right\} \tag{2.3.21}\\
\operatorname{span} \mathcal{S}=\bigcup_{k \in \mathbb{P}}\left\{\sum_{i=1}^{k} \alpha_{i} x_{i}: \alpha_{i} \in \mathbb{C} \text { and } x_{i} \in \mathcal{S}\right\} \tag{2.3.22}\\
=\left\{\sum_{i=1}^{n} \alpha_{i} x_{i}: \alpha_{i} \in \mathbb{C} \text { and } x_{i} \in \mathcal{S}\right\} \tag{2.3.23}
\end{gather*}
$$

$$
\begin{align*}
\operatorname{aff} \mathcal{S} & =\bigcup_{k \in \mathbb{P}}\left\{\sum_{i=1}^{k} \alpha_{i} x_{i}: \quad \alpha_{i} \in \mathbb{C}, x_{i} \in \mathcal{S}, \text { and } \sum_{i=1}^{k} \alpha_{i}=1\right\} \tag{2.3.24}\\
& =\left\{\sum_{i=1}^{n+1} \alpha_{i} x_{i}: \alpha_{i} \in \mathbb{C}, x_{i} \in \mathcal{S}, \text { and } \sum_{i=1}^{n+1} \alpha_{i}=1\right\} \tag{2.3.25}
\end{align*}
$$

Proof. Result (2.3.8) is immediate, while (2.3.9) is proved in [879, p. 17]. Furthermore, (2.3.10) is immediate. Next, note that, since coco $\mathcal{S}=$ co cone \mathcal{S}, it follows that (2.3.8) and (2.3.10) imply (2.3.12) with n replaced by $n+1$. However, every element of coco \mathcal{S} lies in the convex hull of $n+1$ points one of which is the origin. It thus follows that we can set $x_{n+1}=0$, which yields (2.3.12). Similar arguments yield (2.3.14). Finally, note that all vectors of the form $x_{1}+\beta\left(x_{2}-x_{1}\right)$, where $x_{1}, x_{2} \in \mathcal{S}$ and $\beta \in \mathbb{R}$, are elements of aff \mathcal{S}. Forming the convex hull of these vectors yields (2.3.16).

The following result shows that cones can be used to induce relations on \mathbb{F}^{n}.
Proposition 2.3.6. Let $\mathcal{S} \subseteq \mathbb{F}^{n}$ be a cone and, for $x, y \in \mathbb{F}^{n}$, let $x \leq y$ denote the relation $y-x \in \mathcal{S}$. Then, the following statements hold:
${ }^{i}$ " \leq " is reflexive if and only if \mathcal{S} is a pointed cone.
ii) " \leq " is antisymmetric if and only if \mathcal{S} is a one-sided cone.
iii) " \leq " is symmetric if and only if \mathcal{S} is a symmetric cone.
$i v)$ " \leq " is transitive if and only if \mathcal{S} is a convex cone.
Proof. The proofs of i), $i i$, and $i i i$) are immediate. To prove $i v$), suppose that " \leq " is transitive, and let $x, y \in \mathcal{S}$ so that $0 \leq \alpha x \leq \alpha x+(1-\alpha) y$ for all $\alpha \in(0,1]$. Hence, $\alpha x+(1-\alpha) y \in \mathcal{S}$ for all $\alpha \in(0,1]$, and thus \mathcal{S} is convex. Conversely, suppose that \mathcal{S} is a convex cone, and assume that $x \leq y$ and $y \leq z$. Then, $y-x \in \mathcal{S}$ and $z-y \in \mathcal{S}$ imply that $z-x=2\left[\frac{1}{2}(y-x)+\frac{1}{2}(z-y)\right] \in S$. Hence, $x \leq z$, and thus " \leq " is transitive.

2.4 Range and Null Space

Two key features of a matrix $A \in \mathbb{F}^{n \times m}$ are its range and null space, denoted by $\mathcal{R}(A)$ and $\mathcal{N}(A)$, respectively. The range of A is defined by

$$
\begin{equation*}
\mathcal{R}(A) \triangleq\left\{A x: x \in \mathbb{F}^{m}\right\} . \tag{2.4.1}
\end{equation*}
$$

Note that $\mathcal{R}\left(0_{n \times 0}\right)=\left\{0_{n \times 1}\right\}$ and $\mathcal{R}\left(0_{0 \times m}\right)=\left\{0_{0 \times 1}\right\}$. Letting α_{i} denote $x_{(i)}$, it can be seen that

$$
\begin{equation*}
\mathcal{R}(A)=\left\{\sum_{i=1}^{m} \alpha_{i} \operatorname{col}_{i}(A): \alpha_{1}, \ldots, \alpha_{m} \in \mathbb{F}\right\}, \tag{2.4.2}
\end{equation*}
$$

which shows that $\mathcal{R}(A)$ is a subspace of \mathbb{F}^{n}. It thus follows from Theorem 2.3.5 that

$$
\begin{equation*}
\mathcal{R}(A)=\operatorname{span}\left\{\operatorname{col}_{1}(A), \ldots, \operatorname{col}_{m}(A)\right\} . \tag{2.4.3}
\end{equation*}
$$

By viewing A as a function from \mathbb{F}^{m} into \mathbb{F}^{n}, we can write $\mathcal{R}(A)=A \mathbb{F}^{m}$.

The null space of $A \in \mathbb{F}^{n \times m}$ is defined by

$$
\begin{equation*}
\mathcal{N}(A) \triangleq\left\{x \in \mathbb{F}^{m}: \quad A x=0\right\} \tag{2.4.4}
\end{equation*}
$$

Note that $\mathcal{N}\left(0_{n \times 0}\right)=\mathbb{F}^{0}=\left\{0_{0 \times 1}\right\}$ and $\mathcal{N}\left(0_{0 \times m}\right)=\mathbb{F}^{m}$. Equivalently,

$$
\begin{align*}
\mathcal{N}(A) & =\left\{x \in \mathbb{F}^{m}: x^{\mathrm{T}}\left[\operatorname{row}_{i}(A)\right]^{\mathrm{T}}=0 \text { for all } i=1, \ldots, n\right\} \tag{2.4.5}\\
& =\left\{\left[\operatorname{row}_{1}(A)\right]^{\mathrm{T}}, \ldots,\left[\operatorname{row}_{n}(A)\right]^{\mathrm{T}}\right\}^{\perp} \tag{2.4.6}
\end{align*}
$$

which shows that $\mathcal{N}(A)$ is a subspace of \mathbb{F}^{m}. Note that, if $\alpha \in \mathbb{F}$ is nonzero, then $\mathcal{R}(\alpha A)=\mathcal{R}(A)$ and $\mathcal{N}(\alpha A)=\mathcal{N}(A)$. Finally, if $\mathbb{F}=\mathbb{C}$, then $\mathcal{R}(A)$ and $\mathcal{R}(\bar{A})$ are not necessarily identical. For example, let $A \triangleq\left[\begin{array}{l}\jmath \\ 1\end{array}\right]$.

Let $A \in \mathbb{F}^{n \times n}$, and let $\mathcal{S} \subseteq \mathbb{F}^{n}$ be a subspace. Then, \mathcal{S} is an invariant subspace of A if $A \mathcal{S} \subseteq \mathcal{S}$. Note that $A \mathcal{R}(A) \subseteq A \mathbb{F}^{n}=\mathcal{R}(A)$ and $A \mathcal{N}(A)=\left\{0_{n}\right\} \subseteq \mathcal{N}(A)$. Hence, $\mathcal{R}(A)$ and $\mathcal{N}(A)$ are invariant subspaces of A.

If $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times l}$, then it is easy to see that

$$
\begin{equation*}
\mathcal{R}(A B)=A \mathcal{R}(B) \tag{2.4.7}
\end{equation*}
$$

Hence, the following result is not surprising.
Lemma 2.4.1. Let $A \in \mathbb{F}^{n \times m}, B \in \mathbb{F}^{m \times l}$, and $C \in \mathbb{F}^{k \times n}$. Then,

$$
\begin{equation*}
\mathcal{R}(A B) \subseteq \mathcal{R}(A) \tag{2.4.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{N}(A) \subseteq \mathcal{N}(C A) \tag{2.4.9}
\end{equation*}
$$

Proof. Since $\mathcal{R}(B) \subseteq \mathbb{F}^{m}$, it follows that $\mathcal{R}(A B)=A \mathcal{R}(B) \subseteq A \mathbb{F}^{m}=\mathcal{R}(A)$. Furthermore, $y \in \mathcal{N}(A)$ implies that $A y=0$, and thus $C A y=0$.

Corollary 2.4.2. Let $A \in \mathbb{F}^{n \times n}$, and let $k \geq 1$. Then,

$$
\begin{equation*}
\mathcal{R}\left(A^{k}\right) \subseteq \mathcal{R}(A) \tag{2.4.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{N}(A) \subseteq \mathcal{N}\left(A^{k}\right) \tag{2.4.11}
\end{equation*}
$$

Although $\mathcal{R}(A B) \subseteq \mathcal{R}(A)$ for arbitrary conformable matrices A, B, we now show that equality holds in the special case $B=A^{*}$. This result, along with others, is the subject of the following basic theorem.

Theorem 2.4.3. Let $A \in \mathbb{F}^{n \times m}$. Then, the following identities hold:
i) $\mathcal{R}(A)^{\perp}=\mathcal{N}\left(A^{*}\right)$.
ii) $\mathcal{R}(A)=\mathcal{R}\left(A A^{*}\right)$.
iii) $\mathcal{N}(A)=\mathcal{N}\left(A^{*} A\right)$.

Proof. To prove i, we first show that $\mathcal{R}(A)^{\perp} \subseteq \mathcal{N}\left(A^{*}\right)$. Let $x \in \mathcal{R}(A)^{\perp}$. Then, $x^{*} z=0$ for all $z \in \mathcal{R}(A)$. Hence, $x^{*} A y=0$ for all $y \in \mathbb{R}^{m}$. Equivalently,
$y^{*} A^{*} x=0$ for all $y \in \mathbb{R}^{m}$. Letting $y=A^{*} x$, it follows that $x^{*} A A^{*} x=0$. Now, Lemma 2.2.2 implies that $A^{*} x=0$. Thus, $x \in \mathcal{N}\left(A^{*}\right)$. Conversely, let us show that $\mathcal{N}\left(A^{*}\right) \subseteq \mathcal{R}(A)^{\perp}$. Letting $x \in \mathcal{N}\left(A^{*}\right)$, it follows that $A^{*} x=0$, and, hence, $y^{*} A^{*} x=0$ for all $y \in \mathbb{R}^{m}$. Equivalently, $x^{*} A y=0$ for all $y \in \mathbb{R}^{m}$. Hence, $x^{*} z=0$ for all $z \in \mathcal{R}(A)$. Thus, $x \in \mathcal{R}(A)^{\perp}$, which proves i.

To prove i i), note that Lemma 2.4.1 with $B=A^{*}$ implies that $\mathcal{R}\left(A A^{*}\right) \subseteq$ $\mathcal{R}(A)$. To show that $\mathcal{R}(A) \subseteq \mathcal{R}\left(A A^{*}\right)$, let $x \in \mathcal{R}(A)$, and suppose that $x \notin \mathcal{R}\left(A A^{*}\right)$. Then, it follows from Proposition 2.3.3 that $x=x_{1}+x_{2}$, where $x_{1} \in \mathcal{R}\left(A A^{*}\right)$ and $x_{2} \in \mathcal{R}\left(A A^{*}\right)^{\perp}$ with $x_{2} \neq 0$. Thus, $x_{2}^{*} A A^{*} y=0$ for all $y \in \mathbb{R}^{n}$, and setting $y=x_{2}$ yields $x_{2}^{*} A A^{*} x_{2}=0$. Hence, Lemma 2.2.2 implies that $A^{*} x_{2}=0$, so that, by i, $x_{2} \in \mathcal{N}\left(A^{*}\right)=\mathcal{R}(A)^{\perp}$. Since $x \in \mathcal{R}(A)$, it follows that $0=x_{2}^{*} x=x_{2}^{*} x_{1}+x_{2}^{*} x_{2}$. However, $x_{2}^{*} x_{1}=0$ so that $x_{2}^{*} x_{2}=0$ and $x_{2}=0$, which is a contradiction. This proves $i i$).

To prove $i i i$, note that $i i$) with A replaced by A^{*} implies that $\mathcal{R}\left(A^{*} A\right)^{\perp}=$ $\mathcal{R}\left(A^{*}\right)^{\perp}$. Furthermore, replacing A by A^{*} in i) yields $\mathcal{R}\left(A^{*}\right)^{\perp}=\mathcal{N}(A)$. Hence, $\mathcal{N}(A)=\mathcal{R}\left(A^{*} A\right)^{\perp}$. Now, i) with A replaced by $A^{*} A$ implies that $\mathcal{R}\left(A^{*} A\right)^{\perp}=\mathcal{N}\left(A^{*} A\right)$. Hence, $\mathcal{N}(A)=\mathcal{N}\left(A^{*} A\right)$, which proves $\left.i i i\right)$.

Result i) of Theorem 2.4.3 can be written equivalently as

$$
\begin{align*}
& \mathcal{N}(A)^{\perp}=\mathcal{R}\left(A^{*}\right) \tag{2.4.12}\\
& \mathcal{N}(A)=\mathcal{R}\left(A^{*}\right)^{\perp} \tag{2.4.13}\\
& \mathcal{N}\left(A^{*}\right)^{\perp}=\mathcal{R}(A) \tag{2.4.14}
\end{align*}
$$

while replacing A by A^{*} in $i i$) and $i i i$) of Theorem 2.4.3 yields

$$
\begin{gather*}
\mathcal{R}\left(A^{*}\right)=\mathcal{R}\left(A^{*} A\right) \tag{2.4.15}\\
\mathcal{N}\left(A^{*}\right)=\mathcal{N}\left(A A^{*}\right) \tag{2.4.16}
\end{gather*}
$$

Using $i i$) of Theorem 2.4.3 and (2.4.15), it follows that

$$
\begin{equation*}
\mathcal{R}\left(A A^{*} A\right)=A \mathcal{R}\left(A^{*} A\right)=A \mathcal{R}\left(A^{*}\right)=\mathcal{R}\left(A A^{*}\right)=\mathcal{R}(A) \tag{2.4.17}
\end{equation*}
$$

Letting $A \triangleq\left[\begin{array}{ll}1 & \jmath\end{array}\right]$ shows that $\mathcal{R}(A)$ and $\mathcal{R}\left(A A^{\mathrm{T}}\right)$ may be different.

2.5 Rank and Defect

The rank of $A \in \mathbb{F}^{n \times m}$ is defined by

$$
\begin{equation*}
\operatorname{rank} A \triangleq \operatorname{dim} \mathcal{R}(A) \tag{2.5.1}
\end{equation*}
$$

It can be seen that the rank of A is equal to the number of linearly independent columns of A over \mathbb{F}. For example, if $\mathbb{F}=\mathbb{C}$, then $\operatorname{rank}\left[\begin{array}{ll}1 & \jmath\end{array}\right]=1$, while, if either $\mathbb{F}=\mathbb{R}$ or $\mathbb{F}=\mathbb{C}$, then $\operatorname{rank}\left[\begin{array}{ll}1 & 1\end{array}\right]=1$. Furthermore, $\operatorname{rank} A=\operatorname{rank} \bar{A}$, $\operatorname{rank} A^{\mathrm{T}}=\operatorname{rank} A^{*}, \operatorname{rank} A \leq m$, and $\operatorname{rank} A^{\mathrm{T}} \leq n$. If $\operatorname{rank} A=m$, then A has full column rank, while, if rank $\bar{A}^{\mathrm{T}}=n$, then A has full row rank. If A has either full
column rank or full row rank, then A has full rank. Finally, the defect of A is

$$
\begin{equation*}
\operatorname{def} A \triangleq \operatorname{dim} \mathcal{N}(A) \tag{2.5.2}
\end{equation*}
$$

The following result follows from Theorem 2.4.3.
Corollary 2.5.1. Let $A \in \mathbb{F}^{n \times m}$. Then, the following identities hold:
i) $\operatorname{rank} A^{*}+\operatorname{def} A=m$.
ii) $\operatorname{rank} A=\operatorname{rank} A A^{*}$.
iii) $\operatorname{def} A=\operatorname{def} A^{*} A$.

Proof. It follows from (2.4.12) and Proposition 2.3.2 that rank $A^{*}=$ $\operatorname{dim} \mathcal{R}\left(A^{*}\right)=\operatorname{dim} \mathcal{N}(A)^{\perp}=m-\operatorname{dim} \mathcal{N}(A)=m-\operatorname{def} A$, which proves i). Results ii) and $i i i$) follow from i) and $i i i$) of Theorem 2.4.3.

Replacing A by A^{*} in Corollary 2.5.1 yields

$$
\begin{gather*}
\operatorname{rank} A+\operatorname{def} A^{*}=n, \tag{2.5.3}\\
\operatorname{rank} A^{*}=\operatorname{rank} A^{*} A, \tag{2.5.4}\\
\operatorname{def} A^{*}=\operatorname{def} A A^{*} \tag{2.5.5}
\end{gather*}
$$

Furthermore, note that

$$
\begin{equation*}
\operatorname{def} A=\operatorname{def} \bar{A} \tag{2.5.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{def} A^{\mathrm{T}}=\operatorname{def} A^{*} \tag{2.5.7}
\end{equation*}
$$

Lemma 2.5.2. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times l}$. Then,

$$
\begin{equation*}
\operatorname{rank} A B \leq \min \{\operatorname{rank} A, \operatorname{rank} B\} \tag{2.5.8}
\end{equation*}
$$

Proof. Since, by Lemma 2.4.1, $\mathcal{R}(A B) \subseteq \mathcal{R}(A)$, it follows that rank $A B \leq$ $\operatorname{rank} A$. Next, suppose that $\operatorname{rank} B<\operatorname{rank} A B$. Let $\left\{y_{1}, \ldots, y_{r}\right\} \subset \mathbb{F}^{n}$ be a basis for $\mathcal{R}(A B)$, where $r \triangleq \operatorname{rank} A B$, and, since $y_{i} \in A \mathcal{R}(B)$ for all $i=1, \ldots, r$, let $x_{i} \in \mathcal{R}(B)$ be such that $y_{i}=A x_{i}$ for all $i=1, \ldots, r$. Since $\operatorname{rank} B<r$, it follows that x_{1}, \ldots, x_{r} are linearly dependent. Hence, there exist $\alpha_{1}, \ldots, \alpha_{r} \in \mathbb{F}$, not all zero, such that $\sum_{i=1}^{r} \alpha_{i} x_{i}=0$, which implies that $\sum_{i=1}^{r} \alpha_{i} A x_{i}=\sum_{i=1}^{r} \alpha_{i} y_{i}=0$. Thus, y_{1}, \ldots, y_{r} are linearly dependent, which is a contradiction.

Corollary 2.5.3. Let $A \in \mathbb{F}^{n \times m}$. Then,

$$
\begin{equation*}
\operatorname{rank} A=\operatorname{rank} A^{*} \tag{2.5.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{def} A=\operatorname{def} A^{*}+m-n \tag{2.5.10}
\end{equation*}
$$

Therefore,

$$
\operatorname{rank} A=\operatorname{rank} A^{*} A
$$

If, in addition, $n=m$, then

$$
\begin{equation*}
\operatorname{def} A=\operatorname{def} A^{*} \tag{2.5.11}
\end{equation*}
$$

Proof. It follows from (2.5.8) with $B=A^{*}$ that rank $A A^{*} \leq \operatorname{rank} A^{*}$. Furthermore, i i of Corollary 2.5 .1 implies that $\operatorname{rank} A=\operatorname{rank} A A^{*}$. Hence, $\operatorname{rank} A \leq$ rank A^{*}. Interchanging A and A^{*} and repeating this argument yields rank $A^{*} \leq$ $\operatorname{rank} A$. Hence, $\operatorname{rank} A=\operatorname{rank} A^{*}$. Next, using $\left.i\right)$ of Corollary 2.5.1, (2.5.9), and (2.5.3) it follows that $\operatorname{def} A=m-\operatorname{rank} A^{*}=m-\operatorname{rank} A=m-\left(n-\operatorname{def} A^{*}\right)$, which proves (2.5.10).

Corollary 2.5.4. Let $A \in \mathbb{F}^{n \times m}$. Then,

$$
\begin{equation*}
\operatorname{rank} A \leq \min \{m, n\} \tag{2.5.12}
\end{equation*}
$$

Proof. By definition, rank $A \leq m$, while it follows from (2.5.9) that $\operatorname{rank} A=$ $\operatorname{rank} A^{*} \leq n$.

The dimension theorem is given by (2.5.13) in the following result.
Corollary 2.5.5. Let $A \in \mathbb{F}^{n \times m}$. Then,

$$
\begin{equation*}
\operatorname{rank} A+\operatorname{def} A=m \tag{2.5.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{rank} A=\operatorname{rank} A^{*} A \tag{2.5.14}
\end{equation*}
$$

Proof. The result (2.5.13) follows from i) of Corollary 2.5.1 and (2.5.9), while (2.5.14) follows from (2.5.4) and (2.5.9).

The following result follows from the subspace dimension theorem and the dimension theorem.

Corollary 2.5.6. Let $A \in \mathbb{F}^{n \times m}$. Then,

$$
\begin{equation*}
\operatorname{dim}[\mathcal{R}(A)+\mathcal{N}(A)]+\operatorname{dim}[\mathcal{R}(A) \cap \mathcal{N}(A)]=m \tag{2.5.15}
\end{equation*}
$$

Corollary 2.5.7. Let $A \in \mathbb{F}^{n \times n}$ and $k \geq 1$. Then,

$$
\begin{equation*}
\operatorname{rank} A^{k} \leq \operatorname{rank} A \tag{2.5.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{def} A \leq \operatorname{def} A^{k} \tag{2.5.17}
\end{equation*}
$$

Proposition 2.5.8. Let $A \in \mathbb{F}^{n \times n}$. If $\operatorname{rank} A^{2}=\operatorname{rank} A$, then $\operatorname{rank} A^{k}=$ $\operatorname{rank} A$ for all $k \geq 1$. Equivalently, if $\operatorname{def} A^{2}=\operatorname{def} A$, then $\operatorname{def} A^{k}=\operatorname{def} A$ for all $k \in \mathbb{P}$.

Proof. Since $\operatorname{rank} A^{2}=\operatorname{rank} A$ and $\mathcal{R}\left(A^{2}\right) \subseteq \mathcal{R}(A)$, it follows from Lemma 2.3 .4 that $\mathcal{R}\left(A^{2}\right)=\mathcal{R}(A)$. Hence, $\mathcal{R}\left(A^{3}\right)=A \mathcal{R}\left(A^{2}\right)=A \mathcal{R}(A)=\mathcal{R}\left(A^{2}\right)$. Thus, $\operatorname{rank} A^{3}=\operatorname{rank} A$. Similar $\operatorname{arguments}$ yield $\operatorname{rank} A^{k}=\operatorname{rank} A$ for all $k \geq 1$.

We now prove Sylvester's inequality, which provides a lower bound for the rank of the product of two matrices.

Proposition 2.5.9. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times l}$. Then,

$$
\begin{equation*}
\operatorname{rank} A+\operatorname{rank} B \leq m+\operatorname{rank} A B \tag{2.5.18}
\end{equation*}
$$

Proof. Using (2.5.8) to obtain the second inequality below, it follows that

$$
\begin{aligned}
\operatorname{rank} A+\operatorname{rank} B & =\operatorname{rank}\left[\begin{array}{cc}
0 & A \\
B & 0
\end{array}\right] \\
& \leq \operatorname{rank}\left[\begin{array}{cc}
0 & A \\
B & I
\end{array}\right] \\
& =\operatorname{rank}\left[\begin{array}{cc}
I & A \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
-A B & 0 \\
B & I
\end{array}\right] \\
& \leq \operatorname{rank}\left[\begin{array}{cc}
-A B & 0 \\
B & I
\end{array}\right] \\
& \leq \operatorname{rank}\left[\begin{array}{cc}
-A B & 0
\end{array}\right]+\operatorname{rank}\left[\begin{array}{ll}
B & I
\end{array}\right] \\
& =\operatorname{rank} A B+m
\end{aligned}
$$

Combining (2.5.8) with (2.5.18) yields the following result.
Corollary 2.5.10. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times l}$. Then, $\operatorname{rank} A+\operatorname{rank} B-m \leq \operatorname{rank} A B \leq \min \{\operatorname{rank} A, \operatorname{rank} B\}$.

2.6 Invertibility

Let $A \in \mathbb{F}^{n \times m}$. Then, A is left invertible if there exists a matrix $A^{\mathrm{L}} \in \mathbb{F}^{m \times n}$ such that $A^{\mathrm{L}} A=I_{m}$, while A is right invertible if there exists a matrix $A^{\mathrm{R}} \in \mathbb{F}^{m \times n}$ such that $A A^{\mathrm{R}}=I_{n}$. These definitions are consistent with the definitions of left and right invertibility given in Chapter 1 applied to the function $f: \mathbb{F}^{m} \mapsto \mathbb{F}^{n}$ given by $f(x)=A x$. Note that A^{L} (when it exists) and A^{*} are the same size, and likewise for A^{R}.

Theorem 2.6.1. Let $A \in \mathbb{F}^{n \times m}$. Then, the following statements are equivalent:
i) A is left invertible.
ii) A is one-to-one.
iii) $\operatorname{def} A=0$.
iv) $\operatorname{rank} A=m$.
$v) A$ has full column rank.
The following statements are also equivalent:
vi) A is right invertible.
vii) A is onto.
viii) $\operatorname{def} A=m-n$.
ix) $\operatorname{rank} A=n$.
x) A has full row rank.

Proposition 2.6.2. Let $A \in \mathbb{F}^{n \times m}$. Then, the following statements are equivalent:
i) A has a unique left inverse.
ii) A has a unique right inverse.
iii) $\operatorname{rank} A=n=m$.

Proof. To prove that i) implies $i i i$), suppose that rank $A=m<n$ so that A is left invertible but nonsquare. Then, it follows from the dimension theorem Corollary 2.5.5 that def $A^{\mathrm{T}}=n-m>0$. Hence, there exist infinitely many matrices $A^{\mathrm{L}} \in \mathbb{F}^{m \times n}$ such that $A^{\mathrm{L}} A=I_{m}$. Conversely, suppose that $B \in \mathbb{F}^{n \times n}$ and $C \in \mathbb{F}^{n \times n}$ are left inverses of A. Then, $(B-C) A=0$, and it follows from Sylvester's inequality Proposition 2.5.9 that $B=C$.

The following result shows that the rank and defect of a matrix are not affected by either left multiplication by a left invertible matrix or right multiplication by a right invertible matrix.

Proposition 2.6.3. Let $A \in \mathbb{F}^{n \times m}$, and let $C \in \mathbb{F}^{k \times n}$ be left invertible and $B \in \mathbb{F}^{m \times l}$ be right invertible. Then,

$$
\begin{equation*}
\mathcal{R}(A)=\mathcal{R}(A B) \tag{2.6.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{N}(A)=\mathcal{N}(C A) \tag{2.6.2}
\end{equation*}
$$

Furthermore,

$$
\begin{equation*}
\operatorname{rank} A=\operatorname{rank} C A=\operatorname{rank} A B \tag{2.6.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{def} A=\operatorname{def} C A=\operatorname{def} A B+m-l . \tag{2.6.4}
\end{equation*}
$$

Proof. Let C^{L} be a left inverse of C. Using both inequalities in (2.5.19) and the fact that $\operatorname{rank} A \leq n$, it follows that

$$
\operatorname{rank} A=\operatorname{rank} A+\operatorname{rank} C^{\mathrm{L}} C-n \leq \operatorname{rank} C^{\mathrm{L}} C A \leq \operatorname{rank} C A \leq \operatorname{rank} A,
$$

which implies that $\operatorname{rank} A=\operatorname{rank} C A$. Next, (2.5.13) and (2.6.3) imply that $m-$ def $A=m-\operatorname{def} C A=l-\operatorname{def} A B$, which yields (2.6.4).

As shown in Proposition [2.6.2 left and right inverses of nonsquare matrices are not unique. For example, the matrix $A=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ is left invertible and has left inverses $\left[\begin{array}{ll}0 & 1\end{array}\right]$ and $\left[\begin{array}{ll}1 & 1\end{array}\right]$. In spite of this nonuniqueness, however, left inverses are useful for solving equations of the form $A x=b$, where $A \in \mathbb{F}^{n \times m}, x \in \mathbb{F}^{m}$, and $b \in \mathbb{F}^{n}$. If A is left invertible, then one can formally (although not rigorously) solve $A x=b$ by noting that $x=A^{\mathrm{L}} A x=A^{\mathrm{L}} b$, where $A^{\mathrm{L}} \in \mathbb{R}^{m \times n}$ is a left inverse of A. However, it is necessary to determine beforehand whether or not there actually
exists a vector x satisfying $A x=b$. For example, if $A=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ and $b=\left[\begin{array}{l}1 \\ 0\end{array}\right]$, then A is left invertible although there does not exist a vector x satisfying $A x=b$. The following result addresses the various possibilities that can arise. One interesting feature of this result is that, if there exists a solution of $A x=b$ and A is left invertible, then the solution is unique even if A does not have a unique left inverse. For this result, $\left[\begin{array}{ll}A & b\end{array}\right]$ denotes the $n \times(m+1)$ partitioned matrix formed from A and b. Note that $\operatorname{rank} A \leq \operatorname{rank}\left[\begin{array}{ll}A & b\end{array}\right] \leq m+1$, while $\operatorname{rank} A=\operatorname{rank}\left[\begin{array}{ll}A & b\end{array}\right]$ is equivalent to $b \in \mathcal{R}(A)$.

Theorem 2.6.4. Let $A \in \mathbb{F}^{n \times m}$ and $b \in \mathbb{F}^{n}$. Then, the following statements hold:
i) There does not exist a vector $x \in \mathbb{F}^{m}$ satisfying $A x=b$ if and only if $\operatorname{rank} A<\operatorname{rank}\left[\begin{array}{cc}A & b\end{array}\right]$.
ii) There exists a unique vector $x \in \mathbb{F}^{m}$ satisfying $A x=b$ if and only if $\operatorname{rank} A=\operatorname{rank}\left[\begin{array}{cc}A & b\end{array}\right]=m$. In this case, if $A^{\mathrm{L}} \in \mathbb{F}^{m \times n}$ is a left inverse of A, then the solution is given by $x=A^{\mathrm{L}} b$.
iii) There exist infinitely many $x \in \mathbb{F}^{m}$ satisfying $A x=b$ if and only if $\operatorname{rank} A=$ $\operatorname{rank}\left[\begin{array}{ll}A & b\end{array}\right]<m$. In this case, let $\hat{x} \in \mathbb{F}^{m}$ satisfy $A \hat{x}=b$. Then, the set of solutions of $A x=b$ is given by $\hat{x}+\mathcal{N}(A)$.
$i v)$ Assume that $\operatorname{rank} A=n$. Then, there exists at least one vector $x \in \mathbb{F}^{m}$ satisfying $A x=b$. Furthermore, if $A^{\mathrm{R}} \in \mathbb{F}^{m \times n}$ is a right inverse of A, then $x=A^{\mathrm{R}} b$ satisfies $A x=b$. If $n=m$, then $x=A^{\mathrm{R}} b$ is the unique solution of $A x=b$. If $n<m$ and $\hat{x} \in \mathbb{F}^{n}$ satisfies $A \hat{x}=b$, then the set of solutions of $A x=b$ is given by $\hat{x}+\mathcal{N}(A)$.

Proof. To prove i, note that $\operatorname{rank} A<\operatorname{rank}\left[\begin{array}{ll}A & b\end{array}\right]$ is equivalent to the fact that b cannot be represented as a linear combination of columns of A, that is, $A x=b$ does not have a solution $x \in \mathbb{F}^{m}$. To prove $i i$), suppose that rank $A=$ $\operatorname{rank}\left[\begin{array}{cc}A & b\end{array}\right]=m$ so that, by i), $A x=b$ has a solution $x \in \mathbb{F}^{m}$. If $\hat{x} \in \mathbb{F}^{m}$ satisfies $A \hat{x}=b$, then $A(x-\hat{x})=0$. Since $\operatorname{rank} A=m$, it follows from Theorem 2.6.1 that A has a left inverse $A^{\mathrm{L}} \in \mathbb{F}^{m \times n}$. Hence, $x-\hat{x}=A^{\mathrm{L}} A(x-\hat{x})=0$, which proves that $A x=$ b has a unique solution. Conversely, suppose that $\operatorname{rank} A=\operatorname{rank}\left[\begin{array}{cc}A & b\end{array}\right]=m$ and there exist vectors $x, \hat{x} \in \mathbb{F}^{m}$, where $x \neq \hat{x}$, such that $A x=b$ and $A \hat{x}=b$. Then, $A(x-\hat{x})=0$, which implies that $\operatorname{def} A \geq 1$. Therefore, $\operatorname{rank} A=m-\operatorname{def} A \leq m-1$, which is a contradiction. This proves the first statement of $i i$). Assuming $A x=b$ has a unique solution $x \in \mathbb{F}^{m}$, multiplying by A^{L} yields $x=A^{\mathrm{L}} b$. To prove $i i i$), note that it follows from i) that $A x=b$ has at least one solution $\hat{x} \in \mathbb{F}^{m}$. Hence, $x \in \mathbb{F}^{m}$ is a solution of $A x=b$ if and only if $A(x-\hat{x})=0$, or, equivalently, $x \in \hat{x}+\mathcal{N}(A)$. To prove $i v$, note that, since $\operatorname{rank} A=n$, it follows that $\operatorname{rank} A=\operatorname{rank}\left[\begin{array}{cc}A & b\end{array}\right]$, and thus either $i i$) or $i i i$) applies.

The set of solutions $x \in \mathbb{F}^{m}$ to $A x=b$ is explicitly characterized by Proposition 6.1.7.

Let $A \in \mathbb{F}^{n \times m}$. Proposition 2.6 .2 considers the uniqueness of left and right inverses of A, but does not consider the case in which a matrix is both a left inverse and a right inverse of A. Consequently, we say that A is nonsingular if there exists
a matrix $B \in \mathbb{F}^{m \times n}$, the inverse of A, such that $B A=I_{m}$ and $A B=I_{n}$, that is, B is both a left and right inverse of A.

Proposition 2.6.5. Let $A \in \mathbb{F}^{n \times m}$. Then, the following statements are equivalent:
i) A is nonsingular
ii) $\operatorname{rank} A=n=m$.

In this case, A has a unique inverse.
Proof. If A is nonsingular, then, since B is both left and right invertible, it follows from Theorem 2.6.1 that $\operatorname{rank} A=m$ and $\operatorname{rank} A=n$. Hence, $i i$) holds. Conversely, it follows from Theorem 2.6.1 that A has both a left inverse B and a right inverse C. Then, $B=B I_{n}=B A C=I_{n} C=C$. Hence, B is also a right inverse of A. Thus, A is nonsingular. In fact, the same argument shows that A has a unique inverse.

The following result can be viewed as a specialization of Theorem 1.2.2 to the function $f: \mathbb{F}^{n} \mapsto \mathbb{F}^{n}$, where $f(x)=A x$.

Corollary 2.6.6. Let $A \in \mathbb{F}^{n \times n}$. Then, the following statements are equivalent:
i) A is nonsingular.
ii) A has a unique inverse.
iii) A is one-to-one.
iv) A is onto.
v) A is left invertible.
vi) A is right invertible.
vii) A has a unique left inverse.
viii) A has a unique right inverse.
ix) $\operatorname{rank} A=n$.
$x) \operatorname{def} A=0$.
Let $A \in \mathbb{F}^{n \times n}$ be nonsingular. Then, the inverse of A, denoted by A^{-1}, is a unique $n \times n$ matrix with entries in \mathbb{F}. If A is not nonsingular, then A is singular.

The following result is a specialization of Theorem 2.6.4 to the case $n=m$.
Corollary 2.6.7. Let $A \in \mathbb{F}^{n \times n}$ and $b \in \mathbb{F}^{n}$. Then, the following statements hold:
i) A is nonsingular if and only if there exists a unique vector $x \in \mathbb{F}^{n}$ satisfying $A x=b$. In this case, $x=A^{-1} b$.
ii) A is singular and $\operatorname{rank} A=\operatorname{rank}\left[\begin{array}{ll}A & b\end{array}\right]$ if and only if there exist infinitely
many $x \in \mathbb{R}^{n}$ satisfying $A x=b$. In this case, let $\hat{x} \in \mathbb{F}^{m}$ satisfy $A \hat{x}=b$.
Then, the set of solutions of $A x=b$ is given by $\hat{x}+\mathcal{N}(A)$.
Proposition 2.6.8. Let $A \in \mathbb{F}^{n \times n}$. Then, the following statements are equivalent:
i) A is nonsingular.
ii) \bar{A} is nonsingular.
iii) A^{T} is nonsingular.
iv) A^{*} is nonsingular.

In this case,

$$
\begin{gather*}
(\bar{A})^{-1}=\overline{A^{-1}} \tag{2.6.5}\\
\left(A^{\mathrm{T}}\right)^{-1}=\left(A^{-1}\right)^{\mathrm{T}}, \tag{2.6.6}\\
\left(A^{*}\right)^{-1}=\left(A^{-1}\right)^{*} \tag{2.6.7}
\end{gather*}
$$

Proof. Since $A A^{-1}=I$, it follows that $\left(A^{-1}\right)^{*} A^{*}=I$. Hence, $\left(A^{-1}\right)^{*}=\left(A^{*}\right)^{-1}$.

We thus use $A^{-\mathrm{T}}$ to denote $\left(A^{\mathrm{T}}\right)^{-1}$ or $\left(A^{-1}\right)^{\mathrm{T}}$ and A^{-*} to denote $\left(A^{*}\right)^{-1}$ or $\left(A^{-1}\right)^{*}$.

Proposition 2.6.9. Let $A, B \in \mathbb{F}^{n \times n}$ be nonsingular. Then,

$$
\begin{align*}
(A B)^{-1} & =B^{-1} A^{-1} \tag{2.6.8}\\
(A B)^{-\mathrm{T}} & =A^{-\mathrm{T}} B^{-\mathrm{T}} \tag{2.6.9}\\
(A B)^{-*} & =A^{-*} B^{-*} \tag{2.6.10}
\end{align*}
$$

Proof. Note that $A B B^{-1} A^{-1}=A I A^{-1}=I$, which shows that $B^{-1} A^{-1}$ is the inverse of $A B$. Similarly, $(A B)^{*} A^{-*} B^{-*}=B^{*} A^{*} A^{-*} B^{-*}=B^{*} I B^{-*}=I$, which shows that $A^{-*} B^{-*}$ is the inverse of $(A B)^{*}$.

For a nonsingular matrix $A \in \mathbb{F}^{n \times n}$ and $r \in \mathbb{Z}$ we write

$$
\begin{align*}
& A^{-r} \triangleq\left(A^{r}\right)^{-1}=\left(A^{-1}\right)^{r} \tag{2.6.11}\\
& A^{-r \mathrm{~T}} \triangleq\left(A^{r}\right)^{-\mathrm{T}}=\left(A^{-\mathrm{T}}\right)^{r}=\left(A^{-r}\right)^{\mathrm{T}}=\left(A^{\mathrm{T}}\right)^{-r} \tag{2.6.12}\\
& A^{-r *} \triangleq\left(A^{r}\right)^{-*}=\left(A^{-*}\right)^{r}=\left(A^{-r}\right)^{*}=\left(A^{*}\right)^{-r} \tag{2.6.13}
\end{align*}
$$

For example, $A^{-2 *}=\left(A^{-*}\right)^{2}$.

2.7 The Determinant

One of the most useful quantities associated with a square matrix is its determinant. In this section we develop some basic results pertaining to the determinant of a matrix.

The determinant of $A \in \mathbb{F}^{n \times n}$ is defined by

$$
\begin{equation*}
\operatorname{det} A \triangleq \sum_{\sigma}(-1)^{N_{\sigma}} \prod_{i=1}^{n} A_{(i, \sigma(i))} \tag{2.7.1}
\end{equation*}
$$

where the sum is taken over all n ! permutations $\sigma=(\sigma(1), \ldots, \sigma(n))$ of the column indices $1, \ldots, n$, and where N_{σ} is the minimal number of pairwise transpositions needed to transform $\sigma(1), \ldots, \sigma(n)$ to $1, \ldots, n$. The following result is an immediate consequence of this definition.

Proposition 2.7.1. Let $A \in \mathbb{F}^{n \times n}$. Then,

$$
\begin{align*}
\operatorname{det} A^{\mathrm{T}} & =\operatorname{det} A, \tag{2.7.2}\\
\operatorname{det} \bar{A} & =\overline{\operatorname{det} A}, \tag{2.7.3}\\
\operatorname{det} A^{*} & =\overline{\operatorname{det} A}, \tag{2.7.4}
\end{align*}
$$

and, for all $\alpha \in \mathbb{F}$,

$$
\begin{equation*}
\operatorname{det} \alpha A=\alpha^{n} \operatorname{det} A \tag{2.7.5}
\end{equation*}
$$

If, in addition, $B \in \mathbb{F}^{m \times n}$ and $C \in \mathbb{F}^{m \times m}$, then

$$
\operatorname{det}\left[\begin{array}{cc}
A & 0 \tag{2.7.6}\\
B & C
\end{array}\right]=(\operatorname{det} A)(\operatorname{det} C)
$$

The following observations are immediate consequences of the definition of the determinant.

Proposition 2.7.2. Let $A, B \in \mathbb{F}^{n \times n}$. Then, the following statements hold:
i) If every off-diagonal entry of A is zero, then

$$
\begin{equation*}
\operatorname{det} A=\prod_{i=1}^{n} A_{(i, i)} \tag{2.7.7}
\end{equation*}
$$

In particular, $\operatorname{det} I_{n}=1$.
ii) If A has a row or column consisting entirely of 0 's, then $\operatorname{det} A=0$.
iii) If A has two identical rows or two identical columns, then $\operatorname{det} A=0$.
iv) If $x \in \mathbb{F}^{n}$ and $i \in\{1, \ldots, n\}$, then

$$
\begin{equation*}
\operatorname{det}\left(A+x e_{i}^{\mathrm{T}}\right)=\operatorname{det} A+\operatorname{det}(A \stackrel{i}{\leftarrow} x) \tag{2.7.8}
\end{equation*}
$$

$v)$ If $x \in \mathbb{F}^{1 \times n}$ and $i \in\{1, \ldots, n\}$, then

$$
\begin{equation*}
\operatorname{det}\left(A+e_{i} x\right)=\operatorname{det} A+\operatorname{det}(A \stackrel{i}{\leftarrow} x) \tag{2.7.9}
\end{equation*}
$$

$v i$) If B is identical to A except that, for some $i \in\{1, \ldots, n\}$ and $\alpha \in \mathbb{F}$, either $\operatorname{col}_{i}(B)=\alpha \operatorname{col}_{i}(A)$ or $\operatorname{row}_{i}(B)=\alpha \operatorname{row}_{i}(A)$, then $\operatorname{det} B=\alpha \operatorname{det} A$.
vii) If B is formed from A by interchanging two rows or two columns of A, then $\operatorname{det} B=-\operatorname{det} A$.
viii) If B is formed from A by adding a multiple of a (row, column) of A to another (row, column) of A, then $\operatorname{det} B=\operatorname{det} A$.

Statements vi-viii) correspond, respectively, to multiplying the matrix A on the left or right by matrices of the form

$$
\begin{align*}
& I_{n}+(\alpha-1) E_{i, i}=\left[\begin{array}{ccc}
I_{i-1} & 0 & 0 \\
0 & \alpha & 0 \\
0 & 0 & I_{n-i}
\end{array}\right], \tag{2.7.10}\\
& I_{n}+E_{i, j}+E_{j, i}-E_{i, i}-E_{j, j}=\left[\begin{array}{ccccc}
I_{i-1} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & I_{j-i-1} & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & I_{n-j}
\end{array}\right], \tag{2.7.11}
\end{align*}
$$

where $i \neq j$, and

$$
I_{n}+\beta E_{i, j}=\left[\begin{array}{ccccc}
I_{i-1} & 0 & 0 & 0 & 0 \tag{2.7.12}\\
0 & 1 & 0 & \beta & 0 \\
0 & 0 & I_{j-i-1} & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & I_{n-j}
\end{array}\right]
$$

where $\beta \in \mathbb{F}$ and $i \neq j$. The matrices in (2.7.11) and (2.7.12) illustrate the case $i<j$. Since $I+(\alpha-1) E_{i, i}=I+(\alpha-1) e_{i} e_{i}^{\mathrm{T}}, I+E_{i, j}+E_{j, i}-E_{i, i}-E_{j, j}=I-\left(e_{i}-e_{j}\right)\left(e_{i}-e_{j}\right)^{\mathrm{T}}$, and $I+\beta E_{i, j}=I+\beta e_{i} e_{j}^{\mathrm{T}}$, it follows that all of these matrices are of the form $I-x y^{\mathrm{T}}$. In terms of Definition 3.1.1, (2.7.10) is an elementary matrix if and only if $\alpha \neq 0$, (2.7.11) is an elementary matrix, and (2.7.12) is an elementary matrix if and only if either $i \neq j$ or $\beta \neq-1$.

Proposition 2.7.3. Let $A, B \in \mathbb{F}^{n \times n}$. Then,

$$
\begin{equation*}
\operatorname{det} A B=\operatorname{det} B A=(\operatorname{det} A)(\operatorname{det} B) . \tag{2.7.13}
\end{equation*}
$$

Proof. First note the identity

$$
\left[\begin{array}{cc}
A & 0 \\
I & B
\end{array}\right]=\left[\begin{array}{cc}
I & A \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
-A B & 0 \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
B & I
\end{array}\right]\left[\begin{array}{ll}
0 & I \\
I & 0
\end{array}\right]
$$

The first and third matrices on the right-hand side of this identity add multiples of rows and columns of $\left[\begin{array}{cc}-A B & 0 \\ 0 & I\end{array}\right]$ to other rows and columns of $\left[\begin{array}{cc}-A B & 0 \\ 0 & I\end{array}\right]$. As already noted, these operations do not affect the determinant of $\left[\begin{array}{cc}-A B & 0 \\ 0 & I\end{array}\right]$. In addition, the fourth matrix on the right-hand side of this identity interchanges n pairs of columns of $\left[\begin{array}{cc}0 & A \\ B & I\end{array}\right]$. Using (2.7.5), (2.7.6), and the fact that every interchange of a pair of columns of $\left[\begin{array}{cc}0 & A \\ B & I\end{array}\right]$ entails a factor of -1 , it thus follows that $(\operatorname{det} A)(\operatorname{det} B)=$ $\operatorname{det}\left[\begin{array}{ll}A & 0 \\ I & B\end{array}\right]=(-1)^{n} \operatorname{det}\left[\begin{array}{cc}-A B & 0 \\ 0 & I\end{array}\right]=(-1)^{n} \operatorname{det}(-A B)=\operatorname{det} A B$.

Corollary 2.7.4. Let $A \in \mathbb{F}^{n \times n}$ be nonsingular. Then, $\operatorname{det} A \neq 0$ and

$$
\begin{equation*}
\operatorname{det} A^{-1}=(\operatorname{det} A)^{-1} \tag{2.7.14}
\end{equation*}
$$

Proof. Since $A A^{-1}=I_{n}$, it follows that $\operatorname{det} A A^{-1}=(\operatorname{det} A)\left(\operatorname{det} A^{-1}\right)=1$. Hence, $\operatorname{det} A \neq 0$. In addition, $\operatorname{det} A^{-1}=1 / \operatorname{det} A$.

Let $A \in \mathbb{F}^{n \times m}$. The determinant of a square submatrix of A is a subdeterminant of A. By convention, the determinant of A is a subdeterminant of A. The determinant of a $j \times j$ (principal, leading principal) submatrix of A is a $j \times j$ (principal, leading principal) subdeterminant of A.

Let $A \in \mathbb{F}^{n \times n}$. Then, the cofactor of $A_{(i, j)}$, denoted by $A_{[i ; j]}$, is the $(n-1) \times$ $(n-1)$ submatrix of A obtained by deleting the i th row and j th column of A. In other words,

$$
\begin{equation*}
A_{[i ; j]} \triangleq A_{\left(\{i\}^{\sim},\{j\}^{\sim}\right)} \tag{2.7.15}
\end{equation*}
$$

The following result provides a cofactor expansion of $\operatorname{det} A$.
Proposition 2.7.5. Let $A \in \mathbb{F}^{n \times n}$. Then, for all $i=1, \ldots, n$,

$$
\begin{equation*}
\sum_{k=1}^{n}(-1)^{i+k} A_{(i, k)} \operatorname{det} A_{[i ; k]}=\operatorname{det} A \tag{2.7.16}
\end{equation*}
$$

Furthermore, for all $i, j=1, \ldots, n$ such that $j \neq i$,

$$
\begin{equation*}
\sum_{k=1}^{n}(-1)^{i+k} A_{(j, k)} \operatorname{det} A_{[i ; k]}=0 \tag{2.7.17}
\end{equation*}
$$

Proof. Identity (2.7.16) is an equivalent recursive form of the definition $\operatorname{det} A$, while the right-hand side of (2.7.17) is equal to $\operatorname{det} B$, where B is obtained from A by replacing $\operatorname{row}_{i}(A)$ by $\operatorname{row}_{j}(A)$. As already noted, $\operatorname{det} B=0$.

Let $A \in \mathbb{F}^{n \times n}$, where $n \geq 2$. To simplify (2.7.16) and (2.7.17) it is useful to define the adjugate of A, denoted by $A^{\mathrm{A}} \in \mathbb{F}^{n \times n}$, where, for all $i, j=1, \ldots, n$,

$$
\begin{equation*}
\left(A^{\mathrm{A}}\right)_{(i, j)} \triangleq(-1)^{i+j} \operatorname{det} A_{[j ; i]}=\operatorname{det}\left(A \stackrel{i}{\leftarrow} e_{j}\right) \tag{2.7.18}
\end{equation*}
$$

Then, (2.7.16) implies that, for all $i=1, \ldots, n$,

$$
\begin{equation*}
\sum_{k=1}^{n} A_{(i, k)}\left(A^{\mathrm{A}}\right)_{(k, i)}=\left(A A^{\mathrm{A}}\right)_{(i, i)}=\left(A^{\mathrm{A}} A\right)_{(i, i)}=\operatorname{det} A \tag{2.7.19}
\end{equation*}
$$

while (2.7.17) implies that, for all $i, j=1, \ldots, n$ such that $j \neq i$,

$$
\begin{equation*}
\sum_{k=1}^{n} A_{(i, k)}\left(A^{\mathrm{A}}\right)_{(k, j)}=\left(A A^{\mathrm{A}}\right)_{(i, j)}=\left(A^{\mathrm{A}} A\right)_{(i, j)}=0 \tag{2.7.20}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
A A^{\mathrm{A}}=A^{\mathrm{A}} A=(\operatorname{det} A) I \tag{2.7.21}
\end{equation*}
$$

Consequently, if $\operatorname{det} A \neq 0$, then

$$
\begin{equation*}
A^{-1}=\frac{1}{\operatorname{det} A} A^{\mathrm{A}} \tag{2.7.22}
\end{equation*}
$$

whereas, if $\operatorname{det} A=0$, then

$$
\begin{equation*}
A A^{\mathrm{A}}=A^{\mathrm{A}} A=0 \tag{2.7.23}
\end{equation*}
$$

For a scalar $A \in \mathbb{F}$, we define $A^{\mathrm{A}} \triangleq 1$.
The following result provides the converse of Corollary 2.7.4 by using (2.7.22) to construct A^{-1} in terms of $(n-1) \times(n-1)$ subdeterminants of A.

Corollary 2.7.6. Let $A \in \mathbb{F}^{n \times n}$. Then, A is nonsingular if and only if $\operatorname{det} A \neq$ 0 . In this case, for all $i, j=1, \ldots, n$, the (i, j) entry of A^{-1} is given by

$$
\begin{equation*}
\left(A^{-1}\right)_{(i, j)}=(-1)^{i+j} \frac{\operatorname{det} A_{[j ; i]}}{\operatorname{det} A} . \tag{2.7.24}
\end{equation*}
$$

Finally, the following result uses the nonsingularity of submatrices to characterize the rank of a matrix.

Proposition 2.7.7. Let $A \in \mathbb{F}^{n \times m}$. Then, $\operatorname{rank} A$ is the largest order of all nonsingular submatrices of A.

2.8 Partitioned Matrices

Partitioned matrices were used to state or prove several results in this chapter including Proposition 2.5.9, Theorem 2.6.4, Proposition 2.7.1, and Proposition 2.7.3. In this section we give several useful identities involving partitioned matrices.

Proposition 2.8.1. Let $A_{i j} \in \mathbb{F}^{n_{i} \times m_{j}}$ for all $i=1, \ldots, k$ and $j=1, \ldots, l$. Then,

$$
\left[\begin{array}{ccc}
A_{11} & \cdots & A_{1 l} \tag{2.8.1}\\
\vdots & \vdots & \vdots \\
A_{k 1} & \cdots & A_{k l}
\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{ccc}
A_{11}^{\mathrm{T}} & \cdots & A_{k 1}^{\mathrm{T}} \\
\vdots & \vdots & \vdots \\
A_{1 l}^{\mathrm{T}} & \cdots & A_{k l}^{\mathrm{T}}
\end{array}\right]
$$

and

$$
\left[\begin{array}{ccc}
A_{11} & \cdots & A_{1 l} \tag{2.8.2}\\
\vdots & \therefore & \vdots \\
A_{k 1} & \cdots & A_{k l}
\end{array}\right]^{*}=\left[\begin{array}{ccc}
A_{11}^{*} & \cdots & A_{k 1}^{*} \\
\vdots & \therefore & \vdots \\
A_{1 l}^{*} & \cdots & A_{k l}^{*}
\end{array}\right] .
$$

If, in addition, $k=l$ and $n_{i}=m_{i}$ for all $i=1, \ldots, m$, then

$$
\operatorname{tr}\left[\begin{array}{ccc}
A_{11} & \cdots & A_{1 k} \tag{2.8.3}\\
\vdots & \vdots & \vdots \\
A_{k 1} & \cdots & A_{k k}
\end{array}\right]=\sum_{i=1}^{k} \operatorname{tr} A_{i i}
$$

and

$$
\operatorname{det}\left[\begin{array}{cccc}
A_{11} & A_{12} & \cdots & A_{1 k} \tag{2.8.4}\\
0 & A_{22} & \cdots & A_{2 k} \\
\vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & A_{k k}
\end{array}\right]=\prod_{i=1}^{k} \operatorname{det} A_{i i} .
$$

Lemma 2.8.2. Let $B \in \mathbb{F}^{n \times m}$ and $C \in \mathbb{F}^{m \times n}$. Then,

$$
\left[\begin{array}{cc}
I & B \tag{2.8.5}\\
0 & I
\end{array}\right]^{-1}=\left[\begin{array}{cc}
I & -B \\
0 & I
\end{array}\right]
$$

and

$$
\left[\begin{array}{cc}
I & 0 \tag{2.8.6}\\
C & I
\end{array}\right]^{-1}=\left[\begin{array}{cc}
I & 0 \\
-C & I
\end{array}\right] .
$$

Let $A \in \mathbb{F}^{n \times n}$ and $D \in \mathbb{F}^{m \times m}$ be nonsingular. Then,

$$
\left[\begin{array}{cc}
A & 0 \tag{2.8.7}\\
0 & D
\end{array}\right]^{-1}=\left[\begin{array}{cc}
A^{-1} & 0 \\
0 & D^{-1}
\end{array}\right]
$$

Proposition 2.8.3. Let $A \in \mathbb{F}^{n \times n}, B \in \mathbb{F}^{n \times m}, C \in \mathbb{F}^{l \times n}$, and $D \in \mathbb{F}^{l \times m}$, and assume that A is nonsingular. Then,

$$
\left[\begin{array}{cc}
A & B \tag{2.8.8}\\
C & D
\end{array}\right]=\left[\begin{array}{cc}
I & 0 \\
C A^{-1} & I
\end{array}\right]\left[\begin{array}{cc}
A & 0 \\
0 & D-C A^{-1} B
\end{array}\right]\left[\begin{array}{cc}
I & A^{-1} B \\
0 & I
\end{array}\right]
$$

and

$$
\operatorname{rank}\left[\begin{array}{cc}
A & B \tag{2.8.9}\\
C & D
\end{array}\right]=n+\operatorname{rank}\left(D-C A^{-1} B\right)
$$

If, furthermore, $l=m$, then

$$
\operatorname{det}\left[\begin{array}{ll}
A & B \tag{2.8.10}\\
C & D
\end{array}\right]=(\operatorname{det} A) \operatorname{det}\left(D-C A^{-1} B\right)
$$

Proposition 2.8.4. Let $A \in \mathbb{F}^{n \times m}, B \in \mathbb{F}^{n \times l}, C \in \mathbb{F}^{l \times m}$, and $D \in \mathbb{F}^{l \times l}$, and assume that D is nonsingular. Then,

$$
\left[\begin{array}{cc}
A & B \tag{2.8.11}\\
C & D
\end{array}\right]=\left[\begin{array}{cc}
I & B D^{-1} \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
A-B D^{-1} C & 0 \\
0 & D
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
D^{-1} C & I
\end{array}\right]
$$

and

$$
\operatorname{rank}\left[\begin{array}{cc}
A & B \tag{2.8.12}\\
C & D
\end{array}\right]=l+\operatorname{rank}\left(A-B D^{-1} C\right)
$$

If, furthermore, $n=m$, then

$$
\operatorname{det}\left[\begin{array}{ll}
A & B \tag{2.8.13}\\
C & D
\end{array}\right]=(\operatorname{det} D) \operatorname{det}\left(A-B D^{-1} C\right)
$$

Corollary 2.8.5. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times n}$. Then,

$$
\begin{aligned}
{\left[\begin{array}{cc}
I_{n} & A \\
B & I_{m}
\end{array}\right] } & =\left[\begin{array}{cc}
I_{n} & 0 \\
B & I_{m}
\end{array}\right]\left[\begin{array}{cc}
I_{n} & 0 \\
0 & I_{m}-B A
\end{array}\right]\left[\begin{array}{cc}
I_{n} & A \\
0 & I_{m}
\end{array}\right] \\
& =\left[\begin{array}{cc}
I_{n} & A \\
0 & I_{m}
\end{array}\right]\left[\begin{array}{cc}
I_{n}-A B & 0 \\
0 & I_{m}
\end{array}\right]\left[\begin{array}{cc}
I_{n} & 0 \\
B & I_{m}
\end{array}\right]
\end{aligned}
$$

Hence,

$$
\operatorname{rank}\left[\begin{array}{cc}
I_{n} & A \\
B & I_{m}
\end{array}\right]=n+\operatorname{rank}\left(I_{m}-B A\right)=m+\operatorname{rank}\left(I_{n}-A B\right)
$$

and

$$
\operatorname{det}\left[\begin{array}{cc}
I_{n} & A \tag{2.8.14}\\
B & I_{m}
\end{array}\right]=\operatorname{det}\left(I_{m}-B A\right)=\operatorname{det}\left(I_{n}-A B\right)
$$

Hence, $I_{n}+A B$ is nonsingular if and only if $I_{m}+B A$ is nonsingular.
Lemma 2.8.6. Let $A \in \mathbb{F}^{n \times n}, B \in \mathbb{F}^{n \times m}, C \in \mathbb{F}^{m \times n}$, and $D \in \mathbb{F}^{m \times m}$. If A and D are nonsingular, then

$$
\begin{equation*}
(\operatorname{det} A) \operatorname{det}\left(D-C A^{-1} B\right)=(\operatorname{det} D) \operatorname{det}\left(A-B D^{-1} C\right) \tag{2.8.15}
\end{equation*}
$$

and thus $D-C A^{-1} B$ is nonsingular if and only if $A-B D^{-1} C$ is nonsingular.
Proposition 2.8.7. Let $A \in \mathbb{F}^{n \times n}, B \in \mathbb{F}^{n \times m}, C \in \mathbb{F}^{m \times n}$, and $D \in \mathbb{F}^{m \times m}$. If A and $D-C A^{-1} B$ are nonsingular, then

$$
\begin{align*}
& {\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]^{-1}} \\
& \quad=\left[\begin{array}{cc}
A^{-1}+A^{-1} B\left(D-C A^{-1} B\right)^{-1} C A^{-1} & -A^{-1} B\left(D-C A^{-1} B\right)^{-1} \\
-\left(D-C A^{-1} B\right)^{-1} C A^{-1} & \left(D-C A^{-1} B\right)^{-1}
\end{array}\right] \tag{2.8.16}
\end{align*}
$$

If D and $A-B D^{-1} C$ are nonsingular, then

$$
\begin{align*}
& {\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]^{-1}} \\
& =\left[\begin{array}{cc}
\left(A-B D^{-1} C\right)^{-1} & -\left(A-B D^{-1} C\right)^{-1} B D^{-1} \\
-D^{-1} C\left(A-B D^{-1} C\right)^{-1} & D^{-1}+D^{-1} C\left(A-B D^{-1} C\right)^{-1} B D^{-1}
\end{array}\right] \tag{2.8.17}
\end{align*}
$$

If A, D, and $D-C A^{-1} B$ are nonsingular, then $A-B D^{-1} C$ is nonsingular, and

$$
\begin{align*}
& {\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]^{-1}} \\
& \quad=\left[\begin{array}{cc}
\left(A-B D^{-1} C\right)^{-1} & -\left(A-B D^{-1} C\right)^{-1} B D^{-1} \\
-\left(D-C A^{-1} B\right)^{-1} C A^{-1} & \left(D-C A^{-1} B\right)^{-1}
\end{array}\right] \tag{2.8.18}
\end{align*}
$$

The following result is the matrix inversion lemma.
Corollary 2.8.8. Let $A \in \mathbb{F}^{n \times n}, B \in \mathbb{F}^{n \times m}, C \in \mathbb{F}^{m \times n}$, and $D \in \mathbb{F}^{m \times m}$. If A, $D-C A^{-1} B$, and D are nonsingular, then $A-B D^{-1} C$ is nonsingular,

$$
\begin{equation*}
\left(A-B D^{-1} C\right)^{-1}=A^{-1}+A^{-1} B\left(D-C A^{-1} B\right)^{-1} C A^{-1} \tag{2.8.19}
\end{equation*}
$$

and

$$
\begin{equation*}
C\left(A-B D^{-1} C\right)^{-1} A=D\left(D-C A^{-1} B\right)^{-1} C \tag{2.8.20}
\end{equation*}
$$

If A and $I-C A^{-1} B$ are nonsingular, then $A-B C$ is nonsingular, and

$$
\begin{equation*}
(A-B C)^{-1}=A^{-1}+A^{-1} B\left(I-C A^{-1} B\right)^{-1} C A^{-1} \tag{2.8.21}
\end{equation*}
$$

If $D-C B$, and D are nonsingular, then $I-B D^{-1} C$ is nonsingular, and

$$
\begin{equation*}
\left(I-B D^{-1} C\right)^{-1}=I+B(D-C B)^{-1} C \tag{2.8.22}
\end{equation*}
$$

If $I-C B$ is nonsingular, then $I-B C$ is nonsingular, and

$$
\begin{equation*}
(I-B C)^{-1}=I+B(I-C B)^{-1} C \tag{2.8.23}
\end{equation*}
$$

Corollary 2.8.9. Let $A, B, C, D \in \mathbb{F}^{n \times n}$. If $A, B, C-D B^{-1} A$, and $D-C A^{-1} B$ are nonsingular, then

$$
\left[\begin{array}{ll}
A & B \tag{2.8.24}\\
C & D
\end{array}\right]^{-1}=\left[\begin{array}{cc}
A^{-1}-\left(C-D B^{-1} A\right)^{-1} C A^{-1} & \left(C-D B^{-1} A\right)^{-1} \\
-\left(D-C A^{-1} B\right)^{-1} C A^{-1} & \left(D-C A^{-1} B\right)^{-1}
\end{array}\right]
$$

If $A, C, B-A C^{-1} D$, and $D-C A^{-1} B$ are nonsingular, then

$$
\left[\begin{array}{ll}
A & B \tag{2.8.25}\\
C & D
\end{array}\right]^{-1}=\left[\begin{array}{cc}
A^{-1}-A^{-1} B\left(B-A C^{-1} D\right)^{-1} & -A^{-1} B\left(D-C A^{-1} B\right)^{-1} \\
\left(B-A C^{-1} D\right)^{-1} & \left(D-C A^{-1} B\right)^{-1}
\end{array}\right]
$$

If $A, B, C, B-A C^{-1} D$, and $D-C A^{-1} B$ are nonsingular, then $C-D B^{-1} A$ is nonsingular, and

$$
\left[\begin{array}{ll}
A & B \tag{2.8.26}\\
C & D
\end{array}\right]^{-1}=\left[\begin{array}{cc}
A^{-1}-A^{-1} B\left(B-A C^{-1} D\right)^{-1} & \left(C-D B^{-1} A\right)^{-1} \\
\left(B-A C^{-1} D\right)^{-1} & \left(D-C A^{-1} B\right)^{-1}
\end{array}\right]
$$

If $B, D, A-B D^{-1} C$, and $C-D B^{-1} A$ are nonsingular, then

$$
\left[\begin{array}{ll}
A & B \tag{2.8.27}\\
C & D
\end{array}\right]^{-1}=\left[\begin{array}{cc}
\left(A-B D^{-1} C\right)^{-1} & \left(C-D B^{-1} A\right)^{-1} \\
-D^{-1} C\left(A-B D^{-1} C\right)^{-1} & D^{-1}-D^{-1} C\left(C-D B^{-1} A\right)^{-1}
\end{array}\right] .
$$

If $C, D, A-B D^{-1} C$, and $B-A C^{-1} D$ are nonsingular, then

$$
\left[\begin{array}{ll}
A & B \tag{2.8.28}\\
C & D
\end{array}\right]^{-1}=\left[\begin{array}{cc}
\left(A-B D^{-1} C\right)^{-1} & -\left(A-B D^{-1} C\right)^{-1} B D^{-1} \\
\left(B-A C^{-1} D\right)^{-1} & D^{-1}-\left(B-A C^{-1} D\right)^{-1} B D^{-1}
\end{array}\right]
$$

If $B, C, D, A-B D^{-1} C$, and $C-D B^{-1} A$ are nonsingular, then $B-A C^{-1} D$ is nonsingular, and

$$
\left[\begin{array}{ll}
A & B \tag{2.8.29}\\
C & D
\end{array}\right]^{-1}=\left[\begin{array}{cc}
\left(A-B D^{-1} C\right)^{-1} & \left(C-D B^{-1} A\right) \\
\left(B-A C^{-1} D\right)^{-1} & D^{-1}-D^{-1} C\left(C-D B^{-1} A\right)^{-1}
\end{array}\right]
$$

Finally, if $A, B, C, D, A-B D^{-1} C$, and $B-A C^{-1} D$, are nonsingular, then $C-D B^{-1} A$ and $D-C A^{-1} B$ are nonsingular, and

$$
\left[\begin{array}{ll}
A & B \tag{2.8.30}\\
C & D
\end{array}\right]^{-1}=\left[\begin{array}{ll}
\left(A-B D^{-1} C\right)^{-1} & \left(C-D B^{-1} A\right)^{-1} \\
\left(B-A C^{-1} D\right)^{-1} & \left(D-C A^{-1} B\right)^{-1}
\end{array}\right]
$$

Corollary 2.8.10. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and $I-A^{-1} B$ are nonsingular. Then, $A-B$ is nonsingular, and

$$
\begin{equation*}
(A-B)^{-1}=A^{-1}+A^{-1} B\left(I-A^{-1} B\right)^{-1} A^{-1} \tag{2.8.31}
\end{equation*}
$$

If, in addition, B is nonsingular, then

$$
\begin{equation*}
(A-B)^{-1}=A^{-1}+A^{-1}\left(B^{-1}-A^{-1}\right)^{-1} A^{-1} \tag{2.8.32}
\end{equation*}
$$

2.9 Facts on Polars, Cones, Dual Cones, Convex Hulls, and Subspaces

Fact 2.9.1. Let $\mathcal{S} \subseteq \mathbb{F}^{n}$, assume that \mathcal{S} is convex, and let $\alpha \in[0,1]$. Then,

$$
\alpha \mathcal{S}+(1-\alpha) \mathcal{S}=\mathcal{S}
$$

Fact 2.9.2. Let $\mathcal{S}_{1}, \mathcal{S}_{2} \subseteq \mathbb{F}^{n}$, and assume that \mathcal{S}_{1} and \mathcal{S}_{2} are convex. Then, $\mathcal{S}_{1}+\mathcal{S}_{2}$ is convex.

Fact 2.9.3. Let $\mathcal{S} \subseteq \mathbb{F}^{n}$. Then, the following statements hold:
i) $\operatorname{coco} \mathcal{S}=$ co cone $\mathcal{S}=$ cone co \mathcal{S}.
ii) $\mathcal{S}^{\perp \perp}=\operatorname{span} \mathcal{S}=\operatorname{coco}(\mathcal{S} \cup-\mathcal{S})$.
iii) $\mathcal{S} \subseteq \operatorname{co} \mathcal{S} \subseteq(\operatorname{aff} \mathcal{S} \cap \operatorname{coco} \mathcal{S}) \subseteq\left\{\begin{array}{c}\operatorname{aff} \mathcal{S} \\ \operatorname{coco} \mathcal{S}\end{array}\right\} \subseteq \operatorname{span} \mathcal{S}$.
iv) $\mathcal{S} \subseteq(\cos \cap \operatorname{cone} \mathcal{S}) \subseteq\left\{\begin{array}{c}\operatorname{co} \mathcal{S} \\ \operatorname{cone} \mathcal{S}\end{array}\right\} \subseteq \operatorname{coco} \mathcal{S} \subseteq \operatorname{span} \mathcal{S}$.
$v)$ dcone dcone $\mathcal{S}=\operatorname{cl} \operatorname{coco} S$.
(Proof: For v), see [239, p. 54].) (Remark: See [176, p. 52]. Note that "pointed" in 176 means one-sided.)

Fact 2.9.4. Let $\mathcal{S}, \mathcal{S}_{1}, \mathcal{S}_{2} \subseteq \mathbb{F}^{n}$. Then, the following statements hold:
$i)$ polar \mathcal{S} is a closed, convex set containing the origin.
ii) polar $\mathbb{F}^{n}=\{0\}$, and polar $\{0\}=\mathbb{F}^{n}$.
iii) If $\alpha>0$, then polar $\alpha \mathcal{S}=\frac{1}{\alpha}$ polar \mathcal{S}.
iv) $\mathcal{S} \subseteq$ polar polar \mathcal{S}.
v) If \mathcal{S} is nonempty, then polar polar polar $\mathcal{S}=$ polar \mathcal{S}.
vi) If \mathcal{S} is nonempty, then polar polar $\mathcal{S}=\operatorname{cl} \operatorname{co}(\mathcal{S} \cup\{0\})$.
vii) If $0 \in \mathcal{S}$ and \mathcal{S} is closed and convex, then polar polar $\mathcal{S}=\mathcal{S}$.
viii) If $\mathcal{S}_{1} \subseteq \mathcal{S}_{2}$, then polar $\mathcal{S}_{2} \subseteq$ polar \mathcal{S}_{1}.
$i x) \operatorname{polar}\left(\mathcal{S}_{1} \cup \mathcal{S}_{2}\right)=\left(\right.$ polar $\left.\mathcal{S}_{1}\right) \cap\left(\right.$ polar $\left.\mathcal{S}_{2}\right)$.
x) If \mathcal{S} is a convex cone, then polar $\mathcal{S}=$ dcone \mathcal{S}.
(Proof: See [153, pp. 143-147].)

Fact 2.9.5. Let $\mathcal{S}_{1}, \mathcal{S}_{2} \subseteq \mathbb{F}^{n}$, and assume that \mathcal{S}_{1} and \mathcal{S}_{2} are cones. Then,

$$
\operatorname{dcone}\left(\mathcal{S}_{1}+\mathcal{S}_{2}\right)=\left(\text { dcone } \mathcal{S}_{1}\right) \cap\left(\text { dcone } \mathcal{S}_{1}\right)
$$

If, in addition, \mathcal{S}_{1} and \mathcal{S}_{2} are closed and convex, then

$$
\operatorname{dcone}\left(\mathcal{S}_{1} \cap \mathcal{S}_{2}\right)=\operatorname{cl}\left[\left(\text { dcone } \mathcal{S}_{1}\right)+\left(\text { dcone } \mathcal{S}_{2}\right)\right]
$$

(Proof: See [239, pp. 58, 59] or [153, p. 147].)
Fact 2.9.6. Let $\mathcal{S} \subset \mathbb{F}^{n}$. Then, the following statements hold:
i) \mathcal{S} is an affine hyperplane if and only if there exist a nonzero vector $y \in \mathbb{F}^{n}$ and $\alpha \in \mathbb{R}$ such that $\mathcal{S}=\left\{x: \operatorname{Re} x^{*} y=\alpha\right\}$.
ii) \mathcal{S} is an affine closed half space if and only if there exist a nonzero vector $y \in \mathbb{F}^{n}$ and $\alpha \in \mathbb{R}$ such that $\mathcal{S}=\left\{x \in \mathbb{F}^{n}: \operatorname{Re} x^{*} y \leq \alpha\right\}$.
iii) \mathcal{S} is an affine open half space if and only if there exist a nonzero vector $y \in \mathbb{F}^{n}$ and $\alpha \in \mathbb{R}$ such that $\mathcal{S}=\left\{x \in \mathbb{F}^{n}: \operatorname{Re} x^{*} y \leq \alpha\right\}$.
(Proof: Let $z \in \mathbb{F}^{n}$ satisfy $z^{*} y=\alpha$. Then, $\left\{x: x^{*} y=\alpha\right\}=\{y\}^{\perp}+z$.)
Fact 2.9.7. Let $x_{1}, \ldots, x_{k} \in \mathbb{F}^{n}$. Then,

$$
\operatorname{aff}\left\{x_{1}, \ldots, x_{k}\right\}=x_{1}+\operatorname{span}\left\{x_{2}-x_{1}, \ldots, x_{k}-x_{1}\right\} .
$$

(Remark: See Fact 10.8.12,
Fact 2.9.8. Let $\mathcal{S} \subseteq \mathbb{F}^{n}$, and assume that \mathcal{S} is an affine subspace. Then, \mathcal{S} is a subspace if and only if $0 \in \mathcal{S}$.

Fact 2.9.9. Let $\mathcal{S}_{1}, \mathcal{S}_{2} \subseteq \mathbb{F}^{n}$ be (cones, convex sets, convex cones, subspaces). Then, so are $\mathcal{S}_{1} \cap \mathcal{S}_{2}$ and $\mathcal{S}_{1}+\mathcal{S}_{2}$.

Fact 2.9.10. Let $\mathcal{S}_{1}, \mathcal{S}_{2} \subseteq \mathbb{F}^{n}$ be pointed convex cones. Then,

$$
\operatorname{co}\left(S_{1} \cup S_{2}\right)=S_{1}+S_{2}
$$

Fact 2.9.11. Let $\mathcal{S}_{1}, \mathcal{S}_{2} \subseteq \mathbb{F}^{n}$ be subspaces. Then, $\mathcal{S}_{1} \cup \mathcal{S}_{2}$ is a subspace if and only if either $\mathcal{S}_{1} \subseteq \mathcal{S}_{2}$ or $\mathcal{S}_{2} \subseteq \mathcal{S}_{1}$.

Fact 2.9.12. Let $\mathcal{S}_{1}, \mathcal{S}_{2} \subseteq \mathbb{F}^{n}$. Then,

$$
\left(\operatorname{span} \mathcal{S}_{1}\right) \cup\left(\operatorname{span} \mathcal{S}_{2}\right) \subseteq \operatorname{span}\left(\mathcal{S}_{1} \cup \mathcal{S}_{2}\right)
$$

and

$$
\operatorname{span}\left(\mathcal{S}_{1} \cap \mathcal{S}_{2}\right) \subseteq\left(\operatorname{span} \mathcal{S}_{1}\right) \cap\left(\operatorname{span} \mathcal{S}_{2}\right)
$$

(Proof: See [1184, p. 11].)
Fact 2.9.13. Let $\mathcal{S}_{1}, \mathcal{S}_{2} \subseteq \mathbb{F}^{n}$ be subspaces. Then,

$$
\operatorname{span}\left(\mathcal{S}_{1} \cup \mathcal{S}_{2}\right)=\mathcal{S}_{1}+\mathcal{S}_{2}
$$

Therefore, $\mathcal{S}_{1}+\mathcal{S}_{2}$ is the smallest subspace that contains $\mathcal{S}_{1} \cup \mathcal{S}_{2}$.

Fact 2.9.14. Let $\mathcal{S}_{1}, \mathcal{S}_{2} \subseteq \mathbb{F}^{n}$ be subspaces. Then, the following statements are equivalent:
i) $\mathcal{S}_{1} \subseteq \mathcal{S}_{2}$
ii) $\mathcal{S}_{2}^{\perp} \subseteq \mathcal{S}_{1}^{\perp}$.
iii) For all $x \in \mathcal{S}_{1}$ and $y \in \mathcal{S}_{2}^{\perp}, x^{*} y=0$.

Furthermore, $\mathcal{S}_{1} \subset \mathcal{S}_{2}$ if and only if $\mathcal{S}_{2}^{\perp} \subset \mathcal{S}_{1}^{\perp}$.
Fact 2.9.15. Let $\mathcal{S}_{1}, \mathcal{S}_{2} \subseteq \mathbb{F}^{n}$. Then,

$$
\mathcal{S}_{1}^{\perp} \cap \mathcal{S}_{2}^{\perp} \subseteq\left(\mathcal{S}_{1}+\mathcal{S}_{2}\right)^{\perp} .
$$

(Problem: Determine necessary and sufficient conditions under which equality holds.)

Fact 2.9.16. Let $\mathcal{S}_{1}, \mathcal{S}_{2} \subseteq \mathbb{F}^{n}$ be subspaces. Then,

$$
\left(\mathcal{S}_{1} \cap \mathcal{S}_{2}\right)^{\perp}=\mathcal{S}_{1}^{\perp}+\mathcal{S}_{2}^{\perp}
$$

and

$$
\left(\mathcal{S}_{1}+\mathcal{S}_{2}\right)^{\perp}=\mathcal{S}_{1}^{\perp} \cap \mathcal{S}_{2}^{\perp} .
$$

Fact 2.9.17. Let $\delta_{1}, \mathcal{S}_{2}, \delta_{3} \subseteq \mathbb{F}^{n}$ be subspaces. Then,

$$
\mathcal{S}_{1}+\left(\mathcal{S}_{2} \cap \mathcal{S}_{3}\right) \subseteq\left(\mathcal{S}_{1}+\mathcal{S}_{2}\right) \cap\left(\mathcal{S}_{1}+\mathcal{S}_{3}\right)
$$

and

$$
\mathcal{S}_{1} \cap\left(\mathcal{S}_{2}+\mathcal{S}_{3}\right) \supseteq\left(\mathcal{S}_{1} \cap \mathcal{S}_{2}\right)+\left(\mathcal{S}_{1} \cap \mathcal{S}_{3}\right) .
$$

Fact 2.9.18. Let $\mathcal{S}_{1}, \mathcal{S}_{2} \subseteq \mathbb{F}^{n}$ be subspaces. Then, $\mathcal{S}_{1}, \mathcal{S}_{2}$ are complementary subspaces if and only if $\mathcal{S}_{1}^{\perp}, \mathcal{S}_{2}^{\perp}$ are complementary subspaces. (Remark: See Fact 3.12.1.)

Fact 2.9.19. Let $\mathcal{S}_{1}, \mathcal{S}_{2} \subseteq \mathbb{F}^{n}$ be nonzero subspaces, and define $\theta \in[0, \pi / 2]$ by $\cos \theta=\max \left\{\left|x^{*} y\right|:(x, y) \in \mathcal{S}_{1} \times \mathcal{S}_{2}\right.$ and $\left.x^{*} x=y^{*} y=1\right\}$.
Then,

$$
\cos \theta=\max \left\{\left|x^{*} y\right|:(x, y) \in \mathcal{S}_{1}^{\perp} \times \mathcal{S}_{2}^{\perp} \text { and } x^{*} x=y^{*} y=1\right\}
$$

Furthermore, $\theta=0$ if and only if $\mathcal{S}_{1} \cap \mathcal{S}_{2}=\{0\}$, and $\theta=\pi / 2$ if and only if $\mathcal{S}_{1}=\mathcal{S}_{2}^{\perp}$. (Remark: See [537, 744].) (Remark: θ is a principal angle. See Fact 5.9.29, Fact 5.11.39, and Fact 5.12.17)

Fact 2.9.20. Let $\mathcal{S}_{1}, \mathcal{S}_{2} \subseteq \mathbb{F}^{n}$ be subspaces, and assume that $\mathcal{S}_{1} \cap \mathcal{S}_{2}=\{0\}$. Then,

$$
\operatorname{dim} S_{1}+\operatorname{dim} S_{2} \leq n
$$

Fact 2.9.21. Let $\mathcal{S}_{1}, \mathcal{S}_{2} \subseteq \mathbb{F}^{n}$ be subspaces. Then,

$$
\begin{aligned}
\operatorname{dim}\left(\mathcal{S}_{1} \cap \mathcal{S}_{2}\right) & \leq \min \left\{\operatorname{dim} \mathcal{S}_{1}, \operatorname{dim} \mathcal{S}_{2}\right\} \\
& \leq\left\{\begin{array}{c}
\operatorname{dim} \mathcal{S}_{1} \\
\operatorname{dim} \mathcal{S}_{2}
\end{array}\right\} \\
& \leq \max \left\{\operatorname{dim} \mathcal{S}_{1}, \operatorname{dim} \mathcal{S}_{2}\right\} \\
& \leq \operatorname{dim}\left(\mathcal{S}_{1}+\mathcal{S}_{2}\right) \\
& \leq \min \left\{\operatorname{dim} \mathcal{S}_{1}+\operatorname{dim} \mathcal{S}_{2}, n\right\}
\end{aligned}
$$

Fact 2.9.22. Let $\mathcal{S}_{1}, \mathcal{S}_{2}, \mathcal{S}_{3} \subseteq \mathbb{F}^{n}$ be subspaces. Then,

$$
\begin{aligned}
\operatorname{dim}\left(\mathcal{S}_{1}+\mathcal{S}_{2}+\mathcal{S}_{3}\right)+\max \left\{\operatorname{dim}\left(\mathcal{S}_{1} \cap \mathcal{S}_{2}\right), \operatorname{dim}\left(\mathcal{S}_{1} \cap \mathcal{S}_{3}\right), \operatorname{dim}\left(\mathcal{S}_{2} \cap \mathcal{S}_{3}\right)\right\} \\
\leq \operatorname{dim} \mathcal{S}_{1}+\operatorname{dim} \mathcal{S}_{2}+\operatorname{dim} \mathcal{S}_{3}
\end{aligned}
$$

(Proof: See [392, p. 124].) (Remark: Setting $\mathcal{S}_{3}=\{0\}$ yields a weaker version of Theorem 2.3.1.)

Fact 2.9.23. Let $\mathcal{S}_{1}, \ldots, \mathcal{S}_{k} \subseteq \mathbb{F}^{n}$ be subspaces having the same dimension. Then, there exists a subspace $\hat{\mathcal{S}} \subseteq \mathbb{F}^{n}$ such that, for all $i=1, \ldots, k, \hat{\mathcal{S}}$ and \mathcal{S}_{i} are complementary. (Proof: See [629, pp. 78, 79, 259, 260].)

Fact 2.9.24. Let $\mathcal{S} \subseteq \mathbb{F}^{n}$ be a subspace. Then, for all $m \geq \operatorname{dim} \mathcal{S}$, there exists a matrix $A \in \mathbb{F}^{n \times m}$ such that $\mathcal{S}=\mathcal{R}(A)$.

Fact 2.9.25. Let $A \in \mathbb{F}^{n \times n}$, let $\mathcal{S} \subseteq \mathbb{F}^{n}$, assume that \mathcal{S} is a subspace, let $k \triangleq \operatorname{dim} \mathcal{S}$, let $S \in \mathbb{F}^{n \times k}$, and assume that $\mathcal{R}(S)=\mathcal{S}$. Then, \mathcal{S} is an invariant subspace of A if and only if there exists a matrix $M \in \mathbb{F}^{k \times k}$ such that $A S=S M$. (Proof: Set $B=I$ in Fact 5.13.1, See [872, p. 99].)

Fact 2.9.26. Let $\mathcal{S} \subseteq \mathbb{F}^{m}$, and let $A \in \mathbb{F}^{n \times m}$. Then,

$$
\begin{aligned}
\text { cone } A \mathcal{S} & =A \text { cone } \mathcal{S}, \\
\operatorname{co} A \mathcal{S} & =A \operatorname{co} \mathcal{S}, \\
\operatorname{span} A \mathcal{S} & =A \operatorname{span} \mathcal{S}, \\
\text { aff } A \mathcal{S} & =A \operatorname{aff} \mathcal{S} .
\end{aligned}
$$

Hence, if \mathcal{S} is a (cone, convex set, subspace, affine subspace), then so is $A \mathcal{S}$. Now, assume that A is left invertible, and let $A^{\mathrm{L}} \in \mathbb{F}^{m \times n}$ be a left inverse of A. Then,

$$
\begin{aligned}
\text { cone } \mathcal{S} & =A^{\mathrm{L}} \text { cone } A \mathcal{S}, \\
\operatorname{co~} \mathcal{S} & =A^{\mathrm{L}} \operatorname{co} A \mathcal{S}, \\
\operatorname{span} \mathcal{S} & =A^{\mathrm{L}} \operatorname{span} A \mathcal{S}, \\
\text { aff } \mathcal{S} & =A^{\mathrm{L}} \text { aff } A \mathcal{S} .
\end{aligned}
$$

Hence, if $A \mathcal{S}$ is a (cone, convex set, subspace, affine subspace), then so is \mathcal{S}.

Fact 2.9.27. Let $\mathcal{S} \subseteq \mathbb{F}^{n}$, and let $A \in \mathbb{F}^{n \times m}$. Then, the following statements hold:
i) If A is right invertible and A^{R} is a right inverse of A, then

$$
(A S)^{\perp} \subseteq A^{\mathrm{R} *} \mathcal{S}^{\perp}
$$

ii) If A is left invertible and A^{L} is a left inverse of A, then

$$
A S^{\perp} \subseteq\left(A^{\mathrm{L} *} \mathcal{S}\right)^{\perp}
$$

iii) If $n=m$ and A is nonsingular, then

$$
(A S)^{\perp}=A^{-*} \mathcal{S}^{\perp}
$$

(Proof: The third statement is an immediate consequence of the first two statements.)

Fact 2.9.28. Let $A \in \mathbb{F}^{n \times m}$, and let $\mathcal{S}_{1} \subseteq \mathbb{R}^{m}$ and $\mathcal{S}_{2} \subseteq \mathbb{F}^{n}$ be subspaces. Then, the following statements are equivalent:
i) $A S_{1} \subseteq \mathcal{S}_{2}$.
ii) $A^{*} S_{2}^{\perp} \subseteq \mathcal{S}_{1}^{\perp}$.
(Proof: See [311, p. 12].)
Fact 2.9.29. Let $\mathcal{S}_{1}, \mathcal{S}_{2} \subseteq \mathbb{F}^{m}$ be subspaces, and let $A \in \mathbb{F}^{n \times m}$. Then, the following statements hold:
i) $A\left(\mathcal{S}_{1} \cup \mathcal{S}_{2}\right)=A \S_{1} \cup A \S_{2}$.
ii) $A\left(\mathcal{S}_{1} \cap \mathcal{S}_{2}\right) \subseteq A S_{1} \cap A S_{2}$.
iii) $A\left(\mathcal{S}_{1}+\mathcal{S}_{2}\right)=A S_{1}+A S_{2}$.

If, in addition, A is left invertible, then the following statement holds:
iv) $A\left(\mathcal{S}_{1} \cap \mathcal{S}_{2}\right)=A \mathcal{S}_{1} \cap A \mathcal{S}_{2}$.
(Proof: See Fact 1.5.11, Fact 1.5.14, and [311, p. 12].)
Fact 2.9.30. Let $\mathcal{S}, \mathcal{S}_{1}, \mathcal{S}_{2} \subseteq \mathbb{F}^{n}$ be subspaces, let $A \in \mathbb{F}^{n \times m}$, and define $f: \mathbb{F}^{m} \mapsto \mathbb{F}^{n}$ by $f(x) \triangleq A x$. Then, the following statements hold:
i) $f\left[f^{-1}(\mathcal{S})\right] \subseteq \mathcal{S} \subseteq f^{-1}[f(\mathcal{S})]$.
ii) $\left[f^{-1}(S)\right]^{\perp}=A^{*} \mathcal{S}^{\perp}$.
iii) $f^{-1}\left(\mathcal{S}_{1} \cup \mathcal{S}_{2}\right)=f^{-1}\left(\mathcal{S}_{1}\right) \cup f^{-1}\left(\mathcal{S}_{2}\right)$.
iv) $f^{-1}\left(\mathcal{S}_{1} \cap \mathcal{S}_{2}\right)=f^{-1}\left(\mathcal{S}_{1}\right) \cap f^{-1}\left(\mathcal{S}_{2}\right)$.
v) $f^{-1}\left(\mathcal{S}_{1}+\mathcal{S}_{2}\right) \supseteq f^{-1}\left(\mathcal{S}_{1}\right)+f^{-1}\left(\mathcal{S}_{2}\right)$.
(Proof: See Fact 1.5 .12 and [311, p. 12].) (Problem: For a subspace $\mathcal{S} \subseteq \mathbb{F}^{n}$, $A \in \mathbb{F}^{n \times m}$, and $f(x) \triangleq A x$, determine $B \in \mathbb{F}^{m \times n}$ such that $f^{-1}(\mathcal{S})=B \mathcal{S}$, that is, $A B S \subseteq \mathcal{S}$ and $B S$ is maximal.)

Fact 2.9.31. Define the convex pointed cone $\mathcal{S} \subset \mathbb{R}^{2}$ by

$$
\mathcal{S} \triangleq\left\{\left(x_{1}, x_{2}\right) \in[0, \infty) \times \mathbb{R}: \text { if } x_{1}=0, \text { then } x_{2} \geq 0\right\}
$$

that is,

$$
\mathcal{S}=([0, \infty) \times \mathbb{R}) \backslash[\{0\} \times(-\infty, 0)]
$$

Furthermore, for $x, y \in \mathbb{R}^{2}$, define $x \stackrel{\text { d }}{\leq} y$ if and only if $y-x \in \mathcal{S}$. Then, " $\stackrel{\text { d }}{\leq}$ is a total ordering on \mathbb{R}^{2}. (Remark: " ${ }^{\mathrm{d}}$ " is the lexicographic or dictionary ordering. See Fact 1.5.8, (Remark: See [153, p. 161].)

2.10 Facts on Range, Null Space, Rank, and Defect

Fact 2.10.1. Let $A \in \mathbb{F}^{n \times n}$. Then,

$$
\mathcal{N}(A) \subseteq \mathcal{R}(I-A)
$$

and

$$
\mathcal{N}(I-A) \subseteq \mathcal{R}(A)
$$

(Remark: See Fact 3.12.3)
Fact 2.10.2. Let $A \in \mathbb{F}^{n \times m}$. Then, the following statements hold:
i) If $B \in \mathbb{F}^{m \times l}$ and $\operatorname{rank} B=m$, then $\mathcal{R}(A)=\mathcal{R}(A B)$.
ii) If $C \in \mathbb{F}^{k \times n}$ and $\operatorname{rank} C=n$, then $\mathcal{N}(A)=\mathcal{N}(C A)$.
iii) If $S \in \mathbb{F}^{m \times m}$ and S is nonsingular, then $\mathcal{N}(A)=S \mathcal{N}(A S)$.
(Remark: See Lemma 2.4.1.)
Fact 2.10.3. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times l}$. Then, the following statements hold:
i) If A and B are right invertible, then so is $A B$.
$i i)$ If A and B are left invertible, then so is $A B$.
iii) If $n=m=l$ and A and B are nonsingular, then so is $A B$.
(Proof: The result follows from either Corollary 2.5.10 or Proposition 2.6.3.) (Remark: See Fact 1.5.16.

Fact 2.10.4. Let $\mathcal{S} \subseteq \mathbb{F}^{m}$, assume that \mathcal{S} is an affine subspace, and let $A \in$ $\mathbb{F}^{n \times m}$. Then, the following statements hold:
i) $\operatorname{rank} A+\operatorname{dim} \mathcal{S}-m \leq \operatorname{dim} A \mathcal{S} \leq \min \{\operatorname{rank} A, \operatorname{dim} \mathcal{S}\}$.
ii) $\operatorname{dim}(A \mathcal{S})+\operatorname{dim}[\mathcal{N}(A) \cap \mathcal{S}]=\operatorname{dim} \mathcal{S}$.
iii) $\operatorname{dim} A S \leq \operatorname{dim} \mathcal{S}$.
iv) If A is left invertible, then $\operatorname{dim} A \mathcal{S}=\operatorname{dim} \mathcal{S}$.
(Proof: For i), see [1129, p. 413]. For iii), note that $\operatorname{dim} A S \leq \operatorname{dim} \mathcal{S}=\operatorname{dim} A^{\mathrm{L}} A \mathcal{S} \leq$ $\operatorname{dim} A S$.$) (Remark: See Fact 2.9.26 and Fact 10.8.17.)$

Fact 2.10.5. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{1 \times m}$. Then, $\mathcal{N}(A) \subseteq \mathcal{N}(B)$ if and only if there exists a vector $\lambda \in \mathbb{F}^{n}$ such that $B=\lambda^{*} A$.

Fact 2.10.6. Let $A \in \mathbb{F}^{n \times m}$ and $b \in \mathbb{F}^{n}$. Then, there exists a vector $x \in \mathbb{F}^{n}$ satisfying $A x=b$ if and only if $b^{*} \lambda=0$ for all $\lambda \in \mathcal{N}\left(A^{*}\right)$. (Proof: Assume that $A^{*} \lambda=0$ implies that $b^{*} \lambda=0$. Then, $\mathcal{N}\left(A^{*}\right) \subseteq \mathcal{N}\left(b^{*}\right)$. Hence, $\left.b \in \mathcal{R}(b) \subseteq \mathcal{R}(A).\right)$

Fact 2.10.7. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{l \times m}$. Then, $\mathcal{N}(B) \subseteq \mathcal{N}(A)$ if and only if there exists a matrix $C \in \mathbb{F}^{n \times l}$ such that $A=C B$. Now, let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{n \times l}$. Then, $\mathcal{R}(A) \subseteq \mathcal{R}(B)$ if and only if there exists a matrix $C \in \mathbb{F}^{l \times m}$ such that $A=B C$.

Fact 2.10.8. Let $A, B \in \mathbb{F}^{n \times m}$, and let $C \in \mathbb{F}^{m \times l}$ be right invertible. Then, $\mathcal{R}(A) \subseteq \mathcal{R}(B)$ if and only if $\mathcal{R}(A C) \subseteq \mathcal{R}(B C)$. Furthermore, $\mathcal{R}(A)=\mathcal{R}(B)$ if and only if $\mathcal{R}(A C)=\mathcal{R}(B C)$. (Proof: Since C is right invertible, it follows that $\mathcal{R}(A)=\mathcal{R}(A C)$.

Fact 2.10.9. Let $A, B \in \mathbb{F}^{n \times n}$, and assume there exists $\alpha \in \mathbb{F}$ such that $\alpha A+B$ is nonsingular. Then, $\mathcal{N}(A) \cap \mathcal{N}(B)=\{0\}$. (Remark: The converse is not true. Let $A \triangleq\left[\begin{array}{ll}1 & 0 \\ 2 & 0\end{array}\right]$ and $B \triangleq\left[\begin{array}{ll}0 & 1 \\ 0 & 2\end{array}\right]$.)

Fact 2.10.10. Let $A, B \in \mathbb{F}^{n \times m}$, and let $\alpha \in \mathbb{F}$ be nonzero. Then,

$$
\mathcal{N}(A) \cap \mathcal{N}(B)=\mathcal{N}(A) \cap \mathcal{N}(A+\alpha B)=\mathcal{N}(\alpha A+B) \cap \mathcal{N}(B)
$$

(Remark: See Fact 2.11.3)
Fact 2.10.11. Let $x \in \mathbb{F}^{n}$ and $y \in \mathbb{F}^{m}$. If either $x=0$ or $y \neq 0$, then

$$
\mathcal{R}\left(x y^{\mathrm{T}}\right)=\mathcal{R}(x)=\operatorname{span}\{x\}
$$

Furthermore, if either $x \neq 0$ or $y=0$, then

$$
\mathcal{N}\left(x y^{\mathrm{T}}\right)=\mathcal{N}\left(y^{\mathrm{T}}\right)=\{\bar{y}\}^{\perp} .
$$

Fact 2.10.12. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times l}$. Then, $\operatorname{rank} A B=\operatorname{rank} A$ if and only if $\mathcal{R}(A B)=\mathcal{R}(A)$. (Proof: If $\mathcal{R}(A B) \subset \mathcal{R}(A)$ (note proper inclusion), then Lemma 2.3.4 implies that $\operatorname{rank} A B<\operatorname{rank} A$.)

Fact 2.10.13. Let $A \in \mathbb{F}^{n \times m}, B \in \mathbb{F}^{m \times l}$, and $C \in \mathbb{F}^{l \times k}$. If $\operatorname{rank} A B=$ $\operatorname{rank} B$, then $\operatorname{rank} A B C=\operatorname{rank} B C$. (Proof: $\operatorname{rank} B^{\mathrm{T}} A^{\mathrm{T}}=\operatorname{rank} B^{\mathrm{T}}$ implies that $\left.\mathcal{R}\left(C^{\mathrm{T}} B^{\mathrm{T}} A^{\mathrm{T}}\right)=\mathcal{R}\left(C^{\mathrm{T}} B^{\mathrm{T}}\right).\right)$

Fact 2.10.14. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times l}$. Then, the following statements hold:
i) $\operatorname{rank} A B+\operatorname{def} A=\operatorname{dim}[\mathcal{N}(A)+\mathcal{R}(B)]$.
ii) $\operatorname{rank} A B+\operatorname{dim}[\mathcal{N}(A) \cap \mathcal{R}(B)]=\operatorname{rank} B$.
iii) $\operatorname{rank} A B+\operatorname{dim}\left[\mathcal{N}\left(A^{*}\right) \cap \mathcal{R}\left(B^{*}\right)\right]=\operatorname{rank} A$.
iv) $\operatorname{def} A B+\operatorname{rank} A+\operatorname{dim}[\mathcal{N}(A)+\mathcal{R}(B)]=l+m$.
v) $\operatorname{def} A B=\operatorname{def} B+\operatorname{dim}[\mathcal{N}(A) \cap \mathcal{R}(B)]$.
vi) $\operatorname{def} A B+m=\operatorname{def} A+\operatorname{dim}\left[\mathcal{N}\left(A^{*}\right) \cap \mathcal{R}\left(B^{*}\right)\right]+l$.
(Remark: $\operatorname{rank} B-\operatorname{rank} A B=\operatorname{dim}[\mathcal{N}(A) \cap \mathcal{R}(B)] \leq \operatorname{dim} \mathcal{N}(A)=m-\operatorname{rank} A$ yields (2.5.18).)

Fact 2.10.15. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times l}$. Then,

$$
\max \{\operatorname{def} A+l-m, \operatorname{def} B\} \leq \operatorname{def} A B \leq \operatorname{def} A+\operatorname{def} B .
$$

If, in addition, $m=l$, then

$$
\max \{\operatorname{def} A, \operatorname{def} B\} \leq \operatorname{def} A B .
$$

(Remark: The first inequality is Sylvester's law of nullity.)
Fact 2.10.16. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{n \times p}$. Then, there exists a matrix $X \in \mathbb{F}^{m \times p}$ satisfying $A X=B$ and $\operatorname{rank} X=q$ if and only if

$$
\operatorname{rank} B \leq q \leq \min \{m+\operatorname{rank} B-\operatorname{rank} A, p\} .
$$

(Proof: See [1353].)
Fact 2.10.17. The following statements hold:
i) $\operatorname{rank} A \geq 0$ for all $A \in \mathbb{F}^{n \times m}$.
ii) $\operatorname{rank} A=0$ if and only if $A=0$.
iii) $\operatorname{rank} \alpha A=(\operatorname{sign}|\alpha|) \operatorname{rank} A$ for all $\alpha \in \mathbb{F}$ and $A \in \mathbb{F}^{n \times m}$.
iv) $\operatorname{rank}(A+B) \leq \operatorname{rank} A+\operatorname{rank} B$ for all $A, B \in \mathbb{F}^{n \times m}$.
(Remark: Compare these conditions to the properties of a matrix norm given by Definition 9.2.1.)

Fact 2.10.18. Let $n, m, k \in \mathbb{P}$. Then, rank $1_{n \times m}=1$ and $1_{n \times n}^{k}=n^{k-1} 1_{n \times n}$.
Fact 2.10.19. Let $A \in \mathbb{F}^{n \times m}$. Then, $\operatorname{rank} A=1$ if and only if there exist vectors $x \in \mathbb{F}^{n}$ and $y \in \mathbb{F}^{m}$ such that $x \neq 0, y \neq 0$, and $A=x y^{\mathrm{T}}$. In this case, $\operatorname{tr} A=y^{\mathrm{T}} x$. (Remark: See Fact 5.14.1)

Fact 2.10.20. Let $A \in \mathbb{F}^{n \times n}, k \geq 1$, and $l \in \mathbb{N}$. Then, the following identities hold:
i) $\mathcal{R}\left[\left(A A^{*}\right)^{k}\right]=\mathcal{R}\left[\left(A A^{*}\right)^{l} A\right]$.
ii) $\mathcal{N}\left[\left(A^{*} A\right)^{k}\right]=\mathcal{N}\left[A\left(A^{*} A\right)^{l}\right]$.
iii) $\operatorname{rank}\left(A A^{*}\right)^{k}=\operatorname{rank}\left(A A^{*}\right)^{l} A$.
$i v) \operatorname{def}\left(A^{*} A\right)^{k}=\operatorname{def} A\left(A^{*} A\right)^{l}$.
Fact 2.10.21. Let $A \in \mathbb{F}^{n \times m}$, and let $B \in \mathbb{F}^{m \times p}$. Then,

$$
\operatorname{rank} A B=\operatorname{rank} A^{*} A B=\operatorname{rank} A B B^{*} .
$$

(Proof: See [1184, p. 37].)
Fact 2.10.22. Let $A \in \mathbb{F}^{n \times n}$. Then,

$$
2 \operatorname{rank} A^{2} \leq \operatorname{rank} A+\operatorname{rank} A^{3} .
$$

(Proof: See [392, p. 126] and consider a Jordan block of A.)
Fact 2.10.23. Let $A \in \mathbb{F}^{n \times n}$. Then,
$\operatorname{rank} A+\operatorname{rank}\left(A-A^{3}\right)=\operatorname{rank}\left(A+A^{2}\right)+\operatorname{rank}\left(A-A^{2}\right)$.
Consequently, $\quad \operatorname{rank} A \leq \operatorname{rank}\left(A+A^{2}\right)+\operatorname{rank}\left(A-A^{2}\right)$,
and A is tripotent if and only if

$$
\operatorname{rank} A=\operatorname{rank}\left(A+A^{2}\right)+\operatorname{rank}\left(A-A^{2}\right) .
$$

(Proof: See 1308.) (Remark: This result is due to Anderson and Styan.)
Fact 2.10.24. Let $x, y \in \mathbb{F}^{n}$. Then,

$$
\begin{aligned}
& \mathcal{R}\left(x y^{\mathrm{T}}+y x^{\mathrm{T}}\right)=\mathcal{R}\left(\left[\begin{array}{ll}
x & y
\end{array}\right]\right), \\
& \mathcal{N}\left(x y^{\mathrm{T}}+y x^{\mathrm{T}}\right)=\{x\}^{\perp} \cap\{y\}^{\perp}, \\
& \quad \operatorname{rank}\left(x y^{\mathrm{T}}+y x^{\mathrm{T}}\right) \leq 2 .
\end{aligned}
$$

Furthermore, $\operatorname{rank}\left(x y^{\mathrm{T}}+y x^{\mathrm{T}}\right)=1$ if and only if there exists $\alpha \in \mathbb{F}$ such that $x=\alpha y \neq 0$. (Remark: $x y^{\mathrm{T}}+y x^{\mathrm{T}}$ is a doublet. See [374, pp. 539,540].)

Fact 2.10.25. Let $A \in \mathbb{F}^{n \times m}, x \in \mathbb{F}^{n}$, and $y \in \mathbb{F}^{m}$. Then,

$$
(\operatorname{rank} A)-1 \leq \operatorname{rank}\left(A+x y^{*}\right) \leq(\operatorname{rank} A)+1 .
$$

(Remark: See Fact 6.4.2.)
Fact 2.10.26. Let $A \triangleq\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ and $B \triangleq\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$. Then, $\operatorname{rank} A B=1$ and $\operatorname{rank} B A$ $=0$. (Remark: See Fact 3.7.30)

Fact 2.10.27. Let $A, B \in \mathbb{F}^{n \times m}$. Then,

$$
|\operatorname{rank} A-\operatorname{rank} B| \leq\left\{\begin{array}{c}
\operatorname{rank}(A+B) \\
\operatorname{rank}(A-B)
\end{array}\right\} \leq \operatorname{rank} A+\operatorname{rank} B
$$

If, in addition, $\operatorname{rank} B \leq k$, then

$$
(\operatorname{rank} A)-k \leq\left\{\begin{array}{c}
\operatorname{rank}(A+B) \\
\operatorname{rank}(A-B)
\end{array}\right\} \leq(\operatorname{rank} A)+k .
$$

Fact 2.10.28. Let $A, B \in \mathbb{F}^{n \times m}$. Then, the following statements are equivalent:
i) $\operatorname{rank}(A+B)=\operatorname{rank} A+\operatorname{rank} B$.
ii) $\mathcal{R}(A) \cap \mathcal{R}(B)=\{0\}$ and $\mathcal{R}\left(A^{\mathrm{T}}\right) \cap \mathcal{R}\left(B^{\mathrm{T}}\right)=\{0\}$.
(Proof: See [281.) (Remark: See Fact 2.10.29)

Fact 2.10.29. Let $A, B \in \mathbb{F}^{n \times m}$, and assume that $A^{*} B=0$ and $B A^{*}=0$. Then,

$$
\operatorname{rank}(A+B)=\operatorname{rank} A+\operatorname{rank} B
$$

(Proof: Use Fact 2.11.4 and Proposition 6.1.6 See 339.) (Remark: See Fact 2.10.28,

Fact 2.10.30. Let $A, B \in \mathbb{F}^{n \times m}$. Then, the following statements are equivalent:
i) $\operatorname{rank}(B-A)=\operatorname{rank} B-\operatorname{rank} A$.
ii) There exists $M \in \mathbb{F}^{m \times n}$ such that $A=B M B$ and $M=M B M$.
iii) There exists $M \in \mathbb{F}^{m \times n}$ such that $B=B M B, M A=0$, and $A M=0$.
iv) There exists $M \in \mathbb{F}^{m \times n}$ such that $A=A M A, M B=0$, and $B M=0$.
(Proof: See [339].)
Fact 2.10.31. Let $A, B, C \in \mathbb{F}^{n \times m}$, and assume that

$$
\operatorname{rank}(B-A)=\operatorname{rank} B-\operatorname{rank} A
$$

and

$$
\operatorname{rank}(C-B)=\operatorname{rank} C-\operatorname{rank} B
$$

Then,

$$
\operatorname{rank}(C-A)=\operatorname{rank} C-\operatorname{rank} A
$$

(Proof: $\operatorname{rank}(C-A) \leq \operatorname{rank}(C-B)+\operatorname{rank}(B-A)=\operatorname{rank} C-\operatorname{rank} A$. Furthermore, $\operatorname{rank} C \leq \operatorname{rank}(C-A)+\operatorname{rank} A$, and thus $\operatorname{rank}(C-A) \geq \operatorname{rank} C-\operatorname{rank} A$. Alternatively, use Fact 2.10.30) (Remark: This result is due to 647.)

Fact 2.10.32. Let $A, B \in \mathbb{F}^{n \times m}$, and define

$$
A \stackrel{\mathrm{rs}}{\leq} B
$$

if and only if

$$
\operatorname{rank}(B-A)=\operatorname{rank} B-\operatorname{rank} A
$$

Then, " \leq " is a partial ordering on $\mathbb{F}^{n \times m}$. (Proof: Use Fact 2.10.31) (Remark: The relation " rs" is the rank subtractivity partial ordering.) (Remark: See Fact 8.19.5.)

Fact 2.10.33. Let $A, B \in \mathbb{F}^{n \times m}$, and assume that the following conditions hold:
i) $A^{*} A=A^{*} B$.
ii) $A A^{*}=B A^{*}$.
iii) $B^{*} B=B^{*} A$.
iv) $B B^{*}=A B^{*}$.

Then, $A=B$. (Proof: See 652.)

Fact 2.10.34. Let $A, B, C \in \mathbb{F}^{n \times m}$, and assume that the following conditions hold:
i) $A^{*} A=A^{*} B$.
ii) $A A^{*}=B A^{*}$.
iii) $B^{*} B=B^{*} C$.
iv) $B B^{*}=C B^{*}$.

Then, the following conditions hold:
v) $A^{*} A=A^{*} C$.
vi) $A A^{*}=C A^{*}$.
(Proof: See 652].)
Fact 2.10.35. Let $A, B \in \mathbb{F}^{n \times m}$. Then,

$$
A \stackrel{*}{\leq} B
$$

if and only if

$$
A^{*} A=A^{*} B
$$

and

$$
A A^{*}=B A^{*}
$$

Then, " ${ }^{\leq}$" is a partial ordering on $\mathbb{F}^{n \times m}$. (Proof: Use Fact 2.10.33 and Fact 2.10.34.) (Remark: The relation " ${ }^{*}$ " is the star partial ordering. See [111, 652.) (Remark: See Fact 8.19.7)

Fact 2.10.36. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that $A \stackrel{*}{\leq} B$ and $A B=B A$. Then, $A^{2} \stackrel{*}{\leq} B^{2}$. (Proof: See [106].) (Remark: See Fact 8.19.5.)

2.11 Facts on the Range, Rank, Null Space, and Defect of Partitioned Matrices

Fact 2.11.1. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{n \times l}$. Then,

$$
\mathcal{R}\left(\left[\begin{array}{ll}
A & B
\end{array}\right]\right)=\mathcal{R}(A)+\mathcal{R}(B)
$$

Consequently,

$$
\operatorname{rank}\left[\begin{array}{ll}
A & B
\end{array}\right]=\operatorname{dim}[\mathcal{R}(A)+\mathcal{R}(B)]
$$

Furthermore, the followings statements are equivalent:
i) $\operatorname{rank}\left[\begin{array}{cc}A & B\end{array}\right]=n$.
ii) $\operatorname{def}\left[\begin{array}{c}A^{*} \\ B^{*}\end{array}\right]=0$.
iii) $\mathcal{N}\left(A^{*}\right) \cap \mathcal{N}\left(B^{*}\right)=\{0\}$.

Fact 2.11.2. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{l \times m}$. Then,

$$
\operatorname{rank}\left[\begin{array}{l}
A \\
B
\end{array}\right]=\operatorname{dim}\left[\mathcal{R}\left(A^{*}\right)+\mathcal{R}\left(B^{*}\right)\right]
$$

(Proof: Use Fact 2.11.1,)
Fact 2.11.3. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{l \times m}$. Then,

$$
\mathcal{N}\left(\left[\begin{array}{l}
A \\
B
\end{array}\right]\right)=\mathcal{N}(A) \cap \mathcal{N}(B)
$$

Consequently,

$$
\operatorname{def}\left[\begin{array}{l}
A \\
B
\end{array}\right]=\operatorname{dim}[\mathcal{N}(A) \cap \mathcal{N}(B)]
$$

Furthermore, the followings statements are equivalent:
i) $\operatorname{rank}\left[\begin{array}{c}A \\ B\end{array}\right]=m$.
ii) $\operatorname{def}\left[\begin{array}{l}A \\ B\end{array}\right]=0$.
iii) $\mathcal{N}(A) \cap \mathcal{N}(B)=\{0\}$.
(Remark: See Fact 2.10.10)
Fact 2.11.4. Let $A, B \in \mathbb{F}^{n \times m}$. Then, the following statements are equivalent:
i) $\operatorname{rank}(A+B)=\operatorname{rank} A+\operatorname{rank} B$.
ii) $\operatorname{rank}\left[\begin{array}{cc}A & B\end{array}\right]=\operatorname{rank}\left[\begin{array}{l}A \\ B\end{array}\right]=\operatorname{rank} A+\operatorname{rank} B$.
iii) $\operatorname{dim}[\mathcal{R}(A) \cap \mathcal{R}(B)]=\operatorname{dim}\left[\mathcal{R}\left(A^{*}\right) \cap \mathcal{R}\left(B^{*}\right)\right]=0$.
iv) $\mathcal{R}(A) \cap \mathcal{R}(B)=\mathcal{R}\left(A^{*}\right) \cap \mathcal{R}\left(B^{*}\right)=\{0\}$.
v) There exists a matrix $C \in \mathbb{F}^{m \times n}$ such that $A C A=A, C B=0$, and $B C=0$.
(Proof: See 339 968.) (Remark: Additional conditions are given by Fact 6.4.32 under the assumption that $A+B$ is nonsingular.)

Fact 2.11.5. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{n \times l}$. Then,

$$
\mathcal{R}(A)=\mathcal{R}(B)
$$

if and only if

$$
\operatorname{rank} A=\operatorname{rank} B=\operatorname{rank}\left[\begin{array}{cc}
A & B
\end{array}\right]
$$

Fact 2.11.6. Let $A \in \mathbb{F}^{n \times m}$, and let $A_{0} \in \mathbb{F}^{k \times l}$ be a submatrix of A. Then, $\operatorname{rank} A_{0} \leq \operatorname{rank} A$.

Fact 2.11.7. Let $A \in \mathbb{F}^{n \times m}, B \in \mathbb{F}^{k \times m}, C \in \mathbb{F}^{m \times l}$, and $D \in \mathbb{F}^{m \times p}$, and assume that

$$
\operatorname{rank}\left[\begin{array}{c}
A \\
B
\end{array}\right]=\operatorname{rank} A
$$

and

$$
\operatorname{rank}\left[\begin{array}{cc}
C & D
\end{array}\right]=\operatorname{rank} C
$$

Then,

$$
\operatorname{rank}\left[\begin{array}{c}
A \\
B
\end{array}\right]\left[\begin{array}{ll}
C & D
\end{array}\right]=\operatorname{rank} A C
$$

(Proof: Use i) of Fact 2.10.14)
Fact 2.11.8. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{n \times l}$. Then,

$$
\begin{aligned}
\max \{\operatorname{rank} A, \operatorname{rank} B\} & \leq \operatorname{rank}\left[\begin{array}{cc}
A & B
\end{array}\right] \\
& =\operatorname{rank} A+\operatorname{rank} B-\operatorname{dim}[\mathcal{R}(A) \cap \mathcal{R}(B)] \\
& \leq \operatorname{rank} A+\operatorname{rank} B
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{def} A+\operatorname{def} B & \leq \operatorname{def}\left[\begin{array}{ll}
A & B
\end{array}\right] \\
& =\operatorname{def} A+\operatorname{def} B+\operatorname{dim}[\mathcal{R}(A) \cap \mathcal{R}(B)] \\
& \leq \min \{l+\operatorname{def} A, m+\operatorname{def} B\}
\end{aligned}
$$

If, in addition, $A^{*} B=0$, then

$$
\operatorname{rank}\left[\begin{array}{cc}
A & B
\end{array}\right]=\operatorname{rank} A+\operatorname{rank} B
$$

and

$$
\operatorname{def}\left[\begin{array}{ll}
A & B
\end{array}\right]=\operatorname{def} A+\operatorname{def} B
$$

(Proof: To prove the first equality, use Theorem 2.3.1 and Fact 2.11.1. For the case $A^{*} B=0$, note that

$$
\begin{aligned}
\operatorname{rank}\left[\begin{array}{cc}
A & B
\end{array}\right] & =\operatorname{rank}\left[\begin{array}{c}
A^{*} \\
B^{*}
\end{array}\right]\left[\begin{array}{cc}
A & B
\end{array}\right]=\left[\begin{array}{cc}
A^{*} A & 0 \\
0 & B^{*} B
\end{array}\right] \\
& \left.=\operatorname{rank} A^{*} A+\operatorname{rank} B^{*} B=\operatorname{rank} A+\operatorname{rank} B .\right)
\end{aligned}
$$

(Remark: See Fact 6.5.6 and Fact 6.4.44.)
Fact 2.11.9. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{n \times l}$. Then, $\operatorname{rank}\left[\begin{array}{ll}A & B\end{array}\right]+\operatorname{dim}[\mathcal{R}(A) \cap \mathcal{R}(B)]=\operatorname{rank} A+\operatorname{rank} B$.
(Proof: Use Theorem 2.3.1 and Fact 2.11.1.)
Fact 2.11.10. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{l \times m}$. Then,

$$
\operatorname{rank}\left[\begin{array}{c}
A \\
B
\end{array}\right]+\operatorname{dim}\left[\mathcal{R}\left(A^{*}\right) \cap \mathcal{R}\left(B^{*}\right)\right]=\operatorname{rank} A+\operatorname{rank} B
$$

(Proof: Use Fact 2.11.9.)

Fact 2.11.11. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{l \times m}$. Then,

$$
\begin{aligned}
\max \{\operatorname{rank} A, \operatorname{rank} B\} & \leq \operatorname{rank}\left[\begin{array}{l}
A \\
B
\end{array}\right] \\
& =\operatorname{rank} A+\operatorname{rank} B-\operatorname{dim}\left[\mathcal{R}\left(A^{*}\right) \cap \mathcal{R}\left(B^{*}\right)\right] \\
& \leq \operatorname{rank} A+\operatorname{rank} B
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{def} A-\operatorname{rank} B & \leq \operatorname{def} A-\operatorname{rank} B+\operatorname{dim}\left[\mathcal{R}\left(A^{*}\right) \cap \mathcal{R}\left(B^{*}\right)\right] \\
& =\operatorname{def}\left[\begin{array}{c}
A \\
B
\end{array}\right] \\
& \leq \min \{\operatorname{def} A, \operatorname{def} B\} .
\end{aligned}
$$

If, in addition, $A B^{*}=0$, then

$$
\operatorname{rank}\left[\begin{array}{c}
A \\
B
\end{array}\right]=\operatorname{rank} A+\operatorname{rank} B
$$

and

$$
\operatorname{def}\left[\begin{array}{l}
A \\
B
\end{array}\right]=\operatorname{def} A-\operatorname{rank} B
$$

(Proof: Use Fact 2.11.8 and Fact 2.9.21) (Remark: See Fact 6.5.6.)
Fact 2.11.12. Let $A, B \in \mathbb{F}^{n \times m}$. Then,

$$
\left.\max \{\operatorname{rank} A, \operatorname{rank} B\},\left\{\begin{array}{c}
\operatorname{rank}\left[\begin{array}{cc}
A & B
\end{array}\right] \\
\operatorname{rank}(A+B)
\end{array}\right\} \leq\left[\begin{array}{c}
A \\
B
\end{array}\right]\right\} \leq \operatorname{rank} A+\operatorname{rank} B
$$

and

$$
\operatorname{def} A-\operatorname{rank} B \leq\left\{\begin{array}{c}
\operatorname{def}\left[\begin{array}{cc}
A & B
\end{array}\right]-m \\
\operatorname{def}\left[\begin{array}{c}
A \\
B
\end{array}\right]
\end{array}\right\} \leq\left\{\begin{array}{c}
\min \{\operatorname{def} A, \operatorname{def} B\} \\
\operatorname{def}(A+B)
\end{array}\right.
$$

(Proof: $\operatorname{rank}(A+B)=\operatorname{rank}\left[\begin{array}{ll}A & B\end{array}\right]\left[\begin{array}{l}I\end{array}\right] \leq \operatorname{rank}\left[\begin{array}{ll}A & B\end{array}\right]$, and $\operatorname{rank}(A+B)=$ $\left.\operatorname{rank}\left[\begin{array}{ll}I & I\end{array}\right]\left[{ }_{B}^{A}\right] \leq \operatorname{rank}\left[{ }_{B}^{A}\right].\right)$

Fact 2.11.13. Let $A \in \mathbb{F}^{n \times m}, B \in \mathbb{F}^{l \times k}$, and $C \in \mathbb{F}^{l \times m}$. Then,

$$
\operatorname{rank} A+\operatorname{rank} B=\operatorname{rank}\left[\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right] \leq \operatorname{rank}\left[\begin{array}{cc}
A & 0 \\
C & B
\end{array}\right]
$$

and

$$
\operatorname{rank} A+\operatorname{rank} B=\operatorname{rank}\left[\begin{array}{cc}
0 & A \\
B & 0
\end{array}\right] \leq \operatorname{rank}\left[\begin{array}{cc}
0 & A \\
B & C
\end{array}\right]
$$

Fact 2.11.14. Let $A \in \mathbb{F}^{n \times m}, B \in \mathbb{F}^{m \times l}$, and $C \in \mathbb{F}^{l \times k}$. Then,

$$
\operatorname{rank} A B+\operatorname{rank} B C \leq \operatorname{rank}\left[\begin{array}{cc}
0 & A B \\
B C & B
\end{array}\right]=\operatorname{rank} B+\operatorname{rank} A B C
$$

Consequently,

$$
\operatorname{rank} A B+\operatorname{rank} B C-\operatorname{rank} B \leq \operatorname{rank} A B C
$$

Furthermore, the following statements are equivalent:
i) $\operatorname{rank}\left[\begin{array}{cc}0 & A B \\ B C & B\end{array}\right]=\operatorname{rank} A B+\operatorname{rank} B C$.
ii) $\operatorname{rank} A B+\operatorname{rank} B C-\operatorname{rank} B=\operatorname{rank} A B C$.
iii) There exist $X \in \mathbb{F}^{k \times l}$ and $Y \in \mathbb{F}^{m \times n}$ such that

$$
B C X+Y A B=B
$$

(Remark: This result is the Frobenius inequality.) (Proof: Use Fact 2.11 .13 and $\left[\begin{array}{cc}0 & A B \\ B C & B\end{array}\right]=\left[\begin{array}{cc}I & A \\ 0 & I\end{array}\right]\left[\begin{array}{cc}-A B C & 0 \\ 0 & B\end{array}\right]\left[\begin{array}{cc}{ }_{C} & 0 \\ C & I\end{array}\right]$. The last statement follows from Fact 5.10.21, See [1307, 1308.) (Remark: See Fact 6.5.15 for the case of equality.)

Fact 2.11.15. Let $A, B \in \mathbb{F}^{n \times m}$. Then,

$$
\begin{aligned}
\operatorname{rank}\left[\begin{array}{cc}
A & B
\end{array}\right]+\operatorname{rank}\left[\begin{array}{c}
A \\
B
\end{array}\right] & \leq \operatorname{rank}\left[\begin{array}{ccc}
0 & A & B \\
A & A & 0 \\
B & 0 & B
\end{array}\right] \\
& =\operatorname{rank} A+\operatorname{rank} B+\operatorname{rank}(A+B)
\end{aligned}
$$

(Proof: Use the Frobenius inequality with $A \triangleq C^{\mathrm{T}} \triangleq\left[\begin{array}{ll}I & I\end{array}\right]$ and with B replaced by $\left[\begin{array}{ll}A & 0 \\ 0 & B\end{array}\right]$.)

Fact 2.11.16. Let $A \in \mathbb{F}^{n \times m}, B \in \mathbb{F}^{n \times l}$, and $C \in \mathbb{F}^{n \times k}$. Then,

$$
\begin{aligned}
\operatorname{rank}\left[\begin{array}{lll}
A & B & C
\end{array}\right] & \leq \operatorname{rank}\left[\begin{array}{cc}
A & B
\end{array}\right]+\operatorname{rank}\left[\begin{array}{cc}
B & C
\end{array}\right]-\operatorname{rank} B \\
& \leq \operatorname{rank}\left[\begin{array}{cc}
A & B
\end{array}\right]+\operatorname{rank} C \\
& \leq \operatorname{rank} A+\operatorname{rank} B+\operatorname{rank} C .
\end{aligned}
$$

(Proof: See 937.)
Fact 2.11.17. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{k \times l}$, and assume that B is a submatrix of A. Then,

$$
k+l-\operatorname{rank} B \leq n+m-\operatorname{rank} A .
$$

(Proof: See [134.)
Fact 2.11.18. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times n}$. Then,

$$
\begin{aligned}
{\left[\begin{array}{cc}
I_{n} & I_{n}-A B \\
B & 0
\end{array}\right] } & =\left[\begin{array}{cc}
I_{n} & A \\
0 & I_{m}
\end{array}\right]\left[\begin{array}{cc}
0 & I_{n}-A B \\
B & 0
\end{array}\right]\left[\begin{array}{cc}
I_{n} & 0 \\
I_{n} & I_{n}
\end{array}\right] \\
& =\left[\begin{array}{cc}
I_{n} & 0 \\
B & I_{m}
\end{array}\right]\left[\begin{array}{cc}
I_{n} & 0 \\
0 & B A B-B
\end{array}\right]\left[\begin{array}{cc}
I_{n} & I_{n}-A B \\
0 & I_{m}
\end{array}\right]
\end{aligned}
$$

Hence,

$$
\operatorname{rank}\left[\begin{array}{cc}
I_{n} & I_{n}-A B \\
B & 0
\end{array}\right]=\operatorname{rank} B+\operatorname{rank}\left(I_{n}-A B\right)=n+\operatorname{rank}(B A B-B)
$$

(Remark: See Fact 2.14.7)

Fact 2.11.19. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times n}$. Then,

$$
\begin{aligned}
{\left[\begin{array}{cc}
A & A B \\
B A & B
\end{array}\right] } & =\left[\begin{array}{cc}
I_{n} & 0 \\
B & I_{m}
\end{array}\right]\left[\begin{array}{cc}
A & 0 \\
0 & B-B A B
\end{array}\right]\left[\begin{array}{cc}
I_{m} & B \\
0 & I_{n}
\end{array}\right] \\
& =\left[\begin{array}{cc}
I_{n} & A \\
0 & I_{m}
\end{array}\right]\left[\begin{array}{cc}
A-A B A & 0 \\
0 & B
\end{array}\right]\left[\begin{array}{cc}
I_{m} & 0 \\
A & I_{n}
\end{array}\right] .
\end{aligned}
$$

Hence,

$$
\operatorname{rank}\left[\begin{array}{cc}
A & A B \\
B A & B
\end{array}\right]=\operatorname{rank} A+\operatorname{rank}(B-B A B)=\operatorname{rank} B+\operatorname{rank}(A-A B A)
$$

(Remark: See Fact 2.14.10.)
Fact 2.11.20. Let $\left[\begin{array}{cc}A & B \\ C & D\end{array}\right] \in \mathbb{F}^{\left(n_{1}+n_{2}\right) \times\left(m_{1}+m_{2}\right)}$, assume that $\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$ is nonsingular, and define $\left[\begin{array}{cc}E & F \\ F\end{array}\right] \in \mathbb{F}^{\left(m_{1}+m_{2}\right) \times\left(n_{1}+n_{2}\right)}$ by

$$
\left[\begin{array}{ll}
E & F \\
G & H
\end{array}\right] \triangleq\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]^{-1} .
$$

Then,

$$
\begin{aligned}
\operatorname{def} A & =\operatorname{def} H \\
\operatorname{def} B & =\operatorname{def} F \\
\operatorname{def} C & =\operatorname{def} G \\
\operatorname{def} D & =\operatorname{def} E
\end{aligned}
$$

More generally, if U and V are complementary submatrices of a matrix and its inverse, then $\operatorname{def} U=\operatorname{def} V$. (Proof: See [1242, 1364 and [1365, p. 38].) (Remark: U and V are complementary submatrices if the row numbers not used to create U are the column numbers used to create V, and the column numbers not used to create U are the row numbers used to create V.) (Remark: Note the sizes of the matrix blocks, which differs from Fact 2.14.28) (Remark: This result is the nullity theorem. A history of this result is given in [1242]. See Fact 3.20.5])

Fact 2.11.21. Let $A \in \mathbb{F}^{n \times n}$, assume that A is nonsingular, and let $\mathcal{S}_{1}, \mathcal{S}_{2} \subseteq$ $\{1, \ldots, n\}$. Then,

$$
\operatorname{rank}\left(A^{-1}\right)_{\left(\mathcal{S}_{1}, \delta_{2}\right)}=\operatorname{rank} A_{\left(\mathcal{S}_{2}, \mathcal{S}_{1}\right)}+\operatorname{card}\left(\mathcal{S}_{1}\right)+\operatorname{card}\left(\mathcal{S}_{2}\right)-n
$$

(Proof: See [1365, p. 40].) (Remark: See Fact 2.11.22 and Fact 2.13.5)
Fact 2.11.22. Let $A \in \mathbb{F}^{n \times n}$, assume that A is nonsingular, and let $\mathcal{S} \subseteq$ $\{1, \ldots, n\}$. Then,

$$
\operatorname{rank}\left(A^{-1}\right)_{(\delta, \delta \sim)}=\operatorname{rank} A_{(\delta, \delta \sim)}
$$

(Proof: Apply Fact 2.11.21 with $\mathcal{S}_{2}=\mathcal{S}_{1}^{\sim}$.)

2.12 Facts on the Inner Product, Outer Product, Trace, and Matrix Powers

Fact 2.12.1. Let $x, y, z \in \mathbb{F}^{n}$, and assume that $x^{*} x=y^{*} y=z^{*} z=1$. Then,

$$
\sqrt{1-\left|x^{*} y\right|^{2}} \leq \sqrt{1-\left|x^{*} z\right|^{2}}+\sqrt{1-\left|z^{*} y\right|^{2}} .
$$

Equality holds if and only if there exists $\alpha \in \mathbb{F}$ such that either $z=\alpha x$ or $z=\alpha y$. (Proof: See [1490, p. 155].) (Remark: See Fact 3.11.32)

Fact 2.12.2. Let $x, y \in \mathbb{F}^{n}$. Then, $x^{*} x=y^{*} y$ and $\operatorname{Im} x^{*} y=0$ if and only if $x-y$ is orthogonal to $x+y$.

Fact 2.12.3. Let $x, y \in \mathbb{R}^{n}$. Then, $x x^{\mathrm{T}}=y y^{\mathrm{T}}$ if and only if either $x=y$ or $x=-y$.

Fact 2.12.4. Let $x, y \in \mathbb{R}^{n}$. Then, $x y^{\mathrm{T}}=y x^{\mathrm{T}}$ if and only if x and y are linearly dependent.

Fact 2.12.5. Let $x, y \in \mathbb{R}^{n}$. Then, $x y^{\mathrm{T}}=-y x^{\mathrm{T}}$ if and only if either $x=0$ or $y=0$. (Proof: If $x_{(i)} \neq 0$ and $y_{(j)} \neq 0$, then $x_{(j)}=y_{(i)}=0$ and $0 \neq x_{(i)} y_{(j)} \neq$ $x_{(j)} y_{(i)}=0$.)

Fact 2.12.6. Let $x, y \in \mathbb{R}^{n}$. Then, $y x^{\mathrm{T}}+x y^{\mathrm{T}}=y^{\mathrm{T}} y x x^{\mathrm{T}}$ if and only if either $x=0$ or $y=\frac{1}{2} y^{\mathrm{T}} y x$.

Fact 2.12.7. Let $x, y \in \mathbb{F}^{n}$. Then,

$$
\left(x y^{*}\right)^{r}=\left(y^{*} x\right)^{r-1} x y^{*} .
$$

Fact 2.12.8. Let $x_{1}, \ldots, x_{k} \in \mathbb{F}^{n}$, and let $y_{1}, \ldots, y_{k} \in \mathbb{F}^{m}$. Then, the following statements are equivalent:
i) x_{1}, \ldots, x_{k} are linearly independent, and y_{1}, \ldots, y_{k} are linearly independent.
ii) $\mathcal{R}\left(\sum_{i=1}^{k} x_{i} y_{i}^{\mathrm{T}}\right)=k$.
(Proof: See [374, p. 537].)
Fact 2.12.9. Let $A, B, C \in \mathbb{R}^{2 \times 2}$. Then,

$$
\begin{aligned}
\operatorname{tr}(A B C+A C B) & +(\operatorname{tr} A)(\operatorname{tr} B) \operatorname{tr} C \\
& =(\operatorname{tr} A) \operatorname{tr} B C+(\operatorname{tr} B) \operatorname{tr} A C+(\operatorname{tr} C) \operatorname{tr} A B .
\end{aligned}
$$

(Proof: See [269, p. 330].) (Remark: See Fact 4.9.3)
Fact 2.12.10. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{l \times k}$. Then,

$$
A E_{i, j, m \times l} B=\operatorname{col}_{i}(A) \operatorname{row}_{j}(B) .
$$

Fact 2.12.11. Let $A \in \mathbb{F}^{n \times m}, B \in \mathbb{F}^{m \times l}$, and $C \in \mathbb{F}^{l \times n}$. Then,

$$
\operatorname{tr} A B C=\sum_{i=1}^{n} \operatorname{row}_{i}(A) B \operatorname{col}_{i}(C)
$$

Fact 2.12.12. Let $A \in \mathbb{F}^{n \times m}$. Then, the following statements are equivalent:
i) $A=0$.
ii) $A x=0$ for all $x \in \mathbb{F}^{m}$.
iii) $\operatorname{tr} A A^{*}=0$.

Fact 2.12.13. Let $A \in \mathbb{F}^{n \times n}$ and $k \geq 1$. Then,

$$
\operatorname{Re} \operatorname{tr} A^{2 k} \leq \operatorname{tr} A^{k} A^{k *} \leq \operatorname{tr}\left(A A^{*}\right)^{k}
$$

(Remark: To prove the left-hand inequality, consider $\operatorname{tr}\left(A^{k}-A^{k *}\right)\left(A^{k *}-A^{k}\right)$. For the right-hand inequality when $k=2$, consider $\operatorname{tr}\left(A A^{*}-A^{*} A\right)^{2}$.)

Fact 2.12.14. Let $A \in \mathbb{F}^{n \times n}$. Then, $\operatorname{tr} A^{k}=0$ for all $k=1, \ldots, n$ if and only if $A^{n}=0$. (Proof: For sufficiency, Fact 4.10.6 implies that $\operatorname{spec}(A)=\{0\}$, and thus the Jordan form of A is a block-diagonal matrix each of whose diagonally located blocks is a standard nilpotent matrix. For necessity, see [1490, p. 112].)

Fact 2.12.15. Let $A \in \mathbb{F}^{n \times n}$, and assume that $\operatorname{tr} A=0$. If $A^{2}=A$, then $A=0$. If $A^{k}=A$, where $k \geq 4$ and $2 \leq n<p$, where p is the smallest prime divisor of $k-1$, then $A=0$. (Proof: See 344.)

Fact 2.12.16. Let $A, B \in \mathbb{F}^{n \times n}$. Then,

$$
\operatorname{Re} \operatorname{tr} A B \leq \frac{1}{2} \operatorname{tr}\left(A A^{*}+B B^{*}\right)
$$

(Proof: See [729.) (Remark: See Fact 8.12.18.)
Fact 2.12.17. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that $A B=0$. Then, for all $k \geq 1$,

$$
\operatorname{tr}(A+B)^{k}=\operatorname{tr} A^{k}+\operatorname{tr} B^{k}
$$

Fact 2.12.18. Let $A \in \mathbb{R}^{n \times n}$, let $x, y \in \mathbb{R}^{n}$, and let $k \geq 1$. Then,

$$
\left(A+x y^{\mathrm{T}}\right)^{k}=A^{k}+B \hat{I}_{k} C^{\mathrm{T}}
$$

where

$$
B \triangleq\left[\begin{array}{llll}
x & A x & \cdots & A^{k-1} x
\end{array}\right]
$$

and

$$
C \triangleq\left[\begin{array}{llll}
y & \left(A^{\mathrm{T}}+y x^{\mathrm{T}}\right) y & \cdots & \left(A^{\mathrm{T}}+y x^{\mathrm{T}}\right)^{k} y
\end{array}\right]
$$

(Proof: See 192].)
Fact 2.12.19. Let $A, B \in \mathbb{F}^{n \times n}$. Then, the following statements hold:
i) $A B+B A=\frac{1}{2}\left[(A+B)^{2}-(A-B)^{2}\right]$.
ii) $(A+B)(A-B)=A^{2}-B^{2}-[A, B]$.
iii) $(A-B)(A+B)=A^{2}-B^{2}+[A, B]$.
iv) $A^{2}-B^{2}=\frac{1}{2}[(A+B)(A-B)+(A-B)(A+B)]$.

Fact 2.12.20. Let $A, B \in \mathbb{F}^{n \times n}$, and let k be a positive integer. Then,

$$
A^{k}-B^{k}=\sum_{i=0}^{k-1} A^{i}(A-B) B^{k-1-i}=\sum_{i=1}^{k} A^{k-i}(A-B) B^{i-1} .
$$

Fact 2.12.21. Let $A \in \mathbb{F}^{n \times n}, B \in \mathbb{F}^{n \times m}$, and $C \in \mathbb{F}^{m \times m}$, and let $k \geq 1$.
Then,

$$
\left[\begin{array}{cc}
A & B \\
0 & C
\end{array}\right]^{k}=\left[\begin{array}{cc}
A^{k} & \sum_{i=1}^{k} A^{k-i} B C^{i-1} \\
0 & C^{k}
\end{array}\right]
$$

Fact 2.12.22. Let $A, B \in \mathbb{F}^{n \times n}$, and define $\mathcal{A} \triangleq\left[\begin{array}{cc}A & A \\ A & A\end{array}\right]$ and $\mathcal{B} \triangleq\left[\begin{array}{cc}B & -B \\ -B & B\end{array}\right]$. Then,

$$
\mathcal{A B}=\mathcal{B A}=0 .
$$

Fact 2.12.23. A cube root of I_{2} is given by

$$
\left[\begin{array}{cc}
-\frac{1}{2} & \frac{\sqrt{3}}{2} \\
\frac{-\sqrt{3}}{2} & -\frac{1}{2}
\end{array}\right]^{3}=\left[\begin{array}{cc}
-1 & -1 \\
1 & 0
\end{array}\right]^{3}=I_{2} .
$$

Fact 2.12.24. Let n be an integer, and define

$$
\left[\begin{array}{l}
a_{n} \\
b_{n} \\
c_{n}
\end{array}\right] \triangleq\left[\begin{array}{lll}
63 & 104 & -68 \\
64 & 104 & -67 \\
80 & 131 & -85
\end{array}\right]^{n}\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right]
$$

Then,

$$
\begin{aligned}
& \sum_{n=0}^{\infty} a_{n}=\frac{1+53 x+9 x^{2}}{1-82 x-82 x^{2}+x^{3}}, \\
& \sum_{n=0}^{\infty} b_{n}=\frac{2-26 x-12 x^{2}}{1-82 x-82 x^{2}+x^{3}}, \\
& \sum_{n=0}^{\infty} c_{n}=\frac{2+8 x-10 x^{2}}{1-82 x-82 x^{2}+x^{3}},
\end{aligned}
$$

and

$$
a_{n}^{3}+b_{n}^{3}=c_{n}^{3}+(-1)^{n} .
$$

(Remark: This result is an identity of Ramanujan. See 632].) (Remark: The last identity holds for all integers, not necessarily positive.)

2.13 Facts on the Determinant

Fact 2.13.1. $\operatorname{det} \hat{I}_{n}=(-1)^{\lfloor n / 2\rfloor}=(-1)^{n(n-1) / 2}$.

Fact 2.13.2. $\operatorname{det}\left(I_{n}+\alpha 1_{n \times n}\right)=1+\alpha n$.
Fact 2.13.3. Let $A \in \mathbb{F}^{n \times m}$, let $B \in \mathbb{F}^{m \times n}$, and assume that $m<n$. Then, $\operatorname{det} A B=0$.

Fact 2.13.4. Let $A \in \mathbb{F}^{n \times m}$, let $B \in \mathbb{F}^{m \times n}$, and assume that $n \leq m$. Then,

$$
\operatorname{det} A B=\sum_{1 \leq i_{1}<\cdots<i_{n} \leq m} \operatorname{det} A_{\left(\{1, \ldots, n\},\left\{i_{1}, \ldots, i_{n}\right\}\right)} \operatorname{det} B_{\left(\left\{i_{1}, \ldots, i_{n}\right\},\{1, \ldots, n\}\right)}
$$

(Proof: See 447, p. 102].) (Remark: $\operatorname{det} A B$ is equal to the sum of all $\binom{m}{n}$ products of pairs of subdeterminants of A and B formed by choosing n columns of A and the corresponding n rows of B.) (Remark: This identity is a special case of the Binet-Cauchy formula given by Fact 7.5.17. The special case $n=m$ is given by Proposition 2.7.1,) (Remark: Determinantal and minor identities are given in [270, 880].) (Remark: See Fact 2.14.8.)

Fact 2.13.5. Let $A \in \mathbb{F}^{n \times n}$, assume that A is nonsingular, let $\mathcal{S}_{1}, \mathcal{S}_{2} \subseteq$ $\{1, \ldots, n\}$, and assume that $\operatorname{card}\left(\mathcal{S}_{1}\right)=\operatorname{card}\left(\mathcal{S}_{2}\right)$. Then,

$$
\left|\operatorname{det}\left(A^{-1}\right)_{\left(\mathcal{S}_{1}, \delta_{2}\right)}\right|=\frac{\left|\operatorname{det} A_{\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)}\right|}{|\operatorname{det} A|} .
$$

(Proof: See 1365 p. 38].) (Remark: When $\operatorname{card}\left(\mathcal{S}_{1}\right)=\operatorname{card}\left(\mathcal{S}_{2}\right)=1$, this result yields the absolute value of (2.7.24).) (Remark: See Fact 2.11.21)

Fact 2.13.6. Let $A \in \mathbb{F}^{n \times n}$, assume that A is nonsingular, and let $b \in \mathbb{F}^{n}$. Then, the solution $x \in \mathbb{F}^{n}$ of $A x=b$ is given by

$$
x=\left[\begin{array}{c}
\frac{\operatorname{det}(A \stackrel{1}{\leftarrow} b)}{\operatorname{det} A} \\
\vdots \\
\frac{\operatorname{det}(A \stackrel{n}{\leftarrow} b)}{\operatorname{det} A}
\end{array}\right] .
$$

(Proof: Note that $A(I \stackrel{i}{\leftarrow} x)=A \stackrel{i}{\leftarrow} b$. Since $\operatorname{det}(I \stackrel{i}{\leftarrow} x)=x_{(i)}$, it follows that $(\operatorname{det} A) x_{(i)}=\operatorname{det}(A \stackrel{i}{\leftarrow} b)$.) (Remark: This identity is Cramer's rule. See Fact 2.13.7 for extensions to nonsquare A.)

Fact 2.13.7. Let $A \in \mathbb{F}^{n \times m}$ be right invertible, and let $b \in \mathbb{F}^{n}$. Then, a solution $x \in \mathbb{F}^{m}$ of $A x=b$ is given by

$$
x_{(i)}=\frac{\operatorname{det}\left[(A \stackrel{i}{\leftarrow} b) A^{*}\right]-\operatorname{det}\left[(A \stackrel{i}{\leftarrow} 0) A^{*}\right]}{\operatorname{det}\left(A A^{*}\right)}
$$

for all $i=1, \ldots, m$. (Proof: See 862].) (Remark: This result is a generalization of Cramer's rule. See Fact 2.13.6. Extensions to generalized inverses are given in [178, 755, 855] and [1396, Chapter 3].)

Fact 2.13.8. Let $A \in \mathbb{F}^{n \times n}$, and assume that either $A_{(i, j)}=0$ for all i, j such that $i+j<n+1$ or $A_{(i, j)}=0$ for all i, j such that $i+j>n+1$. Then,

$$
\operatorname{det} A=(-1)^{\lfloor n / 2\rfloor} \prod_{i=1}^{n} A_{(i, n+1-i)}
$$

(Remark: A is lower reverse triangular.)
Fact 2.13.9. Define $A \in \mathbb{R}^{n \times n}$ by

$$
A \triangleq\left[\begin{array}{cccccc}
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
0 & 0 & 0 & \ddots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 1 \\
1 & 0 & 0 & \cdots & 0 & 0
\end{array}\right]
$$

Then,

$$
\operatorname{det} A=(-1)^{n+1}
$$

Fact 2.13.10. Let $a_{1}, \ldots, a_{n} \in \mathbb{F}$. Then,

$$
\operatorname{det}\left[\begin{array}{cccc}
1+a_{1} & a_{2} & \cdots & a_{n} \\
a_{1} & 1+a_{2} & \cdots & a_{n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{1} & a_{2} & \cdots & 1+a_{n}
\end{array}\right]=1+\sum_{i=1}^{n} a_{i}
$$

Fact 2.13.11. Let $a_{1}, \ldots, a_{n} \in \mathbb{F}$ be nonzero. Then,

$$
\operatorname{det}\left[\begin{array}{cccc}
\frac{1+a_{1}}{a_{1}} & 1 & \cdots & 1 \\
1 & \frac{1+a_{2}}{a_{2}} & \cdots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 1 & \cdots & \frac{1+a_{n}}{a_{n}}
\end{array}\right]=\frac{1+\sum_{i=1}^{n} a_{i}}{\prod_{i=1}^{n} a_{i}}
$$

Fact 2.13.12. Let $a, b, c_{1}, \ldots, c_{n} \in \mathbb{F}$, define $A \in \mathbb{F}^{n \times n}$ by

$$
A \triangleq\left[\begin{array}{lllll}
c_{1} & a & a & \cdots & a \\
b & c_{2} & a & \cdots & a \\
b & b & c_{3} & \ddots & a \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
b & b & b & \cdots & c_{n}
\end{array}\right]
$$

and let $p(x)=\left(c_{1}-x\right)\left(c_{2}-x\right) \cdots\left(c_{n}-x\right)$ and $p_{i}(x)=p(x) /\left(c_{i}-x\right)$ for all $i=1, \ldots, n$.

Then,

$$
\operatorname{det} A= \begin{cases}\frac{b p(a)-a p(b)}{b-a}, & b \neq a \\ a \sum_{i=1}^{n-1} p_{i}(a)+c_{n} p_{n}(a), & b=a\end{cases}
$$

(Proof: See [1487, p. 10].)
Fact 2.13.13. Let $a, b \in \mathbb{F}$, and define $A, B \in \mathbb{F}^{n \times n}$ by

$$
A \triangleq(a-b) I_{n}+b 1_{n \times n}=\left[\begin{array}{ccccc}
a & b & b & \cdots & b \\
b & a & b & \cdots & b \\
b & b & a & \ddots & b \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
b & b & b & \cdots & a
\end{array}\right]
$$

and

$$
B \triangleq a I_{n}+b 1_{n \times n}=\left[\begin{array}{ccccc}
a+b & b & b & \cdots & b \\
b & a+b & b & \cdots & b \\
b & b & a+b & \ddots & b \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
b & b & b & \cdots & a+b
\end{array}\right]
$$

Then,

$$
\operatorname{det} A=(a-b)^{n-1}[a+b(n-1)]
$$

and, if $\operatorname{det} A \neq 0$,

$$
A^{-1}=\frac{1}{a-b} I_{n}+\frac{b}{(b-a)[a+b(n-1)]} 1_{n \times n}
$$

Furthermore,

$$
\operatorname{det} B=a^{n-1}(a+n b)
$$

and, if $\operatorname{det} B \neq 0$,

$$
B^{-1}=\frac{1}{a}\left(I_{n}-\frac{b}{a+n b} 1_{n \times n}\right)
$$

(Remark: See Fact 2.14.26 Fact 4.10.15, and Fact 8.9.34]) (Remark: The matrix $a I_{n}+b 1_{n \times n}$ arises in combinatorics. See [267, 269].)

Fact 2.13.14. Let $A \in \mathbb{F}^{n \times n}$, and define $\gamma \triangleq \max _{i, j=1, \ldots, n}\left|A_{(i, j)}\right|$. Then,

$$
|\operatorname{det} A| \leq \gamma^{n} n^{n / 2}
$$

(Proof: The result is a consequence of the arithmetic-mean-geometric-mean inequality Fact 1.15 .14 and Schur's inequality Fact 8.17.5. See [447, p. 200].) (Remark: See Fact 8.13.34)

Fact 2.13.15. Let $A \in \mathbb{R}^{n \times n}$, and, for $i=1, \ldots, n$, let α_{i} denote the sum of the positive components in $\operatorname{row}_{i}(A)$ and let β_{i} denote the sum of the positive
components in $\operatorname{row}_{i}(-A)$. Then,

$$
|\operatorname{det} A| \leq \prod_{i=1}^{n} \max \left\{\alpha_{i}, \beta_{i}\right\}-\prod_{i=1}^{n} \min \left\{\alpha_{i}, \beta_{i}\right\} .
$$

(Proof: See 767.) (Remark: This result is an extension of a result due to Schinzel.)
Fact 2.13.16. For $i=1, \ldots, 4$, let $A_{i}, B_{i} \in \mathbb{F}^{2 \times 2}$, where $\operatorname{det} A_{i}=\operatorname{det} B_{i}=1$. Furthermore, define $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D} \in \mathbb{F}^{4 \times 4}$, where, for $i, j=1, \ldots, 4$,

$$
\begin{aligned}
\mathcal{A}_{(i, j)} & =\operatorname{tr} A_{i} A_{j}, \\
\mathcal{B}_{(i, j)} & =\operatorname{tr} B_{i} B_{j}, \\
\mathcal{C}_{(i, j)} & =\operatorname{tr} A_{i} B_{j}, \\
\mathcal{D}_{(i, j)} & =\operatorname{tr} A_{i} B_{j}^{-1} .
\end{aligned}
$$

Then,

$$
\operatorname{det} \mathcal{C}+\operatorname{det} \mathcal{D}=0
$$

and

$$
(\operatorname{det} \mathcal{A})(\operatorname{det} \mathcal{B})=(\operatorname{det} \mathcal{C})^{2} .
$$

(Remark: These identities are due to Magnus. See [735.)
Fact 2.13.17. Let $\mathcal{J} \subseteq \mathbb{R}$ be a finite or infinite interval, and let $f: \mathcal{J} \mapsto \mathbb{R}$. Then, the following statements are equivalent:
i) f is convex.
ii) For all distinct $x, y, z \in \mathcal{J}$,

$$
\frac{\operatorname{det}\left[\begin{array}{ccc}
1 & x & f(x) \\
1 & y & f(y) \\
1 & z & f(z)
\end{array}\right]}{\operatorname{det}\left[\begin{array}{lll}
1 & x & x^{2} \\
1 & y & y^{2} \\
1 & z & z^{2}
\end{array}\right]} \geq 0
$$

iii) For all $x, y, z \in \mathcal{J}$ such that $x<y<z$,

$$
\operatorname{det}\left[\begin{array}{lll}
1 & x & f(x) \\
1 & y & f(y) \\
1 & z & f(z)
\end{array}\right] \geq 0
$$

(Proof: See [1039, p. 21].)

2.14 Facts on the Determinant of Partitioned Matrices

Fact 2.14.1. Let $A \in \mathbb{F}^{n \times n}$, let A_{0} be the $k \times k$ leading principal submatrix of A, and let $B \in \mathbb{F}^{(n-k) \times(n-k)}$, where, for all $i, j=1, \ldots, n-k, B_{(i, j)}$ is the determinant of the submatrix of A comprised of rows $1, \ldots, k$ and $k+i$ and columns $1, \ldots, k$ and $k+j$. Then,

$$
\operatorname{det} B=\left(\operatorname{det} A_{0}\right)^{n-k-1} \operatorname{det} A .
$$

If, in addition, A_{0} is nonsingular, then

$$
\operatorname{det} A=\frac{\operatorname{det} B}{\left(\operatorname{det} A_{0}\right)^{n-k-1}}
$$

(Remark: If $k=n-1$, then $B=\operatorname{det} A$.) (Remark: This result is Sylvester's identity.)

Fact 2.14.2. Let $A \in \mathbb{F}^{n \times n}, x, y \in \mathbb{F}^{n}$, and $a \in \mathbb{F}$. Then,

$$
\operatorname{det}\left[\begin{array}{cc}
A & x \\
y^{\mathrm{T}} & a
\end{array}\right]=a(\operatorname{det} A)-y^{\mathrm{T}} A^{\mathrm{A}} x
$$

Hence,

$$
\operatorname{det}\left[\begin{array}{cc}
A & x \\
y^{\mathrm{T}} & a
\end{array}\right]= \begin{cases}(\operatorname{det} A)\left(a-y^{\mathrm{T}} A^{-1} x\right), & \operatorname{det} A \neq 0 \\
a \operatorname{det}\left(A-a^{-1} x y^{\mathrm{T}}\right), & a \neq 0 \\
-y^{\mathrm{T}} A^{\mathrm{A}} x, & a=0 \text { or } \operatorname{det} A=0\end{cases}
$$

In particular,

$$
\operatorname{det}\left[\begin{array}{cc}
A & A x \\
y^{\mathrm{T}} A & y^{\mathrm{T}} A x
\end{array}\right]=0
$$

Finally,

$$
\operatorname{det}\left(A+x y^{\mathrm{T}}\right)=\operatorname{det} A+y^{\mathrm{T}} A^{\mathrm{A}} x=-\operatorname{det}\left[\begin{array}{cc}
A & x \\
y^{\mathrm{T}} & -1
\end{array}\right]
$$

(Remark: See Fact 2.16.2 Fact 2.14.3 and Fact 2.16.4)
Fact 2.14.3. Let $A \in \mathbb{F}^{n \times n}, b \in \mathbb{F}^{n}$, and $a \in \mathbb{F}$. Then,

$$
\operatorname{det}\left[\begin{array}{cc}
A & b \\
b^{*} & a
\end{array}\right]=a(\operatorname{det} A)-b^{*} A^{\mathrm{A}} b
$$

In particular,

$$
\operatorname{det}\left[\begin{array}{cc}
A & b \\
b^{*} & a
\end{array}\right]= \begin{cases}(\operatorname{det} A)\left(a-b^{*} A^{-1} b\right), & \operatorname{det} A \neq 0 \\
a \operatorname{det}\left(A-a^{-1} b b^{*}\right), & a \neq 0 \\
-b^{*} A^{\mathrm{A}} b, & a=0\end{cases}
$$

(Remark: This identity is a specialization of Fact 2.14.2 with $x=b$ and $y=\bar{b}$.) (Remark: See Fact 8.15.4)

Fact 2.14.4. Let $A \in \mathbb{F}^{n \times n}$. Then,

$$
\begin{gathered}
\operatorname{rank}\left[\begin{array}{cc}
A & A \\
A & A
\end{array}\right]=\operatorname{rank}\left[\begin{array}{cc}
A & -A \\
-A & A
\end{array}\right]=\operatorname{rank} A \\
\operatorname{rank}\left[\begin{array}{cc}
A & A \\
-A & A
\end{array}\right]=2 \operatorname{rank} A \\
\operatorname{det}\left[\begin{array}{cc}
A & A \\
A & A
\end{array}\right]=\operatorname{det}\left[\begin{array}{cc}
A & -A \\
-A & A
\end{array}\right]=0
\end{gathered}
$$

$$
\operatorname{det}\left[\begin{array}{cc}
A & A \\
-A & A
\end{array}\right]=2^{n}(\operatorname{det} A)^{2}
$$

(Remark: See Fact 2.14.5.)
Fact 2.14.5. Let $a, b, c, d \in \mathbb{F}$, let $A \in \mathbb{F}^{n \times n}$, and define $\mathcal{A} \triangleq\left[\begin{array}{ccc}a A & b A \\ c A & d A\end{array}\right]$. Then,

$$
\operatorname{rank} \mathcal{A}=\left(\operatorname{rank}\left[\begin{array}{cc}
a & b \\
c & d
\end{array}\right]\right) \operatorname{rank} A
$$

and

$$
\operatorname{det} \mathcal{A}=(a d-b c)^{n}(\operatorname{det} A)^{2}
$$

(Remark: See Fact 2.14.4) (Proof: See Proposition 7.1.11 and Fact 7.4.23,
Fact 2.14.6. $\operatorname{det}\left[\begin{array}{cc}0 & I_{n} \\ I_{m} & 0\end{array}\right]=(-1)^{n m}$.
Fact 2.14.7. Let $A, B \in \mathbb{F}^{n \times n}$. Then,

$$
\operatorname{det}\left[\begin{array}{cc}
I_{n} & I_{n}-A B \\
B & 0
\end{array}\right]=\operatorname{det}\left[\begin{array}{cc}
0 & I_{n}-A B \\
B & 0
\end{array}\right]=\operatorname{det}(B A B-B)
$$

(Remark: See Fact 2.11.18 and Fact 2.14.6.)
Fact 2.14.8. Let $A \in \mathbb{F}^{n \times m}$, let $B \in \mathbb{F}^{m \times n}$, and assume that $n \leq m$. Then,

$$
\operatorname{det} A B=(-1)^{(n+1) m} \operatorname{det}\left[\begin{array}{cc}
A & 0_{n \times n} \\
-I_{m} & B
\end{array}\right]
$$

(Proof: See [447].) (Remark: See Fact [2.13.4])
Fact 2.14.9. Let A, B, C, D be conformable matrices with entries in \mathbb{F}. Then,

$$
\begin{gathered}
{\left[\begin{array}{cc}
A & A B \\
C & D
\end{array}\right]=\left[\begin{array}{ll}
I & 0 \\
C & I
\end{array}\right]\left[\begin{array}{cc}
A & 0 \\
C-C A & D-C B
\end{array}\right]\left[\begin{array}{ll}
I & B \\
0 & I
\end{array}\right],} \\
\operatorname{det}\left[\begin{array}{cc}
A & A B \\
C & D
\end{array}\right]=(\operatorname{det} A) \operatorname{det}(D-C B), \\
{\left[\begin{array}{cc}
A & B \\
C A & D
\end{array}\right]=\left[\begin{array}{cc}
I & 0 \\
C & I
\end{array}\right]\left[\begin{array}{cc}
A & B-A B \\
0 & D-C B
\end{array}\right]\left[\begin{array}{cc}
I & B \\
0 & I
\end{array}\right],} \\
\operatorname{det}\left[\begin{array}{cc}
A & B \\
C A & D
\end{array}\right]=(\operatorname{det} A) \operatorname{det}(D-C B), \\
{\left[\begin{array}{cc}
A & B D \\
C & D
\end{array}\right]=\left[\begin{array}{cc}
I & B \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
A-B C & 0 \\
C-D C & D
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
C & I
\end{array}\right],} \\
{\left[\begin{array}{cc}
A & B \\
D C & D
\end{array}\right]=\left[\begin{array}{cc}
I & B \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
A-B C & B-B D \\
0 & D
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
C & I
\end{array}\right],}
\end{gathered}
$$

$$
\operatorname{det}\left[\begin{array}{cc}
A & B \\
D C & D
\end{array}\right]=\operatorname{det}(A-B C) \operatorname{det} D
$$

(Remark: See Fact 6.5.25)
Fact 2.14.10. Let $A, B \in \mathbb{F}^{n \times n}$. Then,

$$
\operatorname{det}\left[\begin{array}{cc}
A & A B \\
B A & B
\end{array}\right]=(\operatorname{det} A) \operatorname{det}(B-B A B)=(\operatorname{det} B) \operatorname{det}(A-A B A)
$$

(Proof: See Fact 2.11.19 and Fact 2.14.7.)
Fact 2.14.11. Let $A_{1}, A_{2}, B_{1}, B_{2} \in \mathbb{F}^{n \times m}$, and define $\mathcal{A} \triangleq\left[\begin{array}{cc}A_{1} & A_{2} \\ A_{2} & A_{1}\end{array}\right]$ and $\mathcal{B} \triangleq$ $\left[\begin{array}{ll}B_{1} & B_{2} \\ B_{2} & B_{1}\end{array}\right]$. Then,

$$
\operatorname{rank}\left[\begin{array}{cc}
\mathcal{A} & \mathcal{B} \\
\mathcal{B} & \mathcal{A}
\end{array}\right]=\sum_{i=1}^{4} \operatorname{rank} C_{i}
$$

where $C_{1} \triangleq A_{1}+A_{2}+B_{1}+B_{2}, C_{2} \triangleq A_{1}+A_{2}-B_{1}-B_{2}, C_{3} \triangleq A_{1}-A_{2}+B_{1}-B_{2}$, and $C_{4} \triangleq A_{1}-A_{2}-B_{1}+B_{2}$. If, in addition, $n=m$, then

$$
\operatorname{det}\left[\begin{array}{cc}
\mathcal{A} & \mathcal{B} \\
\mathcal{B} & \mathcal{A}
\end{array}\right]=\prod_{i=1}^{4} \operatorname{det} C_{i} .
$$

(Proof: See [1305].) (Remark: See Fact 3.22.8.)
Fact 2.14.12. Let $A, B, C, D \in \mathbb{F}^{n \times n}$, and assume that $\operatorname{rank}\left[\begin{array}{cc}A & B \\ C & B\end{array}\right]=n$. Then, $\operatorname{det}\left[\begin{array}{cc}\operatorname{det} A & \operatorname{det} B \\ \operatorname{det} C & \operatorname{det} D\end{array}\right]=0$.

Fact 2.14.13. Let $A, B, C, D \in \mathbb{F}^{n \times n}$. Then,

$$
\operatorname{det}\left[\begin{array}{cc}
A & B \\
C & D
\end{array}\right]= \begin{cases}\operatorname{det}(D A-C B), & A B=B A \\
\operatorname{det}(A D-C B), & A C=C A \\
\operatorname{det}(A D-B C), & D C=C D \\
\operatorname{det}(D A-B C), & D B=B D\end{cases}
$$

(Remark: These identities are Schur's formulas. See [146, p. 11].) (Proof: If A is nonsingular, then

$$
\begin{aligned}
\operatorname{det}\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right] & =(\operatorname{det} A) \operatorname{det}\left(D-C A^{-1} B\right)=\operatorname{det}\left(D A-C A^{-1} B A\right) \\
& =\operatorname{det}(D A-C B)
\end{aligned}
$$

Alternatively, note the identity

$$
\left[\begin{array}{cc}
A & B \\
C & D
\end{array}\right]=\left[\begin{array}{cc}
A & 0 \\
C & D A-C B
\end{array}\right]\left[\begin{array}{cc}
I & B A^{-1} \\
0 & A^{-1}
\end{array}\right]
$$

If A is singular, then replace A by $A+\varepsilon I$ and use continuity.) (Problem: Find a direct proof for the case in which A is singular.)

Fact 2.14.14. Let $A, B, C, D \in \mathbb{F}^{n \times n}$. Then,

$$
\operatorname{det}\left[\begin{array}{cc}
A & B \\
C & D
\end{array}\right]= \begin{cases}\operatorname{det}\left(A D^{\mathrm{T}}-B^{\mathrm{T}} C^{\mathrm{T}}\right), & A B=B A^{\mathrm{T}}, \\
\operatorname{det}\left(A D^{\mathrm{T}}-B C\right), & D C=C D^{\mathrm{T}}, \\
\operatorname{det}\left(A^{\mathrm{T}} D-C B\right), & A^{\mathrm{T}} C=C A \\
\operatorname{det}\left(A^{\mathrm{T}} D-C^{\mathrm{T}} B^{\mathrm{T}}\right), & D^{\mathrm{T}} B=B D\end{cases}
$$

(Proof: Define the nonsingular matrix $A_{\varepsilon} \triangleq A+\varepsilon I$, which satisfies $A_{\varepsilon} B=B A_{\varepsilon}^{\mathrm{T}}$. Then,

$$
\begin{aligned}
\operatorname{det}\left[\begin{array}{cc}
A_{\varepsilon} & B \\
C & D
\end{array}\right] & =\left(\operatorname{det} A_{\varepsilon}\right) \operatorname{det}\left(D-C A_{\varepsilon}^{-1} B\right) \\
& \left.=\operatorname{det}\left(D A_{\varepsilon}^{\mathrm{T}}-C A_{\varepsilon}^{-1} B A_{\varepsilon}^{\mathrm{T}}\right)=\operatorname{det}\left(D A_{\varepsilon}^{\mathrm{T}}-C B\right) .\right)
\end{aligned}
$$

Fact 2.14.15. Let $A, B, C, D \in \mathbb{F}^{n \times n}$. Then,

$$
\operatorname{det}\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]= \begin{cases}(-1)^{\mathrm{rank} C} \operatorname{det}\left(A^{\mathrm{T}} D+C^{\mathrm{T}} B\right), & A^{\mathrm{T}} C=-C^{\mathrm{T}} A, \\
(-1)^{n+\mathrm{rank} A} \operatorname{det}\left(A^{\mathrm{T}} D+C^{\mathrm{T}} B\right), & A^{\mathrm{T}} C=-C^{\mathrm{T}} A, \\
(-1)^{\mathrm{rank} B} \operatorname{det}\left(A^{\mathrm{T}} D+C^{\mathrm{T}} B\right), & B^{\mathrm{T}} D=-D^{\mathrm{T}} B, \\
(-1)^{n+\mathrm{rank} D} \operatorname{det}\left(A^{\mathrm{T}} D+C^{\mathrm{T}} B\right), & B^{\mathrm{T}} D=-D^{\mathrm{T}} B, \\
(-1)^{\mathrm{rank} B} \operatorname{det}\left(A D^{\mathrm{T}}+B C^{\mathrm{T}}\right), & A B^{\mathrm{T}}=-B A^{\mathrm{T}}, \\
(-1)^{n+\operatorname{rank} A} \operatorname{det}\left(A D^{\mathrm{T}}+B C^{\mathrm{T}}\right), & A B^{\mathrm{T}}=-B A^{\mathrm{T}}, \\
(-1)^{\mathrm{rank} C} \operatorname{det}\left(A D^{\mathrm{T}}+B C^{\mathrm{T}}\right), & C D^{\mathrm{T}}=-D C^{\mathrm{T}}, \\
(-1)^{n+\operatorname{rank} D} \operatorname{det}\left(A D^{\mathrm{T}}+B C^{\mathrm{T}}\right), & C D^{\mathrm{T}}=-D C^{\mathrm{T}} .\end{cases}
$$

(Proof: See 960 1405.) (Remark: This result is due to Callan. See [1405.) (Remark: If $A^{\mathrm{T}} C=-C^{\mathrm{T}} A$ and $\operatorname{rank} A+\operatorname{rank} C+n$ is odd, then $\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$ is singular.)

Fact 2.14.16. Let $A, B, C, D \in \mathbb{F}^{n \times n}$. Then,

$$
\operatorname{det}\left[\begin{array}{cc}
A & B \\
C & D
\end{array}\right]= \begin{cases}\operatorname{det}\left(A D^{\mathrm{T}}-B C^{\mathrm{T}}\right), & A B^{\mathrm{T}}=B A^{\mathrm{T}}, \\
\operatorname{det}\left(A D^{\mathrm{T}}-B C^{\mathrm{T}}\right), & D C^{\mathrm{T}}=C D^{\mathrm{T}}, \\
\operatorname{det}\left(A^{\mathrm{T}} D-C^{\mathrm{T}} B\right), & A^{\mathrm{T}} C=C^{\mathrm{T}} A, \\
\operatorname{det}\left(A^{\mathrm{T}} D-C^{\mathrm{T}} B\right), & D^{\mathrm{T}} B=B^{\mathrm{T}} D .\end{cases}
$$

(Proof: See 960.)
Fact 2.14.17. Let $A \in \mathbb{F}^{n \times m}, B \in \mathbb{F}^{n \times l}, C \in \mathbb{F}^{k \times m}$, and $D \in \mathbb{F}^{k \times l}$, and assume that $n+k=m+l$. If $A C^{\mathrm{T}}+B D^{\mathrm{T}}=0$, then

$$
\operatorname{det}\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]^{2}=\operatorname{det}\left(A A^{\mathrm{T}}+B B^{\mathrm{T}}\right) \operatorname{det}\left(C C^{\mathrm{T}}+D D^{\mathrm{T}}\right)
$$

Alternatively, if $A^{\mathrm{T}} B+C^{\mathrm{T}} D=0$, then

$$
\operatorname{det}\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]^{2}=\operatorname{det}\left(A^{\mathrm{T}} A+C^{\mathrm{T}} C\right) \operatorname{det}\left(B^{\mathrm{T}} B+D^{\mathrm{T}} D\right)
$$

(Proof: Form $\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]^{\mathrm{T}}$ and $\left[\begin{array}{cc}A & B \\ D\end{array}\right]^{\mathrm{T}}\left[\begin{array}{ll}A & B \\ D\end{array}\right]$.)
Fact 2.14.18. Let $A \in \mathbb{F}^{n \times m}, B \in \mathbb{F}^{n \times m}, C \in \mathbb{F}^{k \times m}$, and $D \in \mathbb{F}^{k \times m}$, and assume that $n+k=2 m$. If $A D^{\mathrm{T}}+B C^{\mathrm{T}}=0$, then

$$
\operatorname{det}\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]^{2}=(-1)^{m} \operatorname{det}\left(A B^{\mathrm{T}}+B A^{\mathrm{T}}\right) \operatorname{det}\left(C D^{\mathrm{T}}+D C^{\mathrm{T}}\right)
$$

Alternatively, if $A B^{\mathrm{T}}+B A^{\mathrm{T}}=0$ or $C D^{\mathrm{T}}+D C^{\mathrm{T}}=0$, then

$$
\operatorname{det}\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]^{2}=(-1)^{m^{2}+n k} \operatorname{det}\left(A D^{\mathrm{T}}+B C^{\mathrm{T}}\right)^{2}
$$

(Proof: Form $\left[\begin{array}{ll}A & B \\ C & B\end{array}\right]\left[\begin{array}{ll}B^{\mathrm{T}} & D^{\mathrm{T}} \\ A^{\mathrm{T}} & C^{\mathrm{T}}\end{array}\right]$ and $\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]\left[\begin{array}{cc}D^{\mathrm{T}} & B^{\mathrm{T}} \\ C^{\mathrm{T}} & A^{\mathrm{T}}\end{array}\right]$. See 1405].)
Fact 2.14.19. Let $A \in \mathbb{F}^{n \times m}, B \in \mathbb{F}^{n \times l}, C \in \mathbb{F}^{n \times m}$, and $D \in \mathbb{F}^{n \times l}$, and assume that $m+l=2 n$. If $A^{\mathrm{T}} D+C^{\mathrm{T}} B=0$, then

$$
\operatorname{det}\left[\begin{array}{cc}
A & B \\
C & D
\end{array}\right]^{2}=(-1)^{n} \operatorname{det}\left(C^{\mathrm{T}} A+A^{\mathrm{T}} C\right) \operatorname{det}\left(D^{\mathrm{T}} B+B^{\mathrm{T}} D\right)
$$

Alternatively, if $B^{\mathrm{T}} D+D^{\mathrm{T}} B=0$ or $A^{\mathrm{T}} C+C^{\mathrm{T}} A=0$, then

$$
\operatorname{det}\left[\begin{array}{cc}
A & B \\
C & D
\end{array}\right]^{2}=(-1)^{n^{2}+m l} \operatorname{det}\left(A^{\mathrm{T}} D+C^{\mathrm{T}} B\right)^{2}
$$

(Proof: Form $\left[\begin{array}{ll}C^{\mathrm{T}} & A^{\mathrm{T}} \\ D^{\mathrm{T}} & B^{\mathrm{T}}\end{array}\right]\left[\begin{array}{cc}A & B \\ C & D\end{array}\right]$ and $\left[\begin{array}{cc}D^{\mathrm{T}} & B^{\mathrm{T}} \\ C^{\mathrm{T}} & A^{\mathrm{T}}\end{array}\right]\left[\begin{array}{ll}A & B \\ C & B\end{array}\right]$.)
Fact 2.14.20. Let $A \in \mathbb{F}^{n \times n}, B \in \mathbb{F}^{n \times k}, C \in \mathbb{F}^{k \times n}$, and $D \in \mathbb{F}^{k \times k}$. If $A B+B D=0$ or $C A+D C=0$, then

$$
\operatorname{det}\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]^{2}=\operatorname{det}\left(A^{2}+B C\right) \operatorname{det}\left(C B+D^{2}\right)
$$

Alternatively, if $A^{2}+B C=0$ or $C B+D^{2}=0$, then

$$
\operatorname{det}\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]^{2}=(-1)^{n k} \operatorname{det}(A B+B D) \operatorname{det}(C A+D C)
$$

(Proof: Form $\left[\begin{array}{ll}A & B \\ C\end{array}\right]^{2}$ and $\left[\begin{array}{lll}A & B \\ C & D\end{array}\right]\left[\begin{array}{ll}B & A \\ D & C\end{array}\right]$.)
Fact 2.14.21. Let $A \in \mathbb{F}^{n \times m}, B \in \mathbb{F}^{n \times n}, C \in \mathbb{F}^{m \times m}$, and $D \in \mathbb{F}^{m \times n}$. If $A D+B^{2}=0$ or $C^{2}+D A=0$, then

$$
\operatorname{det}\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]^{2}=(-1)^{n m} \operatorname{det}(A C+B A) \operatorname{det}(C D+D B)
$$

Alternatively, if $A C+B A=0$ or $C D+D B=0$, then

$$
\operatorname{det}\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]^{2}=\operatorname{det}\left(A D+B^{2}\right) \operatorname{det}\left(C^{2}+D A\right)
$$

(Proof: Form $\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]\left[\begin{array}{ll}C & D \\ A & B\end{array}\right]$ and $\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]\left[\begin{array}{ll}D & C \\ B & A\end{array}\right]$.)
Fact 2.14.22. Let $A \in \mathbb{F}^{n \times m}, B \in \mathbb{F}^{n \times l}, C \in \mathbb{F}^{k \times m}$, and $D \in \mathbb{F}^{k \times l}$, and assume that $n+k=m+l$. If $A C^{*}+B D^{*}=0$, then

$$
\left|\operatorname{det}\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\right|^{2}=\operatorname{det}\left(A A^{*}+B B^{*}\right) \operatorname{det}\left(C C^{*}+D D^{*}\right)
$$

Alternatively, if $A^{*} B+C^{*} D=0$, then

$$
\left|\operatorname{det}\left[\begin{array}{cc}
A & B \\
C & D
\end{array}\right]\right|^{2}=\operatorname{det}\left(A^{*} A+C^{*} C\right) \operatorname{det}\left(B^{*} B+D^{*} D\right)
$$

(Proof: Form $\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]^{*}$ and $\left[\begin{array}{cc}A & B \\ C & D\end{array}\right]^{*}\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$.) (Remark: See Fact 8.13.27,)
Fact 2.14.23. Let $A \in \mathbb{F}^{n \times m}, B \in \mathbb{F}^{n \times m}, C \in \mathbb{F}^{k \times m}$, and $D \in \mathbb{F}^{k \times m}$, and assume that $n+k=2 m$. If $A D^{*}+B C^{*}=0$, then

$$
\left|\operatorname{det}\left[\begin{array}{cc}
A & B \\
C & D
\end{array}\right]\right|^{2}=(-1)^{m} \operatorname{det}\left(A B^{*}+B A^{*}\right) \operatorname{det}\left(C D^{*}+D C^{*}\right) .
$$

Alternatively, if $A B^{*}+B A^{*}=0$ or $C D^{*}+D C^{*}=0$, then

$$
\left|\operatorname{det}\left[\begin{array}{cc}
A & B \\
C & D
\end{array}\right]\right|^{2}=(-1)^{m^{2}+n k}\left|\operatorname{det}\left(A D^{*}+B C^{*}\right)\right|^{2}
$$

(Proof: Form $\left[\begin{array}{cc}A & B \\ C & B\end{array}\right]\left[\begin{array}{ll}B^{*} & D^{*} \\ A^{*} & C^{*}\end{array}\right]$ and $\left[\begin{array}{cc}A & B \\ C & B\end{array}\right]\left[\begin{array}{ll}D^{*} & B^{*} \\ C^{*} & A^{*}\end{array}\right]$.) (Remark: If $m^{2}+n k$ is odd, then $\left[\begin{array}{ll}{ }_{C}^{A} & B \\ C & D\end{array}\right]$ is singular.)

Fact 2.14.24. Let $A \in \mathbb{F}^{n \times m}, B \in \mathbb{F}^{n \times l}, C \in \mathbb{F}^{n \times m}$, and $D \in \mathbb{F}^{n \times l}$, and assume that $m+l=2 n$. If $A^{*} D+C^{*} B=0$, then

$$
\left|\operatorname{det}\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\right|^{2}=(-1)^{m} \operatorname{det}\left(C^{*} A+A^{*} C\right) \operatorname{det}\left(D^{*} B+B^{*} D\right)
$$

Alternatively, if $D^{*} B+B^{*} D=0$ or $C^{*} A+A^{*} C=0$, then

$$
\left|\operatorname{det}\left[\begin{array}{cc}
A & B \\
C & D
\end{array}\right]\right|^{2}=(-1)^{n^{2}+m l}\left|\operatorname{det}\left(A^{*} D+C^{*} B\right)\right|^{2}
$$

(Proof: Form $\left[\begin{array}{cc}C^{*} & A^{*} \\ D^{*} & B^{*}\end{array}\right]\left[\begin{array}{cc}A & B \\ C & D\end{array}\right]$ and $\left[\begin{array}{cc}D^{*} & B^{*} \\ C^{*} & A^{*}\end{array}\right]\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$.) (Remark: If $n^{2}+m l$ is odd, then $\left[\begin{array}{cc}A & B \\ C & D\end{array}\right]$ is singular.)

Fact 2.14.25. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{n \times l}$. Then,

$$
\operatorname{det}\left[\begin{array}{ll}
A^{*} A & A^{*} B \\
B^{*} A & B^{*} B
\end{array}\right]= \begin{cases}\operatorname{det}\left(A^{*} A\right) \operatorname{det}\left[B^{*} B-B^{*} A\left(A^{*} A\right)^{-1} A^{*} B\right], & \operatorname{rank} A=m \\
\operatorname{det}\left(B^{*} B\right) \operatorname{det}\left[A^{*} A-A^{*} B\left(B^{*} B\right)^{-1} B^{*} A\right], & \operatorname{rank} B=l \\
0, & n<m+l\end{cases}
$$

If, in addition, $m+l=n$, then

$$
\operatorname{det}\left[\begin{array}{ll}
A^{*} A & A^{*} B \\
B^{*} A & B^{*} B
\end{array}\right]=\operatorname{det}\left(A A^{*}+B B^{*}\right)
$$

(Remark: See Fact 6.5.27)
Fact 2.14.26. Let $A, B \in \mathbb{F}^{n \times n}$, and define $\mathcal{A} \in \mathbb{F}^{k n \times k n}$ by

$$
\mathcal{A} \triangleq\left[\begin{array}{ccccc}
A & B & B & \cdots & B \\
B & A & B & \cdots & B \\
B & B & A & \ddots & B \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
B & B & B & \cdots & A
\end{array}\right]
$$

Then,

$$
\operatorname{det} \mathcal{A}=[\operatorname{det}(A-B)]^{k-1} \operatorname{det}[A+(k-1) B] .
$$

If $k=2$, then

$$
\operatorname{det}\left[\begin{array}{ll}
A & B \\
B & A
\end{array}\right]=\operatorname{det}[(A+B)(A-B)]=\operatorname{det}\left(A^{2}-B^{2}-[A, B]\right)
$$

(Proof: See [573].) (Remark: For $k=2$, the result follows from Fact 4.10.25.) (Remark: See Fact 2.13.13.)

Fact 2.14.27. Let $A \in \mathbb{F}^{n \times n}, B \in \mathbb{F}^{n \times m}, C \in \mathbb{F}^{m \times n}$, and $D \in \mathbb{F}^{m \times m}$, and define $M \triangleq\left[\begin{array}{cc}{ }_{C}^{A} & B \\ D\end{array}\right] \in \mathbb{F}^{(n+m) \times(n+m)}$. Furthermore, let $\left[\begin{array}{cc}A^{\prime} & B^{\prime} \\ C^{\prime} & D^{\prime}\end{array}\right] \triangleq M^{\mathrm{A}}$, where $A^{\prime} \in$ $\mathbb{F}^{n \times n}$ and $D^{\prime} \in \mathbb{F}^{m \times m}$. Then,

$$
\operatorname{det} D^{\prime}=(\operatorname{det} M)^{m-1} \operatorname{det} A
$$

and

$$
\operatorname{det} A^{\prime}=(\operatorname{det} M)^{n-1} \operatorname{det} D
$$

(Proof: See [1184, p. 297].) (Remark: See Fact 2.14.28)
Fact 2.14.28. Let $A \in \mathbb{F}^{n \times n}, B \in \mathbb{F}^{n \times m}, C \in \mathbb{F}^{m \times n}$, and $D \in \mathbb{F}^{m \times m}$, define $M \triangleq\left[\begin{array}{cc}A \\ C & B \\ D\end{array}\right] \in \mathbb{F}^{(n+m) \times(n+m)}$, and assume that M is nonsingular. Furthermore, let $\left[\begin{array}{ll}A^{\prime} & B^{\prime} \\ C^{\prime} & D^{\prime}\end{array}\right] \triangleq M^{-1}$, where $A^{\prime} \in \mathbb{F}^{n \times n}$ and $D^{\prime} \in \mathbb{F}^{m \times m}$. Then,

$$
\operatorname{det} D^{\prime}=\frac{\operatorname{det} A}{\operatorname{det} M}
$$

and

$$
\operatorname{det} A^{\prime}=\frac{\operatorname{det} D}{\operatorname{det} M}
$$

Consequently, A is nonsingular if and only if D^{\prime} is nonsingular, and D is nonsingular if and only if A^{\prime} is nonsingular. (Proof: Use $M\left[\begin{array}{cc}I & B^{\prime} \\ 0 & D^{\prime}\end{array}\right]=\left[\begin{array}{cc}A & 0 \\ C & I\end{array}\right]$. See [1188].) (Remark: This identity is a special case of Jacobi's identity. See [709, p. 21].) (Remark: See Fact 2.14.27 and Fact 3.11.24.)

2.15 Facts on Left and Right Inverses

Fact 2.15.1. Let $A \in \mathbb{F}^{n \times m}$. Then, the following statements hold:
i) If $A^{\mathrm{L}} \in \mathbb{F}^{m \times n}$ is a left inverse of A, then $\overline{A^{\mathrm{L}}} \in \mathbb{F}^{m \times n}$ is a left inverse of \bar{A}.
ii) If $A^{\mathrm{L}} \in \mathbb{F}^{m \times n}$ is a left inverse of A, then $A^{\mathrm{LT}} \in \mathbb{F}^{n \times m}$ is a right inverse of A^{T}.
iii) If $A^{\mathrm{L}} \in \mathbb{F}^{m \times n}$ is a left inverse of A, then $A^{\mathrm{L} *} \in \mathbb{F}^{n \times m}$ is a right inverse of A^{*}.
iv) If $A^{\mathrm{R}} \in \mathbb{F}^{m \times n}$ is a right inverse of A, then $\overline{A^{\mathrm{R}}} \in \mathbb{F}^{m \times n}$ is a right inverse of \bar{A}.
v) If $A^{\mathrm{R}} \in \mathbb{F}^{m \times n}$ is a right inverse of A, then $A^{\mathrm{RT}} \in \mathbb{F}^{n \times m}$ is a left inverse of A^{T}.
vi) If $A^{\mathrm{R}} \in \mathbb{F}^{m \times n}$ is a right inverse of A, then $A^{\mathrm{R} *} \in \mathbb{F}^{n \times m}$ is a left inverse of A^{*}.

Furthermore, the following statements are equivalent:
vii) A is left invertible.
viii) \bar{A} is left invertible.
$i x) A^{\mathrm{T}}$ is right invertible.
x) A^{*} is right invertible.

Finally, the following statements are equivalent:
xi) A is right invertible.
xii) \bar{A} is right invertible.
xiii) A^{T} is left invertible.
xiv) A^{*} is left invertible.

Fact 2.15.2. Let $A \in \mathbb{F}^{n \times m}$. If $\operatorname{rank} A=m$, then $\left(A^{*} A\right)^{-1} A^{*}$ is a left inverse of A. If $\operatorname{rank} A=n$, then $A^{*}\left(A A^{*}\right)^{-1}$ is a right inverse of A. (Remark: See Fact 3.7.25, Fact 3.7.26 and Fact 3.13.6.)

Fact 2.15.3. Let $A \in \mathbb{F}^{n \times m}$, and assume that rank $A=m$. Then, $A^{\mathrm{L}} \in \mathbb{F}^{m \times n}$ is a left inverse of A if and only if there exists a matrix $B \in \mathbb{F}^{m \times n}$ such that $B A$ is nonsingular and

$$
A^{\mathrm{L}}=(B A)^{-1} B
$$

(Proof: For necessity, let $B=A^{\mathrm{L}}$.)
Fact 2.15.4. Let $A \in \mathbb{F}^{n \times m}$, and assume that $\operatorname{rank} A=n$. Then, $A^{\mathrm{R}} \in \mathbb{F}^{m \times n}$ is a right inverse of A if and only if there exists a matrix $B \in \mathbb{F}^{m \times n}$ such that $A B$ is nonsingular and

$$
A^{\mathrm{R}}=B(A B)^{-1}
$$

(Proof: For necessity, let $B=A^{\mathrm{R}}$.)

Fact 2.15.5. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times l}$, and assume that A and B are left invertible. Then, $A B$ is left invertible. If, in addition, A^{L} is a left inverse of A and B^{L} is a left inverse of B, then $B^{\mathrm{L}} A^{\mathrm{L}}$ is a left inverse of $A B$.

Fact 2.15.6. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times l}$, and assume that A and B are right invertible. Then, $A B$ is right invertible. If, in addition, A^{R} is a right inverse of A and B^{R} is a right inverse of B, then $B^{\mathrm{R}} A^{\mathrm{R}}$ is a right inverse of $A B$.

2.16 Facts on the Adjugate and Inverses

Fact 2.16.1. Let $x, y \in \mathbb{F}^{n}$. Then,

$$
\left(I+x y^{\mathrm{T}}\right)^{\mathrm{A}}=\left(1+y^{\mathrm{T}} x\right) I-x y^{\mathrm{T}}
$$

and

$$
\operatorname{det}\left(I+x y^{\mathrm{T}}\right)=\operatorname{det}\left(I+y x^{\mathrm{T}}\right)=1+x^{\mathrm{T}} y=1+y^{\mathrm{T}} x .
$$

If, in addition, $x^{\mathrm{T}} y \neq-1$, then

$$
\left(I+x y^{\mathrm{T}}\right)^{-1}=I-\left(1+x^{\mathrm{T}} y\right)^{-1} x y^{\mathrm{T}}
$$

Fact 2.16.2. Let $A \in \mathbb{F}^{n \times n}, x, y \in \mathbb{F}^{n}$, and $a \in \mathbb{F}$. Then,

$$
\left[\begin{array}{cc}
A & x \\
y^{\mathrm{T}} & a
\end{array}\right]=\left\{\begin{array}{l}
{\left[\begin{array}{cc}
I & 0 \\
y^{\mathrm{T}} A^{-1} & 1
\end{array}\right]\left[\begin{array}{cc}
A & 0 \\
0 & a-y^{\mathrm{T}} A^{-1} x
\end{array}\right]\left[\begin{array}{cc}
I & A^{-1} x \\
0 & 1
\end{array}\right],} \\
{\left[\begin{array}{cc}
I & a^{-1} x \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
A-a^{-1} x y^{\mathrm{T}} & 0 \\
0 & a
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
a^{-1} y^{\mathrm{T}} & 1
\end{array}\right],}
\end{array}\right]=a \neq 0 . .
$$

(Remark: See Fact 6.5.25)
Fact 2.16.3. Let $A \in \mathbb{F}^{n \times n}$, assume that A is nonsingular, and let $x, y \in \mathbb{F}^{n}$.
Then,

$$
\operatorname{det}\left(A+x y^{\mathrm{T}}\right)=\left(1+y^{\mathrm{T}} A^{-1} x\right) \operatorname{det} A
$$

and

$$
\left(A+x y^{\mathrm{T}}\right)^{\mathrm{A}}=\left(1+y^{\mathrm{T}} A^{-1} x\right)(\operatorname{det} A) I-A^{\mathrm{A}} x y^{\mathrm{T}} .
$$

Furthermore, the following statements are equivalent:
i) $\operatorname{det}\left(A+x y^{\mathrm{T}}\right) \neq 0$
ii) $y^{\mathrm{T}} A^{-1} x \neq-1$.
iii) $\left[\begin{array}{cc}A & x \\ y^{\mathrm{T}} & -1\end{array}\right]$ is nonsingular.

In this case,

$$
\left(A+x y^{\mathrm{T}}\right)^{-1}=A^{-1}-\left(1+y^{\mathrm{T}} A^{-1} x\right)^{-1} A^{-1} x y^{\mathrm{T}} A^{-1}
$$

(Remark: See Fact 2.16.2 and Fact 2.14.2) (Remark: The last identity, which is a special case of the matrix inversion lemma Corollary [2.8.8, is the Sherman-Morrison-Woodbury formula.)

Fact 2.16.4. Let $A \in \mathbb{F}^{n \times n}$, let $x, y \in \mathbb{F}^{n}$, and let $a \in \mathbb{F}$. Then,

$$
\left[\begin{array}{cc}
A & x \\
y^{\mathrm{T}} & a
\end{array}\right]^{\mathrm{A}}=\left[\begin{array}{cc}
(a+1) A^{\mathrm{A}}-\left(A+x y^{\mathrm{T}}\right)^{\mathrm{A}} & -A^{\mathrm{A}} x \\
-y^{\mathrm{T}} A^{\mathrm{A}} & \operatorname{det} A
\end{array}\right] .
$$

Now, assume that $\left[\begin{array}{ccc}A_{1} & x \\ y^{\mathrm{T}} & a\end{array}\right]$ is nonsingular. Then,

$$
\begin{aligned}
& {\left[\begin{array}{cc}
A & x \\
y^{\mathrm{T}} & a
\end{array}\right]^{-1}} \\
& =\left\{\begin{array}{ll}
\frac{1}{(\operatorname{det} A)\left(a-y^{\mathrm{T}} A^{-1} x\right)}\left[\begin{array}{cc}
\left(a-y^{\mathrm{T}} A^{-1} x\right) A^{-1}+A^{-1} x y^{\mathrm{T}} A^{-1} & -A^{-1} x \\
-y^{\mathrm{T}} A^{-1} & 1
\end{array}\right], & \operatorname{det} A \neq 0, \\
\frac{1}{a \operatorname{det}\left(A-a^{-1} x y^{\mathrm{T}}\right)}\left[\begin{array}{cc}
(a+1) A^{\mathrm{A}}-\left(A+x y^{\mathrm{T}}\right)^{\mathrm{A}} & -A^{\mathrm{A}} x \\
-y^{\mathrm{T}} A^{\mathrm{A}} & \operatorname{det} A
\end{array}\right], & a \neq 0, \\
\frac{1}{-y^{\mathrm{T} A^{\mathrm{A}} x}\left[\begin{array}{cc}
(a+1) A^{\mathrm{A}}-\left(A+x y^{\mathrm{T}}\right)^{\mathrm{A}} & -A^{\mathrm{A}} x \\
-y^{\mathrm{T}} A^{\mathrm{A}} & \operatorname{det} A
\end{array}\right],} \begin{array}{l}
a=0 .
\end{array}
\end{array} . \begin{array}{l}
\end{array}\right.
\end{aligned}
$$

(Proof: Use Fact 2.14.2 and see [455, 686].)
Fact 2.16.5. Let $A \in \mathbb{F}^{n \times n}$. Then, the following statements hold:
i) $(\bar{A})^{\mathrm{A}}=\overline{A^{\mathrm{A}}}$.
ii) $\left(A^{\mathrm{T}}\right)^{\mathrm{A}}=\left(A^{\mathrm{A}}\right)^{\mathrm{T}}$.
iii) $\left(A^{*}\right)^{\mathrm{A}}=\left(A^{\mathrm{A}}\right)^{*}$.
iv) If $\alpha \in \mathbb{F}$, then $(\alpha A)^{\mathrm{A}}=\alpha^{n-1} A^{\mathrm{A}}$.
v) $\operatorname{det} A^{\mathrm{A}}=(\operatorname{det} A)^{n-1}$.
vi) $\left(A^{\mathrm{A}}\right)^{\mathrm{A}}=(\operatorname{det} A)^{n-2} A$.
vii) $\operatorname{det}\left(A^{\mathrm{A}}\right)^{\mathrm{A}}=(\operatorname{det} A)^{(n-1)^{2}}$.
viii) If A is nonsingular, then $\left(A^{-1}\right)^{\mathrm{A}}=\left(A^{\mathrm{A}}\right)^{-1}$.
(Proof: See 686].) (Remark: With $0 / 0 \triangleq 1$ in vi), all of these results hold in the degenerate case $n=1$.)

Fact 2.16.6. Let $A \in \mathbb{F}^{n \times n}$. Then,

$$
\operatorname{det}\left(A+1_{n \times n}\right)-\operatorname{det} A=1_{1 \times n}^{\mathrm{T}} A^{\mathrm{A}} 1=\sum_{i=1}^{n} \operatorname{det}\left(A \stackrel{i}{\leftarrow} 1_{n \times 1}\right) .
$$

(Proof: See [222].) (Remark: See Fact 2.14.2 Fact 2.16.9, and Fact 10.11.21)

Fact 2.16.7. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is singular. Then,

$$
\mathcal{R}(A) \subseteq \mathcal{N}\left(A^{\mathrm{A}}\right)
$$

Hence,

$$
\operatorname{rank} A \leq \operatorname{def} A^{\mathrm{A}}
$$

and

$$
\operatorname{rank} A+\operatorname{rank} A^{\mathrm{A}} \leq n
$$

Furthermore, $\mathcal{R}(A)=\mathcal{N}\left(A^{\mathrm{A}}\right)$ if and only if $\operatorname{rank} A=n-1$.
Fact 2.16.8. Let $A \in \mathbb{F}^{n \times n}$. Then, the following statements hold:
i) $\operatorname{rank} A^{\mathrm{A}}=n$ if and only if $\operatorname{rank} A=n$.
ii) $\operatorname{rank} A^{\mathrm{A}}=1$ if and only if $\operatorname{rank} A=n-1$.
iii) $A^{\mathrm{A}}=0$ if and only if $\operatorname{rank} A \leq n-2$.
(Proof: See [1098, p. 12].) (Remark: See Fact 4.10.7) (Remark: Fact 6.3.6 provides an expression for A^{A} in the case $\operatorname{rank} A^{\mathrm{A}}=1$.)

Fact 2.16.9. Let $A, B \in \mathbb{F}^{n \times n}$. Then,

$$
\left(A^{\mathrm{A}} B\right)_{(i, j)}=\operatorname{det}\left[A \stackrel{i}{\leftarrow} \operatorname{col}_{j}(B)\right]
$$

(Remark: See Fact 10.11.21)
Fact 2.16.10. Let $A, B \in \mathbb{F}^{n \times n}$. Then, the following statements hold:
i) $(A B)^{\mathrm{A}}=B^{\mathrm{A}} A^{\mathrm{A}}$.
ii) If B is nonsingular, then $\left(B A B^{-1}\right)^{\mathrm{A}}=B A^{\mathrm{A}} B^{-1}$.
iii) If $A B=B A$, then $A^{\mathrm{A}} B=B A^{\mathrm{A}}, A B^{\mathrm{A}}=B^{\mathrm{A}} A$, and $A^{\mathrm{A}} B^{\mathrm{A}}=B^{\mathrm{A}} A^{\mathrm{A}}$.

Fact 2.16.11. Let $A, B, C, D \in \mathbb{F}^{n \times n}$ and $A B C D=I$. Then, $A B C D=$ $D A B C=C D A B=B C D A$.

Fact 2.16.12. Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \mathbb{F}^{2 \times 2}$, where $a d-b c \neq 0$. Then,

$$
A^{-1}=(a d-b c)^{-1}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

Furthermore, if $A=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right] \in \mathbb{F}^{3 \times 3}$ and $\beta=a(e i-f h)-b(d i-f g)+c(d h-e g) \neq 0$,
then

$$
A^{-1}=\beta^{-1}\left[\begin{array}{ccc}
e i-f h & -(b i-c h) & b f-c e \\
-(d i-f g) & a i-c g & -(a f-c d) \\
d h-e g & -(a h-b g) & a e-b d
\end{array}\right]
$$

Fact 2.16.13. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that $A+B$ is nonsingular. Then, $A(A+B)^{-1} B=B(A+B)^{-1} A=A-A(A+B)^{-1} A=B-B(A+B)^{-1} B$.

Fact 2.16.14. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are nonsingular. Then,

$$
A^{-1}+B^{-1}=A^{-1}(A+B) B^{-1}
$$

Furthermore, $A^{-1}+B^{-1}$ is nonsingular if and only if $A+B$ is nonsingular. In this case,

$$
\begin{aligned}
\left(A^{-1}+B^{-1}\right)^{-1} & =A(A+B)^{-1} B \\
& =B(A+B)^{-1} A \\
& =A-A(A+B)^{-1} A \\
& =B-B(A+B)^{-1} B
\end{aligned}
$$

Fact 2.16.15. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are nonsingular.
Then,

$$
A-B=A\left(B^{-1}-A^{-1}\right) B
$$

Therefore,

$$
\operatorname{rank}(A-B)=\operatorname{rank}\left(A^{-1}-B^{-1}\right)
$$

In particular, $A-B$ is nonsingular if and only if $A^{-1}-B^{-1}$ is nonsingular. In this case,

$$
\left(A^{-1}-B^{-1}\right)^{-1}=A-A(A-B)^{-1} A
$$

Fact 2.16.16. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times n}$, and assume that $I+A B$ is nonsingular. Then, $I+B A$ is nonsingular and

$$
\left(I_{n}+A B\right)^{-1} A=A\left(I_{m}+B A\right)^{-1}
$$

(Remark: This result is the push-through identity.) Furthermore,

$$
(I+A B)^{-1}=I-(I+A B)^{-1} A B
$$

Fact 2.16.17. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that $I+B A$ is nonsingular. Then,

$$
(I+A B)^{-1}=I-A(I+B A)^{-1} B
$$

Fact 2.16.18. Let $A \in \mathbb{F}^{n \times n}$, and assume that A and $A+I$ are nonsingular. Then,

$$
(A+I)^{-1}+\left(A^{-1}+I\right)^{-1}=(A+I)^{-1}+(A+I)^{-1} A=I
$$

Fact 2.16.19. Let $A \in \mathbb{F}^{n \times m}$. Then,

$$
\left(I+A A^{*}\right)^{-1}=I-A\left(I+A^{*} A\right)^{-1} A^{*}
$$

Fact 2.16.20. Let $A \in \mathbb{F}^{n \times n}$, assume that A is nonsingular, let $B \in \mathbb{F}^{n \times m}$, let $C \in \mathbb{F}^{m \times n}$, and assume that $A+B C$ and $I+C A^{-1} B$ are nonsingular. Then,

$$
(A+B C)^{-1} B=A^{-1} B\left(I+C A^{-1} B\right)^{-1}
$$

In particular, if $A+B B^{*}$ and $I+B^{*} A^{-1} B$ are nonsingular, then

$$
\left(A+B B^{*}\right)^{-1} B=A^{-1} B\left(I+B^{*} A^{-1} B\right)^{-1}
$$

Fact 2.16.21. Let $A \in \mathbb{F}^{n \times n}, B \in \mathbb{F}^{n \times m}, C \in \mathbb{F}^{l \times n}$, and $D \in \mathbb{F}^{m \times l}$, and assume that A and $A+B D C$ are nonsingular. Then,

$$
\begin{aligned}
(A+B D C)^{-1} & =A^{-1}-\left(I+A^{-1} B D C\right)^{-1} A^{-1} B D C A^{-1} \\
& =A^{-1}-A^{-1}\left(I+B D C A^{-1}\right)^{-1} B D C A^{-1} \\
& =A^{-1}-A^{-1} B\left(I+D C A^{-1} B\right)^{-1} D C A^{-1} \\
& =A^{-1}-A^{-1} B D\left(I+C A^{-1} B D\right)^{-1} C A^{-1} \\
& =A^{-1}-A^{-1} B D C\left(I+A^{-1} B D C\right)^{-1} A^{-1} \\
& =A^{-1}-A^{-1} B D C A^{-1}\left(I+B D C A^{-1}\right)^{-1}
\end{aligned}
$$

(Proof: See [666.) (Remark: The third identity generalizes the matrix inversion lemma Corollary 2.8.8 in the form

$$
(A+B D C)^{-1}=A^{-1}-A^{-1} B\left(D^{-1}+C A^{-1} B\right)^{-1} C A^{-1}
$$

since D need not be square or invertible.)
Fact 2.16.22. Let $A \in \mathbb{F}^{n \times m}$, let $C, D \in \mathbb{F}^{n \times m}$, and assume that $I+D B$ is nonsingular. Then,

$$
I+A C-(A+B)(I+D B)^{-1}(D+C)=(I-A D)(I+B D)^{-1}(I-B C)
$$

(Proof: See 1467.) (Remark: See Fact 2.16.23 and Fact 8.11.21.)
Fact 2.16.23. Let $A, B, C \in \mathbb{F}^{n \times m}$. Then,

$$
I+A C^{*}-(A+B)\left(I+B^{*} B\right)^{-1}(B+C)^{*}=\left(I-A B^{*}\right)\left(I+B B^{*}\right)^{-1}\left(I-B C^{*}\right)
$$

(Proof: Set $D=B^{*}$ and replace C by C^{*} in Fact 2.16.22,
Fact 2.16.24. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that B is nonsingular. Then,

$$
A=B\left[I+B^{-1}(A-B)\right] .
$$

Fact 2.16.25. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and $A+B$ are nonsingular. Then, for all $k \in \mathbb{N}$,

$$
\begin{aligned}
(A+B)^{-1} & =\sum_{i=0}^{k} A^{-1}\left(-B A^{-1}\right)^{i}+\left(-A^{-1} B\right)^{k+1}(A+B)^{-1} \\
& =\sum_{i=0}^{k} A^{-1}\left(-B A^{-1}\right)^{i}+A^{-1}\left(-B A^{-1}\right)^{k+1}\left(I+B A^{-1}\right)^{-1}
\end{aligned}
$$

Fact 2.16.26. Let $A \in \mathbb{F}^{n \times n}$, assume that A is either upper triangular or lower triangular, let D denote the diagonal part of A, and assume that D is nonsingular. Then,

$$
A^{-1}=\sum_{i=0}^{n}\left(I-D^{-1} A\right)^{i} D^{-1}
$$

(Remark: Using the Schur product notation, $D=I \circ A$.)

Fact 2.16.27. Let $A, B \in \mathbb{F}^{n \times n}$ and $\alpha \in \mathbb{F}$, and assume that $A, B, \alpha A^{-1}+$ $(1-\alpha) B^{-1}$, and $\alpha B+(1-\alpha) A$ are nonsingular. Then,

$$
\begin{aligned}
\alpha A+(1-\alpha) B & -\left[\alpha A^{-1}+(1-\alpha) B^{-1}\right]^{-1} \\
& =\alpha(1-\alpha)(A-B)[\alpha B+(1-\alpha) A]^{-1}(A-B)
\end{aligned}
$$

(Remark: This identity is relevant to $i v$) of Proposition 8.6.17)
Fact 2.16.28. Let $A \in \mathbb{F}^{n \times n}$, assume that A is nonsingular, and define $A_{0} \triangleq$ I_{n}. Furthermore, for all $k=1, \ldots, n$, let

$$
\alpha_{k}=\frac{1}{k} \operatorname{tr} A A_{k-1},
$$

and, for all $k=1, \ldots, n-1$, let

$$
A_{k}=A A_{k-1}-\alpha_{k} I
$$

Then,

$$
A^{-1}=\frac{1}{\alpha_{n}} A_{n-1}
$$

(Remark: This result is due to Frame. See [170, p. 99].)
Fact 2.16.29. Let $A \in \mathbb{F}^{n \times n}$, assume that A is nonsingular, and define $\left\{B_{i}\right\}_{i=1}^{\infty}$ by

$$
B_{i+1} \triangleq 2 B_{i}-B_{i} A B_{i}
$$

where $B_{0} \in \mathbb{F}^{n \times n}$ satisfies $\operatorname{sprad}\left(I-B_{0} A\right)<1$. Then,

$$
B_{i} \rightarrow A^{-1}
$$

as $i \rightarrow \infty$. (Proof: See [144, p. 167].) (Remark: This sequence is given by a Newton-Raphson algorithm.) (Remark: See Fact 6.3.35 for the case in which A is singular or nonsquare.)

Fact 2.16.30. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is nonsingular. Then, $A+A^{-*}$ is nonsingular. (Proof: Note that $A A^{*}+I$ is positive definite.)

2.17 Facts on the Inverse of Partitioned Matrices

Fact 2.17.1. Let $A \in \mathbb{F}^{n \times n}, B \in \mathbb{F}^{n \times m}, C \in \mathbb{F}^{m \times n}$, and $D \in \mathbb{F}^{m \times m}$, and assume that A and D are nonsingular. Then,

$$
\left[\begin{array}{cc}
A & B \\
0 & D
\end{array}\right]^{-1}=\left[\begin{array}{cc}
A^{-1} & -A^{-1} B D^{-1} \\
0 & D^{-1}
\end{array}\right]
$$

and

$$
\left[\begin{array}{cc}
A & 0 \\
C & D
\end{array}\right]^{-1}=\left[\begin{array}{cc}
A^{-1} & 0 \\
-D^{-1} C A^{-1} & D^{-1}
\end{array}\right]
$$

Fact 2.17.2. Let $A \in \mathbb{F}^{n \times n}, B \in \mathbb{F}^{m \times m}$, and $C \in \mathbb{F}^{m \times n}$. Then,

$$
\operatorname{det}\left[\begin{array}{cc}
0 & A \\
B & C
\end{array}\right]=\operatorname{det}\left[\begin{array}{cc}
C & B \\
A & 0
\end{array}\right]=(-1)^{n m}(\operatorname{det} A)(\operatorname{det} B) .
$$

If, in addition, A and B are nonsingular, then

$$
\left[\begin{array}{cc}
0 & A \\
B & C
\end{array}\right]^{-1}=\left[\begin{array}{cc}
-B^{-1} C A^{-1} & B^{-1} \\
A^{-1} & 0
\end{array}\right]
$$

and

$$
\left[\begin{array}{ll}
C & B \\
A & 0
\end{array}\right]^{-1}=\left[\begin{array}{cc}
0 & A^{-1} \\
B^{-1} & -B^{-1} C A^{-1}
\end{array}\right]
$$

Fact 2.17.3. Let $A \in \mathbb{F}^{n \times n}, B \in \mathbb{F}^{n \times m}$, and $C \in \mathbb{F}^{m \times m}$, and assume that C is nonsingular. Then,

$$
\left[\begin{array}{cc}
A & B \\
B^{\mathrm{T}} & C
\end{array}\right]=\left[\begin{array}{cc}
A-B C^{-1} B^{\mathrm{T}} & B \\
0 & C
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
C^{-1} B^{\mathrm{T}} & I
\end{array}\right] .
$$

If, in addition, $A-B C^{-1} B^{\mathrm{T}}$ is nonsingular, then $\left[\begin{array}{cc}A & B \\ B^{\mathrm{T}} & C\end{array}\right]$ is nonsingular and

$$
\begin{aligned}
& {\left[\begin{array}{cc}
A & B \\
B^{\mathrm{T}} & C
\end{array}\right]^{-1}} \\
& \quad=\left[\begin{array}{cc}
\left(A-B C^{-1} B^{\mathrm{T}}\right)^{-1} & -\left(A-B C^{-1} B^{\mathrm{T}}\right)^{-1} B C^{-1} \\
-C^{-1} B^{\mathrm{T}}\left(A-B C^{-1} B^{\mathrm{T}}\right)^{-1} & C^{-1} B^{\mathrm{T}}\left(A-B C^{-1} B^{\mathrm{T}}\right)^{-1} B C^{-1}+C^{-1}
\end{array}\right]
\end{aligned}
$$

Fact 2.17.4. Let $A, B \in \mathbb{F}^{n \times n}$. Then,

$$
\operatorname{det}\left[\begin{array}{cc}
I & A \\
B & I
\end{array}\right]=\operatorname{det}(I-A B)=\operatorname{det}(I-B A)
$$

If $\operatorname{det}(I-B A) \neq 0$, then

$$
\begin{aligned}
{\left[\begin{array}{cc}
I & A \\
B & I
\end{array}\right]^{-1} } & =\left[\begin{array}{cc}
I+A(I-B A)^{-1} B & -A(I-B A)^{-1} \\
-(I-B A)^{-1} B & (I-B A)^{-1}
\end{array}\right] \\
& =\left[\begin{array}{cc}
(I-A B)^{-1} & -(I-A B)^{-1} A \\
-B(I-A B)^{-1} & I+B(I-A B)^{-1} A
\end{array}\right]
\end{aligned}
$$

Fact 2.17.5. Let $A, B \in \mathbb{F}^{n \times m}$. Then,

$$
\left[\begin{array}{cc}
A & B \\
B & A
\end{array}\right]=\frac{1}{2}\left[\begin{array}{cc}
I & I \\
I & -I
\end{array}\right]\left[\begin{array}{cc}
A+B & 0 \\
0 & A-B
\end{array}\right]\left[\begin{array}{cc}
I & I \\
I & -I
\end{array}\right] .
$$

Therefore,

$$
\operatorname{rank}\left[\begin{array}{cc}
A & B \\
B & A
\end{array}\right]=\operatorname{rank}(A+B)+\operatorname{rank}(A-B)
$$

Now, assume that $n=m$. Then,

$$
\operatorname{det}\left[\begin{array}{ll}
A & B \\
B & A
\end{array}\right]=\operatorname{det}[(A+B)(A-B)]=\operatorname{det}\left(A^{2}-B^{2}-[A, B]\right)
$$

Hence, $\left[\begin{array}{cc}A & B \\ B & A\end{array}\right]$ is nonsingular if and only if $A+B$ and $A-B$ are nonsingular. In
this case,

$$
\begin{gathered}
{\left[\begin{array}{cc}
A & B \\
B & A
\end{array}\right]^{-1}=\frac{1}{2}\left[\begin{array}{ll}
(A+B)^{-1}+(A-B)^{-1} & (A+B)^{-1}-(A-B)^{-1} \\
(A+B)^{-1}-(A-B)^{-1} & (A+B)^{-1}+(A-B)^{-1}
\end{array}\right]} \\
(A+B)^{-1}=\frac{1}{2}\left[\begin{array}{ll}
I & I
\end{array}\right]\left[\begin{array}{cc}
A & B \\
B & A
\end{array}\right]^{-1}\left[\begin{array}{l}
I \\
I
\end{array}\right]
\end{gathered}
$$

and

$$
(A-B)^{-1}=\frac{1}{2}\left[\begin{array}{ll}
I & -I
\end{array}\right]\left[\begin{array}{ll}
A & B \\
B & A
\end{array}\right]^{-1}\left[\begin{array}{c}
I \\
-I
\end{array}\right]
$$

(Remark: See Fact 6.5.1.)
Fact 2.17.6. Let $A_{1}, \ldots, A_{k} \in \mathbb{F}^{n \times n}$, and assume that the $k n \times k n$ partitioned matrix below is nonsingular. Then, $A_{1}+\cdots+A_{k}$ is nonsingular, and

$$
\left(A_{1}+\cdots+A_{k}\right)^{-1}=\frac{1}{k}\left[\begin{array}{lll}
I_{n} & \cdots & I_{n}
\end{array}\right]\left[\begin{array}{cccc}
A_{1} & A_{2} & \cdots & A_{k} \\
A_{k} & A_{1} & \cdots & A_{k-1} \\
\vdots & \vdots & \ddots & \vdots \\
A_{2} & A_{3} & \cdots & A_{1}
\end{array}\right]^{-1}\left[\begin{array}{c}
I_{m} \\
\vdots \\
I_{m}
\end{array}\right]
$$

(Proof: See 1282.) (Remark: The partitioned matrix is block circulant. See Fact 6.5.2 and Fact 6.6.1)

Fact 2.17.7. Let $\mathcal{A} \triangleq\left[\begin{array}{cc}A & B \\ 0_{m \times m} & C\end{array}\right]$, where $A \in \mathbb{F}^{n \times m}, B \in \mathbb{F}^{n \times n}$, and $C \in \mathbb{F}^{m \times n}$, and assume that $C A$ is nonsingular. Furthermore, define $P \triangleq A(C A)^{-1} C$ and $P_{\perp} \triangleq I-P$. Then, \mathcal{A} is nonsingular if and only if $P+P_{\perp} B P_{\perp}$ is nonsingular. In this case,

$$
\mathcal{A}^{-1}=\left[\begin{array}{cc}
(C A)^{-1}(C-C B D) & -(C A)^{-1} C B(A-D B A)(C A)^{-1} \\
D & (A-D B A)(C A)^{-1}
\end{array}\right]
$$

where $D \triangleq\left(P+P_{\perp} B P_{\perp}\right)^{-1} P_{\perp}$. (Proof: See 639.)
Fact 2.17.8. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{n \times(n-m)}$, and assume that $\left[\begin{array}{ll}A & B\end{array}\right]$ is nonsingular and $A^{*} B=0$. Then,

$$
\left[\begin{array}{cc}
A & B
\end{array}\right]^{-1}=\left[\begin{array}{c}
\left(A^{*} A\right)^{-1} A^{*} \\
\left(B^{*} B\right)^{-1} B^{*}
\end{array}\right]
$$

(Remark: See Fact 6.5.18) (Problem: Find an expression for $\left[\begin{array}{ll}A & B\end{array}\right]^{-1}$ without assuming $A^{*} B=0$.)

Fact 2.17.9. Let $A \in \mathbb{F}^{n \times m}, B \in \mathbb{F}^{n \times l}$, and $C \in \mathbb{F}^{m \times l}$. Then,

$$
\left[\begin{array}{ccc}
I_{n} & A & B \\
0 & I_{m} & C \\
0 & 0 & I_{l}
\end{array}\right]^{-1}=\left[\begin{array}{ccc}
I_{n} & -A & A C-B \\
0 & I_{m} & -C \\
0 & 0 & I_{l}
\end{array}\right]
$$

Fact 2.17.10. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is nonsingular. Then, $X=A^{-1}$ is the unique matrix satisfying

$$
\operatorname{rank}\left[\begin{array}{cc}
A & I \\
I & X
\end{array}\right]=\operatorname{rank} A
$$

(Remark: See Fact 6.3.30 and Fact 6.6.2, (Proof: See 483.)

2.18 Facts on Commutators

Fact 2.18.1. Let $A, B \in \mathbb{F}^{2 \times 2}$. Then,

$$
[A, B]^{2}=\frac{1}{2}\left(\operatorname{tr}[A, B]^{2}\right) I_{2}
$$

(Remark: See 499, 500].)
Fact 2.18.2. Let $A, B \in \mathbb{F}^{n \times n}$. Then,

$$
\operatorname{tr}[A, B]^{3}=3 \operatorname{tr}\left(A^{2} B^{2} A B-B^{2} A^{2} B A\right)=-3 \operatorname{tr}\left(A B^{2} A[A, B]\right)
$$

Fact 2.18.3. Let $A, B \in \mathbb{F}^{n \times n}$, assume that $[A, B]=0$, and let $k, l \in \mathbb{N}$. Then, $\left[A^{k}, B^{l}\right]=0$.

Fact 2.18.4. Let $A, B, C \in \mathbb{F}^{n \times n}$. Then, the following identities hold:
i) $[A, A]=0$.
ii) $[A, B]=[-A,-B]=-[B, A]$.
iii) $[A, B+C]=[A, B]+[A, C]$.
iv) $[\alpha A, B]=[A, \alpha B]=\alpha[A, B]$ for all $\alpha \in \mathbb{F}$.
v) $[A,[B, C]]+[B,[C, A]]+[C,[A, B]]=0$.
vi) $[A, B]^{\mathrm{T}}=\left[B^{\mathrm{T}}, A^{\mathrm{T}}\right]=-\left[A^{\mathrm{T}}, B^{\mathrm{T}}\right]$.
vii) $\operatorname{tr}[A, B]=0$.
viii) $\operatorname{tr} A^{k}[A, B]=\operatorname{tr} B^{k}[A, B]=0$ for all $k \geq 1$.
ix) $[[A, B], B-A]=[[B, A], A-B]$.
x) $[A,[A, B]]=-[A,[B, A]]$.
(Remark: v) is the Jacobi identity.)
Fact 2.18.5. Let $A, B \in \mathbb{F}^{n \times n}$. Then, for all $X \in \mathbb{F}^{n \times n}$,

$$
\operatorname{ad}_{[A, B]}=\left[\operatorname{ad}_{A}, \operatorname{ad}_{B}\right]
$$

that is,

$$
\operatorname{ad}_{[A, B]}(X)=\operatorname{ad}_{A}\left[\operatorname{ad}_{B}(X)\right]-\operatorname{ad}_{B}\left[\operatorname{ad}_{A}(X)\right]
$$

or, equivalently,

$$
[[A, B], X]=[A,[B, X]]-[B,[A, X]]
$$

Fact 2.18.6. Let $A \in \mathbb{F}^{n \times n}$ and, for all $X \in \mathbb{F}^{n \times n}$, define

$$
\operatorname{ad}_{A}^{k}(X) \triangleq \begin{cases}\operatorname{ad}_{A}(X), & k=1, \\ \operatorname{ad}_{A}^{k-1}\left[\operatorname{ad}_{A}(X)\right], & k \geq 2 .\end{cases}
$$

Then, for all $X \in \mathbb{F}^{n \times n}$ and $k \geq 1$,

$$
\operatorname{ad}_{A}^{2}(X)=[A,[A, X]]-[[A, X], A]
$$

and

$$
\operatorname{ad}_{A}^{k}(X)=\sum_{i=0}^{k}(-1)^{k-i}\binom{k}{i} A^{i} X A^{k-i} .
$$

(Remark: The proof of Proposition 11.4.7 is based on $g\left(e^{t a d_{A}^{A}} e^{\operatorname{tad}_{B}}\right)$, where $g(z) \triangleq$ $(\log z) /(z-1)$. See [1162, p. 35].) (Remark: See Fact 11.14.4) (Proof: For the last identity, see [1098 pp. 176, 207].)

Fact 2.18.7. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that $[A, B]=A$. Then, A is singular. (Proof: If A is nonsingular, then $\operatorname{tr} B=\operatorname{tr} A B A^{-1}=\operatorname{tr} B+n$.)

Fact 2.18.8. Let $A, B \in \mathbb{R}^{n \times n}$ be such that $A B=B A$. Then, there exists a matrix $C \in \mathbb{R}^{n \times n}$ such that $A^{2}+B^{2}=C^{2}$. (Proof: See 415.) (Remark: This result applies to real matrices only.)

Fact 2.18.9. Let $A \in \mathbb{F}^{n \times n}$. Then,

$$
n \leq \operatorname{dim}\left\{X \in \mathbb{F}^{n \times n}: A X=X A\right\}
$$

and

$$
\operatorname{dim}\left\{[A, X]: X \in \mathbb{F}^{n \times n}\right\} \leq n^{2}-n .
$$

(Proof: See [392, pp. 125, 142, 493, 537].) (Remark: The first set is the centralizer or commutant of A. See Fact 7.5.2) (Remark: These quantities are the defect and rank, respectively, of the operator $f: \mathbb{F}^{n \times n} \mapsto \mathbb{F}^{n \times n}$ defined by $f(X) \triangleq A X-X A$. See Fact 7.5.2, (Remark: See Fact 5.14.22 and Fact 5.14.24)

Fact 2.18.10. Let $A \in \mathbb{F}^{n \times n}$. Then, there exists $\alpha \in \mathbb{F}$ such that $A=\alpha I$ if and only if, for all $X \in \mathbb{F}^{n \times n}, A X=X A$. (Proof: To prove sufficiency, note that $A^{\mathrm{T}} \oplus-A=0$. Hence, $\{0\}=\operatorname{spec}\left(A^{\mathrm{T}} \oplus-A\right)=\{\lambda-\mu: \lambda, \mu \in \operatorname{spec}(A)\}$. Therefore, $\operatorname{spec}(A)=\{\alpha\}$, and thus $A=\alpha I+N$, where N is nilpotent. Consequently, for all $X \in \mathbb{F}^{n \times n}, N X=X N$. Setting $X=N^{*}$, it follows that N is normal. Hence, $N=0$.) (Remark: This result determines the center subgroup of GL(n).)

Fact 2.18.11. Define $\mathcal{S} \subseteq \mathbb{F}^{n \times n}$ by

$$
\mathcal{S} \triangleq\left\{[X, Y]: X, Y \in \mathbb{F}^{n \times n}\right\} .
$$

Then, \mathcal{S} is a subspace. Furthermore,

$$
\mathcal{S}=\left\{Z \in \mathbb{F}^{n \times n}: \operatorname{tr} Z=0\right\}
$$

and

$$
\operatorname{dim} \mathcal{S}=n^{2}-1
$$

(Proof: See [392, pp. 125, 493]. Alternatively, note that $\operatorname{tr}: \mathbb{F}^{n^{2}} \mapsto \mathbb{F}$ is onto, and use Corollary 2.5.5.)

Fact 2.18.12. Let $A, B, C, D \in \mathbb{F}^{n \times n}$. Then, there exist $E, F \in \mathbb{F}^{n \times n}$ such that

$$
[E, F]=[A, B]+[C, D]
$$

(Proof: The result follows from Fact 2.18.11) (Problem: Construct E and F.)

2.19 Facts on Complex Matrices

Fact 2.19.1. Let $a, b \in \mathbb{R}$. Then, $\left[\begin{array}{cc}a & b \\ -b & a\end{array}\right]$ is a representation of the complex number $a+\jmath b$ that preserves addition, multiplication and inversion of complex numbers. In particular, if $a^{2}+b^{2} \neq 0$, then

$$
\left[\begin{array}{cc}
a & b \\
-b & a
\end{array}\right]^{-1}=\left[\begin{array}{cc}
\frac{a}{a^{2}+b^{2}} & \frac{-b}{a^{2}+b^{2}} \\
\frac{b}{a^{2}+b^{2}} & \frac{a}{a^{2}+b^{2}}
\end{array}\right]
$$

and

$$
(a+\jmath b)^{-1}=\frac{a}{a^{2}+b^{2}}-\jmath \frac{b}{a^{2}+b^{2}}
$$

(Remark: $\left[\begin{array}{cc}a & b \\ -b & a\end{array}\right]$ is a rotation-dilation. See Fact 3.22.6])
Fact 2.19.2. Let $\nu, \omega \in \mathbb{R}$. Then,

$$
\begin{aligned}
{\left[\begin{array}{cc}
\nu & \omega \\
-\omega & \nu
\end{array}\right] } & =\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
\jmath & -\jmath
\end{array}\right]\left[\begin{array}{cc}
\nu+\jmath \omega & 0 \\
0 & \nu-\jmath \omega
\end{array}\right] \frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
\jmath & -\jmath
\end{array}\right]^{*} \\
& =\frac{1}{\sqrt{2}}\left[\begin{array}{ll}
1 & \jmath \\
\jmath & 1
\end{array}\right]\left[\begin{array}{cc}
\nu+\jmath \omega & 0 \\
0 & \nu-\jmath \omega
\end{array}\right] \frac{1}{\sqrt{2}}\left[\begin{array}{ll}
1 & \jmath \\
\jmath & 1
\end{array}\right]^{*} \\
& =\frac{1}{\sqrt{2}}\left[\begin{array}{ll}
1 & -\jmath \\
\jmath & -1
\end{array}\right]\left[\begin{array}{cc}
\nu+\jmath \omega & 0 \\
0 & \nu-\jmath \omega
\end{array}\right] \frac{1}{\sqrt{2}}\left[\begin{array}{ll}
1 & -\jmath \\
\jmath & -1
\end{array}\right]
\end{aligned}
$$

and

$$
\left[\begin{array}{cc}
\nu & \omega \\
-\omega & \nu
\end{array}\right]^{-1}=\frac{1}{\nu^{2}+\omega^{2}}\left[\begin{array}{cc}
\nu & -\omega \\
\omega & \nu
\end{array}\right]
$$

(Remark: See Fact 2.19.1) (Remark: All three transformations are unitary. The third transformation is also Hermitian.)

Fact 2.19.3. Let $A, B \in \mathbb{R}^{n \times m}$. Then,

$$
\begin{aligned}
{\left[\begin{array}{cc}
A & B \\
-B & A
\end{array}\right] } & =\frac{1}{2}\left[\begin{array}{cc}
I & I \\
\jmath & -\jmath I
\end{array}\right]\left[\begin{array}{cc}
A+\jmath B & 0 \\
0 & A-\jmath B
\end{array}\right]\left[\begin{array}{cc}
I & -\jmath I \\
I & \jmath I
\end{array}\right] \\
& =\frac{1}{2}\left[\begin{array}{cc}
I & \jmath I \\
-\jmath I & -I
\end{array}\right]\left[\begin{array}{cc}
A-\jmath B & 0 \\
0 & A+\jmath B
\end{array}\right]\left[\begin{array}{cc}
I & \jmath I \\
-\jmath I & -I
\end{array}\right] \\
& =\left[\begin{array}{cc}
I & 0 \\
\jmath & I
\end{array}\right]\left[\begin{array}{cc}
A+\jmath B & B \\
0 & A-\jmath B
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
-\jmath I & I
\end{array}\right]
\end{aligned}
$$

Consequently,

$$
\left[\begin{array}{cc}
A+\jmath B & 0 \\
0 & A-\jmath B
\end{array}\right]=\frac{1}{2}\left[\begin{array}{cc}
I & -\jmath I \\
I & \jmath I
\end{array}\right]\left[\begin{array}{cc}
A & B \\
-B & A
\end{array}\right]\left[\begin{array}{cc}
I & I \\
\jmath I & -\jmath I
\end{array}\right]
$$

and thus

$$
A+\jmath B=\frac{1}{2}\left[\begin{array}{ll}
I & -\jmath I
\end{array}\right]\left[\begin{array}{cc}
A & B \\
-B & A
\end{array}\right]\left[\begin{array}{c}
I \\
\jmath I
\end{array}\right]
$$

Furthermore,

$$
\operatorname{rank}(A+\jmath B)=\operatorname{rank}(A-\jmath B)=\frac{1}{2} \operatorname{rank}\left[\begin{array}{cc}
A & B \\
-B & A
\end{array}\right]
$$

Now, assume that $n=m$. Then,

$$
\begin{aligned}
\operatorname{det}\left[\begin{array}{cc}
A & B \\
-B & A
\end{array}\right] & =\operatorname{det}(A+\jmath B) \operatorname{det}(A-\jmath B) \\
& =|\operatorname{det}(A+\jmath B)|^{2} \\
& =\operatorname{det}\left[A^{2}+B^{2}+\jmath(A B-B A)\right] \\
& \geq 0
\end{aligned}
$$

Hence, $\left[\begin{array}{cc}A & B \\ -B & A\end{array}\right]$ is nonsingular if and only if $A+{ }_{\jmath} B$ is nonsingular. If A is nonsingular, then

$$
\operatorname{det}\left[\begin{array}{cc}
A & B \\
-B & A
\end{array}\right]=\operatorname{det}\left(A^{2}+A B A^{-1} B\right)
$$

If $A B=B A$, then

$$
\operatorname{det}\left[\begin{array}{cc}
A & B \\
-B & A
\end{array}\right]=\operatorname{det}\left(A^{2}+B^{2}\right)
$$

(Proof: If A is nonsingular, then use

$$
\left[\begin{array}{cc}
A & B \\
-B & A
\end{array}\right]=\left[\begin{array}{cc}
A & 0 \\
0 & A
\end{array}\right]\left[\begin{array}{cc}
I & A^{-1} B \\
-A^{-1} B & I
\end{array}\right]
$$

and

$$
\left.\operatorname{det}\left[\begin{array}{cc}
I & A^{-1} B \\
-A^{-1} B & I
\end{array}\right]=\operatorname{det}\left[I+\left(A^{-1} B\right)^{2}\right] .\right)
$$

(Remark: See Fact 4.10.26 and 79, 1281.)
Fact 2.19.4. Let $A, B \in \mathbb{R}^{n \times m}$. Then, $\left[\begin{array}{cc}A & B \\ -B & A\end{array}\right]$ and $\left[\begin{array}{cc}A & -B \\ B & A\end{array}\right]$ are representations of the complex matrices $A+\jmath B$ and $\overline{A+\jmath B}$, respectively. Furthermore, $\left[\begin{array}{cc}A^{\mathrm{T}} & B^{\mathrm{T}} \\ -B^{\mathrm{T}} & A^{\mathrm{T}}\end{array}\right]$ and $\left[\begin{array}{cc}A^{\mathrm{T}} & -B^{\mathrm{T}} \\ B^{\mathrm{T}} & A^{\mathrm{T}}\end{array}\right]$ are representations of the complex matrices $(A+\jmath B)^{\mathrm{T}}$ and $(A+\jmath B)^{*}$, respectively.

Fact 2.19.5. Let $A, B \in \mathbb{R}^{n \times m}$ and $C, D \in \mathbb{R}^{m \times l}$. Then, for all $\alpha, \beta \in \mathbb{R}$, $\left[\begin{array}{cc}A & B \\ -B & A\end{array}\right],\left[\begin{array}{cc}C & D \\ -D & C\end{array}\right]$, and $\left[\begin{array}{cc}\alpha A+\beta C & \alpha B+\beta D \\ -(\alpha B+\beta D) & \alpha A+\beta C\end{array}\right]=\alpha\left[\begin{array}{cc}A & B \\ -B & A\end{array}\right]+\beta\left[\begin{array}{cc}C & D \\ -D & C\end{array}\right]$ are representations of the complex matrices $A+\jmath B, C+\jmath D$, and $\alpha(A+\jmath B)+\beta(C+\jmath D)$, respectively.

Fact 2.19.6. Let $A, B \in \mathbb{R}^{n \times m}$ and $C, D \in \mathbb{R}^{m \times l}$. Then, $\left[\begin{array}{cc}A & B \\ -B & A\end{array}\right],\left[\begin{array}{cc}C & D \\ -D & C\end{array}\right]$, and $\left[\begin{array}{cc}A C-B D & A D+B C \\ -(A D+B C) & A C-B D\end{array}\right]=\left[\begin{array}{cc}A & B \\ -B & A\end{array}\right]\left[\begin{array}{cc}C & D \\ -D & C\end{array}\right]$ are representations of the complex matrices
$A+\jmath B, C+\jmath D$, and $(A+\jmath B)(C+\jmath D)$, respectively.
Fact 2.19.7. Let $A, B \in \mathbb{R}^{n \times n}$. Then, $A+\jmath B$ is nonsingular if and only if $\left[\begin{array}{cc}A & B \\ -B & A\end{array}\right]$ is nonsingular. In this case,

$$
(A+\jmath B)^{-1}=\frac{1}{2}\left[\begin{array}{ll}
I & -\jmath I
\end{array}\right]\left[\begin{array}{cc}
A & B \\
-B & A
\end{array}\right]^{-1}\left[\begin{array}{l}
I \\
\jmath I
\end{array}\right]
$$

If A is nonsingular, then $A+\jmath B$ is nonsingular if and only if $A+B A^{-1} B$ is nonsingular. In this case,

$$
\left[\begin{array}{cc}
A & B \\
-B & A
\end{array}\right]^{-1}=\left[\begin{array}{cc}
\left(A+B A^{-1} B\right)^{-1} & -A^{-1} B\left(A+B A^{-1} B\right)^{-1} \\
A^{-1} B\left(A+B A^{-1} B\right)^{-1} & \left(A+B A^{-1} B\right)^{-1}
\end{array}\right]
$$

and

$$
(A+\jmath B)^{-1}=\left(A+B A^{-1} B\right)^{-1}-\jmath A^{-1} B\left(A+B A^{-1} B\right)^{-1}
$$

Alternatively, if B is nonsingular. Then, $A+{ }_{\jmath} B$ is nonsingular if and only if $B+A B^{-1} A$ is nonsingular. In this case,

$$
\left[\begin{array}{cc}
A & B \\
-B & A
\end{array}\right]^{-1}=\left[\begin{array}{cc}
B^{-1} A\left(B+A B^{-1} A\right)^{-1} & -\left(B+A B^{-1} A\right)^{-1} \\
\left(B+A B^{-1} A\right)^{-1} & B^{-1} A\left(B+A B^{-1} A\right)^{-1}
\end{array}\right]
$$

and

$$
(A+\jmath B)^{-1}=B^{-1} A\left(B+A B^{-1} A\right)^{-1}-\jmath\left(B+A B^{-1} A\right)^{-1}
$$

(Remark: See Fact 3.11.27, Fact 6.5.1, and 1282.)
Fact 2.19.8. Let $A \in \mathbb{F}^{n \times n}$. Then,

$$
\operatorname{det}(I+A \bar{A}) \geq 0
$$

(Proof: See 416].)
Fact 2.19.9. Let $A, B \in \mathbb{F}^{n \times n}$. Then,

$$
\operatorname{det}\left[\begin{array}{cc}
A & B \\
-\bar{B} & \bar{A}
\end{array}\right] \geq 0
$$

If, in addition, A is nonsingular, then

$$
\operatorname{det}\left[\begin{array}{cc}
A & B \\
-\bar{B} & \bar{A}
\end{array}\right]=|\operatorname{det} A|^{2} \operatorname{det}\left(I+\overline{A^{-1} B} A^{-1} B\right)
$$

(Proof: See [1489].) (Remark: Fact 2.19.8 implies that $\operatorname{det}\left(I+\overline{A^{-1} B} A^{-1} B\right) \geq 0$.)
Fact 2.19.10. Let $A, B \in \mathbb{R}^{n \times n}$, and define $C \in \mathbb{R}^{2 n \times 2 n}$ by $C \triangleq$ $\left[\begin{array}{cll}C_{11} & C_{12} & \cdots \\ C_{21} & \cdots & \\ \vdots & & \end{array}\right]$, where $C_{i j} \triangleq\left[\begin{array}{cc}A_{(i, j)} & B_{(i, j)} \\ -B_{(i, j)} & A_{(i, j)}\end{array}\right] \in \mathbb{R}^{2 \times 2}$ for all $i, j=1, \ldots, n$. Then, $\operatorname{det} C=|\operatorname{det}(A+\jmath B)|^{2}$.
(Proof: Note that

$$
C=A \otimes I_{2}+B \otimes J_{2}=P_{2, n}\left(I_{2} \otimes A+J_{2} \otimes B\right) P_{2, n}=P_{2, n}\left[\begin{array}{cc}
A & B \\
-B & A
\end{array}\right] P_{2, n}
$$

See 257.)

2.20 Facts on Geometry

Fact 2.20.1. The points $x, y, z \in \mathbb{R}^{2}$ lie on one line if and only if

$$
\operatorname{det}\left[\begin{array}{lll}
x & y & z \\
1 & 1 & 1
\end{array}\right]=0
$$

Fact 2.20.2. The points $w, x, y, z \in \mathbb{R}^{3}$ lie in one plane if and only if

$$
\operatorname{det}\left[\begin{array}{cccc}
w & x & y & z \\
1 & 1 & 1 & 1
\end{array}\right]=0
$$

Fact 2.20.3. Let $x_{1}, \ldots, x_{n} \in \mathbb{R}^{n}$. Then,

$$
\operatorname{rank}\left[\begin{array}{ccc}
1 & \cdots & 1 \\
x_{1} & \cdots & x_{n}
\end{array}\right]=\operatorname{rank}\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
x_{1} & x_{2}-x_{1} & \cdots & x_{n}-x_{1}
\end{array}\right]
$$

Hence,

$$
\operatorname{rank}\left[\begin{array}{ccc}
1 & \cdots & 1 \\
x_{1} & \cdots & x_{n}
\end{array}\right]=n
$$

if and only if

$$
\operatorname{rank}\left[\begin{array}{ccc}
x_{2}-x_{1} & \cdots & x_{n}-x_{1}
\end{array}\right]=n-1
$$

In this case,

$$
\operatorname{aff}\left\{x_{1}, \ldots, x_{n}\right\}=x_{1}+\operatorname{span}\left\{x_{2}-x_{1}, \ldots, x_{n}-x_{1}\right\}
$$

and thus aff $\left\{x_{1}, \ldots, x_{n}\right\}$ is an affine hyperplane. Finally,

$$
\operatorname{aff}\left\{x_{1}, \ldots, x_{n}\right\}=\left\{x \in \mathbb{R}^{n}: \operatorname{det}\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
x & x_{1} & \cdots & x_{n}
\end{array}\right]=0\right\}
$$

(Proof: See 1184 p. 31].) (Remark: See Fact [2.20.4])
Fact 2.20.4. Let $x_{1}, \ldots, x_{n+1} \in \mathbb{R}^{n}$. Then, the following statements are equivalent:
i) co $\left\{x_{1}, \ldots, x_{n+1}\right\}$ is a simplex.
ii) co $\left\{x_{1}, \ldots, x_{n+1}\right\}$ has nonempty interior.
iii) aff $\left\{x_{1}, \ldots, x_{n+1}\right\}=\mathbb{R}^{n}$.
iv) $\operatorname{span}\left\{x_{2}-x_{1}, \ldots, x_{n+1}-x_{1}\right\}=\mathbb{R}^{n}$.
$v)\left[\begin{array}{ccc}1 & \cdots & 1 \\ x_{1} & \cdots & x_{n+1}\end{array}\right]$ is nonsingular.
(Proof: The equivalence of i) and $i i$) follows from Fact 10.8.9. The equivalence of i) and $i v$) follows from Fact 2.9.7. Finally, the equivalence of $i v$) and v) follows from

$$
\left.\left[\begin{array}{ccc}
1 & \cdots & 1 \\
x_{1} & \cdots & x_{n+1}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
x_{1} & x_{2}-x_{1} & \cdots & x_{n+1}-x_{1}
\end{array}\right]\left[\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & \cdots & 1
\end{array}\right] .\right)
$$

(Remark: See Fact 2.20.3 and Fact 10.8.12)
Fact 2.20.5. Let z_{1}, z_{2}, z be complex numbers, and assume that $z_{1} \neq z_{2}$. Then, the following statements are equivalent:
i) z lies on the line passing through z_{1} and z_{2}.
ii) $\frac{z-z_{1}}{z_{2}-z_{1}}$ is real.
iii) $\operatorname{det}\left[\begin{array}{cc}z-z_{1} & \bar{z}-\overline{z_{1}} \\ z_{2}-z_{1} & \overline{z_{2}}-\overline{z_{1}}\end{array}\right]=0$.
$i v) \operatorname{det}\left[\begin{array}{ccc}z & \bar{z} & 1 \\ z_{1} & \overline{z_{1}} & 1 \\ z_{2} & \overline{z_{2}} & 1\end{array}\right]=0$.
Furthermore, the following statements are equivalent:
$v) z$ lies on the line segment connecting z_{1} and z_{2}.
vi) $\frac{z-z_{1}}{z_{2}-z_{1}}$ is a positive number.
vii) There exists $\phi \in(-\pi, \pi]$ such that $\left|z-z_{1}\right| e^{\jmath \phi}=\left|z_{2}-z_{1}\right| e^{\jmath \phi}$.
(Proof: See [59, pp. 54-56].)
Fact 2.20.6. Let z_{1}, z_{2}, z_{3} be distinct complex numbers. Then, the following statements are equivalent:
i) z_{1}, z_{2}, z_{3} are the vertices of an equilateral triangle.
ii) $\left|z_{1}-z_{2}\right|=\left|z_{2}-z_{3}\right|=\left|z_{3}-z_{1}\right|$.
iii) $z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=z_{1} z_{2}+z_{2} z_{3}+z_{3} z_{1}$.
iv) $\frac{z_{2}-z_{1}}{z_{3}-z_{2}}=\frac{z_{3}-z_{2}}{z_{1}-z_{2}}$.
(Proof: See [59, pp. 70, 71] and [868, p. 316].)
Fact 2.20.7. Let $\mathcal{S} \subset \mathbb{R}^{2}$ denote the triangle with vertices $\left[\begin{array}{l}0 \\ 0\end{array}\right]$, $\left[\begin{array}{l}x_{1} \\ y_{1}\end{array}\right],\left[\begin{array}{l}x_{2} \\ y_{2}\end{array}\right] \in \mathbb{R}^{2}$.
Then,

$$
\operatorname{area}(\mathcal{S})=\frac{1}{2}\left|\operatorname{det}\left[\begin{array}{ll}
x_{1} & x_{2} \\
y_{1} & y_{2}
\end{array}\right]\right|
$$

Fact 2.20.8. Let $\mathcal{S} \subset \mathbb{R}^{2}$ denote the triangle with vertices $\left[\begin{array}{l}x_{1} \\ y_{1}\end{array}\right],\left[\begin{array}{l}x_{2} \\ y_{2}\end{array}\right],\left[\begin{array}{l}x_{3} \\ y_{3}\end{array}\right] \in \mathbb{R}^{2}$. Then,

$$
\operatorname{area}(\mathcal{S})=\frac{1}{2}\left|\operatorname{det}\left[\begin{array}{ccc}
1 & 1 & 1 \\
x_{1} & x_{2} & x_{3} \\
y_{1} & y_{2} & y_{3}
\end{array}\right]\right| .
$$

(Proof: See [1184, p. 32].)
Fact 2.20.9. Let z_{1}, z_{2}, z_{3} be complex numbers. Then, the area of the triangle \mathcal{S} formed by z_{1}, z_{2}, z_{3} is given by

$$
\operatorname{area}(\mathcal{S})=\frac{1}{4}\left|\operatorname{det}\left[\begin{array}{lll}
z_{1} & \overline{z_{1}} & 1 \\
z_{2} & \overline{z_{2}} & 1 \\
z_{3} & \overline{z_{3}} & 1
\end{array}\right]\right|
$$

(Proof: See [59, p. 79].)
Fact 2.20.10. Let $\mathcal{S} \subset \mathbb{R}^{3}$ denote the triangle with vertices $x, y, z \in \mathbb{R}^{3}$. Then,

$$
\operatorname{area}(\mathcal{S})=\frac{1}{2} \sqrt{[(y-x) \times(z-x)]^{\mathrm{T}}[(y-x) \times(z-x)]}
$$

Fact 2.20.11. Let $\mathcal{S} \subset \mathbb{R}^{2}$ denote a triangle whose sides have lengths a, b, and c, let A, B, C denote the angles of the triangle opposite the sides having lengths a, b, and c, respectively, define the semiperimeter $s \triangleq \frac{1}{2}(a+b+c)$, let r denote the radius of the largest inscribed circle, and let R denote the radius of the smallest circumscribed circle. Then, the following identities hold:
i) $A+B+C=\pi$.
ii) $a^{2}+b^{2}=c^{2}+2 a b \cos C$.
iii) $\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$.
iv) $\operatorname{area}(\mathcal{S})=\frac{1}{2} a b \sin C=\frac{c^{2}}{2} \frac{(\sin A) \sin B}{\sin C}$.
$v) \operatorname{area}(\mathcal{S})=\sqrt{s(s-a)(s-b)(s-c)}=r s=\frac{a b c}{4 R}$.
vi) $\operatorname{area}(\mathcal{S}) \leq \frac{\sqrt{3}}{12}\left(a^{2}+b^{2}+c^{2}\right)$.
$v i i)$ If \mathcal{S} is equilateral, then $\operatorname{area}(\mathcal{S})=\frac{\sqrt{3}}{4} a^{2}$ and $R=2 r=\frac{\sqrt{3}}{3} a$.
viii) a, b, c are the roots of the cubic equation

$$
x^{3}-2 s x^{2}+\left(s^{2}+r^{2}+4 r R\right) x-4 s r R=0
$$

That is,

$$
a+b+c=2 s, \quad a b+b c+c a=s^{2}+r^{2}+4 r R, \quad a b c=4 r R s
$$

ix) a, b, c satisfy

$$
a^{2}+b^{2}+c^{2}=2\left(s^{2}-r^{2}-4 r R\right)
$$

and

$$
a^{3}+b^{3}+c^{3}=2 s\left(s^{2}-3 r^{2}-6 r R\right)
$$

$x)$ If r_{1}, r_{2}, r_{3} denote the altitudes of the triangle, then

$$
\frac{1}{r}=\frac{1}{r_{1}}+\frac{1}{r_{2}}+\frac{1}{r_{3}} .
$$

xi) $r \leq \frac{1}{2}\left(\frac{2}{1+\sqrt{5}}\right)^{5 / 2}(a+b) \approx 0.15(a+b)$. If, in addition, \mathcal{S} is equilateral, then $r=\frac{\sqrt{3}}{12}(a+b) \approx 0.14(a+b)$.
Furthermore, the following statements hold:
xii) $2 \leq \frac{a}{b}+\frac{b}{a} \leq \frac{R}{r}$.
xiii) $2 \leq \frac{2}{3}\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right) \leq \frac{a}{b}+\frac{b}{c}+\frac{c}{a}-1 \leq \frac{1}{2}\left(1+\frac{a^{2}}{b c}+\frac{b^{2}}{c a}+\frac{c^{2}}{a b}\right) \leq \frac{R}{r}$.
xiv) $1 \leq \frac{2 a^{2}}{2 a^{2}-(b-c)^{2}} \frac{2 b^{2}}{2 b^{2}-(c-a)^{2}} \frac{2 c^{2}}{2 c^{2}-(a-b)^{2}} \leq \frac{R}{2 r}$.
xv) $\frac{a}{2} \frac{4 r-R}{R} \leq \sqrt{(s-b)(s-c)} \leq \frac{a}{2}$.
xvi) A triangle \mathcal{S} with values area($\mathcal{S}), r$, and R exists if and only if

$$
\begin{aligned}
& r \sqrt{2 R^{2}+10 r R-r^{2}-2(R-2 r) \sqrt{R(R-2 r)}} \\
& \quad \leq \operatorname{area}(\mathcal{S}) \leq r \sqrt{2 R^{2}+10 r R-r^{2}+2(R-2 r) \sqrt{R(R-2 r)}} .
\end{aligned}
$$

xvii) Let $\theta \triangleq \min \{|A-B|,|A-C|,|B-C|\}_{\mathrm{ms}}$. Then,

$$
\begin{aligned}
& r \sqrt{2 R^{2}+10 r R-r^{2}-2(R-2 r) \sqrt{R(R-2 r)} \cos \theta} \\
& \quad \leq \operatorname{area}(\mathcal{S}) \leq r \sqrt{2 R^{2}+10 r R-r^{2}+2(R-2 r) \sqrt{R(R-2 r)} \cos \theta} .
\end{aligned}
$$

xviii) area $(\mathcal{S}) \leq\left(R+\frac{1}{2} r\right)^{2}$.
$x i x)$ area $(\mathbb{S}) \leq \frac{1}{\sqrt{3}}(R+r)^{2}$.
$x x)$ area $(\mathcal{S}) \leq \frac{3 \sqrt{3}}{25}(R+3 r)^{2}$.
xxi) $3 \sqrt{3} r^{2} \leq \operatorname{area}(\mathcal{S}) \leq 2 r R+(3 \sqrt{3}-4) r^{2}$.
xxii) $r \sqrt{16 r R-5 r^{2}} \leq \operatorname{area}(\mathcal{S}) \leq r \sqrt{4 R^{2}+4 r R+3 r^{2}}$.
xxiii) For all $n \geq 0, a^{n}+b^{n}+c^{n} \leq 2^{n+1} R^{n}+2^{n}\left(3^{1+n / 2}-2^{1+n}\right) r^{n}$.
xxiv) A triangle \mathcal{S} with values $u=\cos A, v=\cos B$, and $v=\cos C$ exists if and only if $u+v+w \geq 1$, uvw ≥-1, and $u^{2}+v^{2}+w^{2}+2 u v w=1$.
$x x v$) If P is a point inside \mathcal{S} and d_{1}, d_{2}, d_{3} are the distances from P to each of the sides, then

$$
\sqrt{d_{1}}+\sqrt{d_{2}}+\sqrt{d_{3}} \leq \sqrt{\frac{a^{2}+b^{2}+c^{2}}{2 R}} .
$$

In particular,

$$
18 R^{2} \leq a^{2}+b^{2}+c^{2} .
$$

xxvi) $4 r^{2}\left[8 R^{2}-\left(a^{2}+b^{2}+c^{2}\right)\right] \leq R^{2}\left(R^{2}-4 r^{2}\right)$.
$x x v i i) a b c \leq 3 \sqrt{3} R^{3}$.
xxviii) The triangle \mathcal{S} is similar to the triangle \mathcal{S}^{\prime} with sides of length $a^{\prime}, b^{\prime}, c^{\prime}$ if and only if

$$
\sqrt{a a^{\prime}}+\sqrt{b b^{\prime}}+\sqrt{c c^{\prime}}=\sqrt{(a+b+c)\left(a^{\prime}+b^{\prime}+c^{\prime}\right)}
$$

xxix) $\left(\sin \frac{1}{2} A\right)\left(\sin \frac{1}{2} B\right)\left(\sin \frac{1}{2} C\right)<\left(\sin \frac{1}{2} \sqrt[3]{A B C}\right)^{3}<\frac{1}{8}$.
$x x x)\left(\cos \frac{1}{2} A\right)\left(\cos \frac{1}{2} B\right)\left(\cos \frac{1}{2} C\right)<\left[\sin \frac{1}{2} \sqrt[3]{(\pi-A)(\pi-B)(\pi-C)}\right]^{3}$.
xxxi) $\left(\tan \frac{1}{2} \sqrt[3]{A B C}\right)^{3}<\left(\tan \frac{1}{2} A\right)\left(\tan \frac{1}{2} B\right)\left(\tan \frac{1}{2} C\right)$.
xxxii) $1 \leq \tan ^{2}\left(\frac{1}{2} A\right)+\tan ^{2}\left(\frac{1}{2} B\right)+\tan ^{2}\left(\frac{1}{2} C\right)$.
xxxiii) $\frac{\pi}{3}(a+b+c) \leq A a+B b+C c \leq \frac{\pi-\min \{A, B, C\}}{2}(a+b+c)$.
xxxiv) If x, y, z are positive numbers, then

$$
\begin{aligned}
x \sin A+y \sin B+z \sin C & \leq \frac{1}{2}(x y+y z+z x) \sqrt{\frac{1}{x y}+\frac{1}{y z}+\frac{1}{z x}} \\
& \leq \frac{\sqrt{3}}{2}\left(\frac{y z}{x}+\frac{z x}{y}+\frac{x y}{z}\right)
\end{aligned}
$$

$x x x v) \sin A+\sin B+\sin C \leq \frac{3 \sqrt{3}}{2}$.
(Proof: Results i) $-v$) are classical. The first expression for area (\mathcal{S}) in v) is Heron's formula. Statements $i i$) and $i i i$) are the cosine rule and sine rule, respectively. See [1503, p. 319]. Statement vi) is due to Weitzenbock. See [59, p. 145] and 457, p. 170]. The expression for area(\mathcal{S}) in $v i i)$ follows from v) and provides the case of equality in $v i$). Statements viii) and $i x$) are given in [59, pp. 110, 111]. Statement $x i)$ is given in [102]. Statements xii) and xiii) are given in [1374. Statement xiv) is due to [1097]. See 457, p. 174]. Statement $x v$) is given in [1146. Statement $x v i$), which is due to Ramus, is the fundamental triangle inequality. See 1011 . The interpolation of $x v i$) given by $x v i i$) is given in $[1463$. The bounds $x v i i i)-x x$) are given in 1464 . The bounds $x x i$) and $x x i i$) are due to Blundon. See 1161. Statement xxiii) is given in (1161. Statement xxiv) is given in 622. Statement $x x v$) is given in 868 pp. 255, 256]. Statement $x x v i$) follows from [59, p. 189]. Statement xxvii) follows from [59, p. 144]. Statement xxviii) is given in [457, p. 183]. Necessity is immediate. Statements $x x i x)-x x x i$) are given in [1040. Statement $x x x i i)$ is given in [136, p. 231]. Statement $x x x i i i$) is given in [971, p. 203]. The first inequality in statement xxxiv) is Klamkin's inequality. The first and third terms comprise it Vasic's inequality. See [1374. Statement xxxiv) follows from statement xxxii) with $x=y=z=1$.) (Remark: $2 r \leq R$ in xii) is Euler's inequality. The interpolation is Bandila's inequality. The inequality involving the second and fifth terms in xiii) is due to Zhang and Song. See 1374.) (Remark: The bound xxi) is Mircea's inequality, while $x x i i$) is due to Carliz and Leuenberger. See [1464.) (Remark: Additional inequalities involving the sides and angles of a triangle are given in Fact 1.11.21, 244, and 971, pp. 192-203].) (Remark: The second inequality in xxxiv) is given in Fact 1.11.10.)

Fact 2.20.12. Let a be a complex number, let $b \in\left(0,|a|^{2}\right)$, and define

$$
\mathcal{S} \triangleq\left\{z \in \mathbb{C}:|z|^{2}-\bar{a} z-a \bar{z}+b=0\right\}
$$

Then, \mathcal{S} is the circle with center at a and radius $\sqrt{|a|^{2}-b}$. That is,

$$
\mathcal{S}=\left\{z \in \mathbb{C}:|z-a|=\sqrt{|a|^{2}-b}\right\} .
$$

(Proof: See [59, p. 84, 85].)
Fact 2.20.13. Let $\mathcal{S} \subset \mathbb{R}^{2}$ be a convex quadrilateral whose sides have lengths a, b, c, d, define the semiperimeter $s \triangleq \frac{1}{2}(a+b+c+d)$, let A, B, C, D denote the angles of \mathcal{S} labeled consecutively, and define $\theta \triangleq \frac{1}{2}(A+C)=\pi-\frac{1}{2}(B+D)$. Then,

$$
\operatorname{area}(\mathcal{S})=\sqrt{(s-a)(s-b)(s-c)(s-d)-a b c d \cos ^{2} \theta}
$$

Now, let p, q be the lengths of the diagonals of \mathcal{S}. Then,

$$
p q \leq a c+b c
$$

and

$$
\operatorname{area}(\mathcal{S})=\sqrt{(s-a)(s-b)(s-c)(s-d)-\frac{1}{4}(a c+b d+p q)(a c+b d-p q)}
$$

If the quadrilateral has an inscribed circle that contacts all four sides of the quadrilateral, then

$$
\operatorname{area}(\mathcal{S})=\sqrt{a b c d}=\sqrt{p^{2} q^{2}-(a c-b d)^{2}}
$$

Finally, all of the vertices of \mathcal{S} lie on a circle if and only if

$$
p q=a c+b c
$$

In this case,

$$
\operatorname{area}(\mathcal{S})=\sqrt{(s-a)(s-b)(s-c)(s-d)}
$$

and

$$
\operatorname{area}(\mathcal{S})=\frac{1}{4 R} \sqrt{(a d+b c)(a c+b d)(a b+c d)}
$$

where R is the radius of the circumscribed circle. (Proof: See [60, pp. 37, 38], Wikipedia, PlanetMath, and MathWorld.) (Remark: $p q \leq a c+b c$ is Ptolemy's inequality, which holds for nonconvex quadrilaterals. The equality case is Ptolemy's theorem. See [59, p. 130].) (Remark: The fourth expression for area(S) is Brahmagupta's formula. The limiting case $d=0$ yields Heron's formula. See Fact 2.20.11) (Remark: For each quadrilateral, there exists a quadrilateral with the same side lengths and whose vertices lie on a circle. The area of the latter quadrilateral is maximum over all quadrilaterals with the same side lengths. See [1082.) (Problem: For which quadrilaterals does there exist a quadrilateral with the same side lengths and whose sides are tangent to an inscribed circle?) (Remark: See Fact 9.7.5.)

Fact 2.20.14. Let $\mathcal{S} \subset \mathbb{R}^{2}$ denote the polygon with vertices $\left[\begin{array}{l}x_{1} \\ y_{1}\end{array}\right], \ldots,\left[\begin{array}{l}x_{n} \\ y_{n}\end{array}\right] \in \mathbb{R}^{2}$ arranged in counterclockwise order, and assume that the interior of the polygon is either empty or simply connected. Then,

$$
\begin{aligned}
\operatorname{area}(\mathcal{S})= & \frac{1}{2} \operatorname{det}\left[\begin{array}{ll}
x_{1} & x_{2} \\
y_{1} & y_{2}
\end{array}\right]+\frac{1}{2} \operatorname{det}\left[\begin{array}{ll}
x_{2} & x_{3} \\
y_{2} & y_{3}
\end{array}\right]+\cdots \\
& +\frac{1}{2} \operatorname{det}\left[\begin{array}{ll}
x_{n-1} & x_{n} \\
y_{n-1} & y_{n}
\end{array}\right]+\frac{1}{2} \operatorname{det}\left[\begin{array}{ll}
x_{n} & x_{1} \\
y_{n} & y_{1}
\end{array}\right] .
\end{aligned}
$$

(Remark: The polygon need not be convex, while "counterclockwise" is determined with respect to a point in the interior of the polygon. Simply connected means that the polygon has no holes. See [1237.) (Remark: See [59, p. 100].) (Remark: See Fact 9.7.5)

Fact 2.20.15. Let $\mathcal{S} \subset \mathbb{R}^{3}$ denote the tetrahedron with vertices $x, y, z, w \in \mathbb{R}^{3}$. Then,

$$
\text { volume }(\mathcal{S})=\frac{1}{6}\left|(x-w)^{\mathrm{T}}[(y-w) \times(z-w)]\right|
$$

(Proof: The volume of the unit simplex $\mathcal{S} \subset \mathbb{R}^{3}$ with vertices $(0,0,0),(1,0,0)$, $(0,1,0),(0,0,1)$ is $1 / 6$. Now, Fact 2.20 .18 implies that the volume of $A \mathcal{S}$ is $(1 / 6)|\operatorname{det} A|$.) (Remark: The connection between the signed volume of a simplex and the determinant is discussed in [878, pp. 32, 33].)

Fact 2.20.16. Let $\mathcal{S} \subset \mathbb{R}^{3}$ denote the parallelepiped with vertices $x, y, z, x+$ $y, x+z, y+z, x+y+z \in \mathbb{R}^{3}$. Then,

$$
\operatorname{volume}(\mathcal{S})=\left|\operatorname{det}\left[\begin{array}{lll}
x & y & z
\end{array}\right]\right| .
$$

Fact 2.20.17. Let $A \in \mathbb{R}^{n \times m}$, assume that $\operatorname{rank} A=m$, and let $\mathcal{S} \subset \mathbb{R}^{n}$ denote the parallelepiped in \mathbb{R}^{n} with a vertex at 0 and generated by the m columns of A, that is,

$$
\mathcal{S}=\left\{\sum_{i=1}^{m} \alpha_{i} \operatorname{col}_{i}(A): 0 \leq \alpha_{i} \leq 1 \text { for all } i=1, \ldots, m\right\}
$$

Then,

$$
\operatorname{volume}(\mathcal{S})=\left[\operatorname{det}\left(A^{\mathrm{T}} A\right)\right]^{1 / 2}
$$

If, in addition, $m=n$, then

$$
\operatorname{volume}(\mathcal{S})=|\operatorname{det} A| .
$$

(Remark: volume (\mathcal{S}) denotes the m-dimensional volume of \mathcal{S}. If $m=2$, then volume (\mathcal{S}) is the area of a parallelogram. See [447, p. 202].)

Fact 2.20.18. Let $\mathcal{S} \subset \mathbb{R}^{n}$ and $A \in \mathbb{R}^{n \times n}$. Then,

$$
\operatorname{volume}(A S)=|\operatorname{det} A| \text { volume }(\mathcal{S})
$$

(Remark: See [998 p. 468].)
Fact 2.20.19. Let $\mathcal{S} \subset \mathbb{R}^{n}$ be a simplex, and assume that \mathcal{S} is inscribed in a sphere of radius R. Then,

$$
\text { volume }(\mathcal{S}) \leq \sqrt{\frac{(n+1)^{n+1}}{n^{n}}} \frac{R^{n}}{n!}
$$

Furthermore, equality holds if and only if \mathcal{S} is a regular polytope. (Proof: See [1373.) (Remark: See 482, p. 66-13].)

Fact 2.20.20. Let $x_{1}, \ldots, x_{n+1} \in \mathbb{R}^{n}$, define

$$
\mathcal{S} \triangleq \operatorname{co}\left\{x_{1}, \ldots, x_{n+1}\right\}
$$

and define $A \in \mathbb{R}^{(n+2) \times(n+2)}$ by

$$
A \triangleq\left[\begin{array}{ccccc}
0 & 1 & 1 & \cdots & 1 \\
1 & 0 & \left\|x_{1}-x_{2}\right\|_{2}^{2} & \cdots & \left\|x_{1}-x_{n+1}\right\|_{2}^{2} \\
1 & \left\|x_{2}-x_{1}\right\|_{2}^{2} & 0 & \cdots & \left\|x_{2}-x_{n+1}\right\|_{2}^{2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \left\|x_{n+1}-x_{1}\right\|_{2}^{2} & \left\|x_{n+1}-x_{2}\right\|_{2}^{2} & \cdots & 0
\end{array}\right] .
$$

Then, the n-dimensional volume of \mathcal{S} is given by

$$
\operatorname{vol}(\mathcal{S})=\frac{\sqrt{|\operatorname{det} A|}}{2^{n-1} n!}
$$

(Proof: See [232, pp. 97-99] and [238 pp. 234, 235].) (Remark: $\operatorname{det} A$ is the Cayley-Menger determinant.) (Remark: In the case $n=2$, this result yields Heron's formula for the area of a triangle. See Fact 2.20.11.)

Fact 2.20.21. Let \mathcal{S} denote the spherical triangle on the surface of the unit sphere whose vertices are $x, y, z \in \mathbb{R}^{3}$, and let A, B, C denote the angles of \mathcal{S} located at the points x, y, z, respectively. Furthermore, let a, b, c denote the planar angles subtended by the pairs $(y, z),(x, z),(x, y)$, respectively, or, equivalently, a, b, c denote the sides of the spherical triangle opposite A, B, C, respectively. Finally, define the solid angle Ω to be the area of \mathcal{S}. Then,

$$
\Omega=A+B+C-\pi
$$

Furthermore,

$$
\tan \frac{\Omega}{2}=\frac{\left|\left[\begin{array}{ccc}
x & y & z
\end{array}\right]\right|}{1+x^{\mathrm{T}} y+x^{\mathrm{T}} z+y^{\mathrm{T}} z}
$$

Equivalently,

$$
\tan \frac{\Omega}{2}=\frac{\sqrt{1-\cos ^{2} a-\cos ^{2} b-\cos ^{2} c+2(\cos a)(\cos b) \cos c}}{1+\cos a+\cos b+\cos c}
$$

Finally,

$$
\tan \frac{\Omega}{4}=\sqrt{\left(\tan \frac{s}{2}\right)\left(\tan \frac{s-a}{2}\right)\left(\tan \frac{s-b}{2}\right) \tan \frac{s-c}{2}} .
$$

(Proof: See 461 and 1503 pp. 368-371].) (Remark: Spherical triangles are discussed in [477, pp. 253-260], [753, Chapter 2], [1425, pp. 904-907], and [1436, pp. 26-29]. A linear algebraic approach is given in [127.)

Fact 2.20.22. Let \mathcal{S} denote a circular cap on the surface of the unit sphere, where the angle subtended by cross sections of the cone with apex at the center of the sphere is 2θ. Furthermore, define the solid angle Ω to be the area of \mathcal{S}. Then,

$$
\Omega=2 \pi(1-\cos \theta)
$$

Fact 2.20.23. Let \mathcal{S} denote a region on the surface of the unit sphere subtended by the sides of a right rectangular pyramid with apex at the center of the sphere, where the subtended planar angles of the edges of the pyramid are θ and
ϕ. Furthermore, define the solid angle Ω to be the area of \mathcal{S}. Then,

$$
\Omega=4 \sin ^{-1}\left[\left(\sin \frac{\theta}{2}\right) \sin \frac{\phi}{2}\right]
$$

2.21 Facts on Majorization

Fact 2.21.1. Let $x \in \mathbb{R}^{n}$, where $x_{(1)} \geq \cdots \geq x_{(n)} \geq 0$, and assume that $\sum_{i=1}^{n} x_{(i)}=1$. Then, $e_{1, n}$ strongly majorizes x, and x strongly majorizes $\frac{1}{n} 1_{n \times 1}$. (Proof: See [971, p. 95].) (Remark: See Fact 2.21.2.)

Fact 2.21.2. Let $x, y, z \in \mathbb{R}^{n}$, assume that $x_{(1)} \geq \cdots \geq x_{(n)}, y_{(1)} \geq \cdots \geq y_{(n)}$, and $z_{(1)} \geq \cdots \geq z_{(n)} \geq 0$, and assume that y weakly majorizes x. Then,

$$
x^{\mathrm{T}} z \leq y^{\mathrm{T}} z
$$

(Proof: See [971, p. 95].) (Remark: See Fact 2.21.3)
Fact 2.21.3. Let $x, y, z \in \mathbb{R}^{n}$, assume that $x_{(1)} \geq \cdots \geq x_{(n)}, y_{(1)} \geq \cdots \geq y_{(n)}$, and $z_{(1)} \geq \cdots \geq z_{(n)}$, and assume that y strongly majorizes x. Then,

$$
x^{\mathrm{T}} z \leq y^{\mathrm{T}} z
$$

(Proof: See [971, p. 92].)
Fact 2.21.4. Let $a<b$, let $f:(a, b)^{n} \mapsto \mathbb{R}$, and assume that f is C^{1}. Then, f is Schur convex if and only if f is symmetric and, for all $x \in(a, b)^{n}$,

$$
\left(x_{(1)}-x_{(2)}\right)\left(\frac{\partial f(x)}{\partial x_{(1)}}-\frac{\partial f(x)}{\partial x_{(2)}}\right) \geq 0
$$

(Proof: See 971 p. 57].) (Remark: f is symmetric means that $f(A x)=f(x)$ for all $x \in(a, b)^{n}$ and for every permutation matrix $A \in \mathbb{R}^{n \times n}$. (Remark: See [779].)

Fact 2.21.5. Let $x, y \in \mathbb{R}^{n}$, assume that $x_{(1)} \geq \cdots \geq x_{(n)} \geq 0$ and $y_{(1)} \geq$ $\cdots \geq y_{(n)} \geq 0$, assume that y strongly majorizes x, and let p_{1}, \ldots, p_{n} be nonnegative numbers. Then,

$$
\sum \prod_{j=1}^{n} p_{i_{j}}^{x_{(j)}} \leq \frac{1}{n!} \sum \prod_{j=1}^{n} p_{i_{j}}^{y_{(j)}}
$$

where the summation is taken over all n ! permutations $\left\{i_{1}, \ldots, i_{n}\right\}$ of $\{1, \ldots, n\}$. (Proof: See [542, p. 99] and [971, p. 88].) (Remark: This result is Muirhead's theorem, which is based on a function that is Schur convex. An immediate consequence is an interpolated version of the arithmetic-mean-geometric-mean inequality. See Fact 1.15.25)

Fact 2.21.6. Let $x, y \in \mathbb{R}^{n}$, where $x_{(1)} \geq \cdots \geq x_{(n)} \geq 0$ and $y_{(1)} \geq \cdots \geq$ $y_{(n)} \geq 0$, assume that y strongly majorizes x, and assume that $\sum_{i=1}^{n} x_{(i)}=1$. Then,

$$
\sum_{i=1}^{n} y_{i} \log \frac{1}{y_{(i)}} \leq \sum_{i=1}^{n} x_{i} \log \frac{1}{x_{(i)}} \leq \log n
$$

(Proof: See [542, p. 102] and 971 pp. 71, 405].) (Remark: For $x_{(1)}, x_{(2)}>0$, note that $\left(x_{(1)}-x_{(2)}\right) \log \left(x_{(1)} / x_{(2)}\right) \geq 0$. Hence, it follows from Fact 2.21.4 that the entropy function is Schur concave.) (Remark: Entropy bounds are given in Fact 1.15.45, Fact 1.15.46, and Fact 1.15.47)

Fact 2.21.7. Let $x, y \in \mathbb{R}^{n}$, where $x_{(1)} \geq \cdots \geq x_{(n)}$ and $y_{(1)} \geq \cdots \geq y_{(n)}$. Then, the following statements are equivalent:
i) y strongly majorizes x.
ii) x is an element of the convex hull of the vectors $y_{1}, \ldots, y_{n!} \in \mathbb{R}^{n}$, where each of these n ! vectors is formed by permuting the components of y.
iii) There exists a doubly stochastic matrix $A \in \mathbb{R}^{n \times n}$ such that $y=A x$.
(Proof: The equivalence of i) and $i i$) is due to Rado. See [971, p. 113]. The equivalence of i) and $i i i$) is the Hardy-Littlewood-Polya theorem. See [197, p. 33], [709, p. 197], and [971 p. 22].) (Remark: See Fact 8.17.8]) (Remark: The matrix A is doubly stochastic if it is nonnegative, $1_{1 \times n} A=1_{1 \times n}$, and $A 1_{n \times 1}=1_{n \times 1}$.)

Fact 2.21.8. Let $x, y \in \mathbb{R}^{n}$, where $x_{(1)} \geq \cdots \geq x_{(n)}$ and $y_{(1)} \geq \cdots \geq y_{(n)}$, assume that y strongly majorizes x, let $f:\left[\min \left\{x_{(n)}, y_{(n)}\right\}, y_{(1)}\right] \mapsto \mathbb{R}$, assume that f is convex, and let $\left\{i_{1}, \ldots, i_{n}\right\}=\left\{j_{1}, \ldots, j_{n}\right\}=\{1, \ldots, n\}$ be such that $f\left(x_{\left(i_{1}\right)}\right) \geq$ $\cdots \geq f\left(x_{\left(i_{n}\right)}\right)$ and $f\left(y_{\left(i_{1}\right)}\right) \geq \cdots \geq f\left(y_{\left(i_{n}\right)}\right)$. Then, $\left[\begin{array}{ll}f\left(y_{\left(j_{1}\right)}\right) & \cdots\end{array} f\left(y_{\left(j_{n}\right)}\right)\right]^{\mathrm{T}}$ weakly majorizes $\left[\begin{array}{lll}f\left(x_{\left(i_{1}\right)}\right) & \cdots & f\left(x_{\left(i_{n}\right)}\right)\end{array}\right]^{\mathrm{T}}$. (Proof: See [197, p. 42], 711, p. 173], or [971, p. 116].)

Fact 2.21.9. Let $x, y \in \mathbb{R}^{n}$, where $x_{(1)} \geq \cdots \geq x_{(n)} \geq 0$ and $y_{(1)} \geq \cdots \geq$ $y_{(n)} \geq 0$, assume that y strongly \log majorizes x, let $f:[0, \infty) \mapsto \mathbb{R}$, assume that $g: \mathbb{R} \mapsto \mathbb{R}$ defined by $g(z) \triangleq f\left(e^{z}\right)$ is convex, and let $\left\{i_{1}, \ldots, i_{n}\right\}=\left\{j_{1}, \ldots, j_{n}\right\}=$ $\{1, \ldots, n\}$ be such that $f\left(x_{\left(i_{1}\right)}\right) \geq \cdots \geq f\left(x_{\left(i_{n}\right)}\right)$ and $f\left(y_{\left(j_{1}\right)}\right) \geq \cdots \geq f\left(y_{\left(j_{n}\right)}\right)$. Then, $\left[\begin{array}{lll}f\left(y_{\left(j_{1}\right)}\right) & \cdots & f\left(y_{\left(j_{n}\right)}\right)\end{array}\right]^{\mathrm{T}}$ weakly majorizes $\left[\begin{array}{lll}f\left(x_{\left(i_{1}\right)}\right) & \cdots & f\left(x_{\left(i_{n}\right)}\right)\end{array}\right]^{\mathrm{T}}$. (Proof: Apply Fact 2.21.8.)

Fact 2.21.10. Let $x, y \in \mathbb{R}^{n}$, where $x_{(1)} \geq \cdots \geq x_{(n)}$ and $y_{(1)} \geq \cdots \geq y_{(n)}$, assume that y weakly majorizes x, let $f:\left[\min \left\{x_{(n)}, y_{(n)}\right\}, y_{(1)}\right] \mapsto \mathbb{R}$, assume that f is convex and increasing, and let $\left\{i_{1}, \ldots, i_{n}\right\}=\left\{j_{1}, \ldots, j_{n}\right\}=\{1, \ldots, n\}$ be such that $f\left(x_{\left(i_{1}\right)}\right) \geq \cdots \geq f\left(x_{\left(i_{n}\right)}\right)$ and $f\left(y_{\left(j_{1}\right)}\right) \geq \cdots \geq f\left(y_{\left(j_{n}\right)}\right)$. Then, $\left[\begin{array}{lll}f\left(y_{\left(j_{1}\right)}\right) & \cdots & f\left(y_{\left(j_{n}\right)}\right)\end{array}\right]^{\mathrm{T}}$ weakly majorizes $\left[\begin{array}{lll}f\left(x_{\left(i_{1}\right)}\right) & \cdots & f\left(x_{\left(i_{n}\right)}\right)\end{array}\right]^{\mathrm{T}}$. (Proof: See [197, p. 42], [711, p. 173], or [971, p. 116].) (Remark: See Fact 2.21.11)

Fact 2.21.11. Let $x, y \in \mathbb{R}^{n}$, where $x_{(1)} \geq \cdots \geq x_{(n)} \geq 0$ and $y_{(1)} \geq \cdots \geq$ $y_{(n)} \geq 0$, assume that y strongly majorizes x, and let $r \geq 1$. Then, $\left[\begin{array}{lll}y_{(1)}^{r} & \cdots & y_{(n)}^{r}\end{array}\right]^{\mathrm{T}}$ weakly majorizes $\left[\begin{array}{lll}x_{(1)}^{r} & \cdots & x_{(n)}^{r}\end{array}\right]^{\mathrm{T}} . \quad$ (Proof: Use Fact 2.21.11) (Remark: Using the Schur power (see Section 7.3), the conclusion can be stated as the fact that $y^{\circ r}$ weakly majorizes $x^{\circ r}$.)

Fact 2.21.12. Let $x, y \in \mathbb{R}^{n}$, where $x_{(1)} \geq \cdots \geq x_{(n)} \geq 0$ and $y_{(1)} \geq$ $\cdots \geq y_{(n)} \geq 0$, assume that y weakly \log majorizes x, let $f:[0, \infty) \mapsto \mathbb{R}$, as-
sume that $g: \mathbb{R} \mapsto \mathbb{R}$ defined by $g(z) \triangleq f\left(e^{z}\right)$ is convex and increasing, and let $\left\{i_{1}, \ldots, i_{n}\right\}=\left\{j_{1}, \ldots, j_{n}\right\}=\{1, \ldots, n\}$ be such that $f\left(x_{\left(i_{1}\right)}\right) \geq \cdots \geq f\left(x_{\left(i_{n}\right)}\right)$ and $f\left(y_{\left(j_{1}\right)}\right) \geq \cdots \geq f\left(y_{\left(j_{n}\right)}\right)$. Then, $\left[\begin{array}{lll}f\left(y_{\left(j_{1}\right)}\right) & \cdots & f\left(y_{\left(j_{n}\right)}\right)\end{array}\right]^{\mathrm{T}}$ weakly majorizes $\left[\begin{array}{lll}f\left(x_{\left(i_{1}\right)}\right) & \cdots & f\left(x_{\left(i_{n}\right)}\right)\end{array}\right]^{\mathrm{T}}$. (Proof: Use Fact 2.21.10.)

Fact 2.21.13. Let $x, y \in \mathbb{R}^{n}$, where $x_{(1)} \geq \cdots \geq x_{(n)} \geq 0$ and $y_{(1)} \geq \cdots \geq$ $y_{(n)} \geq 0$, and assume that y weakly \log majorizes x. Then, y weakly majorizes x. (Proof: Use Fact 2.21.12 with $f(t)=t$. See [1485] p. 19].)

Fact 2.21.14. Let $x, y \in \mathbb{R}^{n}$, where $x_{(1)} \geq \cdots \geq x_{(n)} \geq 0$ and $y_{(1)} \geq \cdots \geq$ $y_{(n)} \geq 0$, assume that y weakly majorizes x, and let $p \in[1, \infty)$. Then, for all $k=1, \ldots, n$,

$$
\left(\sum_{i=1}^{k} x_{(i)}^{p}\right)^{1 / p} \leq\left(\sum_{i=1}^{k} y_{(i)}^{p}\right)^{1 / p}
$$

(Proof: Use Fact 2.21.10, See [971, p. 96].) (Remark: $\phi(x) \triangleq\left(\sum_{i=1}^{k} x_{(i)}^{p}\right)^{1 / p}$ is a symmetric gauge function. See Fact 9.8.42.)

2.22 Notes

The theory of determinants is discussed in 1023, 1346. Applications to physics are described in [1371, 1372. Contributors to the development of this subject are are highlighted in 581. The empty matrix is discussed in 382, 1032, [1129, pp. 462-464], and [1235] p. 3]. Recent versions of Matlab follow the properties of the empty matrix given in this chapter [676 pp. 305, 306]. Convexity is the subject of 180, 239, 255, 450, 879, 1133, 1235, 1355, 1412. Convex optimization theory is developed in [176, 255]. In [239] the dual cone is called the polar cone.

The development of rank properties is based on 968. Theorem 2.6.4 is based on [1045]. The term "subdeterminant" is used in 1081 and is equivalent to minor. The notation $A^{\text {A }}$ for adjugate is used in 1228 . Numerous papers on basic topics in matrix theory and linear algebra are collected in [292, 293]. A geometric interpretation of $\mathcal{N}(A), \mathcal{R}(A), \mathcal{N}\left(A^{*}\right)$, and $\mathcal{R}\left(A^{\mathrm{T}}\right)$ is given in 1239. Some reflections on matrix theory are given in [1259, 1276. Applications of the matrix inversion lemma are discussed in 619. Some historical notes on the determinant and inverse of partitioned matrices as well as the matrix inversion lemma are given in 666].

The implications of majorization are extensively developed in [971, 973.

Chapter Three

Matrix Classes and Transformations

This chapter presents definitions of various types of matrices as well as transformations for analyzing matrices.

3.1 Matrix Classes

In this section we categorize various types of matrices based on their algebraic and structural properties.

The following definition introduces various types of square matrices.
Definition 3.1.1. For $A \in \mathbb{F}^{n \times n}$ define the following types of matrices:
i) A is group invertible if $\mathcal{R}(A)=\mathcal{R}\left(A^{2}\right)$.
ii) A is involutory if $A^{2}=I$.
iii) A is skew involutory if $A^{2}=-I$.
iv) A is idempotent if $A^{2}=A$.
v) A is skew idempotent if $A^{2}=-A$.
vi) A is tripotent if $A^{3}=A$.
vii) A is nilpotent if there exists $k \in \mathbb{P}$ such that $A^{k}=0$.
viii) A is unipotent if $A-I$ is nilpotent.
ix) A is range Hermitian if $\mathcal{R}(A)=\mathcal{R}\left(A^{*}\right)$.
x) A is range symmetric if $\mathcal{R}(A)=\mathcal{R}\left(A^{\mathrm{T}}\right)$.
xi) A is Hermitian if $A=A^{*}$.
xii) A is symmetric if $A=A^{\mathrm{T}}$.
xiii) A is skew Hermitian if $A=-A^{*}$.
xiv) A is skew symmetric if $A=-A^{\mathrm{T}}$.
$x v) A$ is normal if $A A^{*}=A^{*} A$.
xvi) A is positive semidefinite $(A \geq 0)$ if A is Hermitian and $x^{*} A x \geq 0$ for all
$x \in \mathbb{F}^{n}$.
xvii) A is negative semidefinite $(A \leq 0)$ if $-A$ is positive semidefinite.
xviii) A is positive definite $(A>0)$ if A is Hermitian and $x^{*} A x>0$ for all $x \in \mathbb{F}^{n}$ such that $x \neq 0$.
xix) A is negative definite $(A<0)$ if $-A$ is positive definite.
$x x) A$ is semidissipative if $A+A^{*}$ is negative semidefinite.
xxi) A is dissipative if $A+A^{*}$ is negative definite.
xxii) A is unitary if $A^{*} A=I$.
xxiii) A is shifted unitary if $A+A^{*}=2 A^{*} A$.
xxiv) A is orthogonal if $A^{\mathrm{T}} A=I$.
$x x v) A$ is shifted orthogonal if $A+A^{\mathrm{T}}=2 A^{\mathrm{T}} A$.
$x x v i) A$ is a projector if A is Hermitian and idempotent.
xxvii) A is a reflector if A is Hermitian and unitary.
xxviii) A is a skew reflector if A is skew Hermitian and unitary.
xxix) A is an elementary projector if there exists a nonzero vector $x \in \mathbb{F}^{n}$ such that $A=I-\left(x^{*} x\right)^{-1} x x^{*}$.
$x x x) A$ is an elementary reflector if there exists a nonzero vector $x \in \mathbb{F}^{n}$ such that $A=I-2\left(x^{*} x\right)^{-1} x x^{*}$.
xxxi) A is an elementary matrix if there exist vectors $x, y \in \mathbb{F}^{n}$ such that $A=$ $I-x y^{\mathrm{T}}$ and $x^{\mathrm{T}} y \neq 1$.
xxxii) A is reverse Hermitian if $A=A^{\hat{*}}$.
xxxiii) A is reverse symmetric if $A=A^{\hat{\mathrm{T}}}$.
xxxiv) A is a permutation matrix if each row of A and each column of A possesses one 1 and zeros otherwise.
$x x x v) A$ is reducible if either $n=1$ and $A=0$ or $n \geq 2$ and there exist $k \geq 1$ and a permutation matrix $S \in \mathbb{R}^{n \times n}$ such that $S A S^{\mathrm{T}}=\left[\begin{array}{cc}B & C \\ 0_{k \times(n-k)} & D\end{array}\right]$, where $B \in \mathbb{F}^{(n-k) \times(n-k)}, C \in \mathbb{F}^{(n-k) \times k}$, and $D \in \mathbb{F}^{k \times k}$.
xxxvi) A is irreducible if A is not reducible.

Let $A \in \mathbb{F}^{n \times n}$ be Hermitian. Then, the function $f: \mathbb{F}^{n} \mapsto \mathbb{R}$ defined by

$$
\begin{equation*}
f(x) \triangleq x^{*} A x \tag{3.1.1}
\end{equation*}
$$

is a quadratic form.
The $n \times n$ standard nilpotent matrix, which has 1 's on the superdiagonal and 0 's elsewhere, is denoted by N_{n} or just N. We define $N_{1} \triangleq 0$ and $N_{0} \triangleq 0_{0 \times 0}$.

The following definition considers matrices that are not necessarily square.

Definition 3.1.2. For $A \in \mathbb{F}^{n \times m}$ define the following types of matrices:
i) A is semicontractive if $I_{n}-A A^{*}$ is positive semidefinite.
ii) A is contractive if $I_{n}-A A^{*}$ is positive definite.
iii) A is left inner if $A^{*} A=I_{m}$.
iv) A is right inner if $A A^{*}=I_{n}$.
v) A is centrohermitian if $A=\hat{I}_{n} \bar{A} \hat{I}_{m}$.
vi) A is centrosymmetric if $A=\hat{I}_{n} A \hat{I}_{m}$.
vii) A is an outer-product matrix if there exist $x \in \mathbb{F}^{n}$ and $y \in \mathbb{F}^{m}$ such that $A=x y^{\mathrm{T}}$.

The following definition introduces various types of structured matrices.
Definition 3.1.3. For $A \in \mathbb{F}^{n \times m}$ define the following types of matrices:
i) A is diagonal if $A_{(i, j)}=0$ for all $i \neq j$. If $n=m$, then

$$
A=\operatorname{diag}\left(A_{(1,1)}, \ldots, A_{(n, n)}\right)
$$

ii) A is tridiagonal if $A_{(i, j)}=0$ for all $|i-j|>1$.
iii) A is reverse diagonal if $A_{(i, j)}=0$ for all $i+j \neq \min \{n, m\}+1$. If $n=m$, then

$$
A=\operatorname{revdiag}\left(A_{(1, n)}, \ldots, A_{(n, 1)}\right)
$$

iv) A is (upper triangular, strictly upper triangular) if $A_{(i, j)}=0$ for all $(i \geq$ $j, i>j)$.
v) A is (lower triangular, strictly lower triangular) if $A_{(i, j)}=0$ for all $(i \leq$ $j, i<j)$.
vi) A is (upper Hessenberg, lower Hessenberg) if $A_{(i, j)}=0$ for all $(i>j+1, i<$ $j+1)$.
vii) A is Toeplitz if $A_{(i, j)}=A_{(k, l)}$ for all $k-i=l-j$, that is,

$$
A=\left[\begin{array}{cccc}
a & b & c & \cdots \\
d & a & b & \ddots \\
e & d & a & \ddots \\
\vdots & \ddots & \ddots & \ddots
\end{array}\right]
$$

viii) A is Hankel if $A_{(i, j)}=A_{(k, l)}$ for all $i+j=k+l$, that is,

$$
A=\left[\begin{array}{cccc}
a & b & c & \cdots \\
b & c & d & . \cdot \\
c & d & e & . \cdot \\
\vdots & . & . & .
\end{array}\right]
$$

ix) A is block diagonal if

$$
A=\left[\begin{array}{ccc}
A_{1} & & 0 \\
& \ddots & \\
0 & & A_{k}
\end{array}\right]=\operatorname{diag}\left(A_{1}, \ldots, A_{k}\right)
$$

where $A_{i} \in \mathbb{F}^{n_{i} \times m_{i}}$ for all $i=1, \ldots, k$.
x) A is upper block triangular if

$$
A=\left[\begin{array}{cccc}
A_{11} & A_{12} & \cdots & A_{1 k} \\
0 & A_{22} & \cdots & A_{2 k} \\
\vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & A_{k k}
\end{array}\right]
$$

where $A_{i j} \in \mathbb{F}^{n_{i} \times n_{j}}$ for all $i, j=1, \ldots, k$.
xi) A is lower block triangular if

$$
A=\left[\begin{array}{cccc}
A_{11} & 0 & \cdots & 0 \\
A_{21} & A_{22} & \ddots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
A_{k 1} & A_{k 2} & \cdots & A_{k k}
\end{array}\right]
$$

where $A_{i j} \in \mathbb{F}^{n_{i} \times n_{j}}$ for all $i, j=1, \ldots, k$.
xii) A is block Toeplitz if $A_{(i, j)}=A_{(k, l)}$ for all $k-i=l-j$, that is,

$$
A=\left[\begin{array}{cccc}
A_{1} & A_{2} & A_{3} & \cdots \\
A_{4} & A_{1} & A_{2} & \ddots \\
A_{5} & A_{4} & A_{1} & \ddots \\
\vdots & \ddots & \ddots & \ddots
\end{array}\right]
$$

where $A_{i} \in \mathbb{F}^{n_{i} \times m_{i}}$.
xiii) A is block Hankel if $A_{(i, j)}=A_{(k, l)}$ for all $i+j=k+l$, that is,

$$
A=\left[\begin{array}{cccc}
A_{1} & A_{2} & A_{3} & \cdots \\
A_{2} & A_{3} & A_{4} & . \\
A_{3} & A_{4} & A_{5} & . \\
\vdots & . & . & .
\end{array}\right]
$$

where $A_{i} \in \mathbb{F}^{n_{i} \times m_{i}}$.
Definition 3.1.4. For $A \in \mathbb{R}^{n \times m}$ define the following types of matrices:
i) A is nonnegative $(A \geq \geq 0)$ if $A_{(i, j)} \geq 0$ for all $i=1, \ldots, n$ and $j=1, \ldots, m$.
ii) A is positive $(A \gg 0)$ if $A_{(i, j)}>0$ for all $i=1, \ldots, n$ and $j=1, \ldots, m$.

Now, assume that $n=m$. Then, define the following types of matrices:
iii) A is almost nonnegative if $A_{(i, j)} \geq 0$ for all $i, j=1, \ldots, n$ such that $i \neq j$.
iv) A is a Z-matrix if $-A$ is almost nonnegative.

Define the unit imaginary matrix $J_{2 n} \in \mathbb{R}^{2 n \times 2 n}$ (or just J) by

$$
J_{2 n} \triangleq\left[\begin{array}{cc}
0 & I_{n} \tag{3.1.2}\\
-I_{n} & 0
\end{array}\right] .
$$

In particular,

$$
J_{2}=\left[\begin{array}{cc}
0 & 1 \tag{3.1.3}\\
-1 & 0
\end{array}\right]
$$

Note that $J_{2 n}$ is skew symmetric and orthogonal, that is,

$$
\begin{equation*}
J_{2 n}^{\mathrm{T}}=-J_{2 n}=J_{2 n}^{-1} \tag{3.1.4}
\end{equation*}
$$

Hence, $J_{2 n}$ is skew involutory and a skew reflector.
The following definition introduces structured matrices of even order. Note that \mathbb{F} can represent either \mathbb{R} or \mathbb{C}, although A^{T} does not become A^{*} in the latter case.

Definition 3.1.5. For $A \in \mathbb{F}^{2 n \times 2 n}$ define the following types of matrices:
i) A is Hamiltonian if $J^{-1} A^{\mathrm{T}} J=-A$.
ii) A is symplectic if A is nonsingular and $J^{-1} A^{\mathrm{T}} J=A^{-1}$.

Proposition 3.1.6. Let $A \in \mathbb{F}^{n \times n}$. Then, the following statements hold:
$i)$ If A is Hermitian, skew Hermitian, or unitary, then A is normal.
ii) If A is nonsingular or normal, then A is range Hermitian.
iii) If A is range Hermitian, idempotent, or tripotent, then A is group invertible.
$i v)$ If A is a reflector, then A is tripotent.
$v)$ If A is a permutation matrix, then A is orthogonal.
Proof. i) is immediate. To prove $i i$), note that, if A is nonsingular, then $\mathcal{R}(A)=\mathcal{R}\left(A^{*}\right)=\mathbb{F}^{n}$, and thus A is range Hermitian. If A is normal, then it follows from Theorem 2.4.3 that $\mathcal{R}(A)=\mathcal{R}\left(A A^{*}\right)=\mathcal{R}\left(A^{*} A\right)=\mathcal{R}\left(A^{*}\right)$, which proves that A is range Hermitian. To prove $i i i$), note that, if A is range Hermitian, then $\mathcal{R}(A)=\mathcal{R}\left(A A^{*}\right)=A \mathcal{R}\left(A^{*}\right)=A \mathcal{R}(A)=\mathcal{R}\left(A^{2}\right)$, while, if A is idempotent, then $\mathcal{R}(A)=\mathcal{R}\left(A^{2}\right)$. If A is tripotent, then $\mathcal{R}(A)=\mathcal{R}\left(A^{3}\right)=A^{2} \mathcal{R}(A) \subseteq \mathcal{R}\left(A^{2}\right)=$ $A \mathcal{R}(A) \subseteq \mathcal{R}(A)$. Hence, $\mathcal{R}(A)=\mathcal{R}\left(A^{2}\right)$.

Proposition 3.1.7. Let $\mathcal{A} \in \mathbb{F}^{2 n \times 2 n}$. Then, \mathcal{A} is Hamiltonian if and only if there exist matrices $A, B, C \in \mathbb{F}^{n \times n}$ such that B and C are symmetric and

$$
\mathcal{A}=\left[\begin{array}{cc}
A & B \tag{3.1.5}\\
C & -A^{\mathrm{T}}
\end{array}\right]
$$

3.2 Matrices Based on Graphs

Definition 3.2.1. Let $\mathcal{G}=(\mathcal{X}, \mathcal{R})$ be a graph, where $\mathcal{X}=\left\{x_{1}, \ldots, x_{n}\right\}$. Then, the following terminology is defined:
i) The adjacency matrix $A \in \mathbb{R}^{n \times n}$ of \mathcal{G} is given by $A_{(i, j)}=1$ if $\left(x_{j}, x_{i}\right) \in \mathcal{R}$ and $A_{(i, j)}=0$ if $\left(x_{j}, x_{i}\right) \notin \mathcal{R}$, for all $i, j=1, \ldots, n$.
ii) The inbound Laplacian matrix $L_{\mathrm{in}} \in \mathbb{R}^{n \times n}$ of \mathcal{G} is given by $L_{\mathrm{in}(i, i)}=$ $\sum_{j=1, j \neq i}^{n} A_{(i, j)}$, for all $i=1, \ldots, n$, and $L_{\operatorname{in}(i, j)}=-A_{(i, j)}$, for all distinct $i, j=1, \ldots, n$.
iii) The outbound Laplacian matrix $L_{\text {out }} \in \mathbb{R}^{n \times n}$ of \mathcal{G} is given by $L_{\text {out }(i, i)}=$ $\sum_{j=1, j \neq i}^{n} A_{(j, i)}$, for all $i=1, \ldots, n$, and $L_{\text {out }(i, j)}=-A_{(i, j)}$, for all distinct $i, j=1, \ldots, n$.
iv) The indegree matrix $D_{\mathrm{in}} \in \mathbb{R}^{n \times n}$ is the diagonal matrix such that $D_{\operatorname{in}(i, i)}=$ $\operatorname{indeg}\left(x_{i}\right)$, for all $i=1, \ldots, n$.
$v)$ The outdegree matrix $D_{\text {out }} \in \mathbb{R}^{n \times n}$ is the diagonal matrix such that $D_{\text {out }(i, i)}=\operatorname{outdeg}\left(x_{i}\right)$, for all $i=1, \ldots, n$.
vi) Assume that \mathcal{G} has no self-loops, and let $\mathcal{R}=\left\{a_{1}, \ldots, a_{m}\right\}$. Then, the incidence matrix $B \in \mathbb{R}^{n \times m}$ of \mathcal{G} is given by $B_{(i, j)}=1$ if i is the tail of $a_{j}, B_{(i, j)}=-1$ if i is the head of a_{j}, and $B_{(i, j)}=0$ otherwise, for all $i=1, \ldots, n$ and $j=1, \ldots, m$.
vii) If \mathcal{G} is symmetric, then the Laplacian matrix of \mathcal{G} is given by $L \triangleq L_{\text {in }}=$ $L_{\text {out }}$.
viii) If \mathcal{G} is symmetric, then the degree matrix $D \in \mathbb{R}^{n \times n}$ of \mathcal{G} is given by $D \triangleq D_{\text {in }}=D_{\text {out }}$.
$i x)$ If $\mathcal{G}=(\mathcal{X}, \mathcal{R}, w)$ is a weighted graph, then the adjacency matrix $A \in \mathbb{R}^{n \times n}$ of \mathcal{G} is given by $A_{(i, j)}=w\left[\left(x_{j}, x_{i}\right)\right]$ if $\left(x_{j}, x_{i}\right) \in \mathcal{R}$ and $A_{(i, j)}=0$ if $\left(x_{j}, x_{i}\right) \notin$ \mathcal{R}, for all $i, j=1, \ldots, n$.

Note that the adjacency matrix is nonnegative, while the inbound Laplacian, outbound Laplacian, and Laplacian matrices are Z-matrices. Furthermore, note that the inbound Laplacian, outbound Laplacian, and Laplacian matrices are unaffected by the presence of self-loops. However, the indegree and outdegree matrices account for self-loops. It can be seen that, for the arc a_{i} given by $\left(x_{k}, x_{l}\right)$, the i th column of B is given by $\operatorname{col}_{i}(B)=e_{l}-e_{k}$. Finally, if \mathcal{G} is a symmetric graph, then A and L are symmetric.

Theorem 3.2.2. Let $\mathcal{G}=(\mathcal{X}, \mathcal{R})$ be a graph, where $\mathcal{X}=\left\{x_{1}, \ldots, x_{n}\right\}$, and let $L_{\text {in }}, L_{\text {out }}, D_{\text {in }}, D_{\text {out }}$, and A denote the inbound Laplacian, outbound Laplacian, indegree, outdegree, and adjacency matrices of \mathcal{G}, respectively. Then,

$$
\begin{equation*}
L_{\mathrm{in}}=D_{\mathrm{in}}-A \tag{3.2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
L_{\mathrm{out}}=D_{\mathrm{out}}-A . \tag{3.2.2}
\end{equation*}
$$

Theorem 3.2.3. Let $\mathcal{G}=(\mathcal{X}, \mathcal{R})$ be a symmetric graph, where $\mathcal{X}=$ $\left\{x_{1}, \ldots, x_{n}\right\}$, and let A, L, D, and B denote the adjacency, Laplacian, degree, and incidence matrices of \mathcal{G}, respectively. Then,

$$
\begin{equation*}
L=D-A \tag{3.2.3}
\end{equation*}
$$

Now, assume that \mathcal{G} has no self-loops. Then,

$$
\begin{equation*}
L=\frac{1}{2} B B^{\mathrm{T}} \tag{3.2.4}
\end{equation*}
$$

Definition 3.2.4. Let $M \in \mathbb{F}^{n \times n}$, and let $\mathcal{X}=\left\{x_{1}, \ldots, x_{n}\right\}$. Then, the graph of M is $\mathcal{G}(M) \triangleq(\mathcal{X}, \mathcal{R})$, where, for all $i, j=1, \ldots, n,\left(x_{j}, x_{i}\right) \in \mathcal{R}$ if and only if $M_{(i, j)} \neq 0$.

Proposition 3.2.5. Let $M \in \mathbb{F}^{n \times n}$. Then, the adjacency matrix A of $\mathcal{G}(M)$ is given by

$$
\begin{equation*}
A=\operatorname{sign}|M| . \tag{3.2.5}
\end{equation*}
$$

3.3 Lie Algebras and Groups

In this section we introduce Lie algebras and groups. Lie groups are discussed in Section 11.5. In the following definition, note that the coefficients α and β are required to be real when $\mathbb{F}=\mathbb{C}$.

Definition 3.3.1. Let $\mathcal{S} \subseteq \mathbb{F}^{n \times n}$. Then, \mathcal{S} is a Lie algebra if the following conditions are satisfied:
i) If $A, B \in \mathcal{S}$ and $\alpha, \beta \in \mathbb{R}$, then $\alpha A+\beta B \in \mathcal{S}$.
ii) If $A, B \in \mathcal{S}$, then $[A, B] \in \mathcal{S}$.

Note that, if $\mathbb{F}=\mathbb{R}$, then statement i) is equivalent to the statement that \mathcal{S} is a subspace. However, if $\mathbb{F}=\mathbb{C}$ and \mathcal{S} contains matrices that are not real, then \mathcal{S} is not a subspace.

Proposition 3.3.2. The following sets are Lie algebras:
i) $\mathrm{gl}_{\mathbb{F}}(n) \triangleq \mathbb{F}^{n \times n}$.
ii) $\operatorname{pl}_{\mathbb{C}}(n) \triangleq\left\{A \in \mathbb{C}^{n \times n}: \quad \operatorname{tr} A \in \mathbb{R}\right\}$.
iii) $\operatorname{sl}_{\mathbb{F}}(n) \triangleq\left\{A \in \mathbb{F}^{n \times n}: \operatorname{tr} A=0\right\}$.
iv) $\mathrm{u}(n) \triangleq\left\{A \in \mathbb{C}^{n \times n}: A\right.$ is skew Hermitian $\}$.
v) $\operatorname{su}(n) \triangleq\left\{A \in \mathbb{C}^{n \times n}: A\right.$ is skew Hermitian and $\left.\operatorname{tr} A=0\right\}$.
vi) $\operatorname{so}(n) \triangleq\left\{A \in \mathbb{R}^{n \times n}: A\right.$ is skew symmetric $\}$.
vii) $\operatorname{su}(n, m) \triangleq\left\{A \in \mathbb{C}^{(n+m) \times(n+m)}: \operatorname{diag}\left(I_{n},-I_{m}\right) A^{*} \operatorname{diag}\left(I_{n},-I_{m}\right)=-A\right.$ and $\operatorname{tr} A=0\}$.
viii) $\operatorname{so}(n, m) \triangleq\left\{A \in \mathbb{R}^{(n+m) \times(n+m)}: \operatorname{diag}\left(I_{n},-I_{m}\right) A^{\mathrm{T}} \operatorname{diag}\left(I_{n},-I_{m}\right)=-A\right\}$.
$i x) \operatorname{symp}_{\mathbb{F}}(2 n) \triangleq\left\{A \in \mathbb{F}^{2 n \times 2 n}: A\right.$ is Hamiltonian $\}$.
x) $\operatorname{osymp}_{\mathbb{C}}(2 n) \triangleq \operatorname{su}(2 n) \cap \operatorname{symp}_{\mathbb{C}}(2 n)$.
xi) $\operatorname{osymp}_{\mathbb{R}}(2 n) \triangleq \operatorname{so}(2 n) \cap \operatorname{symp}_{\mathbb{R}}(2 n)$.
xii) $\operatorname{aff}_{\mathbb{F}}(n) \triangleq\left\{\left[\begin{array}{cc}A & b \\ 0 & 0\end{array}\right]: A \in \operatorname{gl}_{\mathbb{F}}(n), b \in \mathbb{F}^{n}\right\}$.
xiii) $\operatorname{se}_{\mathbb{C}}(n) \triangleq\left\{\left[\begin{array}{ll}A & b \\ 0 & 0\end{array}\right]: A \in \operatorname{su}(n), b \in \mathbb{C}^{n}\right\}$.
xiv) $\operatorname{se}_{\mathbb{R}}(n) \triangleq\left\{\left[\begin{array}{cc}A & b \\ 0 & 0\end{array}\right]: A \in \operatorname{so}(n), b \in \mathbb{R}^{n}\right\}$.
$x v) \operatorname{trans}_{\mathbb{F}}(n) \triangleq\left\{\left[\begin{array}{ll}0 & b \\ 0 & 0\end{array}\right]: b \in \mathbb{F}^{n}\right\}$.
Definition 3.3.3. Let $\mathcal{S} \subset \mathbb{F}^{n \times n}$. Then, \mathcal{S} is a group if the following conditions are satisfied:
i) If $A \in \mathcal{S}$, then A is nonsingular.
ii) If $A \in \mathcal{S}$, then $A^{-1} \in \mathcal{S}$.
iii) If $A, B \in \mathcal{S}$, then $A B \in \mathcal{S}$.
\mathcal{S} is an Abelian group if \mathcal{S} is a group and the following condition is also satisfied:
iv) For all $A, B \in \mathcal{S},[A, B]=0$.

Finally, \mathcal{S} is a finite group if \mathcal{S} is a group and has a finite number of elements.
Definition 3.3.4. Let $\mathcal{S}_{1} \subset \mathbb{F}^{n_{1} \times n_{1}}$ and $\mathcal{S}_{2} \subset \mathbb{F}^{n_{1} \times n_{1}}$ be groups. Then, \mathcal{S}_{1} and \mathcal{S}_{2} are isomorphic if there exists a one-to-one and onto function $\phi: \mathcal{S}_{1} \mapsto \mathcal{S}_{2}$ such that, for all $A, B \in \mathcal{S}_{1}, \phi(A B)=\phi(A) \phi(B)$. In this case, $\mathcal{S}_{1} \approx \mathcal{S}_{2}$, and ϕ is an isomorphism.

Proposition 3.3.5. Let $\mathcal{S}_{1} \subset \mathbb{F}^{n_{1} \times n_{1}}$ and $\mathcal{S}_{2} \subset \mathbb{F}^{n_{1} \times n_{1}}$ be groups, and assume that \mathcal{S}_{1} and \mathcal{S}_{2} are isomorphic with isomorphism $\phi: \mathcal{S}_{1} \mapsto \mathcal{S}_{2}$. Then, $\phi\left(I_{n_{1}}\right)=I_{n_{2}}$, and, for all $A \in \mathcal{S}_{1}, \phi\left(A^{-1}\right)=[\phi(A)]^{-1}$.

Note that, if $\mathcal{S} \subset \mathbb{F}^{n \times n}$ is a group, then $I_{n} \in \mathcal{S}$.
The following result lists classical groups that arise in physics and engineering. For example, $\mathrm{O}(1,3)$ is the Lorentz group [1162, p. 16], [1186, p. 126]. The special orthogonal group $\mathrm{SO}(n)$ consists of the orthogonal matrices whose determinant is 1. In particular, each matrix in $\mathrm{SO}(2)$ and $\mathrm{SO}(3)$ is a rotation matrix.

Proposition 3.3.6. The following sets are groups:
i) $\mathrm{GL}_{\mathbb{F}}(n) \triangleq\left\{A \in \mathbb{F}^{n \times n} ; \quad \operatorname{det} A \neq 0\right\}$.
ii) $\mathrm{PL}_{\mathbb{F}}(n) \triangleq\left\{A \in \mathbb{F}^{n \times n}\right.$: $\left.\operatorname{det} A>0\right\}$.
iii) $\mathrm{SL}_{\mathbb{F}}(n) \triangleq\left\{A \in \mathbb{F}^{n \times n}: \operatorname{det} A=1\right\}$.
iv) $\mathrm{U}(n) \triangleq\left\{A \in \mathbb{C}^{n \times n}: A\right.$ is unitary $\}$.
v) $\mathrm{O}(n) \triangleq\left\{A \in \mathbb{R}^{n \times n}: A\right.$ is orthogonal $\}$.
vi) $\mathrm{SU}(n) \triangleq\{A \in \mathrm{U}(n): \quad \operatorname{det} A=1\}$.
vii) $\mathrm{SO}(n) \triangleq\{A \in \mathrm{O}(n): \quad \operatorname{det} A=1\}$.
viii) $\mathrm{U}(n, m) \triangleq\left\{A \in \mathbb{C}^{(n+m) \times(n+m)}: A^{*} \operatorname{diag}\left(I_{n},-I_{m}\right) A=\operatorname{diag}\left(I_{n},-I_{m}\right)\right\}$.
ix) $\mathrm{O}(n, m) \triangleq\left\{A \in \mathbb{R}^{(n+m) \times(n+m)}: A^{\mathrm{T}} \operatorname{diag}\left(I_{n},-I_{m}\right) A=\operatorname{diag}\left(I_{n},-I_{m}\right)\right\}$.
x) $\mathrm{SU}(n, m) \triangleq\{A \in \mathrm{U}(n, m): \quad \operatorname{det} A=1\}$.
xi) $\mathrm{SO}(n, m) \triangleq\{A \in \mathrm{O}(n, m): \operatorname{det} A=1\}$.
xii) $\operatorname{Symp}_{\mathbb{F}}(2 n) \triangleq\left\{A \in \mathbb{F}^{2 n \times 2 n}: A\right.$ is symplectic $\}$.
xiii) $\operatorname{OSymp}_{\mathbb{C}}(2 n) \triangleq \mathrm{U}(2 n) \cap \operatorname{Symp}_{\mathbb{C}}(2 n)$.
xiv) $\operatorname{OSymp}_{\mathbb{R}}(2 n) \triangleq \mathrm{O}(2 n) \cap \operatorname{Symp}_{\mathbb{R}}(2 n)$.
$x v) \operatorname{Aff}_{\mathbb{F}}(n) \triangleq\left\{\left[\begin{array}{cc}A & b \\ 0 & 1\end{array}\right]: A \in \operatorname{GL}_{\mathbb{F}}(n), b \in \mathbb{F}^{n}\right\}$.
xvi) $\mathrm{SE}_{\mathbb{C}}(n) \triangleq\left\{\left[\begin{array}{ll}A & b \\ 0 & 1\end{array}\right]: A \in \mathrm{SU}(n), b \in \mathbb{C}^{n}\right\}$.
xvii) $\mathrm{SE}_{\mathbb{R}}(n) \triangleq\left\{\left[\begin{array}{cc}A & b \\ 0 & 1\end{array}\right]: A \in \mathrm{SO}(n), b \in \mathbb{R}^{n}\right\}$.
xviii) $\operatorname{Trans}_{\mathbb{F}}(n) \triangleq\left\{\left[\begin{array}{cc}I & b \\ 0 & 1\end{array}\right]: b \in \mathbb{F}^{n}\right\}$.

3.4 Matrix Transformations

The following results use groups to define equivalence relations.
Proposition 3.4.1. Let $\mathcal{S}_{1} \subset \mathbb{F}^{n \times n}$ and $\mathcal{S}_{2} \subset \mathbb{F}^{m \times m}$ be groups, and let $\mathcal{M} \subseteq$ $\mathbb{F}^{n \times m}$. Then, the subset of $\mathcal{M} \times \mathcal{M}$ defined by

$$
\mathcal{R} \triangleq\{(A, B) \in \mathcal{M} \times \mathcal{M}:
$$

there exist $S_{1} \in \mathcal{S}_{1}$ and $S_{2} \in \mathcal{S}_{2}$ such that $\left.A=S_{1} B S_{2}\right\}$
is an equivalence relation on \mathcal{M}.
Proposition 3.4.2. Let $\mathcal{S} \subset \mathbb{F}^{n \times n}$ be a group, and let $\mathcal{M} \subseteq \mathbb{F}^{n \times n}$. Then, the following subsets of $\mathcal{M} \times \mathcal{M}$ are equivalence relations:
i) $\mathcal{R} \triangleq\left\{(A, B) \in \mathcal{M} \times \mathcal{M}\right.$: there exists $S \in \mathcal{S}$ such that $\left.A=S B S^{-1}\right\}$.
ii) $\mathcal{R} \triangleq\left\{(A, B) \in \mathcal{M} \times \mathcal{M}\right.$: there exists $S \in \mathcal{S}$ such that $\left.A=S B S^{*}\right\}$.
iii) $\mathcal{R} \triangleq\left\{(A, B) \in \mathcal{M} \times \mathcal{M}\right.$: there exists $S \in \mathcal{S}$ such that $\left.A=S B S^{\mathrm{T}}\right\}$.

If, in addition, \mathcal{S} is an Abelian group, then the following subset $\mathcal{M} \times \mathcal{M}$ is an
equivalence relation:
iv) $\mathcal{R} \triangleq\{(A, B) \in \mathcal{M} \times \mathcal{M}$: there exists $S \in \mathcal{S}$ such that $A=S B S\}$.

Various transformations can be employed for analyzing matrices. Propositions 3.4.1 and 3.4.2 imply that these transformations define equivalence relations.

Definition 3.4.3. Let $A, B \in \mathbb{F}^{n \times m}$. Then, the following terminology is defined:
i) A and B are left equivalent if there exists a nonsingular matrix $S_{1} \in \mathbb{F}^{n \times n}$ such that $A=S_{1} B$.
ii) A and B are right equivalent if there exists a nonsingular matrix $S_{2} \in \mathbb{F}^{m \times m}$ such that $A=B S_{2}$.
iii) A and B are biequivalent if there exist nonsingular matrices $S_{1} \in \mathbb{F}^{n \times n}$ and $S_{2} \in \mathbb{F}^{m \times m}$ such that $A=S_{1} B S_{2}$.
iv) A and B are unitarily left equivalent if there exists a unitary matrix $S_{1} \in$ $\mathbb{F}^{n \times n}$ such that $A=S_{1} B$.
v) A and B are unitarily right equivalent if there exists a unitary matrix $S_{2} \in \mathbb{F}^{m \times m}$ such that $A=B S_{2}$.
vi) A and B are unitarily biequivalent if there exist unitary matrices $S_{1} \in \mathbb{F}^{n \times n}$ and $S_{2} \in \mathbb{F}^{m \times m}$ such that $A=S_{1} B S_{2}$.

Definition 3.4.4. Let $A, B \in \mathbb{F}^{n \times n}$. Then, the following terminology is defined:
i) A and B are similar if there exists a nonsingular matrix $S \in \mathbb{F}^{n \times n}$ such that $A=S B S^{-1}$.
ii) A and B are congruent if there exists a nonsingular matrix $S \in \mathbb{F}^{n \times n}$ such that $A=S B S^{*}$.
iii) A and B are T-congruent if there exists a nonsingular matrix $S \in \mathbb{F}^{n \times n}$ such that $A=S B S^{\mathrm{T}}$.
iv) A and B are unitarily similar if there exists a unitary matrix $S \in \mathbb{F}^{n \times n}$ such that $A=S B S^{*}=S B S^{-1}$.

The transformations that appear in Definition 3.4.3 and Definition 3.4.4 are called left equivalence, right equivalence, biequivalence, unitary left equivalence, unitary right equivalence, unitary biequivalence, similarity, congruence, T-congruence, and unitary similarity transformations, respectively. The following results summarize some matrix properties that are preserved under left equivalence, right equivalence, biequivalence, similarity, congruence, and unitary similarity.

Proposition 3.4.5. Let $A, B \in \mathbb{F}^{n \times n}$. If A and B are similar, then the following statements hold:
i) A and B are biequivalent.
ii) $\operatorname{tr} A=\operatorname{tr} B$.
iii) $\operatorname{det} A=\operatorname{det} B$.
iv) A^{k} and B^{k} are similar for all $k \geq 1$.
$v) A^{k *}$ and $B^{k *}$ are similar for all $k \geq 1$.
vi) A is nonsingular if and only if B is; in this case, A^{-k} and B^{-k} are similar for all $k \geq 1$.
vii) A is (group invertible, involutory, skew involutory, idempotent, tripotent, nilpotent) if and only if B is.

If A and B are congruent, then the following statements hold:
viii) A and B are biequivalent.
$i x) A^{*}$ and B^{*} are congruent.
x) A is nonsingular if and only if B is; in this case, A^{-1} and B^{-1} are congruent.
$x i) A$ is (range Hermitian, Hermitian, skew Hermitian, positive semidefinite, positive definite) if and only if B is.
If A and B are unitarily similar, then the following statements hold:
xii) A and B are similar.
xiii) A and B are congruent.
xiv) A is (range Hermitian, group invertible, normal, Hermitian, skew Hermitian, positive semidefinite, positive definite, unitary, involutory, skew involutory, idempotent, tripotent, nilpotent) if and only if B is.

3.5 Projectors, Idempotent Matrices, and Subspaces

The following result shows that a unique projector can be associated with each subspace.

Proposition 3.5.1. Let $\mathcal{S} \subseteq \mathbb{F}^{n}$ be a subspace. Then, there exists a unique projector $A \in \mathbb{F}^{n \times n}$ such that $\mathcal{S}=\mathcal{R}(A)$. Furthermore, $x \in \mathcal{S}$ if and only if $x=A x$.

Proof. See 998 , p. 386] and Fact 3.13.15,
For a subspace $\mathcal{S} \subseteq \mathbb{F}^{n}$, the matrix $A \in \mathbb{F}^{n \times n}$ given by Proposition 3.5.1 is the projector onto \mathcal{S}.

Let $A \in \mathbb{F}^{n \times n}$ be a projector. Then, the complementary projector A_{\perp} is the projector defined by

$$
\begin{equation*}
A_{\perp} \triangleq I-A \tag{3.5.1}
\end{equation*}
$$

Proposition 3.5.2. Let $\mathcal{S} \subseteq \mathbb{F}^{n}$ be a subspace, and let $A \in \mathbb{F}^{n \times n}$ be the projector onto \mathcal{S}. Then, A_{\perp} is the projector onto \mathcal{S}^{\perp}. Furthermore,

$$
\begin{equation*}
\mathcal{R}(A)^{\perp}=\mathcal{N}(A)=\mathcal{R}\left(A_{\perp}\right)=\mathcal{S}^{\perp} \tag{3.5.2}
\end{equation*}
$$

The following result shows that a unique idempotent matrix can be associated with each pair of complementary subspaces.

Proposition 3.5.3. Let $\mathcal{S}_{1}, \mathcal{S}_{2} \subseteq \mathbb{F}^{n}$ be complementary subspaces. Then, there exists a unique idempotent matrix $A \in \mathbb{F}^{n \times n}$ such that $\mathcal{R}(A)=\mathcal{S}_{1}$ and $\mathcal{N}(A)=S_{2}$.

Proof. See [182, p. 118] or [998, p. 386].
For complementary subspaces $\mathcal{S}_{1}, \mathcal{S}_{2} \subseteq \mathbb{F}^{n}$, the unique idempotent matrix $A \in \mathbb{F}^{n \times n}$ given by Proposition 3.5.3 is the idempotent matrix onto $\mathcal{S}_{1}=\mathcal{R}(A)$ along $\mathfrak{S}_{2}=\mathcal{N}(A)$.

For an idempotent matrix $A \in \mathbb{F}^{n \times n}$, the complementary idempotent matrix A_{\perp} defined by (3.5.1) is also idempotent.

Proposition 3.5.4. Let $\mathcal{S}_{1}, \mathcal{S}_{2} \subseteq \mathbb{F}^{n}$ be complementary subspaces, and let $A \in \mathbb{F}^{n \times n}$ be the idempotent matrix onto $\mathcal{S}_{1}=\mathcal{R}(A)$ along $\mathcal{S}_{2}=\mathcal{N}(A)$. Then, $\mathcal{R}\left(A_{\perp}\right)=\mathcal{S}_{2}$ and $\mathcal{N}\left(A_{\perp}\right)=\mathcal{S}_{1}$, that is, A_{\perp} is the idempotent matrix onto \mathcal{S}_{2} along \mathcal{S}_{1}.

Definition 3.5.5. The index of A, denoted by ind A, is the smallest nonnegative integer k such that

$$
\begin{equation*}
\mathcal{R}\left(A^{k}\right)=\mathcal{R}\left(A^{k+1}\right) \tag{3.5.3}
\end{equation*}
$$

Proposition 3.5.6. Let $A \in \mathbb{F}^{n \times n}$. Then, A is nonsingular if and only if ind $A=0$. Furthermore, A is group invertible if and only if ind $A \leq 1$.

Note that ind $0_{n \times n}=1$.
Proposition 3.5.7. Let $A \in \mathbb{F}^{n \times n}$, and let $k \geq 1$. Then, ind $A \leq k$ if and only if $\mathcal{R}\left(A^{k}\right)$ and $\mathcal{N}\left(A^{k}\right)$ are complementary subspaces.

Fact 3.6 .3 states that the null space and range of a range-Hermitian matrix are orthogonally complementary subspaces. Furthermore, Proposition 3.1.6 states that every range-Hermitian matrix is group invertible. Hence, the null space and range of a group-invertible matrix are complementary subspaces. The following corollary of Proposition 3.5.7 shows that the converse is true. Note that every idempotent matrix is group invertible.

Corollary 3.5.8. Let $A \in \mathbb{F}^{n \times n}$. Then, A is group invertible if and only if $\mathcal{R}(A)$ and $\mathcal{N}(A)$ are complementary subspaces.

For a group-invertible matrix $A \in \mathbb{F}^{n \times n}$, the following result shows how to construct the idempotent matrix onto $\mathcal{R}(A)$ along $\mathcal{N}(A)$.

Proposition 3.5.9. Let $A \in \mathbb{F}^{n \times n}$, and let $r \triangleq \operatorname{rank} A$. Then, A is group invertible if and only if there exist matrices $B \in \mathbb{F}^{n \times r}$ and $C \in \mathbb{F}^{r \times n}$ such that $A=$
$B C$ and $\operatorname{rank} B=\operatorname{rank} C=r$. In this case, the idempotent matrix $P \triangleq B(C B)^{-1} C$ is the idempotent matrix onto $\mathcal{R}(A)$ along $\mathcal{N}(A)$.

Proof. See [998, p. 634].
An alternative expression for the idempotent matrix onto $\mathcal{R}(A)$ along $\mathcal{N}(A)$ is given by Proposition 6.2.3.

3.6 Facts on Group-Invertible and Range-Hermitian Matrices

Fact 3.6.1. Let $A \in \mathbb{F}^{n \times n}$. Then, the following statements are equivalent:
i) A is group invertible.
ii) A^{*} is group invertible.
iii) A^{T} is group invertible.
iv) \bar{A} is group invertible.
v) $\mathcal{R}(A)=\mathcal{R}\left(A^{2}\right)$.
vi) $\mathcal{N}(A)=\mathcal{N}\left(A^{2}\right)$.
vii) $\mathcal{N}(A) \cap \mathcal{R}(A)=\{0\}$.
viii) $\mathcal{N}(A)+\mathcal{R}(A)=\mathbb{F}^{n}$.
ix) A and A^{2} are left equivalent.
x) A and A^{2} are right equivalent.
xi) ind $A \leq 1$.
xii) $\operatorname{rank} A=\operatorname{rank} A^{2}$.
xiii) $\operatorname{def} A=\operatorname{def} A^{2}$.
xiv) $\operatorname{def} A=\operatorname{amult}_{A}(0)$.
(Remark: See Corollary 3.5.8, Proposition 3.5.9, and Corollary 5.5.9)
Fact 3.6.2. Let $A \in \mathbb{F}^{n \times n}$. Then, ind $A \leq k$ if and only if A^{k} is group invertible.

Fact 3.6.3. Let $A \in \mathbb{F}^{n \times n}$. Then, the following statements are equivalent:
i) A is range Hermitian.
ii) A^{*} is range Hermitian.
iii) $\mathcal{R}(A)=\mathcal{R}\left(A^{*}\right)$.
iv) $\mathcal{R}(A) \subseteq \mathcal{R}\left(A^{*}\right)$.
v) $\mathcal{R}\left(A^{*}\right) \subseteq \mathcal{R}(A)$.
vi) $\mathcal{N}(A)=\mathcal{N}\left(A^{*}\right)$.
vii) A and A^{*} are right equivalent.
viii) $\mathcal{R}(A)^{\perp}=\mathcal{N}(A)$.
ix) $\mathcal{N}(A)^{\perp}=\mathcal{R}(A)$.
x) $\mathcal{R}(A)$ and $\mathcal{N}(A)$ are orthogonally complementary subspaces.
xi) $\operatorname{rank} A=\operatorname{rank}\left[\begin{array}{ll}A & A^{*}\end{array}\right]$.
(Proof: See 323, 1277.) (Remark: Using Fact 3.13.15, Proposition 3.5.2 and Proposition 6.1.6, vi) is equivalent to $A^{+} A=I-\left(I-A^{+} A\right)=A A^{+}$. See Fact 6.3.9, Fact 6.3.10, and Fact 6.3.11.)

Fact 3.6.4. Let $A \in \mathbb{F}^{n \times n}$, and assume that $A^{2}=A^{*}$. Then, A is range Hermitian. (Proof: See [114.) (Remark: A is a generalized projector.)

Fact 3.6.5. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are range Hermitian. Then,

$$
\operatorname{rank} A B=\operatorname{rank} B A .
$$

(Proof: See [122.)

3.7 Facts on Normal, Hermitian, and Skew-Hermitian Matrices

Fact 3.7.1. Let $A \in \mathbb{F}^{n \times n}$, assume that A is nonsingular, and assume that A is (normal, Hermitian, skew Hermitian, unitary). Then, so is A^{-1}.

Fact 3.7.2. Let $A \in \mathbb{F}^{n \times m}$. Then, $A A^{\mathrm{T}} \in \mathbb{F}^{n \times n}$ and $A^{\mathrm{T}} A \in \mathbb{F}^{m \times m}$ are symmetric.

Fact 3.7.3. Let $\alpha \in \mathbb{R}$ and $A \in \mathbb{R}^{n \times n}$. Then, the matrix equation $\alpha A+A^{\mathrm{T}}=0$ has a nonzero solution A if and only if $\alpha=1$ or $\alpha=-1$.

Fact 3.7.4. Let $A \in \mathbb{F}^{n \times n}$, assume that A is Hermitian, and let $k \geq 1$. Then, $\mathcal{R}(A)=\mathcal{R}\left(A^{k}\right)$ and $\mathcal{N}(A)=\mathcal{N}\left(A^{k}\right)$.

Fact 3.7.5. Let $A \in \mathbb{R}^{n \times n}$. Then, the following statements hold:
i) $x^{\mathrm{T}} A x=0$ for all $x \in \mathbb{R}^{n}$ if and only if A is skew symmetric.
ii) A is symmetric and $x^{\mathrm{T}} A x=0$ for all $x \in \mathbb{R}^{n}$ if and only if $A=0$.

Fact 3.7.6. Let $A \in \mathbb{C}^{n \times n}$. Then, the following statements hold:
i) $x^{*} A x$ is real for all $x \in \mathbb{C}^{n}$ if and only if A is Hermitian.
ii) $x^{*} A x$ is imaginary for all $x \in \mathbb{C}^{n}$ if and only if A is skew Hermitian.
iii) $x^{*} A x=0$ for all $x \in \mathbb{C}^{n}$ if and only if $A=0$.

Fact 3.7.7. Let $A \in \mathbb{R}^{n \times n}$. Then, the following statements are equivalent:
i) $x^{*} A x>0$ for all nonzero $x \in \mathbb{C}^{n}$.
ii) $x^{\mathrm{T}} A x>0$ for all nonzero $x \in \mathbb{R}^{n}$.

Fact 3.7.8. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is block diagonal. Then, A is (normal, Hermitian, skew Hermitian) if and only if every diagonally located block has the same property.

Fact 3.7.9. Let $A \in \mathbb{C}^{n \times n}$. Then, the following statements hold:
i) A is Hermitian if and only if $\jmath A$ is skew Hermitian.
ii) A is skew Hermitian if and only if $\jmath A$ is Hermitian.
iii) A is Hermitian if and only if $\operatorname{Re} A$ is symmetric and $\operatorname{Im} A$ is skew symmetric.
iv) A is skew Hermitian if and only if $\operatorname{Re} A$ is skew symmetric and $\operatorname{Im} A$ is symmetric.
$v) A$ is positive semidefinite if and only if $\operatorname{Re} A$ is positive semidefinite.
$v i) A$ is positive definite if and only if $\operatorname{Re} A$ is positive definite.
vii) A is symmetric if and only if $\left[\begin{array}{cc}0 & A \\ A & 0\end{array}\right]$ is symmetric.
viii) A is Hermitian if and only if $\left[\begin{array}{cc}0 & A \\ A & 0\end{array}\right]$ is Hermitian.
$i x) A$ is symmetric if and only if $\left[\begin{array}{cc}0 & A \\ -A & 0\end{array}\right]$ is skew symmetric.
x) A is Hermitian if and only if $\left[\begin{array}{cc}0 & A \\ -A & 0\end{array}\right]$ is skew Hermitian.
(Remark: x) is a real analogue of i) since $\left[\begin{array}{cc}0 & A \\ -A & 0\end{array}\right]=I_{2} \otimes A$, and I_{2} is a real representation of \jmath.)

Fact 3.7.10. Let $A \in \mathbb{F}^{n \times n}$. Then, the following statements hold:
i) If A is (normal, unitary, Hermitian, positive semidefinite, positive definite), then so is A^{A}.
ii) If A is skew Hermitian and n is odd, then A^{A} is Hermitian.
iii) If A is skew Hermitian and n is even, then A^{A} is skew Hermitian.
$i v$) If A is diagonal, then so is A^{A}, and, for all $i=1, \ldots, n$,

$$
\left(A^{\mathrm{A}}\right)_{(i, i)}=\prod_{\substack{j=1 \\ j \neq i}}^{n} A_{(j, j)}
$$

(Proof: Use Fact 2.16.10) (Remark: See Fact 5.14.5)
Fact 3.7.11. Let $A \in \mathbb{F}^{n \times n}$, assume that n is even, let $x \in \mathbb{F}^{n}$, and let $\alpha \in \mathbb{F}$. Then,

$$
\operatorname{det}\left(A+\alpha x x^{*}\right)=\operatorname{det} A .
$$

(Proof: Use Fact 2.16.3 and Fact 3.7.10.)

Fact 3.7.12. Let $A \in \mathbb{F}^{n \times n}$. Then, the following statements are equivalent:
i) A is normal.
ii) $A^{2} A^{*}=A A^{*} A$.
iii) $A A^{*} A=A^{*} A^{2}$.
iv) $\operatorname{tr}\left(A A^{*}\right)^{2}=\operatorname{tr} A^{2} A^{2 *}$.
$v)$ There exists $k \geq 1$ such that

$$
\operatorname{tr}\left(A A^{*}\right)^{k}=\operatorname{tr} A^{k} A^{k *}
$$

vi) There exist $k, l \in \mathbb{P}$ such that

$$
\operatorname{tr}\left(A A^{*}\right)^{k l}=\operatorname{tr}\left(A^{k} A^{k *}\right)^{l} .
$$

vii) A is range Hermitian, and $A A^{*} A^{2}=A^{2} A^{*} A$.
viii) $A A^{*}-A^{*} A$ is positive semidefinite.
ix) $\left[A, A^{*} A\right]=0$.
x) $\left[A,\left[A, A^{*}\right]\right]=0$.
(Proof: See [115, 323, 452, 454, 589, 1208.) (Remark: See Fact 3.11.4, Fact 5.14.15, Fact 5.15.4 Fact 6.3.16, Fact 6.6.10 Fact 8.9.27, Fact 8.12.5, Fact 8.17.5 Fact 11.15.4, and Fact 11.16.14.)

Fact 3.7.13. Let $A \in \mathbb{F}^{n \times n}$. Then, the following statements are equivalent:
i) A is Hermitian.
ii) $A^{2}=A^{*} A$.
iii) $A^{2}=A A^{*}$.
iv) $A^{* 2}=A^{*} A$.
v) $A^{* 2}=A A^{*}$.
vi) There exists $\alpha \in \mathbb{F}$ such that $A^{2}=\alpha A^{*} A+(1-\alpha) A A^{*}$.
vii) There exists $\alpha \in \mathbb{F}$ such that $A^{* 2}=\alpha A^{*} A+(1-\alpha) A A^{*}$.
viii) $\operatorname{tr} A^{2}=\operatorname{tr} A^{*} A$.
ix) $\operatorname{tr} A^{2}=\operatorname{tr} A A^{*}$.
x) $\operatorname{tr} A^{* 2}=\operatorname{tr} A^{*} A$.
xi) $\operatorname{tr} A^{* 2}=\operatorname{tr} A A^{*}$.

If, in addition, $\mathbb{F}=\mathbb{R}$, then the following condition is equivalent to i)-xi):
xii) There exist $\alpha, \beta \in \mathbb{R}$ such that

$$
\alpha A^{2}+(1-\alpha) A^{\mathrm{T} 2}=\beta A^{\mathrm{T}} A+(1-\beta) A A^{\mathrm{T}}
$$

(Proof: To prove that viii) implies i), use the Schur decomposition Theorem 5.4.1 to replace A with $D+S$, where D is diagonal and S is strictly upper triangular. Then, $\operatorname{tr} D^{*} D+\operatorname{tr} S^{*} S=\operatorname{tr} D^{2} \leq \operatorname{tr} D^{*} D$. Hence, $S=0$, and thus $\operatorname{tr} D^{*} D=\operatorname{tr} D^{2}$,
which implies that D is real. See [115, 856.) (Remark: See Fact 3.13.1) (Remark: Fact 9.11 .3 states that, for all $A \in \mathbb{F}^{n \times n},\left|\operatorname{tr} A^{2}\right| \leq \operatorname{tr} A^{*} A$.)

Fact 3.7.14. Let $A \in \mathbb{F}^{n \times n}$, let $\alpha, \beta \in \mathbb{F}$, and assume that $\alpha \neq 0$. Then, the following statements are equivalent:
i) A is normal.
ii) $\alpha A+\beta I$ is normal.

Now, assume, in addition, that $\alpha, \beta \in \mathbb{R}$. Then, the following statements are equivalent:
iii) A is Hermitian.
iv) $\alpha A+\beta I$ is Hermitian.
(Remark: The function $f(A)=\alpha A+\beta I$ is an affine mapping.)
Fact 3.7.15. Let $A \in \mathbb{R}^{n \times n}$, assume that A is skew symmetric, and let $\alpha>0$. Then, $-A^{2}$ is positive semidefinite, $\operatorname{det} A \geq 0$, and $\operatorname{det}(\alpha I+A)>0$. If, in addition, n is odd, then $\operatorname{det} A=0$.

Fact 3.7.16. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is skew Hermitian. If n is even, then $\operatorname{det} A \geq 0$. If n is odd, then $\operatorname{det} A$ is imaginary. (Proof: The first statement follows from Proposition 5.5.21.)

Fact 3.7.17. Let $x, y \in \mathbb{F}^{n}$, and define

$$
A \triangleq\left[\begin{array}{ll}
x & y
\end{array}\right] .
$$

Then,

$$
x y^{*}-y x^{*}=A J_{2} A^{*}
$$

Furthermore, $x y^{*}-y x^{*}$ is skew Hermitian and has rank 0 or 2 .
Fact 3.7.18. Let $x, y \in \mathbb{F}^{n}$. Then, the following statements hold:
i) $x y^{\mathrm{T}}$ is idempotent if and only if either $x y^{\mathrm{T}}=0$ or $x^{\mathrm{T}} y=1$.
ii) $x y^{\mathrm{T}}$ is Hermitian if and only if there exists $\alpha \in \mathbb{R}$ such that either $y=\alpha \bar{x}$ or $x=\alpha \bar{y}$.

Fact 3.7.19. Let $x, y \in \mathbb{F}^{n}$, and define $A \triangleq I-x y^{T}$. Then, the following statements hold:
i) $\operatorname{det} A=1-x^{\mathrm{T}} y$.
ii) A is nonsingular if and only if $x^{\mathrm{T}} y \neq 1$.
iii) A is nonsingular if and only if A is elementary.
iv) $\operatorname{rank} A=n-1$ if and only if $x^{\mathrm{T}} y=1$.
$v) A$ is Hermitian if and only if there exists $\alpha \in \mathbb{R}$ such that either $y=\alpha \bar{x}$ or $x=\alpha \bar{y}$.
$v i) A$ is positive semidefinite if and only if A is Hermitian and $x^{\mathrm{T}} y \leq 1$.
vii) A is positive definite if and only if A is Hermitian and $x^{\mathrm{T}} y<1$.
viii) A is idempotent if and only if either $x y^{\mathrm{T}}=0$ or $x^{\mathrm{T}} y=1$.
$i x) A$ is orthogonal if and only if either $x=0$ or $y=\frac{1}{2} y^{\mathrm{T}} y x$.
$x) A$ is involutory if and only if $x^{\mathrm{T}} y=2$.
xi) A is a projector if and only if either $y=0$ or $x=x^{*} x y$.
xii) A is a reflector if and only if either $y=0$ or $2 x=x^{*} x y$.
xiii) A is an elementary projector if and only if $x \neq 0$ and $y=\left(x^{*} x\right)^{-1} x$.
xiv) A is an elementary reflector if and only if $x \neq 0$ and $y=2\left(x^{*} x\right)^{-1} x$.
(Remark: See Fact 3.13.9)
Fact 3.7.20. Let $x, y \in \mathbb{F}^{n}$ satisfy $x^{\mathrm{T}} y \neq 1$. Then, $I-x y^{\mathrm{T}}$ is nonsingular and

$$
\left(I-x y^{\mathrm{T}}\right)^{-1}=I-\frac{1}{x^{\mathrm{T}} y-1} x y^{\mathrm{T}}
$$

(Remark: The inverse of an elementary matrix is an elementary matrix.)
Fact 3.7.21. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is Hermitian. Then, $\operatorname{det} A$ is real.

Fact 3.7.22. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is Hermitian. Then,

$$
(\operatorname{tr} A)^{2} \leq(\operatorname{rank} A) \operatorname{tr} A^{2}
$$

Furthermore, equality holds if and only if there exists $\alpha \in \mathbb{R}$ such that $A^{2}=\alpha A$. (Remark: See Fact 5.11.10 and Fact 9.13.12,)

Fact 3.7.23. Let $A \in \mathbb{R}^{n \times n}$, and assume that A is skew symmetric. Then, $\operatorname{tr} A=0$. If, in addition, $B \in \mathbb{R}^{n \times n}$ is symmetric, then $\operatorname{tr} A B=0$.

Fact 3.7.24. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is skew Hermitian. Then, $\operatorname{Re} \operatorname{tr} A=0$. If, in addition, $B \in \mathbb{F}^{n \times n}$ is Hermitian, then $\operatorname{Re} \operatorname{tr} A B=0$.

Fact 3.7.25. Let $A \in \mathbb{F}^{n \times m}$. Then, $A^{*} A$ is positive semidefinite. Furthermore, $A^{*} A$ is positive definite if and only if A is left invertible. In this case, $A^{\mathrm{L}} \in \mathbb{F}^{m \times n}$ defined by

$$
A^{\mathrm{L}} \triangleq\left(A^{*} A\right)^{-1} A^{*}
$$

is a left inverse of A. (Remark: See Fact 2.15.2, Fact 3.7.26, and Fact 3.13.6.)
Fact 3.7.26. Let $A \in \mathbb{F}^{n \times m}$. Then, $A A^{*}$ is positive semidefinite. Furthermore, $A A^{*}$ is positive definite if and only if A is right invertible. In this case, $A^{\mathrm{R}} \in \mathbb{F}^{m \times n}$ defined by

$$
A^{\mathrm{R}} \triangleq A^{*}\left(A A^{*}\right)^{-1}
$$

is a right inverse of A. (Remark: See Fact 2.15.2, Fact 3.13.6, and Fact 3.7.25.)
Fact 3.7.27. Let $A \in \mathbb{F}^{n \times m}$. Then, $A^{*} A, A A^{*}$, and $\left[\begin{array}{cc}0 & A^{*} \\ A & 0\end{array}\right]$ are Hermitian, and $\left[\begin{array}{cc}0 & A^{*} \\ -A & 0\end{array}\right]$ is skew Hermitian. Now, assume that $n=m$. Then, $A+A^{*}, \jmath\left(A-A^{*}\right)$,
and $\frac{1}{2 \jmath}\left(A-A^{*}\right)$ are Hermitian, while $A-A^{*}$ is skew Hermitian. Finally,

$$
A=\frac{1}{2}\left(A+A^{*}\right)+\frac{1}{2}\left(A-A^{*}\right)
$$

and

$$
A=\frac{1}{2}\left(A+A^{*}\right)+\jmath\left[\frac{1}{2 \jmath}\left(A-A^{*}\right)\right] .
$$

(Remark: The last two identities are Cartesian decompositions.)
Fact 3.7.28. Let $A \in \mathbb{F}^{n \times n}$. Then, there exist a unique Hermitian matrix $B \in \mathbb{F}^{n \times n}$ and a unique skew-Hermitian matrix $C \in \mathbb{F}^{n \times n}$ such that $A=B+C$. Specifically, if $A=\hat{B}+\jmath \hat{C}$, where $\hat{B}, \hat{C} \in \mathbb{R}^{n \times n}$, then \hat{B} and \hat{C} are given by

$$
B=\frac{1}{2}\left(A+A^{*}\right)=\frac{1}{2}\left(\hat{B}+\hat{B}^{\mathrm{T}}\right)+\jmath \frac{1}{2}\left(\hat{C}-\hat{C}^{\mathrm{T}}\right)
$$

and

$$
C=\frac{1}{2}\left(A-A^{*}\right)=\frac{1}{2}\left(\hat{B}-\hat{B}^{\mathrm{T}}\right)+\jmath \frac{1}{2}\left(\hat{C}+\hat{C}^{\mathrm{T}}\right)
$$

Furthermore, A is normal if and only if $B C=C B$. (Remark: See Fact 11.13.9)
Fact 3.7.29. Let $A \in \mathbb{F}^{n \times n}$. Then, there exist unique Hermitian matrices $B, C \in \mathbb{C}^{n \times n}$ such that $A=B+\jmath C$. Specifically, if $A=\hat{B}+\jmath \hat{C}$, where $\hat{B}, \hat{C} \in \mathbb{R}^{n \times n}$, then \hat{B} and \hat{C} are given by

$$
B=\frac{1}{2}\left(A+A^{*}\right)=\frac{1}{2}\left(\hat{B}+\hat{B}^{\mathrm{T}}\right)+\jmath \frac{1}{2}\left(\hat{C}-\hat{C}^{\mathrm{T}}\right)
$$

and

$$
C=\frac{1}{2 \jmath}\left(A-A^{*}\right)=\frac{1}{2}\left(\hat{C}+\hat{C}^{\mathrm{T}}\right)-\jmath \frac{1}{2}\left(\hat{B}-\hat{B}^{\mathrm{T}}\right)
$$

Furthermore, A is normal if and only if $B C=C B$. (Remark: This result is the Cartesian decomposition.)

Fact 3.7.30. Let $A, B \in \mathbb{C}^{n \times n}$, assume that A is either Hermitian or skew Hermitian, and assume that B is either Hermitian or skew Hermitian. Then,

$$
\operatorname{rank} A B=\operatorname{rank} B A
$$

(Proof: $A B$ and $(A B)^{*}=B A$ have the same singular values. See Fact 5.11.19) (Remark: See Fact 2.10.26.)

Fact 3.7.31. Let $A, B \in \mathbb{R}^{3 \times 3}$, and assume that A and B are skew symmetric. Then,

$$
\operatorname{tr} A B^{3}=\frac{1}{2}(\operatorname{tr} A B)\left(\operatorname{tr} B^{2}\right)
$$

and

$$
\operatorname{tr} A^{3} B^{3}=\frac{1}{4}\left(\operatorname{tr} A^{2}\right)(\operatorname{tr} A B)\left(\operatorname{tr} B^{2}\right)+\frac{1}{3}\left(\operatorname{tr} A^{3}\right)\left(\operatorname{tr} B^{3}\right)
$$

(Proof: See [79.)
Fact 3.7.32. Let $A \in \mathbb{F}^{n \times n}$ and $k \geq 1$. If A is (normal, Hermitian, unitary, involutory, positive semidefinite, positive definite, idempotent, nilpotent), then so is A^{k}. If A is (skew Hermitian, skew involutory), then so is $A^{2 k+1}$. If A is Hermitian, then $A^{2 k}$ is positive semidefinite. If A is tripotent, then so is $A^{3 k}$.

Fact 3.7.33. Let $a, b, c, d, e, f \in \mathbb{R}$, and define the skew-symmetric matrix $A \in \mathbb{R}^{4 \times 4}$ given by

$$
A \triangleq\left[\begin{array}{rrrr}
0 & a & b & c \\
-a & 0 & d & e \\
-b & -d & 0 & f \\
-c & -e & -f & 0
\end{array}\right] .
$$

Then,

$$
\operatorname{det} A=(a f-b e+c d)^{2}
$$

(Proof: See [1184, p. 63].) (Remark: See Fact 4.8.14 and Fact 4.10.2,)
Fact 3.7.34. Let $A \in \mathbb{R}^{2 n \times 2 n}$, and assume that A is skew symmetric. Then, there exists a nonsingular matrix $S \in \mathbb{R}^{2 n \times 2 n}$ such that $S^{\mathrm{T}} A S=J_{2 n}$. (Proof: See [103, p. 231].)

Fact 3.7.35. Let $A \in \mathbb{R}^{n \times n}$, and assume that A is positive definite. Then,

$$
\mathcal{E} \triangleq\left\{x \in \mathbb{R}^{n}: x^{\mathrm{T}} A x \leq 1\right\}
$$

is a hyperellipsoid. Furthermore, the volume V of \mathcal{E} is given by

$$
V=\frac{\alpha(n)}{\sqrt{\operatorname{det} A}}
$$

where

$$
\alpha(n) \triangleq \begin{cases}\pi^{n / 2} /(n / 2)!, & n \text { even } \\ 2^{n} \pi^{(n-1) / 2}[(n-1) / 2]!/ n!, & n \text { odd }\end{cases}
$$

In particular, the area of the ellipse $\left\{x \in \mathbb{R}^{2}: x^{\mathrm{T}} A x \leq 1\right\}$ is $\pi / \operatorname{det} A$. (Remark: $\alpha(n)$ is the volume of the unit n-dimensional hypersphere.) (Remark: See [801, p. 36].)

3.8 Facts on Commutators

Fact 3.8.1. Let $A, B \in \mathbb{F}^{n \times n}$. If either A and B are Hermitian or A and B are skew Hermitian, then $[A, B]$ is skew Hermitian. Furthermore, if A is Hermitian and B is skew Hermitian, or vice versa, then $[A, B]$ is Hermitian.

Fact 3.8.2. Let $A \in \mathbb{F}^{n \times n}$. Then, the following statements are equivalent:
i) $\operatorname{tr} A=0$.
ii) There exist matrices $B, C \in \mathbb{F}^{n \times n}$ such that B is Hermitian, $\operatorname{tr} C=0$, and $A=[B, C]$.
iii) There exist matrices $B, C \in \mathbb{F}^{n \times n}$ such that $A=[B, C]$.
(Proof: See [535] and Fact 5.9.18. If every diagonal entry of A is zero, then let $B \triangleq \operatorname{diag}(1, \ldots, n), C_{(i, i)} \triangleq 0$, and, for $i \neq j, C_{(i, j)} \triangleq A_{(i, j)} /(i-j)$. See [1487, p. 110]. See also [1098, p. 172].)

Fact 3.8.3. Let $A \in \mathbb{F}^{n \times n}$. Then, the following statements are equivalent:
i) A is Hermitian, and $\operatorname{tr} A=0$.
ii) There exists a nonsingular matrix $B \in \mathbb{F}^{n \times n}$ such that $A=\left[B, B^{*}\right]$.
iii) There exist a Hermitian matrix $B \in \mathbb{F}^{n \times n}$ and a skew-Hermitian matrix $C \in \mathbb{F}^{n \times n}$ such that $A=[B, C]$.
iv) There exist a skew-Hermitian matrix $B \in \mathbb{F}^{n \times n}$ and a Hermitian matrix $C \in \mathbb{F}^{n \times n}$ such that $A=[B, C]$.
(Proof: See 535] and [1266.)
Fact 3.8.4. Let $A \in \mathbb{F}^{n \times n}$. Then, the following statements are equivalent:
i) A is skew Hermitian, and $\operatorname{tr} A=0$.
ii) There exists a nonsingular matrix $B \in \mathbb{F}^{n \times n}$ such that $A=\left[\jmath B, B^{*}\right]$.
iii) If $A \in \mathbb{C}^{n \times n}$ is skew Hermitian, then there exist Hermitian matrices $B, C \in$ $\mathbb{F}^{n \times n}$ such that $A=[B, C]$.
(Proof: See 535 or use Fact 3.8.3)
Fact 3.8.5. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is skew symmetric. Then, there exist symmetric matrices $B, C \in \mathbb{F}^{n \times n}$ such that $A=[B, C]$. (Proof: Use Fact 5.15.24, See [1098, pp. 83, 89].) (Remark: "Symmetric" is correct for $\mathbb{F}=\mathbb{C}$.)

Fact 3.8.6. Let $A \in \mathbb{F}^{n \times n}$, and assume that $\left[A,\left[A, A^{*}\right]\right]=0$. Then, A is normal. (Remark: See [1487 p. 32].)

Fact 3.8.7. Let $A \in \mathbb{F}^{n \times n}$. Then, there exist $B, C \in \mathbb{F}^{n \times n}$ such that B is normal, C is Hermitian, and

$$
A=B+[C, B] .
$$

(Remark: See 440.)

3.9 Facts on Linear Interpolation

Fact 3.9.1. Let $y \in \mathbb{F}^{n}$ and $x \in \mathbb{F}^{m}$. Then, there exists a matrix $A \in \mathbb{F}^{n \times m}$ such that $y=A x$ if and only if either $y=0$ or $x \neq 0$. If $y=0$, then one such matrix is $A=0$. If $x \neq 0$, then one such matrix is

$$
A=\left(x^{*} x\right)^{-1} y x^{*} .
$$

(Remark: This is a linear interpolation problem. See [773.)
Fact 3.9.2. Let $x, y \in \mathbb{F}^{n}$, and assume that $x \neq 0$. Then, there exists a Hermitian matrix $A \in \mathbb{F}^{n \times n}$ such that $y=A x$ if and only if $x^{*} y$ is real. One such matrix is

$$
A=\left(x^{*} x\right)^{-1}\left[y x^{*}+x y^{*}-x^{*} y I\right] .
$$

Now, assume that x and y are real. Then,

$$
\sigma_{\max }(A)=\frac{\|x\|_{2}}{\|y\|_{2}}=\min \left\{\sigma_{\max }(B): B \in \mathbb{R}^{n \times n} \text { is symmetric and } y=B x\right\}
$$

(Proof: The last statement is given in 1205.)
Fact 3.9.3. Let $x, y \in \mathbb{F}^{n}$, and assume that $x \neq 0$. Then, there exists a positive-definite matrix $A \in \mathbb{F}^{n \times n}$ such that $y=A x$ if and only if $x^{*} y$ is real and positive. One such matrix is

$$
A=I+\left(x^{*} y\right)^{-1} y y^{*}-\left(x^{*} x\right)^{-1} x x^{*} .
$$

(Proof: To show that A is positive definite, note that the elementary projector $I-\left(x^{*} x\right)^{-1} x x^{*}$ is positive semidefinite and $\operatorname{rank}\left[I-\left(x^{*} x\right)^{-1} x x^{*}\right]=n-1$. Since $\left(x^{*} y\right)^{-1} y y^{*}$ is positive semidefinite, it follows that $\mathcal{N}(A) \subseteq \mathcal{N}\left[I-\left(x^{*} x\right)^{-1} x x^{*}\right]$. Next, since $x^{*} y>0$, it follows that $y^{*} x \neq 0$ and $y \neq 0$, and thus $x \notin \mathcal{N}(A)$. Consequently, $\mathcal{N}(A) \subset \mathcal{N}\left[I-\left(x^{*} x\right)^{-1} x x^{*}\right]$ (note proper inclusion), and thus $\operatorname{def} A<1$. Hence, A is nonsingular.)

Fact 3.9.4. Let $x, y \in \mathbb{F}^{n}$. Then, there exists a skew-Hermitian matrix $A \in$ $\mathbb{F}^{n \times n}$ such that $y=A x$ if and only if either $y=0$ or $x \neq 0$ and $x^{*} y=0$. If $x \neq 0$ and $x^{*} y=0$, then one such matrix is

$$
A=\left(x^{*} x\right)^{-1}\left(y x^{*}-x y^{*}\right)
$$

(Proof: See 924.)
Fact 3.9.5. Let $x, y \in \mathbb{R}^{n}$. Then, there exists an orthogonal matrix $A \in \mathbb{R}^{n \times n}$ such that $A x=y$ if and only if $x^{\mathrm{T}} x=y^{\mathrm{T}} y$. (Remark: One such matrix is given by a product of n plane rotations given by Fact 5.15.16. Another matrix is given by the product of elementary reflectors given by Fact 5.15.15. For $n=3$, one such matrix is given by Fact 3.11.8, while another is given by the exponential of a skewsymmetric matrix given by Fact 11.11.7. See Fact 3.14.4.) (Problem: Extend this result to \mathbb{C}^{n}.) (Remark: See Fact 9.15.6.

3.10 Facts on the Cross Product

Fact 3.10.1. Let $x, y, z, w \in \mathbb{R}^{3}$, and define the cross-product matrix $K(x) \in$ $\mathbb{R}^{3 \times 3}$ by

$$
K(x) \triangleq\left[\begin{array}{ccc}
0 & -x_{(3)} & x_{(2)} \\
x_{(3)} & 0 & -x_{(1)} \\
-x_{(2)} & x_{(1)} & 0
\end{array}\right] .
$$

Then, the following statements hold:
i) $x \times x=K(x) x=0$.
ii) $x^{\mathrm{T}} K(x)=0$.
iii) $K^{\mathrm{T}}(x)=-K(x)$.
iv) $K^{2}(x)=x x^{\mathrm{T}}-\left(x^{\mathrm{T}} x\right) I$.
v) $\operatorname{tr} K^{\mathrm{T}}(x) K(x)=-\operatorname{tr} K^{2}(x)=2 x^{\mathrm{T}} x$.
vi) $K^{3}(x)=-\left(x^{\mathrm{T}} x\right) K(x)$.
vii) $[I-K(x)]^{-1}=I+\left(1+x^{\mathrm{T}} x\right)^{-1}\left[K(x)+K^{2}(x)\right]$.
viii) $\left[I+\frac{1}{2} K(x)\right]\left[I-\frac{1}{2} K(x)\right]^{-1}=I+\frac{4}{4+x^{T} x}\left[K(x)+\frac{1}{2} K^{2}(x)\right]$.
$i x)$ Define

$$
H(x) \triangleq \frac{1}{2}\left[\frac{1}{2}\left(1-x^{\mathrm{T}} x\right) I+x x^{\mathrm{T}}+K(x)\right]
$$

Then,

$$
H(x) H^{\mathrm{T}}(x)=\frac{1}{16}\left(1+x^{\mathrm{T}} x\right)^{2} I
$$

$x)$ For all $\alpha, \beta \in \mathbb{R}, K(\alpha x+\beta y)=\alpha K(x)+\beta K(y)$.
xi) $x \times y=-(y \times x)=K(x) y=-K(y) x=K^{\mathrm{T}}(y) x$.
xii) If $x \times y \neq 0$, then $\mathcal{N}\left[(x \times y)^{\mathrm{T}}\right]=\{x \times y\}^{\perp}=\mathcal{R}\left(\left[\begin{array}{ll}x & y\end{array}\right]\right)$.
xiii) $K(x \times y)=K[K(x) y]=[K(x), K(y)]$.
xiv) $K(x \times y)=y x^{\mathrm{T}}-x y^{\mathrm{T}}=\left[\begin{array}{ll}x & y\end{array}\right]\left[\begin{array}{c}-y^{\mathrm{T}} \\ x^{\mathrm{T}}\end{array}\right]=-\left[\begin{array}{ll}x & y\end{array}\right] J_{2}\left[\begin{array}{ll}x & y\end{array}\right]^{\mathrm{T}}$.
$x v)(x \times y) \times x=\left(x^{\mathrm{T}} x I-x x^{\mathrm{T}}\right) y$.
xvi) $K[(x \times y) \times x]=\left(x^{\mathrm{T}} x\right) K(y)-\left(x^{\mathrm{T}} y\right) K(x)$.
xvii) $(x \times y)^{\mathrm{T}}(x \times y)=\operatorname{det}\left[\begin{array}{lll}x & y & x \times y\end{array}\right]$.
xviii) $(x \times y)^{\mathrm{T}} z=x^{\mathrm{T}}(y \times z)=\operatorname{det}\left[\begin{array}{lll}x & y & z\end{array}\right]$.
xix) $x \times(y \times z)=\left(x^{\mathrm{T}} z\right) y-\left(x^{\mathrm{T}} y\right) z$.
$x x)(x \times y) \times z=\left(x^{\mathrm{T}} z\right) y-\left(y^{\mathrm{T}} z\right) x$.
xxi) $K[(x \times y) \times z]=\left(x^{\mathrm{T}} z\right) K(y)-\left(y^{\mathrm{T}} z\right) K(x)$.
xxii) $K[x \times(y \times z)]=\left(x^{\mathrm{T}} z\right) K(y)-\left(x^{\mathrm{T}} y\right) K(z)$.
xxiii) $(x \times y)^{\mathrm{T}}(x \times y)=x^{\mathrm{T}} x y^{\mathrm{T}} y-\left(x^{\mathrm{T}} y\right)^{2}$.
xxiv) $K(x) K(y)=y x^{\mathrm{T}}-x^{\mathrm{T}} y I_{3}$.
$x x v) K(x) K(y) K(x)=-\left(x^{\mathrm{T}} y\right) K(x)$.
xxvi) $K^{2}(x) K(y)+K(y) K^{2}(x)=-\left(x^{\mathrm{T}} x\right) K(y)-\left(x^{\mathrm{T}} y\right) K(x)$.
xxvii) $K^{2}(x) K^{2}(y)-K^{2}(y) K^{2}(x)=-\left(x^{\mathrm{T}} y\right) K(x \times y)$.
xxviii) $K(x) K(z)\left(x^{\mathrm{T}} w y-x^{\mathrm{T}} y w\right)=K(x) K(w) x^{\mathrm{T}} z y$.
xxix) $\sqrt{(x \times y)^{\mathrm{T}}(x \times y)}=\sqrt{x^{\mathrm{T}} x y^{\mathrm{T}} y} \sin \theta$, where θ is the angle between x and y.
$x x x)(x \times y)^{\mathrm{T}}(x \times y)=x^{\mathrm{T}} x y^{\mathrm{T}} y-\left(x^{\mathrm{T}} y\right)^{2}$.
xxxi) $2 x x^{\mathrm{T}} K(y)=(x \times y) x^{\mathrm{T}}+x(x \times y)^{\mathrm{T}}+x^{\mathrm{T}} x K(y)-x^{\mathrm{T}} y K(x)$.
xxxii) $(x \times y)^{\mathrm{T}}(z \times w)=x^{\mathrm{T}} z y^{\mathrm{T}} w-x^{\mathrm{T}} w y^{\mathrm{T}} z=\operatorname{det}\left[\begin{array}{cc}x^{\mathrm{T}} z x^{\mathrm{T}} w \\ y^{\mathrm{T}} z & y^{\mathrm{T}} w\end{array}\right]$.
xxxiii) $(x \times y) \times(z \times w)=x^{\mathrm{T}}(y \times w) z-x^{\mathrm{T}}(y \times z) w=x^{\mathrm{T}}(z \times w) y-y^{\mathrm{T}}(z \times w) x$.
xxxiv) $x \times[y \times(z \times w)]=\left(y^{\mathrm{T}} w\right)(x \times z)-\left(y^{\mathrm{T}} z\right)(x \times w)$.
$x x x v) x \times[y \times(y \times x)]=y \times[x \times(y \times x)]=\left(y^{\mathrm{T}} x\right)(x \times y)$.
xxxvi) Let $A \in \mathbb{R}^{3 \times 3}$. Then,

$$
A^{\mathrm{T}} K(A x) A=(\operatorname{det} A) K(x)
$$

and thus

$$
A^{\mathrm{T}}(A x \times A y)=(\operatorname{det} A)(x \times y)
$$

xxxvii) Let $A \in \mathbb{R}^{3 \times 3}$, and assume that A is orthogonal. Then,

$$
K(A x) A=(\operatorname{det} A) A K(x),
$$

and thus

$$
A x \times A y=(\operatorname{det} A) A(x \times y)
$$

xxxviii) Let $A \in \mathbb{R}^{3 \times 3}$, and assume that A is orthogonal and $\operatorname{det} A=1$. Then,

$$
K(A x) A=A K(x)
$$

and thus

$$
A x \times A y=A(x \times y)
$$

xxxix) $\left[\begin{array}{lll}x & y & z\end{array}\right]^{\mathrm{A}}=\left[\begin{array}{lll}y \times z & z \times x & x \times y\end{array}\right]^{\mathrm{T}}$.
$x l) \operatorname{det}\left[\begin{array}{cc}K(x) & y \\ -y^{\mathrm{T}} & 0\end{array}\right]=\left(x^{\mathrm{T}} y\right)^{2}$.
$x l i)\left[\begin{array}{cc}K(x) & y \\ -y^{\mathrm{T}} & 0\end{array}\right]^{\mathrm{A}}=-x^{\mathrm{T}} y\left[\begin{array}{cc}K(y) & x \\ -x^{\mathrm{T}} & 0\end{array}\right]$.
xlii) If $x^{\mathrm{T}} y \neq 0$, then

$$
\left[\begin{array}{cc}
K(x) & y \\
-y^{\mathrm{T}} & 0
\end{array}\right]^{-1}=\frac{-1}{x^{\mathrm{T}} y}\left[\begin{array}{cc}
K(y) & x \\
-x^{\mathrm{T}} & 0
\end{array}\right]
$$

xliii) If $x \neq 0$, then $K^{+}(x)=\left(x^{\mathrm{T}} x\right)^{-1} K(x)$.
xliv) If $x^{\mathrm{T}} y=0$ and $x^{\mathrm{T}} x+y^{\mathrm{T}} y \neq 0$, then

$$
\left[\begin{array}{cc}
K(x) & y \\
-y^{\mathrm{T}} & 0
\end{array}\right]^{+}=\frac{-1}{x^{\mathrm{T}} x+y^{\mathrm{T}} y}\left[\begin{array}{cc}
K(x) & y \\
-y^{\mathrm{T}} & 0
\end{array}\right]
$$

(Proof: Results vii), viii), and $x x v$)-xxvii) are given in [746, p. 363]. Result $i x$) is given in 1341. Statement xxviii) is a consequence of a result given in 572, p. 58]. Statement $x x x$) is equivalent to the fact that $\sin ^{2} \theta+\cos ^{2} \theta=1$. Using $\left.x v i i i\right)$,

$$
e_{i}^{\mathrm{T}} A^{\mathrm{T}}(A x \times A y)=\operatorname{det}\left[\begin{array}{lll}
A x & A y & A e_{i}
\end{array}\right]=(\operatorname{det} A) e_{i}^{\mathrm{T}}(x \times y)
$$

for all $i=1,2,3$, which proves $x x x v i$). Result $x x x i x$) is given in 1319. Results $x l)-x l i v$) are proved in [1334].) (Proof: See [410, 474, 746, 1058, 1192, 1262, 1327.) (Remark: Cross products of complex vectors are considered in 599].) (Remark: A cross product can be defined on \mathbb{R}^{7}. See [477, pp. 297-299].) (Remark: An extension of the cross product to higher dimensions is given by the outer product in Clifford algebras. See Fact 9.7 .5 and [349, 425, 555, 605, 671, 672, 870, 934.)
(Remark: See Fact 11.11.11) (Problem: Extend these identities to complex vectors and matrices.)

Fact 3.10.2. Let $A \in \mathbb{R}^{3 \times 3}$, assume that A is orthogonal, let $B \in \mathbb{C}^{3 \times 3}$, and assume that B is symmetric. Then,

$$
\sum_{i=1}^{3}\left(A e_{i}\right) \times\left(B A e_{i}\right)=0
$$

(Proof: For $i=1,2,3$, multiply by $e_{i}^{\mathrm{T}} A^{\mathrm{T}}$.)
Fact 3.10.3. Let α_{1}, α_{2}, and α_{3} be distinct positive numbers, let $A \in \mathbb{R}^{3 \times 3}$, assume that A is orthogonal, and assume that

$$
\sum_{i=1}^{3} \alpha_{i} e_{i} \times A e_{i}=0
$$

Then,

$$
A \in\{I, \operatorname{diag}(1,-1,-1), \operatorname{diag}(-1,1,-1), \operatorname{diag}(-1,-1,1)\}
$$

(Remark: This result characterizes equilibria for a dynamical system on SO (3). See (306.)

3.11 Facts on Unitary and Shifted-Unitary Matrices

Fact 3.11.1. Let $\mathcal{S}_{1}, \mathcal{S}_{2} \subseteq \mathbb{F}^{n}$, assume that \mathcal{S}_{1} and δ_{2} are subspaces, and assume that $\operatorname{dim} \mathcal{S}_{1} \leq \operatorname{dim} \mathcal{S}_{2}$. Then, there exists a unitary matrix $A \in \mathbb{F}^{n \times n}$ such that $A \mathcal{S}_{1} \subseteq \mathcal{S}_{2}$.

Fact 3.11.2. Let $\mathcal{S}_{1}, \mathcal{S}_{2} \subseteq \mathbb{F}^{n}$, assume that \mathcal{S}_{1} and \mathcal{S}_{2} are subspaces, and assume that $\operatorname{dim} \mathcal{S}_{1}+\operatorname{dim} \mathcal{S}_{2} \leq n$. Then, there exists a unitary matrix $A \in \mathbb{F}^{n \times n}$ such that $A \delta_{1} \subseteq \mathcal{S}_{2}^{\perp}$. (Proof: Use Fact 3.11.1.)

Fact 3.11.3. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is unitary. Then, the following statements hold:
i) $A=A^{-*}$.
ii) $A^{\mathrm{T}}=\bar{A}^{-1}=\bar{A}^{*}$.
iii) $\bar{A}=A^{-\mathrm{T}}=\bar{A}^{-*}$.
iv) $A^{*}=A^{-1}$.

Fact 3.11.4. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is nonsingular. Then, the following statements are equivalent:
i) A is normal.
ii) $A^{-1} A^{*}$ is unitary.
iii) $\left[A, A^{*}\right]=0$.
iv) $\left[A, A^{-*}\right]=0$.
v) $\left[A^{-1}, A^{-*}\right]=0$.
(Proof: See 589].) (Remark: See Fact 3.7.12, Fact 5.15.4 Fact 6.3.16, and Fact 6.6.10)

Fact 3.11.5. Let $A \in \mathbb{F}^{n \times m}$. If A is (left inner, right inner), then A is (left invertible, right invertible) and A^{*} is a (left inverse, right inverse) of A.

Fact 3.11.6. Let $\theta \in \mathbb{R}$, and define the orthogonal matrix

$$
A(\theta) \triangleq\left[\begin{array}{rr}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right] .
$$

Now, let $\theta_{1}, \theta_{2} \in \mathbb{R}$. Then,

$$
A\left(\theta_{1}\right) A\left(\theta_{2}\right)=A\left(\theta_{1}+\theta_{2}\right) .
$$

Consequently,

$$
\begin{aligned}
\cos \left(\theta_{1}+\theta_{2}\right) & =\left(\cos \theta_{1}\right) \cos \theta_{2}-\left(\sin \theta_{1}\right) \sin \theta_{2}, \\
\sin \left(\theta_{1}+\theta_{2}\right) & =\left(\cos \theta_{1}\right) \sin \theta_{2}+\left(\sin \theta_{1}\right) \cos \theta_{2} .
\end{aligned}
$$

Furthermore,

$$
\mathrm{SO}(2)=\{A(\theta): \quad \theta \in \mathbb{R}\}
$$

and

$$
\mathrm{O}(2) \backslash \mathrm{SO}(2)=\left\{\left[\begin{array}{rr}
\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta
\end{array}\right]: \theta \in \mathbb{R}\right\} .
$$

(Remark: See Proposition 3.3.6 and Fact 11.11.3)
Fact 3.11.7. Let $A \in \mathrm{O}(3) \backslash \mathrm{SO}(3)$. Then, $-A \in \mathrm{SO}(3)$.
Fact 3.11.8. Let $x, y \in \mathbb{R}^{3}$, assume that $x^{\mathrm{T}} x=y^{\mathrm{T}} y \neq 0$, let $\theta \in(0, \pi)$ denote the angle between x and y, define $z \in \mathbb{R}^{3}$ by

$$
z \triangleq \frac{1}{\|x \times y\|_{2}} x \times y,
$$

and define $A \in \mathbb{R}^{3 \times 3}$ by

$$
A \triangleq(\cos \theta) I+(\sin \theta) K(z)+(1-\cos \theta) z z^{\mathrm{T}} .
$$

Then,

$$
A=I+(\sin \theta) K(z)+(1-\cos \theta) K^{2}(z),
$$

$y=A x, A$ is orthogonal, and $\operatorname{det} A=1$. Furthermore,

$$
A=(I-B)(I+B)^{-1},
$$

where

$$
B \triangleq-\tan \left(\frac{1}{2} \theta\right) K(z) .
$$

(Proof: The expression for A in terms of B is derived in [11. The expression involving B is derived in [1008, pp. 244, 245].) (Remark: θ is given by

$$
\theta=\cos ^{-1} \frac{x^{\mathrm{T}} y}{\|x\|_{2}\|y\|_{2}}
$$

Furthermore,

$$
\left.\sin \theta=\frac{\|x \times y\|_{2}}{\|x\|_{2}\|y\|_{2}} .\right)
$$

(Remark: A can be written as

$$
\begin{aligned}
A & =(\cos \theta) I+\frac{1}{\|x\|_{2}^{2}}\left(y x^{\mathrm{T}}-x y^{\mathrm{T}}\right)+\frac{1-\cos \theta}{\|x \times y\|_{2}^{2}}(x \times y)(x \times y)^{\mathrm{T}} \\
& =\frac{x^{\mathrm{T}} y}{x^{\mathrm{T}} x} I+\frac{1}{x^{\mathrm{T}} x}\left(y x^{\mathrm{T}}-x y^{\mathrm{T}}\right)+\frac{1-\cos \theta}{\left(x^{\mathrm{T}} x \sin \theta\right)^{2}}(x \times y)(x \times y)^{\mathrm{T}} \\
& =\frac{x^{\mathrm{T}} y}{x^{\mathrm{T}} x} I+\frac{1}{x^{\mathrm{T}} x}\left(y x^{\mathrm{T}}-x y^{\mathrm{T}}\right)+\frac{\tan \left(\frac{1}{2} \theta\right)}{\left(x^{\mathrm{T}} x\right)^{2} \sin \theta}(x \times y)(x \times y)^{\mathrm{T}} \\
& =\frac{x^{\mathrm{T}} y}{x^{\mathrm{T}} x} I+\frac{1}{x^{\mathrm{T}} x}\left(y x^{\mathrm{T}}-x y^{\mathrm{T}}\right)+\frac{1}{\left(x^{\mathrm{T}} x\right)^{2}(1+\cos \theta)}(x \times y)(x \times y)^{\mathrm{T}} \\
& =\frac{x^{\mathrm{T}} y}{x^{\mathrm{T}} x} I+\frac{1}{x^{\mathrm{T}} x}\left(y x^{\mathrm{T}}-x y^{\mathrm{T}}\right)+\frac{1}{x^{\mathrm{T}} x\left(x^{\mathrm{T}} x+x^{\mathrm{T}} y\right)}(x \times y)(x \times y)^{\mathrm{T}} .
\end{aligned}
$$

As a check, note that

$$
\begin{aligned}
A x & =(\cos \theta) x+\frac{1}{\|x\|_{2}^{2}}\left(x^{\mathrm{T}} x y-y^{\mathrm{T}} x x\right)+\frac{1-\cos \theta}{\|x \times y\|_{2}^{2}}(x \times y)(x \times y)^{\mathrm{T}} x \\
& =\frac{x^{\mathrm{T}} y}{\|x\|_{2}^{2}} x+\frac{1}{\|x\|_{2}^{2}}\left(x^{\mathrm{T}} x y-y^{\mathrm{T}} x x\right) \\
& =y
\end{aligned}
$$

Furthermore, B can be written as

$$
B=\frac{1}{x^{\mathrm{T}} x+x^{\mathrm{T}} y}\left(x y^{\mathrm{T}}-y x^{\mathrm{T}}\right)
$$

These expressions satisfy $A+B+A B=I$.) (Remark: The matrix A represents a right-hand rule rotation of the nonzero vector x through the angle θ around z to yield the vector y, which has the same length as x. In the cases $x=y$ and $x=-y$, which correspond, respectively, to $\theta=0$ and $\theta=\pi$, the pivot vector z is not unique. Letting $z \in \mathbb{R}^{3}$ be arbitrary in these cases yields $A=I$ and $A=-I$, respectively, and thus $y=A x$ holds in both cases. However, $-I$ has determinant -1.) (Remark: See Fact 11.11.6) (Remark: This is a linear interpolation problem. See Fact 3.9.5, Fact 11.11.7, and [135, 773.) (Remark: Extensions of the Cayley transform are discussed in 1342.)

Fact 3.11.9. Let $A \in \mathbb{R}^{3 \times 3}$, and let $z \triangleq\left[\begin{array}{c}b \\ c \\ d\end{array}\right]$, where $b^{2}+c^{2}+d^{2}=1$. Then, $A \in \mathrm{SO}(3)$, and A rotates every vector in \mathbb{R}^{3} by the angle π about z if and only if

$$
A=\left[\begin{array}{ccc}
2 b^{2}-1 & 2 b c & 2 b d \\
2 b c & 2 c^{2}-1 & 2 c d \\
2 b d & 2 c d & 2 d^{2}-1
\end{array}\right]
$$

(Proof: This formula follows from the last expression for A in Fact 3.11.10 with $\theta=\pi$. See [357, p. 30].) (Remark: A is a reflector.) (Problem: Solve for b, c, and d in terms of the entries of A.)

Fact 3.11.10. Let $A \in \mathbb{R}^{3 \times 3}$. Then, $A \in \mathrm{SO}(3)$ if and only if there exist real numbers a, b, c, d such that $a^{2}+b^{2}+c^{2}+d^{2}=1$ and

$$
A=\left[\begin{array}{ccc}
a^{2}+b^{2}-c^{2}-d^{2} & 2(b c-a d) & 2(a c+b d) \\
2(a d+b c) & a^{2}-b^{2}+c^{2}-d^{2} & 2(c d-a b) \\
2(b d-a c) & 2(a b+c d) & a^{2}-b^{2}-c^{2}+d^{2}
\end{array}\right] .
$$

In this case,

$$
a= \pm \frac{1}{2} \sqrt{1+\operatorname{tr} A}
$$

If, in addition, $a \neq 0$, then b, c, and d are given by

$$
b=\frac{A_{(3,2)}-A_{(2,3)}}{4 a}, \quad c=\frac{A_{(1,3)}-A_{(3,1)}}{4 a}, \quad d=\frac{A_{(2,1)}-A_{(1,2)}}{4 a} .
$$

Now, define $v \triangleq\left[\begin{array}{lll}b & c & d\end{array}\right]^{\mathrm{T}}$. Then, A represents a rotation about the unit-length vector $z \triangleq\left(\csc \frac{\theta}{2}\right) v$ through the angle $\theta \in[0,2 \pi]$ that satisfies

$$
a=\cos \frac{\theta}{2}
$$

where the direction of rotation is determined by the right-hand rule. Therefore,

$$
\theta \triangleq 2 \cos ^{-1} a
$$

If $a \in[0,1]$, then

$$
\theta=2 \cos ^{-1}\left(\frac{1}{2} \sqrt{1+\operatorname{tr} A}\right)=\cos ^{-1}\left(\frac{1}{2}[(\operatorname{tr} A)-1]\right)
$$

whereas, if $a \in[-1,0]$, then

$$
\theta=2 \cos ^{-1}\left(-\frac{1}{2} \sqrt{1+\operatorname{tr} A}\right)=\pi+\cos ^{-1}\left(\frac{1}{2}[1-\operatorname{tr} A]\right) .
$$

In particular, $a=1$ if and only if $\theta=0 ; a=0$ if and only if $\theta=\pi$; and $a=-1$ if and only if $\theta=2 \pi$. Furthermore,

$$
\begin{aligned}
A & =\left(2 a^{2}-1\right) I_{n}+2 a K(v)+2 v v^{\mathrm{T}} \\
& =(\cos \theta) I+(\sin \theta) K(z)+(1-\cos \theta) z z^{\mathrm{T}} \\
& =I+(\sin \theta) K(z)+(1-\cos \theta) K^{2}(z) .
\end{aligned}
$$

Furthermore,

$$
A-A^{\mathrm{T}}=4 a K(v)=2(\sin \theta) K(z)
$$

and thus

$$
2 a \sin \frac{\theta}{2}=\sin \theta
$$

If $\theta=0$ or $\theta=2 \pi$, then $v=z=0$, whereas, if $\theta=\pi$, then

$$
K^{2}(z)=\frac{1}{2}(A-I)
$$

Conversely, let $\theta \in \mathbb{R}$, let $z \in \mathbb{R}^{3}$, assume that $z^{\mathrm{T}} z=1$, and define

$$
\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]=\left[\begin{array}{c}
\cos \frac{\theta}{2} \\
\left(\sin \frac{\theta}{2}\right) z
\end{array}\right]
$$

Then, A represents a rotation about the unit-length vector z through the angle θ, where the direction of rotation is determined by the right-hand rule. In this case, A is given by

$$
A=\left[\begin{array}{ccc}
z_{(1)}^{2}+\left(z_{(2)}^{2}+z_{(3)}^{2}\right) \cos \theta & z_{(1)} z_{(2)}(1-\cos \theta)-z_{(3)} \sin \theta & z_{(1)} z_{(3)}(1-\cos \theta)+z_{(2)} \sin \theta \\
z_{(1)} z_{(2)}(1-\cos \theta)+z_{(3)} \sin \theta & z_{(2)}^{(2)}+\left(z_{(1)}^{2}+z_{(3)}^{2}\right) \cos \theta & z_{(2)} z_{(3)}(1-\cos \theta)-z_{(1)} \sin \theta \\
z_{(1)} z_{(3)}(1-\cos \theta)-z_{(2)} \sin \theta & z_{(2)} z_{(3)}(1-\cos \theta)+z_{(1)} \sin \theta & z_{(3)}^{2}+\left(z_{(1)}^{2}+z_{(2)}^{2}\right) \cos \theta
\end{array}\right] .
$$

(Proof: See [477, p. 162], [555, p. 22], [1855, p. 19], and use Fact 3.11.8) (Remark: This result is due to Rodrigues.) (Remark: The numbers a, b, c, d, which are Euler parameters, are elements of S^{3}, which is the sphere in \mathbb{R}^{4}. The elements of S^{3} can be viewed as unit quaternions, thus giving S^{3} a group structure. See Fact 3.21.2 Conversely, a, b, c, d can be expressed in terms of the entries of a 3×3 orthogonal matrix, which are the direction cosines. See [152, pp. 384-387]. See also Fact 3.22.1) (Remark: Replacing a by $-a$ in A but keeping b, c, d unchanged yields the transpose of A.) (Remark: Note that A is unchanged when a, b, c, d are replaced by $-a,-b,-c,-d$. Conversely, given the direction cosines of a rotation matrix A, there exist exactly two distinct quadruples (a, b, c, d) of Euler parameters that parameterize A. Therefore, the Euler parameters, which parameterize the unit sphere S^{3} in \mathbb{R}^{4}, provide a double cover of $\mathrm{SO}(3)$. See 969 p. 304] and Fact 3.22.1) (Remark: $\mathrm{Sp}(1)$ is a double cover of $\mathrm{SO}(3), \mathrm{Sp}(1) \times \mathrm{Sp}(1)$ is a double cover of $\mathrm{SO}(4), \mathrm{Sp}(2)$ is a double cover of $\mathrm{SO}(5)$, and $\mathrm{SU}(4)$ is a double cover of $\mathrm{SO}(3)$. For each $n, \mathrm{SO}(n)$ is double covered by the spin group $\operatorname{Spin}(n)$. See [362] p. 141], [1256 p. 130], and [1436, pp. 42-47]. $\mathrm{Sp}(2)$ is defined in Fact [3.22.4.) (Remark: Rotation matrices in $\mathbb{R}^{2 \times 2}$ are discussed in [1196.) (Remark: A history of Rodrigues's contributions is given in [27.) (Remark: See Fact 8.9.26 and Fact 11.15.10) (Remark: Extensions to $n \times n$ matrices are considered in 538.)

Fact 3.11.11. Let $\theta_{1}, \theta_{2} \in \mathbb{R}$, let $z_{1}, z_{2} \in \mathbb{R}^{3}$, assume that $z_{1}^{\mathrm{T}} z_{1}=z_{2}^{\mathrm{T}} z_{2}=1$, and, for $i=1,2$, let $A_{i} \in \mathbb{R}^{3 \times 3}$ be the rotation matrix that represents the rotation about the unit-length vector z_{i} through the angle θ_{i}, where the direction of rotation is determined by the right-hand rule. Then, $A_{3} \triangleq A_{2} A_{1}$ represents the rotation about the unit-length vector z_{3} through the angle θ_{3}, where the direction of rotation is determined by the right-hand rule, and where θ_{3} and z_{3} are given by

$$
\cos \frac{\theta_{3}}{2}=\left(\cos \frac{\theta_{2}}{2}\right) \cos \frac{\theta_{1}}{2}-\left(\sin \frac{\theta_{2}}{2}\right) \sin \frac{\theta_{1}}{2} z_{2}^{\mathrm{T}} z_{1}
$$

and

$$
\begin{aligned}
z_{3} & =\left(\csc \frac{\theta_{3}}{2}\right)\left[\left(\sin \frac{\theta_{2}}{2}\right)\left(\cos \frac{\theta_{1}}{2}\right) z_{2}+\left(\cos \frac{\theta_{2}}{2}\right)\left(\sin \frac{\theta_{1}}{2}\right) z_{1}+\left(\sin \frac{\theta_{2}}{2}\right)\left(\sin \frac{\theta_{1}}{2}\right)\left(z_{2} \times z_{1}\right)\right] \\
& =\frac{\cot \frac{\theta_{3}}{2}}{1-z_{2}^{\tau} z_{1}\left(\tan \frac{\theta_{2}}{2}\right) \tan \frac{\theta_{1}}{2}}\left[\left(\tan \frac{\theta_{2}}{2}\right) z_{2}+\left(\tan \frac{\theta_{1}}{2}\right) z_{1}+\left(\tan \frac{\theta_{2}}{2}\right)\left(\tan \frac{\theta_{1}}{2}\right)\left(z_{2} \times z_{1}\right)\right] .
\end{aligned}
$$

(Proof: See [555 pp. 22-24].) (Remark: These expressions are Rodrigues's formu-
las, which are identical to the quaternion multiplication formula given by

$$
\left[\begin{array}{c}
a_{3} \\
b_{3} \\
c_{3} \\
d_{3}
\end{array}\right]=\left[\begin{array}{c}
\cos \frac{\theta_{3}}{2} \\
\left(\sin \frac{\theta_{3}}{2}\right) z_{3}
\end{array}\right]=\left[\begin{array}{c}
a_{1} a_{2}-z_{2}^{\mathrm{T}} z_{1} \\
a_{1} z_{2}+a_{2} z_{1}+z_{2} \times z_{1}
\end{array}\right]
$$

with

$$
\left[\begin{array}{l}
a_{2} \\
b_{2} \\
c_{2} \\
d_{2}
\end{array}\right]=\left[\begin{array}{c}
\cos \frac{\theta_{2}}{2} \\
\left(\sin \frac{\theta_{2}}{2}\right) z_{2}
\end{array}\right], \quad\left[\begin{array}{l}
a_{1} \\
b_{1} \\
c_{1} \\
d_{1}
\end{array}\right]=\left[\begin{array}{c}
\cos \frac{\theta_{1}}{2} \\
\left(\sin \frac{\theta_{1}}{2}\right) z_{1}
\end{array}\right]
$$

in Fact 3.22.1, See [27].)
Fact 3.11.12. Let $x, y, z \in \mathbb{R}^{2}$. If x is rotated according to the right-hand rule through an angle $\theta \in \mathbb{R}$ about y, then the resulting vector $\hat{x} \in \mathbb{R}^{2}$ is given by

$$
\hat{x}=\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] x+\left[\begin{array}{l}
y_{(1)}(1-\cos \theta)+y_{(2)} \sin \theta \\
y_{(2)}(1-\cos \theta)+y_{(1)} \sin \theta
\end{array}\right] .
$$

If x is reflected across the line passing through 0 and z and parallel to the line passing through 0 and y, then the resulting vector $\hat{x} \in \mathbb{R}^{2}$ is given by

$$
\hat{x}=\left[\begin{array}{cc}
y_{(1)}^{2}-y_{(2)}^{2} & 2 y_{(1)} y_{(2)} \\
2 y_{(1)} y_{(2)} & y_{(2)}^{2}-y_{(1)}^{2}
\end{array}\right] x+\left[\begin{array}{c}
-z_{(1)}\left(y_{(1)}^{2}-y_{(2)}^{2}-1\right)-2 z_{(2)} y_{(1)} y_{(2)} \\
-z_{(2)}\left(y_{(1)}^{2}-y_{(2)}^{2}-1\right)-2 z_{(1)} y_{(1)} y_{(2)}
\end{array}\right] .
$$

(Remark: These affine planar transformations are used in computer graphics. See [62, 498, 1095].) (Remark: See Fact 3.11.13 and Fact 3.11.31.)

Fact 3.11.13. Let $x, y \in \mathbb{R}^{3}$, and assume that $y^{\mathrm{T}} y=1$. If x is rotated according to the right-hand rule through an angle $\theta \in \mathbb{R}$ about the line passing through 0 and y, then the resulting vector $\hat{x} \in \mathbb{R}^{3}$ is given by

$$
\hat{x}=x+(\sin \theta)(y \times x)+(1-\cos \theta)[y \times(y \times x)] .
$$

(Proof: See [23.) (Remark: See Fact 3.11.12 and Fact 3.11.31.)
Fact 3.11.14. Let $x, y \in \mathbb{F}^{n}$, let $A \in \mathbb{F}^{n \times n}$, and assume that A is unitary. Then, $x^{*} y=0$ if and only if $(A x)^{*} A y=0$.

Fact 3.11.15. Let $A \in \mathbb{F}^{n \times n}$, assume that A is unitary, and let $x \in \mathbb{F}^{n}$ be such that $x^{*} x=1$ and $A x=-x$. Then, the following statements hold:
i) $\operatorname{det}(A+I)=0$.
ii) $A+2 x x^{*}$ is unitary.
iii) $A=\left(A+2 x x^{*}\right)\left(I_{n}-2 x x^{*}\right)=\left(I_{n}-2 x x^{*}\right)\left(A+2 x x^{*}\right)$.
iv) $\operatorname{det}\left(A+2 x x^{*}\right)=-\operatorname{det} A$.

Fact 3.11.16. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is unitary. Then,

$$
|\operatorname{Retr} A| \leq n
$$

$$
|\operatorname{Im} \operatorname{tr} A| \leq n
$$

and

$$
|\operatorname{tr} A| \leq n
$$

(Remark: The third inequality does not follow from the first two inequalities.)
Fact 3.11.17. Let $A \in \mathbb{R}^{n \times n}$, and assume that A is orthogonal. Then,

$$
-1_{n \times n} \leq \leq A \leq \leq 1_{n \times n}
$$

and

$$
-n \leq \operatorname{tr} A \leq n
$$

Furthermore, the following statements are equivalent:
i) $A=I$.
ii) $\operatorname{diag}(A)=I$.
iii) $\operatorname{tr} A=n$.

Finally, if n is odd and $\operatorname{det} A=1$, then

$$
2-n \leq \operatorname{tr} A \leq n
$$

(Remark: See Fact 3.11.18,
Fact 3.11.18. Let $A \in \mathbb{R}^{n \times n}$, assume that A is orthogonal, let $B \in \mathbb{R}^{n \times n}$, and assume that B is diagonal and positive definite. Then,

$$
-B 1_{n \times n} \leq \leq B A \leq \leq B 1_{n \times n}
$$

and

$$
-\operatorname{tr} B \leq \operatorname{tr} B A \leq \operatorname{tr} B
$$

Furthermore, the following statements are equivalent:
i) $B A=B$.
ii) $\operatorname{diag}(B A)=B$.
iii) $\operatorname{tr} B A=\operatorname{tr} B$.
(Remark: See Fact 3.11.17)
Fact 3.11.19. Let $x \in \mathbb{C}^{n}$, where $n \geq 2$. Then, the following statements are equivalent:
i) There exists a unitary matrix $A \in \mathbb{C}^{n \times n}$ such that

$$
x=\left[\begin{array}{c}
A_{(1,1)} \\
\vdots \\
A_{(n, n)}
\end{array}\right] .
$$

ii) For all $j=1, \ldots, n,\left|x_{(j)}\right| \leq 1$ and

$$
2\left(1-\left|x_{(j)}\right|\right)+\sum_{i=1}^{n}\left|x_{(i)}\right| \leq n
$$

(Proof: See [1338.) (Remark: This result is equivalent to the Schur-Horn theorem given by Fact 8.17.10, (Remark: The inequalities in $i i$) define a polytope.)

Fact 3.11.20. Let $A \in \mathbb{C}^{n \times n}$, and assume that A is unitary. Then, $|\operatorname{det} A|=1$.
Fact 3.11.21. Let $A \in \mathbb{R}^{n \times n}$, and assume that A is orthogonal. Then, either $\operatorname{det} A=1$ or $\operatorname{det} A=-1$.

Fact 3.11.22. Let $A, B \in \operatorname{SO}(3)$. Then,

$$
\operatorname{det}(A+B) \geq 0
$$

(Proof: See 1013.)
Fact 3.11.23. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is unitary. Then,

$$
|\operatorname{det}(I+A)| \leq 2^{n}
$$

If, in addition, A is real, then

$$
0 \leq \operatorname{det}(I+A) \leq 2^{n}
$$

Fact 3.11.24. Let $M \triangleq\left[\begin{array}{cc}A & B \\ C & D\end{array}\right] \in \mathbb{F}^{(n+m) \times(n+m)}$, and assume that M is unitary. Then,

$$
\operatorname{det} A=(\operatorname{det} M) \overline{\operatorname{det} D} .
$$

(Proof: Let $\left[\begin{array}{cc}\hat{A} & \hat{B} \\ \hat{C} & \hat{D}\end{array}\right] \triangleq A^{-1}$, and take the determinant of $A\left[\begin{array}{ll}I & \hat{B} \\ 0 & \hat{D}\end{array}\right]=\left[\begin{array}{ll}A & 0 \\ C & I\end{array}\right]$. See [12] or [1188.) (Remark: See Fact 2.14.28 and Fact 2.14.7)

Fact 3.11.25. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is block diagonal. Then, A is (unitary, shifted unitary) if and only if every diagonally located block has the same property.

Fact 3.11.26. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is unitary. Then, $\frac{1}{\sqrt{2}}\left[\begin{array}{cc}A & -A \\ A\end{array}\right]$ is unitary.

Fact 3.11.27. Let $A, B \in \mathbb{R}^{n \times n}$. Then, $A+\jmath B$ is (Hermitian, skew Hermitian, unitary) if and only if $\left[\begin{array}{cc}A & B \\ -B & A\end{array}\right]$ is (symmetric, skew symmetric, orthogonal). (Remark: See Fact 2.19.7)

Fact 3.11.28. The following statements hold:
i) If $A \in \mathbb{F}^{n \times n}$ is skew Hermitian, then $I+A$ is nonsingular, $B \triangleq(I-A)(I+$ $\underline{A)^{-1}}$ is unitary, and $I+B=2(I+A)^{-1}$. If, in addition, $\operatorname{mspec}(A)=$ $\overline{\operatorname{mspec}(A)}$, then $\operatorname{det} B=1$.
ii) If $B \in \mathbb{F}^{n \times n}$ is unitary and $\lambda \in \mathbb{C}$ is such that $|\lambda|=1$ and $I+\lambda B$ is nonsingular, then $A \triangleq(I+\lambda B)^{-1}(I-\lambda B)$ is skew Hermitian and $I+A=$ $2(I+\lambda B)^{-1}$.
iii) If $A \in \mathbb{F}^{n \times n}$ is skew Hermitian, then there exists a unique unitary matrix $B \in \mathbb{F}^{n \times n}$ such that $I+B$ is nonsingular and $A=(I+B)^{-1}(I-B)$. In fact, $B \triangleq(I-A)(I+A)^{-1}$.
$i v$) If B is unitary and $\lambda \in \mathbb{C}$ is such that $|\lambda|=1$ and $I+\lambda B$ is nonsingular, then there exists a unique skew-Hermitian matrix $A \in \mathbb{F}^{n \times n}$ such that $B=\bar{\lambda}(I-A)(I+A)^{-1}$. In fact, $A \triangleq(I+\lambda B)^{-1}(I-\lambda B)$.
(Proof: See [508, p. 184] and [711, p. 440].) (Remark: $\mathcal{C}(A) \triangleq(A-I)(A+I)^{-1}=$ $I-2(A+I)^{-1}$ is the Cayley transform of A. See Fact 3.11.8, Fact 3.11.29, Fact 3.11.30, Fact 3.11.31, Fact 3.19.12, Fact 8.9.30, and Fact 11.21.8)

Fact 3.11.29. The following statements hold:
i) If $A \in \mathbb{F}^{n \times n}$ is Hermitian, then $A+\jmath I$ is nonsingular, $B \triangleq(\jmath I-A)(\jmath I+A)^{-1}$ is unitary, and $I+B=2 \jmath(\jmath I+A)^{-1}$.
ii) If $B \in \mathbb{F}^{n \times n}$ is unitary and $\lambda \in \mathbb{C}$ is such that $|\lambda|=1$ and $I+\lambda B$ is nonsingular, then $A \triangleq \jmath(I-\lambda B)(I+\lambda B)^{-1}$ is Hermitian and $\jmath I+A=$ $2 \jmath(I+\lambda B)^{-1}$.
iii) If $A \in \mathbb{F}^{n \times n}$ is Hermitian, then there exists a unique unitary matrix $B \in$ $\mathbb{F}^{n \times n}$ such that $I+B$ is nonsingular and $A=\jmath(I-B)(I+B)^{-1}$. In fact, $B=(\jmath I-A)(\jmath I+A)^{-1}$.
iv) If $B \in \mathbb{F}^{n \times n}$ is unitary and $\lambda \in \mathbb{C}$ is such that $|\lambda|=1$ and $I+\lambda B$ is nonsingular, then there exists a unique Hermitian matrix $A \in \mathbb{F}^{n \times n}$ such that $\lambda B=(\jmath I-A)(\jmath I+A)^{-1}$. In fact, $A \triangleq \jmath(I-\lambda B)(I+\lambda B)^{-1}$.
(Proof: See [508, pp. 168, 169].) (Remark: The linear fractional transformation $f(s) \triangleq(\jmath-s) /(\jmath+s)$ maps the upper half plane of \mathbb{C} onto the unit disk in \mathbb{C}, and the real line onto the unit circle in \mathbb{C}.)

Fact 3.11.30. The following statements hold:
i) If $A \in \mathbb{R}^{n \times n}$ is skew symmetric, then $I+A$ is nonsingular, $B \triangleq(I-A)(I+$ $A)^{-1}$ is orthogonal, $I+B=2(I+A)^{-1}$, and $\operatorname{det} B=1$.
ii) If $B \in \mathbb{R}^{n \times n}$ is orthogonal, $C \in \mathbb{R}^{n \times n}$ is diagonal with diagonally located entries ± 1, and $I+C B$ is nonsingular, then $A \triangleq(I+C B)^{-1}(I-C B)$ is skew symmetric, $I+A=2(I+C B)^{-1}$, and $\operatorname{det} C B=1$.
iii) If $A \in \mathbb{R}^{n \times n}$ is skew symmetric, then there exists a unique orthogonal matrix $B \in \mathbb{R}^{n \times n}$ such that $I+B$ is nonsingular and $A=(I+B)^{-1}(I-B)$. In fact, $B \triangleq(I-A)(I+A)^{-1}$.
iv) If $B \in \mathbb{R}^{n \times n}$ is orthogonal and $C \in \mathbb{R}^{n \times n}$ is diagonal with diagonally located entries ± 1, then there exists a unique skew-symmetric matrix $A \in$ $\mathbb{R}^{n \times n}$ such that $C B=(I-A)(I+A)^{-1}$. In fact, $A=(I+C B)^{-1}(I-C B)$.
(Remark: The last statement is due to Hsu. See [1098 p. 101].) (Remark: The Cayley transform is a one-to-one and onto map from the set of skew-symmetric matrices to the set of orthogonal matrices whose spectrum does not include -1 .)

Fact 3.11.31. Let $x \in \mathbb{R}^{3}$, assume that $x^{\mathrm{T}} x=1$, let $\theta \in[0,2 \pi)$, assume that $\theta \neq \pi$, and define the skew-symmetric matrix $A \in \mathbb{R}^{3 \times 3}$ by

$$
A \triangleq-\left(\tan \frac{\theta}{2}\right) K(x)=\left[\begin{array}{ccc}
0 & x_{(3)} \tan \frac{\theta}{2} & -x_{(2)} \tan \frac{\theta}{2} \\
-x_{(3)} \tan \frac{\theta}{2} & 0 & x_{(1)} \tan \frac{\theta}{2} \\
x_{(2)} \tan \frac{\theta}{2} & -x_{(1)} \tan \frac{\theta}{2} & 0
\end{array}\right] .
$$

Then, the matrix $B \in \mathbb{R}^{3 \times 3}$ defined by

$$
B \triangleq(I-A)(I+A)^{-1}
$$

is an orthogonal matrix that rotates vectors about x through an angle equal to θ according to the right-hand rule. (Proof: See [1008, pp. 243, 244].) (Remark: Every 3×3 skew-symmetric matrix has a representation of the form given by A.) (Remark: See Fact 3.11.10, Fact 3.11.11, Fact 3.11.12, Fact 3.11.13, Fact 3.11.30, and Fact 11.11.7.)

Fact 3.11.32. Furthermore, if $A, B \in \mathbb{F}^{n \times n}$ are unitary, then

$$
\sqrt{1-\left|\frac{1}{n} \operatorname{tr} A B\right|^{2}} \leq \sqrt{1-\left|\frac{1}{n} \operatorname{tr} A\right|^{2}}+\sqrt{1-\left|\frac{1}{n} \operatorname{tr} B\right|^{2}}
$$

(Proof: See 1391.) (Remark: See Fact [2.12.1)
Fact 3.11.33. If $A \in \mathbb{F}^{n \times n}$ is shifted unitary, then $B \triangleq 2 A-I$ is unitary. Conversely, If $B \in \mathbb{F}^{n \times n}$ is unitary, then $A \triangleq \frac{1}{2}(B+I)$ is shifted unitary. (Remark: The affine mapping $f(A) \triangleq 2 A-I$ from the shifted-unitary matrices to the unitary matrices is one-to-one and onto. See Fact 3.14.1 and Fact 3.15.2.) (Remark: See Fact 3.7.14 and Fact 3.13.13,

Fact 3.11.34. If $A \in \mathbb{F}^{n \times n}$ is shifted unitary, then A is normal. Hence, the following statements are equivalent:
i) A is shifted unitary.
ii) $A+A^{*}=2 A^{*} A$.
iii) $A+A^{*}=2 A A^{*}$.
(Proof: By Fact 3.11.33 there exists a unitary matrix B such that $A=\frac{1}{2}(B+I)$. Since B is normal, it follows from Fact 3.7.14 that A is normal.)

3.12 Facts on Idempotent Matrices

Fact 3.12.1. Let $\mathcal{S}_{1}, \mathcal{S}_{2} \subseteq \mathbb{F}^{n}$ be complementary subspaces, and let $A \in \mathbb{F}^{n \times n}$ be the idempotent matrix onto \mathcal{S}_{1} along \mathcal{S}_{2}. Then, A^{*} is the idempotent matrix onto \mathcal{S}_{2}^{\perp} along \mathcal{S}_{1}^{\perp}, and A_{\perp}^{*} is the idempotent matrix onto \mathcal{S}_{1}^{\perp} along \mathcal{S}_{2}^{\perp}. (Remark: See Fact 2.9.18.)

Fact 3.12.2. Let $A \in \mathbb{F}^{n \times n}$. Then, A is idempotent if and only if there exists a positive integer k such that $A^{k+1}=A^{k}$.

Fact 3.12.3. Let $A \in \mathbb{F}^{n \times n}$. Then, the following statements are equivalent:
i) A is idempotent.
ii) $\mathcal{N}(A)=\mathcal{R}\left(A_{\perp}\right)$.
iii) $\mathcal{R}(A)=\mathcal{N}\left(A_{\perp}\right)$.

In this case, the following statements hold:
iv) A is the idempotent matrix onto $\mathcal{R}(A)$ along $\mathcal{N}(A)$.
v) A_{\perp} is the idempotent matrix onto $\mathcal{N}(A)$ along $\mathcal{R}(A)$.
vi) A^{*} is the idempotent matrix onto $\mathcal{N}(A)^{\perp}$ along $\mathcal{R}(A)^{\perp}$.
vii) A_{\perp}^{*} is the idempotent matrix onto $\mathcal{R}(A)^{\perp}$ along $\mathcal{N}(A)^{\perp}$.
(Proof: See [654, p. 146].) (Remark: See Fact 2.10.1 and Fact 5.12.18)
Fact 3.12.4. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is idempotent. Then,

$$
\mathcal{R}\left(I-A A^{*}\right)=\mathcal{R}\left(2 I-A-A^{*}\right)
$$

(Proof: See 1287.)
Fact 3.12.5. Let $A \in \mathbb{F}^{n \times n}$. Then, A is idempotent if and only if $-A$ is skew idempotent.

Fact 3.12.6. Let $A \in \mathbb{F}^{n \times n}$. Then, A is idempotent and $\operatorname{rank} A=1$ if and only if there exist vectors $x, y \in \mathbb{F}^{n}$ such that $y^{\mathrm{T}} x=1$ and $A=x y^{\mathrm{T}}$.

Fact 3.12.7. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is idempotent. Then, A^{T}, \bar{A}, and A^{*} are idempotent.

Fact 3.12.8. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is idempotent and skew Hermitian. Then, $A=0$.

Fact 3.12.9. Let $A \in \mathbb{F}^{n \times n}$. Then, A is idempotent if and only if $\operatorname{rank} A+$ $\operatorname{rank}(I-A)=n$.

Fact 3.12.10. Let $A \in \mathbb{F}^{n \times m}$. If $A^{\mathrm{L}} \in \mathbb{F}^{m \times n}$ is a left inverse of A, then $A A^{\mathrm{L}}$ is idempotent and $\operatorname{rank} A^{\mathrm{L}}=\operatorname{rank} A$. Furthermore, if $A^{\mathrm{R}} \in \mathbb{F}^{m \times n}$ is a right inverse of A, then $A^{\mathrm{R}} A$ is idempotent and $\operatorname{rank} A^{\mathrm{R}}=\operatorname{rank} A$.

Fact 3.12.11. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is nonsingular and idempotent. Then, $A=I_{n}$.

Fact 3.12.12. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is idempotent. Then, so is $A_{\perp} \triangleq I-A$, and, furthermore, $A A_{\perp}=A_{\perp} A=0$.

Fact 3.12.13. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is idempotent. Then,

$$
\operatorname{det}(I+A)=2^{\operatorname{tr} A}
$$

and

$$
(I+A)^{-1}=I-\frac{1}{2} A
$$

Fact 3.12.14. Let $A \in \mathbb{F}^{n \times n}$ and $\alpha \in \mathbb{F}$, where $\alpha \neq 0$. Then, the matrices

$$
\left[\begin{array}{cc}
A & A^{*} \\
A^{*} & A
\end{array}\right], \quad\left[\begin{array}{cc}
A & \alpha^{-1} A \\
\alpha(I-A) & I-A
\end{array}\right], \quad\left[\begin{array}{cc}
A & \alpha^{-1} A \\
-\alpha A & -A
\end{array}\right]
$$

are, respectively, normal, idempotent, and nilpotent.
Fact 3.12.15. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are idempotent. Then,

$$
\mathcal{R}([A, B])=\mathcal{R}(A-B) \cap \mathcal{R}\left(A_{\perp}-B\right)
$$

and

$$
\mathcal{N}([A, B])=\mathcal{N}(A-B) \cap \mathcal{N}\left(A_{\perp}-B\right)
$$

(Proof: See 1424.)
Fact 3.12.16. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is nilpotent. Then, there exist idempotent matrices $B, C \in \mathbb{F}^{n \times n}$ such that $A=[B, C]$. (Proof: See 439.) (Remark: A necessary and sufficient condition for a matrix to be a commutator of a pair of idempotents is given in 439.) (Remark: See Fact 9.9 .9 for the case of projectors.)

Fact 3.12.17. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are idempotent, and define $A_{\perp} \triangleq I-A$ and $B_{\perp} \triangleq I-B$. Then, the following identities hold:
i) $(A-B)^{2}+\left(A_{\perp}-B\right)^{2}=I$.
ii) $[A, B]=\left[B, A_{\perp}\right]=\left[B_{\perp}, A\right]=\left[A_{\perp}, B_{\perp}\right]$.
iii) $A-B=A B_{\perp}-A_{\perp} B$.
iv) $A B_{\perp}+B A_{\perp}=A B_{\perp} A+A_{\perp} B A_{\perp}$.
v) $A[A, B]=[A, B] A_{\perp}$.
vi) $B[A, B]=[A, B] B_{\perp}$.
(Proof: See 1044.)
Fact 3.12.18. Let $A, B \in \mathbb{R}^{n \times n}$. Then, the following statements hold:
i) Assume that $A^{3}=-A$ and $B=I+A+A^{2}$. Then, $B^{4}=I, B^{-1}=I-A+A^{2}$, $B^{3}-B^{2}+B-I=0, A=\frac{1}{2}\left(B-B^{3}\right)$, and $I+A^{2}$ is idempotent.
ii) Assume that $B^{3}-B^{2}+B-I=0$ and $A=\frac{1}{2}\left(B-B^{3}\right)$. Then, $A^{3}=-A$ and $B=I+A+A^{2}$.
iii) Assume that $B^{4}=I$ and $A=\frac{1}{2}\left(B-B^{-1}\right)$. Then, $A^{3}=-A$, and $\frac{1}{4}\left(I+B+B^{2}+B^{3}\right)$ is idempotent.
(Remark: The geometric meaning of these results is discussed in 474 pp. 153, 212-214, 242].)

Fact 3.12.19. Let $A \in \mathbb{F}^{n \times n}, B \in \mathbb{F}^{n \times m}$, and $C \in \mathbb{F}^{l \times n}$, and assume that A is idempotent, $\operatorname{rank}\left[\begin{array}{cc}C^{*} & B\end{array}\right]=n$, and $C B=0$. Then,

$$
\operatorname{rank} C A B=\operatorname{rank} C A+\operatorname{rank} A B-\operatorname{rank} A
$$

(Proof: See [1307.) (Remark: See Fact 3.12.20,
Fact 3.12.20. $A \triangleq\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{12}^{*} & A_{22}\end{array}\right] \in \mathbb{F}^{(n+m) \times(n+m)}$, and assume that A is idempotent. Then,

$$
\begin{aligned}
& \operatorname{rank} A=\operatorname{rank}\left[\begin{array}{c}
A_{12} \\
A_{22}
\end{array}\right]+\operatorname{rank}\left[\begin{array}{cc}
A_{11} & A_{12}
\end{array}\right]-\operatorname{rank} A_{12} \\
& =\operatorname{rank}\left[\begin{array}{l}
A_{11} \\
A_{21}
\end{array}\right]+\operatorname{rank}\left[\begin{array}{ll}
A_{21} & A_{22}
\end{array}\right]-\operatorname{rank} A_{21} .
\end{aligned}
$$

(Proof: See 1307 and Fact 3.12.19) (Remark: See Fact 3.13.12 and Fact 6.5.13.)
Fact 3.12.21. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times n}$, and assume that $A B$ is nonsingular. Then, $B(A B)^{-1} A$ is idempotent.

Fact 3.12.22. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are idempotent, and let $\alpha, \beta \in \mathbb{F}$ be nonzero and satisfy $\alpha+\beta \neq 0$. Then,

$$
\begin{aligned}
\operatorname{rank}(A+B) & =\operatorname{rank}(\alpha A+\beta B) \\
& =\operatorname{rank} A+\operatorname{rank}\left(A_{\perp} B A_{\perp}\right) \\
& =n-\operatorname{dim}\left[\mathcal{N}\left(A_{\perp} B\right) \cap \mathcal{N}(A)\right] \\
& =\operatorname{rank}\left[\begin{array}{ccc}
0 & A & B \\
A & 0 & 0 \\
B & 0 & 2 B
\end{array}\right]-\operatorname{rank} A-\operatorname{rank} B \\
& =\operatorname{rank}\left[\begin{array}{cc}
A & B \\
B & 0
\end{array}\right]-\operatorname{rank} B=\operatorname{rank}\left[\begin{array}{cc}
B & A \\
A & 0
\end{array}\right]-\operatorname{rank} A \\
& =\operatorname{rank}\left(B_{\perp} A B_{\perp}\right)+\operatorname{rank} B=\operatorname{rank}\left(A_{\perp} B A_{\perp}\right)+\operatorname{rank} A \\
& =\operatorname{rank}\left(A+A_{\perp} B\right)=\operatorname{rank}\left(A+B A_{\perp}\right) \\
& =\operatorname{rank}\left(B+B_{\perp} A\right)=\operatorname{rank}\left(B+A B_{\perp}\right) \\
& =\operatorname{rank}\left(I-A_{\perp} B_{\perp}\right)=\operatorname{rank}\left(I-B_{\perp} A_{\perp}\right) \\
& =\operatorname{rank}\left[A B_{\perp} B\right]=\operatorname{rank}\left[B A_{\perp} A\right] \\
& =\operatorname{rank}\left[\begin{array}{c}
B_{\perp} A \\
B
\end{array}\right]=\operatorname{rank}\left[\begin{array}{cc}
A_{\perp} B \\
A
\end{array}\right] \\
& =\operatorname{rank} A+\operatorname{rank} B-n+\operatorname{rank}\left[\begin{array}{cc}
A_{\perp} & A_{\perp} B_{\perp} \\
B_{\perp} A_{\perp} & B_{\perp}
\end{array}\right]
\end{aligned}
$$

Furthermore, the following statements hold:
i) If $A B=0$, then

$$
\begin{aligned}
\operatorname{rank}(A+B) & =\operatorname{rank}\left(B A_{\perp}\right)+\operatorname{rank} A \\
& =\operatorname{rank}\left(B_{\perp} A\right)+\operatorname{rank} B
\end{aligned}
$$

ii) If $B A=0$, then

$$
\begin{aligned}
\operatorname{rank}(A+B) & =\operatorname{rank}\left(A B_{\perp}\right)+\operatorname{rank} B \\
& =\operatorname{rank}\left(A_{\perp} B\right)+\operatorname{rank} A
\end{aligned}
$$

iii) If $A B=B A$, then

$$
\begin{aligned}
\operatorname{rank}(A+B) & =\operatorname{rank}\left(A B_{\perp}\right)+\operatorname{rank} B \\
& =\operatorname{rank}\left(B A_{\perp}\right)+\operatorname{rank} A
\end{aligned}
$$

iv) $A+B$ is idempotent if and only if $A B=B A=0$.
v) $A+B=I$ if and only if $A B=B A=0$ and $\operatorname{rank}[A, B]=\operatorname{rank} A+\operatorname{rank} B=$ n.
(Remark: See Fact 6.4.33) (Proof: See [597, 835, 836, 1306, 1309. To prove necessity in $i v$) note that $A B+B A=0$ implies $A B+A B A=A B A+B A=0$, which implies that $A B-B A=0$, and hence $A B=0$. See [630, p. 250] and [654, p. 435].)

Fact 3.12.23. Let $A \in \mathbb{F}^{n \times n}$, let $r \triangleq \operatorname{rank} A$, and let $B \in \mathbb{F}^{n \times r}$ and $C \in \mathbb{F}^{r \times n}$ satisfy $A=B C$. Then, A is idempotent if and only if $C B=I$. (Proof: See [1396, p. 16].) (Remark: $A=B C$ is a full-rank factorization.)

Fact 3.12.24. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are idempotent, and let $C \in \mathbb{F}^{n \times m}$. Then,

$$
\begin{aligned}
\operatorname{rank}(A C-C B) & =\operatorname{rank}(A C-A C B)+\operatorname{rank}(A C B-C B) \\
& =\operatorname{rank}\left[\begin{array}{c}
A C \\
B
\end{array}\right]+\operatorname{rank}\left[\begin{array}{cc}
C B & A
\end{array}\right]-\operatorname{rank} A-\operatorname{rank} B
\end{aligned}
$$

(Proof: See 1281.)
Fact 3.12.25. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are idempotent. Then,

$$
\begin{aligned}
\operatorname{rank}(A-B) & =\operatorname{rank}\left[\begin{array}{ccc}
0 & A & B \\
A & 0 & 0 \\
B & 0 & 0
\end{array}\right]-\operatorname{rank} A-\operatorname{rank} B \\
& =\operatorname{rank}\left[\begin{array}{c}
A \\
B
\end{array}\right]+\operatorname{rank}\left[\begin{array}{cc}
A & B
\end{array}\right]-\operatorname{rank} A-\operatorname{rank} B \\
& =n-\operatorname{dim}[\mathcal{N}(A) \cap \mathcal{N}(B)]-\operatorname{dim}[\mathcal{R}(A) \cap \mathcal{R}(B)] \\
& =\operatorname{rank}\left(A B_{\perp}\right)+\operatorname{rank}\left(A_{\perp} B\right) \\
& \leq \operatorname{rank}(A+B) \\
& \leq \operatorname{rank} A+\operatorname{rank} B
\end{aligned}
$$

Furthermore, if either $A B=0$ or $B A=0$, then

$$
\operatorname{rank}(A-B)=\operatorname{rank}(A+B)=\operatorname{rank} A+\operatorname{rank} B
$$

(Proof: See [597, 836, 1306, 1309. The inequality $\operatorname{rank}(A-B) \leq \operatorname{rank}(A+B)$ follows from Fact 2.11.13 and the block 3×3 expressions in this result and in

Fact 3.12.22. To prove the last statement in the case $A B=0$, first note that $\operatorname{rank} A+\operatorname{rank} B=\operatorname{rank}(A-B)$, which yields $\operatorname{rank}(A-B) \leq \operatorname{rank}(A+B) \leq$ $\operatorname{rank} A+\operatorname{rank} B=\operatorname{rank}(A-B)$.) (Remark: See Fact 6.4.33.)

Fact 3.12.26. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are idempotent. Then, the following statements are equivalent:
i) $A+B$ is nonsingular.
ii) There exist $\alpha, \beta \in \mathbb{F}$ such that $\alpha+\beta \neq 0$ and $\alpha A+\beta B$ is nonsingular.
iii) For all nonzero $\alpha, \beta \in \mathbb{F}$ such that $\alpha+\beta \neq 0, \alpha A+\beta B$ is nonsingular.
(Proof: See 104, 833, 1309.)
Fact 3.12.27. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are idempotent. Then, the following statements are equivalent:
i) $A-B$ is idempotent.
ii) $\operatorname{rank}\left(A_{\perp}+B\right)+\operatorname{rank}(A-B)=n$.
iii) $A B A=B$.
iv) $\operatorname{rank}(A-B)=\operatorname{rank} A-\operatorname{rank} B$.
v) $\mathcal{R}(B) \subseteq \mathcal{R}(A)$ and $\mathcal{R}\left(B^{*}\right) \subseteq \mathcal{R}\left(A^{*}\right)$.
(Proof: See [1308.) (Remark: This result is due to Hartwig and Styan.)
Fact 3.12.28. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are idempotent. Then, the following statements are equivalent:
i) $A-B$ is nonsingular.
ii) $I-A B$ is nonsingular, and there exist $\alpha, \beta \in \mathbb{F}$ such that $\alpha+\beta \neq 0$ and $\alpha A+\beta B$ is nonsingular.
iii) $I-A B$ is nonsingular, and $\alpha A+\beta B$ is nonsingular for all $\alpha, \beta \in \mathbb{F}$ such that $\alpha+\beta \neq 0$.
iv) $I-A B$ and $A+A_{\perp} B$ are nonsingular.
v) $I-A B$ and $A+B$ are nonsingular.
vi) $\mathcal{R}(A)+\mathcal{R}(B)=\mathbb{F}^{n}$ and $\mathcal{R}\left(A^{*}\right)+\mathcal{R}\left(B^{*}\right)=\mathbb{F}^{n}$.
vii) $\mathcal{R}(A)+\mathcal{R}(B)=\mathbb{F}^{n}$ and $\mathcal{N}(A)+\mathcal{N}(B)=\mathbb{F}^{n}$.
viii) $\mathcal{R}(A) \cap \mathcal{R}(B)=\{0\}$ and $\mathcal{N}(A) \cap \mathcal{N}(B)=\{0\}$.
$i x) \operatorname{rank}\left[{ }_{B}^{A}\right]=\operatorname{rank}\left[\begin{array}{ll}A & B\end{array}\right]=\operatorname{rank} A+\operatorname{rank} B=n$.
(Proof: See [104, 597, 834, 836, 1306].)
Fact 3.12.29. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are idempotent. Then, the following statements hold:
i) $\mathcal{R}(A) \cap \mathcal{R}(B) \subseteq \mathcal{R}(A B)$.
ii) $\mathcal{N}(B)+[\mathcal{N}(A) \cap \mathcal{R}(B)] \subseteq \mathcal{N}(A B) \subseteq \mathcal{R}(I-A B) \subseteq \mathcal{N}(A)+\mathcal{N}(B)$.
iii) If $A B=B A$, then $A B$ is the idempotent matrix onto $\mathcal{R}(A) \cap \mathcal{R}(B)$ along $\mathcal{N}(A)+\mathcal{N}(B)$.

Furthermore, the following statements are equivalent:
iv) $A B=B A$.
v) $\operatorname{rank} A B=\operatorname{rank} B A$, and $A B$ is the idempotent matrix onto $\mathcal{R}(A) \cap \mathcal{R}(B)$ along $\mathcal{N}(A)+\mathcal{N}(B)$.
vi) $\operatorname{rank} A B=\operatorname{rank} B A$, and $A+B-A B$ is the idempotent matrix onto $\mathcal{R}(A)+\mathcal{R}(B)$ along $\mathcal{N}(A) \cap \mathcal{N}(B)$.

In addition, the following statements are equivalent:
vii) $A B$ is idempotent.
viii) $\mathcal{R}(A B) \subseteq \mathcal{R}(B)+[\mathcal{N}(A) \cap \mathcal{N}(B)]$.
ix) $\mathcal{R}(A B)=\mathcal{R}(A) \cap(\mathcal{R}(B)+[\mathcal{N}(A) \cap \mathcal{N}(B)])$.
x) $\mathcal{N}(B)+[\mathcal{N}(A) \cap \mathcal{R}(B)]=\mathcal{R}(I-A B)$.

Finally, the following statements hold:
xi) $A-B$ is idempotent if and only if B is the idempotent matrix onto $\mathcal{R}(A) \cap$ $\mathcal{R}(B)$ along $\mathcal{N}(A)+\mathcal{N}(B)$.
xii) $A+B$ is idempotent if and only if A is the idempotent matrix onto $\mathcal{R}(A) \cap$ $\mathcal{N}(B)$ along $\mathcal{N}(A)+\mathcal{R}(B)$.
(Proof: See [536, p. 53] and 596.) (Remark: See Fact 5.12.19)
Fact 3.12.30. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are idempotent, and assume that $A B=B A$. Then, the following statements are equivalent:
i) $A-B$ is nonsingular.
ii) $(A-B)^{2}=I$.
iii) $A+B=I$.
(Proof: See [597].)
Fact 3.12.31. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are idempotent. Then,

$$
\begin{aligned}
\operatorname{rank}[A, B] & =\operatorname{rank}(A-B)+\operatorname{rank}\left(A_{\perp}-B\right)-n \\
& =\operatorname{rank}(A-B)+\operatorname{rank} A B+\operatorname{rank} B A-\operatorname{rank} A-\operatorname{rank} B .
\end{aligned}
$$

Furthermore, the following statements hold:
i) $A B=B A$ if and only if $\mathcal{R}(A B)=\mathcal{R}(B A)$ and $\mathcal{R}\left[(A B)^{*}\right]=\mathcal{R}\left[(B A)^{*}\right]$.
ii) $A B=B A$ if and only if

$$
\operatorname{rank}(A-B)+\operatorname{rank}\left(A_{\perp}-B\right)=n
$$

iii) $[A, B]$ is nonsingular if and only if $A-B$ and $A_{\perp}-B$ are nonsingular.
iv) $\max \{\operatorname{rank} A B, \operatorname{rank} B A\} \leq \operatorname{rank}(A B+B A)$.
v) $A B+B A=0$ if and only if $A B=B A=0$.
vi) $A B+B A$ is nonsingular if and only if $A+B$ and $A_{\perp}-B$ are nonsingular.
vii) $\operatorname{rank}(A B+B A)=\operatorname{rank}(\alpha A B+\beta B A)$.
viii) $A_{\perp}-B$ is nonsingular if and only if $\operatorname{rank} A=\operatorname{rank} B=\operatorname{rank} A B=\operatorname{rank} B A$. In this case, A and B are similar.
ix) $\operatorname{rank}(A+B)+\operatorname{rank}(A B-B A)=\operatorname{rank}(A-B)+\operatorname{rank}(A B+B A)$.
$x) \operatorname{rank}(A B-B A) \leq \operatorname{rank}(A B+B A)$.
(Proof: See 836].)
Fact 3.12.32. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are idempotent, and assume that $A-B$ is nonsingular. Then, $A+B$ is nonsingular. Now, define $F, G \in \mathbb{F}^{n \times n}$ by

$$
F \triangleq A(A-B)^{-1}=(A-B)^{-1}(I-B)
$$

and

$$
G \triangleq(A-B)^{-1} A=(I-A)(A-B)^{-1} .
$$

Then, F and G are idempotent. In particular, F is the idempotent matrix onto $\mathcal{R}(A)$ along $\mathcal{N}(B)$, and G^{*} is the idempotent matrix onto $\mathcal{R}\left(A^{*}\right)$ along $\mathcal{R}\left(B^{*}\right)$. Furthermore,

$$
\begin{gathered}
F B=A G=0, \\
(A-B)^{-1}=F-G_{\perp}, \\
(A-B)^{-1}=(A+B)^{-1}(A-B)(A+B)^{-1}, \\
(A+B)^{-1}=I-G_{\perp} F-G F_{\perp}, \\
(A+B)^{-1}=(A-B)^{-1}(A+B)(A-B)^{-1} .
\end{gathered}
$$

(Proof: See [836].) (Remark: See [836] for an explicit expression for $(A+B)^{-1}$ in the case $A-B$ is nonsingular.) (Remark: See Proposition 3.5.3)

Fact 3.12.33. If $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{n \times(n-m)}$, assume that $[A B]$ is nonsingular, and define

$$
P \triangleq\left[\begin{array}{ll}
A & 0
\end{array}\right]\left[\begin{array}{ll}
A & B
\end{array}\right]^{-1}
$$

and

$$
Q \triangleq\left[\begin{array}{ll}
0 & B
\end{array}\right]\left[\begin{array}{ll}
A & B
\end{array}\right]^{-1} .
$$

Then, the following statements hold:
i) P and Q are idempotent.
ii) $P+Q=I_{n}$.
iii) $P Q=0$.
iv) $P\left[\begin{array}{ll}A & 0\end{array}\right]=\left[\begin{array}{ll}A & 0\end{array}\right]$.
v) $Q\left[\begin{array}{ll}0 & B\end{array}\right]=\left[\begin{array}{ll}0 & B\end{array}\right]$.
vi) $\mathcal{R}(P)=\mathcal{R}(A)$ and $\mathcal{N}(P)=\mathcal{R}(B)$.
vii) $\mathcal{R}(Q)=\mathcal{R}(B)$ and $\mathcal{N}(Q)=\mathcal{R}(A)$.
viii) If $A^{*} B=0$, then $P=A\left(A^{*} A\right)^{-1} A$ and $Q=B\left(B^{*} B\right)^{-1} B^{*}$.
ix) $\mathcal{R}(A)$ and $\mathcal{R}(B)$ are complementary subspaces.
x) P is the idempotent matrix onto $\mathcal{R}(A)$ along $\mathcal{R}(B)$.
xi) Q is the idempotent matrix onto $\mathcal{R}(B)$ along $\mathcal{R}(A)$.
(Proof: See [1497.) (Remark: See Fact 3.13.24, Fact 6.4.18, and Fact 6.4.19.)

3.13 Facts on Projectors

Fact 3.13.1. Let $A \in \mathbb{F}^{n \times n}$. Then, the following statements are equivalent:
i) A is a projector.
ii) $A=A A^{*}$.
iii) $A=A^{*} A$.
iv) A is idempotent and normal.
v) A and $A^{*} A$ are idempotent.
vi) $A A^{*} A=A$, and A is idempotent.
vii) A and $\frac{1}{2}\left(A+A^{*}\right)$ are idempotent.
viii) A is idempotent, and $A A^{*}+A^{*} A=A+A^{*}$.
ix) A is tripotent, and $A^{2}=A^{*}$.
x) $A A^{*}=A^{*} A A^{*}$.
xi) A is idempotent, and $\operatorname{rank} A+\operatorname{rank}\left(I-A^{*} A\right)=n$.
xii) A is idempotent, and, for all $x \in \mathbb{F}^{n}, x^{*} A x \geq 0$.
(Remark: See Fact 3.13.2, Fact 3.13.3, and Fact 6.3.27) (Remark: The matrix $A=\left[\begin{array}{cc}1 / 2 & 1 / 2 \\ 0 & 0\end{array}\right]$ satisfies $\operatorname{tr} A=\operatorname{tr} A^{*} A$ but is not a projector. See Fact 3.7.13.)

Fact 3.13.2. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is Hermitian. Then, the following statements are equivalent:
i) A is a projector.
ii) $\operatorname{rank} A=\operatorname{tr} A=\operatorname{tr} A^{2}$.
(Proof: See [1184, p. 55].) (Remark: See Fact 3.13.1 and Fact 3.13.3.)
Fact 3.13.3. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is idempotent. Then, the following statements are equivalent:
i) A is a projector.
ii) $A A^{*} A=A$.
iii) A is Hermitian.
iv) A is normal.
v) A is range Hermitian.
(Proof: See [1335].) (Remark: See Fact 3.13.1 and Fact 3.13.2.)
Fact 3.13.4. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is a projector. Then, A is positive semidefinite.

Fact 3.13.5. Let $A \in \mathbb{F}^{n \times n}$, assume that A is a projector, and let $x \in \mathbb{F}^{n}$. Then, $x \in \mathcal{R}(A)$ if and only if $x=A x$.

Fact 3.13.6. Let $A \in \mathbb{F}^{n \times m}$. If $\operatorname{rank} A=m$, then $B \triangleq A\left(A^{*} A\right)^{-1} A^{*}$ is a projector and $\operatorname{rank} B=m$. If $\operatorname{rank} A=n$, then $B \triangleq A^{*}\left(A A^{*}\right)^{-1} A$ is a projector and $\operatorname{rank} B=n$. (Remark: See Fact 2.15.2, Fact 3.7.25, and Fact 3.7.26)

Fact 3.13.7. Let $x \in \mathbb{F}^{n}$ be nonzero, and define the elementary projector $A \triangleq I-\left(x^{*} x\right)^{-1} x x^{*}$. Then, the following statements hold:
i) $\operatorname{rank} A=n-1$.
ii) $\mathcal{N}(A)=\operatorname{span}\{x\}$.
iii) $\mathcal{R}(A)=\{x\}^{\perp}$.
iv) $2 A-I$ is the elementary reflector $I-2\left(x^{*} x\right)^{-1} x x^{*}$.
(Remark: If $y \in \mathbb{F}^{n}$, then $A y$ is the projection of y on $\{x\}^{\perp}$.)
Fact 3.13.8. Let $n>1$, let $\mathcal{S} \subset \mathbb{F}^{n}$, and assume that \mathcal{S} is a hyperplane. Then, there exists a unique elementary projector $A \in \mathbb{F}^{n \times n}$ such that $\mathcal{R}(A)=\mathcal{S}$ and $\mathcal{N}(A)=\mathcal{S}^{\perp}$. Furthermore, if $x \in \mathbb{F}^{n}$ is nonzero and $\mathcal{S} \triangleq\{x\}^{\perp}$, then $A=$ $I-\left(x^{*} x\right)^{-1} x x^{*}$.

Fact 3.13.9. Let $A \in \mathbb{F}^{n \times n}$. Then, A is a projector and $\operatorname{rank} A=n-1$ if and only if there exists a nonzero vector $x \in \mathcal{N}(A)$ such that

$$
A=I-\left(x^{*} x\right)^{-1} x x^{*}
$$

In this case, it follows that, for all $y \in \mathbb{F}^{n}$,

$$
y^{*} y-y^{*} A y=\frac{\left|y^{*} x\right|^{2}}{x^{*} x}
$$

Furthermore, for $y \in \mathbb{F}^{n}$, the following statements are equivalent:
i) $y^{*} A y=y^{*} y$.
ii) $y^{*} x=0$.
iii) $A y=y$.
(Remark: See Fact 3.7.19)

Fact 3.13.10. Let $A \in \mathbb{F}^{n \times n}$, assume that A is a projector, and let $x \in \mathbb{F}^{n}$.
Then,

$$
x^{*} A x \leq x^{*} x .
$$

Furthermore, the following statements are equivalent:
i) $x^{*} A x=x^{*} x$.
ii) $A x=x$.
iii) $x \in \mathcal{R}(A)$.

Fact 3.13.11. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is idempotent. Then, A is a projector if and only if, for all $x \in \mathbb{F}^{n}, x^{*} A x \leq x^{*} x$. (Proof: See [1098 p. 105].)

Fact 3.13.12. $A \triangleq\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{12}^{*} & A_{22}\end{array}\right] \in \mathbb{F}^{(n+m) \times(n+m)}$, and assume that A is a projector. Then,

$$
\operatorname{rank} A=\operatorname{rank} A_{11}+\operatorname{rank} A_{22}-\operatorname{rank} A_{12}
$$

(Proof: See 1308 and Fact 3.12.20, (Remark: See Fact 3.12.20 and Fact 6.5.13)
Fact 3.13.13. Let $A \in \mathbb{F}^{n \times n}$, and assume that A satisfies two out of the three properties (Hermitian, shifted unitary, idempotent). Then, A satisfies the remaining property. Furthermore, these matrices are the projectors. (Proof: If A is idempotent and shifted unitary, then $(2 A-I)^{-1}=2 A-I=\left(2 A^{*}-I\right)^{-1}$. Hence, A is Hermitian.) (Remark: The condition $A+A^{*}=2 A A^{*}$ is considered in Fact 3.11.33.) (Remark: See Fact 3.14.2 and Fact 3.14.6.)

Fact 3.13.14. Let $A \in \mathbb{F}^{n \times n}$, let $B \in \mathbb{F}^{n \times m}$, assume that A is a projector, and assume that $\mathcal{R}(A B)=\mathcal{R}(B)$. Then, $A B=B$. (Proof: $0=\mathcal{R}\left(A_{\perp} A B\right)=A_{\perp} \mathcal{R}(A B)=$ $A_{\perp} \mathcal{R}(B)=\mathcal{R}\left(A_{\perp} B\right)$. Hence, $A_{\perp} B=0$. Consequently, $B=\left(A+A_{\perp}\right) B=A B$.) (Remark: See Fact 6.4.16)

Fact 3.13.15. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are projectors. Then, $\mathcal{R}(A)=\mathcal{R}(B)$ if and only if $A=B$. (Remark: See Proposition 3.5.1.)

Fact 3.13.16. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are projectors, and assume that $\operatorname{rank} A=\operatorname{rank} B$. Then, there exists a reflector $S \in \mathbb{F}^{n \times n}$ such that $A=S B S$. If, in addition, $A+B-I$ is nonsingular, then one such reflector is given by $S=\langle A+B-I\rangle(A+B-I)^{-1}$. (Proof: See 327.)

Fact 3.13.17. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are projectors. Then, the following statements are equivalent:
i) $\mathcal{R}(A) \subseteq \mathcal{R}(B)$.
ii) $A \leq B$.
iii) $A B=A$.
iv) $B A=A$.
v) $B-A$ is a projector
(Proof: See [1184 pp. 24, 169].) (Remark: See Fact 9.8.3.)

Fact 3.13.18. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are projectors. Then,

$$
\mathcal{R}(I-A B)=\mathcal{N}(A)+\mathcal{N}(B)
$$

and

$$
\mathcal{R}\left(A+A_{\perp} B\right)=\mathcal{R}(A)+\mathcal{R}(B)
$$

(Proof: See [594, 1328.)
Fact 3.13.19. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are projectors. Then, the following statements are equivalent:
i) $A B=0$.
ii) $B A=0$.
iii) $\mathcal{R}(A)=\mathcal{R}(B)^{\perp}$.
iv) $A+B$ is a projector.

In this case, $\mathcal{R}(A+B)=\mathcal{R}(A)+\mathcal{R}(B)$. (Proof: See [530, pp. 42-44].) (Remark: See 537.)

Fact 3.13.20. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are projectors. Then, the following statements are equivalent:
i) $A B$ is a projector.
ii) $A B=B A$.
iii) $A B$ is idempotent.
iv) $A B$ is Hermitian.
v) $A B$ is normal.
vi) $A B$ is range Hermitian.

In this case, the following statements hold:
vii) $\mathcal{R}(A B)=\mathcal{R}(A) \cap \mathcal{R}(B)$.
viii) $A B$ is the projector onto $\mathcal{R}(A) \cap \mathcal{R}(B)$.
ix) $A+A_{\perp} B$ is a projector.
x) $A+A_{\perp} B$ is the projector onto $\mathcal{R}(A)+\mathcal{R}(B)$.
(Proof: See [530, pp. 42-44] and [1321, 1423].) (Remark: See Fact 5.12.16 and Fact 6.4.23) (Problem: If $A+A_{\perp} B$ is a projector, then does it follow that A and B commute?)

Fact 3.13.21. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are projectors. Then, $A B$ is group invertible. (Proof: $\mathcal{N}(B A) \subseteq \mathcal{N}(B A B A) \subseteq \mathcal{N}(A B A B A)=$ $\mathcal{N}(A B A A B A)=\mathcal{N}(A B A)=\mathcal{N}(A B B A)=\mathcal{N}(B A)$.$) (Remark: See 1423.)$

Fact 3.13.22. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are projectors. Then, the $l n \times l n$ matrix below has rank

$$
\operatorname{rank}\left[\begin{array}{ccccc}
A+B & A B & & & \\
A B & A+B & \ddots & & \\
& \ddots & \ddots & \ddots & \\
& & \ddots & A+B & A B \\
& & & A B & A+B
\end{array}\right]=l \operatorname{rank}(A+B)
$$

(Proof: See 1309.)
Fact 3.13.23. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are projectors. Then,

$$
\operatorname{rank}(A+B)=\operatorname{rank} A+\operatorname{rank} B-n+\operatorname{rank}\left(A_{\perp}+B_{\perp}\right)
$$

$\operatorname{rank}\left[\begin{array}{ll}A & B\end{array}\right]=\operatorname{rank} A+\operatorname{rank} B-n+\operatorname{rank}\left[\begin{array}{ll}A_{\perp} & B_{\perp}\end{array}\right]$, $\operatorname{rank}[A, B]=2\left(\operatorname{rank}\left[\begin{array}{cc}A & B\end{array}\right]+\operatorname{rank} A B-\operatorname{rank} A-\operatorname{rank} B\right)$.
(Proof: See 1306, 1309.)
Fact 3.13.24. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are projectors. Then, the following statements are equivalent:
i) $A-B$ is nonsingular.
ii) $\operatorname{rank}\left[\begin{array}{ll}A & B\end{array}\right]=\operatorname{rank} A+\operatorname{rank} B=n$.
iii) $\mathcal{R}(A)$ and $\mathcal{R}(B)$ are complementary subspaces.

Now, assume that i-iii) hold. Then, the following statements hold:
iv) $I-B A$ is nonsingular.
v) $A+B-A B$ is nonsingular.
vi) The idempotent matrix $M \in \mathbb{F}^{n \times n}$ onto $\mathcal{R}(B)$ along $\mathcal{R}(A)$ is given by

$$
\begin{aligned}
M & =(I-B A)^{-1} B(I-B A) \\
& =B(I-A B)^{-1}(I-B A) \\
& =(I-A B)^{-1}(I-A) \\
& =A(A+B-A B)^{-1} .
\end{aligned}
$$

vii) M satisfies

$$
M+M^{*}=(B-A)^{-1}+I
$$

that is,

$$
(B-A)^{-1}=M+M^{*}-I=M-M_{\perp}^{*} .
$$

(Proof: See Fact 5.12.17 and [6, 271, 537, 588, 744, 1115. The uniqueness of M follows from Proposition 3.5.3, while vii) follows from Fact 5.12.18) (Remark: See

Fact 3.12.33, Fact 5.12.18, Fact 6.4.18, and Fact 6.4.19,

3.14 Facts on Reflectors

Fact 3.14.1. If $A \in \mathbb{F}^{n \times n}$ is a projector, then $B \triangleq 2 A-I$ is a reflector. Conversely, if $B \in \mathbb{F}^{n \times n}$ is a reflector, then $A \triangleq \frac{1}{2}(B+I)$ is a projector. (Remark: See Fact 3.15.2) (Remark: The affine mapping $f(A) \triangleq 2 A-I$ from the projectors to the reflectors is one-to-one and onto. See Fact 3.11.33 and Fact 3.15.2.)

Fact 3.14.2. Let $A \in \mathbb{F}^{n \times n}$, and assume that A satisfies two out of the three properties (Hermitian, unitary, involutory). Then, A also satisfies the remaining property. Furthermore, these matrices are the reflectors. (Remark: See Fact 3.13.13 and Fact 3.14.6.)

Fact 3.14.3. Let $x \in \mathbb{F}^{n}$ be nonzero, and define the elementary reflector $A \triangleq I-2\left(x^{*} x\right)^{-1} x x^{*}$. Then, the following statements hold:
i) $\operatorname{det} A=-1$.
ii) If $y \in \mathbb{F}^{n}$, then $A y$ is the reflection of y across $\{x\}^{\perp}$.
iii) $A x=-x$.
iv) $\frac{1}{2}(A+I)$ is the elementary projector $I-\left(x^{*} x\right)^{-1} x x^{*}$.

Fact 3.14.4. Let $x, y \in \mathbb{F}^{n}$. Then, there exists a unique elementary reflector $A \in \mathbb{F}^{n \times n}$ such that $A x=y$ if and only if $x^{*} y$ is real and $x^{*} x=y^{*} y$. If, in addition, $x \neq y$, then A is given by

$$
A=I-2\left[(x-y)^{*}(x-y)\right]^{-1}(x-y)(x-y)^{*}
$$

(Remark: This result is the reflection theorem. See [558, pp. 16-18] and [1129] p. 357]. See Fact 3.9.5)

Fact 3.14.5. Let $n>1$, let $\mathcal{S} \subset \mathbb{F}^{n}$, and assume that \mathcal{S} is a hyperplane. Then, there exists a unique elementary reflector $A \in \mathbb{F}^{n \times n}$ such that, for all $y=$ $y_{1}+y_{2} \in \mathbb{F}^{n}$, where $y_{1} \in \mathcal{S}$ and $y_{2}=\mathcal{S}^{\perp}$, it follows that $A y=y_{1}-y_{2}$. Furthermore, if $\mathcal{S}=\{x\}^{\perp}$, then $A=I-2\left(x^{*} x\right)^{-1} x x^{*}$.

Fact 3.14.6. Let $A \in \mathbb{F}^{n \times n}$, and assume that A satisfies two out of the three properties (skew Hermitian, unitary, skew involutory). Then, A also satisfies the remaining property. Furthermore, these matrices are the skew reflectors. (Remark: See Fact 3.13.13, Fact 3.14.2, and Fact 3.14.7.)

Fact 3.14.7. Let $A \in \mathbb{C}^{n \times n}$. Then, A is a reflector if and only if $\jmath A$ is a skew reflector. (Remark: The mapping $f(A) \triangleq \jmath A$ relates Fact 3.14.2 to Fact 3.14.6.) (Problem: When A is real and n is even, determine a real transformation between the reflectors and the skew reflectors.)

Fact 3.14.8. Let $A \in \mathbb{F}^{n \times n}$. Then, the following statements are equivalent:
i) A is a reflector.
ii) $A=A A^{*}+A^{*}-I$.
iii) $A=\frac{1}{2}(A+I)\left(A^{*}+I\right)-I$.

3.15 Facts on Involutory Matrices

Fact 3.15.1. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is involutory. Then, either $\operatorname{det} A=1$ or $\operatorname{det} A=-1$.

Fact 3.15.2. If $A \in \mathbb{F}^{n \times n}$ is idempotent, then $B \triangleq 2 A-I$ is involutory. Conversely, if $B \in \mathbb{F}^{n \times n}$ is involutory, then $A_{1} \triangleq \frac{1}{2}(I+B)$ and $A_{2} \triangleq \frac{1}{2}(I-B)$ are idempotent. (Remark: See Fact 3.14.1,) (Remark: The affine mapping $f(A) \triangleq$ $2 A-I$ from the idempotent matrices to the involutory matrices is one-to-one and onto. See Fact 3.11.33 and Fact 3.14.1)

Fact 3.15.3. Let $A \in \mathbb{F}^{n \times n}$. Then, A is involutory if and only if

$$
(A+I)(A-I)=0
$$

Fact 3.15.4. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are involutory. Then,

$$
\mathcal{R}([A, B])=\mathcal{R}(A-B) \cap \mathcal{R}(A+B)
$$

and

$$
\mathcal{N}([A, B])=\mathcal{N}(A-B) \cap \mathcal{N}(A+B)
$$

(Proof: See 1292.)
Fact 3.15.5. Let $A \in \mathbb{F}^{n \times m}$, let $B \in \mathbb{F}^{m \times n}$, and define

$$
C \triangleq\left[\begin{array}{cc}
I-B A & B \\
2 A-A B A & A B-I
\end{array}\right]
$$

Then, C is involutory. (Proof: See 998, p. 113].)
Fact 3.15.6. Let $A \in \mathbb{R}^{n \times n}$, and assume that A is skew involutory. Then, n is even.

3.16 Facts on Tripotent Matrices

Fact 3.16.1. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is tripotent. Then, A^{2} is idempotent. (Remark: The converse is false. A counterexample is $\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$.)

Fact 3.16.2. Let $A \in \mathbb{F}^{n \times n}$. Then, A is nonsingular and tripotent if and only if A is involutory.

Fact 3.16.3. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is Hermitian. Then, A is tripotent if and only if

$$
\operatorname{rank} A=\operatorname{rank}\left(A+A^{2}\right)+\operatorname{rank}\left(A-A^{2}\right) .
$$

(Proof: See [1184, p. 176].)
Fact 3.16.4. Let $A \in \mathbb{R}^{n \times n}$ be tripotent. Then,

$$
\operatorname{rank} A=\operatorname{rank} A^{2}=\operatorname{tr} A^{2}
$$

Fact 3.16.5. If $A, B \in \mathbb{F}^{n \times n}$ are idempotent and $A B=0$, then $A+B A_{\perp}$ is idempotent and $C \triangleq A-B$ is tripotent. Conversely, if $C \in \mathbb{F}^{n \times n}$ is tripotent, then $A \triangleq \frac{1}{2}\left(C^{2}+C\right)$ and $B \triangleq \frac{1}{2}\left(C^{2}-C\right)$ are idempotent and satisfy $C=A-B$ and $A B=B A=0$. (Proof: See 987, p. 114].)

3.17 Facts on Nilpotent Matrices

Fact 3.17.1. Let $A \in \mathbb{F}^{n \times n}$. Then, the following statements are equivalent:
i) $\mathcal{R}(A)=\mathcal{N}(A)$.
ii) A is similar to a block-diagonal matrix each of whose diagonal blocks is N_{2}.
(Proof: To prove i) $\Longrightarrow i i$), let $S \in \mathbb{F}^{n \times n}$ transform A into its Jordan form. Then, it follows from Fact 2.10.2 that $\mathcal{R}\left(S A S^{-1}\right)=S \mathcal{R}\left(A S^{-1}\right)=S \mathcal{R}(A)=S \mathcal{N}(A)=$ $S \mathcal{N}\left(A S^{-1} S\right)=\mathcal{N}\left(A S^{-1}\right)=\mathcal{N}\left(S A S^{-1}\right)$. The only Jordan block J that satisfies $\mathcal{R}(J)=\mathcal{N}(J)$ is $J=N_{2}$. Using $\mathcal{R}\left(N_{2}\right)=\mathcal{N}\left(N_{2}\right)$ and reversing these steps yields the converse result.) (Remark: The fact that n is even follows from $\operatorname{rank} A+\operatorname{def} A=n$ and $\operatorname{rank} A=\operatorname{def} A$.$) (Remark: See Fact 3.17.2 and Fact 3.17.3.)$

Fact 3.17.2. Let $A \in \mathbb{F}^{n \times n}$. Then, the following statements are equivalent:
i) $\mathcal{N}(A) \subseteq \mathcal{R}(A)$.
ii) A is similar to a block-diagonal matrix each of whose diagonal blocks is either nonsingular or N_{2}.
(Remark: See Fact 3.17.1 and Fact 3.17.3.)
Fact 3.17.3. Let $A \in \mathbb{F}^{n \times n}$. Then, the following statements are equivalent:
i) $\mathcal{R}(A) \subseteq \mathcal{N}(A)$.
ii) A is similar to a block-diagonal matrix each of whose diagonal blocks is either zero or N_{2}.
(Remark: See Fact 3.17.1 and Fact 3.17.2.)
Fact 3.17.4. Let $n \in \mathbb{P}$ and $k \in\{0, \ldots, n\}$. Then, $\operatorname{rank} N_{n}^{k}=n-k$.
Fact 3.17.5. Let $A \in \mathbb{R}^{n \times n}$. Then, $\operatorname{rank} A^{k}$ is a nonincreasing function of $k \geq 1$. Furthermore, if there exists $k \in\{1, \ldots, n\}$ such that $\operatorname{rank} A^{k+1}=\operatorname{rank} A^{k}$,
then $\operatorname{rank} A^{l}=\operatorname{rank} A^{k}$ for all $l \geq k$. Finally, if A is nilpotent and $A^{l} \neq 0$, then $\operatorname{rank} A^{k+1}<\operatorname{rank} A^{k}$ for all $k=1, \ldots, l$.

Fact 3.17.6. Let $A \in \mathbb{F}^{n \times n}$. Then, A is nilpotent if and only if, for all $k=$ $1, \ldots, n, \operatorname{tr} A^{k}=0$. (Proof: See [1098, p. 103] or use Fact 4.8.2 with $p=\chi_{A}$ and $\mu_{1}=\cdots=\mu_{n}=0$.)

Fact 3.17.7. Let $\lambda \in \mathbb{F}$ and $n, k \in \mathbb{P}$. Then,

$$
\left(\lambda I_{n}+N_{n}\right)^{k}= \begin{cases}\lambda^{k} I_{n}+\binom{k}{1} \lambda^{k-1} N_{n}+\cdots+\binom{k}{k} N_{n}^{k}, & k<n-1 \\ \lambda^{k} I_{n}+\binom{k}{1} \lambda^{k-1} N_{n}+\cdots+\binom{k}{n-1} \lambda^{k-n+1} N_{n}^{n-1}, & k \geq n-1\end{cases}
$$

that is, for $k \geq n-1$,

$$
\left[\begin{array}{ccccc}
\lambda & 1 & \cdots & 0 & 0 \\
0 & \lambda & \ddots & 0 & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & \ddots & \lambda & 1 \\
0 & 0 & \cdots & 0 & \lambda
\end{array}\right]=\left[\begin{array}{ccccc}
\lambda^{k} & \binom{k}{1} \lambda^{k-1} & \cdots & \binom{k}{n-2} \lambda^{k-n+1} & \binom{k}{n-1} \lambda^{k-n+1} \\
0 & \lambda^{k} & \ddots & \binom{k}{n-3} \lambda^{k-n+2} & \binom{k}{n-2} \lambda^{k-n+2} \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & \ddots & \lambda^{k} & \binom{k}{1} \lambda^{k-1} \\
0 & 0 & \cdots & 0 & \lambda^{k}
\end{array}\right] .
$$

Fact 3.17.8. Let $A \in \mathbb{R}^{n \times n}$, assume that A is nilpotent, and let $k \geq 1$ be such that $A^{k}=0$. Then,

$$
\operatorname{det}(I-A)=1
$$

and

$$
(I-A)^{-1}=\sum_{i=0}^{k-1} A^{i}
$$

Fact 3.17.9. Let $A, B \in \mathbb{F}^{n \times n}$, assume that B is nilpotent, and assume that $A B=B A$. Then, $\operatorname{det}(A+B)=\operatorname{det} A$. (Proof: Use Fact 5.17.4)

Fact 3.17.10. Let $A, B \in \mathbb{R}^{n \times n}$, assume that A and B are nilpotent, and assume that $A B=B A$. Then, $A+B$ is nilpotent. (Proof: If $A^{k}=B^{l}=0$, then $(A+B)^{k+l}=0$.)

Fact 3.17.11. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are either both upper triangular or both lower triangular. Then,

$$
[A, B]^{n}=0
$$

Hence, $[A, B]$ is nilpotent. (Remark: See 499, 500.) (Remark: See Fact 5.17.6)
Fact 3.17.12. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that $[A,[A, B]]=0$. Then, $[A, B]$ is nilpotent. (Remark: This result is due to Jacobson. See [492] or [709, p. 98].)

Fact 3.17.13. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that there exist $k \in \mathbb{P}$ and nonzero $\alpha \in \mathbb{R}$ such that $\left[A^{k}, B\right]=\alpha A$. Then, A is nilpotent. (Proof: For all $l \in \mathbb{N}$,
$A^{k+l} B-A^{l} B A^{k}=\alpha A^{l+1}$, and thus $\operatorname{tr} A^{l+1}=0$. The result now follows from Fact 3.17.6) (Remark: See 1145.)

3.18 Facts on Hankel and Toeplitz Matrices

Fact 3.18.1. Let $A \in \mathbb{F}^{n \times m}$. Then, the following statements hold:
i) If A is Toeplitz, then $\hat{I} A$ and $A \hat{I}$ are Hankel.
ii) If A is Hankel, then $\hat{I} A$ and $A \hat{I}$ are Toeplitz.
iii) A is Toeplitz if and only if $\hat{I} A \hat{I}$ is Toeplitz.
iv) A is Hankel if and only if $\hat{I} A \hat{I}$ is Hankel.

Fact 3.18.2. Let $A \in \mathbb{F}^{n \times n}$, assume that A is Hankel, and consider the following conditions:
i) A is Hermitian.
ii) A is real.
iii) A is symmetric.

Then, $i) \Longrightarrow i i) \Longrightarrow i i i$.
Fact 3.18.3. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is a partitioned matrix, each of whose blocks is a $k \times k$ (circulant, Hankel, Toeplitz) matrix. Then, A is similar to a block-(circulant, Hankel, Toeplitz) matrix. (Proof: See [140.)

Fact 3.18.4. For all $i, j=1, \ldots, n$, define $A \in \mathbb{R}^{n \times n}$ by

$$
A_{(i, j)} \triangleq \frac{1}{i+j-1} .
$$

Then, A is Hankel, positive definite, and

$$
\operatorname{det} A=\frac{[1!2!\cdots(n-1)!]^{4}}{1!2!\cdots(2 n-1)!} .
$$

Furthermore, for all $i, j=1, \ldots, n, A^{-1}$ has integer entries given by

$$
\left(A^{-1}\right)_{(i, j)}=(-1)^{i+j}(i+j-1)\binom{n+i-1}{n-j}\binom{n+j-1}{n-i}\binom{i+j-2}{i-1}^{2}
$$

Finally, for large n,

$$
\operatorname{det} A \approx 2^{-2 n^{2}}
$$

(Remark: A is the Hilbert matrix, which is a Cauchy matrix. See [681, p. 513], Fact 1.10.36, Fact 3.20.14, Fact 3.20.15, and Fact 12.21.18) (Remark: See 325].)

Fact 3.18.5. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is Toeplitz. Then, A is reverse symmetric.

Fact 3.18.6. Let $A \in \mathbb{F}^{n \times n}$. Then, A is Toeplitz if and only if there exist $a_{0}, \ldots, a_{n} \in \mathbb{F}$ and $b_{1}, \ldots, b_{n} \in \mathbb{F}$ such that

$$
A=\sum_{i=1}^{n} b_{i} N_{n}^{i \mathrm{~T}}+\sum_{i=0}^{n} a_{i} N_{n}^{i}
$$

Fact 3.18.7. Let $A \in \mathbb{F}^{n \times n}$, let $k \geq 1$, and assume that A is (lower triangular, strictly lower triangular, upper triangular, strictly upper triangular). Then, so is A^{k}. If, in addition, A is Toeplitz, then so is A^{k}. (Remark: If A is Toeplitz, then A^{2} is not necessarily Toeplitz.) (Remark: See Fact 11.13.1)

3.19 Facts on Hamiltonian and Symplectic Matrices

Fact 3.19.1. Let $A \in \mathbb{F}^{2 n \times 2 n}$. Then, A is Hamiltonian if and only if $J A=$ $(J A)^{\mathrm{T}}$. Furthermore, A is symplectic if and only if $A^{\mathrm{T}} J A=J$.

Fact 3.19.2. Assume that $n \in \mathbb{P}$ is even, let $A \in \mathbb{F}^{n \times n}$, and assume that A is Hamiltonian and symplectic. Then, A is skew involutory. (Remark: See Fact 3.19.3.)

Fact 3.19.3. The following statements hold:
i) $I_{2 n}$ is orthogonal, shifted orthogonal, a projector, a reflector, and symplectic.
ii) $J_{2 n}$ is skew symmetric, orthogonal, skew involutory, a skew reflector, symplectic, and Hamiltonian.
iii) $\hat{I}_{2 n}$ is symmetric, orthogonal, involutory, shifted orthogonal, a projector, a reflector, and Hamiltonian.
(Remark: See Fact 3.19.2 and Fact 5.9.25.)
Fact 3.19.4. Let $A \in \mathbb{F}^{2 n \times 2 n}$, assume that A is Hamiltonian, and let $S \in$ $\mathbb{F}^{2 n \times 2 n}$ be symplectic. Then, $S A S^{-1}$ is Hamiltonian.

Fact 3.19.5. Let $A \in \mathbb{F}^{2 n \times 2 n}$, and assume that A is Hamiltonian and nonsingular. Then, A^{-1} is Hamiltonian.

Fact 3.19.6. Let $\mathcal{A} \in \mathbb{F}^{2 n \times 2 n}$. Then, \mathcal{A} is Hamiltonian if and only if there exist $A, B, C, D \in \mathbb{F}^{n \times n}$ such that B and C are symmetric and

$$
\mathcal{A}=\left[\begin{array}{cc}
A & B \\
C & -A^{\mathrm{T}}
\end{array}\right]
$$

(Remark: See Fact 4.9.23)
Fact 3.19.7. Let $A \in \mathbb{F}^{2 n \times 2 n}$, and assume that A is Hamiltonian. Then, $\operatorname{tr} A=0$.

Fact 3.19.8. Let $\mathcal{A} \in \mathbb{F}^{2 n \times 2 n}$. Then, \mathcal{A} is skew symmetric and Hamiltonian if and only if there exist a skew-symmetric matrix $A \in \mathbb{F}^{n \times n}$ and a symmetric matrix $B \in \mathbb{F}^{n \times n}$ such that

$$
\mathcal{A}=\left[\begin{array}{cc}
A & B \\
-B & A
\end{array}\right]
$$

Fact 3.19.9. Let $\mathcal{A} \triangleq\left[\begin{array}{cc}A & B \\ C & D\end{array}\right] \in \mathbb{F}^{2 n \times 2 n}$, where $A, B, C, D \in \mathbb{F}^{n \times n}$. Then, \mathcal{A} is symplectic if and only if $A^{\mathrm{T}} C$ and $B^{\mathrm{T}} D$ are symmetric and $A^{\mathrm{T}} D-C^{\mathrm{T}} B=I$.

Fact 3.19.10. Let $A \in \mathbb{F}^{2 n \times 2 n}$, and assume that A is symplectic. Then, $\operatorname{det} A=1$. (Proof: Using Fact 2.14.16 and Fact 3.19.9 it follows that $\operatorname{det} \mathcal{A}=$ $\operatorname{det}\left(A^{\mathrm{T}} D-C^{\mathrm{T}} B\right)=\operatorname{det} I=1$. See also [103, p. 27], 423, [624, p. 8], or [1186, p. 128].)

Fact 3.19.11. Let $A \in \mathbb{F}^{2 \times 2}$. Then, A is symplectic if and only if $\operatorname{det} A=1$. Hence, $\mathrm{SL}_{\mathbb{F}}(2)=\operatorname{Symp}_{\mathbb{F}}(2)$.

Fact 3.19.12. The following statements hold:
i) If $A \in \mathbb{F}^{2 n \times 2 n}$ is Hamiltonian and $A+I$ is nonsingular, then $B \triangleq(A-$ $I)(A+I)^{-1}$ is symplectic, $I-B$ is nonsingular, and $(I-B)^{-1}=\frac{1}{2}(A+I)$.
ii) If $B \in \mathbb{F}^{2 n \times 2 n}$ is symplectic and $I-B$ is nonsingular, then $A=(I+B)(I-$ $B)^{-1}$ is Hamiltonian, $A+I$ is nonsingular, and $(A+I)^{-1}=\frac{1}{2}(I-B)$.
iii) If $A \in \mathbb{F}^{2 n \times 2 n}$ is Hamiltonian, then there exists a unique symplectic matrix $B \in \mathbb{F}^{2 n \times 2 n}$ such that $I-B$ is nonsingular and $A=(I+B)(I-B)^{-1}$. In fact, $B=(A-I)(A+I)^{-1}$.
iv) If $B \in \mathbb{F}^{2 n \times 2 n}$ is symplectic and $I-B$ is nonsingular, then there exists a unique Hamiltonian matrix $A \in \mathbb{F}^{2 n \times 2 n}$ such that $B=(A-I)(A+I)^{-1}$. In fact, $A=(I+B)(I-B)^{-1}$.
(Remark: See Fact 3.11.28, Fact 3.11.29, and Fact 3.11.30)
Fact 3.19.13. Let $\mathcal{A} \in \mathbb{R}^{2 n \times 2 n}$. Then, $\mathcal{A} \in \operatorname{osymp}_{\mathbb{R}}(2 n)$ if and only if there exist $A, B \in \mathbb{R}^{n \times n}$ such that A is skew symmetric, B is symmetric, and $\mathcal{A}=$ $\left[\begin{array}{cc}A & B \\ -B & A\end{array}\right]$. (Proof: See [395].) (Remark: $\operatorname{OSymp}_{\mathbb{R}}(2 n)$ is the orthosymplectic group.)

3.20 Facts on Miscellaneous Types of Matrices

Fact 3.20.1. Let $A \in \mathbb{F}^{n \times n}$, and assume that there exists $i \in\{1, \ldots, n\}$ such that either $\operatorname{row}_{i}(A)=0$ or $\operatorname{col}_{i}(A)=0$. Then, A is reducible.

Fact 3.20.2. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is reducible. Then, A has at least $n-1$ entries that are equal to zero.

Fact 3.20.3. Let $A \in \mathbb{R}^{n \times n}$, and assume that A is a permutation matrix. Then, A is irreducible if and only if there exists a permutation matrix $S \in \mathbb{R}^{n \times n}$ such that $S A S^{-1}$ is the primary circulant. (Proof: See [1184, p. 177].) (Remark: The primary circulant is defined in Fact 5.16.7)

Fact 3.20.4. Let $A \in \mathbb{F}^{n \times n}$. Then, A is reducible if and only if $|A|$ is reducible. Furthermore, A is irreducible if and only if $|A|$ is irreducible.

Fact 3.20.5. Let $A \in \mathbb{F}^{n \times n}$, assume that A is nonsingular, and let $l \in$ $\{0, \ldots, n\}$ and $k \in\{1, \ldots, n\}$. Then, the following statements are equivalent:
i) Every submatrix B of A whose entries are entries of A lying above the l th superdiagonal of A satisfies rank $B \leq k-1$.
ii) Every submatrix C of A whose entries are entries of A^{-1} lying above the l th subdiagonal of A^{-1} satisfies rank $C \leq l+k-1$.

Specifically, the following statements hold:
iii) A is lower triangular if and only if A^{-1} is lower triangular.
iv) A is diagonal if and only if A^{-1} is diagonal.
v) A is lower Hessenberg if and only if every submatrix C of A^{-1} whose entries are entries of A^{-1} lying on or above the diagonal of A^{-1} satisfies rank $C \leq 1$.
$v i) ~ A$ is tridiagonal if and only if every submatrix C of A^{-1} whose entries are entries of A^{-1} lying on or above the diagonal of A^{-1} satisfies rank $C \leq 1$ and every submatrix C of A^{-1} whose entries are entries of A^{-1} lying on or below the diagonal of A^{-1} satisfies rank $C \leq 1$.
(Remark: The 0th subdiagonal and the 0th superdiagonal are the diagonal.) (Proof: See [1242].) (Remark: Statement iii) corresponds to $l=0$ and $k=1$, iv) corresponds to $l=0$ and $k=1$ applied to A and A^{T}, v) corresponds to $l=1$ and $k=1$, and $v i$) corresponds to $l=1$ and $k=1$ applied to A and A^{T}. (Remark: See Fact 2.11.20) (Remark: Extensions to generalized inverses are considered in [131, 1131.)

Fact 3.20.6. Let $A \in \mathbb{F}^{n \times n}$ be the tridiagonal matrix

$$
A \triangleq\left[\begin{array}{cccccc}
a+b & a b & 0 & \cdots & 0 & 0 \\
1 & a+b & a b & \cdots & 0 & 0 \\
0 & 1 & a+b & \ddots & 0 & 0 \\
\vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \ddots & a+b & a b \\
0 & 0 & 0 & \cdots & 1 & a+b
\end{array}\right]
$$

Then,

$$
\operatorname{det} A= \begin{cases}(n+1) a^{n}, & a=b \\ \frac{a^{n+1}-b^{n+1}}{a-b}, & a \neq b\end{cases}
$$

(Proof: See [841, pp. 401, 621].)

Fact 3.20.7. Let $A \in \mathbb{F}^{n \times n}$ be the tridiagonal, Toeplitz matrix

$$
A \triangleq\left[\begin{array}{cccccc}
b & c & 0 & \cdots & 0 & 0 \\
a & b & c & \cdots & 0 & 0 \\
0 & a & b & \ddots & 0 & 0 \\
\vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \ddots & b & c \\
0 & 0 & 0 & \cdots & a & b
\end{array}\right]
$$

and define

$$
\alpha \triangleq \frac{1}{2}\left(b+\sqrt{b^{2}-4 a c}\right), \quad \beta \triangleq \frac{1}{2}\left(b-\sqrt{b^{2}-4 a c}\right)
$$

Then,

$$
\operatorname{det} A= \begin{cases}b^{n}, & a c=0 \\ (n+1)(b / 2)^{n}, & b^{2}=4 a c \\ \left(\alpha^{n+1}-\beta^{n+1}\right) /(\alpha-\beta), & b^{2} \neq 4 a c\end{cases}
$$

(Proof: See [1490, pp. 101, 102].) (Remark: See Fact 3.20.6 and Fact 5.11.43.)
Fact 3.20.8. Let $A \in \mathbb{R}^{n \times n}$, assume that A is tridiagonal with positive diagonal entries, and assume that, for all $i=2, \ldots, n$,

$$
A_{(i, i-1)} A_{(i-1, i)}<\frac{1}{4}\left(\cos \frac{\pi}{n+1}\right)^{-2} A_{(i, i)} A_{(i-1, i-1)}
$$

Then, $\operatorname{det} A>0$. If, in addition, A is symmetric, then A is positive definite. (Proof: See 766.) (Remark: Related results are given in [324.) (Remark: See Fact 8.8.18.)

Fact 3.20.9. Let $A \in \mathbb{R}^{n \times n}$, assume that A is tridiagonal, assume that every entry of the superdiagonal and subdiagonal of A is nonzero, assume that every leading principal subdeterminant of A and every trailing principal subdeterminant of A is nonzero. Then, every entry of A^{-1} is nonzero. (Proof: See 700.)

Fact 3.20.10. Define $A \in \mathbb{R}^{n \times n}$ by

$$
A \triangleq\left[\begin{array}{cccccc}
2 & -1 & 0 & \cdots & 0 & 0 \\
-1 & 2 & -1 & \cdots & 0 & 0 \\
0 & -1 & 2 & \ddots & 0 & 0 \\
\vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \ddots & 2 & -1 \\
0 & 0 & 0 & \cdots & -1 & 1
\end{array}\right]
$$

Then,

$$
A^{-1}=\left[\begin{array}{cccccc}
1 & 1 & 1 & \cdots & 1 & 1 \\
1 & 2 & 2 & \cdots & 2 & 2 \\
1 & 2 & 3 & \ddots & 3 & 3 \\
\vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\
1 & 2 & 3 & \ddots & n-1 & n-1 \\
1 & 2 & 3 & \cdots & n-1 & n
\end{array}\right]
$$

(Proof: See [1184, p. 182], where the (n, n) entry of A is incorrect.) (Remark: See Fact 3.20.9,

Fact 3.20.11. Let $A \in \mathbb{F}^{n \times n}$, assume that A is nonsingular, and assume that $A_{(2,2)}, \ldots, A_{(n-1, n-1)}$ are nonzero. Then, A^{-1} is tridiagonal if and only if, for all $i, j=1, \ldots, n$ such that $|i-j| \geq 2$, and for all k satisfying $\min \{i, j\}<k<$ $\max \{i, j\}$, it follows that

$$
A_{(i, j)}=\frac{A_{(i, k)} A_{(k, j)}}{A_{(k, k)}}
$$

(Proof: See [147.)
Fact 3.20.12. Let $A \in \mathbb{F}^{n \times m}$. Then, A is (semicontractive, contractive) if and only if A^{*} is.

Fact 3.20.13. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is dissipative. Then, A is nonsingular. (Proof: Suppose that A is singular, and let $x \in \mathcal{N}(A)$. Then, $x^{*}\left(A+A^{*}\right) x=0$.) (Remark: If $A+A^{*}$ is nonsingular, then A is not necessarily nonsingular. Consider $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$.)

Fact 3.20.14. Let $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n} \in \mathbb{R}$, assume that $a_{i}+b_{j} \neq 0$ for all $i, j=1, \ldots, n$, and, for all $i, j=1, \ldots, n$, define $A \in \mathbb{R}^{n \times n}$ by

$$
A_{(i, j)} \triangleq \frac{1}{a_{i}+b_{j}}
$$

Then,

$$
\operatorname{det} A=\frac{\prod_{1 \leq i<j \leq n}\left(a_{j}-a_{i}\right)\left(b_{j}-b_{i}\right)}{\prod_{1 \leq i, j \leq n}\left(a_{i}+b_{j}\right)}
$$

Now, assume that a_{1}, \ldots, a_{n} are distinct and b_{1}, \ldots, b_{n} are distinct. Then, A is nonsingular and

$$
\left(A^{-1}\right)_{(i, j)}=\frac{\prod_{\substack{1 \leq k \leq n}}\left(a_{j}+b_{k}\right)\left(a_{k}+b_{i}\right)}{\left(a_{j}+b_{i}\right) \prod_{\substack{1 \leq k \leq n \\ k \neq j}}\left(a_{j}-a_{k}\right) \prod_{\substack{1 \leq k \leq n \\ k \neq i}}\left(b_{i}-b_{k}\right)}
$$

Furthermore,

$$
1_{1 \times n} A^{-1} 1_{n \times 1}=\sum_{i=1}^{n}\left(a_{i}+b_{i}\right)
$$

(Remark: A is a Cauchy matrix. See [199, [681, p. 515], Fact 3.18.4, Fact 3.20.15, and Fact 12.21.18.)

Fact 3.20.15. Let x_{1}, \ldots, x_{n} be distinct positive numbers, let y_{1}, \ldots, y_{n} be distinct positive numbers, and let $A \in \mathbb{R}^{n \times n}$, where, for all $i, j=1, \ldots, n$,

$$
A_{(i, j)} \triangleq \frac{1}{x_{i}+y_{j}}
$$

Then, A is nonsingular. (Proof: See [854].) (Remark: A is a Cauchy matrix. See Fact 3.18.4, Fact 3.20.14, and Fact 12.21.18)

Fact 3.20.16. Let $A \in \mathbb{F}^{n \times m}$. Then, A is centrosymmetric if and only if $A^{\mathrm{T}}=A^{\hat{\mathrm{T}}}$. Furthermore, A is centrohermitian if and only if $A^{*}=A^{\hat{*}}$.

Fact 3.20.17. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times l}$. If A and B are both (centrohermitian, centrosymmetric), then so is $A B$. (Proof: See 685].)

Fact 3.20.18. Let $A, B \in \mathbb{F}^{n}$, and assume that A and B are (upper triangular, lower triangular). Then, $A B$ is (upper triangular, lower triangular). If, in addition, either A or B is (strictly upper triangular, strictly lower triangular), then $A B$ is (strictly upper triangular, strictly lower triangular). (Remark: See Fact 3.21.5)

3.21 Facts on Groups

Fact 3.21.1. The following subsets of \mathbb{R} are groups:
i) $\{x \in \mathbb{R}: x \neq 0\}$.
ii) $\{x \in \mathbb{R}: x>0\}$.
iii) $\{x \in \mathbb{R}: x \neq 0$ and x is rational $\}$.
iv) $\{x \in \mathbb{R}: x>0$ and x is rational $\}$.
v) $\{-1,1\}$.
vi) $\{1\}$.

Fact 3.21.2. Let n be a nonnegative integer, and define $\mathrm{S}^{n} \triangleq\left\{x \in \mathbb{R}^{n+1}: x^{\mathrm{T}} x\right.$ $=1\}$, which is the unit sphere in \mathbb{R}^{n+1}. Then, the following statements hold:
i) $\mathrm{SO}(1)=\mathrm{SU}(1)=\{1\}$.
ii) $\mathrm{S}^{0}=\mathrm{O}(1)=\{-1,1\}$.
iii) $\{1,-1, \jmath,-\jmath\}$.
iv) $\mathrm{U}(1)=\left\{e^{\jmath \theta}: \theta \in[0,2 \pi)\right\} \approx \mathrm{SO}(2)$.
v) $\mathrm{S}^{1}=\left\{\left[\begin{array}{ll}\cos \theta & \sin \theta\end{array}\right]^{\mathrm{T}} \in \mathbb{R}^{2}: \theta \in[0,2 \pi)\right\}=\left\{\left[\begin{array}{ll}\operatorname{Re} z & \operatorname{Im} z\end{array}\right]^{\mathrm{T}}: z \in \mathrm{U}(1)\right\}$.
vi) $\mathrm{SU}(2)=\left\{\left[-\frac{z}{w} \frac{w}{z}\right] \in \mathbb{C}^{2 \times 2}: z, w \in \mathbb{C}\right.$ and $\left.|z|^{2}+|w|^{2}=1\right\} \approx \operatorname{Sp}(1)$.
vii) $S^{3}=\left\{\left[\begin{array}{llll}\operatorname{Re} z & \operatorname{Im} z & \operatorname{Re} w & \operatorname{Im} w\end{array}\right]^{\mathrm{T}} \in \mathbb{R}^{4}:\left[\begin{array}{ll}z & w\end{array}\right]^{\mathrm{T}} \in \mathbb{C}^{2}\right.$ and $|z|^{2}+$ $\left.|w|^{2}=1\right\}$.
(Proof: See [1256 p. 40].) (Remark: $\operatorname{Sp}(1) \subset \mathbb{H}^{1 \times 1}$ is the group of unit quaternions. See Fact 3.22.1) (Remark: A group operation can be defined on S^{n} if and only if $n=0,1$, or 3 . See [1256, p. 40].)

Fact 3.21.3. The groups $\mathrm{U}(n)$ and $\mathrm{O}(2 n) \cap \operatorname{Symp}_{\mathbb{R}}(2 n)$ are isomorphic. In particular, $\mathrm{U}(1)$ and $\mathrm{O}(2) \cap \operatorname{Symp}_{\mathbb{R}}(2)=\mathrm{SO}(2)$ are isomorphic. (Proof: See [97].)

Fact 3.21.4. The following subsets of $\mathbb{F}^{n \times n}$ are Lie algebras:
i) $\operatorname{ut}(n) \triangleq\left\{A \in \operatorname{gl}_{\mathbb{F}}(n): A\right.$ is upper triangular $\}$.
ii) $\operatorname{sut}(n) \triangleq\left\{A \in \operatorname{gl}_{\mathbb{F}}(n): \quad A\right.$ is strictly upper triangular $\}$.
iii) $\left\{0_{n \times n}\right\}$.

Fact 3.21.5. The following subsets of $\mathbb{F}^{n \times n}$ are groups:
i) $\mathrm{UT}(n) \triangleq\left\{A \in \mathrm{GL}_{\mathbb{F}}(n): A\right.$ is upper triangular $\}$.
ii) $\mathrm{UT}_{+}(n) \triangleq\left\{A \in \mathrm{UT}(n): A_{(i, i)}>0\right.$ for all $\left.i=1, \ldots, n\right\}$.
iii) $\mathrm{UT}_{ \pm 1}(n) \triangleq\left\{A \in \mathrm{UT}(n): \quad A_{(i, i)}= \pm 1\right.$ for all $\left.i=1, \ldots, n\right\}$.
iv) $\operatorname{SUT}(n) \triangleq\left\{A \in \mathrm{UT}(n): \quad A_{(i, i)}=1\right.$ for all $\left.i=1, \ldots, n\right\}$.
v) $\left\{I_{n}\right\}$.
(Remark: The matrices in $\operatorname{SUT}(n)$ are unipotent. See Fact 5.15.9) (Remark: $\operatorname{SUT}(3)$ for $\mathbb{F}=\mathbb{R}$ is the Heisenberg group.) (Remark: See Fact 3.20.18)

Fact 3.21.6. Let $P \in \mathbb{R}^{n \times n}$, and assume that P is a permutation matrix. Then, there exist transposition matrices $T_{1}, \ldots, T_{k} \in \mathbb{R}^{n \times n}$ such that

$$
P=T_{1} \cdots T_{k}
$$

(Remark: The permutation matrix T_{i} is a transposition matrix if it has exactly two off-diagonal entries that are nonzero.) (Remark: Every permutation of n objects can be realized as a sequence of pairwise transpositions. See [445, pp. 106, 107] or [497 p. 82].) (Example:

$$
\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right],
$$

which represents a 3 -cycle.) (Remark: This factorization in terms of transpositions is not unique. However, Fact 5.16 .8 shows that every permutation can be written essentially uniquely as a product of disjoint cycles.)

Fact 3.21.7. The following subsets of $\mathbb{R}^{n \times n}$ are finite groups:
i) $\mathrm{P}(n) \triangleq\left\{A \in \mathrm{GL}_{\mathbb{R}}(n): A\right.$ is a permutation matrix $\}$.
ii) $\mathrm{SP}(n) \triangleq\{A \in \mathrm{P}(n): \quad \operatorname{det} A=1\}$.

Furthermore, let k be a positive integer, and define $R, S \in \mathbb{R}^{2 \times 2}$ by

$$
R \triangleq\left[\begin{array}{cc}
\cos \frac{2 \pi}{k} & \sin \frac{2 \pi}{k} \\
-\sin \frac{2 \pi}{k} & \cos \frac{2 \pi}{k}
\end{array}\right], \quad S \triangleq\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]=\hat{I}_{2} .
$$

Then, $R^{k}=S^{2}=I_{2}$, and the following subsets of $\mathbb{R}^{2 \times 2}$ are finite groups:
iii) $\mathrm{O}_{k}(2) \triangleq\left\{I, R, \ldots, R^{k-1}, S, S R, \ldots, S R^{k-1}\right\}$.
iv) $\mathrm{SO}_{k}(2) \triangleq\left\{I, R, \ldots, R^{k-1}\right\}$.

Finally, the cardinality of $\mathrm{P}(n), \mathrm{SP}(n), \mathrm{O}_{k}(2)$, and $\mathrm{SO}_{k}(2)$ is $n!, \frac{1}{2} n!, 2 k$, and k, respectively. (Remark: The elements of $\mathrm{P}(n)$ permute n-tuples arbitrarily, while the elements of $\operatorname{SP}(n)$ permute n-tuples evenly. See Fact 5.16.8. The elements of $\mathrm{SO}_{k}(2)$ perform counterclockwise rotations of planar figures by the angle $2 \pi / k$ about a line perpendicular to the plane and passing through 0 , while the elements of $\mathrm{O}_{k}(2)$ perform the rotations of $\mathrm{SO}_{k}(2)$ and reflect planar figures across the line $y=x$. See [445, pp. 41, 845].) (Remark: These groups are matrix representations of symmetry groups, which are groups of transformations that map a set onto itself. Specifically, $\mathrm{P}(k), \mathrm{SP}(k), \mathrm{O}_{k}(2)$, and $\mathrm{SO}_{k}(2)$, are matrix representations of the permutation group S_{k}, the alternating group A_{k}, the dihedral group D_{k}, and the cyclic group C_{k}, respectively, all of which can be viewed as abstract groups having matrix representations. Matrix representations of groups are discussed in 520.) (Remark: An abstract group is a collection of objects (not necessarily matrices) that satisfy the properties of a group as defined by Definition 3.3.3.) (Remark: Every finite subgroup of $\mathrm{O}(2)$ is a representation of either D_{k} or C_{k} for some k. Furthermore, every finite subgroup of $\mathrm{SO}(3)$ is a representation of either D_{k} or C_{k} for some k or $\mathrm{A}_{4}, \mathrm{~S}_{4}$, or A_{5}. The symmetry groups $\mathrm{A}_{4}, \mathrm{~S}_{4}$, and A_{5} are represented by bijective transformations of regular solids. Specifically, A_{4} is represented by the tetrahedral group, which consists of 12 rotation matrices that map a regular tetrahedron onto itself; S_{4} is represented by the octahedral group, which consists of 24 rotation matrices that map an octahedron or a cube onto itself; and A_{5} is represented by the icosahedral group, which consists of 60 rotation matrices that map a regular icosahedron or a regular dodecahedron onto itself. The 12 elements of the tetrahedral group representing A_{4} are given by $D R^{k}$, where $D \in\left\{I_{3}, \operatorname{diag}(1,-1,-1), \operatorname{diag}(-1,-1,1), \operatorname{diag}(-1,1,-1)\right\}$, $R \triangleq\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$, and $k=0,1,2$. The 24 elements of the octahedral group representing S_{4} are given by the 3×3 signed permutation matrices with determinant 1 , where a signed permutation matrix has exactly one nonzero entry, which is either 1 or -1 , in each row and column. See [75, p. 184], [346, p. 32], [571, pp. 176-193], [603, pp. 923], [1149, p. 69], [1187, pp. 35-43], or [1256, pp. 45-47].) (Remark: The dihedral group D_{2} is also called the Klein four group.) (Remark: The permutation group S_{k} is not Abelian for all $k \geq 3$. The alternating group A_{3} is Abelian, whereas A_{k} is not Abelian for all $k \geq 4 . \mathrm{A}_{5}$ is essential to the classical result of Abel and Galois that there exist fifth-order polynomials whose roots cannot be expressed in terms of radicals involving the coefficients. Two such polynomials are $p(x)=x^{5}-x-1$ and $p(x)=x^{5}-16 x+2$. See [75], p. 574] and [445], pp. 32, 625-639].)

Fact 3.21.8. The following sets of matrices are groups:
i) $\mathrm{P}(2)=\mathrm{O}_{1}(2)=\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\right\}$.
ii) $\mathrm{SO}_{2}(2)=\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]\right\}$.
iii) $\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right]\right\}$.
iv) $\mathrm{SP}(3)=\left\{I_{3}, P_{3}, P_{3}^{2}\right\}$, where $P_{3} \triangleq\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right]$.
v) $\mathrm{O}_{2}(2)=\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right],\left[\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right]\right\}$.
vi) $\left\{I_{4}, P_{4}, P_{4}^{2}, P_{4}^{3}\right\}$, where $P_{4} \triangleq\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0\end{array}\right]$.
vii) $\mathrm{P}(3)=\left\{\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right],\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right],\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right],\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right],\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right],\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]\right\}$.
viii) $\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{cc}0 & 1 \\ -1 & -1\end{array}\right],\left[\begin{array}{cc}-1 & -1 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right],\left[\begin{array}{cc}-1 & -1 \\ 0 & 1\end{array}\right],\left[\begin{array}{cc}1 & 0 \\ -1 & -1\end{array}\right]\right\}$.
$i x)$ For all $k \geq 0, \mathrm{SU}_{k}(1) \triangleq\left\{1, e^{2 \pi \jmath / k}, e^{4 \pi \jmath / k}, \ldots, e^{2(k-1) \pi \jmath / k}\right\}$.
x) $\left\{I, P_{k}, P_{k}^{2}, \ldots, P_{k}^{k-1}\right\}$.
(Remark: i, $i i$), and $i i i$) are representations of the cyclic group C_{2}, which is identical to the permutation group S_{2} and the dihedral group $\mathrm{D}_{1} ; i v$) is a representation of the cyclic group C_{3}, which is identical to alternating group $\mathrm{A}_{3} ; v$) is a representation of the dihedral group D_{2}, which is also called the Klein four group, see Fact 3.21.7 $v i$) is a representation of the cyclic group C_{4}; vii) is a representation of the permutation group S_{3}, which is identical to the dihedral group D_{3}, with $A^{2}=B^{3}=(A B)^{2}=I_{3}$, where $A \triangleq\left[\begin{array}{ccc}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$ and $B \triangleq\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right]$; viii) is a representation of the dihedral group D_{3}, where $\left.\left[\begin{array}{cc}0 & 1 \\ -1 & -1\end{array}\right]^{3}=I_{2} ; i x\right)$ is a matrix representation of the cyclic group C_{k} and its real representation $\left.\mathrm{SO}_{k}(2) ; x\right)$ is a matrix representation of the cyclic group C_{k}, where P_{k} is the $k \times k$ primary circulant defined in Fact 5.16.7. The groups $\mathrm{P}(n)$ and $\mathrm{SP}(n)$ are defined in Fact 3.21.7. Representations of groups are discussed in 616, 631, 703.)

Fact 3.21.9. The following statements hold:
i) There exists exactly one isomorphically distinct group consisting of one element. A representation is $\left\{I_{n}\right\}$.
ii) There exists exactly one isomorphically distinct group consisting of two elements, namely, the cyclic group C_{2}, which is identical to the permutation group S_{2} and the dihedral group D_{1}. Representations of C_{2} are given by $\mathrm{P}(2), \mathrm{O}_{1}(2), \mathrm{SO}_{2}(2)$, and $\mathrm{SU}_{2}(1)=\{1,-1\}$.
iii) There exists exactly one isomorphically distinct group consisting of three elements, namely, the cyclic group C_{3}, which is identical to the alternating group A_{3}. Representations of C_{3} are given by $\mathrm{SP}(3), \mathrm{SO}_{3}(2), \mathrm{SU}_{3}(1)$, and $\left\{I_{3}, P_{3}, P_{3}^{2}\right\}$.
iv) There exist exactly two isomorphically distinct groups consisting of four elements, namely, the cyclic group C_{4} and the dihedral group D_{2}. Representations of C_{4} are given by $\mathrm{SO}_{4}(2)$ and $\mathrm{SU}_{4}(1)=\{1,-1, \jmath,-\jmath\}$. A
representation of D_{2} is given by $\mathrm{O}_{2}(2)$.
v) There exists exactly one isomorphically distinct group consisting of five elements, namely, the cyclic group C_{5}. Representations of C_{5} are given by $\mathrm{SO}_{5}(2), \mathrm{SU}_{5}(1)$, and $\left\{I_{5}, P_{5}, P_{5}^{2}, P_{5}^{3}, P_{5}^{4}\right\}$.
$v i)$ There exist exactly two isomorphically distinct groups consisting of six elements, namely, the cyclic group C_{6} and the dihedral group D_{3}, which is identical to S_{3}. Representations of C_{6} are given by $\mathrm{SO}_{6}(2), \mathrm{SU}_{6}(1)$, and $\left\{I_{6}, P_{6}, P_{6}^{2}, P_{6}^{3}, P_{6}^{4}, P_{6}^{5}\right\}$. Representations of D_{3} are given by $\mathrm{P}(3)$ and $\mathrm{O}_{3}(2)$.
vii) There exists exactly one isomorphically distinct group consisting of seven elements, namely, the cyclic group C_{7}. Representations of C_{7} are given by $\mathrm{SO}_{7}(2), \mathrm{SU}_{7}(1)$, and $\left\{I_{7}, P_{7}, P_{7}^{2}, P_{7}^{3}, P_{7}^{4}, P_{7}^{5}, P_{7}^{6}\right\}$.
viii) There exist exactly five isomorphically distinct groups consisting of eight elements, namely, $\mathrm{C}_{8}, \mathrm{D}_{2} \times \mathrm{C}_{2}, \mathrm{C}_{4} \times \mathrm{C}_{2}, \mathrm{D}_{4}$, and the quaternion group $\{ \pm 1, \pm \hat{\imath}, \pm \hat{\jmath}, \pm \hat{k}\}$. Representations of C_{8} are given by $\mathrm{SO}_{8}(2), \mathrm{SU}_{8}(1)$, and $\left\{I_{8}, P_{8}, P_{8}^{2}, P_{8}^{3}, P_{8}^{4}, P_{8}^{5}, P_{8}^{6}, P_{8}^{7}\right\}$. A representation of D_{4} is given by $\mathrm{O}_{8}(2)$. Representations of the quaternion group are given by $i i$) of Fact 3.22.3 and $v)$ of Fact 3.22.6
(Proof: See [555 pp. 4-7].) (Remark: P_{k} is the $k \times k$ primary circulant defined in Fact 5.16.7)

Fact 3.21.10. Let $\mathcal{S} \subset \mathbb{F}^{n \times n}$, and assume that \mathcal{S} is a group. Then, $\left\{A^{\mathrm{T}}: A \in \mathcal{S}\right\}$ and $\{\bar{A}: A \in \mathcal{S}\}$ are groups.

Fact 3.21.11. Let $P \in \mathbb{F}^{n \times n}$, and define $\mathcal{S} \triangleq\left\{A \in \mathbb{F}^{n \times n}: A^{\mathrm{T}} P A=P\right\}$. Then, \mathcal{S} is a group. If, in addition, P is nonsingular and skew symmetric, then, for every matrix $P \in \mathcal{S}$, it follows that $\operatorname{det} P=1$. (Proof: See [341].) (Remark: If $\mathbb{F}=\mathbb{R}, n$ is even, and $P=J_{n}$, then $\mathcal{S}=\operatorname{Symp}_{\mathbb{R}}(n)$.) (Remark: Weaker conditions on P such that $\operatorname{det} P=1$ for all $P \in S$ are given in 341.)

3.22 Facts on Quaternions

Fact 3.22.1. Let $\hat{\imath}, \hat{\jmath}, \hat{k}$ satisfy

$$
\begin{gathered}
\hat{\imath}^{2}=\hat{\jmath}^{2}=\hat{k}^{2}=-1, \\
\hat{\imath} \hat{\jmath}=\hat{k}=-\hat{\jmath}, \\
\hat{\jmath} \hat{k}=\hat{\imath}=-\hat{k} \hat{\jmath}, \\
\hat{k} \hat{\imath}=\hat{\jmath}=-\hat{\imath},
\end{gathered}
$$

and define

$$
\mathbb{H} \triangleq\{a+b \hat{\imath}+c \hat{\jmath}+d \hat{k}: a, b, c, d \in \mathbb{R}\} .
$$

Furthermore, for $a, b, c, d \in \mathbb{R}$, define $q \triangleq a+b \hat{\imath}+c \hat{\jmath}+d \hat{k}, \bar{q} \triangleq a-b \hat{\imath}-c \hat{\jmath}-d \hat{k}$, and $|q| \triangleq \sqrt{q \bar{q}}=\sqrt{a^{2}+b^{2}+c^{2}+d^{2}}=|\bar{q}|$. Then,

$$
q I_{4}=U Q(q) U,
$$

where

$$
\mathcal{Q}(q) \triangleq\left[\begin{array}{rrrr}
a & -b & -c & -d \\
b & a & -d & c \\
c & d & a & -b \\
d & -c & b & a
\end{array}\right]
$$

and

$$
U \triangleq \frac{1}{2}\left[\begin{array}{rrrr}
1 & \hat{\imath} & \hat{\jmath} & k \\
-\hat{\imath} & 1 & \hat{k} & -\hat{\jmath} \\
-\hat{\jmath} & -\hat{k} & 1 & \hat{\imath} \\
-\hat{k} & \hat{\jmath} & -\hat{\imath} & 1
\end{array}\right]
$$

satisfies $U^{2}=I_{4}$. In addition,

$$
\operatorname{det} \mathcal{Q}(q)=\left(a^{2}+b^{2}+c^{2}+c^{2}\right)^{2} .
$$

Furthermore, if $|q|=1$, then $\left[\begin{array}{cccc}a & -b & -c & d \\ b & a & -d & c \\ c & d & a \\ d & -c & b & b\end{array}\right]$ is orthogonal. Next, for $i=1,2$, let $a_{i}, b_{i}, c_{i}, d_{i} \in \mathbb{R}$, define $q_{i} \triangleq a_{i}+b_{i} \hat{\imath}+c_{i} \hat{\jmath}+d_{i} \hat{k}$, and define

$$
q_{3} \triangleq q_{2} q_{1}=a_{3}+b_{3} \hat{\imath}+c_{3} \hat{\jmath}+d_{3} \hat{k} .
$$

Then,

$$
\begin{gathered}
\overline{q_{3}}=\overline{q_{2}} \overline{q_{1}}, \\
\left|q_{3}\right|=\left|q_{2} q_{1}\right|=\left|q_{1} q_{2}\right|=\left|q_{1} \overline{q_{2}}\right|=\left|\overline{q_{1}} q_{2}\right|=\left|\overline{q_{1}} \overline{q_{2}}\right|=\left|q_{1}\right|\left|q_{2}\right|, \\
\mathcal{Q}\left(q_{3}\right)=\mathfrak{2}\left(q_{2}\right) \mathscr{Q}\left(q_{1}\right),
\end{gathered}
$$

and

$$
\left[\begin{array}{l}
a_{3} \\
b_{3} \\
c_{3} \\
d_{3}
\end{array}\right]=Q\left(q_{2}\right)\left[\begin{array}{l}
a_{1} \\
b_{1} \\
c_{1} \\
d_{1}
\end{array}\right] .
$$

Next, for $i=1,2$, define $v_{i} \triangleq\left[\begin{array}{lll}b_{i} & c_{i} & d_{i}\end{array}\right]^{\mathrm{T}}$. Then,

$$
\left[\begin{array}{l}
a_{3} \\
b_{3} \\
c_{3} \\
d_{3}
\end{array}\right]=\left[\begin{array}{c}
a_{2} a_{1}-v_{2}^{\mathrm{T}} v_{1} \\
a_{1} v_{2}+a_{2} v_{1}+v_{2} \times v_{1}
\end{array}\right] .
$$

(Remark: q is a quaternion. See [477] pp. 287-294]. Note the analogy between $\hat{\imath}, \hat{\jmath}, \hat{k}$ and the unit vectors in \mathbb{R}^{3} under cross-product multiplication. See 103 p. 119].) (Remark: The group $\mathrm{Sp}(1)$ of unit-length quaternions is isomorphic to $\operatorname{SU}(2)$. See [362, p. 30], [1256] p. 40], and Fact 3.19.11) (Remark: The unitlength quaternions, whose coefficients comprise the unit sphere $S^{3} \subset \mathbb{R}^{4}$ and are called Euler parameters, provide a double cover of $\mathrm{SO}(3)$ as shown by Fact 3.11.10, See [152, p. 380] and [26, 346, 850, 1195).) (Remark: An equivalent formulation of quaternion multiplication is given by Rodrigues's formulas. See Fact 3.11.11.) (Remark: Determinants of matrices with quaternion entries are discussed in 80 and [1256, p. 31].) (Remark: The Clifford algebras include the quaternion algebra \mathbb{H} and the octonion algebra \mathbb{O}, which involves the Cayley numbers. See [477] pp.

295-300]. These ideas from the basis for geometric algebra. See [1217] p. 100] and [98, 346, 349, 364, 411, 425, 426, 477, 605, 607, 636, 670, 671, 672, 684, 831, 870 , 934, 1098, 1185, 1250, 1256, 1279.)

Fact 3.22.2. Let $a, b, c, d \in \mathbb{R}$, and let $q \triangleq a+b \hat{\imath}+c \hat{\jmath}+d \hat{k} \in \mathbb{H}$. Then,

$$
q=a+b \hat{\imath}+(c+d \hat{\imath}) \hat{\jmath}
$$

(Remark: For all $q \in \mathbb{H}$, there exist $z, w \in \mathbb{C}$ such that $q=z+w \hat{\jmath}$, where we interpret \mathbb{C} as $\{a+b \hat{\imath}: a, b \in \mathbb{R}\}$. This observation is analogous to the fact that, for all $z \in \mathbb{C}$, there exist $a, b \in \mathbb{R}$ such that $z=a+b \jmath$, where $\jmath \triangleq \sqrt{-1}$. See [1256] p. 10].)

Fact 3.22.3. The following sets are groups:
i) $\mathrm{Q} \triangleq\{ \pm 1, \pm \hat{\imath}, \pm \hat{\jmath}, \pm \hat{k}\}$.
ii) $\mathrm{GL}_{\mathbb{H}}(1) \triangleq \mathbb{H} \backslash\{0\}=\left\{a+b \hat{\imath}+c \hat{\jmath}+d \hat{k}: a, b, c, d \in \mathbb{R}\right.$ and $\left.a^{2}+b^{2}+c^{2}+d^{2}>0\right\}$.
iii) $\mathrm{Sp}(1) \triangleq\left\{a+b \hat{\imath}+c \hat{\jmath}+d \hat{k}: a, b, c, d \in \mathbb{R}\right.$ and $\left.a^{2}+b^{2}+c^{2}+d^{2}=1\right\}$.
iv) $\mathrm{Q}_{\mathbb{R}} \triangleq\left\{ \pm I_{4}, \pm\left[\begin{array}{cccc}0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0\end{array}\right], \pm\left[\begin{array}{cccc}0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0\end{array}\right], \pm\left[\begin{array}{cccc}0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right]\right\}$.
v) $\mathrm{GL}_{\mathbb{H}, \mathbb{R}}(1) \triangleq\left\{\left[\begin{array}{cccc}a & -b & -c & -d \\ b & a & -d & c \\ c & d & a & -b \\ d & -c & b & a\end{array}\right]: a^{2}+b^{2}+c^{2}+d^{2}>0\right\}$.
vi) $\mathrm{GL}_{\mathbb{H}, \mathbb{R}}^{\prime}(1) \triangleq\left\{\left[\begin{array}{cccc}a & -b & -c & -d \\ b & a & -d & c \\ c & d & a & -b \\ d & -c & b & a\end{array}\right]: a^{2}+b^{2}+c^{2}+d^{2}=1\right\}$.

Furthermore, Q and $\mathrm{Q}_{\mathbb{R}}$ are isomorphic, $\mathrm{GL}_{\mathbb{H}}(1)$ and $\mathrm{GL}_{\mathbb{H}, \mathbb{R}}(1)$ are isomorphic, $\operatorname{Sp}(1)$ and $\mathrm{GL}_{\mathbb{H}, \mathbb{R}}^{\prime}(1)$ are isomorphic, and $\mathrm{GL}_{\mathbb{H}, \mathbb{R}}^{\prime}(1) \subset \mathrm{SO}(4) \cap \operatorname{Symp}_{\mathbb{R}}$ (4). (Remark: J_{4} is an element of $\operatorname{Symp}_{\mathbb{R}}(4) \cap \mathrm{SO}(4)$ but is not contained in $\mathrm{GL}_{\mathbb{H}, \mathbb{R}}^{\prime}(1)$.) (Remark: See Fact 3.22.1.)

Fact 3.22.4. Define

$$
\mathrm{Sp}(n) \triangleq\left\{A \in \mathbb{H}^{n \times n}: A^{*} A=I\right\}
$$

where \mathbb{H} is the quaternion algebra, $A^{*} \triangleq \bar{A}^{\mathrm{T}}$, and, for $q=a+b \hat{\imath}+c \hat{\jmath}+d \hat{k} \in \mathbb{H}$, $\bar{q} \triangleq a-b \hat{\imath}-c \hat{\jmath}-d \hat{k}$. Then, the groups $\operatorname{Sp}(n)$ and $\mathrm{U}(2 n) \cap \operatorname{Symp}_{\mathbb{C}}(2 n)$ are isomorphic. In particular, $\operatorname{Sp}(1)$ and $\mathrm{U}(2) \cap \operatorname{Symp}_{\mathbb{C}}(2)=\mathrm{SU}(2)$ are isomorphic. (Proof: See [97.) (Remark: $\mathrm{U}(n)$ and $\mathrm{O}(2 n) \cap \operatorname{Symp}_{\mathbb{R}}(2 n)$ are isomorphic.) (Remark: See Fact 3.22.3.)

Fact 3.22.5. Let n be a positive integer. Then, $\operatorname{SO}(2 n) \cap \operatorname{Symp}_{\mathbb{R}}(2 n)$ is a matrix group whose Lie algebra is so $(2 n) \cap \operatorname{symp}_{\mathbb{R}}(2 n)$. Furthermore, $A \in \mathrm{SO}(2 n) \cap$ $\operatorname{Symp}_{\mathbb{R}}(2 n)$ if and only if $A \in \operatorname{Symp}_{\mathbb{R}}(2 n)$ and $A J_{2 n}=J_{2 n} A$. Finally, $A \in \operatorname{so}(2 n) \cap$ $\operatorname{symp}_{\mathbb{R}}(2 n)$ if and only if $A \in \operatorname{symp}_{\mathbb{R}}(2 n)$ and $A J_{2 n}=J_{2 n} A$. (Proof: See [194].)

Fact 3.22.6. Define $Q_{0}, Q_{1}, Q_{2}, Q_{3} \in \mathbb{C}^{2 \times 2}$ by

$$
Q_{0} \triangleq I_{2}, Q_{1} \triangleq\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right], Q_{2} \triangleq\left[\begin{array}{cc}
-\jmath & 0 \\
0 & \jmath
\end{array}\right], Q_{3} \triangleq\left[\begin{array}{cc}
0 & -\jmath \\
-\jmath & 0
\end{array}\right]
$$

Then, the following statements hold:
i) $Q_{0}^{*}=Q_{0}$ and $Q_{i}^{*}=-Q_{i}$ for all $i=1,2,3$.
ii) $Q_{0}^{2}=Q_{0}$ and $Q_{i}^{2}=-Q_{0}$ for all $i=1,2,3$.
iii) $Q_{i} Q_{j}=-Q_{j} Q_{i}$ for all $1 \leq i<j \leq 3$.
iv) $Q_{1} Q_{2}=Q_{3}, Q_{2} Q_{3}=Q_{1}$, and $Q_{3} Q_{1}=Q_{2}$.
v) $\left\{ \pm Q_{0}, \pm Q_{1}, \pm Q_{2}, \pm Q_{3}\right\}$ is a group.

For $\beta \triangleq\left[\begin{array}{llll}\beta_{0} & \beta_{1} & \beta_{2} & \beta_{3}\end{array}\right]^{\mathrm{T}} \in \mathbb{R}^{4}$ define

$$
Q(\beta) \triangleq \sum_{i=0}^{3} \beta_{i} Q_{i}=\left[\begin{array}{cc}
\beta_{0}+\beta_{1 \jmath} & -\left(\beta_{2}+\beta_{3 \jmath}\right) \\
\beta_{2}-\beta_{3 \jmath} & \beta_{0}-\beta_{1 \jmath}
\end{array}\right]
$$

Then,

$$
Q(\beta) Q^{*}(\beta)=\beta^{\mathrm{T}} \beta I_{2}
$$

and

$$
\operatorname{det} Q(\beta)=\beta^{\mathrm{T}} \beta
$$

Hence, if $\beta^{\mathrm{T}} \beta=1$, then $Q(\beta)$ is unitary. Furthermore, the complex matrices $Q_{0}, Q_{1}, Q_{2}, Q_{3}$, and $Q(\beta)$ have the real representations

$$
\begin{gathered}
\mathcal{Q}_{0}=I_{4}, \quad \mathcal{Q}_{1}=\left[\begin{array}{ccc}
-J_{2} & 0 \\
0 & -J_{2}
\end{array}\right], \\
\mathcal{Q}_{2}=\left[\begin{array}{rrrr}
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right], \quad \mathcal{Q}_{3}=\left[\begin{array}{rrrr}
0 & 0 & 0 & -1 \\
0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right], \\
\mathcal{Q}(\beta)=\left[\begin{array}{rrrr}
\beta_{0} & -\beta_{1} & -\beta_{2} & -\beta_{3} \\
\beta_{1} & \beta_{0} & -\beta_{3} & \beta_{2} \\
\beta_{2} & \beta_{3} & \beta_{0} & -\beta_{1} \\
\beta_{3} & -\beta_{2} & \beta_{1} & \beta_{0}
\end{array}\right] .
\end{gathered}
$$

Hence,

$$
\mathcal{Q}(\beta) \mathcal{Q}^{\mathrm{T}}(\beta)=\beta^{\mathrm{T}} \beta I_{4}
$$

and

$$
\operatorname{det} \mathcal{Q}(\beta)=\left(\beta^{\mathrm{T}} \beta\right)^{2}
$$

(Remark: $Q_{0}, Q_{1}, Q_{2}, Q_{3}$ represent the quaternions $1, \hat{\imath}, \hat{\jmath}, \hat{k}$. See Fact 3.22.1. An alternative representation is given by the Pauli spin matrices given by $\sigma_{0}=I_{2}, \sigma_{1}=$ $\jmath Q_{3}, \sigma_{2}=\jmath Q_{1}, \sigma_{3}=\jmath Q_{2}$. See [636] pp. 143-144], [777].) (Remark: For applications of quaternions, see [26, 607, 636, 850].) (Remark: $\mathcal{Q}(\beta)$ has the form $\left[\begin{array}{cc}A & B \\ -B & A\end{array}\right]$, where A and $\hat{I} B$ are rotation-dilations. See Fact 2.19.1.)

Fact 3.22.7. Let $A, B, C, D \in \mathbb{R}^{n \times m}$, define $\hat{\imath}, \hat{\jmath}, \hat{k}$ as in Fact 3.22.1, and let $Q \triangleq A+\hat{\imath} B+\hat{\jmath} C+\hat{k} D$. Then,

$$
\operatorname{diag}(Q, Q)=U_{n}^{*}\left[\begin{array}{rr}
A+\hat{\imath} B & -C-\hat{\imath} D \\
C-\hat{\imath} D & A-\hat{\imath} B
\end{array}\right] U_{m}
$$

where

$$
U_{n} \triangleq \frac{1}{\sqrt{2}}\left[\begin{array}{rr}
I_{n} & -\hat{\imath} I_{n} \\
-\hat{\jmath} I_{n} & k I_{n}
\end{array}\right] .
$$

Furthermore, $U_{n} U_{n}^{*}=I_{2 n}$. (Proof: See [1304, 1305.) (Remark: When $n=m$, this identity uses a similarity transformation to construct a complex representation of quaternions.) (Remark: The complex conjugate U_{n}^{*} is constructed as in Fact 3.22.7.)

Fact 3.22.8. Let $A, B, C, D \in \mathbb{R}^{n \times n}$, define $\hat{\imath}, \hat{\jmath}, \hat{k}$ as in Fact 3.22.1, and let $Q \triangleq A+\hat{\imath} B+\hat{\jmath} C+\hat{k} D$. Then,

$$
\operatorname{diag}(Q, Q, Q, Q)=U_{n}\left[\begin{array}{rrrr}
A & -B & -C & -D \\
B & A & -D & C \\
C & D & A & -B \\
D & -C & B & A
\end{array}\right] U_{m},
$$

where

$$
U_{n} \triangleq \frac{1}{2}\left[\begin{array}{rrrr}
I_{n} & \hat{\imath} I_{n} & \hat{\jmath} I_{n} & \hat{k} I_{n} \\
-\hat{\imath} I_{n} & I_{n} & \hat{k} I_{n} & -\hat{\jmath} I_{n} \\
-\hat{\jmath} I_{n} & -\hat{k} I_{n} & I_{n} & \hat{\imath} I_{n} \\
-\hat{k} I_{n} & \hat{\jmath} I_{n} & -\hat{\imath} I_{n} & I_{n}
\end{array}\right] .
$$

Furthermore, $U_{n}^{*}=U_{n}$ and $U_{n}^{2}=I_{4 n}$. (Proof: See 1304, 1305. See also 80, 257, 470, 600 1488.) (Remark: When $n=m$, this identity uses a similarity transformation to construct a real representation of quaternions. See Fact 2.14.11) (Remark: The complex conjugate U_{n}^{*} is constructed by replacing $\hat{\imath}, \hat{\jmath}, \hat{k}$ by $-\hat{\imath},-\hat{\jmath},-\hat{k}$, respectively, in U_{n}^{T}.)

Fact 3.22.9. Let $A \in \mathbb{C}^{2 \times 2}$. Then, A is unitary if and only if there exist $\theta \in \mathbb{R}$ and $\beta \in \mathbb{R}^{4}$ such that $A=e^{\jmath \theta} Q(\beta)$, where $Q(\beta)$ is defined in Fact 3.22.6. (Proof: See [1129 p. 228].)

3.23 Notes

In the literature on generalized inverses, range-Hermitian matrices are traditionally called EP matrices. Elementary reflectors are traditionally called Householder matrices or Householder reflections.

An alternative term for irreducible is indecomposable, see [963 p. 147].
Left equivalence, right equivalence, and biequivalence are treated in 1129. Each of the groups defined in Proposition 3.3 .6 is a Lie group; see Definition 11.6.1. Elementary treatments of Lie algebras and Lie groups are given in [75, 77, 103 , (362, 459, 473, 553, 554, 724, 1077, 1147, 1185, while an advanced treatment ap-
pears in [1366]. Some additional groups of structured matrices are given in 944 . Applications of group theory are discussed in 781.
"Almost nonnegative matrices" are called "ML-matrices" in [1184, p. 208] and "essentially nonnegative matrices" in [182, 190, 617.

The terminology "idempotent" and "projector" is not standardized in the literature. Some writers use "projector," "oblique projector," or "projection" 536 for idempotent, and "orthogonal projector" or "orthoprojector" for projector. Centrosymmetric and centrohermitian matrices are discussed in 883, 1410.

Matrices with set-valued entries are discussed in [551]. Matrices with entries having physical dimensions are discussed in [641, 1062 .

Chapter Four

Polynomial Matrices and Rational Transfer Functions

In this chapter we consider matrices whose entries are polynomials or rational functions. The decomposition of polynomial matrices in terms of the Smith form provides the foundation for developing canonical forms in Chapter 5. In this chapter we also present some basic properties of eigenvalues and eigenvectors as well as the minimal and characteristic polynomials of a square matrix. Finally, we consider the extension of the Smith form to the Smith-McMillan form for rational transfer functions.

4.1 Polynomials

A function $p: \mathbb{C} \mapsto \mathbb{C}$ of the form

$$
\begin{equation*}
p(s)=\beta_{k} s^{k}+\beta_{k-1} s^{k-1}+\cdots+\beta_{1} s+\beta_{0} \tag{4.1.1}
\end{equation*}
$$

where $k \in \mathbb{N}$ and $\beta_{0}, \ldots, \beta_{k} \in \mathbb{F}$, is a polynomial. The set of polynomials is denoted by $\mathbb{F}[s]$. If the coefficient $\beta_{k} \in \mathbb{F}$ is nonzero, then the degree of p, denoted by $\operatorname{deg} p$, is k. If, in addition, $\beta_{k}=1$, then p is monic. If $k=0$, then p is constant. The degree of a nonzero constant polynomial is zero, while the degree of the zero polynomial is defined to be $-\infty$.

Let p_{1} and p_{2} be polynomials. Then,

$$
\begin{equation*}
\operatorname{deg} p_{1} p_{2}=\operatorname{deg} p_{1}+\operatorname{deg} p_{2} \tag{4.1.2}
\end{equation*}
$$

If $p_{1}=0$ or $p_{2}=0$, then $\operatorname{deg} p_{1} p_{2}=\operatorname{deg} p_{1}+\operatorname{deg} p_{2}=-\infty$. If p_{2} is a nonzero constant, then $\operatorname{deg} p_{2}=0$, and thus $\operatorname{deg} p_{1} p_{2}=\operatorname{deg} p_{1}$. Furthermore,

$$
\begin{equation*}
\operatorname{deg}\left(p_{1}+p_{2}\right) \leq \max \left\{\operatorname{deg} p_{1}, \operatorname{deg} p_{2}\right\} \tag{4.1.3}
\end{equation*}
$$

Therefore, $\operatorname{deg}\left(p_{1}+p_{2}\right)=\max \left\{\operatorname{deg} p_{1}, \operatorname{deg} p_{2}\right\}$ if and only if either $\left.i\right) \operatorname{deg} p_{1} \neq \operatorname{deg} p_{2}$ or $i i) p_{1}=p_{2}=0$ or $\left.i i i\right) r \triangleq \operatorname{deg} p_{1}=\operatorname{deg} p_{2} \neq-\infty$ and the sum of the coefficients of s^{r} in p_{1} and p_{2} is not zero. Equivalently, $\operatorname{deg}\left(p_{1}+p_{2}\right)<\max \left\{\operatorname{deg} p_{1}, \operatorname{deg} p_{2}\right\}$ if and only if $r \triangleq \operatorname{deg} p_{1}=\operatorname{deg} p_{2} \neq-\infty$ and the sum of the coefficients of s^{r} in p_{1} and p_{2} is zero.

Let $p \in \mathbb{F}[s]$ be a polynomial of degree $k \geq 1$. Then, it follows from the fundamental theorem of algebra that p has k possibly repeated complex roots $\lambda_{1}, \ldots, \lambda_{k}$ and thus can be factored as

$$
\begin{equation*}
p(s)=\beta \prod_{i=1}^{k}\left(s-\lambda_{i}\right) \tag{4.1.4}
\end{equation*}
$$

where $\beta \in \mathbb{F}$. The multiplicity of a root $\lambda \in \mathbb{C}$ of p is denoted by $\operatorname{mult}_{p}(\lambda)$. If λ is not a root of p, then $\operatorname{mult}_{p}(\lambda)=0$. The multiset consisting of the roots of p including multiplicity is $\operatorname{mroots}(p)=\left\{\lambda_{1}, \ldots, \lambda_{k}\right\}_{\mathrm{ms}}$, while the set of roots of p ignoring multiplicity is $\operatorname{roots}(p)=\left\{\hat{\lambda}_{1}, \ldots, \hat{\lambda}_{l}\right\}$, where $\sum_{i=1}^{l} \operatorname{mult}_{p}\left(\hat{\lambda}_{i}\right)=k$. If $\mathbb{F}=\mathbb{R}$, then the multiplicity of a root λ_{i} whose imaginary part is nonzero is equal to the multiplicity of its complex conjugate $\overline{\lambda_{i}}$. Hence, $\operatorname{mroots}(p)$ is self-conjugate, that is, $\operatorname{mroots}(p)=\overline{\operatorname{mroots}(p)}$.

Let $p \in \mathbb{F}[s]$. If $p(-s)=p(s)$ for all $s \in \mathbb{C}$, then p is even, while, if $p(-s)=$ $-p(s)$ for all $s \in \mathbb{C}$, then p is odd. If p is either odd or even, then $\operatorname{mroots}(p)=$ $-\operatorname{mroots}(p)$. If $p \in \mathbb{R}[s]$ and there exists a polynomial $q \in \mathbb{R}[s]$ such that $p(s)=$ $q(s) q(-s)$ for all $s \in \mathbb{C}$, then p has a spectral factorization. If p has a spectral factorization, then p is even and $\operatorname{deg} p$ is an even integer.

Proposition 4.1.1. Let $p \in \mathbb{R}[s]$. Then, the following statements are equivalent:
i) p has a spectral factorization.
ii) p is even, and every imaginary root of p has even multiplicity.
iii) p is even, and $p(\jmath \omega) \geq 0$ for all $\omega \in \mathbb{R}$.

Proof. The equivalence of i) and $i i$) is immediate. To prove $i) \Longrightarrow i i i$, note that, for all $\omega \in \mathbb{R}$,

$$
p(\jmath \omega)=q(\jmath \omega) q(-\jmath \omega)=|q(\jmath \omega)|^{2} \geq 0
$$

Conversely, to prove $i i i) \Longrightarrow i$) write $p=p_{1} p_{2}$, where every root of p_{1} is imaginary and none of the roots of p_{2} are imaginary. Now, let z be a root of p_{2}. Then, $-z, \bar{z}$, and $-\bar{z}$ are also roots of p_{2} with the same multiplicity as z. Hence, there exists a polynomial $p_{20} \in \mathbb{R}[s]$ such that $p_{2}(s)=p_{20}(s) p_{20}(-s)$ for all $s \in \mathbb{C}$.

Next, assuming that p has at least one imaginary root, write $p_{1}(s)=$ $\prod_{i=1}^{k}\left(s^{2}+\omega_{i}^{2}\right)^{m_{i}}$, where $0 \leq \omega_{1}<\cdots<\omega_{k}$ and $m_{i} \triangleq \operatorname{mult}_{p}\left(\jmath \omega_{i}\right)$. Let $\omega_{i_{0}}$ denote the smallest element of the set $\left\{\omega_{1}, \ldots, \omega_{k}\right\}$ such that m_{i} is odd. Then, it follows that $p_{1}(\jmath \omega)=\prod_{i=1}^{k}\left(\omega_{i}^{2}-\omega^{2}\right)^{m_{i}}<0$ for all $\omega \in\left(\omega_{i_{0}}, \omega_{i_{0}+1}\right)$, where $\omega_{k+1} \triangleq \infty$. However, note that $p_{1}(\jmath \omega)=p(\jmath \omega) / p_{2}(\jmath \omega)=p(\jmath \omega) /\left|p_{20}(\jmath \omega)\right|^{2} \geq 0$ for all $\omega \in \mathbb{R}$, which is a contradiction. Therefore, m_{i} is even for all $i=1, \ldots, k$, and thus $p_{1}(s)=p_{10}(s) p_{10}(-s)$ for all $s \in \mathbb{C}$, where $p_{10}(s) \triangleq \prod_{i=1}^{k}\left(s^{2}+\omega_{i}^{2}\right)^{m_{i} / 2}$. Consequently, $p(s)=p_{10}(s) p_{20}(s) p_{10}(-s) p_{20}(-s)$ for all $s \in \mathbb{C}$. Finally, if p has no imaginary roots, then $p_{1}=1$, and $p(s)=p_{20}(s) p_{20}(-s)$ for all $s \in \mathbb{C}$.

The following division algorithm is essential to the study of polynomials.
Lemma 4.1.2. Let $p_{1}, p_{2} \in \mathbb{F}[s]$, and assume that p_{2} is not the zero polynomial. Then, there exist unique polynomials $q, r \in \mathbb{F}[s]$ such that $\operatorname{deg} r<\operatorname{deg} p_{2}$ and

$$
\begin{equation*}
p_{1}=q p_{2}+r . \tag{4.1.5}
\end{equation*}
$$

Proof. Define $n \triangleq \operatorname{deg} p_{1}$ and $m \triangleq \operatorname{deg} p_{2}$. If $n<m$, then $q=0$ and $r=p_{1}$. Hence, $\operatorname{deg} r=\operatorname{deg} p_{1}=n<m=\operatorname{deg} p_{2}$.

Now, assume that $n \geq m \geq 0$, and write $p_{1}(s)=\beta_{n} s^{n}+\cdots+\beta_{0}$ and $p_{2}(s)=$ $\gamma_{m} s^{m}+\cdots+\gamma_{0}$. If $n=0$, then $m=0, \gamma_{0} \neq 0, q=\beta_{0} / \gamma_{0}$, and $r=0$. Hence, $-\infty=\operatorname{deg} r<0=\operatorname{deg} p_{2}$.

If $n=1$, then either $m=0$ or $m=1$. If $m=0$, then $p_{2}(s)=\gamma_{0} \neq 0$, and (4.1.5) is satisfied with $q(s)=p_{1}(s) / \gamma_{0}$ and $r=0$, in which case $-\infty=\operatorname{deg} r<0=$ $\operatorname{deg} p_{2}$. If $m=1$, then (4.1.5) is satisfied with $q(s)=\beta_{1} / \gamma_{1}$ and $r(s)=\beta_{0}-\beta_{1} \gamma_{0} / \gamma_{1}$. Hence, $\operatorname{deg} r \leq 0<1=\operatorname{deg} p_{2}$.

Now, suppose that $n=2$. Then, $\hat{p}_{1}(s)=p_{1}(s)-\left(\beta_{2} / \gamma_{m}\right) s^{2-m} p_{2}(s)$ has degree 1. Applying (4.1.5) with p_{1} replaced by \hat{p}_{1}, it follows that there exist polynomials $q_{1}, r_{1} \in \mathbb{F}[s]$ such that $\hat{p}_{1}=q_{1} p_{2}+r_{1}$ and such that $\operatorname{deg} r_{1}<\operatorname{deg} p_{2}$. It thus follows that $p_{1}(s)=q_{1}(s) p_{2}(s)+r_{1}(s)+\left(\beta_{2} / \gamma_{m}\right) s^{2-m} p_{2}(s)=q(s) p_{2}(s)+r(s)$, where $q(s)=q_{1}(s)+\left(\beta_{2} / \gamma_{m}\right) s^{n-m}$ and $r=r_{1}$, which verifies 4.1.5). Similar arguments apply to successively larger values of n.

To prove uniqueness, suppose there exist polynomials \hat{q} and \hat{r} such that $\operatorname{deg} \hat{r}<\operatorname{deg} p_{2}$ and $p_{1}=\hat{q} p_{2}+\hat{r}$. Then, it follows that $(\hat{q}-q) p_{2}=r-\hat{r}$. Next, note that $\operatorname{deg}(r-\hat{r})<\operatorname{deg} p_{2}$. If $\hat{q} \neq q$, then $\operatorname{deg} p_{2} \leq \operatorname{deg}\left[(\hat{q}-q) p_{2}\right]$ so that $\operatorname{deg}(r-\hat{r})<\operatorname{deg}\left[(\hat{q}-q) p_{2}\right]$, which is a contradiction. Thus, $\hat{q}=q$, and, hence, $r=\hat{r}$.

In Lemma 4.1.2, q is the quotient of p_{1} and p_{2}, while r is the remainder. If $r=0$, then p_{2} divides p_{1}, or, equivalently, p_{1} is a multiple of p_{2}. Note that, if $p_{2}(s)=s-\alpha$, where $\alpha \in \mathbb{F}$, then r is constant and is given by $r(s)=p_{1}(\alpha)$.

If a polynomial $p_{3} \in \mathbb{F}[s]$ divides two polynomials $p_{1}, p_{2} \in \mathbb{F}[s]$, then p_{3} is a common divisor of p_{1} and p_{2}. Given polynomials $p_{1}, p_{2} \in \mathbb{F}[s]$, there exists a unique monic polynomial $p_{3} \in \mathbb{F}[s]$, the greatest common divisor of p_{1} and p_{2}, such that p_{3} is a common divisor of p_{1} and p_{2} and such that every common divisor of p_{1} and p_{2} divides p_{3}. In addition, there exist polynomials $q_{1}, q_{2} \in \mathbb{F}[s]$ such that the greatest common divisor p_{3} of p_{1} and p_{2} is given by $p_{3}=q_{1} p_{1}+q_{2} p_{2}$. See [1081 p. 113] for proofs of these results. Finally, p_{1} and p_{2} are coprime if their greatest common divisor is $p_{3}=1$, while a polynomial $p \in \mathbb{F}[s]$ is irreducible if there do not exist nonconstant polynomials $p_{1}, p_{2} \in \mathbb{F}[s]$ such that $p=p_{1} p_{2}$. For example, if $\mathbb{F}=\mathbb{R}$, then $p(s)=s^{2}+s+1$ is irreducible.

If a polynomial $p_{3} \in \mathbb{F}[s]$ is a multiple of two polynomials $p_{1}, p_{2} \in \mathbb{F}[s]$, then p_{3} is a common multiple of p_{1} and p_{2}. Given nonzero polynomials p_{1} and p_{2}, there exists (see [1081, p. 113]) a unique monic polynomial $p_{3} \in \mathbb{F}[s]$ that is a common multiple of p_{1} and p_{2} and that divides every common multiple of p_{1} and p_{2}. The polynomial p_{3} is the least common multiple of p_{1} and p_{2}.

The polynomial $p \in \mathbb{F}[s]$ given by (4.1.1) can be evaluated with a square matrix argument $A \in \mathbb{F}^{n \times n}$ by defining

$$
\begin{equation*}
p(A) \triangleq \beta_{k} A^{k}+\beta_{k-1} A^{k-1}+\cdots+\beta_{1} A+\beta_{0} I \tag{4.1.6}
\end{equation*}
$$

4.2 Polynomial Matrices

The set $\mathbb{F}^{n \times m}[s]$ of polynomial matrices consists of matrix functions $P: \mathbb{C} \mapsto$ $\mathbb{C}^{n \times m}$ whose entries are elements of $\mathbb{F}[s]$. A polynomial matrix $P \in \mathbb{F}^{n \times m}[s]$ can thus be written as

$$
\begin{equation*}
P(s)=s^{k} B_{k}+s^{k-1} B_{k-1}+\cdots+s B_{1}+B_{0} \tag{4.2.1}
\end{equation*}
$$

where $B_{0}, \ldots, B_{k} \in \mathbb{F}^{n \times m}$. If B_{k} is nonzero, then the degree of P, denoted by $\operatorname{deg} P$, is k, whereas, if $P=0$, then $\operatorname{deg} P=-\infty$. If $n=m$ and B_{k} is nonsingular, then P is regular, while, if $B_{k}=I$, then P is monic.

The following result, which generalizes Lemma 4.1.2, provides a division algorithm for polynomial matrices.

Lemma 4.2.1. Let $P_{1}, P_{2} \in \mathbb{F}^{n \times n}[s]$, where P_{2} is regular. Then, there exist unique polynomial matrices $Q, R, \hat{Q}, \hat{R} \in \mathbb{F}^{n \times n}[s]$ such that $\operatorname{deg} R<\operatorname{deg} P_{2}, \operatorname{deg} \hat{R}<$ $\operatorname{deg} P_{2}$,

$$
\begin{equation*}
P_{1}=Q P_{2}+R, \tag{4.2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{1}=P_{2} \hat{Q}+\hat{R} . \tag{4.2.3}
\end{equation*}
$$

Proof. See [559, p. 90] or [1081 pp. 134-135].
If $R=0$, then P_{2} right divides P_{1}, while, if $\hat{R}=0$, then P_{2} left divides P_{1}.
Let the polynomial matrix $P \in \mathbb{F}^{n \times m}[s]$ be given by (4.2.1). Then, P can be evaluated with a square matrix argument in two different ways, either from the right or from the left. For $A \in \mathbb{C}^{m \times m}$ define

$$
\begin{equation*}
P_{\mathrm{R}}(A) \triangleq B_{k} A^{k}+B_{k-1} A^{k-1}+\cdots+B_{1} A+B_{0} \tag{4.2.4}
\end{equation*}
$$

while, for $A \in \mathbb{C}^{n \times n}$, define

$$
\begin{equation*}
P_{\mathrm{L}}(A) \triangleq A^{k} B_{k}+A^{k-1} B_{k-1}+\cdots+A B_{1}+B_{0} \tag{4.2.5}
\end{equation*}
$$

$P_{\mathrm{R}}(A)$ and $P_{\mathrm{L}}(A)$ are matrix polynomials.
If $n=m$, then $P_{\mathrm{R}}(A)$ and $P_{\mathrm{L}}(A)$ can be evaluated for all $A \in \mathbb{F}^{n \times n}$, although these matrices may be different.

The following result is useful.
Lemma 4.2.2. Let $Q, \hat{Q} \in \mathbb{F}^{n \times n}[s]$ and $A \in \mathbb{F}^{n \times n}$. Furthermore, define $P, \hat{P} \in$ $\mathbb{F}^{n \times n}[s]$ by $P(s) \triangleq Q(s)(s I-A)$ and $\hat{P}(s) \triangleq(s I-A) \hat{Q}(s)$. Then, $P_{\mathrm{R}}(A)=0$ and $\hat{P}_{\mathrm{L}}(A)=0$.

Let $p \in \mathbb{F}[s]$ be given by (4.1.1), and define $P(s) \triangleq p(s) I_{n}=s^{k} \beta_{k} I_{n}+$ $s^{k-1} \beta_{k-1} I_{n}+\cdots+s \beta_{1} I_{n}+\beta_{0} I_{n} \in \mathbb{F}^{n \times n}[s]$. For $A \in \mathbb{C}^{n \times n}$ it follows that $p(A)=$ $P(A)=P_{\mathrm{R}}(A)=P_{\mathrm{L}}(A)$.

The following result specializes Lemma 4.2.1 to the case of polynomial matrix divisors of degree 1 .

Corollary 4.2.3. Let $P \in \mathbb{F}^{n \times n}[s]$ and $A \in \mathbb{F}^{n \times n}$. Then, there exist unique polynomial matrices $Q, \hat{Q} \in \mathbb{F}^{n \times n}[s]$ and unique matrices $R, \hat{R} \in \mathbb{F}^{n \times n}$ such that

$$
\begin{equation*}
P(s)=Q(s)(s I-A)+R \tag{4.2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
P(s)=(s I-A) \hat{Q}(s)+\hat{R} \tag{4.2.7}
\end{equation*}
$$

Furthermore, $R=P_{\mathrm{R}}(A)$ and $\hat{R}=P_{\mathrm{L}}(A)$.
Proof. In Lemma 4.2.1 set $P_{1}=P$ and $P_{2}(s)=s I-A$. Since $\operatorname{deg} P_{2}=1$, it follows that $\operatorname{deg} R=\operatorname{deg} \hat{R}=0$, and thus R and \hat{R} are constant. Finally, the last statement follows from Lemma 4.2.2.

Definition 4.2.4. Let $P \in \mathbb{F}^{n \times m}[s]$. Then, $\operatorname{rank} P$ is defined by

$$
\begin{equation*}
\operatorname{rank} P \triangleq \max _{s \in \mathbb{C}} \operatorname{rank} P(s) \tag{4.2.8}
\end{equation*}
$$

Let $P \in \mathbb{F}^{n \times n}[s]$. Then, $P(s) \in \mathbb{C}^{n \times n}$ for all $s \in \mathbb{C}$. Furthermore, $\operatorname{det} P$ is a polynomial in s, that is, $\operatorname{det} P \in \mathbb{F}[s]$.

Definition 4.2.5. Let $P \in \mathbb{F}^{n \times n}[s]$. Then, P is nonsingular if $\operatorname{det} P$ is not the zero polynomial; otherwise, P is singular.

Proposition 4.2.6. Let $P \in \mathbb{F}^{n \times n}[s]$, and assume that P is regular. Then, P is nonsingular.

Let $P \in \mathbb{F}^{n \times n}[s]$. If P is nonsingular, then the inverse P^{-1} of P can be constructed according to (2.7.22). In general, the entries of P^{-1} are rational functions of s (see Definition 4.7.1). For example, if $P(s)=\left[\begin{array}{c}s+2 s+1 \\ s-2 \\ s-1\end{array}\right]$, then $P^{-1}(s)=\frac{1}{2 s}\left[\begin{array}{cc}s-1 & -s-1 \\ -s+2 & s+2\end{array}\right]$. In certain cases, P^{-1} is also a polynomial matrix. For example, if $P(s)=\left[\begin{array}{cc}s & 1 \\ s^{2}+s-1 & s+1\end{array}\right]$, then $P^{-1}(s)=\left[\begin{array}{cc}s+1 & -1 \\ -s^{2}-s+1 & s\end{array}\right]$.

The following result is an extension of Proposition 2.7.7 from constant matrices to polynomial matrices.

Proposition 4.2.7. Let $P \in \mathbb{F}^{n \times m}[s]$. Then, rank P is the order of the largest nonsingular polynomial matrix that is a submatrix of P.

Proof. For all $s \in \mathbb{C}$ it follows from Proposition 2.7.7 that $\operatorname{rank} P(s)$ is the order of the largest nonsingular submatrix of $P(s)$. Now, let $s_{0} \in \mathbb{C}$ be such that rank $P\left(s_{0}\right)=\operatorname{rank} P$. Then, $P\left(s_{0}\right)$ has a nonsingular submatrix of maximal order rank P. Therefore, P has a nonsingular polynomial submatrix of maximal order rank P.

A polynomial matrix can be transformed by performing elementary row and column operations of the following types:
i) Multiply a row or a column by a nonzero constant.
ii) Interchange two rows or two columns.
iii) Add a polynomial multiple of one (row, column) to another (row, column).

These operations correspond respectively to left multiplication or right multiplication by the elementary matrices

$$
I_{n}+(\alpha-1) E_{i, i}=\left[\begin{array}{ccc}
I_{i-1} & 0 & 0 \tag{4.2.9}\\
0 & \alpha & 0 \\
0 & 0 & I_{n-i}
\end{array}\right]
$$

where $\alpha \in \mathbb{F}$ is nonzero,

$$
I_{n}+E_{i, j}+E_{j, i}-E_{i, i}-E_{j, j}=\left[\begin{array}{ccccc}
I_{i-1} & 0 & 0 & 0 & 0 \tag{4.2.10}\\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & I_{j-i-1} & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & I_{n-j}
\end{array}\right]
$$

where $i \neq j$, and the elementary polynomial matrix

$$
I_{n}+p E_{i, j}=\left[\begin{array}{ccccc}
I_{i-1} & 0 & 0 & 0 & 0 \tag{4.2.11}\\
0 & 1 & 0 & p & 0 \\
0 & 0 & I_{j-i-1} & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & I_{n-j}
\end{array}\right]
$$

where $i \neq j$ and $p \in \mathbb{F}[s]$. The matrices shown in (4.2.10) and (4.2.11) illustrate the case $i<j$. Applying these operations sequentially corresponds to forming products of elementary matrices and elementary polynomial matrices. Note that the elementary polynomial matrix $I+p E_{i, j}$ is nonsingular, and that $\left(I+p E_{i, j}\right)^{-1}=I-p E_{i, j}$. Therefore, the inverse of an elementary polynomial matrix is an elementary polynomial matrix.

4.3 The Smith Decomposition and Similarity Invariants

Definition 4.3.1. Let $P \in \mathbb{F}^{n \times n}[s]$. Then, P is unimodular if P is the product of elementary matrices and elementary polynomial matrices.

The following result provides a canonical form, known as the Smith form, for polynomial matrices under unimodular transformation.

Theorem 4.3.2. Let $P \in \mathbb{F}^{n \times m}[s]$, and let $r \triangleq \operatorname{rank} P$. Then, there exist unimodular matrices $S_{1} \in \mathbb{F}^{n \times n}[s]$ and $S_{2} \in \mathbb{F}^{m \times m}[s]$ and monic polynomials $p_{1}, \ldots, p_{r} \in \mathbb{F}[s]$ such that p_{i} divides p_{i+1} for all $i=1, \ldots, r-1$ and such that

$$
P=S_{1}\left[\begin{array}{cccc}
p_{1} & & & 0 \tag{4.3.1}\\
& \ddots & & \\
& & p_{r} & \\
0 & & & 0_{(n-r) \times(m-r)}
\end{array}\right] S_{2} .
$$

Furthermore, for all $i=1, \ldots, r$, let Δ_{i} denote the monic greatest common divisor of all $i \times i$ subdeterminants of P. Then, p_{i} is uniquely determined by

$$
\begin{equation*}
\Delta_{i}=p_{1} \cdots p_{i} \tag{4.3.2}
\end{equation*}
$$

Proof. The result is obtained by sequentially applying elementary row and column operations to P. For details, see [787, pp. 390-392] or [1081 pp. 125128].

Definition 4.3.3. The monic polynomials $p_{1}, \ldots, p_{r} \in \mathbb{F}[s]$ of the Smith form (4.3.1) of $P \in \mathbb{F}^{n \times m}[s]$ are the Smith polynomials of P. The Smith zeros of P are the roots of p_{1}, \ldots, p_{r}. Let

$$
\begin{equation*}
\operatorname{Szeros}(P) \triangleq \operatorname{roots}\left(p_{r}\right) \tag{4.3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{mSzeros}(P) \triangleq \bigcup_{i=1}^{r} \operatorname{mroots}\left(p_{i}\right) \tag{4.3.4}
\end{equation*}
$$

Proposition 4.3.4. Let $P \in \mathbb{R}^{n \times m}[s]$, and assume there exist unimodular matrices $S_{1} \in \mathbb{F}^{n \times n}[s]$ and $S_{2} \in \mathbb{F}^{m \times m}[s]$ and monic polynomials $p_{1}, \ldots, p_{r} \in \mathbb{F}[s]$ satisfying (4.3.1). Then, $\operatorname{rank} P=r$.

Proposition 4.3.5. Let $P \in \mathbb{F}^{n \times m}[s]$, and let $r \triangleq \operatorname{rank} P$. Then, r is the largest order of all nonsingular submatrices of P.

Proof. Let r_{0} denote the largest order of all nonsingular submatrices of P, and let $P_{0} \in \mathbb{F}^{r_{0} \times r_{0}}[s]$ be a nonsingular submatrix of P. First, assume that $r<r_{0}$. Then, there exists $s_{0} \in \mathbb{C}$ such that $\operatorname{rank} P\left(s_{0}\right)=\operatorname{rank} P_{0}\left(s_{0}\right)=r_{0}$. Thus, $r=$ $\operatorname{rank} P=\max _{s \in \mathbb{C}} \operatorname{rank} P(s) \geq \operatorname{rank} P\left(s_{0}\right)=r_{0}$, which is a contradiction. Next, assume that $r>r_{0}$. Then, it follows from (4.3.1) that there exists $s_{0} \in \mathbb{C}$ such that $\operatorname{rank} P\left(s_{0}\right)=r$. Consequently, $P\left(s_{0}\right)$ has a nonsingular $r \times r$ submatrix. Let $\hat{P}_{0} \in \mathbb{F}^{r \times r}[s]$ denote the corresponding submatrix of P. Thus, \hat{P}_{0} is nonsingular, which implies that P has a nonsingular submatrix whose order is greater than r_{0}, which is a contradiction. Consequently, $r=r_{0}$.

Proposition 4.3.6. Let $P \in \mathbb{F}^{n \times m}[s]$, and let $\mathcal{S} \subset \mathbb{C}$ be a finite set. Then,

$$
\begin{equation*}
\operatorname{rank} P=\max _{s \in \mathbb{C} \backslash S} \operatorname{rank} P(s) \tag{4.3.5}
\end{equation*}
$$

Proposition 4.3.7. Let $P \in \mathbb{F}^{n \times n}[s]$. Then, the following statements are equivalent:
i) P is unimodular.
ii) $\operatorname{det} P$ is a nonzero constant.
iii) The Smith form of P is the identity.
iv) P is nonsingular, and P^{-1} is a polynomial matrix.
v) P is nonsingular, and P^{-1} is unimodular.

Proof. To prove $i) \Longrightarrow i i$, note that every elementary matrix and every elementary polynomial matrix has a constant nonzero determinant. Since P is a product of elementary matrices and elementary polynomial matrices, its determinant is a constant.

To prove $i i) \Longrightarrow i i i$, note that it follows from (4.3.1) that $\operatorname{rank} P=n$ and $\operatorname{det} P=\left(\operatorname{det} S_{1}\right)\left(\operatorname{det} S_{2}\right) p_{1} \cdots p_{n}$, where $S_{1}, S_{2} \in \mathbb{F}^{n \times n}$ are unimodular and p_{1}, \ldots, p_{n} are monic polynomials. From the result $\left.i\right) \Longrightarrow i i$), it follows that $\operatorname{det} S_{1}$ and $\operatorname{det} S_{2}$ are nonzero constants. Since $\operatorname{det} P$ is a nonzero constant, it follows that $p_{1} \cdots p_{n}=\operatorname{det} P /\left[\left(\operatorname{det} S_{1}\right)\left(\operatorname{det} S_{2}\right)\right]$ is a nonzero constant. Since p_{1}, \ldots, p_{n} are monic polynomials, it follows that $p_{1}=\cdots=p_{n}=1$.

Next, to prove $i i i) \Longrightarrow i v$), note that P is unimodular, and thus it follows that det P is a nonzero constant. Furthermore, since P^{A} is a polynomial matrix, it follows that $P^{-1}=(\operatorname{det} P)^{-1} P^{\mathrm{A}}$ is a polynomial matrix.

To prove $i v) \Longrightarrow v$), note that $\operatorname{det} P^{-1}$ is a polynomial. Since $\operatorname{det} P$ is a polynomial and $\operatorname{det} P^{-1}=1 / \operatorname{det} P$ it follows that $\operatorname{det} P$ is a nonzero constant. Hence, P is unimodular, and thus $P^{-1}=(\operatorname{det} P)^{-1} P^{\mathrm{A}}$ is unimodular.

Finally, to prove $v) \Longrightarrow i$, note that $\operatorname{det} P^{-1}$ is a nonzero constant, and thus $P=\left[\operatorname{det} P^{-1}\right]^{-1}\left[P^{-1}\right]^{\mathrm{A}}$ is a polynomial matrix. Furthermore, since $\operatorname{det} P=$ $1 / \operatorname{det} P^{-1}$, it follows that $\operatorname{det} P$ is a nonzero constant. Hence, P is unimodular.

Proposition 4.3.8. Let $A_{1}, B_{1}, A_{2}, B_{2} \in \mathbb{F}^{n \times n}$, where A_{2} is nonsingular, and define the polynomial matrices $P_{1}, P_{2} \in \mathbb{F}^{n \times n}[s]$ by $P_{1}(s) \triangleq s A_{1}+B_{1}$ and $P_{2}(s) \triangleq$ $s A_{2}+B_{2}$. Then, P_{1} and P_{2} have the same Smith polynomials if and only if there exist nonsingular matrices $S_{1}, S_{2} \in \mathbb{F}^{n \times n}$ such that $P_{2}=S_{1} P_{1} S_{2}$.

Proof. The sufficiency result is immediate. To prove necessity, note that it follows from Theorem 4.3.2 that there exist unimodular matrices $T_{1}, T_{2} \in \mathbb{F}^{n \times n}[s]$ such that $P_{2}=T_{2} P_{1} T_{1}$. Now, since P_{2} is regular, it follows from Lemma 4.2.1 that there exist polynomial matrices $Q, \hat{Q} \in \mathbb{F}^{n \times n}[s]$ and constant matrices $R, \hat{R} \in \mathbb{F}^{n \times n}$
such that $T_{1}=Q P_{2}+R$ and $T_{2}=P_{2} \hat{Q}+\hat{R}$. Next, we have

$$
\begin{aligned}
P_{2} & =T_{2} P_{1} T_{1} \\
& =\left(P_{2} \hat{Q}+\hat{R}\right) P_{1} T_{1} \\
& =\hat{R} P_{1} T_{1}+P_{2} \hat{Q} T_{2}^{-1} P_{2} \\
& =\hat{R} P_{1}\left(Q P_{2}+R\right)+P_{2} \hat{Q} T_{2}^{-1} P_{2} \\
& =\hat{R} P_{1} R+\left(T_{2}-P_{2} \hat{Q}\right) P_{1} Q P_{2}+P_{2} \hat{Q} T_{2}^{-1} P_{2} \\
& =\hat{R} P_{1} R+T_{2} P_{1} Q P_{2}+P_{2}\left(-\hat{Q} P_{1} Q+\hat{Q} T_{2}^{-1}\right) P_{2} \\
& =\hat{R} P_{1} R+P_{2}\left(T_{1}^{-1} Q-\hat{Q} P_{1} Q+\hat{Q} T_{2}^{-1}\right) P_{2}
\end{aligned}
$$

Since P_{2} is regular and has degree 1, it follows that, if $T_{1}^{-1} Q-\hat{Q} P_{1} Q+\hat{Q} T_{2}^{-1}$ is not zero, then $\operatorname{deg} P_{2}\left(T_{1}^{-1} Q-\hat{Q} P_{1} Q+\hat{Q} T_{2}^{-1}\right) P_{2} \geq 2$. However, since P_{2} and $\hat{R} P_{1} R$ have degree less than 2 , it follows that $T_{1}^{-1} Q-\hat{Q} P_{1} Q+\hat{Q} T_{2}^{-1}=0$. Hence, $P_{2}=\hat{R} P_{1} R$.

Next, to show that \hat{R} and R are nonsingular, note that, for all $s \in \mathbb{C}$,

$$
P_{2}(s)=\hat{R} P_{1}(s) R=s \hat{R} A_{1} R+\hat{R} B_{1} R
$$

which implies that $A_{2}=S_{1} A_{1} S_{2}$, where $S_{1}=\hat{R}$ and $S_{2}=R$. Since A_{2} is nonsingular, it follows that S_{1} and S_{2} are nonsingular.

Definition 4.3.9. Let $A \in \mathbb{F}^{n \times n}$. Then, the similarity invariants of A are the Smith polynomials of $s I-A$.

The following result provides necessary and sufficient conditions for two matrices to be similar.

Theorem 4.3.10. Let $A, B \in \mathbb{F}^{n \times n}$. Then, A and B are similar if and only if they have the same similarity invariants.

Proof. To prove necessity, assume that A and B are similar. Then, the matrices $s I-A$ and $s I-B$ have the same Smith form and thus the same similarity invariants. To prove sufficiency, it follows from Proposition 4.3.8 that there exist nonsingular matrices $S_{1}, S_{2} \in \mathbb{F}^{n \times n}$ such that $s I-A=S_{1}(s I-B) S_{2}$. Thus, $S_{1}=S_{2}^{-1}$, and, hence, $A=S_{1} B S_{1}^{-1}$.

Corollary 4.3.11. Let $A \in \mathbb{F}^{n \times n}$. Then, A and A^{T} are similar.
An improved form of Corollary 4.3.11 is given by Corollary 5.3.8.

4.4 Eigenvalues

Let $A \in \mathbb{F}^{n \times n}$. Then, the polynomial matrix $s I-A \in \mathbb{F}^{n \times n}[s]$ is monic and has degree 1 .

Definition 4.4.1. Let $A \in \mathbb{F}^{n \times n}$. Then, the characteristic polynomial of A is the polynomial $\chi_{A} \in \mathbb{F}[s]$ given by

$$
\begin{equation*}
\chi_{A}(s) \triangleq \operatorname{det}(s I-A) \tag{4.4.1}
\end{equation*}
$$

Since $s I-A$ is a polynomial matrix, its determinant is the product of its Smith polynomials, that is, the similarity invariants of A.

Proposition 4.4.2. Let $A \in \mathbb{F}^{n \times n}$, and let $p_{1}, \ldots, p_{n} \in \mathbb{F}[s]$ denote the similarity invariants of A. Then,

$$
\begin{equation*}
\chi_{A}=\prod_{i=1}^{n} p_{i} \tag{4.4.2}
\end{equation*}
$$

Proposition 4.4.3. Let $A \in \mathbb{F}^{n \times n}$. Then, χ_{A} is monic and $\operatorname{deg} \chi_{A}=n$.
Let $A \in \mathbb{F}^{n \times n}$, and write the characteristic polynomial of A as

$$
\begin{equation*}
\chi_{A}(s)=s^{n}+\beta_{n-1} s^{n-1}+\cdots+\beta_{1} s+\beta_{0} \tag{4.4.3}
\end{equation*}
$$

where $\beta_{0}, \ldots, \beta_{n-1} \in \mathbb{F}$. The eigenvalues of A are the n possibly repeated roots $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{C}$ of χ_{A}, that is, the solutions of the characteristic equation

$$
\begin{equation*}
\chi_{A}(s)=0 \tag{4.4.4}
\end{equation*}
$$

It is often convenient to denote the eigenvalues of A by $\lambda_{1}(A), \ldots, \lambda_{n}(A)$ or just $\lambda_{1}, \ldots, \lambda_{n}$. This notation may be ambiguous, however, since it does not uniquely specify which eigenvalue is denoted by λ_{i}. If, however, every eigenvalue of A is real, then we employ the notational convention

$$
\begin{equation*}
\lambda_{1} \geq \cdots \geq \lambda_{n} \tag{4.4.5}
\end{equation*}
$$

and we define

$$
\begin{equation*}
\lambda_{\max }(A) \triangleq \lambda_{1}, \quad \lambda_{\min }(A) \triangleq \lambda_{n} . \tag{4.4.6}
\end{equation*}
$$

Definition 4.4.4. Let $A \in \mathbb{F}^{n \times n}$. The algebraic multiplicity of an eigenvalue λ of A, denoted by $\operatorname{amult}_{A}(\lambda)$, is the algebraic multiplicity of λ as a root of χ_{A}, that is,

$$
\begin{equation*}
\operatorname{amult}_{A}(\lambda) \triangleq \operatorname{mult}_{\chi_{A}}(\lambda) \tag{4.4.7}
\end{equation*}
$$

The multiset consisting of the eigenvalues of A including their algebraic multiplicity, denoted by $\operatorname{mspec}(A)$, is the multispectrum of A, that is,

$$
\begin{equation*}
\operatorname{mspec}(A) \triangleq \operatorname{mroots}\left(\chi_{A}\right) \tag{4.4.8}
\end{equation*}
$$

Ignoring algebraic multiplicity, $\operatorname{spec}(A)$ denotes the spectrum of A, that is,

$$
\begin{equation*}
\operatorname{spec}(A) \triangleq \operatorname{roots}\left(\chi_{A}\right) \tag{4.4.9}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\operatorname{Szeros}(s I-A)=\operatorname{spec}(A) \tag{4.4.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{mSzeros}(s I-A)=\operatorname{mspec}(A) . \tag{4.4.11}
\end{equation*}
$$

If $\lambda \notin \operatorname{spec}(A)$, then $\lambda \notin \operatorname{roots}\left(\chi_{A}\right)$, and thus $\operatorname{amult}_{A}(\lambda)=\operatorname{mult}_{\chi_{A}}(\lambda)=0$.
Let $A \in \mathbb{F}^{n \times n}$ and $\operatorname{mroots}\left(\chi_{A}\right)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}_{\mathrm{ms}}$. Then,

$$
\begin{equation*}
\chi_{A}(s)=\prod_{i=1}^{n}\left(s-\lambda_{i}\right) . \tag{4.4.12}
\end{equation*}
$$

If $\mathbb{F}=\mathbb{R}$, then $\chi_{A}(s)$ has real coefficients, and thus the eigenvalues of A occur in complex conjugate pairs, that is, $\overline{\operatorname{mroots}\left(\chi_{A}\right)}=\operatorname{mroots}\left(\chi_{A}\right)$. Now, let $\operatorname{spec}(A)=$ $\left\{\lambda_{1}, \ldots, \lambda_{r}\right\}$, and, for all $i=1, \ldots, r$, let n_{i} denote the algebraic multiplicity of λ_{i}. Then,

$$
\begin{equation*}
\chi_{A}(s)=\prod_{i=1}^{r}\left(s-\lambda_{i}\right)^{n_{i}} . \tag{4.4.13}
\end{equation*}
$$

The following result gives some basic properties of the spectrum of a matrix.
Proposition 4.4.5. Let $A, B \in \mathbb{F}^{n \times n}$. Then, the following statements hold:
i) $\chi_{A^{\mathrm{T}}}=\chi_{A}$.
ii) For all $s \in \mathbb{C}, \chi_{-A}(s)=(-1)^{n} \chi_{A}(-s)$.
iii) $\operatorname{mspec}\left(A^{\mathrm{T}}\right)=\operatorname{mspec}(A)$.
$i v) \operatorname{mspec}(\bar{A})=\overline{\operatorname{mspec}(A)}$.
v) $\operatorname{mspec}\left(A^{*}\right)=\overline{\operatorname{mspec}(A)}$.
vi) $0 \in \operatorname{spec}(A)$ if and only if $\operatorname{det} A=0$.
vii) If $k \in \mathbb{N}$ or if A is nonsingular and $k \in \mathbb{Z}$, then

$$
\begin{equation*}
\operatorname{mspec}\left(A^{k}\right)=\left\{\lambda^{k}: \lambda \in \operatorname{mspec}(A)\right\}_{\mathrm{ms}} . \tag{4.4.14}
\end{equation*}
$$

viii) If $\alpha \in \mathbb{F}$, then $\chi_{\alpha A+I}(s)=\chi_{A}(s-\alpha)$.
$i x)$ If $\alpha \in \mathbb{F}$, then $\operatorname{mspec}(\alpha I+A)=\alpha+\operatorname{mspec}(A)$.
$x)$ If $\alpha \in \mathbb{F}$, then $\operatorname{mspec}(\alpha A)=\alpha \operatorname{mspec}(A)$.
xi) If A is Hermitian, then $\operatorname{spec}(A) \subset \mathbb{R}$.
xii) If A and B are similar, then $\chi_{A}=\chi_{B}$ and $\operatorname{mspec}(A)=\operatorname{mspec}(B)$.

Proof. To prove i, note that

$$
\operatorname{det}\left(s I-A^{\mathrm{T}}\right)=\operatorname{det}(s I-A)^{\mathrm{T}}=\operatorname{det}(s I-A) .
$$

To prove $i i$), note that

$$
\chi_{-A}(s)=\operatorname{det}(s I+A)=(-1)^{n} \operatorname{det}(-s I-A)=(-1)^{n} \chi_{A}(-s) .
$$

Next, $i i i$) follows from i). Next, $i v$) follows from

$$
\operatorname{det}(s I-\bar{A})=\operatorname{det}(\overline{\bar{s} I-A})=\overline{\operatorname{det}(\bar{s} I-A)}
$$

while v) follows from $i i i$) and $i v$).
Next, vi) follows from the fact that $\chi_{A}(0)=(-1)^{n} \operatorname{det} A$. To prove " \supseteq " in vii), note that, if $\lambda \in \operatorname{spec}(A)$ and $x \in \mathbb{C}^{n}$ is an eigenvector of A associated with λ (see Section 4.5), then $A^{2} x=A(A x)=A(\lambda x)=\lambda A x=\lambda^{2} x$. Similarly, if A is nonsingular, then $A x=\lambda x$ implies that $A^{-1} x=\lambda^{-1} x$, and thus $A^{-2} x=\lambda^{-2} x$. Similar arguments apply to arbitrary $k \in \mathbb{Z}$. The reverse inclusion follows from the Jordan decomposition given by Theorem 5.3.3.

To prove viii), note that

$$
\chi_{\alpha I+A}(s)=\operatorname{det}[s I-(\alpha I+A)]=\operatorname{det}[(s-\alpha) I-A]=\chi_{A}(s-\alpha)
$$

Statement $i x$) follows immediately.
Statement x) is true for $\alpha=0$. For $\alpha \neq 0$, it follows that

$$
\chi_{\alpha A}(s)=\operatorname{det}(s I-\alpha A)=\alpha^{-1} \operatorname{det}[(s / \alpha) I-A]=\chi_{A}(s / \alpha)
$$

To prove $x i$, assume that $A=A^{*}$, let $\lambda \in \operatorname{spec}(A)$, and let $x \in \mathbb{C}^{n}$ be an eigenvector of A associated with λ. Then, $\lambda=x^{*} A x / x^{*} x$, which is real. Finally, xii) is immediate.

The following result characterizes the coefficients of χ_{A} in terms of the eigenvalues of A.

Proposition 4.4.6. Let $A \in \mathbb{F}^{n \times n}$, let $\operatorname{mspec}(A)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}_{\mathrm{ms}}$, and, for all $i=1, \ldots, n$, let γ_{i} denote the sum of all $i \times i$ principal subdeterminants of A. Then, for all $i=1, \ldots, n-1$,

$$
\begin{equation*}
\gamma_{i}=\sum_{1 \leq j_{1}<\cdots<j_{i} \leq n} \lambda_{j_{1}} \cdots \lambda_{j_{i}} \tag{4.4.15}
\end{equation*}
$$

Furthermore, for all $i=0, \ldots, n-1$, the coefficient β_{i} of s^{i} in (4.4.3) is given by

$$
\begin{equation*}
\beta_{i}=(-1)^{n-i} \gamma_{n-i} \tag{4.4.16}
\end{equation*}
$$

In particular,

$$
\begin{gather*}
\beta_{n-1}=-\operatorname{tr} A=-\sum_{i=1}^{n} \lambda_{i}, \tag{4.4.17}\\
\beta_{n-2}=\frac{1}{2}\left[(\operatorname{tr} A)^{2}-\operatorname{tr} A^{2}\right]=\sum_{1 \leq j_{1}<j_{2} \leq n} \lambda_{j_{1}} \lambda_{j_{2}}, \tag{4.4.18}\\
\beta_{1}=(-1)^{n-1} \operatorname{tr} A^{\mathrm{A}}=(-1)^{n-1} \sum_{1 \leq j_{1}<\cdots<j_{n-1} \leq n} \lambda_{j_{1}} \cdots \lambda_{j_{n-1}}=(-1)^{n-1} \sum_{i=1}^{n} \operatorname{det} A_{[i ; i]}, \tag{4.4.19}
\end{gather*}
$$

$$
\begin{equation*}
\beta_{0}=(-1)^{n} \operatorname{det} A=(-1)^{n} \prod_{i=1}^{n} \lambda_{i} \tag{4.4.20}
\end{equation*}
$$

Proof. The expression for γ_{i} given by (4.4.15) follows from the factored form of $\chi_{A}(s)$ given by (4.4.12), while the expression for β_{i} given by (4.4.16) follows by examining the cofactor expansion (2.7.16) of $\operatorname{det}(s I-A)$. For details, see 998 p. 495]. Equation (4.4.17) follows from (4.4.16) and the fact that the $(n-1) \times(n-1)$ principal subdeterminants of A are the diagonal entries $A_{(i, i)}$. Using

$$
\sum_{i=1}^{n} \lambda_{i}^{2}=\left(\sum_{i=1}^{n} \lambda_{i}\right)^{2}-2 \sum \lambda_{j_{1}} \lambda_{j_{2}}
$$

where the third summation is taken over all pairs of elements of $\operatorname{mspec}(A)$, and (4.4.17) yields (4.4.18). Next, if A is nonsingular, then $\chi_{A^{-1}}(s)=$ $(-s)^{n}\left(\operatorname{det} A^{-1}\right) \chi_{A}(1 / s)$. Using (4.4.3) with s replaced by $1 / s$ and (4.4.17), it follows that $\operatorname{tr} A^{-1}=(-1)^{n-1}\left(\operatorname{det} A^{-1}\right) \beta_{1}$, and, hence, (4.4.19) is satisfied. Using continuity for the case in which A is singular yields 4.4.19) for arbitrary A. Finally, $\beta_{0}=\chi_{A}(0)=\operatorname{det}(0 I-A)=(-1)^{n} \operatorname{det} A$, which verifies 4.4.20).

From the definition of the adjugate of a matrix it follows that $(s I-A)^{\mathrm{A}} \in$ $\mathbb{F}^{n \times n}[s]$ is a monic polynomial matrix of degree $n-1$ of the form

$$
\begin{equation*}
(s I-A)^{\mathrm{A}}=s^{n-1} I+s^{n-2} B_{n-2}+\cdots+s B_{1}+B_{0} \tag{4.4.21}
\end{equation*}
$$

where $B_{0}, B_{1}, \ldots, B_{n-2} \in \mathbb{F}^{n \times n}$. Since $(s I-A)^{\mathrm{A}}$ is regular, it follows from Proposition 4.2.6 that $(s I-A)^{\mathrm{A}}$ is a nonsingular polynomial matrix. The matrix $(s I-A)^{-1}$ is the resolvent of A, which is given by

$$
\begin{equation*}
(s I-A)^{-1}=\frac{1}{\chi_{A}(s)}(s I-A)^{\mathrm{A}} . \tag{4.4.22}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
(s I-A)^{-1}=\frac{s^{n-1}}{\chi_{A}(s)} I+\frac{s^{n-2}}{\chi_{A}(s)} B_{n-2}+\cdots+\frac{s}{\chi_{A}(s)} B_{1}+\frac{1}{\chi_{A}(s)} B_{0} . \tag{4.4.23}
\end{equation*}
$$

The next result is the Cayley-Hamilton theorem, which shows that every matrix is a "root" of its characteristic polynomial.

Theorem 4.4.7. Let $A \in \mathbb{F}^{n \times n}$. Then,

$$
\begin{equation*}
\chi_{A}(A)=0 \tag{4.4.24}
\end{equation*}
$$

Proof. Define $P, Q \in \mathbb{F}^{n \times n}[s]$ by $P(s) \triangleq \chi_{A}(s) I$ and $Q(s) \triangleq(s I-A)^{\mathrm{A}}$. Then, (4.4.22) implies that $P(s)=Q(s)(s I-A)$. It thus follows from Lemma 4.2.2 that $P_{\mathrm{R}}(A)=0$. Furthermore, $\chi_{A}(A)=P(A)=P_{\mathrm{R}}(A)$. Hence, $\chi_{A}(A)=0$.

In the notation of (4.4.13), it follows from Theorem4.4.7 that

$$
\begin{equation*}
\prod_{i=1}^{r}\left(\lambda_{i} I-A\right)^{n_{i}}=0 \tag{4.4.25}
\end{equation*}
$$

Lemma 4.4.8. Let $A \in \mathbb{F}^{n \times n}$. Then,

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} s} \chi_{A}(s)=\operatorname{tr}\left[(s I-A)^{\mathrm{A}}\right]=\sum_{i=1}^{n} \operatorname{det}\left(s I-A_{[i ; i]}\right) . \tag{4.4.26}
\end{equation*}
$$

Proof. It follows from (4.4.19) that $\left.\frac{\mathrm{d}}{\mathrm{d} s} \chi_{A}(s)\right|_{s=0}=\beta_{1}=(-1)^{n-1} \operatorname{tr} A^{\mathrm{A}}$. Hence,

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} s} \chi_{A}(s) & =\left.\frac{\mathrm{d}}{\mathrm{~d} z} \operatorname{det}[(s+z) I-A]\right|_{z=0}=\left.\frac{\mathrm{d}}{\mathrm{~d} z} \operatorname{det}[z I-(-s I+A)]\right|_{z=0} \\
& =(-1)^{n-1} \operatorname{tr}\left[(-s I+A)^{\mathrm{A}}\right]=\operatorname{tr}\left[(s I-A)^{\mathrm{A}}\right]
\end{aligned}
$$

The following result, known as Leverrier's algorithm, provides a recursive formula for the coefficients $\beta_{0}, \ldots, \beta_{n-1}$ of χ_{A} and B_{0}, \ldots, B_{n-2} of $(s I-A)^{\mathrm{A}}$.

Proposition 4.4.9. Let $A \in \mathbb{F}^{n \times n}$, let χ_{A} be given by (4.4.3), and let $(s I-A)^{\mathrm{A}}$ be given by (4.4.21). Then, $\beta_{n-1}, \ldots, \beta_{0}$ and B_{n-2}, \ldots, B_{0} are given by

$$
\begin{gather*}
\beta_{k}=\frac{1}{k-n} \operatorname{tr} A B_{k}, \quad k=n-1, \ldots, 0 \tag{4.4.27}\\
B_{k-1}=A B_{k}+\beta_{k} I, \quad k=n-1, \ldots, 1 \tag{4.4.28}
\end{gather*}
$$

where $B_{n-1}=I$.

Proof. Since $(s I-A)(s I-A)^{\mathrm{A}}=\chi_{A}(s) I$, it follows that

$$
\begin{aligned}
s^{n} I+s^{n-1}\left(B_{n-2}-A\right) & +s^{n-2}\left(B_{n-3}-A B_{n-2}\right)+\cdots+s\left(B_{0}-A B_{1}\right)-A B_{0} \\
& =\left(s^{n}+\beta_{n-1} s^{n-1}+\cdots+\beta_{1} s+\beta_{0}\right) I .
\end{aligned}
$$

Equating coefficients of powers of s yields (4.4.28) along with $-A B_{0}=\beta_{0} I$. Taking the trace of this last identity yields $\beta_{0}=-\frac{1}{n} \operatorname{tr} A B_{0}$, which confirms (4.4.27) for $k=0$. Next, using (4.4.26) and (4.4.21), it follows that

$$
\frac{\mathrm{d}}{\mathrm{~d} s} \chi_{A}(s)=\sum_{k=1}^{n} k \beta_{k} s^{k-1}=\sum_{k=1}^{n}\left(\operatorname{tr} B_{k-1}\right) s^{k-1}
$$

where $B_{n-1} \triangleq I_{n}$ and $\beta_{n} \triangleq 1$. Equating powers of s, it follows that $k \beta_{k}=\operatorname{tr} B_{k-1}$ for all $k=1, \ldots, n$. Now, 4.4.28) implies that $k \beta_{k}=\operatorname{tr}\left(A B_{k}+\beta_{k} I\right)$ for all $k=1, \ldots, n-1$, which implies (4.4.27).

Proposition 4.4.10. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times n}$, and assume that $m \leq n$. Then,

$$
\begin{equation*}
\chi_{A B}(s)=s^{n-m} \chi_{B A}(s) . \tag{4.4.29}
\end{equation*}
$$

Consequently,

$$
\begin{equation*}
\operatorname{mspec}(A B)=\operatorname{mspec}(B A) \cup\{0, \ldots, 0\}_{\mathrm{ms}} \tag{4.4.30}
\end{equation*}
$$

where the multiset $\{0, \ldots, 0\}_{\mathrm{ms}}$ contains $n-m 0$'s.
Proof. First note that

$$
\left[\begin{array}{cc}
0_{m \times m} & 0_{m \times n} \\
A & A B
\end{array}\right]=\left[\begin{array}{cc}
I_{m} & -B \\
0_{n \times m} & I_{n}
\end{array}\right]\left[\begin{array}{cc}
B A & 0_{m \times n} \\
A & 0_{n \times n}
\end{array}\right]\left[\begin{array}{cc}
I_{m} & B \\
0_{n \times m} & I_{n}
\end{array}\right],
$$

which shows that $\left[\begin{array}{cc}0_{m \times m} & 0_{m \times n} \\ A & A B\end{array}\right]$ and $\left[\begin{array}{cc}B A & 0_{m \times n} \\ A & 0_{n \times n}\end{array}\right]$ are similar. It thus follows from $x i$) of Proposition 4.4.5 that $s^{m} \chi_{A B}(s)=s^{n} \chi_{B A}(s)$, which implies (4.4.29). Finally, (4.4.30) follows immediately from (4.4.29).

If $n=m$, then Proposition 4.4.10 specializes to the following result.
Corollary 4.4.11. Let $A, B \in \mathbb{F}^{n \times n}$. Then,

$$
\begin{equation*}
\chi_{A B}=\chi_{B A} \tag{4.4.31}
\end{equation*}
$$

Consequently,

$$
\begin{equation*}
\operatorname{mspec}(A B)=\operatorname{mspec}(B A) \tag{4.4.32}
\end{equation*}
$$

We define the spectral abscissa of $A \in \mathbb{F}^{n \times n}$ by

$$
\begin{equation*}
\operatorname{spabs}(A) \triangleq \max \{\operatorname{Re} \lambda: \quad \lambda \in \operatorname{spec}(A)\} \tag{4.4.33}
\end{equation*}
$$

and the spectral radius of $A \in \mathbb{F}^{n \times n}$ by

$$
\begin{equation*}
\operatorname{sprad}(A) \triangleq \max \{|\lambda|: \quad \lambda \in \operatorname{spec}(A)\} \tag{4.4.34}
\end{equation*}
$$

Let $A \in \mathbb{F}^{n \times n}$. Then, $\nu_{-}(A), \nu_{0}(A)$, and $\nu_{+}(A)$ denote the number of eigenvalues of A counting algebraic multiplicity having, respectively, negative, zero, and positive real part. Define the inertia of A by

$$
\operatorname{In} A \triangleq\left[\begin{array}{c}
\nu_{-}(A) \tag{4.4.35}\\
\nu_{0}(A) \\
\nu_{+}(A)
\end{array}\right]
$$

and the signature of A by

$$
\begin{equation*}
\operatorname{sig} A \triangleq \nu_{+}(A)-\nu_{-}(A) \tag{4.4.36}
\end{equation*}
$$

Note that $\operatorname{spabs}(A)<0$ if and only if $\nu_{-}(A)=n$, while $\operatorname{spabs}(A)=0$ if and only if $\nu_{+}(A)=0$.

4.5 Eigenvectors

Let $A \in \mathbb{F}^{n \times n}$, and let $\lambda \in \mathbb{C}$ be an eigenvalue of A. Then, $\chi_{A}(\lambda)=\operatorname{det}(\lambda I-$ $A)=0$, and thus $\lambda I-A \in \mathbb{C}^{n \times n}$ is singular. Furthermore, $\mathcal{N}(\lambda I-A)$ is a nontrivial subspace of \mathbb{C}^{n}, that is, $\operatorname{def}(\lambda I-A)>0$. If $x \in \mathcal{N}(\lambda I-A)$, that is, $A x=\lambda x$, and $x \neq 0$, then x is an eigenvector of A associated with λ. By definition, all eigenvectors are nonzero. Note that, if A and λ are real, then there exists a real eigenvector associated with λ.

Definition 4.5.1. The geometric multiplicity of $\lambda \in \operatorname{spec}(A)$, denoted by $\operatorname{gmult}_{A}(\lambda)$, is the number of linearly independent eigenvectors associated with λ, that is,

$$
\begin{equation*}
\operatorname{gmult}_{A}(\lambda) \triangleq \operatorname{def}(\lambda I-A) \tag{4.5.1}
\end{equation*}
$$

By convention, if $\lambda \notin \operatorname{spec}(A)$, then $\operatorname{gmult}_{A}(\lambda) \triangleq 0$.

Proposition 4.5.2. Let $A \in \mathbb{F}^{n \times n}$, and let $\lambda \in \operatorname{spec}(A)$. Then, the following statements hold:
i) $\operatorname{rank}(\lambda I-A)+\operatorname{gmult}_{A}(\lambda)=n$.
ii) $\operatorname{def} A=\operatorname{gmult}_{A}(0)$.
iii) $\operatorname{rank} A+\operatorname{gmult}_{A}(0)=n$.

The spectral properties of normal matrices deserve special attention.
Lemma 4.5.3. Let $A \in \mathbb{F}^{n \times n}$ be normal, let $\lambda \in \operatorname{spec}(A)$, and let $x \in \mathbb{C}^{n}$ be an eigenvector of A associated with λ. Then, x is an eigenvector of A^{*} associated with $\bar{\lambda} \in \operatorname{spec}\left(A^{*}\right)$.

Proof. Since $\lambda \in \operatorname{spec}(A)$, statement v) of Proposition 4.4.5 implies that $\bar{\lambda} \in \operatorname{spec}\left(A^{*}\right)$. Next, since x and λ satisfy $A x=\lambda x, x^{*} A^{*}=\bar{\lambda} x^{*}$, and $A A^{*}=A^{*} A$, it follows that

$$
\begin{aligned}
\left(A^{*} x-\bar{\lambda} x\right)^{*}\left(A^{*} x-\bar{\lambda} x\right) & =x^{*} A A^{*} x-\bar{\lambda} x^{*} A x-\lambda x^{*} A^{*} x+\lambda \bar{\lambda} x^{*} x \\
& =x^{*} A^{*} A x-\lambda \bar{\lambda} x^{*} x-\lambda \bar{\lambda} x^{*} x+\lambda \bar{\lambda} x^{*} x \\
& =\lambda \bar{\lambda} x^{*} x-\lambda \bar{\lambda} x^{*} x=0
\end{aligned}
$$

Hence, $A^{*} x=\bar{\lambda} x$.
Proposition 4.5.4. Let $A \in \mathbb{F}^{n \times n}$. Then, eigenvectors associated with distinct eigenvalues of A are linearly independent. If, in addition, A is normal, then these eigenvectors are mutually orthogonal.

Proof. Let $\lambda_{1}, \lambda_{2} \in \operatorname{spec}(A)$ be distinct with associated eigenvectors $x_{1}, x_{2} \in$ \mathbb{C}^{n}. Suppose that x_{1} and x_{2} are linearly dependent, that is, $x_{1}=\alpha x_{2}$, where $\alpha \in \mathbb{C}$ and $\alpha \neq 0$. Then, $A x_{1}=\lambda_{1} x_{1}=\lambda_{1} \alpha x_{2}$, while also $A x_{1}=A \alpha x_{2}=\alpha \lambda_{2} x_{2}$. Hence, $\alpha\left(\lambda_{1}-\lambda_{2}\right) x_{2}=0$, which contradicts $\alpha \neq 0$. Since pairwise linear independence does not imply the linear independence of larger sets, next, let $\lambda_{1}, \lambda_{2}, \lambda_{3} \in \operatorname{spec}(A)$ be distinct with associated eigenvectors $x_{1}, x_{2}, x_{3} \in \mathbb{C}^{n}$. Suppose that x_{1}, x_{2}, x_{3} are linearly dependent. In this case, there exist $a_{1}, a_{2}, a_{3} \in \mathbb{C}$, not all zero, such that $a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}=0$. If $a_{1}=0$, then $a_{2} x_{2}+a_{3} x_{3}=0$. However, $\lambda_{2} \neq \lambda_{3}$ implies that x_{2} and x_{3} are linearly independent, which in turn implies that $a_{2}=0$ and $a_{3}=0$. Since a_{1}, a_{2}, a_{3} are not all zero, it follows that $a_{1} \neq 0$. Therefore, $x_{1}=\alpha x_{2}+\beta x_{3}$, where $\alpha \triangleq-a_{2} / a_{1}$ and $\beta \triangleq-a_{3} / a_{1}$ are not both zero. Thus, $A x_{1}=A\left(\alpha x_{2}+\beta x_{3}\right)=\alpha A x_{2}+\beta A x_{3}=\alpha \lambda_{2} x_{2}+\beta \lambda_{3} x_{3}$. However, $A x_{1}=\lambda_{1} x_{1}=$ $\lambda_{1}\left(\alpha x_{2}+\beta x_{3}\right)=\alpha \lambda_{1} x_{2}+\beta \lambda_{1} x_{3}$. Subtracting these relations yields $0=\alpha\left(\lambda_{1}-\right.$ $\left.\lambda_{2}\right) x_{2}+\beta\left(\lambda_{1}-\lambda_{3}\right) x_{3}$. Since x_{2} and x_{3} are linearly independent, it follows that $\alpha\left(\lambda_{1}-\lambda_{2}\right)=0$ and $\beta\left(\lambda_{1}-\lambda_{3}\right)=0$. Since α and β are not both zero, it follows that $\lambda_{1}=\lambda_{2}$ or $\lambda_{1}=\lambda_{3}$, which contradicts the assumption that $\lambda_{1}, \lambda_{2}, \lambda_{3}$ are distinct. The same arguments apply to sets of four or more eigenvectors.

Now, suppose that A is normal, and let $\lambda_{1}, \lambda_{2} \in \operatorname{spec}(A)$ be distinct eigenvalues with associated eigenvectors $x_{1}, x_{2} \in \mathbb{C}^{n}$. Then, by Lemma 4.5.3, $A x_{1}=\lambda_{1} x_{1}$ implies that $A^{*} x_{1}=\bar{\lambda}_{1} x_{1}$. Consequently, $x_{1}^{*} A=\lambda_{1} x_{1}^{*}$, which implies that $x_{1}^{*} A x_{2}=$ $\lambda_{1} x_{1}^{*} x_{2}$. Furthermore, $x_{1}^{*} A x_{2}=\lambda_{2} x_{1}^{*} x_{2}$. It thus follows that $0=\left(\lambda_{1}-\lambda_{2}\right) x_{1}^{*} x_{2}$.

Hence, $\lambda_{1} \neq \lambda_{2}$ implies that $x_{1}^{*} x_{2}=0$.
If $A \in \mathbb{R}^{n \times n}$ is symmetric, then Lemma 4.5.3 is not needed and the proof of Proposition 4.5.4 is simpler. In this case, it follows from x) of Proposition 4.4.5 that $\lambda_{1}, \lambda_{2} \in \operatorname{spec}(A)$ are real, and thus associated eigenvectors $x_{1} \in \mathcal{N}\left(\lambda_{1} I-A\right)$ and $x_{2} \in \mathcal{N}\left(\lambda_{2} I-A\right)$ can be chosen to be real. Hence, $A x_{1}=\lambda_{1} x_{1}$ and $A x_{2}=\lambda_{2} x_{2}$ imply that $x_{2}^{\mathrm{T}} A x_{1}=\lambda_{1} x_{2}^{\mathrm{T}} x_{1}$ and $x_{1}^{\mathrm{T}} A x_{2}=\lambda_{2} x_{1}^{\mathrm{T}} x_{2}$. Since $x_{1}^{\mathrm{T}} A x_{2}=x_{2}^{\mathrm{T}} A^{\mathrm{T}} x_{1}=x_{2}^{\mathrm{T}} A x_{1}$ and $x_{1}^{\mathrm{T}} x_{2}=x_{2}^{\mathrm{T}} x_{1}$, it follows that $\left(\lambda_{1}-\lambda_{2}\right) x_{1}^{\mathrm{T}} x_{2}=0$. Since $\lambda_{1} \neq \lambda_{2}$, it follows that $x_{1}^{\mathrm{T}} x_{2}=0$.

4.6 The Minimal Polynomial

Theorem 4.4.7 showed that every square matrix $A \in \mathbb{F}^{n \times n}$ is a root of its characteristic polynomial. However, there may be polynomials of degree less than n having A as a root. In fact, the following result shows that there exists a unique monic polynomial that has A as a root and that divides all polynomials that have A as a root.

Theorem 4.6.1. Let $A \in \mathbb{F}^{n \times n}$. Then, there exists a unique monic polynomial $\mu_{A} \in \mathbb{F}[s]$ of minimal degree such that $\mu_{A}(A)=0$. Furthermore, $\operatorname{deg} \mu_{A} \leq n$, and μ_{A} divides every polynomial $p \in \mathbb{F}[s]$ satisfying $p(A)=0$.

Proof. Since $\chi_{A}(A)=0$ and $\operatorname{deg} \chi_{A}=n$, it follows that there exists a minimal positive integer $n_{0} \leq n$ such that there exists a monic polynomial $p_{0} \in \mathbb{F}[s]$ satisfying $p_{0}(A)=0$ and $\operatorname{deg} p_{0}=n_{0}$. Let $p \in \mathbb{F}[s]$ satisfy $p(A)=0$. Then, by Lemma 4.1.2, there exist polynomials $q, r \in \mathbb{F}[s]$ such that $p=q p_{0}+r$ and $\operatorname{deg} r<\operatorname{deg} p_{0}$. However, $p(A)=p_{0}(A)=0$ implies that $r(A)=0$. If $r \neq 0$, then r can be normalized to obtain a monic polynomial of degree less than n_{0}, which contradicts the definition n_{0}. Hence, $r=0$, which implies that p_{0} divides p. This proves existence.

Now, suppose there exist two monic polynomials $p_{0}, \hat{p}_{0} \in \mathbb{F}[s]$ of degree n_{0} and such that $p_{0}(A)=\hat{p}_{0}(A)=0$. By the previous argument, p_{0} divides \hat{p}_{0}, and vice versa. Therefore, p_{0} is a constant multiple of \hat{p}_{0}. Since p_{0} and \hat{p}_{0} are both monic, it follows that $p_{0}=\hat{p}_{0}$. This proves uniqueness. Denote this polynomial by μ_{A}.

The monic polynomial μ_{A} of smallest degree having A as a root is the minimal polynomial of A.

The following result relates the characteristic and minimal polynomials of $A \in \mathbb{F}^{n \times n}$ to the similarity invariants of A. Note that $\operatorname{rank}(s I-A)=n$, so that A has n similarity invariants $p_{1}, \ldots, p_{n} \in \mathbb{F}[s]$. In this case, (4.3.1) becomes

$$
s I-A=S_{1}(s)\left[\begin{array}{ccc}
p_{1}(s) & & 0 \tag{4.6.1}\\
& \ddots & \\
0 & & p_{n}(s)
\end{array}\right] S_{2}(s)
$$

where $S_{1}, S_{2} \in \mathbb{F}^{n \times n}[s]$ are unimodular and p_{i} divides p_{i+1} for all $i=1, \ldots, n-1$.
Proposition 4.6.2. Let $A \in \mathbb{F}^{n \times n}$, and let $p_{1}, \ldots, p_{n} \in \mathbb{F}[s]$ be the similarity invariants of A, where p_{i} divides p_{i+1} for all $i=1, \ldots, n-1$. Then,

$$
\begin{equation*}
\chi_{A}=\prod_{i=1}^{n} p_{i} \tag{4.6.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu_{A}=p_{n} . \tag{4.6.3}
\end{equation*}
$$

Proof. Using Theorem 4.3.2 and (4.6.1), it follows that

$$
\chi_{A}(s)=\operatorname{det}(s I-A)=\left[\operatorname{det} S_{1}(s)\right]\left[\operatorname{det} S_{2}(s)\right] \prod_{i=1}^{n} p_{i}(s) .
$$

Since S_{1} and S_{2} are unimodular and χ_{A} and p_{1}, \ldots, p_{n} are monic, it follows that $\left[\operatorname{det} S_{1}(s)\right]\left[\operatorname{det} S_{2}(s)\right]=1$, which proves (4.6.2).

To prove (4.6.3), first note that it follows from Theorem 4.3.2 that $\chi_{A}=$ $\Delta_{n-1} p_{n}$, where $\Delta_{n-1} \in \mathbb{F}[s]$ is the greatest common divisor of all $(n-1) \times(n-1)$ subdeterminants of $s I-A$. Since the $(n-1) \times(n-1)$ subdeterminants of $s I-A$ are the entries of $\pm(s I-A)^{\mathrm{A}}$, it follows that Δ_{n-1} divides every entry of $(s I-A)^{\mathrm{A}}$. Hence, there exists a polynomial matrix $P \in \mathbb{F}^{n \times n}[s]$ such that $(s I-A)^{\mathrm{A}}=\Delta_{n-1}(s) P(s)$. Furthermore, since $(s I-A)^{\mathrm{A}}(s I-A)=\chi_{A}(s) I$, it follows that $\Delta_{n-1}(s) P(s)(s I-A)=$ $\chi_{A}(s) I=\Delta_{n-1}(s) p_{n}(s) I$, and thus $P(s)(s I-A)=p_{n}(s) I$. Lemma 4.2.2now implies that $p_{n}(A)=0$.

Since $p_{n}(A)=0$, it follows from Theorem 4.6.1 that μ_{A} divides p_{n}. Hence, let $q \in \mathbb{F}[s]$ be the monic polynomial satisfying $p_{n}=q \mu_{A}$. Furthermore, since $\mu_{A}(A)=0$, it follows from Corollary 4.2.3 that there exists a polynomial matrix $Q \in \mathbb{F}^{n \times n}[s]$ such that $\mu_{A}(s) I=Q(s)(s I-A)$. Thus, $P(s)(s I-A)=p_{n}(s) I=$ $q(s) \mu_{A}(s) I=q(s) Q(s)(s I-A)$, which implies that $P=q Q$. Thus, q divides every entry of P. However, since P is obtained by dividing $(s I-A)^{\mathrm{A}}$ by the greatest common divisor of all of its entries, it follows that the greatest common divisor of the entries of P is 1 . Hence, $q=1$, which implies that $p_{n}=\mu_{A}$, which proves (4.6.3).

Proposition 4.6.2 shows that μ_{A} divides χ_{A}, which is also a consequence of Theorem 4.4.7 and Theorem 4.6.1. Proposition 4.6.2 also shows that $\mu_{A}=\chi_{A}$ if and only if $p_{1}=\cdots=p_{n-1}=1$, that is, if and only if $p_{n}=\chi_{A}$ is the only nonconstant similarity invariant of A. Note that, in general, it follows from (4.6.2) that $\sum_{i=1}^{n} \operatorname{deg} p_{i}=n$.

Finally, note that the similarity invariants of the $n \times n$ identity matrix I_{n} are given by $p_{i}(s)=s-1$ for all $i=1, \ldots, n$. Thus, $\chi_{I_{n}}(s)=(s-1)^{n}$ and $\mu_{I_{n}}(s)=s-1$.

Proposition 4.6.3. Let $A \in \mathbb{F}^{n \times n}$, and assume that A and B are similar. Then,

$$
\begin{equation*}
\mu_{A}=\mu_{B} \tag{4.6.4}
\end{equation*}
$$

4.7 Rational Transfer Functions and the SmithMcMillan Decomposition

We now turn our attention to rational functions.
Definition 4.7.1. The set $\mathbb{F}(s)$ of rational functions consists of functions $g: \mathbb{C} \backslash \mathcal{S} \mapsto \mathbb{C}$, where $g(s)=p(s) / q(s), p, q \in \mathbb{F}[s], q \neq 0$, and $\mathcal{S} \triangleq \operatorname{roots}(q)$. The rational function g is strictly proper, proper, exactly proper, improper, respectively, if $\operatorname{deg} p<\operatorname{deg} q, \operatorname{deg} p \leq \operatorname{deg} q, \operatorname{deg} p=\operatorname{deg} q, \operatorname{deg} p>\operatorname{deg} q$. If p and q are coprime, then the zeros of g are the elements of $\operatorname{mroots}(p)$, while the poles of g are the elements of mroots (q). The set of proper rational functions is denoted by $\mathbb{F}_{\text {prop }}(s)$. The relative degree of $g \in \mathbb{F}_{\text {prop }}(s)$, denoted by reldeg g, is $\operatorname{deg} q-\operatorname{deg} p$.

Definition 4.7.2. The set $\mathbb{F}^{l \times m}(s)$ of rational transfer functions consists of matrices whose entries are elements of $\mathbb{F}(s)$. The rational transfer function $G \in$ $\mathbb{F}^{l \times m}(s)$ is strictly proper if every entry of G is strictly proper, proper if every entry of G is proper, exactly proper if every entry of G is proper and at least one entry of G is exactly proper, and improper if at least one entry of G is improper. The set of proper rational transfer functions is denoted by $\mathbb{F}_{\text {prop }}^{l \times m}(s)$.

Definition 4.7.3. Let $G \in \mathbb{F}_{\text {prop }}^{l \times m}(s)$. Then, the relative degree of G, denoted by reldeg G, is defined by

$$
\begin{equation*}
\operatorname{reldeg} G \triangleq \min _{\substack{i=1, \ldots, l \\ j=1, \ldots, m}} \operatorname{reldeg} G_{(i, j)} . \tag{4.7.1}
\end{equation*}
$$

By writing $(s I-A)^{-1}$ as

$$
\begin{equation*}
(s I-A)^{-1}=\frac{1}{\chi_{A}(s)}(s I-A)^{\mathrm{A}}, \tag{4.7.2}
\end{equation*}
$$

it follows from (4.4.21) that $(s I-A)^{-1}$ is a strictly proper rational transfer function. In fact, for all $i=1, \ldots, n$,

$$
\begin{equation*}
\operatorname{reldeg}\left[(s I-A)^{-1}\right]_{(i, i)}=1 \text {, } \tag{4.7.3}
\end{equation*}
$$

and thus

$$
\begin{equation*}
\text { reldeg }(s I-A)^{-1}=1 . \tag{4.7.4}
\end{equation*}
$$

The following definition is an extension of Definition 4.2.4 to rational transfer functions.

Definition 4.7.4. Let $G \in \mathbb{F}^{l \times m}(s)$, and, for all $i=1, \ldots, l$ and $j=1, \ldots, m$, let $G_{(i, j)}=p_{i j} / q_{i j}$, where $q_{i j} \neq 0$, and $p_{i j}, q_{i j} \in \mathbb{F}[s]$ are coprime. Then, the poles of G are the elements of the set

$$
\begin{equation*}
\operatorname{poles}(G) \triangleq \bigcup_{i, j=1}^{l, m} \operatorname{roots}\left(q_{i j}\right), \tag{4.7.5}
\end{equation*}
$$

and the blocking zeros of G are the elements of the set

$$
\begin{equation*}
\operatorname{bzeros}(G) \triangleq \bigcap_{i, j=1}^{l, m} \operatorname{roots}\left(p_{i j}\right) \tag{4.7.6}
\end{equation*}
$$

Finally, the rank of G is the nonnegative integer

$$
\begin{equation*}
\operatorname{rank} G \triangleq \max _{s \in \mathbb{C} \backslash \operatorname{poles}(G)} \operatorname{rank} G(s) \tag{4.7.7}
\end{equation*}
$$

The following result provides a canonical form, known as the Smith-McMillan form, for rational transfer functions under unimodular transformation.

Theorem 4.7.5. Let $G \in \mathbb{F}^{l \times m}(s)$, and let $r \triangleq \operatorname{rank} G$. Then, there exist unimodular matrices $S_{1} \in \mathbb{F}^{l \times l}[s]$ and $S_{2} \in \mathbb{F}^{m \times m}[s]$ and monic polynomials $p_{1}, \ldots, p_{r}, q_{1}, \ldots, q_{r} \in \mathbb{F}[s]$ such that p_{i} and q_{i} are coprime for all $i=1, \ldots, r, p_{i}$ divides p_{i+1} for all $i=1, \ldots, r-1, q_{i+1}$ divides q_{i} for all $i=1, \ldots, r-1$, and

$$
G=S_{1}\left[\begin{array}{cccc}
p_{1} / q_{1} & & & \tag{4.7.8}\\
& \ddots & & 0_{r \times(m-r)} \\
& & p_{r} / q_{r} & \\
& 0_{(l-r) \times r} & & 0_{(l-r) \times(m-r)}
\end{array}\right] S_{2}
$$

Proof. Let $n_{i j} / d_{i j}$ denote the (i, j) entry of G, where $n_{i j}, d_{i j} \in \mathbb{F}[s]$ are coprime, and let $d \in \mathbb{F}[s]$ denote the least common multiple of $d_{i j}$ for all $i=1, \ldots, l$ and $j=1, \ldots, m$. From Theorem4.3.2 it follows that the polynomial matrix $d G$ has the Smith form $\operatorname{diag}\left(\hat{p}_{1}, \ldots, \hat{p}_{r}, 0, \ldots, 0\right)$, where $\hat{p}_{1}, \ldots, \hat{p}_{r} \in \mathbb{F}[s]$ and \hat{p}_{i} divides \hat{p}_{i+1} for all $i=1, \ldots, r-1$. Now, divide this Smith form by d and express every rational function \hat{p}_{i} / d in coprime form p_{i} / q_{i} so that p_{i} divides p_{i+1} for all $i=1, \ldots, r-1$ and q_{i+1} divides q_{i} for all $i=1, \ldots, r-1$.

Proposition 4.7.6. Let $G \in \mathbb{F}^{l \times m}(s)$, and assume that there exist unimodular matrices $S_{1} \in \mathbb{F}^{l \times l}[s]$ and $S_{2} \in \mathbb{F}^{m \times m}[s]$ and monic polynomials $p_{1}, \ldots, p_{r}, q_{1}, \ldots, q_{r}$ $\in \mathbb{F}[s]$ such that p_{i} and q_{i} are coprime for all $i=1, \ldots, r$ and such that (4.7.8) holds. Then, $\operatorname{rank} G=r$.

Proposition 4.7.7. Let $G \in \mathbb{F}^{n \times m}[s]$, and let $r \triangleq \operatorname{rank} G$. Then, r is the largest order of all nonsingular submatrices of G.

Proposition 4.7.8. Let $G \in \mathbb{F}^{n \times m}(s)$, and let $\mathcal{S} \subset \mathbb{C}$ be a finite set such that $\operatorname{poles}(G) \subseteq \mathcal{S}$. Then,

$$
\begin{equation*}
\operatorname{rank} G=\max _{s \in \mathbb{C} \backslash S} \operatorname{rank} G(s) \tag{4.7.9}
\end{equation*}
$$

Let $g_{1}, \ldots, g_{r} \in \mathbb{F}^{n}(s)$. Then, g_{1}, \ldots, g_{r} are linearly independent if $\alpha_{1}, \ldots, \alpha_{r}$ $\in \mathbb{F}[s]$ and $\sum_{n=1}^{r} \alpha_{i} g_{i}=0$ imply that $\alpha_{1}=\cdots=\alpha_{r}=0$. Equivalently, g_{1}, \ldots, g_{r} are linearly independent if $\alpha_{1}, \ldots, \alpha_{r} \in \mathbb{F}(s)$ and $\sum_{n=1}^{r} \alpha_{i} g_{i}=0$ imply that $\alpha_{1}=$ $\cdots=\alpha_{r}=0$. In other words, the coefficients α_{i} can be either polynomials or rational functions.

Proposition 4.7.9. Let $G \in \mathbb{F}^{l \times m}(s)$. Then, $\operatorname{rank} G$ is equal to the number of linearly independent columns of G.

Since $G \in \mathbb{F}^{l \times m}[s] \subset \mathbb{F}^{l \times m}(s)$, Proposition 4.7.9 applies to polynomial matrices.

Definition 4.7.10. Let $G \in \mathbb{F}^{l \times m}(s)$, assume that $G \neq 0$, let $r \triangleq \operatorname{rank} G$, and let $p_{1}, \ldots, p_{r}, q_{1}, \ldots, q_{r} \in \mathbb{F}[s]$ be given by Theorem 4.7.5. Then, the McMillan degree Mcdeg G of G is defined by

$$
\begin{equation*}
\operatorname{Mcdeg} G \triangleq \sum_{i=1}^{r} \operatorname{deg} q_{i} \tag{4.7.10}
\end{equation*}
$$

Furthermore, the transmission zeros of G are the elements of the set

$$
\begin{equation*}
\operatorname{tzeros}(G) \triangleq \operatorname{roots}\left(p_{r}\right) \tag{4.7.11}
\end{equation*}
$$

Proposition 4.7.11. Let $G \in \mathbb{F}^{l \times m}(s)$, assume that $G \neq 0$, and assume that G has the Smith-McMillan form (4.7.8). Then,

$$
\begin{equation*}
\operatorname{poles}(G)=\operatorname{roots}\left(q_{1}\right) \tag{4.7.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{bzeros}(G)=\operatorname{roots}\left(p_{1}\right) \tag{4.7.13}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\operatorname{bzeros}(G) \subseteq \operatorname{tzeros}(G) \tag{4.7.14}
\end{equation*}
$$

Furthermore, we define the multisets

$$
\begin{align*}
\operatorname{mpoles}(G) & \triangleq \bigcup_{i=1}^{r} \operatorname{mroots}\left(q_{i}\right) \tag{4.7.15}\\
\operatorname{mtzeros}(G) & \triangleq \bigcup_{i=1}^{r} \operatorname{mroots}\left(p_{i}\right) \tag{4.7.16}\\
\operatorname{mbzeros}(G) & \triangleq \operatorname{mroots}\left(p_{1}\right) \tag{4.7.17}
\end{align*}
$$

Note that

$$
\begin{equation*}
\operatorname{mbzeros}(G) \subseteq \operatorname{mtzeros}(G) \tag{4.7.18}
\end{equation*}
$$

If $G=0$, then these multisets as well as the sets poles (G), $\operatorname{tzeros}(G)$, and bzeros (G) are empty.

Proposition 4.7.12. Let $G \in \mathbb{F}_{\text {prop }}^{l \times m}(s)$, assume that $G \neq 0$, let $z \in \mathbb{C}$, and assume that z is not a pole of G. Then, z is a transmission zero of G if and only if $\operatorname{rank} G(z)<\operatorname{rank} G$. Furthermore, z is a blocking zero of G if and only if $G(z)=0$.

The following example shows that a pole of G can also be a transmission zero of G.

Example 4.7.13. Define $G \in \mathbb{R}_{\text {prop }}^{2 \times 2}(s)$ by

$$
G(s)=\left[\begin{array}{cc}
\frac{1}{(s+1)^{2}} & \frac{1}{(s+1)(s+2)} \\
\frac{1}{(s+1)(s+2)} & \frac{s+3}{(s+2)^{2}}
\end{array}\right]
$$

Then, $\operatorname{rank} G=2$. Furthermore,

$$
G(s)=S_{1}(s)\left[\begin{array}{cc}
\frac{1}{(s+1)^{2}(s+2)^{2}} & 0 \\
0 & s+2
\end{array}\right] S_{2}(s)
$$

where $S_{1}, S_{2} \in \mathbb{R}^{2 \times 2}[s]$ are the unimodular matrices

$$
S_{1}(s)=\left[\begin{array}{ll}
(s+2)\left(s^{3}+4 s^{2}+5 s+1\right) & 1 \\
(s+1)\left(s^{3}+5 s^{2}+8 s+3\right) & 1
\end{array}\right]
$$

and

$$
S_{2}(s)=\left[\begin{array}{cc}
-(s+2) & (s+1)\left(s^{2}+3 s+1\right) \\
1 & -s(s+2)
\end{array}\right]
$$

Hence, the McMillan degree of G is 4 , the poles of G are -1 and -2 , the transmission zero of G is -2 , and G has no blocking zeros. Note that -2 is both a pole and a transmission zero of G. Note also that, although G is strictly proper, the SmithMcMillan form of G is improper.

Let $G \in \mathbb{F}_{\text {prop }}^{l \times m}(s)$. A factorization of G of the form

$$
\begin{equation*}
G(s)=N(s) D^{-1}(s) \tag{4.7.19}
\end{equation*}
$$

where $N \in \mathbb{F}^{l \times m}[s]$ and $D \in \mathbb{F}^{m \times m}[s]$, is a right polynomial fraction description of G. We say that N and D are right coprime if every $R \in \mathbb{F}^{m \times m}[s]$ that right divides both N and D is unimodular. In this case, (4.7.19) is a coprime right polynomial fraction description of G.

Theorem 4.7.14. Let $N \in \mathbb{F}^{l \times m}[s]$ and $D \in \mathbb{F}^{m \times m}[s]$. Then, the following statements are equivalent:
i) N and D are right coprime.
ii) There exist $X \in \mathbb{F}^{m \times l}[s]$ and $Y \in \mathbb{F}^{m \times m}[s]$ such that

$$
\begin{equation*}
X N+Y D=I \tag{4.7.20}
\end{equation*}
$$

iii) For all $s \in \mathbb{C}$,

$$
\operatorname{rank}\left[\begin{array}{c}
N(s) \tag{4.7.21}\\
D(s)
\end{array}\right]=m
$$

Proof. See 1150 p. 297].
Equation (4.7.20) is the Bezout identity.
The following result shows that all coprime right polynomial fraction descriptions of a proper rational transfer function G are related by a unimodular
transformation.
Proposition 4.7.15. Let $G \in \mathbb{F}_{\text {prop }}^{l \times m}(s)$, let $N, \hat{N} \in \mathbb{F}^{l \times m}[s]$, let $D, \hat{D} \in$ $\mathbb{F}^{m \times m}[s]$, and assume that $G=N D^{-1}=\hat{N} \hat{D}^{-1}$. Then, there exists a unimodular matrix $R \in \mathbb{F}^{m \times m}[s]$ such that $N=\hat{N} R$ and $D=\hat{D} R$.

Proof. See [1150, p. 298].
The following result uses the Smith-McMillan form to show that every proper rational transfer function has a coprime right polynomial fraction description.

Proposition 4.7.16. Let $G \in \mathbb{F}_{\text {prop }}^{l \times m}(s)$. Then, G has a coprime right polynomial fraction description. If, in addition, $G(s)=N(s) D^{-1}(s)$, where $N \in \mathbb{F}^{l \times m}[s]$ and $D \in \mathbb{F}^{m \times m}[s]$, is a coprime right polynomial fraction description of G, then

$$
\begin{equation*}
\operatorname{Szeros}(N)=\operatorname{tzeros}(G) \tag{4.7.22}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Szeros}(D)=\operatorname{poles}(G) \tag{4.7.23}
\end{equation*}
$$

Proof. Note that (4.7.8) can be written as

$$
\begin{aligned}
& G=S_{1}\left[\begin{array}{cccc}
p_{1} / q_{1} & & & 0 \\
& \ddots & & \\
& & p_{r} / q_{r} & \\
0 & & & 0_{(l-r) \times(m-r)}
\end{array}\right] S_{2} \\
& =S_{1}\left[\begin{array}{cccc}
p_{1} & & & 0 \\
& \ddots & & \\
& & p_{r} & \\
0 & & & 0_{(l-r) \times(m-r)}
\end{array}\right]\left[\begin{array}{cccc}
q_{1} & & & 0 \\
& \ddots & & \\
& & q_{r} & \\
0 & & & I_{m-r}
\end{array}\right]^{-1} S_{2} \\
& =S_{1}\left[\begin{array}{cccc}
p_{1} & & & 0 \\
& \ddots & & \\
& & p_{r} & \\
0 & & & 0_{(l-r) \times(m-r)}
\end{array}\right]\left(S_{2}^{-1}\left[\begin{array}{cccc}
q_{1} & & & 0 \\
& \ddots & & \\
& & q_{r} & \\
0 & & & I_{m-r}
\end{array}\right]\right)^{-1},
\end{aligned}
$$

which, by Theorem 4.7.14, is a right coprime polynomial fraction description of G. The last statement follows from Theorem 4.7.5 and Proposition 4.7.15.

4.8 Facts on Polynomials and Rational Functions

Fact 4.8.1. Let $p \in \mathbb{R}[s]$ be monic, and define $q(s) \triangleq s^{n} p(1 / s)$, where $n \triangleq$ $\operatorname{deg} p$. If $0 \notin \operatorname{roots}(p)$, then $\operatorname{deg}(q)=n$ and

$$
\operatorname{mroots}(q)=\{1 / \lambda: \quad \lambda \in \operatorname{mroots}(p)\}_{\mathrm{ms}}
$$

If $0 \in \operatorname{roots}(p)$ with multiplicity r, then $\operatorname{deg}(q)=n-r$ and

$$
\operatorname{mroots}(q)=\{1 / \lambda: \quad \lambda \neq 0 \text { and } \lambda \in \operatorname{mroots}(p)\}_{\mathrm{ms}}
$$

(Remark: See Fact 11.17.4 and Fact 11.17.5.)
Fact 4.8.2. Let $p \in \mathbb{F}^{n}[s]$ be given by

$$
p(s)=s^{n}+\beta_{n-1} s^{n-1}+\cdots+\beta_{1} s+\beta_{0}
$$

let $\beta_{n} \triangleq 1$, let $\operatorname{mroots}(p)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}_{\mathrm{ms}}$, and define μ_{1}, \ldots, μ_{n} by

$$
\mu_{i} \triangleq \lambda_{1}^{i}+\cdots+\lambda_{n}^{i}
$$

Then, for all $k=1, \ldots, n$,

$$
k \beta_{n-k}+\mu_{1} \beta_{n-k+1}+\mu_{2} \beta_{n-k+2}+\cdots+\mu_{k} \beta_{n}=0
$$

That is,

$$
\left[\begin{array}{ccccccc}
n & \mu_{1} & \mu_{2} & \mu_{3} & \mu_{4} & \cdots & \mu_{n} \\
0 & n-1 & \mu_{1} & \mu_{2} & \mu_{3} & \cdots & \mu_{n-1} \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & 2 & \mu_{1} & \mu_{2} \\
0 & 0 & \cdots & 0 & 0 & 1 & \mu_{1}
\end{array}\right]\left[\begin{array}{c}
\beta_{0} \\
\beta_{1} \\
\vdots \\
\beta_{n-1} \\
\beta_{n}
\end{array}\right]=0 .
$$

Consequently, $\beta_{1}, \ldots, \beta_{n-1}$ are uniquely determined by μ_{1}, \ldots, μ_{n}. In particular,

$$
\begin{gathered}
\beta_{n-1}=-\mu_{1} \\
\beta_{n-2}=\frac{1}{2}\left(\mu_{1}^{2}-\mu_{2}\right) \\
\beta_{3}=\frac{1}{6}\left(-\mu_{1}^{3}+3 \mu_{1} \mu_{2}-2 \mu_{3}\right) .
\end{gathered}
$$

(Proof: See [709, p. 44] and [1002, p. 9].) (Remark: These equations are a consequence of Newton's identities given by Fact 1.15.11 Note that, for $i=0, \ldots, n$, it follows that $\beta_{i}=(-1)^{n-i} E_{n-i}$, where E_{i} is the i th elementary symmetric polynomial of the roots of p.)

Fact 4.8.3. Let $p, q \in \mathbb{F}[s]$ be monic. Then, p and q are coprime if and only if their least common multiple is $p q$.

Fact 4.8.4. Let $p, q \in \mathbb{F}[s]$, where $p(s)=a_{n} s^{n}+\cdots+a_{1} s+a_{0}, q(s)=$ $b_{m} s^{m}+\cdots+b_{1} s+b_{0}, \operatorname{deg} p=n$, and $\operatorname{deg} q=m$. Furthermore, define the Toeplitz matrices $[p]^{(m)} \in \mathbb{F}^{m \times(n+m)}$ and $[q]^{(n)} \in \mathbb{F}^{n \times(n+m)}$ by

$$
[p]^{(m)} \triangleq\left[\begin{array}{ccccccccc}
a_{n} & a_{n-1} & \cdots & a_{1} & a_{0} & 0 & 0 & \cdots & 0 \\
0 & a_{n} & a_{n-1} & \cdots & a_{1} & a_{0} & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \cdots & \ddots & \ddots & \ddots & \vdots
\end{array}\right]
$$

and

$$
[q]^{(n)} \triangleq\left[\begin{array}{ccccccccc}
b_{m} & b_{m-1} & \cdots & b_{1} & b_{0} & 0 & 0 & \cdots & 0 \\
0 & b_{m} & b_{m-1} & \cdots & b_{1} & b_{0} & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \cdots & \ddots & \ddots & \ddots & \vdots
\end{array}\right]
$$

Then, p and q are coprime if and only if

$$
\operatorname{det}\left[\begin{array}{c}
{[p]^{(m)}} \\
{[q]^{(n)}}
\end{array}\right] \neq 0
$$

(Proof: See [481, p. 162] or [1098, pp. 187-191].) (Remark: $\left[{ }_{B}^{A}\right]$ is the Sylvester matrix, and $\operatorname{det}\left[A_{B}^{A}\right]$ is the resultant of p and q.) (Remark: The form $\left[\begin{array}{l}{[p]^{(m)}} \\ {[q]^{(n)}}\end{array}\right]$ appears in [1098 pp. 187-191]. The result is given in 481, p. 162] in terms of $\left[\begin{array}{c}\hat{I}[p]^{(m)} \\ \hat{I}[q]^{(n)}\end{array}\right] \hat{I}$ and in 1503 p. 85] in terms of $\left[\begin{array}{c}{[p]^{(m)}} \\ \hat{I}[q]^{(n)}\end{array}\right]$. Interweaving the rows of $[p]^{(m)}$ and $[q]^{(n)}$ and taking the transpose yields a step-down matrix 389.)

Fact 4.8.5. Let $p_{1}, \ldots, p_{n} \in \mathbb{F}[s]$, and let $d \in \mathbb{F}[s]$ be the greatest common divisor of p_{1}, \ldots, p_{n}. Then, there exist polynomials $q_{1}, \ldots, q_{n} \in \mathbb{F}[s]$ such that

$$
d=\sum_{i=1}^{n} q_{i} p_{i}
$$

In addition, p_{1}, \ldots, p_{n} are coprime if and only if there exist polynomials $q_{1}, \ldots, q_{n} \in$ $\mathbb{F}[s]$ such that

$$
1=\sum_{i=1}^{n} q_{i} p_{i} .
$$

(Proof: See [508, p. 16].) (Remark: The polynomial d is given by the Bezout equation.)

Fact 4.8.6. Let $p, q \in \mathbb{F}[s]$, where $p(s)=a_{n} s^{n}+\cdots+a_{1} s+a_{0}$ and $q(s)=$ $b_{n} s^{n}+\cdots+b_{1} s+b_{0}$, and define $[p]^{(n)},[q]^{(n)} \in \mathbb{F}^{n \times 2 n}$ as in Fact 4.8.4. Furthermore, define

$$
R(p, q) \triangleq\left[\begin{array}{c}
{[p]^{(n)}} \\
{[q]^{(n)}}
\end{array}\right]=\left[\begin{array}{ll}
A_{1} & A_{2} \\
B_{1} & B_{2}
\end{array}\right]
$$

where $A_{1}, A_{2}, B_{1}, B_{2} \in \mathbb{F}^{n \times n}$, and define $\hat{p}(s) \triangleq s^{n} p(-s)$ and $\hat{q}(s) \triangleq s^{n} q(-s)$. Then,

$$
\begin{gathered}
{\left[\begin{array}{cc}
A_{1} & A_{2} \\
B_{1} & B_{2}
\end{array}\right]=\left[\begin{array}{ll}
\hat{p}\left(N_{n}^{\mathrm{T}}\right) & p\left(N_{n}\right) \\
\hat{q}\left(N_{n}^{\mathrm{T}}\right) & q\left(N_{n}\right)
\end{array}\right],} \\
A_{1} B_{1}=B_{1} A_{1} \\
A_{2} B_{2}=B_{2} A_{2} \\
A_{1} B_{2}+A_{2} B_{1}=B_{1} A_{2}+B_{2} A_{1}
\end{gathered}
$$

Therefore,

$$
\begin{aligned}
& {\left[\begin{array}{cc}
I & 0 \\
-B_{1} & A_{1}
\end{array}\right]\left[\begin{array}{ll}
A_{1} & A_{2} \\
B_{1} & B_{2}
\end{array}\right]=\left[\begin{array}{cc}
A_{1} & A_{2} \\
0 & A_{1} B_{2}-B_{1} A_{2}
\end{array}\right],} \\
& {\left[\begin{array}{cc}
-B_{2} & A_{2} \\
0 & I
\end{array}\right]\left[\begin{array}{ll}
A_{1} & A_{2} \\
B_{1} & B_{2}
\end{array}\right]=\left[\begin{array}{cc}
A_{2} B_{1}-B_{2} A_{1} & 0 \\
B_{1} & B_{2}
\end{array}\right],}
\end{aligned}
$$

and

$$
\operatorname{det} R(p, q)=\operatorname{det}\left(A_{1} B_{2}-B_{1} A_{2}\right)=\operatorname{det}\left(B_{2} A_{1}-A_{2} B_{1}\right) .
$$

Now, define $B(p, q) \in \mathbb{F}^{n \times n}$ by

$$
B(p, q) \triangleq\left(A_{1} B_{2}-B_{1} A_{2}\right) \hat{I} .
$$

Then, the following statements hold:
i) For all $s, \hat{s} \in \mathbb{C}$,

$$
p(s) q(\hat{s})-q(s) p(\hat{s})=(s-\hat{s})\left[\begin{array}{c}
1 \\
s \\
\vdots \\
s^{n-1}
\end{array}\right]^{\mathrm{T}} B(p, q)\left[\begin{array}{c}
1 \\
\hat{s} \\
\vdots \\
\hat{s}^{n-1}
\end{array}\right] .
$$

ii) $B(p, q)=\left(B_{2} A_{1}-A_{2} B_{1}\right) \hat{I}=\hat{I}\left(A_{1}^{\mathrm{T}} B_{2}^{\mathrm{T}}-B_{1}^{\mathrm{T}} A_{2}^{\mathrm{T}}\right)=\hat{I}\left(B_{1}^{\mathrm{T}} A_{2}^{\mathrm{T}}-A_{1}^{\mathrm{T}} B_{2}^{\mathrm{T}}\right)$.
iii) $\left[\begin{array}{cc}0 & B(p, q) \\ -B(p, q) & 0\end{array}\right]=Q R^{\mathrm{T}}(p, q) Q R(p, q) Q$, where $Q \triangleq\left[\begin{array}{cc}0 \\ -\hat{I} \\ -\hat{I} & 0\end{array}\right]$.
iv) $|\operatorname{det} B(p, q)|=|\operatorname{det} R(p, q)|=|\operatorname{det} q[C(p)]|$.
v) $B(p, q)$ and $\hat{B}(p, q)$ are symmetric.
vi) $B(p, q)$ is a linear function of (p, q).
vii) $B(p, q)=-B(q, p)$.

Now, assume that $\operatorname{deg} q \leq \operatorname{deg} p=n$ and p is monic. Then, the following statements hold:
viii) def $B(p, q)$ is equal to the degree of the greatest common divisor of p and q.
$i x) p$ and q are coprime if and only if $B(p, q)$ is nonsingular.
x) If $B(p, q)$ is nonsingular, then $[B(p, q)]^{-1}$ is Hankel. In fact,

$$
[B(p, q)]^{-1}=H(a / p),
$$

where $a, b \in \mathbb{F}[s]$ satisfy the Bezout equation $a q+b p=1$.
xi) If $q=q_{1} q_{2}$, where $q_{1}, q_{2} \in \mathbb{F}[s]$, then

$$
B(p, q)=B\left(p, q_{1}\right) q_{2}[C(p)]=q_{1}\left[C^{\mathrm{T}}(p)\right] B\left(p, q_{2}\right) .
$$

xii) $B(p, q)=B(p, q) C(p)=C^{\mathrm{T}}(p) B(p, q)$.
xiii) $B(p, q)=B(p, 1) q[C(p)]=q\left[C^{\mathrm{T}}(p)\right] B(p, 1)$, where $B(p, 1)$ is the Hankel matrix

$$
B(p, 1)=\left[\begin{array}{ccccc}
a_{1} & a_{2} & \cdots & a_{n-1} & 1 \\
a_{2} & a_{3} & . & 1 & 0 \\
\vdots & . & . & . & \vdots \\
a_{n-1} & 1 & . & 0 & 0 \\
1 & 0 & \cdots & 0 & 0
\end{array}\right] .
$$

In particular, for $n=3$ and $q(s)=s$, it follows that

$$
\left[\begin{array}{ccc}
-a_{0} & 0 & 0 \\
0 & a_{2} & 1 \\
0 & 1 & 0
\end{array}\right]=\left[\begin{array}{ccc}
a_{1} & a_{2} & 1 \\
a_{2} & 1 & 0 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-a_{0} & -a_{1} & -a_{2}
\end{array}\right]
$$

xiv) If A_{2} is nonsingular, then

$$
\left[\begin{array}{ll}
A_{1} & A_{2} \\
B_{1} & B_{2}
\end{array}\right]=\left[\begin{array}{cc}
0 & I \\
A_{2}^{-1} \hat{I} & B_{2} A_{2}^{-1}
\end{array}\right]\left[\begin{array}{cc}
B(p, q) & 0 \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
A_{1} & A_{2}
\end{array}\right] .
$$

$x v$) If p has distinct roots $\lambda_{1}, \ldots, \lambda_{n}$, then

$$
V^{\mathrm{T}}\left(\lambda_{1}, \ldots, \lambda_{n}\right) B(p, q) V\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\operatorname{diag}\left[q\left(\lambda_{1}\right) p^{\prime}\left(\lambda_{1}\right), \ldots, q\left(\lambda_{n}\right) p^{\prime}\left(\lambda_{n}\right)\right]
$$

(Proof: See [481, pp. 164-167], [508, pp. 200-207], and [663]. To prove ii), note that $A_{1}, A_{2}, B_{1}, B_{2}$ are square and Toeplitz, and thus reverse symmetric, that is, $A_{1}=A_{1}^{\hat{\mathrm{T}}}$. See Fact 3.18.5) (Remark: $B(p, q)$ is the Bezout matrix of p and q. See [145, 662 722, 1356, 1444, [1098, p. 189], and Fact 5.15.24) (Remark: xiii) is the Barnett factorization. See [138, 1356]. The definitions of $B(p, q)$ and $i i)$ are the Gohberg-Semencul formulas. See [508, p. 206].) (Remark: It follows from continuity that the expressions for det $R(p, q)$ are valid whether or not A_{1} or B_{2} is singular. See Fact 2.14.13) (Remark: The inverse of a Hankel matrix is a Bezout matrix. See [481, p. 174].)

Fact 4.8.7. Let $p, q \in \mathbb{F}[s]$, where $p(s)=\alpha_{1} s+\alpha_{0}$ and $q(s)=s^{2}+\beta_{1} s+\beta_{0}$. Then, p and q are coprime if and only if $\alpha_{0}^{2}+\alpha_{1}^{2} \beta_{0} \neq \alpha_{0} \alpha_{1} \beta_{1}$. (Proof: Use Fact 4.8.6.)

Fact 4.8.8. Let $p, q \in \mathbb{F}[s]$, assume that q is monic, assume that $\operatorname{deg} p<$ $\operatorname{deg} q=n$, and define $B(p, q)$ as in Fact 4.8.6. Furthermore, define $g \in \mathbb{F}(s)$ by

$$
g(s) \triangleq \frac{p(s)}{q(s)}=\sum_{i=1}^{\infty} \frac{h_{i}}{s^{i}} .
$$

Finally, define the Hankel matrix $H_{i, j}(g) \in \mathbb{R}^{i \times j}$ by

$$
H_{i, j}(g)=\left[\begin{array}{ccccc}
h_{1} & h_{2} & h_{k+3} & \cdots & h_{j} \\
h_{k+2} & h_{k+3} & . \cdot & . \cdot & \vdots \\
h_{k+3} & . \cdot & . \cdot & . & \vdots \\
\vdots & . \cdot & . \cdot & . & \vdots \\
\vdots & . \cdot & . \cdot & . \cdot & \vdots \\
h_{i} & \cdots & \cdots & \cdots & h_{j+i-1}
\end{array}\right]
$$

Then, the following statements are equivalent:
i) p and q are coprime.
ii) $H_{n, n}(g)$ is nonsingular.
iii) For all $i, j \geq n$, $\operatorname{rank} H_{i, j}(g)=n$.
iv) There exist $i, j \geq n$ such that $\operatorname{rank} H_{i, j}(g)=n$.

Furthermore, the following statements hold:
$v)$ If p and q are coprime, then $\left[H_{n, n}(g)\right]^{-1}=B(q, a)$, where $a, b \in \mathbb{F}[s]$ satisfy the Bezout equation $a p+b q=1$.
vi) $B(q, p)=B(q, 1) H_{n, n}(g) B(q, 1)$.
vii) $B(q, p)$ and $H_{n, n}(g)$ are congruent.
viii) $\operatorname{In} B(q, p)=\operatorname{In} H_{n, n}(g)$.
$i x) \operatorname{det} H_{n, n}(g)=\operatorname{det} B(q, p)$.
(Proof: See [508, pp. 215-221].) (Remark: See Proposition 12.9.11.)
Fact 4.8.9. Let $q \in \mathbb{R}[s]$, define $g \in \mathbb{F}(s)$ by $g \triangleq q^{\prime} / q$, and define $B\left(q, q^{\prime}\right)$ as in Fact 4.8.6 Then, the following statements hold:
i) The number of distinct roots of q is $\operatorname{rank} B\left(q, q^{\prime}\right)$.
ii) q has n distinct roots if and only if $B\left(q, q^{\prime}\right)$ is nonsingular.
iii) The number of distinct real roots of q is $\operatorname{sig} B\left(q, q^{\prime}\right)$.
iv) q has n distinct, real roots if and only if $B\left(q, q^{\prime}\right)$ is positive definite.
$v)$ The number of distinct complex roots of q is $2 \nu_{-}\left[B\left(q, q^{\prime}\right)\right]$.
$v i$) q has n distinct, complex roots if and only if n is even and $\nu_{-}\left[B\left(q, q^{\prime}\right)\right]=n / 2$.
vii) q has n real roots if and only if $B\left(q, q^{\prime}\right)$ is positive semidefinite.
(Proof: See 508, p. 252].) (Remark: $q^{\prime}(s) \triangleq(\mathrm{d} / \mathrm{d} s) q(s)$.)
Fact 4.8.10. Let $q \in \mathbb{F}[s]$, where $q(s)=\sum_{i=0}^{n} b_{i} s^{i}$, and define

$$
\operatorname{coeff}(q) \triangleq\left[\begin{array}{c}
b_{n} \\
\vdots \\
b_{0}
\end{array}\right]
$$

Now, let $p \in \mathbb{F}[s]$, where $p(s)=\sum_{i=0}^{n} a_{i} s^{i}$. Then,

$$
\operatorname{coeff}(p q)=A \operatorname{coeff}(q)
$$

where $A \in \mathbb{F}^{2 n \times(n+1)}$ is the Toeplitz matrix

$$
A=\left[\begin{array}{ccccc}
a_{n} & 0 & 0 & \cdots & 0 \\
a_{n-1} & a_{n} & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
a_{0} & a_{1} & \ddots & \ddots & a_{n} \\
0 & a_{0} & \ddots & \ddots & a_{n-1} \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & a_{0} & a_{1}
\end{array}\right]
$$

In particular, if $n=3$, then

$$
A=\left[\begin{array}{ccc}
a_{2} & 0 & 0 \\
a_{1} & a_{2} & 0 \\
a_{0} & a_{1} & a_{2} \\
0 & a_{0} & a_{1}
\end{array}\right]
$$

Fact 4.8.11. Let $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{C}$ be distinct and, for all $i=1, \ldots, n$, define

$$
p_{i}(s) \triangleq \prod_{\substack{j=1 \\ j \neq i}}^{n} \frac{s-\lambda_{i}}{\lambda_{i}-\lambda_{j}}
$$

Then, for all $i=1, \ldots, n$,

$$
p_{i}\left(\lambda_{j}\right)= \begin{cases}1, & i=j \\ 0, & i \neq j\end{cases}
$$

(Remark: This identity is the Lagrange interpolation formula.)
Fact 4.8.12. Let $A \in \mathbb{F}^{n \times n}$, and assume that $\operatorname{det}(I+A) \neq 0$. Then, there exists $p \in \mathbb{F}[s]$ such that $\operatorname{deg} p \leq n-1$ and $(I+A)^{-1}=p(A)$. (Remark: See Fact 4.8.12)

Fact 4.8.13. Let $A \in \mathbb{F}^{n \times n}$, let $q \in \mathbb{F}[s]$, and assume that $q(A)$ is nonsingular. Then, there exists $p \in \mathbb{F}[s]$ such that $\operatorname{deg} p \leq n-1$ and $[q(A)]^{-1}=p(A)$. (Proof: See Fact 5.14.24.)

Fact 4.8.14. Let $A \in \mathbb{R}^{n \times n}$, assume that A is skew symmetric, and let the components of $x_{A} \in \mathbb{R}^{n(n-1) / 2}$ be the entries $A_{(i, j)}$ for all $i>j$. Then, there exists a polynomial function $p: \mathbb{R}^{n(n-1) / 2} \mapsto \mathbb{R}$ such that, for all $\alpha \in \mathbb{R}$ and $x \in \mathbb{R}^{n(n-1) / 2}$,

$$
p(\alpha x)=\alpha^{n / 2} p(x)
$$

and

$$
\operatorname{det} A=p^{2}\left(x_{A}\right)
$$

In particular,

$$
\operatorname{det}\left[\begin{array}{cc}
0 & a \\
-a & 0
\end{array}\right]=a^{2}
$$

and

$$
\operatorname{det}\left[\begin{array}{cccc}
0 & a & b & c \\
-a & 0 & d & e \\
-b & -d & 0 & f \\
-c & -e & -f & 0
\end{array}\right]=(a f-b e+c d)^{2}
$$

(Proof: See [878, p. 224] and [1098 pp. 125-127].) (Remark: The polynomial p is the Pfaffian, and this result is Pfaff's theorem.) (Remark: An extension to the product of a pair of skew-symmetric matrices is given in 436.) (Remark: See Fact 3.7.33.)

Fact 4.8.15. Let $G \in \mathbb{F}^{n \times m}(s)$, and let $G_{(i, j)}=n_{i j} / d_{i j}$, where $n_{i j} \in \mathbb{F}[s]$ and $d_{i j} \in \mathbb{F}[s]$ are coprime for all $i=1, \ldots, n$ and $j=1, \ldots, m$. Then, q_{1} given by the Smith-McMillan form is the least common multiple of $d_{11}, d_{12}, \ldots, d_{n m}$.

Fact 4.8.16. Let $G \in \mathbb{F}^{n \times m}(s)$, assume that $\operatorname{rank} G=m$, and let $\lambda \in \mathbb{C}$, where λ is not a pole of G. Then, λ is a transmission zero of G if and only if there exists a vector $u \in \mathbb{C}^{m}$ such that $G(\lambda) u=0$. Furthermore, if G is square, then λ is a transmission zero of G if and only if $\operatorname{det} G(\lambda)=0$.

Fact 4.8.17. Let $G \in \mathbb{F}^{n \times m}(s)$, let $\omega \in \mathbb{R}$, and assume that $\jmath \omega$ is not a pole of G. Then,

$$
\operatorname{Im} G(-\jmath \omega)=-\operatorname{Im} G(\jmath \omega) .
$$

4.9 Facts on the Characteristic and Minimal Polynomials

Fact 4.9.1. Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \mathbb{R}^{2 \times 2}$. Then, the following identities hold:
i) $\operatorname{mspec}(A)=\left\{\frac{1}{2}\left[a+d \pm \sqrt{(a-d)^{2}+4 b c}\right]\right\}_{\mathrm{ms}}$

$$
=\left\{\frac{1}{2}\left[\operatorname{tr} A \pm \sqrt{(\operatorname{tr} A)^{2}-4 \operatorname{det} A}\right]\right\}_{\mathrm{ms}} .
$$

ii) $\chi_{A}(s)=s^{2}-(\operatorname{tr} A) s+\operatorname{det} A$.
iii) $\operatorname{det} A=\frac{1}{2}\left[(\operatorname{tr} A)^{2}-\operatorname{tr} A^{2}\right]$.
iv) $(s I-A)^{\mathrm{A}}=s I+A-(\operatorname{tr} A) I$.
v) $A^{-1}=(\operatorname{det} A)^{-1}[(\operatorname{tr} A) I-A]$.
vi) $A^{\mathrm{A}}=(\operatorname{tr} A) I-A$.
vii) $\operatorname{tr} A^{-1}=\operatorname{tr} A / \operatorname{det} A$.

Fact 4.9.2. Let $A \in \mathbb{R}^{3 \times 3}$. Then, the following identities hold:
i) $\chi_{A}(s)=s^{3}-(\operatorname{tr} A) s^{2}+\left(\operatorname{tr} A^{\mathrm{A}}\right) s-\operatorname{det} A$.
ii) $\operatorname{tr} A^{\mathrm{A}}=\frac{1}{2}\left[(\operatorname{tr} A)^{2}-\operatorname{tr} A^{2}\right]$.
iii) $\operatorname{det} A=\frac{1}{3} \operatorname{tr} A^{3}-\frac{1}{2}(\operatorname{tr} A) \operatorname{tr} A^{2}+\frac{1}{6}(\operatorname{tr} A)^{3}$.
iv) $(s I-A)^{\mathrm{A}}=s^{2} I+s[A-(\operatorname{tr} A) I]+A^{2}-(\operatorname{tr} A) A+\frac{1}{2}\left[(\operatorname{tr} A)^{2}-\operatorname{tr} A^{2}\right] I$.
(Remark: See Fact 7.5.17)
Fact 4.9.3. Let $A, B \in \mathbb{F}^{2 \times 2}$. Then,

$$
A B+B A-(\operatorname{tr} A) B-(\operatorname{tr} B) A+[(\operatorname{tr} A)(\operatorname{tr} B)-\operatorname{tr} A B] I=0
$$

Furthermore,

$$
\operatorname{det}(A+B)-\operatorname{det} A-\operatorname{det} B=(\operatorname{tr} A)(\operatorname{tr} B)-\operatorname{tr} A B
$$

(Proof: Apply the Cayley-Hamilton theorem to $A+x B$, differentiate with respect to x, and set $x=0$. For the second identity, evaluate the Cayley-Hamilton theorem with $A+B$. See [499 500, 890, 1128 or 1186 p. 37].) (Remark: This identity is a polarized Cayley-Hamilton theorem. See [78].)

Fact 4.9.4. Let $A, B, C \in \mathbb{F}^{2 \times 2}$. Then,

$$
\begin{aligned}
2 A B C=(& \operatorname{tr} A) B C+(\operatorname{tr} B) A C+(\operatorname{tr} C) A B \\
& -(\operatorname{tr} A C) B+[(\operatorname{tr} A B)-(\operatorname{tr} A)(\operatorname{tr} B)] C \\
& +[(\operatorname{tr} B C)-(\operatorname{tr} B)(\operatorname{tr} C)] A \\
& -[(\operatorname{tr} A C B)-(\operatorname{tr} A C)(\operatorname{tr} B)] I .
\end{aligned}
$$

(Remark: This identity is a polarized Cayley-Hamilton theorem. See [78].) (Remark: An analogous formula exists for the product of six 3×3 matrices. See [78].)

Fact 4.9.5. Let $A, B, C \in \mathbb{F}^{3 \times 3}$, and assume that $\operatorname{tr} A=\operatorname{tr} A=\operatorname{tr} C=0$. Then,

$$
4 \operatorname{tr}\left(A^{2} B^{2}\right)+2 \operatorname{tr}\left[(A B)^{2}\right]=\operatorname{tr}\left(A^{2}\right) \operatorname{tr}\left(B^{2}\right)+2[\operatorname{tr}(A B)]^{2}
$$

and

$$
\begin{aligned}
& 6 \operatorname{tr}\left(A^{2} B^{2} A B\right)+6 \operatorname{tr}\left(B^{2} A^{2} B A\right)+2 \operatorname{tr}(A B) \operatorname{tr}\left[(A B)^{2}\right]+2 \operatorname{tr}\left(A^{3}\right) \operatorname{tr}\left(B^{3}\right) \\
& \quad=2 \operatorname{tr}(A B) \operatorname{tr}\left(A^{2} B^{2}\right)+\operatorname{tr}\left(A^{2}\right) \operatorname{tr}(A B) \operatorname{tr}\left(B^{2}\right)+2[\operatorname{tr}(A B)]^{3}+6 \operatorname{tr}\left(A^{2} B\right) \operatorname{tr}\left(A B^{2}\right)
\end{aligned}
$$

(Proof: See 81.)
Fact 4.9.6. Let $A, B, C \in \mathbb{F}^{3 \times 3}$. Then,

$$
\begin{aligned}
& \sum\left[A^{\prime} B^{\prime} C^{\prime}-\left(\operatorname{tr} A^{\prime}\right) B^{\prime} C^{\prime}+\left(\operatorname{tr} A^{\prime}\right)\left(\operatorname{tr} B^{\prime}\right) C^{\prime}-\left(\operatorname{tr} A^{\prime} B^{\prime}\right) C^{\prime}\right] \\
& \quad-[(\operatorname{tr} A)(\operatorname{tr} B) \operatorname{tr} C-(\operatorname{tr} A) \operatorname{tr} B C-(\operatorname{tr} B) \operatorname{tr} C A-(\operatorname{tr} C) \operatorname{tr} A B+\operatorname{tr} A B C \\
& +\operatorname{tr} C B A] I=0
\end{aligned}
$$

where the sum is taken over all six permutations $A^{\prime}, B^{\prime}, C^{\prime}$ of A, B, C. (Remark: This identity is a polarized Cayley-Hamilton theorem. See [79, 890, 1128.)

Fact 4.9.7. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B commute, and define $f: \quad \mathbb{C}^{2} \mapsto \mathbb{C}$ by $f(r, s) \triangleq \operatorname{det}(r A-s B)$. Then, $f(B, A)=0$. (Remark: This result is the generalized Cayley-Hamilton theorem. See [356, 682].)

Fact 4.9.8. Let $A \in \mathbb{F}^{n \times n}$, let $\chi_{A}(s)=s^{n}+\beta_{n-1} s^{n-1}+\cdots+\beta_{0}$, and let $\operatorname{mspec}(A)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}_{\mathrm{ms}}$. Then,

$$
A^{\mathrm{A}}=(-1)^{n-1}\left(A^{n-1}+\beta_{n-1} A^{n-2}+\cdots+\beta_{1} I\right)
$$

Furthermore,

$$
\operatorname{tr} A^{\mathrm{A}}=(-1)^{n-1} \chi_{A}^{\prime}(0)=(-1)^{n-1} \beta_{1}=\sum_{1 \leq j_{1}<\cdots<j_{n-1} \leq n} \lambda_{j_{1}} \cdots \lambda_{j_{n-1}}=\sum_{i=1}^{n} \operatorname{det} A_{[i ; i]}
$$

(Proof: Use $A^{-1} \chi_{A}(A)=0$. The second identity follows from (4.4.19) or Lemma 4.4.8.) (Remark: See Fact 4.10.7.)

Fact 4.9.9. Let $A \in \mathbb{F}^{n \times n}$, assume that A is nonsingular, and let $\chi_{A}(s)=$ $s^{n}+\beta_{n-1} s^{n-1}+\cdots+\beta_{0}$. Then,

$$
\begin{aligned}
\chi_{A^{-1}}(s) & =\frac{1}{\operatorname{det} A}(-s)^{n} \chi_{A}(1 / s) \\
& =s^{n}+\left(\beta_{1} / \beta_{0}\right) s^{n-1}+\cdots+\left(\beta_{n-1} / \beta_{0}\right) s+1 / \beta_{0}
\end{aligned}
$$

(Remark: See Fact 5.16.2)
Fact 4.9.10. Let $A \in \mathbb{F}^{n \times n}$, and assume that either A and $-A$ are similar or A^{T} and $-A$ are similar. Then,

$$
\chi_{A}(s)=(-1)^{n} \chi_{A}(-s)
$$

Furthermore, if n is even, then χ_{A} is even, whereas, if n is odd, then χ_{A} is odd. (Remark: A and A^{T} are similar. See Corollary 4.3.11 and Corollary 5.3.8.)

Fact 4.9.11. Let $A \in \mathbb{F}^{n \times n}$. Then, for all $s \in \mathbb{C}$,

$$
(s I-A)^{\mathrm{A}}=\chi_{A}(s)(s I-A)^{-1}=\sum_{i=0}^{n-1} \chi_{A}^{[i]}(s) A^{i},
$$

where

$$
\chi_{A}(s)=s^{n}+\beta_{n-1} s^{n-1}+\cdots+\beta_{1} s+\beta_{0}
$$

and, for all $i=0, \ldots, n-1$, the polynomial $\chi_{A}^{[i]}$ is defined by

$$
\chi_{A}^{[i]}(s) \triangleq s^{n-i}+\beta_{n-1} s^{n-1-i}+\cdots+\beta_{i+1}
$$

Note that

$$
\chi_{A}^{[n-1]}(s)=s+\beta_{n-1}, \quad \chi_{A}^{[n]}(s)=1
$$

and that, for all $i=0, \ldots, n-1$ and with $\chi_{A}^{[0]} \triangleq \chi_{A}$, the polynomials $\chi_{A}^{[i]}$ satisfy the recursion

$$
s \chi_{A}^{[i+1]}(s)=\chi_{A}^{[i]}(s)-\beta_{i}
$$

(Proof: See [1455, p. 31].)
Fact 4.9.12. Let $A \in \mathbb{R}^{n \times n}$, and assume that A is skew symmetric. If n is even, then χ_{A} is even, whereas, if n is odd, then χ_{A} is odd.

Fact 4.9.13. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is skew Hermitian. Then, for all $s \in \mathbb{C}$,

$$
\chi_{A}(-s)=(-1)^{n} \overline{p(\bar{s})}
$$

Fact 4.9.14. Let $A \in \mathbb{F}^{n \times n}$. Then, $\chi_{\mathcal{A}}$ is even for the matrices $\mathcal{A} \in \mathbb{F}^{2 n \times 2 n}$ given by $\left[\begin{array}{cc}0 & A \\ A^{*} & 0\end{array}\right],\left[\begin{array}{cc}A & 0 \\ 0 & -A\end{array}\right]$, and $\left[\begin{array}{cc}A & 0 \\ 0 & -A^{*}\end{array}\right]$.

Fact 4.9.15. Let $A, B \in \mathbb{F}^{n \times n}$, and define $\mathcal{A} \triangleq\left[\begin{array}{cc}0 & A \\ B & 0\end{array}\right]$. Then,

$$
\chi_{\mathcal{A}}(s)=\chi_{A B}\left(s^{2}\right)=\chi_{B A}\left(s^{2}\right) .
$$

Consequently, $\chi_{\mathcal{A}}$ is even. (Proof: Use Fact 2.14.13 and Proposition 4.4.10)
Fact 4.9.16. Let $x, y, z, w \in \mathbb{F}^{n}$, and define $A \triangleq x y^{T}$ and $B \triangleq x y^{T}+z w^{T}$. Then,

$$
\chi_{A}(s)=s^{n-1}\left(s-x^{\mathrm{T}} y\right)
$$

and

$$
\chi_{B}(s)=s^{n-2}\left[s^{2}-\left(x^{\mathrm{T}} y+z^{\mathrm{T}} w\right) s+x^{\mathrm{T}} y z^{\mathrm{T}} w-y^{\mathrm{T}} z x^{\mathrm{T}} w\right]
$$

(Remark: See Fact 5.11.13.)
Fact 4.9.17. Let $x, y \in \mathbb{F}^{n-1}$, and define $A \in \mathbb{F}^{n \times n}$ by

$$
A \triangleq\left[\begin{array}{cc}
0 & x^{\mathrm{T}} \\
y & 0
\end{array}\right]
$$

Then,

$$
\chi_{A}(s)=s^{n-1}\left(s^{2}-y^{\mathrm{T}} x\right)
$$

(Proof: See 1333.)
Fact 4.9.18. Let $x, y, z, w \in \mathbb{F}^{n-1}$, and define $A \in \mathbb{F}^{n \times n}$ by

$$
A \triangleq\left[\begin{array}{cc}
1 & x^{\mathrm{T}} \\
y & z w^{\mathrm{T}}
\end{array}\right]
$$

Then,

$$
\chi_{A}(s)=s^{n-3}\left[s^{3}-\left(1+w^{\mathrm{T}} z\right) s^{2}+\left(w^{\mathrm{T}} z-x^{\mathrm{T}} y\right) s+w^{\mathrm{T}} z x^{\mathrm{T}} y-x^{\mathrm{T}} z w^{\mathrm{T}} y\right]
$$

(Proof: See 409.) (Remark: Extensions are given in [1333.)
Fact 4.9.19. Let $x \in \mathbb{R}^{3}$, and define $\theta \triangleq \sqrt{x^{\mathrm{T}} x}$. Then,

$$
\chi_{K(x)}(s)=s^{3}+\theta^{2} s
$$

Hence,

$$
\operatorname{mspec}[K(x)]=\{0, \jmath \theta,-\jmath \theta\}_{\mathrm{ms}}
$$

Now, assume that $x \neq 0$. Then, x is an eigenvector corresponding to the eigenvalue 0 , that is, $K(x) x=0$. Furthermore, if either $x_{(1)} \neq 0$ or $x_{(2)} \neq 0$, then

$$
\left[\begin{array}{c}
x_{(1)} x_{(3)}+\jmath \theta x_{(2)} \\
x_{(2)} x_{(3)}-\jmath \theta x_{(1)} \\
-x_{(1)}^{2}-x_{(2)}^{2}
\end{array}\right]
$$

is an eigenvector corresponding to the eigenvalue $\jmath \theta$. Finally, if $x_{(1)}=x_{(2)}=0$, then $\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$ is an eigenvector corresponding to the eigenvalue $\jmath \theta$. (Remark: See Fact 11.11.6.)

Fact 4.9.20. Let $a, b \in \mathbb{R}^{3}$, where $a=\left[\begin{array}{lll}a_{1} & a_{2} & a_{3}\end{array}\right]^{\mathrm{T}}$ and $b=$ $\left[\begin{array}{lll}b_{1} & b_{2} & b_{3}\end{array}\right]^{\mathrm{T}}$, and define the skew-symmetric matrix $A \in \mathbb{R}^{4 \times 4}$ by

$$
A \triangleq\left[\begin{array}{cc}
K(a) & b \\
-b^{\mathrm{T}} & 0
\end{array}\right]
$$

Then, the following statements hold:
i) $\operatorname{det} A=\left(a^{\mathrm{T}} b\right)^{2}$.
ii) $\chi_{A}(s)=s^{4}+\left(a^{\mathrm{T}} a+b^{\mathrm{T}} b\right) s^{2}+\left(a^{\mathrm{T}} b\right)^{2}$.
iii) $A^{\mathrm{A}}=-a^{\mathrm{T}} b\left[\begin{array}{cc}K(b) & a \\ -a^{\mathrm{T}} & 0\end{array}\right]$.
$i v)$ If $\operatorname{det} A \neq 0$, then $A^{-1}=-\left(a^{\mathrm{T}} b\right)^{-1}\left[\begin{array}{cc}K(b) & a \\ -a^{\mathrm{T}} & 0\end{array}\right]$.
$v)$ If $\operatorname{det} A=0$, then

$$
A^{3}=-\left(a^{\mathrm{T}} a+b^{\mathrm{T}} b\right)^{2} A
$$

and

$$
A^{+}=-\left(a^{\mathrm{T}} a+b^{\mathrm{T}} b\right)^{-2} A
$$

(Proof: See 1334.) (Remark: See Fact 4.10.2 and Fact 11.11.17.)
Fact 4.9.21. Let $A \in \mathbb{R}^{2 n \times 2 n}$, and assume that A is Hamiltonian. Then, χ_{A} is even, and thus $\operatorname{mspec}(A)=-\operatorname{mspec}(A)$. (Remark: See Fact 5.9.24])

Fact 4.9.22. Let $A, B, C \in \mathbb{R}^{n \times n}$, and define

$$
\mathcal{A} \triangleq\left[\begin{array}{cc}
A & B \\
C & -A^{\mathrm{T}}
\end{array}\right] .
$$

If B and C are symmetric, then \mathcal{A} is Hamiltonian. If B and C are skew symmetric, then $\chi_{\mathcal{A}}$ is even, although \mathcal{A} is not necessarily Hamiltonian. (Proof: For the second result replace $J_{2 n}$ by $\left[\begin{array}{cc}0 & I_{n} \\ I_{n} & 0\end{array}\right]$.)

Fact 4.9.23. Let $A \in \mathbb{R}^{n \times n}, R \in \mathbb{R}^{n \times n}$, and $B \in \mathbb{R}^{n \times m}$, and define $\mathcal{A} \in$ $\mathbb{R}^{2 n \times 2 n}$ by

$$
\mathcal{A} \triangleq\left[\begin{array}{cc}
A & B B^{\mathrm{T}} \\
R & -A^{\mathrm{T}}
\end{array}\right] .
$$

Then, for all $s \notin \operatorname{spec}(A)$,

$$
\chi_{\mathcal{A}}(s)=(-1)^{n} \chi_{A}(s) \chi_{A}(-s) \operatorname{det}\left[I+B^{\mathrm{T}}\left(-s I-A^{\mathrm{T}}\right)^{-1} R(s I-A)^{-1} B\right]
$$

Now, assume that R is symmetric. Then, \mathcal{A} is Hamiltonian, and $\chi_{\mathcal{A}}$ is even. If, in addition, R is positive semidefinite, then $(-1)^{n} \chi_{\mathcal{A}}$ has a spectral factorization. (Proof: Using (2.8.10) and (2.8.14), it follows that, for all $\pm s \notin \operatorname{spec}(A)$,

$$
\begin{aligned}
\chi_{\mathcal{A}}(s) & =\operatorname{det}(s I-A) \operatorname{det}\left[s I+A^{\mathrm{T}}-R(s I-A)^{-1} B B^{\mathrm{T}}\right] \\
& =(-1)^{n} \chi_{A}(s) \chi_{A}(-s) \operatorname{det}\left[I-B^{\mathrm{T}}\left(s I+A^{\mathrm{T}}\right)^{-1} R(s I-A)^{-1} B\right] .
\end{aligned}
$$

To prove the second statement, note that, for all $\omega \in \mathbb{R}$ such that $\jmath \omega \notin \operatorname{spec}(A)$, it follows that

$$
\chi_{\mathcal{A}}(\jmath \omega)=(-1)^{n} \chi_{A}(\jmath \omega) \overline{\chi_{A}(\jmath \omega)} \operatorname{det}\left[I+B^{\mathrm{T}}(\jmath \omega I-A)^{-*} R(\jmath \omega I-A)^{-1} B\right] .
$$

Thus, $(-1)^{n} \chi_{\mathcal{A}}(\jmath \omega) \geq 0$. By continuity, $(-1)^{n} \chi_{\mathcal{A}}(\jmath \omega) \geq 0$ for all $\omega \in \mathbb{R}$. Now, Proposition4.1.1 implies that $(-1)^{n} \chi_{\mathcal{A}}$ has a spectral factorization.) (Remark: Not all Hamiltonian matrices $\mathcal{A} \in \mathbb{R}^{2 n \times 2 n}$ have the property that $(-1)^{n} \chi_{\mathcal{A}}$ has a spectral factorization. Consider $\left[\begin{array}{cccc}0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 0 & 0 & 0 \\ 0 & -3 & 0 & 0\end{array}\right]$, whose spectrum is $\{\jmath,-\jmath, \sqrt{3} \jmath,-\sqrt{3} \jmath\}$.) (Remark: This result is closely related to Proposition 12.17.8) (Remark: See Fact 3.19.6.)

Fact 4.9.24. Let $A \in \mathbb{F}^{n \times n}$. Then, $\mu_{A}=\chi_{A}$ if and only if there exists a unique monic polynomial $p \in \mathbb{F}[s]$ of degree n and such that $p(A)=0$. (Proof: To prove necessity, note that if $\hat{p} \neq p$ is monic, of degree n, and satisfies $\hat{p}(A)=0$, then $p-\hat{p}$ is nonzero, has degree less than n, and satisfies $(p-\hat{p})(A)=0$. Conversely, if $\mu_{A} \neq \chi_{A}$, then $\mu_{A}+\chi_{A}$ is monic, has degree n, and satisfies $\left.\left(\mu_{A}+\chi_{A}\right)(A).\right)$

4.10 Facts on the Spectrum

Fact 4.10.1. Let $A \in \mathbb{F}^{3 \times 3}$, assume that A is symmetric, let $\lambda_{1}, \lambda_{2}, \lambda_{3} \in \mathbb{R}$ denote the eigenvalues of A, where $\lambda_{1} \geq \lambda_{2} \geq \lambda_{3}$, and define

$$
p=\frac{1}{6} \operatorname{tr}\left[A-\frac{1}{3}(\operatorname{tr} A) I\right]^{2}
$$

and

$$
q=\frac{1}{2} \operatorname{det}\left[A-\frac{1}{3}(\operatorname{tr} A) I\right]
$$

Then, the following statements hold:
i) $0 \leq|q| \leq p^{3 / 2}$.
ii) $p=0$ if and only if $\lambda_{1}=\lambda_{2}=\lambda_{3}=\frac{1}{3} \operatorname{tr} A$.
iii) $p>0$ if and only if

$$
\begin{aligned}
& \lambda_{1}=\frac{1}{3} \operatorname{tr} A+2 \sqrt{p} \cos \phi, \\
& \lambda_{2}=\frac{1}{3} \operatorname{tr} A+\sqrt{3 p} \sin \phi-\sqrt{p} \cos \phi, \\
& \lambda_{3}=\frac{1}{3} \operatorname{tr} A-\sqrt{3 p} \sin \phi-\sqrt{p} \cos \phi,
\end{aligned}
$$

where $\phi \in[0, \pi / 3]$ is given by

$$
\phi=\frac{1}{3} \cos ^{-1} \frac{q}{p^{3 / 2}} .
$$

iv) $\phi=0$ if and only if $q=p^{3 / 2}>0$. In this case,

$$
\begin{aligned}
& \lambda_{1}=\frac{1}{3} \operatorname{tr} A+2 \sqrt{p} \\
& \lambda_{2}=\lambda_{3}=\frac{1}{3} \operatorname{tr} A-\sqrt{p}
\end{aligned}
$$

v) $\phi=\pi / 6$ if and only if $p>0$ and $q=0$. In this case, $\sin \phi=1 / 2, \cos \phi=$ $\sqrt{3} / 2$, and

$$
\begin{aligned}
& \lambda_{1}=\frac{1}{3} \operatorname{tr} A+\sqrt{3 p} \\
& \lambda_{2}=\frac{1}{3} \operatorname{tr} A \\
& \lambda_{3}=\frac{1}{3} \operatorname{tr} A-\sqrt{3 p}
\end{aligned}
$$

vi) $\phi=\pi / 3$ if and only if $q=-p^{3 / 2}<0$. In this case, $\sin \phi=\sqrt{3} / 2, \cos \phi=$ $1 / 2$, and

$$
\begin{aligned}
& \lambda_{1}=\lambda_{2}=\frac{1}{3} \operatorname{tr} A+\sqrt{p} \\
& \lambda_{3}=\frac{1}{3} \operatorname{tr} A-2 \sqrt{p}
\end{aligned}
$$

(Proof: See [1203].) (Remark: This result is based on Cardano's trigonometric solution for the roots of a cubic polynomial. See [234, 1203].) (Remark: The inequality $q^{2} \leq p^{3}$ follows from Fact 1.10.13.)

Fact 4.10.2. Let $a, b, c, d, \omega \in \mathbb{R}$, and define the skew-symmetric matrix $A \in$ $\mathbb{R}^{4 \times 4}$ given by

$$
A \triangleq\left[\begin{array}{rrrr}
0 & \omega & a & b \\
-\omega & 0 & c & d \\
-a & -c & 0 & \omega \\
-b & -d & -\omega & 0
\end{array}\right]
$$

Then,

$$
\chi_{A}(s)=s^{4}+\left(2 \omega^{2}+a^{2}+b^{2}+c^{2}+d^{2}\right) s^{2}+\left[\omega^{2}-(a d-b c)\right]^{2}
$$

and

$$
\operatorname{det} A=\left[\omega^{2}-(a d-b c)\right]^{2}
$$

Hence, A is singular if and only if $b c \leq a d$ and $\omega=\sqrt{a d-b c}$. Furthermore, A has a repeated eigenvalue if and only if either i) A is singular or $i i) ~ a=-d$ and $b=c$. In case i, A has the repeated eigenvalue 0 , while, in case $i i), A$ has the repeated eigenvalues $\jmath \sqrt{\omega^{2}+a^{2}+b^{2}}$ and $-\jmath \sqrt{\omega^{2}+a^{2}+b^{2}}$. Finally, cases i) and $i i$) cannot occur simultaneously. (Remark: See Fact 4.9.20, Fact 3.7.33, Fact 11.11.15, and Fact 11.11.17.)

Fact 4.10.3. Define $A, B \in \mathbb{R}^{n \times n}$ by

$$
A \triangleq\left[\begin{array}{ccccc}
1 & -2 & & & \\
& 1 & -2 & & \\
& & 1 & \ddots & \\
& & & \ddots & -2 \\
& & & & 1
\end{array}\right]
$$

and

$$
B \triangleq\left[\begin{array}{ccccc}
1 & -2 & & & \\
& 1 & -2 & & \\
& & 1 & \ddots & \\
& & & \ddots & -2 \\
\alpha & & & & 1
\end{array}\right]
$$

where $\alpha \triangleq-1 / 2^{n-1}$. Then,

$$
\operatorname{spec}(A)=\{1\}
$$

and

$$
\operatorname{det} B=0
$$

Fact 4.10.4. Let $A \in \mathbb{F}^{n \times n}$. Then,

$$
|\operatorname{spabs}(A)| \leq \operatorname{sprad}(A)
$$

Fact 4.10.5. Let $A \in \mathbb{F}^{n \times n}$, assume that A is nonsingular, and assume that $\operatorname{sprad}(I-A)<1$. Then,

$$
A^{-1}=\sum_{k=0}^{\infty}(I-A)^{k} .
$$

Fact 4.10.6. Let $A \in \mathbb{F}^{n \times n}$ and $B \in \mathbb{F}^{m \times m}$. If $\operatorname{tr} A^{k}=\operatorname{tr} B^{k}$ for all $k \in$ $\{1, \ldots, \max \{m, n\}\}$, then A and B have the same nonzero eigenvalues with the same algebraic multiplicity. Now, assume that $n=m$. Then, $\operatorname{tr} A^{k}=\operatorname{tr} B^{k}$ for all $k \in\{1, \ldots, n\}$ if and only if $\operatorname{mspec}(A)=\operatorname{mspec}(B)$. (Proof: Use Newton's identities. See Fact 4.8.2) (Remark: This result yields Proposition 4.4.10 since $\operatorname{tr}(A B)^{k}=\operatorname{tr}(B A)^{k}$ for all $k \geq 1$ and for all nonsquare matrices A and B.) (Remark: Setting $B=0_{n \times n}$ yields necessity in Fact 2.12.14.)

Fact 4.10.7. Let $A \in \mathbb{F}^{n \times n}$, and let $\operatorname{mspec}(A)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}_{\mathrm{ms}}$. Then,

$$
\operatorname{mspec}\left(A^{\mathrm{A}}\right)= \begin{cases}\left\{\frac{\operatorname{det} A}{\lambda_{1}}, \ldots, \frac{\operatorname{det} A}{\lambda_{n}}\right\}_{\mathrm{ms}}, & \operatorname{rank} A=n \\ \left\{\sum_{i=1}^{n} \operatorname{det} A_{[i ; i]}, 0, \ldots, 0\right\}_{\mathrm{ms}}, & \operatorname{rank} A=n-1 \\ \{0\}, & \operatorname{rank} A \leq n-2\end{cases}
$$

(Remark: If $\operatorname{rank} A=n-1$ and $\lambda_{n}=0$, then it follows from (4.4.19) that

$$
\left.\sum_{i=1}^{n} \operatorname{det} A_{[i ; i]}=\lambda_{1} \cdots \lambda_{n-1} .\right)
$$

(Remark: See Fact 2.16.8, Fact 4.9.8, and Fact 5.11.36)
Fact 4.10.8. Let $A \in \mathbb{F}^{n \times n}$, and let $p \in \mathbb{F}[s]$. Then, μ_{A} divides p if and only if $\operatorname{spec}(A) \subseteq \operatorname{roots}(p)$ and, for all $\lambda \in \operatorname{spec}(A), \operatorname{ind}_{A}(\lambda) \leq \operatorname{mult}_{p}(\lambda)$.

Fact 4.10.9. Let $A \in \mathbb{F}^{n \times n}$, let $\operatorname{mspec}(A)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}_{\mathrm{ms}}$, and let $p \in \mathbb{F}[s]$. Then, the following statements hold:
i) $\operatorname{mspec}[p(A)]=\left\{p\left(\lambda_{1}\right), \ldots, p\left(\lambda_{n}\right)\right\}_{\mathrm{ms}}$.
ii) $\operatorname{roots}(p) \cap \operatorname{spec}(A)=\varnothing$ if and only if $p(A)$ is nonsingular.
iii) μ_{A} divides p if and only if $p(A)=0$.

Fact 4.10.10. Let $A \in \mathbb{F}^{n \times n}, B \in \mathbb{F}^{n \times m}$, and $C \in \mathbb{F}^{m \times m}$, and let $p \in \mathbb{F}[s]$. Then,

$$
p\left(\left[\begin{array}{ll}
A & B \\
0 & C
\end{array}\right]\right)=\left[\begin{array}{cc}
p(A) & \hat{B} \\
0 & p(C)
\end{array}\right]
$$

where $\hat{B} \in \mathbb{F}^{n \times m}$.
Fact 4.10.11. Let $A_{1} \in \mathbb{F}^{n \times n}, A_{12} \in \mathbb{F}^{n \times m}$, and $A_{2} \in \mathbb{F}^{m \times m}$, and define $A \in \mathbb{F}^{(n+m) \times(n+m)}$ by

$$
A \triangleq\left[\begin{array}{cc}
A_{1} & A_{12} \\
0 & A_{2}
\end{array}\right]
$$

Then,

$$
\chi_{A}=\chi_{A_{1}} \chi_{A_{2}}
$$

Furthermore,

$$
\chi_{A_{1}}(A)=\left[\begin{array}{cc}
0 & B_{1} \\
0 & \chi_{A_{1}}\left(A_{2}\right)
\end{array}\right]
$$

and

$$
\chi_{A_{2}}(A)=\left[\begin{array}{cc}
\chi_{A_{2}}\left(A_{1}\right) & B_{2} \\
0 & 0
\end{array}\right],
$$

where $B_{1}, B_{2} \in \mathbb{F}^{n \times m}$. Therefore,

$$
\mathcal{R}\left[\chi_{A_{2}}(A)\right] \subseteq \mathcal{R}\left(\left[\begin{array}{c}
I_{n} \\
0
\end{array}\right]\right) \subseteq \mathcal{N}\left[\chi_{A_{1}}(A)\right]
$$

and

$$
\chi_{A_{2}}\left(A_{1}\right) B_{1}+B_{2} \chi_{A_{1}}\left(A_{2}\right)=0 .
$$

Hence,

$$
\chi_{A}(A)=\chi_{A_{1}}(A) \chi_{A_{2}}(A)=\chi_{A_{2}}(A) \chi_{A_{1}}(A)=0 .
$$

Fact 4.10.12. Let $A_{1} \in \mathbb{F}^{n \times n}, A_{12} \in \mathbb{F}^{n \times m}$, and $A_{2} \in \mathbb{F}^{m \times m}$, assume that $\operatorname{spec}\left(A_{1}\right)$ and $\operatorname{spec}\left(A_{2}\right)$ are disjoint, and define $A \in \mathbb{F}^{(n+m) \times(n+m)}$ by

$$
A \triangleq\left[\begin{array}{cc}
A_{1} & A_{12} \\
0 & A_{2}
\end{array}\right] .
$$

Furthermore, let $\mu_{1}, \mu_{2} \in \mathbb{F}[s]$ be such that

$$
\begin{gathered}
\mu_{A}=\mu_{1} \mu_{2}, \\
\operatorname{roots}\left(\mu_{1}\right)=\operatorname{spec}\left(A_{1}\right), \\
\operatorname{roots}\left(\mu_{2}\right)=\operatorname{spec}\left(A_{2}\right) .
\end{gathered}
$$

Then,

$$
\mu_{1}(A)=\left[\begin{array}{cc}
0 & B_{1} \\
0 & \mu_{1}\left(A_{2}\right)
\end{array}\right]
$$

and

$$
\mu_{2}(A)=\left[\begin{array}{cc}
\mu_{2}\left(A_{1}\right) & B_{2} \\
0 & 0
\end{array}\right]
$$

where $B_{1}, B_{2} \in \mathbb{F}^{n \times m}$. Therefore,

$$
\mathcal{R}\left[\mu_{2}(A)\right] \subseteq \mathcal{R}\left(\left[\begin{array}{c}
I_{n} \\
0
\end{array}\right]\right) \subseteq \mathcal{N}\left[\mu_{1}(A)\right]
$$

and

$$
\mu_{2}\left(A_{1}\right) B_{1}+B_{2} \mu_{1}\left(A_{2}\right)=0 .
$$

Hence,

$$
\mu_{A}(A)=\mu_{1}(A) \mu_{2}(A)=\mu_{2}(A) \mu_{1}(A)=0 .
$$

Fact 4.10.13. Let $A_{1}, A_{2}, A_{3}, A_{4}, B_{1}, B_{2} \in \mathbb{F}^{n \times n}$, and define $A \in \mathbb{F}^{4 n \times 4 n}$ by

$$
A \triangleq\left[\begin{array}{cccc}
A_{1} & B_{1} & 0 & 0 \\
0 & A_{2} & 0 & 0 \\
0 & 0 & A_{3} & 0 \\
0 & 0 & B_{2} & A_{4}
\end{array}\right] .
$$

Then,

$$
\operatorname{mspec}(A)=\bigcup_{i=1}^{4} \operatorname{mspec}\left(A_{i}\right) .
$$

Fact 4.10.14. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times n}$, and assume that $m<n$. Then,

$$
\operatorname{mspec}\left(I_{n}+A B\right)=\operatorname{mspec}\left(I_{m}+B A\right) \cup\{1, \ldots, 1\}_{\mathrm{ms}}
$$

Fact 4.10.15. Let $a, b \in \mathbb{F}$, and define the symmetric, Toeplitz matrix $A \in$ $\mathbb{F}^{n \times n}$ by

$$
A \triangleq\left[\begin{array}{ccccc}
a & b & b & \cdots & b \\
b & a & b & \cdots & b \\
b & b & a & \cdots & b \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
b & b & b & \cdots & a
\end{array}\right]
$$

Then,

$$
\begin{gathered}
\operatorname{mspec}(A)=\{a+(n-1) b, a-b, \ldots, a-b\}_{\mathrm{ms}} \\
A 1_{n}=[a+(n-1) b] 1_{n}
\end{gathered}
$$

and

$$
A^{2}+a_{1} A+a_{0} I=0
$$

where $a_{1} \triangleq-2 a+(2-n) b$ and $a_{0} \triangleq a^{2}+(n-2) a b+(1-n) b^{2}$. Finally,

$$
\operatorname{mspec}\left(a I_{n}+b 1_{n \times n}\right)=\{a+n b, a, \ldots, a\}_{\mathrm{ms}}
$$

(Remark: See Fact 2.13.13 and Fact 8.9.34) (Remark: For the remaining eigenvectors of A, see [1184 pp. 149, 317].)

Fact 4.10.16. Let $A \in \mathbb{F}^{n \times n}$. Then,

$$
\operatorname{spec}(A) \subset \bigcup_{i=1}^{n}\left\{s \in \mathbb{C}:\left|s-A_{(i, i)}\right| \leq \sum_{\substack{j=1 \\ j \neq i}}^{n}\left|A_{(i, j)}\right|\right\}
$$

(Remark: This result is the Gershgorin circle theorem. See [268, 1370] for a proof and related results.) (Remark: This result yields Corollary 9.4.5 for $\|\cdot\|_{\text {col }}$ and $\|\cdot\|_{\text {row }}$.)

Fact 4.10.17. Let $A \in \mathbb{F}^{n \times n}$, and assume that, for all $i=1, \ldots, n$,

$$
\sum_{\substack{j=1 \\ j \neq i}}^{n}\left|A_{(i, j)}\right|<\left|A_{(i, i)}\right| .
$$

Then, A is nonsingular. (Proof: Apply the Gershgorin circle theorem.) (Remark: This result is the diagonal dominance theorem, and A is diagonally dominant. See 1174 for a history of this result.) (Remark: For related results, see Fact 4.10.19 and 456, 1020, 1107.)

Fact 4.10.18. Let $A \in \mathbb{F}^{n \times n}$, assume that, for all $i=1, \ldots, n, A_{(i, i)} \neq 0$, and assume that

$$
\alpha_{i} \triangleq \frac{\sum_{j=1, j \neq i}^{n}\left|A_{(i, j)}\right|}{\left|A_{(i, i)}\right|}<1
$$

Then,

$$
\left|A_{(1,1)}\right| \prod_{i=2}^{n}\left(\left|A_{(i, i)}\right|-l_{i}+L_{i}\right) \leq|\operatorname{det} A|,
$$

where

$$
l_{i} \triangleq \sum_{j=1}^{i-1} \alpha_{j}\left|A_{(i, j)}\right|, \quad L_{i} \triangleq\left|\frac{A_{(i, 1)}}{A_{(1,1)}}\right| \sum_{j=i+1}^{n}\left|A_{(i, j)}\right| .
$$

(Proof: See [256.) (Remark: Note that, for all $i=1, \ldots, n, l_{i}=\sum_{j=1}^{i-1} \alpha_{j}\left|A_{(i, j)}\right| \leq$ $\sum_{j=1, j \neq i}^{n} \alpha_{j}\left|A_{(i, j)}\right| \leq \sum_{j=1, j \neq i}^{n}\left|A_{(i, j)}\right|=\alpha_{i}\left|A_{(i, i)}\right|<\left|A_{(i, i)}\right|$. Hence, the lower bound for $|\operatorname{det} A|$ is positive.)

Fact 4.10.19. Let $A \in \mathbb{F}^{n \times n}$, and, for all $i=1, \ldots, n$, define

$$
r_{i} \triangleq \sum_{\substack{j=1 \\ j \neq i}}^{n}\left|A_{(i, j)}\right|, \quad c_{i} \triangleq \sum_{\substack{j=1 \\ j \neq i}}^{n}\left|A_{(j, i)}\right| .
$$

Furthermore, assume that at least one of the following conditions is satisfied:
${ }^{i}$) For all distinct $i, j=1, \ldots, n, r_{i} c_{j}<\left|A_{(i, i)} A_{(j, j)}\right|$.
ii) A is irreducible, for all $i=1, \ldots, n$ it follows that $r_{i} \leq\left|A_{(i, i)}\right|$, and there exists $i \in\{1, \ldots, n\}$ such that $r_{i}<\left|A_{(i, i)}\right|$.
iii) There exist positive integers k_{1}, \ldots, k_{n} such that $\sum_{i=1}^{n}\left(1+k_{i}\right)^{-1} \leq 1$ and such that, for all $i=1, \ldots, n, k_{i} \max _{j=1, \ldots, n, j \neq i}\left|A_{(i, j)}\right|<\left|A_{(i, i)}\right|$.
$i v)$ There exists $\alpha \in[0,1]$ such that, for all $i=1, \ldots, n, r_{i}^{\alpha} c_{i}^{1-\alpha}<\left|A_{(i, i)}\right|$.
Then, A is nonsingular. (Proof: See [101.) (Remark: All three conditions yield stronger results than Fact 4.10.17)

Fact 4.10.20. Let $A \in \mathbb{R}^{n \times n}$, assume that A is symmetric, and, for $i=$ $1, \ldots, n$, define

$$
\alpha_{i} \triangleq \sum_{\substack{j=1 \\ j \neq i}}^{n}\left|A_{(i, j)}\right| .
$$

Then,

$$
\operatorname{spec}(A) \subset \bigcup_{i=1}^{n}\left[A_{(i, i)}-\alpha_{i}, A_{(i, i)}+\alpha_{i}\right] .
$$

Furthermore, for $i=1, \ldots, n$, define

$$
\beta_{i} \triangleq \max \left\{0, \max _{\substack{j=1, n \\ j \neq i}} A_{(i, j)}\right\}
$$

and

$$
\gamma_{i} \triangleq \min \left\{0, \min _{\substack{j=1, n \\ j \neq i}} A_{(i, j)}\right\} .
$$

Then,

$$
\operatorname{spec}(A) \subset \bigcup_{i=1}^{n}\left[\sum_{j=1}^{n} A_{(i, j)}-n \beta_{i}, \sum_{j=1}^{n} A_{(i, j)}-n \gamma_{i}\right] .
$$

(Proof: The first statement is the specialization of the Gershgorin circle theorem to real, symmetric matrices. See Fact 4.10.16. The second result is given in 137.)

Fact 4.10.21. Let $A \in \mathbb{F}^{n \times n}$. Then,

$$
\operatorname{spec}(A) \subset \bigcup_{\substack{i, j=1 \\ i \neq j}}^{n}\left\{s \in \mathbb{C}:\left|s-A_{(i, i)}\right|\left|s-A_{(j, j)}\right| \leq \sum_{\substack{k=1 \\ k \neq i}}^{n}\left|A_{(i, k)}\right| \sum_{\substack{k=1 \\ k \neq j}}^{n}\left|A_{(j, k)}\right|\right\}
$$

(Remark: The inclusion region is the ovals of Cassini. The result is due to Brauer. See [709, p. 380].)

Fact 4.10.22. Let $A \in \mathbb{F}^{n \times n}$, and let λ_{n} denote the eigenvalue of A of smallest absolute value. Then,

$$
\left|\lambda_{n}\right| \leq \max _{i=1, \ldots, n}\left|\operatorname{tr} A^{i}\right|^{1 / i} .
$$

Furthermore,

$$
\operatorname{sprad}(A) \leq \max _{i=1, \ldots, 2 n-1}\left|\operatorname{tr} A^{i}\right|^{1 / i}
$$

and

$$
\operatorname{sprad}(A) \leq \frac{5}{n} \max _{i=1, \ldots, n}\left|\operatorname{tr} A^{i}\right|^{1 / i}
$$

(Remark: These results are Turan's inequalities. See [1010 p. 657].)

Fact 4.10.23. Let $A \in \mathbb{F}^{n \times n}$, and, for $j=1, \ldots, n$, define $b_{j} \triangleq \sum_{i=1}^{n}\left|A_{(i, j)}\right|$. Then,

$$
\sum_{j=1}^{n}\left|A_{(j, j)}\right| / b_{j} \leq \operatorname{rank} A .
$$

(Proof: See [1098, p. 67].) (Remark: Interpret 0/0 as 0.) (Remark: See Fact 4.10.17.)

Fact 4.10.24. Let $A_{1}, \ldots, A_{r} \in \mathbb{F}^{n \times n}$, assume that A_{1}, \ldots, A_{r} are normal, and let $A \in \operatorname{co}\left\{A_{1}, \ldots, A_{r}\right\}$. Then,

$$
\operatorname{spec}(A) \subseteq \operatorname{co} \bigcup_{i=1, \ldots, r} \operatorname{spec}\left(A_{i}\right)
$$

(Proof: See [1399.) (Remark: See Fact 8.14.7)
Fact 4.10.25. Let $A, B \in \mathbb{R}^{n \times n}$. Then,

$$
\operatorname{mspec}\left(\left[\begin{array}{ll}
A & B \\
B & A
\end{array}\right]\right)=\operatorname{mspec}(A+B) \cup \operatorname{mspec}(A-B)
$$

(Proof: See [1184, p. 93].) (Remark: See Fact 2.14.26.)
Fact 4.10.26. Let $A, B \in \mathbb{R}^{n \times n}$. Then,

$$
\operatorname{mspec}\left(\left[\begin{array}{cc}
A & B \\
-B & A
\end{array}\right]\right)=\operatorname{mspec}(A+\jmath B) \cup \operatorname{mspec}(A-\jmath B)
$$

Now, assume that A is symmetric and B is skew symmetric. Then, $\left[\begin{array}{cc}A & B \\ B^{\mathrm{T}} & A\end{array}\right]$ is symmetric, $A+\jmath B$ is Hermitian, and

$$
\operatorname{mspec}\left(\left[\begin{array}{cc}
A & B \\
B^{\mathrm{T}} & A
\end{array}\right]\right)=\operatorname{mspec}(A+\jmath B) \cup \operatorname{mspec}(A+\jmath B)
$$

(Remark: See Fact 2.19.3 and Fact 8.15.6.)
Fact 4.10.27. Let $A \in \mathbb{F}^{n \times n}, B \in \mathbb{F}^{m \times m}$, and $C \in \mathbb{F}^{n \times m}$, assume that A and B are Hermitian, and define $\mathcal{A}_{0} \triangleq\left[\begin{array}{cc}A & 0 \\ 0 & B\end{array}\right]$ and $\mathcal{A} \triangleq\left[\begin{array}{cc}A & C \\ C^{*} & B\end{array}\right]$. Furthermore, define

$$
\eta \triangleq \min _{\substack{i=1, \ldots, n \\ j=1, \ldots, m}}\left|\lambda_{i}(A)-\lambda_{j}(B)\right|
$$

Then, for all $i=1, \ldots, n+m$,

$$
\left|\lambda_{i}(\mathcal{A})-\lambda_{i}\left(\mathcal{A}_{0}\right)\right| \leq \frac{2 \sigma_{\max }^{2}(C)}{\eta+\sqrt{\eta^{2}+4 \sigma_{\max }(C)}}
$$

(Proof: See 200, pp. 142-146] or 893.)

Fact 4.10.28. Let $A \in \mathbb{R}^{n \times n}$, let $b, c \in \mathbb{R}^{n}$, define $p \in \mathbb{R}[s]$ by $p(s) \triangleq c^{\mathrm{T}}(s I-$ $A)^{\mathrm{A}} b$, assume that p and $\operatorname{det}(s I-A)$ are coprime, define $A_{\alpha} \triangleq A+\alpha b c^{\mathrm{T}}$ for all $\alpha \in$ $[0, \infty)$, and let $\lambda:[0, \infty) \rightarrow \mathbb{C}$ be a continuous function such that $\lambda(\alpha) \in \operatorname{spec}\left(A_{\alpha}\right)$ for all $\alpha \in[0, \infty)$. Then, either $\lim _{\alpha \rightarrow \infty}|\lambda(\alpha)|=\infty$ or $\lim _{\alpha \rightarrow \infty} \lambda(\alpha) \in \operatorname{roots}(p)$. (Remark: This result is a consequence of root locus analysis from classical control theory, which determines asymptotic pole locations under high-gain feedback.)

Fact 4.10.29. Let $A \in \mathbb{F}^{n \times n}$, where $n \geq 2$, and assume that there exist $\alpha \in[0, \infty)$ and $B \in \mathbb{F}^{n \times n}$ such that $A=\alpha I-B$ and $\operatorname{sprad}(B) \leq \alpha$. Then,

$$
\operatorname{spec}(A) \subset\{0\} \cup \mathrm{ORHP}
$$

If, in addition, $\operatorname{sprad}(B)<\alpha$, then

$$
\operatorname{spec}(A) \subset \mathrm{ORHP}
$$

and thus A is nonsingular. (Proof: Let $\lambda \in \operatorname{spec}(A)$. Then, there exists $\mu \in \operatorname{spec}(B)$ such that $\lambda=\alpha-\mu$. Hence, $\operatorname{Re} \lambda=\alpha-\operatorname{Re} \mu$. Since $\operatorname{Re} \mu \leq|\operatorname{Re} \mu| \leq|\mu| \leq \operatorname{sprad}(B)$, it follows that $\operatorname{Re} \lambda \geq \alpha-|\operatorname{Re} \mu| \geq \alpha-|\mu| \geq \alpha-\operatorname{sprad}(B) \geq 0$. Hence, $\operatorname{Re} \lambda \geq 0$. Now, suppose that $\operatorname{Re} \lambda=0$. Then, since $\alpha-\lambda=\mu \in \operatorname{spec}(B)$, it follows that $\alpha^{2}+|\lambda|^{2} \leq$ $[\operatorname{sprad}(B)]^{2} \leq \alpha^{2}$. Hence, $\lambda=0$. By a similar argument, if $\operatorname{sprad}(B)<\alpha$, then $\operatorname{Re} \lambda>0$.) (Remark: Converses of these statements hold when B is nonnegative. See Fact 4.11.6)

4.11 Facts on Graphs and Nonnegative Matrices

Fact 4.11.1. Let $\mathcal{G}=\left(\left\{x_{1}, \ldots, x_{n}\right\}, \mathcal{R}\right)$ be a graph without self-loops, assume that \mathcal{G} is antisymmetric, let $A \in \mathbb{R}^{n \times n}$ denote the adjacency matrix of \mathcal{G}, let $L_{\mathrm{in}} \in \mathbb{R}^{n \times n}$ and $L_{\text {out }} \in \mathbb{R}^{n \times n}$ denote the inbound and outbound Laplacians of \mathcal{G}, respectively, and let $A_{\text {sym }}, D_{\text {sym }}$, and $L_{\text {sym }}$ denote the adjacency, degree, and

Laplacian matrices, respectively, of $\operatorname{sym}(\mathcal{G})$. Then,

$$
\begin{gathered}
D_{\mathrm{sym}}=D_{\mathrm{in}}+D_{\mathrm{out}} \\
A_{\mathrm{sym}}=A+A^{\mathrm{T}}
\end{gathered}
$$

and

$$
L_{\mathrm{sym}}=L_{\mathrm{in}}+L_{\mathrm{out}}^{\mathrm{T}}=L_{\mathrm{in}}^{\mathrm{T}}+L_{\mathrm{out}}=D_{\mathrm{sym}}-A_{\mathrm{sym}}
$$

Fact 4.11.2. Let $\mathcal{G}=\left(\left\{x_{1}, \ldots, x_{n}\right\}, \mathcal{R}\right)$ be a graph, and let $A \in \mathbb{R}^{n \times n}$ be the adjacency matrix of \mathcal{G}. Then, the following statements are equivalent:
i) \mathcal{G} is connected.
ii) \mathcal{G} has no directed cuts.
iii) A is irreducible.

Furthermore, the following statements are equivalent:
iv) \mathcal{G} is not connected.
v) \mathcal{G} has a directed cut.
$v i) ~ A$ is reducible.
Finally, suppose that A is reducible and there exist $k \geq 1$ and a permutation matrix $S \in \mathbb{R}^{n \times n}$ such that $S A S^{\mathrm{T}}=\left[\begin{array}{cc}B & C \\ 0_{k \times(n-k)} & D\end{array}\right]$, where $B \in \mathbb{F}^{(n-k) \times(n-k)}, C \in \mathbb{F}^{(n-k) \times k}$, and $D \in \mathbb{F}^{k \times k}$. Then, $\left(\left\{x_{i_{1}}, \ldots, x_{i_{n-k}}\right\},\left\{x_{i_{n-k+1}}, \ldots, x_{i_{n}}\right\}\right)$ is a directed cut, where $\left[\begin{array}{lll}i_{1} & \cdots & i_{n}\end{array}\right]^{\mathrm{T}}=S\left[\begin{array}{lll}1 & \cdots & n\end{array}\right]^{\mathrm{T}}$. (Proof: See [709, p. 362].)

Fact 4.11.3. Let $\mathcal{G}=(\mathcal{X}, \mathcal{R})$ be a graph, where $\mathcal{X}=\left\{x_{1}, \ldots, x_{n}\right\}$, and let A be the adjacency matrix of \mathcal{G}. Then, the following statements hold:
i) The number of distinct walks from x_{i} to x_{j} of length $k \geq 1$ is $\left(A^{k}\right)_{(j, i)}$.
ii) Let k be an integer such that $1 \leq k \leq n-1$. Then, for distinct $x_{i}, x_{j} \in \mathcal{X}$, the number of distinct walks from x_{i} to x_{j} whose length is less than or equal to k is $\left[(I+A)^{k}\right]_{(j, i)}$.

Fact 4.11.4. Let $A \in \mathbb{F}^{n \times n}$, and consider $\mathcal{G}(A)=(\mathcal{X}, \mathcal{R})$, where $\mathcal{X}=\left\{x_{1}, \ldots\right.$, $\left.x_{n}\right\}$. Then, the following statements are equivalent:
i) $\mathcal{G}(A)$ is connected.
ii) There exists $k \geq 1$ such that $(I+|A|)^{k-1}$ is positive.
iii) $(I+|A|)^{n-1}$ is positive.
(Proof: See [709, pp. 358, 359].)
Fact 4.11.5. Let $A \in \mathbb{R}^{n \times n}$, where $n \geq 2$, and assume that A is nonnegative. Then, the following statements hold:
$i) \operatorname{sprad}(A)$ is an eigenvalue of A.
ii) There exists a nonzero nonnegative vector $x \in \mathbb{R}^{n}$ such that $A x=$
$\operatorname{sprad}(A) x$.
Furthermore, the following statements are equivalent:
iii) A is irreducible.
iv) $(I+A)^{n-1}$ is positive.
v) $\mathcal{G}(A)$ is connected.
vi) A has exactly one nonnegative eigenvector whose components sum to 1 , and this eigenvector is positive.

If A is irreducible, then the following statements hold:
vii) $\operatorname{sprad}(A)>0$.
viii) $\operatorname{sprad}(A)$ is a simple eigenvalue of A.
$i x)$ There exists a positive vector $x \in \mathbb{R}^{n}$ such that $A x=\operatorname{sprad}(A) x$.
x) A has exactly one positive eigenvector whose components sum to 1 .
xi) Assume that $\left\{\lambda_{1}, \ldots, \lambda_{k}\right\}_{\mathrm{ms}}=\{\lambda \in \operatorname{mspec}(A):|\lambda|=\operatorname{sprad}(A)\}_{\mathrm{ms}}$. Then, $\lambda_{1}, \ldots, \lambda_{k}$ are distinct, and

$$
\left\{\lambda_{1}, \ldots, \lambda_{k}\right\}=\left\{e^{2 \pi \jmath i / k} \operatorname{sprad}(A): i=1, \ldots, k\right\}
$$

Furthermore,

$$
\operatorname{mspec}(A)=e^{2 \pi J / k} \operatorname{mspec}(A)
$$

xii) If at least one diagonal entry of A is positive, then $\operatorname{sprad}(A)$ is the only eigenvalue of A whose absolute value is $\operatorname{sprad}(A)$.
xiii) If A has at least m positive diagonal entries, then $A^{2 n-m-1}$ is positive.

In addition, the following statements are equivalent:
xiv) There exists $k \geq 1$ such that A^{k} is positive.
$x v) A$ is irreducible and $|\lambda|<\operatorname{sprad}(A)$ for all $\lambda \in \operatorname{spec}(A) \backslash\{\operatorname{sprad}(A)\}$.
xvi) $A^{n^{2}-2 n+2}$ is positive.
xvii) $\mathcal{G}(A)$ is aperiodic.
A is primitive if xiv)-xviii) are satisfied. (Example: $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ is irreducible but not primitive.) If A is primitive, then the following statements hold:
xviii) For all $k \in \mathbb{P}, A^{k}$ is primitive.
$x i x)$ If $k \in \mathbb{P}$ and A^{k} is positive, then, for all $l \geq k, A^{l}$ is positive.
$x x$) There exists a positive integer $k \leq(n-1) n^{n}$ such that A^{k} is positive.
$x x i)$ If $x, y \in \mathbb{R}^{n}$ are positive and satisfy $A x=\operatorname{sprad}(A) x$ and $A^{\mathrm{T}} y=\operatorname{sprad}(A) y$, then

$$
\lim _{k \rightarrow \infty}\left([\operatorname{sprad}(A)]^{-1} A\right)^{k}=\frac{1}{x^{\mathrm{T}} y} x y^{\mathrm{T}}
$$

xxii) If $x_{0} \in \mathbb{R}^{n}$ is nonzero and nonnegative and $x, y \in \mathbb{R}^{n}$ are positive and
satisfy $A x=\operatorname{sprad}(A) x$ and $A^{\mathrm{T}} y=\operatorname{sprad}(A) y$, then

$$
\lim _{k \rightarrow \infty} \frac{A^{k} x_{0}-[\operatorname{sprad}(A)]^{k} y^{\mathrm{T}} x_{0} x}{\left\|A^{k} x_{0}\right\|_{2}}=0
$$

xxiii $) \operatorname{sprad}(A)=\lim _{k \rightarrow \infty}\left(\operatorname{tr} A^{k}\right)^{1 / k}$.
(Remark: For an arbitrary nonzero and nonnegative initial condition, the state $x_{k}=A^{k} x_{0}$ of the difference equation $x_{k+1}=A x_{k}$ approaches a distribution given by the eigenvector associated with the positive eigenvalue of maximum absolute value. In demography, this eigenvector is interpreted as the stable age distribution. See [805, pp. 47, 63].) (Proof: See [16, pp. 45-49], [133, p. 17], [181, pp. 2628, 32, 55], 481, and [709, pp. 507-518]. For xxiii), see 1193 and 1369 p. 49].) (Remark: This result is the Perron-Frobenius theorem.) (Remark: See Fact 11.18.20) (Remark: Statement $x v i$) is due to Wielandt. See [1098, p. 157].) (Remark: Statement xvii) is given in [1148, p. 9-3].) (Remark: See Fact 6.6.20.) (Example: Let x and y be positive numbers such that $x+y<1$, and define

$$
A \triangleq\left[\begin{array}{ccc}
x & y & 1-x-y \\
1-x-y & x & y \\
y & 1-x-y & x
\end{array}\right]
$$

Then, $A 1_{3 \times 1}=A^{\mathrm{T}} 1_{3 \times 1}=1_{3 \times 1}$, and thus $\lim _{k \rightarrow \infty} A^{k}=\frac{1}{3} 1_{3 \times 3}$. See [238, p. 213].)
Fact 4.11.6. Let $A \in \mathbb{R}^{n \times n}$, where $n \geq 2$, and assume that A is a Z-matrix. Then, the following statements are equivalent:
i) There exist $\alpha \in(0, \infty)$ and $B \in \mathbb{R}^{n \times n}$ such that $A=\alpha I-B, B$ is nonnegative, and $\operatorname{sprad}(B) \leq \alpha$.
ii) $\operatorname{spec}(A) \subset$ ORHP $\cup\{0\}$.
iii) $\operatorname{spec}(A) \subset$ CRHP.
iv) If $\lambda \in \operatorname{spec}(A)$ is real, then $\lambda \geq 0$.
v) Every principal subdeterminant of A is nonnegative.
vi) For every diagonal, positive-definite matrix $D \in \mathbb{R}^{n \times n}$, it follows that $A+D$ is nonsingular.
(Remark: A is an M-matrix if A is a Z-matrix and i) v) hold. Example: $A=$ $\left.\left[\begin{array}{cc}0 & -1 \\ 0 & 0\end{array}\right]=I-\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\right)$. In addition, the following statements are equivalent:
vii) There exist $\alpha \in(0, \infty)$ and $B \in \mathbb{R}^{n \times n}$ such that $A=\alpha I-B, B$ is nonnegative, and $\operatorname{sprad}(B)<\alpha$.
viii) $\operatorname{spec}(A) \subset$ ORHP.
(Proof: The result $i) \Longrightarrow i i$) follows from Fact 4.10.29, while $i i) \Longrightarrow i i i$) is immediate. To prove $i i i) \Longrightarrow i)$, let $\alpha \in(0, \infty)$ be sufficiently large that $B \triangleq \alpha I-A$ is nonnegative. Hence, for every $\mu \in \operatorname{spec}(B)$, it follows that $\lambda \triangleq \alpha-\mu \in \operatorname{spec}(A)$. Since $\operatorname{Re} \lambda \geq 0$, it follows that every $\mu \in \operatorname{spec}(B)$ satisfies $\operatorname{Re} \mu \leq \alpha$. Since B is nonnegative, it follows from i) of Fact 4.11.5 that $\operatorname{sprad}(B)$ is an eigenvalue of B. Hence, setting $\mu=\operatorname{sprad}(B)$ implies that $\operatorname{sprad}(B) \leq \alpha$. Conditions iv) and v) are proved in [182, pp. 149, 150]. Finally, the argument used to prove that $i) \Longrightarrow i i$)
shows in addition that vii) \Longrightarrow viii).) (Remark: A is a nonsingular M-matrix if $v i i$) and viii) hold. See Fact 11.19.5) (Remark: See Fact 11.19.3.)

Fact 4.11.7. Let $A \in \mathbb{R}^{n \times n}$, where $n \geq 2$. If A is a Z-matrix, then every principal submatrix of A is also a Z-matrix. Furthermore, if A is an M-matrix, then every principal submatrix of A is also an M-matrix. (Proof: See 711, p. 114].)

Fact 4.11.8. Let $A \in \mathbb{R}^{n \times n}$, where $n \geq 2$, and assume that A is a nonsingular M-matrix, B is a Z-matrix, and $A \leq \leq B$. Then, the following statements hold:
i) $\operatorname{tr}\left(A^{-1} A^{\mathrm{T}}\right) \leq n$.
ii) $\operatorname{tr}\left(A^{-1} A^{\mathrm{T}}\right)=n$ if and only if A is symmetric.
iii) B is a nonsingular M-matrix.
iv) $0 \leq B^{-1} \leq A^{-1}$.
v) $0<\operatorname{det} A \leq \operatorname{det} B$.
(Proof: See [711, pp. 117, 370].)
Fact 4.11.9. Let $A \in \mathbb{R}^{n \times n}$, where $n \geq 2$, assume that A is a Z-matrix, and define

$$
\tau(A) \triangleq \min \{\operatorname{Re} \lambda: \lambda \in \operatorname{spec}(A)\}
$$

Then, the following statements hold:
i) $\tau(A) \in \operatorname{spec}(A)$.
ii) $\min _{i=1, \ldots, n} \sum_{j=1}^{n} A_{(i, j)} \leq \tau(A)$.

Now, assume that A is an M-matrix. Then, the following statements hold:
iii) If A is nonsingular, then $\tau(A)=1 / \operatorname{sprad}\left(A^{-1}\right)$.
iv) $[\tau(A)]^{n} \leq \operatorname{det} A$.
v) If $B \in \mathbb{R}^{n \times n}, B$ is an M-matrix, and $B \leq \leq A$, then $\tau(B) \leq \tau(A)$.
(Proof: See [711, pp. 128-131].) (Remark: $\tau(A)$ is the minimum eigenvalue of A.) (Remark: See Fact 7.6.15)

Fact 4.11.10. Let $A \in \mathbb{R}^{n \times n}$, where $n \geq 2$, and assume that A is an M-matrix. Then, the following statements hold:
i) There exists a nonzero nonnegative vector $x \in \mathbb{R}^{n}$ such that $A x$ is nonnegative.
ii) If A is irreducible, then there exists a positive vector $x \in \mathbb{R}^{n}$ such that $A x$ is nonnegative.

Now, assume that A is singular. Then, the following statements hold:
iii) $\operatorname{rank} A=n-1$.
iv) There exists a positive vector $x \in \mathbb{R}^{n}$ such that $A x=0$.
v) A is group invertible.
$v i$ Every principal submatrix of A of order less than n and greater than 1 is a nonsingular M-matrix.
vii) If $x \in \mathbb{R}^{n}$ and $A x$ is nonnegative, then $A x=0$.
(Proof: To prove the first statement, it follows from Fact 4.11 .6 that there exist $\alpha \in(0, \infty)$ and $B \in \mathbb{R}^{n \times n}$ such that $A=\alpha I-B, B$ is nonnegative, and $\operatorname{sprad}(B) \leq \alpha$. Consequently, it follows from $i i)$ of Fact 4.11 .5 that there exists a nonzero nonnegative vector $x \in \mathbb{R}^{n}$ such that $B x=\operatorname{sprad}(B) x$. Therefore, $A x=[\alpha-\operatorname{sprad}(B)] x$ is nonnegative. Statements $i i i)-v i i)$ are given in [182 p. 156].)

Fact 4.11.11. Let $\mathcal{G}=(X, \mathcal{R})$ be a symmetric graph, where $\mathcal{X}=\left\{x_{1}, \ldots, x_{n}\right\}$, and let $L_{\mathrm{in}} \in \mathbb{R}^{n \times n}$ denote the Laplacian of \mathcal{G}. Then, the following statements hold:
i) $\operatorname{spec}(L) \subset\{0\} \cup$ ORHP.
ii) $0 \in \operatorname{spec}(L)$, and an associated eigenvector is $1_{n \times 1}$.
iii) 0 is a semisimple eigenvalue of L.
iv) 0 is a simple eigenvalue of L if and only if \mathcal{G} has a spanning subgraph that is a tree.
v) L is positive semidefinite.
vi) $0 \in \operatorname{spec}(L) \subset\{0\} \cup[0, \infty)$.
vii) If \mathcal{G} is connected, then 0 is a simple eigenvalue of L.
viii) \mathcal{S} is connected if and only if $\lambda_{n-1}(L)$ is positive.
(Proof: For the last statement, see [993, p. 147].) (Remark: See Fact 11.19.7) (Problem: Extend these results to graphs that are not symmetric.)

Fact 4.11.12. Let $A \triangleq\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$. Then, $\chi_{A}(s)=s^{2}-s-1$ and $\operatorname{spec}(A)=\{\alpha, \beta\}$, where $\alpha \triangleq \frac{1}{2}(1+\sqrt{5}) \approx 1.61803$ and $\beta \triangleq \frac{1}{2}(1-\sqrt{5}) \approx-0.61803$ satisfy

$$
\alpha-1=1 / \alpha, \quad \beta-1=1 / \beta .
$$

Furthermore, $\left[\begin{array}{c}\alpha \\ 1\end{array}\right]$ is an eigenvector of A associated with α. Now, for $k \geq 0$, consider the difference equation

$$
x_{k+1}=A x_{k} .
$$

Then, for all $k \geq 0$,

$$
x_{k}=A^{k} x_{0}
$$

and

$$
x_{k+2(1)}=x_{k+1(1)}+x_{k(1)} .
$$

Furthermore, if x_{0} is positive, then

$$
\lim _{k \rightarrow \infty} \frac{x_{k(1)}}{x_{k(2)}}=\alpha .
$$

In particular, if $x_{0} \triangleq\left[\begin{array}{l}1 \\ 1\end{array}\right]$, then, for all $k \geq 0$,

$$
x_{k}=\left[\begin{array}{c}
F_{k+2} \\
F_{k+1}
\end{array}\right],
$$

where $F_{1} \triangleq F_{2} \triangleq 1$ and, for all $k \geq 1, F_{k}$ is given by

$$
F_{k}=\frac{1}{\sqrt{5}}\left(\alpha^{k}-\beta^{k}\right)
$$

and satisfies

$$
F_{k+2}=F_{k+1}+F_{k} .
$$

Furthermore,

$$
\frac{1}{1-x-x^{2}}=F_{1} x+F_{2} x^{2}+\cdots
$$

and

$$
A^{k}=\left[\begin{array}{cc}
F_{k+1} & F_{k} \\
F_{k} & F_{k-1}
\end{array}\right] .
$$

On the other hand, if $x_{0} \triangleq\left[\begin{array}{l}3 \\ 1\end{array}\right]$, then, for all $k \geq 0$,

$$
x_{k}=\left[\begin{array}{l}
L_{k+2} \\
L_{k+1}
\end{array}\right]
$$

where $L_{1} \triangleq 1, L_{2} \triangleq 3$, and, for all $k \geq 1, L_{k}$ is given by

$$
L_{k}=\alpha^{k}+\beta^{k}
$$

and satisfies

$$
L_{k+2}=L_{k+1}+L_{k} .
$$

Moreover,

$$
\lim _{k \rightarrow \infty} \frac{F_{k+1}}{F_{k}}=\frac{L_{k+1}}{L_{k}}=\alpha .
$$

In addition,

$$
\alpha=\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\cdots}}}}
$$

Finally, for all $k \geq 1$,

$$
F_{k+1}=\operatorname{det}\left[\begin{array}{cccccc}
1 & \jmath & 0 & \cdots & 0 & 0 \\
\jmath & 1 & \jmath & \cdots & 0 & 0 \\
0 & \jmath & 1 & \ddots & 0 & 0 \\
\vdots & \vdots & \ddots & \ddots & \ddots & 0 \\
0 & 0 & 0 & \ddots & 1 & \jmath \\
0 & 0 & 0 & \cdots & \jmath & 1
\end{array}\right]=\operatorname{det}\left[\begin{array}{cccccc}
1 & 1 & 0 & \cdots & 0 & 0 \\
-1 & 1 & 1 & \cdots & 0 & 0 \\
0 & -1 & 1 & \ddots & 0 & 0 \\
\vdots & \vdots & \ddots & \ddots & \ddots & 0 \\
0 & 0 & 0 & \ddots & 1 & 1 \\
0 & 0 & 0 & \cdots & -1 & 1
\end{array}\right],
$$

where both matrices are of size $k \times k$. (Proof: Use the last statement of Fact 4.11.5) (Remark: F_{k} is the k th Fibonacci number, L_{k} is the k th Lucas number, and α is the golden ratio. See [841, pp. 6-8, 239-241, 362, 363] and Fact 12.23 .4 . The expressions for F_{k} and L_{k} involving powers of α and β are Binet's formulas. See [177 p. 125]. The iterated square root identity is given in [477, p. 24]. The determinant identities are given in [279] and [1119, p. 515].) (Remark: $1 /\left(1-x-x^{2}\right)$ is a generating function for the Fibonacci numbers. See [1407.)

Fact 4.11.13. Consider the nonnegative companion matrix $A \in \mathbb{R}^{n \times n}$ defined by

$$
A \triangleq\left[\begin{array}{cccccc}
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \ddots & 0 & 0 \\
0 & 0 & 0 & \ddots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 1 \\
1 / n & 1 / n & 1 / n & \cdots & 1 / n & 1 / n
\end{array}\right]
$$

Then, A is irreducible, 1 is a simple eigenvalue of A with associated eigenvector $1_{n \times 1}$, and $|\lambda|<1$ for all $\lambda \in \operatorname{spec}(A) \backslash\{1\}$. Furthermore, if $x \in \mathbb{R}^{n}$, then

$$
\lim _{k \rightarrow \infty} A^{k} x=\left[\frac{2}{n(n+1)} \sum_{i=1}^{n} i x_{(i-1)}\right] 1_{n \times 1} .
$$

(Proof: See [629, pp. 82, 83, 263-266].) (Remark: The result follows from Fact 4.11.5.)

Fact 4.11.14. Let $A \in \mathbb{R}^{n \times m}$ and $b \in \mathbb{R}^{m}$. Then, the following statements are equivalent:
i) If $x \in \mathbb{R}^{m}$ and $A x \geq \geq 0$, then $b^{\mathrm{T}} x \geq 0$.
ii) There exists a vector $y \in \mathbb{R}^{n}$ such that $y \geq \geq 0$ and $A^{\mathrm{T}} y=b$.

Equivalently, exactly one of the following two statements is satisfied:
iii) There exists a vector $x \in \mathbb{R}^{m}$ such that $A x \geq \geq 0$ and $b^{\mathrm{T}} x<0$.
iv) There exists a vector $y \in \mathbb{R}^{n}$ such that $y \geq \geq 0$ and $A^{\mathrm{T}} y=b$.
(Proof: See [157, p. 47] or [239, p. 24].) (Remark: This result is the Farkas theorem.)

Fact 4.11.15. Let $A \in \mathbb{R}^{n \times m}$. Then, the following statements are equivalent:
i) There exists a vector $x \in \mathbb{R}^{m}$ such that $A x \gg 0$.
ii) If $y \in \mathbb{R}^{n}$ is nonzero and $y \geq \geq 0$, then $A^{\mathrm{T}} y \neq 0$.

Equivalently, exactly one of the following two statements is satisfied:
iii) There exists a vector $x \in \mathbb{R}^{m}$ such that $A x \gg 0$.
$i v)$ There exists a nonzero vector $y \in \mathbb{R}^{n}$ such that $y \geq \geq 0$ and $A^{\mathrm{T}} y=0$.
(Proof: See [157, p. 47] or [239, p. 23].) (Remark: This result is Gordan's theorem.)
Fact 4.11.16. Let $A \in \mathbb{C}^{n \times n}$, and define $|A| \in \mathbb{R}^{n \times n}$ by $|A|_{(i, j)} \triangleq\left|A_{(i, j)}\right|$ for all $i, j=1, \ldots, n$. Then,

$$
\operatorname{sprad}(A) \leq \operatorname{sprad}(|A|)
$$

(Proof: See [998, p. 619].)

Fact 4.11.17. Let $A \in \mathbb{R}^{n \times n}$, assume that A is nonnegative, and let $\alpha \in[0,1]$. Then,

$$
\operatorname{sprad}(A) \leq \operatorname{sprad}\left[\alpha A+(1-\alpha) A^{\mathrm{T}}\right]
$$

(Proof: See [130].)
Fact 4.11.18. Let $A, B \in \mathbb{R}^{n \times n}$, where $0 \leq \leq A \leq \leq B$. Then,

$$
\operatorname{sprad}(A) \leq \operatorname{sprad}(B)
$$

In particular, $B_{0} \in \mathbb{R}^{m \times m}$ is a principal submatrix of B, then

$$
\operatorname{sprad}\left(B_{0}\right) \leq \operatorname{sprad}(B)
$$

If, in addition, $A \neq B$ and $A+B$ is irreducible, then

$$
\operatorname{sprad}(A)<\operatorname{sprad}(B)
$$

Hence, if $\operatorname{sprad}(A)=\operatorname{sprad}(B)$ and $A+B$ is irreducible, then $A=B$. (Proof: See [170, p. 27]. See also [447, pp. 500, 501].)

Fact 4.11.19. Let $A, B \in \mathbb{R}^{n \times n}$, assume that B is diagonal, assume that A and $A+B$ are nonnegative, and let $\alpha \in[0,1]$. Then,

$$
\operatorname{sprad}[\alpha A+(1-\alpha) B] \leq \alpha \operatorname{sprad}(A)+(1-\alpha) \operatorname{sprad}(A+B)
$$

(Proof: See [1148, p. 9-5].)
Fact 4.11.20. Let $A \in \mathbb{R}^{n \times n}$, assume that $A \gg 0$, and let $\lambda \in$ $\operatorname{spec}(A) \backslash\{\operatorname{sprad}(A)\}$. Then,

$$
|\lambda| \leq \frac{A_{\max }-A_{\min }}{A_{\max }+A_{\min }} \operatorname{sprad}(A)
$$

where

$$
A_{\max } \triangleq \max \left\{A_{(i, j)}: \quad i, j=1, \ldots, n\right\}
$$

and

$$
A_{\min } \triangleq \min \left\{A_{(i, j)}: \quad i, j=1, \ldots, n\right\}
$$

(Remark: This result is Hopf's theorem.) (Remark: The equality case is discussed in 688.)

Fact 4.11.21. Let $A \in \mathbb{R}^{n \times n}$, assume that A is nonnegative and irreducible, and let $x, y \in \mathbb{R}^{n}$, where $x>0$ and $y>0$ satisfy $A x=\operatorname{sprad}(A) x$ and $A^{\mathrm{T}} y=$ $\operatorname{sprad}(A) y$. Then,

$$
\lim _{l \rightarrow \infty} \frac{1}{l} \sum_{k=1}^{l}\left[\frac{1}{\operatorname{sprad}(A)} A\right]^{k}=x y^{\mathrm{T}}
$$

If, in addition, A is primitive, then

$$
\lim _{k \rightarrow \infty}\left[\frac{1}{\operatorname{sprad}(A)} A\right]^{k}=x y^{\mathrm{T}}
$$

(Proof: See 447, p. 503] and [709, p. 516].)

Fact 4.11.22. Let $A \in \mathbb{R}^{n \times n}$, assume that A is nonnegative, and let k and m be positive integers. Then,

$$
\left[\operatorname{tr} A^{k}\right]^{m} \leq n^{m-1} \operatorname{tr} A^{k m}
$$

(Proof: See [860.) (Remark: This result is the JLL inequality.)

4.12 Notes

Much of the development in this chapter is based on 1081. Additional discussions of the Smith and Smith-McMillan forms are given in 787] and 1498. The proofs of Lemma 4.4.8 and Leverrier's algorithm Proposition 4.4.9 are based on [1129, pp. 432, 433], where it is called the Souriau-Frame algorithm. Alternative proofs of Leverrier's algorithm are given in [143, 720. The proof of Theorem 4.6.1 is based on [709]. Polynomial-based approaches to linear algebra are given in [276] 508], while polynomial matrices and rational transfer functions are studied in [559, 1368 .

The term normal rank is often used to refer to what we call the rank of a rational transfer function.

Chapter Five

Matrix Decompositions

In this chapter we present several matrix decompositions, namely, the Smith, multicompanion, elementary multicompanion, hypercompanion, Jordan, Schur, and singular value decompositions.

5.1 Smith Form

Our first decomposition involves rectangular matrices subject to a biequivalence transformation. This result is the specialization of the Smith decomposition given by Theorem 4.3.2 to constant matrices.

Theorem 5.1.1. Let $A \in \mathbb{F}^{n \times m}$ and $r \triangleq \operatorname{rank} A$. Then, there exist nonsingular matrices $S_{1} \in \mathbb{F}^{n \times n}$ and $S_{2} \in \mathbb{F}^{m \times m}$ such that

$$
A=S_{1}\left[\begin{array}{cc}
I_{r} & 0_{r \times(m-r)} \tag{5.1.1}\\
0_{(n-r) \times r} & 0_{(n-r) \times(m-r)}
\end{array}\right] S_{2} .
$$

Corollary 5.1.2. Let $A, B \in \mathbb{F}^{n \times m}$. Then, A and B are biequivalent if and only if A and B have the same Smith form.

Proposition 5.1.3. Let $A, B \in \mathbb{F}^{n \times m}$. Then, the following statements hold:
i) A and B are left equivalent if and only if $\mathcal{N}(A)=\mathcal{N}(B)$.
ii) A and B are right equivalent if and only $\mathcal{R}(A)=\mathcal{R}(B)$.
iii) A and B are biequivalent if and only if $\operatorname{rank} A=\operatorname{rank} B$.

Proof. The proof of necessity is immediate in i - $-i i i$). Sufficiency in $i i i$) follows from Corollary 5.1.2. For sufficiency in i) and $i i$), see [1129, pp. 179-181].

5.2 Multicompanion Form

For the monic polynomial $p(s)=s^{n}+\beta_{n-1} s^{n-1}+\cdots+\beta_{1} s+\beta_{0} \in \mathbb{F}[s]$ of degree $n \geq 1$, the companion matrix $C(p) \in \mathbb{F}^{n \times n}$ associated with p is defined to
be

$$
C(p) \triangleq\left[\begin{array}{cccccc}
0 & 1 & 0 & \cdots & 0 & 0 \tag{5.2.1}\\
0 & 0 & 1 & \ddots & 0 & 0 \\
0 & 0 & 0 & \ddots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 1 \\
-\beta_{0} & -\beta_{1} & -\beta_{2} & \cdots & -\beta_{n-2} & -\beta_{n-1}
\end{array}\right] .
$$

If $n=1$, then $p(s)=s+\beta_{0}$ and $C(p)=-\beta_{0}$. Furthermore, if $n=0$ and $p=1$, then we define $C(p) \triangleq 0_{0 \times 0}$. Note that, if $n \geq 1$, then $\operatorname{tr} C(p)=-\beta_{n-1}$ and $\operatorname{det} C(p)=(-1)^{n} \beta_{0}=(-1)^{n} p(0)$.

It is easy to see that the characteristic polynomial of the companion matrix $C(p)$ is p. For example, let $n=3$ so that

$$
C(p)=\left[\begin{array}{ccc}
0 & 1 & 0 \tag{5.2.2}\\
0 & 0 & 1 \\
-\beta_{0} & -\beta_{1} & -\beta_{2}
\end{array}\right]
$$

and thus

$$
s I-C(p)=\left[\begin{array}{ccc}
s & -1 & 0 \tag{5.2.3}\\
0 & s & -1 \\
\beta_{0} & \beta_{1} & s+\beta_{2}
\end{array}\right]
$$

Adding s times the second column and s^{2} times the third column to the first column leaves the determinant of $s I-C(p)$ unchanged and yields

$$
\left[\begin{array}{ccc}
0 & -1 & 0 \tag{5.2.4}\\
0 & s & -1 \\
p(s) & \beta_{1} & s+\beta_{2}
\end{array}\right]
$$

Hence, $\chi_{C(p)}=p$. If $n=0$ and $p=1$, then we define $\chi_{C(p)} \triangleq \chi_{0_{0 \times 0}}=1$. The following result shows that companion matrices have the same characteristic and minimal polynomials.

Proposition 5.2.1. Let $p \in \mathbb{F}[s]$ be a monic polynomial having degree n. Then, there exist unimodular matrices $S_{1}, S_{2} \in \mathbb{F}^{n \times n}[s]$ such that

$$
s I-C(p)=S_{1}(s)\left[\begin{array}{cc}
I_{n-1} & 0_{(n-1) \times 1} \tag{5.2.5}\\
0_{1 \times(n-1)} & p(s)
\end{array}\right] S_{2}(s) .
$$

Furthermore,

$$
\begin{equation*}
\chi_{C(p)}=\mu_{C(p)}=p \tag{5.2.6}
\end{equation*}
$$

Proof. Since $\chi_{C(p)}=p$, it follows that $\operatorname{rank}[s I-C(p)]=n$. Next, since $\operatorname{det}\left([s I-C(p)]_{[n ; 1]}\right)=(-1)^{n-1}$, it follows that $\Delta_{n-1}=1$, where Δ_{n-1} is the greatest common divisor (which is monic by definition) of all $(n-1) \times(n-1)$ subdeterminants of $s I-C(p)$. Furthermore, since Δ_{i-1} divides Δ_{i} for all $i=2, \ldots, n-1$, it follows that $\Delta_{1}=\cdots=\Delta_{n-2}=1$. Consequently, $p_{1}=\cdots=p_{n-1}=1$. Since, by

Proposition 4.6.2 $\chi_{C(p)}=\prod_{i=1}^{n} p_{i}=p_{n}$ and $\mu_{C(p)}=p_{n}$, it follows that $\chi_{C(p)}=$ $\mu_{C(p)}=p$.

Next, we consider block-diagonal matrices all of whose diagonally located blocks are companion matrices.

Lemma 5.2.2. Let $p_{1}, \ldots, p_{n} \in \mathbb{F}[s]$ be monic polynomials such that p_{i} divides p_{i+1} for all $i=1, \ldots, n-1$ and $n=\sum_{i=1}^{n} \operatorname{deg} p_{i}$. Furthermore, define $C \triangleq \operatorname{diag}\left[C\left(p_{1}\right), \ldots, C\left(p_{n}\right)\right] \in \mathbb{F}^{n \times n}$. Then, there exist unimodular matrices $S_{1}, S_{2} \in \mathbb{F}^{n \times n}[s]$ such that

$$
s I-C=S_{1}(s)\left[\begin{array}{ccc}
p_{1}(s) & & 0 \tag{5.2.7}\\
& \ddots & \\
0 & & p_{n}(s)
\end{array}\right] S_{2}(s)
$$

Proof. Letting $k_{i}=\operatorname{deg} p_{i}$, Proposition 5.2.1 implies that the Smith form of $s I_{k_{i}}-C\left(p_{i}\right)$ is $0_{0 \times 0}$ if $k_{i}=0$ and $\operatorname{diag}\left(I_{k_{i}-1}, p_{i}\right)$ if $k_{i} \geq 1$. Note that $p_{1}=$ $\cdots=p_{n_{0}}=1$, where $n_{0} \triangleq \sum_{i=1}^{n} \max \left\{0, k_{i}-1\right\}$. By combining these Smith forms and rearranging diagonal entries, it follows that there exist unimodular matrices $S_{1}, S_{2} \in \mathbb{F}^{n \times n}[s]$ such that

$$
\begin{aligned}
s I-C & =\left[\begin{array}{ccc}
s I_{k_{1}}-C\left(p_{1}\right) & & \\
& \ddots & \\
& & s I_{k_{n}}-C\left(p_{n}\right)
\end{array}\right] \\
& =S_{1}(s)\left[\begin{array}{ccc}
p_{1}(s) & & 0 \\
& \ddots & \\
0 & & p_{n}(s)
\end{array}\right] S_{2}(s) .
\end{aligned}
$$

Since p_{i} divides p_{i+1} for all $i=1, \ldots, n-1$, it follows that this diagonal matrix is the Smith form of $s I-C$.

The following result uses Lemma 5.2.2 to construct a canonical form, known as the multicompanion form, for square matrices under a similarity transformation.

Theorem 5.2.3. Let $A \in \mathbb{F}^{n \times n}$, and let $p_{1}, \ldots, p_{n} \in \mathbb{F}[s]$ denote the similarity invariants of A, where p_{i} divides p_{i+1} for all $i=1, \ldots, n-1$. Then, there exists a nonsingular matrix $S \in \mathbb{F}^{n \times n}$ such that

$$
A=S\left[\begin{array}{ccc}
C\left(p_{1}\right) & & 0 \tag{5.2.8}\\
& \ddots & \\
0 & & C\left(p_{n}\right)
\end{array}\right] S^{-1}
$$

Proof. Lemma 5.2.2 implies that the $n \times n$ matrix $s I-C$, where $C \triangleq$ $\operatorname{diag}\left[C\left(p_{1}\right), \ldots, C\left(p_{n}\right)\right]$, has the Smith form $\operatorname{diag}\left(p_{1}, \ldots, p_{n}\right)$. Now, since $s I-A$ has the same similarity invariants as C, it follows from Theorem4.3.10 that A and C are similar.

Corollary 5.2.4. Let $A \in \mathbb{F}^{n \times n}$. Then, $\mu_{A}=\chi_{A}$ if and only if A is similar to $C\left(\chi_{A}\right)$.

Proof. Suppose that $\mu_{A}=\chi_{A}$. Then, it follows from Proposition 4.6.2 that $p_{i}=1$ for all $i=1, \ldots, n-1$ and $p_{n}=\chi_{A}$ is the only nonconstant similarity invariant of A. Thus, $C\left(p_{i}\right)=0_{0 \times 0}$ for all $i=1, \ldots, n-1$, and it follows from Theorem 5.2.3 that A is similar to $C\left(\chi_{A}\right)$. The converse follows from (5.2.6), xi) of Proposition 4.4.5, and Proposition 4.6.3.

Corollary 5.2.5. Let $A \in \mathbb{F}^{n \times n}$ be a companion matrix. Then, $A=C\left(\chi_{A}\right)$ and $\mu_{A}=\chi_{A}$.

Note that, if $A=I_{n}$, then the similarity invariants of A are $p_{i}(s)=s-1$ for all $i=1, \ldots, n$. Thus, $C\left(p_{i}\right)=1$ for all $i=1, \ldots, n$, as expected.

Corollary 5.2.6. Let $A, B \in \mathbb{F}^{n \times n}$. Then, the following statements are equivalent:
i) A and B are similar.
ii) A and B have the same similarity invariants.
iii) A and B have the same multicompanion form.

The multicompanion form given by Theorem 5.2.3 provides a canonical form for A in terms of a block-diagonal matrix of companion matrices. As shown below, however, the multicompanion form is only one such decomposition. The goal of the remainder of this section is to obtain an additional canonical form by applying a similarity transformation to the multicompanion form.

To begin, note that, if A_{i} is similar to B_{i} for all $i=1, \ldots, r$, then $\operatorname{diag}\left(A_{1}, \ldots, A_{r}\right)$ is similar to $\operatorname{diag}\left(B_{1}, \ldots, B_{r}\right)$. Therefore, it follows from Corollary 5.2 .6 that, if $s I-A_{i}$ and $s I-B_{i}$ have the same Smith form for all $i=1, \ldots, r$, then $s I-\operatorname{diag}\left(A_{1}, \ldots, A_{r}\right)$ and $s I-\operatorname{diag}\left(B_{1}, \ldots, B_{r}\right)$ have the same Smith form. The following lemma is needed.

Lemma 5.2.7. Let $A=\operatorname{diag}\left(A_{1}, A_{2}\right)$, where $A_{i} \in \mathbb{F}^{n_{i} \times n_{i}}$ for $i=1,2$. Then, μ_{A} is the least common multiple of $\mu_{A_{1}}$ and $\mu_{A_{2}}$. In particular, if $\mu_{A_{1}}$ and $\mu_{A_{2}}$ are coprime, then $\mu_{A}=\mu_{A_{1}} \mu_{A_{2}}$.

Proof. Since $0=\mu_{A}(A)=\operatorname{diag}\left[\mu_{A}\left(A_{1}\right), \mu_{A}\left(A_{2}\right)\right]$, it follows that $\mu_{A}\left(A_{1}\right)=0$ and $\mu_{A}\left(A_{2}\right)=0$. Therefore, Theorem 4.6.1 implies that $\mu_{A_{1}}$ and $\mu_{A_{2}}$ both divide μ_{A}. Consequently, the least common multiple q of $\mu_{A_{1}}$ and $\mu_{A_{2}}$ also divides μ_{A}. Since $q\left(A_{1}\right)=0$ and $q\left(A_{2}\right)=0$, it follows that $q(A)=0$. Therefore, μ_{A} divides q. Hence, $q=\mu_{A}$. If, in addition, $\mu_{A_{1}}$ and $\mu_{A_{2}}$ are coprime, then $\mu_{A}=\mu_{A_{1}} \mu_{A_{2}}$.

Proposition 5.2.8. Let $p \in \mathbb{F}[s]$ be a monic polynomial of positive degree n, and let $p=p_{1} \cdots p_{r}$, where $p_{1}, \ldots, p_{r} \in \mathbb{F}[s]$ are monic and pairwise coprime polynomials. Then, the matrices $C(p)$ and $\operatorname{diag}\left[C\left(p_{1}\right), \ldots, C\left(p_{r}\right)\right]$ are similar.

Proof. Let $\hat{p}_{2}=p_{2} \cdots p_{r}$ and $\hat{C} \triangleq \operatorname{diag}\left[C\left(p_{1}\right), C\left(\hat{p}_{2}\right)\right]$. Since p_{1} and \hat{p}_{2} are coprime, it follows from Lemma 5.2.7 that $\mu_{\hat{C}}=\mu_{C\left(p_{1}\right)} \mu_{C\left(\hat{p}_{2}\right)}$. Furthermore, $\chi_{\hat{C}}=$ $\chi_{C\left(p_{1}\right)} \chi_{C\left(\hat{p}_{2}\right)}=\mu_{\hat{C}}$. Hence, Corollary 5.2.4 implies that \hat{C} is similar to $C\left(\chi_{\hat{C}}\right)$. However, $\chi_{\hat{C}}=p_{1} \cdots p_{r}=p$, so that \hat{C} is similar to $C(p)$. If $r>2$, then the same argument can be used to decompose $C\left(\hat{p}_{2}\right)$ to show that $C(p)$ is similar to $\operatorname{diag}\left[C\left(p_{1}\right), \ldots, C\left(p_{r}\right)\right]$.

Proposition 5.2.8 can be used to decompose every companion block of a multicompanion form into smaller companion matrices. This procedure can be carried out for every companion block whose characteristic polynomial has coprime factors. For example, suppose that $A \in \mathbb{R}^{10 \times 10}$ has the similarity invariants $p_{i}(s)=1$ for all $i=1, \ldots, 7, p_{8}(s)=(s+1)^{2}, p_{9}(s)=(s+1)^{2}(s+2)$, and $p_{10}(s)=(s+1)^{2}(s+2)\left(s^{2}+3\right)$, so that, by Theorem 5.2.3, the multicompanion form of A is $\operatorname{diag}\left[C\left(p_{8}\right), C\left(p_{9}\right), C\left(p_{10}\right)\right]$, where $C\left(p_{8}\right) \in \mathbb{R}^{2 \times 2}, C\left(p_{9}\right) \in \mathbb{R}^{3 \times 3}$, and $C\left(p_{10}\right) \in \mathbb{R}^{5 \times 5}$. According to Proposition 5.2.8, the companion matrices $C\left(p_{9}\right)$ and $C\left(p_{10}\right)$ can be further decomposed. For example, $C\left(p_{9}\right)$ is similar to $\operatorname{diag}\left[C\left(p_{9,1}\right), C\left(p_{9,2}\right)\right]$, where $p_{9,1}(s)=(s+1)^{2}$ and $p_{9,2}(s)=s+2$ are coprime. Furthermore, $C\left(p_{10}\right)$ is similar to four different diagonal matrices, three of which have two companion blocks while the fourth has three companion blocks. Since $p_{8}(s)=(s+1)^{2}$ does not have nonconstant coprime factors, however, it follows that the companion matrix $C\left(p_{8}\right)$ cannot be decomposed into smaller companion matrices.

The largest number of companion blocks achievable by similarity transformation is obtained by factoring every similarity invariant into elementary divisors, which are powers of irreducible polynomials that are nonconstant, monic, and pairwise coprime. In the above example, this factorization is given by $p_{9}(s)=$ $p_{9,1}(s) p_{9,2}(s)$, where $p_{9,1}(s)=(s+1)^{2}$ and $p_{9,2}(s)=s+2$, and by $p_{10}=$ $p_{10,1} p_{10,2} p_{10,3}$, where $p_{10,1}(s)=(s+1)^{2}, p_{10,2}(s)=s+2$, and $p_{10,3}(s)=s^{2}+3$. The elementary divisors of A are thus $(s+1)^{2},(s+1)^{2}, s+2,(s+1)^{2}, s+2$, and $s^{2}+3$, which yields six companion blocks. Viewing $A \in \mathbb{C}^{n \times n}$ we can further factor $p_{10,3}(s)=(s+\jmath \sqrt{3})(s-\jmath \sqrt{3})$, which yields a total of seven companion blocks. From Proposition 5.2 .8 and Theorem 5.2.3 we obtain the elementary multicompanion form, which provides another canonical form for A.

Theorem 5.2.9. Let $A \in \mathbb{F}^{n \times n}$, and let $q_{1}^{l_{1}}, \ldots, q_{h}^{l_{h}} \in \mathbb{F}[s]$ be the elementary divisors of A, where $l_{1}, \ldots, l_{h} \in \mathbb{P}$. Then, there exists a nonsingular matrix $S \in \mathbb{F}^{n \times n}$ such that

$$
A=S\left[\begin{array}{ccc}
C\left(q_{1}^{l_{1}}\right) & & 0 \tag{5.2.9}\\
& \ddots & \\
0 & & C\left(q_{h}^{l_{h}}\right)
\end{array}\right] S^{-1} .
$$

5.3 Hypercompanion Form and Jordan Form

In this section we present an alternative form of the companion blocks of the elementary multicompanion form (5.2.9). To do this we define the hypercompanion
matrix $\mathcal{H}_{l}(q)$ associated with the elementary divisor $q^{l} \in \mathbb{F}[s]$, where $l \in \mathbb{P}$, as follows. For $q(s)=s-\lambda \in \mathbb{C}[s]$, define the $l \times l$ Toeplitz hypercompanion matrix

$$
\mathcal{H}_{l}(q) \triangleq \lambda I_{l}+N_{l}=\left[\begin{array}{cccccc}
\lambda & 1 & 0 & & & \tag{5.3.1}\\
0 & \lambda & 1 & & 0 & \\
& & \ddots & \ddots & & \\
& & & \ddots & 1 & 0 \\
& 0 & & & \lambda & 1 \\
& & & & 0 & \lambda
\end{array}\right]
$$

while, for $q(s)=s^{2}-\beta_{1} s-\beta_{0} \in \mathbb{R}[s]$, define the $2 l \times 2 l$ real, tridiagonal hypercompanion matrix

$$
\mathcal{H}_{l}(q) \triangleq\left[\begin{array}{ccccccc}
0 & 1 & & & & & \tag{5.3.2}\\
\beta_{0} & \beta_{1} & 1 & & & 0 & \\
& 0 & 0 & 1 & & & \\
& & \beta_{0} & \beta_{1} & 1 & & \\
& & & \ddots & \ddots & \ddots & \\
& 0 & & & \ddots & 0 & 1 \\
& & & & & \beta_{0} & \beta_{1}
\end{array}\right]
$$

The following result shows that the hypercompanion matrix $\mathcal{H}_{l}(q)$ is similar to the companion matrix $C\left(q^{l}\right)$ associated with the elementary divisor q^{l} of $\mathcal{H}_{l}(q)$.

Lemma 5.3.1. Let $l \in \mathbb{P}$, and let $q(s)=s-\lambda \in \mathbb{C}[s]$ or $q(s)=s^{2}-\beta_{1} s-\beta_{0} \in$ $\mathbb{R}[s]$. Then, q^{l} is the only elementary divisor of $\mathcal{H}_{l}(q)$, and $\mathcal{H}_{l}(q)$ is similar to $C\left(q^{l}\right)$.

Proof. Let k denote the order of $\mathcal{H}_{l}(q)$. Then, $\chi_{\mathcal{H}_{l}(q)}=q^{l}$ and $\operatorname{det}\left(\left[s I-\mathcal{H}_{l}(q)\right]_{[k ; 1]}\right)=(-1)^{k-1}$. Hence, as in the proof of Proposition 5.2.1, it follows that $\chi_{\mathcal{H}_{l}(q)}=\mu_{\mathcal{H}_{l}(q)}$. Corollary 5.2.4 now implies that $\mathcal{H}_{l}(q)$ is similar to $C\left(q^{l}\right)$.

Proposition 5.2.8 and Lemma 5.3.1 yield the following canonical form, which is known as the hypercompanion form.

Theorem 5.3.2. Let $A \in \mathbb{F}^{n \times n}$, and let $q_{1}^{l_{1}}, \ldots, q_{h}^{l_{h}} \in \mathbb{F}[s]$ be the elementary divisors of A, where $l_{1}, \ldots, l_{h} \in \mathbb{P}$. Then, there exists a nonsingular matrix $S \in \mathbb{F}^{n \times n}$ such that

$$
A=S\left[\begin{array}{ccc}
\mathcal{H}_{l_{1}}\left(q_{1}\right) & & 0 \tag{5.3.3}\\
& \ddots & \\
0 & & \mathcal{H}_{l_{h}}\left(q_{h}\right)
\end{array}\right] S^{-1}
$$

Next, consider Theorem 5.3.2 with $\mathbb{F}=\mathbb{C}$. In this case, every elementary divisor $q_{i}^{l_{i}}$ is of the form $\left(s-\lambda_{i}\right)^{l_{i}}$, where $\lambda_{i} \in \mathbb{C}$. Furthermore, $S \in \mathbb{C}^{n \times n}$, and the hypercompanion form (5.3.3) is a block-diagonal matrix whose diagonally located blocks are of the form (5.3.1). The hypercompanion form (5.3.3) with every diagonally located block of the form (5.3.1) is the Jordan form, as given by the following
result.
Theorem 5.3.3. Let $A \in \mathbb{C}^{n \times n}$, and let $q_{1}^{l_{1}}, \ldots, q_{h}^{l_{h}} \in \mathbb{C}[s]$ be the elementary divisors of A, where $l_{1}, \ldots, l_{h} \in \mathbb{P}$ and each of the polynomials $q_{1}, \ldots, q_{h} \in \mathbb{C}[s]$ has degree 1. Then, there exists a nonsingular matrix $S \in \mathbb{C}^{n \times n}$ such that

$$
A=S\left[\begin{array}{ccc}
\mathcal{H}_{l_{1}}\left(q_{1}\right) & & 0 \tag{5.3.4}\\
& \ddots & \\
0 & & \mathcal{H}_{l_{h}}\left(q_{h}\right)
\end{array}\right] S^{-1} .
$$

Corollary 5.3.4. Let $p \in \mathbb{F}[s]$, let $\lambda_{1}, \ldots, \lambda_{r}$ denote the distinct roots of p, and, for $i=1, \ldots, r$, let $l_{i} \triangleq \mathrm{~m}_{p}\left(\lambda_{i}\right)$ and $p_{i}(s) \triangleq s-\lambda_{i}$. Then, $C(p)$ is similar to $\operatorname{diag}\left[\mathcal{H}_{l_{1}}\left(p_{1}\right), \ldots, \mathcal{H}_{l_{r}}\left(p_{r}\right)\right]$.

To illustrate the structure of the Jordan form, let $l_{i}=3$ and $q_{i}(s)=s-\lambda_{i}$, where $\lambda_{i} \in \mathbb{C}$. Then, $\mathcal{H}_{l_{i}}\left(q_{i}\right)$ is the 3×3 matrix

$$
\mathcal{H}_{l_{i}}\left(q_{i}\right)=\lambda_{i} I_{3}+N_{3}=\left[\begin{array}{ccc}
\lambda_{i} & 1 & 0 \tag{5.3.5}\\
0 & \lambda_{i} & 1 \\
0 & 0 & \lambda_{i}
\end{array}\right]
$$

so that $\operatorname{mspec}\left[\mathcal{H}_{l_{i}}\left(q_{i}\right)\right]=\left\{\lambda_{i}, \lambda_{i}, \lambda_{i}\right\}_{\mathrm{ms}}$. If $\mathcal{H}_{l_{i}}\left(q_{i}\right)$ is the only diagonally located block of the Jordan form associated with the eigenvalue λ_{i}, then the algebraic multiplicity of λ_{i} is equal to 3 , while its geometric multiplicity is equal to 1 .

Now, consider Theorem 5.3.2 with $\mathbb{F}=\mathbb{R}$. In this case, every elementary divisor $q_{i}^{l_{i}}$ is either of the form $\left(s-\lambda_{i}\right)^{l_{i}}$ or of the form $\left(s^{2}-\beta_{1 i} s-\beta_{0 i}\right)^{l_{i}}$, where $\beta_{0 i}, \beta_{1 i} \in \mathbb{R}$. Furthermore, $S \in \mathbb{R}^{n \times n}$, and the hypercompanion form (5.3.3) is a block-diagonal matrix whose diagonally located blocks are real matrices of the form (5.3.1) or (5.3.2). In this case, (5.3.3) is the real hypercompanion form.

Applying an additional real similarity transformation to each diagonally located block of the real hypercompanion form yields the real Jordan form. To do this, define the real Jordan matrix $\mathcal{J}_{l}(q)$ for $l \in \mathbb{P}$ as follows. For $q(s)=s-\lambda \in \mathbb{F}[s]$ define $\mathcal{J}_{l}(q) \triangleq \mathcal{H}_{l}(q)$, while, if $q(s)=s^{2}-\beta_{1} s-\beta_{0} \in \mathbb{F}[s]$ is irreducible with a nonreal root $\lambda=\nu+\jmath \omega$, then define the $2 l \times 2 l$ upper Hessenberg matrix

$$
\mathcal{J}_{l}(q) \triangleq\left[\begin{array}{cccccccc}
\nu & \omega & 1 & 0 & & & & \tag{5.3.6}\\
-\omega & \nu & 0 & 1 & \ddots & & 0 & \\
& & \nu & \omega & 1 & \ddots & & \\
& & -\omega & \nu & 0 & \ddots & \ddots & \\
& & & & \ddots & \ddots & 1 & 0 \\
& & & & & \ddots & 0 & 1 \\
& 0 & & & & & \nu & \omega \\
& & & & & & -\omega & \nu
\end{array}\right]
$$

Theorem 5.3.5. Let $A \in \mathbb{R}^{n \times n}$, and let $q_{1}^{l_{1}}, \ldots, q_{h}^{l_{h}} \in \mathbb{R}[s]$, where $l_{1}, \ldots, l_{h} \in \mathbb{P}$ are the elementary divisors of A. Then, there exists a nonsingular matrix $S \in \mathbb{R}^{n \times n}$ such that

$$
A=S\left[\begin{array}{ccc}
\mathcal{J}_{l_{1}}\left(q_{1}\right) & & 0 \tag{5.3.7}\\
& \ddots & \\
0 & & \mathcal{J}_{l_{h}}\left(q_{h}\right)
\end{array}\right] S^{-1} .
$$

Proof. For the irreducible quadratic $q(s)=s^{2}-\beta_{1} s-\beta_{0} \in \mathbb{R}[s]$ we show that $\mathcal{J}_{l}(q)$ and $\mathcal{H}_{l}(q)$ are similar. Writing $q(s)=(s-\lambda)(s-\bar{\lambda})$, it follows from Theorem 5.3.3 that $\mathcal{H}_{l}(q) \in \mathbb{R}^{2 l \times 2 l}$ is similar to $\operatorname{diag}\left(\lambda I_{l}+N_{l}, \bar{\lambda} I_{l}+N_{l}\right)$. Next, by using a permutation similarity transformation, it follows that $\mathcal{H}_{l}(q)$ is similar to

$$
\left[\begin{array}{ccccccccc}
\lambda & 0 & 1 & 0 & & & & & \\
0 & \bar{\lambda} & 0 & 1 & 0 & & & 0 & \\
& 0 & \lambda & 0 & 1 & 0 & & & \\
& & 0 & \bar{\lambda} & 0 & 1 & & & \\
& & & & \ddots & \ddots & \ddots & & \\
& & & & & \ddots & \ddots & 1 & 0 \\
& & & & & & \ddots & 0 & 1 \\
& & & & & & & \lambda & 0 \\
& 0 & & & & & & 0 & \bar{\lambda}
\end{array}\right],
$$

Finally, applying the similarity transformation $S \triangleq \operatorname{diag}(\hat{S}, \ldots, \hat{S})$ to the above matrix, where $\hat{S} \triangleq\left[\begin{array}{cc}-\jmath & -\jmath \\ 1 & -1\end{array}\right]$ and $\hat{S}^{-1}=\frac{1}{2}\left[\begin{array}{cc}\left.\begin{array}{ll}1 & 1 \\ \jmath & -1\end{array}\right] \text {, yields } \mathcal{J}_{l}(q) \text {. } \text {. } \text {. }\end{array}\right.$

Example 5.3.6. Let $A, B \in \mathbb{R}^{4 \times 4}$ and $C \in \mathbb{C}^{4 \times 4}$ be given by

$$
\begin{aligned}
& A=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-16 & 0 & -8 & 0
\end{array}\right], \\
& B=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-4 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -4 & 0
\end{array}\right],
\end{aligned}
$$

and

$$
C=\left[\begin{array}{cccc}
2 \jmath & 1 & 0 & 0 \\
0 & 2 \jmath & 0 & 0 \\
0 & 0 & -2 \jmath & 1 \\
0 & 0 & 0 & -2 \jmath
\end{array}\right] .
$$

Then, A is in companion form, B is in real hypercompanion form, and C is in Jordan form. Furthermore, A, B, and C are similar.

Example 5.3.7. Let $A, B \in \mathbb{R}^{6 \times 6}$ and $C \in \mathbb{C}^{6 \times 6}$ be given by

$$
\begin{gathered}
A=\left[\begin{array}{cccccc}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
-27 & 54 & -63 & 44 & -21 & 6
\end{array}\right] \\
B=\left[\begin{array}{cccccc}
0 & 1 & 0 & 0 & 0 & 0 \\
-3 & 2 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & -3 & 2 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & -3 & 2
\end{array}\right]
\end{gathered}
$$

and

$$
C=\left[\begin{array}{cccccc}
1+\jmath \sqrt{2} & 1 & 0 & 0 & 0 & 0 \\
0 & 1+\jmath \sqrt{2} & 1 & 0 & 0 & 0 \\
0 & 0 & 1+\jmath \sqrt{2} & 0 & 0 & 0 \\
0 & 0 & 0 & 1-\jmath \sqrt{2} & 1 & 0 \\
0 & 0 & 0 & 0 & 1-\jmath \sqrt{2} & 1 \\
0 & 0 & 0 & 0 & 0 & 1-\jmath \sqrt{2}
\end{array}\right]
$$

Then, A is in companion form, B is in real hypercompanion form, and C is in Jordan form. Furthermore, A, B, and C are similar.

The next result shows that every matrix is similar to its transpose by means of a symmetric similarity transformation. This result, which improves Corollary 4.3.11 is due to Frobenius.

Corollary 5.3.8. Let $A \in \mathbb{F}^{n \times n}$. Then, there exists a symmetric, nonsingular matrix $S \in \mathbb{F}^{n \times n}$ such that $A=S A^{\mathrm{T}} S^{-1}$.

Proof. It follows from Theorem 5.3.3 that there exists a nonsingular matrix $\hat{S} \in \mathbb{C}^{n \times n}$ such that $A=\hat{S} B \hat{S}^{-1}$, where $B=\operatorname{diag}\left(B_{1}, \ldots, B_{r}\right)$ is the Jordan form of A, and $B_{i} \in \mathbb{C}^{n_{i} \times n_{i}}$ for all $i=1, \ldots, r$. Now, define the symmetric nonsingular matrix $S \triangleq \hat{S} \tilde{I} \hat{S}^{\mathrm{T}}$, where $\tilde{I} \triangleq \operatorname{diag}\left(\hat{I}_{n_{1}}, \ldots, \hat{I}_{n_{r}}\right)$ is symmetric and involutory. Furthermore, note that $\hat{I}_{n_{i}} B_{i} \hat{I}_{n_{i}}=B_{i}^{\mathrm{T}}$ for all $i=1, \ldots, r$ so that $\tilde{I} B \tilde{I}=B^{\mathrm{T}}$, and thus $\tilde{I} B^{\mathrm{T}} \tilde{I}=B$. Hence, it follows that

$$
\begin{aligned}
S A^{\mathrm{T}} S^{-1} & =S \hat{S}^{-\mathrm{T}} B^{\mathrm{T}} \hat{S}^{\mathrm{T}} S^{-1}=\hat{S} \tilde{I} \hat{S}^{\mathrm{T}} \hat{S}^{-\mathrm{T}} B^{\mathrm{T}} \hat{S}^{\mathrm{T}} \hat{S}^{-\mathrm{T}} \tilde{I} \hat{S}^{-1} \\
& =\hat{S} \tilde{I} B^{\mathrm{T}} \tilde{I} \hat{S}^{-1}=\hat{S} B \hat{S}^{-1}=A .
\end{aligned}
$$

If A is real, then a similar argument based on the real Jordan form shows that S can be chosen to be real.

An extension of Corollary 5.3 .8 to the case in which A is normal is given by Fact 5.9.9.

Corollary 5.3.9. Let $A \in \mathbb{F}^{n \times n}$. Then, there exist symmetric matrices $S_{1}, S_{2} \in$ $\mathbb{F}^{n \times n}$ such that S_{2} is nonsingular and $A=S_{1} S_{2}$.

Proof. From Corollary 5.3 .8 it follows that there exists a symmetric, nonsingular matrix $S \in \mathbb{F}^{n \times n}$ such that $A=S A^{\mathrm{T}} S^{-1}$. Now, let $S_{1} \triangleq S A^{\mathrm{T}}$ and $S_{2} \triangleq S^{-1}$. Note that S_{2} is symmetric and nonsingular. Furthermore, $S_{1}^{\mathrm{T}}=A S=S A^{\mathrm{T}}=S_{1}$, which shows that S_{1} is symmetric.

Note that Corollary 5.3 .8 follows from Corollary 5.3.9. If $A=S_{1} S_{2}$, where S_{1}, S_{2} are symmetric and S_{2} is nonsingular, then $A=S_{2}^{-1} S_{2} S_{1} S_{2}=S_{2}^{-1} A^{\mathrm{T}} S_{2}$.

5.4 Schur Decomposition

The Schur decomposition uses a unitary similarity transformation to transform an arbitrary square matrix into an upper triangular matrix.

Theorem 5.4.1. Let $A \in \mathbb{C}^{n \times n}$. Then, there exist a unitary matrix $S \in \mathbb{C}^{n \times n}$ and an upper triangular matrix $B \in \mathbb{C}^{n \times n}$ such that

$$
\begin{equation*}
A=S B S^{*} \tag{5.4.1}
\end{equation*}
$$

Proof. Let $\lambda_{1} \in \mathbb{C}$ be an eigenvalue of A with associated eigenvector $x \in \mathbb{C}^{n}$ chosen such that $x^{*} x=1$. Furthermore, let $S_{1} \triangleq\left[\begin{array}{ll}x & \hat{S}_{1}\end{array}\right] \in \mathbb{C}^{n \times n}$ be unitary, where $\hat{S}_{1} \in \mathbb{C}^{n \times(n-1)}$ satisfies $\hat{S}_{1}^{*} S_{1}=I_{n-1}$ and $x^{*} \hat{S}_{1}=0_{1 \times(n-1)}$. Then, $S_{1} e_{1}=x$, and

$$
\operatorname{col}_{1}\left(S_{1}^{-1} A S_{1}\right)=S_{1}^{-1} A x=\lambda_{1} S_{1}^{-1} x=\lambda_{1} e_{1} .
$$

Consequently,

$$
A=S_{1}\left[\begin{array}{cc}
\lambda_{1} & C_{1} \\
0_{(n-1) \times 1} & A_{1}
\end{array}\right] S_{1}^{-1}
$$

where $C_{1} \in \mathbb{C}^{1 \times(n-1)}$ and $A_{1} \in \mathbb{C}^{(n-1) \times(n-1)}$. Next, let $S_{20} \in \mathbb{C}^{(n-1) \times(n-1)}$ be a unitary matrix such that

$$
A_{1}=S_{20}\left[\begin{array}{cc}
\lambda_{2} & C_{2} \\
0_{(n-2) \times 1} & A_{2}
\end{array}\right] S_{20}^{-1}
$$

where $C_{2} \in \mathbb{C}^{1 \times(n-2)}$ and $A_{2} \in \mathbb{C}^{(n-2) \times(n-2)}$. Hence,

$$
A=S_{1} S_{2}\left[\begin{array}{ccc}
\lambda_{1} & C_{11} & C_{12} \\
0 & \lambda_{2} & C_{2} \\
0 & 0 & A_{2}
\end{array}\right] S_{2}^{-1} S_{1}
$$

where $C_{1}=\left[\begin{array}{ll}C_{11} & C_{12}\end{array}\right], C_{11} \in \mathbb{C}$, and $S_{2} \triangleq\left[\begin{array}{cc}1 & 0 \\ 0 & S_{20}\end{array}\right]$ is unitary. Proceeding in a similar manner yields (5.4.1) with $S \triangleq S_{1} S_{2} \cdots S_{n-1}$, where $S_{1}, \ldots, S_{n-1} \in \mathbb{C}^{n \times n}$ are unitary.

It can be seen that the diagonal entries of B are the eigenvalues of A.

The real Schur decomposition uses a real orthogonal similarity transformation to transform a real matrix into an upper Hessenberg matrix with real 1×1 and 2×2 diagonally located blocks.

Corollary 5.4.2. Let $A \in \mathbb{R}^{n \times n}$, and let $\operatorname{mspec}(A)=\left\{\lambda_{1}, \ldots, \lambda_{r}\right\}_{\mathrm{ms}} \cup\left\{\nu_{1}+\right.$ $\left.\jmath \omega_{1}, \nu_{1}-\jmath \omega_{1}, \ldots, \nu_{l}+\jmath \omega_{l}, \nu_{l}-\jmath \omega_{l}\right\}_{\mathrm{ms}}$, where $\lambda_{1}, \ldots, \lambda_{r} \in \mathbb{R}$ and, for all $i=1, \ldots, l$, $\nu_{i}, \omega_{i} \in \mathbb{R}$ and $\omega_{i} \neq 0$. Then, there exists an orthogonal matrix $S \in \mathbb{R}^{n \times n}$ such that

$$
\begin{equation*}
A=S B S^{\mathrm{T}} \tag{5.4.2}
\end{equation*}
$$

where B is upper block triangular and the diagonally located blocks $B_{1}, \ldots, B_{r} \in \mathbb{R}$ and $\hat{B}_{1}, \ldots, \hat{B}_{l} \in \mathbb{R}^{2 \times 2}$ of B satisfy $B_{i} \triangleq\left[\lambda_{i}\right]$ for all $i=1, \ldots, r$ and $\operatorname{spec}\left(\hat{B}_{i}\right)=$ $\left\{\nu_{i}+\jmath \omega_{i}, \nu_{i}-\jmath \omega_{i}\right\}$ for all $i=1, \ldots, l$.

Proof. The proof is analogous to the proof of Theorem 5.3.5. See also 709 p. 82].

Corollary 5.4.3. Let $A \in \mathbb{R}^{n \times n}$, and assume that the spectrum of A is real. Then, there exist an orthogonal matrix $S \in \mathbb{R}^{n \times n}$ and an upper triangular matrix $B \in \mathbb{R}^{n \times n}$ such that

$$
\begin{equation*}
A=S B S^{\mathrm{T}} \tag{5.4.3}
\end{equation*}
$$

The Schur decomposition reveals the structure of range-Hermitian matrices and thus, as a special case, normal matrices.

Corollary 5.4.4. Let $A \in \mathbb{F}^{n \times n}$, and define $r \triangleq \operatorname{rank} A$. Then, A is range Hermitian if and only if there exist a unitary matrix $S \in \mathbb{F}^{n \times n}$ and a nonsingular matrix $B \in \mathbb{F}^{r \times r}$ such that

$$
A=S\left[\begin{array}{cc}
B & 0 \tag{5.4.4}\\
0 & 0
\end{array}\right] S^{*}
$$

In addition, A is normal if and only if there exist a unitary matrix $S \in \mathbb{C}^{n \times n}$ and a diagonal matrix $B \in \mathbb{C}^{r \times r}$ such that (5.4.4) is satisfied.

Proof. Suppose that A is range Hermitian, and let $A=S \hat{B} S^{*}$, where \hat{B} is upper triangular and $S \in \mathbb{F}^{n \times n}$ is unitary. Assume that A is singular, and choose S such that $\hat{B}_{(j, j)}=\hat{B}_{(j+1, j+1)}=\cdots=\hat{B}_{(n, n)}=0$ and such that all other diagonal entries of \hat{B} are nonzero. Thus, $\operatorname{row}_{n}(\hat{B})=0$, which implies that $e_{n} \notin \mathcal{R}(\hat{B})$. Since A is range Hermitian, it follows that $\mathcal{R}(\hat{B})=\mathcal{R}\left(\hat{B}^{*}\right)$ so that $e_{n} \notin \mathcal{R}\left(\hat{B}^{*}\right)$. Thus, $\operatorname{col}_{n}(\hat{B})=\operatorname{row}_{n}\left(\hat{B}^{*}\right)=0$. If, in addition, $\hat{B}_{(n-1, n-1)}=0$, then $\operatorname{col}_{n-1}(\hat{B})=0$. Repeating this argument shows that \hat{B} has the form $\left[\begin{array}{ll}B & 0 \\ 0 & 0\end{array}\right]$, where $B \in \mathbb{F}^{r \times r}$ is nonsingular.

Now, suppose that A is normal, and let $A=S \hat{B} S^{*}$, where $\hat{B} \in \mathbb{C}^{n \times n}$ is upper triangular and $S \in \mathbb{C}^{n \times n}$ is unitary. Since A is normal, it follows that $A A^{*}=A^{*} A$, which implies that $\hat{B} \hat{B}^{*}=\hat{B}^{*} \hat{B}$. Since \hat{B} is upper triangular, it follows that $\left(\hat{B}^{*} \hat{B}\right)_{(1,1)}=\hat{B}_{(1,1)} \overline{\hat{B}}_{(1,1)}$, whereas $\left(\hat{B} \hat{B}^{*}\right)_{(1,1)}=\operatorname{row}_{1}(\hat{B})\left[\operatorname{row}_{1}(\hat{B})\right]^{*}=$ $\sum_{i=1}^{n} \hat{B}_{(1, i)} \overline{\hat{B}}_{(1, i)}$. Since $\left(\hat{B^{*}} \hat{B}\right)_{(1,1)}=\left(\hat{B} \hat{B}^{*}\right)_{(1,1)}$, it follows that $\hat{B}_{(1, i)}=0$ for all $i=2, \ldots, n$. Continuing in a similar fashion row by row, it follows that \hat{B} is
diagonal.
Corollary 5.4.5. Let $A \in \mathbb{F}^{n \times n}$, assume that A is Hermitian, and define $r \triangleq \operatorname{rank} A$. Then, there exist a unitary matrix $S \in \mathbb{F}^{n \times n}$ and a diagonal matrix $B \in \mathbb{R}^{r \times r}$ such that (5.4.4) is satisfied. In addition, A is positive semidefinite if and only if the diagonal entries of B are positive, and A is positive definite if and only if A is positive semidefinite and $r=n$.

Proof. Corollary 5.4.4 and x), $x i$) of Proposition 4.4 .5 imply that there exist a unitary matrix $S \in \mathbb{F}^{n \times n}$ and a diagonal matrix $B \in \mathbb{R}^{r \times r}$ such that (5.4.4) is satisfied. If A is positive semidefinite, then $x^{*} A x \geq 0$ for all $x \in \mathbb{F}^{n}$. Choosing $x=S e_{i}$, it follows that $B_{(i, i)}=e_{i}^{\mathrm{T}} S^{*} A S e_{i} \geq 0$ for all $i=1, \ldots, r$. If A is positive definite, then $r=n$ and $B_{(i, i)}>0$ for all $i=1, \ldots, n$.

Proposition 5.4.6. Let $A \in \mathbb{F}^{n \times n}$ be Hermitian. Then, there exists a nonsingular matrix $S \in \mathbb{F}^{n \times n}$ such that

$$
A=S\left[\begin{array}{ccc}
-I_{\nu_{-}(A)} & 0 & 0 \tag{5.4.5}\\
0 & 0_{\nu_{0}(A) \times \nu_{0}(A)} & 0 \\
0 & 0 & I_{\nu_{+}(A)}
\end{array}\right] S^{*} .
$$

Furthermore,

$$
\begin{equation*}
\operatorname{rank} A=\nu_{+}(A)+\nu_{-}(A) \tag{5.4.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{def} A=\nu_{0}(A) \tag{5.4.7}
\end{equation*}
$$

Proof. Since A is Hermitian, it follows from Corollary 5.4 .5 that there exist a unitary matrix $\hat{S} \in \mathbb{F}^{n \times n}$ and a diagonal matrix $B \in \mathbb{R}^{n \times n}$ such that $A=\hat{S} B \hat{S}^{*}$. Choose S to order the diagonal entries of B such that $B=\operatorname{diag}\left(B_{1}, 0,-B_{2}\right)$, where the diagonal matrices B_{1}, B_{2} are both positive definite. Now, define $\hat{B} \triangleq$ $\operatorname{diag}\left(B_{1}, I, B_{2}\right)$. Then, $B=\hat{B}^{1 / 2} D \hat{B}^{1 / 2}$, where $D \triangleq \operatorname{diag}\left(I_{\nu_{-}(A)}, 0_{\nu_{0}(A) \times \nu_{0}(A)}\right.$, $\left.-I_{\nu_{+}(A)}\right)$. Hence, $A=\hat{S} \hat{B}^{1 / 2} D \hat{B}^{1 / 2} \hat{S}^{*}$.

The following result is Sylvester's law of inertia.

Corollary 5.4.7. Let $A, B \in \mathbb{F}^{n \times n}$ be Hermitian. Then, A and B are congruent if and only if $\operatorname{In} A=\operatorname{In} B$.

Proposition4.5.4 shows that two or more eigenvectors associated with distinct eigenvalues of a normal matrix are mutually orthogonal. Thus, a normal matrix has at least as many mutually orthogonal eigenvectors as it has distinct eigenvalues. The next result, which is an immediate consequence of Corollary 5.4.4, shows that every $n \times n$ normal matrix actually has n mutually orthogonal eigenvectors. In fact, the converse is also true.

Corollary 5.4.8. Let $A \in \mathbb{C}^{n \times n}$. Then, A is normal if and only if A has n mutually orthogonal eigenvectors.

The following result concerns the real normal form.

Corollary 5.4.9. Let $A \in \mathbb{R}^{n \times n}$ be range symmetric. Then, there exist an orthogonal matrix $S \in \mathbb{R}^{n \times n}$ and a nonsingular matrix $B \in \mathbb{R}^{r \times r}$, where $r \triangleq \operatorname{rank} A$, such that

$$
A=S\left[\begin{array}{cc}
B & 0 \tag{5.4.8}\\
0 & 0
\end{array}\right] S^{\mathrm{T}}
$$

In addition, assume that A is normal, and let $\operatorname{mspec}(A)=\left\{\lambda_{1}, \ldots, \lambda_{r}\right\}_{\mathrm{ms}} \cup\left\{\nu_{1}+\right.$ $\left.\jmath \omega_{1}, \nu_{1}-\jmath \omega_{1}, \ldots, \nu_{l}+\jmath \omega_{l}, \nu_{l}-\jmath \omega_{l}\right\}_{\mathrm{ms}}$, where $\lambda_{1}, \ldots, \lambda_{r} \in \mathbb{R}$ and, for all $i=1, \ldots, l$, $\nu_{i}, \omega_{i} \in \mathbb{R}$ and $\omega_{i} \neq 0$. Then, there exists an orthogonal matrix $S \in \mathbb{R}^{n \times n}$ such that

$$
\begin{equation*}
A=S B S^{\mathrm{T}} \tag{5.4.9}
\end{equation*}
$$

where $B \triangleq \operatorname{diag}\left(B_{1}, \ldots, B_{r}, \hat{B}_{1}, \ldots, \hat{B}_{l}\right), B_{i} \triangleq\left[\lambda_{i}\right]$ for all $i=1, \ldots, r$, and $\hat{B}_{i} \triangleq$ $\left[\begin{array}{cc}\nu_{i} & \omega_{i} \\ -\omega_{i} & \nu_{i}\end{array}\right]$ for all $i=1, \ldots, l$.

5.5 Eigenstructure Properties

Definition 5.5.1. Let $A \in \mathbb{F}^{n \times n}$, and let $\lambda \in \mathbb{C}$. Then, the index of λ with respect to A, denoted by $\operatorname{ind}_{A}(\lambda)$, is the smallest nonnegative integer k such that

$$
\begin{equation*}
\mathcal{R}\left[(\lambda I-A)^{k}\right]=\mathcal{R}\left[(\lambda I-A)^{k+1}\right] \tag{5.5.1}
\end{equation*}
$$

That is,

$$
\begin{equation*}
\operatorname{ind}_{A}(\lambda)=\operatorname{ind}(\lambda I-A) \tag{5.5.2}
\end{equation*}
$$

Note that $\lambda \notin \operatorname{spec}(A)$ if and only if $\operatorname{ind}_{A}(\lambda)=0$. Hence, $0 \notin \operatorname{spec}(A)$ if and only if ind $A=\operatorname{ind}_{A}(0)=0$.

Proposition 5.5.2. Let $A \in \mathbb{F}^{n \times n}$, and let $\lambda \in \mathbb{C}$. Then, $\operatorname{ind}_{A}(\lambda)$ is the smallest nonnegative integer k such that

$$
\begin{equation*}
\operatorname{rank}\left[(\lambda I-A)^{k}\right]=\operatorname{rank}\left[(\lambda I-A)^{k+1}\right] \tag{5.5.3}
\end{equation*}
$$

Furthermore, ind A is the smallest nonnegative integer k such that

$$
\begin{equation*}
\operatorname{rank}\left(A^{k}\right)=\operatorname{rank}\left(A^{k+1}\right) \tag{5.5.4}
\end{equation*}
$$

Proof. Corollary 2.4.2 implies that $\mathcal{R}\left[(\lambda I-A)^{k}\right] \subseteq \mathcal{R}\left[(\lambda I-A)^{k+1}\right]$. Now, Lemma 2.3.4 implies that $\mathcal{R}\left[(\lambda I-A)^{k}\right]=\mathcal{R}\left[(\lambda I-A)^{k+1}\right]$ if and only if $\operatorname{rank}\left[(\lambda I-A)^{k}\right]=\operatorname{rank}\left[(\lambda I-A)^{k+1}\right]$.

Proposition 5.5.3. Let $A \in \mathbb{F}^{n \times n}$, and let $\lambda \in \operatorname{spec}(A)$. Then, the following statements hold:
i) The order of the largest Jordan block of A associated with λ is $\operatorname{ind}_{A}(\lambda)$.
ii) The number of Jordan blocks of A associated with λ is $\operatorname{gmult}_{A}(\lambda)$.
iii) The number of linearly independent eigenvectors of A associated with λ is $\operatorname{gmult}_{A}(\lambda)$.
iv) $\operatorname{ind}_{A}(\lambda) \leq \operatorname{amult}_{A}(\lambda)$.
$v) \operatorname{gmult}_{A}(\lambda) \leq \operatorname{amult}_{A}(\lambda)$.
vi) $\operatorname{ind}_{A}(\lambda)+\operatorname{gmult}_{A}(\lambda) \leq \operatorname{amult}_{A}(\lambda)+1$.
vii) $\operatorname{ind}_{A}(\lambda)+$ gmult $_{A}(\lambda)=\operatorname{amult}_{A}(\lambda)+1$ if and only if every block except possibly one block associated with λ is of order 1 .

Definition 5.5.4. Let $A \in \mathbb{F}^{n \times n}$, and let $\lambda \in \operatorname{spec}(A)$. Then, the following terminology is defined:
i) λ is simple if $\operatorname{amult}_{A}(\lambda)=1$.
ii) A is simple if every eigenvalue of A is simple.
iii) λ is cyclic (or nonderogatory) if $\operatorname{gmult}_{A}(\lambda)=1$.
iv) A is cyclic (or nonderogatory) if every eigenvalue of A is cyclic.
$v) \lambda$ is derogatory if $\operatorname{gmult}_{A}(\lambda)>1$.
vi) A is derogatory if A has at least one derogatory eigenvalue.
vii) λ is semisimple if $\operatorname{gmult}_{A}(\lambda)=\operatorname{amult}_{A}(\lambda)$.
viii) A is semisimple if every eigenvalue of A is semisimple.
ix) λ is defective if $\operatorname{gmult}_{A}(\lambda)<\operatorname{amult}_{A}(\lambda)$.
x) A is defective if A has at least one defective eigenvalue.
xi) A is diagonalizable over \mathbb{C} if A is semisimple.
xii) $A \in \mathbb{R}^{n \times n}$ is diagonalizable over \mathbb{R} if A is semisimple and every eigenvalue of A is real.

Proposition 5.5.5. Let $A \in \mathbb{F}^{n \times n}$, and let $\lambda \in \operatorname{spec}(A)$. Then, λ is simple if and only if λ is cyclic and semisimple.

Proposition 5.5.6. Let $A \in \mathbb{F}^{n \times n}$, and let $\lambda \in \operatorname{spec}(A)$. Then,

$$
\begin{equation*}
\operatorname{def}\left[(\lambda I-A)^{\operatorname{ind}_{A}(\lambda)}\right]=\operatorname{amult}_{A}(\lambda) \tag{5.5.5}
\end{equation*}
$$

Theorem 5.3.3 yields the following result, which shows that the subspaces $\mathcal{N}\left[(\lambda I-A)^{k}\right]$, where $\lambda \in \operatorname{spec}(A)$ and $k=\operatorname{ind}_{A}(\lambda)$, provide a decomposition of \mathbb{F}^{n}.

Proposition 5.5.7. Let $A \in \mathbb{F}^{n \times n}$, let $\operatorname{spec}(A)=\left\{\lambda_{1}, \ldots, \lambda_{r}\right\}$, and, for all $i=1, \ldots, r$, let $k_{i} \triangleq \operatorname{ind}_{A}\left(\lambda_{i}\right)$. Then, the following statements hold:
i) $\mathcal{N}\left[\left(\lambda_{i} I-A\right)^{k_{i}}\right] \cap \mathcal{N}\left[\left(\lambda_{j} I-A\right)^{k_{j}}\right]=\{0\}$ for all $i, j=1, \ldots, r$ such that $i \neq j$.
ii) $\sum_{i=1}^{r} \mathcal{N}\left[\left(\lambda_{i} I-A\right)^{k_{i}}\right]=\mathbb{F}^{n}$.

Proposition 5.5.8. Let $A \in \mathbb{F}^{n \times n}$, and let $\lambda \in \operatorname{spec}(A)$. Then, the following statements are equivalent:
i) λ is semisimple.
ii) $\operatorname{def}(\lambda I-A)=\operatorname{def}\left[(\lambda I-A)^{2}\right]$.
iii) $\mathcal{N}(\lambda I-A)=\mathcal{N}\left[(\lambda I-A)^{2}\right]$.
$i v) \operatorname{ind}_{A}(\lambda)=1$.
Proof. To prove that i) implies $i i$), suppose that λ is semisimple so that $\operatorname{gmult}_{A}(\lambda)=\operatorname{amult}_{A}(\lambda)$, and thus $\operatorname{def}(\lambda I-A)=\operatorname{amult}_{A}(\lambda)$. Then, it follows from Proposition 5.5.6 that def $\left[(\lambda I-A)^{k}\right]=\operatorname{amult}_{A}(\lambda)$, where $k \triangleq \operatorname{ind}_{A}(\lambda)$. Therefore, it follows from Corollary $\left[2.5 .7\right.$ that $\operatorname{amult}_{A}(\lambda)=\operatorname{def}(\lambda I-A) \leq \operatorname{def}\left[(\lambda I-A)^{2}\right] \leq$ $\operatorname{def}\left[(\lambda I-A)^{k}\right]=\operatorname{amult}_{A}(\lambda)$, which implies that $\operatorname{def}(\lambda I-A)=\operatorname{def}\left[(\lambda I-A)^{2}\right]$.

To prove that $i i$ implies $i i i$), note that it follows from Corollary 2.5.7 that $\mathcal{N}(\lambda I-A) \subseteq \mathcal{N}\left[(\lambda I-A)^{2}\right]$. Since, by $\left.i i\right)$, these subspaces have equal dimension, it follows from Lemma 2.3.4 that these subspaces are equal. Conversely, iii) implies ii).

Finally, $i v$) is equivalent to the fact that every Jordan block of A associated with λ has order 1, which is equivalent to the fact that the geometric multiplicity of λ is equal to the algebraic multiplicity of λ, that is, that λ is semisimple.

Corollary 5.5.9. Let $A \in \mathbb{F}^{n \times n}$. Then, A is group invertible if and only if ind $A \leq 1$.

Proposition 5.5.10. Assume that $A, B \in \mathbb{F}^{n \times n}$ are similar. Then, the following statements hold:
i) $\operatorname{mspec}(A)=\operatorname{mspec}(B)$.
ii) For all $\lambda \in \operatorname{spec}(A), \operatorname{gmult}_{A}(\lambda)=\operatorname{gmult}_{B}(\lambda)$.

Proposition 5.5.11. Let $A \in \mathbb{F}^{n \times n}$. Then, A is semisimple if and only if A is similar to a normal matrix.

The following result is an extension of Corollary 5.3.9
Proposition 5.5.12. Let $A \in \mathbb{F}^{n \times n}$. Then, the following statements are equivalent:
i) A is semisimple, and $\operatorname{spec}(A) \subset \mathbb{R}$.
ii) There exists a positive-definite matrix $S \in \mathbb{F}^{n \times n}$ such that $A=S A^{*} S^{-1}$.
iii) There exist a Hermitian matrix $S_{1} \in \mathbb{F}^{n \times n}$ and a positive-definite matrix $S_{2} \in \mathbb{F}^{n \times n}$ such that $A=S_{1} S_{2}$.

Proof. To prove that i) implies $i i$), let $\hat{S} \in \mathbb{F}^{n \times n}$ be a nonsingular matrix such that $A=\hat{S} B \hat{S}^{-1}$, where $B \in \mathbb{R}^{n \times n}$ is diagonal. Then, $B=\hat{S}^{-1} A \hat{S}=\hat{S}^{*} A^{*} \hat{S}^{-*}$. Hence, $A=\hat{S} B \hat{S}^{-1}=\hat{S}\left(\hat{S}^{*} A^{*} \hat{S}^{-*}\right) \hat{S}^{-1}=\left(\hat{S} \hat{S}^{*}\right) A^{*}\left(\hat{S} \hat{S}^{*}\right)^{-1}=S A^{*} S^{-1}$, where $S \triangleq \hat{S} \hat{S}^{*}$ is positive definite. To show that $i i$) implies $i i i$, note that $A=S A^{*} S^{-1}=S_{1} S_{2}$, where $S_{1} \triangleq S A^{*}$ and $S_{2}=S^{-1}$. Since $S_{1}^{*}=\left(S A^{*}\right)^{*}=A S^{*}=A S=S A^{*}=S_{1}$, it follows that S_{1} is Hermitian. Furthermore, since S is positive definite, it follows
that S^{-1}, and hence S_{2}, is also positive definite. Finally, to prove that iii) implies i, note that $A=S_{1} S_{2}=S_{2}^{-1 / 2}\left(S_{2}^{1 / 2} S_{1} S_{2}^{1 / 2}\right) S_{2}^{1 / 2}$. Since $S_{2}^{1 / 2} S_{1} S_{2}^{1 / 2}$ is Hermitian, it follows from Corollary [5.4.5 that $S_{2}^{1 / 2} S_{1} S_{2}^{1 / 2}$ is unitarily similar to a real diagonal matrix. Consequently, A is semisimple and $\operatorname{spec}(A) \subset \mathbb{R}$.

If a matrix is block triangular, then the following result shows that its eigenvalues and their algebraic multiplicity are determined by the diagonally located blocks. If, in addition, the matrix is block diagonal, then the geometric multiplicities of its eigenvalues are determined by the diagonally located blocks.

Proposition 5.5.13. Let $A \in \mathbb{F}^{n \times n}$, assume that A is partitioned as $A=$ $\left[\begin{array}{ccc}A_{11} & \cdots & A_{1 k} \\ \vdots & \ddots & \vdots \\ A_{k 1} & \cdots & A_{k k}\end{array}\right]$, where, for all $i, j=1, \ldots, k, A_{i j} \in \mathbb{F}^{n_{i} \times n_{j}}$, and let $\lambda \in \operatorname{spec}(A)$.
Then, the following statements hold: Then, the following statements hold:
i) If $A_{i i}$ is the only nonzero block in the i th column of blocks, then

$$
\begin{equation*}
\operatorname{amult}_{A_{i i}}(\lambda) \leq \operatorname{amult}_{A}(\lambda) . \tag{5.5.6}
\end{equation*}
$$

ii) If A is upper block triangular or lower block triangular, then

$$
\begin{equation*}
\operatorname{amult}_{A}(\lambda)=\sum_{i=1}^{r} \operatorname{amult}_{A_{i i}}(\lambda) \tag{5.5.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{mspec}(A)=\bigcup_{i=1}^{k} \operatorname{mspec}\left(A_{i i}\right) . \tag{5.5.8}
\end{equation*}
$$

Proposition 5.5.14. Let $A \in \mathbb{F}^{n \times n}$, assume that A is partitioned as $A=$ $\left[\begin{array}{ccc}A_{11} & \cdots & A_{1 k} \\ \vdots & \ddots & \vdots \\ A_{k 1} & \cdots & A_{k k}\end{array}\right]$, where, for all $i, j=1, \ldots, k, A_{i j} \in \mathbb{F}^{n_{i} \times n_{j}}$, and let $\lambda \in \operatorname{spec}(A)$. Then, the following statements hold:
${ }^{i}$) If $A_{i i}$ is the only nonzero block in the i th column of blocks, then

$$
\begin{equation*}
\operatorname{gmult}_{A_{i i}}(\lambda) \leq \operatorname{gmult}_{A}(\lambda) . \tag{5.5.9}
\end{equation*}
$$

ii) If A is upper block triangular, then

$$
\begin{equation*}
\operatorname{gmult}_{A_{11}}(\lambda) \leq \operatorname{gmult}_{A}(\lambda) . \tag{5.5.10}
\end{equation*}
$$

iii) If A is lower block triangular, then

$$
\begin{equation*}
\operatorname{gmult}_{A_{k k}}(\lambda) \leq \operatorname{gmult}_{A}(\lambda) . \tag{5.5.11}
\end{equation*}
$$

$i v$) If A is block diagonal, then

$$
\begin{equation*}
\operatorname{gmult}_{A}(\lambda)=\sum_{i=1}^{r} \operatorname{gmult}_{A_{i i}}(\lambda) . \tag{5.5.12}
\end{equation*}
$$

Proposition 5.5.15. Let $A \in \mathbb{F}^{n \times n}$, let $\operatorname{spec}(A)=\left\{\lambda_{1}, \ldots, \lambda_{r}\right\}$, and let $k_{i} \triangleq$ $\operatorname{ind}_{A}\left(\lambda_{i}\right)$ for all $i=1, \ldots, r$. Then,

$$
\begin{equation*}
\mu_{A}(s)=\prod_{i=1}^{r}\left(s-\lambda_{i}\right)^{k_{i}} \tag{5.5.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{deg} \mu_{A}=\sum_{i=1}^{r} k_{i} . \tag{5.5.14}
\end{equation*}
$$

Furthermore, the following statements are equivalent:
i) $\mu_{A}=\chi_{A}$.
ii) A is cyclic.
iii) For all $\lambda \in \operatorname{spec}(A)$, the Jordan form of A contains exactly one block associated with λ.
iv) A is similar to $C\left(\chi_{A}\right)$.

Proof. Let $A=S B S^{-1}$, where $B=\operatorname{diag}\left(B_{1}, \ldots, B_{n_{\mathrm{h}}}\right)$ denotes the Jordan form of A given by (5.3.4). Let $\lambda_{i} \in \operatorname{spec}(A)$, and let B_{j} be a Jordan block associated with λ_{i}. Then, the order of B_{j} is less than or equal to k_{i}. Consequently, $\left(B_{j}-\lambda_{i} I\right)^{k_{i}}=0$.

Next, let $p(s)$ denote the right-hand side of (5.5.13). Thus,

$$
\begin{aligned}
p(A) & =\prod_{i=1}^{r}\left(A-\lambda_{i} I\right)^{k_{i}}=S\left[\prod_{i=1}^{r}\left(B-\lambda_{i} I\right)^{k_{i}}\right] S^{-1} \\
& =S \operatorname{diag}\left(\prod_{i=1}^{r}\left(B_{1}-\lambda_{i} I\right)^{k_{i}}, \ldots, \prod_{i=1}^{r}\left(B_{n_{\mathrm{h}}}-\lambda_{i} I\right)^{k_{i}}\right) S^{-1}=0 .
\end{aligned}
$$

Therefore, it follows from Theorem4.6.1 that μ_{A} divides p. Furthermore, note that, if k_{i} is replaced by $\hat{k}_{i}<k_{i}$, then $p(A) \neq 0$. Hence, p is the minimal polynomial of A. The equivalence of i) and $i i$) is now immediate, while the equivalence of $i i$) and iii) follows from Theorem 5.3.5. The equivalence of i) and $i v$) is given by Corollary 5.2.4.

Example 5.5.16. The standard nilpotent matrix N_{n} is in companion form, and thus is cyclic. In fact, N_{n} consists of a single Jordan block, and $\chi_{N_{n}}(s)=$ $\mu_{N_{n}}(s)=s^{n}$.

Example 5.5.17. The matrix $\left[\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right]$ is normal but is neither symmetric nor skew symmetric, while the matrix $\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$ is normal but is neither symmetric nor semisimple with real eigenvalues.

Example 5.5.18. The matrices $\left[\begin{array}{cc}1 & 0 \\ 2 & -1\end{array}\right]$ and $\left[\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right]$ are diagonalizable over \mathbb{R} but not normal, while the matrix $\left[\begin{array}{cc}-1 & 1 \\ -2 & 1\end{array}\right]$ is diagonalizable but is neither normal nor diagonalizable over \mathbb{R}.

Example 5.5.19. The product of the Hermitian matrices $\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$ and $\left[\begin{array}{cc}2 & 1 \\ 1 & -2\end{array}\right]$ has no real eigenvalues.

Example 5.5.20. The matrices $\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$ and $\left[\begin{array}{cc}0 & 1 \\ -2 & 3\end{array}\right]$ are similar, whereas $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and $\left[\begin{array}{cc}0 & 1 \\ -1 & 2\end{array}\right]$ have the same spectrum but are not similar.

Proposition 5.5.21. Let $A \in \mathbb{F}^{n \times n}$. Then, the following statements hold:
i) A is singular if and only if $0 \in \operatorname{spec}(A)$.
ii) A is group invertible if and only if either A is nonsingular or $0 \in \operatorname{spec}(A)$ is semisimple.
iii) A is Hermitian if and only if A is normal and $\operatorname{spec}(A) \subset \mathbb{R}$.
$i v) A$ is skew Hermitian if and only if A is normal and $\operatorname{spec}(A) \subset \jmath \mathbb{R}$.
$v) A$ is positive semidefinite if and only if A is normal and $\operatorname{spec}(A) \subset[0, \infty)$.
$v i) A$ is positive definite if and only if A is normal and $\operatorname{spec}(A) \subset(0, \infty)$.
vii) A is unitary if and only if A is normal and $\operatorname{spec}(A) \subset\{\lambda \in \mathbb{C}:|\lambda|=1\}$.
viii) A is shifted unitary if and only if A is normal and

$$
\operatorname{spec}(A) \subset\left\{\lambda \in \mathbb{C}:\left|\lambda-\frac{1}{2}\right|=\frac{1}{2}\right\}
$$

$i x) A$ is involutory if and only if A is semisimple and $\operatorname{spec}(A) \subseteq\{-1,1\}$.
x) A is skew involutory if and only if A is semisimple and $\operatorname{spec}(A) \subseteq\{-\jmath, \jmath\}$.
xi) A is idempotent if and only if A is semisimple and $\operatorname{spec}(A) \subseteq\{0,1\}$.
xii) A is skew idempotent if and only if A is semisimple and $\operatorname{spec}(A) \subseteq\{0,-1\}$.
xiii) A is tripotent if and only if A is semisimple and $\operatorname{spec}(A) \subseteq\{-1,0,1\}$.
xiv) A is nilpotent if and only if $\operatorname{spec}(A)=\{0\}$.
$x v) A$ is unipotent if and only if $\operatorname{spec}(A)=\{1\}$.
xvi) A is a projector if and only if A is normal and $\operatorname{spec}(A) \subseteq\{0,1\}$.
xvii) A is a reflector if and only if A is normal and $\operatorname{spec}(A) \subseteq\{-1,1\}$.
xviii) A is a skew reflector if and only if A is normal and $\operatorname{spec}(A) \subseteq\{-\jmath, \jmath\}$.
xix) A is an elementary projector if and only if A is normal and $\operatorname{mspec}(A)=$ $\{0,1, \ldots, 1\}_{\mathrm{ms}}$.
xx) A is an elementary reflector if and only if A is normal and $\operatorname{mspec}(A)=$ $\{-1,1, \ldots, 1\}_{\mathrm{ms}}$.
If, furthermore, $A \in \mathbb{F}^{2 n \times 2 n}$, then the following statements hold:
$x x i)$ If A is Hamiltonian, then $\operatorname{mspec}(A)=\operatorname{mspec}(-A)$.
xxii) If A is symplectic, then $\operatorname{mspec}(A)=\operatorname{mspec}\left(A^{-1}\right)$.

The following result is a consequence of Proposition 5.5.12 and Proposition 5.5 .21

Corollary 5.5.22. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is either involutory, idempotent, skew idempotent, tripotent, a projector, or a reflector. Then, the following statements hold:
i) There exists a positive-definite matrix $S \in \mathbb{F}^{n \times n}$ such that $A=S A^{*} S^{-1}$.
ii) There exist a Hermitian matrix $S_{1} \in \mathbb{F}^{n \times n}$ and a positive-definite matrix $S_{2} \in \mathbb{F}^{n \times n}$ such that $A=S_{1} S_{2}$.

5.6 Singular Value Decomposition

The third matrix decomposition that we consider is the singular value decomposition. Unlike the Jordan and Schur decompositions, the singular value decomposition applies to matrices that are not necessarily square. Let $A \in \mathbb{F}^{n \times m}$, where $A \neq 0$, and consider the positive-semidefinite matrices $A A^{*} \in \mathbb{F}^{n \times n}$ and $A^{*} A \in \mathbb{F}^{m \times m}$. It follows from Proposition 4.4.10 that $A A^{*}$ and $A^{*} A$ have the same nonzero eigenvalues with the same algebraic multiplicities. Since $A A^{*}$ and $A^{*} A$ are positive semidefinite, it follows that they have the same positive eigenvalues with the same algebraic multiplicities. Furthermore, since $A A^{*}$ is Hermitian, it follows that the number of positive eigenvalues of $A A^{*}$ (or $A^{*} A$) counting algebraic multiplicity is equal to the rank of $A A^{*}\left(\right.$ or $\left.A^{*} A\right)$. Since $\operatorname{rank} A=\operatorname{rank} A A^{*}=\operatorname{rank} A^{*} A$, it thus follows that $A A^{*}$ and $A^{*} A$ both have r positive eigenvalues, where $r \triangleq \operatorname{rank} A$.

Definition 5.6.1. Let $A \in \mathbb{F}^{n \times m}$. Then, the singular values of A are the $\min \{n, m\}$ nonnegative numbers $\sigma_{1}(A), \ldots, \sigma_{\min \{n, m\}}(A)$, where, for all $i=1, \ldots$, $\min \{n, m\}$,

$$
\begin{equation*}
\sigma_{i}(A) \triangleq \lambda_{i}^{1 / 2}\left(A A^{*}\right)=\lambda_{i}^{1 / 2}\left(A^{*} A\right) . \tag{5.6.1}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\sigma_{1}(A) \geq \cdots \geq \sigma_{\min \{n, m\}}(A) \geq 0 . \tag{5.6.2}
\end{equation*}
$$

Let $A \in \mathbb{F}^{n \times m}$, and define $r \triangleq \operatorname{rank} A$. If $1 \leq r<\min \{n, m\}$, then

$$
\begin{equation*}
\sigma_{1}(A) \geq \cdots \geq \sigma_{r}(A)>\sigma_{r+1}(A)=\cdots=\sigma_{\min \{n, m\}}(A)=0, \tag{5.6.3}
\end{equation*}
$$

whereas, if $r=\min \{m, n\}$, then

$$
\begin{equation*}
\sigma_{1}(A) \geq \cdots \geq \sigma_{r}(A)=\sigma_{\min \{n, m\}}(A)>0 . \tag{5.6.4}
\end{equation*}
$$

For convenience, define

$$
\begin{equation*}
\sigma_{\max }(A) \triangleq \sigma_{1}(A) \tag{5.6.5}
\end{equation*}
$$

and, if $n=m$,

$$
\begin{equation*}
\sigma_{\min }(A) \triangleq \sigma_{n}(A) \tag{5.6.6}
\end{equation*}
$$

If $n \neq m$, then $\sigma_{\min }(A)$ is not defined. By convention, we define

$$
\begin{equation*}
\sigma_{\max }\left(0_{n \times m}\right)=\sigma_{\min }\left(0_{n \times n}\right)=0, \tag{5.6.7}
\end{equation*}
$$

and, for all $i=1, \ldots, \min \{n, m\}$,

$$
\begin{equation*}
\sigma_{i}(A)=\sigma_{i}\left(A^{*}\right)=\sigma_{i}(\bar{A})=\sigma_{i}\left(A^{\mathrm{T}}\right) . \tag{5.6.8}
\end{equation*}
$$

Now, suppose that $n=m$. If A is Hermitian, then, for all $i=1, \ldots, n$,

$$
\begin{equation*}
\sigma_{i}(A)=\left|\lambda_{i}(A)\right| \tag{5.6.9}
\end{equation*}
$$

while, if A is positive semidefinite, then, for all $i=1, \ldots, n$,

$$
\begin{equation*}
\sigma_{i}(A)=\lambda_{i}(A) \tag{5.6.10}
\end{equation*}
$$

Proposition 5.6.2. Let $A \in \mathbb{F}^{n \times m}$. If $n \leq m$, then the following statements are equivalent:
i) $\operatorname{rank} A=n$.
ii) $\sigma_{n}(A)>0$.

If $m \leq n$, then the following statements are equivalent:
iii) $\operatorname{rank} A=m$.
iv) $\sigma_{m}(A)>0$.

If $n=m$, then the following statements are equivalent:
v) A is nonsingular.
vi) $\sigma_{\min }(A)>0$.

Proposition 5.6.3. Let $A, B \in \mathbb{F}^{n \times n}$. Then, the following statements hold:
i) Assume that A and B are normal. Then, A and B are unitarily similar if and only if $\operatorname{mspec}(A)=\operatorname{mspec}(B)$.
ii) Assume that A and B are projectors. Then, A and B are unitarily similar if and only if $\operatorname{rank} A=\operatorname{rank} B$.
iii) Assume that A and B are (projectors, reflectors). Then, A and B are unitarily similar if and only if $\operatorname{tr} A=\operatorname{tr} B$.
iv) Assume that A and B are semisimple. Then, A and B are similar if and only if $\operatorname{mspec}(A)=\operatorname{mspec}(B)$.
$v)$ Assume that A and B are (involutory, skew involutory, idempotent). Then, A and B are similar if and only if $\operatorname{tr} A=\operatorname{tr} B$.
vi) Assume that A and B are idempotent. Then, A and B are similar if and only if $\operatorname{rank} A=\operatorname{rank} B$.
vii) Assume that A and B are tripotent. Then, A and B are similar if and only if $\operatorname{rank} A=\operatorname{rank} B$ and $\operatorname{tr} A=\operatorname{tr} B$.

We now state the singular value decomposition.
Theorem 5.6.4. Let $A \in \mathbb{F}^{n \times m}$, assume that A is nonzero, let $r \triangleq \operatorname{rank} A$, and define $B \triangleq \operatorname{diag}\left[\sigma_{1}(A), \ldots, \sigma_{r}(A)\right]$. Then, there exist unitary matrices $S_{1} \in \mathbb{F}^{n \times n}$ and $S_{2} \in \mathbb{F}^{m \times m}$ such that

$$
A=S_{1}\left[\begin{array}{cc}
B & 0_{r \times(m-r)} \tag{5.6.11}\\
0_{(n-r) \times r} & 0_{(n-r) \times(m-r)}
\end{array}\right] S_{2} .
$$

Furthermore, each column of S_{1} is an eigenvector of $A A^{*}$, while each column of S_{2}^{*} is an eigenvector of $A^{*} A$.

Proof. For convenience, assume that $r<\min \{n, m\}$, since otherwise the zero matrices become empty matrices. By Corollary 5.4.5 there exists a unitary matrix $U \in \mathbb{F}^{n \times n}$ such that

$$
A A^{*}=U\left[\begin{array}{cc}
B^{2} & 0 \\
0 & 0
\end{array}\right] U^{*}
$$

Partition $U=\left[\begin{array}{ll}U_{1} & U_{2}\end{array}\right]$, where $U_{1} \in \mathbb{F}^{n \times r}$ and $U_{2} \in \mathbb{F}^{n \times(n-r)}$. Since $U^{*} U=I_{n}$, it follows that $U_{1}^{*} U_{1}=I_{r}$ and $U_{1}^{*} U=\left[\begin{array}{cc}I_{r} & 0_{r \times(n-r)}\end{array}\right]$. Now, define $V_{1} \triangleq A^{*} U_{1} B^{-1} \in$ $\mathbb{F}^{m \times r}$, and note that

$$
V_{1}^{*} V_{1}=B^{-1} U_{1}^{*} A A^{*} U_{1} B^{-1}=B^{-1} U_{1}^{*} U\left[\begin{array}{cc}
B^{2} & 0 \\
0 & 0
\end{array}\right] U^{*} U_{1} B^{-1}=I_{r}
$$

Next, note that, since $U_{2}^{*} U=\left[\begin{array}{ll}0_{(n-r) \times r} & I_{n-r}\end{array}\right]$, it follows that

$$
U_{2}^{*} A A^{*}=\left[\begin{array}{ll}
0 & I
\end{array}\right]\left[\begin{array}{cc}
B^{2} & 0 \\
0 & 0
\end{array}\right] U^{*}=0
$$

However, since $\mathcal{R}(A)=\mathcal{R}\left(A A^{*}\right)$, it follows that $U_{2}^{*} A=0$. Finally, let $V_{2} \in$ $\mathbb{F}^{m \times(m-r)}$ be such that $V \triangleq\left[\begin{array}{ll}V_{1} & V_{2}\end{array}\right] \in \mathbb{F}^{m \times m}$ is unitary. Hence, we have

$$
\begin{aligned}
U\left[\begin{array}{cc}
B & 0 \\
0 & 0
\end{array}\right] V^{*} & =\left[\begin{array}{ll}
U_{1} & U_{2}
\end{array}\right]\left[\begin{array}{cc}
B & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{c}
V_{1}^{*} \\
V_{2}^{*}
\end{array}\right]=U_{1} B V_{1}^{*}=U_{1} B B^{-1} U_{1}^{*} A \\
& =U_{1} U_{1}^{*} A=\left(U_{1} U_{1}^{*}+U_{2} U_{2}^{*}\right) A=U U^{*} A=A
\end{aligned}
$$

which yields (5.6.11) with $S_{1}=U$ and $S_{2}=V^{*}$.
An immediate corollary of the singular value decomposition is the polar decomposition.

Corollary 5.6.5. Let $A \in \mathbb{F}^{n \times n}$. Then, there exists a positive-semidefinite matrix $M \in \mathbb{F}^{n \times n}$ and a unitary matrix $S \in \mathbb{F}^{n \times n}$ such that

$$
\begin{equation*}
A=M S \tag{5.6.12}
\end{equation*}
$$

Proof. It follows from the singular value decomposition that there exist unitary matrices $S_{1}, S_{2} \in \mathbb{F}^{n \times n}$ and a diagonal positive-definite matrix $B \in \mathbb{F}^{r \times r}$, where $r \triangleq \operatorname{rank} A$, such that $A=S_{1}\left[\begin{array}{ll}B & 0 \\ 0 & 0\end{array}\right] S_{2}$. Hence,

$$
A=S_{1}\left[\begin{array}{cc}
B & 0 \\
0 & 0
\end{array}\right] S_{1}^{*} S_{1} S_{2}=M S
$$

where $M \triangleq S_{1}\left[\begin{array}{ll}B & 0 \\ 0 & 0\end{array}\right] S_{1}^{*}$ is positive semidefinite and $S \triangleq S_{1} S_{2}$ is unitary.
Proposition 5.6.6. Let $A \in \mathbb{F}^{n \times m}$, let $r \triangleq \operatorname{rank} A$, and define the Hermitian matrix $\mathcal{A} \triangleq\left[\begin{array}{cc}0 & A \\ A^{*} & 0\end{array}\right] \in \mathbb{F}^{(n+m) \times(n+m)}$. Then, $\operatorname{In} \mathcal{A}=\left[\begin{array}{ccc}r & 0 & r\end{array}\right]^{\mathrm{T}}$, and the $2 r$ nonzero eigenvalues of \mathcal{A} are the r positive singular values of A and their negatives.

Proof. Since $\chi_{\mathcal{A}}(s)=\operatorname{det}\left(s^{2} I-A^{*} A\right)$, it follows that

$$
\operatorname{mspec}(\mathcal{A}) \backslash\{0, \ldots, 0\}_{\mathrm{ms}}=\left\{\sigma_{1}(A),-\sigma_{1}(A), \ldots, \sigma_{r}(A),-\sigma_{r}(A)\right\}_{\mathrm{ms}}
$$

5.7 Pencils and the Kronecker Canonical Form

Let $A, B \in \mathbb{F}^{n \times m}$, and define the polynomial matrix $P_{A, B} \in \mathbb{F}^{n \times m}[s]$, called a pencil, by

$$
P_{A, B}(s) \triangleq s B-A
$$

The pencil $P_{A, B}$ is regular if $\operatorname{rank} P_{A, B}=\min \{n, m\}$ (see Definition 4.2.4). Otherwise, $P_{A, B}$ is singular.

Let $A, B \in \mathbb{F}^{n \times m}$. Since $P_{A, B} \in \mathbb{F}^{n \times m}$ we define the generalized spectrum of $P_{A, B}$ by

$$
\begin{equation*}
\operatorname{spec}(A, B) \triangleq \operatorname{Szeros}\left(P_{A, B}\right) \tag{5.7.1}
\end{equation*}
$$

and the generalized multispectrum of $P_{A, B}$ by

$$
\begin{equation*}
\operatorname{mspec}(A, B) \triangleq \operatorname{mSzeros}\left(P_{A, B}\right) \tag{5.7.2}
\end{equation*}
$$

Furthermore, the elements of $\operatorname{spec}(A, B)$ are the generalized eigenvalues of $P_{A, B}$.
The structure of a pencil is illuminated by the following result known as the Kronecker canonical form.

Theorem 5.7.1. Let $A, B \in \mathbb{C}^{n \times m}$. Then, there exist nonsingular matrices $S_{1} \in \mathbb{C}^{n \times n}$ and $S_{2} \in \mathbb{C}^{m \times m}$ such that, for all $s \in \mathbb{C}$,

$$
\begin{gather*}
P_{A, B}(s)=S_{1} \operatorname{diag}\left(s I_{r_{1}}-A_{1}, s B_{2}-I_{r_{2}},\left[s I_{k_{1}}-N_{k_{1}}-e_{k_{1}}\right], \ldots,\left[s I_{k_{p}}-N_{k_{p}}-e_{k_{p}}\right],\right. \\
\left.\left[s I_{l_{1}}-N_{l_{1}}-e_{l_{1}}\right]^{\mathrm{T}}, \ldots,\left[s I_{l_{q}}-N_{l_{q}}-e_{l_{q}}\right]^{\mathrm{T}}, 0_{t \times u}\right) S_{2}, \tag{5.7.3}
\end{gather*}
$$

where $A_{1} \in \mathbb{C}^{r_{1} \times r_{1}}$ is in Jordan form, $B_{2} \in \mathbb{R}^{r_{2} \times r_{2}}$ is nilpotent and in Jordan form, $k_{1}, \ldots, k_{p}, l_{1}, \ldots, l_{q}$ are positive integers, and $\left[s I_{l}-N_{l}-e_{l}\right] \in \mathbb{C}^{l \times(l+1)}$. Furthermore,

$$
\begin{equation*}
\operatorname{rank} P_{A, B}=r_{1}+r_{2}+\sum_{i=1}^{p} k_{i}+\sum_{i=1}^{q} l_{i} . \tag{5.7.4}
\end{equation*}
$$

Proof. See [65, Chapter 2], [541, Chapter XII], 787, pp. 395-398], 866, [872 pp. 128, 129], and [1230 Chapter VI].

In Theorem 5.7.1, note that

$$
\begin{equation*}
n=r_{1}+r_{2}+\sum_{i=1}^{p} k_{i}+\sum_{i=1}^{q} l_{i}+q+t \tag{5.7.5}
\end{equation*}
$$

and

$$
\begin{equation*}
m=r_{1}+r_{2}+\sum_{i=1}^{p} k_{i}+\sum_{i=1}^{q} l_{i}+p+u . \tag{5.7.6}
\end{equation*}
$$

Proposition 5.7.2. Let $A, B \in \mathbb{C}^{n \times m}$, and consider the notation of Theorem 5.7.1. Then, $P_{A, B}$ is regular if and only if $t=u=0$ and either $p=0$ or $q=0$.

Let $A, B \in \mathbb{F}^{n \times m}$, and let $\lambda \in \mathbb{C}$. Then,

$$
\begin{equation*}
\operatorname{rank} P_{A, B}(\lambda)=\operatorname{rank}\left(\lambda I-A_{1}\right)+r_{2}+\sum_{i=1}^{p} k_{i}+\sum_{i=1}^{q} l_{i} \tag{5.7.7}
\end{equation*}
$$

Note that λ is a generalized eigenvalue of $P_{A, B}$ if and only if $\operatorname{rank} P_{A, B}(\lambda)<$ rank $P_{A, B}$. Consequently, λ is a generalized eigenvalue of $P_{A, B}$ if and only if λ is an eigenvalue of A_{1}, that is,

$$
\begin{equation*}
\operatorname{spec}(A, B)=\operatorname{spec}\left(A_{1}\right) \tag{5.7.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{mspec}(A, B)=\operatorname{mspec}\left(A_{1}\right) \tag{5.7.9}
\end{equation*}
$$

The generalized algebraic multiplicity amult $_{A, B}(\lambda)$ of $\lambda \in \operatorname{spec}(A, B)$ is defined by

$$
\begin{equation*}
\operatorname{amult}_{A, B}(\lambda) \triangleq \operatorname{amult}_{A_{1}}(\lambda) \tag{5.7.10}
\end{equation*}
$$

It can be seen that, for $\lambda \in \operatorname{spec}(A, B)$,

$$
\operatorname{gmult}_{A_{1}}(\lambda) \triangleq \operatorname{rank} P_{A, B}-\operatorname{rank} P_{A, B}(\lambda)
$$

The generalized geometric multiplicity $\operatorname{gmult}_{A, B}(\lambda)$ of $\lambda \in \operatorname{spec}(A, B)$ is defined by

$$
\begin{equation*}
\operatorname{gmult}_{A, B}(\lambda) \triangleq \operatorname{gmult}_{A_{1}}(\lambda) \tag{5.7.11}
\end{equation*}
$$

Now, assume that $A, B \in \mathbb{F}^{n \times n}$, that is, A and B are square, which, from (5.7.5) and (5.7.6), is equivalent to $q+t=p+u$. Then, the characteristic polynomial $\chi_{A, B} \in \mathbb{F}[s]$ of (A, B) is defined by

$$
\chi_{A, B}(s) \triangleq \operatorname{det} P_{A, B}(s)=\operatorname{det}(s B-A)
$$

Proposition 5.7.3. Let $A, B \in \mathbb{F}^{n \times n}$. Then, the following statements hold:
i) $P_{A, B}$ is singular if and only if $\chi_{A, B}=0$.
ii) $P_{A, B}$ is singular if and only if $\operatorname{deg} \chi_{A, B}=-\infty$.
iii) $P_{A, B}$ is regular if and only if $\chi_{A, B}$ is not the zero polynomial.
iv) $P_{A, B}$ is regular if and only if $0 \leq \operatorname{deg} \chi_{A, B} \leq n$.
v) If $P_{A, B}$ is regular, then mult $\chi_{A, B}(0)=n-\operatorname{deg} \chi_{B, A}$.
$v i) \operatorname{deg} \chi_{A, B}=n$ if and only if B is nonsingular.
vii) If B is nonsingular, then $\chi_{A, B}=\chi_{B^{-1} A}, \operatorname{spec}(A, B)=\operatorname{spec}\left(B^{-1} A\right)$, and $\operatorname{mspec}(A, B)=\operatorname{mspec}\left(B^{-1} A\right)$.
viii $) \operatorname{roots}\left(\chi_{A, B}\right)=\operatorname{spec}(A, B)$.
$i x) \operatorname{mroots}\left(\chi_{A, B}\right)=\operatorname{mspec}(A, B)$.
$x)$ If A or B is nonsingular, then $P_{A, B}$ is regular.
$x i)$ If all of the generalized eigenvalues of (A, B) are real, then $P_{A, B}$ is regular.
xii) If $P_{A, B}$ is regular, then $\mathcal{N}(A) \cap \mathcal{N}(B)=\{0\}$.
xiii) If $P_{A, B}$ is regular, then there exist nonsingular matrices $S_{1}, S_{2} \in \mathbb{C}^{n \times n}$ such that, for all $s \in \mathbb{C}$,

$$
P_{A, B}(s)=S_{1}\left(s\left[\begin{array}{cc}
I_{r} & 0 \\
0 & B_{2}
\end{array}\right]-\left[\begin{array}{cc}
A_{1} & 0 \\
0 & I_{n-r}
\end{array}\right]\right) S_{2}
$$

where $r \triangleq \operatorname{deg} \chi_{A, B}, A_{1} \in \mathbb{C}^{r \times r}$ is in Jordan form, and $B_{2} \in \mathbb{R}^{(n-r) \times(n-r)}$ is nilpotent and in Jordan form. Furthermore,

$$
\begin{gathered}
\chi_{A, B}=\chi_{A_{1}} \\
\operatorname{roots}\left(\chi_{A, B}\right)=\operatorname{spec}\left(A_{1}\right),
\end{gathered}
$$

and

$$
\operatorname{mroots}\left(\chi_{A, B}\right)=\operatorname{mspec}\left(A_{1}\right) .
$$

Proof. See [872, p. 128] and [1230 Chapter VI].

Statement xiii) is the Weierstrass canonical form for a square, regular pencil.
Proposition 5.7.4. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A is positive semidefinite, and assume that B is Hermitian. Then, the following statements hold:
i) $P_{A, B}$ is regular.
ii) There exists $\alpha \in \mathbb{F}$ such that $A+\alpha B$ is nonsingular.
iii) $\mathcal{N}(A) \cap \mathcal{N}(B)=\{0\}$.
iv) $\mathcal{N}\left(\left[\begin{array}{l}A \\ B\end{array}\right]\right)=\{0\}$.
$v)$ There exists nonzero $\alpha \in \mathbb{F}$ such that $\mathcal{N}(A) \cap \mathcal{N}(B+\alpha A)=\{0\}$.
vi) For all nonzero $\alpha \in \mathbb{F}, \mathcal{N}(A) \cap \mathcal{N}(B+\alpha A)=\{0\}$.
vii) All generalized eigenvalues of (A, B) are real.

If, in addition, B is positive semidefinite, then the following statement is equivalent to i)-vii):
viii) There exists $\beta>0$ such that $\beta B<A$.

Proof. The results $i) \Longrightarrow i i$) and $i i) \Longrightarrow i i i$) are immediate. Next, Fact 2.10.10 and Fact 2.11.3 imply that $i i i$), $i v$), v), and $v i$) are equivalent. Next, to prove iii) \Longrightarrow vii), let $\lambda \in \mathbb{C}$ be a generalized eigenvalue of (A, B). Since $\lambda=0$ is real, suppose $\lambda \neq 0$. Since $\operatorname{det}(\lambda B-A)=0$, let nonzero $\theta \in \mathbb{C}^{n}$ satisfy $(\lambda B-A) \theta=0$, and thus it follows that $\theta^{*} A \theta=\lambda \theta^{*} B \theta$. Furthermore, note that $\theta^{*} A \theta$ and $\theta^{*} B \theta$ are real. Now, suppose $\theta \in \mathcal{N}(A)$. Then, it follows from $(\lambda B-A) \theta=0$ that $\theta \in \mathcal{N}(B)$, which contradicts $\mathcal{N}(A) \cap \mathcal{N}(B)=\{0\}$. Hence, $\theta \notin \mathcal{N}(A)$, and thus $\theta^{*} A \theta>0$ and, consequently, $\theta^{*} B \theta \neq 0$. Hence, it follows that $\lambda=\theta^{*} A \theta / \theta^{*} B \theta$, and thus λ is real. Hence, all generalized eigenvalues of (A, B) are real.

Next, to prove vii) $\Longrightarrow i$, let $\lambda \in \mathbb{C} \backslash \mathbb{R}$ so that λ is not a generalized eigenvalue of (A, B). Consequently, $\chi_{A, B}(s)$ is not the zero polynomial, and thus (A, B) is regular.

Next, to prove i-vii \Longrightarrow viii), let $\theta \in \mathbb{R}^{n}$ be nonzero, and note that $\mathcal{N}(A) \cap$ $\mathcal{N}(B)=\{0\}$ implies that either $A \theta \neq 0$ or $B \theta \neq 0$. Hence, either $\theta^{\mathrm{T}} A \theta>0$ or $\theta^{\mathrm{T}} B \theta>0$. Thus, $\theta^{\mathrm{T}}(A+B) \theta>0$, which implies $A+B>0$ and hence $-B<A$.

Finally, to prove viii) $\Longrightarrow i$-vii), let $\beta \in \mathbb{R}$ be such that $\beta B<A$, so that $\beta \theta^{\mathrm{T}} B \theta<\theta^{\mathrm{T}} A \theta$ for all nonzero $\theta \in \mathbb{R}^{n}$. Next, suppose $\hat{\theta} \in \mathcal{N}(A) \cap \mathcal{N}(B)$ is nonzero. Hence, $A \hat{\theta}=0$ and $B \hat{\theta}=0$. Consequently, $\hat{\theta}^{\mathrm{T}} B \hat{\theta}=0$ and $\hat{\theta}^{\mathrm{T}} A \hat{\theta}=0$, which contradicts $\beta \hat{\theta}^{\mathrm{T}} B \hat{\theta}<\hat{\theta}^{\mathrm{T}} A \hat{\theta}$. Thus, $\mathcal{N}(A) \cap \mathcal{N}(B)=\{0\}$.

5.8 Facts on the Inertia

Fact 5.8.1. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is idempotent. Then,

$$
\operatorname{rank} A=\operatorname{sig} A=\operatorname{tr} A
$$

and

$$
\operatorname{In} A=\left[\begin{array}{c}
0 \\
n-\operatorname{tr} A \\
\operatorname{tr} A
\end{array}\right] \text {. }
$$

Fact 5.8.2. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is involutory. Then,

$$
\begin{aligned}
& \operatorname{rank} A=n \\
& \operatorname{sig} A=\operatorname{tr} A
\end{aligned}
$$

and

$$
\operatorname{In} A=\left[\begin{array}{c}
\frac{1}{2}(n-\operatorname{tr} A) \\
0 \\
\frac{1}{2}(n+\operatorname{tr} A)
\end{array}\right] \text {. }
$$

Fact 5.8.3. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is tripotent. Then,

$$
\begin{aligned}
\operatorname{rank} A & =\operatorname{tr} A^{2} \\
\operatorname{sig} A & =\operatorname{tr} A
\end{aligned}
$$

and

$$
\operatorname{In} A=\left[\begin{array}{c}
\frac{1}{2}\left(\operatorname{tr} A^{2}-\operatorname{tr} A\right) \\
n-\operatorname{tr} A^{2} \\
\frac{1}{2}\left(\operatorname{tr} A^{2}+\operatorname{tr} A\right)
\end{array}\right]
$$

Fact 5.8.4. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is either skew Hermitian, skew involutory, or nilpotent. Then,

$$
\operatorname{sig} A=\nu_{-}(A)=\nu_{+}(A)=0
$$

and

$$
\operatorname{In} A=\left[\begin{array}{l}
0 \\
n \\
0
\end{array}\right] .
$$

Fact 5.8.5. Let $A \in \mathbb{F}^{n \times n}$, assume that A is group invertible, and assume that $\operatorname{spec}(A) \cap \jmath \mathbb{R} \subseteq\{0\}$. Then,

$$
\operatorname{rank} A=\nu_{-}(A)+\nu_{+}(A)
$$

and

$$
\operatorname{def} A=\nu_{0}(A)=\operatorname{amult}_{A}(0)
$$

Fact 5.8.6. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is Hermitian. Then,

$$
\operatorname{rank} A=\nu_{-}(A)+\nu_{+}(A)
$$

and

$$
\operatorname{In} A=\left[\begin{array}{c}
\nu_{-}(A) \\
\nu_{0}(A) \\
\nu_{+}(A)
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2}(\operatorname{rank} A-\operatorname{sig} A) \\
n-\operatorname{rank} A \\
\frac{1}{2}(\operatorname{rank} A+\operatorname{sig} A)
\end{array}\right] .
$$

Fact 5.8.7. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are Hermitian. Then, In $A=\operatorname{In} B$ if and only if $\operatorname{rank} A=\operatorname{rank} B$ and $\operatorname{sig} A=\operatorname{sig} B$.

Fact 5.8.8. Let $A \in \mathbb{F}^{n \times n}$, assume that A is Hermitian, and let A_{0} be a principal submatrix of A. Then,

$$
\nu_{-}\left(A_{0}\right) \leq \nu_{-}(A)
$$

and

$$
\nu_{+}\left(A_{0}\right) \leq \nu_{+}(A) .
$$

(Proof: See [770].)
Fact 5.8.9. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is positive semidefinite. Then,

$$
\operatorname{rank} A=\operatorname{sig} A=\nu_{+}(A)
$$

and

$$
\operatorname{In} A=\left[\begin{array}{c}
0 \\
\operatorname{def} A \\
\operatorname{rank} A
\end{array}\right] \text {. }
$$

Fact 5.8.10. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is positive semidefinite. Then,

$$
\operatorname{In} A=\left[\begin{array}{c}
0 \\
\operatorname{def} A \\
\operatorname{rank} A
\end{array}\right]
$$

If, in addition, A is positive definite, then

$$
\operatorname{In} A=\left[\begin{array}{l}
0 \\
0 \\
n
\end{array}\right]
$$

Fact 5.8.11. Let $A \in \mathbb{F}^{n \times n}$. Then, the following statements are equivalent:
i) A is an elementary projector.
ii) A is a projector, and $\operatorname{tr} A=n-1$.
iii) A is a projector, and $\operatorname{In} A=\left[\begin{array}{c}0 \\ 1 \\ n-1\end{array}\right]$.

Furthermore, the following statements are equivalent:
$i v) ~ A$ is an elementary reflector.
v) A is a reflector, and $\operatorname{tr} A=n-2$.
vi) A is a reflector, and $\operatorname{In} A=\left[\begin{array}{c}1 \\ 0 \\ n-1\end{array}\right]$.
(Proof: See Proposition 5.5.21,
Fact 5.8.12. Let $A \in \mathbb{F}^{n \times n}$. Then, the following statements are equivalent:
i) $A+A^{*}$ is positive definite.
ii) For all Hermitian matrices $B \in \mathbb{F}^{n \times n}$, In $B=\operatorname{In} A B$.
(Proof: See [280].)
Fact 5.8.13. Let $A, B \in \mathbb{F}^{n \times n}$, assume that $A B$ and B are Hermitian, and assume that $\operatorname{spec}(A) \cap[0, \infty)=\varnothing$. Then,

$$
\operatorname{In}(-A B)=\operatorname{In} B
$$

(Proof: See [280].)
Fact 5.8.14. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are Hermitian and nonsingular, and assume that $\operatorname{spec}(A B) \cap[0, \infty)=\varnothing$. Then,

$$
\nu_{+}(A)+\nu_{+}(B)=n
$$

(Proof: Use Fact 5.8.13] See [280].) (Remark: Weaker versions of this result are given in [761, 1036].)

Fact 5.8.15. Let $A \in \mathbb{F}^{n \times n}$, assume that A is Hermitian, and let $S \in \mathbb{F}^{m \times n}$. Then,

$$
\nu_{-}\left(S A S^{*}\right) \leq \nu_{-}(A)
$$

and

$$
\nu_{+}\left(S A S^{*}\right) \leq \nu_{+}(A)
$$

Furthermore, consider the following conditions:
i) $\operatorname{rank} S=n$.
ii) $\operatorname{rank} S A S^{*}=\operatorname{rank} A$.
iii) $\nu_{-}\left(S A S^{*}\right)=\nu_{-}(A)$ and $\nu_{+}\left(S A S^{*}\right)=\nu_{+}(A)$.

Then, $i) \Longrightarrow i i) \Longleftrightarrow i i i$). (Proof: See [447, pp. 430, 431] and [508, p. 194].)

Fact 5.8.16. Let $A \in \mathbb{F}^{n \times n}$, assume that A is Hermitian, and let $S \in \mathbb{F}^{m \times n}$. Then,

$$
\begin{gathered}
\nu_{-}\left(S A S^{*}\right)+\nu_{+}\left(S A S^{*}\right)=\operatorname{rank} S A S^{*} \leq \min \{\operatorname{rank} A, \operatorname{rank} S\} \\
\nu_{-}(A)+\operatorname{rank} S-n \leq \nu_{-}\left(S A S^{*}\right) \leq \nu_{-}(A) \\
\nu_{+}(A)+\operatorname{rank} S-n \leq \nu_{+}\left(S A S^{*}\right) \leq \nu_{+}(A)
\end{gathered}
$$

(Proof: See 1060.)
Fact 5.8.17. Let $A, S \in \mathbb{F}^{n \times n}$, assume that A is Hermitian, and assume that S is nonsingular. Then, there exist $\alpha_{1}, \ldots, \alpha_{n} \in\left[\lambda_{\min }\left(S S^{*}\right), \lambda_{\max }\left(S S^{*}\right)\right]$ such that, for all $i=1, \ldots, n$,

$$
\lambda_{i}\left(S A S^{*}\right)=\alpha_{i} \lambda_{i}(A)
$$

(Proof: See 1439.) (Remark: This result, which is due to Ostrowski, is a quantitative version of Sylvester's law of inertia given by Corollary 5.4.7)

Fact 5.8.18. Let $A, S \in \mathbb{F}^{n \times n}$, assume that A is Hermitian, and assume that S is nonsingular. Then, the following statements are equivalent:
i) $\operatorname{In}\left(S A S^{*}\right)=\operatorname{In} A$.
ii) $\operatorname{rank}\left(S A S^{*}\right)=\operatorname{rank} A$.
iii) $\mathcal{R}(A) \cap \mathcal{N}(A)=\{0\}$.
(Proof: See [109].)
Fact 5.8.19. Let $A \in \mathbb{F}^{n \times n}, B \in \mathbb{F}^{n \times m}$, and $C \in \mathbb{F}^{m \times m}$, and assume that A is positive definite and C is negative definite. Then,

$$
\operatorname{In}\left[\begin{array}{ccc}
A & B & 0 \\
B^{*} & C & 0 \\
0 & 0 & 0_{l \times l}
\end{array}\right]=\left[\begin{array}{c}
n \\
m \\
l
\end{array}\right] .
$$

(Proof: The result follows from Fact 5.8.6, See [770].)
Fact 5.8.20. Let $A \in \mathbb{R}^{n \times m}$. Then,

$$
\begin{aligned}
\operatorname{In}\left[\begin{array}{cc}
0 & A \\
A^{*} & 0
\end{array}\right] & =\operatorname{In}\left[\begin{array}{cc}
A A^{*} & 0 \\
0 & -A^{*} A
\end{array}\right] \\
& =\operatorname{In}\left[\begin{array}{cc}
A A^{+} & 0 \\
0 & -A^{+} A
\end{array}\right] \\
& =\left[\begin{array}{c}
\operatorname{rank} A \\
n+m-2 \operatorname{rank} A \\
\operatorname{rank} A
\end{array}\right] .
\end{aligned}
$$

(Proof: See [447, pp. 432, 434].)

Fact 5.8.21. Let $A \in \mathbb{C}^{n \times n}$, assume that A is Hermitian, and let $B \in \mathbb{C}^{n \times m}$. Then,

$$
\operatorname{In}\left[\begin{array}{cc}
A & B \\
B^{*} & 0
\end{array}\right] \geq \geq\left[\begin{array}{c}
\operatorname{rank} B \\
n-\operatorname{rank} B \\
\operatorname{rank} B
\end{array}\right]
$$

Furthermore, if $\mathcal{R}(A) \subseteq \mathcal{R}(B)$, then

$$
\operatorname{In}\left[\begin{array}{cc}
A & B \\
B^{*} & 0
\end{array}\right]=\left[\begin{array}{c}
\operatorname{rank} B \\
n+m-2 \operatorname{rank} B \\
\operatorname{rank} B
\end{array}\right]
$$

Finally, if $\operatorname{rank} B=n$, Then,

$$
\operatorname{In}\left[\begin{array}{cc}
A & B \\
B^{*} & 0
\end{array}\right]=\left[\begin{array}{c}
n \\
m-n \\
n
\end{array}\right]
$$

(Proof: See [447, pp. 433, 434] or [945].) (Remark: Extensions are given in 945.) (Remark: See Fact 8.15.27)

Fact 5.8.22. Let $A \in \mathbb{F}^{n \times n}$. Then, there exist a nonsingular matrix $S \in \mathbb{F}^{n \times n}$ and a skew-Hermitian matrix $B \in \mathbb{F}^{n \times n}$ such that

$$
A=S\left(\left[\begin{array}{ccc}
I_{\nu_{-}\left(A+A^{*}\right)} & 0 & 0 \\
0 & 0_{\nu_{0}\left(A+A^{*}\right) \times \nu_{0}\left(A+A^{*}\right)} & 0 \\
0 & 0 & -I_{\nu_{+}\left(A+A^{*}\right)}
\end{array}\right]+B\right) S^{*}
$$

(Proof: Write $A=\frac{1}{2}\left(A+A^{*}\right)+\frac{1}{2}\left(A-A^{*}\right)$, and apply Proposition 5.4.6 to $\frac{1}{2}\left(A+A^{*}\right)$.)

5.9 Facts on Matrix Transformations for One Matrix

Fact 5.9.1. Let $A \in \mathbb{F}^{n \times n}$, and assume that $\operatorname{spec}(A)=\{1\}$. Then, A^{k} is similar to A for all $k \geq 1$.

Fact 5.9.2. Let $A \in \mathbb{F}^{n \times n}$, and assume there exists a nonsingular matrix $S \in \mathbb{F}^{n \times n}$ such that $S^{-1} A S$ is upper triangular. Then, for all $r=1, \ldots, n, \mathcal{R}\left(S\left[\begin{array}{c}I_{r} \\ 0\end{array}\right]\right)$ is an invariant subspace of A. (Remark: Analogous results hold for lower triangular matrices and block-triangular matrices.)

Fact 5.9.3. Let $A \in \mathbb{F}^{n \times n}$. Then, there exist unique matrices $B, C \in \mathbb{F}^{n \times n}$ such that the following properties are satisfied:
i) B is diagonalizable over \mathbb{F}.
ii) C is nilpotent.
iii) $A=B+C$.
iv) $B C=C B$.

Furthermore, $\operatorname{mspec}(A)=\operatorname{mspec}(B)$. (Proof: See [691, p. 112] or [727, p. 74]. Existence follows from the real Jordan form. The last statement follows from Fact 5.17.4) (Remark: This result is the $S-N$ decomposition or the Jordan-Chevalley
decomposition.)
Fact 5.9.4. Let $A \in \mathbb{F}^{n \times n}$. Then, the following statements are equivalent:
i) A is similar to a skew-Hermitian matrix.
ii) A is semisimple, and $\operatorname{spec}(A) \subset \jmath \mathbb{R}$.
(Remark: See Fact 11.18.12)
Fact 5.9.5. Let $A \in \mathbb{F}^{n \times n}$, and let $r \triangleq \operatorname{rank} A$. Then, A is group invertible if and only if there exist a nonsingular matrix $B \in \mathbb{F}^{r \times r}$ and a nonsingular matrix $S \in \mathbb{F}^{n \times n}$ such that

$$
A=S\left[\begin{array}{cc}
B & 0 \\
0 & 0
\end{array}\right] S^{-1}
$$

Fact 5.9.6. Let $A \in \mathbb{F}^{n \times n}$, and let $r \triangleq \operatorname{rank} A$. Then, A is range Hermitian if and only if there exist a nonsingular matrix $S \in \mathbb{F}^{n \times n}$ and a nonsingular matrix $B \in \mathbb{F}^{r \times r}$ such that

$$
A=S\left[\begin{array}{cc}
B & 0 \\
0 & 0
\end{array}\right] S^{*}
$$

(Remark: S need not be unitary for sufficiency. See Corollary 5.4.4.) (Proof: Use the QR decomposition Fact 5.15 .8 to let $S \triangleq \hat{S} R$, where \hat{S} is unitary and R is upper triangular. See [1277].)

Fact 5.9.7. Let $A \in \mathbb{F}^{n \times n}$. Then, there exists an involutory matrix $S \in \mathbb{F}^{n \times n}$ such that

$$
A^{\mathrm{T}}=S A S^{\mathrm{T}}
$$

(Remark: Note A^{T} rather than A^{*}.) (Proof: See 420] and [577].)
Fact 5.9.8. Let $A \in \mathbb{F}^{n \times n}$. Then, there exists a nonsingular matrix $S \in \mathbb{F}^{n \times n}$ such that $A=S A^{*} S^{-1}$ if and only if there exist Hermitian matrices $S_{1}, S_{2} \in \mathbb{F}^{n \times n}$ such that $A=S_{1} S_{2}$. (Proof: See [1490 pp. 215, 216].) (Remark: See Proposition 5.5.12,

Fact 5.9.9. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is normal. Then, there exists a symmetric, nonsingular matrix $S \in \mathbb{F}^{n \times n}$ such that

$$
A^{\mathrm{T}}=S A S^{-1}
$$

and such that $S^{-1}=\bar{S}$. (Proof: For $\mathbb{F}=\mathbb{C}$, let $A=U B U^{*}$, where U is unitary and B is diagonal. Then, $A^{\mathrm{T}}=S A \bar{S}=S A S^{-1}$, where $S \triangleq \bar{U} U^{-1}$. For $\mathbb{F}=\mathbb{R}$, use the real normal form and let $S \triangleq U \tilde{I} U^{\mathrm{T}}$, where U is orthogonal and $\tilde{I} \triangleq \operatorname{diag}(\hat{I}, \ldots, \hat{I})$.) (Remark: See Corollary 5.3.8.)

Fact 5.9.10. Let $A \in \mathbb{R}^{n \times n}$, and assume that A is normal. Then, there exists a reflector $S \in \mathbb{R}^{n \times n}$ such that

$$
A^{\mathrm{T}}=S A S^{-1}
$$

Consequently, A and A^{T} are orthogonally similar. Finally, if A is skew symmetric, then A and $-A$ are orthogonally similar. (Proof: Specialize Fact 5.9.9 to the case
$\mathbb{F}=\mathbb{R}$.
Fact 5.9.11. Let $A \in \mathbb{F}^{n \times n}$. Then, there exists a reverse-symmetric, nonsingular matrix $S \in \mathbb{F}^{n \times n}$ such that $A^{\hat{\mathrm{T}}}=S A S^{-1}$. (Proof: The result follows from Corollary 5.3.8. See [882.)

Fact 5.9.12. Let $A \in \mathbb{F}^{n \times n}$. Then, there exist reverse-symmetric matrices $S_{1}, S_{2} \in \mathbb{F}^{n \times n}$ such that S_{2} is nonsingular and $A=S_{1} S_{2}$. (Proof: The result follows from Corollary 5.3.9 See 882 .)

Fact 5.9.13. Let $A \in \mathbb{R}^{n \times n}$, and assume that A is not of the form $a I$, where $a \in \mathbb{R}$. Then, A is similar to a matrix with diagonal entries $0, \ldots, 0, \operatorname{tr} A$. (Proof: See [1098 p. 77].) (Remark: This result is due to Gibson.)

Fact 5.9.14. Let $A \in \mathbb{R}^{n \times n}$, and assume that A is not zero. Then, A is similar to a matrix whose diagonal entries are all nonzero. (Proof: See 1098 p. 79].) (Remark: This result is due to Marcus and Purves.)

Fact 5.9.15. Let $A \in \mathbb{R}^{n \times n}$, and assume that A is symmetric. Then, there exists an orthogonal matrix $S \in \mathbb{R}^{n \times n}$ such that $-1 \notin \operatorname{spec}(S)$ and $S A S^{\mathrm{T}}$ is diagonal. (Proof: See [1098, p. 101].) (Remark: This result is due to Hsu.)

Fact 5.9.16. Let $A \in \mathbb{R}^{n \times n}$, and assume that A is symmetric. Then, there exist a diagonal matrix $B \in \mathbb{R}^{n \times n}$ and a skew-symmetric matrix $C \in \mathbb{R}^{n \times n}$ such that

$$
A=\left[2(I+C)^{-1}-I\right] B\left[2(I+C)^{-1}-I\right]^{\mathrm{T}} .
$$

(Proof: Use Fact 5.9.15, See [1098 p. 101].)
Fact 5.9.17. Let $A \in \mathbb{F}^{n \times n}$. Then, there exists a unitary matrix $S \in \mathbb{F}^{n \times n}$ such that $S^{*} A S$ has equal diagonal entries. (Proof: See [488] or [1098, p. 78], or use Fact 5.9.18,) (Remark: The diagonal entries are equal to $(\operatorname{tr} A) / n$.) (Remark: This result is due to Parker. See [535].)

Fact 5.9.18. Let $A \in \mathbb{F}^{n \times n}$. Then, the following statements are equivalent:
i) $\operatorname{tr} A=0$.
ii) There exist matrices $B, C \in \mathbb{F}^{n \times n}$ such that $A=[B, C]$.
iii) A is unitarily similar to a matrix whose diagonal entries are zero.
(Proof: See [13, 535, 799, 814] or [626, p. 146].) (Remark: This result is Shoda's theorem.) (Remark: See Fact 5.9.19,

Fact 5.9.19. Let $R \in \mathbb{F}^{n \times n}$, and assume that R is Hermitian. Then, the following statements are equivalent:
i) $\operatorname{tr} R<0$.
ii) R is unitarily similar to a matrix all of whose diagonal entries are negative.
iii) There exists an asymptotically stable matrix $A \in \mathbb{F}^{n \times n}$ such that $R=$ $A+A^{*}$.
(Proof: See [120].) (Remark: See Fact [5.9.18)
Fact 5.9.20. Let $A \in \mathbb{F}^{n \times n}$. Then, $A A^{*}$ and $A^{*} A$ are unitarily similar.
Fact 5.9.21. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is idempotent. Then, A and A^{*} are unitarily similar. (Proof: The result follows from Fact 5.9 .27 and the fact that $\left[\begin{array}{ll}1 & a \\ 0 & 0\end{array}\right]$ and $\left[\begin{array}{ll}1 & 0 \\ a & 0\end{array}\right]$ are unitarily similar. See 419.)

Fact 5.9.22. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is symmetric. Then, there exists a unitary matrix $S \in \mathbb{F}^{n \times n}$ such that

$$
A=S B S^{\mathrm{T}}
$$

where

$$
B \triangleq \operatorname{diag}\left[\sigma_{1}(A), \ldots, \sigma_{n}(A)\right]
$$

(Proof: See [709, p. 207].) (Remark: A is symmetric, complex, and T-congruent to B.)

Fact 5.9.23. Let $A \in \mathbb{F}^{n \times n}$. Then, $\left[\begin{array}{cc}A & 0 \\ 0 & -A\end{array}\right]$ and $\left[\begin{array}{cc}0 & A \\ A & 0\end{array}\right]$ are unitarily similar. (Proof: Use the unitary transformation $\frac{1}{\sqrt{2}}\left[\begin{array}{cc}I & - \\ I & I\end{array}\right]$.)

Fact 5.9.24. Let $n \in \mathbb{P}$. Then,

$$
\hat{I}_{n}= \begin{cases}S\left[\begin{array}{cc}
-I_{n / 2} & 0 \\
0 & -I_{n / 2}
\end{array}\right] S^{\mathrm{T}}, & n \text { even } \\
S\left[\begin{array}{ccc}
-I_{n / 2} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & I_{n / 2}
\end{array}\right] S^{\mathrm{T}}, & n \text { odd }\end{cases}
$$

where

$$
S \triangleq \begin{cases}\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
I_{n / 2} & -\hat{I}_{n / 2} \\
\hat{I}_{n / 2} & I_{n / 2}
\end{array}\right], & n \text { even } \\
\frac{1}{\sqrt{2}}\left[\begin{array}{ccc}
I_{n / 2} & 0 & -\hat{I}_{n / 2} \\
0 & \sqrt{2} & 0 \\
\hat{I}_{n / 2} & 0 & I_{n / 2}
\end{array}\right], & n \text { odd }\end{cases}
$$

Therefore,

$$
\operatorname{mspec}\left(\hat{I}_{n}\right)= \begin{cases}\{-1,1, \ldots,-1,1\}_{\mathrm{ms}}, & n \text { even } \\ \{1,-1,1, \ldots,-1,1\}_{\mathrm{ms}}, & n \text { odd }\end{cases}
$$

(Remark: For even n, Fact 3.19.3 shows that \hat{I}_{n} is Hamiltonian, and thus, by Fact 4.9.21 $\operatorname{mspec}\left(I_{n}\right)=-\operatorname{mspec}\left(I_{n}\right)$.) (Remark: See 1410 .)

Fact 5.9.25. Let $n \in \mathbb{P}$. Then,

$$
J_{2 n}=S\left[\begin{array}{cc}
\jmath I_{n} & 0 \\
0 & -\jmath I_{n}
\end{array}\right] S^{*}
$$

where

$$
S \triangleq \frac{1}{\sqrt{2}}\left[\begin{array}{cc}
I & -I \\
\jmath I & -\jmath I
\end{array}\right]
$$

Hence,

$$
\operatorname{mspec}\left(J_{2 n}\right)=\{\jmath,-\jmath, \ldots, \jmath,-\jmath\}_{\mathrm{ms}}
$$

and

$$
\operatorname{det} J_{2 n}=1
$$

(Proof: See Fact 2.19.3) (Remark: Fact 3.19.3 shows that $J_{2 n}$ is Hamiltonian, and thus, by Fact 4.9.21 $\operatorname{mspec}\left(J_{2 n}\right)=-\operatorname{mspec}\left(J_{2 n}\right)$.)

Fact 5.9.26. Let $A \in \mathbb{F}^{n \times n}$, assume that A is idempotent, and let $r \triangleq \operatorname{rank} A$. Then, there exists a matrix $B \in \mathbb{F}^{r \times(n-r)}$ and a unitary matrix $S \in \mathbb{F}^{n \times n}$ such that

$$
A=S\left[\begin{array}{cc}
I_{r} & B \\
0 & 0_{(n-r) \times(n-r)}
\end{array}\right] S^{*}
$$

(Proof: See [536, p. 46].)
Fact 5.9.27. Let $A \in \mathbb{F}^{n \times n}$, assume that A is idempotent, and let $r \triangleq \operatorname{rank} A$. Then, there exist a unitary matrix $S \in \mathbb{F}^{n \times n}$ and positive numbers a_{1}, \ldots, a_{k} such that

$$
A=S \operatorname{diag}\left(\left[\begin{array}{cc}
1 & a_{1} \\
0 & 0
\end{array}\right], \ldots,\left[\begin{array}{cc}
1 & a_{k} \\
0 & 0
\end{array}\right], I_{r-k}, 0_{(n-r-k) \times(n-r-k)}\right) S^{*}
$$

(Proof: See 419.) (Remark: This result provides a canonical form for idempotent matrices under unitary similarity. See also [537].) (Remark: See Fact 5.9.21.)

Fact 5.9.28. Let $A \in \mathbb{F}^{n \times m}$, assume that A is nonzero, let $r \triangleq \operatorname{rank} A$, define $B \triangleq \operatorname{diag}\left[\sigma_{1}(A), \ldots, \sigma_{r}(A)\right]$, and let $S_{1} \in \mathbb{F}^{n \times n}$ and $S_{2} \in \mathbb{F}^{m \times m}$ be unitary matrices such that

$$
A=S_{1}\left[\begin{array}{cc}
B & 0_{r \times(m-r)} \\
0_{(n-r) \times r} & 0_{(n-r) \times(m-r)}
\end{array}\right] S_{2} .
$$

Then, there exist $K \in \mathbb{F}^{r \times r}$ and $L \in \mathbb{F}^{r \times(m-r)}$ such that

$$
K K^{*}+L L^{*}=I_{r}
$$

and

$$
A=S_{1}\left[\begin{array}{cc}
B K & B L \\
0_{(n-r) \times r} & 0_{(n-r) \times(m-r)}
\end{array}\right] S_{1}^{*}
$$

(Proof: See [115, 651].) (Remark: See Fact 6.3.15 and Fact 6.6.15,)

Fact 5.9.29. Let $A \in \mathbb{F}^{n \times n}$, assume that A is unitary, and partition A as

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right],
$$

where $A_{11} \in \mathbb{F}^{m \times k}, A_{12} \in \mathbb{F}^{m \times q}, A_{21} \in \mathbb{F}^{p \times k}, A_{22} \in \mathbb{F}^{p \times q}$, and $m+p=k+q=n$. Then, there exist unitary matrices $U, V \in \mathbb{F}^{n \times n}$ and $l, r \geq 0$ such that

$$
A=U\left[\begin{array}{cccccc}
I_{r} & 0 & 0 & 0 & 0 & 0 \\
0 & \Gamma & 0 & 0 & \Sigma & 0 \\
0 & 0 & 0 & 0 & 0 & I_{m-r-l} \\
0 & 0 & 0 & I_{q-m+r} & 0 & 0 \\
0 & \Sigma & 0 & 0 & -\Gamma & 0 \\
0 & 0 & I_{k-r-l} & 0 & 0 & 0
\end{array}\right] V,
$$

where $\Gamma, \Sigma \in \mathbb{R}^{l \times l}$ are diagonal and satisfy

$$
\begin{gather*}
0<\Gamma_{(l, l)} \leq \cdots \leq \Gamma_{(1,1)}<1, \tag{5.9.1}\\
0<\Sigma_{(1,1)} \leq \cdots \leq \Sigma_{(l, l)}<1, \tag{5.9.2}
\end{gather*}
$$

and

$$
\Gamma^{2}+\Sigma^{2}=I_{m} .
$$

(Proof: See [536 p. 12] and [1230 p. 37].) (Remark: This result is the CS decomposition. See [1059] 1061. The entries $\Sigma_{(i, i)}$ and $\Gamma_{(i, i)}$ can be interpreted as sines and cosines, respectively, of the principal angles between a pair of subspaces $\mathcal{S}_{1}=\mathcal{R}\left(X_{1}\right)$ and $\mathcal{S}_{2}=\mathcal{R}\left(Y_{1}\right)$ such that $\left[X_{1} X_{2}\right]$ and $\left[Y_{1} Y_{2}\right]$ are unitary and $A=$ [$\left.X_{1} X_{2}\right]^{*}\left[Y_{1} Y_{2}\right]$; see [536, pp. 25-29], [1230, pp. 40-43], and Fact 2.9.19] Principal angles can also be defined recursively; see [536, p. 25] and [537.)

Fact 5.9.30. Let $A \in \mathbb{F}^{n \times n}$, and let $r \triangleq \operatorname{rank} A$. Then, there exist $S_{1} \in \mathbb{F}^{n \times r}$, $B \in \mathbb{R}^{r \times r}$, and $S_{2} \in \mathbb{F}^{n \times r}$, such that S_{1} is left inner, S_{2} is right inner, B is upper triangular, $I \circ B=\alpha I$, where $\alpha \triangleq \prod_{i=1}^{r} \sigma_{i}(A)$, and

$$
A=S_{1} B S_{2} .
$$

(Proof: See [757.) (Remark: Note that B is real.) (Remark: This result is the geometric mean decomposition.)

Fact 5.9.31. Let $A \in \mathbb{C}^{n \times n}$. Then, there exists a matrix $B \in \mathbb{R}^{n \times n}$ such that $A \bar{A}$ and B^{2} are similar. (Proof: See 415.)

5.10 Facts on Matrix Transformations for Two or More Matrices

Fact 5.10.1. Let $q(s) \triangleq s^{2}-\beta_{1} s-\beta_{0} \in \mathbb{R}[s]$ be irreducible, and let $\lambda=\nu+\jmath \omega$ denote a root of q so that $\beta_{1}=2 \nu$ and $\beta_{0}=-\left(\nu^{2}+\omega^{2}\right)$. Then,

$$
\mathcal{H}_{1}(q)=\left[\begin{array}{cc}
0 & 1 \\
\beta_{0} & \beta_{1}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
\nu & \omega
\end{array}\right]\left[\begin{array}{cc}
\nu & \omega \\
-\omega & \nu
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
-\nu / \omega & 1 / \omega
\end{array}\right]=S \mathcal{J}_{1}(q) S^{-1} .
$$

The transformation matrix $S=\left[\begin{array}{cc}1 & 0 \\ \nu & \omega\end{array}\right]$ is not unique; an alternative choice is $S=$ $\left[\begin{array}{cc}\omega & \nu \\ 0 & \nu^{2}+\omega^{2}\end{array}\right]$. Similarly,

$$
\mathcal{H}_{2}(q)=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
\beta_{0} & \beta_{1} & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & \beta_{0} & \beta_{1}
\end{array}\right]=S\left[\begin{array}{cccc}
\nu & \omega & 1 & 0 \\
-\omega & \nu & 0 & 1 \\
0 & 0 & \nu & \omega \\
0 & 0 & -\omega & \nu
\end{array}\right] S^{-1}=S \mathcal{J}_{2}(q) S^{-1}
$$

where

$$
S \triangleq\left[\begin{array}{cccc}
\omega & \nu & \omega & \nu \\
0 & \nu^{2}+\omega^{2} & \omega & \nu^{2}+\omega^{2}+\nu \\
0 & 0 & -2 \omega \nu & 2 \omega^{2} \\
0 & 0 & -2 \omega\left(\nu^{2}+\omega^{2}\right) & 0
\end{array}\right]
$$

Fact 5.10.2. Let $q(s) \triangleq s^{2}-2 \nu s+\nu^{2}+\omega^{2} \in \mathbb{R}[s]$ with roots $\lambda=\nu+\jmath \omega$ and $\bar{\lambda}=\nu-\jmath \omega$. Then,

$$
\mathcal{H}_{1}(q)=\left[\begin{array}{cc}
\nu & \omega \\
-\omega & \nu
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
\jmath & -\jmath
\end{array}\right]\left[\begin{array}{cc}
\lambda & 0 \\
0 & \frac{\lambda}{\lambda}
\end{array}\right] \frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & -\jmath \\
1 & \jmath
\end{array}\right]
$$

and

$$
\mathcal{H}_{2}(q)=\left[\begin{array}{cccc}
\nu & \omega & 1 & 0 \\
-\omega & \nu & 0 & 1 \\
0 & 0 & \nu & \omega \\
0 & 0 & -\omega & \nu
\end{array}\right]=S\left[\begin{array}{cccc}
\lambda & 1 & 0 & 0 \\
0 & \lambda & 0 & 0 \\
0 & 0 & \bar{\lambda} & 1 \\
0 & 0 & 0 & \bar{\lambda}
\end{array}\right] S^{-1}
$$

where

$$
S \triangleq \frac{1}{\sqrt{2}}\left[\begin{array}{cccc}
1 & 0 & 1 & 0 \\
\jmath & 0 & -\jmath & 0 \\
0 & 1 & 0 & 1 \\
0 & \jmath & 0 & -\jmath
\end{array}\right], \quad S^{-1}=\frac{1}{\sqrt{2}}\left[\begin{array}{cccc}
1 & -\jmath & 0 & 0 \\
0 & 0 & 1 & -\jmath \\
1 & \jmath & 0 & 0 \\
0 & 0 & 1 & \jmath
\end{array}\right]
$$

Fact 5.10.3. Left equivalence, right equivalence, biequivalence, unitary left equivalence, unitary right equivalence, and unitary biequivalence are equivalence relations on $\mathbb{F}^{n \times m}$. Similarity, congruence, and unitary similarity are equivalence relations on $\mathbb{F}^{n \times n}$.

Fact 5.10.4. Let $A, B \in \mathbb{F}^{n \times m}$. Then, A and B are in the same equivalence class of $\mathbb{F}^{n \times m}$ induced by biequivalent transformations if and only if A and B are biequivalent to $\left[\begin{array}{cc}I & 0 \\ 0 & 0\end{array}\right]$. Now, let $n=m$. Then, A and B are in the same equivalence class of $\mathbb{F}^{n \times n}$ induced by similarity transformations if and only if A and B have the same Jordan form.

Fact 5.10.5. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are similar. Then, A is semisimple if and only if B is.

Fact 5.10.6. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is normal. Then, A is unitarily similar to its Jordan form.

Fact 5.10.7. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are normal, and assume that A and B are similar. Then, A and B are unitarily similar. (Proof: Since A and B are similar, it follows that $\operatorname{mspec}(A)=\operatorname{mspec}(B)$. Since A and B are
normal, it follows that they are unitarily similar to the same diagonal matrix. See Fact 5.10.6. See [627, p. 104].) (Remark: See [541, p. 8] for related results.)

Fact 5.10.8. Let $A, B \in \mathbb{F}^{n \times n}$, and let $r \triangleq 2 n^{2}$. Then, the following statements are equivalent:
i) A and B are unitarily similar.
ii) For all $k_{1}, \ldots, k_{r}, l_{1}, \ldots, l_{r} \in \mathbb{N}$ such that $\sum_{i, j=1}^{r}\left(k_{i}+l_{j}\right) \leq r$, it follows that

$$
\operatorname{tr} A^{k_{1}} A^{l_{1} *} \cdots A^{k_{r}} A^{l_{r} *}=\operatorname{tr} B^{k_{1}} B^{l_{1} *} \ldots B^{k_{r}} B^{l_{r} *}
$$

(Proof: See [1076].) (Remark: See 790, pp. 71, 72] and [220, 1190].) (Remark: The number of distinct tuples of positive integers whose sum is a positive integer k is 2^{k-1}. The number of expressions in $i i$) is thus $\sum_{k=1}^{2 n^{2}} 2^{k-1}=4^{n^{2}}-1$. Because of properties of the trace function, the number of distinct expressions is less than this number. Furthermore, in special cases, the number of expressions that need to be checked is significantly less than the number of distinct expressions. In the case $n=2$, it suffices to check three equalities, specifically, $\operatorname{tr} A=\operatorname{tr} B, \operatorname{tr} A^{2}=\operatorname{tr} B^{2}$, and $\operatorname{tr} A^{*} A=\operatorname{tr} B^{*} B$. In the case $n=3$, it suffices to check 7 equalities. See [220, 1190.)

Fact 5.10.9. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are idempotent, assume that $\operatorname{sprad}(A-B)<1$, and define

$$
S \triangleq\left(A B+A_{\perp} B_{\perp}\right)\left[I-(A-B)^{2}\right]^{-1 / 2}
$$

Then, the following statements hold:
i) S is nonsingular.
ii) If $A=B$, then $S=I$.
iii) $S^{-1}=\left(B A+B_{\perp} A_{\perp}\right)\left[I-(B-A)^{2}\right]^{-1 / 2}$.
iv) A and B are similar. In fact, $A=S B S^{-1}$.
v) If A and B are projectors, then S is unitary and A and B are unitarily similar.
(Proof: See [690, p. 412].) (Remark: $\left[I-(A-B)^{2}\right]^{-1 / 2}$ is defined by $i x$) of Fact 10.11.24)

Fact 5.10.10. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are idempotent. Then, the following statements are equivalent:
i) A and B are unitarily similar.
ii) $\operatorname{tr} A=\operatorname{tr} B$ and, for all $i=1, \ldots,\lfloor n / 2\rfloor, \operatorname{tr}\left(A A^{*}\right)^{i}=\operatorname{tr}\left(B B^{*}\right)^{i}$.
iii) $\chi_{A A^{*}}=\chi_{B B^{*}}$.
(Proof: The result follows from Fact 5.9.27 See [419].)
Fact 5.10.11. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that either A or B is nonsingular. Then, $A B$ and $B A$ are similar. (Proof: If A is nonsingular, then $A B=A(B A) A^{-1}$.)

Fact 5.10.12. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are projectors. Then, $A B$ and $B A$ are unitarily similar. (Remark: This result is due to Dixmier. See [1114.)

Fact 5.10.13. Let $A \in \mathbb{F}^{n \times n}$. Then, A is idempotent if and only if there exists an orthogonal matrix $B \in \mathbb{F}^{n \times n}$ such that A and B are similar.

Fact 5.10.14. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are idempotent, and assume that $A+B-I$ is nonsingular. Then, A and B are similar. In particular,

$$
A=(A+B-I)^{-1} B(A+B-I)
$$

Fact 5.10.15. Let $A_{1}, \ldots, A_{r} \in \mathbb{F}^{n \times n}$, and assume that $A_{i} A_{j}=A_{j} A_{i}$ for all $i, j=1, \ldots, r$. Then,

$$
\operatorname{dim} \operatorname{span}\left\{\prod_{i=1}^{r} A_{i}^{n_{i}}: \quad 0 \leq n_{i} \leq n-1, i=1, \ldots, r\right\} \leq \frac{1}{4} n^{2}+1
$$

(Remark: This result gives a bound on the dimension of a commutative subalgebra.) (Remark: This result is due to Schur. See [859.)

Fact 5.10.16. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that $A B=B A$. Then,

$$
\operatorname{dim} \operatorname{span}\left\{A^{i} B^{j}: 0 \leq i \leq n-1,0 \leq j \leq n-1\right\} \leq n
$$

(Remark: This result gives a bound on the dimension of a commutative subalgebra generated by two matrices.) (Remark: This result is due to Gerstenhaber. See [150, 859].)

Fact 5.10.17. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are normal, nonsingular, and congruent. Then, In $A=\operatorname{In} B$. (Remark: This result is due to Ando.)

Fact 5.10.18. Let $A, B \in \mathbb{F}^{n \times m}$. Then, the following statements hold:
i) The matrices A and B are unitarily left equivalent if and only if $A^{*} A=B^{*} B$.
ii) The matrices A and B are unitarily right equivalent if and only if $A A^{*}=$ $B B^{*}$.
iii) The matrices A and B are unitarily biequivalent if and only if A and B have the same singular values with the same multiplicity.
(Proof: See 715] and 1129, pp. 372, 373].) (Remark: In 715] A and B need not be the same size.) (Remark: The singular value decomposition provides a canonical form under unitary biequivalence in analogy with the Smith form under biequivalence.) (Remark: Note that $A A^{*}=B B^{*}$ implies that $\mathcal{R}(A)=\mathcal{R}(B)$, which implies right equivalence, which is an alternative proof of the immediate fact that unitary right equivalence implies right equivalence.)

Fact 5.10.19. Let $A, B \in \mathbb{F}^{n \times n}$. Then, the following statements hold:
i) $A^{*} A=B^{*} B$ if and only if there exists a unitary matrix $S \in \mathbb{F}^{n \times n}$ such that $A=S B$.
ii) $A^{*} A \leq B^{*} B$ if and only if there exists a matrix $S \in \mathbb{F}^{n \times n}$ such that $A=S B$ and $S^{*} S \leq I$.
iii) $A^{*} B+B^{*} A=0$ if and only if there exists a unitary matrix $S \in \mathbb{F}^{n \times n}$ such that $(I-S) A=(I+S) B$.
iv) $A^{*} B+B^{*} A \geq 0$ if and only if there exists a matrix $S \in \mathbb{F}^{n \times n}$ such that $(I-S) A=(I+S) B$ and $S^{*} S \leq I$.
(Proof: See [709, p. 406] and 1117.) (Remark: Statements iii) and iv) follow from i) and $i i$) by replacing A and B with $A-B$ and $A+B$, respectively.)

Fact 5.10.20. Let $A \in \mathbb{F}^{n \times n}, B \in \mathbb{F}^{m \times m}$, and $C \in \mathbb{F}^{n \times m}$. Then, there exist matrices $X, Y \in \mathbb{F}^{n \times m}$ satisfying

$$
A X+Y B+C=0
$$

if and only if

$$
\operatorname{rank}\left[\begin{array}{cc}
A & 0 \\
0 & -B
\end{array}\right]=\operatorname{rank}\left[\begin{array}{cc}
A & C \\
0 & -B
\end{array}\right]
$$

(Proof: See [1098, pp. 194, 195] and [1403].) (Remark: $A X+Y B+C=0$ is a generalization of Sylvester's equation. See Fact 5.10.21) (Remark: This result is due to Roth.) (Remark: An explicit expression for all solutions is given by Fact 6.5.7, which applies to the case in which A and B are not necessarily square and thus X and Y are not necessarily the same size.)

Fact 5.10.21. Let $A \in \mathbb{F}^{n \times n}, B \in \mathbb{F}^{m \times m}$, and $C \in \mathbb{F}^{n \times m}$. Then, there exists a matrix $X \in \mathbb{F}^{n \times m}$ satisfying

$$
A X+X B+C=0
$$

if and only if the matrices

$$
\left[\begin{array}{cc}
A & 0 \\
0 & -B
\end{array}\right], \quad\left[\begin{array}{cc}
A & C \\
0 & -B
\end{array}\right]
$$

are similar. In this case,

$$
\left[\begin{array}{cc}
A & C \\
0 & -B
\end{array}\right]=\left[\begin{array}{cc}
I & X \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
A & 0 \\
0 & -B
\end{array}\right]\left[\begin{array}{cc}
I & -X \\
0 & I
\end{array}\right]
$$

(Proof: See [1403]. For sufficiency, see [867, pp. 422-424] or [1098, pp. 194, 195].) (Remark: $A X+X B+C=0$ is Sylvester's equation. See Proposition7.2.4 Corollary 7.2.5, and Proposition 11.9.3.) (Remark: This result is due to Roth. See 217.)

Fact 5.10.22. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are idempotent. Then, the matrices

$$
\left[\begin{array}{cc}
A+B & A \\
0 & -A-B
\end{array}\right], \quad\left[\begin{array}{cc}
A+B & 0 \\
0 & -A-B
\end{array}\right]
$$

are similar. In fact,

$$
\left[\begin{array}{cc}
A+B & A \\
0 & -A-B
\end{array}\right]=\left[\begin{array}{cc}
I & X \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
A+B & 0 \\
0 & -A-B
\end{array}\right]\left[\begin{array}{cc}
I & -X \\
0 & I
\end{array}\right]
$$

where $X \triangleq \frac{1}{4}(I+A-B)$. (Remark: This result is due to Tian.) (Remark: See Fact 5.10.21,

Fact 5.10.23. Let $A \in \mathbb{F}^{n \times n}, B \in \mathbb{F}^{m \times m}$, and $C \in \mathbb{F}^{n \times m}$, and assume that A and B are nilpotent. Then, the matrices

$$
\left[\begin{array}{cc}
A & C \\
0 & B
\end{array}\right], \quad\left[\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right]
$$

are similar if and only if

$$
\operatorname{rank}\left[\begin{array}{cc}
A & C \\
0 & B
\end{array}\right]=\operatorname{rank} A+\operatorname{rank} B
$$

and

$$
A C+C B=0
$$

(Proof: See 1294.)

5.11 Facts on Eigenvalues and Singular Values for One Matrix

Fact 5.11.1. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is singular. If A is either simple or cyclic, then $\operatorname{rank} A=n-1$.

Fact 5.11.2. Let $A \in \mathbb{R}^{n \times n}$, and assume that $A \in \operatorname{SO}(n)$. Then, amult $_{A}(-1)$ is even. Now, assume that $n=3$. Then, the following statements hold:
i) $\operatorname{amult}_{A}(1)$ is either 1 or 3.
ii) $\operatorname{tr} A \geq-1$.
iii) $\operatorname{tr} A=-1$ if and only if $\operatorname{mspec}(A)=\{1,-1,-1\}_{\mathrm{ms}}$.

Fact 5.11.3. Let $A \in \mathbb{F}^{n \times n}$, let $\alpha \in \mathbb{F}$, and assume that $A^{2}=\alpha A$. Then, $\operatorname{spec}(A) \subseteq\{0, \alpha\}$.

Fact 5.11.4. Let $A \in \mathbb{F}^{n \times n}$, assume that A is Hermitian, and let $\alpha \in \mathbb{R}$. Then, $A^{2}=\alpha A$ if and only if $\operatorname{spec}(A) \subseteq\{0, \alpha\}$. (Remark: See Fact 3.7.22,

Fact 5.11.5. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is Hermitian. Then,

$$
\operatorname{spabs}(A)=\lambda_{\max }(A)
$$

and

$$
\operatorname{sprad}(A)=\sigma_{\max }(A)=\max \left\{\left|\lambda_{\min }(A)\right|, \lambda_{\max }(A)\right\}
$$

If, in addition, A is positive semidefinite, then

$$
\operatorname{sprad}(A)=\sigma_{\max }(A)=\operatorname{spabs}(A)=\lambda_{\max }(A)
$$

(Remark: See Fact 5.12.2)
Fact 5.11.6. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is skew Hermitian. Then, the eigenvalues of A are imaginary. (Proof: Let $\lambda \in \operatorname{spec}(A)$. Since $0 \leq A A^{*}=-A^{2}$, it follows that $-\lambda^{2} \geq 0$, and thus $\lambda^{2} \leq 0$.)

Fact 5.11.7. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are idempotent. Then, the following statements are equivalent:
i) $\operatorname{mspec}(A)=\operatorname{mspec}(B)$.
ii) $\operatorname{rank} A=\operatorname{rank} B$.
iii) $\operatorname{tr} A=\operatorname{tr} B$.

Fact 5.11.8. Let $A \in \mathbb{F}^{n \times n}$. Then, the following statements are equivalent:
i) A is idempotent.
ii) $\operatorname{rank}(I-A) \leq \operatorname{tr}(I-A), A$ is group invertible, and every eigenvalue of A is nonnegative.
iii) A and $I-A$ are group invertible, and every eigenvalue of A is nonnegative.
(Proof: See 649.)
Fact 5.11.9. Let $A \in \mathbb{F}^{n \times n}$, and let $\operatorname{mspec}(A)=\left\{\lambda_{1}, \ldots, \lambda_{k}, 0, \ldots, 0\right\}_{\mathrm{ms}}$. Then,

$$
|\operatorname{tr} A|^{2} \leq\left(\sum_{i=1}^{k}\left|\lambda_{i}\right|\right)^{2} \leq k \sum_{i=1}^{k}\left|\lambda_{i}\right|^{2} .
$$

(Proof: Use Fact 1.15.3)
Fact 5.11.10. Let $A \in \mathbb{F}^{n \times n}$, and assume that A has exactly k nonzero eigenvalues. Then,

$$
\left.\begin{array}{c}
|\operatorname{tr} A|^{2} \\
k\left|\operatorname{tr} A^{2}\right| \leq k \operatorname{tr}\left(A^{2 *} A^{2}\right)^{1 / 2}
\end{array}\right\} \leq k \operatorname{tr} A^{*} A \leq(\operatorname{rank} A) \operatorname{tr} A^{*} A
$$

Furthermore, the upper left-hand inequality is an equality if and only if A is normal and all of the nonzero eigenvalues of A have the same absolute value, while the righthand inequality is an equality if and only if A is group invertible. If, in addition, all of the eigenvalues of A are real, then

$$
(\operatorname{tr} A)^{2} \leq k \operatorname{tr} A^{2} \leq k \operatorname{tr} A^{*} A \leq(\operatorname{rank} A) \operatorname{tr} A^{*} A
$$

(Proof: The upper left-hand inequality in the first string is given in 1448. The lower left-hand inequality in the first string is given by Fact 9.11.3 When all of the eigenvalues of A are real, the inequality $(\operatorname{tr} A)^{2} \leq k \operatorname{tr} A^{2}$ follows from Fact 5.11.9) (Remark: The inequality $|\operatorname{tr} A|^{2} \leq k\left|\operatorname{tr} A^{2}\right|$ does not necessarily hold. Consider $\operatorname{mspec}(A)=\{1,1, \jmath,-\jmath\}_{\mathrm{ms}}$.) (Remark: See Fact 3.7.22, Fact 8.17.7, Fact 9.13.17, and Fact 9.13.18.)

Fact 5.11.11. Let $A \in \mathbb{R}^{n \times n}$, and let $\operatorname{mspec}(A)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}_{\mathrm{ms}}$. Then,

$$
\sum_{i=1}^{n}\left(\operatorname{Re} \lambda_{i}\right)\left(\operatorname{Im} \lambda_{i}\right)=0
$$

and

$$
\operatorname{tr} A^{2}=\sum_{i=1}^{n}\left(\operatorname{Re} \lambda_{i}\right)^{2}-\sum_{i=1}^{n}\left(\operatorname{Im} \lambda_{i}\right)^{2} .
$$

Fact 5.11.12. Let $n \geq 2$, let $a_{1}, \ldots, a_{n}>0$, and define the symmetric matrix $A \in \mathbb{R}^{n \times n}$ by $A_{(i, j)} \triangleq a_{i}+a_{j}$ for all $i, j=1, \ldots, n$. Then,

$$
\operatorname{rank} A \leq 2
$$

and

$$
\operatorname{mspec}(A)=\{\lambda, \mu, 0, \ldots, 0\}_{\mathrm{ms}}
$$

where

$$
\lambda \triangleq \sum_{i=1}^{n} a_{i}+\sqrt{n \sum_{i=1}^{n} a_{i}^{2}}, \quad \mu \triangleq \sum_{i=1}^{n} a_{i}-\sqrt{n \sum_{i=1}^{n} a_{i}^{2}}
$$

Furthermore, the following statements hold:
i) $\lambda>0$.
ii) $\mu \leq 0$.

Furthermore, the following statements are equivalent:
iii) $\mu<0$.
$i v)$ At least two of the numbers $a_{1}, \ldots, a_{n}>0$ are distinct.
v) $\operatorname{rank} A=2$.

In this case,

$$
\lambda_{\min }(A)=\mu<0<\operatorname{tr} A=2 \sum_{i=1}^{n} a_{i}<\lambda_{\max }(A)=\lambda
$$

(Proof: $A=a 1_{1 \times n}+1_{n \times 1} a^{\mathrm{T}}$, where $a \triangleq\left[\begin{array}{lll}a_{1} & \cdots & a_{n}\end{array}\right]^{\mathrm{T}}$. Then, it follows from Fact 2.11.12 that $\operatorname{rank} A \leq \operatorname{rank}\left(a 1_{1 \times n}\right)+\operatorname{rank}\left(1_{n \times 1} a^{\mathrm{T}}\right)=2$. Furthermore, $\operatorname{mspec}(A)$ follows from Fact 5.11 .13 , while Fact 1.15 .14 implies that $\mu \leq 0$.) (Remark: See Fact 8.8.7)

Fact 5.11.13. Let $x, y \in \mathbb{R}^{n}$. Then,

$$
\begin{gathered}
\operatorname{mspec}\left(x y^{\mathrm{T}}+y x^{\mathrm{T}}\right)=\left\{x^{\mathrm{T}} y+\sqrt{x^{\mathrm{T}} x y^{\mathrm{T}} y}, x^{\mathrm{T}} y-\sqrt{x^{\mathrm{T}} x y^{\mathrm{T}} y}, 0, \ldots, 0\right\}_{\mathrm{ms}}, \\
\quad \operatorname{sprad}\left(x y^{\mathrm{T}}+y x^{\mathrm{T}}\right)= \begin{cases}x^{\mathrm{T}} y+\sqrt{x^{\mathrm{T}} x y^{\mathrm{T}} y}, & x^{\mathrm{T}} y \geq 0 \\
\left|x^{\mathrm{T}} y-\sqrt{x^{\mathrm{T}} x y^{\mathrm{T}} y}\right|, & x^{\mathrm{T}} y \leq 0\end{cases}
\end{gathered}
$$

and

$$
\operatorname{spabs}\left(x y^{\mathrm{T}}+y x^{\mathrm{T}}\right)=x^{\mathrm{T}} y+\sqrt{x^{\mathrm{T}} x y^{\mathrm{T}} y} .
$$

If, in addition, x and y are nonzero, then $v_{1}, v_{2} \in \mathbb{R}^{n}$ defined by

$$
v_{1} \triangleq \frac{1}{\|x\|} x+\frac{1}{\|y\|} y, \quad v_{2} \triangleq \frac{1}{\|x\|} x-\frac{1}{\|y\|} y
$$

are eigenvectors of $x y^{\mathrm{T}}+y x^{\mathrm{T}}$ corresponding to $x^{\mathrm{T}} y+\sqrt{x^{\mathrm{T}} x y^{\mathrm{T}} y}$ and $x^{\mathrm{T}} y-\sqrt{x^{\mathrm{T}} x y^{\mathrm{T}} y}$, respectively. (Proof: See [374, p. 539].) (Example: The spectrum of $\left[\begin{array}{cc}0_{n \times n} & 1_{n \times 1} \\ 1_{1 \times n} & 0\end{array}\right]$ is $\{-\sqrt{n}, 0, \ldots, 0, \sqrt{n}\}_{\mathrm{ms}}$.) (Problem: Extend this result to \mathbb{C} and $x y^{\mathrm{T}}+z w^{\mathrm{T}}$. See Fact 4.9.16.)

Fact 5.11.14. Let $A \in \mathbb{F}^{n \times n}$, and let $\operatorname{mspec}(A)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}_{\mathrm{ms}}$. Then, $\operatorname{mspec}\left[(I+A)^{2}\right]=\left\{\left(1+\lambda_{1}\right)^{2}, \ldots,\left(1+\lambda_{n}\right)^{2}\right\}_{\mathrm{ms}}$.
If A is nonsingular, then

$$
\operatorname{mspec}\left(A^{-1}\right)=\left\{\lambda_{1}^{-1}, \ldots, \lambda_{n}^{-1}\right\}_{\mathrm{ms}} .
$$

Finally, if $I+A$ is nonsingular, then

$$
\operatorname{mspec}\left[(I+A)^{-1}\right]=\left\{\left(1+\lambda_{1}\right)^{-1}, \ldots,\left(1+\lambda_{n}\right)^{-1}\right\}_{\mathrm{ms}}
$$

and

$$
\operatorname{mspec}\left[A(I+A)^{-1}\right]=\left\{\lambda_{1}\left(1+\lambda_{1}\right)^{-1}, \ldots, \lambda_{n}\left(1+\lambda_{n}\right)^{-1}\right\}_{\mathrm{ms}} .
$$

(Proof: Use Fact 5.11.15)
Fact 5.11.15. Let $p, q \in \mathbb{F}[s]$, assume that p and q are coprime, define $g \triangleq$ $p / q \in \mathbb{F}(s)$, let $A \in \mathbb{F}^{n \times n}$, let $\operatorname{mspec}(A)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}_{\mathrm{ms}}$, assume that $\operatorname{roots}(q) \cap$ $\operatorname{spec}(A)=\varnothing$, and define $g(A) \triangleq p(A)[q(A)]^{-1}$. Then,

$$
\operatorname{mspec}[g(A)]=\left\{g\left(\lambda_{1}\right), \ldots, g\left(\lambda_{n}\right)\right\}_{\mathrm{ms}} .
$$

(Proof: Statement $i i$) of Fact 4.10 .9 implies that $q(A)$ is nonsingular.)
Fact 5.11.16. Let $x \in \mathbb{F}^{n}$ and $y \in \mathbb{F}^{m}$. Then,

$$
\sigma_{\max }\left(x y^{*}\right)=\sqrt{x^{*} x y^{*} y} .
$$

If, in addition, $m=n$, then

$$
\begin{aligned}
& \operatorname{mspec}\left(x y^{*}\right)=\left\{x^{*} y, 0, \ldots, 0\right\}_{\mathrm{ms}}, \\
& \operatorname{mspec}\left(I+x y^{*}\right)=\left\{1+x^{*} y, 1, \ldots, 1\right\}_{\mathrm{ms}}, \\
& \operatorname{sprad}\left(x y^{*}\right)=\left|x^{*} y\right|, \\
& \operatorname{spabs}\left(x y^{*}\right)=\max \left\{0, \operatorname{Re} x^{*} y\right\} .
\end{aligned}
$$

(Remark: See Fact 0.7.26)
Fact 5.11.17. Let $A \in \mathbb{F}^{n \times n}$, and assume that $\operatorname{rank} A=1$. Then,

$$
\sigma_{\max }(A)=\left(\operatorname{tr} A A^{*}\right)^{1 / 2}
$$

Fact 5.11.18. Let $x, y \in \mathbb{F}^{n}$, and assume that $x^{*} y \neq 0$. Then,

$$
\sigma_{\max }\left[\left(x^{*} y\right)^{-1} x y^{*}\right] \geq 1 .
$$

Fact 5.11.19. Let $A \in \mathbb{F}^{n \times m}$, and let $\alpha \in \mathbb{F}$. Then, for all $i=1, \ldots$, $\min \{n, m\}$,

$$
\sigma_{i}(\alpha A)=|\alpha| \sigma_{i}(A) .
$$

Fact 5.11.20. Let $A \in \mathbb{F}^{n \times m}$. Then, for all $i=1, \ldots, \operatorname{rank} A$, it follows that

$$
\sigma_{i}(A)=\sigma_{i}\left(A^{*}\right)
$$

Fact 5.11.21. Let $A \in \mathbb{F}^{n \times n}$, and let $\lambda \in \operatorname{spec}(A)$. Then, the following inequalities hold:
i) $\sigma_{\min }(A) \leq|\lambda| \leq \sigma_{\max }(A)$.
ii) $\lambda_{\min }\left[\frac{1}{2}\left(A+A^{*}\right)\right] \leq \operatorname{Re} \lambda \leq \lambda_{\max }\left[\frac{1}{2}\left(A+A^{*}\right)\right]$.
iii) $\lambda_{\min }\left[\frac{1}{2 \jmath}\left(A-A^{*}\right)\right] \leq \operatorname{Im} \lambda \leq \lambda_{\max }\left[\frac{1}{2 \jmath}\left(A-A^{*}\right)\right]$.
(Remark: i) is Browne's theorem, $i i$) is Bendixson's theorem, and iii) is Hirsch's theorem. See [311, p. 17] and [963, pp. 140-144].) (Remark: See Fact 5.11.22, Fact 5.12 .3 and Fact 9.11.8,

Fact 5.11.22. Let $A \in \mathbb{F}^{n \times n}$, and let $\operatorname{mspec}(A)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}_{\mathrm{ms}}$. Then, for all $k=1, \ldots, n$,

$$
\sum_{i=1}^{k}\left[\sigma_{n-i+1}^{2}(A)-\left|\lambda_{i}\right|^{2}\right] \leq 2 \sum_{i=1}^{k}\left(\sigma_{i}^{2}\left[\frac{1}{2 \jmath}\left(A-A^{*}\right)\right]-\left|\operatorname{Im} \lambda_{i}\right|^{2}\right)
$$

and

$$
2 \sum_{i=1}^{k}\left(\sigma_{n-i+1}^{2}\left[\frac{1}{2 \jmath}\left(A-A^{*}\right)\right]-\left|\operatorname{Im} \lambda_{i}\right|^{2}\right) \leq \sum_{i=1}^{k}\left[\sigma_{i}^{2}(A)-\left|\lambda_{i}\right|^{2}\right]
$$

Furthermore,

$$
\sum_{i=1}^{n}\left[\sigma_{i}^{2}(A)-\left|\lambda_{i}\right|^{2}\right]=2 \sum_{i=1}^{n}\left(\sigma_{i}^{2}\left[\frac{1}{2 \jmath}\left(A-A^{*}\right)\right]-\left|\operatorname{Im} \lambda_{i}\right|^{2}\right)
$$

Finally, for all $i=1, \ldots, n$,

$$
\sigma_{n}(A) \leq\left|\operatorname{Re} \lambda_{i}\right| \leq \sigma_{1}(A)
$$

and

$$
\sigma_{n}\left[\frac{1}{2 \jmath}\left(A-A^{*}\right)\right] \leq\left|\operatorname{Im} \lambda_{i}\right| \leq \sigma_{1}\left[\frac{1}{2 \jmath}\left(A-A^{*}\right)\right]
$$

(Proof: See [552].) (Remark: See Fact 9.11.7.)
Fact 5.11.23. Let $A \in \mathbb{F}^{n \times n}$, let $\operatorname{mspec}(A)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}_{\mathrm{ms}}$, and let r denote the number of Jordan blocks in the Jordan decomposition of A. Then, for all $k=$ $1, \ldots, r$,

$$
\sum_{i=1}^{k} \sigma_{n-i+1}^{2}(A) \leq \sum_{i=1}^{k}\left|\lambda_{i}\right|^{2} \leq \sum_{i=1}^{k} \sigma_{i}^{2}(A)
$$

and

$$
\sum_{i=1}^{k} \sigma_{n-i+1}^{2}\left[\frac{1}{2 \jmath}\left(A-A^{*}\right)\right] \leq \sum_{i=1}^{k}\left|\operatorname{Im} \lambda_{i}\right|^{2} \leq \sum_{i=1}^{k} \sigma_{i}^{2}\left[\frac{1}{2 \jmath}\left(A-A^{*}\right)\right] .
$$

(Proof: See [552].)
Fact 5.11.24. Let $A \in \mathbb{F}^{n \times n}$, and let $\operatorname{mspec}(A)=\left\{\lambda_{1}(A), \ldots, \lambda_{n}(A)\right\}_{\mathrm{ms}}$, where $\lambda_{1}(A), \ldots, \lambda_{n}(A)$ are ordered such that $\operatorname{Re} \lambda_{1}(A) \geq \cdots \geq \operatorname{Re} \lambda_{n}(A)$. Then, for all $k=1, \ldots, n$,

$$
\sum_{i=1}^{k} \operatorname{Re} \lambda_{i}(A) \leq \sum_{i=1}^{k} \lambda_{i}\left[\frac{1}{2}\left(A+A^{*}\right)\right]
$$

and

$$
\sum_{i=1}^{n} \operatorname{Re} \lambda_{i}(A)=\operatorname{Retr} A=\operatorname{Retr} \frac{1}{2}\left(A+A^{*}\right)=\sum_{i=1}^{n} \lambda_{i}\left[\frac{1}{2}\left(A+A^{*}\right)\right]
$$

In particular,

$$
\lambda_{\min }\left[\frac{1}{2}\left(A+A^{*}\right)\right] \leq \operatorname{Re} \lambda_{n}(A) \leq \operatorname{spabs}(A) \leq \lambda_{\max }\left[\frac{1}{2}\left(A+A^{*}\right)\right]
$$

Furthermore, the last right-hand inequality is an equality if and only if A is normal. (Proof: See [197, p. 74]. Also, see xii) and xiv) of Fact 11.15.7.) (Remark: $\left.\operatorname{spabs}(A)=\operatorname{Re} \lambda_{1}(A).\right)$ (Remark: This result is due to Fan.)

Fact 5.11.25. Let $A \in \mathbb{F}^{n \times n}$. Then, for all $i=1, \ldots, n$,

$$
-\sigma_{i}(A) \leq \lambda_{i}\left[\frac{1}{2}\left(A+A^{*}\right)\right] \leq \sigma_{i}(A)
$$

In particular,

$$
-\sigma_{\min }(A) \leq \lambda_{\min }\left[\frac{1}{2}\left(A+A^{*}\right)\right] \leq \sigma_{\min }(A)
$$

and

$$
-\sigma_{\max }(A) \leq \lambda_{\max }\left[\frac{1}{2}\left(A+A^{*}\right)\right] \leq \sigma_{\max }(A)
$$

(Proof: See [690, p. 447], [711, p. 151], or 971, p. 240].) (Remark: This result generalizes $\operatorname{Re} z \leq|z|$ for $z \in \mathbb{C}$.) (Remark: See Fact 8.17.4 and Fact 5.11.27.)

Fact 5.11.26. Let $A \in \mathbb{F}^{n \times n}$. Then,

$$
\begin{aligned}
-\sigma_{\max }(A) & \leq-\sigma_{\min }(A) \\
& \leq \lambda_{\min }\left[\frac{1}{2}\left(A+A^{*}\right)\right] \\
& \leq \operatorname{spabs}(A) \\
& \leq\left\{\left\lvert\, \begin{array}{c}
\operatorname{spabs}(A) \mid \leq \operatorname{sprad}(A) \\
\frac{1}{2} \lambda_{\max }\left(A+A^{*}\right)
\end{array}\right.\right\} \\
& \leq \sigma_{\max }(A)
\end{aligned}
$$

(Proof: Combine Fact 5.11.24 and Fact 5.11.25.)
Fact 5.11.27. Let $A \in \mathbb{F}^{n \times n}$, and let $\left\{\mu_{1}, \ldots, \mu_{n}\right\}_{\mathrm{ms}}=\left\{\frac{1}{2}\left|\lambda_{1}\left(A+A^{*}\right)\right|, \ldots\right.$, $\left.\frac{1}{2}\left|\lambda_{n}\left(A+A^{*}\right)\right|\right\}_{\mathrm{ms}}$, where $\mu_{1} \geq \cdots \geq \mu_{n} \geq 0$. Then, $\left[\begin{array}{ccc}\sigma_{1}(A) & \cdots & \sigma_{n}(A)\end{array}\right]$ weakly majorizes $\left[\begin{array}{lll}\mu_{1} & \cdots & \mu_{n}\end{array}\right]$. (Proof: See [971, p. 240].) (Remark: See Fact 5.11.25,)

Fact 5.11.28. Let $A \in \mathbb{F}^{n \times n}$, and let $\operatorname{mspec}(A)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}_{\mathrm{ms}}$, where $\lambda_{1}, \ldots, \lambda_{n}$ are ordered such that $\left|\lambda_{1}\right| \geq \cdots \geq\left|\lambda_{n}\right|$. Then, for all $k=1, \ldots, n$,

$$
\prod_{i=1}^{k}\left|\lambda_{i}\right| \leq \prod_{i=1}^{k} \sigma_{i}(A)
$$

with equality for $k=n$, that is,

$$
|\operatorname{det} A|=\prod_{i=1}^{n}\left|\lambda_{i}\right|=\prod_{i=1}^{n} \sigma_{i}(A)
$$

Hence, for all $k=1, \ldots, n$,

$$
\prod_{i=k}^{n} \sigma_{i}(A) \leq \prod_{i=k}^{n}\left|\lambda_{i}\right|
$$

(Proof: See [197 p. 43], 690, p. 445], 711, p. 171], or [1485 p. 19].) (Remark: This result is due to Weyl.) (Remark: See Fact 8.18.21 and Fact 9.13.19.)

Fact 5.11.29. Let $A \in \mathbb{F}^{n \times n}$, and let $\operatorname{mspec}(A)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}_{\mathrm{ms}}$, where $\lambda_{1}, \ldots, \lambda_{n}$ are ordered such that $\left|\lambda_{1}\right| \geq \cdots \geq\left|\lambda_{n}\right|$. Then,

$$
\begin{aligned}
\sigma_{\min }(A) \leq \sigma_{\max }^{1 / n}(A) \sigma_{\min }^{(n-1) / n}(A) \leq\left|\lambda_{n}\right| & \leq\left|\lambda_{1}\right| \\
& \leq \sigma_{\min }^{1 / n}(A) \sigma_{\max }^{(n-1) / n}(A) \leq \sigma_{\max }(A)
\end{aligned}
$$

and

$$
\begin{aligned}
& \sigma_{\min }^{n}(A) \leq \sigma_{\max }(A) \sigma_{\min }^{n-1}(A) \leq|\operatorname{det} A| \\
& \quad \leq \sigma_{\min }(A) \sigma_{\max }^{n-1}(A) \leq \sigma_{\max }^{n}(A)
\end{aligned}
$$

(Proof: Use Fact 5.11.28, See [690, p. 445].) (Remark: See Fact 11.20.12) (Remark: See Fact 8.13.1.)

Fact 5.11.30. Let $\beta_{0}, \ldots, \beta_{n-1} \in \mathbb{F}$, define $A \in \mathbb{F}^{n \times n}$ by

$$
A \triangleq\left[\begin{array}{cccccc}
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \ddots & 0 & 0 \\
0 & 0 & 0 & \ddots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 1 \\
-\beta_{0} & -\beta_{1} & -\beta_{2} & \cdots & -\beta_{n-2} & -\beta_{n-1}
\end{array}\right]
$$

and define $\alpha \triangleq 1+\sum_{i=0}^{n-1}\left|\beta_{i}\right|^{2}$. Then,

$$
\begin{gathered}
\sigma_{1}(A)=\sqrt{\frac{1}{2}\left(\alpha+\sqrt{\alpha^{2}-4\left|\beta_{0}\right|^{2}}\right)} \\
\sigma_{2}(A)=\cdots=\sigma_{n-1}(A)=1 \\
\sigma_{n}(A)=\sqrt{\frac{1}{2}\left(\alpha-\sqrt{\alpha^{2}-4\left|\beta_{0}\right|^{2}}\right)}
\end{gathered}
$$

In particular,

$$
\sigma_{1}\left(N_{n}\right)=\cdots=\sigma_{n-1}\left(N_{n}\right)=1
$$

and

$$
\sigma_{\min }\left(N_{n}\right)=0
$$

(Proof: See 681 p. 523] or [802, 817].) (Remark: See Fact 6.3.28 and Fact 11.20.12)

Fact 5.11.31. Let $\beta \in \mathbb{C}$. Then,

$$
\sigma_{\max }\left(\left[\begin{array}{cc}
1 & 2 \beta \\
0 & 1
\end{array}\right]\right)=|\beta|+\sqrt{1+|\beta|^{2}}
$$

and

$$
\sigma_{\min }\left(\left[\begin{array}{cc}
1 & 2 \beta \\
0 & 1
\end{array}\right]\right)=\sqrt{1+|\beta|^{2}}-|\beta| .
$$

(Proof: See 897.) (Remark: Inequalities involving the singular values of blocktriangular matrices are given in 897.)

Fact 5.11.32. Let $A \in \mathbb{F}^{n \times m}$. Then,

$$
\sigma_{\max }\left(\left[\begin{array}{cc}
I & 2 A \\
0 & I
\end{array}\right]\right)=\sigma_{\max }(A)+\sqrt{1+\sigma_{\max }^{2}(A)} .
$$

(Proof: See [681, p. 116].)
Fact 5.11.33. For $i=1, \ldots, l$, let $A_{i} \in \mathbb{F}^{n_{i} \times m_{i}}$. Then,

$$
\sigma_{\max }\left[\operatorname{diag}\left(A_{1}, \ldots, A_{l}\right)\right]=\max \left\{\sigma_{\max }\left(A_{1}\right), \ldots, \sigma_{\max }\left(A_{l}\right)\right\} .
$$

Fact 5.11.34. Let $A \in \mathbb{F}^{n \times m}$, and let $r \triangleq \operatorname{rank} A$. Then, for all $i=1, \ldots, r$,

$$
\lambda_{i}\left(A A^{*}\right)=\lambda_{i}\left(A^{*} A\right)=\sigma_{i}\left(A A^{*}\right)=\sigma_{i}\left(A^{*} A\right)=\sigma_{i}^{2}(A) .
$$

In particular,

$$
\sigma_{\max }\left(A A^{*}\right)=\sigma_{\max }^{2}(A),
$$

and, if $n=m$, then

$$
\sigma_{\min }\left(A A^{*}\right)=\sigma_{\min }^{2}(A)
$$

Furthermore, for all $i=1, \ldots, r$,

$$
\sigma_{i}\left(A A^{*} A\right)=\sigma_{i}^{3}(A)
$$

Fact 5.11.35. Let $A \in \mathbb{F}^{n \times n}$. Then, $\sigma_{\max }(A) \leq 1$ if and only if $A^{*} A \leq I$.
Fact 5.11.36. Let $A \in \mathbb{F}^{n \times n}$. Then, for all $i=1, \ldots, n$,

$$
\sigma_{i}\left(A^{\mathrm{A}}\right)=\prod_{\substack{j=1 \\ j \neq n+1-i}}^{n} \sigma_{j}(A) .
$$

(Proof: See Fact 4.10.7 and [1098, p. 149].)
Fact 5.11.37. Let $A \in \mathbb{F}^{n \times n}$. Then, $\sigma_{1}(A)=\sigma_{n}(A)$ if and only if there exist $\lambda \in \mathbb{F}$ and a unitary matrix $B \in \mathbb{F}^{n \times n}$ such that $A=\lambda B$. (Proof: See 1098 pp . 149, 165].)

Fact 5.11.38. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is idempotent. Then, the following statements hold:
i) If σ is a singular value of A, then either $\sigma=0$ or $\sigma \geq 1$.
ii) If $A \neq 0$, then $\sigma_{\max }(A) \geq 1$.
iii) $\sigma_{\max }(A)=1$ if and only if A is a projector.
iv) If $1 \leq \operatorname{rank} A \leq n-1$, then

$$
\sigma_{\max }(A)=\sigma_{\max }\left(A_{\perp}\right)
$$

$v)$ If $A \neq 0$, then

$$
\sigma_{\max }(A)=\sigma_{\max }\left(A+A^{*}-I\right)=\sigma_{\max }\left(A+A^{*}\right)-1
$$

and

$$
\sigma_{\max }(I-2 A)=\sigma_{\max }(A)+\left[\sigma_{\max }^{2}(A)-1\right]^{1 / 2}
$$

(Proof: See [537, [723, 744]. Statement $i v$) is given in [536, p. 61] and follows from Fact 5.11.39,) (Problem: Use Fact 5.9.26 to prove iv).)

Fact 5.11.39. Let $A \in \mathbb{F}^{n \times n}$, assume that A is idempotent, and assume that $1 \leq \operatorname{rank} A \leq n-1$. Then,

$$
\sigma_{\max }(A)=\sigma_{\max }\left(A+A^{*}-I\right)=\frac{1}{\sin \theta}
$$

where $\theta \in(0, \pi / 2]$ is defined by

$$
\cos \theta=\max \left\{\left|x^{*} y\right|:(x, y) \in \mathcal{R}(A) \times \mathcal{N}(A) \text { and } x^{*} x=y^{*} y=1\right\}
$$

(Proof: See 537, 744.) (Remark: θ is the minimal principal angle. See Fact 2.9.19 and Fact 5.12.17) (Remark: Note that $\mathcal{N}(A)=\mathcal{R}\left(A_{\perp}\right)$. See Fact 3.12.3) (Remark: This result is due to Ljance.) (Remark: This result yields statement iii) of Fact 5.11.38,) (Remark: See Fact 10.9.18.)

Fact 5.11.40. Let $A \in \mathbb{R}^{n \times n}$, where $n \geq 2$, be the tridiagonal matrix

$$
A \triangleq\left[\begin{array}{cccccc}
b_{1} & c_{1} & 0 & \cdots & 0 & 0 \\
a_{1} & b_{2} & c_{2} & \cdots & 0 & 0 \\
0 & a_{2} & b_{3} & \ddots & 0 & 0 \\
\vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \ddots & b_{n-1} & c_{n-1} \\
0 & 0 & 0 & \cdots & a_{n-1} & b_{n}
\end{array}\right]
$$

and assume that, for all $i=1, \ldots, n-1, a_{i} c_{i}>0$ Then, A is simple, and every eigenvalue of A is real. Hence, $\operatorname{rank} A \geq n-1$. (Proof: $S A S^{-1}$ is symmetric, where $S \triangleq \operatorname{diag}\left(d_{1}, \ldots, d_{n}\right), d_{1} \triangleq 1$, and $d_{i+1} \triangleq\left(c_{i} / a_{i}\right)^{1 / 2} d_{i}$ for all $i=1, \ldots, n-1$. For a proof of the fact that A is simple, see [481, p. 198].) (Remark: See Fact 5.11.41)

Fact 5.11.41. Let $A \in \mathbb{R}^{n \times n}$, where $n \geq 2$, be the tridiagonal matrix

$$
A \triangleq\left[\begin{array}{cccccc}
b_{1} & c_{1} & 0 & \cdots & 0 & 0 \\
a_{1} & b_{2} & c_{2} & \cdots & 0 & 0 \\
0 & a_{2} & b_{3} & \ddots & 0 & 0 \\
\vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \ddots & b_{n-1} & c_{n-1} \\
0 & 0 & 0 & \cdots & a_{n-1} & b_{n}
\end{array}\right]
$$

and assume that, for all $i=1, \ldots, n-1, a_{i} c_{i} \neq 0$. Then, A is reducible. Furthermore, let k_{+}and k_{-}denote, respectively, the number of positive and negative numbers in the sequence

$$
1, a_{1} c_{1}, a_{1} a_{2} c_{1} c_{2}, \ldots, a_{1} a_{2} \cdots a_{n-1} c_{1} c_{2} \cdots c_{n-1} .
$$

Then, A has at least $\left|k_{+}-k_{-}\right|$distinct real eigenvalues, of which at least $\max \{0, n-$ $\left.3 \min \left\{k_{+}, k_{-}\right\}\right\}$are simple. (Proof: See [1376.) (Remark: Note that $k_{+}+k_{-}=n$ and $\left|k_{+}-k_{-}\right|=n-2 \min \left\{k_{+}, k_{-}\right\}$.) (Remark: This result yields Fact 5.11.40 as a special case.)

Fact 5.11.42. Let $A \in \mathbb{R}^{n \times n}$ be the tridiagonal matrix

$$
A \triangleq\left[\begin{array}{ccccccc}
0 & 1 & 0 & & & & \\
n-1 & 0 & 2 & & & 0 & \\
0 & n-2 & 0 & \ddots & & & \\
& \ddots & \ddots & \ddots & \ddots & & \\
& & \ddots & \ddots & 0 & n-2 & 0 \\
& 0 & & \ddots & 2 & 0 & n-1 \\
& & & & 0 & 1 & 0
\end{array}\right] .
$$

Then,

$$
\chi_{A}(s)=\prod_{i=1}^{n}[s-(n+1-2 i)] .
$$

Hence,

$$
\operatorname{spec}(A)= \begin{cases}\{n-1,-(n-1), \ldots, 1,-1\}, & n \text { even, } \\ \{n-1,-(n-1), \ldots, 2,-2,0\}, & n \text { odd. }\end{cases}
$$

(Proof: See [1260.)

Fact 5.11.43. Let $A \in \mathbb{R}^{n \times n}$, where $n \geq 1$, be the tridiagonal, Toeplitz matrix

$$
A \triangleq\left[\begin{array}{cccccc}
b & c & 0 & \cdots & 0 & 0 \\
a & b & c & \cdots & 0 & 0 \\
0 & a & b & \ddots & 0 & 0 \\
\vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \ddots & b & c \\
0 & 0 & 0 & \cdots & a & b
\end{array}\right]
$$

and assume that $a c>0$. Then,

$$
\operatorname{spec}(A)=\left\{b+2 \sqrt{a c} \cos \frac{i \pi}{n+1}: \quad i=1, \ldots, n\right\}
$$

(Remark: See [681, p. 522].) (Remark: See Fact 3.20.7.)
Fact 5.11.44. Let $A \in \mathbb{R}^{n \times n}$, where $n \geq 1$, be the tridiagonal, Toeplitz matrix

$$
A \triangleq\left[\begin{array}{cccccc}
0 & 1 / 2 & 0 & \cdots & 0 & 0 \\
1 / 2 & 0 & 1 / 2 & \cdots & 0 & 0 \\
0 & 1 / 2 & 0 & \ddots & 0 & 0 \\
\vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \ddots & 0 & 1 / 2 \\
0 & 0 & 0 & \cdots & 1 / 2 & 0
\end{array}\right]
$$

Then,

$$
\operatorname{spec}(A)=\left\{\cos \frac{i \pi}{n+1}: \quad i=1, \ldots, n\right\}
$$

and, for $i=1, \ldots, n$, associated mutually orthogonal eigenvectors satisfying $\left\|v_{i}\right\|_{2}=$ 1 are, respectively,

$$
v_{i}=\sqrt{\frac{2}{n+1}}\left[\begin{array}{c}
\sin \frac{i \pi}{n+1} \\
\sin \frac{2 i \pi}{n+1} \\
\vdots \\
\sin \frac{n i \pi}{n+1}
\end{array}\right]
$$

(Remark: See 822 .)
Fact 5.11.45. Let $A \in \mathbb{F}^{n \times n}$, and assume that A has real eigenvalues. Then,

$$
\begin{aligned}
\frac{1}{n} \operatorname{tr} A-\sqrt{\frac{n-1}{n}\left[\operatorname{tr} A^{2}-\frac{1}{n}(\operatorname{tr} A)^{2}\right]} & \leq \lambda_{\min }(A) \\
& \leq \frac{1}{n} \operatorname{tr} A-\sqrt{\frac{1}{n^{2}-n}\left[\operatorname{tr} A^{2}-\frac{1}{n}(\operatorname{tr} A)^{2}\right]} \\
& \leq \frac{1}{n} \operatorname{tr} A+\sqrt{\frac{1}{n^{2}-n}\left[\operatorname{tr} A^{2}-\frac{1}{n}(\operatorname{tr} A)^{2}\right]} \\
& \leq \lambda_{\max }(A) \\
& \leq \frac{1}{n} \operatorname{tr} A+\sqrt{\frac{n-1}{n}\left[\operatorname{tr} A^{2}-\frac{1}{n}(\operatorname{tr} A)^{2}\right]}
\end{aligned}
$$

Furthermore, for all $i=1, \ldots, n$,

$$
\left|\lambda_{i}(A)-\frac{1}{n} \operatorname{tr} A\right| \leq \sqrt{\frac{n-1}{n}\left[\operatorname{tr} A^{2}-\frac{1}{n}(\operatorname{tr} A)^{2}\right]} .
$$

Finally, if $n=2$, then
$\frac{1}{n} \operatorname{tr} A-\sqrt{\frac{1}{n} \operatorname{tr} A^{2}-\frac{1}{n^{2}}(\operatorname{tr} A)^{2}}=\lambda_{\min }(A) \leq \lambda_{\max }(A)=\frac{1}{n} \operatorname{tr} A+\sqrt{\frac{1}{n} \operatorname{tr} A^{2}-\frac{1}{n^{2}}(\operatorname{tr} A)^{2}}$.
(Proof: See 1448 1449.) (Remark: These inequalities are related to Fact 1.15.12)
Fact 5.11.46. Let $A \in \mathbb{F}^{n \times n}$, and let $\mu(A) \triangleq \min \{|\lambda|: \lambda \in \operatorname{spec}(A)\}$. Then,

$$
\frac{1}{n}|\operatorname{tr} A|-\sqrt{\frac{n-1}{n}\left(\operatorname{tr} A A^{*}-\frac{1}{n}|\operatorname{tr} A|^{2}\right)} \leq \mu(A) \leq \sqrt{\frac{1}{n} \operatorname{tr} A A^{*}}
$$

and

$$
\frac{1}{n}|\operatorname{tr} A| \leq \operatorname{sprad}(A) \leq \frac{1}{n}|\operatorname{tr} A|+\sqrt{\frac{n-1}{n}\left(\operatorname{tr} A A^{*}-\frac{1}{n}|\operatorname{tr} A|^{2}\right)} .
$$

(Proof: See Theorem 3.1 of [1448.)
Fact 5.11.47. Let $A \in \mathbb{F}^{n \times n}$, where $n \geq 2$, be the bidiagonal matrix

$$
A \triangleq\left[\begin{array}{cccccc}
a_{1} & b_{1} & 0 & \cdots & 0 & 0 \\
0 & a_{2} & b_{2} & \cdots & 0 & 0 \\
0 & 0 & a_{3} & \ddots & 0 & 0 \\
\vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \ddots & a_{n-1} & b_{n-1} \\
0 & 0 & 0 & \cdots & 0 & a_{n}
\end{array}\right]
$$

and assume that $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n-1}$ are nonzero. Then, the following statements hold:
${ }^{i}$) The singular values of A are distinct.
ii) If $B \in \mathbb{F}^{n \times n}$ is bidiagonal and $|B|=|A|$, then A and B have the same singular values.
iii) If $B \in \mathbb{F}^{n \times n}$ is bidiagonal, $|A| \leq|B|$, and $|A| \neq|B|$, then $\sigma_{\max }(A)<$ $\sigma_{\max }(B)$.
iv) If $B \in \mathbb{F}^{n \times n}$ is bidiagonal, $|I \circ A| \leq|I \circ B|$, and $|I \circ A| \neq|I \circ B|$, then $\sigma_{\min }(A)<\sigma_{\text {min }}(B)$.
v) If $B \in \mathbb{F}^{n \times n}$ is bidiagonal, $\left|I_{\text {sup }} \circ A\right| \leq\left|I_{\text {sup }} \circ B\right|$, and $\left|I_{\text {sup }} \circ A\right| \neq\left|I_{\text {sup }} \circ B\right|$, where $I_{\text {sup }}$ denotes the matrix all of whose entries on the superdiagonal are 1 and are 0 otherwise, then $\sigma_{\min }(B)<\sigma_{\min }(A)$.
(Proof: See [981, p. 17-5].)

5.12 Facts on Eigenvalues and Singular Values for Two or More Matrices

Fact 5.12.1. Let $A \in \mathbb{F}^{n \times n}$ and $B \in \mathbb{F}^{n \times m}$, let $r \triangleq \operatorname{rank} B$, and define $\mathcal{A} \triangleq\left[\begin{array}{cc}A & B \\ B^{*} & 0\end{array}\right]$. Then, $\nu_{-}(\mathcal{A}) \geq r, \nu_{0}(\mathcal{A}) \geq 0$, and $\nu_{+}(\mathcal{A}) \geq r$. If, in addition, $n=m$ and B is nonsingular, then $\operatorname{In} \mathcal{A}=\left[\begin{array}{lll}n & 0 & n\end{array}\right]^{\mathrm{T}}$. (Proof: See [717].) (Remark: See Proposition 5.6.6.)

Fact 5.12.2. Let $A, B \in \mathbb{F}^{n \times n}$. Then,

$$
\operatorname{sprad}(A+B) \leq \sigma_{\max }(A+B) \leq \sigma_{\max }(A)+\sigma_{\max }(B)
$$

If, in addition, A and B are Hermitian, then

$$
\operatorname{sprad}(A+B)=\sigma_{\max }(A+B) \leq \sigma_{\max }(A)+\sigma_{\max }(B)=\operatorname{sprad}(A)+\operatorname{sprad}(B)
$$

and

$$
\lambda_{\min }(A)+\lambda_{\min }(B) \leq \lambda_{\min }(A+B) \leq \lambda_{\max }(A+B) \leq \lambda_{\max }(A)+\lambda_{\max }(B)
$$

(Proof: Use Lemma 8.4 .3 for the last string of inequalities.) (Remark: See Fact 5.11.5)

Fact 5.12.3. Let $A, B \in \mathbb{F}^{n \times n}$, and let λ be an eigenvalue of $A+B$. Then,
$\frac{1}{2} \lambda_{\min }\left(A^{*}+A\right)+\frac{1}{2} \lambda_{\min }\left(B^{*}+B\right) \leq \operatorname{Re} \lambda \leq \frac{1}{2} \lambda_{\max }\left(A^{*}+A\right)+\frac{1}{2} \lambda_{\max }\left(B^{*}+B\right)$.
(Proof: See [311 p. 18].) (Remark: See Fact 5.11.21.)
Fact 5.12.4. Let $A, B \in \mathbb{F}^{n \times n}$ be normal, and let $\operatorname{mspec}(A)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ and $\operatorname{mspec}(B)=\left\{\mu_{1}, \ldots, \mu_{n}\right\}$. Then,

$$
\min \operatorname{Re} \sum_{i=1}^{n} \lambda_{i} \mu_{\sigma(i)} \leq \operatorname{Retr} A B \leq \max \operatorname{Re} \sum_{i=1}^{n} \lambda_{i} \mu_{\sigma(i)}
$$

where "max" and "min" are taken over all permutations σ of the eigenvalues of B. Now, assume that A and B are Hermitian. Then, $\operatorname{tr} A B$ is real, and

$$
\sum_{i=1}^{n} \lambda_{i}(A) \lambda_{n-i+1}(B) \leq \operatorname{tr} A B \leq \sum_{i=1}^{n} \lambda_{i}(A) \lambda_{i}(B)
$$

Furthermore, the last inequality is an identity if and only if there exists a unitary matrix $S \in \mathbb{F}^{n \times n}$ such that $A=S \operatorname{diag}\left[\lambda_{1}(A), \ldots, \lambda_{n}(A)\right] S^{*}$ and $B=$ $S \operatorname{diag}\left[\lambda_{1}(B), \ldots, \lambda_{n}(B)\right] S^{*}$. (Proof: See [957]. For the second string of inequalities, use Fact 1.16.4. For the last statement, see [239, p. 10] or [891.) (Remark: The upper bound for $\operatorname{tr} A B$ is due to Fan.) (Remark: See Fact 5.12.5, Fact 5.12.8, Proposition 8.4.13, Fact 8.12.28, and Fact 8.18.18,

Fact 5.12.5. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that B is Hermitian. Then,

$$
\sum_{i=1}^{n} \lambda_{i}\left[\frac{1}{2}\left(A+A^{*}\right)\right] \lambda_{n-i+1}(B) \leq \operatorname{Retr} A B \leq \sum_{i=1}^{n} \lambda_{i}\left[\frac{1}{2}\left(A+A^{*}\right)\right] \lambda_{i}(B)
$$

(Proof: Apply the second string of inequalities in Fact 5.12.4.) (Remark: For A, B real, these inequalities are given in 837. The complex case is given in 871.) (See

Proposition 8.4 .13 for the case in which B is positive semidefinite.)

Fact 5.12.6. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times n}$, and let $r \triangleq \min \{\operatorname{rank} A, \operatorname{rank} B\}$. Then,

$$
|\operatorname{tr} A B| \leq \sum_{i=1}^{r} \sigma_{i}(A) \sigma_{i}(B)
$$

(Proof: See [971, pp. 514, 515] or [1098, p. 148].) (Remark: Applying Fact 5.12.4 to $\left[\begin{array}{cc}0 & A \\ A^{*} & 0\end{array}\right]$ and $\left[\begin{array}{cc}0 & B^{*} \\ B & 0\end{array}\right]$ and using Proposition 5.6 .6 yields the weaker result

$$
|\operatorname{Retr} A B| \leq \sum_{i=1}^{r} \sigma_{i}(A) \sigma_{i}(B)
$$

See [239, p. 14].) (Remark: This result is due to Mirsky.) (Remark: See Fact 5.12.7) (Remark: A generalization is given by Fact 9.14.3.)

Fact 5.12.7. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that B is positive semidefinite. Then,

$$
|\operatorname{tr} A B| \leq \sigma_{\max }(A) \operatorname{tr} B
$$

(Proof: Apply Fact 5.12.6.) (Remark: A generalization is given by Fact 9.14.4.)
Fact 5.12.8. Let $A, B \in \mathbb{R}^{n \times n}$, assume that B is symmetric, and define $C \triangleq$ $\frac{1}{2}\left(A+A^{\mathrm{T}}\right)$. Then,

$$
\begin{aligned}
\lambda_{\min }(C) \operatorname{tr} B- & \lambda_{\min }(B)\left[n \lambda_{\min }(C)-\operatorname{tr} A\right] \\
& \leq \operatorname{tr} A B \leq \lambda_{\max }(C) \operatorname{tr} B-\lambda_{\max }(B)\left[n \lambda_{\max }(C)-\operatorname{tr} A\right]
\end{aligned}
$$

(Proof: See 468.) (Remark: See Fact 5.12.4, Proposition 8.4.13, and Fact 8.12.28, Extensions are given in 1071.)

Fact 5.12.9. Let $A, B, Q, S_{1}, S_{2} \in \mathbb{R}^{n \times n}$, assume that A and B are symmetric, assume that Q, S_{1}, and S_{2} are orthogonal, assume that $S_{1}^{\mathrm{T}} A S_{1}$ and $S_{2}^{\mathrm{T}} B S_{2}$ are diagonal with the diagonal entries arranged in nonincreasing order, and define the orthogonal matrices $Q_{1}, Q_{2} \in \mathbb{R}^{n \times n}$ by $Q_{1} \triangleq S_{1} \operatorname{revdiag}(\pm 1, \ldots, \pm 1) S_{1}^{\mathrm{T}}$ and $Q_{2} \triangleq$ $S_{2} \operatorname{diag}(\pm 1, \ldots, \pm 1) S_{2}^{\mathrm{T}}$. Then,

$$
\operatorname{tr} A Q_{1} B Q_{1}^{\mathrm{T}} \leq \operatorname{tr} A Q B Q^{\mathrm{T}} \leq \operatorname{tr} A Q_{2} B Q_{2}^{\mathrm{T}}
$$

(Proof: See [156, 891].) (Remark: See Fact 5.12.8)
Fact 5.12.10. Let $A_{1}, \ldots, A_{k}, B_{1}, \ldots, B_{k} \in \mathbb{F}^{n \times n}$, and assume that A_{1}, \ldots, A_{k} are unitary. Then,

$$
\left|\operatorname{tr} A_{1} B_{1} \cdots A_{k} B_{k}\right| \leq \sum_{i=1}^{n} \sigma_{i}\left(B_{1}\right) \cdots \sigma_{i}\left(B_{k}\right)
$$

(Proof: See [971, p. 516].) (Remark: This result is due to Fan.) (Remark: See Fact 5.12.9.)

Fact 5.12.11. Let $A, B \in \mathbb{R}^{n \times n}$, and assume that $A B=B A$. Then,

$$
\operatorname{sprad}(A B) \leq \operatorname{sprad}(A) \operatorname{sprad}(B)
$$

and

$$
\operatorname{sprad}(A+B) \leq \operatorname{sprad}(A)+\operatorname{sprad}(B)
$$

(Proof: Use Fact 5.17.4) (Remark: If $A B \neq B A$, then both of these inequalities may be violated. Consider $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$.)

Fact 5.12.12. Let $A, B \in \mathbb{C}^{n \times n}$, assume that A and B are normal, and let $\operatorname{mspec}(A)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}_{\mathrm{ms}}$ and $\operatorname{mspec}(B)=\left\{\mu_{1}, \ldots, \mu_{n}\right\}_{\mathrm{ms}}$. Then,

$$
|\operatorname{det}(A+B)| \leq \min \left\{\prod_{i=1}^{n} \max _{j=1, \ldots, n}\left|\lambda_{i}+\mu_{j}\right|, \prod_{j=1}^{n} \max _{i=1, \ldots, n}\left|\lambda_{i}+\mu_{j}\right|\right\}
$$

(Proof: See [1110.) (Remark: Equality is discussed in [161].) (Remark: See Fact 9.14.18,)

Fact 5.12.13. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{n \times m}$. Then,

$$
\operatorname{det}\left(A B B^{*} A^{*}\right) \leq\left[\prod_{i=1}^{m} \sigma_{i}(B)\right] \operatorname{det}\left(A A^{*}\right)
$$

(Proof: See [447, p. 218].)
Fact 5.12.14. Let $A, B, C \in \mathbb{F}^{n \times n}$, assume that $\operatorname{spec}(A) \cap \operatorname{spec}(B)=\varnothing$, and assume that $[A+B, C]=0$ and $[A B, C]=0$. Then, $[A, C]=[B, C]=0$. (Proof: The result follows from Corollary [7.2.5.) (Remark: This result is due to Embry. See 217.)

Fact 5.12.15. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are projectors. Then,

$$
\operatorname{spec}(A B) \subset[0,1]
$$

and

$$
\operatorname{spec}(A-B) \subset[-1,1]
$$

(Proof: See [38, [536, p. 53], or [1098, p. 147].) (Remark: The first result is due to Afriat.)

Fact 5.12.16. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are projectors. Then, the following statements are equivalent:
i) $A B$ is a projector.
ii) $\operatorname{spec}(A+B) \subset\{0\} \cup[1, \infty)$.
iii) $\operatorname{spec}(A-B) \subset\{-1,0,1\}$.
(Proof: See [537, 598.) (Remark: See Fact 3.13.20 and Fact 6.4.23.)
Fact 5.12.17. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are nonzero projectors, and define the minimal principal angle $\theta \in[0, \pi / 2]$ by

$$
\cos \theta=\max \left\{\left|x^{*} y\right|:(x, y) \in \mathcal{R}(A) \times \mathcal{R}(B) \text { and } x^{*} x=y^{*} y=1\right\}
$$

Then, the following statements hold:
i) $\sigma_{\max }(A B)=\sigma_{\max }(B A)=\cos \theta$.
ii) $\sigma_{\max }(A+B)=1+\sigma_{\max }(A B)=1+\cos \theta$.
iii) $1 \leq \sigma_{\max }(A B)+\sigma_{\max }(A-B)$.
iv) If $\sigma_{\max }(A-B)<1$, then $\operatorname{rank} A=\operatorname{rank} B$.
v) $\theta>0$ if and only if $\mathcal{R}(A) \cap \mathcal{R}(B)=\{0\}$.

Furthermore, the following statements are equivalent:
vi) $A-B$ is nonsingular.
vii) $\mathcal{R}(A)$ and $\mathcal{R}(B)$ are complementary subspaces.
viii) $\sigma_{\max }(A+B-I)<1$.

Now, assume that $A-B$ is nonsingular. Then, the following statements hold:
ix) $\sigma_{\max }(A B)<1$.
x) $\sigma_{\max }\left[(A-B)^{-1}\right]=\frac{1}{\sqrt{1-\sigma_{\max }^{2}(A B)}}=1 / \sin \theta$.
xi) $\sigma_{\min }(A-B)=\sin \theta$.
xii) $\sigma_{\min }^{2}(A-B)+\sigma_{\max }^{2}(A B)=1$.
xiii) $I-A B$ is nonsingular.
xiv) If $\operatorname{rank} A=\operatorname{rank} B$, then $\sigma_{\max }(A-B)=\sin \theta$.
(Proof: Statement i) is given in 744. Statement $i i$) is given in 537. Statement iii) follows from the first inequality in Fact 8.18.11. For $i v$), see [447, p. 195] or [560 p. 389]. Statement v) is given in [560, p. 393]. Fact 3.13.24 shows that vi) and vii) are equivalent. Statement viii) is given in [272]; see also [536 p. 236]. Statement xiv) follows from [1230, pp. 92, 93].) (Remark: Additional conditions for the nonsingularity of $A-B$ are given in Fact 3.13.24.) (Remark: See Fact 2.9.19 and Fact 5.11.39.) (Remark: See Fact 5.12.18.)

Fact 5.12.18. Let $A \in \mathbb{F}^{n \times n}$, assume that A is idempotent, and let $P, Q \in$ $\mathbb{F}^{n \times n}$, where P is the projector onto $\mathcal{R}(A)$ and Q is the projector onto $\mathcal{N}(A)$. Then, the following statements hold:
i) $P-Q$ is nonsingular.
ii) $(P-Q)^{-1}=A+A^{*}-I=A-A_{\perp}^{*}$.
iii) $\sigma_{\max }(A)=\frac{1}{\sqrt{1-\sigma_{\max }^{2}(P Q)}}=\sigma_{\max }\left[(P-Q)^{-1}\right]=\sigma_{\max }\left(A+A^{*}-I\right)$.
iv) $\sigma_{\max }(A)=1 / \sin \theta$, where θ is the minimal principal angle $\theta \in[0, \pi / 2]$ defined by

$$
\cos \theta=\max \left\{\left|x^{*} y\right|:(x, y) \in \mathcal{R}(P) \times \mathcal{R}(Q) \text { and } x^{*} x=y^{*} y=1\right\}
$$

v) $\sigma_{\min }^{2}(P-Q)=1-\sigma_{\max }^{2}(P Q)$.
vi) $\sigma_{\max }(P Q)=\sigma_{\max }(Q P)=\sigma_{\max }(P+Q-I)<1$.
(Proof: See 1115 and Fact 5.12.17. The nonsingularity of $P-Q$ follows from Fact
3.13.24. Statement $i i$) is given by Fact 3.13 .24 and Fact 6.3.25. The first identity in iii) is given in [272]. See also 537].) (Remark: A_{\perp}^{*} is the idempotent matrix onto $\mathcal{R}(A)^{\perp}$ along $\mathcal{N}(A)^{\perp}$. See Fact 3.12.3,) (Remark: $P=A A^{+}$and $Q=I-A^{+} A$.)

Fact 5.12.19. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are idempotent. Then, $A-B$ is idempotent if and only if $A-B$ is group invertible and every eigenvalue of $A-B$ is nonnegative. (Proof: See [649].) (Remark: This result is due to Makelainen and Styan.) (Remark: See Fact 3.12.29, (Remark: Conditions for a matrix to be expressible as a difference of idempotents are given in [649.)

Fact 5.12.20. Let $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}$, and $C \in \mathbb{R}^{m \times m}$, define $\mathcal{A} \triangleq$ $\left[\begin{array}{cc}A & B \\ B^{\mathrm{T}} & C\end{array}\right] \in \mathbb{R}^{(n+m) \times(n+m)}$, and assume that \mathcal{A} is symmetric. Then,

$$
\lambda_{\min }(\mathcal{A})+\lambda_{\max }(\mathcal{A}) \leq \lambda_{\max }(A)+\lambda_{\max }(C)
$$

(Proof: See [223] p. 56].)
Fact 5.12.21. Let $M \in \mathbb{R}^{r \times r}$, assume that M is positive definite, let $C, K \in$ $\mathbb{R}^{r \times r}$, assume that C and K are positive semidefinite, and consider the equation

$$
M \ddot{q}+C \dot{q}+K q=0 .
$$

Then, $x(t) \triangleq\left[\begin{array}{c}q(t) \\ \dot{q}(t)\end{array}\right]$ satisfies $\dot{x}(t)=A x(t)$, where A is the $2 r \times 2 r$ matrix

$$
A \triangleq\left[\begin{array}{cc}
0 & I \\
-M^{-1} K & -M^{-1} C
\end{array}\right]
$$

Furthermore, the following statements hold:
i) A, K, and M satisfy

$$
\operatorname{det} A=\frac{\operatorname{det} K}{\operatorname{det} M} .
$$

ii) A and K satisfy

$$
\operatorname{rank} A=r+\operatorname{rank} K
$$

iii) A is nonsingular if and only if K is positive definite. In this case,

$$
A^{-1}=\left[\begin{array}{cc}
-K^{-1} C & -K^{-1} M \\
I & 0
\end{array}\right]
$$

iv) Let $\lambda \in \mathbb{C}$. Then, $\lambda \in \operatorname{spec}(A)$ if and only if $\operatorname{det}\left(\lambda^{2} M+\lambda C+K\right)=0$.
$v)$ If $\lambda \in \operatorname{spec}(A), \operatorname{Re} \lambda=0$, and $\operatorname{Im} \lambda \neq 0$, then λ is semisimple.
vi) $\operatorname{mspec}(A) \subset$ CLHP.
vii) If $C=0$, then $\operatorname{spec}(A) \subset \jmath \mathbb{R}$.
viii) If C and K are positive definite, then $\operatorname{spec}(A) \subset$ OLHP.
ix) $\hat{x}(t) \triangleq\left[\begin{array}{c}\frac{1}{\sqrt{2}} K^{1 / 2} q(t) \\ \frac{1}{\sqrt{2}} M^{1 / 2} \dot{q}(t)\end{array}\right]$ satisfies $\dot{x}(t)=\hat{A} x(t)$, where

$$
\hat{A} \triangleq\left[\begin{array}{cc}
0 & K^{1 / 2} M^{-1 / 2} \\
-M^{-1 / 2} K^{1 / 2} & -M^{-1 / 2} C M^{-1 / 2}
\end{array}\right]
$$

If, in addition, $C=0$, then \hat{A} is skew symmetric.
x) $\hat{x}(t) \triangleq\left[\begin{array}{l}M^{1 / 2} q(t) \\ M^{1 / 2} \dot{q}(t)\end{array}\right]$ satisfies $\dot{x}(t)=\hat{A} x(t)$, where

$$
\hat{A} \triangleq\left[\begin{array}{cc}
0 & I \\
-M^{-1 / 2} K M^{-1 / 2} & -M^{-1 / 2} C M^{-1 / 2}
\end{array}\right]
$$

If, in addition, $C=0$, then \hat{A} is Hamiltonian.
(Remark: M, C, and K are mass, damping, and stiffness matrices, respectively. See [186].) (Remark: See Fact 11.18.38,) (Problem: Prove v).)

Fact 5.12.22. Let $A, B \in \mathbb{R}^{n \times n}$, and assume that A and B are positive semidefinite. Then, every eigenvalue λ of $\left[\begin{array}{cc}0 & B \\ -A & 0\end{array}\right]$ satisfies $\operatorname{Re} \lambda=0$. (Proof: Square this matrix.) (Problem: What happens if A and B have different dimensions?) In addition, let $C \in \mathbb{R}^{n \times n}$, and assume that C is (positive semidefinite, positive definite). Then, every eigenvalue of $\left[\begin{array}{cc}0 & A \\ { }_{-B} & { }_{-C}\end{array}\right]$ satisfies $(\operatorname{Re} \lambda \leq 0, \operatorname{Re} \lambda<0)$. (Problem: Consider also $\left[\begin{array}{cc}-C & A \\ -B & -C\end{array}\right]$ and $\left[\begin{array}{cc}-C & A \\ -A & -C\end{array}\right]$.)

5.13 Facts on Matrix Pencils

Fact 5.13.1. Let $A, B \in \mathbb{F}^{n \times n}$, assume that $P_{A, B}$ is a regular pencil, let $\mathcal{S} \subseteq \mathbb{F}^{n}$, assume that \mathcal{S} is a subspace, let $k \triangleq \operatorname{dim} \mathcal{S}$, let $S \in \mathbb{F}^{n \times k}$, and assume that $\mathcal{R}(S)=\mathcal{S}$. Then, the following statements are equivalent:
i) $\operatorname{dim}(A \mathcal{S}+B \mathcal{S})=\operatorname{dim} \mathcal{S}$.
ii) There exists a matrix $M \in \mathbb{F}^{k \times k}$ such that $A S=B S M$.
(Proof: See [872, p. 144].) (Remark: \mathcal{S} is a deflating subspace of $P_{A, B}$. This result generalizes Fact 2.9.25.)

5.14 Facts on Matrix Eigenstructure

Fact 5.14.1. Let $A \in \mathbb{F}^{n \times n}$. Then, $\operatorname{rank} A=1$ if and only if $\operatorname{gmult}_{A}(0)=$ $n-1$. In this case, $\operatorname{mspec}(A)=\{\operatorname{tr} A, 0, \ldots, 0\}_{\mathrm{ms}}$. (Proof: Use Proposition 5.5.3.) (Remark: See Fact 2.10.19.)

Fact 5.14.2. Let $A \in \mathbb{F}^{n \times n}$, let $\lambda \in \operatorname{spec}(A)$, assume that λ is cyclic, let $i \in\{1, \ldots, n\}$ be such that $\operatorname{rank}(A-\lambda I)_{\left(\{i\}^{\sim},\{1, \ldots, n\}\right)}=n-1$, and define $x \in \mathbb{C}^{n}$ by

$$
x \triangleq\left[\begin{array}{c}
\operatorname{det}(A-\lambda I)_{[i ; 1]} \\
-\operatorname{det}(A-\lambda I)_{[i ; 2]} \\
\vdots \\
(-1)^{n+1} \operatorname{det}(A-\lambda I)_{[i ; n]}
\end{array}\right] .
$$

Then, x is an eigenvector of A associated with λ. (Proof: See [1339].)

Fact 5.14.3. Let $n \geq 2, x, y \in \mathbb{F}^{n}$, define $A \triangleq x y^{T}$, and assume that rank $A=$ 1 , that is, A is nonzero. Then, the following statements are equivalent:
i) A is semisimple.
ii) $y^{\mathrm{T}} x \neq 0$.
iii) $\operatorname{tr} A \neq 0$.
iv) A is group invertible.
$v) \operatorname{ind} A=1$.
vi) $\operatorname{amult}_{A}(0)=n-1$.

Furthermore, the following statements are equivalent:
vii) A is defective.
viii) $y^{\mathrm{T}} x=0$.
ix) $\operatorname{tr} A=0$.
x) A is not group invertible.
xi) ind $A=2$.
xii) A is nilpotent.
xiii) $\operatorname{amult}_{A}(0)=n$.
xiv) $\operatorname{spec}(A)=\{0\}$.
(Remark: See Fact 2.10.19,
Fact 5.14.4. Let $A \in \mathbb{F}^{n \times n}$. Then, the following statements are equivalent:
i) A is group invertible.
ii) $\mathcal{R}(A)=\mathcal{R}\left(A^{2}\right)$.
iii) ind $A \leq 1$.
iv) $\operatorname{rank} A=\sum_{i=1}^{r} \operatorname{amult}_{A}\left(\lambda_{i}\right)$, where $\lambda_{1}, \ldots, \lambda_{r}$ are the nonzero eigenvalues of A.

Fact 5.14.5. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is diagonalizable over \mathbb{F}. Then, $A^{\mathrm{T}}, \bar{A}, A^{*}$, and A^{A} are diagonalizable. If, in addition, A is nonsingular, then A^{-1} is diagonalizable. (Proof: See Fact 2.16.10 and Fact 3.7.10.)

Fact 5.14.6. Let $A \in \mathbb{F}^{n \times n}$, assume that A is diagonalizable over \mathbb{F} with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$, and let $B \triangleq \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$. If, $x_{1}, \ldots, x_{n} \in \mathbb{F}^{n}$ are linearly independent eigenvectors of A associated with $\lambda_{1}, \ldots, \lambda_{n}$, respectively, then $A=$ $S B S^{-1}$, where $S \triangleq\left[\begin{array}{lll}x_{1} & \cdots & x_{n}\end{array}\right]$. Conversely, if $S \in \mathbb{F}^{n \times n}$ is nonsingular and $A=S B S^{-1}$, then, for all $i=1, \ldots, n, \operatorname{col}_{i}(S)$ is an associated eigenvector.

Fact 5.14.7. Let $A \in \mathbb{F}^{n \times n}$, let $S \in \mathbb{F}^{n \times n}$, assume that S is nonsingular, let $\lambda \in \mathbb{C}$, and assume that $\operatorname{row}_{1}\left(S^{-1} A S\right)=\lambda e_{1}^{\mathrm{T}}$. Then, $\lambda \in \operatorname{spec}(A)$, and $\operatorname{col}_{1}(S)$ is an associated eigenvector.

Fact 5.14.8. Let $A \in \mathbb{C}^{n \times n}$. Then, there exist $v_{1}, \ldots, v_{n} \in \mathbb{C}^{n}$ such that the following statements hold:
i) $v_{1}, \ldots, v_{n} \in \mathbb{C}^{n}$ are linearly independent.
ii) For each $k \times k$ Jordan block of A associated with $\lambda \in \operatorname{spec}(A)$, there exist $v_{i_{1}}, \ldots, v_{i_{k}}$ such that

$$
\begin{aligned}
A v_{i_{1}} & =\lambda v_{i_{1}} \\
A v_{i_{2}} & =\lambda v_{i_{2}}+v_{i_{1}} \\
& \vdots \\
A v_{i_{k}} & =\lambda v_{i_{k}}+v_{i_{k-1}} .
\end{aligned}
$$

iii) Let λ and $v_{i_{1}}, \ldots, v_{i_{k}}$ be given by $\left.i i\right)$. Then,

$$
\operatorname{span}\left\{v_{i_{1}}, \ldots, v_{i_{k}}\right\}=\mathcal{N}\left[(\lambda I-A)^{k}\right]
$$

(Remark: v_{1}, \ldots, v_{n} are generalized eigenvectors of A.) (Remark: $\left(v_{i_{1}}, \ldots, v_{i_{k}}\right)$ is a Jordan chain of A associated with λ. See [867] pp. 229-231].) (Remark: See Fact 11.13.7.)

Fact 5.14.9. Let $A \in \mathbb{F}^{n \times n}$. Then, A is cyclic if and only if there exists a vector $b \in \mathbb{F}^{n}$ such that $\left[\begin{array}{llll}b & A b & \cdots & A^{n-1} b\end{array}\right]$ is nonsingular. (Proof: See Fact 12.20.13, (Remark: (A, b) is controllable. See Corollary 12.6.3.)

Fact 5.14.10. Let $A \in \mathbb{F}^{n \times n}$, and define the positive integer m by

$$
m \triangleq \max _{\lambda \in \operatorname{spec}(A)} \operatorname{gmult}_{A}(\lambda)
$$

Then, m is the smallest integer such that there exists $B \in \mathbb{F}^{n \times m}$ such that $\operatorname{rank}\left[\begin{array}{llll}B & A B & \cdots & A^{n-1} B\end{array}\right]=n$. (Proof: See Fact 12.20.13.) (Remark: (A, B) is controllable. See Corollary 12.6 .3)

Fact 5.14.11. Let $A \in \mathbb{R}^{n \times n}$. Then, A is cyclic and semisimple if and only if A is simple.

Fact 5.14.12. Let $A=\operatorname{revdiag}\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n \times n}$. Then, A is semisimple if and only if, for all $i=1, \ldots, n, a_{i}$ and a_{n+1-i} are either both zero or both nonzero. (Proof: See [626, p. 116], [804, or [1098, pp. 68, 86].)

Fact 5.14.13. Let $A \in \mathbb{F}^{n \times n}$. Then, A has at least m real eigenvalues and m associated linearly independent eigenvectors if and only if there exists a positivesemidefinite matrix $S \in \mathbb{F}^{n \times n}$ such that rank $S=m$ and $A S=S A^{*}$. (Proof: See [1098, pp. 68, 86].) (Remark: See Proposition 5.5.12,) (Remark: This result is due to Drazin and Haynsworth.)

Fact 5.14.14. Let $A \in \mathbb{F}^{n \times n}$, assume that A is normal, and let $\operatorname{mspec}(A)=$ $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}_{\mathrm{ms}}$. Then, there exist vectors $x_{1}, \ldots, x_{n} \in \mathbb{C}^{n}$ such that $x_{i}^{*} x_{j}=\delta_{i j}$ for all $i, j=1, \ldots, n$ and

$$
A=\sum_{i=1}^{n} \lambda_{i} x_{i} x_{i}^{*}
$$

(Remark: This result is a restatement of Corollary 5.4.4.)
Fact 5.14.15. Let $A \in \mathbb{F}^{n \times n}$, and let $\operatorname{mspec}(A)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}_{\mathrm{ms}}$, where $\left|\lambda_{1}\right| \geq$ $\cdots \geq\left|\lambda_{n}\right|$. Then, the following statements are equivalent:
i) A is normal.
ii) For all $i=1, \ldots, n,\left|\lambda_{i}\right|=\sigma_{i}(A)$.
iii) $\sum_{i=1}^{n}\left|\lambda_{i}\right|^{2}=\sum_{i=1}^{n} \sigma_{i}^{2}(A)$.
$i v)$ There exists $p \in \mathbb{F}[s]$ such that $A=p\left(A^{*}\right)$.
$v)$ Every eigenvector of A is also an eigenvector of A^{*}.
vi) $A A^{*}-A^{*} A$ is either positive semidefinite or negative semidefinite.
vii) For all $x \in \mathbb{F}^{n}, x^{*} A^{*} A x=x^{*} A A^{*} x$.
viii) For all $x, y \in \mathbb{F}^{n}, x^{*} A^{*} A y=x^{*} A A^{*} y$.

In this case,

$$
\operatorname{sprad}(A)=\sigma_{\max }(A)
$$

(Proof: See [589] or [1098, p. 146].) (Remark: See Fact 9.11.2] and Fact 9.8.13)
Fact 5.14.16. Let $A \in \mathbb{F}^{n \times n}$. Then, the following statements are equivalent:
i) A is (simple, cyclic, derogatory, semisimple, defective, diagonalizable over $\mathbb{F})$.
ii) There exists $\alpha \in \mathbb{F}$ such that $A+\alpha I$ is (simple, cyclic, derogatory, semisimple, defective, diagonalizable over \mathbb{F}).
iii) For all $\alpha \in \mathbb{F}, A+\alpha I$ is (simple, cyclic, derogatory, semisimple, defective, diagonalizable over \mathbb{F}).

Fact 5.14.17. Let $x, y \in \mathbb{F}^{n}$, assume that $x^{\mathrm{T}} y \neq 1$, and define the elementary matrix $A \triangleq I-x y^{\mathrm{T}}$. Then, A is semisimple if and only if either $x y^{\mathrm{T}}=0$ or $x^{\mathrm{T}} y \neq 0$. (Remark: Use Fact 5.14.3 and Fact 5.14.16)

Fact 5.14.18. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is nilpotent. Then, A is nonzero if and only if A is defective.

Fact 5.14.19. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is either involutory or skew involutory. Then, A is semisimple.

Fact 5.14.20. Let $A \in \mathbb{R}^{n \times n}$, and assume that A is involutory. Then, A is diagonalizable over \mathbb{R}.

Fact 5.14.21. Let $A \in \mathbb{F}^{n \times n}$, assume that A is semisimple, and assume that $A^{3}=A^{2}$. Then, A is idempotent.

Fact 5.14.22. Let $A \in \mathbb{F}^{n \times n}$. Then, A is cyclic if and only if every matrix $B \in \mathbb{F}^{n \times n}$ satisfying $A B=B A$ is a polynomial in A. (Proof: See [711, p. 275].) (Remark: See Fact 2.18.9, Fact 5.14.23, Fact 5.14.24, and Fact 7.5.2,

Fact 5.14.23. Let $A \in \mathbb{F}^{n \times n}$, assume that A is simple, let $B \in \mathbb{F}^{n \times n}$, and assume that $A B=B A$. Then, B is a polynomial in A whose degree is not greater than $n-1$. (Proof: See [1490, p. 59].) (Remark: See Fact 5.14.22,

Fact 5.14.24. Let $A, B \in \mathbb{F}^{n \times n}$. Then, B is a polynomial in A if and only if B commutes with every matrix that commutes with A. (Proof: See [711, p. 276].) (Remark: See Fact 4.8.13,) (Remark: See Fact 2.18.9, Fact 5.14.22, Fact 5.14.23, and Fact 7.5.2,

Fact 5.14.25. Let $A, B \in \mathbb{C}^{n \times n}$, assume that $A B=B A$, let $x \in \mathbb{C}^{n}$ be an eigenvector of A with associated eigenvalue $\lambda \in \mathbb{C}$, and assume that $B x \neq 0$. Then, $B x$ is an eigenvector of A with associated eigenvalue $\lambda \in \mathbb{C}$. (Proof: $A(B x)=$ $B A x=B(\lambda x)=\lambda(B x)$.

Fact 5.14.26. Let $A \in \mathbb{C}^{n \times n}$, and let $x \in \mathbb{C}^{n}$ be an eigenvector of A with associated eigenvalue λ. If A is nonsingular, then x is an eigenvector of A^{A} with associated eigenvalue $(\operatorname{det} A) / \lambda$. If $\operatorname{rank} A=n-1$, then x is an eigenvector of A^{A} with associated eigenvalue $\operatorname{tr} A^{\mathrm{A}}$ or 0 . Finally, if $\operatorname{rank} A \leq n-2$, then x is an eigenvector of A^{A} with associated eigenvalue 0. (Proof: Use Fact 5.14.25 and the fact that $A^{\mathrm{A}} A=A A^{\mathrm{A}}$. See [354.) (Remark: See Fact 2.16.8 or Fact 6.3.6.)

Fact 5.14.27. Let $A, B \in \mathbb{C}^{n \times n}$. Then, the following statements are equivalent:
i) $\cap_{k, l=1}^{n-1} \mathcal{N}\left(\left[A^{k}, B^{l}\right]\right) \neq\{0\}$.
ii) $\sum_{k, l=1}^{n-1}\left[A^{k}, B^{l}\right]^{*}\left[A^{k}, B^{l}\right]$ is singular.
iii) A and B have a common eigenvector.
(Proof: See [547].) (Remark: This result is due to Shemesh.) (Remark: See Fact 5.17.1.)

Fact 5.14.28. Let $A, B \in \mathbb{C}^{n \times n}$, and assume that $A B=B A$. Then, there exists a nonzero vector $x \in \mathbb{C}^{n}$ that is an eigenvector of both A and B. (Proof: See [709, p. 51].)

Fact 5.14.29. Let $A, B \in \mathbb{F}^{n \times n}$. Then, the following statements hold:
i) Assume that A and B are Hermitian. Then, $A B$ is Hermitian if and only if $A B=B A$.
ii) A is normal if and only if, for all $C \in \mathbb{F}^{n \times n}, A C=C A$ implies that $A^{*} C=C A^{*}$.
iii) Assume that B is Hermitian and $A B=B A$. Then, $A^{*} B=B A^{*}$.
iv) Assume that A and B are normal and $A B=B A$. Then, $A B$ is normal.
v) Assume that A, B, and $A B$ are normal. Then, $B A$ is normal.
vi) Assume that A and B are normal and either A or B has the property that distinct eigenvalues have unequal absolute values. Then, $A B$ is normal if and only if $A B=B A$.
(Proof: See [358, 1428, [630, p. 157], and [1098] p. 102].)
Fact 5.14.30. Let $A, B, C \in \mathbb{F}^{n \times n}$, and assume that A and B are normal and $A C=C B$. Then, $A^{*} C=C B^{*}$. (Proof: Consider $\left[\begin{array}{cc}A & 0 \\ 0 & B\end{array}\right]$ and $\left[\begin{array}{cc}0 & C \\ 0 & 0\end{array}\right]$ in $i i$) of Fact 5.14.29, See [627, p. 104] or [630, p. 321].) (Remark: This result is the Putnam-Fuglede theorem.)

Fact 5.14.31. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A is dissipative and B is range Hermitian. Then,

$$
\text { ind } B=\operatorname{ind} A B
$$

(Proof: See [189].)
Fact 5.14.32. Let $A \in \mathbb{F}^{n \times n}, B \in \mathbb{F}^{n \times m}$, and $C \in \mathbb{F}^{m \times m}$. Then,

$$
\max \{\operatorname{ind} A, \text { ind } C\} \leq \operatorname{ind}\left[\begin{array}{cc}
A & B \\
0 & C
\end{array}\right] \leq \operatorname{ind} A+\operatorname{ind} C
$$

If C is nonsingular, then

$$
\operatorname{ind}\left[\begin{array}{cc}
A & B \\
0 & C
\end{array}\right]=\operatorname{ind} A
$$

whereas, if A is nonsingular, then

$$
\text { ind }\left[\begin{array}{cc}
A & B \\
0 & C
\end{array}\right]=\operatorname{ind} C
$$

(Proof: See [265, 999].) (Remark: See Fact 6.6.13]) (Remark: The eigenstructure of a partitioned Hamiltonian matrix is considered in Fact 12.23.1)

Fact 5.14.33. Let $A, B \in \mathbb{R}^{n \times n}$, and assume that A and B are skew symmetric. Then, there exists an orthogonal matrix $S \in \mathbb{R}^{n \times n}$ such that

$$
A=S\left[\begin{array}{cc}
0_{(n-l) \times(n-l)} & A_{12} \\
-A_{12}^{\mathrm{T}} & A_{22}
\end{array}\right] S^{\mathrm{T}}
$$

and

$$
B=S\left[\begin{array}{cc}
B_{11} & B_{12} \\
-B_{12}^{\mathrm{T}} & 0_{l \times l}
\end{array}\right] S^{\mathrm{T}}
$$

where $l \triangleq\lfloor n / 2\rfloor$. Consequently,

$$
\operatorname{mspec}(A B)=\operatorname{mspec}\left(-A_{12} B_{12}^{\mathrm{T}}\right) \cup \operatorname{mspec}\left(-A_{12}^{\mathrm{T}} B_{12}\right)
$$

and thus every nonzero eigenvalue of $A B$ has even algebraic multiplicity. (Proof: See 30.)

Fact 5.14.34. Let $A, B \in \mathbb{R}^{n \times n}$, and assume that A and B are skew symmetric. If n is even, then there exists a monic polynomial p of degree $n / 2$ such that $\chi_{A B}(s)=p^{2}(s)$ and $p(A B)=0$. If n is odd, then there exists a monic polynomial $p(s)$ of degree $(n-1) / 2$ such that $\chi_{A B}(s)=s p^{2}(s)$ and $A B p(A B)=0$. Consequently, if n is (even, odd), then $\chi_{A B}$ is (even, odd) and (every, every nonzero) eigenvalue of $A B$ has even algebraic multiplicity and geometric multiplicity of at least 2. (Proof: See 418, 578].)

Fact 5.14.35. Let $q(t)$ denote the displacement of a mass $m>0$ connected to a spring $k \geq 0$ and dashpot $c \geq 0$ and subject to a force $f(t)$. Then, $q(t)$ satisfies

$$
m \ddot{q}(t)+c \dot{q}(t)+k q(t)=f(t)
$$

or

$$
\ddot{q}(t)+\frac{c}{m} \dot{q}(t)+\frac{k}{m} q(t)=\frac{1}{m} f(t) .
$$

Now, define the natural frequency $\omega_{\mathrm{n}} \triangleq \sqrt{k / m}$ and, if $k>0$, the damping ratio $\zeta \triangleq c / 2 \sqrt{k m}$ to obtain

$$
\ddot{q}(t)+2 \zeta \omega_{\mathrm{n}} \dot{q}(t)+\omega_{\mathrm{n}}^{2} q(t)=\frac{1}{m} f(t)
$$

If $k=0$, then set $\omega_{\mathrm{n}}=0$ and $\zeta \omega_{\mathrm{n}}=c / 2 m$. Next, define $x_{1}(t) \triangleq q(t)$ and $x_{2}(t) \triangleq \dot{q}(t)$ so that this equation can be written as

$$
\left[\begin{array}{c}
\dot{x}_{1}(t) \\
\dot{x}_{2}(t)
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-\omega_{\mathrm{n}}^{2} & -2 \zeta \omega_{\mathrm{n}}
\end{array}\right]\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\left[\begin{array}{c}
0 \\
1 / m
\end{array}\right] f(t)
$$

The eigenvalues of the companion matrix $A_{\mathrm{c}} \triangleq\left[\begin{array}{cc}0 & 1 \\ -\omega_{\mathrm{n}}^{2} & -2 \zeta \omega_{\mathrm{n}}\end{array}\right]$ are given by

$$
\operatorname{mspec}\left(A_{\mathrm{c}}\right)= \begin{cases}\left\{-\zeta \omega_{\mathrm{n}}-\jmath \omega_{\mathrm{d}},-\zeta \omega_{n}+\jmath \omega_{\mathrm{d}}\right\}_{\mathrm{ms}}, & 0 \leq \zeta \leq 1 \\ \left\{\left(-\zeta-\sqrt{\zeta^{2}-1}\right) \omega_{\mathrm{n}},\left(-\zeta+\sqrt{\zeta^{2}-1}\right) \omega_{\mathrm{n}}\right\}, & \zeta>1\end{cases}
$$

where $\omega_{\mathrm{d}} \triangleq \omega_{\mathrm{n}} \sqrt{1-\zeta^{2}}$ is the damped natural frequency. The matrix A_{c} has repeated eigenvalues in exactly two cases, namely,

$$
\operatorname{mspec}\left(A_{\mathrm{c}}\right)= \begin{cases}\{0,0\}_{\mathrm{ms}}, & \omega_{\mathrm{n}}=0 \\ \left\{-\omega_{\mathrm{n}},-\omega_{\mathrm{n}}\right\}_{\mathrm{ms}}, & \zeta=1\end{cases}
$$

In both of these cases the matrix A_{c} is defective. In the case $\omega_{\mathrm{n}}=0$, the matrix A_{c} is also in Jordan form, while, in the case $\zeta=1$, it follows that $A_{\mathrm{c}}=S A_{\mathrm{J}} S^{-1}$, where $S \triangleq\left[\begin{array}{cc}-1 & 0 \\ \omega_{\mathrm{n}} & -1\end{array}\right]$ and A_{J} is the Jordan form matrix $A_{\mathrm{J}} \triangleq\left[\begin{array}{cc}-\omega_{\mathrm{n}} & 1 \\ 0 & -\omega_{\mathrm{n}}\end{array}\right]$. If A_{c} is not defective, that is, if $\omega_{\mathrm{n}} \neq 0$ and $\zeta \neq 1$, then the Jordan form A_{J} of A_{c} is given by

$$
A_{\mathrm{J}} \triangleq \begin{cases}{\left[\begin{array}{cc}
-\zeta \omega_{\mathrm{n}}+\jmath \omega_{\mathrm{d}} & 0 \\
0 & -\zeta \omega_{\mathrm{n}}-\jmath \omega_{\mathrm{d}}
\end{array}\right],} & 0 \leq \zeta<1, \omega_{\mathrm{n}} \neq 0, \\
{\left[\begin{array}{cc}
\left(-\zeta-\sqrt{\zeta^{2}-1}\right) \omega_{\mathrm{n}} & 0 \\
0 & \left(-\zeta+\sqrt{\zeta^{2}-1}\right) \omega_{\mathrm{n}}
\end{array}\right],} & \zeta>1, \omega_{\mathrm{n}} \neq 0 .\end{cases}
$$

In the case $0 \leq \zeta<1$ and $\omega_{\mathrm{n}} \neq 0$, define the real normal form

$$
A_{\mathrm{n}} \triangleq\left[\begin{array}{cc}
-\zeta \omega_{\mathrm{n}} & \omega_{\mathrm{d}} \\
-\omega_{\mathrm{d}} & -\zeta \omega_{\mathrm{n}}
\end{array}\right]
$$

The matrices $A_{\mathrm{c}}, A_{\mathrm{J}}$, and A_{n} are related by the similarity transformations

$$
A_{\mathrm{c}}=S_{1} A_{\mathrm{J}} S_{1}^{-1}=S_{2} A_{\mathrm{n}} S_{2}^{-1}, \quad A_{\mathrm{J}}=S_{3} A_{\mathrm{n}} S_{3}^{-1}
$$

where

$$
\begin{array}{ll}
S_{1} \triangleq\left[\begin{array}{cc}
1 & 1 \\
-\zeta \omega_{\mathrm{n}}+\jmath \omega_{\mathrm{d}} & -\zeta \omega_{\mathrm{n}}-\jmath \omega_{\mathrm{d}}
\end{array}\right], & S_{1}^{-1}=\frac{\jmath}{2 \omega_{\mathrm{d}}}\left[\begin{array}{cc}
-\zeta \omega_{\mathrm{n}}-\jmath \omega_{\mathrm{d}} & -1 \\
\zeta \omega_{\mathrm{n}}-\jmath \omega_{\mathrm{d}} & 1
\end{array}\right] \\
S_{2} \triangleq \frac{1}{\omega_{\mathrm{d}}}\left[\begin{array}{cc}
1 & 0 \\
-\zeta \omega_{\mathrm{n}} & \omega_{\mathrm{d}}
\end{array}\right], & S_{2}^{-1}=\left[\begin{array}{cc}
\omega_{\mathrm{d}} & 0 \\
\zeta \omega_{\mathrm{n}} & 1
\end{array}\right] \\
S_{3} \triangleq \frac{1}{2 \omega_{\mathrm{d}}}\left[\begin{array}{cc}
1 & -\jmath \\
1 & \jmath
\end{array}\right], & S_{3}^{-1}=\omega_{\mathrm{d}}\left[\begin{array}{cc}
1 & 1 \\
\jmath & -\jmath
\end{array}\right]
\end{array}
$$

In the case $\zeta>1$ and $\omega_{\mathrm{n}} \neq 0$, the matrices A_{c} and A_{J} are related by

$$
A_{\mathrm{c}}=S_{4} A_{\mathrm{J}} S_{4}^{-1}
$$

where

$$
S_{4} \triangleq\left[\begin{array}{cc}
1 & 1 \\
-\zeta \omega_{\mathrm{n}}+\jmath \omega_{\mathrm{d}} & -\zeta \omega_{\mathrm{n}}-\jmath \omega_{\mathrm{d}}
\end{array}\right], \quad S_{4}^{-1}=\frac{\jmath}{2 \omega_{\mathrm{d}}}\left[\begin{array}{cc}
-\zeta \omega_{\mathrm{n}}-\jmath \omega_{\mathrm{d}} & -1 \\
\zeta \omega_{\mathrm{n}}-\jmath \omega_{\mathrm{d}} & 1
\end{array}\right] .
$$

Finally, define the energy-coordinates matrix

$$
A_{\mathrm{e}} \triangleq\left[\begin{array}{cc}
0 & \omega_{\mathrm{n}} \\
-\omega_{\mathrm{n}} & -2 \zeta \omega_{\mathrm{n}}
\end{array}\right]
$$

Then, $A_{\mathrm{e}}=S_{5} A_{\mathrm{c}} S_{5}^{-1}$, where

$$
S_{5} \triangleq \sqrt{\frac{m}{2}}\left[\begin{array}{cc}
1 & 0 \\
0 & 1 / \omega_{\mathrm{n}}
\end{array}\right]
$$

(Remark: m and k are not necessarily integers here.)

5.15 Facts on Matrix Factorizations

Fact 5.15.1. Let $A \in \mathbb{F}^{n \times n}$. Then, A is normal if and only if there exists a unitary matrix $S \in \mathbb{F}^{n \times n}$ such that $A^{*}=A S$. (Proof: See [1098, pp. 102, 113].)

Fact 5.15.2. Let $A \in \mathbb{C}^{n \times n}$. Then, there exists a nonsingular matrix $S \in$ $\mathbb{C}^{n \times n}$ such that $S A S^{-1}$ is symmetric. (Proof: See [709] p. 209].) (Remark: The symmetric matrix is a complex symmetric Jordan form.) (Remark: See Corollary 5.3.8) (Remark: The coefficient of the last matrix in [709, p. 209] should be $\jmath / 2$.)

Fact 5.15.3. Let $A \in \mathbb{C}^{n \times n}$, and assume that A^{2} is normal. Then, the following statements hold:
i) There exists a unitary matrix $S \in \mathbb{C}^{n \times n}$ such that $S A S^{-1}$ is symmetric.
ii) There exists a symmetric unitary matrix $S \in \mathbb{C}^{n \times n}$ such that $A^{\mathrm{T}}=S A S^{-1}$. (Proof: See 1375.)

Fact 5.15.4. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is nonsingular. Then, A^{-1} and A^{*} are similar if and only if there exists a nonsingular matrix $B \in \mathbb{F}^{n \times n}$ such that $A=B^{-1} B^{*}$. Furthermore, A is unitary if and only if there exists a normal,
nonsingular matrix $B \in \mathbb{F}^{n \times n}$ such that $A=B^{-1} B^{*}$. (Proof: See 398]. Sufficiency in the second statement follows from Fact 3.11.4.)

Fact 5.15.5. Let $A \in \mathbb{F}^{m \times m}$ and $B \in \mathbb{F}^{n \times n}$. Then, there exist matrices $C \in \mathbb{F}^{m \times n}$ and $D \in \mathbb{F}^{n \times m}$ such that $A=C D$ and $B=D C$ if and only if the following statements hold:
i) The Jordan blocks associated with nonzero eigenvalues are identical in A and B.
ii) Let $n_{1} \geq n_{2} \geq \cdots \geq n_{r}$ denote the orders of the Jordan blocks of A associated with $0 \in \operatorname{spec}(A)$, and let $m_{1} \geq m_{2} \geq \cdots \geq m_{r}$ denote the orders of the Jordan blocks of B associated with $0 \in \operatorname{spec}(B)$, where $n_{i}=0$ or $m_{i}=0$ as needed. Then, $\left|n_{i}-m_{i}\right| \leq 1$ for all $i=1, \ldots, r$.
(Proof: See [771].) (Remark: See Fact 5.15.6.)
Fact 5.15.6. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are nonsingular. Then, A and B are similar if and only if there exist nonsingular matrices $C, D \in$ $\mathbb{F}^{n \times n}$ such that $A=C D$ and $B=D C$. (Proof: Sufficiency follows from Fact 5.10.11, Necessity is a special case of Fact 5.15.5.)

Fact 5.15.7. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are nonsingular. Then, $\operatorname{det} A=\operatorname{det} B$ if and only if there exist nonsingular matrices $C, D, E \in \mathbb{R}^{n \times n}$ such that $A=C D E$ and $B=E D C$. (Remark: This result is due to Shoda and Taussky-Todd. See [258].)

Fact 5.15.8. Let $A \in \mathbb{F}^{n \times n}$. Then, there exist matrices $B, C \in \mathbb{F}^{n \times n}$ such that B is unitary, C is upper triangular, and $A=B C$. If, in addition, A is nonsingular, then there exist unique matrices $B, C \in \mathbb{F}^{n \times n}$ such that B is unitary, C is upper triangular with positive diagonal entries, and $A=B C$. (Proof: See [709 p. 112] or 1129 p. 362].) (Remark: This result is the $Q R$ decomposition. The orthogonal matrix B is constructed as a product of elementary reflectors.)

Fact 5.15.9. Let $A \in \mathbb{F}^{n \times m}$, and assume that $\operatorname{rank} A=m$. Then, there exist a unique matrix $B \in \mathbb{F}^{n \times m}$ and a matrix $C \in \mathbb{F}^{m \times m}$ such that $B^{*} B=I_{m}, C$ is upper triangular with positive diagonal entries, and $A=B C$. (Proof: See 709, p. 15] or $\left[1129\right.$ p. 206].) (Remark: $C \in \mathrm{UT}_{+}(n)$. See Fact 3.21.5) (Remark: This factorization is a consequence of Gram-Schmidt orthonormalization.)

Fact 5.15.10. Let $A \in \mathbb{F}^{n \times n}$, let $r \triangleq \operatorname{rank} A$, and assume that the first r leading principal subdeterminants of A are nonzero. Then, there exist matrices $B, C \in \mathbb{F}^{n \times n}$ such that B is lower triangular, C is upper triangular, and $A=B C$. Either B or C can be chosen to be nonsingular. Furthermore, both B and C are nonsingular if and only if A is nonsingular. (Proof: See [709, p. 160].) (Remark: This result is the $L U$ decomposition.) (Remark: All LU factorizations of a singular matrix are characterized in 424 .)

Fact 5.15.11. Let $\theta \in(-\pi, \pi)$. Then,

$$
\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]=\left[\begin{array}{cc}
1 & -\tan (\theta / 2) \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
\sin \theta & 1
\end{array}\right]\left[\begin{array}{cc}
1 & -\tan (\theta / 2) \\
0 & 1
\end{array}\right]
$$

(Remark: This result is a ULU factorization involving three shear factors. The matrix $-I_{2}$ requires four factors. In general, all factors may be different. See [1240, 1311].)

Fact 5.15.12. Let $A \in \mathbb{F}^{n \times n}$. Then, A is nonsingular if and only if A is the product of elementary matrices. (Problem: How many factors are needed?)

Fact 5.15.13. Let $A \in \mathbb{F}^{n \times n}$, assume that A is a projector, and let $r \triangleq \operatorname{rank} A$. Then, there exist nonzero vectors $x_{1}, \ldots, x_{n-r} \in \mathbb{F}^{n}$ such that $x_{i}^{*} x_{j}=0$ for all $i \neq j$ and such that

$$
A=\prod_{i=1}^{n-r}\left[I-\left(x_{i}^{*} x_{i}\right)^{-1} x_{i} x_{i}^{*}\right] .
$$

(Remark: Every projector is the product of mutually orthogonal elementary projectors.) (Proof: A is unitarily similar to $\operatorname{diag}(1, \ldots, 1,0, \ldots, 0)$, which can be written as the product of elementary projectors.)

Fact 5.15.14. Let $A \in \mathbb{F}^{n \times n}$. Then, A is a reflector if and only if there exist $m \leq n$ nonzero vectors $x_{1}, \ldots, x_{m} \in \mathbb{F}^{n}$ such that $x_{i}^{*} x_{j}=0$ for all $i \neq j$ and such that

$$
A=\prod_{i=1}^{m}\left[I-2\left(x_{i}^{*} x_{i}\right)^{-1} x_{i} x_{i}^{*}\right]
$$

In this case, m is the algebraic multiplicity of $-1 \in \operatorname{spec}(A)$. (Remark: Every reflector is the product of mutually orthogonal elementary reflectors.) (Proof: A is unitarily similar to $\operatorname{diag}(\pm 1, \ldots, \pm 1)$, which can be written as the product of elementary reflectors.)

Fact 5.15.15. Let $A \in \mathbb{R}^{n \times n}$. Then, A is orthogonal if and only if there exist $m \in \mathbb{P}$ and nonzero vectors $x_{1}, \ldots, x_{m} \in \mathbb{R}^{n}$ such that $\operatorname{det} A=(-1)^{m}$ and

$$
A=\prod_{i=1}^{m}\left[I-2\left(x_{i}^{\mathrm{T}} x_{i}\right)^{-1} x_{i} x_{i}^{\mathrm{T}}\right]
$$

(Remark: Every orthogonal matrix is the product of elementary reflectors. This factorization is a result of Cartan and Dieudonné. See [103, p. 24] and [1168, 1354. The minimal number of factors is unsettled. See Fact 3.14.4 and Fact 3.9.5 The complex case is open.)

Fact 5.15.16. Let $A \in \mathbb{R}^{n \times n}$, where $n \geq 2$. Then, A is orthogonal and $\operatorname{det} A=$ 1 if and only if there exist $m \in \mathbb{P}$ such that $1 \leq m \leq n(n-1) / 2, \theta_{1}, \ldots, \theta_{m} \in \mathbb{R}$, and $j_{1}, \ldots, j_{m}, k_{1}, \ldots, k_{m} \in\{1, \ldots, n\}$ such that

$$
A=\prod_{i=1}^{m} P\left(\theta_{i}, j_{i}, k_{i}\right)
$$

where

$$
P(\theta, j, k) \triangleq I_{n}+[(\cos \theta)-1]\left(E_{j, j}+E_{k, k}\right)+(\sin \theta)\left(E_{j, k}-E_{k, j}\right)
$$

(Proof: See 471].) (Remark: $P(\theta, j, k)$ is a plane or Givens rotation. See Fact 3.9.5.) (Remark: Suppose that $\operatorname{det} A=-1$, and let $B \in \mathbb{R}^{n \times n}$ be an elementary reflector. Then, $A B \in \mathrm{SO}(n)$. Therefore, the factorization given above holds with an additional elementary reflector.) (Problem: Generalize this result to $\mathbb{C}^{n \times n}$.) (Remark: See [887].)

Fact 5.15.17. Let $A \in \mathbb{F}^{n \times n}$. Then, $A^{2 *} A=A^{*} A^{2}$ if and only if there exist a projector $B \in \mathbb{F}^{n \times n}$ and a Hermitian matrix $C \in \mathbb{F}^{n \times n}$ such that $A=B C$. (Proof: See [1114.)

Fact 5.15.18. Let $A \in \mathbb{R}^{n \times n}$. Then, $|\operatorname{det} A|=1$ if and only if A is the product of $n+2$ or fewer involutory matrices that have exactly one negative eigenvalue. In addition, the following statements hold:
i) If $n=2$, then 3 or fewer factors are needed.
ii) If $A \neq \alpha I$ for all $\alpha \in \mathbb{R}$ and $\operatorname{det} A=(-1)^{n}$, then n or fewer factors are needed.
iii) If $\operatorname{det} A=(-1)^{n+1}$, then $n+1$ or fewer factors are needed.
(Proof: See [298, 1112].) (Remark: The minimal number of factors for a unitary matrix A is given in 417.)

Fact 5.15.19. Let $A \in \mathbb{C}^{n \times n}$, and define $r_{0} \triangleq n$ and $r_{k} \triangleq \operatorname{rank} A^{k}$ for all $k=1,2, \ldots$ Then, there exists a matrix $B \in \mathbb{C}^{n \times n}$ such that $A=B^{2}$ if and only if the sequence $\left(r_{k}-r_{k+1}\right)_{k=0}^{\infty}$ does not contain two elements that are the same odd integer and, if $r_{0}-r_{1}$ is odd, then $r_{0}+r_{2} \geq 1+2 r_{1}$. Now, assume that $A \in \mathbb{R}^{n \times n}$. Then, there exists $B \in \mathbb{R}^{n \times n}$ such that $A=B^{2}$ if and only if the above condition holds and, for every negative eigenvalue λ of A and for every positive integer k, the Jordan form of A has an even number of $k \times k$ blocks associated with λ. (Proof: See [711, p. 472].) (Remark: See Fact 11.18.36) (Remark: For all $l \geq 2, A \triangleq N_{l}$ does not have a square root.) (Remark: Uniqueness is discussed in [769. Square roots of A that are functions of A are defined in 678.) (Remark: The principal square root is considered in Theorem 10.6.1.) (Remark: m th roots are considered in 329, 683, 1101, 1263.)

Fact 5.15.20. Let $A \in \mathbb{C}^{n \times n}$, and assume that A is group invertible. Then, there exists $B \in \mathbb{C}^{n \times n}$ such that $A=B^{2}$.

Fact 5.15.21. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is nonsingular and has no negative eigenvalues. Furthermore, define $\left(P_{k}\right)_{k=0}^{\infty} \subset \mathbb{F}^{n \times n}$ and $\left(Q_{k}\right)_{k=0}^{\infty} \subset \mathbb{F}^{n \times n}$ by

$$
P_{0} \triangleq A, \quad Q_{0} \triangleq I
$$

and, for all $k \geq 1$,

$$
\begin{aligned}
P_{k+1} & \triangleq \frac{1}{2}\left(P_{k}+Q_{k}^{-1}\right) \\
Q_{k+1} & \triangleq \frac{1}{2}\left(Q_{k}+P_{k}^{-1}\right)
\end{aligned}
$$

Then,

$$
B \triangleq \lim _{k \rightarrow \infty} P_{k}
$$

exists, satisfies $B^{2}=A$, and is the unique square root of A satisfying $\operatorname{spec}(B) \subset$ ORHP. Furthermore,

$$
\lim _{k \rightarrow \infty} Q_{k}=A^{-1}
$$

(Proof: See [397, 677.) (Remark: All indicated inverses exist.) (Remark: This sequence is related to Newton's iteration for the matrix sign function. See Fact 10.10.2.) (Remark: See Fact 8.9.32,

Fact 5.15.22. Let $A \in \mathbb{F}^{n \times n}$, assume that A is positive semidefinite, and let $r \triangleq \operatorname{rank} A$. Then, there exists $B \in \mathbb{F}^{n \times r}$ such that $A=B B^{*}$.

Fact 5.15.23. Let $A \in \mathbb{F}^{n \times n}$, and let $k \geq 1$. Then, there exists a unique matrix $B \in \mathbb{F}^{n \times n}$ such that

$$
A=B\left(B^{*} B\right)^{k}
$$

(Proof: See 1091.)
Fact 5.15.24. Let $A \in \mathbb{F}^{n \times n}$. Then, there exist symmetric matrices $B, C \in$ $\mathbb{F}^{n \times n}$, one of which is nonsingular, such that $A=B C$. (Proof: See [1098, p. 82].) (Remark: Note that

$$
\left[\begin{array}{ccc}
\beta_{1} & \beta_{2} & 1 \\
\beta_{2} & 1 & 0 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-\beta_{0} & -\beta_{1} & -\beta_{2}
\end{array}\right]=\left[\begin{array}{ccc}
-\beta_{0} & 0 & 0 \\
0 & \beta_{2} & 1 \\
0 & 1 & 0
\end{array}\right]
$$

and use Theorem 5.2.3) (Remark: This result is due to Frobenius. The identity is a Bezout matrix factorization; see Fact 4.8.6. See [240, 241, 628].) (Remark: B and C are symmetric for $\mathbb{F}=\mathbb{C}$.)

Fact 5.15.25. Let $A \in \mathbb{C}^{n \times n}$. Then, $\operatorname{det} A$ is real if and only if A is the product of four Hermitian matrices. Furthermore, four is the smallest number of factors in general. (Proof: See [1459].)

Fact 5.15.26. Let $A \in \mathbb{R}^{n \times n}$. Then, the following statements hold:
i) A is the product of two positive-semidefinite matrices if and only if A is similar to a positive-semidefinite matrix.
ii) If A is nilpotent, then A is the product of three positive-semidefinite matrices.
iii) If A is singular, then A is the product of four positive-semidefinite matrices.
iv) $\operatorname{det} A>0$ and $A \neq \alpha I$ for all $\alpha \leq 0$ if and only if A is the product of four positive-definite matrices.
$v) \operatorname{det} A>0$ if and only if A is the product of five positive-definite matrices.
(Proof: [117, 628, 1458, 1459.) (Remark: See [1459] for factorizations of complex matrices and operators.) (Example for v):

$$
\left.\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]=\left[\begin{array}{cc}
2 & 0 \\
0 & 1 / 2
\end{array}\right]\left[\begin{array}{cc}
5 & 7 \\
7 & 10
\end{array}\right]\left[\begin{array}{cc}
13 / 2 & -5 \\
-5 & 4
\end{array}\right]\left[\begin{array}{cc}
8 & 5 \\
5 & 13 / 4
\end{array}\right]\left[\begin{array}{cc}
25 / 8 & -11 / 2 \\
-11 / 2 & 10
\end{array}\right] .\right)
$$

Fact 5.15.27. Let $A \in \mathbb{R}^{n \times n}$. Then, the following statements hold:
i) $A=B C$, where $B \in \mathbf{S}^{n}$ and $C \in \mathbf{N}^{n}$, if and only if A^{2} is diagonalizable over \mathbb{R} and $\operatorname{spec}(A) \subset[0, \infty)$.
ii) $A=B C$, where $B \in \mathbf{S}^{n}$ and $C \in \mathbf{P}^{n}$, if and only if A is diagonalizable over \mathbb{R}.
iii) $A=B C$, where $B, C \in \mathbf{N}^{n}$, if and only if $A=D E$, where $D \in \mathbf{N}^{n}$ and $E \in \mathbf{P}^{n}$.
iv) $A=B C$, where $B \in \mathbf{N}^{n}$ and $C \in \mathbf{P}^{n}$, if and only if A is diagonalizable over \mathbb{R} and $\operatorname{spec}(A) \subset[0, \infty)$.
v) $A=B C$, where $B, C \in \mathbf{P}^{n}$, if and only if A is diagonalizable over \mathbb{R} and $\operatorname{spec}(A) \subset[0, \infty)$.
(Proof: See 706, 1453, 1458].)
Fact 5.15.28. Let $A \in \mathbb{F}^{n \times n}$. Then, A is singular or the identity if and only if A is the product of n or fewer idempotent matrices in $\mathbb{F}^{n \times n}$, each of whose rank is equal to $\operatorname{rank} A$. Furthermore, $\operatorname{rank}(A-I) \leq k \operatorname{def} A$, where $k \geq 1$, if and only if A is the product of k idempotent matrices. (Examples:

$$
\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 / 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
0 & 1 / 2 \\
0 & 1
\end{array}\right]
$$

and

$$
\left.\left[\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right] .\right)
$$

(Proof: See 711, 125, 378, 460.)
Fact 5.15.29. Let $A \in \mathbb{R}^{n \times n}$, assume that A is singular, and assume that A is not a 2×2 nilpotent matrix. Then, there exist nilpotent matrices $B, C \in \mathbb{R}^{n \times n}$ such that $A=B C$ and $\operatorname{rank} A=\operatorname{rank} B=\operatorname{rank} C$. (Proof: See [1215, 1457]. See also 1248.)

Fact 5.15.30. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is idempotent. Then, there exist $B, C \in \mathbb{F}^{n \times n}$ such that B is positive definite, C is positive semidefinite, and $A=B C$. (Proof: See 1324.)

Fact 5.15.31. Let $A \in \mathbb{R}^{n \times n}$, and assume that A is nonsingular. Then, A is similar to A^{-1} if and only if A is the product of two involutory matrices. If, in addition, A is orthogonal, then A is the product of two reflectors. (Proof: See [123, 414, 1451, 1452] or [1098 p. 108].) (Problem: Construct these reflectors for $A=\left[\begin{array}{c}\cos \theta \sin \theta \\ -\sin \theta \cos \theta\end{array}\right]$.)

Fact 5.15.32. Let $A \in \mathbb{R}^{n \times n}$. Then, $|\operatorname{det} A|=1$ if and only if A is the product of four or fewer involutory matrices. (Proof: [124, 611, 1214].)

Fact 5.15.33. Let $A \in \mathbb{R}^{n \times n}$, where $n \geq 2$. Then, A is the product of two commutators. (Proof: See [1459].)

Fact 5.15.34. Let $A \in \mathbb{R}^{n \times n}$, and assume that $\operatorname{det} A=1$. Then, there exist nonsingular matrices $B, C \in \mathbb{R}^{n \times n}$ such that $A=B C B^{-1} C^{-1}$. (Proof: See 1191.) (Remark: The product is a multiplicative commutator. This result is due to Shoda.)

Fact 5.15.35. Let $A \in \mathbb{R}^{n \times n}$, assume that A is orthogonal, and assume that $\operatorname{det} A=1$. Then, there exist reflectors $B, C \in \mathbb{R}^{n \times n}$ such that $A=B C B^{-1} C^{-1}$. (Proof: See 1268.)

Fact 5.15.36. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is nonsingular. Then, there exists an involutory matrix $B \in \mathbb{F}^{n \times n}$ and a symmetric matrix $C \in \mathbb{F}^{n \times n}$ such that $A=B C$. (Proof: See [577].)

Fact 5.15.37. Let $A \in \mathbb{F}^{n \times n}$, and assume that n is even. Then, the following statements are equivalent:
i) A is the product of two skew-symmetric matrices.
ii) Every elementary divisor of A has even algebraic multiplicity.
iii) There exists a matrix $B \in \mathbb{F}^{n / 2 \times n / 2}$ such that A is similar to $\left[\begin{array}{ll}B & 0 \\ 0 & B\end{array}\right]$.
(Remark: In i) the factors are skew symmetric even when A is complex.) (Proof: See [578, 1459].)

Fact 5.15.38. Let $A \in \mathbb{C}^{n \times n}$, and assume that $n \geq 4$ and n is even. Then, A is the product of five skew-symmetric matrices in $\mathbb{C}^{n \times n}$. (Proof: See [857, 858.)

Fact 5.15.39. Let $A \in \mathbb{F}^{n \times n}$. Then, there exist a symmetric matrix $B \in \mathbb{F}^{n \times n}$ and a skew-symmetric matrix $C \in \mathbb{F}^{n \times n}$ such that $A=B C$ if and only if A is similar to $-A$. (Proof: See [1135].)

Fact 5.15.40. Let $A \in \mathbb{F}^{n \times m}$, and let $r \triangleq \operatorname{rank} A$. Then, there exist matrices $B \in \mathbb{F}^{n \times r}$ and $C \in \mathbb{R}^{r \times m}$ such that $A=B C$ and $\operatorname{rank} B=\operatorname{rank} C=r$.

Fact 5.15.41. Let $A \in \mathbb{F}^{n \times n}$. Then, A is diagonalizable over \mathbb{F} with (nonnegative, positive) eigenvalues if and only if there exist (positive-semidefinite, positivedefinite) matrices $B, C \in \mathbb{F}^{n \times n}$ such that $A=B C$. (Proof: To prove sufficiency, use Theorem 8.3.5 and note that

$$
\left.A=S^{-1}\left(S B S^{*}\right)\left(S^{-*} C S^{-1}\right) S .\right)
$$

5.16 Facts on Companion, Vandermonde, and Circulant Matrices

Fact 5.16.1. Let $p \in \mathbb{F}[s]$, where $p(s)=s^{n}+\beta_{n-1} s^{n-1}+\cdots+\beta_{0}$, and define $C_{\mathrm{b}}(p), C_{\mathrm{r}}(p), C_{\mathrm{t}}(p), C_{\mathrm{l}}(p) \in \mathbb{F}^{n \times n}$ by

$$
\begin{aligned}
& C_{\mathrm{b}}(p) \triangleq\left[\begin{array}{cccccc}
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \ddots & 0 & 0 \\
0 & 0 & 0 & \ddots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 1 \\
-\beta_{0} & -\beta_{1} & -\beta_{2} & \cdots & -\beta_{n-2} & -\beta_{n-1}
\end{array}\right], \\
& C_{\mathrm{r}}(p) \triangleq\left[\begin{array}{cccccc}
0 & 0 & 0 & \cdots & 0 & -\beta_{0} \\
1 & 0 & 0 & \cdots & 0 & -\beta_{1} \\
0 & 1 & 0 & \cdots & 0 & -\beta_{2} \\
\vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ddots & 0 & -\beta_{n-2} \\
0 & 0 & 0 & \cdots & 1 & -\beta_{n-1}
\end{array}\right], \\
& C_{\mathrm{t}}(p) \triangleq\left[\begin{array}{cccccc}
-\beta_{n-1} & -\beta_{n-2} & \cdots & -\beta_{2} & -\beta_{1} & -\beta_{0} \\
1 & 0 & \cdots & 0 & 0 & 0 \\
\vdots & \ddots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & \ddots & 0 & 0 & 0 \\
0 & 0 & \ddots & 1 & 0 & 0 \\
0 & 0 & \cdots & 0 & 1 & 0
\end{array}\right], \\
& C_{\mathrm{l}}(p) \triangleq\left[\begin{array}{cccccc}
-\beta_{n-1} & 1 & \cdots & 0 & 0 & 0 \\
-\beta_{n-2} & 0 & \ddots & 0 & 0 & 0 \\
\vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\
-\beta_{2} & 0 & \cdots & 0 & 1 & 0 \\
-\beta_{1} & 0 & \cdots & 0 & 0 & 1 \\
-\beta_{0} & 0 & \cdots & 0 & 0 & 0
\end{array}\right] .
\end{aligned}
$$

Then,

$$
\begin{gathered}
C_{\mathrm{r}}(p)=C_{\mathrm{b}}^{\mathrm{T}}(p), \quad C_{\mathrm{l}}(p)=C_{\mathrm{t}}^{\mathrm{T}}(p) \\
C_{\mathrm{t}}(p)=\hat{I} C_{\mathrm{b}}(p) \hat{I}, \quad C_{\mathrm{l}}(p)=\hat{I} C_{\mathrm{r}}(p) \hat{I}
\end{gathered}
$$

$$
C_{\mathrm{l}}(p)=C_{\mathrm{b}}^{\hat{\mathrm{T}}}(p), \quad C_{\mathrm{t}}(p)=C_{\mathrm{r}}^{\hat{\mathrm{T}}}(p)
$$

and

$$
\chi_{C_{\mathrm{b}}(p)}=\chi_{C_{\mathrm{r}}(p)}=\chi_{C_{\mathrm{t}}(p)}=\chi_{C_{1}(p)}=p
$$

Furthermore,

$$
C_{\mathrm{r}}(p)=S C_{\mathrm{b}}(p) S^{-1}
$$

and

$$
C_{\mathrm{l}}(p)=\hat{S} C_{\mathrm{t}}(p) \hat{S}^{-1}
$$

where $S, \hat{S} \in \mathbb{F}^{n \times n}$ are the Hankel matrices
and

$$
\hat{S} \triangleq \hat{I} S \hat{I}=\left[\begin{array}{ccccc}
0 & 0 & \cdots & 0 & 1 \\
0 & 0 & . \cdot & 1 & \beta_{n-1} \\
\vdots & . & . & . & \vdots \\
0 & 1 & . & \beta_{3} & \beta_{2} \\
1 & \beta_{n-1} & \cdots & \beta_{2} & \beta_{1}
\end{array}\right]
$$

(Remark: $\left(C_{\mathrm{b}}(p), C_{\mathrm{r}}(p), C_{\mathrm{t}}(p), C_{\mathrm{l}}(p)\right)$ are the (bottom, right, top, left) companion matrices. Note that $C_{\mathrm{b}}(p)=C(p)$. See [144, p. 282] and [787, p. 659].) (Remark: $S=B(p, 1)$, where $B(p, 1)$ is a Bezout matrix. See Fact 4.8.6.)

Fact 5.16.2. Let $p \in \mathbb{F}[s]$, where $p(s)=s^{n}+\beta_{n-1} s^{n-1}+\cdots+\beta_{0}$, assume that $\beta_{0} \neq 0$, and let

$$
C_{\mathrm{b}}(p) \triangleq\left[\begin{array}{cccccc}
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \ddots & 0 & 0 \\
0 & 0 & 0 & \ddots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 1 \\
-\beta_{0} & -\beta_{1} & -\beta_{2} & \cdots & -\beta_{n-2} & -\beta_{n-1}
\end{array}\right]
$$

Then,

$$
C_{\mathrm{b}}^{-1}(p)=C_{\mathrm{t}}(\hat{p})=\left[\begin{array}{ccccc}
-\beta_{1} / \beta_{0} & \cdots & -\beta_{n-2} / \beta_{0} & -\beta_{n-1} / \beta_{0} & -1 / \beta_{0} \\
1 & \cdots & 0 & 0 & 0 \\
\vdots & \ddots & \vdots & \vdots & \vdots \\
0 & \cdots & 1 & 0 & 0 \\
0 & \cdots & 0 & 1 & 0
\end{array}\right]
$$

where $\hat{p}(s) \triangleq \beta_{0}^{-1} s^{n} p(1 / s)$. (Remark: See Fact 4.9.9.)
Fact 5.16.3. Let $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{F}$, and define the Vandermonde matrix $V\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{F}^{n \times n}$ by

$$
V\left(\lambda_{1}, \ldots, \lambda_{n}\right) \triangleq\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
\lambda_{1} & \lambda_{2} & \cdots & \lambda_{n} \\
\lambda_{1}^{2} & \lambda_{2}^{2} & \cdots & \lambda_{n}^{2} \\
\lambda_{1}^{3} & \lambda_{2}^{3} & \cdots & \lambda_{n}^{3} \\
\vdots & \vdots & \vdots & \vdots \\
\lambda_{1}^{n-1} & \lambda_{2}^{n-1} & \cdots & \lambda_{n}^{n-1}
\end{array}\right]
$$

Then,

$$
\operatorname{det} V\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\prod_{1 \leq i<j \leq n}\left(\lambda_{i}-\lambda_{j}\right)
$$

Thus, $V\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ is nonsingular if and only if $\lambda_{1}, \ldots, \lambda_{n}$ are distinct. (Remark: This result yields Proposition 4.5.4, Let x_{1}, \ldots, x_{k} be eigenvectors of $V\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ associated with distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$ of $V\left(\lambda_{1}, \ldots, \lambda_{n}\right)$. Suppose that $\alpha_{1} x_{1}+\cdots+\alpha_{k} x_{k}=0$ so that $V^{i}\left(\lambda_{1}, \ldots, \lambda_{n}\right)\left(\alpha_{1} x_{1}+\cdots+\alpha_{k} x_{k}\right)=\alpha_{1} \lambda_{1}^{i} x_{i}+\cdots+$ $\alpha_{k} \lambda_{k}^{i} x_{k}=0$ for all $i=0,1, \ldots, k-1$. Let $X \triangleq\left[\begin{array}{lll}x_{1} & \cdots & x_{k}\end{array}\right] \in \mathbb{F}^{n \times k}$ and $D \triangleq \operatorname{diag}\left(\alpha_{1}, \ldots, \alpha_{k}\right)$. Then, $X D V^{\mathrm{T}}\left(\lambda_{1}, \ldots, \lambda_{k}\right)=0$, which implies that $X D=0$. Hence, $\alpha_{i} x_{i}=0$ for all $i=1, \ldots, k$, and thus $\alpha_{1}=\cdots=\alpha_{k}=0$.) (Remark: Connections between the Vandermonde matrix and the Pascal matrix, Stirling matrix, Bernoulli matrix, Bernstein matrix, and companion matrices are discussed in [5]. See also Fact 11.11.4.)

Fact 5.16.4. Let $p \in \mathbb{F}[s]$, where $p(s)=s^{n}+\beta_{n-1} s^{n-1}+\cdots+\beta_{1} s+\beta_{0}$, and assume that p has distinct roots $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{C}$. Then,

$$
C(p)=V\left(\lambda_{1}, \ldots, \lambda_{n}\right) \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right) V^{-1}\left(\lambda_{1}, \ldots, \lambda_{n}\right)
$$

Consequently, for all $i=1, \ldots, n, \lambda_{i}$ is an eigenvalue of $C(p)$ with associated eigenvector $\operatorname{col}_{i}(V)$. Finally,

$$
\left(V V^{\mathrm{T}}\right)^{-1} C V V^{\mathrm{T}}=C^{\mathrm{T}}
$$

(Proof: See 139.) (Remark: Case in which $C(p)$ has repeated eigenvalues is considered in 139.)

Fact 5.16.5. Let $A \in \mathbb{F}^{n \times n}$. Then, A is cyclic if and only if A is similar to a companion matrix. (Proof: The result follows from Corollary 5.3.4. Alternatively,
let $\operatorname{spec}(A)=\left\{\lambda_{1}, \ldots, \lambda_{r}\right\}$ and $A=S B S^{-1}$, where $S \in \mathbb{C}^{n \times n}$ is nonsingular and $B=\operatorname{diag}\left(B_{1}, \ldots, B_{r}\right)$ is the Jordan form of A, where, for all $i=1, \ldots, r, B_{i} \in$ $\mathbb{C}^{n_{i} \times n_{i}}$ and $\lambda_{i}, \ldots, \lambda_{i}$ are the diagonal entries of B_{i}. Now, define $R \in \mathbb{C}^{n \times n}$ by $R \triangleq\left[\begin{array}{lll}R_{1} & \cdots & R_{r}\end{array}\right] \in \mathbb{C}^{n \times n}$, where, for all $i=1, \ldots, r, R_{i} \in \mathbb{C}^{n \times n_{i}}$ is the matrix

$$
R_{i} \triangleq\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
\lambda_{i} & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
\lambda_{i}^{n-2} & \binom{n-2}{1} \lambda_{i}^{n-3} & \cdots & \binom{n-2}{n_{i}-1} \lambda_{i}^{n-n_{i}-1} \\
\lambda_{i}^{n-1} & \binom{n-1}{1} \lambda_{i}^{n-2} & \cdots & \binom{n-1}{n_{i}-1} \lambda_{i}^{n-n_{i}}
\end{array}\right]
$$

Then, since $\lambda_{1}, \ldots, \lambda_{r}$ are distinct, it follows that R is nonsingular. Furthermore, $C=R B R^{-1}$ is in companion form, and thus $A=S R^{-1} C R S$. If $n_{i}=1$ for all $i=1, \ldots, r$, then R is a Vandermonde matrix. See Fact 5.16.3 and Fact 5.16.4)

Fact 5.16.6. Let $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{F}$ and, for $i=1, \ldots, n$, define

$$
p_{i}(s) \triangleq \prod_{\substack{j=1 \\ j \neq i}}^{n}\left(s-\lambda_{j}\right)
$$

Furthermore, define $A \in \mathbb{F}^{n \times n}$ by

$$
A \triangleq\left[\begin{array}{cccc}
p_{1}(0) & \frac{1}{1!} p_{1}^{\prime}(0) & \cdots & \frac{1}{(n-1)!} p_{1}^{(n-1)}(0) \\
\vdots & \vdots & \therefore & \vdots \\
p_{n}(0) & \frac{1}{1!} p_{n}^{\prime}(0) & \cdots & \frac{1}{(n-1)!} p_{n}^{(n-1)}(0)
\end{array}\right]
$$

Then,

$$
\operatorname{diag}\left[p_{1}\left(\lambda_{1}\right), \ldots, p_{n}\left(\lambda_{n}\right)\right]=A V\left(\lambda_{1}, \ldots, \lambda_{n}\right)
$$

(Proof: See [481, p. 159].)
Fact 5.16.7. Let $a_{0}, \ldots, a_{n-1} \in \mathbb{F}$, and define $\operatorname{circ}\left(a_{0}, \ldots, a_{n-1}\right) \in \mathbb{F}^{n \times n}$ by

$$
\operatorname{circ}\left(a_{0}, \ldots, a_{n-1}\right) \triangleq\left[\begin{array}{cccccc}
a_{0} & a_{1} & a_{2} & \cdots & a_{n-2} & a_{n-1} \\
a_{n-1} & a_{0} & a_{1} & \cdots & a_{n-3} & a_{n-2} \\
a_{n-2} & a_{n-1} & a_{0} & \ddots & a_{n-4} & a_{n-3} \\
\vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\
a_{2} & a_{3} & a_{4} & \ddots & a_{0} & a_{1} \\
a_{1} & a_{2} & a_{3} & \cdots & a_{n-1} & a_{0}
\end{array}\right]
$$

A matrix of this form is circulant. Furthermore, for $n \geq 2$, define the $n \times n$ primary circulant

$$
P_{n} \triangleq \operatorname{circ}(0,1,0, \ldots, 0) \triangleq\left[\begin{array}{cccccc}
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \ddots & 0 & 0 \\
0 & 0 & 0 & \ddots & 0 & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \ddots & 0 & 1 \\
1 & 0 & 0 & \cdots & 0 & 0
\end{array}\right]
$$

Define $P_{1} \triangleq 1$. Finally, define $p(s) \triangleq a_{n-1} s^{n-1}+\cdots+a_{1} s+a_{0} \in \mathbb{F}[s]$, and let $\theta \triangleq e^{2 \pi J / n}$. Then, the following statements hold:
i) $p\left(P_{n}\right)=\operatorname{circ}\left(a_{0}, \ldots, a_{n-1}\right)$.
ii) $P_{n}=C(q)$, where $q \in \mathbb{F}[s]$ is defined by $q(s) \triangleq s^{n}-1$.
iii) $\operatorname{spec}\left(P_{n}\right)=\left\{1, \theta, \theta^{2}, \ldots, \theta^{n-1}\right\}$.
$i v) \operatorname{det} P_{n}=(-1)^{n-1}$.
$v) \operatorname{mspec}\left[\operatorname{circ}\left(a_{0}, \ldots, a_{n-1}\right)\right]=\left\{p(1), p(\theta), p\left(\theta^{2}\right), \ldots, p\left(\theta^{n-1}\right)\right\}_{\mathrm{ms}}$.
vi) If $A, B \in \mathbb{F}^{n \times n}$ are circulant, then $A B=B A$ and $A B$ is circulant.
vii) If A is circulant, then \bar{A}, A^{T}, and A^{*} are circulant.
viii) If A is circulant and $k \geq 0$, then A^{k} is circulant.
$i x)$ If A is nonsingular and circulant, then A^{-1} is circulant.
x) $A \in \mathbb{F}^{n \times n}$ is circulant if and only if $A=P_{n} A P_{n}^{\mathrm{T}}$.
xi) P_{n} is an orthogonal matrix, and $P_{n}^{n}=I_{n}$.
xii) If $A \in \mathbb{F}^{n \times n}$ is circulant, then A is reverse symmetric, Toeplitz, and normal.
xiii) If $A \in \mathbb{F}^{n \times n}$ is circulant and nonzero, then A is irreducible.
xiv) $A \in \mathbb{F}^{n \times n}$ is normal if and only if A is unitarily similar to a circulant matrix.

Next, define the Fourier matrix $S \in \mathbb{C}^{n \times n}$ by

$$
S \triangleq n^{-1 / 2} V\left(1, \theta, \ldots, \theta^{n-1}\right)=\frac{1}{\sqrt{n}}\left[\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & \theta & \theta^{2} & \cdots & \theta^{n-1} \\
1 & \theta^{2} & \theta^{4} & \cdots & \theta^{n-2} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & \theta^{n-1} & \theta^{n-2} & \cdots & \theta
\end{array}\right] .
$$

Then, the following statements hold:
$x v) S$ is symmetric and unitary, but not Hermitian.
xvi) $S^{4}=I_{n}$.
xvii) $\operatorname{spec}(S) \subseteq\{1,-1, \jmath,-\jmath\}$.
xviii) $\operatorname{Re} S$ and $\operatorname{Im} S$ are symmetric, commute, and satisfy

$$
(\operatorname{Re} S)^{2}+(\operatorname{Im} S)^{2}=I_{n}
$$

$x i x) \quad S^{-1} P_{n} S=\operatorname{diag}\left(1, \theta, \ldots, \theta^{n-1}\right)$.
xx) $S^{-1} \operatorname{circ}\left(a_{0}, \ldots, a_{n-1}\right) S=\operatorname{diag}\left[p(1), p(\theta), \ldots, p\left(\theta^{n-1}\right)\right]$.
(Proof: See [16, pp. 81-98], [377, p. 81], and [1490, pp. 106-110].) (Remark: Circulant matrices play a role in digital signal processing, specifically, in the efficient implementation of the fast Fourier transform. See [997, pp. 356-380], 1142, and [1361, pp. 206, 207].) (Remark: S is a Fourier matrix and a Vandermonde matrix.) (Remark: If a real Toeplitz matrix is normal, then it must be either symmetric, skew symmetric, circulant, or skew circulant. See [72, 472]. A unified treatment of the solutions of quadratic, cubic, and quartic equations using circulant matrices is given in 788.) (Remark: The set $\left\{I, P_{k}, P_{k}^{2}, \ldots, P_{k}^{k-1}\right\}$ is a group. See Fact 3.21.8 and Fact 3.21.9) (Remark: Circulant matrices are generalized by cycle matrices, which correspond to visual geometric symmetries. See [548.)

Fact 5.16.8. Let $A \in \mathbb{R}^{n \times n}$, and assume that A is a permutation matrix. Then, there exists a permutation matrix $S \in \mathbb{R}^{n \times n}$ such that

$$
A=S \operatorname{diag}\left(P_{n_{1}}, \ldots, P_{n_{r}}\right) S^{-1}
$$

and, for all $i=1, \ldots, r, P_{n_{i}} \in \mathbb{R}^{n_{i} \times n_{i}}$ is a primary circulant (see Fact 5.16.7.) Furthermore, the primary circulants $P_{n_{1}}, \ldots, P_{n_{r}}$ are unique up to a relabeling. Consequently,

$$
\operatorname{mspec}(A)=\bigcup_{i=1}^{r}\left\{1, \theta_{i}, \ldots, \theta_{i}^{n_{i}-1}\right\}_{\mathrm{ms}}
$$

where $\theta_{i} \triangleq e^{2 \pi j / n_{i}}$. Hence,

$$
\operatorname{det} A=(-1)^{n-r}
$$

Finally, the smallest positive integer m such that $A^{m}=I$ is given by the least common multiple of n_{1}, \ldots, n_{r}. (Proof: See 377, p. 29]. The last statement follows from [445, pp. 32, 33].) (Remark: This result provides a canonical form for permutation matrices under unitary similarity with a permutation matrix.) (Remark: It follows that A can be written as the product

$$
A=S\left[\begin{array}{cc}
P_{n_{1}} & 0 \\
0 & I
\end{array}\right] \cdots\left[\begin{array}{ccc}
I & 0 & 0 \\
0 & P_{n_{i}} & 0 \\
0 & 0 & I
\end{array}\right] \cdots\left[\begin{array}{cc}
I & 0 \\
0 & P_{n_{r}}
\end{array}\right] S^{-1}
$$

where the factors represent disjoint cycles. The factorization reveals the cycle decomposition for an element of the permutation group S_{n} on a set having n elements, where S_{n} is represented by the group of $n \times n$ permutation matrices. See 445] pp. 29-32], 1149 p. 18] and Fact 3.21.7) (Remark: The number of possible canonical forms is given by p_{n}, where p_{n} is the number of integral partitions of n. For example, $p_{1}=1, p_{2}=2, p_{3}=3, p_{4}=5$, and $p_{5}=7$. For all n, p_{n} is given by the expansion

$$
1+\sum_{n=1}^{\infty} p_{n} x^{n}=\frac{1}{(1-x)\left(1-x^{2}\right)\left(1-x^{3}\right) \cdots}
$$

See [1503 pp. 210, 211].)

5.17 Facts on Simultaneous Transformations

Fact 5.17.1. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that there exists a nonsingular matrix $S \in \mathbb{F}^{n \times n}$ such that $S A S^{-1}$ and $S B S^{-1}$ are upper triangular. Then, A and B have a common eigenvector with corresponding eigenvalues $\left(S A S^{-1}\right)_{(1,1)}$ and $\left(S^{-1}\right)_{(1,1)}$. (Proof: See [547.) (Remark: See Fact 5.14.27)

Fact 5.17.2. Let $A, B \in \mathbb{C}^{n \times n}$, and assume that $P_{A, B}$ is regular. Then, there exist unitary matrices $S_{1}, S_{2} \in \mathbb{C}^{n \times n}$ such that $S_{1} A S_{2}$ and $S_{1} B S_{2}$ are upper triangular. (Proof: See [1230, p. 276].)

Fact 5.17.3. Let $A, B \in \mathbb{R}^{n \times n}$, and assume that $P_{A, B}$ is regular. Then, there exist orthogonal matrices $S_{1}, S_{2} \in \mathbb{R}^{n \times n}$ such that $S_{1} A S_{2}$ is upper triangular and $S_{1} B S_{2}$ is upper Hessenberg with 2×2 diagonally located blocks. (Proof: See 1230 p. 290].) (Remark: This result is due to Moler and Stewart.)

Fact 5.17.4. Let $\mathcal{S} \subset \mathbb{F}^{n \times n}$, and assume that $A B=B A$ for all $A, B \in \mathcal{S}$. Then, there exists a unitary matrix $S \in \mathbb{F}^{n \times n}$ such that, for all $A \in \mathcal{S}, S A S^{*}$ is upper triangular. (Proof: See [709, p. 81] and [1113.) (Remark: See Fact [5.17.9)

Fact 5.17.5. Let $A, B \in \mathbb{C}^{n \times n}$, and assume that either

$$
[A,[A, B]]=[B,[A, B]]=0
$$

or

$$
\operatorname{rank}[A, B] \leq 1
$$

Then, there exists a nonsingular matrix $S \in \mathbb{C}^{n \times n}$ such that $S A S^{-1}$ and $S B S^{-1}$ are upper triangular. (Proof: The first result is due to McCoy, and the second result is due to Laffey. See [547 1113].)

Fact 5.17.6. Let $A, B \in \mathbb{C}^{n \times n}$, and assume that A and B are idempotent. Then, there exists a unitary matrix $S \in \mathbb{C}^{n \times n}$ such that $S A S^{*}$ and $S B S^{*}$ are upper triangular if and only if $[A, B]$ is nilpotent. (Proof: See [1251].) (Remark: Necessity follows from Fact 3.17.11) (Remark: See Fact 5.17.4)

Fact 5.17.7. Let $\mathcal{S} \subset \mathbb{F}^{n \times n}$, and assume that every matrix $A \in \mathcal{S}$ is normal. Then, $A B=B A$ for all $A, B \in \mathcal{S}$ if and only if there exists a unitary matrix $S \in \mathbb{F}^{n \times n}$ such that, for all $A \in \mathcal{S}, S A S^{*}$ is diagonal. (Remark: See Fact 8.16.1 and [709, pp. 103, 172].)

Fact 5.17.8. Let $\mathcal{S} \subset \mathbb{F}^{n \times n}$, and assume that every matrix $A \in \mathcal{S}$ is diagonalizable over \mathbb{F}. Then, $A B=B A$ for all $A, B \in \mathcal{S}$ if and only if there exists a nonsingular matrix $S \in \mathbb{F}^{n \times n}$ such that, for all $A \in S, S A S^{-1}$ is diagonal. (Proof: See [709, p. 52].)

Fact 5.17.9. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that $\left\{x \in \mathbb{F}^{n}: x^{*} A x=x^{*} B x=\right.$ $0\}=\{0\}$. Then, there exists a nonsingular matrix $S \in \mathbb{F}^{n \times n}$ such that $S A S^{*}$ and $S B S^{*}$ are upper triangular. (Proof: See [1098, p. 96].) (Remark: A and B need not be Hermitian.) (Remark: See Fact 5.17.4 and Fact 8.16.6) (Remark: Simultaneous triangularization by means of a unitary biequivalence transformation
is given in Proposition 5.7.3.)

5.18 Facts on the Polar Decomposition

Fact 5.18.1. Let $A \in \mathbb{F}^{n \times m}$. Then,

$$
\left(A A^{*}\right)^{1 / 2} A=A\left(A^{*} A\right)^{1 / 2}
$$

(Remark: See Fact 5.18.4) (Remark: The positive-semidefinite square root is defined in (8.5.3).)

Fact 5.18.2. Let $A \in \mathbb{F}^{n \times m}$, where $n \leq m$. Then, there exist $M \in \mathbb{F}^{n \times n}$ and $S \in \mathbb{F}^{n \times m}$ such that M is positive semidefinite, S satisfies $S S^{*}=I_{n}$, and $A=M S$. Furthermore, M is given uniquely by $M=\left(A A^{*}\right)^{1 / 2}$. If, in addition, $\operatorname{rank} A=n$, then S is given uniquely by

$$
S=\left(A A^{*}\right)^{-1 / 2} A=\frac{2}{\pi} A^{*} \int_{0}^{\infty}\left(t^{2} I+A A^{*}\right)^{-1} \mathrm{~d} t
$$

(Proof: See [683, Chapter 8].)
Fact 5.18.3. Let $A \in \mathbb{F}^{n \times m}$, where $m \leq n$. Then, there exist $M \in \mathbb{F}^{m \times m}$ and $S \in \mathbb{F}^{n \times m}$ such that M is positive semidefinite, S satisfies $S^{*} S=I_{m}$, and $A=S M$. Furthermore, M is given uniquely by $M=\left(A^{*} A\right)^{1 / 2}$. If, in addition, $\operatorname{rank} A=m$, then M is positive definite and S is given uniquely by

$$
S=A\left(A^{*} A\right)^{-1 / 2}=\frac{2}{\pi} A \int_{0}^{\infty}\left(t^{2} I+A^{*} A\right)^{-1} \mathrm{~d} t
$$

(Proof: See [683 Chapter 8].)
Fact 5.18.4. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is nonsingular. Then, there exist unique matrices $M, S \in \mathbb{F}^{n \times n}$ such that $A=M S, M$ is positive definite, and S is unitary. In particular, $M=\left(A A^{*}\right)^{1 / 2}$ and $S=\left(A A^{*}\right)^{-1 / 2} A$. (Remark: See Fact 5.18.1.)

Fact 5.18.5. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is nonsingular. Then, there exist unique matrices $M, S \in \mathbb{F}^{n \times n}$ such that $A=S M, M$ is positive definite, and S is unitary. In particular, $M=\left(A^{*} A\right)^{1 / 2}$ and $S=\left(A A^{*}\right)^{-1 / 2} A$.

Fact 5.18.6. Let $M_{1}, M_{2} \in \mathbb{F}^{n \times n}$, assume that M_{1}, M_{2} are positive definite, let $S_{1}, S_{2} \in \mathbb{F}^{n \times n}$, assume that S_{1}, S_{2} are unitary, and assume that $M_{1} S_{1}=S_{2} M_{2}$. Then, $S_{1}=S_{2}$. (Proof: Let $A=M_{1} S_{1}=S_{2} M_{2}$. Then, $S_{1}=\left(S_{2} M_{2}^{2} S_{2}^{*}\right)^{-1 / 2} S_{2} M_{2}=$ S_{2}.)

Fact 5.18.7. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is singular. Then, there exist a matrix $S \in \mathbb{F}^{n \times n}$ and unique matrices $M_{1}, M_{2} \in \mathbb{F}^{n \times n}$ such that $A=M_{1} S=S M_{2}$. In particular, $M_{1}=\left(A A^{*}\right)^{1 / 2}$ and $M_{2}=\left(A^{*} A\right)^{1 / 2}$. (Remark: S is not uniquely determined.)

Fact 5.18.8. Let $A \in \mathbb{F}^{n \times n}$, assume that A is nonsingular, and let $M, S \in$ $\mathbb{F}^{n \times n}$ be such that $A=M S, M$ is positive semidefinite, and S is unitary. Then, A is normal if and only if $M S=S M$. (Proof: See [709, p. 414].)

Fact 5.18.9. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are unitary, and assume that $A+B$ is nonsingular. Then, the unitary factor in the polar decomposition of $A+B$ is $A\left(A^{*} B\right)^{1 / 2}$. (Proof: See [1013 or 683, p. 216].) (Remark: The principal square root of $A^{*} B$ exists since $A+B$ is nonsingular.)

5.19 Facts on Additive Decompositions

Fact 5.19.1. Let $A \in \mathbb{C}^{n \times n}$. Then, there exist unitary matrices $B, C \in \mathbb{C}^{n \times n}$ such that

$$
A=\frac{1}{2} \sigma_{\max }(A)(B+C) .
$$

(Proof: See 899, 1484.)
Fact 5.19.2. Let $A \in \mathbb{R}^{n \times n}$. Then, there exist orthogonal matrices B, C, D, E $\in \mathbb{R}^{n \times n}$ such that

$$
A=\frac{1}{2} \sigma_{\max }(A)(B+C+D-E)
$$

(Proof: See [899]. See also [1484].) (Remark: $A / \sigma_{\max }(A)$ is expressed as an affine combination of B, C, D, E since the sum of the coefficients is 1.)

Fact 5.19.3. Let $A \in \mathbb{R}^{n \times n}$, assume that $\sigma_{\max }(A) \leq 1$, and define $r \triangleq$ $\operatorname{rank}\left(I-A^{*} A\right)$. Then, A is a convex combination of not more than $h(r)$ orthogonal matrices, where

$$
h(r) \triangleq \begin{cases}1+r, & r \leq 4 \\ 3+\log _{2} r, & r>4\end{cases}
$$

(Proof: See [899].)
Fact 5.19.4. Let $A \in \mathbb{F}^{n \times n}$. Then, the following statements hold:
i) A is positive semidefinite, $\operatorname{tr} A$ is an integer, and $\operatorname{rank} A \leq \operatorname{tr} A$.
ii) There exist projectors $B_{1}, \ldots, B_{l} \in \mathbb{F}^{n \times n}$, where $l=\operatorname{tr} A$, such that $A=$ $\sum_{i=1}^{l} B_{i}$.
(Proof: See [489, 1460].) (Remark: The minimal number of projectors needed in general is $\operatorname{tr} A$.) (Remark: See Fact 5.19.7.)

Fact 5.19.5. Let $A \in \mathbb{F}^{n \times n}$, assume that A is Hermitian, $0 \leq A \leq I$, and $\operatorname{tr} A$ is a rational number. Then, A is the average of a finite set of projectors in $\mathbb{F}^{n \times n}$. (Proof: See 327.) (Remark: The required number of projectors can be arbitrarily large.)

Fact 5.19.6. Let $A \in \mathbb{F}^{n \times n}$, assume that A is Hermitian, and assume that $0 \leq A \leq I$. Then, A is a convex combination of $\left\lfloor\log _{2} n\right\rfloor+2$ projectors in $\mathbb{F}^{n \times n}$. (Proof: See 327.)

Fact 5.19.7. Let $A \in \mathbb{F}^{n \times n}$. Then, the following statements hold:
i) $\operatorname{tr} A$ is an integer, and $\operatorname{rank} A \leq \operatorname{tr} A$.
ii) There exist idempotent matrices $B_{1}, \ldots, B_{m} \in \mathbb{F}^{n \times n}$ such that $A=$ $\sum_{i=1}^{m} B_{i}$.
iii) There exist a positive integer m and idempotent matrices $B_{1}, \ldots, B_{m} \in$ $\mathbb{F}^{n \times n}$ such that, for all $i=1, \ldots, m$, $\operatorname{rank} B_{i}=1$ and $\mathcal{R}\left(B_{i}\right) \subseteq A$, and such that $A=\sum_{i=1}^{m} B_{i}$.
iv) There exist idempotent matrices $B_{1}, \ldots, B_{l} \in \mathbb{F}^{n \times n}$, where $l \triangleq \operatorname{tr} A$, such that $A=\sum_{i=1}^{l} B_{i}$.
(Proof: See [650, 1216, 1460].) (Remark: The minimal number of idempotent matrices is discussed in 1397.) (Remark: See Fact 5.19.8)

Fact 5.19.8. Let $A \in \mathbb{F}^{n \times n}$, and assume that $2 \operatorname{rank} A-2 \leq \operatorname{tr} A \leq 2 n$. Then, there exist idempotent matrices $B, C, D, E \in \mathbb{F}^{n \times n}$ such that $A=B+C+D+E$. (Proof: See 874.) (Remark: See Fact 5.19.10)

Fact 5.19.9. Let $A \in \mathbb{F}^{n \times n}$. If $n=2$ or $n=3$, then there exist $b, c \in \mathbb{F}$ and idempotent matrices $B, C \in \mathbb{F}^{n \times n}$ such that $A=b B+c C$. Furthermore, if $n \geq 4$, then there exist $b, c, d \in \mathbb{F}$ and idempotent matrices $B, C, D \in \mathbb{F}^{n \times n}$ such that $A=b B+c C+d D$. (Proof: See [1111].)

Fact 5.19.10. Let $A \in \mathbb{C}^{n \times n}$, and assume that A is Hermitian. If $n=2$ or $n=3$, then there exist $b, c \in \mathbb{C}$ and projectors $B, C \in \mathbb{C}^{n \times n}$ such that $A=b B+c C$. Furthermore, if $4 \leq n \leq 7$, then there exist $b, c, d \in \mathbb{F}$ and projectors $B, C, D \in \mathbb{F}^{n \times n}$ such that $A=b B+c C+d D$. If $n \geq 8$, then there exist $b, c, d, e \in \mathbb{C}$ and projectors $B, C, D, E \in \mathbb{C}^{n \times n}$ such that $A=b B+c C+d D+e E$. (Proof: See [1029.).) (Remark: See Fact 5.19.8,

5.20 Notes

The multicompanion form and the elementary multicompanion form are known as rational canonical forms [445 pp. 472-488], while the multicompanion form is traditionally called the Frobenius canonical form [146]. The derivation of the Jordan form by means of the elementary multicompanion form and the hypercompanion form follows [1081. Corollary [5.3.8, Corollary 5.3.9, and Proposition 5.5.12 are given in [240, 241 1257 1258 1261. Corollary 5.3.9 is due to Frobenius. Canonical forms for congruence transformations are given in [884, 1275.

It is sometimes useful to define block-companion form matrices in which the scalars are replaced by matrix blocks 559, 560, 562. The companion form provides only one of many connections between matrices and polynomials. Additional connections are given by the Leslie, Schwarz, and Routh forms [139]. Given a polynomial expressed in terms of an arbitrary polynomial basis, the corresponding matrix is in confederate form, which specializes to the comrade form when the polynomials are orthogonal, which in turn specializes to the colleague form when

Chebyshev polynomials are used. The companion, confederate, comrade, and colleague forms are called congenial matrices. See [139, 141, 144 and Fact 11.18 .25 and Fact 11.18 .27 for the Schwarz and Routh forms. The companion matrix is sometimes called a Frobenius matrix or the Frobenius canonical form, see [5].

Matrix pencils are discussed in [85, 163, 224, 842, 1340, 1352. Computational algorithms for the Kronecker canonical form are given in [917, 1358. Applications to linear system theory are discussed in [311, pp, 52-55] and [791.

Application of the polar decomposition to the elastic deformation of solids is discussed in [1072, pp. 140-142].

Chapter Six

Generalized Inverses

Generalized inverses provide a useful extension of the matrix inverse to singular matrices and to rectangular matrices that are neither left nor right invertible.

6.1 Moore-Penrose Generalized Inverse

Let $A \in \mathbb{F}^{n \times m}$. If A is nonzero, then, by the singular value decomposition Theorem 5.6.4 there exist orthogonal matrices $S_{1} \in \mathbb{F}^{n \times n}$ and $S_{2} \in \mathbb{F}^{m \times m}$ such that

$$
A=S_{1}\left[\begin{array}{cc}
B & 0_{r \times(m-r)} \tag{6.1.1}\\
0_{(n-r) \times r} & 0_{(n-r) \times(m-r)}
\end{array}\right] S_{2},
$$

where $B \triangleq \operatorname{diag}\left[\sigma_{1}(A), \ldots, \sigma_{r}(A)\right], r \triangleq \operatorname{rank} A$, and $\sigma_{1}(A) \geq \sigma_{2}(A) \geq \cdots \geq \sigma_{r}(A)>$ 0 are the positive singular values of A. In (6.1.1), some of the bordering zero matrices may be empty. Then, the (Moore-Penrose) generalized inverse A^{+}of A is the $m \times n$ matrix

$$
A^{+} \triangleq S_{2}^{*}\left[\begin{array}{cc}
B^{-1} & 0_{r \times(n-r)} \tag{6.1.2}\\
0_{(m-r) \times r} & 0_{(m-r) \times(n-r)}
\end{array}\right] S_{1}^{*}
$$

If $A=0_{n \times m}$, then $A^{+} \triangleq 0_{m \times n}$, while, if $m=n$ and $\operatorname{det} A \neq 0$, then $A^{+}=A^{-1}$. In general, it is helpful to remember that A^{+}and A^{*} are the same size. It is easy to verify that A^{+}satisfies

$$
\begin{align*}
A A^{+} A & =A \tag{6.1.3}\\
A^{+} A A^{+} & =A^{+} \tag{6.1.4}\\
\left(A A^{+}\right)^{*} & =A A^{+} \tag{6.1.5}\\
\left(A^{+} A\right)^{*} & =A^{+} A \tag{6.1.6}
\end{align*}
$$

Hence, for each $A \in \mathbb{F}^{n \times m}$ there exists a matrix $X \in \mathbb{F}^{m \times n}$ satisfying the four conditions

$$
\begin{align*}
A X A & =A \tag{6.1.7}\\
X A X & =X \tag{6.1.8}\\
(A X)^{*} & =A X \tag{6.1.9}\\
(X A)^{*} & =X A \tag{6.1.10}
\end{align*}
$$

We now show that X is uniquely defined by (6.1.7)- (6.1.10).

Theorem 6.1.1. Let $A \in \mathbb{F}^{n \times m}$. Then, $X=A^{+}$is the unique matrix $X \in$ $\mathbb{F}^{m \times n}$ satisfying (6.1.7)-6.1.10).

Proof. Suppose there exists a matrix $X \in \mathbb{F}^{m \times n}$ satisfying (6.1.7)-(6.1.10). Then,

$$
\begin{aligned}
X & =X A X=X(A X)^{*}=X X^{*} A^{*}=X X^{*}\left(A A^{+} A\right)^{*}=X X^{*} A^{*} A^{+*} A^{*} \\
& =X(A X)^{*}\left(A A^{+}\right)^{*}=X A X A A^{+}=X A A^{+}=(X A)^{*} A^{+}=A^{*} X^{*} A^{+} \\
& =\left(A A^{+} A\right)^{*} X^{*} A^{+}=A^{*} A^{+*} A^{*} X^{*} A^{+}=\left(A^{+} A\right)^{*}(X A)^{*} A^{+} \\
& =A^{+} A X A A^{+}=A^{+} A A^{+}=A^{+} .
\end{aligned}
$$

Given $A \in \mathbb{F}^{n \times m}, X \in \mathbb{F}^{m \times n}$ is a (1)-inverse of A if (6.1.7) holds, a (1,2)inverse of A if (6.1.7) and (6.1.8) hold, and so forth.

Proposition 6.1.2. Let $A \in \mathbb{F}^{n \times m}$, and assume that A is right invertible. Then, $X \in \mathbb{F}^{m \times n}$ is a right inverse of A if and only if X is a (1)-inverse of A. Furthermore, every right inverse (or, equivalently, every (1)-inverse) of A is also a (2,3)-inverse of A.

Proof. Suppose that $A X=I_{n}$, that is, $X \in \mathbb{F}^{m \times n}$ is a right inverse of A. Then, $A X A=A$, which implies that X is a (1)-inverse of A. Conversely, let X be a (1)-inverse of A, that is, $A X A=A$. Then, letting $\hat{X} \in \mathbb{F}^{m \times n}$ denote a right inverse of A, it follows that $A X=A X A \hat{X}=A \hat{X}=I_{n}$. Hence, X is a right inverse of A. Finally, if X is a right inverse of A, then it is also a $(2,3)$-inverse of A.

Proposition 6.1.3. Let $A \in \mathbb{F}^{n \times m}$, and assume that A is left invertible. Then, $X \in \mathbb{F}^{m \times n}$ is a left inverse of A if and only if X is a (1)-inverse of A. Furthermore, every left inverse (or, equivalently, every (1)-inverse) of A is also a (2,4)-inverse of A.

It can now be seen that A^{+}is a particular (right, left) inverse when A is (right, left) invertible.

Corollary 6.1.4. Let $A \in \mathbb{F}^{n \times m}$. If A is right invertible, then A^{+}is a right inverse of A. Furthermore, if A is left invertible, then A^{+}is a left inverse of A.

The following result provides an explicit expression for A^{+}when A is either right invertible or left invertible. It is helpful to note that A is (right, left) invertible if and only if $\left(A A^{*}, A^{*} A\right)$ is positive definite.

Proposition 6.1.5. Let $A \in \mathbb{F}^{n \times m}$. If A is right invertible, then

$$
\begin{equation*}
A^{+}=A^{*}\left(A A^{*}\right)^{-1} \tag{6.1.11}
\end{equation*}
$$

and A^{+}is a right inverse of A. If A is left invertible, then

$$
\begin{equation*}
A^{+}=\left(A^{*} A\right)^{-1} A^{*} \tag{6.1.12}
\end{equation*}
$$

and A^{+}is a left inverse of A.

Proof. It suffices to verify (6.1.7)-(6.1.10) with $X=A^{+}$.

Proposition 6.1.6. Let $A \in \mathbb{F}^{n \times m}$. Then, the following statements hold:
i) $A=0$ if and only if $A^{+}=0$.
ii) $\left(A^{+}\right)^{+}=A$.
iii) $\bar{A}^{+}=\overline{A^{+}}$.
iv) $\left(A^{\mathrm{T}}\right)^{+}=\left(A^{+}\right)^{\mathrm{T}}=A^{+\mathrm{T}}$.
v) $\left(A^{*}\right)^{+}=\left(A^{+}\right)^{*} \triangleq A^{+*}$.
vi) $\mathcal{R}(A)=\mathcal{R}\left(A A^{*}\right)=\mathcal{R}\left(A A^{+}\right)=\mathcal{R}\left(A^{+*}\right)=\mathcal{N}\left(I-A A^{+}\right)=\mathcal{N}\left(A^{*}\right)^{\perp}$.
vii) $\mathcal{R}\left(A^{*}\right)=\mathcal{R}\left(A^{*} A\right)=\mathcal{R}\left(A^{+} A\right)=\mathcal{R}\left(A^{+}\right)=\mathcal{N}\left(I-A^{+} A\right)=\mathcal{N}(A)^{\perp}$.
viii) $\mathcal{N}(A)=\mathcal{N}\left(A^{+} A\right)=\mathcal{N}\left(A^{*} A\right)=\mathcal{N}\left(A^{+*}\right)=\mathcal{R}\left(I-A^{+} A\right)=\mathcal{R}\left(A^{*}\right)^{\perp}$.
ix) $\mathcal{N}\left(A^{*}\right)=\mathcal{N}\left(A A^{+}\right)=\mathcal{N}\left(A A^{*}\right)=\mathcal{N}\left(A^{+}\right)=\mathcal{R}\left(I-A A^{+}\right)=\mathcal{R}(A)^{\perp}$.
x) $A A^{+}$and $A^{+} A$ are positive semidefinite.
xi) $\operatorname{spec}\left(A A^{+}\right) \subseteq\{0,1\}$ and $\operatorname{spec}\left(A^{+} A\right) \subseteq\{0,1\}$.
xii) $A A^{+}$is the projector onto $\mathcal{R}(A)$.
xiii) $A^{+} A$ is the projector onto $\mathcal{R}\left(A^{*}\right)$.
xiv) $I_{m}-A^{+} A$ is the projector onto $\mathcal{N}(A)$.
$x v) I_{n}-A A^{+}$is the projector onto $\mathcal{N}\left(A^{*}\right)$.
xvi) $x \in \mathcal{R}(A)$ if and only if $x=A A^{+} x$.
xvii) $\operatorname{rank} A=\operatorname{rank} A^{+}=\operatorname{rank} A A^{+}=\operatorname{rank} A^{+} A=\operatorname{tr} A A^{+}=\operatorname{tr} A^{+} A$.
xviii) $\operatorname{rank}\left(I_{m}-A^{+} A\right)=m-\operatorname{rank} A$.
xix) $\operatorname{rank}\left(I_{n}-A A^{+}\right)=n-\operatorname{rank} A$.
$x x)\left(A^{*} A\right)^{+}=A^{+} A^{+*}$.
xxi) $\left(A A^{*}\right)^{+}=A^{+*} A^{+}$.
xxii) $A A^{+}=A\left(A^{*} A\right)^{+} A^{*}$.
xxiii) $A^{+} A=A^{*}\left(A A^{*}\right)^{+} A$.
xxiv) $A=A A^{*} A^{*+}=A^{*+} A^{*} A$.
xxv) $A^{*}=A^{*} A A^{+}=A^{+} A A^{*}$.
xxvi) $A^{+}=A^{*}\left(A A^{*}\right)^{+}=\left(A^{*} A\right)^{+} A^{*}=A^{*}\left(A^{*} A A^{*}\right)^{+} A^{*}$.
xxvii) $A^{+*}=\left(A A^{*}\right)^{+} A=A\left(A^{*} A\right)^{+}$.
xxviii) $A=A\left(A^{*} A\right)^{+} A^{*} A=A A^{*} A\left(A^{*} A\right)^{+}$.
xxix) $A=A A^{*}\left(A A^{*}\right)^{+} A=\left(A A^{*}\right)^{+} A A^{*} A$.
$x x x)$ If $S_{1} \in \mathbb{F}^{n \times n}$ and $S_{2} \in \mathbb{F}^{m \times m}$ are unitary, then $\left(S_{1} A S_{2}\right)^{+}=S_{2}^{*} A^{+} S_{1}^{*}$.
$x x x i) A$ is (range Hermitian, normal, Hermitian, positive semidefinite, positive definite) if and only if A^{+}is.
xxxii) If A is a projector, then $A^{+}=A$.
xxxiii) $A^{+}=A$ if and only if A is tripotent and A^{2} is Hermitian.

Proof. The last equality in $x x v i$) is given in 1502 .
Theorem 2.6.4 showed that the equation $A x=b$, where $A \in \mathbb{F}^{n \times m}$ and $b \in \mathbb{F}^{n}$, has a solution $x \in \mathbb{F}^{m}$ if and only if $\operatorname{rank} A=\operatorname{rank}\left[\begin{array}{ll}A & b\end{array}\right]$. In particular, $A x=b$ has a unique solution $x \in \mathbb{F}^{m}$ if and only if $\operatorname{rank} A=\operatorname{rank}\left[\begin{array}{cc}A & b\end{array}\right]=m$, while $A x=b$ has infinitely many solutions if and only if $\operatorname{rank} A=\operatorname{rank}\left[\begin{array}{ll}A & b\end{array}\right]<m$. We are now prepared to characterize these solutions.

Proposition 6.1.7. Let $A \in \mathbb{F}^{n \times m}$ and $b \in \mathbb{F}^{n}$. Then, the following statements are equivalent:
i) There exists a vector $x \in \mathbb{F}^{m}$ satisfying $A x=b$.
ii) $\operatorname{rank} A=\operatorname{rank}\left[\begin{array}{cc}A & b\end{array}\right]$.
iii) $b \in \mathcal{R}(A)$.
iv) $A A^{+} b=b$.

Now, assume that i) $-i v$) are satisfied. Then, the following statements hold:
v) $x \in \mathbb{F}^{m}$ satisfies $A x=b$ if and only if

$$
\begin{equation*}
x=A^{+} b+\left(I-A^{+} A\right) x . \tag{6.1.13}
\end{equation*}
$$

vi) For all $y \in \mathbb{F}^{m}, x \in \mathbb{F}^{m}$ given by

$$
\begin{equation*}
x=A^{+} b+\left(I-A^{+} A\right) y \tag{6.1.14}
\end{equation*}
$$

satisfies $A x=b$.
vii) Let $x \in \mathbb{F}^{m}$ be given by (6.1.14), where $y \in \mathbb{F}^{m}$. Then, $y=0$ minimizes $x^{*} x$.
viii) Assume that $\operatorname{rank} A=m$. Then, there exists a unique vector $x \in \mathbb{F}^{m}$ satisfying $A x=b$ given by $x=A^{+} b$. If, in addition, $A^{\mathrm{L}} \in \mathbb{F}^{m \times m}$ is a left inverse of A, then $A^{\mathrm{L}} b=A^{+} b$.
$i x)$ Assume that rank $A=n$, and let $A^{\mathrm{R}} \in \mathbb{F}^{m \times n}$ be a right inverse of A. Then, $x=A^{\mathrm{R}} b$ satisfies $A x=b$.

Proof. The equivalence of i) $-i i i$) is immediate. To prove the equivalence of $i v$), note that, if there exists a vector $x \in \mathbb{F}^{n}$ satisfying $A x=b$, then $b=A x=$ $A A^{+} A x=A A^{+} b$. Conversely, if $b=A A^{+} b$, then $x=A^{+} b$ satisfies $A x=b$.

Now, suppose that i)-iv) hold. To prove v), let $x \in \mathbb{F}^{m}$ satisfy $A x=b$ so that $A^{+} A x=A^{+} b$. Hence, $x=x+A^{+} b-A^{+} A x=A^{+} b+\left(I-A^{+} A\right) x$. To prove vi), let $y \in$ \mathbb{F}^{m}, and let $x \in \mathbb{F}^{m}$ be given by (6.1.14). Then, $A x=A A^{+} b=b$. To prove vii), let $y \in \mathbb{F}^{m}$, and let $x \in \mathbb{F}^{n}$ be given by (6.1.14). Then, $x^{*} x=b^{*} A^{+*} A^{+} b+y^{*}\left(I-A^{+} A\right) y$. Therefore, $x^{*} x$ is minimized by $y=0$. See also Fact 9.15.1.

To prove viii), suppose that $\operatorname{rank} A=m$. Then, A is left invertible, and it follows from Corollary 6.1 .4 that A^{+}is a left inverse of A. Hence, it follows from (6.1.13) that $x=A^{+} b$ is the unique solution of $A x=b$. In addition, $x=A^{\mathrm{L}} b$. To prove $i x$, let $x=A^{\mathrm{R}} b$, and note that $A A^{\mathrm{R}} b=b$.

Definition 6.1.8. Let $A \in \mathbb{F}^{n \times m}, B \in \mathbb{F}^{n \times l}, C \in \mathbb{F}^{k \times m}$, and $D \in \mathbb{F}^{k \times l}$, and define $\mathcal{A} \triangleq\left[\begin{array}{cc}A & B \\ C & B\end{array}\right] \in \mathbb{F}^{(n+k) \times(m+l)}$. Then, the Schur complement $A \mid \mathcal{A}$ of A with respect to \mathcal{A} is defined by

$$
\begin{equation*}
A \mid \mathcal{A} \triangleq D-C A^{+} B \tag{6.1.15}
\end{equation*}
$$

Likewise, the S chur complement $D \mid \mathcal{A}$ of D with respect to \mathcal{A} is defined by

$$
\begin{equation*}
D \mid \mathcal{A} \triangleq A-B D^{+} C \tag{6.1.16}
\end{equation*}
$$

6.2 Drazin Generalized Inverse

We now introduce a different type of generalized inverse, which applies only to square matrices yet is more useful in certain applications. Let $A \in \mathbb{F}^{n \times n}$. Then, A has a decomposition

$$
A=S\left[\begin{array}{cc}
J_{1} & 0 \tag{6.2.1}\\
0 & J_{2}
\end{array}\right] S^{-1}
$$

where $S \in \mathbb{F}^{n \times n}$ is nonsingular, $J_{1} \in \mathbb{F}^{m \times m}$ is nonsingular, and $J_{2} \in \mathbb{F}^{(n-m) \times(n-m)}$ is nilpotent. Then, the Drazin generalized inverse A^{D} of A is the matrix

$$
A^{\mathrm{D}} \triangleq S\left[\begin{array}{cc}
J_{1}^{-1} & 0 \tag{6.2.2}\\
0 & 0
\end{array}\right] S^{-1}
$$

Let $A \in \mathbb{F}^{n \times n}$. Then, it follows from Definition 5.5.1 that ind $A=\operatorname{ind}_{A}(0)$. Furthermore, A is nonsingular if and only if ind $A=0$, whereas ind $A=1$ if and only if A is singular and the zero eigenvalue of A is semisimple. In particular, ind $0_{n \times n}=1$. Note that ind A is the order of the largest Jordan block of A associated with the zero eigenvalue of A.

It can be seen that A^{D} satisfies

$$
\begin{gather*}
A^{\mathrm{D}} A A^{\mathrm{D}}=A^{\mathrm{D}} \tag{6.2.3}\\
A A^{\mathrm{D}}=A^{\mathrm{D}} A \tag{6.2.4}\\
A^{k+1} A^{\mathrm{D}}=A^{k} \tag{6.2.5}
\end{gather*}
$$

where $k=\operatorname{ind} A$. Hence, for all $A \in \mathbb{F}^{n \times n}$ such that ind $A=k$ there exists a matrix $X \in \mathbb{F}^{n \times n}$ satisfying the three conditions

$$
\begin{gather*}
X A X=X \tag{6.2.6}\\
A X=X A \tag{6.2.7}\\
A^{k+1} X=A^{k} \tag{6.2.8}
\end{gather*}
$$

We now show that X is uniquely defined by (6.2.6)-6.2.8).

Theorem 6.2.1. Let $A \in \mathbb{F}^{n \times n}$, and let $k \triangleq \operatorname{ind} A$. Then, $X=A^{\mathrm{D}}$ is the unique matrix $X \in \mathbb{F}^{n \times n}$ satisfying (6.2.6)- (6.2.8).

Proof. Let $X \in \mathbb{F}^{n \times n}$ satisfy (6.2.6)-(6.2.8). If $k=0$, then it follows from (6.2.8) that $X=A^{-1}$. Hence, let $A=S\left[\begin{array}{cc}J_{1} & 0 \\ 0 & J_{2}\end{array}\right] S^{-1}$, where $k=$ ind $A \geq 1, S \in \mathbb{F}^{n \times n}$ is nonsingular, $J_{1} \in \mathbb{F}^{m \times m}$ is nonsingular, and $J_{2} \in \mathbb{F}^{(n-m) \times(n-m)}$ is nilpotent. Now, let $\hat{X} \triangleq S^{-1} X S=\left[\begin{array}{cc}\hat{X}_{1} & \hat{X}_{12} \\ \hat{X}_{21} & \hat{X}_{2}\end{array}\right]$ be partitioned conformably with $S^{-1} A S=$ $\left[\begin{array}{cc}J_{1} & 0 \\ 0 & J_{2}\end{array}\right]$. Since, by (6.2.7), $\hat{A} \hat{X}=\hat{X} \hat{A}$, it follows that $J_{1} \hat{X}_{1}=\hat{X}_{1} J_{1}, J_{1} \hat{X}_{12}=\hat{X}_{12} J_{2}$, $J_{2} \hat{X}_{21}=\hat{X}_{21} J_{1}$, and $J_{2} \hat{X}_{2}=\hat{X}_{2} J_{2}$. Since $J_{2}^{k}=0$, it follows that $J_{1} \hat{X}_{12} J_{2}^{k-1}=0$, and thus $\hat{X}_{12} J_{2}^{k-1}=0$. By repeating this argument, it follows that $J_{1} \hat{X}_{12} J_{2}=0$, and thus $\hat{X}_{12} J_{2}=0$, which implies that $J_{1} \hat{X}_{12}=0$, and thus $\hat{X}_{12}=0$. Similarly, $\hat{X}_{21}=$ 0 , so that $\hat{X}=\left[\begin{array}{cc}\hat{X}_{1} & 0 \\ 0 & \hat{X}_{2}\end{array}\right]$. Now, (6.2.8) implies that $J_{1}^{k+1} \hat{X}_{1}=J_{1}^{k}$, and hence $\hat{X}_{1}=J_{1}^{-1}$. Next, (6.2.6) implies that $\hat{X}_{2} J_{2} \hat{X}_{2}=\hat{X}_{2}$, which, together with $J_{2} \hat{X}_{2}=\hat{X}_{2} J_{2}$, yields $\hat{X}_{2}^{2} J_{2}=\hat{X}_{2}$. Consequently, $0=\hat{X}_{2}^{2} J_{2}^{k}=\hat{X}_{2} J_{2}^{k-1}$, and thus, by repeating this argument, $\hat{X}_{2}=0$. Therefore, $A^{\mathrm{D}}=S\left[\begin{array}{cc}J_{1}^{-1} & 0 \\ 0 & 0\end{array}\right] S^{-1}=S\left[\begin{array}{cc}\hat{X}_{1} & 0 \\ 0 & 0\end{array}\right] S^{-1}=S \hat{X} S^{-1}=$ X.

Proposition 6.2.2. Let $A \in \mathbb{F}^{n \times n}$, and define $k \triangleq$ ind A. Then, the following statements hold:
i) $\bar{A}^{\mathrm{D}}=\overline{A^{\mathrm{D}}}$.
ii) $A^{\mathrm{DT}} \triangleq A^{\mathrm{TD}} \triangleq\left(A^{\mathrm{T}}\right)^{\mathrm{D}}=\left(A^{\mathrm{D}}\right)^{\mathrm{T}}$.
iii) $A^{\mathrm{D} *} \triangleq A^{* \mathrm{D}} \triangleq\left(A^{*}\right)^{\mathrm{D}}=\left(A^{\mathrm{D}}\right)^{*}$.
iv) If $r \in \mathbb{P}$, then $A^{\mathrm{D} r} \triangleq A^{r \mathrm{D}} \triangleq\left(A^{\mathrm{D}}\right)^{r}=\left(A^{r}\right)^{\mathrm{D}}$.
v) $\mathcal{R}\left(A^{k}\right)=\mathcal{R}\left(A^{\mathrm{D}}\right)=\mathcal{R}\left(A A^{\mathrm{D}}\right)=\mathcal{N}\left(I-A A^{\mathrm{D}}\right)$.
vi) $\mathcal{N}\left(A^{k}\right)=\mathcal{N}\left(A^{\mathrm{D}}\right)=\mathcal{N}\left(A A^{\mathrm{D}}\right)=\mathcal{R}\left(I-A A^{\mathrm{D}}\right)$.
vii) $\operatorname{rank} A^{k}=\operatorname{rank} A^{\mathrm{D}}=\operatorname{rank} A A^{\mathrm{D}}=\operatorname{def}\left(I-A A^{\mathrm{D}}\right)$.
viii) $\operatorname{def} A^{k}=\operatorname{def} A^{\mathrm{D}}=\operatorname{def} A A^{\mathrm{D}}=\operatorname{rank}\left(I-A A^{\mathrm{D}}\right)$.
ix) $A A^{\mathrm{D}}$ is the idempotent matrix onto $\mathcal{R}\left(A^{\mathrm{D}}\right)$ along $\mathcal{N}\left(A^{\mathrm{D}}\right)$.
x) $A^{\mathrm{D}}=0$ if and only if A is nilpotent.
xi) A^{D} is group invertible.
xii) ind $A^{\mathrm{D}}=0$ if and only if A is nonsingular.
xiii) ind $A^{\mathrm{D}}=1$ if and only if A is singular.
xiv) $\left(A^{\mathrm{D}}\right)^{\mathrm{D}}=\left(A^{\mathrm{D}}\right)^{\#}=A^{2} A^{\mathrm{D}}$.
$x v)\left(A^{\mathrm{D}}\right)^{\mathrm{D}}=A$ if and only if A is group invertible.
$x v i)$ If A is idempotent, then $k=1$ and $A^{\mathrm{D}}=A$.
xvii) $A=A^{\mathrm{D}}$ if and only if A is tripotent.

Let $A \in \mathbb{F}^{n \times n}$, and assume that ind $A \leq 1$ so that, by Corollary $5.5 .9 A$ is group invertible. In this case, the Drazin generalized inverse A^{D} is denoted by $A^{\#}$, which is the group generalized inverse of A. Therefore, $A^{\#}$ satisfies

$$
\begin{gather*}
A^{\#} A A^{\#}=A^{\#}, \tag{6.2.9}\\
A A^{\#}=A^{\#} A, \tag{6.2.10}\\
A A^{\#} A=A, \tag{6.2.11}
\end{gather*}
$$

while $A^{\#}$ is the unique matrix $X \in \mathbb{F}^{n \times n}$ satisfying

$$
\begin{align*}
& X A X=X, \tag{6.2.12}\\
& A X=X A \tag{6.2.13}\\
& A X A=A \tag{6.2.14}
\end{align*}
$$

Proposition 6.2.3. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is group invertible. Then, the following statements hold:
i) $\bar{A}^{\#}=\overline{A^{\#}}$.
ii) $A^{\# \mathrm{~T}} \triangleq A^{\mathrm{T} \#} \triangleq\left(A^{\mathrm{T}}\right)^{\#}=\left(A^{\#}\right)^{\mathrm{T}}$.
iii) $A^{\# *} \triangleq A^{* \#} \triangleq\left(A^{*}\right)^{\#}=\left(A^{\#}\right)^{*}$.
iv) If $r \in \mathbb{P}$, then $A^{\# r} \triangleq A^{r \#} \triangleq\left(A^{\#}\right)^{r}=\left(A^{r}\right)^{\#}$.
v) $\mathcal{R}(A)=\mathcal{R}\left(A A^{\#}\right)=\mathcal{N}\left(I-A A^{\#}\right)=\mathcal{R}\left(A A^{+}\right)=\mathcal{N}\left(I-A A^{+}\right)$.
vi) $\mathcal{N}(A)=\mathcal{N}\left(A A^{\#}\right)=\mathcal{R}\left(I-A A^{\#}\right)=\mathcal{N}\left(A^{+} A\right)=\mathcal{R}\left(I-A^{+} A\right)$.
vii) $\operatorname{rank} A=\operatorname{rank} A^{\#}=\operatorname{rank} A A^{\#}=\operatorname{rank} A^{\#} A$.
viii) $\operatorname{def} A=\operatorname{def} A^{\#}=\operatorname{def} A A^{\#}=\operatorname{def} A^{\#} A$.
ix) $A A^{\#}$ is the idempotent matrix onto $\mathcal{R}(A)$ along $\mathcal{N}(A)$.
x) $A^{\#}=0$ if and only if $A=0$.
xi) $A^{\#}$ is group invertible.
xii) $\left(A^{\#}\right)^{\#}=A$.
xiii) If A is idempotent, then $A^{\#}=A$.
xiv) $A=A^{\#}$ if and only if A is tripotent.

An alternative expression for the idempotent matrix onto $\mathcal{R}(A)$ along $\mathcal{N}(A)$ is given by Proposition 3.5.9,

6.3 Facts on the Moore-Penrose Generalized Inverse for One Matrix

Fact 6.3.1. Let $A \in \mathbb{F}^{n \times m}, x \in \mathbb{F}^{m}, b \in \mathbb{F}^{n}$, and $y \in \mathbb{F}^{m}$, assume that A is right invertible, and assume that

$$
x=A^{+} b+\left(I-A^{+} A\right) y,
$$

which satisfies $A x=b$. Then, there exists a right inverse $A^{\mathrm{R}} \in \mathbb{F}^{m \times n}$ of A such that $x=A^{\mathrm{R}} b$. Furthermore, if $S \in \mathbb{F}^{m \times n}$ is such that $z^{\mathrm{T}} S b \neq 0$, where $z \triangleq\left(I-A^{+} A\right) y$, then one such right inverse is given by

$$
A^{\mathrm{R}}=A^{+}+\frac{1}{z^{\mathrm{T}} S b} z z^{\mathrm{T}} S
$$

Fact 6.3.2. Let $A \in \mathbb{F}^{n \times m}$, and assume that $\operatorname{rank} A=1$. Then,

$$
A^{+}=\left(\operatorname{tr} A A^{*}\right)^{-1} A^{*}
$$

Consequently, if $x \in \mathbb{F}^{n}$ and $y \in \mathbb{F}^{n}$ are nonzero, then

$$
\left(x y^{*}\right)^{+}=\left(x^{*} x y^{*} y\right)^{-1} y x^{*}=\frac{1}{\|x\|_{2}^{2}\|y\|_{2}^{2}} y x^{*}
$$

In particular,

$$
1_{n \times m}^{+}=\frac{1}{n m} 1_{m \times n}
$$

Fact 6.3.3. Let $x \in \mathbb{F}^{n}$, and assume that x is nonzero. Then, the projector $A \in \mathbb{F}^{n \times n}$ onto $\operatorname{span}\{x\}$ is given by

$$
A=\left(x^{*} x\right)^{-1} x x^{*}
$$

Fact 6.3.4. Let $x, y \in \mathbb{F}^{n}$, assume that x, y are nonzero, and assume that $x^{*} y=0$. Then, the projector $A \in \mathbb{F}^{n \times n}$ onto span $\{x, y\}$ is given by

$$
A=\left(x^{*} x\right)^{-1} x x^{*}+\left(y^{*} y\right)^{-1} y y^{*}
$$

Fact 6.3.5. Let $x, y \in \mathbb{F}^{n}$, and assume that x, y are linearly independent. Then, the projector $A \in \mathbb{F}^{n \times n}$ onto span $\{x, y\}$ is given by

$$
A=\left(x^{*} x y^{*} y-\left|x^{*} y\right|^{2}\right)^{-1}\left(y^{*} y x x^{*}-y^{*} x y x^{*}-x^{*} y x y^{*}+x^{*} x y y^{*}\right)
$$

Furthermore, define $z \triangleq\left[I-\left(x^{*} x\right)^{-1} x x^{*}\right] y$. Then,

$$
A=\left(x^{*} x\right)^{-1} x x^{*}+\left(z^{*} z\right)^{-1} z z^{*}
$$

(Remark: For $\mathbb{F}=\mathbb{R}$, this result is given in [1206, p. 178].)
Fact 6.3.6. Let $A \in \mathbb{F}^{n \times m}$, assume that $\operatorname{rank} A=n-1$, let $x \in \mathcal{N}(A)$ be nonzero, let $y \in \mathcal{N}\left(A^{*}\right)$ be nonzero, let $\alpha=1$ if $\operatorname{spec}(A)=\{0\}$ and the product of the nonzero eigenvalues of A otherwise, and define $k \triangleq \operatorname{amult}_{A}(0)$. Then,

$$
A^{\mathrm{A}}=\frac{(-1)^{k+1} \alpha}{y^{*}\left(A^{k-1}\right)^{+} x} x y^{*}
$$

In particular,

$$
N_{n}^{\mathrm{A}}=(-1)^{n+1} E_{1, n}
$$

If, in addition, $k=1$, then

$$
A^{\mathrm{A}}=\frac{\alpha}{y^{*} x} x y^{*}
$$

(Proof: See 948, p. 41] and Fact 3.17.4.) (Remark: This result provides an expression for $i i$) of Fact 2.16.8) (Remark: If A is range Hermitian, then $\mathcal{N}(A)=$ $\mathcal{N}\left(A^{*}\right)$ and $y^{*} x \neq 0$, and thus Fact 5.14.3 implies that A^{A} is semisimple.) (Remark: See Fact 5.14.26.)

Fact 6.3.7. Let $A \in \mathbb{F}^{n \times m}$, and assume that $\operatorname{rank} A=n-1$. Then,

$$
A^{+}=\frac{1}{\operatorname{det}\left[A A^{*}+\left(A A^{*}\right)^{\mathrm{A}}\right]} A^{*}\left[A A^{*}+\left(A A^{*}\right)^{\mathrm{A}}\right]^{\mathrm{A}}
$$

(Proof: See 345.) (Remark: Extensions to matrices of arbitrary rank are given in (345.)

Fact 6.3.8. Let $A \in \mathbb{F}^{n \times m}, B \in \mathbb{F}^{k \times n}$, and $C \in \mathbb{F}^{m \times l}$, and assume that B is left inner and C is right inner. Then,

$$
(B A C)^{+}=C^{*} A^{+} B^{*}
$$

(Proof: See [654, p. 506].)
Fact 6.3.9. Let $A \in \mathbb{F}^{n \times n}$. Then,

$$
\begin{aligned}
\operatorname{rank}\left[A, A^{+}\right] & =2 \operatorname{rank}\left[\begin{array}{cc}
A & A^{*}
\end{array}\right]-2 \operatorname{rank} A \\
& =\operatorname{rank}\left(A-A^{2} A^{+}\right) \\
& =\operatorname{rank}\left(A-A^{+} A^{2}\right)
\end{aligned}
$$

Furthermore, the following statements are equivalent:
i) A is range Hermitian.
ii) $\left[A, A^{+}\right]=0$.
iii) $\operatorname{rank}\left[\begin{array}{cc}A & A^{*}\end{array}\right]=\operatorname{rank} A$.
iv) $A=A^{2} A^{+}$.
v) $A=A^{+} A^{2}$.
(Proof: See 1306.) (Remark: See Fact 3.6.3, Fact 6.3.10, and Fact 6.3.11,
Fact 6.3.10. Let $A \in \mathbb{F}^{n \times n}$. Then, the following statements are equivalent:
i) A is range Hermitian.
ii) $\mathcal{R}(A)=\mathcal{R}\left(A^{+}\right)$.
iii) $A^{+} A=A A^{+}$.
iv) $\left(I-A^{+} A\right)_{\perp}=A A^{+}$.
v) $A=A^{2} A^{+}$.
vi) $A=A^{+} A^{2}$.
vii) $A A^{+}=A^{2}\left(A^{+}\right)^{2}$.
viii) $\left(A A^{+}\right)^{2}=A^{2}\left(A^{+}\right)^{2}$.
ix) $\left(A^{+} A\right)^{2}=\left(A^{+}\right)^{2} A^{2}$.
$x)$ ind $A \leq 1$, and $\left(A^{+}\right)^{2}=\left(A^{2}\right)^{+}$.
xi) ind $A \leq 1$, and $A A^{+} A^{*} A=A^{*} A^{2} A^{+}$.
xii) $A^{2} A^{+}+A^{*} A^{+*} A=2 A$.
xiii) $A^{2} A^{+}+\left(A^{2} A^{+}\right)^{*}=A+A^{*}$.
xiv) $\mathcal{R}\left(A-A^{+}\right)=\mathcal{R}\left(A-A^{3}\right)$.
xv) $\mathcal{R}\left(A+A^{+}\right)=\mathcal{R}\left(A+A^{3}\right)$.
(Proof: See $323,12811296,1331$ and Fact 6.6.8) (Remark: See Fact 3.6.3 Fact 6.3.9, and Fact 6.3.11)

Fact 6.3.11. Let $A \in \mathbb{F}^{n \times n}$, let $r \triangleq \operatorname{rank} A$, let $B \in \mathbb{F}^{n \times r}$ and $C \in \mathbb{F}^{r \times n}$, and assume that that $A=B C$ and $\operatorname{rank} B=\operatorname{rank} C=r$. Then, the following statements are equivalent:
$i) A$ is range Hermitian.
ii) $B B^{+}=C^{+} C$.
iii) $\mathcal{N}\left(B^{*}\right)=\mathcal{N}(C)$.
iv) $B=C^{+} C B$ and $C=C B B^{+}$.
v) $B^{+}=B^{+} C^{+} C$ and $C=C B B^{+}$.
vi) $B=C^{+} C B$ and $C^{+}=B B^{+} C^{+}$.
vii) $B^{+}=B^{+} C^{+} C$ and $C^{+}=B B^{+} C^{+}$.
(Proof: See 438.) (Remark: See Fact 3.6.3, Fact 6.3.9, and Fact 6.3.10.)
Fact 6.3.12. Let $A \in \mathbb{F}^{n \times n}$. Then, the following statements are equivalent:
i) $A+A^{+}=2 A A^{+}$.
ii) $A+A^{+}=2 A^{+} A$.
iii) $A+A^{+}=A A^{+}+A^{+} A$.
iv) A is range Hermitian, and $A^{2}+A A^{+}=2 A$.
$v) A$ is range Hermitian, and $(I-A)^{2} A=0$.
(Proof: See [1323, 1330].)
Fact 6.3.13. Let $A \in \mathbb{F}^{n \times n}$. Then, the following statements are equivalent:
i) $A^{+} A^{*}=A^{*} A^{+}$.
ii) $A A^{+} A^{*} A=A A^{*} A^{+} A$.
iii) $A A^{*} A^{2}=A^{2} A^{*} A$.

If these conditions hold, then A is star-dagger. If A is star-dagger, then $A^{2}\left(A^{+}\right)^{2}$ and $\left(A^{+}\right)^{2} A^{2}$ are positive semidefinite. (Proof: See 651, 1281].) (Remark: See Fact 6.3.16.)

Fact 6.3.14. Let $A \in \mathbb{F}^{n \times m}$, let $B, C \in \mathbb{F}^{m \times n}$, assume that B is a $(1,3)$ inverse of A, and assume that C is a $(1,4)$ inverse of A. Then,

$$
A^{+}=C A B
$$

(Proof: See [174, p. 48].) (Remark: This result is due to Urquhart.)

Fact 6.3.15. Let $A \in \mathbb{F}^{n \times m}$, assume that A is nonzero, let $r \triangleq \operatorname{rank} A$, define $B \triangleq \operatorname{diag}\left[\sigma_{1}(A), \ldots, \sigma_{r}(A)\right]$, and let $S \in \mathbb{F}^{n \times n}, K \in \mathbb{F}^{r \times r}$, and $L \in \mathbb{F}^{r \times(m-r)}$ be such that S is unitary,

$$
K K^{*}+L L^{*}=I_{r}
$$

and

$$
A=S\left[\begin{array}{cc}
B K & B L \\
0_{(n-r) \times r} & 0_{(n-r) \times(m-r)}
\end{array}\right] S^{*} .
$$

Then,

$$
A^{+}=S\left[\begin{array}{cc}
K^{*} B^{-1} & 0_{r \times(n-r)} \\
L^{*} B^{-1} & 0_{(m-r) \times(n-r)}
\end{array}\right] S^{*} .
$$

(Proof: See [115, 651.) (Remark: See Fact 5.9.28 and Fact 6.6.15.)
Fact 6.3.16. Let $A \in \mathbb{F}^{n \times n}$. Then, the following statements are equivalent:
i) A is normal.
ii) $A A^{*} A^{+}=A^{+} A A^{*}$.
iii) A is range Hermitian, and $A^{+} A^{*}=A^{*} A^{+}$.
iv) $A\left(A A^{*} A\right)^{+}=\left(A A^{*} A\right)^{+} A$.
v) $A A^{+} A^{*} A^{2} A^{+}=A A^{*}$.
vi) $A\left(A^{*}+A^{+}\right)=\left(A^{*}+A^{+}\right) A$.
vii) $A^{*} A\left(A A^{*}\right)^{+} A^{*} A=A A^{*}$.
viii) $2 A A^{*}\left(A A^{*}+A^{*} A\right)^{+} A A^{*}=A A^{*}$.
ix) There exists a matrix $X \in \mathbb{F}^{n \times n}$ such that $A A^{*} X=A^{*} A$ and $A^{*} A X=A A^{*}$.
x) There exists a matrix $X \in \mathbb{F}^{n \times n}$ such that $A X=A^{*}$ and $A^{+*} X=A^{+}$.
(Proof: See 323.) (Remark: See Fact 3.7.12, Fact 3.11.4 Fact 5.15.4 Fact 6.3.13, and Fact 6.6.10.)

Fact 6.3.17. Let $A \in \mathbb{F}^{n \times n}$. Then, the following statements are equivalent:
i) A is Hermitian.
ii) $A A^{+}=A^{*} A^{+}$.
iii) $A^{2} A^{+}=A^{*}$.
iv) $A A^{*} A^{+}=A$.
(Proof: See [115].)
Fact 6.3.18. Let $A \in \mathbb{F}^{n \times m}$, and assume that $\operatorname{rank} A=m$. Then,

$$
\left(A A^{*}\right)^{+}=A\left(A^{*} A\right)^{-2} A^{*}
$$

(Remark: See Fact 6.4.7)

Fact 6.3.19. Let $A \in \mathbb{F}^{n \times m}$. Then,

$$
A^{+}=\lim _{\alpha \downarrow 0} A^{*}\left(A A^{*}+\alpha I\right)^{-1}=\lim _{\alpha \downarrow 0}\left(A^{*} A+\alpha I\right)^{-1} A^{*} .
$$

Fact 6.3.20. Let $A \in \mathbb{F}^{n \times m}$, let $\chi_{A A^{*}}(s)=s^{n}+\beta_{n-1} s^{n-1}+\cdots+\beta_{1} s+\beta_{0}$, and let $n-k$ denote the smallest integer in $\{0, \ldots, n-1\}$ such that $\beta_{k} \neq 0$. Then,

$$
A^{+}=-\beta_{n-k}^{-1} A^{*}\left[\left(A A^{*}\right)^{k-1}+\beta_{n-1}\left(A A^{*}\right)^{k-2}+\cdots+\beta_{n-k+1} I\right] .
$$

(Proof: See 394.)
Fact 6.3.21. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is Hermitian. Then,

$$
\operatorname{In} A=\operatorname{In} A^{+}=\operatorname{In} A^{\mathrm{D}} .
$$

If, in addition, A is nonsingular, then

$$
\text { In } A=A^{-1} \text {. }
$$

Fact 6.3.22. Let $A \in \mathbb{F}^{n \times n}$, and consider the following statements:
i) A is idempotent.
ii) $\operatorname{rank} A=\operatorname{tr} A$.
iii) $\operatorname{rank} A \leq \operatorname{tr} A^{2} A^{+} A^{*}$.

Then, $i) \Longrightarrow i i) \Longrightarrow i i i$). Furthermore, the following statements are equivalent:
iv) A is idempotent.
v) $\operatorname{rank} A=\operatorname{tr} A=\operatorname{tr} A^{2} A^{+} A^{*}$.
vi) There exist projectors $B, C \in \mathbb{F}^{n \times n}$ such that $A^{+}=B C$.
vii) $A^{*} A^{+}=A^{+}$.
viii) $A^{+} A^{*}=A^{+}$.
(Proof: See [807 and [1184, p. 166].)
Fact 6.3.23. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is idempotent. Then,

$$
A^{*} A^{+} A=A^{+} A
$$

and

$$
A A^{+} A^{*}=A A^{+} .
$$

(Proof: Note that $A^{*} A^{+} A$ is a projector, and $\mathcal{R}\left(A^{*} A^{+} A\right)=\mathcal{R}\left(A^{*}\right)=\mathcal{R}\left(A^{+} A\right)$. Alternatively, use Fact 6.3.22)

Fact 6.3.24. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is idempotent. Then,

$$
A^{+} A+(I-A)(I-A)^{+}=I
$$

and

$$
A A^{+}+(I-A)^{+}(I-A)=I .
$$

(Proof: $\mathcal{N}(A)=\mathcal{R}\left(I-A^{+} A\right)=\mathcal{R}(I-A)=\mathcal{R}\left[(I-A)\left(I-A^{+}\right)\right]$.) (Remark: The first identity states that the projector onto the null space of A is the same as
the projector onto the range of $I-A$, while the second identity states that the projector onto the range of A is the same as the projector onto the null space of $I-A$.) (Remark: See Fact 3.13.24 and Fact 5.12.18.)

Fact 6.3.25. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is idempotent. Then, $A+$ $A^{*}-I$ is nonsingular, and

$$
\left(A+A^{*}-I\right)^{-1}=A A^{+}+A^{+} A-I
$$

(Proof: Use Fact 6.3.23) (Remark: See Fact 3.13.24, Fact 5.12.18, or 998, p. 457] for a geometric interpretation of this identity.)

Fact 6.3.26. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is idempotent. Then, $2 A(A+$ $\left.A^{*}\right)^{+} A^{*}$ is the projector onto $\mathcal{R}(A) \cap \mathcal{R}\left(A^{*}\right)$. (Proof: See 1320.)

Fact 6.3.27. Let $A \in \mathbb{F}^{n \times n}$. Then, the following statements are equivalent:
i) A^{+}is idempotent.
ii) $A A^{*} A=A^{2}$.

If A is range Hermitian, then the following statements are equivalent:
iii) A^{+}is idempotent.
iv) $A A^{*}=A^{*} A=A$.

The following statements are equivalent:
v) A^{+}is a projector.
vi) A is a projector.
vii) A is idempotent, and A and A^{+}are similar.
viii) A is idempotent, and $A=A^{+}$.
ix) A is idempotent, and $A A^{+}=A A^{*}$.
x) $A^{+}=A$, and $A^{2}=A^{*}$.
xi) A and A^{+}are idempotent.
xii) $A=A A^{+}$.
(Proof: See 1184 pp. 167, 168] and [1281, 1326, 1423.) (Remark: See Fact 3.13.1.)
Fact 6.3.28. Let $A \in \mathbb{F}^{n \times m}$, and let $r \triangleq \operatorname{rank} A$. Then, the following statements are equivalent:
i) $A A^{*}$ is a projector.
ii) $A^{*} A$ is a projector.
iii) $A A^{*} A=A$.
iv) $A^{*} A A^{*}=A^{*}$.
v) $A^{+}=A^{*}$.
vi) $\sigma_{1}(A)=\sigma_{r}(A)=1$.

In particular, $N_{n}^{+}=N_{n}^{\mathrm{T}}$. (Proof: See [174, pp. 219-220].) (Remark: A is a partial isometry, which preserves lengths and distances with respect to the Euclidean norm on $\mathcal{R}\left(A^{*}\right)$. See [174, p. 219].) (Remark: See Fact 5.11.30)

Fact 6.3.29. Let $A \in \mathbb{F}^{n \times m}$, assume that A is nonzero, and let $r \triangleq \operatorname{rank} A$. Then, for all $i=1, \ldots, r$, the singular values of A^{+}are given by

$$
\sigma_{i}\left(A^{+}\right)=\sigma_{r+1-i}^{-1}(A)
$$

In particular,

$$
\sigma_{r}(A)=1 / \sigma_{\max }\left(A^{+}\right)
$$

If, in addition, $A \in \mathbb{F}^{n \times n}$ and A is nonsingular, then

$$
\sigma_{\min }(A)=1 / \sigma_{\max }\left(A^{-1}\right)
$$

Fact 6.3.30. Let $A \in \mathbb{F}^{n \times m}$. Then, $X=A^{+}$is the unique matrix satisfying

$$
\operatorname{rank}\left[\begin{array}{cc}
A & A A^{+} \\
A^{+} A & X
\end{array}\right]=\operatorname{rank} A
$$

(Remark: See Fact 2.17.10 and Fact 6.6.2,) (Proof: See 483].)
Fact 6.3.31. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is centrohermitian. Then, A^{+}is centrohermitian. (Proof: See 883.)

Fact 6.3.32. Let $A \in \mathbb{F}^{n \times n}$. Then, the following statements are equivalent:
i) $A^{2}=A A^{*} A$.
ii) A is the product of two projectors.
iii) $A=A\left(A^{+}\right)^{2} A$.
(Remark: This result is due to Crimmins. See 1114.)
Fact 6.3.33. Let $A \in \mathbb{F}^{n \times m}$. Then,

$$
A^{+}=4\left(I+A^{+} A\right)^{+} A^{+}\left(I+A A^{+}\right)^{+} .
$$

(Proof: Use Fact 6.4.36 with $B=A$.)
Fact 6.3.34. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is unitary. Then,

$$
\lim _{k \rightarrow \infty} \frac{1}{k} \sum_{i=0}^{k-1} A^{i}=I-(A-I)(A-I)^{+}
$$

(Remark: $I-(A-I)(A-I)^{+}$is the projector onto $\{x: A x=x\}=\mathcal{N}(A-I)$.) (Remark: This result is the ergodic theorem.) (Proof: Use Fact 11.21.11 and Fact 11.21.13, and note that $(A-I)^{*}=(A-I)^{+}$. See [626, p. 185].)

Fact 6.3.35. Let $A \in \mathbb{F}^{n \times m}$, and define $\left\{B_{i}\right\}_{i=1}^{\infty}$ by

$$
B_{i+1} \triangleq 2 B_{i}-B_{i} A B_{i}
$$

where $B_{0} \triangleq \alpha A^{*}$ and $\alpha \in\left(0,2 / \sigma_{\max }^{2}(A)\right)$. Then,

$$
\lim _{i \rightarrow \infty} B_{i}=A^{+}
$$

(Proof: See [144, p. 259] or [283, p. 250]. This result is due to Ben-Israel.) (Remark: This sequence is a Newton-Raphson algorithm.) (Remark: B_{0} satisfies $\operatorname{sprad}\left(I-B_{0} A\right)<1$.) (Remark: For the case in which A is square and nonsingular, see Fact 2.16.29) (Problem: Does convergence hold for all $B_{0} \in \mathbb{F}^{n \times n}$ satisfying $\operatorname{sprad}\left(I-B_{0} A\right)<1$?)

Fact 6.3.36. Let $A \in \mathbb{F}^{n \times m}$, let $\left(A_{i}\right)_{i=1}^{\infty} \subset \mathbb{F}^{n \times m}$, and assume that $\lim _{i \rightarrow \infty} A_{i}$ $=A$. Then, $\lim _{i \rightarrow \infty} A_{i}^{+}=A^{+}$if and only if there exists a positive integer k such that, for all $i>k, \operatorname{rank} A_{i}=\operatorname{rank} A$. (Proof: See [283, pp. 218, 219].)

6.4 Facts on the Moore-Penrose Generalized Inverse for Two or More Matrices

Fact 6.4.1. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times n}$. Then, the following statements are equivalent:
i) $B=A^{+}$.
ii) $A^{*} A B=A^{*}$ and $B^{*} B A=B^{*}$.
iii) $B A A^{*}=A^{*}$ and $A B B^{*}=B^{*}$.
(Remark: See [654, pp. 503, 513].)
Fact 6.4.2. Let $A \in \mathbb{F}^{n \times n}$, and let $x \in \mathbb{F}^{n}$ and $y \in \mathbb{F}^{m}$ be nonzero. Furthermore, define

$$
\begin{gathered}
d \triangleq A^{+} x, \quad e \triangleq A^{+*} y, \quad f \triangleq\left(I-A A^{+}\right) x, \quad g \triangleq\left(I-A^{+} A\right) y \\
\delta \triangleq d^{*} d, \quad \eta \triangleq e^{*} e, \quad \phi \triangleq f^{*} f, \quad \psi \triangleq g^{*} g \\
\lambda \triangleq 1+y^{*} A^{+} x, \quad \mu \triangleq|\lambda|^{2}+\delta \psi, \quad \nu \triangleq|\lambda|^{2}+\eta \phi
\end{gathered}
$$

Then,

$$
\operatorname{rank}\left(A+x y^{*}\right)=\operatorname{rank} A-1
$$

if and only if

$$
x \in \mathcal{R}(A), \quad y \in \mathcal{R}\left(A^{*}\right), \quad \lambda=0
$$

In this case,

$$
\left(A+x y^{*}\right)^{+}=A^{+}-\delta^{-1} d d^{*} A^{+}-\eta^{-1} A^{+} e e^{*}+(\delta \eta)^{-1} d^{*} A^{+} e d e^{*}
$$

Furthermore,

$$
\operatorname{rank}\left(A+x y^{*}\right)=\operatorname{rank} A
$$

if and only if

$$
\begin{cases}x \in \mathcal{R}(A), & y \in \mathcal{R}\left(A^{*}\right), \quad \lambda \neq 0 \\ x \in \mathcal{R}(A), & y \notin \mathcal{R}\left(A^{*}\right), \\ x \notin \mathcal{R}(A), & y \in \mathcal{R}\left(A^{*}\right)\end{cases}
$$

In this case, respectively,

$$
\left\{\begin{array}{l}
\left(A+x y^{*}\right)^{+}=A^{+}-\lambda^{-1} d e^{*}, \\
\left(A+x y^{*}\right)^{+}=A^{+}-\mu^{-1}\left(\psi d d^{*} A^{+}+\delta g e^{*}\right)+\mu^{-1}\left(\lambda g d^{*} A^{+}-\bar{\lambda} d e^{*}\right), \\
\left(A+x y^{*}\right)^{+}=A^{+}-\nu^{-1}\left(\phi A^{+} e e^{*}+\eta d f^{*}\right)+\nu^{-1}\left(\lambda A^{+} e f^{*}-\bar{\lambda} d e^{*}\right) .
\end{array}\right.
$$

Finally,

$$
\operatorname{rank}\left(A+x y^{*}\right)=\operatorname{rank} A+1
$$

if and only if

$$
x \notin \mathcal{R}(A), \quad y \notin \mathcal{R}\left(A^{*}\right) .
$$

In this case,

$$
\left(A+x y^{*}\right)^{+}=A^{+}-\phi^{-1} d f^{*}-\psi^{-1} g e^{*}+\lambda(\phi \psi)^{-1} g f^{*} .
$$

(Proof: See [108]. To prove sufficiency in the first alternative of the third statement, let $\hat{x}, \hat{y} \in \mathbb{F}^{n}$ be such that $x=A \hat{x}$ and $y=A^{*} \hat{y}$. Then, $A+x y^{*}=A\left(I+\hat{x} y^{*}\right)$. Since $\alpha \neq 0$ it follows that $-1 \neq y^{*} A^{+} x=\hat{y}^{*} A A^{+} A \hat{x}=\hat{y}^{*} A \hat{x}=y^{*} \hat{x}$. It now follows that $I+\hat{x} y^{*}$ is an elementary matrix and thus, by Fact 3.7.19 is nonsingular.) (Remark: An equivalent version of the first statement is given in [330 and [721, p. 33]. A detailed treatment of the generalized inverse of an outer-product perturbation is given in [1396] pp. 152-157].) (Remark: See Fact [2.10.25)

Fact 6.4.3. Let $A \in \mathbb{F}^{n \times n}$, assume that A is Hermitian, let $b \in \mathbb{F}^{n}$, and define $S \triangleq I-A^{+} A$. Then,

$$
\begin{aligned}
& \left(A+b b^{*}\right)^{+} \\
& =\left\{\begin{array}{lr}
{\left[I-\left(b^{*}\left(A^{+}\right)^{2} b\right)^{-1} A^{+} b b^{*} A^{+}\right] A^{+}\left[I-\left(b^{*}\left(A^{+}\right)^{2} b\right)^{-1} A^{+} b b^{*} A^{+}\right],} & 1+b^{*} A^{+} b=0, \\
A^{+}-\left(1+b^{*} A^{+} b\right)^{-1} A^{+} b b^{*} A^{+}, & 1+b^{*} A^{+} b \neq 0, \\
{\left[I-\left(b^{*} S b\right)^{-1} S b b^{*}\right] A^{+}\left[I-\left(b^{*} S b\right)^{-1} b b^{*} S\right]+\left(b^{*} S b\right)^{-2} S b b^{*} S,} & b^{*} S b \neq 0 .
\end{array}\right.
\end{aligned}
$$

(Proof: See 1006.)
Fact 6.4.4. Let $A \in \mathbb{F}^{n \times n}$, assume that A is positive semidefinite, let $C \in$ $\mathbb{F}^{m \times m}$, assume that C is positive definite, and let $B \in \mathbb{F}^{n \times m}$. Then,

$$
\left(A+B C B^{*}\right)^{+}=A^{+}-A^{+} B\left(C^{-1}+B^{*} A^{+} B\right)^{-1} B^{*} A^{+}
$$

if and only if

$$
A A^{+} B=B .
$$

(Proof: See 1049.) (Remark: $A A^{+} B=B$ is equivalent to $\mathcal{R}(B) \subseteq \mathcal{R}(A)$.) (Remark: Extensions of the matrix inversion lemma are considered in 384, 487, 1006, 1126] and [654, pp. 426-428, 447, 448].)

Fact 6.4.5. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times l}$. Then, $A B=0$ if and only if $B^{+} A^{+}=0$.

Fact 6.4.6. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{n \times l}$. Then, $A^{+} B=0$ if and only if $A^{*} B=0$.

Fact 6.4.7. Let $A \in \mathbb{F}^{n \times m}$, assume that $\operatorname{rank} A=m$, let $B \in \mathbb{F}^{n \times n}$, and assume that B is positive definite. Then,

$$
\left(A B A^{*}\right)^{+}=A\left(A^{*} A\right)^{-1} B^{-1}\left(A^{*} A\right)^{-1} A^{*}
$$

(Proof: Use Fact 6.3.18,
Fact 6.4.8. Let $A \in \mathbb{F}^{n \times m}$, let $S \in \mathbb{F}^{m \times m}$, assume that S is nonsingular, and define $B \triangleq A S$. Then,

$$
B B^{+}=A A^{+}
$$

(Proof: See [1184, p. 144].)
Fact 6.4.9. Let $A \in \mathbb{F}^{n \times r}$ and $B \in \mathbb{F}^{r \times m}$, and assume that $\operatorname{rank} A=\operatorname{rank} B=$ r. Then,

$$
(A B)^{+}=B^{+} A^{+}=B^{*}\left(B B^{*}\right)^{-1}\left(A^{*} A\right)^{-1} A^{*}
$$

(Remark: $A B$ is a full-rank factorization.)
Fact 6.4.10. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times l}$. Then,

$$
(A B)^{+}=\left(A^{+} A B\right)^{+}\left(A B B^{+}\right)^{+}
$$

If, in addition, $\mathcal{R}(B)=\mathcal{R}\left(A^{*}\right)$, then $A^{+} A B=B, A B B^{+}=A$, and

$$
(A B)^{+}=B^{+} A^{+}
$$

(Proof: See [1177, pp. 192] or [1301.) (Remark: This result is due to Cline and Greville.)

Fact 6.4.11. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times l}$, and define $B_{1} \triangleq A^{+} A B$ and $A_{1} \triangleq A B_{1} B_{1}^{+}$. Then,

$$
A B=A_{1} B_{1}
$$

and

$$
(A B)^{+}=B_{1}^{+} A_{1}^{+}
$$

(Proof: See [1177, pp. 191, 192].)
Fact 6.4.12. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times l}$. Then, the following statements are equivalent:
i) $(A B)^{+}=B^{+} A^{+}$.
ii) $\mathcal{R}\left(A^{*} A B\right) \subseteq \mathcal{R}(B)$ and $\mathcal{R}\left(B B^{*} A^{*}\right) \subseteq \mathcal{R}\left(A^{*}\right)$.
iii) $(A B)(A B)^{+}=(A B) B^{+} A^{+}$and $(A B)^{+}(A B)=B^{+} A^{+} A B$.
iv) $A^{*} A B=B B^{+} A^{*} A B$ and $A B B^{*}=A B B^{*} A^{+} A$.
v) $A B(A B)^{+} A=A B B^{+}$and $A^{+} A B=B(A B)^{+} A B$.
vi) $A^{*} A B B^{+}$and $A^{+} A B B^{*}$ are Hermitian.
vii) $\left(A B B^{+}\right)^{+}=B B^{+} A^{+}$and $\left(A^{+} A B\right)^{+}=B^{+} A^{+} A$.
viii) $B^{+}\left(A B B^{+}\right)^{+}=B^{+} A^{+}$and $\left(A^{+} A B\right)^{+} A=B^{+} A^{+}$.
ix) $A^{*} A B B^{*}=B B^{+} A^{*} A B B^{*} A^{+} A$.
(Proof: See [15] p. 53] and [587 1291.) (Remark: The equivalence of i) and $i i$) is due to Greville.) (Remark: Conditions under which $B^{+} A^{+}$is a (1)-inverse of $A B$ are given in [1291.) (Remark: See [1416].)

Fact 6.4.13. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times l}$. Then, $A B=0$ if and only if $B^{+} A^{+}=0$. Furthermore, $A^{+} B=0$ if and only if $A^{*} B=0$. (Proof: The first statement follows from $i x) \Longrightarrow i$) of Fact 6.4.12. The second statement follows from Proposition 6.1.6.)

Fact 6.4.14. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times l}$. Then, the following statements are equivalent:
i) $(A B)^{+}=B^{+} A^{+}-B^{+}\left[\left(I-B B^{+}\right)\left(I-A^{+} A\right)\right]^{+} A^{+}$.
ii) $\mathcal{R}\left(A A^{*} A B\right)=\mathcal{R}(A B)$ and $\mathcal{R}\left[\left(A B B^{*} B\right)^{*}\right]=\mathcal{R}\left[(A B)^{*}\right]$.
(Proof: See [1289.)
Fact 6.4.15. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are projectors. Then,

$$
\mathcal{R}([A, B])=\mathcal{R}\left[(A-B)^{+}-(A-B)\right] .
$$

Consequently, $(A-B)^{+}=(A-B)$ if and only if $A B=B A$. (Proof: See [1288].)
Fact 6.4.16. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are projectors. Then, the following statements hold:
i) $(A B)^{+}=B(A B)^{+}$.
ii) $(A B)^{+}=(A B)^{+} A$.
iii) $(A B)^{+}=B(A B)^{+} A$.
iv) $(A B)^{+}=B A-B\left(B_{\perp} A_{\perp}\right)^{+} A$.
v) $(A B)^{+}, B(A B)^{+},(A B)^{+} A, B(A B)^{+} A$, and $B A-B\left(B_{\perp} A_{\perp}\right)^{+} A$ are idempotent.
vi) $A B=A(A B)^{+} B$.
vii) $(A B)^{2}=A B+A B\left(B_{\perp} A_{\perp}\right)^{+} A B$.
(Proof: To prove i) note that $\mathcal{R}\left[(A B)^{+}\right]=\mathcal{R}\left[(A B)^{*}\right]=\mathcal{R}(B A)$, and thus $\mathcal{R}\left[B(A B)^{+}\right]=\mathcal{R}\left[B(A B)^{*}\right]=\mathcal{R}(B A)$. Hence, $\mathcal{R}\left[(A B)^{+}\right]=\mathcal{R}\left[B(A B)^{+}\right]$. It now follows from Fact 3.13 .14 that $(A B)^{+}=B(A B)^{+}$. Statement $i v$) follows from Fact 6.4.14 Statements v) and $v i$) follow from $i i i)$. Statement vii) follows from $i v$) and $v i$).) (Remark: The converse of the first result in v) is given by Fact 6.4.17) (Remark: See Fact 6.3.27, Fact 6.4.10, and Fact 6.4.21, See [1289, 1423].)

Fact 6.4.17. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is idempotent. Then, there exist projectors $B, C \in \mathbb{F}^{n \times n}$ such that $A=(B C)^{+}$. (Proof: See 322, 537.) (Remark: The converse of this result is given by v) of Fact 6.4.16.) (Remark: This result is due to Penrose.)

Fact 6.4.18. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that $\mathcal{R}(A)$ and $\mathcal{R}(B)$ are complementary subspaces. Furthermore, define $P \triangleq A A^{+}$and $Q \triangleq B B^{+}$. Then, the matrix $\left(Q_{\perp} P\right)^{+}$is the idempotent matrix onto $\mathcal{R}(B)$ along $\mathcal{R}(A)$. (Proof: See [588].) (Remark: See Fact 3.12.33, Fact 3.13.24 and Fact 6.4.19,

Fact 6.4.19. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are projectors, and assume that $\mathcal{R}(A)$ and $\mathcal{R}(B)$ are complementary subspaces. Then, $\left(A_{\perp} B\right)^{+}$is the idempotent matrix onto $\mathcal{R}(B)$ along $\mathcal{R}(A)$. (Proof: See Fact 6.4.18, 593], or [744].) (Remark: It follows from Fact 6.4.16 that $\left(A_{\perp} B\right)^{+}$is idempotent.) (Remark: See Fact 3.12.33 Fact 3.13.24, and Fact 6.4.18,

Fact 6.4.20. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are projectors, and assume that $A-B$ is nonsingular. Then, $I-B A$ is nonsingular, and

$$
\left(A_{\perp} B\right)^{+}=(I-B A)^{-1} B(I-B A)
$$

(Proof: Combine Fact 3.13.24 and Fact 6.4.19)
Fact 6.4.21. Let $k \geq 1$, let $A_{1}, \ldots, A_{k} \in \mathbb{F}^{n \times n}$, assume that A_{1}, \ldots, A_{k} are projectors, and define $B_{1}, \ldots, B_{k-1} \in \mathbb{F}^{n \times n}$ by

$$
B_{i}=\left(A_{1} \cdots A_{k-i+1}\right)^{+} A_{1} \cdots A_{k-i}, \quad i=1, \ldots, k-2
$$

and

$$
B_{k-1}=A_{2} \cdots A_{k}\left(A_{1} \cdots A_{k}\right)^{+}
$$

Then, B_{1}, \ldots, B_{k-1} are idempotent, and

$$
\left(A_{1} \cdots A_{k}\right)^{+}=B_{1} \cdots B_{k-1}
$$

(Proof: See [1298].) (Remark: When $k=2$, the result that B_{1} is idempotent is given by $v i$) of Fact 6.4.16.)

Fact 6.4.22. Let $A \in \mathbb{F}^{n \times n}$ and $B \in \mathbb{F}^{m \times n}$, and assume that A is idempotent. Then,

$$
A^{*}(B A)^{+}=(B A)^{+}
$$

(Proof: See [654, p. 514].)
Fact 6.4.23. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are projectors. Then, the following statements are equivalent:
i) $A B$ is a projector.
ii) $\left[(A B)^{+}\right]^{2}=\left[(A B)^{2}\right]^{+}$.
(Proof: See 1321.) (Remark: See Fact 3.13.20 and Fact 5.12.16.)
Fact 6.4.24. Let $A \in \mathbb{F}^{n \times m}$. Then, $B \in \mathbb{F}^{m \times m}$ satisfies $B A B=B$ if and only if there exist projectors $C \in \mathbb{F}^{n \times n}$ and $D \in \mathbb{F}^{m \times m}$ such that $B=(C A D)^{+}$. (Proof: See 588.)

Fact 6.4.25. Let $A \in \mathbb{F}^{n \times n}$. Then, A is idempotent if and only if there exist projectors $B, C \in \mathbb{F}^{n \times n}$ such that $A=(B C)^{+}$. (Proof: Let $A=I$ in Fact 6.4.24.) (Remark: See [594.)

Fact 6.4.26. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A is range Hermitian. Then, $A B=B A$ if and only if $A^{+} B=B A^{+}$. (Proof: See [1280].)

Fact 6.4.27. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are range Hermitian. Then, the following statements are equivalent:
i) $A B=B A$.
ii) $A^{+} B=B A^{+}$.
iii) $A B^{+}=B^{+} A$.
iv) $A^{+} B^{+}=B^{+} A^{+}$.
(Proof: See [1280.)
Fact 6.4.28. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are range Hermitian, and assume that $(A B)^{+}=A^{+} B^{+}$. Then, $A B$ is range Hermitian. (Proof: See [648.) (Remark: See Fact 8.20.21,)

Fact 6.4.29. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are range Hermitian. Then, the following statements are equivalent:
i) $A B$ is range Hermitian.
ii) $A B\left(I-A^{+} A\right)=0$ and $\left(I-B^{+} B\right) A B=0$.
iii) $\mathcal{N}(A) \subseteq \mathcal{N}(A B)$ and $\mathcal{R}(A B) \subseteq \mathcal{R}(B)$.
iv) $\mathcal{N}(A B)=\mathcal{N}(A)+\mathcal{N}(B)$ and $\mathcal{R}(A B)=\mathcal{R}(A) \cap \mathcal{R}(B)$.
(Proof: See 648, 832].)
Fact 6.4.30. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times l}$, and assume that $\operatorname{rank} B=m$. Then,

$$
A B(A B)^{+}=A A^{+}
$$

Fact 6.4.31. Let $A \in \mathbb{F}^{n \times m}, B \in \mathbb{F}^{m \times n}$, and $C \in \mathbb{F}^{m \times n}$, and assume that $B A A^{*}=A^{*}$ and $A^{*} A C=A^{*}$. Then,

$$
A^{+}=B A C
$$

(Proof: See [15, p. 36].) (Remark: This result is due to Decell.)
Fact 6.4.32. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that $A+B$ is nonsingular. Then, the following statements are equivalent:
i) $\operatorname{rank} A+\operatorname{rank} B=n$.
ii) $A(A+B)^{-1} B=0$.
iii) $B(A+B)^{-1} A=0$.
iv) $A(A+B)^{-1} A=A$.
v) $B(A+B)^{-1} B=B$.
vi) $A(A+B)^{-1} B+B(A+B)^{-1} A=0$.
vii) $A(A+B)^{-1} A+B(A+B)^{-1} B=A+B$.
viii) $(A+B)^{-1}=\left[\left(I-B B^{+}\right) A\left(I-B^{+} B\right)\right]^{+}+\left[\left(I-A A^{+}\right) B\left(I-A^{+} A\right)\right]^{+}$.
(Proof: See 1302 .) (Remark: See Fact 2.11.4 and Fact 8.20.23,
Fact 6.4.33. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{n \times l}$, and assume that A and B are projectors. Then, the following statements hold:
i) $A(A-B)^{+} B=B(A-B)^{+} A=0$.
ii) $A-B=A(A-B)^{+} A-B(B-A)^{+} B$.
iii) $(A-B)^{+}=(A-A B)^{+}+(A B-B)^{+}$.
iv) $(A-B)^{+}=(A-B A)^{+}+(B A-B)^{+}$.
v) $(A-B)^{+}=A-B+B(A-B A)^{+}-(B-B A)^{+} A$.
vi) $(A-B)^{+}=A-B+(A-A B)^{+} B-A(B-A B)^{+}$.
vii) $(I-A-B)^{+}=\left(A_{\perp} B_{\perp}\right)^{+}-(A B)^{+}$.
viii) $(I-A-B)^{+}=\left(B_{\perp} A_{\perp}\right)^{+}-(B A)^{+}$.

Furthermore, the following statements are equivalent:
ix) $A B=B A$.
x) $(A-B)^{+}=A-B$.
xi) $B(A-B A)^{+}=(B-B A)^{+} A$.
xii) $(A-B)^{3}=A-B$.
xiii) $A-B$ is tripotent.
(Proof: See 322.) (Remark: See Fact 3.12.22,
Fact 6.4.34. Let $A, B \in \mathbb{F}^{n \times m}$, and assume that $A^{*} B=0$ and $B A^{*}=0$. Then,

$$
(A+B)^{+}=A^{+}+B^{+}
$$

(Proof: Use Fact 2.10.29 and Fact 6.4.35] See 339 and 654 p. 513].) (Remark: This result is due to Penrose.)

Fact 6.4.35. Let $A, B \in \mathbb{F}^{n \times m}$, and assume that $\operatorname{rank}(A+B)=\operatorname{rank} A+$ rank B. Then,

$$
(A+B)^{+}=\left(I-C^{+} B\right) A^{+}\left(I-B C^{+}\right)+C^{+}
$$

where $C \triangleq\left(I-A A^{+}\right) B\left(I-A^{+} A\right)$. (Proof: See 339 .)
Fact 6.4.36. Let $A, B \in \mathbb{F}^{n \times m}$. Then,

$$
(A+B)^{+}=\left(I+A^{+} B\right)^{+}\left(A^{+}+A^{+} B A^{+}\right)\left(I+B A^{+}\right)^{+}
$$

if and only if $A A^{+} B=B=B A^{+} A$. Furthermore, if $n=m$ and A is nonsingular, then

$$
(A+B)^{+}=\left(I+A^{-1} B\right)^{+}\left(A^{-1}+A^{-1} B A^{-1}\right)\left(I+B A^{-1}\right)^{+}
$$

(Proof: See 339.) (Remark: If A and $A+B$ are nonsingular, then the last state-
ment yields $(A+B)^{-1}=(A+B)^{-1}(A+B)(A+B)^{-1}$ for which the assumption that A is nonsingular is superfluous.)

Fact 6.4.37. Let $A, B \in \mathbb{F}^{n \times m}$. Then,

$$
\begin{aligned}
A^{+} & -B^{+} \\
& =B^{+}(B-A) A^{+}+\left(I-B^{+} B\right)\left(A^{*}-B^{*}\right) A^{+*} A^{+}+B^{+} B^{+*}\left(A^{*}-B^{*}\right)\left(I-A A^{+}\right) \\
& =A^{+}(B-A) B^{+}+\left(I-A^{+} A\right)\left(A^{*}-B^{*}\right) B^{+*} B^{+}+A^{+} A^{+*}\left(A^{*}-B^{*}\right)\left(I-B B^{+}\right)
\end{aligned}
$$

Furthermore, if B is left invertible, then

$$
A^{+}-B^{+}=B^{+}(B-A) A^{+}+B^{+} B^{+*}\left(A^{*}-B^{*}\right)\left(I-A A^{+}\right)
$$

while, if B is right invertible, then

$$
A^{+}-B^{+}=A^{+}(B-A) B^{+}+\left(I-A^{+} A\right)\left(A^{*}-B^{*}\right) B^{+*} B^{+}
$$

(Proof: See [283, p. 224].)
Fact 6.4.38. Let $A \in \mathbb{F}^{n \times m}, B \in \mathbb{F}^{l \times k}$, and $C \in \mathbb{F}^{n \times k}$. Then, there exists a matrix $X \in \mathbb{F}^{m \times l}$ satisfying $A X B=C$ if and only if $A A^{+} C B^{+} B=C$. Furthermore, X satisfies $A X B=C$ if and only if there exists a matrix $Y \in \mathbb{F}^{m \times l}$ such that

$$
X=A^{+} C B^{+}+Y-A^{+} A Y B B^{+}
$$

Finally, if $Y=0$, then $\operatorname{tr} X^{*} X$ is minimized. (Proof: Use Proposition 6.1.7 See [948, p. 37] and, for Hermitian solutions, see [808].)

Fact 6.4.39. Let $A \in \mathbb{F}^{n \times m}$, and assume that rank $A=m$. Then, $A^{\mathrm{L}} \in \mathbb{F}^{m \times n}$ is a left inverse of A if and only if there exists a matrix $B \in \mathbb{F}^{m \times n}$ such that

$$
A^{\mathrm{L}}=A^{+}+B\left(I-A A^{+}\right)
$$

(Proof: Use Fact 6.4.3 with $A=C=I_{m}$.)
Fact 6.4.40. Let $A \in \mathbb{F}^{n \times m}$, and assume that rank $A=n$. Then, $A^{\mathrm{R}} \in \mathbb{F}^{m \times n}$ is a right inverse of A if and only if there exists a matrix $B \in \mathbb{F}^{m \times n}$ such that

$$
A^{\mathrm{R}}=A^{+}+\left(I-A^{+} A\right) B
$$

(Proof: Use Fact 6.4 .38 with $B=C=I_{n}$.)
Fact 6.4.41. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are projectors. Then,

$$
\operatorname{glb}\{A, B\}=\lim _{k \rightarrow \infty} A(B A)^{k}=2 A(A+B)^{+} B
$$

Furthermore, $2 A(A+B)^{+} B$ is the projector onto $\mathcal{R}(A) \cap \mathcal{R}(B)$. (Proof: See [39] and [627, pp. 64, 65, 121, 122].) (Remark: See Fact 6.4.42 and Fact 8.20.18.)

Fact 6.4.42. Let $A \in \mathbb{R}^{n \times m}$ and $B \in \mathbb{R}^{n \times l}$. Then,

$$
\mathcal{R}(A) \cap \mathcal{R}(B)=\mathcal{R}\left[A A^{+}\left(A A^{+}+B B^{+}\right)^{+} B B^{+}\right]
$$

(Remark: See Theorem 2.3.1 and Fact 8.20.18)

Fact 6.4.43. Let $A \in \mathbb{R}^{n \times m}$ and $B \in \mathbb{R}^{n \times l}$. Then, $\mathcal{R}(A) \subseteq \mathcal{R}(B)$ if and only if $B B^{+} A=A$. (Proof: See [15, p. 35].)

Fact 6.4.44. Let $A \in \mathbb{R}^{n \times m}$ and $B \in \mathbb{R}^{n \times l}$. Then,

$$
\begin{aligned}
\operatorname{dim}[\mathcal{R}(A) \cap \mathcal{R}(B)] & =\operatorname{rank} A A^{+}\left(A A^{+}+B B^{+}\right)^{+} B B^{+} \\
& =\operatorname{rank} A+\operatorname{rank} B-\operatorname{rank}\left[\begin{array}{ll}
A & B
\end{array}\right]
\end{aligned}
$$

(Proof: Use Fact 2.11.1 Fact 2.11.12, and Fact 6.4.42, (Remark: See Fact 2.11.8.)
Fact 6.4.45. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are projectors. Then,

$$
\operatorname{lub}\{A, B\}=(A+B)(A+B)^{+}
$$

Furthermore, $\operatorname{lub}\{A, B\}$ is the projector onto $\mathcal{R}(A)+\mathcal{R}(B)=\operatorname{span}[\mathcal{R}(A) \cup \mathcal{R}(B)]$. (Proof: Use Fact 2.9.13 and Fact 8.7.3, (Remark: See Fact 8.7.2,

Fact 6.4.46. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are projectors. Then,

$$
\operatorname{lub}\{A, B\}=I-\lim _{k \rightarrow \infty} A_{\perp}\left(B_{\perp} A_{\perp}\right)^{k}=I-2 A_{\perp}\left(A_{\perp}+B_{\perp}\right)^{+} B_{\perp}
$$

Furthermore, $I-2 A_{\perp}\left(A_{\perp}+B_{\perp}\right)^{+} B_{\perp}$ is the projector onto

$$
\begin{aligned}
{\left[\mathcal{R}\left(A_{\perp}\right) \cap \mathcal{R}\left(B_{\perp}\right)\right]^{\perp} } & =[\mathcal{N}(A) \cap \mathcal{N}(B)]^{\perp} \\
& =[\mathcal{N}(A)]^{\perp}+[\mathcal{N}(B)]^{\perp} \\
& =\mathcal{R}(A)+\mathcal{R}(B) \\
& =\operatorname{span}[\mathcal{R}(A) \cup \mathcal{R}(B)]
\end{aligned}
$$

Consequently,

$$
I-2 A_{\perp}\left(A_{\perp}+B_{\perp}\right)^{+} B_{\perp}=(A+B)(A+B)^{+}
$$

(Proof: See [39] and 627] pp. 64, 65, 121, 122].) (Remark: See Fact 6.4.42 and Fact 8.20.18,

Fact 6.4.47. Let $A, B \in \mathbb{F}^{n \times m}$. Then,

$$
A \stackrel{*}{\leq} B
$$

if and only if

$$
A^{+} A=A^{+} B
$$

and

$$
A A^{+}=B A^{+}
$$

(Proof: See 652.) (Remark: See Fact 2.10.35.)

6.5 Facts on the Moore-Penrose Generalized Inverse for Partitioned Matrices

Fact 6.5.1. Let $A, B \in \mathbb{F}^{n \times m}$. Then,

$$
(A+B)^{+}=\frac{1}{2}\left[\begin{array}{ll}
I_{n} & I_{n}
\end{array}\right]\left[\begin{array}{cc}
A & B \\
B & A
\end{array}\right]^{+}\left[\begin{array}{l}
I_{m} \\
I_{m}
\end{array}\right]
$$

(Proof: See 1278, 1282, 1302.) (Remark: See Fact 2.17.5 and Fact 2.19.7.)
Fact 6.5.2. Let $A_{1}, \ldots, A_{k} \in \mathbb{F}^{n \times m}$. Then,

$$
\left(A_{1}+\cdots+A_{k}\right)^{+}=\frac{1}{k}\left[\begin{array}{lll}
I_{n} & \cdots & I_{n}
\end{array}\right]\left[\begin{array}{cccc}
A_{1} & A_{2} & \cdots & A_{k} \\
A_{k} & A_{1} & \cdots & A_{k-1} \\
\vdots & \vdots & \ddots & \vdots \\
A_{2} & A_{3} & \cdots & A_{1}
\end{array}\right]^{+}\left[\begin{array}{c}
I_{m} \\
\vdots \\
I_{m}
\end{array}\right]
$$

(Proof: See 1282.) (Remark: The partitioned matrix is block circulant. See Fact 6.6.1 and Fact 2.17.6.)

Fact 6.5.3. Let $A, B \in \mathbb{F}^{n \times m}$. Then, the following statements are equivalent:
i) $\mathcal{R}\left(\left[\begin{array}{c}A \\ A^{*} A\end{array}\right]\right)=\mathcal{R}\left(\left[\begin{array}{c}B \\ B^{*} B\end{array}\right]\right)$.
ii) $\mathcal{R}\left(\left[\begin{array}{c}A \\ A^{+} A\end{array}\right]\right)=\mathcal{R}\left(\left[\begin{array}{c}B \\ B^{+} B\end{array}\right]\right)$.
iii) $A=B$.
(Remark: This result is due to Tian.)
Fact 6.5.4. Let $A \in \mathbb{F}^{n \times m}, B \in \mathbb{F}^{n \times l}, C \in \mathbb{F}^{k \times m}$, and $D \in \mathbb{F}^{k \times l}$. Then,

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]=\left[\begin{array}{cc}
I & 0 \\
C A^{+} & I
\end{array}\right]\left[\begin{array}{cc}
A & B-A A^{+} B \\
C-C A^{+} A & D-C A^{+} B
\end{array}\right]\left[\begin{array}{cc}
I & A^{+} B \\
0 & I
\end{array}\right]
$$

(Proof: See 1290.)
Fact 6.5.5. Let $A \in \mathbb{F}^{n \times n}, B \in \mathbb{F}^{n \times m}$, and $C \in \mathbb{F}^{m \times m}$, define $\mathcal{A} \triangleq\left[\begin{array}{cc}A & B \\ B^{*} & C\end{array}\right]$, and assume that $B=A A^{+} B$. Then,

$$
\operatorname{In} \mathcal{A}=\operatorname{In} A+\operatorname{In}(A \mid \mathcal{A})
$$

(Remark: This result is the Haynsworth inertia additivity formula. See [1103.) (Remark: If \mathcal{A} is positive semidefinite, then $B=A A^{+} B$. See Proposition 8.2.4.)

Fact 6.5.6. Let $A \in \mathbb{F}^{n \times m}, B \in \mathbb{F}^{n \times l}, C \in \mathbb{F}^{k \times m}$, and $D \in \mathbb{F}^{k \times l}$. Then,

$$
\begin{aligned}
\operatorname{rank}\left[\begin{array}{ll}
A & B
\end{array}\right] & =\operatorname{rank} A+\operatorname{rank}\left(B-A A^{+} B\right) \\
& =\operatorname{rank} B+\operatorname{rank}\left(A-B B^{+} A\right) \\
& =\operatorname{rank} A+\operatorname{rank} B-\operatorname{dim}[\mathcal{R}(A) \cap \mathcal{R}(B)]
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{rank}\left[\begin{array}{c}
A \\
C
\end{array}\right] & =\operatorname{rank} A+\operatorname{rank}\left(C-C A^{+} A\right) \\
& =\operatorname{rank} C+\operatorname{rank}\left(A-A C^{+} C\right) \\
& =\operatorname{rank} A+\operatorname{rank} C-\operatorname{dim}\left[\mathcal{R}\left(A^{*}\right) \cap \mathcal{R}\left(C^{*}\right)\right],
\end{aligned}
$$

$\operatorname{rank}\left[\begin{array}{cc}A & B \\ C & 0\end{array}\right]=\operatorname{rank} B+\operatorname{rank} C+\operatorname{rank}\left[\left(I_{n}-B B^{+}\right) A\left(I_{m}-C^{+} C\right)\right]$,
and

$$
\begin{aligned}
\operatorname{rank}\left[\begin{array}{cc}
A & B \\
C & D
\end{array}\right]= & \operatorname{rank} A+\operatorname{rank} X+\operatorname{rank} Y \\
& +\operatorname{rank}\left[\left(I_{k}-Y Y^{+}\right)\left(D-C A^{+} B\right)\left(I_{l}-X^{+} X\right)\right]
\end{aligned}
$$

where $X \triangleq B-A A^{+} B$ and $Y \triangleq C-C A^{+} A$. Consequently,

$$
\operatorname{rank} A+\operatorname{rank}\left(D-C A^{+} B\right) \leq \operatorname{rank}\left[\begin{array}{cc}
A & B \\
C & D
\end{array}\right]
$$

and, if $A A^{+} B=B$ and $C A^{+} A=C$, then

$$
\operatorname{rank} A+\operatorname{rank}\left(D-C A^{+} B\right)=\operatorname{rank}\left[\begin{array}{cc}
A & B \\
C & D
\end{array}\right]
$$

Finally, if $n=m$ and A is nonsingular, then

$$
n+\operatorname{rank}\left(D-C A^{-1} B\right)=\operatorname{rank}\left[\begin{array}{cc}
A & B \\
C & D
\end{array}\right]
$$

(Proof: See 290, 968, Fact 2.11.8, and Fact 2.11.11) (Remark: With certain restrictions the generalized inverses can be replaced by (1)-inverses.) (Remark: See Proposition 2.8.3 and Proposition 8.2.3.)

Fact 6.5.7. Let $A \in \mathbb{F}^{n \times m}, B \in \mathbb{F}^{k \times l}$, and $C \in \mathbb{F}^{n \times l}$. Then,

$$
\min _{X \in \mathbb{F}^{m \times l}, Y \in \mathbb{F}^{n \times k}} \operatorname{rank}(A X+Y B+C)=\operatorname{rank}\left[\begin{array}{cc}
A & C \\
0 & -B
\end{array}\right]-\operatorname{rank} A-\operatorname{rank} B .
$$

Furthermore, X, Y is a minimizing solution if and only if there exist $U \in \mathbb{F}^{m \times k}$, $U_{1} \in \mathbb{F}^{m \times l}$, and $U_{2} \in \mathbb{F}^{n \times k}$, such that

$$
\begin{gathered}
X=-A^{+} C+U B+\left(I_{m}-A^{+} A\right) U_{1} \\
Y=\left(A A^{+}-I\right) C B^{+}-A U+U_{2}\left(I_{k}-B B^{+}\right)
\end{gathered}
$$

Finally, all such matrices $X \in \mathbb{F}^{m \times l}$ and $Y \in \mathbb{F}^{n \times k}$ satisfy

$$
A X+Y B+C=0
$$

if and only if

$$
\operatorname{rank}\left[\begin{array}{cc}
A & C \\
0 & -B
\end{array}\right]=\operatorname{rank} A+\operatorname{rank} B
$$

(Proof: See [1285, 1303.) (Remark: See Fact 5.10.20. Note that A and B are square in Fact 5.10.20.

Fact 6.5.8. Let $A \in \mathbb{F}^{n \times n}, B \in \mathbb{F}^{n \times m}$, and $C \in \mathbb{F}^{m \times m}$, and assume that $\left[\begin{array}{cc}A & B \\ B^{*} & C\end{array}\right]$ is a projector. Then,

$$
\operatorname{rank}\left(D-B^{*} A^{+} B\right)=\operatorname{rank} C-\operatorname{rank} B^{*} A^{+} B
$$

(Proof: See [1295].) (Remark: See [107].)
Fact 6.5.9. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{n \times l}$. Then, the following statements are equivalent:
i) $\operatorname{rank}\left[\begin{array}{cc}A & B\end{array}\right]=\operatorname{rank} A+\operatorname{rank} B$.
ii) $\mathcal{R}(A) \cap \mathcal{R}(B)=\varnothing$.
iii) $\operatorname{rank}\left(A A^{*}+B B^{*}\right)=\operatorname{rank} A+\operatorname{rank} B$.
iv) $A^{*}\left(A A^{*}+B B^{*}\right)^{+} A$ is idempotent.
v) $A^{*}\left(A A^{*}+B B^{*}\right)^{+} A=A^{+} A$.
vi) $A^{*}\left(A A^{*}+B B^{*}\right)^{+} B=0$.
(Proof: See [948, pp. 56, 57].) (Remark: See Fact 2.11.8.)
Fact 6.5.10. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{n \times l}$, and define the projectors $P \triangleq A A^{+}$ and $Q \triangleq B B^{+}$. Then, the following statements are equivalent:
i) $\operatorname{rank}\left[\begin{array}{cc}A & B\end{array}\right]=\operatorname{rank} A+\operatorname{rank} B=n$.
ii) $P-Q$ is nonsingular.

In this case,

$$
\begin{aligned}
(P-Q)^{-1} & =(P-P Q)^{+}+(P Q-Q)^{+} \\
& =(P-Q P)^{+}+(Q P-Q)^{+} \\
& =P-Q+Q(P-Q P)^{+}-(Q-Q P)^{+} P .
\end{aligned}
$$

(Proof: See 322.)
Fact 6.5.11. Let $A \in \mathbb{F}^{n \times m}, B \in \mathbb{F}^{n \times l}, C \in \mathbb{F}^{l \times n}, D \in \mathbb{F}^{l \times l}$, and assume that D is nonsingular. Then,

$$
\operatorname{rank} A=\operatorname{rank}\left(A-B D^{-1} C\right)+\operatorname{rank} B D^{-1} C
$$

if and only if there exist matrices $X \in \mathbb{F}^{m \times l}$ and $Y \in \mathbb{F}^{l \times n}$ such that $B=A X$, $C=Y A$, and $D=Y A X$. (Proof: See 330.)

Fact 6.5.12. Let $A \in \mathbb{F}^{n \times m}, B \in \mathbb{F}^{n \times l}, C \in \mathbb{F}^{k \times m}$, and $D \in \mathbb{F}^{k \times l}$. Then,

$$
\operatorname{rank} A+\operatorname{rank}\left(D-C A^{+} B\right)=\operatorname{rank}\left[\begin{array}{cc}
A^{*} A A^{*} & A^{*} B \\
C A^{*} & D
\end{array}\right] .
$$

(Proof: See 1286.)
Fact 6.5.13. Let $A_{11} \in \mathbb{F}^{n \times m}, A_{12} \in \mathbb{F}^{n \times l}, A_{21} \in \mathbb{F}^{k \times m}$, and $A_{22} \in \mathbb{F}^{k \times l}$, and define $A \triangleq\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right] \in \mathbb{F}^{(n+k) \times(m+l)}$ and $B \triangleq A A^{+}=\left[\begin{array}{cc}B_{11} & B_{12} \\ B_{12}^{\mathrm{T}} & B_{22}\end{array}\right]$, where $B_{11} \in \mathbb{F}^{n \times m}, B_{12} \in \mathbb{F}^{n \times l}, B_{21} \in \mathbb{F}^{k \times m}$, and $B_{22} \in \mathbb{F}^{k \times l}$. Then,

$$
\operatorname{rank} B_{12}=\operatorname{rank}\left[\begin{array}{ll}
A_{11} & A_{12}
\end{array}\right]+\operatorname{rank}\left[\begin{array}{ll}
A_{21} & A_{22}
\end{array}\right]-\operatorname{rank} A
$$

(Proof: See 1308.) (Remark: See Fact 3.12.20 and Fact 3.13.12,)

Fact 6.5.14. Let $A, B \in \mathbb{F}^{n \times n}$. Then,

$$
\begin{aligned}
\operatorname{rank}\left[\begin{array}{cc}
0 & A \\
B & I
\end{array}\right] & =\operatorname{rank} A+\operatorname{rank}\left[\begin{array}{cc}
B & I-A^{+} A
\end{array}\right] \\
& =\operatorname{rank}\left[\begin{array}{c}
A \\
I-B B^{+}
\end{array}\right]+\operatorname{rank} B \\
& =\operatorname{rank} A+\operatorname{rank} B+\operatorname{rank}\left[\left(I-B B^{+}\right)\left(I-A^{+} A\right)\right] \\
& =n+\operatorname{rank} A B
\end{aligned}
$$

Hence, the following statements hold:
i) $\operatorname{rank} A B=\operatorname{rank} A+\operatorname{rank} B-n$ if and only if $\left(I-B B^{+}\right)\left(I-A^{+} A\right)=0$.
ii) $\operatorname{rank} A B=\operatorname{rank} A$ if and only if $\left[\begin{array}{cc}B & I-A^{+} A\end{array}\right]$ is right invertible.
iii) $\operatorname{rank} A B=\operatorname{rank} B$ if and only if $\left[\begin{array}{c}A \\ I-B B^{+}\end{array}\right]$is left invertible.
(Proof: See 968.) (Remark: The generalized inverses can be replaced by arbitrary (1)-inverses.)

Fact 6.5.15. Let $A \in \mathbb{F}^{n \times m}, B \in \mathbb{F}^{m \times l}$, and $C \in \mathbb{F}^{l \times k}$. Then,

$$
\begin{aligned}
\operatorname{rank}\left[\begin{array}{cc}
0 & A B \\
B C & B
\end{array}\right]= & \operatorname{rank} B+\operatorname{rank} A B C \\
= & \operatorname{rank} A B+\operatorname{rank} B C \\
& \quad+\operatorname{rank}\left[(I-B C)(B C)^{+}\right] B\left[\left(I-(A B)^{+}(A B)\right]\right.
\end{aligned}
$$

Furthermore, the following statements are equivalent:
i) $\operatorname{rank}\left[\begin{array}{cc}0 & A B \\ B C & B\end{array}\right]=\operatorname{rank} A B+\operatorname{rank} B C$.
ii) $\operatorname{rank} A B C=\operatorname{rank} A B+\operatorname{rank} B C-\operatorname{rank} B$.
iii) There exist matrices $X \in \mathbb{F}^{k \times l}$ and $Y \in \mathbb{F}^{m \times n}$ such that

$$
B C X+Y A B=B
$$

(Proof: See 968, 1308 and Fact 5.10.20) (Remark: This result is related to the Frobenius inequality. See Fact 2.11.14.)

Fact 6.5.16. Let $x, y \in \mathbb{R}^{3}$, and assume that x and y are linearly independent. Then,

$$
\left[\begin{array}{ll}
x & y
\end{array}\right]^{+}=\left[\begin{array}{c}
x^{+}\left(I_{3}-y \phi^{\mathrm{T}}\right) \\
\phi^{\mathrm{T}}
\end{array}\right]
$$

where $x^{+}=\left(x^{\mathrm{T}} x\right)^{-1} x^{\mathrm{T}}, \alpha \triangleq y^{\mathrm{T}}\left(I-x x^{+}\right) y$, and $\phi \triangleq \alpha^{-1}\left(I-x x^{+}\right) y$. Now, let $x, y, z \in \mathbb{R}^{3}$, and assume that x and y are linearly independent. Then,

$$
\left[\begin{array}{lll}
x & y & z
\end{array}\right]^{+}=\left[\begin{array}{c}
\left(I_{2}-\beta w w^{\mathrm{T}}\right)\left[\begin{array}{ll}
x & y
\end{array}\right]^{+} \\
\beta w^{\mathrm{T}}\left[\begin{array}{ll}
x & y
\end{array}\right]^{+}
\end{array}\right]
$$

where $w \triangleq\left[\begin{array}{ll}x & y\end{array}\right]^{+} z$ and $\beta \triangleq 1 /\left(1+w^{\mathrm{T}} w\right)$. (Proof: See [1319].)

Fact 6.5.17. Let $A \in \mathbb{F}^{n \times m}$ and $b \in \mathbb{F}^{n}$. Then,

$$
\left[\begin{array}{ll}
A & b
\end{array}\right]^{+}=\left[\begin{array}{c}
A^{+}\left(I_{n}-b \phi^{*}\right) \\
\phi^{*}
\end{array}\right]
$$

and

$$
\left[\begin{array}{ll}
b & A
\end{array}\right]^{+}=\left[\begin{array}{c}
\phi^{*} \\
A^{+}\left(I_{n}-b \phi^{*}\right)
\end{array}\right]
$$

where

$$
\phi \triangleq \begin{cases}\left(b-A A^{+} b\right)^{+*}, & b \neq A A^{+} b, \\ \gamma^{-1}\left(A A^{*}\right)^{+} b, & b=A A^{+} b\end{cases}
$$

and $\gamma \triangleq 1+b^{*}\left(A A^{*}\right)^{+} b$. (Proof: See [15, p. 44], [481, p. 270], or [1186, p. 148].) (Remark: This result is due to Greville.)

Fact 6.5.18. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{n \times l}$. Then,

$$
\left[\begin{array}{cc}
A & B
\end{array}\right]^{+}=\left[\begin{array}{c}
A^{+}-A^{+} B\left(C^{+}+D\right) \\
C^{+}+D
\end{array}\right]
$$

where

$$
C \triangleq\left(I-A A^{+}\right) B
$$

and

$$
D \triangleq\left(I-C^{+} C\right)\left[I+\left(I-C^{+} C\right) B^{*}\left(A A^{*}\right)^{+} B\left(I-C^{+} C\right)\right]^{-1} B^{*}\left(A A^{*}\right)^{+}\left(I-B C^{+}\right) .
$$

Furthermore,

$$
\left[\begin{array}{ll}
A & B
\end{array}\right]^{+}= \begin{cases}{\left[\begin{array}{c}
A^{*}\left(A A^{*}+B B^{*}\right)^{-1} \\
B^{*}\left(A A^{*}+B B^{*}\right)^{-1}
\end{array}\right],} & \operatorname{rank}\left[\begin{array}{cc}
A & B
\end{array}\right]=n \\
{\left[\begin{array}{cc}
A^{*} A & A^{*} B \\
B^{*} A & B^{*} B
\end{array}\right]^{-1}\left[\begin{array}{c}
A^{*} \\
B^{*}
\end{array}\right],} & \operatorname{rank}\left[\begin{array}{ll}
A & B
\end{array}\right]=m+l \\
{\left[\begin{array}{c}
A^{*}\left(A A^{*}\right)^{-1}(I-B E) \\
E
\end{array}\right], \quad \operatorname{rank} A=n}\end{cases}
$$

where

$$
E \triangleq\left[I+B^{*}\left(A A^{*}\right)^{-1} B\right]^{-1} B^{*}\left(A A^{*}\right)^{-1}
$$

(Proof: See [338] or 947, p. 14].) (Remark: If $\left[\begin{array}{ll}A & B\end{array}\right]$ is square and nonsingular and $A^{*} B=0$, then the second expression yields Fact 2.17.8.)

Fact 6.5.19. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{n \times l}$. Then,

$$
\operatorname{rank}\left(\left[\begin{array}{ll}
A & B
\end{array}\right]^{+}-\left[\begin{array}{l}
A^{+} \\
B^{+}
\end{array}\right]\right)=\operatorname{rank}\left[\begin{array}{cc}
A A^{*} B & B B^{*} A
\end{array}\right] .
$$

Hence, if $A^{*} B=0$, then

$$
\left[\begin{array}{ll}
A & B
\end{array}\right]^{+}=\left[\begin{array}{c}
A^{+} \\
B^{+}
\end{array}\right]
$$

(Proof: See 1289.)
Fact 6.5.20. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{n \times l}$. Then, the following statements are equivalent:
i) $\left[\begin{array}{ll}A & B\end{array}\right]\left[\begin{array}{ll}A & B\end{array}\right]^{+}=\frac{1}{2}\left(A A^{+}+B B^{+}\right)$.
ii) $\mathcal{R}(A)=\mathcal{R}(B)$.

Furthermore, the following statements are equivalent:
iii) $\left[\begin{array}{ll}A & B\end{array}\right]^{+}=\frac{1}{2}\left[\begin{array}{c}A^{+} \\ B^{+}\end{array}\right]$.
iv) $A A^{*}=B B^{*}$.
(Proof: See 1300.)
Fact 6.5.21. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{k \times l}$. Then,

$$
\left[\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right]^{+}=\left[\begin{array}{cc}
A^{+} & 0 \\
0 & B^{+}
\end{array}\right]
$$

Fact 6.5.22. Let $A \in \mathbb{F}^{n \times m}$. Then,

$$
\left[\begin{array}{cc}
I_{n} & A \\
0_{m \times n} & 0_{m \times m}
\end{array}\right]^{+}=\left[\begin{array}{cc}
\left(I_{n}+A A^{*}\right)^{-1} & 0_{n \times m} \\
A^{*}\left(I_{n}+A A^{*}\right)^{-1} & 0_{m \times m}
\end{array}\right] .
$$

(Proof: See [17, 1326].)
Fact 6.5.23. Let $A \in \mathbb{F}^{n \times n}$, let $B \in \mathbb{F}^{n \times m}$, and assume that $B B^{*}=I$. Then,

$$
\left[\begin{array}{cc}
A & B \\
B^{*} & 0
\end{array}\right]^{+}=\left[\begin{array}{cc}
0 & B \\
B^{*} & -B^{*} A B
\end{array}\right]
$$

(Proof: See [447, p. 237].)
Fact 6.5.24. Let $A \in \mathbb{F}^{n \times n}$, assume that A is positive semidefinite, and let $B \in \mathbb{F}^{n \times m}$. Then,

$$
\left[\begin{array}{cc}
A & B \\
B^{*} & 0
\end{array}\right]^{+}=\left[\begin{array}{cc}
C^{+}-C^{+} B D^{+} B^{*} C^{+} & C^{+} B D^{+} \\
\left(C^{+} B D^{+}\right)^{*} & D D^{+}-D^{+}
\end{array}\right]
$$

where

$$
C \triangleq A+B B^{*}, \quad D \triangleq B^{*} C^{+} B
$$

(Proof: See [948, p. 58].) (Remark: Representations for the generalized inverse of a partitioned matrix are given in [174, Chapter 5] and [105, 112, 134, 172, 277, [283, 296, 595, 643, 645, 736, 904, 996, 997, 999, 1000, 1001, 1046, 1120, 1137, 1278 , 1310 1418.) (Problem: Show that the generalized inverses in this result and in Fact 6.5.23 are identical when A is positive semidefinite and $B B^{*}=I$.)

Fact 6.5.25. Let $A \in \mathbb{F}^{n \times n}, x, y \in \mathbb{F}^{n}$, and $a \in \mathbb{F}$, and assume that $x \in \mathcal{R}(A)$.
Then,

$$
\left[\begin{array}{cc}
A & x \\
y^{\mathrm{T}} & a
\end{array}\right]=\left[\begin{array}{cc}
I & 0 \\
y^{\mathrm{T}} & 1
\end{array}\right]\left[\begin{array}{cc}
A & 0 \\
y^{\mathrm{T}}-y^{\mathrm{T}} A & a-y^{\mathrm{T}} A^{+} x
\end{array}\right]\left[\begin{array}{cc}
I & A^{+} x \\
0 & 1
\end{array}\right] .
$$

(Remark: See Fact 2.16.2 and Fact 2.14.9, and note that $x=A A^{+} x$.) (Problem:
Obtain a factorization for the case $x \notin \mathcal{R}(A)$.)
Fact 6.5.26. Let $A \in \mathbb{F}^{n \times m}$, assume that A is partitioned as

$$
A=\left[\begin{array}{c}
A_{1} \\
\vdots \\
A_{k}
\end{array}\right]
$$

and define

$$
B \triangleq\left[\begin{array}{lll}
A_{1}^{+} & \cdots & A_{k}^{+}
\end{array}\right] .
$$

Then, the following statements hold:
i) $\operatorname{det} A B=0$ if and only if $\operatorname{rank} A<n$.
ii) $0<\operatorname{det} A B \leq 1$ if and only if $\operatorname{rank} A=n$.
iii) If $\operatorname{rank} A=n$, then

$$
\operatorname{det} A B=\frac{\operatorname{det} A A^{*}}{\prod_{i=1}^{k} \operatorname{det} A_{i} A_{i}^{*}},
$$

and thus

$$
\operatorname{det} A A^{*} \leq \prod_{i=1}^{k} \operatorname{det} A_{i} A_{i}^{*} \text {. }
$$

iv) $\operatorname{det} A B=1$ if and only if $A B=I$.
v) $A B$ is group invertible.
vi) Every eigenvalue of $A B$ is nonnegative.
vii) $\operatorname{rank} A=\operatorname{rank} B=\operatorname{rank} A B=\operatorname{rank} B A$.

Now, assume that $\operatorname{rank} A=\sum_{i=1}^{k} \operatorname{rank} A_{i}$, and let β denote the product of the positive eigenvalues of $A B$. Then, the following statements hold:
viii) $0<\beta \leq 1$.
ix) $\beta=1$ if and only if $B=A^{+}$.
(Proof: See 875, 1247.) (Remark: Result iii) yields Hadamard's inequality as given by Fact 8.13 .34 in the case that A is square and each A_{i} has a single row.)

Fact 6.5.27. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{n \times l}$. Then,

$$
\begin{aligned}
\operatorname{det}\left[\begin{array}{ll}
A^{*} A & B^{*} A \\
B^{*} A & B^{*} B
\end{array}\right] & =\operatorname{det}\left(A^{*} A\right) \operatorname{det}\left[B^{*}\left(I-A A^{+}\right) B\right] \\
& =\operatorname{det}\left(B^{*} B\right) \operatorname{det}\left[A^{*}\left(I-B B^{+}\right) A\right] .
\end{aligned}
$$

(Remark: See Fact 2.14.25.)

Fact 6.5.28. Let $A \in \mathbb{F}^{n \times n}, B \in \mathbb{F}^{n \times m}, C \in \mathbb{F}^{m \times n}$, and $D \in \mathbb{F}^{m \times m}$, assume that either $\operatorname{rank}\left[\begin{array}{cc}A & B\end{array}\right]=\operatorname{rank} A$ or $\operatorname{rank}\left[{ }_{C}^{A}\right]=\operatorname{rank} A$, and let $A^{-} \in \mathbb{F}^{n \times n}$ be a (1)-inverse of A. Then,

$$
\operatorname{det}\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]=(\operatorname{det} A) \operatorname{det}\left(D-C A^{-} B\right)
$$

(Proof: See [144, p. 266].)
Fact 6.5.29. Let $A \triangleq\left[\begin{array}{cc}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right] \in \mathbb{F}^{(n+m) \times(n+m)}, B \in \mathbb{F}^{(n+m) \times l}, C \in$ $\mathbb{F}^{l \times(n+m)}, D \in \mathbb{F}^{l \times l}$, and $\mathcal{A} \triangleq\left[\begin{array}{cc}A & B \\ C & B\end{array}\right]$, and assume that A and A_{11} are nonsingular. Then,

$$
A\left|\mathcal{A}=\left(A_{11} \mid A\right)\right|\left(A_{11} \mid \mathcal{A}\right)
$$

(Proof: See [1098, pp. 18, 19].) (Remark: This result is the Crabtree-Haynsworth quotient formula. See [717.) (Remark: Extensions are given in [1495].) (Problem: Extend this result to the case in which either A or A_{11} is singular.)

Fact 6.5.30. Let $A, B \in \mathbb{F}^{n \times m}$. Then, the following statements are equivalent:
i) $A \stackrel{\mathrm{rs}}{\leq} B$.
ii) $A A^{+} B=B A^{+} A=B A^{+} B=B$.
iii) $\operatorname{rank} A=\operatorname{rank}\left[\begin{array}{ll}A & B\end{array}\right]=\operatorname{rank}\left[\begin{array}{c}A \\ B\end{array}\right]$ and $B A^{+} B=B$.
(Proof: See [1184, p. 45].) (Remark: See Fact 8.20.7)

6.6 Facts on the Drazin and Group Generalized Inverses

Fact 6.6.1. Let $A_{1}, \ldots, A_{k} \in \mathbb{F}^{n \times m}$. Then,

$$
\left(A_{1}+\cdots+A_{k}\right)^{\mathrm{D}}=\frac{1}{k}\left[\begin{array}{lll}
I_{n} & \cdots & I_{n}
\end{array}\right]\left[\begin{array}{cccc}
A_{1} & A_{2} & \cdots & A_{k} \\
A_{k} & A_{1} & \cdots & A_{k-1} \\
\vdots & \vdots & \ddots & \vdots \\
A_{2} & A_{3} & \cdots & A_{1}
\end{array}\right]^{\mathrm{D}}\left[\begin{array}{c}
I_{m} \\
\vdots \\
I_{m}
\end{array}\right] .
$$

(Proof: See [1282].) (Remark: See Fact 6.5.2.)
Fact 6.6.2. Let $A \in \mathbb{F}^{n \times n}$. Then, $X=A^{\mathrm{D}}$ is the unique matrix satisfying

$$
\operatorname{rank}\left[\begin{array}{cc}
A & A A^{\mathrm{D}} \\
A^{\mathrm{D}} A & X
\end{array}\right]=\operatorname{rank} A
$$

(Remark: See Fact 2.17.10 and Fact 6.3.30) (Proof: See [1417, 1496.)
Fact 6.6.3. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that $A B=0$. Then,

$$
(A B)^{\mathrm{D}}=A(B A)^{2 \mathrm{D}} B
$$

(Remark: This result is Cline's formula.)

Fact 6.6.4. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that $A B=B A$. Then,

$$
\begin{gathered}
(A B)^{\mathrm{D}}=B^{\mathrm{D}} A^{\mathrm{D}}, \\
A^{\mathrm{D}} B=B A^{\mathrm{D}}, \\
A B^{\mathrm{D}}=B^{\mathrm{D}} A .
\end{gathered}
$$

Fact 6.6.5. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that $A B=B A=0$. Then,

$$
(A+B)^{\mathrm{D}}=A^{\mathrm{D}}+B^{\mathrm{D}} .
$$

(Proof: See [653.) (Remark: This result is due to Drazin.)
Fact 6.6.6. Let $A \in \mathbb{F}^{n \times n}$, and assume that ind $A=\operatorname{rank} A=1$. Then,

$$
A^{\#}=\left(\operatorname{tr} A^{2}\right)^{-1} A .
$$

Consequently, if $x, y \in \mathbb{F}^{n}$ satisfy $x^{*} y \neq 0$, then

$$
\left(x y^{*}\right)^{\#}=\left(x^{*} y\right)^{-2} x y^{*} .
$$

In particular,

$$
1_{n \times n}^{\#}=n^{-2} 1_{n \times n} .
$$

Fact 6.6.7. Let $A \in \mathbb{F}^{n \times n}$, and let $k \triangleq \operatorname{ind} A$. Then,

$$
A^{\mathrm{D}}=A^{k}\left(A^{2 k+1}\right)^{+} A^{k} .
$$

If, in particular, ind $A \leq 1$, then

$$
A^{\#}=A\left(A^{3}\right)^{+} A
$$

(Proof: See [174, pp. 165, 174].)
Fact 6.6.8. Let $A \in \mathbb{F}^{n \times n}$. Then, the following statements are equivalent:
i) A is range Hermitian.
ii) $A^{+}=A^{\mathrm{D}}$.
iii) ind $A \leq 1$, and $A^{+}=A^{\#}$.
$i v)$ ind $A \leq 1$, and $A^{*} A^{\#} A+A A^{\#} A^{*}=2 A^{*}$.
$v)$ ind $A \leq 1$, and $A^{+} A^{\#} A+A A^{\#} A^{+}=2 A^{+}$.
(Proof: See [323].) (Remark: See Fact 6.3.10)
Fact 6.6.9. Let $A \in \mathbb{F}^{n \times n}$, assume that A is group invertible, and let $S, B \in$ $\mathbb{F}^{n \times n}$, where S is nonsingular, B is a Jordan canonical form of A, and $A=S B S^{-1}$. Then,

$$
A^{\#}=S B^{\#} S^{-1}=S B^{+} S^{-1} .
$$

(Proof: Since B is range Hermitian, it follows from Fact 6.6.8 that $B^{\#}=B^{+}$. See [174] p. 158].)

Fact 6.6.10. Let $A \in \mathbb{F}^{n \times n}$. Then, the following statements are equivalent:
i) A is normal.
ii) ind $A \leq 1$, and $A^{\#} A^{*}=A^{*} A^{\#}$.
(Proof: See [323.) (Remark: See Fact 3.7.12, Fact 3.11.4, Fact 5.15.4, and Fact 6.3.16.)

Fact 6.6.11. Let $A \in \mathbb{F}^{n \times n}$, and let $k \geq 1$. Then, the following statements are equivalent:
i) $k \geq \operatorname{ind} A$.
ii) $\lim _{\alpha \rightarrow 0} \alpha^{k}(A+\alpha I)^{-1}$ exists.
iii) $\lim _{\alpha \rightarrow 0}\left(A^{k+1}+\alpha I\right)^{-1} A^{k}$ exists.

In this case,

$$
A^{\mathrm{D}}=\lim _{\alpha \rightarrow 0}\left(A^{k+1}+\alpha I\right)^{-1} A^{k}
$$

and

$$
\lim _{\alpha \rightarrow 0} \alpha^{k}(A+\alpha I)^{-1}= \begin{cases}(-1)^{k-1}\left(I-A A^{\mathrm{D}}\right) A^{k-1}, & k=\operatorname{ind} A>0 \\ A^{-1}, & k=\operatorname{ind} A=0 \\ 0, & k>\operatorname{ind} A\end{cases}
$$

(Proof: See [999].)
Fact 6.6.12. Let $A \in \mathbb{F}^{n \times n}$, let $r \triangleq \operatorname{rank} A$, let $B \in \mathbb{R}^{n \times r}$ and $C \in \mathbb{R}^{r \times n}$, and assume that $A=B C$. Then, A is group invertible if and only if $B A$ is nonsingular. In this case,

$$
A^{\#}=B(C B)^{-2} C
$$

(Proof: See [174 p. 157].) (Remark: This result is due to Cline.)
Fact 6.6.13. Let $A \in \mathbb{F}^{n \times n}, B \in \mathbb{F}^{n \times m}$, and $C \in \mathbb{F}^{m \times m}$. If A and C are singular, then ind $\left[\begin{array}{cc}A & B \\ 0 & C\end{array}\right]=1$ if and only if ind $A=\operatorname{ind} C=1$, and $\left(I-A A^{\mathrm{D}}\right) B(I-$ $C C^{\mathrm{D}}$) $=0$. (Proof: See 999.) (Remark: See Fact 5.14.32.)

Fact 6.6.14. Let $A \in \mathbb{F}^{n \times n}$. Then, A is group invertible if and only if $\lim _{\alpha \rightarrow 0}(A+\alpha I)^{-1} A$ exists. In this case,

$$
\lim _{\alpha \rightarrow 0}(A+\alpha I)^{-1} A=A A^{\#}
$$

(Proof: See [283, p. 138].)
Fact 6.6.15. Let $A \in \mathbb{F}^{n \times n}$, assume that A is nonzero and group invertible, let $r \triangleq \operatorname{rank} A$, define $B \triangleq \operatorname{diag}\left[\sigma_{1}(A), \ldots, \sigma_{r}(A)\right]$, and let $S \in \mathbb{F}^{n \times n}, K \in \mathbb{F}^{r \times r}$, and $L \in \mathbb{F}^{r \times(n-r)}$ be such that S is unitary,

$$
K K^{*}+L L^{*}=I_{r}
$$

and

$$
A=S\left[\begin{array}{cc}
B K & B L \\
0_{(n-r) \times r} & 0_{(n-r) \times(n-r)}
\end{array}\right] S^{*}
$$

Then,

$$
A^{\#}=S\left[\begin{array}{cc}
K^{-1} B^{-1} & K^{-1} B^{-1} K^{-1} L \\
0_{(n-r) \times r} & 0_{(n-r) \times(n-r)}
\end{array}\right] S^{*} .
$$

(Proof: See [115, 651.) (Remark: See Fact 5.9.28 and Fact 6.3.15.)
Fact 6.6.16. Let $A \in \mathbb{F}^{n \times n}$. Then, the following statements are equivalent:
i) A is range Hermitian.
ii) A is group invertible and $A A^{+} A^{+}=A^{\#}$.
iii) A is group invertible and $A A^{\#} A^{+}=A^{\#}$.
iv) A is group invertible and $A^{*} A A^{\#}=A^{*}$.
$v) ~ A$ is group invertible and $A^{+} A A^{\#}=A^{+}$.
vi) A is group invertible and $A^{\#} A^{+} A=A^{+}$.
vii) A is group invertible and $A A^{\#}=A^{+} A$.
viii) A is group invertible and $A^{*} A^{+}=A^{*} A^{\#}$.
ix) A is group invertible and $A^{+} A^{*}=A^{\#} A^{*}$.
x) A is group invertible and $A^{+} A^{+}=A^{+} A^{\#}$.
xi) A is group invertible and $A^{+} A^{+}=A^{\#} A^{+}$.
xii) A is group invertible and $A^{+} A^{+}=A^{\#} A^{\#}$.
xiii) A is group invertible and $A^{+} A^{\#}=A^{\#} A^{\#}$.
xiv) A is group invertible and $A^{\#} A^{+}=A^{\#} A^{\#}$.
xv) A is group invertible and $A^{+} A^{\#}=A^{\#} A^{+}$.
xvi) A is group invertible and $A A^{+} A^{*}=A^{*} A A^{+}$.
xvii) A is group invertible and $A A^{+} A^{\#}=A^{+} A^{\#} A$.
xviii) A is group invertible and $A A^{+} A^{\#}=A^{\#} A A^{+}$.
xix) A is group invertible and $A A^{\#} A^{*}=A^{*} A A^{\#}$.
$x x) A$ is group invertible and $A A^{\#} A^{+}=A^{+} A A^{\#}$.
xxi) A is group invertible and $A A^{\#} A^{+}=A^{\#} A^{+} A$.
xxii) A is group invertible and $A^{*} A^{+} A=A^{+} A A^{*}$.
xxiii) A is group invertible and $A^{+} A A^{\#}=A^{\#} A^{+} A$.
xxiv) A is group invertible and $A^{+} A^{+} A^{\#}=A^{+} A^{\#} A^{+}$.
$x x v) ~ A$ is group invertible and $A^{+} A^{+} A^{\#}=A^{\#} A^{+} A^{+}$.
xxvi) A is group invertible and $A^{+} A^{\#} A^{+}=A^{\#} A^{+} A^{+}$.
xxvii) A is group invertible and $A^{+} A^{\#} A^{\#}=A^{\#} A^{+} A^{\#}$.
xxviii) A is group invertible and $A^{+} A^{\#} A^{\#}=A^{\#} A^{\#} A^{+}$.
xxix) A is group invertible and $A^{\#} A^{\#} A^{+}=A^{\#} A^{+} A^{\#}$.
(Proof: See [115].)
Fact 6.6.17. Let $A \in \mathbb{F}^{n \times n}$. Then, the following statements are equivalent:
i) A is normal.
ii) A is group invertible and $A^{*} A^{+}=A^{\#} A^{*}$.
iii) A is group invertible and $A^{*} A^{\#}=A^{+} A^{*}$.
iv) A is group invertible and $A^{*} A^{\#}=A^{\#} A^{*}$.
$v) ~ A$ is group invertible and $A A^{*} A^{\#}=A^{*} A^{\#} A$.
vi) A is group invertible and $A A^{*} A^{\#}=A^{\#} A A^{*}$.
vii) A is group invertible and $A A^{\#} A^{*}=A^{\#} A^{*} A$.
viii) A is group invertible and $A^{*} A A^{\#}=A^{\#} A^{*} A$.
$i x) A$ is group invertible and $A^{* 2} A^{\#}=A^{*} A^{\#} A^{*}$.
x) A is group invertible and $A^{*} A^{+} A^{\#}=A^{\#} A^{*} A^{+}$.
xi) A is group invertible and $A^{*} A^{\#} A^{*}=A^{\#} A^{2 *}$.
xii) A is group invertible and $A^{*} A^{\#} A^{+}=A^{+} A^{*} A^{\#}$.
xiii) A is group invertible and $A^{*} A^{\#} A^{\#}=A^{\#} A^{*} A^{\#}$.
xiv) A is group invertible and $A^{+} A^{*} A^{\#}=A^{\#} A^{+} A^{*}$.
$x v) ~ A$ is group invertible and $A^{+} A^{\#} A^{*}=A^{\#} A^{*} A^{+}$.
xvi) A is group invertible and $A^{\#} A^{*} A^{\#}=A^{\#} A^{\#} A^{*}$.
(Proof: See [115].)
Fact 6.6.18. Let $A \in \mathbb{F}^{n \times n}$. Then, the following statements are equivalent:
i) A is Hermitian.
ii) A is group invertible and $A A^{\#}=A^{*} A^{+}$.
iii) A is group invertible and $A A^{\#}=A^{*} A^{\#}$.
iv) A is group invertible and $A A^{\#}=A^{+} A^{*}$.
v) A is group invertible and $A^{+} A=A^{\#} A^{*}$.
vi) A is group invertible and $A^{*} A A^{\#}=A$.
vii) A is group invertible and $A^{2 *} A^{\#}=A^{*}$.
viii) A is group invertible and $A^{*} A^{+} A^{+}=A^{\#}$.
ix) A is group invertible and $A^{*} A^{+} A^{\#}=A^{+}$.
x) A is group invertible and $A^{*} A^{+} A^{\#}=A^{\#}$.
xi) A is group invertible and $A^{*} A^{\#} A^{\#}=A^{\#}$.
xii) A is group invertible and $A^{\#} A^{*} A^{\#}=A^{+}$.
(Proof: See [115.)
Fact 6.6.19. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are group invertible, and consider the following conditions:
i) $A B A=B$.
ii) $B A B=A$.
iii) $A^{2}=B^{2}$.

Then, if two of the above conditions are satisfied, then the third condition is satisfied. Furthermore, if i)-iii) are satisfied, then the following statements hold:
iv) A and B are group invertible.
v) $A^{\#}=A^{3}$ and $B^{\#}=B^{3}$.
vi) $A^{5}=A$ and $B^{5}=B$.
vii) $A^{4}=B^{4}=(A B)^{4}$.
viii) If A and B are nonsingular, then $A^{4}=B^{4}=(A B)^{4}=I$.
(Proof: See 469.)
Fact 6.6.20. Let $A \in \mathbb{R}^{n \times n}$, where $n \geq 2$, assume that A is positive, define $B \triangleq \operatorname{sprad}(A) I-A$, let $x, y \in \mathbb{R}^{n}$ be positive, and assume that $A x=\operatorname{sprad}(A) x$ and $A^{\mathrm{T}} y=\operatorname{sprad}(A) y$. Then, the following statements hold:
i) $B+\frac{1}{x^{\top} y} x y^{\mathrm{T}}$ is nonsingular.
ii) $B^{\#}=\left(B+\frac{1}{x^{\mathrm{T}} y} x y^{\mathrm{T}}\right)^{-1}\left(I-\frac{1}{x^{\mathrm{T}} y} x y^{\mathrm{T}}\right)$.
iii) $I-B B^{\#}=\frac{1}{x^{T} y} x y^{\mathrm{T}}$.
iv) $B^{\#}=\lim _{k \rightarrow \infty}\left[\sum_{i=0}^{k-1} \frac{1}{[\operatorname{sprad}(A)]^{2}} A^{i}-\frac{k}{x^{T} y} x y^{\mathrm{T}}\right]$.
(Proof: See [1148, p. 9-4].) (Remark: See Fact 4.11.5)

6.7 Notes

A brief history of the generalized inverse is given in [173] and [174 p. 4]. The proof of the uniqueness of A^{+}is given in [948, p. 32]. Additional books on generalized inverses include [174, 245, 1118, 1396. The terminology "range Hermitian" is used in 174; the terminology "EP" is more common. Generalized inverses are widely used in least squares methods; see [237, 283, 876]. Applications to singular differential equations are considered in [282]. Applications to Markov chains are discussed in 737.

Chapter Seven

Kronecker and Schur Algebra

In this chapter we introduce Kronecker matrix algebra, which is useful for solving linear matrix equations.

7.1 Kronecker Product

For $A \in \mathbb{F}^{n \times m}$ define the vec operator as

$$
\operatorname{vec} A \triangleq\left[\begin{array}{c}
\operatorname{col}_{1}(A) \tag{7.1.1}\\
\vdots \\
\operatorname{col}_{m}(A)
\end{array}\right] \in \mathbb{F}^{n m}
$$

which is the column vector of size $n m \times 1$ obtained by stacking the columns of A. We recover A from vec A by writing

$$
\begin{equation*}
A=\operatorname{vec}^{-1}(\operatorname{vec} A) \tag{7.1.2}
\end{equation*}
$$

Proposition 7.1.1. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times n}$. Then,

$$
\begin{equation*}
\operatorname{tr} A B=\left(\operatorname{vec} A^{\mathrm{T}}\right)^{\mathrm{T}} \operatorname{vec} B=\left(\operatorname{vec} B^{\mathrm{T}}\right)^{\mathrm{T}} \operatorname{vec} A \tag{7.1.3}
\end{equation*}
$$

Proof. Note that

$$
\begin{aligned}
\operatorname{tr} A B & =\sum_{i=1}^{n} \operatorname{row}_{i}(A) \operatorname{col}_{i}(B) \\
& =\sum_{i=1}^{n}\left[\operatorname{col}_{i}\left(A^{\mathrm{T}}\right)\right]^{\mathrm{T}} \operatorname{col}_{i}(B) \\
& =\left[\begin{array}{lll}
\operatorname{col}_{1}^{\mathrm{T}}\left(A^{\mathrm{T}}\right) & \cdots & \operatorname{col}_{n}^{\mathrm{T}}\left(A^{\mathrm{T}}\right)
\end{array}\right]\left[\begin{array}{c}
\operatorname{col}_{1}(B) \\
\vdots \\
\operatorname{col}_{n}(B)
\end{array}\right] \\
& =\left(\operatorname{vec} A^{\mathrm{T}}\right)^{\mathrm{T}} \operatorname{vec} B .
\end{aligned}
$$

Next, we introduce the Kronecker product.

Definition 7.1.2. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{l \times k}$. Then, the Kronecker product $A \otimes B \in \mathbb{F}^{n l \times m k}$ of A is the partitioned matrix

$$
A \otimes B \triangleq\left[\begin{array}{cccc}
A_{(1,1)} B & A_{(1,2)} B & \cdots & A_{(1, m)} B \tag{7.1.4}\\
\vdots & \vdots & \ddots & \vdots \\
A_{(n, 1)} B & A_{(n, 2)} B & \cdots & A_{(n, m)} B
\end{array}\right] .
$$

Unlike matrix multiplication, the Kronecker product $A \otimes B$ does not entail a restriction on either the size of A or the size of B.

The following results are immediate consequences of the definition of the Kronecker product.

Proposition 7.1.3. Let $\alpha \in \mathbb{F}, A \in \mathbb{F}^{n \times m}$, and $B \in \mathbb{F}^{l \times k}$. Then,

$$
\begin{gather*}
A \otimes(\alpha B)=(\alpha A) \otimes B=\alpha(A \otimes B), \tag{7.1.5}\\
\overline{A \otimes B}=\bar{A} \otimes \bar{B}, \tag{7.1.6}\\
(A \otimes B)^{\mathrm{T}}=A^{\mathrm{T}} \otimes B^{\mathrm{T}}, \tag{7.1.7}\\
(A \otimes B)^{*}=A^{*} \otimes B^{*} . \tag{7.1.8}
\end{gather*}
$$

Proposition 7.1.4. Let $A, B \in \mathbb{F}^{n \times m}$ and $C \in \mathbb{F}^{l \times k}$. Then,

$$
\begin{equation*}
(A+B) \otimes C=A \otimes C+B \otimes C \tag{7.1.9}
\end{equation*}
$$

and

$$
\begin{equation*}
C \otimes(A+B)=C \otimes A+C \otimes B . \tag{7.1.10}
\end{equation*}
$$

Proposition 7.1.5. Let $A \in \mathbb{F}^{n \times m}, B \in \mathbb{F}^{l \times k}$, and $C \in \mathbb{F}^{p \times q}$. Then,

$$
\begin{equation*}
A \otimes(B \otimes C)=(A \otimes B) \otimes C \tag{7.1.11}
\end{equation*}
$$

Hence, we write $A \otimes B \otimes C$ for $A \otimes(B \otimes C)$ and $(A \otimes B) \otimes C$.

The next result illustrates a useful form of compatibility between matrix multiplication and the Kronecker product.

Proposition 7.1.6. Let $A \in \mathbb{F}^{n \times m}, B \in \mathbb{F}^{l \times k}, C \in \mathbb{F}^{m \times q}$, and $D \in \mathbb{F}^{k \times p}$. Then,

$$
\begin{equation*}
(A \otimes B)(C \otimes D)=A C \otimes B D \tag{7.1.12}
\end{equation*}
$$

Proof. Note that the $i j$ block of $(A \otimes B)(C \otimes D)$ is given by

$$
\begin{aligned}
{[(A \otimes B)(C \otimes D)]_{i j} } & =\left[\begin{array}{lll}
A_{(i, 1)} B & \cdots & A_{(i, m)} B
\end{array}\right]\left[\begin{array}{c}
C_{(1, j)} D \\
\vdots \\
C_{(m, j)} D
\end{array}\right] \\
& =\sum_{k=1}^{m} A_{(i, k)} C_{(k, j)} B D=(A C)_{(i, j)} B D \\
& =(A C \otimes B D)_{i j}
\end{aligned}
$$

Next, we consider the inverse of a Kronecker product.
Proposition 7.1.7. Assume that $A \in \mathbb{F}^{n \times n}$ and $B \in \mathbb{F}^{m \times m}$ are nonsingular. Then,

$$
\begin{equation*}
(A \otimes B)^{-1}=A^{-1} \otimes B^{-1} \tag{7.1.13}
\end{equation*}
$$

Proof. Note that

$$
(A \otimes B)\left(A^{-1} \otimes B^{-1}\right)=A A^{-1} \otimes B B^{-1}=I_{n} \otimes I_{m}=I_{n m}
$$

Proposition 7.1.8. Let $x \in \mathbb{F}^{n}$ and $y \in \mathbb{F}^{m}$. Then,

$$
\begin{equation*}
x y^{\mathrm{T}}=x \otimes y^{\mathrm{T}}=y^{\mathrm{T}} \otimes x \tag{7.1.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{vec} x y^{\mathrm{T}}=y \otimes x \tag{7.1.15}
\end{equation*}
$$

The following result concerns the vec of the product of three matrices.
Proposition 7.1.9. Let $A \in \mathbb{F}^{n \times m}, B \in \mathbb{F}^{m \times l}$, and $C \in \mathbb{F}^{l \times k}$. Then,

$$
\begin{equation*}
\operatorname{vec}(A B C)=\left(C^{\mathrm{T}} \otimes A\right) \operatorname{vec} B \tag{7.1.16}
\end{equation*}
$$

Proof. Using (7.1.12) and (7.1.15), it follows that

$$
\begin{aligned}
\operatorname{vec} A B C & =\operatorname{vec} \sum_{i=1}^{l} A \operatorname{col}_{i}(B) e_{i}^{\mathrm{T}} C=\sum_{i=1}^{l} \operatorname{vec}\left[A \operatorname{col}_{i}(B)\left(C^{\mathrm{T}} e_{i}\right)^{\mathrm{T}}\right] \\
& =\sum_{i=1}^{l}\left[C^{\mathrm{T}} e_{i}\right] \otimes\left[A \operatorname{col}_{i}(B)\right]=\left(C^{\mathrm{T}} \otimes A\right) \sum_{i=1}^{l} e_{i} \otimes \operatorname{col}_{i}(B) \\
& =\left(C^{\mathrm{T}} \otimes A\right) \sum_{i=1}^{l} \operatorname{vec}\left[\operatorname{col}_{i}(B) e_{i}^{\mathrm{T}}\right]=\left(C^{\mathrm{T}} \otimes A\right) \operatorname{vec} B
\end{aligned}
$$

The following result concerns the eigenvalues and eigenvectors of the Kronecker product of two matrices.

Proposition 7.1.10. Let $A \in \mathbb{F}^{n \times n}$ and $B \in \mathbb{F}^{m \times m}$. Then,

$$
\begin{equation*}
\operatorname{mspec}(A \otimes B)=\{\lambda \mu: \quad \lambda \in \operatorname{mspec}(A), \mu \in \operatorname{mspec}(B)\}_{\mathrm{ms}} \tag{7.1.17}
\end{equation*}
$$

If, in addition, $x \in \mathbb{C}^{n}$ is an eigenvector of A associated with $\lambda \in \operatorname{spec}(A)$ and $y \in \mathbb{C}^{n}$ is an eigenvector of B associated with $\mu \in \operatorname{spec}(B)$, then $x \otimes y$ is an eigenvector of $A \otimes B$ associated with $\lambda \mu$.

Proof. Using (7.1.12), we have

$$
(A \otimes B)(x \otimes y)=(A x) \otimes(B y)=(\lambda x) \otimes(\mu y)=\lambda \mu(x \otimes y)
$$

Proposition 7.1.10 shows that $\operatorname{mspec}(A \otimes B)=\operatorname{mspec}(B \otimes A)$. Consequently, it follows that $\operatorname{det}(A \otimes B)=\operatorname{det}(B \otimes A)$ and $\operatorname{tr}(A \otimes B)=\operatorname{tr}(B \otimes A)$. The following results are generalizations of these identities.

Proposition 7.1.11. Let $A \in \mathbb{F}^{n \times n}$ and $B \in \mathbb{F}^{m \times m}$. Then,

$$
\begin{equation*}
\operatorname{det}(A \otimes B)=\operatorname{det}(B \otimes A)=(\operatorname{det} A)^{m}(\operatorname{det} B)^{n} \tag{7.1.18}
\end{equation*}
$$

Proof. Let $\operatorname{mspec}(A)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}_{\mathrm{ms}}$ and $\operatorname{mspec}(B)=\left\{\mu_{1}, \ldots, \mu_{m}\right\}_{\mathrm{ms}}$. Then, Proposition 7.1.10 implies that

$$
\begin{aligned}
\operatorname{det}(A \otimes B) & =\prod_{i, j=1}^{n, m} \lambda_{i} \mu_{j}=\left(\lambda_{1}^{m} \prod_{j=1}^{m} \mu_{j}\right) \cdots\left(\lambda_{n}^{m} \prod_{j=1}^{m} \mu_{j}\right) \\
& =\left(\lambda_{1} \cdots \lambda_{n}\right)^{m}\left(\mu_{1} \cdots \mu_{m}\right)^{n}=(\operatorname{det} A)^{m}(\operatorname{det} B)^{n}
\end{aligned}
$$

Proposition 7.1.12. Let $A \in \mathbb{F}^{n \times n}$ and $B \in \mathbb{F}^{m \times m}$. Then,

$$
\begin{equation*}
\operatorname{tr}(A \otimes B)=\operatorname{tr}(B \otimes A)=(\operatorname{tr} A)(\operatorname{tr} B) \tag{7.1.19}
\end{equation*}
$$

Proof. Note that

$$
\begin{aligned}
\operatorname{tr}(A \otimes B) & =\operatorname{tr}\left(A_{(1,1)} B\right)+\cdots+\operatorname{tr}\left(A_{(n, n)} B\right) \\
& =\left[A_{(1,1)}+\cdots+A_{(n, n)}\right] \operatorname{tr} B \\
& =(\operatorname{tr} A)(\operatorname{tr} B)
\end{aligned}
$$

Next, define the Kronecker permutation matrix $P_{n, m} \in \mathbb{F}^{n m \times n m}$ by

$$
\begin{equation*}
P_{n, m} \triangleq \sum_{i, j=1}^{n, m} E_{i, j, n \times m} \otimes E_{j, i, m \times n} \tag{7.1.20}
\end{equation*}
$$

Proposition 7.1.13. Let $A \in \mathbb{F}^{n \times m}$. Then,

$$
\begin{equation*}
\operatorname{vec} A^{\mathrm{T}}=P_{n, m} \operatorname{vec} A \tag{7.1.21}
\end{equation*}
$$

7.2 Kronecker Sum and Linear Matrix Equations

Next, we define the Kronecker sum of two square matrices.

Definition 7.2.1. Let $A \in \mathbb{F}^{n \times n}$ and $B \in \mathbb{F}^{m \times m}$. Then, the Kronecker sum $A \oplus B \in \mathbb{F}^{n m \times n m}$ of A and B is

$$
\begin{equation*}
A \oplus B \triangleq A \otimes I_{m}+I_{n} \otimes B \tag{7.2.1}
\end{equation*}
$$

Proposition 7.2.2. Let $A \in \mathbb{F}^{n \times n}, B \in \mathbb{F}^{m \times m}$, and $C \in \mathbb{F}^{l \times l}$. Then,

$$
\begin{equation*}
A \oplus(B \oplus C)=(A \oplus B) \oplus C \tag{7.2.2}
\end{equation*}
$$

Hence, we write $A \oplus B \oplus C$ for $A \oplus(B \oplus C)$ and $(A \oplus B) \oplus C$.
Proposition 7.1.10 shows that, if $\lambda \in \operatorname{spec}(A)$ and $\mu \in \operatorname{spec}(B)$, then $\lambda \mu \in$ $\operatorname{spec}(A \otimes B)$. Next, we present an analogous result involving Kronecker sums.

Proposition 7.2.3. Let $A \in \mathbb{F}^{n \times n}$ and $B \in \mathbb{F}^{m \times m}$. Then,
$\operatorname{mspec}(A \oplus B)=\{\lambda+\mu: \quad \lambda \in \operatorname{mspec}(A), \mu \in \operatorname{mspec}(B)\}_{\mathrm{ms}}$.
Now, let $x \in \mathbb{C}^{n}$ be an eigenvector of A associated with $\lambda \in \operatorname{spec}(A)$, and let $y \in \mathbb{C}^{m}$ be an eigenvector of B associated with $\mu \in \operatorname{spec}(B)$. Then, $x \otimes y$ is an eigenvector of $A \oplus B$ associated with $\lambda+\mu$.

Proof. Note that

$$
\begin{aligned}
(A \oplus B)(x \otimes y) & =\left(A \otimes I_{m}\right)(x \otimes y)+\left(I_{n} \otimes B\right)(x \otimes y) \\
& =(A x \otimes y)+(x \otimes B y)=(\lambda x \otimes y)+(x \otimes \mu y) \\
& =\lambda(x \otimes y)+\mu(x \otimes y)=(\lambda+\mu)(x \otimes y)
\end{aligned}
$$

The next result concerns the existence and uniqueness of solutions to Sylvester's equation. See Fact 5.10.21 and Proposition 11.9.3.

Proposition 7.2.4. Let $A \in \mathbb{F}^{n \times n}, B \in \mathbb{F}^{m \times m}$, and $C \in \mathbb{F}^{n \times m}$. Then, $X \in$ $\mathbb{F}^{n \times m}$ satisfies

$$
\begin{equation*}
A X+X B+C=0 \tag{7.2.4}
\end{equation*}
$$

if and only if X satisfies

$$
\begin{equation*}
\left(B^{\mathrm{T}} \oplus A\right) \operatorname{vec} X+\operatorname{vec} C=0 \tag{7.2.5}
\end{equation*}
$$

Consequently, $B^{\mathrm{T}} \oplus A$ is nonsingular if and only if there exists a unique matrix $X \in \mathbb{F}^{n \times m}$ satisfying (7.2.4). In this case, X is given by

$$
\begin{equation*}
X=-\operatorname{vec}^{-1}\left[\left(B^{\mathrm{T}} \oplus A\right)^{-1} \operatorname{vec} C\right] \tag{7.2.6}
\end{equation*}
$$

Furthermore, $B^{\mathrm{T}} \oplus A$ is singular and $\operatorname{rank} B^{\mathrm{T}} \oplus A=\operatorname{rank}\left[\begin{array}{ll}B^{\mathrm{T}} \oplus A & \operatorname{vec} C\end{array}\right]$ if and only if there exist infinitely many matrices $X \in \mathbb{F}^{n \times m}$ satisfying (7.5.8). In this case, the set of solutions of (7.2.4) is given by $X+\mathcal{N}\left(B^{\mathrm{T}} \oplus A\right)$.

Proof. Note that (7.2.4) is equivalent to

$$
\begin{aligned}
0 & =\operatorname{vec}(A X I+I X B)+\operatorname{vec} C=(I \otimes A) \operatorname{vec} X+\left(B^{\mathrm{T}} \otimes I\right) \operatorname{vec} X+\operatorname{vec} C \\
& =\left(B^{\mathrm{T}} \otimes I+I \otimes A\right) \operatorname{vec} X+\operatorname{vec} C=\left(B^{\mathrm{T}} \oplus A\right) \operatorname{vec} X+\operatorname{vec} C
\end{aligned}
$$

which yields (7.2.5). The remaining results follow from Corollary 2.6.7
For the following corollary, note Fact 5.10.21,
Corollary 7.2.5. Let $A \in \mathbb{F}^{n \times n}, B \in \mathbb{F}^{m \times m}$, and $C \in \mathbb{F}^{n \times m}$, and assume that $\operatorname{spec}(A)$ and $\operatorname{spec}(-B)$ are disjoint. Then, there exists a unique matrix $X \in \mathbb{F}^{n \times m}$ satisfying (7.2.4). Furthermore, the matrices $\left[\begin{array}{cc}A & 0 \\ 0 & -B\end{array}\right]$ and $\left[\begin{array}{cc}A & C \\ 0 & -B\end{array}\right]$ are similar and satisfy

$$
\left[\begin{array}{cc}
A & C \tag{7.2.7}\\
0 & -B
\end{array}\right]=\left[\begin{array}{cc}
I & X \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
A & 0 \\
0 & -B
\end{array}\right]\left[\begin{array}{cc}
I & -X \\
0 & I
\end{array}\right]
$$

7.3 Schur Product

An alternative form of vector and matrix multiplication is given by the Schur product. If $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{n \times m}$, then $A \circ B \in \mathbb{F}^{n \times m}$ is defined by

$$
\begin{equation*}
(A \circ B)_{(i, j)} \triangleq A_{(i, j)} B_{(i, j)} \tag{7.3.1}
\end{equation*}
$$

that is, $A \circ B$ is formed by means of entry-by-entry multiplication. For matrices $A, B, C \in \mathbb{F}^{n \times m}$, the commutative, associative, and distributive identities

$$
\begin{gather*}
A \circ B=B \circ A, \tag{7.3.2}\\
A \circ(B \circ C)=(A \circ B) \circ C, \tag{7.3.3}\\
A \circ(B+C)=A \circ B+A \circ C \tag{7.3.4}
\end{gather*}
$$

hold. For a real scalar $\alpha \geq 0$ and $A \in \mathbb{F}^{n \times m}$, the Schur power $A^{\circ \alpha}$ is defined by

$$
\begin{equation*}
\left(A^{\circ \alpha}\right)_{(i, j)} \triangleq\left(A_{(i, j)}\right)^{\alpha} \tag{7.3.5}
\end{equation*}
$$

Thus, $A^{\circ 2}=A \circ A$. Note that $A^{\circ 0}=1_{n \times m}$. Furthermore, $\alpha<0$ is allowed if A has no zero entries. In particular, $A^{\circ-1}$ is the matrix whose entries are the reciprocals of the entries of A. For all $A \in \mathbb{F}^{n \times m}$,

$$
\begin{equation*}
A \circ 1_{n \times m}=1_{n \times m} \circ A=A \tag{7.3.6}
\end{equation*}
$$

Finally, if A is square, then $I \circ A$ is the diagonal part of A.
The following result shows that $A \circ B$ is a submatrix of $A \otimes B$.
Proposition 7.3.1. Let $A, B \in \mathbb{F}^{n \times m}$. Then,

$$
\begin{equation*}
A \circ B=(A \otimes B)_{\left(\left\{1, n+2,2 n+3, \ldots, n^{2}\right\},\left\{1, m+2,2 m+3, \ldots, m^{2}\right\}\right)} \tag{7.3.7}
\end{equation*}
$$

If, in addition, $n=m$, then

$$
\begin{equation*}
A \circ B=(A \otimes B)_{\left(\left\{1, n+2,2 n+3, \ldots, n^{2}\right\}\right)} \tag{7.3.8}
\end{equation*}
$$

and thus $A \circ B$ is a principal submatrix of $A \otimes B$.

Proof. See [711, p. 304] or [962].

7.4 Facts on the Kronecker Product

Fact 7.4.1. Let $x, y \in \mathbb{F}^{n}$. Then,

$$
x \otimes y=\left(x \otimes I_{n}\right) y=\left(I_{n} \otimes y\right) x
$$

Fact 7.4.2. Let $x, y, w, z \in \mathbb{F}^{n}$. Then,

$$
x^{\mathrm{T}} w y^{\mathrm{T}} z=\left(x^{\mathrm{T}} \otimes y^{\mathrm{T}}\right)(w \otimes z)=(x \otimes y)^{\mathrm{T}}(w \otimes z)
$$

Fact 7.4.3. Let $A \in \mathbb{F}^{n \times n}$ and $B \in \mathbb{F}^{m \times m}$, and assume that A and B are (diagonal, upper triangular, lower triangular). Then, so is $A \otimes B$.

Fact 7.4.4. Let $A \in \mathbb{F}^{n \times n}, B \in \mathbb{F}^{m \times m}$, and $l \in \mathbb{P}$. Then,

$$
(A \otimes B)^{l}=A^{l} \otimes B^{l}
$$

Fact 7.4.5. Let $A \in \mathbb{F}^{n \times m}$. Then,

$$
\operatorname{vec} A=\left(I_{m} \otimes A\right) \operatorname{vec} I_{m}=\left(A^{\mathrm{T}} \otimes I_{n}\right) \operatorname{vec} I_{n}
$$

Fact 7.4.6. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times l}$. Then,

$$
\operatorname{vec} A B=\left(I_{l} \otimes A\right) \operatorname{vec} B=\left(B^{\mathrm{T}} \otimes A\right) \operatorname{vec} I_{m}=\sum_{i=1}^{m} \operatorname{col}_{i}\left(B^{\mathrm{T}}\right) \otimes \operatorname{col}_{i}(A)
$$

Fact 7.4.7. Let $A \in \mathbb{F}^{n \times m}, B \in \mathbb{F}^{m \times l}$, and $C \in \mathbb{F}^{l \times n}$. Then,

$$
\operatorname{tr} A B C=(\operatorname{vec} A)^{\mathrm{T}}(B \otimes I) \operatorname{vec} C^{\mathrm{T}}
$$

Fact 7.4.8. Let $A, B, C \in \mathbb{F}^{n \times n}$, and assume that C is symmetric. Then, $(\operatorname{vec} C)^{\mathrm{T}}(A \otimes B) \operatorname{vec} C=(\operatorname{vec} C)^{\mathrm{T}}(B \otimes A) \operatorname{vec} C$.

Fact 7.4.9. Let $A \in \mathbb{F}^{n \times m}, B \in \mathbb{F}^{m \times l}, C \in \mathbb{F}^{l \times k}$, and $D \in \mathbb{F}^{k \times n}$. Then,

$$
\operatorname{tr} A B C D=(\operatorname{vec} A)^{\mathrm{T}}\left(B \otimes D^{\mathrm{T}}\right) \operatorname{vec} C^{\mathrm{T}}
$$

Fact 7.4.10. Let $A \in \mathbb{F}^{n \times m}, B \in \mathbb{F}^{m \times l}$, and $k \geq 1$. Then,

$$
(A B)^{\otimes k}=A^{\otimes k} B^{\otimes k}
$$

where $A^{\otimes k} \triangleq A \otimes A \otimes \cdots \otimes A$, with A appearing k times.
Fact 7.4.11. Let $A, C \in \mathbb{F}^{n \times m}$ and $B, D \in \mathbb{F}^{l \times k}$, assume that A is (left equivalent, right equivalent, biequivalent) to C, and assume that B is (left equivalent, right equivalent, biequivalent) to D. Then, $A \otimes B$ is (left equivalent, right equivalent, biequivalent) to $C \otimes D$.

Fact 7.4.12. Let $A, B, C, D \in \mathbb{F}^{n \times n}$, assume that A is (similar, congruent, unitarily similar) to C, and assume that B is (similar, congruent, unitarily similar) to D. Then, $A \otimes B$ is (similar, congruent, unitarily similar) to $C \otimes D$.

Fact 7.4.13. Let $A \in \mathbb{F}^{n \times n}$ and $B \in \mathbb{F}^{m \times m}$, and let $\gamma \in \operatorname{spec}(A \otimes B)$. Then,

$$
\begin{aligned}
\sum \operatorname{gmult}_{A}(\lambda) \operatorname{gmult}_{B}(\mu) & \leq \operatorname{gmult}_{A \otimes B}(\gamma) \\
& \leq \operatorname{amult}_{A \otimes B}(\gamma) \\
& =\sum \operatorname{amult}_{A}(\lambda) \operatorname{amult}_{B}(\mu)
\end{aligned}
$$

where both sums are taken over all $\lambda \in \operatorname{spec}(A)$ and $\mu \in \operatorname{spec}(B)$ such that $\lambda \mu=\gamma$.
Fact 7.4.14. Let $A \in \mathbb{F}^{n \times n}$. Then,

$$
\operatorname{sprad}(A \otimes A)=[\operatorname{sprad}(A)]^{2}
$$

Fact 7.4.15. Let $A \in \mathbb{F}^{n \times n}$ and $B \in \mathbb{F}^{m \times m}$, and let $\gamma \in \operatorname{spec}(A \otimes B)$. Then, $\operatorname{ind}_{A \otimes B}(\gamma)=1$ if and only if $\operatorname{ind}_{A}(\lambda)=1$ and $\operatorname{ind}_{B}(\mu)=1$ for all $\lambda \in \operatorname{spec}(A)$ and $\mu \in \operatorname{spec}(B)$ such that $\lambda \mu=\gamma$.

Fact 7.4.16. Let $A \in \mathbb{F}^{n \times n}$ and $B \in \mathbb{F}^{n \times n}$, and assume that A and B are (group invertible, range Hermitian, range symmetric, Hermitian, symmetric, normal, positive semidefinite, positive definite, unitary, orthogonal, projectors, reflectors, involutory, idempotent, tripotent, nilpotent, semisimple). Then, so is $A \otimes B$. (Remark: See Fact 7.4.31)

Fact 7.4.17. Let $A_{1}, \ldots, A_{l} \in \mathbb{F}^{n \times n}$, and assume that A_{1}, \ldots, A_{l} are skew Hermitian. If l is (even, odd), then $A_{1} \otimes \cdots \otimes A_{l}$ is (Hermitian, skew Hermitian).

Fact 7.4.18. Let $A_{i, j} \in \mathbb{F}^{n_{i} \times n_{j}}$ for all $i=1, \ldots, k$ and $j=1, \ldots, l$. Then,

$$
\left[\begin{array}{ccc}
A_{11} & A_{22} & \cdots \\
A_{21} & A_{22} & \ddots \\
\vdots & \therefore . & \therefore .
\end{array}\right] \otimes B=\left[\begin{array}{ccc}
A_{11} \otimes B & A_{22} \otimes B & \cdots \\
A_{21} \otimes B & A_{22} \otimes B & \ddots \\
\vdots & \ddots & \vdots
\end{array}\right]
$$

Fact 7.4.19. Let $x \in \mathbb{F}^{k}$, and let $A_{i} \in \mathbb{F}^{n \times n_{i}}$ for all $i=1, \ldots, l$. Then,

$$
x \otimes\left[\begin{array}{lll}
A_{1} & \cdots & A_{l}
\end{array}\right]=\left[\begin{array}{lll}
x \otimes A_{1} & \cdots & x \otimes A_{l}
\end{array}\right] .
$$

Fact 7.4.20. Let $x \in \mathbb{F}^{m}$, let $A \in \mathbb{F}^{n \times m}$, and let $B \in \mathbb{F}^{m \times l}$. Then,

$$
(A \otimes x) B=(A \otimes x)(B \otimes 1)=(A B) \otimes x
$$

Fact 7.4.21. Let $A \in \mathbb{F}^{n \times n}$ and $B \in \mathbb{F}^{m \times m}$. Then, the eigenvalues of $\sum_{i, j=1,1}^{k, l} \gamma_{i j} A^{i} \otimes B^{j}$ are of the form $\sum_{i, j=1,1}^{k, l} \gamma_{i j} \lambda^{i} \mu^{j}$, where $\lambda \in \operatorname{spec}(A)$ and $\mu \in$ $\operatorname{spec}(B)$ and an associated eigenvector is given by $x \otimes y$, where $x \in \mathbb{F}^{n}$ is an eigenvector of A associated with $\lambda \in \operatorname{spec}(A)$ and $y \in \mathbb{F}^{n}$ is an eigenvector of B associated with $\mu \in \operatorname{spec}(B)$. (Remark: This result is due to Stephanos.) (Proof: Let $A x=\lambda x$ and $B y=\mu y$. Then, $\gamma_{i j}\left(A^{i} \otimes B^{j}\right)(x \otimes y)=\gamma_{i j} \lambda^{i} \mu^{j}(x \otimes y)$. See [519], [867, p. 411], or [942, p. 83].)

Fact 7.4.22. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{l \times k}$. Then,

$$
\mathcal{R}(A \otimes B)=\mathcal{R}\left(A \otimes I_{l \times l}\right) \cap \mathcal{R}\left(I_{n \times n} \otimes B\right)
$$

(Proof: See 1293.)
Fact 7.4.23. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{l \times k}$. Then,

$$
\operatorname{rank}(A \otimes B)=(\operatorname{rank} A)(\operatorname{rank} B)=\operatorname{rank}(B \otimes A)
$$

Consequently, $A \otimes B=0$ if and only if either $A=0$ or $B=0$. (Proof: Use the singular value decomposition of $A \otimes B$.) (Remark: See Fact 8.21.16.)

Fact 7.4.24. Let $A \in \mathbb{F}^{n \times m}, B \in \mathbb{F}^{l \times k}, C \in \mathbb{F}^{n \times p}, D \in \mathbb{F}^{l \times q}$. Then,
$\operatorname{rank}\left[\begin{array}{cc}A \otimes B & C \otimes D\end{array}\right]$

$$
\leq\left\{\begin{array}{l}
(\operatorname{rank} A) \operatorname{rank}\left[\begin{array}{cc}
B & D
\end{array}\right]+(\operatorname{rank} D) \operatorname{rank}\left[\begin{array}{cc}
A & C
\end{array}\right]-(\operatorname{rank} A) \operatorname{rank} D \\
(\operatorname{rank} B) \operatorname{rank}\left[\begin{array}{ll}
A & C
\end{array}\right]+(\operatorname{rank} C) \operatorname{rank}\left[\begin{array}{ll}
B & D
\end{array}\right]-(\operatorname{rank} B) \operatorname{rank} C
\end{array}\right.
$$

(Proof: See 1297.)
Fact 7.4.25. Let $A \in \mathbb{F}^{n \times n}$ and $B \in \mathbb{F}^{m \times m}$. Then,

$$
\operatorname{rank}(I-A \otimes B) \leq n m-[n-\operatorname{rank}(I-A)][m-\operatorname{rank}(I-B)]
$$

(Proof: See [333].)
Fact 7.4.26. Let $A \in \mathbb{F}^{n \times n}$ and $B \in \mathbb{F}^{m \times m}$. Then,

$$
\text { ind } A \otimes B=\max \{\operatorname{ind} A, \text { ind } B\}
$$

Fact 7.4.27. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{l \times k}$, and assume that $n l=m k$ and $n \neq m$. Then, $A \otimes B$ is singular. (Proof: See [711, p. 250].)

Fact 7.4.28. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times n}$. Then,

$$
|n-m| \min \{n, m\} \leq \operatorname{amult}_{A \otimes B}(0)
$$

(Proof: See [711, p. 249].)
Fact 7.4.29. The Kronecker permutation matrix $P_{n, m} \in \mathbb{R}^{n m \times n m}$ has the following properties:
i) $P_{n, m}$ is a permutation matrix.
ii) $P_{n, m}^{\mathrm{T}}=P_{n, m}^{-1}=P_{m, n}$.
iii) $P_{n, m}$ is orthogonal.
iv) $P_{n, m} P_{m, n}=I_{n m}$.
v) $P_{n, n}$ is orthogonal, symmetric, and involutory.
vi) $P_{n, n}$ is a reflector.
vii) $\operatorname{sig} P_{n, n}=\operatorname{tr} P_{n, n}=n$.
viii) The inertia of $P_{n, n}$ is given by

$$
\operatorname{In} P_{n, n}=\left[\begin{array}{c}
\frac{1}{2}\left(n^{2}-n\right) \\
0 \\
\frac{1}{2}\left(n^{2}+n\right)
\end{array}\right]
$$

ix) $P_{1, m}=I_{m}$ and $P_{n, 1}=I_{n}$.
$x)$ If $x \in \mathbb{F}^{n}$ and $y \in \mathbb{F}^{m}$, then

$$
P_{n, m}(y \otimes x)=x \otimes y
$$

xi) If $A \in \mathbb{F}^{n \times m}$ and $b \in \mathbb{F}^{k}$, then

$$
P_{k, n}(A \otimes b)=b \otimes A
$$

and

$$
P_{n, k}(b \otimes A)=A \otimes b
$$

xii) If $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{l \times k}$, then

$$
P_{l, n}(A \otimes B) P_{m, k}=B \otimes A
$$

and

$$
\operatorname{vec}(A \otimes B)=\left(I_{m} \otimes P_{k, n} \otimes I_{l}\right)[(\operatorname{vec} A) \otimes(\operatorname{vec} B)]
$$

xiii) If $A \in \mathbb{F}^{n \times n}$ and $B \in \mathbb{F}^{l \times l}$, then

$$
P_{l, n}(A \otimes B) P_{n, l}=P_{l, n}(A \otimes B) P_{l, n}^{-1}=B \otimes A
$$

Hence, $A \otimes B$ and $B \otimes A$ are similar.
xiv) If $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times n}$, then

$$
\operatorname{tr} A B=\operatorname{tr}\left[P_{m, n}(A \otimes B)\right]
$$

Fact 7.4.30. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{l \times k}$. Then,

$$
(A \otimes B)^{+}=A^{+} \otimes B^{+}
$$

Fact 7.4.31. Let $A \in \mathbb{F}^{n \times n}$ and $B \in \mathbb{F}^{m \times m}$. Then,

$$
(A \otimes B)^{\mathrm{D}}=A^{\mathrm{D}} \otimes B^{\mathrm{D}}
$$

Now, assume that A and B are group invertible. Then, $A \otimes B$ is group invertible, and

$$
(A \otimes B)^{\#}=A^{\#} \otimes B^{\#}
$$

(Remark: See Fact 7.4.16)
Fact 7.4.32. For all $i=1, \ldots, p$, let $A_{i} \in \mathbb{F}^{n_{i} \times n_{i}}$. Then,

$$
\begin{aligned}
\operatorname{mspec}\left(A_{1} \otimes \cdots\right. & \left.\otimes A_{p}\right) \\
& =\left\{\lambda_{1} \cdots \lambda_{p}: \quad \lambda_{i} \in \operatorname{mspec}\left(A_{i}\right) \text { for all } i=1, \ldots, p\right\}_{\mathrm{ms}}
\end{aligned}
$$

If, in addition, for all $i=1, \ldots, p, x_{i} \in \mathbb{C}^{n_{i}}$ is an eigenvector of A_{i} associated with $\lambda_{i} \in \operatorname{spec}\left(A_{i}\right)$, then $x_{1} \otimes \cdots \otimes x_{p}$ is an eigenvector of $A_{1} \otimes \cdots \otimes A_{p}$ associated with $\lambda_{1} \cdots \lambda_{p}$.

7.5 Facts on the Kronecker Sum

Fact 7.5.1. Let $A \in \mathbb{F}^{n \times n}$. Then,

$$
(A \oplus A)^{2}=A^{2} \oplus A^{2}+2 A \otimes A
$$

Fact 7.5.2. Let $A \in \mathbb{F}^{n \times n}$. Then,

$$
n \leq \operatorname{def}\left(A^{\mathrm{T}} \oplus-A\right)=\operatorname{dim}\left\{X \in \mathbb{F}^{n \times n}: A X=X A\right\}
$$

and

$$
\operatorname{rank}\left(A^{\mathrm{T}} \oplus-A\right)=\operatorname{dim}\left\{[A, X]: X \in \mathbb{F}^{n \times n}\right\} \leq n^{2}-n
$$

(Proof: See Fact 2.18.9) (Remark: $\operatorname{rank}\left(A^{\mathrm{T}} \oplus-A\right)$ is the dimension of the commutant or centralizer of A. See Fact 2.18.9) (Problem: Express rank $\left(A^{\mathrm{T}} \oplus-A\right)$ in terms of the eigenstructure of A.) (Remark: See Fact 5.14.22 and Fact 5.14.24)

Fact 7.5.3. Let $A \in \mathbb{F}^{n \times n}$, assume that A is nilpotent, and assume that $A^{\mathrm{T}} \oplus-A=0$. Then, $A=0$. (Proof: Note that $A^{\mathrm{T}} \otimes A^{k}=I \otimes A^{k+1}$, and use Fact 7.4.23)

Fact 7.5.4. Let $A \in \mathbb{F}^{n \times n}$, and assume that, for all $X \in \mathbb{F}^{n \times n}, A X=X A$. Then, there exists $\alpha \in \mathbb{F}$ such that $A=\alpha I$. (Proof: It follows from Proposition 7.2 .3 that all of the eigenvalues of A are equal. Hence, there exists $\alpha \in \mathbb{F}$ such that $A=\alpha I+B$, where B is nilpotent. Now, Fact 7.5 .3 implies that $B=0$.)

Fact 7.5.5. Let $A \in \mathbb{F}^{n \times n}$ and $B \in \mathbb{F}^{m \times m}$, and let $\gamma \in \operatorname{spec}(A \oplus B)$. Then,

$$
\begin{aligned}
\sum \operatorname{gmult}_{A}(\lambda) \operatorname{gmult}_{B}(\mu) & \leq \operatorname{gmult}_{A \oplus B}(\gamma) \\
& \leq \operatorname{amult}_{A \oplus B}(\gamma) \\
& =\sum \operatorname{amult}_{A}(\lambda) \operatorname{amult}_{B}(\mu)
\end{aligned}
$$

where both sums are taken over all $\lambda \in \operatorname{spec}(A)$ and $\mu \in \operatorname{spec}(B)$ such that $\lambda+\mu=$ γ.

Fact 7.5.6. Let $A \in \mathbb{F}^{n \times n}$. Then,

$$
\operatorname{spabs}(A \oplus A)=2 \operatorname{spabs}(A)
$$

Fact 7.5.7. Let $A \in \mathbb{F}^{n \times n}$ and $B \in \mathbb{F}^{m \times m}$, and let $\gamma \in \operatorname{spec}(A \oplus B)$. Then, $\operatorname{ind}_{A \oplus B}(\gamma)=1$ if and only if $\operatorname{ind}_{A}(\lambda)=1$ and $\operatorname{ind}_{B}(\mu)=1$ for all $\lambda \in \operatorname{spec}(A)$ and $\mu \in \operatorname{spec}(B)$ such that $\lambda+\mu=\gamma$.

Fact 7.5.8. Let $A \in \mathbb{F}^{n \times n}$ and $B \in \mathbb{F}^{m \times m}$, and assume that A and B are (group invertible, range Hermitian, Hermitian, symmetric, skew Hermitian, skew symmetric, normal, positive semidefinite, positive definite, semidissipative, dissipative, nilpotent, semisimple). Then, so is $A \oplus B$.

Fact 7.5.9. Let $A \in \mathbb{F}^{n \times n}$ and $B \in \mathbb{F}^{m \times m}$. Then,

$$
P_{m, n}(A \oplus B) P_{n, m}=P_{m, n}(A \oplus B) P_{m, n}^{-1}=B \oplus A
$$

Hence, $A \oplus B$ and $B \oplus A$ are similar, and thus

$$
\operatorname{rank}(A \oplus B)=\operatorname{rank}(B \oplus A)
$$

(Proof: Use xiii) of Fact 7.4.29.)
Fact 7.5.10. Let $A \in \mathbb{F}^{n \times n}$ and $B \in \mathbb{F}^{m \times m}$. Then,

$$
\begin{aligned}
n \operatorname{rank} B+m & \operatorname{rank} A-2(\operatorname{rank} A)(\operatorname{rank} B) \\
& \leq \operatorname{rank}(A \oplus B) \\
& \leq\left\{\begin{array}{c}
n m-[n-\operatorname{rank}(I+A)][m-\operatorname{rank}(I-B)] \\
n m-[n-\operatorname{rank}(I-A)][m-\operatorname{rank}(I+B)]
\end{array}\right.
\end{aligned}
$$

If, in addition, $-A$ and B are idempotent, then

$$
\operatorname{rank}(A \oplus B)=n \operatorname{rank} B+m \operatorname{rank} A-2(\operatorname{rank} A)(\operatorname{rank} B)
$$

Equivalently,

$$
\operatorname{rank}(A \oplus B)=\left(\operatorname{rank}(-A)_{\perp}\right) \operatorname{rank} B+\left(\operatorname{rank} B_{\perp}\right) \operatorname{rank} A
$$

(Proof: See [333.) (Remark: Equality may not hold for the upper bounds when $-A$ and B are idempotent.)

Fact 7.5.11. Let $A \in \mathbb{F}^{n \times n}$, let $B \in \mathbb{F}^{m \times m}$, assume that A is positive definite, and define $p(s) \triangleq \operatorname{det}(I-s A)$, and let $\operatorname{mroots}(p)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}_{\mathrm{ms}}$. Then,

$$
\operatorname{det}(A \oplus B)=(\operatorname{det} A)^{m} \prod_{i=1}^{n} \operatorname{det}\left(\lambda_{i} B+I\right)
$$

(Proof: Specialize Fact 7.5.12.)
Fact 7.5.12. Let $A, C \in \mathbb{F}^{n \times n}$, let $B, D \in \mathbb{F}^{m \times m}$, assume that A is positive definite, assume that C is positive semidefinite, define $p(s) \triangleq \operatorname{det}(C-s A)$, and let $\operatorname{mroots}(p)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}_{\mathrm{ms}}$. Then,

$$
\operatorname{det}(A \otimes B+C \otimes D)=(\operatorname{det} A)^{m} \prod_{i=1}^{n} \operatorname{det}\left(\lambda_{i} D+B\right)
$$

(Proof: See 1002 pp. 40, 41].) (Remark: The Kronecker product definition in 1002 follows the convention of 942 , where " $A \otimes B$ " denotes $B \otimes A$.)

Fact 7.5.13. Let $A, D \in \mathbb{F}^{n \times n}$, let $C, B \in \mathbb{F}^{m \times m}$, assume that $\operatorname{rank} C=1$, and assume that A is nonsingular. Then,

$$
\operatorname{det}(A \otimes B+C \otimes D)=(\operatorname{det} A)^{m}(\operatorname{det} B)^{n-1} \operatorname{det}\left[B+\left(\operatorname{tr} C A^{-1}\right) D\right]
$$

(Proof: See [1002, p. 41].)
Fact 7.5.14. Let $A \in \mathbb{F}^{n \times n}$ and $B \in \mathbb{F}^{m \times m}$. Then, $\operatorname{spec}(A)$ and $\operatorname{spec}(-B)$ are disjoint if and only if, for all $C \in \mathbb{F}^{n \times m}$, the matrices $\left[\begin{array}{cc}A & 0 \\ 0 & -B\end{array}\right]$ and $\left[\begin{array}{cc}A & C \\ 0 & -B\end{array}\right]$ are similar. (Proof: Sufficiency follows from Fact 5.10.21, while necessity follows from Corollary 2.6.6 and Proposition 7.2.3.)

Fact 7.5.15. Let $A \in \mathbb{F}^{n \times n}, B \in \mathbb{F}^{m \times m}$, and $C \in \mathbb{F}^{n \times m}$, and assume that $\operatorname{det}\left(B^{\mathrm{T}} \oplus A\right) \neq 0$. Then, $X \in \mathbb{F}^{n \times m}$ satisfies

$$
A^{2} X+2 A X B+X B^{2}+C=0
$$

if and only if

$$
X=-\operatorname{vec}^{-1}\left[\left(B^{\mathrm{T}} \oplus A\right)^{-2} \operatorname{vec} C\right]
$$

Fact 7.5.16. For all $i=1, \ldots, p$, let $A_{i} \in \mathbb{F}^{n_{i} \times n_{i}}$. Then,

$$
\begin{aligned}
\operatorname{mspec}\left(A_{1} \oplus \cdots\right. & \left.\oplus A_{p}\right) \\
& =\left\{\lambda_{1}+\cdots+\lambda_{p}: \quad \lambda_{i} \in \operatorname{mspec}\left(A_{i}\right) \text { for all } i=1, \ldots, p\right\}_{\mathrm{ms}}
\end{aligned}
$$

If, in addition, for all $i=1, \ldots, p, x_{i} \in \mathbb{C}^{n_{i}}$ is an eigenvector of A_{i} associated with $\lambda_{i} \in \operatorname{spec}\left(A_{i}\right)$, then $x_{1} \oplus \cdots \oplus x_{p}$ is an eigenvector of $A_{1} \oplus \cdots \oplus A_{p}$ associated with $\lambda_{1}+\cdots+\lambda_{p}$.

Fact 7.5.17. Let $A \in \mathbb{F}^{n \times m}$, and let $k \in \mathbb{P}$ satisfy $1 \leq k \leq \min \{n, m\}$. Furthermore, define the k th compound $A^{(k)}$ to be the $\binom{n}{k} \times\binom{ m}{k}$ matrix whose entries are $k \times k$ subdeterminants of A, ordered lexicographically. (Example: For $n=k=3$, subsets of the rows and columns of A are chosen in the order $\{1,1,1\},\{1,1,2\},\{1,1,3\},\{1,2,1\},\{1,2,2\}, \ldots)$ Specifically, $\left(A^{(k)}\right)_{(i, j)}$ is the $k \times k$ subdeterminant of A corresponding to the i th selection of k rows of A and the j th selection of k columns of A. Then, the following statements hold:
i) $A^{(1)}=A$.
ii) $(\alpha A)^{(k)}=\alpha^{k} A^{(k)}$.
iii) $\left(A^{\mathrm{T}}\right)^{(k)}=\left(A^{(k)}\right)^{\mathrm{T}}$.
iv) $\bar{A}^{(k)}=\overline{A^{(k)}}$.
v) $\left(A^{*}\right)^{(k)}=\left(A^{(k)}\right)^{*}$.
$v i$ If $B \in \mathbb{F}^{m \times l}$ and $1 \leq k \leq \min \{n, m, l\}$, then $(A B)^{(k)}=A^{(k)} B^{(k)}$.
vii) If $B \in \mathbb{F}^{m \times n}$, then $\operatorname{det} A B=A^{(k)} B^{(k)}$.

Now, assume that $m=n$, let $1 \leq k \leq n$, and let $\operatorname{mspec}(A)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}_{\mathrm{ms}}$. Then, the following statements hold:
viii) If A is (diagonal, lower triangular, upper triangular, Hermitian, positive semidefinite, positive definite, unitary), then so is $A^{(k)}$.
$i x)$ Assume that A is skew Hermitian. If k is odd, then $A^{(k)}$ is skew Hermitian. If k is even, then $A^{(k)}$ is Hermitian.
$x)$ Assume that A is diagonal, upper triangular, or lower triangular, and let $1 \leq i_{1}<\cdots<i_{k} \leq n$. Then, the $\left(i_{1}+\cdots+i_{k}, i_{1}+\cdots+i_{k}\right)$ entry of $A^{(k)}$ is $A_{\left(i_{1}, i_{1}\right)} \cdots A_{\left(i_{k}, i_{k}\right)}$. In particular, $I_{n}^{(k)}=I_{\binom{n}{k}}$.
xi) $\operatorname{det} A^{(k)}=(\operatorname{det} A){ }^{\binom{n-1}{k-1}}$.
xii) $A^{(n)}=\operatorname{det} A$.
xiii) $S A^{(n-1) \mathrm{T}} S=A^{\mathrm{A}}$, where $S \triangleq \operatorname{diag}(1,-1,1, \ldots)$.
xiv) $\operatorname{det} A^{(n-1)}=\operatorname{det} A^{\mathrm{A}}=(\operatorname{det} A)^{n-1}$.
$x v) \operatorname{tr} A^{(n-1)}=\operatorname{tr} A^{\mathrm{A}}$.
$x v i)$ If A is nonsingular, then $\left(A^{(k)}\right)^{-1}=\left(A^{-1}\right)^{(k)}$.
xvii) $\operatorname{mspec}\left(A^{(k)}\right)=\left\{\lambda_{i_{1}} \cdots \lambda_{i_{k}}: 1 \leq i_{1}<\cdots<i_{k} \leq n\right\}_{\mathrm{ms}}$. In particular,

$$
\operatorname{mspec}\left(A^{(2)}\right)=\left\{\lambda_{i} \lambda_{j}: \quad i, j=1, \ldots, n, i<j\right\}_{\mathrm{ms}}
$$

xviii) $\operatorname{tr} A^{(k)}=\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} \lambda_{i_{1}} \cdots \lambda_{i_{k}}$.
xix) If A has exactly k nonzero eigenvalues, then $A^{(k)}$ has exactly one nonzero eigenvalue.
$x x$) If $k<n$ and A has exactly k nonzero eigenvalues, then $\operatorname{spec}\left(A^{(k+1)}\right)=\{0\}$, and thus $A^{(k+1)}$ is nilpotent.
$x x i)$ If $B \in \mathbb{F}^{n \times n}$, then $\operatorname{det}(A+B)=\left[\begin{array}{ll}A & I\end{array}\right]^{(n)}\left[\begin{array}{c}I \\ B\end{array}\right]^{(n)}$.
xxii) The characteristic polynomial of A is given by

$$
\chi_{A}(s)=s^{n}+\sum_{i=1}^{n-1}(-1)^{n+i}\left[\operatorname{tr} A^{(n-i)}\right] s^{i}+(-1)^{n} \operatorname{det} A
$$

xxiii) $\operatorname{det}(I+A)=1+\operatorname{det} A+\sum_{i=1}^{n-1} \operatorname{tr} A^{(n-i)}$.

Now, for $i=0, \ldots, k$, define $A^{(k, i)}$ by

$$
(A+s I)^{(k)}=s^{k} A^{(k, 0)}+s^{k-1} A^{(k, 1)}+\cdots+s A^{(k, k-1)}+A^{(k, k)}
$$

Then, the following statements hold:
xxiv) $A^{(k, 0)}=I$.
$x x v) \quad A^{(k, k)}=A^{(k)}$.
$x x v i$) If $B \in \mathbb{F}^{n \times n}$ and $\alpha, \beta \in \mathbb{F}$, then

$$
(\alpha A+\beta B)^{(k, 1)}=\alpha A^{(k, 1)}+\beta B^{(k, 1)} .
$$

xxvii) $\operatorname{mspec}\left(A^{(k, 1)}\right)=\left\{\lambda_{i_{1}}+\cdots+\lambda_{i_{k}}: 1 \leq i_{1}<\cdots<i_{k} \leq n\right\}_{\mathrm{ms}}$.
xxviii) $\operatorname{tr} A^{(k, 1)}=\binom{n-1}{k-1} \operatorname{tr} A$.
xxix $) \operatorname{mspec}\left(A^{(2,1)}\right)=\left\{\lambda_{i}+\lambda_{j}: \quad i, j=1, \ldots, n, i<j\right\}_{\mathrm{ms}}$.
$x x x) \operatorname{mspec}\left[\left(A^{(2,1)}\right)^{2}-4 A^{(2)}\right]=\left\{\left(\lambda_{i}-\lambda_{j}\right)^{2}: \quad i, j=1, \ldots, n, i<j\right\}_{\mathrm{ms}}$.
(Proof: See [481, pp. 142-155], [709, p. 11], 958, pp. 116-130], 971, pp. 502506], [1098 p. 124], and [1099].) (Remark: Statement vi) is the Binet-Cauchy theorem. See [971, p. 503]. The special case given by statement vii) is also given by Fact 2.13.4. Another special case is given by statement $x x i$). Statement $x i$) is the Sylvester-Franke theorem. See [958, p. 130].) (Remark: $A^{(k, 1)}$ is the k th additive compound of A.) (Remark: $\left(A^{(2,1)}\right)^{2}-4 A^{(2)}$ is the discriminant of A,
which is singular if and only if A has a repeated eigenvalue.) (Remark: Additional expressions for the determinant of a sum of matrices are given in [1099.) (Remark: The compound operation is related to the bialternate product since $\operatorname{mspec}(2 A \cdot I)=$ $\operatorname{mspec}\left(A^{(2,1)}\right)$ and $\operatorname{mspec}(A \cdot A)=\operatorname{mspec}\left(A^{(2)}\right)$. See [519, 576, [782, pp. 313320], and [942, pp. 84, 85].) (Remark: Induced norms of compound matrices are considered in 451.) (Remark: See Fact 11.17.12) (Remark: Fact 4.9.2 and Fact 8.13.42.) (Problem: Express $A \cdot B$ in terms of compounds.)

7.6 Facts on the Schur Product

Fact 7.6.1. Let $x, y, z \in \mathbb{F}^{n}$. Then,

$$
x^{\mathrm{T}}(y \circ z)=z^{\mathrm{T}}(x \circ y)=y^{\mathrm{T}}(x \circ z)
$$

Fact 7.6.2. Let $w, y \in \mathbb{F}^{n}$ and $x, z \in \mathbb{F}^{m}$. Then,

$$
\left(w x^{\mathrm{T}}\right) \circ\left(y z^{\mathrm{T}}\right)=(w \circ y)(x \circ z)^{\mathrm{T}}
$$

Fact 7.6.3. Let $A \in \mathbb{F}^{n \times n}$ and $d \in \mathbb{F}^{n}$. Then,

$$
\operatorname{diag}(d) A=A \circ d 1_{1 \times n}
$$

Fact 7.6.4. Let $A, B \in \mathbb{F}^{n \times m}, D_{1} \in \mathbb{F}^{n \times n}$, and $D_{2} \in \mathbb{F}^{m \times m}$, and assume that D_{1} and D_{2} are diagonal. Then,

$$
\left(D_{1} A\right) \circ\left(B D_{2}\right)=D_{1}(A \circ B) D_{2}
$$

Fact 7.6.5. Let $A_{1}, \ldots, A_{k} \in \mathbb{F}^{n \times n}$. Then,

$$
\mathcal{R}\left[\left(A_{1} A_{1}^{*}\right) \circ \cdots \circ\left(A_{k} A_{k}^{*}\right)\right]=\operatorname{span}\left\{\left(A_{1} x_{1}\right) \circ \cdots \circ\left(A_{k} x_{k}\right): x_{1}, \ldots, x_{k} \in \mathbb{F}^{n}\right\} .
$$

Furthermore, if A_{1}, \ldots, A_{k} are positive semidefinite, then

$$
\begin{aligned}
\mathcal{R}\left(A_{1} \circ \cdots \circ A_{k}\right) & =\operatorname{span}\left\{\left(A_{1} x_{1}\right) \circ \cdots \circ\left(A_{k} x_{k}\right): x_{1}, \ldots, x_{k} \in \mathbb{F}^{n}\right\} \\
& =\operatorname{span}\left\{\left(A_{1} x\right) \circ \ldots \circ\left(A_{k} x\right): x \in \mathbb{F}^{n}\right\} .
\end{aligned}
$$

(Proof: See 1109.)
Fact 7.6.6. Let $A, B \in \mathbb{F}^{n \times m}$. Then,

$$
\operatorname{rank}(A \circ B) \leq \operatorname{rank}(A \otimes B)=(\operatorname{rank} A)(\operatorname{rank} B)
$$

(Proof: Use Proposition 7.3.1.) (Remark: See Fact 8.21.16.)
Fact 7.6.7. Let $x, a \in \mathbb{F}^{n}, y, b \in \mathbb{F}^{m}$, and $A \in \mathbb{F}^{n \times m}$. Then,

$$
x^{\mathrm{T}}\left(A \circ a b^{\mathrm{T}}\right) y=(a \circ x)^{\mathrm{T}} A(b \circ y)
$$

Fact 7.6.8. Let $A, B \in \mathbb{F}^{n \times m}$. Then,

$$
\operatorname{tr}\left[(A \circ B)(A \circ B)^{\mathrm{T}}\right]=\operatorname{tr}\left[(A \circ A)(B \circ B)^{\mathrm{T}}\right]
$$

Fact 7.6.9. Let $A \in \mathbb{F}^{n \times m}, B \in \mathbb{F}^{m \times n}, a \in \mathbb{F}^{m}$, and $b \in \mathbb{F}^{n}$. Then,

$$
\operatorname{tr}\left[A\left(B \circ a b^{\mathrm{T}}\right)\right]=a^{\mathrm{T}}\left(A^{\mathrm{T}} \circ B\right) b
$$

In particular,

$$
\operatorname{tr} A B=1_{m}^{\mathrm{T}}\left(A^{\mathrm{T}} \circ B\right) 1_{n}
$$

Fact 7.6.10. Let $A, B \in \mathbb{F}^{n \times m}$ and $C \in \mathbb{F}^{m \times n}$. Then,

$$
I \circ\left[A\left(B^{\mathrm{T}} \circ C\right)\right]=I \circ[(A \circ B) C]=I \circ\left[\left(A \circ C^{\mathrm{T}}\right) B^{\mathrm{T}}\right]
$$

Hence,

$$
\operatorname{tr}\left[A\left(B^{\mathrm{T}} \circ C\right)\right]=\operatorname{tr}[(A \circ B) C]=\operatorname{tr}\left[\left(A \circ C^{\mathrm{T}}\right) B^{\mathrm{T}}\right]
$$

Fact 7.6.11. Let $x \in \mathbb{R}^{m}$ and $A \in \mathbb{R}^{n \times m}$, and define $x^{A} \in \mathbb{R}^{n}$ by

$$
x^{A} \triangleq\left[\begin{array}{c}
\prod_{i=1}^{m} x_{(i)}^{A_{(1, i)}} \\
\vdots \\
\prod_{i=1}^{m} x_{(i)}^{A_{(n, i)}}
\end{array}\right]
$$

where every component of x^{A} is assumed to exist. Then, the following statements hold:
i) If $a \in \mathbb{R}$, then $a^{x}=\left[\begin{array}{c}a^{x(1)} \\ \vdots \\ \text { ii) } x^{-A}=\left(x^{A}\right)^{\circ-1} .\end{array}\right.$.
iii) If $y \in \mathbb{R}^{m}$, then $(x \circ y)^{A}=x^{A} \circ y^{A}$.
iv) If $B \in \mathbb{R}^{n \times m}$, then $x^{A+B}=x^{A} \circ x^{B}$.
$v)$ If $B \in \mathbb{R}^{l \times n}$, then $\left(x^{A}\right)^{B}=x^{B A}$.
vi) If $a \in \mathbb{R}$, then $\left(a^{x}\right)^{A}=a^{A x}$.
vii) If $A^{\mathrm{L}} \in \mathbb{R}^{m \times n}$ is a left inverse of A and $y=x^{A}$, then $x=y^{A^{\mathrm{L}}}$.
viii) If $A \in \mathbb{R}^{n \times n}$ is nonsingular and $y=x^{A}$, then $x=y^{A^{-1}}$.
$i x)$ Define $f(x) \triangleq x^{A}$. Then, $f^{\prime}(x)=\operatorname{diag}\left(x^{A}\right) A \operatorname{diag}\left(x^{\circ-1}\right)$.
x) Let $x_{1}, \ldots, x_{n} \in \mathbb{R}^{n}$, let $a \in \mathbb{R}^{n}$, and assume that $0<x_{1}<\cdots<x_{n}$ and $a_{(1)}<\cdots<a_{(n)}$. Then,

$$
\operatorname{det}\left[\begin{array}{lll}
x_{1}^{a} & \cdots & x_{n}^{a}
\end{array}\right]>0
$$

(Remark: These operations arise in modeling chemical reaction kinetics. See 892.) (Proof: Result x) is given in 1130.)

Fact 7.6.12. Let $A \in \mathbb{R}^{n \times n}$, and assume that A is nonsingular. Then,

$$
\left(A \circ A^{-\mathrm{T}}\right) 1_{n \times 1}=1_{n \times 1}
$$

and

$$
1_{1 \times n}\left(A \circ A^{-\mathrm{T}}\right)=1_{1 \times n} .
$$

(Proof: See [772].)
Fact 7.6.13. Let $A \in \mathbb{R}^{n \times n}$, and assume that $A \geq \geq 0$. Then,

$$
\operatorname{sprad}\left[\left(A \circ A^{\mathrm{T}}\right)^{\circ 1 / 2}\right] \leq \operatorname{sprad}(A) \leq \operatorname{sprad}\left[\frac{1}{2}\left(A+A^{\mathrm{T}}\right)\right]
$$

(Proof: See [1180.)
Fact 7.6.14. Let $A_{1}, \ldots, A_{r} \in \mathbb{R}^{n \times n}$ and $\alpha_{1}, \ldots, \alpha_{r} \in \mathbb{R}$, and assume that $A_{i} \geq \geq 0$ for all $i=1, \ldots, r, \alpha_{i}>0$ for all $i=1, \ldots, r$, and $\sum_{i=1}^{r} \alpha_{i} \geq 1$. Then,

$$
\operatorname{sprad}\left(A_{1}^{\circ \alpha_{1}} \circ \cdots \circ A_{r}^{\circ \alpha_{r}}\right) \leq \prod_{i=1}^{r}\left[\operatorname{sprad}\left(A_{i}\right)\right]^{\alpha_{i}}
$$

In particular, let $A \in \mathbb{R}^{n \times n}$, and assume that $A \geq \geq 0$. Then, for all $\alpha \geq 1$,

$$
\operatorname{sprad}\left(A^{\circ \alpha}\right) \leq[\operatorname{sprad}(A)]^{\alpha}
$$

whereas, for all $\alpha \leq 1$,

$$
[\operatorname{sprad}(A)]^{\alpha} \leq \operatorname{sprad}\left(A^{\circ \alpha}\right)
$$

Furthermore,

$$
\operatorname{sprad}\left(A^{\circ 1 / 2} \circ A^{\mathrm{T} \circ 1 / 2}\right) \leq \operatorname{sprad}(A)
$$

and

$$
[\operatorname{sprad}(A \circ A)]^{1 / 2} \leq \operatorname{sprad}(A)=[\operatorname{sprad}(A \otimes A)]^{1 / 2}
$$

If, in addition, $B \in \mathbb{R}^{n \times n}$ is such that $B \geq \geq 0$, then

$$
\begin{aligned}
\operatorname{sprad}(A \circ B) \leq & {[\operatorname{sprad}(A \circ A) \operatorname{sprad}(B \circ B)]^{1 / 2} \leq \operatorname{sprad}(A) \operatorname{sprad}(B) } \\
\operatorname{sprad}(A \circ B) \leq & \operatorname{sprad}(A) \operatorname{sprad}(B) \\
& +\max _{i=1, \ldots, n}\left[2 A_{(i, i)} B_{(i, i)}-\operatorname{sprad}(A) B_{(i, i)}-\operatorname{sprad}(B) A_{(i, i)}\right] \\
\leq & \operatorname{sprad}(A) \operatorname{sprad}(B),
\end{aligned}
$$

and

$$
\operatorname{sprad}\left(A^{\circ 1 / 2} \circ B^{\circ 1 / 2}\right) \leq \sqrt{\operatorname{sprad}(A) \operatorname{sprad}(B)}
$$

If, in addition, $A \gg 0$ and $B \gg 0$, then

$$
\operatorname{sprad}(A \circ B)<\operatorname{sprad}(A) \operatorname{sprad}(B)
$$

(Proof: See 453, 467, 792. The identity $\operatorname{sprad}(A)=[\operatorname{sprad}(A \otimes A)]^{1 / 2}$ follows from Fact 7.4.14.) (Remark: The inequality $\operatorname{sprad}(A \circ A) \leq \operatorname{sprad}(A \otimes A)$ follows from Fact 4.11.18 and Proposition 7.3.1,) (Remark: Some extensions are given in 731.)

Fact 7.6.15. Let $A, B \in \mathbb{R}^{n \times n}$, and assume that A and B are nonsingular M-matrices. Then, the following statements hold:
i) $A \circ B^{-1}$ is a nonsingular M-matrix.
ii) If $n=2$, then $\tau\left(A \circ A^{-1}\right)=1$.
iii) If $n \geq 3$, then $\frac{1}{n}<\tau\left(A \circ A^{-1}\right) \leq 1$.
iv) $\tau(A) \min _{i=1, \ldots, n}\left(B^{-1}\right)_{(i, i)} \leq \tau\left(A \circ B^{-1}\right)$.
v) $[\tau(A) \tau(B)]^{n} \leq|\operatorname{det}(A \circ B)|$.
vi) $\left|(A \circ B)^{-1}\right| \leq \leq A^{-1} \circ B^{-1}$.
(Proof: See [711, pp. 359, 370, 375, 380].) (Remark: The minimum eigenvalue $\tau(A)$ is defined in Fact 4.11.9.) (Remark: Some extensions are given in 731.)

Fact 7.6.16. Let $A, B \in \mathbb{F}^{n \times m}$. Then,

$$
\operatorname{sprad}(A \circ B) \leq \sqrt{\operatorname{sprad}(A \circ \bar{A}) \operatorname{sprad}(B \circ \bar{B})}
$$

Consequently,

$$
\left.\begin{array}{c}
\operatorname{sprad}(A \circ A) \\
\operatorname{sprad}\left(A \circ A^{\mathrm{T}}\right) \\
\operatorname{sprad}\left(A \circ A^{*}\right)
\end{array}\right\} \leq \operatorname{sprad}(A \circ \bar{A})
$$

(Proof: See [1193].) (Remark: See Fact 9.14.34.)
Fact 7.6.17. Let $A, B \in \mathbb{R}^{n \times n}$, assume that A and B are nonnegative, and let $\alpha \in[0,1]$. Then,

$$
\operatorname{sprad}\left(A^{\circ \alpha} \circ B^{\circ(1-\alpha)}\right) \leq \operatorname{sprad}^{\alpha}(A) \operatorname{sprad}^{1-\alpha}(B)
$$

In particular,

$$
\operatorname{sprad}\left(A^{\circ 1 / 2} \circ B^{\circ 1 / 2}\right) \leq \sqrt{\operatorname{sprad}(A) \operatorname{sprad}(B)}
$$

Finally,

$$
\operatorname{sprad}\left(A^{\circ 1 / 2} \circ A^{\circ 1 / 2 \mathrm{~T}}\right) \leq \operatorname{sprad}\left(A^{\circ \alpha} \circ A^{\circ(1-\alpha) \mathrm{T}}\right) \leq \operatorname{sprad}(A)
$$

(Proof: See [1193.) (Remark: See Fact 9.14.35.)

7.7 Notes

A history of the Kronecker product is given in 665. Kronecker matrix algebra is discussed in [259, 579, 667, 948, 994, 1219, 1379. Applications are discussed in 1121, 1122, 1362.

The fact that the Schur product is a principal submatrix of the Kronecker product is noted in 962 . A variation of Kronecker matrix algebra for symmetric matrices can be developed in terms of the half-vectorization operator "vech" and the associated elimination and duplication matrices [667, 947, 1344].

Generalizations of the Schur and Kronecker products, known as the blockKronecker, strong Kronecker, Khatri-Rao, and Tracy-Singh products, are discussed in [385, 714, 739, 840, 923, 925, 926, 928, and [1119, pp. 216, 217]. A related operation is the bialternate product, which is a variation of the compound operation discussed in Fact 7.5.17. See [519, [576], [782, pp. 313-320], and [942, pp. 84, 85]. The Schur product is also called the Hadamard product.

The Kronecker product is associated with tensor analysis and multilinear algebra 421, 545, 585, 958, 959, 994.

Chapter Eight

Positive-Semidefinite Matrices

In this chapter we focus on positive-semidefinite and positive-definite matrices. These matrices arise in a variety of applications, such as covariance analysis in signal processing and controllability analysis in linear system theory, and they have many special properties.

8.1 Positive-Semidefinite and Positive-Definite Orderings

Let $A \in \mathbb{F}^{n \times n}$ be a Hermitian matrix. As shown in Corollary 5.4.5, A is unitarily similar to a real diagonal matrix whose diagonal entries are the eigenvalues of A. We denote these eigenvalues by $\lambda_{1}, \ldots, \lambda_{n}$ or, for clarity, by $\lambda_{1}(A), \ldots, \lambda_{n}(A)$. As in Chapter 4, we employ the convention

$$
\begin{equation*}
\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n} \tag{8.1.1}
\end{equation*}
$$

and, for convenience, we define

$$
\begin{equation*}
\lambda_{\max }(A) \triangleq \lambda_{1}, \quad \lambda_{\min }(A) \triangleq \lambda_{n} \tag{8.1.2}
\end{equation*}
$$

Then, A is positive semidefinite if and only if $\lambda_{\min }(A) \geq 0$, while A is positive definite if and only if $\lambda_{\min }(A)>0$.

For convenience, let $\mathbf{H}^{n}, \mathbf{N}^{n}$, and \mathbf{P}^{n} denote, respectively, the Hermitian, positive-semidefinite, and positive-definite matrices in $\mathbb{F}^{n \times n}$. Hence, $\mathbf{P}^{n} \subset \mathbf{N}^{n} \subset$ \mathbf{H}^{n}. If $A \in \mathbf{N}^{n}$, then we write $A \geq 0$, while, if $A \in \mathbf{P}^{n}$, then we write $A>0$. If $A, B \in \mathbf{H}^{n}$, then $A-B \in \mathbf{N}^{n}$ is possible even if neither A nor B is positive semidefinite. In this case, we write $A \geq B$ or $B \leq A$. Similarly, $A-B \in \mathbf{P}^{n}$ is denoted by $A>B$ or $B<A$. This notation is consistent with the case $n=1$, where $\mathbf{H}^{1}=\mathbb{R}, \mathbf{N}^{1}=[0, \infty)$, and $\mathbf{P}^{1}=(0, \infty)$.

Since $0 \in \mathbf{N}^{n}$, it follows that \mathbf{N}^{n} is a pointed cone. Furthermore, if $A,-A \in$ \mathbf{N}^{n}, then $x^{*} A x=0$ for all $x \in \mathbb{F}^{n}$, which implies that $A=0$. Hence, \mathbf{N}^{n} is a one-sided cone. Finally, \mathbf{N}^{n} and \mathbf{P}^{n} are convex cones since, if $A, B \in \mathbf{N}^{n}$, then $\alpha A+\beta B \in \mathbf{N}^{n}$ for all $\alpha, \beta>0$, and likewise for \mathbf{P}^{n}. The following result shows that the relation " \leq " is a partial ordering on \mathbf{H}^{n}.

Proposition 8.1.1. The relation " \leq " is reflexive, antisymmetric, and transitive on \mathbf{H}^{n}, that is, if $A, B, C \in \mathbf{H}^{n}$, then the following statements hold:
i) $A \leq A$.
ii) If $A \leq B$ and $B \leq A$, then $A=B$.
iii) If $A \leq B$ and $B \leq C$, then $A \leq C$.

Proof. Since \mathbf{N}^{n} is a pointed, one-sided, convex cone, it follows from Proposition 2.3.6 that the relation " \leq " is reflexive, antisymmetric, and transitive.

Additional properties of " \leq " and " $<$ " are given by the following result.
Proposition 8.1.2. Let $A, B, C, D \in \mathbf{H}^{n}$. Then, the following statements hold:
i) If $A \geq 0$, then $\alpha A \geq 0$ for all $\alpha \geq 0$, and $\alpha A \leq 0$ for all $\alpha \leq 0$.
ii) If $A>0$, then $\alpha A>0$ for all $\alpha>0$, and $\alpha A<0$ for all $\alpha<0$.
iii) $\alpha A+\beta B \in \mathbf{H}^{n}$ for all $\alpha, \beta \in \mathbb{R}$.
iv) If $A \geq 0$ and $B \geq 0$, then $\alpha A+\beta B \geq 0$ for all $\alpha, \beta \geq 0$.
$v)$ If $A \geq 0$ and $B>0$, then $A+B>0$.
vi) $A^{2} \geq 0$.
vii) $A^{2}>0$ if and only if $\operatorname{det} A \neq 0$.
viii) If $A \leq B$ and $B<C$, then $A<C$.
$i x)$ If $A<B$ and $B \leq C$, then $A<C$.
$x)$ If $A \leq B$ and $C \leq D$, then $A+C \leq B+D$.
xi) If $A \leq B$ and $C<D$, then $A+C<B+D$.

Furthermore, let $S \in \mathbb{F}^{m \times n}$. Then, the following statements hold:
xii) If $A \leq B$, then $S A S^{*} \leq S B S^{*}$.
xiii) If $A<B$ and $\operatorname{rank} S=m$, then $S A S^{*}<S B S^{*}$.
xiv) If $S A S^{*} \leq S B S^{*}$ and $\operatorname{rank} S=n$, then $A \leq B$.
$x v$) If $S A S^{*}<S B S^{*}$ and $\operatorname{rank} S=n$, then $m=n$ and $A<B$.
xvi) If $A \leq B$, then $S A S^{*}<S B S^{*}$ if and only if $\operatorname{rank} S=m$ and $\mathcal{R}(S) \cap \mathcal{N}(B-$ $A)=\{0\}$.

Proof. Results i) $-x i$) are immediate. To prove xii), note that $A<B$ implies that $(B-A)^{1 / 2}$ is positive definite. Thus, $\operatorname{rank} S(A-B)^{1 / 2}=m$, which implies that $S(A-B) S^{*}$ is positive definite. To prove xiii), note that, since rank $S=n$, it follows that S has a left inverse $S^{\mathrm{L}} \in \mathbb{F}^{n \times m}$. Thus, xi) implies that $A=S^{\mathrm{L}} S A S^{*} S^{\mathrm{L} *} \leq$ $S^{\mathrm{L}} S B S^{*} S^{\mathrm{L} *}=B$. To prove $x v$), note that, since $S(B-A) S^{*}$ is positive definite, it follows that rank $S=m$. Hence, $m=n$ and S is nonsingular. Thus, xii) implies that $A=S^{-1} S A S^{*} S^{-*}<S^{-1} S B S^{*} S^{-*}=B$. Statement $x v i$) is proved in 285].

The following result is an immediate consequence of Corollary 5.4.7.

Corollary 8.1.3. Let $A, B \in \mathbf{H}^{n}$, and assume that A and B are congruent. Then, A is positive semidefinite if and only if B is positive semidefinite. Furthermore, A is positive definite if and only if B is positive definite.

8.2 Submatrices

We first consider some identities involving a partitioned positive-semidefinite matrix.

Lemma 8.2.1. Let $A=\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{12}^{*} & A_{22}\end{array}\right] \in \mathbf{N}^{n+m}$. Then,

$$
\begin{align*}
& A_{12}=A_{11} A_{11}^{+} A_{12} \tag{8.2.1}\\
& A_{12}=A_{12} A_{22} A_{22}^{+} \tag{8.2.2}
\end{align*}
$$

Proof. Since $A \geq 0$, it follows from Corollary 5.4.5 that $A=B B^{*}$, where $B=\left[\begin{array}{l}B_{1} \\ B_{2}\end{array}\right] \in \mathbb{F}^{(n+m) \times r}$ and $r \triangleq \operatorname{rank} A$. Thus, $A_{11}=B_{1} B_{1}^{*}, A_{12}=B_{1} B_{2}^{*}$, and $A_{22}=B_{2} B_{2}^{*}$. Since A_{11} is Hermitian, it follows from xxvii) of Proposition 6.1.6 that A_{11}^{+}is also Hermitian. Next, defining $S \triangleq B_{1}-B_{1} B_{1}^{*}\left(B_{1} B_{1}^{*}\right)^{+} B_{1}$, it follows that $S S^{*}=0$, and thus $\operatorname{tr} S S^{*}=0$. Hence, Lemma 2.2 .3 implies that $S=0$, and thus $B_{1}=B_{1} B_{1}^{*}\left(B_{1} B_{1}^{*}\right)^{+} B_{1}$. Consequently, $B_{1} B_{2}^{*}=B_{1} B_{1}^{*}\left(B_{1} B_{1}^{*}\right)^{+} B_{1} B_{2}^{*}$, that is, $A_{12}=A_{11} A_{11}^{+} A_{12}$. The second result is analogous.

Corollary 8.2.2. Let $A=\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{12}^{*} & A_{22}\end{array}\right] \in \mathbf{N}^{n+m}$. Then, the following statements hold:
i) $\mathcal{R}\left(A_{12}\right) \subseteq \mathcal{R}\left(A_{11}\right)$.
ii) $\mathcal{R}\left(A_{12}^{*}\right) \subseteq \mathcal{R}\left(A_{22}\right)$.
iii) $\operatorname{rank}\left[\begin{array}{ll}A_{11} & A_{12}\end{array}\right]=\operatorname{rank} A_{11}$.
iv) $\operatorname{rank}\left[\begin{array}{ll}A_{12}^{*} & A_{22}\end{array}\right]=\operatorname{rank} A_{22}$.

Proof. Results i) and $i i$) follow from (8.2.1) and (8.2.2), while $i i i$) and $i v$) are consequences of i) and $i i$.

Next, if (8.2.1) holds, then the partitioned Hermitian matrix $A \triangleq\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{12}^{*} & A_{22}\end{array}\right]$ can be factored as

$$
\left[\begin{array}{ll}
A_{11} & A_{12} \tag{8.2.3}\\
A_{12}^{*} & A_{22}
\end{array}\right]=\left[\begin{array}{cc}
I & 0 \\
A_{12}^{*} A_{11}^{+} & I
\end{array}\right]\left[\begin{array}{cc}
A_{11} & 0 \\
0 & A_{11} \mid A
\end{array}\right]\left[\begin{array}{cc}
I & A_{11}^{+} A_{12} \\
0 & I
\end{array}\right]
$$

while, if (8.2.2) holds, then

$$
\left[\begin{array}{cc}
A_{11} & A_{12} \tag{8.2.4}\\
A_{12}^{*} & A_{22}
\end{array}\right]=\left[\begin{array}{cc}
I & A_{12} A_{22}^{+} \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
A_{22} \mid A & 0 \\
0 & A_{22}
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
A_{22}^{+} A_{12}^{*} & I
\end{array}\right]
$$

where

$$
\begin{equation*}
A_{11} \mid A=A_{22}-A_{12}^{*} A_{11}^{+} A_{12} \tag{8.2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{22} \mid A=A_{11}-A_{12} A_{22}^{+} A_{12}^{*} . \tag{8.2.6}
\end{equation*}
$$

Hence, it follows from Lemma 8.2.1 that, if A is positive semidefinite, then (8.2.3) and (8.2.4) are valid, and, furthermore, the Schur complements (see Definition 6.1.8) $A_{11} \mid A$ and $A_{22} \mid A$ are both positive semidefinite. Consequently, we have the following results.

Proposition 8.2.3. Let $A \triangleq\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{12} & A_{22}\end{array}\right] \in \mathbf{N}^{n+m}$. Then,

$$
\begin{align*}
\operatorname{rank} A & =\operatorname{rank} A_{11}+\operatorname{rank} A_{11} \mid A \tag{8.2.7}\\
& =\operatorname{rank} A_{22} \mid A+\operatorname{rank} A_{22} \tag{8.2.8}\\
& \leq \operatorname{rank} A_{11}+\operatorname{rank} A_{22} \tag{8.2.9}
\end{align*}
$$

Furthermore,

$$
\begin{equation*}
\operatorname{det} A=\left(\operatorname{det} A_{11}\right) \operatorname{det}\left(A_{11} \mid A\right) \tag{8.2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{det} A=\left(\operatorname{det} A_{22}\right) \operatorname{det}\left(A_{22} \mid A\right) \tag{8.2.11}
\end{equation*}
$$

Proposition 8.2.4. Let $A \triangleq\left[\begin{array}{cc}A_{11} & A_{12} \\ A_{12}^{*} & A_{22}\end{array}\right] \in \mathbf{H}^{n+m}$. Then, the following statements are equivalent:
i) $A \geq 0$.
ii) $A_{11} \geq 0, A_{12}=A_{11} A_{11}^{+} A_{12}$, and $A_{12}^{*} A_{11}^{+} A_{12} \leq A_{22}$.
iii) $A_{22} \geq 0, A_{12}=A_{12} A_{22} A_{22}^{+}$, and $A_{12} A_{22}^{+} A_{12}^{*} \leq A_{11}$.

The following statements are also equivalent:
iv) $A>0$.
v) $A_{11}>0$ and $A_{12}^{*} A_{11}^{-1} A_{12}<A_{22}$.
vi) $A_{22}>0$ and $A_{12} A_{22}^{-1} A_{12}^{*}<A_{11}$.

The following result follows from (2.8.16) and (2.8.17) or from (8.2.3) and (8.2.4).

Proposition 8.2.5. Let $A \triangleq\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{12}^{*} & A_{22}\end{array}\right] \in \mathbf{P}^{n+m}$. Then,

$$
A^{-1}=\left[\begin{array}{cc}
A_{11}^{-1}+A_{11}^{-1} A_{12}\left(A_{11} \mid A\right)^{-1} A_{12}^{*} A_{11}^{-1} & -A_{11}^{-1} A_{12}\left(A_{11} \mid A\right)^{-1} \tag{8.2.12}\\
-\left(A_{11} \mid A\right)^{-1} A_{12}^{*} A_{11}^{-1} & \left(A_{11} \mid A\right)^{-1}
\end{array}\right]
$$

and

$$
A^{-1}=\left[\begin{array}{cc}
\left(A_{22} \mid A\right)^{-1} & -\left(A_{22} \mid A\right)^{-1} A_{12} A_{22}^{-1} \tag{8.2.13}\\
-A_{22}^{-1} A_{12}^{*}\left(A_{22} \mid A\right)^{-1} & A_{22}^{-1} A_{12}^{*}\left(A_{22} \mid A\right)^{-1} A_{12} A_{22}^{-1}+A_{22}^{-1}
\end{array}\right]
$$

where

$$
\begin{equation*}
A_{11} \mid A=A_{22}-A_{12}^{*} A_{11}^{-1} A_{12} \tag{8.2.14}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{22} \mid A=A_{11}-A_{12} A_{22}^{-1} A_{12}^{*} \tag{8.2.15}
\end{equation*}
$$

Now, let $A^{-1}=\left[\begin{array}{cc}B_{11} & B_{12} \\ B_{12}^{*} & B_{22}\end{array}\right]$. Then,

$$
\begin{equation*}
B_{11} \mid A^{-1}=A_{22}^{-1} \tag{8.2.16}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{22} \mid A^{-1}=A_{11}^{-1} \tag{8.2.17}
\end{equation*}
$$

Lemma 8.2.6. Let $A \in \mathbb{F}^{n \times n}, b \in \mathbb{F}^{n}$, and $a \in \mathbb{R}$, and define $\mathcal{A} \triangleq\left[\begin{array}{cc}A & b \\ b^{*} & a\end{array}\right]$. Then, the following statements are equivalent:
i) \mathcal{A} is positive semidefinite.
ii) A is positive semidefinite, $b=A A^{+} b$, and $b^{*} A^{+} b \leq a$.
iii) Either A is positive semidefinite, $a=0$, and $b=0$, or $a>$ and $b b^{*} \leq a A$.

Furthermore, the following statements are equivalent:
i) \mathcal{A} is positive definite.
ii) A is positive definite, and $b^{*} A^{-1} b<a$.
iii) $a>0$ and $b b^{*}<a A$.

In this case,

$$
\begin{equation*}
\operatorname{det} \mathcal{A}=(\operatorname{det} A)\left(a-b^{*} A^{-1} b\right) \tag{8.2.18}
\end{equation*}
$$

For the following result note that a matrix is a principal submatrix of itself, while the determinant of a matrix is also a principal subdeterminant of the matrix.

Proposition 8.2.7. Let $A \in \mathbf{H}^{n}$. Then, the following statements are equivalent:
i) A is positive semidefinite.
ii) Every principal submatrix of A is positive semidefinite.
iii) Every principal subdeterminant of A is nonnegative.
$i v$) For all $i=1, \ldots, n$, the sum of all $i \times i$ principal subdeterminants of A is nonnegative.
v) $\beta_{0}, \ldots, \beta_{n-1} \geq 0$, where $\chi_{A}(s)=s^{n}+\beta_{n-1} s^{n-1}+\cdots+\beta_{1} s+\beta_{0}$.

Proof. To prove $i) \Longrightarrow i i$), let $\hat{A} \in \mathbb{F}^{m \times m}$ be the principal submatrix of A obtained from A by retaining rows and columns i_{1}, \ldots, i_{m}. Then, $\hat{A}=S^{\mathrm{T}} A S$, where $S \triangleq\left[\begin{array}{lll}e_{i_{1}} & \cdots & e_{i_{m}}\end{array}\right] \in \mathbb{R}^{n \times m}$. Now, let $\hat{x} \in \mathbb{F}^{m}$. Since A is positive semidefinite, it follows that $\hat{x}^{*} \hat{A} \hat{x}=\hat{x}^{*} S^{\mathrm{T}} A S \hat{x} \geq 0$, and thus \hat{A} is positive semidefinite.

Next, the implications $i i) \Longrightarrow i i i) \Longrightarrow i v$) are immediate. To prove $i v) \Longrightarrow i$, note that it follows from Proposition 4.4.6 that

$$
\begin{equation*}
\chi_{A}(s)=\sum_{i=0}^{n} \beta_{i} s^{i}=\sum_{i=0}^{n}(-1)^{n-i} \gamma_{n-i} s^{i}=(-1)^{n} \sum_{i=0}^{n} \gamma_{n-i}(-s)^{i} \tag{8.2.19}
\end{equation*}
$$

where, for all $i=1, \ldots, n, \gamma_{i}$ is the sum of all $i \times i$ principal subdeterminants of A, and $\beta_{n}=\gamma_{0}=1$. By assumption, $\gamma_{i} \geq 0$ for all $i=1, \ldots, n$. Now, suppose there
exists $\lambda \in \operatorname{spec}(A)$ such that $\lambda<0$. Then, $0=(-1)^{n} \chi_{A}(\lambda)=\sum_{i=0}^{n} \gamma_{n-i}(-\lambda)^{i}>0$, which is a contradiction. The equivalence of $i v$) and v) follows from Proposition 4.4 .6

Proposition 8.2.8. Let $A \in \mathbf{H}^{n}$. Then, the following statements are equivalent:
i) A is positive definite.
ii) Every principal submatrix of A is positive definite.
iii) Every principal subdeterminant of A is positive.
$i v)$ Every leading principal submatrix of A is positive definite.
v) Every leading principal subdeterminant of A is positive.
Proof. To prove $i) \Longrightarrow i i)$, let $\hat{A} \in \mathbb{F}^{m \times m}$ and S be as in the proof of Proposition 8.2.7 and let \hat{x} be nonzero so that $S \hat{x}$ is nonzero. Since A is positive definite, it follows that $\hat{x}^{*} \hat{A} \hat{x}=\hat{x}^{*} S^{\mathrm{T}} A S \hat{x}>0$, and hence \hat{A} is positive definite.

Next, the implications $i) \Longrightarrow i i) \Longrightarrow i i i) \Longrightarrow v$) and $i i) \Longrightarrow i v) \Longrightarrow v$) are immediate. To prove $v) \Longrightarrow i$, suppose that the leading principal submatrix $A_{i} \in$ $\mathbb{F}^{i \times i}$ has positive determinant for all $i=1, \ldots, n$. The result is true for $n=1$. For $n \geq 2$, we show that, if A_{i} is positive definite, then so is A_{i+1}. Writing $A_{i+1}=$ $\left[\begin{array}{cc}A_{i} & b_{i} \\ b_{i}^{*} & a_{i}\end{array}\right]$, it follows from Lemma 8.2.6 that $\operatorname{det} A_{i+1}=\left(\operatorname{det} A_{i}\right)\left(a_{i}-b_{i}^{*} A_{i}^{-1} b_{i}\right)>0$, and hence $a_{i}-b_{i}^{*} A_{i}^{-1} b_{i}=\operatorname{det} A_{i+1} / \operatorname{det} A_{i}>0$. Lemma 8.2.6 now implies that A_{i+1} is positive definite. Using this argument for all $i=2, \ldots, n$ implies that A is positive definite.

The example $A=\left[\begin{array}{cc}0 & 0 \\ 0 & -1\end{array}\right]$ shows that every principal subdeterminant of A, rather than just the leading principal subdeterminants of A, must be checked to determine whether A is positive semidefinite. A less obvious example is $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0\end{array}\right]$, whose eigenvalues are $0,1+\sqrt{3}$, and $1-\sqrt{3}$. In this case, the principal subdeterminant $\operatorname{det} A_{[1 ; 1]}=\operatorname{det}\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]<0$.

Note that condition $i i i$) of Proposition 8.2.8 includes $\operatorname{det} A>0$ since the determinant of A is also a subdeterminant of A. The matrix $A=\left[\begin{array}{ccc}3 / 2 & -1 & 1 \\ -1 & 2 & 1 \\ 1 & 1 & 2\end{array}\right]$ has the property that every 1×1 and 2×2 subdeterminant is positive but is not positive definite. This example shows that the result $i i i) \Longrightarrow i i$) of Proposition 8.2 .8 is false if the requirement that the determinant of A be positive is omitted.

8.3 Simultaneous Diagonalization

This section considers the simultaneous diagonalization of a pair of matrices $A, B \in \mathbf{H}^{n}$. There are two types of simultaneous diagonalization. Cogredient diagonalization involves a nonsingular matrix $S \in \mathbb{F}^{n \times n}$ such that $S A S^{*}$ and $S B S^{*}$ are both diagonal, whereas contragredient diagonalization involves finding a nonsingular matrix $S \in \mathbb{F}^{n \times n}$ such that $S A S^{*}$ and $S^{-*} B S^{-1}$ are both diagonal. Both types
of simultaneous transformation involve only congruence transformations. We begin by assuming that one of the matrices is positive definite, in which case the results are quite simple to prove. Our first result involves cogredient diagonalization.

Theorem 8.3.1. Let $A, B \in \mathbf{H}^{n}$, and assume that A is positive definite. Then, there exists a nonsingular matrix $S \in \mathbb{F}^{n \times n}$ such that $S A S^{*}=I$ and $S B S^{*}$ is diagonal.

Proof. Setting $S_{1}=A^{-1 / 2}$, it follows that $S_{1} A S_{1}^{*}=I$. Now, since $S_{1} B S_{1}^{*}$ is Hermitian, it follows from Corollary 5.4.5 that there exists a unitary matrix $S_{2} \in \mathbb{F}^{n \times n}$ such that $S B S^{*}=S_{2} S_{1} B S_{1}^{*} S_{2}^{*}$ is diagonal, where $S=S_{2} S_{1}$. Finally, $S A S^{*}=S_{2} S_{1} A S_{1}^{*} S_{2}^{*}=S_{2} I S_{2}^{*}=I$.

An analogous result holds for contragredient diagonalization.
Theorem 8.3.2. Let $A, B \in \mathbf{H}^{n}$, and assume that A is positive definite. Then, there exists a nonsingular matrix $S \in \mathbb{F}^{n \times n}$ such that $S A S^{*}=I$ and $S^{-*} B S^{-1}$ is diagonal.

Proof. Setting $S_{1}=A^{-1 / 2}$, it follows that $S_{1} A S_{1}^{*}=I$. Since $S_{1}^{-*} B S_{1}^{-1}$ is Hermitian, it follows that there exists a unitary matrix $S_{2} \in \mathbb{F}^{n \times n}$ such that $S^{-*} B S^{-1}=S_{2}^{-*} S_{1}^{-*} B S_{1}^{-1} S_{2}^{-1}=S_{2}\left(S_{1}^{-*} B S_{1}^{-1}\right) S_{2}^{*}$ is diagonal, where $S=S_{2} S_{1}$. Finally, $S A S^{*}=S_{2} S_{1} A S_{1}^{*} S_{2}^{*}=S_{2} I S_{2}^{*}=I$.

Corollary 8.3.3. Let $A, B \in \mathbf{P}^{n}$. Then, there exists a nonsingular matrix $S \in \mathbb{F}^{n \times n}$ such that $S A S^{*}$ and $S^{-*} B S^{-1}$ are equal and diagonal.

Proof. By Theorem 8.3.2 there exists a nonsingular matrix $S_{1} \in \mathbb{F}^{n \times n}$ such that $S_{1} A S_{1}^{*}=I$ and $B_{1}=S_{1}^{-*} B S_{1}^{-1}$ is diagonal. Defining $S \triangleq B_{1}^{1 / 4} S_{1}$ yields $S A S^{*}=S^{-*} B S^{-1}=B_{1}^{1 / 2}$.

The transformation S of Corollary 8.3.3 is a balancing transformation.
Next, we weaken the requirement in Theorem 8.3.1 and Theorem 8.3.2 that A be positive definite by assuming only that A is positive semidefinite. In this case, however, we assume that B is also positive semidefinite.

Theorem 8.3.4. Let $A, B \in \mathbf{N}^{n}$. Then, there exists a nonsingular matrix $S \in \mathbb{F}^{n \times n}$ such that $S A S^{*}=\left[\begin{array}{cc}I & 0 \\ 0 & 0\end{array}\right]$ and $S B S^{*}$ is diagonal.

Proof. Let the nonsingular matrix $S_{1} \in \mathbb{F}^{n \times n}$ be such that $S_{1} A S_{1}^{*}=\left[\begin{array}{cc}I & 0 \\ 0 & 0\end{array}\right]$, and similarly partition $S_{1} B S_{1}^{*}=\left[\begin{array}{ll}B_{11} & B_{12} \\ B_{12}^{*} & B_{22}\end{array}\right]$, which is positive semidefinite. Letting $S_{2} \triangleq\left[\begin{array}{cc}I & -B_{12} B_{22}^{+} \\ 0 & I\end{array}\right]$, it follows from Lemma 8.2.1 that

$$
S_{2} S_{1} B S_{1}^{*} S_{2}^{*}=\left[\begin{array}{cc}
B_{11}-B_{12} B_{22}^{+} B_{12}^{*} & 0 \\
0 & B_{22}
\end{array}\right]
$$

Next, let U_{1} and U_{2} be unitary matrices such that $U_{1}\left(B_{11}-B_{12} B_{22}^{+} B_{12}^{*}\right) U_{1}^{*}$ and
$U_{2} B_{22} U_{2}^{*}$ are diagonal. Then, defining $S_{3} \triangleq\left[\begin{array}{cc}U_{1} & 0 \\ 0 & U_{2}\end{array}\right]$ and $S \triangleq S_{3} S_{2} S_{1}$, it follows that $S A S^{*}=\left[\begin{array}{cc}I & 0 \\ 0 & 0\end{array}\right]$ and $S B S^{*}=S_{3} S_{2} S_{1} B S_{1}^{*} S_{2}^{*} S_{3}^{*}$ is diagonal.

Theorem 8.3.5. Let $A, B \in \mathbf{N}^{n}$. Then, there exists a nonsingular matrix $S \in \mathbb{F}^{n \times n}$ such that $S A S^{*}=\left[\begin{array}{ll}I & 0 \\ 0 & 0\end{array}\right]$ and $S^{-*} B S^{-1}$ is diagonal.

Proof. Let $S_{1} \in \mathbb{F}^{n \times n}$ be a nonsingular matrix such that $S_{1} A S_{1}^{*}=\left[\begin{array}{cc}I & 0 \\ 0 & 0\end{array}\right]$, and similarly partition $S_{1}^{-*} B S_{1}^{-1}=\left[\begin{array}{ll}B_{11} & B_{12} \\ B_{12}^{*} & B_{22}\end{array}\right]$, which is positive semidefinite. Letting $S_{2} \triangleq\left[\begin{array}{cc}I & B_{11}^{+} B_{12} \\ 0 & I\end{array}\right]$, it follows that

$$
S_{2}^{-*} S_{1}^{-*} B S_{1}^{-1} S_{2}^{-1}=\left[\begin{array}{cc}
B_{11} & 0 \\
0 & B_{22}-B_{12}^{*} B_{11}^{+} B_{12}
\end{array}\right]
$$

Now, let U_{1} and U_{2} be unitary matrices such that $U_{1} B_{11} U_{1}^{*}$ and $U_{2}\left(B_{22}-B_{12}^{*} B_{11}^{+} B_{12}\right) U_{2}^{*}$ are diagonal. Then, defining $S_{3} \triangleq\left[\begin{array}{cc}U_{1} & 0 \\ 0 & U_{2}\end{array}\right]$ and $S \triangleq$ $S_{3} S_{2} S_{1}$, it follows that $S A S^{*}=\left[\begin{array}{cc}I & 0 \\ 0 & 0\end{array}\right]$ and $S^{-*} B S^{-1}=S_{3}^{-*} S_{2}^{-*} S_{1}^{-*} B S_{1}^{-1} S_{2}^{-1} S_{3}^{-1}$ is diagonal.

Corollary 8.3.6. Let $A, B \in \mathbf{N}^{n}$. Then, $A B$ is semisimple, and every eigenvalue of $A B$ is nonnegative. If, in addition, A and B are positive definite, then every eigenvalue of $A B$ is positive.

Proof. It follows from Theorem 8.3.5 that there exists a nonsingular matrix $S \in \mathbb{R}^{n \times n}$ such that $A_{1}=S A S^{*}$ and $B_{1}=S^{-*} B S^{-1}$ are diagonal with nonnegative diagonal entries. Hence, $A B=S^{-1} A_{1} B_{1} S$ is semisimple and has nonnegative eigenvalues.

A more direct approach to showing that $A B$ has nonnegative eigenvalues is to use Corollary 4.4.11 and note that $\lambda_{i}(A B)=\lambda_{i}\left(B^{1 / 2} A B^{1 / 2}\right) \geq 0$.

Corollary 8.3.7. Let $A, B \in \mathbf{N}^{n}$, and assume that $\operatorname{rank} A=\operatorname{rank} B=$ $\operatorname{rank} A B$. Then, there exists a nonsingular matrix $S \in \mathbb{F}^{n \times n}$ such that $S A S^{*}=$ $S^{-*} B S^{-1}$ and such that $S A S^{*}$ is diagonal.

Proof. By Theorem 8.3.5 there exists a nonsingular matrix $S_{1} \in \mathbb{F}^{n \times n}$ such that $S_{1} A S_{1}^{*}=\left[\begin{array}{cc}I_{r} & 0 \\ 0 & 0\end{array}\right]$, where $r \triangleq \operatorname{rank} A$, and such that $B_{1}=S_{1}^{-*} B S_{1}^{-1}$ is diagonal. Hence, $A B=S_{1}^{-1}\left[\begin{array}{cc}I_{r} & 0 \\ 0 & 0\end{array}\right] B_{1} S_{1}$. Since rank $A=\operatorname{rank} B=\operatorname{rank} A B=r$, it follows that $B_{1}=\left[\begin{array}{cc}\hat{B}_{1} & 0 \\ 0 & 0\end{array}\right]$, where $\hat{B}_{1} \in \mathbb{F}^{r \times r}$ is positive diagonal. Hence, $S_{1}^{-*} B S_{1}^{-1}=\left[\begin{array}{cc}\hat{B}_{1} & 0 \\ 0 & 0\end{array}\right]$. Now, define $S_{2} \triangleq\left[\begin{array}{cc}\hat{B}_{1}^{1 / 4} & 0 \\ 0 & I\end{array}\right]$ and $S \triangleq S_{2} S_{1}$. Then, $S A S^{*}=S_{2} S_{1} A S_{1}^{*} S_{2}^{*}=\left[\begin{array}{cc}\hat{B}_{1}^{1 / 2} & 0 \\ 0 & 0\end{array}\right]=$ $S_{2}^{-*} S_{1}^{-*} B S_{1}^{-1} S_{2}^{-1}=S^{-*} B S^{-1}$.

8.4 Eigenvalue Inequalities

Next, we turn our attention to inequalities involving eigenvalues. We begin with a series of lemmas.

Lemma 8.4.1. Let $A \in \mathbf{H}^{n}$, and let $\beta \in \mathbb{R}$. Then, the following statements hold:
i) $\beta I \leq A$ if and only if $\beta \leq \lambda_{\min }(A)$.
ii) $\beta I<A$ if and only if $\beta<\lambda_{\min }(A)$.
iii) $A \leq \beta I$ if and only if $\lambda_{\max }(A) \leq \beta$.
iv) $A<\beta I$ if and only if $\lambda_{\max }(A)<\beta$.

Proof. To prove i, assume that $\beta I \leq A$, and let $S \in \mathbb{F}^{n \times n}$ be a unitary matrix such that $B=S A S^{*}$ is diagonal. Then, $\beta I \leq B$, which yields $\beta \leq \lambda_{\min }(B)=$ $\lambda_{\min }(A)$. Conversely, let $S \in \mathbb{F}^{n \times n}$ be a unitary matrix such that $B=S A S^{*}$ is diagonal. Since the diagonal entries of B are the eigenvalues of A, it follows that $\lambda_{\min }(A) I \leq B$, which implies that $\beta I \leq \lambda_{\min }(A) I \leq S^{*} B S=A$. Results $\left.i i\right)$, iii), and $i v)$ are proved in a similar manner.

Corollary 8.4.2. Let $A \in \mathbf{H}^{n}$. Then,

$$
\begin{equation*}
\lambda_{\min }(A) I \leq A \leq \lambda_{\max }(A) I \tag{8.4.1}
\end{equation*}
$$

Proof. The result follows from i) and $i i i$) of Lemma 8.4.1 with $\beta=\lambda_{\min }(A)$ and $\beta=\lambda_{\max }(A)$, respectively.

The following result concerns the maximum and minimum values of the Rayleigh quotient.

Lemma 8.4.3. Let $A \in \mathbf{H}^{n}$. Then,

$$
\begin{equation*}
\lambda_{\min }(A)=\min _{x \in \mathbb{F}^{n} \backslash\{0\}} \frac{x^{*} A x}{x^{*} x} \tag{8.4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda_{\max }(A)=\max _{x \in \mathbb{F}^{n} \backslash\{0\}} \frac{x^{*} A x}{x^{*} x} \tag{8.4.3}
\end{equation*}
$$

Proof. It follows from (8.4.1) that $\lambda_{\min }(A) \leq x^{*} A x / x^{*} x$ for all nonzero $x \in \mathbb{F}^{n}$. Letting $x \in \mathbb{F}^{n}$ be an eigenvector of A associated with $\lambda_{\min }(A)$, it follows that this lower bound is attained. This proves (8.4.2). An analogous argument yields (8.4.3).

The following result is the Cauchy interlacing theorem.
Lemma 8.4.4. Let $A \in \mathbf{H}^{n}$, and let A_{0} be an $(n-1) \times(n-1)$ principal submatrix of A. Then, for all $i=1, \ldots, n-1$,

$$
\begin{equation*}
\lambda_{i+1}(A) \leq \lambda_{i}\left(A_{0}\right) \leq \lambda_{i}(A) \tag{8.4.4}
\end{equation*}
$$

Proof. Note that (8.4.4) is the chain of inequalities

$$
\lambda_{n}(A) \leq \lambda_{n-1}\left(A_{0}\right) \leq \lambda_{n-1}(A) \leq \cdots \leq \lambda_{2}(A) \leq \lambda_{1}\left(A_{0}\right) \leq \lambda_{1}(A)
$$

Suppose that this chain of inequalities does not hold. In particular, first suppose that the rightmost inequality that is not true is $\lambda_{j}\left(A_{0}\right) \leq \lambda_{j}(A)$, so that $\lambda_{j}(A)<$
$\lambda_{j}\left(A_{0}\right)$. Choose δ such that $\lambda_{j}(A)<\delta<\lambda_{j}\left(A_{0}\right)$ and such that δ is not an eigenvalue of A_{0}. If $j=1$, then $A-\delta I$ is negative definite, while, if $j \geq 2$, then $\lambda_{j}(A)<\delta<$ $\lambda_{j}\left(A_{0}\right) \leq \lambda_{j-1}\left(A_{0}\right) \leq \lambda_{j-1}(A)$, so that $A-\delta I$ has $j-1$ positive eigenvalues. Thus, $\nu_{+}(A-\delta I)=j-1$. Furthermore, since $\delta<\lambda_{i}\left(A_{0}\right)$, it follows that $\nu_{+}\left(A_{0}-\delta I\right) \geq j$.

Now, assume for convenience that the rows and columns of A are ordered so that A_{0} is the $(n-1) \times(n-1)$ leading principal submatrix of A. Thus, $A=\left[\begin{array}{ll}A_{0} & \beta \\ \beta^{*} & \gamma\end{array}\right]$, where $\beta \in \mathbb{F}^{n-1}$ and $\gamma \in \mathbb{F}$. Next, note the identity

$$
\begin{aligned}
& A-\delta I \\
& =\left[\begin{array}{cc}
I & 0 \\
\beta^{*}\left(A_{0}-\delta I\right)^{-1} & 1
\end{array}\right]\left[\begin{array}{cc}
A_{0}-\delta I & 0 \\
0 & \gamma-\delta-\beta^{*}\left(A_{0}-\delta I\right)^{-1} \beta
\end{array}\right]\left[\begin{array}{cc}
I & \left(A_{0}-\delta I\right)^{-1} \beta \\
0 & 1
\end{array}\right],
\end{aligned}
$$

where $A_{0}-\delta I$ is nonsingular since δ is chosen to not be an eigenvalue of A_{0}. Since the right-hand side of this identity involves a congruence transformation, and since $\nu_{+}\left(A_{0}-\delta I\right) \geq j$, it follows from Corollary 5.4.7 that $\nu_{+}(A-\delta I) \geq j$. However, this inequality contradicts the fact that $\nu_{+}(A-\delta I)=j-1$.

Finally, suppose that the rightmost inequality in 8.4.4) that is not true is $\lambda_{j+1}(A) \leq \lambda_{j}\left(A_{0}\right)$, so that $\lambda_{j}\left(A_{0}\right)<\lambda_{j+1}(A)$. Choose δ such that $\lambda_{j}\left(A_{0}\right)<\delta<$ $\lambda_{j+1}(A)$ and such that δ is not an eigenvalue of A_{0}. Then, it follows that $\nu_{+}(A-$ $\delta I) \geq j+1$ and $\nu_{+}\left(A_{0}-\delta I\right)=j-1$. Using the congruence transformation as in the previous case, it follows that $\nu_{+}(A-\delta I) \leq j$, which contradicts the fact that $\nu_{+}(A-\delta I) \geq j+1$.

The following result is the inclusion principle.
Theorem 8.4.5. Let $A \in \mathbf{H}^{n}$, and let $A_{0} \in \mathbf{H}^{k}$ be a $k \times k$ principal submatrix of A. Then, for all $i=1, \ldots, k$,

$$
\begin{equation*}
\lambda_{i+n-k}(A) \leq \lambda_{i}\left(A_{0}\right) \leq \lambda_{i}(A) \tag{8.4.5}
\end{equation*}
$$

Proof. For $k=n-1$, the result is given by Lemma 8.4.4. Hence, let $k=n-2$, and let A_{1} denote an $(n-1) \times(n-1)$ principal submatrix of A such that the $(n-2) \times(n-2)$ principal submatrix A_{0} of A is also a principal submatrix of A_{1}. Therefore, Lemma 8.4.4 implies that $\lambda_{n}(A) \leq \lambda_{n-1}\left(A_{1}\right) \leq \cdots \leq \lambda_{2}\left(A_{1}\right) \leq$ $\lambda_{2}(A) \leq \lambda_{1}\left(A_{1}\right) \leq \lambda_{1}(A)$ and $\lambda_{n-1}\left(A_{1}\right) \leq \lambda_{n-2}\left(A_{0}\right) \leq \cdots \leq \lambda_{2}\left(A_{0}\right) \leq \lambda_{2}\left(A_{1}\right) \leq$ $\lambda_{1}\left(A_{0}\right) \leq \lambda_{1}\left(A_{1}\right)$. Combining these inequalities yields $\lambda_{i+2}(A) \leq \lambda_{i}\left(A_{0}\right) \leq \lambda_{i}(A)$ for all $i=1, \ldots, n-2$, while proceeding in a similar manner with $k<n-2$ yields (8.4.5).

Corollary 8.4.6. Let $A \in \mathbf{H}^{n}$, and let $A_{0} \in \mathbf{H}^{k}$ be a $k \times k$ principal submatrix of A. Then,

$$
\begin{equation*}
\lambda_{\min }(A) \leq \lambda_{\min }\left(A_{0}\right) \leq \lambda_{\max }\left(A_{0}\right) \leq \lambda_{\max }(A) \tag{8.4.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda_{\min }\left(A_{0}\right) \leq \lambda_{k}(A) \tag{8.4.7}
\end{equation*}
$$

The following result compares the maximum and minimum eigenvalues with the maximum and minimum diagonal entries.

Corollary 8.4.7. Let $A \in \mathbf{H}^{n}$. Then,

$$
\begin{equation*}
\lambda_{\min }(A) \leq \mathrm{d}_{\min }(A) \leq \mathrm{d}_{\max }(A) \leq \lambda_{\max }(A) \tag{8.4.8}
\end{equation*}
$$

Lemma 8.4.8. Let $A, B \in \mathbf{H}^{n}$, and assume that $A \leq B$ and $\operatorname{mspec}(A)=$ $\operatorname{mspec}(B)$. Then, $A=B$.

Proof. Let $\alpha \geq 0$ be such that $0<\hat{A} \leq \hat{B}$, where $\hat{A} \triangleq A+\alpha I$ and $\hat{B} \triangleq B+\alpha I$. Note that $\operatorname{mspec}(\hat{A})=\operatorname{mspec}(\hat{B})$, and thus $\operatorname{det} \hat{A}=\operatorname{det} \hat{B}$. Next, it follows that $I \leq \hat{A}^{-1 / 2} \hat{B} \hat{A}^{-1 / 2}$. Hence, it follows from i) of Lemma 8.4.1 that $\lambda_{\min }\left(\hat{A}^{-1 / 2} \hat{B} \hat{A}^{-1 / 2}\right) \geq 1$. Furthermore, $\operatorname{det}\left(\hat{A}^{-1 / 2} \hat{B} \hat{A}^{-1 / 2}\right)=\operatorname{det} \hat{B} / \operatorname{det} \hat{A}=1$, which implies that $\lambda_{i}\left(\hat{A}^{-1 / 2} \hat{B} \hat{A}^{-1 / 2}\right)=1$ for all $i=1, \ldots, n$. Hence, $\hat{A}^{-1 / 2} \hat{B} \hat{A}^{-1 / 2}=$ I, and thus $\hat{A}=\hat{B}$. Hence, $A=B$.

The following result is the monotonicity theorem or Weyl's inequality.
Theorem 8.4.9. Let $A, B \in \mathbf{H}^{n}$, and assume that $A \leq B$. Then, for all $i=1, \ldots, n$,

$$
\begin{equation*}
\lambda_{i}(A) \leq \lambda_{i}(B) \tag{8.4.9}
\end{equation*}
$$

If $A \neq B$, then there exists $i \in\{1, \ldots, n\}$ such that

$$
\begin{equation*}
\lambda_{i}(A)<\lambda_{i}(B) \tag{8.4.10}
\end{equation*}
$$

If $A<B$, then (8.4.10) holds for all $i=1, \ldots, n$.
Proof. Since $A \leq B$, it follows from Corollary 8.4 .2 that $\lambda_{\min }(A) I \leq A \leq$ $B \leq \lambda_{\max }(B) I$. Hence, it follows from $\left.i i i\right)$ and i) of Lemma 8.4.1 that $\lambda_{\min }(A) \leq$ $\lambda_{\min }(B)$ and $\lambda_{\max }(A) \leq \lambda_{\max }(B)$. Next, let $S \in \mathbb{F}^{n \times n}$ be a unitary matrix such that $S A S^{*}=\operatorname{diag}\left[\lambda_{1}(A), \ldots, \lambda_{n}(A)\right]$. Furthermore, for $2 \leq i \leq n-1$, let $A_{0}=$ $\operatorname{diag}\left[\lambda_{1}(A), \ldots, \lambda_{i}(A)\right]$, and let B_{0} denote the $i \times i$ leading principal submatrices of $S A S^{*}$ and $S B S^{*}$, respectively. Since $A \leq B$, it follows that $A_{0} \leq B_{0}$, which implies that $\lambda_{\min }\left(A_{0}\right) \leq \lambda_{\min }\left(B_{0}\right)$. It now follows from (8.4.7) that

$$
\lambda_{i}(A)=\lambda_{\min }\left(A_{0}\right) \leq \lambda_{\min }\left(B_{0}\right) \leq \lambda_{i}\left(S B S^{*}\right)=\lambda_{i}(B),
$$

which proves 8.4.9). If $A \neq B$, then it follows from Lemma 8.4.8 that $\operatorname{mspec}(A) \neq$ $\operatorname{mspec}(B)$ and thus there exists $i \in\{1, \ldots, n\}$ such that (8.4.10) holds. If $A<B$, then $\lambda_{\min }\left(A_{0}\right)<\lambda_{\min }\left(B_{0}\right)$, which implies that 8.4.10) holds for all $i=1, \ldots, n$.

Corollary 8.4.10. Let $A, B \in \mathbf{H}^{n}$. Then, the following statements hold:
i) If $A \leq B$, then $\operatorname{tr} A \leq \operatorname{tr} B$.
ii) If $A \leq B$ and $\operatorname{tr} A=\operatorname{tr} B$, then $A=B$.
iii) If $A<B$, then $\operatorname{tr} A<\operatorname{tr} B$.
iv) If $0 \leq A \leq B$, then $0 \leq \operatorname{det} A \leq \operatorname{det} B$.
v) If $0 \leq A<B$, then $0 \leq \operatorname{det} A<\operatorname{det} B$.
vi) If $0<A \leq B$ and $\operatorname{det} A=\operatorname{det} B$, then $A=B$.

Proof. Statements i, $i i i$), $i v$), and v) follow from Theorem 8.4.9. To prove ii), note that, since $A \leq B$ and $\operatorname{tr} A=\operatorname{tr} B$, it follows from Theorem 8.4 .9 that $\operatorname{mspec}(A)=\operatorname{mspec}(B)$. Now, Lemma 8.4.8 implies that $A=B$. A similar argument yields $v i$).

The following result, which is a generalization of Theorem 8.4.9, is due to Weyl.

Theorem 8.4.11. Let $A, B \in \mathbf{H}^{n}$. If $i+j \geq n+1$, then

$$
\begin{equation*}
\lambda_{i}(A)+\lambda_{j}(B) \leq \lambda_{i+j-n}(A+B) \tag{8.4.11}
\end{equation*}
$$

If $i+j \leq n+1$, then

$$
\begin{equation*}
\lambda_{i+j-1}(A+B) \leq \lambda_{i}(A)+\lambda_{j}(B) \tag{8.4.12}
\end{equation*}
$$

In particular, for all $i=1, \ldots, n$,

$$
\begin{array}{r}
\lambda_{i}(A)+\lambda_{\min }(B) \leq \lambda_{i}(A+B) \leq \lambda_{i}(A)+\lambda_{\max }(B), \\
\lambda_{\min }(A)+\lambda_{\min }(B) \leq \lambda_{\min }(A+B) \leq \lambda_{\min }(A)+\lambda_{\max }(B), \\
\lambda_{\max }(A)+\lambda_{\min }(B) \leq \lambda_{\max }(A+B) \leq \lambda_{\max }(A)+\lambda_{\max }(B) . \tag{8.4.15}
\end{array}
$$

Furthermore,

$$
\begin{equation*}
\nu_{-}(A+B) \leq \nu_{-}(A)+\nu_{-}(B) \tag{8.4.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\nu_{+}(A+B) \leq \nu_{+}(A)+\nu_{+}(B) . \tag{8.4.17}
\end{equation*}
$$

Proof. See [709, p. 182]. The last two inequalities are noted in 393].
Lemma 8.4.12. Let $A, B, C \in \mathbf{H}^{n}$. If $A \leq B$ and C is positive semidefinite, then

$$
\begin{equation*}
\operatorname{tr} A C \leq \operatorname{tr} B C \tag{8.4.18}
\end{equation*}
$$

If $A<B$ and C is positive definite, then

$$
\begin{equation*}
\operatorname{tr} A C<\operatorname{tr} B C \tag{8.4.19}
\end{equation*}
$$

Proof. Since $C^{1 / 2} A C^{1 / 2} \leq C^{1 / 2} B C^{1 / 2}$, it follows from i) of Corollary 8.4.10 that

$$
\operatorname{tr} A C=\operatorname{tr} C^{1 / 2} A C^{1 / 2} \leq \operatorname{tr} C^{1 / 2} B C^{1 / 2}=\operatorname{tr} B C
$$

Result (8.4.19) follows from $i i$) of Corollary 8.4.10 in a similar fashion.
Proposition 8.4.13. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that B is positive semidefinite. Then,

$$
\begin{equation*}
\frac{1}{2} \lambda_{\min }\left(A+A^{*}\right) \operatorname{tr} B \leq \operatorname{Re} \operatorname{tr} A B \leq \frac{1}{2} \lambda_{\max }\left(A+A^{*}\right) \operatorname{tr} B \tag{8.4.20}
\end{equation*}
$$

If, in addition, A is Hermitian, then

$$
\begin{equation*}
\lambda_{\min }(A) \operatorname{tr} B \leq \operatorname{tr} A B \leq \lambda_{\max }(A) \operatorname{tr} B \tag{8.4.21}
\end{equation*}
$$

Proof. It follows from Corollary 8.4 .2 that $\frac{1}{2} \lambda_{\min }\left(A+A^{*}\right) I \leq \frac{1}{2}\left(A+A^{*}\right)$, while Lemma 8.4.12 implies that $\frac{1}{2} \lambda_{\min }\left(A+A^{*}\right) \operatorname{tr} B=\operatorname{tr} \frac{1}{2} \lambda_{\min }\left(A+A^{*}\right) I B \leq \operatorname{tr} \frac{1}{2}(A+$ $\left.A^{*}\right) B=\operatorname{Re} \operatorname{tr} A B$, which proves the left-hand inequality of (8.4.20). Similarly, the right-hand inequality holds.

For results relating to Proposition 8.4.13, see Fact 5.12.4, Fact 5.12.5, Fact 5.12.8 and Fact 8.18.18,

Proposition 8.4.14. Let $A, B \in \mathbf{P}^{n}$, and assume that $\operatorname{det} B=1$. Then,

$$
\begin{equation*}
(\operatorname{det} A)^{1 / n} \leq \frac{1}{n} \operatorname{tr} A B \tag{8.4.22}
\end{equation*}
$$

Furthermore, equality holds if and only if $B=(\operatorname{det} A)^{1 / n} A^{-1}$.
Proof. Using the arithmetic-mean-geometric-mean inequality given by Fact 1.15.14, it follows that

$$
\begin{aligned}
(\operatorname{det} A)^{1 / n} & =\left(\operatorname{det} B^{1 / 2} A B^{1 / 2}\right)^{1 / n}=\left[\prod_{i=1}^{n} \lambda_{i}\left(B^{1 / 2} A B^{1 / 2}\right)\right]^{1 / n} \\
& \leq \frac{1}{n} \sum_{i=1}^{n} \lambda_{i}\left(B^{1 / 2} A B^{1 / 2}\right)=\frac{1}{n} \operatorname{tr} A B
\end{aligned}
$$

Equality holds if and only if there exists $\beta>0$ such that $B^{1 / 2} A B^{1 / 2}=\beta I$. In this case, $\beta=(\operatorname{det} A)^{1 / n}$ and $B=(\operatorname{det} A)^{1 / n} A^{-1}$.

The following corollary of Proposition 8.4.14 is Minkowski's determinant theorem.

Corollary 8.4.15. Let $A, B \in \mathbf{N}^{n}$, and let $p \in[1, n]$. Then,

$$
\begin{align*}
\operatorname{det} A+\operatorname{det} B & \leq\left[(\operatorname{det} A)^{1 / p}+(\operatorname{det} B)^{1 / p}\right]^{p} \tag{8.4.23}\\
& \leq\left[(\operatorname{det} A)^{1 / n}+(\operatorname{det} B)^{1 / n}\right]^{n} \tag{8.4.24}\\
& \leq \operatorname{det}(A+B) . \tag{8.4.25}
\end{align*}
$$

Furthermore, the following statements hold:
i) If $A=0$ or $B=0$ or $\operatorname{det}(A+B)=0$, then (8.4.23) -8.4.25) are identities.
ii) If there exists $\alpha \geq 0$ such that $B=\alpha A$, then (8.4.25) is an identity.
iii) If $A+B$ is positive definite and (8.4.25) holds as an identity, then there exists $\alpha \geq 0$ such that either $B=\alpha A$ or $A=\alpha B$.
iv) If $n \geq 2, p>1, A$ is positive definite, and (8.4.23) holds as an identity, then $\operatorname{det} B=0$.
v) If $n \geq 2, p<n, A$ is positive definite, and 8.4.24) holds as an identity, then $\operatorname{det} B=0$.
vi) If $n \geq 2, A$ is positive definite, and $\operatorname{det} A+\operatorname{det} B=\operatorname{det}(A+B)$, then $B=0$.

Proof. Inequalities (8.4.23) and (8.4.24) are consequences of the power-sum inequality Fact 1.15.34. Now, assume that $A+B$ is positive definite, since otherwise (8.4.23)-(8.4.25) are identities. To prove (8.4.25), Proposition 8.4.14 implies that

$$
\begin{aligned}
(\operatorname{det} A)^{1 / n}+(\operatorname{det} B)^{1 / n} \leq & \frac{1}{n} \operatorname{tr}\left[A[\operatorname{det}(A+B)]^{1 / n}(A+B)^{-1}\right] \\
& +\frac{1}{n} \operatorname{tr}\left[B[\operatorname{det}(A+B)]^{1 / n}(A+B)^{-1}\right] \\
= & {[\operatorname{det}(A+B)]^{1 / n} }
\end{aligned}
$$

Statements i) and $i i$) are immediate. To prove $i i i$, suppose that $A+B$ is positive definite and that (8.4.25) holds as an identity. Then, either A or B is positive definite. Hence, suppose that A is positive definite. Multiplying the identity $(\operatorname{det} A)^{1 / n}+(\operatorname{det} B)^{1 / n}=[\operatorname{det}(A+B)]^{1 / n}$ by $(\operatorname{det} A)^{-1 / n}$ yields

$$
1+\left(\operatorname{det} A^{-1 / 2} B A^{-1 / 2}\right)^{1 / n}=\left[\operatorname{det}\left(I+A^{-1 / 2} B A^{-1 / 2}\right)\right]^{1 / n}
$$

Letting $\lambda_{1}, \ldots, \lambda_{n}$ denote the eigenvalues of $A^{-1 / 2} B A^{-1 / 2}$, it follows that $1+\left(\lambda_{1} \cdots \lambda_{n}\right)^{1 / n}=\left[\left(1+\lambda_{1}\right) \cdots\left(1+\lambda_{n}\right)\right]^{1 / n}$. It now follows from Fact 1.15 .33 that $\lambda_{1}=\cdots=\lambda_{n}$.

To prove $i v$), note that, since $1 / p<1$, $\operatorname{det} A>0$, and identity holds in (8.4.23), it follows from Fact 1.15.34 that $\operatorname{det} B=0$.

To prove v), note that, since $1 / n<1 / p$, $\operatorname{det} A>0$, and identity holds in (8.4.24), it follows from Fact 1.15 .34 that $\operatorname{det} B=0$.

To prove $v i$), note that (8.4.23) and (8.4.24) hold as identities for all $p \in[1, n]$. Therefore, $\operatorname{det} B=0$. Consequently, $\operatorname{det} A=\operatorname{det}(A+B)$. Since $0<A \leq A+B$, it follows from $v i$) of Corollary 8.4.10 that $B=0$.

8.5 Exponential, Square Root, and Logarithm of Hermitian Matrices

Let $A=S B S^{*} \in \mathbb{F}^{n \times n}$ be Hermitian, where $S \in \mathbb{F}^{n \times n}$ is unitary, $B \in \mathbb{R}^{n \times n}$ is diagonal, $\operatorname{spec}(A) \subset \mathcal{D}$, and $\mathcal{D} \subseteq \mathbb{R}$. Furthermore, let $f: \mathcal{D} \mapsto \mathbb{R}$. Then, we define $f(A) \in \mathbf{H}^{n}$ by

$$
\begin{equation*}
f(A) \triangleq S f(B) S^{*} \tag{8.5.1}
\end{equation*}
$$

where $[f(B)]_{(i, i)} \triangleq f\left[B_{(i, i)}\right]$. Hence, with an obvious extension of notation, $f:\{X \in$ $\left.\mathbf{H}^{n}: \operatorname{spec}(X) \subset \mathcal{D}\right\} \mapsto \mathbf{H}^{n}$. If $f: \mathcal{D} \mapsto \mathbb{R}$ is one-to-one, then its inverse $f^{-1}:\{X \in$ $\left.\mathbf{H}^{n}: \operatorname{spec}(X) \subset f(\mathcal{D})\right\} \mapsto \mathbf{H}^{n}$ exists.

Let $A=S B S^{*} \in \mathbb{F}^{n \times n}$ be Hermitian, where $S \in \mathbb{F}^{n \times n}$ is unitary and $B \in$ $\mathbb{R}^{n \times n}$ is diagonal. Then, the matrix exponential is defined by

$$
\begin{equation*}
e^{A} \triangleq S e^{B} S^{*} \in \mathbf{H}^{n} \tag{8.5.2}
\end{equation*}
$$

where, for all $i=1, \ldots, n,\left(e^{B}\right)_{(i, i)} \triangleq e^{B_{(i, i)}}$.

Let $A=S B S^{*} \in \mathbb{F}^{n \times n}$ be positive semidefinite, where $S \in \mathbb{F}^{n \times n}$ is unitary and $B \in \mathbb{R}^{n \times n}$ is diagonal with nonnegative entries. Then, for all $r \geq 0$ (not necessarily an integer), $A^{r}=S B^{r} S^{*}$ is positive semidefinite, where, for all $i=1, \ldots, n$, $\left(B^{r}\right)_{(i, i)}=\left[B_{(i, i)}\right]^{r}$. Note that $A^{0} \triangleq I$. In particular, the positive-semidefinite matrix

$$
\begin{equation*}
A^{1 / 2}=S B^{1 / 2} S^{*} \tag{8.5.3}
\end{equation*}
$$

is a square root of A since

$$
\begin{equation*}
A^{1 / 2} A^{1 / 2}=S B^{1 / 2} S^{*} S B^{1 / 2} S^{*}=S B S^{*}=A \tag{8.5.4}
\end{equation*}
$$

The uniqueness of the positive-semidefinite square root of A given by (8.5.3) follows from Theorem 10.6.1, see also [711, p. 410] or [877]. Uniqueness can also be shown directly; see [447, pp. 265, 266] or [709, p. 405]. Hence, if $C \in \mathbb{F}^{n \times m}$, then $C^{*} C$ is positive semidefinite, and we define

$$
\begin{equation*}
\langle C\rangle \triangleq\left(C^{*} C\right)^{1 / 2} \tag{8.5.5}
\end{equation*}
$$

If A is positive definite, then A^{r} is positive definite for all $r \in \mathbb{R}$, and, if $r \neq 0$, then $\left(A^{r}\right)^{1 / r}=A$.

Now, assume that A is positive definite. Then, the matrix logarithm is defined by

$$
\begin{equation*}
\log A \triangleq S(\log B) S^{*} \in \mathbf{H}^{n} \tag{8.5.6}
\end{equation*}
$$

where, for all $i=1, \ldots, n,(\log B)_{(i, i)} \triangleq \log \left[B_{(i, i)}\right]$.
In chapters 10 and 11, the matrix exponential, square root, and logarithm are extended to matrices that are not necessarily Hermitian.

8.6 Matrix Inequalities

Lemma 8.6.1. Let $A, B \in \mathbb{F}^{n}$, assume that A and B are Hermitian, and assume that $0 \leq A \leq B$. Then, $\mathcal{R}(A) \subseteq \mathcal{R}(B)$.

Proof. Let $x \in \mathcal{N}(B)$. Then, $x^{*} B x=0$, and thus $x^{*} A x=0$, which implies that $A x=0$. Hence, $\mathcal{N}(B) \subseteq \mathcal{N}(A)$, and thus $\mathcal{N}(A)^{\perp} \subseteq \mathcal{N}(B)^{\perp}$. Since A and B are Hermitian, it follows from Theorem 2.4.3 that $\mathcal{R}(A)=\mathcal{N}(A)^{\perp}$ and $\mathcal{R}(B)=\mathcal{N}(B)^{\perp}$. Hence, $\mathcal{R}(A) \subseteq \mathcal{R}(B)$.

The following result is the Douglas-Fillmore-Williams lemma 427, 490.
Theorem 8.6.2. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{n \times l}$. Then, the following statements are equivalent:
i) There exists a matrix $C \in \mathbb{F}^{l \times m}$ such that $A=B C$.
ii) There exists $\alpha>0$ such that $A A^{*} \leq \alpha B B^{*}$.
iii) $\mathcal{R}(A) \subseteq \mathcal{R}(B)$.

Proof. First we prove that i) implies $i i$). Since $A=B C$, it follows that $A A^{*}=B C C^{*} B^{*}$. Since $C C^{*} \leq \lambda_{\max }\left(C C^{*}\right) I$, it follows that $A A^{*} \leq \alpha B B^{*}$, where $\alpha \triangleq \lambda_{\max }\left(C C^{*}\right)$. To prove that $\left.i i\right)$ implies $\left.i i i\right)$, first note that Lemma 8.6.1 implies that $\mathcal{R}\left(A A^{*}\right) \subseteq \mathcal{R}\left(\alpha B B^{*}\right)=\mathcal{R}\left(B B^{*}\right)$. Since, by Theorem[2.4.3, $\mathcal{R}\left(A A^{*}\right)=\mathcal{R}(A)$ and $\mathcal{R}\left(B B^{*}\right)=\mathcal{R}(B)$, it follows that $\mathcal{R}(A) \subseteq \mathcal{R}(B)$. Finally, to prove that iii) implies i, use Theorem 5.6.4 to write $B=S_{1}\left[\begin{array}{cc}D & 0 \\ 0 & 0\end{array}\right] S_{2}$, where $S_{1} \in \mathbb{F}^{n \times n}$ and $S_{2} \in \mathbb{F}^{l \times l}$ are unitary and $D \in \mathbb{R}^{r \times r}$ is diagonal with positive diagonal entries, where $r \triangleq \operatorname{rank} B$. Since $\mathcal{R}\left(S_{1}^{*} A\right) \subseteq \mathcal{R}\left(S_{1}^{*} B\right)$ and $S_{1}^{*} B=\left[\begin{array}{cc}D & 0 \\ 0 & 0\end{array}\right] S_{2}$, it follows that $S_{1}^{*} A=\left[\begin{array}{c}A_{1} \\ 0\end{array}\right]$, where $A_{1} \in \mathbb{F}^{r \times m}$. Consequently,

$$
A=S_{1}\left[\begin{array}{c}
A_{1} \\
0
\end{array}\right]=S_{1}\left[\begin{array}{cc}
D & 0 \\
0 & 0
\end{array}\right] S_{2} S_{2}^{*}\left[\begin{array}{cc}
D^{-1} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{c}
A_{1} \\
0
\end{array}\right]=B C
$$

where $C \triangleq S_{2}^{*}\left[\begin{array}{cc}D_{0}^{-1} & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{c}A_{1} \\ 0\end{array}\right] \in \mathbb{F}^{l \times m}$.
Proposition 8.6.3. Let $\left(A_{i}\right)_{i=1}^{\infty} \subset \mathbf{N}^{n}$ satisfy $0 \leq A_{i} \leq A_{j}$ for all $i \leq j$, and assume there exists $B \in \mathbf{N}^{n}$ satisfying $A_{i} \leq B$ for all $i \in \mathbb{P}$. Then, $A \triangleq \lim _{i \rightarrow \infty} A_{i}$ exists and satisfies $0 \leq A \leq B$.

Proof. Let $k \in\{1, \ldots, n\}$. Then, the sequence $\left(A_{i(k, k)}\right)_{i=1}^{\infty}$ is nondecreasing and bounded from above. Hence, $A_{(k, k)} \triangleq \lim _{i \rightarrow \infty} A_{i(k, k)}$ exists. Now, let $k, l \in\{1, \ldots, n\}$, where $k \neq l$. Since $A_{i} \leq A_{j}$ for all $i<j$, it follows that $\left(e_{k}+e_{l}\right)^{*} A_{i}\left(e_{k}+e_{l}\right) \leq\left(e_{k}+e_{l}\right)^{*} A_{j}\left(e_{k}+e_{l}\right)$, which implies that $A_{i(k, l)}-A_{j(k, l)} \leq$ $\frac{1}{2}\left[A_{j(k, k)}-A_{i(k, k)}+A_{j(l, l)}-A_{i(l, l)}\right]$. Alternatively, replacing $e_{k}+e_{l}$ by $e_{k}-e_{l}$ yields $A_{j(k, l)}-A_{i(k, l)} \leq \frac{1}{2}\left[A_{j(k, k)}-A_{i(k, k)}+A_{j(l, l)}-A_{i(l, l)}\right]$. Thus, $A_{i(k, l)}-A_{j(k, l)} \rightarrow 0$ as $i, j \rightarrow \infty$, which implies that $A_{(k, l)} \triangleq \lim _{i \rightarrow \infty} A_{i(k, l)}$ exists. Hence, $A \triangleq \lim _{i \rightarrow \infty} A_{i}$ exists. Since $A_{i} \leq B$ for all $i=1,2, \ldots$, it follows that $A \leq B$.

Proposition 8.6.4. Let $A \in \mathbb{F}^{n \times n}$, assume that A is positive definite, and let $p>0$. Then,

$$
\begin{equation*}
A^{-1}(A-I) \leq \log A \leq p^{-1}\left(A^{p}-I\right) \tag{8.6.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\log A=\lim _{p \downarrow 0} p^{-1}\left(A^{p}-I\right) \tag{8.6.2}
\end{equation*}
$$

Proof. The result follows from Fact 1.9.26,
Lemma 8.6.5. Let $A \in \mathbf{P}^{n}$. If $A \leq I$, then $I \leq A^{-1}$. Furthermore, if $A<I$, then $I<A^{-1}$.

Proof. Since $A \leq I$, it follows from $x i$) of Proposition 8.1.2 that $I=$ $A^{-1 / 2} A A^{-1 / 2} \leq A^{-1 / 2} I A^{-1 / 2}=A^{-1}$. Similarly, $A<I$ implies that $I=A^{-1 / 2} A A^{-1 / 2}$ $<A^{-1 / 2} I A^{-1 / 2}=A^{-1}$.

Proposition 8.6.6. Let $A, B \in \mathbf{H}^{n}$, and assume that either A and B are positive definite or A and B are negative definite. If $A \leq B$, then $B^{-1} \leq A^{-1}$. If, in addition, $A<B$, then $B^{-1}<A^{-1}$.

Proof. Suppose that A and B are positive definite. Since $A \leq B$, it follows that $B^{-1 / 2} A B^{-1 / 2} \leq I$. Now, Lemma 8.6 .5 implies that $I \leq B^{1 / 2} A^{-1} B^{1 / 2}$, which implies that $B^{-1} \leq A^{-1}$. If A and B are negative definite, then $A \leq B$ is equivalent to $-B \leq-A$. The case $A<B$ is proved in a similar manner.

The following result is the Furuta inequality.
Proposition 8.6.7. Let $A, B \in \mathbf{N}^{n}$, and assume that $0 \leq A \leq B$. Furthermore, let $p, q, r \in \mathbb{R}$ satisfy $p \geq 0, q \geq 1, r \geq 0$, and $p+2 r \leq(1+2 r) q$. Then,

$$
\begin{equation*}
A^{(p+2 r) / q} \leq\left(A^{r} B^{p} A^{r}\right)^{1 / q} \tag{8.6.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(B^{r} A^{p} B^{r}\right)^{1 / q} \leq B^{(p+2 r) / q} . \tag{8.6.4}
\end{equation*}
$$

Proof. See [522] or [530, pp. 129, 130].
Corollary 8.6.8. Let $A, B \in \mathbf{N}^{n}$, and assume that $0 \leq A \leq B$. Then,

$$
\begin{equation*}
A^{2} \leq\left(A B^{2} A\right)^{1 / 2} \tag{8.6.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(B A^{2} B\right)^{1 / 2} \leq B^{2} \tag{8.6.6}
\end{equation*}
$$

Proof. In Proposition 8.6.7 set $r=1, p=2$, and $q=2$.
Corollary 8.6.9. Let $A, B, C \in \mathbf{N}^{n}$, and assume that $0 \leq A \leq C \leq B$. Then,

$$
\begin{equation*}
\left(C A^{2} C\right)^{1 / 2} \leq C^{2} \leq\left(C B^{2} C\right)^{1 / 2} \tag{8.6.7}
\end{equation*}
$$

Proof. The result follows from Corollary 8.6.8. See also 1395.
The following result provides representations for A^{r}, where $r \in(0,1)$.
Proposition 8.6.10. Let $A \in \mathbf{P}^{n}$ and $r \in(0,1)$. Then,

$$
\begin{equation*}
A^{r}=\left(\cos \frac{r \pi}{2}\right) I+\frac{\sin r \pi}{\pi} \int_{0}^{\infty}\left[\frac{x^{r+1}}{1+x^{2}} I-(A+x I)^{-1} x^{r}\right] \mathrm{d} x \tag{8.6.8}
\end{equation*}
$$

and

$$
\begin{equation*}
A^{r}=\frac{\sin r \pi}{\pi} \int_{0}^{\infty}(A+x I)^{-1} A x^{r-1} \mathrm{~d} x \tag{8.6.9}
\end{equation*}
$$

Proof. Let $t \geq 0$. As shown in [193, [197, p. 143],

$$
\int_{0}^{\infty}\left[\frac{x^{r+1}}{1+x^{2}}-\frac{x^{r}}{t+x}\right] \mathrm{d} x=\frac{\pi}{\sin r \pi}\left(t^{r}-\cos \frac{r \pi}{2}\right)
$$

Solving for t^{r} and replacing t by A yields (8.6.8). Likewise, replacing t by A in xxxii) of Fact 1.19.1 yields (8.6.9).

The following result is the Löwner-Heinz inequality.
Corollary 8.6.11. Let $A, B \in \mathbf{N}^{n}$, assume that $0 \leq A \leq B$, and let $r \in[0,1]$. Then, $A^{r} \leq B^{r}$. If, in addition, $A<B$ and $r \in(0,1]$, then $A^{r}<B^{r}$.

Proof. Let $0<A \leq B$, and let $r \in(0,1)$. In Proposition 8.6.7 replace p, q, r with $r, 1,0$. The first result now follows from (8.6.3). Alternatively, it follows from (8.6.8) of Proposition 8.6.10 that

$$
B^{r}-A^{r}=\frac{\sin r \pi}{\pi} \int_{0}^{\infty}\left[(A+x I)^{-1}-(B+x I)^{-1}\right] x^{r} \mathrm{~d} x
$$

Since $A \leq B$, it follows from Proposition 8.6.6 that, for all $x \geq 0,(B+x I)^{-1} \leq$ $(A+x I)^{-1}$. Hence, $A^{r} \leq B^{r}$. By continuity, the result holds for $A, B \in \mathbf{N}^{n}$ and $r \in[0,1]$. In the case $A<B$, it follows from Proposition 8.6.6 that, for all $x \geq 0$, $(B+x I)^{-1}<(A+x I)^{-1}$, so that $A^{r}<B^{r}$.

Alternatively, it follows from (8.6.9) of Proposition 8.6.10 that

$$
B^{r}-A^{r}=\frac{\sin r \pi}{\pi} \int_{0}^{\infty}\left[(A+x I)^{-1} A-(B+x I)^{-1} B\right] x^{r-1} \mathrm{~d} x
$$

Since $A \leq B$, it follows that, for all $x \geq 0,(B+x I)^{-1} B \leq(A+x I)^{-1} A$. Hence, $A^{r} \leq B^{r}$. Alternative proofs are given in [530, p. 127] and [1485, p. 2].

For the case $r=1 / 2$, let $\lambda \in \mathbb{R}$ be an eigenvalue of $B^{1 / 2}-A^{1 / 2}$, and let $x \in \mathbb{F}^{n}$ be an associated eigenvector. Then,

$$
\begin{aligned}
\lambda x^{*}\left(B^{1 / 2}+A^{1 / 2}\right) x & =x^{*}\left(B^{1 / 2}+A^{1 / 2}\right)\left(B^{1 / 2}-A^{1 / 2}\right) x \\
& =x^{*}\left(B-B^{1 / 2} A^{1 / 2}+A^{1 / 2} B^{1 / 2}-A\right) \\
& =x^{*}(B-A) x \geq 0
\end{aligned}
$$

Since $B^{1 / 2}+A^{1 / 2}$ is positive semidefinite, it follows that either $\lambda \geq 0$ or $x^{*}\left(B^{1 / 2}+A^{1 / 2}\right) x=0$. In the latter case, $B^{1 / 2} x=A^{1 / 2} x=0$, which implies that $\lambda=0$.

The Löwner-Heinz inequality does not extend to $r>1$. In fact, $A \triangleq\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]$ and $B \triangleq\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ satisfy $A \geq B \geq 0$, whereas, for all $r>1, A^{r} \nsupseteq B^{r}$. For details, see 530 , pp. 127, 128].

Many of the results given so far involve functions that are nondecreasing or increasing on suitable sets of matrices.

Definition 8.6.12. Let $\mathcal{D} \subseteq \mathbf{H}^{n}$, and let $\phi: \mathcal{D} \mapsto \mathbf{H}^{m}$. Then, the following terminology is defined:
i) ϕ is nondecreasing if, for all $A, B \in \mathcal{D}$ such that $A \leq B$, it follows that $\phi(A) \leq \phi(B)$.
ii) ϕ is increasing if ϕ is nondecreasing and, for all $A, B \in \mathcal{D}$ such that $A<B$, it follows that $\phi(A)<\phi(B)$.
iii) ϕ is strongly increasing if ϕ is nondecreasing and, for all $A, B \in \mathcal{D}$ such that $A \leq B$ and $A \neq B$, it follows that $\phi(A)<\phi(B)$.
iv) ϕ is (nonincreasing, decreasing, strongly decreasing) if $-\phi$ is (nondecreasing, increasing, strongly increasing).

Proposition 8.6.13. The following functions are nondecreasing:
i) $\phi: \mathbf{H}^{n} \mapsto \mathbf{H}^{m}$ defined by $\phi(A) \triangleq B A B^{*}$, where $B \in \mathbb{F}^{m \times n}$.
ii) $\phi: \mathbf{H}^{n} \mapsto \mathbb{R}$ defined by $\phi(A) \triangleq \operatorname{tr} A B$, where $B \in \mathbf{N}^{n}$.
iii) $\phi: \quad \mathbf{N}^{n+m} \mapsto \mathbf{N}^{n}$ defined by $\phi(A) \triangleq A_{22} \mid A$, where $A \triangleq\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{12}^{*} & A_{22}\end{array}\right]$.
iv) $\phi: \quad \mathbf{N}^{n} \times \mathbf{N}^{m} \mapsto \mathbf{N}^{n m}$ defined by $\phi(A, B) \triangleq A^{r_{1}} \otimes B^{r_{2}}$, where $r_{1}, r_{2} \in[0,1]$ satisfy $r_{1}+r_{2} \leq 1$.
v) $\phi: \mathbf{N}^{n} \times \mathbf{N}^{n} \mapsto \mathbf{N}^{n}$ defined by $\phi(A, B) \triangleq A^{r_{1}} \circ B^{r_{2}}$, where $r_{1}, r_{2} \in[0,1]$ satisfy $r_{1}+r_{2} \leq 1$.
The following functions are increasing:
vi) $\phi: \mathbf{H}^{n} \mapsto \mathbb{R}$ defined by $\phi(A) \triangleq \lambda_{i}(A)$, where $i \in\{1, \ldots, n\}$.
vii) $\phi: \quad \mathbf{N}^{n} \mapsto \mathbf{N}^{n}$ defined by $\phi(A) \triangleq A^{r}$, where $r \in[0,1]$.
viii) $\phi: \quad \mathbf{N}^{n} \mapsto \mathbf{N}^{n}$ defined by $\phi(A) \triangleq A^{1 / 2}$.
ix) $\phi: \mathbf{P}^{n} \mapsto-\mathbf{P}^{n}$ defined by $\phi(A) \triangleq-A^{-r}$, where $r \in[0,1]$.
x) $\phi: \quad \mathbf{P}^{n} \mapsto-\mathbf{P}^{n}$ defined by $\phi(A) \triangleq-A^{-1}$.
xi) ϕ : $\mathbf{P}^{n} \mapsto-\mathbf{P}^{n}$ defined by $\phi(A) \triangleq-A^{-1 / 2}$.
xii) $\phi: \quad-\mathbf{P}^{n} \mapsto \mathbf{P}^{n}$ defined by $\phi(A) \triangleq(-A)^{-r}$, where $r \in[0,1]$.
xiii) $\phi: \quad-\mathbf{P}^{n} \mapsto \mathbf{P}^{n}$ defined by $\phi(A) \triangleq-A^{-1}$.
xiv) $\phi: \quad-\mathbf{P}^{n} \mapsto \mathbf{P}^{n}$ defined by $\phi(A) \triangleq-A^{-1 / 2}$.
$x v) \phi: \mathbf{H}^{n} \mapsto \mathbf{H}^{m}$ defined by $\phi(A) \triangleq B A B^{*}$, where $B \in \mathbb{F}^{m \times n}$ and $\operatorname{rank} B=$ m.
xvi) $\phi: \quad \mathbf{P}^{n+m} \mapsto \mathbf{P}^{n}$ defined by $\phi(A) \triangleq A_{22} \mid A$, where $A \triangleq\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{12}^{*} & A_{22}\end{array}\right]$.
xvii) $\phi: \quad \mathbf{P}^{n+m} \mapsto \mathbf{P}^{n}$ defined by $\phi(A) \triangleq-\left(A_{22} \mid A\right)^{-1}$, where $A \triangleq\left[\begin{array}{ccc}A_{11} & A_{12} \\ A_{12}^{*} & A_{22}\end{array}\right]$.
xviii) $\phi: \mathbf{P}^{n} \mapsto \mathbf{H}^{n}$ defined by $\phi(A) \triangleq \log A$.

The following functions are strongly increasing:
xix) $\phi: \quad \mathbf{H}^{n} \mapsto[0, \infty)$ defined by $\phi(A) \triangleq \operatorname{tr} B A B^{*}$, where $B \in \mathbb{F}^{m \times n}$ and $\operatorname{rank} B=m$.
xx) $\phi: \quad \mathbf{H}^{n} \mapsto \mathbb{R}$ defined by $\phi(A) \triangleq \operatorname{tr} A B$, where $B \in \mathbf{P}^{n}$.
xxi) $\phi: \mathbf{N}^{n} \mapsto[0, \infty)$ defined by $\phi(A) \triangleq \operatorname{tr} A^{r}$, where $r>0$.
xxii) $\phi: \quad \mathbf{N}^{n} \mapsto[0, \infty)$ defined by $\phi(A) \triangleq \operatorname{det} A$.

Proof. For the proof of $i i i$), see 896 . To prove xviii), let $A, B \in \mathbf{P}^{n}$, and assume that $A \leq B$. Then, for all $r \in[0,1]$, it follows from vii) that $r^{-1}\left(A^{r}-I\right) \leq$ $r^{-1}\left(B^{r}-I\right)$. Letting $r \downarrow 0$ and using Proposition 8.6 .4 yields $\log A \leq \log B$, which proves that log is nondecreasing. See [530, p. 139] and Fact 8.19.2, To prove that \log is increasing, assume that $A<B$, and let $\varepsilon>0$ be such that $A+\varepsilon I<B$. Then, it follows that $\log A<\log (A+\varepsilon I) \leq \log B$.

Finally, we consider convex functions defined with respect to matrix inequalities. The following definition generalizes Definition 1.2.3 in the case $n=m=p=1$.

Definition 8.6.14. Let $\mathcal{D} \subseteq \mathbb{F}^{n \times m}$ be a convex set, and let $\phi: \mathcal{D} \mapsto \mathbf{H}^{p}$. Then, the following terminology is defined:
i) ϕ is convex if, for all $\alpha \in[0,1]$ and $A_{1}, A_{2} \in \mathcal{D}$,

$$
\begin{equation*}
\phi\left[\alpha A_{1}+(1-\alpha) A_{2}\right] \leq \alpha \phi\left(A_{1}\right)+(1-\alpha) \phi\left(A_{2}\right) \tag{8.6.10}
\end{equation*}
$$

ii) ϕ is concave if $-\phi$ is convex.
iii) ϕ is strictly convex if, for all $\alpha \in(0,1)$ and distinct $A_{1}, A_{2} \in \mathcal{D}$,

$$
\begin{equation*}
\phi\left[\alpha A_{1}+(1-\alpha) A_{2}\right]<\alpha \phi\left(A_{1}\right)+(1-\alpha) \phi\left(A_{2}\right) \tag{8.6.11}
\end{equation*}
$$

iv) ϕ is strictly concave if $-\phi$ is strictly convex.

Theorem 8.6.15. Let $\mathcal{S} \subseteq \mathbb{R}$, let $\phi: \mathcal{S}_{1} \mapsto \mathcal{S}_{2}$, and assume that ϕ is continuous. Then, the following statements hold:
i) Assume that $\mathcal{S}_{1}=\mathcal{S}_{2}=(0, \infty)$ and $\phi: \mathbf{P}^{n} \mapsto \mathbf{P}^{n}$ is increasing. Then, $\psi: \mathbf{P}^{n} \mapsto \mathbf{P}^{n}$ defined by $\psi(x)=1 / \phi(x)$ is convex.
ii) Assume that $\mathcal{S}_{1}=\mathcal{S}_{2}=[0, \infty)$. Then, $\phi: \mathbf{N}^{n} \mapsto \mathbf{N}^{n}$ is increasing if and only if $\phi: \mathbf{N}^{n} \mapsto \mathbf{N}^{n}$ is concave.
iii) Assume that $\mathcal{S}_{1}=[0, \infty)$ and $\mathcal{S}_{2}=\mathbb{R}$. Then, $\phi: \mathbf{N}^{n} \mapsto \mathbf{H}^{n}$ is convex and $\phi(0) \leq 0$ if and only if $\psi: \mathbf{P}^{n} \mapsto \mathbf{H}^{n}$ defined by $\psi(x)=\phi(x) / x$ is increasing.

Proof. See [197, pp. 120-122].
Lemma 8.6.16. Let $\mathcal{D} \subseteq \mathbb{F}^{n \times m}$ and $\mathcal{S} \subseteq \mathbf{H}^{p}$ be convex sets, and let ϕ_{1} : $\mathcal{D} \mapsto$ \mathcal{S} and $\phi_{2}: \mathcal{S} \mapsto \mathbf{H}^{q}$. Then, the following statements hold:
i) If ϕ_{1} is convex and ϕ_{2} is nondecreasing and convex, then $\phi_{2} \bullet \phi_{1}: \mathcal{D} \mapsto \mathbf{H}^{q}$ is convex.
ii) If ϕ_{1} is concave and ϕ_{2} is nonincreasing and convex, then $\phi_{2} \bullet \phi_{1}: \mathcal{D} \mapsto \mathbf{H}^{q}$ is convex.
iii) If \mathcal{S} is symmetric, $\phi_{2}(-A)=-\phi_{2}(A)$ for all $A \in \mathcal{S}, \phi_{1}$ is concave, and ϕ_{2} is nonincreasing and concave, then $\phi_{2} \bullet \phi_{1}: \mathcal{D} \mapsto \mathbf{H}^{q}$ is convex.
$i v)$ If \mathcal{S} is symmetric, $\phi_{2}(-A)=-\phi_{2}(A)$ for all $A \in \mathcal{S}, \phi_{1}$ is convex, and ϕ_{2} is
nondecreasing and concave, then $\phi_{2} \bullet \phi_{1}: \mathcal{D} \mapsto \mathbf{H}^{q}$ is convex.
Proof. To prove i) and $i i$, let $\alpha \in[0,1]$ and $A_{1}, A_{2} \in \mathcal{D}$. In both cases it follows that

$$
\begin{aligned}
\phi_{2}\left(\phi_{1}\left[\alpha A_{1}+(1-\alpha) A_{2}\right]\right) & \leq \phi_{2}\left[\alpha \phi_{1}\left(A_{1}\right)+(1-\alpha) \phi_{1}\left(A_{2}\right)\right] \\
& \leq \alpha \phi_{2}\left[\phi_{1}\left(A_{1}\right)\right]+(1-\alpha) \phi_{2}\left[\phi_{1}\left(A_{2}\right)\right] .
\end{aligned}
$$

Statements $i i i$) and $i v$) follow from i) and $i i$, respectively.
Proposition 8.6.17. The following functions are convex:
i) $\phi: \mathbf{N}^{n} \mapsto \mathbf{N}^{n}$ defined by $\phi(A) \triangleq A^{r}$, where $r \in[1,2]$.
ii) $\phi: \mathbf{N}^{n} \mapsto \mathbf{N}^{n}$ defined by $\phi(A) \triangleq A^{2}$.
iii) $\phi: \mathbf{P}^{n} \mapsto \mathbf{P}^{n}$ defined by $\phi(A) \triangleq A^{-r}$, where $r \in[0,1]$.
iv) $\phi: \mathbf{P}^{n} \mapsto \mathbf{P}^{n}$ defined by $\phi(A) \triangleq A^{-1}$.
v) $\phi: \mathbf{P}^{n} \mapsto \mathbf{P}^{n}$ defined by $\phi(A) \triangleq A^{-1 / 2}$.
vi) $\phi: \mathbf{N}^{n} \mapsto-\mathbf{N}^{n}$ defined by $\phi(A) \triangleq-A^{r}$, where $r \in[0,1]$.
vii) $\phi: \mathbf{N}^{n} \mapsto-\mathbf{N}^{n}$ defined by $\phi(A) \triangleq-A^{1 / 2}$.
viii) $\phi: \mathbf{N}^{n} \mapsto \mathbf{H}^{m}$ defined by $\phi(A) \triangleq \gamma B A B^{*}$, where $\gamma \in \mathbb{R}$ and $B \in \mathbb{F}^{m \times n}$.
ix) $\phi: \mathbf{N}^{n} \mapsto \mathbf{N}^{m}$ defined by $\phi(A) \triangleq B A^{r} B^{*}$, where $B \in \mathbb{F}^{m \times n}$ and $r \in[1,2]$.
x) $\phi: \mathbf{P}^{n} \mapsto \mathbf{N}^{m}$ defined by $\phi(A) \triangleq B A^{-r} B^{*}$, where $B \in \mathbb{F}^{m \times n}$ and $r \in[0,1]$.
xi) $\phi: \mathbf{N}^{n} \mapsto-\mathbf{N}^{m}$ defined by $\phi(A) \triangleq-B A^{r} B^{*}$, where $B \in \mathbb{F}^{m \times n}$ and $r \in$ $[0,1]$.
xii) $\phi: \mathbf{P}^{n} \mapsto-\mathbf{P}^{m}$ defined by $\phi(A) \triangleq-\left(B A^{-r} B^{*}\right)^{-p}$, where $B \in \mathbb{F}^{m \times n}$ has $\operatorname{rank} m$ and $r, p \in[0,1]$.
xiii) $\phi: \mathbb{F}^{n \times m} \mapsto \mathbf{N}^{n}$ defined by $\phi(A) \triangleq A B A^{*}$, where $B \in \mathbf{N}^{m}$.
xiv) $\phi: \mathbf{P}^{n} \times \mathbb{F}^{m \times n} \mapsto \mathbf{N}^{m}$ defined by $\phi(A, B) \triangleq B A^{-1} B^{*}$.
xv) $\phi: \mathbf{P}^{n} \times \mathbb{F}^{m \times n} \mapsto \mathbf{N}^{m}$ defined by $\phi(A) \triangleq\left(A^{-1}+A^{-*}\right)^{-1}$.
xvi) $\phi: \quad \mathbf{N}^{n} \times \mathbf{N}^{n} \mapsto \mathbf{N}^{n}$ defined by $\phi(A, B) \triangleq-A(A+B)^{+} B$.
xvii) $\phi: \quad \mathbf{N}^{n+m} \mapsto \mathbf{N}^{n}$ defined by $\phi(A) \triangleq-A_{22} \mid A$, where $A \triangleq\left[\begin{array}{cc}A_{11} & A_{12} \\ A_{12}^{12} & A_{22}\end{array}\right]$.
rviii) $\phi: \mathbf{P}^{n+m} \mapsto \mathbf{P}^{n}$ defined by $\phi(A) \triangleq\left(A_{22} \mid A\right)^{-1}$, where $A \triangleq\left[\begin{array}{cc}A_{11} & A_{12} \\ A_{12} & A_{22}\end{array}\right]$.
xix) $\phi: \mathbf{H}^{n} \mapsto[0, \infty)$ defined by $\phi(A) \triangleq \operatorname{tr} A^{k}$, where k is a nonnegative even integer.
xx) $\phi: \mathbf{P}^{n} \mapsto(0, \infty)$ defined by $\phi(A) \triangleq \operatorname{tr} A^{-r}$, where $r>0$.
xxi) $\phi: \mathbf{P}^{n} \mapsto(-\infty, 0)$ defined by $\phi(A) \triangleq-\left(\operatorname{tr} A^{-r}\right)^{-p}$, where $r, p \in[0,1]$.
xxii) $\phi: \quad \mathbf{N}^{n} \times \mathbf{N}^{n} \mapsto(-\infty, 0]$ defined by $\phi(A, B) \triangleq-\operatorname{tr}\left(A^{r}+B^{r}\right)^{1 / r}$, where $r \in[0,1]$.
xxiii) $\phi: \mathbf{N}^{n} \times \mathbf{N}^{n} \mapsto[0, \infty)$ defined by $\phi(A, B) \triangleq \operatorname{tr}\left(A^{2}+B^{2}\right)^{1 / 2}$.
xxiv) $\phi: \mathbf{N}^{n} \times \mathbf{N}^{m} \mapsto \mathbb{R}$ defined by $\phi(A, B) \triangleq-\operatorname{tr} A^{r} X B^{p} X^{*}$, where $X \in \mathbb{F}^{n \times m}$, $r, p \geq 0$, and $r+p \leq 1$.
$x x v) \phi: \quad \mathbf{N}^{n} \mapsto(-\infty, 0)$ defined by $\phi(A) \triangleq-\operatorname{tr} A^{r} X A^{p} X^{*}$, where $X \in \mathbb{F}^{n \times n}$, $r, p \geq 0$, and $r+p \leq 1$.
xxvi) $\phi: \mathbf{P}^{n} \times \mathbf{P}^{m} \times \mathbb{F}^{m \times n} \mapsto \mathbb{R}$ defined by $\phi(A, B, X) \triangleq\left(\operatorname{tr} A^{-p} X B^{-r} X^{*}\right)^{q}$, where $r, p \geq 0, r+p \leq 1$, and $q \geq(2-r-p)^{-1}$.
xxvii) $\phi: \mathbf{P}^{n} \times \mathbb{F}^{n \times n} \mapsto[0, \infty)$ defined by $\phi(A, X) \triangleq \operatorname{tr} A^{-p} X A^{-r} X^{*}$, where $r, p \geq$ 0 and $r+p \leq 1$.
xxviii) $\phi: \mathbf{P}^{n} \times \mathbb{F}^{n \times n} \mapsto[0, \infty)$ defined by $\phi(A) \triangleq \operatorname{tr} A^{-p} X A^{-r} X^{*}$, where $r, p \in$ $[0,1]$ and $X \in \mathbb{F}^{n \times n}$.
xxix) $\phi: \mathbf{P}^{n} \mapsto \mathbb{R}$ defined by $\phi(A) \triangleq-\operatorname{tr}\left(\left[A^{r}, X\right]\left[A^{1-r}, X\right]\right)$, where $r \in(0,1)$ and $X \in \mathbf{H}^{n}$.
$x x x) \phi: \quad \mathbf{P}^{n} \mapsto \mathbf{H}^{n}$ defined by $\phi(A) \triangleq-\log A$.
xxxi) $\phi: \quad \mathbf{P}^{n} \mapsto \mathbf{H}^{m}$ defined by $\phi(A) \triangleq A \log A$.
xxxii) $\phi: \quad \mathbf{N}^{n} \backslash\{0\} \mapsto \mathbb{R}$ defined by $\phi(A) \triangleq-\log \operatorname{tr} A^{r}$, where $r \in[0,1]$.
xxxiii) $\phi: \quad \mathbf{P}^{n} \mapsto \mathbb{R}$ defined by $\phi(A) \triangleq \log \operatorname{tr} A^{-1}$.
xxxiv) $\phi: \mathbf{P}^{n} \times \mathbf{P}^{n} \mapsto(0, \infty)$ defined by $\phi(A, B) \triangleq \operatorname{tr}[A(\log A-\log B)]$.
$x x x v) \phi: \quad \mathbf{P}^{n} \times \mathbf{P}^{n} \rightarrow[0, \infty)$ defined by $\phi(A, B) \triangleq-e^{[1 /(2 n)] \operatorname{tr}(\log A+\log B)}$.
xxxvi) $\phi: \quad \mathbf{N}^{n} \mapsto(-\infty, 0]$ defined by $\phi(A) \triangleq-(\operatorname{det} A)^{1 / n}$.
xxxvii) $\phi: \mathbf{P}^{n} \mapsto(0, \infty)$ defined by $\phi(A) \triangleq \log \operatorname{det} B A^{-1} B^{*}$, where $B \in \mathbb{F}^{m \times n}$ and $\operatorname{rank} B=m$.
xxxviii) $\phi: \quad \mathbf{P}^{n} \mapsto \mathbb{R}$ defined by $\phi(A) \triangleq-\log \operatorname{det} A$.
xxxix) $\phi: \quad \mathbf{P}^{n} \mapsto(0, \infty)$ defined by $\phi(A) \triangleq \operatorname{det} A^{-1}$.
xl) $\phi: \mathbf{P}^{n} \mapsto \mathbb{R}$ defined by $\phi(A) \triangleq \log \left(\operatorname{det} A_{k} / \operatorname{det} A\right)$, where $k \in\{1, \ldots, n-1\}$ and A_{k} is the leading $k \times k$ principal submatrix of A.
xli) $\phi: \quad \mathbf{P}^{n} \mapsto \mathbb{R}$ defined by $\phi(A) \triangleq-\operatorname{det} A / \operatorname{det} A_{[n ; n]}$.
xlii) $\phi: \mathbf{N}^{n} \times \mathbf{N}^{m} \mapsto-\mathbf{N}^{n m}$ defined by $\phi(A, B) \triangleq-A^{r_{1}} \otimes B^{r_{2}}$, where $r_{1}, r_{2} \in$ $[0,1]$ satisfy $r_{1}+r_{2} \leq 1$.
xliii) $\phi: \mathbf{P}^{n} \times \mathbf{N}^{m} \mapsto \mathbf{N}^{n m}$ defined by $\phi(A, B) \triangleq A^{-r} \otimes B^{1+r}$, where $r \in[0,1]$.
xliv) $\phi: \mathbf{N}^{n} \times \mathbf{N}^{n} \mapsto-\mathbf{N}^{n}$ defined by $\phi(A, B) \triangleq-A^{r_{1}} \circ B^{r_{2}}$, where $r_{1}, r_{2} \in[0,1]$ satisfy $r_{1}+r_{2} \leq 1$.
xlv) $\phi: \quad \mathbf{H}^{n} \mapsto \mathbb{R}$ defined by $\phi(A) \triangleq \sum_{i=1}^{k} \lambda_{i}(A)$, where $k \in\{1, \ldots, n\}$.
xlvi) $\phi: \quad \mathbf{H}^{n} \mapsto \mathbb{R}$ defined by $\phi(A) \triangleq-\sum_{i=k}^{n} \lambda_{i}(A)$, where $k \in\{1, \ldots, n\}$.

Proof. Statements i) and $i i i$) are proved in [43] and [197, p. 123].
Let $\alpha \in[0,1]$ for the remainder of the proof.
To prove i i) directly, let $A_{1}, A_{2} \in \mathbf{H}^{n}$. Since

$$
\alpha(1-\alpha)=\left(\alpha-\alpha^{2}\right)^{1 / 2}\left[(1-\alpha)-(1-\alpha)^{2}\right]^{1 / 2}
$$

it follows that

$$
\begin{aligned}
0 & \leq\left[\left(\alpha-\alpha^{2}\right)^{1 / 2} A_{1}-\left[(1-\alpha)-(1-\alpha)^{2}\right]^{1 / 2} A_{2}\right]^{2} \\
& =\left(\alpha-\alpha^{2}\right) A_{1}^{2}+\left[(1-\alpha)-(1-\alpha)^{2}\right] A_{2}^{2}-\alpha(1-\alpha)\left(A_{1} A_{2}+A_{2} A_{1}\right)
\end{aligned}
$$

Hence,

$$
\left[\alpha A_{1}+(1-\alpha) A_{2}\right]^{2} \leq \alpha A_{1}^{2}+(1-\alpha) A_{2}^{2}
$$

which shows that $\phi(A)=A^{2}$ is convex.
To prove $i v$) directly, let $A_{1}, A_{2} \in \mathbf{P}^{n}$. Then, $\left[\begin{array}{cc}A_{1}^{-1} & I \\ I & A_{1}\end{array}\right]$ and $\left[\begin{array}{cc}A_{2}^{-1} & I \\ I & A_{2}\end{array}\right]$ are positive semidefinite, and thus

$$
\begin{aligned}
\alpha\left[\begin{array}{cc}
A_{1}^{-1} & I \\
I & A_{1}
\end{array}\right] & +(1-\alpha)\left[\begin{array}{cc}
A_{2}^{-1} & I \\
I & A_{2}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\alpha A_{1}^{-1}+(1-\alpha) A_{2}^{-1} & I \\
I & \alpha A_{1}+(1-\alpha) A_{2}
\end{array}\right]
\end{aligned}
$$

is positive semidefinite. It now follows from Proposition 8.2.4 that $\left[\alpha A_{1}+(1-\right.$人) $\left.A_{2}\right]^{-1} \leq \alpha A_{1}^{-1}+(1-\alpha) A_{2}^{-1}$, which shows that $\phi(A)=A^{-1}$ is convex.

To prove v) directly, note that $\phi(A)=A^{-1 / 2}=\phi_{2}\left[\phi_{1}(A)\right]$, where $\phi_{1}(A) \triangleq A^{1 / 2}$ and $\phi_{2}(B) \triangleq B^{-1}$. It follows from vii) that ϕ_{1} is concave, while it follows from $i v)$ that ϕ_{2} is convex. Furthermore, x) of Proposition 8.6 .13 implies that ϕ_{2} is nonincreasing. It thus follows from ii) of Lemma 8.6.16 that $\phi(A)=A^{-1 / 2}$ is convex.

To prove vi), let $A \in \mathbf{P}^{n}$ and note that $\phi(A)=-A^{r}=\phi_{2}\left[\phi_{1}(A)\right]$, where $\phi_{1}(A) \triangleq A^{-r}$ and $\phi_{2}(B) \triangleq-B^{-1}$. It follows from $\left.i i i\right)$ that ϕ_{1} is convex, while it follows from $i v$) that ϕ_{2} is concave. Furthermore, x) of Proposition 8.6.13 implies that ϕ_{2} is nondecreasing. It thus follows from $i v$) of Lemma 8.6.16 that $\phi(A)=A^{r}$ is convex on \mathbf{P}^{n}. Continuity implies that $\phi(A)=A^{r}$ is convex on \mathbf{N}^{n}.

To prove vii) directly, let $A_{1}, A_{2} \in \mathbf{N}^{n}$. Then,

$$
0 \leq \alpha(1-\alpha)\left(A_{1}^{1 / 2}-A_{2}^{1 / 2}\right)^{2}
$$

which is equivalent to

$$
\left[\alpha A_{1}^{1 / 2}+(1-\alpha) A_{2}^{1 / 2}\right]^{2} \leq \alpha A_{1}+(1-\alpha) A_{2}
$$

Using viii) of Proposition 8.6.13 yields

$$
\alpha A_{1}^{1 / 2}+(1-\alpha) A_{2}^{1 / 2} \leq\left[\alpha A_{1}+(1-\alpha) A_{2}\right]^{1 / 2}
$$

Finally, multiplying by -1 shows that $\phi(A)=-A^{1 / 2}$ is convex.
The proof of viii) is immediate. Statements $i x), x$, and $x i$) follow from i, $i i i$, and $v i$, respectively.

To prove $x i i$), note that $\phi(A)=-\left(B A^{-r} B^{*}\right)^{-p}=\phi_{2}\left[\phi_{1}(A)\right]$, where $\phi_{1}(A)=$ $-B A^{-r} B^{*}$ and $\phi_{2}(C)=C^{-p}$. Statement $\left.x\right)$ implies that ϕ_{1} is concave, while iii) implies that ϕ_{2} is convex. Furthermore, $i x$) of Proposition 8.6 .13 implies that ϕ_{2} is nonincreasing. It thus follows from $i i$) of Lemma8.6.16 that $\phi(A)=-\left(B A^{-r} B^{*}\right)^{-p}$ is convex.

To prove xiii), let $A_{1}, A_{2} \in \mathbb{F}^{n \times m}$, and let $B \in \mathbf{N}^{m}$. Then,

$$
\begin{aligned}
0 & \leq \alpha(1-\alpha)\left(A_{1}-A_{2}\right) B\left(A_{1}-A_{2}\right)^{*} \\
& =\alpha A_{1} B A_{1}^{*}+(1-\alpha) A_{2} B A_{2}^{*}-\left[\alpha A_{1}+(1-\alpha) A_{2}\right] B\left[\alpha A_{1}+(1-\alpha) A_{2}\right]^{*}
\end{aligned}
$$

Thus,

$$
\left[\alpha A_{1}+(1-\alpha) A_{2}\right] B\left[\alpha A_{1}+(1-\alpha) A_{2}\right]^{*} \leq \alpha A_{1} B A_{1}^{*}+(1-\alpha) A_{2} B A_{2}^{*}
$$

which shows that $\phi(A)=A B A^{*}$ is convex.
To prove xiv), let $A_{1}, A_{2} \in \mathbf{P}^{n}$ and $B_{1}, B_{2} \in \mathbb{F}^{m \times n}$. Then, it follows from Proposition 8.2.4 that $\left[\begin{array}{ccc}B_{1} A_{1}^{-1} B_{1}^{*} & B_{1} \\ B_{1}^{*} & A_{1}\end{array}\right]$ and $\left[\begin{array}{cc}B_{2} A_{2}^{1} B_{2}^{*} & B_{2} \\ B_{2}^{*} & A_{2}\end{array}\right]$ are positive semidefinite, and thus

$$
\begin{aligned}
& \alpha\left[\begin{array}{cc}
B_{1} A_{1}^{-1} B_{1}^{*} & B_{1} \\
B_{1}^{*} & A_{1}
\end{array}\right]+(1-\alpha)\left[\begin{array}{cc}
B_{2} A_{2}^{-1} B_{2}^{*} & B_{2} \\
B_{2}^{*} & A_{2}
\end{array}\right] \\
& \quad=\left[\begin{array}{cc}
\alpha B_{1} A_{1}^{-1} B_{1}^{*}+(1-\alpha) B_{2} A_{2}^{-1} B_{2}^{*} & \alpha B_{1}+(1-\alpha) B_{2} \\
\alpha B_{1}^{*}+(1-\alpha) B_{2}^{*} & \alpha A_{1}+(1-\alpha) A_{2}
\end{array}\right]
\end{aligned}
$$

is positive semidefinite. It thus follows from Proposition 8.2.4 that

$$
\begin{aligned}
{\left[\alpha B_{1}+(1-\alpha) B_{2}\right]\left[\alpha A_{1}\right.} & \left.+(1-\alpha) A_{2}\right]^{-1}\left[\alpha B_{1}+(1-\alpha) B_{2}\right]^{*} \\
& \leq \alpha B_{1} A_{1}^{-1} B_{1}^{*}+(1-\alpha) B_{2} A_{2}^{-1} B_{2}^{*}
\end{aligned}
$$

which shows that $\phi(A, B)=B A^{-1} B^{*}$ is convex.
Result $x v$) is given in 978 .
Result $x v i$) follows from Fact 8.20.18,
To prove xvii), let $A \triangleq\left[\begin{array}{cc}A_{11} & A_{12} \\ A_{12}^{*} & A_{22}\end{array}\right] \in \mathbf{P}^{n+m}$ and $B \triangleq\left[\begin{array}{ll}B_{11} & B_{12} \\ B_{12} & B_{22}\end{array}\right] \in \mathbf{P}^{n+m}$. Then, it follows from xiv) with $A_{1}, B_{1}, A_{2}, B_{2}$ replaced by $A_{22}, A_{12}, B_{22}, B_{12}$, respectively,
that

$$
\begin{aligned}
{\left[\alpha A_{12}+(1-\alpha) B_{12}\right]\left[\alpha A_{22}\right.} & \left.+(1-\alpha) B_{22}\right]^{-1}\left[\alpha A_{12}+(1-\alpha) B_{12}\right]^{*} \\
& \leq \alpha A_{12} A_{22}^{-1} A_{12}^{*}+(1-\alpha) B_{12} B_{22}^{-1} B_{12}^{*}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
-\left[\alpha A_{22}+\right. & \left.(1-\alpha) B_{22}\right] \mid[\alpha A+(1-\alpha) B] \\
= & {\left[\alpha A_{12}+(1-\alpha) B_{12}\right]\left[\alpha A_{22}+(1-\alpha) B_{22}\right]^{-1}\left[\alpha A_{12}+(1-\alpha) B_{12}\right]^{*} } \\
& \quad-\left[\alpha A_{11}+(1-\alpha) B_{11}\right] \\
\leq & \alpha\left(A_{12} A_{22}^{-1} A_{12}^{*}-A_{11}\right)+(1-\alpha)\left(B_{12} B_{22}^{-1} B_{12}^{*}-B_{11}\right) \\
= & \alpha\left(-A_{22} \mid A\right)+(1-\alpha)\left(-B_{22} \mid B\right)
\end{aligned}
$$

which shows that $\phi(A) \triangleq-A_{22} \mid A$ is convex. By continuity, the result holds for $A \in \mathbf{N}^{n+m}$.

To prove xviii), note that $\phi(A)=\left(A_{22} \mid A\right)^{-1}=\phi_{2}\left[\phi_{1}(A)\right]$, where $\phi_{1}(A)=A_{22} \mid A$ and $\phi_{2}(B)=B^{-1}$. It follows from $x v$) that ϕ_{1} is concave, while it follows from $i v)$ that ϕ_{2} is convex. Furthermore, x) of Proposition 8.6.13 implies that ϕ_{2} is nonincreasing. It thus follows from Lemma 8.6.16 that $\phi(A) \triangleq\left(A_{22} \mid A\right)^{-1}$ is convex.

Result $x i x$) is given in [239, p. 106].
Result $x x$) is given in by Theorem 9 of 905 .
To prove $x x i$), note that $\phi(A)=-\left(\operatorname{tr} A^{-r}\right)^{-p}=\phi_{2}\left[\phi_{1}(A)\right]$, where $\phi_{1}(A)=$ $\operatorname{tr} A^{-r}$ and $\phi_{2}(B)=-B^{-p}$. Statement iii) implies that ϕ_{1} is convex and that ϕ_{2} is concave. Furthermore, $i x$) of Proposition 8.6.13 implies that ϕ_{2} is nondecreasing. It thus follows from $i v$) of Lemma8.6.16 that $\phi(A)=-\left(\operatorname{tr} A^{-r}\right)^{-p}$ is convex.

Results x xii) and $x x i i i$) are proved in [286.
Results xxiv)-xxviii) are given by Corollary 1.1, Theorem 1, Corollary 2.1, Theorem 2, and Theorem 8, respectively, of [286]. A proof of xxiv) in the case $p=1-r$ is given in [197, p. 273].

Result xxix) is proved in [197, p. 274] and [286].
Result $x x x$) is given in [201, p. 113].
Result $x x x i$) is given in 197, p. 123], [201, p. 113], and 529].

To prove xxxii), note that $\phi(A)=-\log \operatorname{tr} A^{r}=\phi_{2}\left[\phi_{1}(A)\right]$, where $\phi_{1}(A)=$ $\operatorname{tr} A^{r}$ and $\phi_{2}(x)=-\log x$. Statement vi) implies that ϕ_{1} is concave. Furthermore, ϕ_{2} is convex and nonincreasing. It thus follows from $i i$) of Lemma 8.6.16 that $\phi(A)=-\log \operatorname{tr} A^{r}$ is convex.

Result $x x x i i i$) is given in 1024 .

Result $x x x i v$) is given in [197, p. 275].
Result $x x x v$) is given in 54 .
To prove $x x x v i$), let $A_{1}, A_{2} \in \mathbf{N}^{n}$. From Corollary 8.4.15 it follows that $\left(\operatorname{det} A_{1}\right)^{1 / n}+\left(\operatorname{det} A_{2}\right)^{1 / n} \leq\left[\operatorname{det}\left(A_{1}+A_{2}\right)\right]^{1 / n}$. Replacing A_{1} and A_{2} by αA_{1} and $(1-\alpha) A_{2}$, respectively, and multiplying by -1 shows that $\phi(A)=-(\operatorname{det} A)^{1 / n}$ is convex.

Result xxxvii) is proved in 1024 .
Result xxxviii) is a special case of result xxxvii). This result is due to Fan. See 352] or 353, p. 679]. To prove xxxviii), note that $\phi(A)=-n \log \left[(\operatorname{det} A)^{1 / n}\right]=$ $\phi_{2}\left[\phi_{1}(A)\right]$, where $\phi_{1}(A)=(\operatorname{det} A)^{1 / n}$ and $\phi_{2}(x)=-n \log x$. It follows from xix) that ϕ_{1} is concave. Since ϕ_{2} is nonincreasing and convex, it follows from $\left.i i\right)$ of Lemma 8.6.16 that $\phi(A)=-\log \operatorname{det} A$ is convex.

To prove $x x x i x)$, note that $\phi(A)=\operatorname{det} A^{-1}=\phi_{2}\left[\phi_{1}(A)\right]$, where $\phi_{1}(A)=$ $\log \operatorname{det} A^{-1}$ and $\phi_{2}(x)=e^{x}$. It follows from $x x$) that ϕ_{1} is convex. Since ϕ_{2} is nondecreasing and convex, it follows from i) of Lemma 8.6.16 that $\phi(A)=\operatorname{det} A^{-1}$ is convex.

Results $x l$) and $x l i$) are given in 352 and 353, pp. 684, 685].

Next, xlii) is given in [197, p. 273], [201, p. 114], and [1485 p. 9]. Statement xliii) is given in [201, p. 114]. Statement xliv) is given in 1485 p. 9].

Finally, $x l v$) is given in [971, p. 478]. Statement xlvi) follows immediately from $x l v$).

The following result is a corollary of $x v$) of Proposition 8.6 .17 for the case $\alpha=1 / 2$. Versions of this result appear in [290, 658, 896, 922 and [1098, p. 152].

Corollary 8.6.18. Let $A \triangleq\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{12}^{*} & A_{22}\end{array}\right] \in \mathbb{F}^{n+m}$ and $B \triangleq\left[\begin{array}{ll}B_{11} & B_{12} \\ B_{12}^{*} & B_{22}\end{array}\right] \in \mathbb{F}^{n+m}$, and assume that A and B are positive semidefinite. Then,

$$
A_{11}\left|A+B_{11}\right| B \leq\left(A_{11}+B_{11}\right) \mid(A+B)
$$

The following corollary of $x l v$) and $x l v i$) of Proposition 8.6 .17 gives a strong majorization condition for the eigenvalues of a pair of Hermitian matrices.

Corollary 8.6.19. Let $A, B \in \mathbf{H}^{n}$. Then, for all $k=1, \ldots, n$,

$$
\begin{equation*}
\left.\sum_{i=1}^{k} \lambda_{i}(A)+\sum_{i=1}^{k} \lambda_{n-k+i}(B)\right] \leq \sum_{i=1}^{k} \lambda_{i}(A+B) \leq \sum_{i=1}^{k}\left[\lambda_{i}(A)+\lambda_{i}(B)\right] \tag{8.6.12}
\end{equation*}
$$

with equality for $k=n$. Furthermore, for all $k=1, \ldots, n$,

$$
\begin{equation*}
\sum_{i=k}^{n}\left[\lambda_{i}(A)+\lambda_{i}(B)\right] \leq \sum_{i=k}^{n} \lambda_{i}(A+B) \tag{8.6.13}
\end{equation*}
$$

with equality for $k=1$.
Proof. The lower bound in (8.6.12) is given in [1177 p. 116]. See also 197 p. 69], [320, 711, p. 201], or [971, p. 478].

Equality in Corollary 8.6.19 is discussed in 320.

8.7 Facts on Range and Rank

Fact 8.7.1. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are positive semidefinite. Then, there exists $\alpha>0$ such that $A \leq \alpha B$ if and only if $\mathcal{R}(A) \subseteq \mathcal{R}(B)$. In this case, $\operatorname{rank} A \leq \operatorname{rank} B$. (Proof: Use Theorem8.6.2 and Corollary 8.6.11)

Fact 8.7.2. Let $A, B \in \mathbb{F}^{n \times n}$. Then,

$$
\mathcal{R}(A)+\mathcal{R}(B)=\mathcal{R}\left[\left(A A^{*}+B B^{*}\right)^{1 / 2}\right]
$$

(Proof: The result follows from Fact 2.11.1 and Theorem 2.4.3) (Remark: See [40].)

Fact 8.7.3. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A is positive semidefinite and B is either positive semidefinite or skew Hermitian. Then, the following identities hold:
i) $\mathcal{R}(A+B)=\mathcal{R}(A)+\mathcal{R}(B)$.
ii) $\mathcal{N}(A+B)=\mathcal{N}(A) \cap \mathcal{N}(B)$.
(Proof: Use $\left[(\mathcal{N}(A) \cap \mathcal{N}(B)]^{\perp}=\mathcal{R}(A)+\mathcal{R}(B)\right.$.)
Fact 8.7.4. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are positive semidefinite. Then, $(A+B)(A+B)^{+}$is the projector onto $\mathcal{R}(A)+\mathcal{R}(B)=\operatorname{span}[\mathcal{R}(A) \cup \mathcal{R}(B)]$. (Proof: Use Fact 2.9.13 and Fact 8.7.3,) (Remark: See Fact 6.4.45,)

Fact 8.7.5. Let $A \in \mathbb{F}^{n \times n}$, and assume that $A+A^{*} \geq 0$. Then, the following identities hold:
i) $\mathcal{N}(A)=\mathcal{N}\left(A+A^{*}\right) \cap \mathcal{N}\left(A-A^{*}\right)$.
ii) $\mathcal{R}(A)=\mathcal{R}\left(A+A^{*}\right)+\mathcal{R}\left(A-A^{*}\right)$.
iii) $\operatorname{rank} A=\operatorname{rank}\left[\begin{array}{cc}A+A^{*} & A-A^{*}\end{array}\right]$.

Fact 8.7.6. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are positive semidefinite. Then,

$$
\operatorname{rank}(A+B)=\operatorname{rank}\left[\begin{array}{cc}
A & B
\end{array}\right]=\operatorname{rank}\left[\begin{array}{c}
A \\
B
\end{array}\right]
$$

and

$$
\operatorname{rank}\left[\begin{array}{cc}
A & B \\
0 & A
\end{array}\right]=\operatorname{rank} A+\operatorname{rank}(A+B)
$$

(Proof: Using Fact 8.7.3,

$$
\begin{aligned}
\mathcal{R}\left(\left[\begin{array}{ll}
A & B
\end{array}\right]\right) & =\mathcal{R}\left(\left[\begin{array}{ll}
A & B
\end{array}\right]\left[\begin{array}{l}
A \\
B
\end{array}\right]\right)=\mathcal{R}\left(A^{2}+B^{2}\right)=\mathcal{R}\left(A^{2}\right)+\mathcal{R}\left(B^{2}\right) \\
& =\mathcal{R}(A)+\mathcal{R}(B)=\mathcal{R}(A+B)
\end{aligned}
$$

Alternatively, it follows from Fact 6.5.6 that

$$
\begin{aligned}
\operatorname{rank}\left[\begin{array}{ll}
A & B
\end{array}\right] & =\operatorname{rank}\left[\begin{array}{ll}
A+B & B
\end{array}\right] \\
& =\operatorname{rank}(A+B)+\operatorname{rank}\left[B-(A+B)(A+B)^{+} B\right]
\end{aligned}
$$

Next, note that

$$
\begin{aligned}
\operatorname{rank}\left[B-(A+B)(A+B)^{+} B\right] & =\operatorname{rank}\left(B^{1 / 2}\left[I-(A+B)(A+B)^{+}\right] B^{1 / 2}\right) \\
& \leq \operatorname{rank}\left(B^{1 / 2}\left[I-B B^{+}\right] B^{1 / 2}\right)=0
\end{aligned}
$$

For the second result use Theorem 8.3.4 to simultaneously diagonalize A and B.)
Fact 8.7.7. Let $A \in \mathbb{F}^{n \times n}$, and let $\mathcal{S} \subseteq\{1, \ldots, n\}$. If A is either positive semidefinite or an irreducible, singular M-matrix, then the following statements hold:
i) If $\alpha \subset\{1, \ldots, n\}$, then

$$
\operatorname{rank} A \leq \operatorname{rank} A_{(\alpha)}+\operatorname{rank} A_{(\alpha \sim)}
$$

ii) If $\alpha, \beta \subseteq\{1, \ldots, n\}$, then

$$
\operatorname{rank} A_{(\alpha \cup \beta)} \leq \operatorname{rank} A_{(\alpha)}+\operatorname{rank} A_{(\beta)}-\operatorname{rank} A_{(\alpha \cap \beta)}
$$

iii) If $1 \leq k \leq n-1$, then

$$
k \sum_{\{\alpha: \operatorname{card}(\alpha)=k+1\}} \operatorname{det} A_{(\alpha)} \leq(n-k) \sum_{\{\alpha: \operatorname{card}(\alpha)=k\}} \operatorname{det} A_{(\alpha)} .
$$

If, in addition, A is either positive definite, a nonsingular M-matrix, or totally positive, then all three inclusions hold as identities. (Proof: See 938.) (Remark: See Fact 8.13.36) (Remark: Totally positive means that every subdeterminant of A is positive. See Fact 11.18.23,

8.8 Facts on Structured Positive-Semidefinite Matrices

Fact 8.8.1. Let $\phi: \mathbb{R} \mapsto \mathbb{C}$, and assume that, for all $x_{1}, \ldots, x_{n} \in \mathbb{R}$, the matrix $A \in \mathbb{C}^{n \times n}$, where $A_{(i, j)} \triangleq \phi\left(x_{i}-x_{j}\right)$, is positive semidefinite. (The function ϕ is positive semidefinite.) Then, the following statements hold:
$i)$ For all $x_{1}, x_{2} \in \mathbb{R}$, it follows that

$$
\left|\phi\left(x_{1}\right)-\phi\left(x_{2}\right)\right|^{2} \leq 2 \phi(0) \operatorname{Re}\left[\phi(0)-\phi\left(x_{1}-x_{2}\right)\right] .
$$

ii) The function $\psi: \mathbb{R} \mapsto \mathbb{C}$, where, for all $x \in \mathbb{R}, \psi(x) \triangleq \overline{\phi(x)}$, is positive semidefinite.
iii) For all $\alpha \in \mathbb{R}$, the function $\psi: \mathbb{R} \mapsto \mathbb{C}$, where, for all $x \in \mathbb{R}, \psi(x) \triangleq \phi(\alpha x)$, is positive semidefinite.
iv) The function $\psi: \mathbb{R} \mapsto \mathbb{C}$, where, for all $x \in \mathbb{R}, \psi(x) \triangleq|\phi(x)|$, is positive semidefinite.
$v)$ The function $\psi: \mathbb{R} \mapsto \mathbb{C}$, where, for all $x \in \mathbb{R}, \psi(x) \triangleq \operatorname{Re} \phi(x)$, is positive semidefinite.
$v i$ If $\phi_{1}: \mathbb{R} \mapsto \mathbb{C}$ and $\phi_{2}: \mathbb{R} \mapsto \mathbb{C}$ are positive semidefinite, then $\phi_{3}: \mathbb{R} \mapsto \mathbb{C}$, where, for all $x \in \mathbb{R}, \phi_{3}(x) \triangleq \phi_{1}(x) \phi_{2}(x)$, is positive semidefinite.
vii) If $\phi_{1}: \mathbb{R} \mapsto \mathbb{C}$ and $\phi_{2}: \mathbb{R} \mapsto \mathbb{C}$ are positive semidefinite and α_{1}, α_{2} are positive numbers, then $\phi_{3}: \mathbb{R} \mapsto \mathbb{C}$, where, for all $x \in \mathbb{R}, \phi_{3}(x) \triangleq \alpha_{1} \phi_{1}(x)+$ $\alpha_{2} \phi_{2}(x)$, is positive semidefinite.
viii) Let $\psi: \mathbb{R} \mapsto \mathbb{C}$, for all $x, y \in \mathbb{R}$, define $K: \mathbb{R} \times \mathbb{R} \mapsto \mathbb{C}$ by $K(x, y) \triangleq$ $\phi(x-y)$, and assume that K is bounded and continuous. Then, ψ is positive semidefinite if and only if, for every continuous integrable function $f: \mathbb{R} \mapsto \mathbb{C}$, it follows that

$$
\int_{\mathbb{R}^{2}} K(x, y) f(x) \overline{f(y)} \mathrm{d} x \mathrm{~d} y \geq 0
$$

(Proof: See [201, pp. 141-144].) (Remark: The function K is a kernel function associated with a reproducing kernel space. See [546] for extensions to vector arguments. For applications, see [1175] and Fact 8.8.2])

Fact 8.8.2. Let $a_{1}, \ldots, a_{n} \in \mathbb{R}$, and define $A \in \mathbb{C}^{n \times n}$ by either of the following expressions:
i) $A_{(i, j)} \triangleq \frac{1}{1+\jmath\left(a_{i}-a_{j}\right)}$.
ii) $A_{(i, j)} \triangleq \frac{1}{1-\jmath\left(a_{i}-a_{j}\right)}$.
iii) $A_{(i, j)} \triangleq \frac{1}{1+\left(a_{i}-a_{j}\right)^{2}}$.
iv) $A_{(i, j)} \triangleq \frac{1}{1+\left|a_{i}-a_{j}\right|}$.
v) $A_{(i, j)} \triangleq e^{\jmath\left(a_{i}-a_{j}\right)}$.
vi) $A_{(i, j)} \triangleq \cos \left(a_{i}-a_{j}\right)$.
vii) $A_{(i, j)} \triangleq \frac{\sin \left[\left(a_{i}-a_{j}\right)\right]}{a_{i}-a_{j}}$.
viii) $A_{(i, j)} \triangleq \frac{a_{i}-a_{j}}{\sinh \left[\left(a_{i}-a_{j}\right)\right]}$.
ix) $A_{(i, j)} \triangleq \frac{\sinh p\left(a_{i}-a_{j}\right)}{\sinh \left(a_{i}-a_{j}\right)}$, where $p \in(0,1)$.
x) $A_{(i, j)} \triangleq \frac{\tanh \left[\left(a_{i}-a_{j}\right)\right]}{a_{i}-a_{j}}$.
xi) $A_{(i, j)} \triangleq \frac{\sinh \left[\left(a_{i}-a_{j}\right)\right]}{\left(a_{i}-a_{j}\right)\left[\cosh \left(a_{i}-a_{j}\right)+p\right]}$, where $p \in(-1,1]$.
xii) $A_{(i, j)} \triangleq \frac{1}{\cosh \left(a_{i}-a_{j}\right)+p}$, where $p \in(-1,1]$.
xiii) $A_{(i, j)} \triangleq \frac{\cosh p\left(a_{i}-a_{j}\right)}{\cosh \left(a_{i}-a_{j}\right)}$, where $p \in[-1,1]$.
xiv) $A_{(i, j)} \triangleq e^{-\left(a_{i}-a_{j}\right)^{2}}$.
xv) $A_{(i, j)} \triangleq e^{-\left|a_{i}-a_{j}\right|^{p}}$, where $p \in[0,2]$.
xvi) $\quad A_{(i, j)} \triangleq \frac{1}{1+\left|a_{i}-a_{j}\right|}$.
xvii) $A_{(i, j)} \triangleq \frac{1+p\left(a_{i}-a_{j}\right)^{2}}{1+q\left(a_{i}-a_{j}\right)^{2}}$, where $0 \leq p \leq q$.
xviii) $A_{(i, j)} \triangleq \operatorname{tr} e^{B+\jmath\left(a_{i}-a_{j}\right) C}$, where $B, C \in \mathbb{C}^{n \times n}$ are Hermitian and commute.

Then, A is positive semidefinite. Finally, if, α is a nonnegative number and A is defined by either $i x), x), x i$, $x i i i$), $x v i$), or $x v i i$), then $A^{\circ \alpha}$ is positive semidefinite. (Proof: See [201, pp. 141-144, 153, 177, 188], [216, [422, p. 90], and [709, pp. 400, 401, 456, 457, 462, 463].) (Remark: In each case, A is associated with a positive-semidefinite function. See Fact 8.8.1) (Remark: $x v$) is related to the Bessis-Moussa-Villani conjecture. See Fact 8.12.30 and Fact 8.12.31) (Problem: In each case, determine $\operatorname{rank} A$ and determine when A is positive definite.)

Fact 8.8.3. Let a_{1}, \ldots, a_{n} be positive numbers, and define $A \in \mathbb{R}^{n \times n}$ by either of the following expressions:
i) $A_{(i, j)} \triangleq \min \left\{a_{i}, a_{j}\right\}$.
ii) $A_{(i, j)} \triangleq \frac{1}{\max \left\{a_{i}, a_{j}\right\}}$.
iii) $A_{(i, j)} \triangleq \frac{a_{i}}{a_{j}}$, where $a_{1} \leq \cdots \leq a_{n}$.
iv) $A_{(i, j)} \triangleq \frac{a_{i}^{p}-a_{j}^{p}}{a_{i}-a_{j}}$, where $p \in[0,1]$.
v) $A_{(i, j)} \triangleq \frac{a_{i}^{p}+a_{j}^{p}}{a_{i}+a_{j}}$, where $p \in[-1,1]$.
vi) $A_{(i, j)} \triangleq \frac{\log a_{i}-\log a_{j}}{a_{i}-a_{j}}$.

Then, A is positive semidefinite. If, in addition, α is a positive number, then $A^{\circ \alpha}$ is positive semidefinite. (Proof: See [199, [201, p. 153, 178, 189], and [422, p. 90].) (Remark: The matrix A in $i i i$) is the Schur product of the matrices defined in i) and $i i)$.)

Fact 8.8.4. Let $a_{1}<\cdots<a_{n}$ be positive numbers, and define $A \in \mathbb{R}^{n \times n}$ by $A_{(i, j)} \triangleq \min \left\{a_{i}, a_{j}\right\}$. Then, A is positive definite,

$$
\operatorname{det} A=\prod_{i=1}^{n}\left(a_{i}-a_{i-1}\right)
$$

and, for all $x \in \mathbb{R}^{n}$,

$$
x^{\mathrm{T}} A^{-1} x=\sum_{i=1}^{n} \frac{\left[x_{(i)}-x_{(i-1)}\right]^{2}}{a_{i}-a_{i-1}}
$$

where $a_{0} \triangleq 0$ and $x_{0} \triangleq 0$. (Remark: The matrix A is a covariance matrix arising in the theory of Brownian motion. See [673, p. 132] and [1454, p. 50].)

Fact 8.8.5. Define $A \in \mathbb{R}^{n \times n}$ by either of the following expressions:
i) $A_{(i, j)} \triangleq\binom{i+j}{i}$.
ii) $A_{(i, j)} \triangleq(i+j)$!.
iii) $A_{(i, j)} \triangleq \min \{i, j\}$.
iv) $A_{(i, j)} \triangleq \operatorname{gcd}\{i, j\}$.
v) $A_{(i, j)} \triangleq \frac{i}{j}$.

Then, A is positive semidefinite. If, in addition, α is a nonnegative number, then $A^{\circ \alpha}$ is positive semidefinite. (Remark: Fact 8.21 .2 guarantees the weaker result that $A^{\circ \alpha}$ is positive semidefinite for all $\alpha \in[0, n-2]$.) (Remark: i) is the Pascal matrix. See [5, 199, 448. The fact that A is positive semidefinite follows from the identity

$$
\left.\binom{i+j}{i}=\sum_{k=0}^{\min \{i, j\}}\binom{i}{k}\binom{j}{k} .\right)
$$

(Remark: The matrix defined in v), which is a special case of $i i i$) of Fact 8.8.3, is the Lehmer matrix.) (Remark: The determinant of A defined in $i v$) can be expressed in terms of the Euler totient function. See [66, 253].)

Fact 8.8.6. Let $a_{1}, \ldots, a_{n} \geq 0$ and $p \in \mathbb{R}$, assume that either a_{1}, \ldots, a_{n} are positive or p is positive, and, for all $i, j=1, \ldots, n$, define $A \in \mathbb{R}^{n \times n}$ by

$$
A_{(i, j)} \triangleq\left(a_{i} a_{j}\right)^{p}
$$

Then, A is positive semidefinite. (Proof: Let $a \triangleq\left[\begin{array}{lll}a_{1} & \cdots & a_{n}\end{array}\right]^{\mathrm{T}}$ and $A \triangleq$ $a^{\circ p} a^{\circ p T}$.)

Fact 8.8.7. Let $a_{1}, \ldots, a_{n}>0$, let $\alpha>0$, and, for all $i, j=1, \ldots, n$, define $A \in \mathbb{R}^{n \times n}$ by

$$
A_{(i, j)} \triangleq \frac{1}{\left(a_{i}+a_{j}\right)^{\alpha}}
$$

Then, A is positive semidefinite. (Proof: See 199, 201, pp. 24, 25], or 1092.) (Remark: See Fact 5.11.12,) (Remark: For $\alpha=1, A$ is a Cauchy matrix. See Fact 3.20.14.)

Fact 8.8.8. Let $a_{1}, \ldots, a_{n}>0$, let $r \in[-1,1]$, and, for all $i, j=1, \ldots, n$, define $A \in \mathbb{R}^{n \times n}$ by

$$
A_{(i, j)} \triangleq \frac{a_{i}^{r}+a_{j}^{r}}{a_{i}+a_{j}}
$$

Then, A is positive semidefinite. (Proof: See [1485, p. 74].)

Fact 8.8.9. Let $a_{1}, \ldots, a_{n}>0$, let $q>0$, let $p \in[-q, q]$, and, for all $i, j=$ $1, \ldots, n$, define $A \in \mathbb{R}^{n \times n}$ by

$$
A_{(i, j)} \triangleq \frac{a_{i}^{p}+a_{j}^{p}}{a_{i}^{q}+a_{j}^{q}}
$$

Then, A is positive semidefinite. (Proof: Let $r=p / q$ and $b_{i}=a_{i}^{q}$. Then, $A_{(i, j)}=$ $\left(b_{i}^{r}+b_{j}^{r}\right) /\left(b_{i}+b_{j}\right)$. Now, use Fact 8.8.8. See 979 for the case $q \geq p \geq 0$.) (Remark: The case $q=1$ and $p=0$ yields a Cauchy matrix. In the case $n=2, A \geq 0$ yields Fact 1.10.33) (Problem: When is A positive definite?)

Fact 8.8.10. Let $a_{1}, \ldots, a_{n}>0$, let $p \in(-2,2]$, and define $A \in \mathbb{R}^{n \times n}$ by

$$
A_{(i, j)} \triangleq \frac{1}{a_{i}^{2}+p a_{i} a_{j}+a_{j}^{2}}
$$

Then, A is positive semidefinite. (Proof: See [204.)
Fact 8.8.11. Let $a_{1}, \ldots, a_{n}>0$, let $p \in(-1, \infty)$, and define $A \in \mathbb{R}^{n \times n}$ by

$$
A_{(i, j)} \triangleq \frac{1}{a_{i}^{3}+p\left(a_{i}^{2} a_{j}+a_{i} a_{j}^{2}\right)+a_{j}^{3}}
$$

Then, A is positive semidefinite. (Proof: See [204].)
Fact 8.8.12. Let $a_{1}, \ldots, a_{n}>0, p \in[-1,1], q \in(-2,2]$, and, for all $i, j=$ $1, \ldots, n$, define $A \in \mathbb{R}^{n \times n}$ by

$$
A_{(i, j)} \triangleq \frac{a_{i}^{p}+a_{j}^{p}}{a_{i}^{2}+q a_{i} a_{j}+a_{j}^{2}}
$$

Then, A is positive semidefinite. (Proof: See [1482] or [1485, p. 76].)
Fact 8.8.13. Let $A \in \mathbb{R}^{n \times n}$, assume that A is positive semidefinite, assume that $A_{(i, i)}>0$ for all $i=1, \ldots, n$, and define $B \in \mathbb{R}^{n \times n}$ by

$$
B_{(i, j)} \triangleq \frac{A_{(i, j)}}{\mu_{\alpha}\left(A_{(i, i)}, A_{(j, j)}\right)}
$$

where, for positive scalars α, x, y,

$$
\mu_{\alpha}(x, y) \triangleq\left[\frac{1}{2}\left(x^{\alpha}+y^{\alpha}\right)\right]^{1 / \alpha}
$$

Then, B is positive semidefinite. If, in addition, A is positive definite, then B is positive definite. In particular, letting $\alpha \downarrow 0, \alpha=1$, and $\alpha \rightarrow \infty$, respectively, the matrices $C, D, E \in \mathbb{R}^{n \times n}$ defined by

$$
\begin{gathered}
C_{(i, j)} \triangleq \frac{A_{(i, j)}}{\sqrt{A_{(i, i)} A_{(j, j)}}}, \\
D_{(i, j)} \triangleq \frac{2 A_{(i, j)}}{A_{(i, i)}+A_{(j, j)}}, \\
E_{(i, j)} \triangleq \frac{A_{(i, j)}}{\max \left\{A_{(i, i)}, A_{(j, j)}\right\}}
\end{gathered}
$$

are positive semidefinite. Finally, if A is positive definite, then C, D, and E are positive definite. (Proof: See [1151.) (Remark: The assumption that all of the diagonal entries of A are positive can be weakened. See [1151].) (Remark: See Fact 1.10.34.) (Problem: Extend this result to Hermitian matrices.)

Fact 8.8.14. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is Hermitian, $A_{(i, i)}>0$ for all $i=1, \ldots, n$, and, for all $i, j=1, \ldots, n$,

$$
\left|A_{(i, j)}\right|<\frac{1}{n-1} \sqrt{A_{(i, i)} A_{(j, j)}} .
$$

Then, A is positive definite. (Proof: Note that

$$
\left.x^{*} A x=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n}\left[\begin{array}{l}
x_{(i)} \\
x_{(j)}
\end{array}\right]^{*}\left[\begin{array}{cc}
\frac{1}{n-1} A_{(i, i)} & A_{(i, j)} \\
\overline{A_{(i, j)}} & \frac{1}{n-1} A_{(j, j)}
\end{array}\right]\left[\begin{array}{l}
x_{(i)} \\
x_{(j)}
\end{array}\right] .\right)
$$

(Remark: This result is due to Roup.)
Fact 8.8.15. Let $\alpha, \beta, \gamma \in[0, \pi]$, and define $A \in \mathbb{R}^{3 \times 3}$ by

$$
A=\left[\begin{array}{ccc}
1 & \cos \alpha & \cos \gamma \\
\cos \alpha & 1 & \cos \beta \\
\cos \gamma & \cos \beta & 1
\end{array}\right] .
$$

Then, A is positive semidefinite if and only if the following conditions are satisfied:
i) $\alpha \leq \beta+\gamma$.
ii) $\beta \leq \alpha+\gamma$.
iii) $\gamma \leq \alpha+\beta$.
iv) $\alpha+\beta+\gamma \leq 2 \pi$.

Furthermore, A is positive definite if and only if all of these inequalities are strict. (Proof: See [149].)

Fact 8.8.16. Let $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{C}$, assume that, for all $i=1, \ldots, n$, $\operatorname{Re} \lambda_{i}<0$, and, for all $i, j=1, \ldots, n$, define $A \in \mathbb{C}^{n \times n}$ by

$$
A_{(i, j)} \triangleq \frac{-1}{\overline{\lambda_{i}}+\lambda_{j}}
$$

Then, A is positive definite. (Proof: Note that $A=2 B \circ\left(1_{n \times n}-C\right)^{\circ-1}$, where $B_{(i, j)}=\frac{1}{\left(\overline{\lambda_{i}}-1\right)\left(\lambda_{j}-1\right)}$ and $C_{(i, j)}=\frac{\left(\overline{\lambda_{i}}+1\right)\left(\lambda_{j}+1\right)}{\left(\overline{\lambda_{i}}-1\right)\left(\lambda_{j}-1\right)}$. Then, note that B is positive semidefinite and that $\left(1_{n \times n}-C\right)^{\circ-1}=1_{n \times n}+C+C^{\circ 2}+C^{\circ 3}+\cdots$.) (Remark: A is the solution of a Lyapunov equation. See Fact 12.21 .18 and Fact 12.21.19, (Remark: A is a Cauchy matrix. See Fact 3.18.4, Fact 3.20.14, and Fact 3.20.15,) (Remark: A Cauchy matrix is also a Gram matrix defined in terms of the inner product of the functions $f_{i}(t)=e^{-\lambda_{i} t}$. See [201 p. 3].)

Fact 8.8.17. Let $\lambda_{1}, \ldots, \lambda_{n} \in \mathrm{OUD}$, and let $w_{1}, \ldots, w_{n} \in \mathbb{C}$. Then, there exists a holomorphic function $\phi:$ OUD $\mapsto \mathrm{OUD}$ such that $\phi\left(\lambda_{i}\right)=w_{i}$ for all $i=$ $1, \ldots, n$ if and only if $A \in \mathbb{C}^{n \times n}$ is positive semidefinite, where, for all $i, j=1, \ldots, n$,

$$
A_{(i, j)} \triangleq \frac{1-\overline{w_{i}} w_{j}}{1-\overline{\lambda_{i}} \lambda_{j}}
$$

(Proof: See 985.) (Remark: A is a Pick matrix.)
Fact 8.8.18. Let $\alpha_{0}, \ldots, \alpha_{n}>0$, and define the tridiagonal matrix $A \in \mathbb{R}^{n \times n}$ by

$$
A \triangleq\left[\begin{array}{cccccc}
\alpha_{0}+\alpha_{1} & -\alpha_{1} & 0 & 0 & \cdots & 0 \\
-\alpha_{1} & \alpha_{1}+\alpha_{2} & -\alpha_{2} & 0 & \cdots & 0 \\
0 & -\alpha_{2} & \alpha_{2}+\alpha_{3} & -\alpha_{3} & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & \alpha_{n-1}+\alpha_{n}
\end{array}\right]
$$

Then, A is positive definite. (Proof: For $k=2, \ldots, n$, the $k \times k$ leading principal subdeterminant of A is given by $\left[\sum_{i=0}^{k} \alpha_{i}^{-1}\right] \alpha_{0} \alpha_{1} \cdots \alpha_{k}$. See [146, p. 115].) (Remark: A is a stiffness matrix arising in structural analysis.) (Remark: See Fact 3.20.8.)

8.9 Facts on Identities and Inequalities for One Matrix

Fact 8.9.1. Let $n \leq 3$, let $A \in \mathbb{F}^{n \times n}$, and assume that A is positive semidefinite. Then, $|A|$ is positive semidefinite. (Proof: See [964].) (Remark: $|A|$ denotes the matrix whose entries are the absolute values of the entries of A.) (Remark: The result does not hold for $n \geq 4$. Let

$$
A=\left[\begin{array}{cccc}
1 & \frac{1}{\sqrt{3}} & 0 & -\frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{3}} & 1 & \frac{1}{\sqrt{3}} & 0 \\
0 & \frac{1}{\sqrt{3}} & 0 & \frac{1}{\sqrt{3}} \\
-\frac{1}{\sqrt{3}} & 0 & \frac{1}{\sqrt{3}} & 1
\end{array}\right]
$$

Then, $\operatorname{mspec}(A)=\{1-\sqrt{6} / 3,1-\sqrt{6} / 3,1+\sqrt{6} / 3,1+\sqrt{6} / 3\}_{\mathrm{ms}}$, whereas $\operatorname{mspec}(|A|)$ $=\{1,1,1-\sqrt{12} / 3,1+\sqrt{12} / 3\}_{\mathrm{ms}}$.)

Fact 8.9.2. Let $x \in \mathbb{F}^{n}$. Then,

$$
x x^{*} \leq x^{*} x I
$$

Fact 8.9.3. Let $x \in \mathbb{F}^{n}$, assume that x is nonzero, and define $A \triangleq x^{*} x I-x x^{*}$. Then, A is positive semidefinite, $\operatorname{mspec}(A)=\left\{x^{*} x, \ldots, x^{*} x, 0\right\}_{\mathrm{ms}}$, and $\operatorname{rank} A=$ $n-1$.

Fact 8.9.4. Let $x, y \in \mathbb{F}^{n}$, assume that x and y are linearly independent, and define $A \triangleq\left(x^{*} x+y^{*} y\right) I-x x^{*}-y y^{*}$. Then, A is positive definite. Now, let $\mathbb{F}=\mathbb{R}$. Then,

$$
\begin{aligned}
\operatorname{mspec}(A)=\{ & x^{\mathrm{T}} x+y^{\mathrm{T}} y, \ldots, x^{\mathrm{T}} x+y^{\mathrm{T}} y, \\
& \frac{1}{2}\left(x^{\mathrm{T}} x+y^{\mathrm{T}} y\right)+\sqrt{\frac{1}{4}\left(x^{\mathrm{T}} x-y^{\mathrm{T}} y\right)^{2}+\left(x^{\mathrm{T}} y\right)^{2}} \\
& \left.\frac{1}{2}\left(x^{\mathrm{T}} x+y^{\mathrm{T}} y\right)-\sqrt{\frac{1}{4}\left(x^{\mathrm{T}} x-y^{\mathrm{T}} y\right)^{2}+\left(x^{\mathrm{T}} y\right)^{2}}\right\}_{\mathrm{ms}} .
\end{aligned}
$$

(Proof: To show that A is positive definite, write $A=B+C$, where $B \triangleq x^{*} x I-x x^{*}$ and $C \triangleq y^{*} y I-y y^{*}$. Then, using Fact 8.9 .3 it follows that $\mathcal{N}(B)=\operatorname{span}\{x\}$ and $\mathcal{N}(C)=\operatorname{span}\{y\}$. Now, it follows from Fact 8.7 .3 that $\mathcal{N}(A)=\mathcal{N}(B) \cap \mathcal{N}(C)=\{0\}$. Therefore, A is nonsingular and thus positive definite. The expression for $\operatorname{mspec}(A)$ follows from Fact 4.9.16.

Fact 8.9.5. Let $x_{1}, \ldots, x_{n} \in \mathbb{R}^{3}$, assume that $\operatorname{span}\left\{x_{1}, \ldots, x_{n}\right\}=\mathbb{R}^{3}$, and define $A \triangleq \sum_{i=1}^{n}\left(x_{i}^{\mathrm{T}} x_{i} I-x_{i} x_{i}^{\mathrm{T}}\right)$. Then, A is positive definite. Furthermore,

$$
\lambda_{1}(A)<\lambda_{2}(A)+\lambda_{3}(A)
$$

and

$$
\mathrm{d}_{1}(A)<\mathrm{d}_{2}(A)+\mathrm{d}_{3}(A)
$$

(Proof: Suppose that $\mathrm{d}_{1}(A)=A_{(1,1)}$. Then, $\mathrm{d}_{2}(A)+\mathrm{d}_{3}(A)-\mathrm{d}_{1}(A)=2 \sum_{i=1}^{n} x_{i(3)}^{2}>$ 0 . Now, let $S \in \mathbb{R}^{3 \times 3}$ be such that $S A S^{\mathrm{T}}=\sum_{i=1}^{n}\left(\hat{x}_{i}^{\mathrm{T}} \hat{x}_{i} I-\hat{x}_{i} \hat{x}_{i}^{\mathrm{T}}\right)$ is diagonal, where, for $i=1, \ldots, n, \hat{x}_{i} \triangleq S x_{i}$. Then, for $i=1,2,3, \mathrm{~d}_{i}(A)=\lambda_{i}(A)$.) (Remark: A is the inertia matrix for a rigid body consisting of n discrete particles. For a homogeneous continuum body \mathcal{B} whose density is ρ, the inertia matrix is given by

$$
I=\rho \iiint_{\mathcal{B}}\left(r^{\mathrm{T}} r I-r r^{\mathrm{T}}\right) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z
$$

where $r \triangleq\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$.) (Remark: The eigenvalues and diagonal entries of A represent the lengths of the sides of triangles. See Fact 1.11.17 and [1069, p. 220].)

Fact 8.9.6. Let $A \in \mathbb{F}^{2 \times 2}$, assume that A is positive semidefinite and nonzero, and define $B \in \mathbb{F}^{2 \times 2}$ by

$$
B \triangleq(\operatorname{tr} A+2 \sqrt{\operatorname{det} A})^{-1 / 2}(A+\sqrt{\operatorname{det} A} I)
$$

Then, $B=A^{1 / 2}$. (Proof: See [629, pp. 84, 266, 267].)
Fact 8.9.7. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is Hermitian. Then,

$$
\operatorname{rank} A=\nu_{-}(A)+\nu_{+}(A)
$$

and

$$
\operatorname{def} A=\nu_{0}(A)
$$

Fact 8.9.8. Let $A \in \mathbb{F}^{n \times n}$, assume that A is positive semidefinite, and assume there exists $i \in\{1, \ldots, n\}$ such that $A_{(i, i)}=0$. Then, $\operatorname{row}_{i}(A)=0$ and $\operatorname{col}_{i}(A)=0$.

Fact 8.9.9. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is positive semidefinite. Then, $A_{(i, i)} \geq 0$ for all $i=1, \ldots, n$, and $\left|A_{(i, j)}\right|^{2} \leq A_{(i, i)} A_{(j, j)}$ for all $i, j=1, \ldots, n$.

Fact 8.9.10. Let $A \in \mathbb{F}^{n \times n}$. Then, $A \geq 0$ if and only if $A \geq-A$.

Fact 8.9.11. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is Hermitian. Then, $A^{2} \geq 0$.
Fact 8.9.12. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is skew Hermitian. Then, $A^{2} \leq 0$.

Fact 8.9.13. Let $A \in \mathbb{F}^{n \times n}$, and let $\alpha>0$. Then,

$$
A^{2}+A^{2 *} \leq \alpha A A^{*}+\frac{1}{\alpha} A^{*} A
$$

Equality holds if and only if $\alpha A=A^{*}$.
Fact 8.9.14. Let $A \in \mathbb{F}^{n \times n}$. Then,

$$
\left(A-A^{*}\right)^{2} \leq 0 \leq\left(A+A^{*}\right)^{2} \leq 2\left(A A^{*}+A^{*} A\right)
$$

Fact 8.9.15. Let $A \in \mathbb{F}^{n \times n}$, and let $\alpha>0$. Then,

$$
A+A^{*} \leq \alpha I+\alpha^{-1} A A^{*}
$$

Equality holds if and only if $A=\alpha I$.
Fact 8.9.16. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is positive definite. Then,

$$
2 I \leq A+A^{-1}
$$

Equality holds if and only if $A=I$. Furthermore,

$$
2 n \leq \operatorname{tr} A+\operatorname{tr} A^{-1}
$$

Fact 8.9.17. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is positive definite. Then,

$$
\left(1_{1 \times n} A^{-1} 1_{n \times 1}\right)^{-1} 1_{n \times n} \leq A
$$

(Proof: Set $B=1_{n \times n}$ in Fact 8.21.14 See [1492].)
Fact 8.9.18. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is positive definite. Then, $\left[\begin{array}{cc}A & I \\ I & A^{-1}\end{array}\right]$ is positive semidefinite.

Fact 8.9.19. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is Hermitian. Then, $A^{2} \leq A$ if and only if $0 \leq A \leq I$.

Fact 8.9.20. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is Hermitian. Then, $\alpha I+A \geq$ 0 if and only if $\alpha \geq-\lambda_{\min }(A)$. Furthermore,

$$
A^{2}+A+\frac{1}{4} I \geq 0
$$

Fact 8.9.21. Let $A \in \mathbb{F}^{n \times m}$. Then, $A A^{*} \leq I_{n}$ if and only if $A^{*} A \leq I_{m}$.
Fact 8.9.22. Let $A \in \mathbb{F}^{n \times n}$, and assume that either $A A^{*} \leq A^{*} A$ or $A^{*} A \leq A A^{*}$. Then, A is normal. (Proof: Use $i i$) of Corollary 8.4.10)

Fact 8.9.23. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is a projector. Then,

$$
0 \leq A \leq I
$$

Fact 8.9.24. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is nonsingular. Then,

$$
\left\langle A^{-1}\right\rangle=\left\langle A^{*}\right\rangle^{-1}
$$

Fact 8.9.25. Let $A \in \mathbb{F}^{n \times m}$, and assume that $A^{*} A$ is nonsingular. Then,

$$
\left\langle A^{*}\right\rangle=A\langle A\rangle^{-1 / 2} A^{*}
$$

Fact 8.9.26. Let $A \in \mathbb{F}^{n \times n}$. Then, A is unitary if and only if there exists a nonsingular matrix $B \in \mathbb{F}^{n \times n}$ such that

$$
A=\left\langle B^{*}\right\rangle^{-1 / 2} B
$$

If, in addition, A is real, then $\operatorname{det} B=\operatorname{sign}(\operatorname{det} A)$. (Proof: For necessity, set $B=A$.) (Remark: See Fact 3.11.10.)

Fact 8.9.27. Let $A \in \mathbb{F}^{n \times n}$. Then, A is normal if and only if $\langle A\rangle=\left\langle A^{*}\right\rangle$. (Remark: See Fact 3.7.12)

Fact 8.9.28. Let $A \in \mathbb{F}^{n \times n}$. Then,

$$
-\langle A\rangle-\left\langle A^{*}\right\rangle \leq A+A^{*} \leq\langle A\rangle+\left\langle A^{*}\right\rangle
$$

(Proof: See [886].)
Fact 8.9.29. Let $A \in \mathbb{F}^{n \times n}$, assume that A is normal, and let $\alpha, \beta \in(0, \infty)$.
Then,

$$
-\alpha\langle A\rangle-\beta\left\langle A^{*}\right\rangle \leq\left\langle\alpha A+\beta A^{*}\right\rangle \leq \alpha\langle A\rangle+\beta\left\langle A^{*}\right\rangle
$$

In particular,

$$
-\langle A\rangle-\left\langle A^{*}\right\rangle \leq\left\langle A+A^{*}\right\rangle \leq\langle A\rangle+\left\langle A^{*}\right\rangle .
$$

(Proof: See [886, 1494].) (Remark: See Fact 8.11.11.)
Fact 8.9.30. Let $A \in \mathbb{F}^{n \times n}$. The following statements hold:
i) If $A \in \mathbb{F}^{n \times n}$ is positive definite, then $I+A$ is nonsingular and the matrices $I-B$ and $I+B$ are positive definite, where $B \triangleq(I+A)^{-1}(I-A)$.
ii) If $I+A$ is nonsingular and the matrices $I-B$ and $I+B$ are positive definite, where $B \triangleq(I+A)^{-1}(I-A)$, then A is positive definite.
(Proof: See [463].) (Remark: For additional results on the Cayley transform, see Fact 3.11.28, Fact 3.11.29, Fact 3.11.30, Fact 3.19.12, and Fact 11.21.8.)

Fact 8.9.31. Let $A \in \mathbb{F}^{n \times n}$, and assume that $\frac{1}{2 \jmath}\left(A-A^{*}\right)$ is positive definite. Then,

$$
B \triangleq\left[\frac{1}{2}\left(A+A^{*}\right)\right]^{1 / 2} A^{-1} A^{*}\left[\frac{1}{2}\left(A+A^{*}\right)\right]^{-1 / 2}
$$

is unitary. (Proof: See [466].) (Remark: A is strictly dissipative if $\frac{1}{2 \jmath}\left(A-A^{*}\right)$ is negative definite. A is strictly dissipative if and only if $-\jmath A$ is dissipative. See [464, 465.) (Remark: $A^{-1} A^{*}$ is similar to a unitary matrix. See Fact 3.11.4.) (Remark: See Fact 8.13.11 and Fact 8.17.12.)

Fact 8.9.32. Let $A \in \mathbb{R}^{n \times n}$, assume that A is positive definite, assume that $A \leq I$, and define $\left(B_{k}\right)_{k=0}^{\infty}$ by $B_{0} \triangleq 0$ and

$$
B_{k+1} \triangleq B_{k}+\frac{1}{2}\left(A-B_{k}^{2}\right)
$$

Then,

$$
\lim _{k \rightarrow \infty} B_{k}=A^{1 / 2}
$$

(Proof: See [170, p. 181].) (Remark: See Fact 5.15.21,)
Fact 8.9.33. Let $A \in \mathbb{R}^{n \times n}$, assume that A is nonsingular, and define $\left(B_{k}\right)_{k=0}^{\infty}$ by $B_{0} \triangleq A$ and

$$
B_{k+1} \triangleq \frac{1}{2}\left(B_{k}+B_{k}^{-\mathrm{T}}\right)
$$

Then,

$$
\lim _{k \rightarrow \infty} B_{k}=\left(A A^{\mathrm{T}}\right)^{-1 / 2} A
$$

(Remark: The limit is unitary. See Fact 8.9.26. See [144, p. 224].)
Fact 8.9.34. Let $a, b \in \mathbb{R}$, and define the symmetric, Toeplitz matrix $A \in$ $\mathbb{R}^{n \times n}$ by

$$
A \triangleq a I_{n}+b 1_{n \times n}
$$

Then, A is positive definite if and only if $a+n b>0$ and $a>0$. (Remark: See Fact 2.13.12 and Fact 4.10.15.)

Fact 8.9.35. Let $x_{1}, \ldots, x_{n} \in \mathbb{R}^{m}$, and define

$$
\bar{x} \triangleq \frac{1}{n} \sum_{j=1}^{n} x_{j}, \quad S \triangleq \frac{1}{n} \sum_{j=1}^{n}\left(x_{j}-\bar{x}\right)\left(x_{j}-\bar{x}\right)^{\mathrm{T}} .
$$

Then, for all $i=1, \ldots, n$,

$$
\left(x_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right)^{\mathrm{T}} \leq(n-1) S
$$

Furthermore, equality holds if and only if all of the elements of $\left\{x_{1}, \ldots, x_{n}\right\} \backslash\left\{x_{i}\right\}$ are equal. (Proof: See [754, 1043, 1332].) (Remark: This result is an extension of the Laguerre-Samuelson inequality. See Fact 1.15.12,

Fact 8.9.36. Let $x_{1}, \ldots, x_{n} \in \mathbb{F}^{n}$, and define $A \in \mathbb{F}^{n \times n}$ by $A_{(i, j)} \triangleq x_{i}^{*} x_{j}$ for all $i, j=1, \ldots, n$, and $B \triangleq\left[\begin{array}{lll}x_{1} & \cdots & x_{n}\end{array}\right]$. Then, $A=B^{*} B$. Consequently, A is positive semidefinite and $\operatorname{rank} A=\operatorname{rank} B$. Conversely, let $A \in \mathbb{F}^{n \times n}$, and assume that A is positive semidefinite. Then, there exist $x_{1}, \ldots, x_{n} \in \mathbb{F}^{n}$ such that $A=B^{*} B$, where $B=\left[\begin{array}{lll}x_{1} & \cdots & x_{n}\end{array}\right]$. (Proof: The converse is an immediate consequence of Corollary 5.4.5.) (Remark: A is the Gram matrix of x_{1}, \ldots, x_{n}.)

Fact 8.9.37. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is positive semidefinite. Then, there exists a matrix $B \in \mathbb{F}^{n \times n}$ such that B is lower triangular, B has nonnegative diagonal entries, and $A=B B^{*}$. If, in addition, A is positive definite, then B is unique and has positive diagonal entries. (Remark: This result is the Cholesky decomposition.)

Fact 8.9.38. Let $A \in \mathbb{F}^{n \times m}$, and assume that $\operatorname{rank} A=m$. Then,

$$
0 \leq A\left(A^{*} A\right)^{-1} A^{*} \leq I
$$

Fact 8.9.39. Let $A \in \mathbb{F}^{n \times m}$. Then, $I-A^{*} A$ is positive definite if and only if $I-A A^{*}$ is positive definite. In this case,

$$
\left(I-A^{*} A\right)^{-1}=I+A^{*}\left(I-A A^{*}\right)^{-1} A
$$

Fact 8.9.40. Let $A \in \mathbb{F}^{n \times m}$, let α be a positive number, and define $A_{\alpha} \triangleq$ $\left(\alpha I+A^{*} A\right)^{-1} A^{*}$. Then, the following statements are equivalent:
i) $A A_{\alpha}=A_{\alpha} A$.
ii) $A A^{*}=A^{*} A$.

Furthermore, the following statements are equivalent:
iii) $A_{\alpha} A^{*}=A^{*} A_{\alpha}$.
iv) $A A^{*} A^{2}=A^{2} A^{*} A$.
(Proof: See [1299].) (Remark: A_{α} is a regularized Tikhonov inverse.)
Fact 8.9.41. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is positive definite. Then,

$$
A^{-1} \leq \frac{\alpha+\beta}{\alpha \beta} I-\frac{1}{\alpha \beta} A \leq \frac{(\alpha+\beta)^{2}}{4 \alpha \beta} A^{-1}
$$

where $\alpha \triangleq \lambda_{\max }(A)$ and $\beta \triangleq \lambda_{\min }(A)$. (Proof: See 972.)
Fact 8.9.42. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is positive semidefinite. Then, the following statements hold:
i) If $\alpha \in[0,1]$, then

$$
A^{\alpha} \leq \alpha A+(1-\alpha) I
$$

ii) If $\alpha \in[0,1]$ and A is positive definite, then

$$
\left[\alpha A^{-1}+(1-\alpha) I\right]^{-1} \leq A^{\alpha} \leq \alpha A+(1-\alpha) I
$$

iii) If $\alpha \geq 1$, then

$$
\alpha A+(1-\alpha) I \leq A^{\alpha}
$$

iv) If A is positive definite and either $\alpha \geq 1$ or $\alpha \leq 0$, then

$$
\alpha A+(1-\alpha) I \leq A^{\alpha} \leq\left[\alpha A^{-1}+(1-\alpha) I\right]^{-1}
$$

(Proof: See [530, pp. 122, 123].) (Remark: This result is a special case of the Young inequality. See Fact 1.9.2 and Fact 8.10.43,) (Remark: See Fact 8.12.26 and Fact 8.12.27)

Fact 8.9.43. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is positive definite. Then,

$$
I-A^{-1} \leq \log A \leq A-I
$$

Furthermore, if $A \geq I$, then $\log A$ is positive semidefinite, and, if $A>I$, then $\log A$ is positive definite. (Proof: See Fact 1.9.22,)

8.10 Facts on Identities and Inequalities for Two or More Matrices

Fact 8.10.1. Let $\left\{A_{i}\right\}_{i=1}^{\infty} \subset \mathbf{H}^{n}$ and $\left\{B_{i}\right\}_{i=1}^{\infty} \subset \mathbf{H}^{n}$, assume that, for all $i \in \mathbb{P}$, $A_{i} \leq B_{i}$, and assume that $A \triangleq \lim _{i \rightarrow \infty} A_{i}$ and $B \triangleq \lim _{i \rightarrow \infty} B_{i}$ exist. Then, $A \leq B$.

Fact 8.10.2. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are positive semidefinite, and assume that $A \leq B$. Then, $\mathcal{R}(A) \subseteq \mathcal{R}(B)$ and $\operatorname{rank} A \leq \operatorname{rank} B$. Furthermore, $\mathcal{R}(A)=\mathcal{R}(B)$ if and only if $\operatorname{rank} A=\operatorname{rank} B$.

Fact 8.10.3. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are Hermitian. Then, the following statements hold:
i) $\lambda_{\min }(A) \leq \lambda_{\min }(B)$ if and only if $\lambda_{\min }(A) I \leq B$.
ii) $\lambda_{\max }(A) \leq \lambda_{\max }(B)$ if and only if $A \leq \lambda_{\max }(B) I$.

Fact 8.10.4. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are Hermitian, and consider the following conditions:
i) $A \leq B$.
ii) For all $i=1, \ldots, n, \lambda_{i}(A) \leq \lambda_{i}(B)$.
iii) There exists a unitary matrix $S \in \mathbb{F}^{n \times n}$ such that $A \leq S B S^{*}$.

Then, $i) \Longrightarrow i i) \Longleftrightarrow i i i)$. (Remark: $i) \Longrightarrow i i$) is the monotonicity theorem given by Theorem 8.4.9)

Fact 8.10.5. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are positive semidefinite. Then, $0<A \leq B$ if and only if $\operatorname{sprad}\left(A B^{-1}\right)<1$.

Fact 8.10.6. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are positive definite. Then,

$$
\left(A^{-1}+B^{-1}\right)^{-1}=A(A+B)^{-1} B
$$

Fact 8.10.7. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are positive definite. Then,

$$
(A+B)^{-1} \leq \frac{1}{4}\left(A^{-1}+B^{-1}\right)
$$

Equivalently,

$$
A+B \leq A B^{-1} A+B A^{-1} B
$$

In both inequalities, equality holds if and only if $A=B$. (Proof: See [1490, p. 168].) (Remark: See Fact 1.10.4)

Fact 8.10.8. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A is positive definite, B is Hermitian, and $A+B$ is nonsingular. Then,

$$
(A+B)^{-1}+(A+B)^{-1} B(A+B)^{-1} \leq A^{-1}
$$

If, in addition, B is nonsingular, the inequality is strict. (Proof: This inequality is equivalent to $B A^{-1} B \geq 0$. See 1050 .)

Fact 8.10.9. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are positive definite, and let $\alpha \in[0,1]$. Then,

$$
\beta\left[\alpha A^{-1}+(1-\alpha) B^{-1}\right] \leq[\alpha A+(1-\alpha) B]^{-1}
$$

where

$$
\beta \triangleq \min _{\mu \in \operatorname{mspec}\left(A^{-1} B\right)} \frac{4 \mu}{(1+\mu)^{2}}
$$

(Proof: See [1017].) (Remark: This result is a reverse form of a convex inequality.)
Fact 8.10.10. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times m}$, and assume that B is positive semidefinite. Then, $A B A^{*}=0$ if and only if $A B=0$.

Fact 8.10.11. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are positive semidefinite. Then, $A B$ is positive semidefinite if and only if $A B$ is normal.

Fact 8.10.12. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are Hermitian, and assume that either i) A and B are positive semidefinite or $i i$) either A or B is positive definite. Then, $A B$ is group invertible. (Proof: Use Theorem 8.3.2 and Theorem 8.3.5.)

Fact 8.10.13. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are Hermitian, and assume that A and $A B+B A$ are (positive semidefinite, positive definite). Then, B is (positive semidefinite, positive definite). (Proof: See [201, p. 8], [878, p. 120], or [1430. Alternatively, the result follows from Corollary 11.9.4.)

Fact 8.10.14. Let $A, B, C \in \mathbb{F}^{n \times n}$, assume that A, B, and C are positive semidefinite, and assume that $A=B+C$. Then, the following statements are equivalent:
i) $\operatorname{rank} A=\operatorname{rank} B+\operatorname{rank} C$.
ii) There exists $S \in \mathbb{F}^{m \times n}$ such that $\operatorname{rank} S=m, \mathcal{R}(S) \cap \mathcal{N}(A)=\{0\}$, and either $B=A S^{*}\left(S A S^{*}\right)^{-1} S A$ or $C=A S^{*}\left(S A S^{*}\right)^{-1} S A$.
(Proof: See [285, 331].)
Fact 8.10.15. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are Hermitian and nonsingular. Then, the following statements hold:
i) If every eigenvalue of $A B$ is positive, then $\operatorname{In} A=\operatorname{In} B$.
ii) $\operatorname{In} A-\operatorname{In} B=\operatorname{In}(A-B)+\operatorname{In}\left(A^{-1}-B^{-1}\right)$.
iii) If $\operatorname{In} A=\operatorname{In} B$ and $A \leq B$, then $B^{-1} \leq A^{-1}$.
(Proof: See [51, 109, 1047.) (Remark: The identity $i i$) is due to Styan. See 1047.) (Remark: An extension to singular A and B is given by Fact 8.20.14.)

Fact 8.10.16. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are Hermitian, and assume that $A \leq B$. Then, $A_{(i, i)} \leq B_{(i, i)}$ for all $i=1, \ldots, n$.

Fact 8.10.17. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are Hermitian, and assume that $A \leq B$. Then, $\operatorname{sig} A \leq \operatorname{sig} B$. (Proof: See [392, p. 148].)

Fact 8.10.18. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are Hermitian, and assume that $\langle A\rangle \leq B$. Then, either $A \leq B$ or $-A \leq B$. (Proof: See 1493.)

Fact 8.10.19. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A is positive semidefinite and B is positive definite. Then, $A \leq B$ if and only if $A B^{-1} A \leq A$.

Fact 8.10.20. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are positive semidefinite, and assume that $0 \leq A \leq B$. Then, there exists a matrix $S \in \mathbb{F}^{n \times n}$ such that $A=S^{*} B S$ and $S^{*} S \leq I$. (Proof: See [447, p. 269].)

Fact 8.10.21. Let $A, B, C, D \in \mathbb{F}^{n \times n}$, assume that A, B, C, D are positive semidefinite, and assume that $0<D \leq C$ and $B C B \leq A D A$. Then, $B \leq A$. (Proof: See [84, 300].)

Fact 8.10.22. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are positive definite. Then, there exists a unitary matrix $S \in \mathbb{F}^{n \times n}$ such that

$$
\langle A B\rangle \leq \frac{1}{2} S\left(A^{2}+B^{2}\right) S^{*}
$$

(Proof: See 90, 209.)
Fact 8.10.23. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are projectors. Then, $A B A \leq B$ if and only if $A B=B A$. (Proof: See 1325].)

Fact 8.10.24. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A is positive definite, $0 \leq$ $A \leq I$, and B is positive definite. Then,

$$
A B A \leq \frac{(\alpha+\beta)^{2}}{4 \alpha \beta} B
$$

where $\alpha \triangleq \lambda_{\min }(B)$ and $\beta \triangleq \lambda_{\max }(B)$. (Proof: See 251].) (Remark: This inequality is related to Fact 1.16.6)

Fact 8.10.25. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are projectors. Then,

$$
(A+B)^{1 / 2} \leq A^{1 / 2}+B^{1 / 2}
$$

if and only if $A B=B A$. (Proof: See [1317, p. 30].)
Fact 8.10.26. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are positive semidefinite, and assume that $0 \leq A \leq B$. Then,

$$
\left(A+\frac{1}{4} A^{2}\right)^{1 / 2} \leq\left(B+\frac{1}{4} B^{2}\right)^{1 / 2}
$$

(Proof: See 1012.)
Fact 8.10.27. Let $A \in \mathbb{F}^{n \times n}$, assume that A is positive semidefinite, and let $B \in \mathbb{F}^{l \times n}$. Then, $B A B^{*}$ is positive definite if and only if $B\left(A+A^{2}\right) B^{*}$ is positive definite. (Proof: Diagonalize A using a unitary transformation and note that $B A^{1 / 2}$ and $B\left(A+A^{2}\right)^{1 / 2}$ have the same rank.)

Fact 8.10.28. Let $A, B, C \in \mathbb{F}^{n \times n}$, assume that A is positive definite, and assume that B and C are positive semidefinite. Then,

$$
2 \operatorname{tr}\left\langle B^{1 / 2} C^{1 / 2}\right\rangle \leq \operatorname{tr}\left(A B+A^{-1} C\right)
$$

Furthermore, there exists A such that equality holds if and only if $\operatorname{rank} B=$ $\operatorname{rank} C=\operatorname{rank} B^{1 / 2} C^{1 / 2}$. (Proof: See [35, 494].) (Remark: A matrix A for which equality holds is given in [35].) (Remark: Applications to linear systems are given in 1442.)

Fact 8.10.29. Let $A_{1}, \ldots, A_{k} \in \mathbb{F}^{n \times n}$, and assume that A_{1}, \ldots, A_{k} are positive definite. Then,

$$
n^{2}\left(\sum_{i=1}^{k} A_{i}\right)^{-1} \leq \sum_{i=1}^{k} A_{i}^{-1}
$$

(Remark: This result is an extension of Fact 1.15.37.)
Fact 8.10.30. Let $A_{1}, \ldots, A_{k} \in \mathbb{F}^{n \times n}$, assume that A_{1}, \ldots, A_{k} are positive semidefinite, and let $p, q \in \mathbb{R}$ satisfy $1 \leq p \leq q$. Then,

$$
\left(\frac{1}{k} \sum_{i=1}^{k} A_{i}^{p}\right)^{1 / p} \leq\left(\frac{1}{k} \sum_{i=1}^{k} A_{i}^{q}\right)^{1 / q}
$$

(Proof: See [193].)
Fact 8.10.31. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are positive definite, let $S \in \mathbb{F}^{n \times n}$ be such that $S A S^{*}=\operatorname{diag}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and $S B S^{*}=\operatorname{diag}\left(\beta_{1}, \ldots, \beta_{n}\right)$, and define

$$
C_{l} \triangleq S^{-1} \operatorname{diag}\left(\min \left\{\alpha_{1}, \beta_{1}\right\}, \ldots, \min \left\{\alpha_{n}, \beta_{n}\right\}\right) S^{-*}
$$

and

$$
C_{u} \triangleq S^{-1} \operatorname{diag}\left(\max \left\{\alpha_{1}, \beta_{1}\right\}, \ldots, \max \left\{\alpha_{n}, \beta_{n}\right\}\right) S^{-*}
$$

Then, C_{l} and C_{u} are independent of the choice of S, and

$$
\begin{aligned}
& C_{l} \leq A \leq C_{u} \\
& C_{l} \leq B \leq C_{u}
\end{aligned}
$$

(Proof: See [900].)
Fact 8.10.32. Let $A, B \in \mathbf{H}^{n \times n}$. Then, $\operatorname{glb}\{A, B\}$ exists in \mathbf{H}^{n} with respect to the ordering " \leq " if and only if either $A \leq B$ or $B \leq A$. (Proof: See 784.) (Remark: Let $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$. Then, $C=0$ is a lower bound for $\{A, B\}$. Furthermore, $D=\left[\begin{array}{cc}-1 & \sqrt{2} \\ \sqrt{2} & -1\end{array}\right]$, which has eigenvalues $-1-\sqrt{2}$ and $-1+\sqrt{2}$, is also a lower bound for $\{A, B\}$ but is not comparable with C.)

Fact 8.10.33. Let $A, B \in \mathbf{H}^{n \times n}$, and assume that A and B are positive semidefinite. Then, the following statements hold:
i) $\{A, B\}$ does not necessarily have a least upper bound in \mathbf{N}^{n}.
ii) If A and B are positive definite, then $\{A, B\}$ has a greatest lower bound in \mathbf{N}^{n} if and only if A and B are comparable.
iii) If A is a projector and $0 \leq B \leq I$, then $\{A, B\}$ has a greatest lower bound in \mathbf{N}^{n}.
iv) If $A, B \in \mathbf{N}^{n}$ are projectors, then the greatest lower bound of $\{A, B\}$ in \mathbf{N}^{n} is given by

$$
\operatorname{glb}\{A, B\}=2 A(A+B)^{+} B
$$

which is the projector onto $\mathcal{R}(A) \cap \mathcal{R}(B)$.
$v) \operatorname{glb}\{A, B\}$ exists in \mathbf{N}^{n} if and only if $\operatorname{glb}\left\{A, \operatorname{glb}\left\{A A^{+}, B B^{+}\right\}\right\}$and $\operatorname{glb}\left\{B, \operatorname{glb}\left\{A A^{+}, B B^{+}\right\}\right\}$are comparable. In this case,

$$
\operatorname{glb}\{A, B\}=\min \left\{\operatorname{glb}\left\{A, \operatorname{glb}\left\{A A^{+}, B B^{+}\right\}\right\}, \operatorname{glb}\left\{B, \operatorname{glb}\left\{A A^{+}, B B^{+}\right\}\right\}\right\}
$$

vi) $\operatorname{glb}\{A, B\}$ exists if and only if $\operatorname{sh}(A, B)$ and $\operatorname{sh}(B, A)$ are comparable, where $\operatorname{sh}(A, B) \triangleq \lim _{\alpha \rightarrow \infty}(\alpha B): A$. In this case,

$$
\operatorname{glb}\{A, B\}=\min \{\operatorname{sh}(A, B), \operatorname{sh}(B, A)\}
$$

(Proof: To prove i), let $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$, and suppose that Z is the least upper bound for A and B. Hence, $A \leq Z \leq I$ and $B \leq Z \leq I$, and thus $Z=I$. Next, note that $X \triangleq\left[\begin{array}{lll}4 / 3 & 2 / 3 \\ 2 / 3 & 4 / 3\end{array}\right]$ satisfies $A \leq X$ and $B \leq X$. However, it is not true that $Z \leq X$, which implies that $\{A, B\}$ does not have a least upper bound. See [239, p. 11]. Statement $i i$) is given in 441, 550, 1021. Statements $i i i$) and v) are given in 1021. Statement $i v$) is given in 39. The expression for the projector onto $\mathcal{R}(A) \cap \mathcal{R}(B)$ is given in Fact 6.4.41. Statement vi) is given in [50.) (Remark: The partially ordered cones \mathbf{H}^{n} and \mathbf{N}^{n} with the ordering " \leq " are not lattices.) (Remark: $\operatorname{sh}(A, B)$ is the shorted operator, see Fact 8.20.19, However, the usage here is more general since B need not be a projector. See 50].) (Remark: An alternative approach to showing that \mathbf{N}^{n} is not a lattice is given in 900 .) (Remark: The cone \mathbf{N} is a partially ordered set under the spectral order, see Fact 8.10.35.)

Fact 8.10.34. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are positive semidefinite, let p be a real number, and assume that either $p \in[1,2]$ or A and B are positive definite and $p \in[-1,0] \cup[1,2]$. Then,

$$
\left[\frac{1}{2}(A+B)\right]^{p} \leq \frac{1}{2}\left(A^{p}+B^{p}\right)
$$

(Proof: See 854.)
Fact 8.10.35. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are positive semidefinite, and let $p, q \in \mathbb{R}$ satisfy $p \geq q \geq 0$. Then,

$$
\left[\frac{1}{2}\left(A^{q}+B^{q}\right)\right]^{1 / q} \leq\left[\frac{1}{2}\left(A^{p}+B^{p}\right)\right]^{1 / p}
$$

Furthermore,

$$
\mu(A, B) \triangleq \lim _{p \rightarrow \infty}\left[\frac{1}{2}\left(A^{p}+B^{p}\right)\right]^{1 / p}
$$

exists and satisfies

$$
A \leq \mu(A, B), \quad B \leq \mu(A, B)
$$

(Proof: See [171].) (Remark: $\mu(A, B)$ is the least upper bound of A and B with respect to the spectral order. See [54, 795] and Fact 8.19.4)

Fact 8.10.36. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are positive semidefinite, let $p \in(1, \infty)$, and let $\alpha \in[0,1]$. Then,

$$
\alpha^{1-1 / p} A+(1-\alpha)^{1-1 / p} B \leq\left(A^{p}+B^{p}\right)^{1 / p}
$$

(Proof: See 54].)
Fact 8.10.37. Let $A, B, C \in \mathbb{F}^{n \times n}$. Then,
$A^{*} A+B^{*} B=(B+C A)^{*}\left(I+C C^{*}\right)^{-1}(B+C A)+\left(A-C^{*} B\right)\left(I+C^{*} C\right)^{-1}\left(A-C^{*} B\right)$.
(Proof: See [717.) (Remark: See Fact 8.13.29)
Fact 8.10.38. Let $A \in \mathbb{F}^{n \times n}$, let $\alpha \in \mathbb{R}$, and assume that either A is nonsingular or $\alpha \geq 1$. Then,

$$
\left(A^{*} A\right)^{\alpha}=A^{*}\left(A A^{*}\right)^{\alpha-1} A
$$

(Proof: Use the singular value decomposition.) (Remark: This result is given in [512, 526].)

Fact 8.10.39. Let $A, B \in \mathbb{F}^{n \times n}$, let $\alpha \in \mathbb{R}$, assume that A and B are positive semidefinite, and assume that either A and B are positive definite or $\alpha \geq 1$. Then,

$$
\left(A B^{2} A\right)^{\alpha}=A B\left(B A^{2} B\right)^{\alpha-1} B A
$$

(Proof: Use Fact 8.10.38)
Fact 8.10.40. Let $A, B, C \in \mathbb{F}^{n \times n}$, assume that A is positive semidefinite, B is positive definite, and $B=C^{*} C$, and let $\alpha \in[0,1]$. Then,

$$
C^{*}\left(C^{-*} A C^{-1}\right)^{\alpha} C \leq \alpha A+(1-\alpha) B
$$

If, in addition, $\alpha \in(0,1)$, then equality holds if and only if $A=B$. (Proof: See 995.)

Fact 8.10.41. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A is positive semidefinite, and let $p \in \mathbb{R}$. Furthermore, assume that either A and B are nonsingular or $p \geq 1$. Then,

$$
\left(B A B^{*}\right)^{p}=B A^{1 / 2}\left(A^{1 / 2} B^{*} B A^{1 / 2}\right)^{p-1} A^{1 / 2} B^{*}
$$

(Proof: See [526] or [530, p. 129].)
Fact 8.10.42. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are positive definite, and let $p \in \mathbb{R}$. Then,

$$
(B A B)^{p}=B A^{1 / 2}\left(A^{1 / 2} B^{2} A^{1 / 2}\right)^{p-1} A^{1 / 2} B
$$

(Proof: See [524, 674].)
Fact 8.10.43. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are positive semidefinite. Furthermore, if A is positive definite, then define

$$
A \# B \triangleq A^{1 / 2}\left(A^{-1 / 2} B A^{-1 / 2}\right)^{1 / 2} A^{1 / 2}
$$

whereas, if A is singular, then define

$$
A \# B \triangleq \lim _{\varepsilon \downarrow 0}(A+\varepsilon I) \# B
$$

Then, the following statements hold:
i) $A \# B$ is positive semidefinite.
ii) $A \# A=A$.
iii) $A \# B=B \# A$.
iv) $\mathcal{R}(A \# B)=\mathcal{R}(A) \cap \mathcal{R}(B)$.
v) If $S \in \mathbb{F}^{m \times n}$ is right invertible, then $\left(S A S^{*}\right) \#\left(S B S^{*}\right) \leq S(A \# B) S^{*}$.
vi) If $S \in \mathbb{F}^{n \times n}$ is nonsingular, then $\left(S A S^{*}\right) \#\left(S B S^{*}\right)=S(A \# B) S^{*}$.
vii) If $C, D \in \mathbf{P}^{n}, A \leq C$, and $B \leq D$, then $A \# B \leq C \# D$.
viii) If $C, D \in \mathbf{P}^{n}$, then

$$
(A \# C)+(C \# D) \leq(A+B) \#(C+D)
$$

ix) If $A \leq B$, then

$$
4 A \#(B-A)=[A+A \#(4 B-3 A)] \#[-A+A \#(4 B-3 A)]
$$

$x)$ If $\alpha \in[0,1]$, then

$$
\sqrt{\alpha}(A \# B) \pm \frac{1}{2} \sqrt{1-\alpha}(A-B) \leq \frac{1}{2}(A+B)
$$

xi) $A \# B=\max \left\{X \in \mathbf{H}:\left[\begin{array}{ll}A & X \\ X & B\end{array}\right]\right.$ is positive semidefinite $\}$.
xii) Let $X \in \mathbb{F}^{n \times n}$, and assume that X is Hermitian and

$$
\left[\begin{array}{ll}
A & X \\
X & B
\end{array}\right] \geq 0
$$

Then,

$$
-A \# B \leq X \leq A \# B
$$

Furthermore, $\left[\begin{array}{cc}A & A \# B \\ A \# B & B\end{array}\right]$ and $\left[\begin{array}{cc}A & -A \# B \\ -A \# B & B\end{array}\right]$ are positive semidefinite.
xiii) If $S \in \mathbb{F}^{n \times n}$ is unitary and $A^{1 / 2} S B^{1 / 2}$ is positive semidefinite, then $A \# B=$ $A^{1 / 2} S B^{1 / 2}$.

Now, assume that A is positive definite. Then, the following statements hold:
xiv) $(A \# B) A^{-1}(A \# B)=B$.
$x v$) For all $\alpha \in \mathbb{R}, A \# B=A^{1-\alpha}\left(A^{\alpha-1} B A^{-\alpha}\right)^{1 / 2} A^{\alpha}$.
xvi) $A \# B=A\left(A^{-1} B\right)^{1 / 2}=\left(B A^{-1}\right)^{1 / 2} A$.
xvii) $A \# B=(A+B)\left[(A+B)^{-1} A(A+B)^{-1} B\right]^{1 / 2}$.

Now, assume that A and B are positive definite. Then, the following statements hold:
$x v i i i) ~ A \# B$ is positive definite.
xix) $S \triangleq\left(A^{-1 / 2} B A^{-1 / 2}\right)^{1 / 2} A^{1 / 2} B^{-1 / 2}$ is unitary, and $A \# B=A^{1 / 2} S B^{1 / 2}$.
$x x) \operatorname{det} A \# B=\sqrt{(\operatorname{det} A) \operatorname{det} B}$.
$x x i) \operatorname{det}(A \# B)^{2}=\operatorname{det} A B$.
xxii) $(A \# B)^{-1}=A^{-1} \# B^{-1}$.
xxiii) Let $A_{0} \triangleq A$ and $B_{0} \triangleq B$, and, for all $k \in \mathbb{N}$, define $A_{k+1} \triangleq 2\left(A_{k}^{-1}+B_{k}^{-1}\right)^{-1}$ and $B_{k+1} \triangleq \frac{1}{2}\left(A_{k}+B_{k}\right)$. Then, for all $k \in \mathbb{N}$,

$$
A_{k} \leq A_{k+1} \leq A \# B \leq B_{k+1} \leq B_{k}
$$

and

$$
\lim _{k \rightarrow \infty} A_{k}=\lim _{k \rightarrow \infty} B_{k}=A \# B
$$

xxiv) For all $\alpha \in(-1,1),\left[\begin{array}{cc}A & \alpha A \# B \\ \alpha A \# B & B\end{array}\right]$ is positive definite.
$x x v) \operatorname{rank}\left[\begin{array}{cc}A & A \# B \\ A \# B & B\end{array}\right]=\operatorname{rank}\left[\begin{array}{cc}A & -A \# B \\ -A \# B & B\end{array}\right]=n$.
Furthermore, the following statements hold:
xxvi) If $n=2$, then

$$
A \# B=\frac{\sqrt{\alpha \beta}}{\sqrt{\operatorname{det}\left(\alpha^{-1} A+\beta^{-1} B\right)}}\left(\alpha^{-1} A+\beta^{-1} B\right)
$$

xxvii) If $0<A \leq B$, then $\phi:[0, \infty) \mapsto \mathbf{P}^{n}$ defined by $\phi(p) \triangleq A^{-p} \# B^{p}$ is nondecreasing.
xxviii) If B is positive definite and $A \leq B$, then

$$
A^{2} \# B^{-2} \leq A \# B^{-1} \leq I
$$

xxix) If A and B are positive semidefinite, then

$$
\left(B A^{2} B\right)^{1 / 2} \leq B^{1 / 2}\left(B^{1 / 2} A B^{1 / 2}\right)^{1 / 2} B^{1 / 2} \leq B^{2}
$$

Finally, let $X \in \mathbf{H}^{n}$. Then, the following statements are equivalent:
$x x x)\left[\begin{array}{ll}A & X \\ X & B\end{array}\right]$ is positive semidefinite.
xxxi) $X A^{-1} X \leq B$.
xxxii) $X B^{-1} X \leq A$.
xxxiii) $-A \# B \leq X \leq A \# B$.
(Proof: See 45, 486, 583, 877, 1314. For $x i i i$), $x i x$), and $x x v i$), see 201, pp. 108, 109, 111]. For xxvi), see [46]. Statement xxvii) implies xxviii), which, in turn, implies $x x i x)$.) (Remark: The square roots in $x v i$) indicate a semisimple matrix with positive diagonal entries.) (Remark: $A \# B$ is the geometric mean of A and B. A related mean is defined in 486. Alternative means and their differences are considered in 20. Geometric means for an arbitrary number of positive-definite matrices are discussed in 57, 809, 1014, 1084.) (Remark: See Fact 12.23.4) (Remark: Inverse problems are considered in 41.) (Remark: xxix) interpolates (8.6.6).) (Remark:

Compare statements $x i i i$) and $x i x$) with Fact 8.11.6.) (Remark: See Fact [0.10.4.) (Problem: For singular A and B, express $A \# B$ in terms of generalized inverses.)

Fact 8.10.44. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are Hermitian. Then, the following statements are equivalent:
i) $A \leq B$.
ii) For all $t \geq 0, I \leq e^{-t A} \# e^{t B}$.
iii) $\phi:[0, \infty) \mapsto \mathbf{P}^{n}$ defined by $\phi(t) \triangleq e^{-t A} \# e^{t B}$ is nondecreasing.
(Proof: See 46.)
Fact 8.10.45. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are positive semidefinite, and let $\alpha \in[0,1]$. Furthermore, if A is positive definite, then define

$$
A \#_{\alpha} B \triangleq A^{1 / 2}\left(A^{-1 / 2} B A^{-1 / 2}\right)^{\alpha} A^{1 / 2}
$$

whereas, if A is singular, then define

$$
A \#_{\alpha} B \triangleq \lim _{\varepsilon \downarrow 0}(A+\varepsilon I) \#_{\alpha} B
$$

Then, the following statements hold:
i) $A \#_{\alpha} B=B \#_{1-\alpha} A$.
ii) $\left(A \#{ }_{\alpha} B\right)^{-1}=A^{-1} \#_{\alpha} B^{-1}$.

Fact 8.10.46. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are positive definite, and let $\alpha \in[0,1]$. Then,

$$
\left[\alpha A^{-1}+(1-\alpha) B^{-1}\right]^{-1} \leq A^{1 / 2}\left(A^{-1 / 2} B A^{-1 / 2}\right)^{1-\alpha} A^{1 / 2} \leq \alpha A+(1-\alpha) B
$$

or, equivalently,

$$
\left[\alpha A^{-1}+(1-\alpha) B^{-1}\right]^{-1} \leq A \#_{1-\alpha} B \leq \alpha A+(1-\alpha) B
$$

or, equivalently,

$$
[\alpha A+(1-\alpha) B]^{-1} \leq A^{-1 / 2}\left(A^{-1 / 2} B A^{-1 / 2}\right)^{\alpha-1} A^{-1 / 2} \leq \alpha A^{-1}+(1-\alpha) B^{-1}
$$

Consequently,

$$
\operatorname{tr}[\alpha A+(1-\alpha) B]^{-1} \leq \operatorname{tr}\left[A^{-1}\left(A^{-1 / 2} B A^{-1 / 2}\right)^{\alpha-1}\right] \leq \operatorname{tr}\left[\alpha A^{-1}+(1-\alpha) B^{-1}\right]
$$

and

$$
\frac{2 \alpha \beta}{(\alpha+\beta)^{2}}(A+B) \leq 2\left(A^{-1}+B^{-1}\right)^{-1} \leq A \# B \leq \frac{1}{2}(A+B) \leq \frac{(\alpha+\beta)^{2}}{2 \alpha \beta}\left(A^{-1}+B^{-1}\right)^{-1}
$$

where

$$
\alpha \triangleq \min \left\{\lambda_{\min }(A), \lambda_{\min }(B)\right\}
$$

and

$$
\beta \triangleq \max \left\{\lambda_{\max }(A), \lambda_{\max }(B)\right\}
$$

(Remark: The left-hand inequality in the first string of inequalities is the Young inequality. See [530, p. 122], Fact 1.10.21, and Fact 8.9.42, Setting $B=I$ yields

Fact 8.9.42, The fourth string of inequalities improves the fact that $\phi(A)=A^{-1}$ is convex as shown by $i v$) of Proposition 8.6.17. The last string of inequalities follows from the fourth string of inequalities with $\alpha=1 / 2$ along with results given in 1283 and [1490, p. 174].) (Remark: Related inequalities are given by Fact 8.12 .26 and Fact 8.12.27. See also Fact 8.20.18,

Fact 8.10.47. Let $\left(x_{i}\right)_{i=1}^{\infty} \subset \mathbb{R}^{n}$, assume that $\sum_{i=1}^{\infty} x_{i}$ exists, and let $\left(A_{i}\right)_{i=1}^{\infty}$ $\subset \mathbf{N}^{n}$ be such that $A_{i} \leq A_{i+1}$ for all $i \in \mathbb{P}$ and $\lim _{i \rightarrow \infty} \operatorname{tr} A_{i}=\infty$. Then,

$$
\lim _{k \rightarrow \infty}\left(\operatorname{tr} A_{k}\right)^{-1} \sum_{i=1}^{k} A_{i} x_{i}=0 .
$$

If, in addition A_{i} is positive definite for all $i \in \mathbb{P}$ and $\left\{\lambda_{\max }\left(A_{i}\right) / \lambda_{\min }\left(A_{i}\right)\right\}_{i=1}^{\infty}$ is bounded, then

$$
\lim _{k \rightarrow \infty} A_{k}^{-1} \sum_{i=1}^{k} A_{i} x_{i}=0
$$

(Proof: See 33.) (Remark: These identities are matrix versions of the Kronecker lemma.) (Remark: Extensions are given in 623.)

Fact 8.10.48. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are positive definite, assume that $A \leq B$, and let $p \geq 1$. Then,

$$
A^{p} \leq K\left(\lambda_{\min }(A), \lambda_{\min }(A), p\right) B^{p} \leq\left[\frac{\lambda_{\max }(A)}{\lambda_{\min }(A)}\right]^{p-1} B^{p}
$$

where

$$
K(a, b, p) \triangleq \frac{a^{p} b-a b^{p}}{(p-1)(a-b)}\left[\frac{(p-1)\left(a^{p}-b^{p}\right)}{p\left(a^{p} b-a b^{p}\right)}\right]^{p}
$$

(Proof: See [249, 528] and [530, pp. 193, 194].) (Remark: $K(a, b, p)$ is the Fan constant.)

Fact 8.10.49. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A is positive definite and B is positive semidefinite, and let $p \geq 1$. Then, there exist unitary matrices $U, V \in \mathbb{F}^{n \times n}$ such that

$$
\frac{1}{K\left(\lambda_{\min }(A), \lambda_{\min }(A), p\right)} U(B A B)^{p} U^{*} \leq B^{p} A^{p} B^{p} \leq K\left(\lambda_{\min }(A), \lambda_{\min }(A), p\right) V(B A B)^{p} V^{*}
$$

where $K(a, b, p)$ is the Fan constant defined in Fact 8.10.48.) (Proof: See 249.) (Remark: See Fact 8.12.20, Fact 8.18.26, and Fact 9.9.17.)

Fact 8.10.50. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A is positive definite, B is positive semidefinite, and $B \leq A$, and let $p \geq 1$ and $r \geq 1$. Then,

$$
\left[A^{r / 2}\left(A^{-1 / 2} B^{p} A^{-1 / 2}\right)^{r} A^{r / 2}\right]^{1 / p} \leq A^{r}
$$

In particular,

$$
\left\langle A^{-1 / 2} B^{p} A^{1 / 2}\right\rangle^{2 / p} \leq A^{2}
$$

(Proof: See 53].)

Fact 8.10.51. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A is positive definite and B is positive semidefinite. Then, the following statements are equivalent:
i) $B \leq A$.
ii) For all $p, q, r, t \in \mathbb{R}$ such that $p \geq 1, r \geq 0, t \geq 0$, and $q \in[1,2]$,

$$
\left[A^{r / 2}\left(A^{t / 2} B^{p} A^{t / 2}\right)^{q} A^{r / 2}\right]^{\frac{r+t+1}{r+q t+q p}} \leq A^{r+t+1}
$$

iii) For all $p, q, r, \tau \in \mathbb{R}$ such that $p \geq 1, r \geq \tau, q \geq 1$, and $\tau \in[0,1]$,

$$
\left[A^{r / 2}\left(A^{-\tau / 2} B^{p} A^{-\tau / 2}\right)^{q} A^{r / 2}\right]^{\frac{r-\tau}{r-q \tau+q p}} \leq A^{r-\tau}
$$

$i v)$ For all $p, q, r, \tau \in \mathbb{R}$ be such that $p \geq 1, r \geq \tau, \tau \in[0,1]$, and $q \geq 1$,

$$
\left[A^{r / 2}\left(A^{-\tau / 2} B^{p} A^{-\tau / 2}\right)^{q} A^{r / 2}\right]^{\frac{r-\tau+1}{r-q \tau+q p}} \leq A^{r-\tau+1}
$$

In particular, if $B \leq A, p \geq 1$, and $r \geq 1$, then

$$
\left[A^{r / 2}\left(A^{-1 / 2} B^{p} A^{-1 / 2}\right)^{r} A^{r / 2}\right]^{\frac{r-1}{p r}} \leq A^{r-1}
$$

(Proof: Condition $i i$) is given in 512, $i i i$) appears in 531, and $i v$) appears in 512 . See also 513.) (Remark: Setting $q=r$ and $\tau=1$ in $i v$) yields Fact 8.10.50)

Fact 8.10.52. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are positive definite. Then, the following statements are equivalent:
i) $B \leq A$.
ii) There exist $r \in[0, \infty), p \in[1, \infty)$, and a nonnegative integer k such that $(k+1)(r+1)=p+r$ and

$$
B^{r} \leq\left(B^{r / 2} A^{p} B^{r / 2}\right)^{\frac{1}{k+1}}
$$

iii) There exist $r \in[0, \infty), p \in[1, \infty)$, and a nonnegative integer k such that $(k+1)(r+1)=p+r$ and

$$
\left(A^{r / 2} B^{p} A^{r / 2}\right)^{\frac{1}{k+1}} \leq A^{r}
$$

(Proof: See [914.) (Remark: See Fact 8.19.1)
Fact 8.10.53. Each of the following functions $\phi:(0, \infty) \mapsto(0, \infty)$ yields an increasing function $\phi: \mathbf{P}^{n} \mapsto \mathbf{P}^{n}$:
i) $\phi(x)=\frac{x^{p+1 / 2}}{x^{2 p}+1}$, where $p \in[0,1 / 2]$.
ii) $\phi(x)=x(1+x) \log (1+1 / x)$.
iii) $\phi(x)=\frac{1}{(1+x) \log (1+1 / x)}$.
iv) $\phi(x)=\frac{x-1-\log x}{(\log x)^{2}}$.
v) $\phi(x)=\frac{x(\log x)^{2}}{x-1-\log x}$.
vi) $\phi(x)=\frac{x(x+2) \log (x+2)}{(x+1)^{2}}$.
vii) $\phi(x)=\frac{x(x+1)}{(x+2) \log (x+2)}$.
viii) $\phi(x)=\frac{\left(x^{2}-1\right) \log (1+x)}{x^{2}}$.
ix) $\phi(x)=\frac{x(x-1)}{(x+1) \log (x+1)}$.
x) $\phi(x)=\frac{(x-1)^{2}}{(x+1) \log x}$.
xi) $\phi(x)=\frac{p-1}{p}\left(\frac{x^{p}-1}{x^{p-1}-1}\right)$, where $p \in[-1,2]$.
xii) $\phi(x)=\frac{x-1}{\log x}$.
xiii) $\phi(x)=\sqrt{x}$.
xiv) $\phi(x)=\frac{2 x}{x+1}$.
$x v) \phi(x)=\frac{x-1}{x^{p}-1}$, where $p \in(0,1]$.
(Proof: See [534, 1084]. To obtain xii), xiii), and xiv), set $p=1,1 / 2,-1$, respectively, in $x i$).)

Fact 8.10.54. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are positive semidefinite, $A \leq B$, and $A B=B A$. Then, $A^{2} \leq B^{2}$. (Proof: See [110].)

8.11 Facts on Identities and Inequalities for Partitioned Matrices

Fact 8.11.1. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is positive semidefinite. Then, the following statements hold:
i) $\left[\begin{array}{cc}A & A \\ A & A\end{array}\right]$ and $\left[\begin{array}{cc}A & -A \\ -A & A\end{array}\right]$ are positive semidefinite.
ii) If $\left[\begin{array}{cc}\alpha & \beta \\ \bar{\beta} & \gamma\end{array}\right] \in \mathbb{F}^{2 \times 2}$ is positive semidefinite, then $\left[\begin{array}{cc}\alpha A & \beta A \\ \bar{\beta} A & \gamma A\end{array}\right]$ is positive semidefinite.
iii) If A and $\left[\begin{array}{cc}\alpha & \beta \\ \bar{\beta} & \gamma\end{array}\right]$ are positive definite, then $\left[\begin{array}{cc}\alpha A & \beta A \\ \bar{\beta} A & \gamma A\end{array}\right]$ is positive definite.
(Proof: Use Fact 7.4.16.
Fact 8.11.2. Let $A \in \mathbb{F}^{n \times n}, B \in \mathbb{F}^{n \times m}, C \in \mathbb{F}^{m \times m}$, assume that $\left[\begin{array}{cc}A & B \\ B^{*} & C_{C}\end{array}\right] \in$ $\mathbb{F}^{(n+m) \times(n+m)}$ is positive semidefinite, and assume that $\left[\begin{array}{c}\alpha \\ \beta\end{array}\right] \in \mathbb{F}^{2 \times 2}$ is positive semidefinite. Then, the following statements hold:
i) $\left[\begin{array}{ll}\alpha 1_{n \times n} & \beta 1_{n \times m} \\ \bar{\beta} 1_{m \times n} & \gamma 1_{m \times m}\end{array}\right]$ is positive semidefinite.
ii) $\left[\begin{array}{cc}\alpha A & \beta B \\ \bar{\beta} B^{*} & \gamma C\end{array}\right]$ is positive semidefinite.
iii) If $\left[\begin{array}{cc}A & B \\ B^{*} & C\end{array}\right]$ is positive definite and α and γ are positive, then $\left[\begin{array}{cc}\alpha A & \beta B \\ \bar{\beta} B^{*} & \gamma C\end{array}\right]$ is positive definite.
(Proof: To prove i), use Proposition 8.2.4. Statements $i i$) and $i i i$) follow from Fact 8.21.12,

Fact 8.11.3. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are positive semidefinite, and assume that A and B are partitioned identically as $A=\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{12}^{*} & A_{22}\end{array}\right]$ and $B=$ $\left[\begin{array}{lll}B_{11} & B_{12} \\ B_{12}^{*} & B_{22}\end{array}\right]$. Then,

$$
A_{22}\left|A+B_{22}\right| B \leq\left(A_{22}+B_{22}\right) \mid(A+B)
$$

Now, assume that A_{22} and B_{22} are positive definite. Then, equality holds if and only if $A_{12} A_{22}^{-1}=B_{12} B_{22}^{-1}$. (Proof: See [485, 1057].) (Remark: The first inequality, which follows from $x v i i$) of Proposition 8.6.17 is an extension of Bergstrom's inequality, which corresponds to the case in which A_{11} is a scalar. See Fact 8.15.18.

Fact 8.11.4. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are positive semidefinite, assume that A and B are partitioned identically as $A=\left[\begin{array}{ccc}A_{11} & A_{12} \\ A_{12}^{*} & A_{22}\end{array}\right]$ and $B=\left[\begin{array}{ll}B_{11} & B_{12} \\ B_{12}^{*} & B_{22}\end{array}\right]$, and assume that A_{11} and B_{11} are positive definite. Then,

$$
\left(A_{12}+B_{12}\right)^{*}\left(A_{11}+B_{11}\right)^{-1}\left(A_{12}+B_{12}\right) \leq A_{12}^{*} A_{11}^{-1} A_{12}+B_{12}^{*} B_{11}^{-1} B_{12}
$$

and

$$
\begin{aligned}
& \operatorname{rank} {\left[A_{12}^{*} A_{11}^{-1} A_{12}+B_{12}^{*} B_{11}^{-1} B_{12}-\left(A_{12}+B_{12}\right)^{*}\left(A_{11}+B_{11}\right)^{-1}\left(A_{12}+B_{12}\right)\right] } \\
& \quad=\operatorname{rank}\left(A_{12}-A_{11} B_{11}^{-1} B_{12}\right)
\end{aligned}
$$

Furthermore,

$$
\frac{\operatorname{det} A}{\operatorname{det} A_{11}}+\frac{\operatorname{det} B}{\operatorname{det} B_{11}} \leq \frac{\operatorname{det}(A+B)}{\operatorname{det}\left(A_{11}+B_{11}\right)}=\operatorname{det}\left[\left(A_{11}+B_{11}\right) \mid(A+B)\right] .
$$

(Remark: The last inequality generalizes Fact 8.13.17.)
Fact 8.11.5. Let $A \in \mathbb{F}^{n \times n}, B \in \mathbb{F}^{n \times m}$, and $C \in \mathbb{F}^{m \times m}$, and define $\mathcal{A} \triangleq$ $\left[\begin{array}{cc}A & B \\ B^{*} & C\end{array}\right]$. Then, the following statements hold:
i) If \mathcal{A} is positive semidefinite, then

$$
0 \leq B C^{+} B^{*} \leq A
$$

ii) If \mathcal{A} is positive definite, then C is positive definite and

$$
0 \leq B C^{-1} B^{*}<A
$$

Now, assume that $n=m$. Then, the following statements hold:
iii) If \mathcal{A} is positive semidefinite, then

$$
-A-C \leq B+B^{*} \leq A+C
$$

iv) If \mathcal{A} is positive definite, then

$$
-A-C<B+B^{*}<A+C
$$

(Proof: The first two statements follow from Proposition 8.2.4. To prove the last
two statements, consider $S \mathcal{A} S^{\mathrm{T}}$, where $S \triangleq\left[\begin{array}{ll}I & I\end{array}\right]$ and $S \triangleq\left[\begin{array}{ll}I & -I\end{array}\right]$.) (Remark: See Fact 8.21.40)

Fact 8.11.6. Let $A \in \mathbb{F}^{n \times n}, B \in \mathbb{F}^{n \times m}$, and $C \in \mathbb{F}^{m \times m}$, and define $\mathcal{A} \triangleq$ $\left[\begin{array}{cc}A & B \\ B^{*} & B \\ C\end{array}\right]$. Then, \mathcal{A} is positive semidefinite if and only if A and C are positive semidefinite and there exists a semicontractive matrix $S \in \mathbb{F}^{n \times m}$ such that

$$
B=A^{1 / 2} S C^{1 / 2}
$$

(Proof: See 719.) (Remark: Compare this result with statements xiii) and xix) of Fact 8.10.43)

Fact 8.11.7. Let $A, B, C \in \mathbb{F}^{n \times n}$, assume that $\left[\begin{array}{cc}A & B \\ B^{*} & C\end{array}\right] \in \mathbb{F}^{2 n \times 2 n}$ is positive semidefinite, and assume that $A B=B A$. Then,

$$
B^{*} B \leq A^{1 / 2} C A^{1 / 2}
$$

(Proof: See 1492.)
Fact 8.11.8. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are Hermitian. Then, $-A \leq B \leq A$ if and only if $\left[\begin{array}{cc}A & B \\ B & A\end{array}\right]$ is positive semidefinite. Furthermore, $-A<B<A$ if and only if $\left[\begin{array}{cc}A & B \\ B & A\end{array}\right]$ is positive definite. (Proof: Note that

$$
\left.\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
I & -I \\
I & I
\end{array}\right]\left[\begin{array}{cc}
A & B \\
B & A
\end{array}\right] \frac{1}{\sqrt{2}}\left[\begin{array}{cc}
I & I \\
-I & I
\end{array}\right]=\left[\begin{array}{cc}
A-B & 0 \\
0 & A+B
\end{array}\right] .\right)
$$

Fact 8.11.9. Let $A \in \mathbb{F}^{n \times n}, B \in \mathbb{F}^{n \times m}$, and $C \in \mathbb{F}^{m \times m}$, assume that $\left[\begin{array}{cc}A & B \\ B^{*} & B\end{array}\right]$ is positive semidefinite, and let $r \triangleq \operatorname{rank} B$. Then, for all $k=1, \ldots, r$,

$$
\prod_{i=1}^{k} \sigma_{i}(B) \leq \prod_{i=1}^{k} \max \left\{\lambda_{i}(A), \lambda_{i}(C)\right\}
$$

(Proof: See 1492 .)
Fact 8.11.10. Let $A \in \mathbb{F}^{n \times n}, B \in \mathbb{F}^{n \times m}$, and $C \in \mathbb{F}^{m \times m}$, define $\mathcal{A} \triangleq\left[\begin{array}{c}A \\ B^{*} \\ C\end{array}\right]$, and assume that \mathcal{A} is positive definite. Then,

$$
\operatorname{tr} A^{-1}+\operatorname{tr} C^{-1} \leq \operatorname{tr} \mathcal{A}^{-1}
$$

Furthermore, B is nonzero if and only if

$$
\operatorname{tr} A^{-1}+\operatorname{tr} C^{-1}<\operatorname{tr} \mathcal{A}^{-1}
$$

(Proof: Use Proposition 8.2.5 or see 995.)
Fact 8.11.11. Let $A \in \mathbb{F}^{n \times m}$, and define

$$
\mathcal{A} \triangleq\left[\begin{array}{cc}
\left\langle A^{*}\right\rangle & A \\
A^{*} & \langle A\rangle
\end{array}\right]
$$

Then, \mathcal{A} is positive semidefinite. If, in addition, $n=m$, then

$$
-\left\langle A^{*}\right\rangle-\langle A\rangle \leq A+A^{*} \leq\left\langle A^{*}\right\rangle+\langle A\rangle
$$

(Proof: Use Fact 8.11.5.) (Remark: See Fact 8.9.29 and Fact 8.20.4)

Fact 8.11.12. Let $A \in \mathbb{F}^{n \times n}$, assume that A is normal, and define

$$
\mathcal{A} \triangleq\left[\begin{array}{cc}
\langle A\rangle & A \\
A^{*} & \langle A\rangle
\end{array}\right] .
$$

Then, \mathcal{A} is positive semidefinite. (Proof: See [711 p. 213].)
Fact 8.11.13. Let $A \in \mathbb{F}^{n \times n}$, and define

$$
\mathcal{A} \triangleq\left[\begin{array}{cc}
I & A \\
A^{*} & I
\end{array}\right] .
$$

Then, \mathcal{A} is (positive semidefinite, positive definite) if and only if A is (semicontractive, contractive).

Fact 8.11.14. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{n \times l}$, and define

$$
\mathcal{A} \triangleq\left[\begin{array}{ll}
A^{*} A & A^{*} B \\
B^{*} A & B^{*} B
\end{array}\right] .
$$

Then, \mathcal{A} is positive semidefinite, and

$$
0 \leq A^{*} B\left(B^{*} B\right)^{+} B^{*} A \leq A^{*} A .
$$

If $m=l$, then

$$
-A^{*} A-B^{*} B \leq A^{*} B+B^{*} A \leq A^{*} A+B^{*} B .
$$

If, in addition, $m=l=1$ and $B^{*} B \neq 0$, then

$$
\left|A^{*} B\right|^{2} \leq A^{*} A B^{*} B
$$

(Remark: This result is the Cauchy-Schwarz inequality. See Fact 8.13.22) (Remark: See Fact 8.21.41)

Fact 8.11.15. Let $A, B \in \mathbb{F}^{n \times m}$, and define

$$
\mathcal{A} \triangleq\left[\begin{array}{ll}
I+A^{*} A & I-A^{*} B \\
I-B^{*} A & I+B^{*} B
\end{array}\right]
$$

and

$$
\mathcal{B} \triangleq\left[\begin{array}{cc}
I+A^{*} A & I+A^{*} B \\
I+B^{*} A & I+B^{*} B
\end{array}\right]
$$

Then, \mathcal{A} and \mathcal{B} are positive semidefinite,

$$
0 \leq\left(I-A^{*} B\right)\left(I+B^{*} B\right)^{-1}\left(I-B^{*} A\right) \leq I+A^{*} A
$$

and

$$
0 \leq\left(I+A^{*} B\right)\left(I+B^{*} B\right)^{-1}\left(I+B^{*} A\right) \leq I+A^{*} A .
$$

(Remark: See Fact 8.13.25)
Fact 8.11.16. Let $A, B \in \mathbb{F}^{n \times m}$. Then,

$$
I+A A^{*}=(A+B)\left(I+B^{*} B\right)^{-1}(A+B)^{*}+\left(I-A B^{*}\right)\left(I+B B^{*}\right)^{-1}\left(I-B A^{*}\right) .
$$

Therefore,

$$
(A+B)\left(I+B^{*} B\right)^{-1}(A+B)^{*} \leq I+A A^{*}
$$

(Proof: Set $C=A$ in Fact 2.16.23, See also [1490, p. 185].)
Fact 8.11.17. Let $A \in \mathbb{F}^{n \times n}$ and $B \in \mathbb{F}^{n \times m}$, assume that A is positive semidefinite, and define

$$
\mathcal{A} \triangleq\left[\begin{array}{cc}
A & A B \\
B^{*} A & B^{*} A B
\end{array}\right]
$$

Then,

$$
\mathcal{A}=\left[\begin{array}{c}
A^{1 / 2} \\
B^{*} A^{1 / 2}
\end{array}\right]\left[\begin{array}{ll}
A^{1 / 2} & A^{1 / 2} B
\end{array}\right]
$$

and thus \mathcal{A} is positive semidefinite. Furthermore,

$$
0 \leq A B\left(B^{*} A B\right)^{+} B^{*} A \leq A
$$

Now, assume that $n=m$. Then,

$$
-A-B^{*} A B \leq A B+B^{*} A \leq A+B^{*} A B
$$

Fact 8.11.18. Let $A \in \mathbb{F}^{n \times n}$ and $B \in \mathbb{F}^{n \times m}$, assume that A is positive definite, and define

$$
\mathcal{A} \triangleq\left[\begin{array}{cc}
A & B \\
B^{*} & B^{*} A^{-1} B
\end{array}\right] .
$$

Then,

$$
\mathcal{A}=\left[\begin{array}{c}
A^{1 / 2} \\
B^{*} A^{-1 / 2}
\end{array}\right]\left[\begin{array}{ll}
A^{1 / 2} & A^{-1 / 2} B
\end{array}\right]
$$

and thus \mathcal{A} is positive semidefinite. Furthermore,

$$
0 \leq B\left(B^{*} A^{-1} B\right)^{+} B^{*} \leq A
$$

Furthermore, if $\operatorname{rank} B=m$, then

$$
\operatorname{rank}\left[A-B\left(B^{*} A^{-1} B\right)^{-1} B^{*}\right]=n-m
$$

Now, assume that $n=m$. Then,

$$
-A-B^{*} A^{-1} B \leq B+B^{*} \leq A+B^{*} A^{-1} B
$$

(Proof: Use Fact 8.11.5) (Remark: See Fact 8.21.42) (Remark: The matrix $I-A^{-1 / 2} B\left(B^{*} A^{-1} B\right)^{+} B^{*} A^{-1 / 2}$ is a projector.)

Fact 8.11.19. Let $A \in \mathbb{F}^{n \times n}$ and $B \in \mathbb{F}^{n \times m}$, assume that A is positive definite, and define

$$
\mathcal{A} \triangleq\left[\begin{array}{cc}
B^{*} A B & B^{*} B \\
B^{*} B & B^{*} A^{-1} B
\end{array}\right]
$$

Then,

$$
\mathcal{A}=\left[\begin{array}{c}
B^{*} A^{1 / 2} \\
B^{*} A^{-1 / 2}
\end{array}\right]\left[\begin{array}{ll}
A^{1 / 2} B & A^{-1 / 2} B
\end{array}\right]
$$

and thus \mathcal{A} is positive semidefinite. Furthermore,

$$
0 \leq B^{*} B\left(B^{*} A^{-1} B\right)^{+} B^{*} B \leq B^{*} A B
$$

Now, assume that $n=m$. Then,

$$
-B^{*} A B-B^{*} A^{-1} B \leq 2 B^{*} B \leq B^{*} A B+B^{*} A^{-1} B .
$$

(Proof: Use Fact 8.11.5.) (Remark: See Fact 8.13.23 and Fact 8.21.42,)
Fact 8.11.20. Let $A, B \in \mathbb{F}^{n \times m}$, let $\alpha, \beta \in(0, \infty)$, and define

$$
\mathcal{A} \triangleq\left[\begin{array}{cc}
\beta^{-1} I+\alpha A^{*} A & (A+B)^{*} \\
A+B & \alpha^{-1} I+\beta B B^{*}
\end{array}\right]
$$

Then,

$$
\begin{aligned}
\mathcal{A} & =\left[\begin{array}{cc}
\beta^{-1 / 2} I & \alpha^{1 / 2} A^{*} \\
\beta^{1 / 2} B & \alpha^{-1 / 2} I
\end{array}\right]\left[\begin{array}{cc}
\beta^{-1 / 2} I & \beta^{1 / 2} B^{*} \\
\alpha^{1 / 2} A & \alpha^{-1 / 2} I
\end{array}\right] \\
& =\left[\begin{array}{cc}
\alpha A^{*} A & A^{*} \\
A & \alpha^{-1} I
\end{array}\right]+\left[\begin{array}{cc}
\beta^{-1} I & B^{*} \\
B & \beta B B^{*}
\end{array}\right]
\end{aligned}
$$

and thus \mathcal{A} is positive semidefinite. Furthermore,

$$
(A+B)^{*}\left(\alpha^{-1} I+\beta B B^{*}\right)^{-1}(A+B) \leq \beta^{-1} I+\alpha A^{*} A
$$

Now, assume that $n=m$. Then,

$$
\begin{aligned}
-\left(\beta^{-1 / 2}+\alpha^{-1 / 2}\right) I-\alpha A^{*} A-\beta B B^{*} & \leq A+B+(A+B)^{*} \\
& \leq\left(\beta^{-1 / 2}+\alpha^{-1 / 2}\right) I+\alpha A^{*} A+\beta B B^{*}
\end{aligned}
$$

(Remark: See Fact 8.13.26 and Fact 8.21.43,)
Fact 8.11.21. Let $A, B \in \mathbb{F}^{n \times m}$, and assume that $I-A^{*} A$ and thus $I-A A^{*}$ are nonsingular. Then,

$$
I-B^{*} B-\left(I-B^{*} A\right)\left(I-A^{*} A\right)^{-1}\left(I-A^{*} B\right)=-(A-B)^{*}\left(I-A A^{*}\right)^{-1}(A-B)
$$

Now, assume that $I-A^{*} A$ is positive definite. Then,

$$
I-B^{*} B \leq\left(I-B^{*} A\right)\left(I-A^{*} A\right)^{-1}\left(I-A^{*} B\right)
$$

Now, assume that $I-B^{*} B$ is positive definite. Then, $I-A^{*} B$ is nonsingular. Next, define

$$
\mathcal{A} \triangleq\left[\begin{array}{cc}
\left(I-A^{*} A\right)^{-1} & \left(I-B^{*} A\right)^{-1} \\
\left(I-A^{*} B\right)^{-1} & \left(I-B^{*} B\right)^{-1}
\end{array}\right]
$$

Then, \mathcal{A} is positive semidefinite. Finally,

$$
\begin{aligned}
-\left(I-A^{*} A\right)^{-1}-\left(I-B^{*} B\right)^{-1} & \leq\left(I-B^{*} A\right)^{-1}+\left(I-A^{*} B\right)^{-1} \\
& \leq\left(I-A^{*} A\right)^{-1}+\left(I-B^{*} B\right)^{-1}
\end{aligned}
$$

(Proof: For the first identity, set $D=-B^{*}$ and $C=-A^{*}$, and replace B with $-B$ in Fact 2.16.22, See [47, 1060]. The last statement follows from Fact 8.11.5) (Remark: The identity is Hua's matrix equality. This result does not assume that either $I-A^{*} A$ or $I-B^{*} B$ is positive semidefinite. The inequality and Fact 8.13.25 constitute Hua's inequalities. See [1060, 1467].) (Remark: Extensions to the case
in which $I-A^{*} A$ is singular are considered in [1060].) (Remark: See Fact 8.9.39 and Fact 8.13.25)

Fact 8.11.22. Let $A \in \mathbb{F}^{n \times n}$ be semicontractive, and define $B \in \mathbb{F}^{2 n \times 2 n}$ by

$$
B \triangleq\left[\begin{array}{cc}
A & \left(I-A A^{*}\right)^{1 / 2} \\
\left(I-A^{*} A\right)^{1 / 2} & -A^{*}
\end{array}\right]
$$

Then, B is unitary. (Remark: See [508, p. 180].)
Fact 8.11.23. Let $A \in \mathbb{F}^{n \times m}$, and define $B \in \mathbb{F}^{(n+m) \times(n+m)}$ by

$$
B \triangleq\left[\begin{array}{cc}
\left(I+A^{*} A\right)^{-1 / 2} & -A^{*}\left(I+A A^{*}\right)^{-1 / 2} \\
\left(I+A A^{*}\right)^{-1 / 2} A & \left(I+A A^{*}\right)^{-1 / 2}
\end{array}\right] .
$$

Then, B is unitary and satisfies $A^{*}=\tilde{I} A \tilde{I}$, where $\tilde{I} \triangleq \operatorname{diag}\left(I_{m},-I_{n}\right)$. Furthermore, $\operatorname{det} B=1$. (Remark: See [638].)

Fact 8.11.24. Let $A \in \mathbb{F}^{n \times m}$, assume that A is contractive, and define $B \in$ $\mathbb{F}^{(n+m) \times(n+m)}$ by

$$
B \triangleq\left[\begin{array}{cc}
\left(I-A^{*} A\right)^{-1 / 2} & A^{*}\left(I-A A^{*}\right)^{-1 / 2} \\
\left(I-A A^{*}\right)^{-1 / 2} A & \left(I-A A^{*}\right)^{-1 / 2}
\end{array}\right]
$$

Then, B is Hermitian and satisfies $A^{*} \tilde{I} A=\tilde{I}$, where $\tilde{I} \triangleq \operatorname{diag}\left(I_{m},-I_{n}\right)$. Furthermore, $\operatorname{det} B=1$. (Remark: See 638.)

Fact 8.11.25. Let $X \in \mathbb{F}^{n \times m}$, and define $U \in \mathbb{F}^{(n+m) \times(n+m)}$ by

$$
U \triangleq\left[\begin{array}{cc}
\left(I+X^{*} X\right)^{-1 / 2} & -X^{*}\left(I+X X^{*}\right)^{-1 / 2} \\
\left(I+X X^{*}\right)^{-1 / 2} X & \left(I+X X^{*}\right)^{-1 / 2}
\end{array}\right]
$$

Furthermore, let $A \in \mathbb{F}^{n \times n}, B \in \mathbb{F}^{n \times m}, C \in \mathbb{F}^{m \times n}, D \in \mathbb{F}^{m \times m}$. Then, the following statements hold:
i) Assume that D is nonsingular, and let $X \triangleq D^{-1} C$. Then,

$$
\left[\begin{array}{cc}
A & B \\
C & D
\end{array}\right]=\left[\begin{array}{cc}
(A-B X)\left(I+X^{*} X\right)^{-1 / 2} & \left(B+A X^{*}\right)\left(I+X X^{*}\right)^{-1 / 2} \\
0 & D\left(I+X X^{*}\right)^{1 / 2}
\end{array}\right] U .
$$

ii) Assume that A is nonsingular and let $X \triangleq C A^{-1}$. Then,

$$
\left[\begin{array}{cc}
A & B \\
C & D
\end{array}\right]=U\left[\begin{array}{cc}
\left(I+X^{*} X\right)^{1 / 2} A & \left(I+X^{*} X\right)^{-1 / 2}\left(B+X^{*} D\right) \\
0 & \left(I+X X^{*}\right)^{-1 / 2}(D-X B)
\end{array}\right]
$$

(Remark: See Proposition 2.8.3 and Proposition 2.8.4.) (Proof: See 638.)
Fact 8.11.26. Let $X \in \mathbb{F}^{n \times m}$, and define $U \in \mathbb{F}^{(n+m) \times(n+m)}$ by

$$
U \triangleq\left[\begin{array}{cc}
\left(I-X^{*} X\right)^{-1 / 2} & X^{*}\left(I-X X^{*}\right)^{-1 / 2} \\
\left(I-X X^{*}\right)^{-1 / 2} X & \left(I-X X^{*}\right)^{-1 / 2}
\end{array}\right]
$$

Furthermore, let $A \in \mathbb{F}^{n \times n}, B \in \mathbb{F}^{n \times m}, C \in \mathbb{F}^{m \times n}, D \in \mathbb{F}^{m \times m}$. Then, the following statements hold:
i) Assume that D is nonsingular, let $X \triangleq D^{-1} C$, and assume that $X^{*} X<I$. Then,

$$
\left[\begin{array}{cc}
A & B \\
C & D
\end{array}\right]=\left[\begin{array}{cc}
(A-B X)\left(I-X^{*} X\right)^{-1 / 2} & \left(B+A X^{*}\right)\left(I-X X^{*}\right)^{-1 / 2} \\
0 & D\left(I-X X^{*}\right)^{1 / 2}
\end{array}\right] U .
$$

ii) Assume that A is nonsingular, let $X \triangleq C A^{-1}$, and assume that $X^{*} X<I$. Then,

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]=U\left[\begin{array}{cc}
\left(I-X^{*} X\right)^{1 / 2} A & \left(I-X^{*} X\right)^{-1 / 2}\left(B-X^{*} D\right) \\
0 & \left(I-X X^{*}\right)^{-1 / 2}(D-X B)
\end{array}\right]
$$

(Proof: See [638].) (Remark: See Proposition 2.8.3 and Proposition 2.8.4.)
Fact 8.11.27. Let $A, B \in \mathbb{F}^{n \times m}$ and $C, D \in \mathbb{F}^{m \times m}$, assume that C and D are positive definite, and define

$$
\mathcal{A} \triangleq\left[\begin{array}{cc}
A C^{-1} A^{*}+B D^{-1} B^{*} & A+B \\
(A+B)^{*} & C+D
\end{array}\right]
$$

Then, \mathcal{A} is positive semidefinite, and

$$
(A+B)(C+D)^{-1}(A+B)^{*} \leq A C^{-1} A^{*}+B D^{-1} B^{*}
$$

Now, assume that $n=m$. Then,

$$
\begin{aligned}
-A C^{-1} A^{*}-B D^{-1} B^{*}-C-D & \leq A+B+(A+B)^{*} \\
& \leq A C^{-1} A^{*}+B D^{-1} B^{*}+C+D
\end{aligned}
$$

(Proof: See [658, 907] or [1098, p. 151].) (Remark: Replacing A, B, C, D by $\alpha B_{1},(1-\alpha) B_{2}, \alpha A_{1},(1-\alpha) A_{2}$ yields xiv) of Proposition8.6.17,

Fact 8.11.28. Let $A \in \mathbb{R}^{n \times n}$, assume that A is positive definite, and let $\mathcal{S} \subseteq\{1, \ldots, n\}$. Then,

$$
\left(A_{(\delta)}\right)^{-1} \leq\left(A^{-1}\right)_{(\delta)}
$$

(Proof: See [709, p. 474].) (Remark: Generalizations of this result are given in (328.)

Fact 8.11.29. Let $A_{i j} \in \mathbb{F}^{n_{i} \times n_{j}}$ for all $i, j=1, \ldots, k$, define

$$
A \triangleq\left[\begin{array}{ccc}
A_{11} & \cdots & A_{1 k} \\
\vdots & \vdots & \vdots \\
A_{1 k} & \cdots & A_{k k}
\end{array}\right]
$$

and assume that A is square and positive definite. Furthermore, define

$$
\hat{A} \triangleq\left[\begin{array}{ccc}
\hat{A}_{11} & \cdots & \hat{A}_{1 k} \\
\vdots & \vdots & \vdots \\
\hat{A}_{1 k} & \cdots & \hat{A}_{k k}
\end{array}\right]
$$

where $\hat{A}_{i j}=1_{1 \times n_{i}} A_{i j} 1_{n_{j} \times 1}$ is the sum of the entries of $A_{i j}$ for all $i, j=1, \ldots, k$. Then, \hat{A} is positive definite. (Proof: $\hat{A}=B A B^{T}$, where the entries of $B \in$ $\mathbb{R}^{k \times \sum_{i=1}^{k} n_{i}}$ are 0 's and 1 's. See 42].)

Fact 8.11.30. Let $A, D \in \mathbb{F}^{n \times n}, B \in \mathbb{F}^{n \times m}$, and $C \in \mathbb{F}^{m \times m}$, and assume that $\left[\begin{array}{cc}A & B \\ B^{*} & C_{C}\end{array}\right] \in \mathbb{F}^{n \times n}$ is positive semidefinite, C is positive definite, and D is positive definite. Then, $\left[\begin{array}{cc}A+D & B \\ B^{*} & C\end{array}\right]$ is positive definite.

Fact 8.11.31. Let $A \in \mathbb{F}^{(n+m+l) \times(n+m+l)}$, assume that A is positive semidefinite, and assume that A is of the form

$$
A=\left[\begin{array}{ccc}
A_{11} & A_{12} & 0 \\
A_{12}^{*} & A_{22} & A_{23} \\
0 & A_{32}^{*} & A_{33}
\end{array}\right]
$$

Then, there exist positive-semidefinite matrices $B, C \in \mathbb{F}^{(n+m+l) \times(n+m+l)}$ such that $A=B+C$ and such that B and C have the form

$$
B=\left[\begin{array}{ccc}
B_{11} & B_{12} & 0 \\
B_{12}^{*} & B_{22} & 0 \\
0 & 0 & 0
\end{array}\right]
$$

and

$$
C=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & C_{22} & C_{23} \\
0 & C_{23}^{*} & C_{33}
\end{array}\right]
$$

(Proof: See [669].)

8.12 Facts on the Trace

Fact 8.12.1. Let $A \in \mathbb{F}^{n \times n}$, assume that A is positive definite, let p and q be real numbers, and assume that $p \leq q$. Then,

$$
\left(\frac{1}{n} \operatorname{tr} A^{p}\right)^{1 / p} \leq\left(\frac{1}{n} \operatorname{tr} A^{q}\right)^{1 / q}
$$

Furthermore,

$$
\lim _{p \downarrow 0}\left(\frac{1}{n} \operatorname{tr} A^{p}\right)^{1 / p}=\operatorname{det} A^{1 / n}
$$

(Proof: Use Fact 1.15.30)
Fact 8.12.2. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is positive definite. Then,

$$
n^{2} \leq(\operatorname{tr} A) \operatorname{tr} A^{-1}
$$

Finally, equality holds if and only if $A=I_{n}$. (Remark: Bounds on $\operatorname{tr} A^{-1}$ are given in 100, 307, 1052, 1132.)

Fact 8.12.3. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is positive semidefinite. Then, the following statements hold:
$i)$ Let $r \in[0,1]$. Then, for all $k=1, \ldots, n$,

$$
\sum_{i=k}^{n} \lambda_{i}^{r}(A) \leq \sum_{i=k}^{n} \mathrm{~d}_{i}^{r}(A) .
$$

In particular,

$$
\operatorname{tr} A^{r} \leq \sum_{i=1}^{n} A_{(i, i)}^{r}
$$

ii) Let $r \geq 1$. Then, for all $k=1, \ldots, n$,

$$
\sum_{i=1}^{k} \mathrm{~d}_{i}^{r}(A) \leq \sum_{i=1}^{k} \lambda_{i}^{r}(A)
$$

In particular,

$$
\sum_{i=1}^{n} A_{(i, i)}^{r} \leq \operatorname{tr} A^{r}
$$

iii) If either $r=0$ or $r=1$, then

$$
\operatorname{tr} A^{r}=\sum_{i=1}^{n} A_{(i, i)}^{r}
$$

iv) If $r \neq 0$ and $r \neq 1$, then

$$
\operatorname{tr} A^{r}=\sum_{i=1}^{n} A_{(i, i)}^{r}
$$

if and only if A is diagonal.
(Proof: Use Fact 8.17 .8 and Fact 2.21.8 See 946 and 948 p. 217].) (Remark: See Fact 8.17.8,

Fact 8.12.4. Let $A \in \mathbb{F}^{n \times n}$, and let $p, q \in[0, \infty)$. Then,

$$
\operatorname{tr}\left(A^{* p} A^{p}\right)^{q} \leq \operatorname{tr}\left(A^{*} A\right)^{p q}
$$

Furthermore, equality holds if and only if $\operatorname{tr} A^{* p} A^{p}=\operatorname{tr}\left(A^{*} A\right)^{p}$. (Proof: See 1208.)
Fact 8.12.5. Let $A \in \mathbb{F}^{n \times n}, p \in[2, \infty)$, and $q \in[1, \infty)$. Then, A is normal if and only if

$$
\operatorname{tr}\left(A^{* p} A^{p}\right)^{q}=\operatorname{tr}\left(A^{*} A\right)^{p q}
$$

(Proof: See 1208.)
Fact 8.12.6. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that either A and B are Hermitian or A and B are skew Hermitian. Then, $\operatorname{tr} A B$ is real. (Proof: $\operatorname{tr} A B=\operatorname{tr} A^{*} B^{*}=$ $\operatorname{tr}(B A)^{*}=\overline{\operatorname{tr} B A}=\overline{\operatorname{tr} A B}$. (Remark: See [1476] or [1490, p. 213].)

Fact 8.12.7. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are Hermitian, and let $k \in \mathbb{N}$. Then, $\operatorname{tr}(A B)^{k}$ is real. (Proof: See [55].)

Fact 8.12.8. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are Hermitian. Then,

$$
\operatorname{tr} A B \leq|\operatorname{tr} A B| \leq \sqrt{\left(\operatorname{tr} A^{2}\right) \operatorname{tr} B^{2}} \leq \frac{1}{2} \operatorname{tr}\left(A^{2}+B^{2}\right) .
$$

The second inequality is an equality if and only if A and B are linearly dependent. The third inequality is an equality if and only if $\operatorname{tr} A^{2}=\operatorname{tr} B^{2}$. All four terms are equal if and only if $A=B$. (Proof: Use the Cauchy-Schwarz inequality Corollary 9.3.9]) (Remark: See Fact 8.12.18)

Fact 8.12.9. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are Hermitian, and assume that $-A \leq B \leq A$. Then,

$$
\operatorname{tr} B^{2} \leq \operatorname{tr} A^{2} .
$$

(Proof: $0 \leq \operatorname{tr}[(A-B)(A+B)]=\operatorname{tr} A^{2}-\operatorname{tr} B^{2}$. See 1318].) (Remark: For $0 \leq B \leq$ A, this result is a special case of $x x i$) of Proposition 8.6.13

Fact 8.12.10. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are positive semidefinite. Then, $A B=0$ if and only if $\operatorname{tr} A B=0$.

Fact 8.12.11. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are positive semidefinite, and let $p, q \geq 1$ satisfy $1 / p+1 / q=1$. Then,

$$
\operatorname{tr} A B \leq \operatorname{tr}\langle A B\rangle \leq\left(\operatorname{tr} A^{p}\right)^{1 / p}\left(\operatorname{tr} B^{q}\right)^{1 / q} .
$$

Furthermore, equality holds for both inequalities if and only if A^{p-1} and B are linearly dependent. (Proof: See [946 and [948, pp. 219, 222].) (Remark: This result is a matrix version of Hölder's inequality.) (Remark: See Fact 8.12.12 and Fact 8.12.17)

Fact 8.12.12. Let $A_{1}, \ldots, A_{m} \in \mathbb{F}^{n \times n}$, assume that A_{1}, \ldots, A_{m} are positive semidefinite, and let $p_{1}, \ldots, p_{m} \in[1, \infty)$ satisfy $\frac{1}{p_{1}}+\cdots+\frac{1}{p_{1}}=1$. Then,

$$
\operatorname{tr}\left\langle A_{1} \cdots A_{m}\right\rangle \leq \prod_{i=1}^{m}\left(\operatorname{tr} A_{i}^{p_{i}}\right)^{1 / p_{i}} \leq \operatorname{tr} \sum_{i=1}^{m} \frac{1}{p_{i}} A_{i}^{p_{i}} .
$$

Furthermore, the following statements are equivalent:
i) $\operatorname{tr}\left\langle A_{1} \cdots A_{m}\right\rangle=\prod_{i=1}^{m}\left(\operatorname{tr} A_{i}^{p_{i}}\right)^{1 / p_{i}}$.
ii) $\operatorname{tr}\left\langle A_{1} \cdots A_{m}\right\rangle=\operatorname{tr} \sum_{i=1}^{m} \frac{1}{p_{i}} A_{i}^{p_{i}}$.
iii) $A_{1}^{p_{1}}=\cdots=A_{m}^{p_{m}}$.
(Proof: See [954.) (Remark: The first inequality is a matrix version of Hölder's inequality. The inequality involving the first and third terms is a matrix version of Young's inequality. See Fact 1.10 .32 and Fact (1.15.31)

Fact 8.12.13. Let $A_{1}, \ldots, A_{m} \in \mathbb{F}^{n \times n}$, assume that A_{1}, \ldots, A_{m} are positive semidefinite, let $\alpha_{1}, \ldots, \alpha_{m}$ be nonnegative numbers, and assume that $\sum_{i=1}^{m} \alpha_{i} \geq 1$.

Then,

$$
\left|\operatorname{tr} \prod_{i=1}^{m} A_{i}^{\alpha_{i}}\right| \leq \prod_{i=1}^{m}\left(\operatorname{tr} A_{i}\right)^{\alpha_{i}} .
$$

Furthermore, if $\sum_{i=1}^{m} \alpha_{i}=1$, then equality holds if and only if A_{2}, \ldots, A_{m} are scalar multiples of A_{1}, whereas, if $\sum_{i=1}^{m} \alpha_{i}>1$, then equality holds if and only if A_{2}, \ldots, A_{m} are scalar multiples of A_{1} and rank $A_{1}=1$. (Proof: See 317.) (Remark: See Fact [8.12.11)

Fact 8.12.14. Let $A, B \in \mathbb{F}^{n \times n}$. Then,

$$
|\operatorname{tr} A B|^{2} \leq\left(\operatorname{tr} A^{*} A\right) \operatorname{tr} B B^{*} .
$$

(Proof: See [1490, p. 25] or Corollary 0.3.9) (Remark: See Fact 8.12.15,)
Fact 8.12.15. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times n}$, and let $k \in \mathbb{N}$. Then,

$$
\left|\operatorname{tr}(A B)^{2 k}\right| \leq \operatorname{tr}\left(A^{*} A B B^{*}\right)^{k} \leq \operatorname{tr}\left(A^{*} A\right)^{k}\left(B B^{*}\right)^{k} \leq\left[\operatorname{tr}\left(A^{*} A\right)^{k}\right] \operatorname{tr}\left(B B^{*}\right)^{k} .
$$

In particular,

$$
\left|\operatorname{tr}(A B)^{2}\right| \leq \operatorname{tr} A^{*} A B B^{*} \leq\left(\operatorname{tr} A^{*} A\right) \operatorname{tr} B B^{*} .
$$

(Proof: See [1476] for the case $n=m$. If $n \neq m$, then A and B can be augmented with 0's.) (Problem: Show that

$$
\left.\begin{array}{l}
|\operatorname{tr} A B|^{2} \\
\left|\operatorname{tr}(A B)^{2}\right|
\end{array}\right\} \leq \operatorname{tr} A^{*} A B B^{*} \leq\left(\operatorname{tr} A^{*} A\right) \operatorname{tr} B B^{*}
$$

See Fact (8.12.14)
Fact 8.12.16. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are Hermitian, and let $k \geq 1$. Then,

$$
\operatorname{tr}\left(A^{2} B^{2}\right)^{k} \leq\left(\operatorname{tr} A^{2} B^{2}\right)^{k}
$$

and

$$
\operatorname{tr}(A B)^{2 k} \leq\left|\operatorname{tr}(A B)^{2 k}\right| \leq\left\{\begin{array}{c}
\operatorname{tr}\left(A^{2} B^{2}\right)^{k} \\
\operatorname{tr}\left\langle(A B)^{2 k}\right\rangle
\end{array}\right\} \leq \operatorname{tr} A^{2 k} B^{2 k} .
$$

(Proof: Use Fact 8.12.15 and see [55, 1476.) (Remark: It follows from Fact 8.12.7 that $\operatorname{tr}(A B)^{2 k}$ and $\operatorname{tr}\left(A^{2} B^{2}\right)^{k}$ are real.)

Fact 8.12.17. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are positive semidefinite. Then,

$$
\operatorname{tr} A B \leq \operatorname{tr}\left(A B^{2} A\right)^{1 / 2}=\operatorname{tr}\langle A B\rangle \leq \frac{1}{4} \operatorname{tr}(A+B)^{2}
$$

and

$$
\operatorname{tr}(A B)^{2} \leq \operatorname{tr} A^{2} B^{2} \leq \frac{1}{16} \operatorname{tr}(A+B)^{4} .
$$

(Proof: See Fact 8.12.20 and Fact 9.9.18)
Fact 8.12.18. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are positive semidefinite. Then,

$$
\begin{aligned}
\operatorname{tr} A B & =\operatorname{tr} A^{1 / 2} B A^{1 / 2} \\
& =\operatorname{tr}\left[\left(A^{1 / 2} B A^{1 / 2}\right)^{1 / 2}\left(A^{1 / 2} B A^{1 / 2}\right)^{1 / 2}\right] \\
& \leq\left[\operatorname{tr}\left(A^{1 / 2} B A^{1 / 2}\right)^{1 / 2}\right]^{2} \\
& \leq(\operatorname{tr} A)(\operatorname{tr} B) \\
& \leq \frac{1}{4}(\operatorname{tr} A+\operatorname{tr} B)^{2} \\
& \leq \frac{1}{2}\left[(\operatorname{tr} A)^{2}+(\operatorname{tr} B)^{2}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{tr} A B & \leq \sqrt{\operatorname{tr} A^{2}} \sqrt{\operatorname{tr} B^{2}} \\
& \leq \frac{1}{4}\left(\sqrt{\operatorname{tr} A^{2}}+\sqrt{\operatorname{tr} B^{2}}\right)^{2} \\
& \leq \frac{1}{2}\left(\operatorname{tr} A^{2}+\operatorname{tr} B^{2}\right) \\
& \leq \frac{1}{2}\left[(\operatorname{tr} A)^{2}+(\operatorname{tr} B)^{2}\right] .
\end{aligned}
$$

(Remark: Use Fact 1.10.4) (Remark: Note that

$$
\operatorname{tr}\left(A^{1 / 2} B A^{1 / 2}\right)^{1 / 2}=\sum_{i=1}^{n} \lambda_{i}^{1 / 2}(A B)
$$

The second inequality follows from Proposition 9.3 .6 with $p=q=2, r=1$, and A and B replaced by $A^{1 / 2}$ and $B^{1 / 2}$.) (Remark: See Fact 2.12.16.)

Fact 8.12.19. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are positive semidefinite, and let $p \geq 1$. Then,

$$
\operatorname{tr} A B \leq \operatorname{tr}\left(A^{p / 2} B^{p} A^{p / 2}\right)^{1 / p}
$$

(Proof: See 521.)
Fact 8.12.20. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are positive semidefinite, and let $p \geq 0$ and $r \geq 1$. Then,

$$
\operatorname{tr}\left(A^{1 / 2} B A^{1 / 2}\right)^{p r} \leq \operatorname{tr}\left(A^{r / 2} B^{r} A^{r / 2}\right)^{p}
$$

In particular,

$$
\operatorname{tr}\left(A^{1 / 2} B A^{1 / 2}\right)^{2 p} \leq \operatorname{tr}\left(A B^{2} A\right)^{p}
$$

and

$$
\operatorname{tr} A B \leq \operatorname{tr}\left(A B^{2} A\right)^{1 / 2}=\operatorname{tr}\langle A B\rangle
$$

(Proof: Use Fact 8.18.20 and Fact 8.18.27) (Remark: This result is the Araki-LiebThirring inequality. See [69, 88] and [197, p. 258]. See Fact 8.10.49, Fact 8.18.26,
and Fact 9.9.17) (Problem: Referring to Fact 8.12.18, compare the upper bounds

$$
\operatorname{tr} A B \leq\left\{\begin{array}{l}
{\left[\operatorname{tr}\left(A^{1 / 2} B A^{1 / 2}\right)^{1 / 2}\right]^{2}} \\
\sqrt{\operatorname{tr} A^{2}} \sqrt{\operatorname{tr} B^{2}} \\
\left.\operatorname{tr}\left(A B^{2} A\right)^{1 / 2} \cdot\right)
\end{array}\right.
$$

Fact 8.12.21. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are positive semidefinite, and let $q \geq 0$ and $t \in[0,1]$. Then,

$$
\sigma_{\max }^{2 t q}(A) \operatorname{tr} B^{t q} \leq \operatorname{tr}\left(A^{t} B^{t} A^{t}\right)^{q} \leq \operatorname{tr}(A B A)^{t q}
$$

(Proof: See 88.) (Remark: The right-hand inequality is equivalent to the Araki-Lieb-Thirring inequality, where $t=1 / r$ and $q=p r$. See Fact 8.12.20,

Fact 8.12.22. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are positive semidefinite, and let $k, m \in \mathbb{P}$, where $m \geq k$. Then,

$$
\operatorname{tr}\left(A^{k} B^{k}\right)^{m} \leq \operatorname{tr}\left(A^{m} B^{m}\right)^{k}
$$

In particular,

$$
\operatorname{tr}(A B)^{m} \leq \operatorname{tr} A^{m} B^{m}
$$

If, in addition, m is even, then

$$
\operatorname{tr}(A B)^{m} \leq \operatorname{tr}\left(A^{2} B^{2}\right)^{m / 2} \leq \operatorname{tr} A^{m} B^{m}
$$

(Proof: Use Fact 8.18.20 and Fact 8.18.27.) (Remark: It follows from Fact 8.12.7 that $\operatorname{tr}(A B)^{m}$ is real.) (Remark: The result $\operatorname{tr}(A B)^{m} \leq \operatorname{tr} A^{m} B^{m}$ is the LiebThirring inequality. See [197, p. 279]. The inequality $\operatorname{tr}(A B)^{m} \leq \operatorname{tr}\left(A^{2} B^{2}\right)^{m / 2}$ follows from Fact 8.12.20, See [1466, 1476].)

Fact 8.12.23. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are positive semidefinite, and let $p \geq r \geq 0$. Then,

$$
\left[\operatorname{tr}\left(A^{1 / 2} B A^{1 / 2}\right)^{p}\right]^{1 / p} \leq\left[\operatorname{tr}\left(A^{1 / 2} B A^{1 / 2}\right)^{r}\right]^{1 / r}
$$

In particular,

$$
\left[\operatorname{tr}\left(A^{1 / 2} B A^{1 / 2}\right)^{2}\right]^{1 / 2} \leq \operatorname{tr} A B \leq\left\{\begin{array}{c}
\operatorname{tr}\left(A B^{2} A\right)^{1 / 2} \\
{\left[\operatorname{tr}\left(A^{1 / 2} B A^{1 / 2}\right)^{1 / 2}\right]^{2}}
\end{array}\right.
$$

(Proof: The result follows from the power-sum inequality Fact 1.15.34. See 369.)
Fact 8.12.24. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are positive semidefinite, assume that $A \leq B$, and let $p, q \geq 0$. Then,

$$
\operatorname{tr} A^{p} B^{q} \leq \operatorname{tr} B^{p+q}
$$

If, in addition, A and B are positive definite, then this inequality holds for all $p, q \in \mathbb{R}$ satisfying $q \geq-1$ and $p+q \geq 0$. (Proof: See [246].)

Fact 8.12.25. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are positive semidefinite, assume that $A \leq B$, let $f:[0, \infty) \mapsto[0, \infty)$, and assume that $f(0)=0, f$ is continuous, and f is increasing. Then,

$$
\operatorname{tr} f(A) \leq \operatorname{tr} f(B)
$$

Now, let $p>1$ and $q \geq \max \{-1,-p / 2\}$, and, if $q<0$, assume that A is positive definite. Then,

$$
\operatorname{tr} f\left(A^{q / 2} B^{p} A^{q / 2}\right) \leq \operatorname{tr} f\left(A^{p+q}\right)
$$

(Proof: See [527.)
Fact 8.12.26. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are positive semidefinite, and let $\alpha \in[0,1]$. Then,

$$
\operatorname{tr} A^{\alpha} B^{1-\alpha} \leq(\operatorname{tr} A)^{\alpha}(\operatorname{tr} B)^{1-\alpha} \leq \operatorname{tr}[\alpha A+(1-\alpha) B]
$$

Furthermore, the first inequality is an equality if and only if A and B are linearly dependent, while the second inequality is an equality if and only if $A=B$. (Proof: Use Fact 8.12.11 or Fact 8.12.13 for the left-hand inequality and Fact 1.10 .21 for the right-hand inequality.)

Fact 8.12.27. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are positive definite, and let $\alpha \in[0,1]$. Then,

$$
\left.\begin{array}{c}
\operatorname{tr} A^{-\alpha} B^{\alpha-1} \\
\operatorname{tr}[\alpha A+(1-\alpha) B]^{-1}
\end{array}\right\} \leq\left(\operatorname{tr} A^{-1}\right)^{\alpha}\left(\operatorname{tr} B^{-1}\right)^{1-\alpha} \leq \operatorname{tr}\left[\alpha A^{-1}+(1-\alpha) B^{-1}\right]
$$

and

$$
\operatorname{tr}[\alpha A+(1-\alpha) B]^{-1} \leq\left\{\begin{array}{c}
\left(\operatorname{tr} A^{-1}\right)^{\alpha}\left(\operatorname{tr} B^{-1}\right)^{1-\alpha} \\
\operatorname{tr}\left[A^{-1}\left(A^{-1 / 2} B A^{-1 / 2}\right)^{\alpha-1}\right]
\end{array}\right\} \leq \operatorname{tr}\left[\alpha A^{-1}+(1-\alpha) B^{-1}\right]
$$

(Remark: In the first string of inequalities, the upper left inequality and righthand inequality are equivalent to Fact 8.12.26. The lower left inequality is given by xxxiii) of Proposition 8.6.17. The second string of inequalities combines the lower left inequality in the first string of inequalities with the third string of inequalities in Fact 8.10.46) (Remark: These inequalities interpolate the convexity of $\phi(A)=$ $\operatorname{tr} A^{-1}$. See Fact 1.10.21.)

Fact 8.12.28. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that B is positive semidefinite. Then,

$$
|\operatorname{tr} A B| \leq \sigma_{\max }(A) \operatorname{tr} B
$$

(Proof: Use Proposition 8.4.13 and $\sigma_{\max }\left(A+A^{*}\right) \leq 2 \sigma_{\max }(A)$.) (Remark: See Fact 5.12.4.)

Fact 8.12.29. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are positive semidefinite, and let $p \geq 1$. Then,

$$
\operatorname{tr}\left(A^{p}+B^{p}\right) \leq \operatorname{tr}(A+B)^{p} \leq\left[\left(\operatorname{tr} A^{p}\right)^{1 / p}+\left(\operatorname{tr} B^{p}\right)^{1 / p}\right]^{p}
$$

Furthermore, the second inequality is an equality if and only if A and B are linearly independent.(Proof: See [246] and [946].) (Remark: The first inequality is the Mc-

Carthy inequality. The second inequality is a special case of the triangle inequality for the norm $\|\cdot\|_{\sigma p}$ and a matrix version of Minkowski's inequality.)

Fact 8.12.30. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are positive semidefinite, let m be a positive integer, and define $p \in \mathbb{F}[s]$ by

$$
p(s)=\operatorname{tr}(A+s B)^{m}
$$

Then, all of the coefficients of p are nonnegative. (Remark: This result is the Bessis-Moussa-Villani trace conjecture. See 687, 908] and Fact 8.12.31)

Fact 8.12.31. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A is Hermitian and B is positive semidefinite, and define

$$
f(t)=e^{A+t B}
$$

Then, for all $k=0,1, \ldots$ and $t \geq 0$,

$$
(-1)^{k+1} f^{(k)}(t) \geq 0
$$

(Remark: This result is a consequence of the Bessis-Moussa-Villani trace conjecture. See 687, 908 and Fact 8.12.30, (Remark: See Fact 8.14.18,

Fact 8.12.32. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are Hermitian, and let $f: \mathbb{R} \mapsto \mathbb{R}$. Then, the following statements hold:
i) If f is convex, then there exist unitary matrices $S_{1}, S_{2} \in \mathbb{F}^{n \times n}$ such that

$$
f\left[\frac{1}{2}(A+B)\right] \leq \frac{1}{2}\left[S_{1}\left(\frac{1}{2}[f(A)+f(B)]\right) S_{1}^{*}+S_{2}\left(\frac{1}{2}[f(A)+f(B)]\right) S_{2}^{*}\right] .
$$

ii) If f is convex and even, then there exist unitary matrices $S_{1}, S_{2} \in \mathbb{F}^{n \times n}$ such that

$$
f\left[\frac{1}{2}(A+B)\right] \leq \frac{1}{2}\left[S_{1} f(A) S_{1}^{*}+S_{2} f(B) S_{2}^{*}\right]
$$

iii) If f is convex and increasing, then there exists a unitary matrix $S \in \mathbb{F}^{n \times n}$ such that

$$
f\left[\frac{1}{2}(A+B)\right] \leq S\left(\frac{1}{2}[f(A)+f(B)]\right) S^{*}
$$

$i v)$ There exist unitary matrices $S_{1}, S_{2} \in \mathbb{F}^{n \times n}$ such that

$$
\langle A+B\rangle \leq S_{1}\langle A\rangle S_{1}^{*}+S_{2}\langle B\rangle S_{2}^{*}
$$

v) If f is convex, then

$$
\operatorname{tr} f\left[\frac{1}{2}(A+B)\right] \leq \operatorname{tr} \frac{1}{2}[f(A)+f(B)]
$$

(Proof: See [247, 248.) (Remark: Result v), which is a consequence of i), is von Neumann's trace inequality.) (Remark: See Fact 8.12.33.)

Fact 8.12.33. Let $f: \mathbb{R} \mapsto \mathbb{R}$, and assume that f is convex. Then, the following statements hold:
i) If $f(0) \leq 0, A \in \mathbb{F}^{n \times n}$ is Hermitian, and $S \in \mathbb{F}^{n \times m}$ is a contractive matrix, then

$$
\operatorname{tr} f\left(S^{*} A S\right) \leq \operatorname{tr} S^{*} f(A) S
$$

ii) If $A_{1}, \ldots, A_{k} \in \mathbb{F}^{n \times n}$ are Hermitian and $S_{1}, \ldots, S_{k} \in \mathbb{F}^{n \times m}$ satisfy $\sum_{i=1}^{k} S_{i}^{*} S_{i}=I$, then

$$
\operatorname{tr} f\left(\sum_{i=1}^{k} S_{i}^{*} A_{i} S_{i}\right) \leq \operatorname{tr} \sum_{i=1}^{k} S_{i}^{*} f\left(A_{i}\right) S_{i} .
$$

iii) If $A \in \mathbb{F}^{n \times n}$ is Hermitian and $S \in \mathbb{F}^{n \times n}$ is a projector, then

$$
\operatorname{tr} S f(S A S) S \leq \operatorname{tr} S f(A) S
$$

(Proof: See [248] and [1039, p. 36].) (Remark: Special cases are considered in [785].) (Remark: The first result is due to Brown and Kosaki, the second result is due to Hansen and Pedersen, and the third result is due to Berezin.) (Remark: The second result generalizes statement v) of Fact 8.12.32,)

Fact 8.12.34. Let $A, B \in \mathbb{F}^{n \times n}$, assume that B is positive semidefinite, and assume that $A^{*} A \leq B$. Then,

$$
|\operatorname{tr} A| \leq \operatorname{tr} B^{1 / 2}
$$

(Proof: Corollary 8.6.11 with $r=2$ implies that $\left(A^{*} A\right)^{1 / 2} \leq \operatorname{tr} B^{1 / 2}$. Letting $\operatorname{mspec}(A)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}_{\mathrm{ms}}$, it follows from Fact 9.11 .2 that $|\operatorname{tr} A| \leq \sum_{i=1}^{n}\left|\lambda_{i}\right| \leq$ $\sum_{i=1}^{n} \sigma_{i}(A)=\operatorname{tr}\left(A^{*} A\right)^{1 / 2} \leq \operatorname{tr} B^{1 / 2}$. See [167].)

Fact 8.12.35. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A is positive definite and B is positive semidefinite, let $\alpha \in[0,1]$, and let $\beta \geq 0$. Then,

$$
\operatorname{tr}\left(-B A^{-1} B+\beta B^{\alpha}\right) \leq \beta\left(1-\frac{\alpha}{2}\right) \operatorname{tr}\left(\frac{\alpha \beta}{2} A\right)^{\alpha /(2-\alpha)}
$$

If, in addition, either A and B commute or B is a multiple of a projector, then

$$
-B A^{-1} B+\beta B^{\alpha} \leq \beta\left(1-\frac{\alpha}{2}\right)\left(\frac{\alpha \beta}{2} A\right)^{\alpha /(2-\alpha)}
$$

(Proof: See [634, 635].)
Fact 8.12.36. Let $A, P \in \mathbb{F}^{n \times n}, B, Q \in \mathbb{F}^{n \times m}$, and $C, R \in \mathbb{F}^{m \times m}$, and assume that $\left[\begin{array}{cc}A & B \\ B^{*} & C\end{array}\right],\left[\begin{array}{cc}P & Q \\ Q^{*} & R\end{array}\right] \in \mathbb{F}^{(n+m) \times(n+m)}$ are positive semidefinite. Then,

$$
\left|\operatorname{tr} B Q^{*}\right|^{2} \leq(\operatorname{tr} A P)(\operatorname{tr} C R)
$$

(Proof: See 886, 1494.)
Fact 8.12.37. Let $A, B \in \mathbb{F}^{n \times m}$, let $X \in \mathbb{F}^{n \times n}$, and assume that X is positive definite. Then,

$$
\left|\operatorname{tr} A^{*} B\right|^{2} \leq\left(\operatorname{tr} A^{*} X A\right)\left(\operatorname{tr} B^{*} X^{-1} A\right)
$$

(Proof: Use Fact 8.12.36 with $\left[\begin{array}{cc}X & I^{-1} \\ 1 & X^{-1}\end{array}\right]$ and $\left[\begin{array}{cc}A A^{*} A B^{*} \\ B A^{*} & B B^{*}\end{array}\right]$. See [886 1494].)
Fact 8.12.38. Let $A, B, C \in \mathbb{F}^{n \times n}$, and assume that A and B are Hermitian and C is positive semidefinite. Then,

$$
\left|\operatorname{tr} A B C^{2}-\operatorname{tr} A C B C\right| \leq \frac{1}{4}\left[\lambda_{1}(A)-\lambda_{n}(A)\right]\left[\lambda_{1}(B)-\lambda_{n}(B)\right] \operatorname{tr} C^{2}
$$

(Proof: See [250].)

Fact 8.12.39. Let $A_{11} \in \mathbb{R}^{n \times n}, A_{12} \in \mathbb{R}^{n \times m}$, and $A_{22} \in \mathbb{R}^{m \times m}$, define $A \triangleq$ $\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{12}^{\mathrm{T}} & A_{22}\end{array}\right] \in \mathbb{R}^{(n+m) \times(n+m)}$, and assume that A is symmetric. Then, A is positive semidefinite if and only if, for all $B \in \mathbb{R}^{n \times m}$,

$$
\operatorname{tr} B A_{12}^{\mathrm{T}} \leq \operatorname{tr}\left(A_{11}^{1 / 2} B A_{22} B^{\mathrm{T}} A_{11}^{1 / 2}\right)^{1 / 2} .
$$

(Proof: See [167].)
Fact 8.12.40. Let $A \in \mathbb{F}^{n \times n}, B \in \mathbb{F}^{n \times m}$, and $C \in \mathbb{F}^{m \times m}$, and assume that $\left[\begin{array}{cc}A & B \\ B^{*} & C_{C}\end{array}\right] \in \mathbb{F}^{(n+m) \times(n+m)}$ is positive semidefinite. Then,

$$
\operatorname{tr} B^{*} B \leq \sqrt{\left(\operatorname{tr} A^{2}\right)\left(\operatorname{tr} C^{2}\right)} \leq(\operatorname{tr} A)(\operatorname{tr} C) .
$$

(Proof: Use Fact 8.12 .36 with $P=A, Q=B$, and $R=C$.) (Remark: The inequality involving the first and third terms is given in 1075).) (Remark: See Fact 8.12.41 for the case $n=m$.)

Fact 8.12.41. Let $A, B, C \in \mathbb{F}^{n \times n}$, and assume that $\left[\begin{array}{cc}A & B \\ B^{*} & C\end{array}\right] \in \mathbb{F}^{2 n \times 2 n}$ is positive semidefinite. Then,

$$
|\operatorname{tr} B|^{2} \leq(\operatorname{tr} A)(\operatorname{tr} C)
$$

and

$$
\left|\operatorname{tr} B^{2}\right| \leq \operatorname{tr} B^{*} B \leq \sqrt{\left(\operatorname{tr} A^{2}\right)\left(\operatorname{tr} C^{2}\right)} \leq(\operatorname{tr} A)(\operatorname{tr} C)
$$

(Remark: The first result follows from Fact 8.12.42. In the second string, the first inequality is given by Fact 9.11.3, while the second inequality is given by Fact 8.12.40. The inequality $\left|\operatorname{tr} B^{2}\right| \leq \sqrt{\left(\operatorname{tr} A^{2}\right)\left(\operatorname{tr} C^{2}\right)}$ is given in 964.)

Fact 8.12.42. Let $A_{i j} \in \mathbb{F}^{n \times n}$ for all $i, j=1, \ldots, k$, define $A \in \mathbb{F}^{k n \times k n}$ by

$$
A \triangleq\left[\begin{array}{ccc}
A_{11} & \cdots & A_{1 k} \\
\vdots & \vdots & \vdots \\
A_{1 k}^{*} & \cdots & A_{k k}
\end{array}\right]
$$

and assume that A is positive semidefinite. Then,

$$
\left[\begin{array}{ccc}
\operatorname{tr} A_{11} & \cdots & \operatorname{tr} A_{1 k} \\
\vdots & \vdots & \vdots \\
\operatorname{tr} A_{1 k}^{*} & \cdots & \operatorname{tr} A_{k k}
\end{array}\right] \geq 0
$$

and

$$
\left[\begin{array}{ccc}
\operatorname{tr} A_{11}^{2} & \cdots & \operatorname{tr} A_{1 k}^{*} A_{1 k} \\
\vdots & \vdots & \vdots \\
\operatorname{tr} A_{1 k}^{*} A_{1 k} & \cdots & \operatorname{tr} A_{k k}^{2}
\end{array}\right] \geq 0 .
$$

(Proof: See 386, 964 1075.) (Remark: See Fact 8.13.42)

8.13 Facts on the Determinant

Fact 8.13.1. Let $A \in \mathbb{F}^{n \times n}$, assume that A is positive semidefinite, and let $\operatorname{mspec}(A)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}_{\mathrm{ms}}$. Then,

$$
\begin{aligned}
\lambda_{\min }(A) & \leq \lambda_{\max }^{1 / n}(A) \lambda_{\min }^{(n-1) / n}(A) \\
& \leq \lambda_{n} \\
& \leq \lambda_{1} \\
& \leq \lambda_{\min }^{1 / n}(A) \lambda_{\max }^{(n-1) / n}(A) \\
& \leq \lambda_{\max }(A)
\end{aligned}
$$

and

$$
\begin{aligned}
\lambda_{\min }^{n}(A) & \leq \lambda_{\max }(A) \lambda_{\min }^{n-1}(A) \\
& \leq \operatorname{det} A \\
& \leq \lambda_{\min }(A) \lambda_{\max }^{n-1}(A) \\
& \leq \lambda_{\max }^{n}(A) .
\end{aligned}
$$

(Proof: Use Fact 5.11.29)
Fact 8.13.2. Let $A \in \mathbb{F}^{n \times n}$, and assume that $A+A^{*}$ is positive semidefinite. Then,

$$
\operatorname{det} \frac{1}{2}\left(A+A^{*}\right) \leq|\operatorname{det} A| .
$$

Furthermore, if $A+A^{*}$ is positive definite, then equality holds if and only if A is Hermitian. (Proof: The inequality follows from Fact 5.11.25 and Fact 5.11.28) (Remark: This result is the Ostrowski-Taussky inequality.) (Remark: See Fact 8.13.2)

Fact 8.13.3. Let $A \in \mathbb{F}^{n \times n}$, and assume that $A+A^{*}$ is positive semidefinite. Then,

$$
\left[\operatorname{det} \frac{1}{2}\left(A+A^{*}\right)\right]^{2 / n}+\left|\operatorname{det} \frac{1}{2}\left(A-A^{*}\right)\right|^{2 / n} \leq|\operatorname{det} A|^{2 / n} .
$$

Furthermore, if $A+A^{*}$ is positive definite, then equality holds if and only if every eigenvalue of $\left(A+A^{*}\right)^{-1}\left(A-A^{*}\right)$ has the same absolute value. Finally, if $n \geq 2$, then

$$
\operatorname{det} \frac{1}{2}\left(A+A^{*}\right) \leq \operatorname{det} \frac{1}{2}\left(A+A^{*}\right)+\left|\operatorname{det} \frac{1}{2}\left(A-A^{*}\right)\right| \leq|\operatorname{det} A| .
$$

(Proof: See [466, 760]. To prove the last result, use Fact 1.10.30) (Remark: Setting $A=1+\jmath$ shows that the last result can fail for $n=1$.) (Remark: $-A$ is semidissipative.) (Remark: The last result interpolates Fact 8.13.2) (Remark: Extensions to the case in which $A+A^{*}$ is positive definite are considered in [1269].)

Fact 8.13.4. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A is positive semidefinite. Then,

$$
(\operatorname{det} A)^{2 / n}+|\operatorname{det}(A+B)|^{2 / n} \leq|\operatorname{det}(A+B)|^{2 / n} .
$$

Furthermore, if A is positive definite, then equality holds if and only if every eigenvalue of $A^{-1} B$ has the same absolute value. Finally, if $n \geq 2$, then

$$
\operatorname{det} A \leq \operatorname{det} A+|\operatorname{det} B| \leq|\operatorname{det}(A+B)|
$$

(Remark: This result is a restatement of Fact 8.13.2 in terms of the Cartesian decomposition.)

Fact 8.13.5. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A is positive semidefinite, assume that B is positive definite. Then,

$$
\prod_{i=1}^{n}\left[\lambda_{i}^{2}(A)+\lambda_{i}^{2}(B)\right]^{1 / 2} \leq|\operatorname{det}(A+\jmath B)| \leq \prod_{i=1}^{n}\left[\lambda_{i}^{2}(A)+\lambda_{n-i+1}^{2}(B)\right]^{1 / 2}
$$

(Proof: See [158].)
Fact 8.13.6. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A is positive semidefinite and B is skew Hermitian. Then,

$$
\operatorname{det} A \leq|\operatorname{det}(A+B)|
$$

Furthermore, if A and B are real, then

$$
\operatorname{det} A \leq \operatorname{det}(A+B)
$$

Finally, if A is positive definite, then equality holds if and only if $B=0$. (Proof: See [654 p. 447] and [1098, pp. 146, 163]. Now, suppose that A and B are real. If A is positive definite, then $A^{-1 / 2} B A^{-1 / 2}$ is skew symmetric, and thus $\operatorname{det}(A+$ $B)=(\operatorname{det} A) \operatorname{det}\left(I+A^{-1 / 2} B A^{-1 / 2}\right)$ is positive. If A is positive semidefinite, then a continuity argument implies that $\operatorname{det}(A+B)$ is nonnegative.) (Remark: Extensions of this result are given in [219].)

Fact 8.13.7. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A is positive definite and B is Hermitian. Then,

$$
\operatorname{det}(A+\jmath B)=(\operatorname{det} A) \prod_{i=1}^{n}\left[1+\sigma_{i}^{2}\left(A^{-1 / 2} B A^{-1 / 2}\right)\right]^{1 / 2}
$$

(Proof: See [320.)
Fact 8.13.8. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is positive definite. Then,

$$
n+\operatorname{tr} \log A=n+\log \operatorname{det} A \leq n(\operatorname{det} A)^{1 / n} \leq \operatorname{tr} A \leq\left(n \operatorname{tr} A^{2}\right)^{1 / 2}
$$

with equality if and only if $A=I$. (Remark: The inequality

$$
(\operatorname{det} A)^{1 / n} \leq \frac{1}{n} \operatorname{tr} A
$$

is a consequence of the arithmetic-mean-geometric-mean inequality.)
Fact 8.13.9. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are positive semidefinite, and assume that $A \leq B$. Then,

$$
n \operatorname{det} A+\operatorname{det} B \leq \operatorname{det}(A+B)
$$

(Proof: See [1098, pp. 154, 166].) (Remark: Under weaker conditions, Corollary 8.4.15 implies that $\operatorname{det} A+\operatorname{det} B \leq \operatorname{det}(A+B)$.)

Fact 8.13.10. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are positive semidefinite. Then,

$$
\operatorname{det} A+\operatorname{det} B+\left(2^{n}-2\right) \sqrt{\operatorname{det} A B} \leq \operatorname{det}(A+B)
$$

If, in addition, $B \leq A$, then
$\operatorname{det} A+\left(2^{n}-1\right) \operatorname{det} B \leq \operatorname{det} A+\operatorname{det} B+\left(2^{n}-2\right) \sqrt{\operatorname{det} A B} \leq \operatorname{det}(A+B)$.
(Proof: See [1057] or [1184 p. 231].)
Fact 8.13.11. Let $A \in \mathbb{R}^{n \times n}$, and assume that $A+A^{\mathrm{T}}$ is positive semidefinite.
Then,

$$
\left[\frac{1}{2}\left(A+A^{\mathrm{T}}\right)\right]^{\mathrm{A}} \leq \frac{1}{2}\left(A^{\mathrm{A}}+A^{\mathrm{AT}}\right)
$$

Now, assume that $A+A^{\mathrm{T}}$ is positive definite. Then,

$$
\left[\operatorname{det} \frac{1}{2}\left(A+A^{\mathrm{T}}\right)\right]\left[\frac{1}{2}\left(A+A^{\mathrm{T}}\right)\right]^{-1} \leq(\operatorname{det} A)\left[\frac{1}{2}\left(A^{-1}+A^{-\mathrm{T}}\right)\right]
$$

Furthermore,

$$
\left[\operatorname{det} \frac{1}{2}\left(A+A^{\mathrm{T}}\right)\right]\left[\frac{1}{2}\left(A+A^{\mathrm{T}}\right)\right]^{-1}<(\operatorname{det} A)\left[\frac{1}{2}\left(A^{-1}+A^{-\mathrm{T}}\right)\right]
$$

if and only if $\operatorname{rank}\left(A-A^{\mathrm{T}}\right) \geq 4$. Finally, if $n \geq 4$ and $A-A^{\mathrm{T}}$ is nonsingular, then

$$
(\operatorname{det} A)\left[\frac{1}{2}\left(A^{-1}+A^{-\mathrm{T}}\right)\right]<\left[\operatorname{det} A-\operatorname{det} \frac{1}{2}\left(A-A^{\mathrm{T}}\right)\right]\left[\frac{1}{2}\left(A+A^{\mathrm{T}}\right)\right]^{-1}
$$

(Proof: See 465 759.) (Remark: This result does not hold for complex matrices.) (Remark: See Fact 8.9.31 and Fact 8.17.12)

Fact 8.13.12. Let $A \in \mathbb{R}^{n \times n}$, and assume that A is positive definite. Then,

$$
\sum_{i=1}^{n}\left[\operatorname{det} A_{(\{1, \ldots, i\})}\right]^{1 / i} \leq\left(1+\frac{1}{n}\right)^{n} \operatorname{tr} A<e \operatorname{tr} A
$$

(Proof: See [29].)
Fact 8.13.13. Let $A \in \mathbb{F}^{n \times n}$, assume that A is positive definite and Toeplitz, and, for all $i=1, \ldots, n$, define $A_{i} \triangleq A_{(\{1, \ldots, i\})} \in \mathbb{F}^{i \times i}$. Then,

$$
(\operatorname{det} A)^{1 / n} \leq\left(\operatorname{det} A_{n-1}\right)^{1 /(n-1)} \leq \cdots \leq\left(\operatorname{det} A_{2}\right)^{1 / 2} \leq \operatorname{det} A_{1}
$$

Furthermore,

$$
\frac{\operatorname{det} A}{\operatorname{det} A_{n-1}} \leq \frac{\operatorname{det} A_{n-1}}{\operatorname{det} A_{n-2}} \leq \cdots \leq \frac{\operatorname{det} A_{3}}{\operatorname{det} A_{2}} \leq \frac{\operatorname{det} A_{2}}{\operatorname{det} A_{1}}
$$

(Proof: See [352] or [353, p. 682].)
Fact 8.13.14. Let $A, B \in \mathbb{F}^{n \times n}$, assume that B is Hermitian, and assume that $A^{*} B A<A+A^{*}$. Then, $\operatorname{det} A \neq 0$.

Fact 8.13.15. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are positive definite, and let $\alpha \in[0,1]$. Then,

$$
(\operatorname{det} A)^{\alpha}(\operatorname{det} B)^{1-\alpha} \leq \operatorname{det}[\alpha A+(1-\alpha) B]
$$

Furthermore, equality holds if and only if $A=B$. (Proof: This inequality is a restatement of xxxviii) of Proposition 8.6.17) (Remark: This result is due to Bergstrom.) (Remark: $\alpha=2$ yields $\sqrt{(\operatorname{det} A) \operatorname{det} B} \leq \operatorname{det}\left[\frac{1}{2}(A+B)\right]$.)

Fact 8.13.16. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are positive semidefinite, assume that either $A \leq B$ or $B \leq A$, and let $\alpha \in[0,1]$. Then,

$$
\operatorname{det}[\alpha A+(1-\alpha) B] \leq \alpha \operatorname{det} A+(1-\alpha) \operatorname{det} B
$$

(Proof: See 1406.)
Fact 8.13.17. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are positive definite. Then,

$$
\frac{\operatorname{det} A}{\operatorname{det} A_{[1 ; 1]}}+\frac{\operatorname{det} B}{\operatorname{det} B_{[1 ; 1]}} \leq \frac{\operatorname{det}(A+B)}{\operatorname{det}\left(A_{[1 ; 1]}+B_{[1 ; 1]}\right)}
$$

(Proof: See [1098 p. 145].) (Remark: This inequality is a special case of $x l i$) of Proposition 8.6.17) (Remark: See Fact 8.11.4)

Fact 8.13.18. Let $A_{1}, \ldots, A_{k} \in \mathbb{F}^{n \times n}$, assume that A_{1}, \ldots, A_{k} are positive semidefinite, and let $\lambda_{1}, \ldots, \lambda_{k} \in \mathbb{C}$. Then,

$$
\operatorname{det}\left(\sum_{i=1}^{k} \lambda_{i} A_{i}\right) \leq \operatorname{det}\left(\sum_{i=1}^{k}\left|\lambda_{i}\right| A_{i}\right)
$$

(Proof: See [1098, p. 144].)
Fact 8.13.19. Let $A, B, C \in \mathbb{R}^{n \times n}$, let $D \triangleq A+\jmath B$, and assume that $C B+$ $B^{\mathrm{T}} C^{\mathrm{T}}<D+D^{*}$. Then, $\operatorname{det} A \neq 0$.

Fact 8.13.20. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are positive semidefinite, and let $m \in \mathbb{P}$. Then,

$$
n^{1 / m}(\operatorname{det} A B)^{1 / n} \leq\left(\operatorname{tr} A^{m} B^{m}\right)^{1 / m}
$$

(Proof: See [369.) (Remark: Assuming $\operatorname{det} B=1$ and setting $m=1$ yields Proposition 8.4.14.)

Fact 8.13.21. Let $A, B, C \in \mathbb{F}^{n \times n}$, define

$$
\mathcal{A} \triangleq\left[\begin{array}{cc}
A & B \\
B^{*} & C
\end{array}\right]
$$

and assume that \mathcal{A} is positive semidefinite. Then,

$$
\left|\operatorname{det}\left(B+B^{*}\right)\right| \leq \operatorname{det}(A+C)
$$

If, in addition, \mathcal{A} is positive definite, then

$$
\left|\operatorname{det}\left(B+B^{*}\right)\right|<\operatorname{det}(A+C)
$$

(Remark: Use Fact 8.11.5)
Fact 8.13.22. Let $A, B \in \mathbb{F}^{n \times m}$. Then,

$$
\left|\operatorname{det} A^{*} B\right|^{2} \leq\left(\operatorname{det} A^{*} A\right)\left(\operatorname{det} B^{*} B\right)
$$

(Proof: Use Fact 8.11.14 or apply Fact 8.13.42 to $\left[\begin{array}{cc}A^{*} A & B^{*}{ }_{A}^{*} A_{B} \\ A^{*} B\end{array}\right]$.) (Remark: This result is a determinantal version of the Cauchy-Schwarz inequality.)

Fact 8.13.23. Let $A \in \mathbb{F}^{n \times n}$, assume that A is positive definite, and let $B \in \mathbb{F}^{m \times n}$, where $\operatorname{rank} B=m$. Then,

$$
\left(\operatorname{det} B B^{*}\right)^{2} \leq\left(\operatorname{det} B A B^{*}\right) \operatorname{det} B A^{-1} B^{*}
$$

(Proof: Use Fact 8.11.19)
Fact 8.13.24. Let $A, B \in \mathbb{F}^{n \times n}$. Then,

$$
|\operatorname{det}(A+B)|^{2}+\left|\operatorname{det}\left(I-A B^{*}\right)\right|^{2} \leq \operatorname{det}\left(I+A A^{*}\right) \operatorname{det}\left(I+B^{*} B\right)
$$

and

$$
|\operatorname{det}(A-B)|^{2}+\left|\operatorname{det}\left(I+A B^{*}\right)\right|^{2} \leq \operatorname{det}\left(I+A A^{*}\right) \operatorname{det}\left(I+B^{*} B\right)
$$

Furthermore, the first inequality is an identity if and only if either $n=1, A+B=0$, or $A B^{*}=I$. (Proof: The result follows from Fact 8.11.16. See [1490 p. 184].)

Fact 8.13.25. Let $A, B \in \mathbb{F}^{n \times m}$, and assume that $I-A^{*} A$ and $I-B^{*} B$ are positive semidefinite. Then,

$$
\begin{aligned}
0 & \leq \operatorname{det}\left(I-A^{*} A\right) \operatorname{det}\left(I-B^{*} B\right) \\
& \leq\left\{\begin{array}{l}
\left|\operatorname{det}\left(I-A^{*} B\right)\right|^{2} \\
\left|\operatorname{det}\left(I+A^{*} B\right)\right|^{2}
\end{array}\right\} \\
& \leq \operatorname{det}\left(I+A^{*} A\right) \operatorname{det}\left(I+B^{*} B\right) .
\end{aligned}
$$

Now, assume that $n=m$. Then,

$$
\begin{aligned}
0 & \leq \operatorname{det}\left(I-A^{*} A\right) \operatorname{det}\left(I-B^{*} B\right) \\
& \leq\left|\operatorname{det}\left(I-A^{*} B\right)\right|^{2}-|\operatorname{det}(A-B)|^{2} \\
& \leq\left|\operatorname{det}\left(I-A^{*} B\right)\right|^{2} \\
& \leq\left|\operatorname{det}\left(I-A^{*} B\right)\right|^{2}+|\operatorname{det}(A+B)|^{2} \\
& \leq \operatorname{det}\left(I+A^{*} A\right) \operatorname{det}\left(I+B^{*} B\right)
\end{aligned}
$$

and

$$
\begin{aligned}
0 & \leq \operatorname{det}\left(I-A^{*} A\right) \operatorname{det}\left(I-B^{*} B\right) \\
& \leq\left|\operatorname{det}\left(I+A^{*} B\right)\right|^{2}-|\operatorname{det}(A+B)|^{2} \\
& \leq\left|\operatorname{det}\left(I+A^{*} B\right)\right|^{2} \\
& \leq\left|\operatorname{det}\left(I+A^{*} B\right)\right|^{2}+|\operatorname{det}(A-B)|^{2} \\
& \leq \operatorname{det}\left(I+A^{*} A\right) \operatorname{det}\left(I+B^{*} B\right) .
\end{aligned}
$$

Finally,

$$
\left[\begin{array}{cc}
\operatorname{det}\left[\left(I-A^{*} A\right)^{-1}\right] & \operatorname{det}\left[\left(I-A^{*} B\right)^{-1}\right] \\
\operatorname{det}\left[\left(I-B^{*} A\right)^{-1}\right] & \operatorname{det}\left[\left(I-B^{*} B\right)^{-1}\right]
\end{array}\right] \geq 0
$$

(Proof: The second inequality and Fact 8.11.21 are Hua's inequalities. See 47]. The third inequality follows from Fact 8.11.15. The first interpolation in the case $n=m$ is given in [1060].) (Remark: Generalizations of the last result are given in [1467.) (Remark: See Fact 8.11.21 and Fact 8.15.19)

Fact 8.13.26. Let $A, B \in \mathbb{F}^{n \times n}$, and let $\alpha, \beta \in(0, \infty)$. Then,

$$
|\operatorname{det}(A+B)|^{2} \leq \operatorname{det}\left(\beta^{-1} I+\alpha A^{*} A\right) \operatorname{det}\left(\alpha^{-1} I+\beta B B^{*}\right)
$$

(Proof: Use Fact 8.11.20, See 1491.)
Fact 8.13.27. Let $A \in \mathbb{F}^{n \times m}, B \in \mathbb{F}^{n \times l}, C \in \mathbb{F}^{n \times m}$, and $D \in \mathbb{F}^{n \times l}$. Then,

$$
\left|\operatorname{det}\left(A C^{*}+B D^{*}\right)\right|^{2} \leq \operatorname{det}\left(A A^{*}+B B^{*}\right) \operatorname{det}\left(C C^{*}+D D^{*}\right)
$$

(Proof: Use Fact 8.13 .38 and $\mathcal{A} \mathcal{A}^{*} \geq 0$, where $\mathcal{A} \triangleq\left[\begin{array}{cc}A & B \\ D\end{array}\right]$.) (Remark: See Fact 2.14.22,

Fact 8.13.28. Let $A \in \mathbb{F}^{n \times m}, B \in \mathbb{F}^{n \times m}, C \in \mathbb{F}^{k \times m}$, and $D \in \mathbb{F}^{k \times m}$. Then,

$$
\left|\operatorname{det}\left(A^{*} B+C^{*} D\right)\right|^{2} \leq \operatorname{det}\left(A^{*} A+C^{*} C\right) \operatorname{det}\left(B^{*} B+D^{*} D\right)
$$

(Proof: Use Fact 8.13 .38 and $\mathcal{A}^{*} \mathcal{A} \geq 0$, where $\mathcal{A} \triangleq\left[\begin{array}{cc}A & B \\ D\end{array}\right]$.) (Remark: See Fact 2.14.18.)

Fact 8.13.29. Let $A, B, C \in \mathbb{F}^{n \times n}$. Then,

$$
|\operatorname{det}(B+C A)|^{2} \leq \operatorname{det}\left(A^{*} A+B^{*} B\right) \operatorname{det}\left(I+C C^{*}\right)
$$

(Proof: See [717.) (Remark: See Fact 8.10.37.)
Fact 8.13.30. Let $A, B \in \mathbb{F}^{n \times m}$. Then, there exist unitary matrices $S_{1}, S_{2} \in$ $\mathbb{F}^{n \times n}$ such that

$$
I+\langle A+B\rangle \leq S_{1}(I+\langle A\rangle)^{1 / 2} S_{2}(I+\langle B\rangle) S_{2}^{*}(I+\langle A\rangle)^{1 / 2} S_{1}^{*}
$$

Therefore,

$$
\operatorname{det}(I+\langle A+B\rangle) \leq \operatorname{det}(I+\langle A\rangle) \operatorname{det}(I+\langle B\rangle)
$$

(Proof: See 47, 1270.) (Remark: This result is due to Seiler and Simon.)

Fact 8.13.31. Let $A, B \in \mathbb{F}^{n \times n}$, assume that $A+A^{*}>0$ and $B+B^{*} \geq 0$, and let $\alpha>0$. Then, $\alpha I+A B$ is nonsingular and has no negative eigenvalues. Hence,

$$
\operatorname{det}(\alpha I+A B)>0
$$

(Proof: See [613].) (Remark: Equivalently, $-A$ is dissipative and $-B$ is semidissipative.) (Problem: Find a positive lower bound for $\operatorname{det}(\alpha I+A B)$ in terms of α, A, and B.)

Fact 8.13.32. Let $A \in \mathbb{F}^{n \times n}$, assume that A is positive definite, and define

$$
\alpha \triangleq \frac{1}{n} \operatorname{tr} A
$$

and

$$
\beta \triangleq \frac{1}{n(n-1)} \sum_{\substack{i, j=1 \\ i \neq j}}^{n}\left|A_{(i, j)}\right|
$$

Then,

$$
|\operatorname{det} A| \leq(\alpha-\beta)^{n-1}[\alpha+(n-1) \beta]
$$

Furthermore, if $A=a I_{n}+b 1_{n \times n}$, where $a+n b>0$ and $a>0$, then $\alpha=a+b$, $\beta=b$, and equality holds. (Proof: See [1033].) (Remark: See Fact 2.13.12 and Fact 8.9.34)

Fact 8.13.33. Let $A \in \mathbb{F}^{n \times n}$, assume that A is positive definite, and define

$$
\beta \triangleq \frac{1}{n(n-1)} \sum_{\substack{i, j=1 \\ i \neq j}}^{n} \frac{\left|A_{(i, j)}\right|}{\sqrt{A_{(i, i)} A_{(j, j)}}}
$$

Then,

$$
|\operatorname{det} A| \leq(1-\beta)^{n-1}[1+(n-1) \beta] \prod_{i=1}^{n} A_{(i, i)}
$$

(Proof: See 1033.) (Remark: This inequality strengthens Hadamard's inequality. See Fact 8.17.11. See also 412.)

Fact 8.13.34. Let $A \in \mathbb{F}^{n \times n}$. Then,

$$
|\operatorname{det} A| \leq \prod_{i=1}^{n}\left(\sum_{j=1}^{n}\left|A_{(i, j)}\right|^{2}\right)^{1 / 2}=\prod_{i=1}^{n}\left\|\operatorname{row}_{i}(A)\right\|_{2}
$$

Furthermore, equality holds if and only if $A A^{*}$ is diagonal. Now, let $\alpha>0$ be such that, for all $i, j=1, \ldots, n,\left|A_{(i, j)}\right| \leq \alpha$. Then,

$$
|\operatorname{det} A| \leq \alpha^{n} n^{n / 2}
$$

If, in addition, at least one entry of A has absolute value less than α, then

$$
|\operatorname{det} A|<\alpha^{n} n^{n / 2}
$$

(Remark: Replace A with $A A^{*}$ in Fact 8.17.11) (Remark: This result is a direct consequence of Hadamard's inequality. See Fact 8.17.11) (Remark: See Fact 2.13.14 and Fact 6.5.26.)

Fact 8.13.35. Let $A \in \mathbb{F}^{n \times n}, B \in \mathbb{F}^{n \times m}$, and $C \in \mathbb{F}^{m \times m}$, define $\mathcal{A} \triangleq\left[\begin{array}{cc}A & B \\ B^{*} & C\end{array}\right] \in$ $\mathbb{F}^{(n+m) \times(n+m)}$, and assume that \mathcal{A} is positive definite. Then,

$$
\operatorname{det} \mathcal{A}=(\operatorname{det} A) \operatorname{det}\left(C-B^{*} A^{-1} B\right) \leq(\operatorname{det} A) \operatorname{det} C \leq \prod_{i=1}^{n+m} \mathcal{A}_{(i, i)}
$$

(Proof: The second inequality is obtained by successive application of the first inequality.) (Remark: $\operatorname{det} \mathcal{A} \leq(\operatorname{det} A) \operatorname{det} C$ is Fischer's inequality.)

Fact 8.13.36. Let $A \in \mathbb{F}^{n \times n}, B \in \mathbb{F}^{n \times m}$, and $C \in \mathbb{F}^{m \times m}$, define $\mathcal{A} \triangleq\left[\begin{array}{cc}A & B \\ B^{*} & C\end{array}\right] \in$ $\mathbb{F}^{(n+m) \times(n+m)}$, assume that \mathcal{A} is positive definite, let $k \triangleq \min \{m, n\}$, and, for $i=1, \ldots, n$, let $\lambda_{i} \triangleq \lambda_{i}(\mathcal{A})$. Then,

$$
\prod_{i=1}^{n+m} \lambda_{i} \leq(\operatorname{det} A) \operatorname{det} C \leq\left(\prod_{i=k+1}^{n+m-k} \lambda_{i}\right) \prod_{i=1}^{k}\left[\frac{1}{2}\left(\lambda_{i}+\lambda_{n+m-i+1}\right)\right]^{2}
$$

(Proof: The left-hand inequality is given by Fact 8.13.35. The right-hand inequality is given in 1025.)

Fact 8.13.37. Let $A \in \mathbb{F}^{n \times n}$, and let $\mathcal{S} \subseteq\{1, \ldots, n\}$. Then, the following statements hold:
i) If $\alpha \subset\{1, \ldots, n\}$, then

$$
\operatorname{det} A \leq\left[\operatorname{det} A_{(\alpha)}\right] \operatorname{det} A_{\left(\alpha^{\sim}\right)}
$$

ii) If $\alpha, \beta \subseteq\{1, \ldots, n\}$, then

$$
\operatorname{det} A_{(\alpha \cup \beta)} \leq \frac{\left[\operatorname{det} A_{(\alpha)}\right] \operatorname{det} A_{(\beta)}}{\operatorname{det} A_{(\alpha \cap \beta)}}
$$

iii) If $1 \leq k \leq n-1$, then

$$
\left(\prod_{\{\alpha: \operatorname{card}(\alpha)=k+1\}} \operatorname{det} A_{(\alpha)}\right)^{\binom{n-1}{k-1}} \leq\left(\prod_{\{\alpha: \operatorname{card}(\alpha)=k\}} \operatorname{det} A_{(\alpha)}\right)^{\binom{n-1}{k}}
$$

(Proof: See 938.) (Remark: The first result is Fischer's inequality, see Fact 8.13.35, The second result is the Hadamard-Fischer inequality. The third result is Szasz's inequality. See [353, p. 680], [709, p. 479], and 938.) (Remark: See Fact 8.13.36])

Fact 8.13.38. Let $A, B, C \in \mathbb{F}^{n \times n}$, define $\mathcal{A} \triangleq\left[\begin{array}{cc}A & B \\ B^{*} & C\end{array}\right] \in \mathbb{F}^{2 n \times 2 n}$, and assume that \mathcal{A} is positive semidefinite. Then,

$$
0 \leq(\operatorname{det} A) \operatorname{det} C-|\operatorname{det} B|^{2} \leq \operatorname{det} \mathcal{A} \leq(\operatorname{det} A) \operatorname{det} C
$$

Hence,

$$
|\operatorname{det} B|^{2} \leq(\operatorname{det} A) \operatorname{det} C
$$

Furthermore, \mathcal{A} is positive definite if and only if

$$
|\operatorname{det} B|^{2}<(\operatorname{det} A) \operatorname{det} C
$$

(Proof: Assuming that A is positive definite, it follows that $0 \leq B^{*} A^{-1} B \leq C$, which implies that $|\operatorname{det} B|^{2} / \operatorname{det} A \leq \operatorname{det} C$. Then, use continuity for the case in which A
is singular. For an alternative proof, see [1098, p. 142]. For the case in which \mathcal{A} is positive definite, note that $0 \leq B^{*} A^{-1} B<C$, and thus $|\operatorname{det} B|^{2} / \operatorname{det} A<\operatorname{det} C$.) (Remark: This result is due to Everitt.) (Remark: See Fact 8.13.42) (Remark: When B is nonsquare, it is not necessarily true that $\left|\operatorname{det}\left(B^{*} B\right)\right|^{2}<(\operatorname{det} A) \operatorname{det} C$. See [1492].)

Fact 8.13.39. Let $A \in \mathbb{F}^{n \times n}, B \in \mathbb{F}^{n \times m}$, and $C \in \mathbb{F}^{m \times m}$, define $\mathcal{A} \triangleq\left[\begin{array}{cc}A & B \\ B^{*} & C_{C}\end{array}\right] \in$ $\mathbb{F}^{(n+m) \times(n+m)}$, and assume that \mathcal{A} is positive semidefinite and A is positive definite. Then,

$$
B^{*} A^{-1} B \leq\left[\frac{\lambda_{\max }(\mathcal{A})-\lambda_{\min }(\mathcal{A})}{\lambda_{\max }(\mathcal{A})+\lambda_{\min }(\mathcal{A})}\right]^{2} C .
$$

(Proof: See [886, 1494].)
Fact 8.13.40. Let $A, B, C \in \mathbb{F}^{n \times n}$, define $\mathcal{A} \triangleq\left[\begin{array}{cc}A & B \\ B^{*} & C\end{array}\right] \in \mathbb{F}^{2 n \times 2 n}$, and assume that \mathcal{A} is positive semidefinite. Then,

$$
|\operatorname{det} B|^{2} \leq\left[\frac{\lambda_{\max }(\mathcal{A})-\lambda_{\min }(\mathcal{A})}{\lambda_{\max }(\mathcal{A})+\lambda_{\min }(\mathcal{A})}\right]^{2 n}(\operatorname{det} A) \operatorname{det} C .
$$

Hence,

$$
|\operatorname{det} B|^{2} \leq\left[\frac{\lambda_{\max }(\mathcal{A})-\lambda_{\min }(\mathcal{A})}{\lambda_{\max }(\mathcal{A})+\lambda_{\min }(\mathcal{A})}\right]^{2}(\operatorname{det} A) \operatorname{det} C
$$

Now, define $\hat{\mathcal{A}} \triangleq\left[\begin{array}{cc}\operatorname{det} A & \operatorname{det} B \\ \operatorname{det} B^{*} & \operatorname{det} C\end{array}\right] \in \mathbb{F}^{2 \times 2}$. Then,

$$
|\operatorname{det} B|^{2} \leq\left[\frac{\lambda_{\max }(\hat{\mathcal{A}})-\lambda_{\min }(\hat{\mathcal{A}})}{\lambda_{\max }(\hat{\mathcal{A}})+\lambda_{\min }(\hat{\mathcal{A}})}\right]^{2}(\operatorname{det} A) \operatorname{det} C .
$$

(Proof: See 886, 1494.) (Remark: The second and third bounds are not comparable. See [886, 1494].)

Fact 8.13.41. Let $A \in \mathbb{F}^{n \times n}, B \in \mathbb{F}^{n \times m}$, and $C \in \mathbb{F}^{m \times m}$, define $\mathcal{A} \triangleq\left[\begin{array}{cc}A & B \\ B^{*} & B\end{array}\right] \in$ $\mathbb{F}^{(n+m) \times(n+m)}$, assume that \mathcal{A} is positive semidefinite, and assume that A and C are positive definite. Then,

$$
\operatorname{det}(A \mid \mathcal{A}) \operatorname{det}(C \mid \mathcal{A}) \leq \operatorname{det} \mathcal{A}
$$

(Proof: See [717.) (Remark: This result is the reverse Fischer inequality.)
Fact 8.13.42. Let $A_{i j} \in \mathbb{F}^{n \times n}$ for all $i, j=1, \ldots, k$, define

$$
A \triangleq\left[\begin{array}{ccc}
A_{11} & \cdots & A_{1 k} \\
\vdots & \cdots & \vdots \\
A_{1 k}^{*} & \cdots & A_{k k}
\end{array}\right]
$$

assume that A is positive semidefinite, let $1 \leq k \leq n$, and define

$$
\tilde{A}_{k} \triangleq\left[\begin{array}{ccc}
A_{11}^{(k)} & \cdots & A_{1 k}^{(k)} \\
\vdots & \vdots & \vdots \\
A_{1 k}^{*(k)} & \cdots & A_{k k}^{(k)}
\end{array}\right]
$$

Then, \tilde{A}_{k} is positive semidefinite. In particular,

$$
\tilde{A}_{n}=\left[\begin{array}{ccc}
\operatorname{det} A_{11} & \cdots & \operatorname{det} A_{1 k} \\
\vdots & \therefore & \vdots \\
\operatorname{det} A_{1 k}^{*} & \cdots & \operatorname{det} A_{k k}
\end{array}\right]
$$

is positive semidefinite. Furthermore,

$$
\operatorname{det} A \leq \operatorname{det} \tilde{A}
$$

Now, assume that A is positive definite. Then, $\operatorname{det} A=\operatorname{det} \tilde{A}$ if and only if, for all distinct $i, j=1, \ldots, k, A_{i j}=0$. (Proof: The first statement is given in 386. The inequality as well as the final statement are given in 1267.) (Remark: $B^{(k)}$ is the k th compound of B. See Fact 7.5.17) (Remark: Note that every principal subdeterminant of \tilde{A}_{n} is lower bounded by the determinant of a positive-semidefinite matrix. Hence, the inequality implies that \tilde{A}_{n} is positive semidefinite.) (Remark: A weaker result is given in 388 and quoted in 961 in terms of elementary symmetric functions of the eigenvalues of each block.) (Remark: The example $A=\left[\begin{array}{llll}1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$ shows that \tilde{A} can be positive definite while A is singular.) (Remark: The matrix whose (i, j) entry is $\operatorname{det} A_{i j}$ is a determinantal compression of A. See [387, 964, 1267.) (Remark: See Fact 8.12.42,)

8.14 Facts on Convex Sets and Convex Functions

Fact 8.14.1. Let $f: \mathbb{R}^{n} \mapsto \mathbb{R}^{n}$, and assume that f is convex. Then, for all $\alpha \in \mathbb{R}$, the sets $\left\{x \in \mathbb{R}^{n}: f(x) \leq \alpha\right\}$ and $\left\{x \in \mathbb{R}^{n}: f(x)<\alpha\right\}$ are convex. (Proof: See [495, p. 108].) (Remark: The converse is not true. Consider the function $f(x)=x^{3}$.

Fact 8.14.2. Let $A \in \mathbb{F}^{n \times n}$, assume that A is Hermitian, let $\alpha \geq 0$, and define the set $\mathcal{S} \triangleq\left\{x \in \mathbb{F}^{n}: x^{*} A x<\alpha\right\}$. Then, the following statements hold:
i) \mathcal{S} is open.
ii) \mathcal{S} is a blunt cone if and only if $\alpha=0$.
iii) \mathcal{S} is nonempty if and only if either $\alpha>0$ or $\lambda_{\min }(A)<0$.
iv) \mathcal{S} is convex if and only if $A \geq 0$.
$v) \mathcal{S}$ is convex and nonempty if and only if $\alpha>0$ and $A \geq 0$.
vi) The following statements are equivalent:
a) \mathcal{S} is bounded.
b) \mathcal{S} is convex and bounded.
c) $A>0$.
vii) The following statements are equivalent:
a) \mathcal{S} is bounded and nonempty.
b) \mathcal{S} is convex, bounded, and nonempty.
c) $\alpha>0$ and $A>0$.

Fact 8.14.3. Let $A \in \mathbb{F}^{n \times n}$, assume that A is Hermitian, let $\alpha \geq 0$, and define the set $\mathcal{S} \triangleq\left\{x \in \mathbb{F}^{n}: x^{*} A x \leq \alpha\right\}$. Then, the following statements hold:
i) \mathcal{S} is closed.
ii) $0 \in \mathcal{S}$, and thus \mathcal{S} is nonempty.
iii) S is a pointed cone if and only if $\alpha=0$ or $A \leq 0$.
$i v) \mathcal{S}$ is convex if and only if $A \geq 0$.
$v)$ The following statements are equivalent:
a) \mathcal{S} is bounded.
b) \mathcal{S} is convex and bounded.
c) $A>0$.

Fact 8.14.4. Let $A \in \mathbb{F}^{n \times n}$, assume that A is Hermitian, let $\alpha \geq 0$, and define the set $\mathcal{S} \triangleq\left\{x \in \mathbb{F}^{n}: x^{*} A x=\alpha\right\}$. Then, the following statements hold:
i) \mathcal{S} is closed.
ii) \mathcal{S} is nonempty if and only if either $\alpha=0$ or $\lambda_{\max }(A)>0$.
iii) The following statements are equivalent:
a) \mathcal{S} is a pointed cone.
b) $0 \in \mathcal{S}$.
c) $\alpha=0$.
iv) $\mathcal{S}=\{0\}$ if and only if $\alpha=0$ and either $A>0$ or $A<0$.
$v) ~ S$ is bounded if and only if either $A>0$ or both $\alpha>0$ and $A \leq 0$.
vi) \mathcal{S} is bounded and nonempty if and only if $A>0$.
vii) The following statements are equivalent:
a) \mathcal{S} is convex.
b) \mathcal{S} is convex and nonempty.
c) $\alpha=0$ and either $A>0$ or $A<0$.
viii) If $\alpha>0$, then the following statements are equivalent:
a) \mathcal{S} is nonempty.
b) \mathcal{S} is not convex.
c) $\lambda_{\max }(A)>0$.
${ }_{i x}$) The following statements are equivalent:
a) \mathcal{S} is convex and bounded.
b) \mathcal{S} is convex, bounded, and nonempty.
c) $\alpha=0$ and $A>0$.

Fact 8.14.5. Let $A \in \mathbb{F}^{n \times n}$, assume that A is Hermitian, let $\alpha \geq 0$, and define the set $\mathcal{S} \triangleq\left\{x \in \mathbb{F}^{n}: x^{*} A x \geq \alpha\right\}$. Then, the following statements hold:
i) \mathcal{S} is closed.
ii) \mathcal{S} is a pointed cone if and only if $\alpha=0$.
iii) \mathcal{S} is nonempty if and only if either $\alpha=0$ or $\lambda_{\max }(A)>0$.
iv) \mathcal{S} is bounded if and only if $\mathcal{S} \subseteq\{0\}$.
$v)$ The following statements are equivalent:
a) \mathcal{S} is bounded and nonempty.
b) $\mathcal{S}=\{0\}$.
c) $\alpha=0$ and $A<0$.
vi) \mathcal{S} is convex if and only if either \mathcal{S} is empty or $\mathcal{S}=\mathbb{F}^{n}$.
vii) \mathcal{S} is convex and bounded if and only if \mathcal{S} is empty.
viii) The following statements are equivalent:
a) \mathcal{S} is convex and nonempty.
b) $\mathcal{S}=\mathbb{F}^{n}$.
c) $\alpha=0$ and $A \geq 0$.

Fact 8.14.6. Let $A \in \mathbb{F}^{n \times n}$, assume that A is Hermitian, let $\alpha \geq 0$, and define the set $\mathcal{S} \triangleq\left\{x \in \mathbb{F}^{n}: x^{*} A x>\alpha\right\}$. Then, the following statements hold:
i) \mathcal{S} is open.
ii) \mathcal{S} is a blunt cone if and only if $\alpha=0$.
iii) \mathcal{S} is nonempty if and only if $\lambda_{\max }(A)>0$.
$i v)$ The following statements are equivalent:
a) \mathcal{S} is empty.
b) $\lambda_{\max }(A) \leq 0$.
c) \mathcal{S} is bounded.
d) \mathcal{S} is convex.

Fact 8.14.7. Let $A \in \mathbb{C}^{n \times n}$, and define the numerical range of A by

$$
\Theta_{1}(A) \triangleq\left\{x^{*} A x: \quad x \in \mathbb{C}^{n} \text { and } x^{*} x=1\right\}
$$

and the set

$$
\Theta(A) \triangleq\left\{x^{*} A x: \quad x \in \mathbb{C}^{n}\right\}
$$

Then, the following statements hold:
i) $\Theta_{1}(A)$ is a closed, bounded, convex subset of \mathbb{C}.
ii) $\Theta(A)=\{0\} \cup$ cone $\Theta_{1}(A)$.
iii) $\Theta(A)$ is a pointed, closed, convex cone contained in \mathbb{C}.
$i v)$ If A is Hermitian, then $\Theta_{1}(A)$ is a closed, bounded interval contained in \mathbb{R}.
v) If A is Hermitian, then $\Theta(A)$ is either $(-\infty, 0],[0, \infty)$, or \mathbb{R}.
vi) $\Theta_{1}(A)$ satisfies

$$
\operatorname{cospec}(A) \subseteq \Theta_{1}(A) \subseteq \operatorname{co}\left\{\nu_{1}+\jmath \mu_{1}, \nu_{1}+\jmath \mu_{n}, \nu_{n}+\jmath \mu_{1}, \nu_{n}+\jmath \mu_{n}\right\}
$$

where

$$
\begin{array}{ll}
\nu_{1} \triangleq \lambda_{\max }\left[\frac{1}{2}\left(A+A^{*}\right)\right], & \nu_{n} \triangleq \lambda_{\min }\left[\frac{1}{2}\left(A+A^{*}\right)\right] \\
\mu_{1} \triangleq \lambda_{\max }\left[\frac{1}{2 \jmath}\left(A-A^{*}\right)\right], & \mu_{n} \triangleq \lambda_{\min }\left[\frac{1}{2 \jmath}\left(A-A^{*}\right)\right]
\end{array}
$$

vii) If A is normal, then

$$
\Theta_{1}(A)=\operatorname{cospec}(A)
$$

viii) If $n \leq 4$ and $\Theta_{1}(A)=\operatorname{cospec}(A)$, then A is normal.
ix) $\Theta_{1}(A)=\operatorname{cospec}(A)$ if and only if either A is normal or there exist matrices $A_{1} \in \mathbb{F}^{n_{1} \times n_{1}}$ and $A_{2} \in \mathbb{F}^{n_{2} \times n_{2}}$ such that $n_{1}+n_{2}=n, \Theta_{1}\left(A_{1}\right) \subseteq \Theta_{1}\left(A_{2}\right)$, and A is unitarily similar to $\left[\begin{array}{cc}A_{1} & 0 \\ 0 & A_{2}\end{array}\right]$.
(Proof: See 610] or [711, pp. 11, 52].) (Remark: $\Theta_{1}(A)$ is called the field of values in [711, p. 5].) (Remark: See Fact 4.10.24 and Fact 8.14.7.) (Remark: viii) is an example of the quartic barrier. See [351], Fact 8.15.37] and Fact 11.17.3.)

Fact 8.14.8. Let $A \in \mathbb{R}^{n \times n}$, and define the real numerical range of A by

$$
\Psi_{1}(A) \triangleq\left\{x^{\mathrm{T}} A x: \quad x \in \mathbb{R}^{n} \text { and } x^{\mathrm{T}} x=1\right\}
$$

and the set

$$
\Psi(A) \triangleq\left\{x^{\mathrm{T}} A x: \quad x \in \mathbb{R}^{n}\right\}
$$

Then, the following statements hold:
i) $\Psi_{1}(A)=\Psi_{1}\left[\frac{1}{2}\left(A+A^{\mathrm{T}}\right)\right]$.
ii) $\Psi_{1}(A)=\left[\lambda_{\min }\left[\frac{1}{2}\left(A+A^{\mathrm{T}}\right)\right], \lambda_{\min }\left[\frac{1}{2}\left(A+A^{\mathrm{T}}\right)\right]\right]$.
iii) If A is symmetric, then $\Psi_{1}(A)=\left[\lambda_{\min }(A), \lambda_{\max }(A)\right]$.
iv) $\Psi(A)=\{0\} \cup$ cone $\Psi_{1}(A)$.
v) $\Psi(A)$ is either $(-\infty, 0],[0, \infty)$, or \mathbb{R}.
vi) $\Psi_{1}(A)=\Theta_{1}(A)$ if and only if A is symmetric.
(Proof: See [711, p. 83].) (Remark: $\Theta_{1}(A)$ is defined in Fact 8.14.7)
Fact 8.14.9. Let $A, B \in \mathbb{C}^{n \times n}$, assume that A and B are Hermitian, and define

$$
\Theta_{1}(A, B) \triangleq\left\{\left[\begin{array}{l}
x^{*} A x \\
x^{*} B x
\end{array}\right]: x \in \mathbb{C}^{n} \text { and } x^{*} x=1\right\} \subseteq \mathbb{R}^{2}
$$

Then, $\Theta_{1}(A, B)$ is convex. (Proof: See [1090.) (Remark: This result is an immediate consequence of Fact 8.14.7.)

Fact 8.14.10. Let $A, B \in \mathbb{R}^{n \times n}$, assume that A and B are symmetric, and let α, β be real numbers. Then, the following statements are equivalent:
i) There exists $x \in \mathbb{R}^{n}$ such that $x^{\mathrm{T}} A x=\alpha$ and $x^{\mathrm{T}} B x=\beta$.
ii) There exists a positive-semidefinite matrix $X \in \mathbb{R}^{n \times n}$ such that $\operatorname{tr} A X=\alpha$ and $\operatorname{tr} B X=\beta$.
(Proof: See [153, p. 84].)
Fact 8.14.11. Let $A, B \in \mathbb{R}^{n \times n}$, assume that A and B are symmetric, and define

$$
\Psi_{1}(A, B) \triangleq\left\{\left[\begin{array}{c}
x^{\mathrm{T}} A x \\
x^{\mathrm{T}} B x
\end{array}\right]: x \in \mathbb{R}^{n} \text { and } x^{\mathrm{T}} x=1\right\} \subseteq \mathbb{R}^{2}
$$

and

$$
\Psi(A, B) \triangleq\left\{\left[\begin{array}{c}
x^{\mathrm{T}} A x \\
x^{\mathrm{T}} B x
\end{array}\right]: x \in \mathbb{R}^{n}\right\} \subseteq \mathbb{R}^{2}
$$

Then, $\Psi(A, B)$ is a pointed, convex cone. If, in addition, $n \geq 3$, then $\Psi_{1}(A, B)$ is convex. (Proof: See [153, pp. 84, 89] or [406, 1090].) (Remark: $\Psi(A, B)=$ $\left[\operatorname{cone} \Psi_{1}(A, B)\right] \cup\left\{\left[\begin{array}{l}0 \\ 0\end{array}\right]\right\}$.) (Remark: The set $\Psi(A, B)$ is not necessarily closed. See (406, 1063, 1064.)

Fact 8.14.12. Let $A, B \in \mathbb{R}^{n \times n}$, where $n \geq 2$, assume that A and B are symmetric, let $a, b \in \mathbb{R}^{n}$, let $a_{0}, b_{0} \in \mathbb{R}$, assume that there exist real numbers α, β such that $\alpha A+\beta B>0$, and define

$$
\Psi\left(A, a, a_{0}, B, b, b_{0}\right) \triangleq\left\{\left[\begin{array}{l}
x^{\mathrm{T}} A x+a^{\mathrm{T}} x+a_{0} \\
x^{\mathrm{T}} B x+b^{\mathrm{T}} x+b_{0}
\end{array}\right]: x \in \mathbb{R}^{n}\right\} \subseteq \mathbb{R}^{2}
$$

Then, $\Psi\left(A, a, a_{0}, B, b, b_{0}\right)$ is closed and convex. (Proof: See 1090 .)
Fact 8.14.13. Let $A, B, C \in \mathbb{R}^{n \times n}$, where $n \geq 3$, assume that A, B, and C are symmetric, and define

$$
\Phi_{1}(A, B, C) \triangleq\left\{\left[\begin{array}{c}
x^{\mathrm{T}} A x \\
x^{\mathrm{T}} B x \\
x^{\mathrm{T}} C x
\end{array}\right]: x \in \mathbb{R}^{n} \text { and } x^{\mathrm{T}} x=1\right\} \subseteq \mathbb{R}^{3}
$$

and

$$
\Phi(A, B, C) \triangleq\left\{\left[\begin{array}{c}
x^{\mathrm{T}} A x \\
x^{\mathrm{T}} B x \\
x^{\mathrm{T}} C x
\end{array}\right]: x \in \mathbb{R}^{n}\right\} \subseteq \mathbb{R}^{3}
$$

Then, $\Phi_{1}(A, B, C)$ is convex and $\Phi(A, B, C)$ is a pointed, convex cone. (Proof: See [260, 1087, 1090.)

Fact 8.14.14. Let $A, B, C \in \mathbb{R}^{n \times n}$, where $n \geq 3$, assume that A, B, and C are symmetric, and define

$$
\Phi(A, B, C) \triangleq\left\{\left[\begin{array}{c}
x^{\mathrm{T}} A x \\
x^{\mathrm{T}} B x \\
x^{\mathrm{T}} C x
\end{array}\right]: x \in \mathbb{R}^{n}\right\} \subseteq \mathbb{R}^{3}
$$

Then, the following statements are equivalent:
i) There exist real numbers α, β, γ such that $\alpha A+\beta B+\gamma C$ is positive definite.
ii) $\Phi(A, B, C)$ is a pointed, one-sided, closed, convex cone, and, if $x \in \mathbb{R}^{n}$ satisfies $x^{\mathrm{T}} A x=x^{\mathrm{T}} B x=x^{\mathrm{T}} C x=0$, then $x=0$.
(Proof: See 1090.)
Fact 8.14.15. Let $A \in \mathbb{F}^{n \times n}$, assume that A is Hermitian, let $b \in \mathbb{F}^{n}$ and $c \in \mathbb{R}$, and define $f: \mathbb{F}^{n} \mapsto \mathbb{R}$ by

$$
f(x) \triangleq x^{*} A x+\operatorname{Re}\left(b^{*} x\right)+c
$$

Then, the following statements hold:
i) f is convex if and only if A is positive semidefinite.
ii) f is strictly convex if and only if A is positive definite.

Now, assume that A is positive semidefinite. Then, f has a minimizer if and only if $b \in \mathcal{R}(A)$. In this case, the following statements hold.
iii) The vector $x_{0} \in \mathbb{F}^{n}$ is a minimizer of f if and only if x_{0} satisfies $A x_{0}=-\frac{1}{2} b$.
iv) $x_{0} \in \mathbb{F}^{m}$ minimizes f if and only if there exists a vector $y \in \mathbb{F}^{m}$ such that

$$
x_{0}=-\frac{1}{2} A^{+} b+\left(I-A^{+} A\right) y
$$

$v)$ The minimum of f is given by

$$
f\left(x_{0}\right)=c-x_{0}^{*} A x_{0}=c-\frac{1}{4} b^{*} A^{+} b .
$$

$v i$ If A is positive definite, then $x_{0}=-\frac{1}{2} A^{-1} b$ is the unique minimizer of f, and the minimum of f is given by

$$
f\left(x_{0}\right)=c-x_{0}^{*} A x_{0}=c-\frac{1}{4} b^{*} A^{-1} b
$$

(Proof: Use Proposition 6.1.7 and note that, for every x_{0} satisfying $A x_{0}=-\frac{1}{2} b$, it follows that

$$
\begin{aligned}
f\left(x_{0}\right) & =\left(x-x_{0}\right)^{*} A\left(x-x_{0}\right)+c-x_{0}^{*} A x_{0} \\
& \left.=\left(x-x_{0}\right)^{*} A\left(x-x_{0}\right)+c-\frac{1}{4} b^{*} A^{+} b .\right)
\end{aligned}
$$

(Remark: This result is the quadratic minimization lemma.) (Remark: See Fact 9.15.1.)

Fact 8.14.16. Let $A \in \mathbb{F}^{n \times n}$, assume that A is positive definite, and define $\phi: \mathbb{F}^{m \times n} \mapsto \mathbb{R}$ by $\phi(B) \triangleq \operatorname{tr} B A B^{*}$. Then, ϕ is strictly convex. (Proof: $\operatorname{tr}[\alpha(1-$ $\left.\alpha)\left(B_{1}-B_{2}\right) A\left(B_{1}-B_{2}\right)^{*}\right]>0$.)

Fact 8.14.17. Let $p, q \in \mathbb{R}$, and define $\phi: \mathbf{P}^{n} \times \mathbf{P}^{n} \rightarrow(0, \infty)$ by

$$
\phi(A, B) \triangleq \operatorname{tr} A^{p} B^{q}
$$

Then, the following statements hold:
i) If $p, q \in(0,1)$ and $p+q \leq 1$, then $-\phi$ is convex.
ii) If either $p, q \in[-1,0)$ or $p \in[-1,0), q \in[1,2]$, and $p+q \geq 1$, or $p \in[1,2]$, $q \in[-1,0]$, and $p+q \geq 1$, then ϕ is convex.
iii) If p, q do not satisfy the hypotheses of either i) or $i i$), then neither ϕ nor $-\phi$ is convex.
(Proof: See [166].)
Fact 8.14.18. Let $B \in \mathbb{F}^{n \times n}$, assume that B is Hermitian, let $\alpha_{1}, \ldots, \alpha_{k} \in$ $(0, \infty)$, define $r \triangleq \sum_{i=1}^{k} \alpha_{i}$, assume that $r \leq 1$, let $q \in \mathbb{R}$, and define $\phi: \mathbf{P}^{n} \times \cdots \times$ $\mathbf{P}^{n} \rightarrow[0, \infty)$ by

$$
\phi\left(A_{1}, \ldots, A_{k}\right) \triangleq-\left[\operatorname{tr} e^{B+\sum_{i=1}^{k} \alpha_{i} \log A_{i}}\right]^{q}
$$

If $q \in(0,1 / r]$, then ϕ is convex. Furthermore, if $q<0$, then $-\phi$ is convex. (Proof: See [905, 933.) (Remark: See 989 and Fact 8.12.31.)

8.15 Facts on Quadratic Forms

Fact 8.15.1. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is Hermitian. Then,

$$
\mathcal{N}(A) \subseteq\left\{x \in \mathbb{F}^{n}: x^{*} A x=0\right\}
$$

Furthermore,

$$
\mathcal{N}(A)=\left\{x \in \mathbb{F}^{n}: x^{*} A x=0\right\}
$$

if and only if either $A \geq 0$ or $A \leq 0$.
Fact 8.15.2. Let $x, y \in \mathbb{F}^{n}$. Then, $x x^{*} \leq y y^{*}$ if and only if there exists $\alpha \in \mathbb{F}$ such that $|\alpha| \in[0,1]$ and $x=\alpha y$.

Fact 8.15.3. Let $x, y \in \mathbb{F}^{n}$. Then, $x y^{*}+y x^{*} \geq 0$ if and only if x and y are linearly dependent. (Proof: Evaluate the product of the nonzero eigenvalues of $x y^{*}+y x^{*}$, and use the Cauchy-Schwarz inequality $\left|x^{*} y\right|^{2} \leq x^{*} x y^{*} y$.)

Fact 8.15.4. Let $A \in \mathbb{F}^{n \times n}$, assume that A is positive definite, let $x \in \mathbb{F}^{n}$, and let $a \in[0, \infty)$. Then, the following statements are equivalent:
i) $x x^{*} \leq a A$.
ii) $x^{*} A^{-1} x \leq a$.
iii) $\left[\begin{array}{cc}A & x \\ x^{*} & a\end{array}\right] \geq 0$.
(Proof: Use Fact 2.14.3 and Proposition 8.2.4. Note that, if $a=0$, then $x=0$.)
Fact 8.15.5. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are Hermitian, assume that $A+B$ is nonsingular, let $x, a, b \in \mathbb{F}^{n}$, and define $c \triangleq(A+B)^{-1}(A a+B b)$. Then,
$(x-a)^{*} A(x-a)+(x-b)^{*} B(x-b)=(x-c)^{*}(A+B)(x-c)=(a-b)^{*} A(A+B)^{-1} B(a-b)$.
(Proof: See [1184, p. 278].)

Fact 8.15.6. Let $A, B \in \mathbb{R}^{n \times n}$, assume that A is symmetric and B is skew symmetric, and let $x, y \in \mathbb{R}^{n}$. Then,

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]^{\mathrm{T}}\left[\begin{array}{rr}
A & B \\
B^{\mathrm{T}} & A
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=(x+\jmath y)^{*}(A+\jmath B)(x+\jmath y)
$$

(Remark: See Fact 4.10.26])
Fact 8.15.7. Let $A \in \mathbb{F}^{n \times n}$, assume that A is positive definite, and let $x, y \in$ \mathbb{F}^{n}. Then,

$$
2 \operatorname{Re} x^{*} y \leq x^{*} A x+y^{*} A^{-1} y .
$$

Furthermore, if $y=A x$, then equality holds. Therefore,

$$
x^{*} A x=\max _{z \in \mathbb{F}^{\mathfrak{r}}}\left[2 \operatorname{Re} x^{*} z-z^{*} A z\right] .
$$

(Proof: $\left(A^{1 / 2} x-A^{-1 / 2} y\right)^{*}\left(A^{1 / 2} x-A^{-1 / 2} y\right) \geq 0$.) (Remark: This result is due to Bellman. See 886, 1494.)

Fact 8.15.8. Let $A \in \mathbb{F}^{n \times n}$, assume that A is positive definite, and let $x, y \in$ \mathbb{F}^{n}. Then,

$$
\left|x^{*} y\right|^{2} \leq\left(x^{*} A x\right)\left(y^{*} A^{-1} y\right) .
$$

(Proof: Use Fact 8.11 .14 with A replaced by $A^{1 / 2} x$ and B replaced by $A^{-1 / 2} y$.)
Fact 8.15.9. Let $A \in \mathbb{F}^{n \times n}$, assume that A is positive definite, and let $x \in \mathbb{F}^{n}$. Then,

$$
\left(x^{*} x\right)^{2} \leq\left(x^{*} A x\right)\left(x^{*} A^{-1} x\right) \leq \frac{(\alpha+\beta)^{2}}{4 \alpha \beta}\left(x^{*} x\right)^{2},
$$

where $\alpha \triangleq \lambda_{\text {min }}(A)$ and $\beta \triangleq \lambda_{\max }(A)$. (Remark: The second inequality is the Kantorovich inequality. See Fact 1.15 .36 and [22]. See also [927].)

Fact 8.15.10. Let $A \in \mathbb{F}^{n \times n}$, assume that A is positive definite, and let $x \in \mathbb{F}^{n}$. Then,

$$
\left(x^{*} x\right)^{1 / 2}\left(x^{*} A x\right)^{1 / 2}-x^{*} A x \leq \frac{(\alpha-\beta)^{2}}{4(\alpha+\beta)} x^{*} x
$$

and

$$
\left(x^{*} x\right)\left(x^{*} A^{2} x\right)-\left(x^{*} A x\right)^{2} \leq \frac{1}{4}(\alpha-\beta)^{2}\left(x^{*} x\right)^{2},
$$

where $\alpha \triangleq \lambda_{\min }(A)$ and $\beta \triangleq \lambda_{\max }(A)$. (Proof: See [1079.) (Remark: Extensions of these results are given in [748, 1079.)

Fact 8.15.11. Let $A \in \mathbb{F}^{n \times n}$, assume that A is positive semidefinite, let $r \triangleq \operatorname{rank} A$, let $x \in \mathbb{F}^{n}$, and assume that $x \notin \mathcal{N}(A)$. Then,

$$
\frac{x^{*} A x}{x^{*} x}-\frac{x^{*} x}{x^{*} A^{+} x} \leq\left[\lambda_{\max }^{1 / 2}(A)-\lambda_{r}^{1 / 2}(A)\right]^{2} .
$$

If, in addition, A is positive definite, then, for all nonzero $x \in \mathbb{F}^{n}$,

$$
0 \leq \frac{x^{*} A x}{x^{*} x}-\frac{x^{*} x}{x^{*} A^{-1} x} \leq\left[\lambda_{\max }^{1 / 2}(A)-\lambda_{\min }^{1 / 2}(A)\right]^{2} .
$$

(Proof: See [1016 1079]. The left-hand inequality in the last string of inequalities is given by Fact 8.15.9.)

Fact 8.15.12. Let $A \in \mathbb{F}^{n \times n}$, assume that A is positive definite, let $y \in \mathbb{F}^{n}$, let $\alpha>0$, and define $f: \mathbb{F}^{n} \mapsto \mathbb{R}$ by $f(x) \triangleq\left|x^{*} y\right|^{2}$. Then,

$$
x_{0}=\sqrt{\frac{\alpha}{y^{*} A^{-1} y}} A^{-1} y
$$

minimizes $f(x)$ subject to $x^{*} A x \leq \alpha$. Furthermore, $f\left(x_{0}\right)=\alpha y^{*} A^{-1} y$. (Proof: See (31.)

Fact 8.15.13. Let $A \in \mathbb{F}^{n \times n}$, assume that A is positive semidefinite, and let $x \in \mathbb{F}^{n}$. Then,

$$
\left(x^{*} A^{2} x\right)^{2} \leq\left(x^{*} A x\right)\left(x^{*} A^{3} x\right)
$$

and

$$
\left(x^{*} A x\right)^{2} \leq\left(x^{*} x\right)\left(x^{*} A^{2} x\right)
$$

(Proof: Apply the Cauchy-Schwarz inequality Corollary 9.1.7.)
Fact 8.15.14. Let $A \in \mathbb{F}^{n \times n}$, assume that A is positive semidefinite, and let $x \in \mathbb{F}^{n}$. If $\alpha \in[0,1]$, then

$$
x^{*} A^{\alpha} x \leq\left(x^{*} x\right)^{1-\alpha}\left(x^{*} A x\right)^{\alpha} .
$$

Furthermore, if $\alpha>1$, then

$$
\left(x^{*} A x\right)^{\alpha} \leq\left(x^{*} x\right)^{\alpha-1} x^{*} A^{\alpha} x
$$

(Remark: The first inequality is the Hölder-McCarthy inequality, which is equivalent to the Young inequality. See Fact 8.9.42, Fact 8.10.43, [530, p. 125], and [532]. Matrix versions of the second inequality are given in 697.)

Fact 8.15.15. Let $A \in \mathbb{F}^{n \times n}$, assume that A is positive semidefinite, let $x \in \mathbb{F}^{n}$, and let $\alpha, \beta \in[1, \infty)$, where $\alpha \leq \beta$. Then,

$$
\left(x^{*} A^{\alpha} x\right)^{1 / \alpha} \leq\left(x^{*} A^{\beta} x\right)^{1 / \beta}
$$

Now, assume that A is positive definite. Then,

$$
x^{*}(\log A) x \leq \log x^{*} A x \leq \frac{1}{\alpha} \log x^{*} A^{\alpha} x \leq \frac{1}{\beta} \log x^{*} A^{\beta} x .
$$

(Proof: See [509].)
Fact 8.15.16. Let $A \in \mathbb{F}^{n \times n}, x, y \in \mathbb{F}^{n}$, and $\alpha \in(0,1)$. Then,

$$
\left|x^{*} A y\right| \leq\left\|\langle A\rangle^{\alpha} x\right\|_{2}\left\|\left\langle A^{*}\right\rangle^{1-\alpha} y\right\|_{2} .
$$

Consequently,

$$
\left|x^{*} A y\right| \leq\left[x^{*}\langle A\rangle x\right]^{1 / 2}\left[y^{*}\left\langle A^{*}\right\rangle y\right]^{1 / 2}
$$

(Proof: See [775].)

Fact 8.15.17. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A is positive semidefinite, assume that $A B$ is Hermitian, and let $x \in \mathbb{F}^{n}$. Then,

$$
\left|x^{*} A B x\right| \leq \operatorname{sprad}(B) x^{*} A x
$$

(Proof: See 911.) (Remark: This result is the sharpening by Halmos of Reid's inequality. Related results are given in 912 .)

Fact 8.15.18. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are positive definite, and let $x \in \mathbb{F}^{n}$. Then,

$$
x^{*}(A+B)^{-1} x \leq \frac{x^{*} A^{-1} x x^{*} B^{-1} x}{x^{*} A^{-1} x+x^{*} B^{-1} x} \leq \frac{1}{4}\left(x^{*} A^{-1} x+x^{*} B^{-1} x\right)
$$

In particular,

$$
\frac{1}{\left(A^{-1}\right)_{(i, i)}}+\frac{1}{\left(B^{-1}\right)_{(i, i)}} \leq \frac{1}{\left[(A+B)^{-1}\right]_{(i, i)}}
$$

(Proof: See [948, p. 201]. The right-hand inequality follows from Fact 1.10.4.) (Remark: This result is Bergstrom's inequality.) (Remark: This result is a special case of Fact 8.11.3, which is a special case of xvii) of Proposition 8.6.17,

Fact 8.15.19. Let $A, B \in \mathbb{F}^{n \times m}$, assume that $I-A^{*} A$ and $I-B^{*} B$ are positive semidefinite, and let $x \in \mathbb{C}^{n}$. Then,

$$
x^{*}\left(I-A^{*} A\right) x x^{*}\left(I-B^{*} B\right) x \leq\left|x^{*}\left(I-A^{*} B\right) x\right|^{2} .
$$

(Remark: This result is due to Marcus. See [1060.) (Remark: See Fact 8.13.25.)
Fact 8.15.20. Let $A, B \in \mathbb{R}^{n}$, and assume that A is Hermitian and B is positive definite. Then,

$$
\lambda_{\max }\left(A B^{-1}\right)=\max \{\lambda \in \mathbb{R}: \quad \operatorname{det}(A-\lambda B)=0\}=\min _{x \in \mathbb{F}^{n} \backslash\{0\}} \frac{x^{*} A x}{x^{*} B x}
$$

(Proof: Use Lemma 8.4.3,
Fact 8.15.21. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A is positive definite and B is positive semidefinite. Then,

$$
4\left(x^{*} x\right)\left(x^{*} B x\right)<\left(x^{*} A x\right)^{2}
$$

for all nonzero $x \in \mathbb{F}^{n}$ if and only if there exists $\alpha>0$ such that

$$
\alpha I+\alpha^{-1} B<A
$$

In this case, $4 B<A^{2}$, and hence $2 B^{1 / 2}<A$. (Proof: Sufficiency follows from $\alpha x^{*} x+\alpha^{-1} x^{*} B x<x^{*} A x$. Necessity follows from Fact 8.15.22. The last result follows from $(A-2 \alpha I)^{2} \geq 0$ or $2 B^{1 / 2} \leq \alpha I+\alpha^{-1} B$.)

Fact 8.15.22. Let $A, B, C \in \mathbb{F}^{n \times n}$, assume that A, B, C are positive semidefinite, and assume that

$$
4\left(x^{*} C x\right)\left(x^{*} B x\right)<\left(x^{*} A x\right)^{2}
$$

for all nonzero $x \in \mathbb{F}^{n}$. Then, there exists $\alpha>0$ such that

$$
\alpha C+\alpha^{-1} B<A
$$

(Proof: See [1083].)
Fact 8.15.23. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A is Hermitian and B is positive semidefinite. Then, $x^{*} A x<0$ for all $x \in \mathbb{F}^{n}$ such that $B x=0$ and $x \neq 0$ if and only if there exists $\alpha>0$ such that $A<\alpha B$. (Proof: To prove necessity, suppose that, for every $\alpha>0$, there exists a nonzero vector x such that $x^{*} A x \geq \alpha x^{*} B x$. Now, $B x=0$ implies that $x^{*} A x \geq 0$. Sufficiency is immediate.)

Fact 8.15.24. Let $A, B \in \mathbb{C}^{n \times n}$, and assume that A and B are Hermitian. Then, the following statements are equivalent:
i) There exist $\alpha, \beta \in \mathbb{R}$ such that $\alpha A+\beta B$ is positive definite.
ii) $\left\{x \in \mathbb{C}^{n}: x^{*} A x=x^{*} B x=0\right\}=\{0\}$.
(Remark: This result is Finsler's lemma. See [83, 163, 866, 1340, 1352.) (Remark: See Fact 8.15.25, Fact 8.16.5, and Fact 8.16.6.)

Fact 8.15.25. Let $A, B \in \mathbb{R}^{n \times n}$, and assume that A and B are symmetric. Then, the following statements are equivalent:
i) There exist $\alpha, \beta \in \mathbb{R}$ such that $\alpha A+\beta B$ is positive definite.
ii) Either $x^{\mathrm{T}} A x>0$ for all nonzero $x \in\left\{y \in \mathbb{F}^{n}: y^{\mathrm{T}} B y=0\right\}$ or $x^{\mathrm{T}} A x<0$ for all nonzero $x \in\left\{y \in \mathbb{F}^{n}: y^{\mathrm{T}} B y=0\right\}$.
Now, assume that $n \geq 3$. Then, the following statement is equivalent to i) and $i i$):
iii) $\left\{x \in \mathbb{R}^{n}: x^{\mathrm{T}} A x=x^{\mathrm{T}} B x=0\right\}=\{0\}$.
(Remark: This result is related to Finsler's lemma. See [83, 163, 1352.) (Remark: See Fact 8.15.24, Fact 8.16.5, and Fact 8.16.6.)

Fact 8.15.26. Let $A, B \in \mathbb{C}^{n \times n}$, assume that A and B are Hermitian, and assume that $x^{*}(A+\jmath B) x$ is nonzero for all nonzero $x \in \mathbb{C}^{n}$. Then, there exists $t \in[0, \pi)$ such that $(\sin t) A+(\cos t) B$ is positive definite. (Proof: See [355] or [1230, p. 282].)

Fact 8.15.27. Let $A \in \mathbb{R}^{n \times n}$, assume that A is symmetric, and let $B \in \mathbb{R}^{n \times m}$. Then, the following statements are equivalent:
i) $x^{\mathrm{T}} A x>0$ for all nonzero $x \in \mathcal{N}\left(B^{\mathrm{T}}\right)$.
ii) $\nu_{+}\left(\left[\begin{array}{cc}A & B \\ B^{\mathrm{T}} & 0\end{array}\right]\right)=n$.

Furthermore, the following statements are equivalent:
iii) $x^{\mathrm{T}} A x \geq 0$ for all $x \in \mathcal{N}\left(B^{\mathrm{T}}\right)$.
iv) $\nu_{-}\left(\left[\begin{array}{cc}A & B \\ B^{\mathrm{T}} & 0\end{array}\right]\right)=\operatorname{rank} B$.
(Proof: See [299, 945].) (Remark: See Fact 5.8.21 and Fact 8.15.28)
Fact 8.15.28. Let $A \in \mathbb{R}^{n \times n}$, assume that A is symmetric, let $B \in \mathbb{R}^{n \times m}$, where $m \leq n$, and assume that $\left[\begin{array}{ll}I_{m} & 0\end{array}\right] B$ is nonsingular. Then, the following
statements are equivalent:
i) $x^{\mathrm{T}} A x>0$ for all nonzero $x \in \mathcal{N}\left(B^{\mathrm{T}}\right)$.
ii) For all $i=m+1, \ldots, n$, the sign of the $i \times i$ leading principal subdeterminant of the matrix $\left[\begin{array}{cc}0 & B^{\mathrm{T}} \\ B & A\end{array}\right]$ is $(-1)^{m}$.
(Proof: See [94, p. 20], [936, p. 312], or [955].) (Remark: See Fact 8.15.27])
Fact 8.15.29. Let $A \in \mathbb{F}^{n \times n}$, assume that A is positive semidefinite and nonzero, let $x, y \in \mathbb{F}^{n}$, and assume that $x^{*} y=0$. Then,

$$
\left|x^{*} A y\right|^{2} \leq\left[\frac{\lambda_{\max }(A)-\lambda_{\min }(A)}{\lambda_{\max }(A)+\lambda_{\min }(A)}\right]^{2}\left(x^{*} A x\right)\left(y^{*} A y\right)
$$

Furthermore, there exist vectors $x, y \in \mathbb{F}^{n}$ satisfying $x^{*} y=0$ for which equality holds. (Proof: See [711, p. 443] or [886, 1494.) (Remark: This result is the Wielandt inequality.)

Fact 8.15.30. Let $A \in \mathbb{F}^{n \times n}, B \in \mathbb{F}^{n \times m}$, and $C \in \mathbb{F}^{m \times m}$, define $\mathcal{A} \triangleq\left[\begin{array}{cc}A & B \\ B^{*} & C_{C}\end{array}\right]$, and assume that A and C are positive semidefinite. Then, the following statements are equivalent:
i) \mathcal{A} is positive semidefinite.
ii) $\left|x^{*} B y\right|^{2} \leq\left(x^{*} A x\right)\left(y^{*} C y\right)$ for all $x \in \mathbb{F}^{n}$ and $y \in \mathbb{F}^{m}$.
iii) $2\left|x^{*} B y\right| \leq x^{*} A x+y^{*} C y$ for all $x \in \mathbb{F}^{n}$ and $y \in \mathbb{F}^{m}$.

If, in addition, A and C are positive definite, then the following statement is equivalent to i)-iii):
iv) $\operatorname{sprad}\left(B^{*} A^{-1} B C^{-1}\right) \leq 1$.

Finally, if \mathcal{A} is positive semidefinite and nonzero, then, for all $x \in \mathbb{F}^{n}$ and $y \in \mathbb{F}^{m}$,

$$
\left|x^{*} B y\right|^{2} \leq\left[\frac{\lambda_{\max }(\mathcal{A})-\lambda_{\min }(\mathcal{A})}{\lambda_{\max }(\mathcal{A})+\lambda_{\min }(\mathcal{A})}\right]^{2}\left(x^{*} A x\right)\left(y^{*} C y\right)
$$

(Proof: See [709, p. 473] and [886, 1494].)
Fact 8.15.31. Let $A \in \mathbb{F}^{n \times n}$, assume that A is Hermitian, let $x, y \in \mathbb{F}^{n}$, and assume that $x^{*} x=y^{*} y=1$ and $x^{*} y=0$. Then,

$$
2\left|x^{*} A y\right| \leq \lambda_{\max }(A)-\lambda_{\min }(A)
$$

Furthermore, there exist vectors $x, y \in \mathbb{F}^{n}$ satisfying $x^{*} x=y^{*} y=1$ and $x^{*} y=0$ for which equality holds. (Proof: See 886 1494.) (Remark: $\lambda_{\max }(A)-\lambda_{\min }(A)$ is the spread of A. See Fact 9.9 .30 and Fact 9.9.31.)

Fact 8.15.32. Let $A \in \mathbb{R}^{n \times n}$, and assume that A is positive definite. Then,

$$
\int_{\mathbb{R}^{n}} e^{-x^{\mathrm{T}} A x} \mathrm{~d} x=\frac{\pi^{n / 2}}{\sqrt{\operatorname{det} A}} .
$$

Fact 8.15.33. Let $A \in \mathbb{R}^{n \times n}$, assume that A is positive definite, and define $f: \mathbb{R}^{n} \mapsto \mathbb{R}$ by

$$
f(x)=\frac{e^{-\frac{1}{2} x^{\mathrm{T}} A^{-1} x}}{(2 \pi)^{n / 2} \sqrt{\operatorname{det} A}}
$$

Then,

$$
\begin{gathered}
\int_{\mathbb{R}^{n}} f(x) \mathrm{d} x=1 \\
\int_{\mathbb{R}^{n}} f(x) x x^{\mathrm{T}} \mathrm{~d} x=A
\end{gathered}
$$

and

$$
-\int_{\mathbb{R}^{n}} f(x) \log f(x) \mathrm{d} x=\frac{1}{2} \log \left[(2 \pi e)^{n} \operatorname{det} A\right]
$$

(Proof: See 352 or use Fact 8.15.35]) (Remark: f is the multivariate normal density. The last expression is the entropy.)

Fact 8.15.34. Let $A, B \in \mathbb{R}^{n \times n}$, assume that A and B are positive definite, and, for $k=0,1,2,3$, define

$$
\mathcal{J}_{k} \triangleq \frac{1}{(2 \pi)^{n / 2} \sqrt{\operatorname{det} A}} \int_{\mathbb{R}^{n}}\left(x^{\mathrm{T}} B x\right)^{k} e^{-\frac{1}{2} x^{\mathrm{T}} A^{-1} x} \mathrm{~d} x
$$

Then,

$$
\begin{gathered}
\mathcal{J}_{0}=1, \\
\mathcal{J}_{1}=\operatorname{tr} A B \\
\mathcal{J}_{2}=(\operatorname{tr} A B)^{2}+2 \operatorname{tr}(A B)^{2}, \\
\mathcal{J}_{3}=(\operatorname{tr} A B)^{3}+6(\operatorname{tr} A B)\left[\operatorname{tr}(A B)^{2}\right]+8 \operatorname{tr}(A B)^{3} .
\end{gathered}
$$

(Proof: See [1002, p. 80].) (Remark: These identities are Lancaster's formulas.)
Fact 8.15.35. Let $A \in \mathbb{R}^{n \times n}$, assume that A is positive definite, let $B \in \mathbb{R}^{n \times n}$, let $a, b \in \mathbb{R}^{n}$, and let $\alpha, \beta \in \mathbb{R}$. Then,

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}}\left(x^{\mathrm{T}} B x+b^{\mathrm{T}} x+\beta\right) e^{-\left(x^{\mathrm{T}} A x+a^{\mathrm{T}} x+\alpha\right)} \mathrm{d} x \\
& \quad=\frac{\pi^{n / 2}}{2 \sqrt{\operatorname{det} A}}\left[2 \beta+\operatorname{tr}\left(A^{-1} B\right)-b^{\mathrm{T}} A^{-1} a+\frac{1}{2} a^{\mathrm{T}} A^{-1} B A^{-1} a\right] e^{\frac{1}{4} a^{\mathrm{T}} A^{-1} a-\alpha} .
\end{aligned}
$$

(Proof: See 654 p. 322].)
Fact 8.15.36. Let $\mathcal{G}=(\mathcal{X}, \mathcal{R})$ be a symmetric graph, where $\mathcal{X}=\left\{x_{1}, \ldots, x_{n}\right\}$. Then, for all $z \in \mathbb{R}^{n}$, it follows that

$$
z^{\mathrm{T}} L z=\frac{1}{2} \sum\left(z_{(i)}-z_{(j)}\right)^{2}
$$

where the sum is over the set $\left\{(i, j):\left(x_{i}, x_{j}\right) \in \mathcal{R}\right\}$. (Proof: See [269, pp. 29, 30] or [993].)

Fact 8.15.37. Let $n \leq 4$, let $A \in \mathbb{R}^{n \times n}$, assume that A is symmetric, and assume that, for all nonnegative vectors $x \in \mathbb{R}^{n}, x^{\mathrm{T}} A x \geq 0$. Then, there exist $B, C \in \mathbb{R}^{n \times n}$ such that B is positive semidefinite, C is symmetric and nonnegative, and $A=B+C$. (Remark: The result does not hold for all $n>5$. Hence, this result is an example of the quartic barrier. See [351], Fact 8.14.7, and Fact 11.17.3) (Remark: A is copositive.)

8.16 Facts on Simultaneous Diagonalization

Fact 8.16.1. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are Hermitian. Then, the following statements are equivalent:
i) There exists a unitary matrix $S \in \mathbb{F}^{n \times n}$ such that $S A S^{*}$ and $S B S^{*}$ are diagonal.
ii) $A B=B A$.
iii) $A B$ and $B A$ are Hermitian.

If, in addition, A is nonsingular, then the following condition is equivalent to i)-iii):
iv) $A^{-1} B$ is Hermitian.
(Proof: See [174, p. 208], 447, pp. 188-190], or [709, p. 229].) (Remark: The equivalence of i) and $i i$) is given by Fact 5.17.7.

Fact 8.16.2. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are Hermitian, and assume that A is nonsingular. Then, there exists a nonsingular matrix $S \in \mathbb{F}^{n \times n}$ such that $S A S^{*}$ and $S B S^{*}$ are diagonal if and only if $A^{-1} B$ is diagonalizable over \mathbb{R}. (Proof: See [709] p. 229] or [1098 p. 95].)

Fact 8.16.3. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are symmetric, and assume that A is nonsingular. Then, there exists a nonsingular matrix $S \in \mathbb{F}^{n \times n}$ such that $S A S^{\mathrm{T}}$ and $S B S^{\mathrm{T}}$ are diagonal if and only if $A^{-1} B$ is diagonalizable. (Proof: See [709 p. 229] and [1352.) (Remark: A and B are complex symmetric.)

Fact 8.16.4. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are Hermitian. Then, there exists a nonsingular matrix $S \in \mathbb{F}^{n \times n}$ such that $S A S^{*}$ and $S B S^{*}$ are diagonal if and only if there exists a positive-definite matrix $M \in \mathbb{F}^{n \times n}$ such that $A M B=B M A$. (Proof: See [83].)

Fact 8.16.5. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are Hermitian, and assume there exist $\alpha, \beta \in \mathbb{R}$ such that $\alpha A+\beta B$ is positive definite. Then, there exists a nonsingular matrix $S \in \mathbb{F}^{n \times n}$ such that $S A S^{*}$ and $S B S^{*}$ are diagonal. (Proof: See [709, p. 465].) (Remark: This result extends a result due to Weierstrass. See [1352].) (Remark: Suppose that B is positive definite. Then, by necessity of Fact 8.16.2 it follows that $A^{-1} B$ is diagonalizable over \mathbb{R}, which proves $\left.i i i\right) \Longrightarrow i$) of Proposition [5.5.12) (Remark: See Fact 8.16.6]

Fact 8.16.6. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are Hermitian, assume that $\left\{x \in \mathbb{F}^{n}: x^{*} A x=x^{*} B x=0\right\}=\{0\}$, and, if $\mathbb{F}=\mathbb{R}$, assume that $n \geq 3$. Then,
there exists a nonsingular matrix $S \in \mathbb{F}^{n \times n}$ such that $S A S^{*}$ and $S B S^{*}$ are diagonal. (Proof: The result follows from Fact 5.17.9. See [950] or [1098 p. 96].) (Remark: For $\mathbb{F}=\mathbb{R}$, this result is due to Pesonen and Milnor. See [1352].) (Remark: See Fact 5.17.9, Fact 8.15.24, Fact 8.15.25, and Fact 8.16.5)

8.17 Facts on Eigenvalues and Singular Values for One Matrix

Fact 8.17.1. Let $A=\left[\begin{array}{ll}a & b \\ b & c\end{array}\right] \in \mathbb{F}^{2 \times 2}$, assume that A is Hermitian, and let $\operatorname{mspec}(A)=\left\{\lambda_{1}, \lambda_{2}\right\}_{\mathrm{ms}}$. Then,

$$
2|b| \leq \lambda_{1}-\lambda_{2}
$$

Now, assume that A is positive semidefinite. Then,

$$
\sqrt{2}|b| \leq\left(\sqrt{\lambda_{1}}-\sqrt{\lambda_{2}}\right) \sqrt{\lambda_{1}+\lambda_{2}}
$$

If $c>0$, then

$$
\frac{|b|}{\sqrt{c}} \leq \sqrt{\lambda_{1}}-\sqrt{\lambda_{2}}
$$

If $a>0$ and $c>0$, then

$$
\frac{|b|}{\sqrt{a c}} \leq \frac{\lambda_{1}-\lambda_{2}}{\lambda_{1}+\lambda_{2}}
$$

Finally, if A is positive definite, then

$$
\frac{|b|}{a} \leq \frac{\lambda_{1}-\lambda_{2}}{2 \sqrt{\lambda_{1} \lambda_{2}}}
$$

and

$$
4|b| \leq \frac{\lambda_{1}^{2}-\lambda_{2}^{2}}{\sqrt{\lambda_{1} \lambda_{2}}}
$$

(Proof: See [886, 1494].) (Remark: These inequalities are useful for deriving inequalities involving quadratic forms. See Fact 8.15.29 and Fact 8.15.30,

Fact 8.17.2. Let $A \in \mathbb{F}^{n \times m}$. Then, for all $i=1, \ldots, \min \{n, m\}$,

$$
\lambda_{i}(\langle A\rangle)=\sigma_{i}(A)
$$

Hence,

$$
\operatorname{tr}\langle A\rangle=\sum_{i=1}^{\min \{n, m\}} \sigma_{i}(A) .
$$

Fact 8.17.3. Let $A \in \mathbb{F}^{n \times n}$, and define

$$
\mathcal{A} \triangleq\left[\begin{array}{cc}
\sigma_{\max }(A) I & A^{*} \\
A & \sigma_{\max }(A) I
\end{array}\right]
$$

Then, \mathcal{A} is positive semidefinite. Furthermore,

$$
\left\langle A+A^{*}\right\rangle \leq\left\{\begin{array}{c}
\langle A\rangle+\left\langle A^{*}\right\rangle \leq 2 \sigma_{\max }(A) I \\
A^{*} A+I
\end{array}\right\} \leq\left[\sigma_{\max }^{2}(A)+1\right] I
$$

(Proof: See 1492.)

Fact 8.17.4. Let $A \in \mathbb{F}^{n \times n}$. Then, for all $i=1, \ldots, n$,

$$
-\sigma_{i}(A) \leq \lambda_{i}\left[\frac{1}{2}\left(A+A^{*}\right)\right] \leq \sigma_{i}(A)
$$

Hence,

$$
|\operatorname{tr} A| \leq \operatorname{tr}\langle A\rangle
$$

(Proof: See [1211].) (Remark: See Fact 5.11.25.)
Fact 8.17.5. Let $A \in \mathbb{F}^{n \times n}$, and let $\operatorname{mspec}(A)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}_{\mathrm{ms}}$, where λ_{1}, \ldots, λ_{n} are ordered such that $\left|\lambda_{1}\right| \geq \cdots \geq\left|\lambda_{n}\right|$. If $p>0$, then, for all $k=1, \ldots, n$,

$$
\sum_{i=1}^{k}\left|\lambda_{i}\right|^{p} \leq \sum_{i=1}^{k} \sigma_{i}^{p}(A)
$$

In particular, for all $k=1, \ldots, n$,

$$
\sum_{i=1}^{k}\left|\lambda_{i}\right| \leq \sum_{i=1}^{k} \sigma_{i}(A)
$$

Hence,

$$
|\operatorname{tr} A| \leq \sum_{i=1}^{n}\left|\lambda_{i}\right| \leq \sum_{i=1}^{n} \sigma_{i}(A)=\operatorname{tr}\langle A\rangle
$$

Furthermore, for all $k=1, \ldots, n$,

$$
\sum_{i=1}^{k}\left|\lambda_{i}\right|^{2} \leq \sum_{i=1}^{k} \sigma_{i}^{2}(A)
$$

Hence,

$$
\operatorname{Re} \operatorname{tr} A^{2} \leq\left|\operatorname{tr} A^{2}\right| \leq \sum_{i=1}^{n}\left|\lambda_{i}\right|^{2} \leq \sum_{i=1}^{n} \sigma_{i}\left(A^{2}\right)=\operatorname{tr}\left\langle A^{2}\right\rangle \leq \sum_{i=1}^{n} \sigma_{i}^{2}(A)=\operatorname{tr} A^{*} A
$$

(Proof: The result follows from Fact 5.11 .28 and Fact 2.21.13. See [197, p. 42], [711, p. 176], or [1485] p. 19]. See Fact 9.13 .17 for the inequality $\operatorname{tr}\left\langle A^{2}\right\rangle=$ $\operatorname{tr}\left(A^{2 *} A^{2}\right)^{1 / 2} \leq \operatorname{tr} A^{*} A$.) Furthermore,

$$
\sum_{i=1}^{n}\left|\lambda_{i}\right|^{2}=\operatorname{tr} A^{*} A
$$

if and only if A is normal. (Proof: See Fact 5.14.15.) Finally,

$$
\sum_{i=1}^{n} \lambda_{i}^{2}=\operatorname{tr} A^{*} A
$$

if and only if A is Hermitian. (Proof: See Fact 3.7.13.) (Remark: The first result is Weyl's inequalities. The result $\sum_{i=1}^{n}\left|\lambda_{i}\right|^{2} \leq \operatorname{tr} A^{*} A$ is Schur's inequality. See Fact 9.11.3.) (Problem: Determine when equality holds for the remaining inequalities.)

Fact 8.17.6. Let $A \in \mathbb{F}^{n \times n}$, let $\operatorname{mspec}(A)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}_{\mathrm{ms}}$, where λ_{1}, \ldots, λ_{n} are ordered such that $\left|\lambda_{1}\right| \geq \cdots \geq\left|\lambda_{n}\right|$, and let $r>0$. Then, for all $k=1, \ldots, n$,

$$
\prod_{i=1}^{k}\left(1+r\left|\lambda_{i}\right|\right) \leq \prod_{i=1}^{k}\left[1+\sigma_{i}(A)\right]
$$

(Proof: See [447, p. 222].)
Fact 8.17.7. Let $A \in \mathbb{F}^{n \times n}$. Then,

$$
\left|\operatorname{tr} A^{2}\right| \leq\left\{\begin{array}{c}
\operatorname{tr}\langle A\rangle\left\langle A^{*}\right\rangle \\
\operatorname{tr}\left\langle A^{2}\right\rangle \leq \operatorname{tr}\langle A\rangle^{2}=\operatorname{tr} A^{*} A
\end{array}\right.
$$

(Proof: For the upper inequality, see 886, 1494. For the lower inequalities, use Fact 8.17.4 and Fact 9.11.3) (Remark: See Fact 5.11.10, Fact 9.13.17, and Fact 9.13.18.)

Fact 8.17.8. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is Hermitian. Then, for all $k=1, \ldots, n$,

$$
\sum_{i=1}^{k} \mathrm{~d}_{i}(A) \leq \sum_{i=1}^{k} \lambda_{i}(A)
$$

with equality for $k=n$, that is,

$$
\operatorname{tr} A=\sum_{i=1}^{n} \mathrm{~d}_{i}(A)=\sum_{i=1}^{n} \lambda_{i}(A)
$$

That is, $\left[\begin{array}{lll}\lambda_{1}(A) & \cdots & \lambda_{n}(A)\end{array}\right]^{\mathrm{T}}$ strongly majorizes $\left[\begin{array}{lll}\mathrm{d}_{1}(A) & \cdots & \mathrm{d}_{n}(A)\end{array}\right]^{\mathrm{T}}$, and thus, for all $k=1, \ldots, n$,

$$
\sum_{i=k}^{n} \lambda_{i}(A) \leq \sum_{i=k}^{n} \mathrm{~d}_{i}(A)
$$

In particular,

$$
\lambda_{\min }(A) \leq \mathrm{d}_{\min }(A) \leq \mathrm{d}_{\max }(A) \leq \lambda_{\max }(A)
$$

Furthermore, the vector $\left[\begin{array}{lll}\mathrm{d}_{1}(A) & \cdots & \mathrm{d}_{n}(A)\end{array}\right]^{\mathrm{T}}$ is an element of the convex hull of the $n!$ vectors obtaining by permuting the components of $\left[\begin{array}{lll}\lambda_{1}(A) & \cdots & \lambda_{n}(A)\end{array}\right]^{\mathrm{T}}$. (Proof: See [197, p. 35], [709, p. 193], [971, p. 218], or [1485, p. 18]. The last statement follows from Fact 2.21.7) (Remark: This result is Schur's theorem.) (Remark: See Fact 8.12.3,

Fact 8.17.9. Let $A \in \mathbb{F}^{n \times n}$, assume that A is Hermitian, let k denote the number of positive diagonal entries of A, and let l denote the number of positive eigenvalues of A. Then,

$$
\sum_{i=1}^{k} \mathrm{~d}_{i}^{2}(A) \leq \sum_{i=1}^{l} \lambda_{i}^{2}(A)
$$

(Proof: Write $A=B+C$, where B is positive semidefinite, C is negative semidefinite, and $\operatorname{mspec}(A)=\operatorname{mspec}(B) \cup \operatorname{mspec}(C)$. Furthermore, without loss of gener-
ality, assume that $A_{(1,1)}, \ldots, A_{(k, k)}$ are the positive diagonal entries of A. Then,

$$
\begin{aligned}
\sum_{i=1}^{k} \mathrm{~d}_{i}^{2}(A)= & \sum_{i=1}^{k} A_{(i, i)}^{2} \leq \sum_{i=1}^{k}\left(A_{(i, i)}-C_{(i, i)}\right)^{2} \\
& =\sum_{i=1}^{k} B_{(i, i)}^{2} \leq \sum_{i=1}^{n} B_{(i, i)}^{2} \leq \operatorname{tr} B^{2}=\sum_{i=1}^{l} \lambda_{i}^{2}(A)
\end{aligned}
$$

(Remark: This inequality can be written as

$$
\operatorname{tr}(A+|A|)^{\circ 2} \leq \operatorname{tr}(A+\langle A\rangle)^{2}
$$

(Remark: This result is due to Y. Li.)
Fact 8.17.10. Let $x, y \in \mathbb{R}^{n}$, where $n \geq 2$. Then, the following statements are equivalent:
i) y strongly majorizes by x.
ii) x is an element of the convex hull of the vectors $y_{1}, \ldots, y_{n!} \in \mathbb{R}^{n}$, where each of these n ! vectors is formed by permuting the components of y.
iii) There exists a Hermitian matrix $A \in \mathbb{C}^{n \times n}$ such that $\left[A_{(1,1)} \cdots A_{(n, n)}\right]^{\mathrm{T}}$ $=x$ and $\operatorname{mspec}(A)=\left\{y_{(1)}, \ldots, y_{(n)}\right\}_{\mathrm{ms}}$.
(Remark: This result is the Schur-Horn theorem. Schur's theorem given by Fact 8.17 .8 is $i i i) \Longrightarrow i$), while the result $i) \Longrightarrow i i i$) is due to 708 . The equivalence of $i i$) is given by Fact 2.21.7. The significance of this result is discussed in [153, 198, 262].) (Remark: An equivalent version is given by Fact 3.11.19,)

Fact 8.17.11. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is positive semidefinite. Then, for all $k=1, \ldots, n$,

$$
\prod_{i=k}^{n} \lambda_{i}(A) \leq \prod_{i=k}^{n} \mathrm{~d}_{i}(A)
$$

In particular,

$$
\operatorname{det} A \leq \prod_{i=1}^{n} A_{(i, i)}
$$

Now, assume that A is positive definite. Then, equality holds if and only if A is diagonal. (Proof: See [530, pp. 21-24], [709, pp. 200, 477], or [1485, p. 18].) (Remark: The case $k=1$ is Hadamard's inequality.) (Remark: See Fact 8.13.34and Fact 9.11.1) (Remark: A strengthened version is given by Fact 8.13.33,) (Remark: A geometric interpretation is discussed in 539].)

Fact 8.17.12. Let $A \in \mathbb{F}^{n \times n}$, define $H \triangleq \frac{1}{2}\left(A+A^{*}\right)$ and $S \triangleq \frac{1}{2}\left(A-A^{*}\right)$, and assume that H is positive definite. Then, the following statements hold:
i) A is nonsingular.
ii) $\frac{1}{2}\left(A^{-1}+A^{-*}\right)=\left(H+S^{*} H^{-1} S\right)^{-1}$.
iii) $\sigma_{\max }\left(A^{-1}\right) \leq \sigma_{\max }\left(H^{-1}\right)$.
iv) $\sigma_{\max }(A) \leq \sigma_{\max }\left(H+S^{*} H^{-1} S\right)$.
(Proof: See 978.) (Remark: See Fact 8.9.31 and Fact 8.13.11)
Fact 8.17.13. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is Hermitian. Then, $\left\{A_{(1,1)}, \ldots, A_{(n, n)}\right\}_{\mathrm{ms}}=\operatorname{mspec}(A)$ if and only if A is diagonal. (Proof: Apply Fact 8.17.11 with $A+\beta I>0$.)

Fact 8.17.14. Let $A \in \mathbb{F}^{n \times n}$. Then, $\left[\begin{array}{cc}I & A \\ A^{*} & I\end{array}\right]$ is positive semidefinite if and only if $\sigma_{\max }(A) \leq 1$. Furthermore, $\left[\begin{array}{cc}I & A \\ A^{*} & I\end{array}\right]$ is positive definite if and only if $\sigma_{\max }(A)<1$. (Proof: Note that

$$
\left.\left[\begin{array}{cc}
I & A \\
A^{*} & I
\end{array}\right]=\left[\begin{array}{cc}
I & 0 \\
A^{*} & I
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
0 & I-A^{*} A
\end{array}\right]\left[\begin{array}{cc}
I & A \\
0 & I
\end{array}\right] .\right)
$$

Fact 8.17.15. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is Hermitian. Then, for all $k=1, \ldots, n$,

$$
\sum_{i=1}^{k} \lambda_{i}=\max \left\{\operatorname{tr} S^{*} A S: \quad S \in \mathbb{F}^{n \times k} \text { and } S^{*} S=I_{k}\right\}
$$

and

$$
\sum_{i=n+1-k}^{n} \lambda_{i}=\min \left\{\operatorname{tr} S^{*} A S: \quad S \in \mathbb{F}^{n \times k} \text { and } S^{*} S=I_{k}\right\}
$$

(Proof: See [709, p. 191].) (Remark: This result is the minimum principle.)
Fact 8.17.16. Let $A \in \mathbb{F}^{n \times n}$, assume that A is Hermitian, and let $S \in \mathbb{R}^{k \times n}$ satisfy $S S^{*}=I_{k}$. Then, for all $i=1, \ldots, k$,

$$
\lambda_{i+n-k}(A) \leq \lambda_{i}\left(S A S^{*}\right) \leq \lambda_{i}(A)
$$

Consequently,

$$
\sum_{i=1}^{k} \lambda_{i+n-k}(A) \leq \operatorname{tr} S A S^{*} \leq \sum_{i=1}^{k} \lambda_{i}(A)
$$

and

$$
\prod_{i=1}^{k} \lambda_{i+n-k}(A) \leq \operatorname{det} S A S^{*} \leq \prod_{i=1}^{k} \lambda_{i}(A)
$$

(Proof: See [709] p. 190].) (Remark: This result is the Poincaré separation theorem.)

8.18 Facts on Eigenvalues and Singular Values for Two or More Matrices

Fact 8.18.1. Let $A \in \mathbb{F}^{n \times n}, B \in \mathbb{F}^{n \times m}$, and $C \in \mathbb{F}^{m \times m}$, and assume that A and C are positive definite. Then, $\left[\begin{array}{cc}A & B \\ B^{*} & C\end{array}\right] \in \mathbb{F}^{(n+m) \times(n+m)}$ is positive semidefinite if and only if

$$
\sigma_{\max }\left(A^{-1 / 2} B C^{-1 / 2}\right) \leq 1
$$

Furthermore, $\left[\begin{array}{cc}A & B \\ B^{*} & C\end{array}\right] \in \mathbb{F}^{(n+m) \times(n+m)}$ is positive definite if and only if

$$
\sigma_{\max }\left(A^{-1 / 2} B C^{-1 / 2}\right)<1
$$

(Proof: See [964].)
Fact 8.18.2. Let $A \in \mathbb{F}^{n \times n}, B \in \mathbb{F}^{n \times m}$, and $C \in \mathbb{F}^{m \times m}$, assume that A and C are positive definite, and assume that

$$
\sigma_{\max }^{2}(B) \leq \sigma_{\min }(A) \sigma_{\min }(C)
$$

Then, $\left[\begin{array}{cc}A & B \\ B^{*} & C\end{array}\right] \in \mathbb{F}^{(n+m) \times(n+m)}$ is positive semidefinite. If, in addition,

$$
\sigma_{\max }^{2}(B)<\sigma_{\min }(A) \sigma_{\min }(C)
$$

then $\left[\begin{array}{cc}A & B \\ B^{*} & C\end{array}\right] \in \mathbb{F}^{(n+m) \times(n+m)}$ is positive definite. (Proof: Note that

$$
\begin{aligned}
\sigma_{\max }^{2}\left(A^{-1 / 2} B C^{-1 / 2}\right) & \leq \lambda_{\max }\left(A^{-1 / 2} B C^{-1} B^{*} A^{-1 / 2}\right) \\
& \leq \sigma_{\max }\left(C^{-1}\right) \lambda_{\max }\left(A^{-1 / 2} B B^{*} A^{-1 / 2}\right) \\
& \leq \frac{1}{\sigma_{\min }(C)} \lambda_{\max }\left(B^{*} A^{-1} B\right) \\
& \leq \frac{\sigma_{\max }\left(A^{-1}\right)}{\sigma_{\min }(C)} \lambda_{\max }\left(B^{*} B\right) \\
& =\frac{1}{\sigma_{\min }(A) \sigma_{\min }(C)} \sigma_{\max }^{2}(B) \\
& \leq 1
\end{aligned}
$$

The result now follows from Fact 8.18.1.)
Fact 8.18.3. Let $A, B \in \mathbb{F}^{n}$, assume that A and B are Hermitian, and define $\gamma \triangleq\left[\gamma_{1} \cdots \gamma_{n}\right]$, where the components of γ are the components of $\left[\lambda_{1}(A) \cdots \lambda_{n}(A)\right]+\left[\lambda_{n}(B) \cdots \lambda_{1}(B)\right]$ arranged in decreasing order. Then, for all $k=1, \ldots, n$,

$$
\sum_{i=1}^{k} \gamma_{i} \leq \sum_{i=1}^{k} \lambda_{i}(A+B)
$$

(Proof: The result follows from the Lidskii-Wielandt inequalities. See [197, p. 71] or [198, 380].) (Remark: This result provides an alternative lower bound for (8.6.12).)

Fact 8.18.4. Let $A, B \in \mathbf{H}^{n}$, let $k \in\{1, \ldots, n\}$, and let $1 \leq i_{1} \leq \cdots \leq i_{k} \leq n$. Then,

$$
\left.\sum_{j=1}^{k} \lambda_{i_{j}}(A)+\sum_{i=1}^{k} \lambda_{n-k+j}(B)\right] \leq \sum_{j=1}^{k} \lambda_{i_{j}}(A+B) \leq \sum_{j=1}^{k}\left[\lambda_{i_{j}}(A)+\lambda_{j}(B)\right]
$$

(Proof: See [1177, pp. 115, 116].)
Fact 8.18.5. Let $f: \mathbb{R} \mapsto \mathbb{R}$ be convex, define $f: \mathbf{H}^{n} \mapsto \mathbf{H}^{n}$ by (8.5.1), let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are Hermitian. Then, for all $\alpha \in[0,1]$,

$$
\left[\alpha \lambda_{1}[f(A)]+(1-\alpha) \lambda_{1}[f(B)] \quad \cdots \quad \alpha \lambda_{n}[f(A)]+(1-\alpha) \lambda_{n}[f(B)]\right]
$$

weakly majorizes

$$
\left[\begin{array}{lll}
\lambda_{1}[f(\alpha A+(1-\alpha) B)] & \cdots & \lambda_{n}[f(\alpha A+(1-\alpha) B)]
\end{array}\right]
$$

If, in addition, f is either nonincreasing or nondecreasing, then, for all $i=1, \ldots, n$,

$$
\lambda_{i}[f(\alpha A+(1-\alpha) B)] \leq \alpha \lambda_{i}[f(A)]+(1-\alpha) \lambda_{i}[f(B)]
$$

(Proof: See [91].) (Remark: Convexity of $f: \mathbb{R} \mapsto \mathbb{R}$ does not imply convexity of $f: \mathbf{H}^{n} \mapsto \mathbf{H}^{n}$.)

Fact 8.18.6. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are positive semidefinite. If $r \in[0,1]$, then

$$
\left[\begin{array}{lll}
\lambda_{1}\left(A^{r}+B^{r}\right) & \cdots & \lambda_{n}\left(A^{r}+B^{r}\right)
\end{array}\right]
$$

weakly majorizes

$$
\left[\begin{array}{lll}
\lambda_{1}\left[(A+B)^{r}\right] & \cdots & \lambda_{n}\left[(A+B)^{r}\right]
\end{array}\right]
$$

and, for all $i=1, \ldots, n$,

$$
2^{1-r} \lambda_{i}\left[(A+B)^{r}\right] \leq \lambda_{i}\left(A^{r}+B^{r}\right)
$$

If $r \geq 1$, then

$$
\left[\begin{array}{lll}
\lambda_{1}\left[(A+B)^{r}\right] & \cdots & \lambda_{n}\left[(A+B)^{r}\right]
\end{array}\right]
$$

weakly majorizes

$$
\left[\begin{array}{lll}
\lambda_{1}\left(A^{r}+B^{r}\right) & \cdots & \lambda_{n}\left(A^{r}+B^{r}\right)
\end{array}\right]
$$

and, for all $i=1, \ldots, n$,

$$
\lambda_{i}\left(A^{r}+B^{r}\right) \leq 2^{r-1} \lambda_{i}\left[(A+B)^{r}\right]
$$

(Proof: The result follows from Fact 8.18.5, See [58, 89, 91.)
Fact 8.18.7. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are positive semidefinite. Then, for all $k=1, \ldots, n$,

$$
\begin{gathered}
\sum_{i=1}^{k} \sigma_{i}^{2}(A+\jmath B) \leq \sum_{i=1}^{k}\left[\sigma_{i}^{2}(A)+\sigma_{i}^{2}(B)\right] \\
\sum_{i=1}^{n} \sigma_{i}^{2}(A+\jmath B)=\sum_{i=1}^{n}\left[\sigma_{i}^{2}(A)+\sigma_{i}^{2}(B)\right], \\
\sum_{i=1}^{k}\left[\sigma_{i}^{2}(A+\jmath B)+\sigma_{n-i}^{2}(A+\jmath B)\right] \leq \sum_{i=1}^{k}\left[\sigma_{i}^{2}(A)+\sigma_{i}^{2}(B)\right], \\
\sum_{i=1}^{n}\left[\sigma_{i}^{2}(A+\jmath B)+\sigma_{n-i}^{2}(A+\jmath B)\right]=\sum_{i=1}^{n}\left[\sigma_{i}^{2}(A)+\sigma_{i}^{2}(B)\right]
\end{gathered}
$$

and

$$
\sum_{i=1}^{k}\left[\sigma_{i}^{2}(A)+\sigma_{n-i}^{2}(B)\right] \leq \sum_{i=1}^{k} \sigma_{i}^{2}\left(A+{ }_{\jmath} B\right)
$$

$$
\sum_{i=1}^{n}\left[\sigma_{i}^{2}(A)+\sigma_{n-i}^{2}(B)\right]=\sum_{i=1}^{n} \sigma_{i}^{2}(A+\jmath B)
$$

(Proof: See [52, 320].) (Remark: The first identity is given by Fact 9.9.40.)
Fact 8.18.8. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are positive semidefinite. Then, the following statements hold:
$i)$ If $p \in[0,1]$, then

$$
\sigma_{\max }\left(A^{p}-B^{p}\right) \leq \sigma_{\max }^{p}(A-B)
$$

ii) If $p \geq \sqrt{2}$, then

$$
\sigma_{\max }\left(A^{p}-B^{p}\right) \leq p\left[\max \left\{\sigma_{\max }(A), \sigma_{\max }(B)\right\}\right]^{p-1} \sigma_{\max }(A-B)
$$

iii) If a and b are positive numbers such that $a I \leq A \leq b I$ and $a I \leq B \leq b I$, then

$$
\sigma_{\max }\left(A^{p}-B^{p}\right) \leq b\left[b^{p-2}+(p-1) a^{p-2}\right] \sigma_{\max }(A-B)
$$

(Proof: See [206, 816].)
Fact 8.18.9. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are positive semidefinite. Then, for all $i=1, \ldots, n$,

$$
\sigma_{i}(A-B) \leq \sigma_{i}\left(\left[\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right]\right)
$$

(Proof: See 1255, 1483].)
Fact 8.18.10. Let $A \in \mathbb{F}^{n \times n}, B \in \mathbb{F}^{n \times m}$, and $C \in \mathbb{F}^{m \times m}$, and assume that $\mathcal{A} \in \mathbb{F}^{(n+m) \times(n+m)}$ defined by

$$
\mathcal{A} \triangleq\left[\begin{array}{cc}
A & B \\
B^{*} & C
\end{array}\right]
$$

is positive semidefinite. Then, for all $i=1, \ldots, \min \{n, m\}$,

$$
2 \sigma_{i}(B) \leq \sigma_{i}(\mathcal{A})
$$

(Proof: See 215, 1255].)
Fact 8.18.11. Let $A, B \in \mathbb{F}^{n \times n}$. Then,

$$
\max \left\{\sigma_{\max }^{2}(A), \sigma_{\max }^{2}(B)\right\}-\sigma_{\max }(A B) \leq \sigma_{\max }\left(A^{*} A-B B^{*}\right)
$$

and

$$
\sigma_{\max }\left(A^{*} A-B B^{*}\right) \leq \max \left\{\sigma_{\max }^{2}(A), \sigma_{\max }^{2}(B)\right\}-\min \left\{\sigma_{\min }^{2}(A), \sigma_{\min }^{2}(B)\right\}
$$

Furthermore,

$$
\max \left\{\sigma_{\max }^{2}(A), \sigma_{\max }^{2}(B)\right\}+\min \left\{\sigma_{\min }^{2}(A), \sigma_{\min }^{2}(B)\right\} \leq \sigma_{\max }\left(A^{*} A+B B^{*}\right)
$$

and

$$
\sigma_{\max }\left(A^{*} A+B B^{*}\right) \leq \max \left\{\sigma_{\max }^{2}(A), \sigma_{\max }^{2}(B)\right\}+\sigma_{\max }(A B)
$$

Now, assume that A and B are positive semidefinite. Then,

$$
\max \left\{\lambda_{\max }(A), \lambda_{\max }(B)\right\}-\sigma_{\max }\left(A^{1 / 2} B^{1 / 2}\right) \leq \sigma_{\max }(A-B)
$$

and

$$
\sigma_{\max }(A-B) \leq \max \left\{\lambda_{\max }(A), \lambda_{\max }(B)\right\}-\min \left\{\lambda_{\min }(A), \lambda_{\min }(B)\right\}
$$

Furthermore,

$$
\max \left\{\lambda_{\max }(A), \lambda_{\max }(B)\right\}+\min \left\{\lambda_{\min }(A), \lambda_{\min }(B)\right\} \leq \lambda_{\max }(A+B)
$$

and

$$
\lambda_{\max }(A+B) \leq \max \left\{\lambda_{\max }(A), \lambda_{\max }(B)\right\}+\sigma_{\max }\left(A^{1 / 2} B^{1 / 2}\right)
$$

(Proof: See [824, 1486].) (Remark: See Fact 8.18.14 and Fact 9.13.8.)
Fact 8.18.12. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are positive semidefinite. Then,

$$
\begin{aligned}
\max \left\{\sigma_{\max }(A), \sigma_{\max }(B)\right\}- & \sigma_{\max }\left(A^{1 / 2} B^{1 / 2}\right) \\
& \leq \sigma_{\max }(A-B) \\
& \leq \max \left\{\sigma_{\max }(A), \sigma_{\max }(B)\right\} \\
& \leq \sigma_{\max }(A+B) \\
& \leq\left\{\begin{array}{r}
\max \left\{\sigma_{\max }(A), \sigma_{\max }(B)\right\}+\sigma_{\max }\left(A^{1 / 2} B^{1 / 2}\right) \\
\sigma_{\max }(A)+\sigma_{\max }(B)
\end{array}\right\} \\
& \leq 2 \max \left\{\sigma_{\max }(A), \sigma_{\max }(B)\right\} .
\end{aligned}
$$

(Proof: See 818, 824 and use Fact 8.18.13,) (Remark: See Fact 8.18.14)
Fact 8.18.13. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are positive semidefinite, and let $k \geq 1$. Then, for all $i=1, \ldots, n$,

$$
2 \sigma_{i}\left[A^{1 / 2}(A+B)^{k-1} B^{1 / 2}\right] \leq \lambda_{i}\left[(A+B)^{k}\right]
$$

Hence,

$$
2 \sigma_{\max }\left(A^{1 / 2} B^{1 / 2}\right) \leq \lambda_{\max }(A+B)
$$

and

$$
\sigma_{\max }\left(A^{1 / 2} B^{1 / 2}\right) \leq \max \left\{\lambda_{\max }(A), \lambda_{\max }(B)\right\}
$$

(Proof: See Fact 8.18.11 and Fact 9.9.18,
Fact 8.18.14. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are positive semidefinite. Then,

$$
\max \left\{\lambda_{\max }(A), \lambda_{\max }(B)\right\}-\sigma_{\max }\left(A^{1 / 2} B^{1 / 2}\right) \leq \sigma_{\max }(A-B)
$$

and

$$
\begin{aligned}
& \lambda_{\max }(A+B) \\
& \quad \leq \frac{1}{2}\left[\lambda_{\max }(A)+\lambda_{\max }(B)+\sqrt{\left[\lambda_{\max }(A)-\lambda_{\max }(B)\right]^{2}+4 \sigma_{\max }^{2}\left(A^{1 / 2} B^{1 / 2}\right)}\right] \\
& \quad \leq\left\{\begin{array}{c}
\max \left\{\lambda_{\max }(A), \lambda_{\max }(B)\right\}+\sigma_{\max }\left(A^{1 / 2} B^{1 / 2}\right) \\
\lambda_{\max }(A)+\lambda_{\max }(B) .
\end{array}\right.
\end{aligned}
$$

Furthermore,

$$
\lambda_{\max }(A+B)=\lambda_{\max }(A)+\lambda_{\max }(B)
$$

if and only if

$$
\sigma_{\max }\left(A^{1 / 2} B^{1 / 2}\right)=\lambda_{\max }^{1 / 2}(A) \lambda_{\max }^{1 / 2}(B)
$$

(Proof: See 818, 821 824.) (Remark: See Fact 8.18.11, Fact 8.18.12 Fact 9.14.15 and Fact 9.9.46, (Problem: Is $\sigma_{\max }(A-B) \leq \sigma_{\max }(A+B) ?$)

Fact 8.18.15. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are positive semidefinite. Then,

$$
\sigma_{\max }\left(A^{1 / 2} B^{1 / 2}\right) \leq \sigma_{\max }^{1 / 2}(A B)
$$

Equivalently,

$$
\lambda_{\max }\left(A^{1 / 2} B A^{1 / 2}\right) \leq \lambda_{\max }^{1 / 2}\left(A B^{2} A\right)
$$

Furthermore, $A B=0$ if and only if $A^{1 / 2} B^{1 / 2}=0$. (Proof: See 818 and 824 .)
Fact 8.18.16. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are positive semidefinite. Then,

$$
\begin{gathered}
\operatorname{tr} A B \leq \operatorname{tr}\left(A B^{2} A\right)^{1 / 2} \leq \frac{1}{4} \operatorname{tr}(A+B)^{2} \\
\operatorname{tr}(A B)^{2} \leq \operatorname{tr} A^{2} B^{2} \leq \frac{1}{16} \operatorname{tr}(A+B)^{4}
\end{gathered}
$$

and

$$
\begin{aligned}
\sigma_{\max }(A B) & \leq \frac{1}{4} \sigma_{\max }\left[(A+B)^{2}\right] \\
& \leq\left\{\begin{aligned}
\frac{1}{2} \sigma_{\max }\left(A^{2}+B^{2}\right) & \leq \frac{1}{2} \sigma_{\max }\left(A^{2}\right)+\frac{1}{2} \sigma_{\max }\left(B^{2}\right) \\
\frac{1}{4} \sigma_{\max }^{2}(A+B) & \leq \frac{1}{4}\left[\sigma_{\max }(A)+\sigma_{\max }(B)\right]^{2}
\end{aligned}\right\} \\
& \leq \frac{1}{2} \sigma_{\max }^{2}(A)+\frac{1}{2} \sigma_{\max }^{2}(B)
\end{aligned}
$$

(Proof: See Fact 9.9.18 The inequalities $\operatorname{tr} A B \leq \operatorname{tr}\left(A B^{2} A\right)^{1 / 2}$ and $\operatorname{tr}(A B)^{2} \leq$ $\operatorname{tr} A^{2} B^{2}$ follow from Fact 8.12.20,

Fact 8.18.17. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A is positive semidefinite, and assume that B is positive definite. Then, for all $i, j, k \in\{1, \ldots, n\}$ such that $j+k \leq i+1$,

$$
\lambda_{i}(A B) \leq \lambda_{j}(A) \lambda_{k}(B)
$$

and

$$
\lambda_{n-j+1}(A) \lambda_{n-k+1}(B) \leq \lambda_{n-i+1}(A B)
$$

In particular, for all $i=1, \ldots, n$,

$$
\lambda_{i}(A) \lambda_{n}(B) \leq \lambda_{i}(A B) \leq \lambda_{i}(A) \lambda_{1}(B)
$$

(Proof: See [1177, pp. 126, 127].)
Fact 8.18.18. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A is positive semidefinite, and assume that B is Hermitian. Then, for all $k=1, \ldots, n$,

$$
\sum_{i=1}^{k} \lambda_{i}(A) \lambda_{n-i+1}(B) \leq \sum_{i=1}^{k} \lambda_{i}(A B)
$$

and

$$
\sum_{i=1}^{k} \lambda_{n-i+1}(A B) \leq \sum_{i=1}^{k} \lambda_{i}(A) \lambda_{i}(B)
$$

In particular,

$$
\sum_{i=1}^{k} \lambda_{i}(A) \lambda_{n-i+1}(B) \leq \operatorname{tr} A B \leq \sum_{i=1}^{n} \lambda_{i}(A) \lambda_{i}(B)
$$

(Proof: See 838.) (Remark: See Fact 5.12.4, Fact 5.12.5, Fact 5.12.8, and Proposition 8.4.13) (Remark: The upper and lower bounds for $\operatorname{tr} A B$ are related to Fact 1.16.4. See [200, p. 140].)

Fact 8.18.19. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are positive semidefinite, let $\lambda_{1}(A B) \geq \cdots \geq \lambda_{n}(A B) \geq 0$ denote the eigenvalues of $A B$, and let $1 \leq l_{1}<\cdots<l_{k} \leq n$. Then,

$$
\sum_{i=1}^{k} \lambda_{l_{i}}(A) \lambda_{n-i+1}(B) \leq \sum_{i=1}^{k} \lambda_{l_{i}}(A B) \leq \sum_{i=1}^{k} \lambda_{l_{i}}(A) \lambda_{i}(B)
$$

Furthermore,

$$
\sum_{i=1}^{k} \lambda_{l_{i}}(A) \lambda_{n-l_{i}+1}(B) \leq \sum_{i=1}^{k} \lambda_{i}(A B)
$$

In particular,

$$
\sum_{i=1}^{k} \lambda_{i}(A) \lambda_{n-i+1}(B) \leq \sum_{i=1}^{k} \lambda_{i}(A B) \leq \sum_{i=1}^{k} \lambda_{i}(A) \lambda_{i}(B)
$$

(Proof: See 1388.) (Remark: See Fact 8.18 .22 and Fact 9.14.27.)
Fact 8.18.20. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are positive semidefinite. If $p \geq 1$, then

$$
\sum_{i=1}^{n} \lambda_{i}^{p}(A) \lambda_{n-i+1}^{p}(B) \leq \operatorname{tr}\left(B^{1 / 2} A B^{1 / 2}\right)^{p} \leq \operatorname{tr} A^{p} B^{p} \leq \sum_{i=1}^{n} \lambda_{i}^{p}(A) \lambda_{i}^{p}(B)
$$

If $0 \leq p \leq 1$, then

$$
\sum_{i=1}^{n} \lambda_{i}^{p}(A) \lambda_{n-i+1}^{p}(B) \leq \operatorname{tr} A^{p} B^{p} \leq \operatorname{tr}\left(B^{1 / 2} A B^{1 / 2}\right)^{p} \leq \sum_{i=1}^{n} \lambda_{i}^{p}(A) \lambda_{i}^{p}(B)
$$

Now, suppose that A and B are positive definite. If $p \leq-1$, then

$$
\sum_{i=1}^{n} \lambda_{i}^{p}(A) \lambda_{n-i+1}^{p}(B) \leq \operatorname{tr}\left(B^{1 / 2} A B^{1 / 2}\right)^{p} \leq \operatorname{tr} A^{p} B^{p} \leq \sum_{i=1}^{n} \lambda_{i}^{p}(A) \lambda_{i}^{p}(B)
$$

If $-1 \leq p \leq 0$, then

$$
\sum_{i=1}^{n} \lambda_{i}^{p}(A) \lambda_{n-i+1}^{p}(B) \leq \operatorname{tr} A^{p} B^{p} \leq \operatorname{tr}\left(B^{1 / 2} A B^{1 / 2}\right)^{p} \leq \sum_{i=1}^{n} \lambda_{i}^{p}(A) \lambda_{i}^{p}(B)
$$

(Proof: See [1389]. See also [278, 881, 909, 1392].) (Remark: See Fact 8.12.20, See Fact 8.12 .15 for the indefinite case.)

Fact 8.18.21. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are positive semidefinite. Then, for all $k=1, \ldots, n$,

$$
\prod_{i=1}^{k} \lambda_{i}(A B) \leq \prod_{i=1}^{k} \sigma_{i}(A B) \leq \prod_{i=1}^{k} \lambda_{i}(A) \lambda_{i}(B)
$$

with equality for $k=n$. Furthermore, for all $k=1, \ldots, n$,

$$
\prod_{i=k}^{n} \lambda_{i}(A) \lambda_{i}(B) \leq \prod_{i=k}^{n} \sigma_{i}(A B) \leq \prod_{i=k}^{n} \lambda_{i}(A B)
$$

with equality for $k=1$. (Proof: Use Fact 5.11 .28 and Fact 9.13.19)
Fact 8.18.22. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are positive semidefinite, let $\lambda_{1}(A B) \geq \cdots \geq \lambda_{n}(A B) \geq 0$ denote the eigenvalues of $A B$, and let $1 \leq l_{1}<\cdots<l_{k} \leq n$. Then,

$$
\prod_{i=1}^{k} \lambda_{l_{i}}(A B) \leq \prod_{i=1}^{k} \lambda_{l_{i}}(A) \lambda_{i}(B)
$$

with equality for $k=n$. Furthermore,

$$
\prod_{i=1}^{k} \lambda_{l_{i}}(A) \lambda_{n-l_{i}+1}(B) \leq \prod_{i=1}^{k} \lambda_{i}(A B)
$$

with equality for $k=n$. In particular,

$$
\prod_{i=1}^{k} \lambda_{i}(A) \lambda_{n-i+1}(B) \leq \prod_{i=1}^{k} \lambda_{i}(A B) \leq \prod_{i=1}^{k} \lambda_{i}(A) \lambda_{i}(B)
$$

with equality for $k=n$. (Proof: See [1388].) (Remark: See Fact 8.18.19 and Fact 9.14.27.)

Fact 8.18.23. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are positive definite, and let $\lambda \in \operatorname{spec}(A)$. Then,

$$
\frac{2}{n}\left[\frac{\lambda_{\min }^{2}(A) \lambda_{\min }^{2}(B)}{\lambda_{\min }^{2}(A)+\lambda_{\min }^{2}(B)}\right]<\lambda<\frac{n}{2}\left[\lambda_{\max }^{2}(A)+\lambda_{\max }^{2}(B)\right] .
$$

(Proof: See [729].)

Fact 8.18.24. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are positive definite, and define

$$
k_{A} \triangleq \frac{\lambda_{\max }(A)}{\lambda_{\min }(A)}, \quad k_{B} \triangleq \frac{\lambda_{\max }(B)}{\lambda_{\min }(B)}
$$

and

$$
\gamma \triangleq \frac{\left(\sqrt{k_{A}}+1\right)^{2}}{\sqrt{k_{A}}}-\frac{k_{B}\left(\sqrt{k_{A}}-1\right)^{2}}{\sqrt{k_{A}}}
$$

Then, if $\gamma<0$, then

$$
\frac{1}{2} \lambda_{\max }(A) \lambda_{\max }(B) \gamma \leq \lambda_{\min }(A B+B A) \leq \lambda_{\max }(A B+B A) \leq 2 \lambda_{\max }(A) \lambda_{\max }(B)
$$

whereas, if $\gamma>0$, then

$$
\frac{1}{2} \lambda_{\min }(A) \lambda_{\min }(B) \gamma \leq \lambda_{\min }(A B+B A) \leq \lambda_{\max }(A B+B A) \leq 2 \lambda_{\max }(A) \lambda_{\max }(B)
$$

Furthermore, if

$$
\sqrt{k_{A} k_{B}}<1+\sqrt{k_{A}}+\sqrt{k_{B}}
$$

then $A B+B A$ is positive definite. (Proof: See [1038].)
Fact 8.18.25. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A is positive definite, assume that B is positive semidefinite, and let $\alpha>0$ and $\beta>0$ be such that $\alpha I \leq A \leq \beta I$. Then,

$$
\sigma_{\max }(A B) \leq \frac{\alpha+\beta}{2 \sqrt{\alpha \beta}} \operatorname{sprad}(A B) \leq \frac{\alpha+\beta}{2 \sqrt{\alpha \beta}} \sigma_{\max }(A B)
$$

In particular,

$$
\sigma_{\max }(A) \leq \frac{\alpha+\beta}{2 \sqrt{\alpha \beta}} \operatorname{sprad}(A) \leq \frac{\alpha+\beta}{2 \sqrt{\alpha \beta}} \sigma_{\max }(A)
$$

(Proof: See 1312.) (Remark: The left-hand inequality is tightest for $\alpha=\lambda_{\min }(A)$ and $\beta=\lambda_{\max }(A)$.) (Remark: This result is due to Bourin.)

Fact 8.18.26. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are positive semidefinite. Then, the following statements hold:
i) If $q \in[0,1]$, then

$$
\sigma_{\max }\left(A^{q} B^{q}\right) \leq \sigma_{\max }^{q}(A B)
$$

and

$$
\sigma_{\max }\left(B^{q} A^{q} B^{q}\right) \leq \sigma_{\max }^{q}(B A B)
$$

ii) If $q \in[0,1]$, then

$$
\lambda_{\max }\left(A^{q} B^{q}\right) \leq \lambda_{\max }^{q}(A B)
$$

iii) If $q \geq 1$, then

$$
\sigma_{\max }^{q}(A B) \leq \sigma_{\max }\left(A^{q} B^{q}\right)
$$

iv) If $q \geq 1$, then

$$
\lambda_{\max }^{q}(A B) \leq \lambda_{\max }\left(A^{q} B^{q}\right)
$$

$v)$ If $p \geq q>0$, then

$$
\sigma_{\max }^{1 / q}\left(A^{q} B^{q}\right) \leq \sigma_{\max }^{1 / p}\left(A^{p} B^{p}\right)
$$

vi) If $p \geq q>0$, then

$$
\lambda_{\max }^{1 / q}\left(A^{q} B^{q}\right) \leq \lambda_{\max }^{1 / p}\left(A^{p} B^{p}\right)
$$

(Proof: See 197, pp. 255-258] and [523.) (Remark: See Fact 8.10.49] Fact 8.12.20 Fact 9.9.16, and Fact 9.9.17,) (Remark: ii) is the Cordes inequality.)

Fact 8.18.27. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are positive semidefinite, and let $p \geq r \geq 0$. Then,

$$
\left[\begin{array}{lll}
\lambda_{1}^{1 / p}\left(A^{p} B^{p}\right) & \cdots & \lambda_{n}^{1 / p}\left(A^{p} B^{p}\right)
\end{array}\right]
$$

strongly log majorizes

$$
\left[\begin{array}{lll}
\lambda_{1}^{1 / r}\left(A^{r} B^{r}\right) & \cdots & \lambda_{n}^{1 / r}\left(A^{r} B^{r}\right)
\end{array}\right] .
$$

In fact, for all $q>0$,

$$
\operatorname{det}\left(A^{q} B^{q}\right)^{1 / q}=(\operatorname{det} A) \operatorname{det} B
$$

(Proof: See [197, p. 257] or [1485, p. 20] and Fact 2.21.13.)
Fact 8.18.28. Let $A \in \mathbb{F}^{n \times n}, B \in \mathbb{F}^{n \times m}$, and $C \in \mathbb{F}^{m \times m}$, and assume that

$$
\mathcal{A} \triangleq\left[\begin{array}{cc}
A & B \\
B^{*} & C
\end{array}\right] \in \mathbb{F}^{(n+m) \times(n+m)}
$$

is positive semidefinite. Then,

$$
\begin{aligned}
\max \left\{\sigma_{\max }\right. & \left.(A), \sigma_{\max }(B)\right\} \\
& \leq \sigma_{\max }(\mathcal{A}) \\
& \leq \frac{1}{2}\left[\sigma_{\max }(A)+\sigma_{\max }(B)+\sqrt{\left[\sigma_{\max }(A)-\sigma_{\max }(B)\right]^{2}+4 \sigma_{\max }^{2}(C)}\right] \\
& \leq \sigma_{\max }(A)+\sigma_{\max }(B)
\end{aligned}
$$

and

$$
\max \left\{\sigma_{\max }(A), \sigma_{\max }(B)\right\} \leq \sigma_{\max }(\mathcal{A}) \leq \max \left\{\sigma_{\max }(A), \sigma_{\max }(B)\right\}+\sigma_{\max }(C)
$$

(Proof: See [719.) (Remark: See Fact 9.14.12])
Fact 8.18.29. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are positive definite. Then,

$$
\left[\begin{array}{lll}
\lambda_{1}(\log A+\log B) & \cdots & \lambda_{n}(\log A+\log B)
\end{array}\right]
$$

strongly log majorizes

$$
\left[\begin{array}{lll}
\lambda_{1}\left(\log A^{1 / 2} B A^{1 / 2}\right) & \cdots & \lambda_{n}\left(\log A^{1 / 2} B A^{1 / 2}\right)
\end{array}\right] .
$$

Consequently,

$$
\log \operatorname{det} A B=\operatorname{tr}(\log A+\log B)=\operatorname{tr} \log A^{1 / 2} B A^{1 / 2}=\log \operatorname{det} A^{1 / 2} B A^{1 / 2}
$$

(Proof: See 90.)
Fact 8.18.30. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are positive semidefinite. Then, the following statements hold:
i) $\sigma_{\max }[\log (I+A) \log (I+B)] \leq\left(\log \left[1+\sigma_{\max }^{1 / 2}(A B)\right]\right)^{2}$.
ii) $\sigma_{\max }[\log (I+B) \log (I+A) \log (I+B)] \leq\left(\log \left[1+\sigma_{\max }^{1 / 3}(B A B)\right]\right)^{3}$.
iii) $\operatorname{det}[\log (I+A) \log (I+B)] \leq \operatorname{det}\left[\log \left(I+\langle A B\rangle^{1 / 2}\right)\right]^{2}$.
iv) $\operatorname{det}[\log (I+B) \log (I+A) \log (I+B)] \leq \operatorname{det}\left(\log \left[I+(B A B)^{1 / 3}\right]\right)^{3}$.
(Proof: See 1349 .) (Remark: See Fact 11.16.6.)
Fact 8.18.31. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are positive semidefinite. Then,

$$
\sigma_{\max }\left[(I+A)^{-1} A B(I+B)^{-1}\right] \leq \frac{\sigma_{\max }(A B)}{\left[1+\sigma_{\max }^{1 / 2}(A B)\right]^{2}}
$$

(Proof: See 1349.)

8.19 Facts on Alternative Partial Orderings

Fact 8.19.1. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are positive definite. Then, the following statements are equivalent:
i) $\log B \leq \log A$.
ii) There exists $r \in(0, \infty)$ such that

$$
B^{r} \leq\left(B^{r / 2} A^{r} B^{r / 2}\right)^{1 / 2}
$$

iii) There exists $r \in(0, \infty)$ such that

$$
\left(A^{r / 2} B^{r} A^{r / 2}\right)^{1 / 2} \leq A^{r}
$$

iv) There exist $p, r \in(0, \infty)$ and a positive integer k such that $(k+1) r=p+r$ and

$$
B^{r} \leq\left(B^{r / 2} A^{p} B^{r / 2}\right)^{\frac{1}{k+1}}
$$

$v)$ There exist $p, r \in(0, \infty)$ and a positive integer k such that $(k+1) r=p+r$ and

$$
\left(A^{r / 2} B^{p} A^{r / 2}\right)^{\frac{1}{k+1}} \leq A^{r}
$$

vi) For all $p, r \in[0, \infty)$,

$$
B^{r} \leq\left(B^{r / 2} A^{p} B^{r / 2}\right)^{1 / 2}
$$

vii) For all $p, r \in[0, \infty)$,

$$
\left(A^{r / 2} B^{p} A^{r / 2}\right)^{\frac{r}{r+p}} \leq A^{r}
$$

viii) For all $p, q, r, t \in \mathbb{R}$ such that $p \geq 0, r \geq 0, t \geq 0$, and $q \in[1,2]$,

$$
\left[A^{r / 2}\left(A^{t / 2} B^{p} A^{t / 2}\right)^{q} A^{r / 2}\right]^{\frac{r+t}{r+q t+q p}} \leq A^{r+t}
$$

(Remark: $\log B \leq \log A$ is the chaotic order. This order is weaker than the Löwner order since $A \leq B$ implies that $\log A \leq \log A$, but not vice versa.) (Proof: See [512, 914, 1471] and [530, pp. 139, 200].) (Remark: Additional conditions are given in 915 .)

Fact 8.19.2. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are positive definite, and assume that $B \leq A$. Then, $\log B \leq \log A$. (Proof: Setting $\tau=0$ and $q=1$ in $i i i$) of Fact 8.10.51 yields $i i i$) of Fact 8.19.1) (Remark: This result is xviii) of Proposition 8.6.13.)

Fact 8.19.3. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A is positive definite and B is positive semidefinite, and let $\alpha>0$. Then, the following statements are equivalent:
i) $B^{\alpha} \leq A^{\alpha}$.
ii) For all $p, q, r, \tau \in \mathbb{R}$ such that $p \geq \alpha, r \geq \tau, q \geq 1$, and $\tau \in[0, \alpha]$,

$$
\left[A^{r / 2}\left(A^{-\tau / 2} B^{p} A^{-\tau / 2}\right)^{q} A^{r / 2}\right]^{\frac{r-\tau}{r-q \tau+q p}} \leq A^{r-\tau}
$$

(Proof: See [512].)
Fact 8.19.4. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A is positive definite and B is positive semidefinite. Then, the following statements are equivalent:
$i)$ For all $k \in \mathbb{N}, B^{k} \leq A^{k}$.
ii) For all $\alpha>0, B^{\alpha} \leq A^{\alpha}$.
iii) For all $p, r \in \mathbb{R}$ such that $p>r \geq 0$,

$$
\left(A^{-r / 2} B^{p} A^{-r / 2}\right)^{\frac{2 p-r}{p-r}} \leq A^{2 p-r}
$$

iv) For all $p, q, r, \tau \in \mathbb{R}$ such that $p \geq \tau, r \geq \tau, q \geq 1$, and $\tau \geq 0$,

$$
\left[A^{r / 2}\left(A^{-\tau / 2} B^{p} A^{-\tau / 2}\right)^{q} A^{r / 2}\right]^{\frac{r-\tau}{r-q \tau+q p}} \leq A^{r-\tau}
$$

(Proof: See [531.) (Remark: A and B are related by the spectral order.)
Fact 8.19.5. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are positive semidefinite. Then, if two of the following statements hold, then the remaining statement also holds:
i) $A \stackrel{\mathrm{rs}}{\leq} B$.
ii) $A^{2} \stackrel{\mathrm{rs}}{\leq} B^{2}$.
iii) $A B=B A$.
(Proof: See [110, 590, 591.) (Remark: The rank subtractivity partial ordering is defined in Fact 2.10.32,

Fact 8.19.6. Let $A, B, C \in \mathbb{F}^{n \times n}$, and assume that A, B, and C are positive semidefinite. Then, the following statements hold:
i) If $A^{2}=A B$ and $B^{2}=B A$, then $A=B$.
ii) If $A^{2}=A B$ and $B^{2}=B C$, then $A^{2}=A C$.

(Proof: Use Fact 2.10.33 and Fact 2.10.34,

Fact 8.19.7. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are positive semidefinite, and define

$$
A \stackrel{*}{\leq} B
$$

if and only if

$$
A^{2}=A B
$$

Then, " \leq " is a partial ordering on $\mathbf{N}^{n \times n}$. (Proof: Use Fact 2.10.35 or Fact 8.19.6) (Remark: The relation " \leq^{*} is the star partial ordering.)

Fact 8.19.8. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are positive semidefinite. Then,

$$
A \stackrel{*}{\leq} B
$$

if and only if

$$
B^{+} \stackrel{*}{\leq} A^{+}
$$

(Proof: See [646].) (Remark: The star partial ordering is defined in Fact 8.19.7.)
Fact 8.19.9. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are positive semidefinite. Then, the following statements are equivalent:
i) $A \stackrel{*}{\leq} B$.
ii) $A \stackrel{\mathrm{rs}}{\leq} B$ and $A^{2} \stackrel{\mathrm{rs}}{\leq} B^{2}$.
(Remark: See 601].) (Remark: The star partial ordering is defined in Fact 8.19.7)
Fact 8.19.10. Let $A, B \in \mathbb{F}^{n \times m}$, and define

$$
A \stackrel{\mathrm{GL}}{\leq} B
$$

if and only if the following conditions hold:
i) $\langle A\rangle \leq\langle B\rangle$.
ii) $\mathcal{R}\left(A^{*}\right) \subseteq \mathcal{R}\left(B^{*}\right)$.
iii) $A B^{*}=\langle A\rangle\langle B\rangle$.

Then, " \leq " is a partial ordering on $\mathbb{F}^{n \times m}$. Furthermore, the following statements are equivalent:
iv) $A \stackrel{\mathrm{GL}}{\leq} B$.
v) $A^{*} \stackrel{\mathrm{GL}}{\leq} B^{*}$.
vi) $\operatorname{sprad}\left(B^{+} A\right) \leq 1, \mathcal{R}(A) \subseteq \mathcal{R}(B), \mathcal{R}\left(A^{*}\right) \subseteq \mathcal{R}\left(B^{*}\right)$, and $A B^{*}=\langle A\rangle\langle B\rangle$.

Furthermore, if $A \stackrel{\text { rs }}{\leq} B$, then $A \stackrel{\mathrm{GL}}{\leq} B$. Finally, if $A, B \in \mathbf{N}^{n}$, then $A \leq B$ if and only if $A \stackrel{\text { GL }}{\leq} B$. (Proof: See 655.).) (Remark: The relation " \leq " is the generalized Löwner partial ordering. Remarkably, the Löwner, generalized Löwner, and star partial orderings are linked through the polar decomposition. See 655].)

8.20 Facts on Generalized Inverses

Fact 8.20.1. Let $A \in \mathbb{F}^{n \times n}$. Then, the following statements are equivalent:
i) $A+A^{*} \geq 0$.
ii) $A^{+}+A^{+*} \geq 0$.

If, in addition, A is group invertible, then the following statement is equivalent to $i)$ and $i i)$:
iii) $A^{\#}+A^{\# *} \geq 0$.
(Proof: See [1329.)
Fact 8.20.2. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is positive semidefinite. Then, the following statements hold:
i) $A^{+}=A^{\mathrm{D}}=A^{\#} \geq 0$.
ii) $\operatorname{rank} A=\operatorname{rank} A^{+}$.
iii) $A^{+1 / 2} \triangleq\left(A^{1 / 2}\right)^{+}=\left(A^{+}\right)^{1 / 2}$.
iv) $A^{1 / 2}=A\left(A^{+}\right)^{1 / 2}=\left(A^{+}\right)^{1 / 2} A$.
v) $A A^{+}=A^{1 / 2}\left(A^{1 / 2}\right)^{+}$.
vi) $\left[\begin{array}{cc}A & A A^{+} \\ A^{+} A & A^{+}\end{array}\right]$is positive semidefinite.
vii) $A^{+} A+A A^{+} \leq A+A^{+}$.
viii) $A^{+} A \circ A A^{+} \leq A \circ A^{+}$.
(Proof: See 1492 or Fact 8.11 .5 and Fact 8.21 .40 for $v i$-viii).)
Fact 8.20.3. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is positive semidefinite. Then,

$$
\operatorname{rank} A \leq(\operatorname{tr} A) \operatorname{tr} A^{+}
$$

Furthermore, equality holds if and only if $\operatorname{rank} A \leq 1$. (Proof: See [113.)
Fact 8.20.4. Let $A \in \mathbb{F}^{n \times m}$. Then,

$$
\left\langle A^{*}\right\rangle=A\langle A\rangle^{+1 / 2} A^{*}
$$

(Remark: See Fact 8.11.11)
Fact 8.20.5. Let $A \in \mathbb{F}^{n \times m}$, and define $S \in \mathbb{F}^{n \times n}$ by

$$
S \triangleq\langle A\rangle+I_{n}-A A^{+}
$$

Then, S is positive definite, and

$$
S A A^{+} S=\langle A\rangle A A^{+}\langle A\rangle=A A^{*}
$$

(Proof: See [447] p. 432].) (Remark: This result provides an explicit congruence transformation for $A A^{+}$and $A A^{*}$.) (Remark: See Fact 5.8.20)

Fact 8.20.6. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are positive semidefinite. Then,

$$
A=(A+B)(A+B)^{+} A
$$

Fact 8.20.7. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are Hermitian. Then, the following statements are equivalent:
i) $A \stackrel{\mathrm{rs}}{\leq} B$.
ii) $\mathcal{R}(A) \subseteq \mathcal{R}(B)$ and $A B^{+} A=A$.
(Proof: See [590, 591.) (Remark: See Fact 6.5.30)
Fact 8.20.8. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are Hermitian, assume that $\nu_{-}(A)=\nu_{-}(B)$, and consider the following statements:
i) $A \stackrel{*}{\leq} B$.
ii) $A \stackrel{\mathrm{rs}}{\leq} B$.
iii) $A \leq B$.
iv) $\mathcal{R}(A) \subseteq \mathcal{R}(B)$ and $A B^{+} A \leq A$.

Then, $i) \Longrightarrow i i) \Longrightarrow i i i) \Longleftrightarrow i v$). If, in addition, A and B are positive semidefinite, then the following statement is equivalent to $i i i)$ and $i v$):
v) $\mathcal{R}(A) \subseteq \mathcal{R}(B)$ and $\operatorname{sprad}\left(B^{+} A\right) \leq 1$.
(Proof: i) $\Longrightarrow i i$) is given in 652. See [110, 590, 601, 1223 and 1184 p. 229].) (Remark: See Fact 8.20.7)

Fact 8.20.9. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are positive semidefinite. Then, the following statements are equivalent:
i) $A^{2} \leq B^{2}$.
ii) $\mathcal{R}(A) \subseteq \mathcal{R}(B)$ and $\sigma_{\max }\left(B^{+} A\right) \leq 1$.
(Proof: See 601.)
Fact 8.20.10. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are positive semidefinite, and assume that $A \leq B$. Then, the following statements are equivalent:
i) $B^{+} \leq A^{+}$.
ii) $\operatorname{rank} A=\operatorname{rank} B$.
iii) $\mathcal{R}(A)=\mathcal{R}(B)$.

Furthermore, the following statements are equivalent:
iv) $A^{+} \leq B^{+}$.
v) $A^{2}=A B$.
vi) $A^{+} \stackrel{*}{\leq} B^{+}$.
(Proof: See 646, 1003].)

Fact 8.20.11. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are positive semidefinite. Then, if two of the following statements hold, then the remaining statement also holds:
i) $A \leq B$.
ii) $B^{+} \leq A^{+}$.
iii) $\operatorname{rank} A=\operatorname{rank} B$.
(Proof: See [111, 1003, 1422, 1456].)
Fact 8.20.12. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are Hermitian. Then, if two of the following statements hold, then the remaining statement also holds:
i) $A \leq B$.
ii) $B^{+} \leq A^{+}$.
iii) $\operatorname{In} A=\operatorname{In} B$.
(Proof: See [109].)
Fact 8.20.13. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are positive semidefinite, and assume that $A \leq B$. Then,

$$
0 \leq A A^{+} \leq B B^{+}
$$

If, in addition, $\operatorname{rank} A=\operatorname{rank} B$, then

$$
A A^{+}=B B^{+}
$$

Fact 8.20.14. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are Hermitian, and assume that $\mathcal{R}(A)=\mathcal{R}(B)$. Then,

$$
\operatorname{In} A-\operatorname{In} B=\operatorname{In}(A-B)+\operatorname{In}\left(A^{+}-B^{+}\right)
$$

(Proof: See [1047.) (Remark: See Fact 8.10.15.)
Fact 8.20.15. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are positive semidefinite, and assume that $A \leq B$. Then,

$$
0 \leq A B^{+} A \leq A \leq A+B\left[\left(I-A A^{+}\right) B\left(I-A A^{+}\right)\right]^{+} B \leq B
$$

(Proof: See 646].)
Fact 8.20.16. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are positive semidefinite. Then,

$$
\operatorname{spec}\left[(A+B)^{+} A\right] \subset[0,1]
$$

(Proof: Let C be positive definite and satisfy $B \leq C$. Then,

$$
(A+C)^{-1 / 2} C(A+C)^{-1 / 2} \leq I
$$

The result now follows from Fact 8.20.17.)

Fact 8.20.17. Let $A, B, C \in \mathbb{F}^{n \times n}$, assume that A, B, C are positive semidefinite, and assume that $B \leq C$. Then, for all $i=1, \ldots, n$,

$$
\lambda_{i}\left[(A+B)^{+} B\right] \leq \lambda_{i}\left[(A+C)^{+} C\right] .
$$

Consequently,

$$
\operatorname{tr}\left[(A+B)^{+} B\right] \leq \operatorname{tr}\left[(A+C)^{+} C\right] .
$$

(Proof: See [1390].) (Remark: See Fact 8.20.16)
Fact 8.20.18. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are positive semidefinite, and define

$$
A: B \triangleq A(A+B)^{+} B .
$$

Then, the following statements hold:
i) $A: B$ is positive semidefinite.
ii) $A: B=\lim _{\varepsilon \downarrow 0}(A+\varepsilon I):(B+\varepsilon I)$.
iii) $A: A=\frac{1}{2} A$.
iv) $A: B=B: A=B-B(A+B)^{+} B=A-A(A+B)^{+} A$.
v) $A: B \leq A$.
vi) $A: B \leq B$.
vii) $A: B=-\left[\begin{array}{lll}0 & 0 & I\end{array}\right]\left[\begin{array}{ccc}A & 0 & I \\ 0 & B & I \\ I & I & 0\end{array}\right]^{+}\left[\begin{array}{l}0 \\ 0 \\ I\end{array}\right]$.
viii) $A: B=\left(A^{+}+B^{+}\right)^{+}$if and only if $\mathcal{R}(A)=\mathcal{R}(B)$.
ix) $A(A+B)^{+} B=A C B$ for every (1)-inverse C of $A+B$.
x) $\operatorname{tr}(A: B) \leq(\operatorname{tr} B):(\operatorname{tr} A)$.
xi) $\operatorname{tr}(A: B)=(\operatorname{tr} B):(\operatorname{tr} A)$ if and only if there exists $\alpha \in[0, \infty)$ such that either $A=\alpha B$ or $B=\alpha A$.
xii) $\operatorname{det}(A: B) \leq(\operatorname{det} B):(\operatorname{det} A)$.
xiii) $\mathcal{R}(A: B)=\mathcal{R}(A) \cap \mathcal{R}(B)$.
xiv) $\mathcal{N}(A: B)=\mathcal{N}(A)+\mathcal{N}(B)$.
xv) $\operatorname{rank}(A: B)=\operatorname{rank} A+\operatorname{rank} B-\operatorname{rank}(A+B)$.
xvi) Let $S \in \mathbb{F}^{p \times n}$, and assume that S is right invertible. Then,

$$
S(A: B) S^{*} \leq\left(S A S^{*}\right):\left(S B S^{*}\right) .
$$

xvii) Let $S \in \mathbb{F}^{n \times n}$, and assume that S is nonsingular. Then,

$$
S(A: B) S^{*}=\left(S A S^{*}\right):\left(S B S^{*}\right) .
$$

xviii) For all positive numbers α, β,

$$
\left(\alpha^{-1} A\right):\left(\beta^{-1} B\right) \leq \alpha A+\beta B .
$$

xix) Let $X \in \mathbb{F}^{n \times n}$, and assume that X is Hermitian and

$$
\left[\begin{array}{cc}
A+B & A \\
A & A-X
\end{array}\right] \geq 0
$$

Then,

$$
X \leq A: B
$$

Furthermore,

$$
\left[\begin{array}{cc}
A+B & A \\
A & A-A: B
\end{array}\right] \geq 0
$$

xx) $\phi: \mathbf{N}^{n} \times \mathbf{N}^{n} \mapsto-\mathbf{N}^{n}$ defined by $\phi(A, B) \triangleq-A: B$ is convex.
$x x i$) If A and B are projectors, then $2(A: B)$ is the projector onto $\mathcal{R}(A) \cap \mathcal{R}(B)$.
$x x i i)$ If $A+B$ is positive definite, then

$$
A: B=A(A+B)^{-1} B
$$

xxiii) $A \# B=\left[\frac{1}{2}(A+B)\right] \#[2(A: B)]$.
x xiv) If $C, D \in \mathbb{F}^{n \times n}$ are positive semidefinite, then

$$
(A: B): C=A:(B: C)
$$

and

$$
A: C+B: D \leq(A+B):(C+D)
$$

$x x v$) If $C, D \in \mathbb{F}^{n \times n}$ are positive semidefinite, $A \leq C$, and $B \leq D$, then

$$
A: B \leq C: D
$$

xxvi) If A and B are positive definite, then

$$
A: B=\left(A^{-1}+B^{-1}\right)^{-1} \leq \frac{1}{2}(A \# B) \leq \frac{1}{4}(A+B)
$$

$x x v i i)$ Let $x, y \in \mathbb{F}^{n}$. Then,

$$
(x+y)^{*}(A: B)(x+y) \leq x^{*} A x+y^{*} B y .
$$

$x x v i i i)$ Let $x, y \in \mathbb{F}^{n}$. Then,

$$
x^{*}(A: B) x \leq y^{*} A y+(x-y)^{*} B(x-y) .
$$

$x x i x)$ Let $x \in \mathbb{F}^{n}$. Then,

$$
x^{*}(A: B) x=\inf _{y \in \mathbb{F}^{n}}\left[y^{*} A y+(x-y)^{*} B(x-y)\right]
$$

$x x x)$ Let $x \in \mathbb{F}^{n}$. Then,

$$
x^{*}(A: B) x \leq\left(x^{*} A x\right):\left(x^{*} B x\right)
$$

(Proof: See [36, 37, 40, 583, 843, 1284, [1118, p. 189], and [1485] p. 9].) (Remark: $A: B$ is the parallel sum of A and B.) (Remark: See Fact 6.4.41 and Fact 6.4.42, (Remark: A symmetric expression for the parallel sum of three or more positivesemidefinite matrices is given in [1284.)

Fact 8.20.19. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A is positive semidefinite, and assume that B is a projector. Then,

$$
\operatorname{sh}(A, B) \triangleq \min \left\{X \in \mathbf{N}^{n}: 0 \leq X \leq A \text { and } \mathcal{R}(X) \subseteq \mathcal{R}(B)\right\}
$$

exists. Furthermore,

$$
\operatorname{sh}(A, B)=A-A B_{\perp}\left(B_{\perp} A B_{\perp}\right)^{+} B_{\perp} A
$$

That is,

$$
\operatorname{sh}(A, B)=A \left\lvert\,\left[\begin{array}{cc}
A & A B_{\perp} \\
B_{\perp} A & B_{\perp} A B_{\perp}
\end{array}\right]\right.
$$

Finally,

$$
\operatorname{sh}(A, B)=\lim _{\alpha \rightarrow \infty}(\alpha B): A
$$

(Proof: Existence of the minimum is proved in 40. The expression for $\operatorname{sh}(A, B)$ is given in 568; a related expression involving the Schur complement is given in [36]. The last identity is shown in [40]. See also [50].) (Remark: $\operatorname{sh}(A, B)$ is the shorted operator.)

Fact 8.20.20. Let $B \in \mathbb{R}^{m \times n}$, define

$$
\mathcal{S} \triangleq\left\{A \in \mathbb{R}^{n \times n}: A \geq 0 \text { and } \mathcal{R}\left(B^{\mathrm{T}} B A\right) \subseteq \mathcal{R}(A)\right\}
$$

and define $\phi: \mathcal{S} \mapsto-\mathbf{N}^{m}$ by $\phi(A) \triangleq-\left(B A^{+} B^{\mathrm{T}}\right)^{+}$. Then, \mathcal{S} is a convex cone, and ϕ is convex. (Proof: See [592.) (Remark: This result generalizes xii) of Proposition 8.6.17 in the case $r=p=1$.)

Fact 8.20.21. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are positive semidefinite. If $(A B)^{+}=B^{+} A^{+}$, then $A B$ is range Hermitian. Furthermore, the following statements are equivalent:
i) $A B$ is range Hermitian.
ii) $(A B)^{\#}=B^{+} A^{+}$.
iii) $(A B)^{+}=B^{+} A^{+}$.
(Proof: See 988.) (Remark: See Fact 6.4.28)
Fact 8.20.22. Let $A \in \mathbb{F}^{n \times n}$ and $C \in \mathbb{F}^{m \times m}$, assume that A and C are positive semidefinite, let $B \in \mathbb{F}^{n \times m}$, and define $X \triangleq A^{+1 / 2} B C^{+1 / 2}$. Then, the following statements are equivalent:
i) $\left[\begin{array}{cc}A & B \\ B^{*} & B\end{array}\right]$ is positive semidefinite.
ii) $A A^{+} B=B$ and $X^{*} X \leq I_{m}$.
iii) $B C^{+} C=B$ and $X^{*} X \leq I_{m}$.
iv) $B=A^{1 / 2} X C^{1 / 2}$ and $X^{*} X \leq I_{m}$.
$v)$ There exists a matrix $Y \in \mathbb{F}^{n \times m}$ such that $B=A^{1 / 2} Y C^{1 / 2}$ and $Y^{*} Y \leq I_{m}$.
(Proof: See [1485, p. 15].)

Fact 8.20.23. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are positive semidefinite. Then, the following statements are equivalent:
i) $A(A+B)^{+} B=0$.
ii) $B(A+B)^{+} A=0$.
iii) $A(A+B)^{+} A=A$.
iv) $B(A+B)^{+} B=B$.
v) $A(A+B)^{+} B+B(A+B)^{+} A=0$.
vi) $A(A+B)^{+} A+B(A+B)^{+} B=A+B$.
vii) $\operatorname{rank}\left[\begin{array}{cc}A & B\end{array}\right]=\operatorname{rank} A+\operatorname{rank} B$.
viii) $\mathcal{R}(A) \cap \mathcal{R}(B)=\{0\}$.
ix) $(A+B)^{+}=\left[\left(I-B B^{+}\right) A\left(I-B^{+} B\right]^{+}+\left[\left(I-A A^{+}\right) B\left(I-A^{+} A\right]^{+}\right.\right.$.
(Proof: See [1302.) (Remark: See Fact 6.4.32)

8.21 Facts on the Kronecker and Schur Products

Fact 8.21.1. Let $A \in \mathbb{F}^{n \times n}$, assume that A is positive semidefinite, and assume that every entry of A is nonzero. Then, $A^{\circ-1}$ is positive semidefinite if and only if $\operatorname{rank} A=1$. (Proof: See [889].)

Fact 8.21.2. Let $A \in \mathbb{F}^{n \times n}$, assume that A is positive semidefinite, assume that every entry of A is nonnegative, and let $\alpha \in[0, n-2]$. Then, $A^{\circ \alpha}$ is positive semidefinite. (Proof: See [199, 491.) (Remark: In many cases, $A^{\circ \alpha}$ is positive semidefinite for all $\alpha \geq 0$. See Fact 8.8.5.)

Fact 8.21.3. Let $A \in \mathbb{F}^{n \times n}$, assume that A is positive semidefinite, and let $k \geq 1$. If $r \in[0,1]$, then

$$
\left(A^{r}\right)^{\circ k} \leq\left(A^{\circ k}\right)^{r}
$$

If $r \in[1,2]$, then

$$
\left(A^{\circ k}\right)^{r} \leq\left(A^{r}\right)^{\circ k}
$$

If A is positive definite and $r \in[0,1]$, then

$$
\left(A^{\circ k}\right)^{-r} \leq\left(A^{-r}\right)^{\circ k}
$$

(Proof: See [1485, p. 8].)
Fact 8.21.4. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is positive semidefinite. Then,

$$
(I \circ A)^{2} \leq \frac{1}{2}\left(I \circ A^{2}+A \circ A\right) \leq I \circ A^{2}
$$

and

$$
A \circ A \leq I \circ A^{2}
$$

Hence,

$$
\sum_{i=1}^{n} A_{(i, i)}^{2} \leq \sum_{i=1}^{n} \lambda_{i}^{2}(A)
$$

Now, assume that A is positive definite. Then,

$$
(A \circ A)^{-1} \leq A^{-1} \circ A^{-1}
$$

and

$$
\left(A \circ A^{-1}\right)^{-1} \leq I \leq\left(A^{1 / 2} \circ A^{-1 / 2}\right)^{2} \leq \frac{1}{2}\left(I+A \circ A^{-1}\right) \leq A \circ A^{-1}
$$

Furthermore,

$$
\left(A \circ A^{-1}\right) 1_{n \times 1}=1_{n \times 1}
$$

and

$$
1 \in \operatorname{spec}\left(A \circ A^{-1}\right)
$$

Next, let $\alpha \triangleq \lambda_{\min }(A)$ and $\beta \triangleq \lambda_{\max }(A)$. Then,

$$
\frac{2 \alpha \beta}{\alpha^{2}+\beta^{2}} I \leq \frac{2 \alpha \beta}{\alpha^{2}+\beta^{2}}\left(A^{2} \circ A^{-2}\right)^{1 / 2} \leq \frac{\alpha \beta}{\alpha^{2}+\beta^{2}}\left(I+A^{2} \circ A^{-2}\right) \leq A \circ A^{-1} .
$$

Define $\Phi(A) \triangleq A \circ A^{-1}$, and, for all $k \geq 1$, define

$$
\Phi^{(k+1)}(A) \triangleq \Phi\left[\Phi^{(k)}(A)\right]
$$

where $\Phi^{(1)}(A) \triangleq \Phi(A)$. Then, for all $k \geq 1$,

$$
\Phi^{(k)}(A) \geq I
$$

and

$$
\lim _{k \rightarrow \infty} \Phi^{(k)}(A)=I
$$

(Proof: See 480, 772, 1383, 1384, 709, p. 475], and set $B=A^{-1}$ in Fact 8.21.31.) (Remark: The convergence result also holds if A is an H-matrix [772]. $A \circ A^{-1}$ is the relative gain array.) (Remark: See Fact 8.21.38)

Fact 8.21.5. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is positive definite. Then, for all $i=1, \ldots, n$,

$$
1 \leq A_{(i, i)}\left(A^{-1}\right)_{(i, i)}
$$

Furthermore,

$$
\max _{i=1, \ldots, n} \sqrt{A_{(i, i)}\left(A^{-1}\right)_{(i, i)}-1} \leq \sum_{i=1}^{n} \sqrt{A_{(i, i)}\left(A^{-1}\right)_{(i, i)}-1}
$$

and

$$
\max _{i=1, \ldots, n} \sqrt{A_{(i, i)}\left(A^{-1}\right)_{(i, i)}}-1 \leq \sum_{i=1}^{n}\left[\sqrt{A_{(i, i)}\left(A^{-1}\right)_{(i, i)}}-1\right]
$$

(Proof: See 482, p. 66-6].)
Fact 8.21.6. Let $\mathcal{A} \triangleq\left[\begin{array}{cc}A & B \\ B^{*} & C\end{array}\right] \in \mathbb{F}^{n+m) \times(n+m)}$, assume that \mathcal{A} is positive definite, and partition $\mathcal{A}^{-1}=\left[\begin{array}{cc}X_{X} & Y \\ Y^{*} & Y\end{array}\right]$ conformably with \mathcal{A}. Then,

$$
I \leq\left[\begin{array}{cc}
A \circ A^{-1} & 0 \\
0 & Z \circ Z^{-1}
\end{array}\right] \leq \mathcal{A} \circ \mathcal{A}^{-1}
$$

and

$$
I \leq\left[\begin{array}{cc}
X \circ X^{-1} & 0 \\
0 & C \circ C^{-1}
\end{array}\right] \leq \mathcal{A} \circ \mathcal{A}^{-1}
$$

(Proof: See [132].)
Fact 8.21.7. Let $A \in \mathbb{F}^{n \times n}$, let $p, q \in \mathbb{R}$, assume that A is positive semidefinite, and assume that either p and q are nonnegative or A is positive definite. Then,

$$
A^{(p+q) / 2} \circ A^{(p+q) / 2} \leq A^{p} \circ A^{q} .
$$

In particular,

$$
I \leq A \circ A^{-1}
$$

(Proof: See 92.)
Fact 8.21.8. Let $A \in \mathbb{F}^{n \times n}$, assume that A is positive semidefinite, and assume that $I_{n} \circ A=I_{n}$. Then,

$$
\operatorname{det} A \leq \lambda_{\min }(A \circ \bar{A})
$$

(Proof: See 1408.)
Fact 8.21.9. Let $A \in \mathbb{F}^{n \times n}$. Then,

$$
-A^{*} A \circ I \leq A^{*} \circ A \leq A^{*} A \circ I
$$

(Proof: Use Fact 8.21.41 with $B=I$.)
Fact 8.21.10. Let $A \in \mathbb{F}^{n \times n}$. Then,

$$
\left\langle A \circ A^{*}\right\rangle \leq\left\{\begin{array}{c}
A^{*} A \circ I \\
\langle A\rangle \circ\left\langle A^{*}\right\rangle
\end{array}\right\} \leq \sigma_{\max }^{2}(A) I .
$$

(Proof: See 1492 and Fact 8.21.22,
Fact 8.21.11. Let $A \triangleq\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{12}^{*} & A_{22}\end{array}\right] \in \mathbb{F}^{(n+m) \times(n+m)}$ and $B \triangleq\left[\begin{array}{ccc}B_{11} & B_{12} \\ B_{12} & B_{22}\end{array}\right] \in$ $\mathbb{F}^{(n+m) \times(n+m)}$, and assume that A and B are positive semidefinite. Then,

$$
\left(A_{11} \mid A\right) \circ\left(B_{11} \mid B\right) \leq\left(A_{11} \mid A\right) \circ B_{22} \leq\left(A_{11} \circ B_{11}\right) \mid(A \circ B)
$$

(Proof: See [896].)
Fact 8.21.12. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are positive semidefinite. Then, $A \circ B$ is positive semidefinite. If, in addition, B is positive definite and $I \circ A$ is positive definite, then $A \circ B$ is positive definite. (Proof: By Fact 7.4.16, $A \otimes B$ is positive semidefinite, and the Schur product $A \circ B$ is a principal submatrix of the Kronecker product. If A is positive definite, use Fact 8.21 .19 to obtain $\operatorname{det}(A \circ B)>0$.) (Remark: The first result is Schur's theorem. The second result is Schott's theorem. See 925 and Fact 8.21.19.)

Fact 8.21.13. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is positive definite. Then, there exist positive-definite matrices $B, C \in \mathbb{F}^{n \times n}$ such that $A=B \circ C$. (Remark: See [1098 pp. 154, 166].) (Remark: This result is due to Djokovic.)

Fact 8.21.14. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A is positive definite and B is positive semidefinite. Then,

$$
\left(1_{1 \times n} A^{-1} 1_{n \times 1}\right)^{-1} B \leq A \circ B
$$

(Proof: See [484.) (Remark: Setting $B=1_{n \times n}$ yields Fact 8.9.17.)
Fact 8.21.15. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are positive definite. Then,

$$
\left(1_{1 \times n} A^{-1} 1_{n \times 1} 1_{1 \times n} B^{-1} 1_{n \times 1}\right)^{-1} 1_{n \times n} \leq A \circ B
$$

(Proof: See 1492.)
Fact 8.21.16. Let $A \in \mathbb{F}^{n \times n}$, assume that A is positive definite, let $B \in \mathbb{F}^{n \times n}$, and assume that B is positive semidefinite. Then,

$$
\operatorname{rank} B \leq \operatorname{rank}(A \circ B) \leq \operatorname{rank}(A \otimes B)=(\operatorname{rank} A)(\operatorname{rank} B)
$$

(Remark: See Fact 7.4.23, Fact 7.6.6, and Fact 8.21.14) (Remark: The first inequality is due to Djokovic. See [1098, pp. 154, 166].)

Fact 8.21.17. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are positive semidefinite. If $p \geq 1$, then

$$
\operatorname{tr}(A \circ B)^{p} \leq \operatorname{tr} A^{p} \circ B^{p}
$$

If $0 \leq p \leq 1$, then

$$
\operatorname{tr} A^{p} \circ B^{p} \leq \operatorname{tr}(A \circ B)^{p}
$$

Now, assume that A and B are positive definite. If $p \leq 0$, then

$$
\operatorname{tr}(A \circ B)^{p} \leq \operatorname{tr} A^{p} \circ B^{p} .
$$

(Proof: See 1392.)
Fact 8.21.18. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are positive semidefinite. Then,

$$
\lambda_{\min }(A B) \leq \lambda_{\min }(A \circ B)
$$

Hence,

$$
\lambda_{\min }(A B) I \leq \lambda_{\min }(A \circ B) I \leq A \circ B
$$

(Proof: See 765.) (Remark: This result interpolates the penultimate inequality in Fact 8.21.20)

Fact 8.21.19. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are positive semidefinite. Then,

$$
\operatorname{det} A B \leq\left(\prod_{i=1}^{n} A_{(i, i)}\right) \operatorname{det} B \leq \operatorname{det}(A \circ B) \leq \prod_{i=1}^{n} A_{(i, i)} B_{(i, i)}
$$

Equivalently,

$$
\operatorname{det} A B \leq[\operatorname{det}(I \circ A)] \operatorname{det} B \leq \operatorname{det}(A \circ B) \leq \prod_{i=1}^{n} A_{(i, i)} B_{(i, i)}
$$

Furthermore,

$$
2 \operatorname{det} A B \leq\left(\prod_{i=1}^{n} A_{(i, i)}\right) \operatorname{det} B+\left(\prod_{i=1}^{n} B_{(i, i)}\right) \operatorname{det} A \leq \operatorname{det}(A \circ B)+(\operatorname{det} A) \operatorname{det} B
$$

Finally, the following statements hold:
i) If $I \circ A$ and B are positive definite, then $A \circ B$ is positive definite.
ii) If $I \circ A$ and B are positive definite and $\operatorname{rank} A=1$, then equality holds in the right-hand equality.
iii) If A and B are positive definite, then equality holds in the right-hand equality if and only if B is diagonal.
(Proof: See 967, 1477] and [1184, p. 253].) (Remark: In the first string, the first and third inequalities follow from Hadamard's inequality Fact 8.17.11, while the second inequality is Oppenheim's inequality. See Fact 8.21.12,) (Remark: The right-hand inequality in the third string of inequalities is valid when A and B are M-matrices. See [44, 318.) (Problem: Compare the lower bounds $\operatorname{det}(A \# B)^{2}$ and $\left(\prod_{i=1}^{n} A_{(i, i)}\right) \operatorname{det} B$ for $\operatorname{det}(A \circ B)$. See Fact 8.21.20. $)$

Fact 8.21.20. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are positive semidefinite, let $k \in\{1, \ldots, n\}$, and let $r \in(0,1]$. Then,

$$
\prod_{i=k}^{n} \lambda_{i}(A) \lambda_{i}(B) \leq \prod_{i=k}^{n} \sigma_{i}(A B) \leq \prod_{i=k}^{n} \lambda_{i}(A B) \leq \prod_{i=k}^{n} \lambda_{i}^{2}(A \# B) \leq \prod_{i=k}^{n} \lambda_{i}(A \circ B)
$$

and

$$
\begin{gathered}
\prod_{i=k}^{n} \lambda_{i}(A) \lambda_{i}(B) \leq \prod_{i=k}^{n} \sigma_{i}(A B) \leq \prod_{i=k}^{n} \lambda_{i}(A B) \leq \prod_{i=k}^{n} \lambda_{i}^{1 / r}\left(A^{r} B^{r}\right) \\
\leq \prod_{i=k}^{n} e^{\lambda_{i}(\log A+\log B)} \leq \prod_{i=k}^{n} e^{\lambda_{i}[I \circ(\log A+\log B)]} \\
\leq \prod_{i=k}^{n} \lambda_{i}^{1 / r}\left(A^{r} \circ B^{r}\right) \leq \prod_{i=k}^{n} \lambda_{i}(A \circ B)
\end{gathered}
$$

Consequently,

$$
\lambda_{\min }(A B) I \leq A \circ B
$$

and

$$
\operatorname{det} A B=\operatorname{det}(A \# B)^{2} \leq \operatorname{det}(A \circ B)
$$

(Proof: See 48, 480, 1382, [1485, p. 21], Fact 8.10.43, and Fact 8.18.21)
Fact 8.21.21. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are positive definite, let $k \in\{1, \ldots, n\}$, and let $r>0$. Then,

$$
\prod_{i=k}^{n} \lambda_{i}^{-r}(A \circ B) \leq \prod_{i=k}^{n} \lambda_{i}^{-r}(A B)
$$

(Proof: See 1381.)

Fact 8.21.22. Let $A, B \in \mathbb{F}^{n \times n}$, let $C, D \in \mathbb{F}^{m \times m}$, assume that A, B, C, and D are Hermitian, $A \leq B, C \leq D$, and that either A and C are positive semidefinite, A and D are positive semidefinite, or B and D are positive semidefinite. Then,

$$
A \otimes C \leq B \otimes D
$$

If, in addition, $n=m$, then

$$
A \circ C \leq B \circ D
$$

(Proof: See 43, 111.) (Problem: Under which conditions are these inequalities strict?)

Fact 8.21.23. Let $A, B, C, D \in \mathbb{F}^{n \times n}$, assume that A, B, C, D are positive semidefinite, and assume that $A \leq B$ and $C \leq D$. Then,

$$
0 \leq A \otimes C \leq B \otimes D
$$

and

$$
0 \leq A \circ C \leq B \circ D
$$

(Proof: See Fact 8.21.22,
Fact 8.21.24. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are positive semidefinite. Then, $A \leq B$ if and only if $A \otimes A \leq B \otimes B$. (Proof: See 925.)

Fact 8.21.25. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are positive semidefinite, assume that $0 \leq A \leq B$, and let $k \geq 1$. Then,

$$
A^{\circ k} \leq B^{\circ k}
$$

(Proof: $0 \leq(B-A) \circ(B+A)$ implies that $A \circ A \leq B \circ B$, that is, $A^{\circ 2} \leq B^{\circ 2}$.)
Fact 8.21.26. Let $A_{1}, \ldots, A_{k}, B_{1}, \ldots, B_{k} \in \mathbb{F}^{n \times n}$, and assume that A_{1}, \ldots, $A_{k}, B_{1}, \ldots, B_{k}$ are positive semidefinite. Then,

$$
\left(A_{1}+B_{1}\right) \otimes \cdots \otimes\left(A_{k}+B_{k}\right) \leq A_{1} \otimes \cdots \otimes A_{k}+B_{1} \otimes \cdots \otimes B_{k}
$$

(Proof: See 994, p. 143].)
Fact 8.21.27. Let $A_{1}, A_{2}, B_{1}, B_{2} \in \mathbb{F}^{n \times n}$, assume that $A_{1}, A_{2}, B_{1}, B_{2}$ are positive semidefinite, assume that $0 \leq A_{1} \leq B_{1}$ and $0 \leq A_{2} \leq B_{2}$, and let $\alpha \in[0,1]$. Then,

$$
\left[\alpha A_{1}+(1-\alpha) B_{1}\right] \otimes\left[\alpha A_{2}+(1-\alpha) B_{2}\right] \leq \alpha\left(A_{1} \otimes A_{2}\right)+(1-\alpha)\left(B_{1} \otimes B_{2}\right)
$$

(Proof: See 1406.)
Fact 8.21.28. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are Hermitian. Then, for all $i=1, \ldots, n$,

$$
\lambda_{n}(A) \lambda_{n}(B) \leq \lambda_{i+n^{2}-n}(A \otimes B) \leq \lambda_{i}(A \circ B) \leq \lambda_{i}(A \otimes B) \leq \lambda_{1}(A) \lambda_{1}(B)
$$

(Proof: The result follows from Proposition 7.3 .1 and Theorem 8.4.5. For A, B positive semidefinite, the result is given in 962 .)

Fact 8.21.29. Let $A \in \mathbb{F}^{n \times n}$ and $B \in \mathbb{F}^{m \times m}$, assume that A and B are positive semidefinite, let $r \in \mathbb{R}$, and assume that either A and B are positive
definite or r is positive. Then,

$$
(A \otimes B)^{r}=A^{r} \otimes B^{r}
$$

(Proof: See 1019.)
Fact 8.21.30. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{k \times l}$. Then,

$$
\langle A \otimes B\rangle=\langle A\rangle \otimes\langle B\rangle
$$

Fact 8.21.31. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are positive semidefinite. If $r \in[0,1]$, then

$$
A^{r} \circ B^{r} \leq(A \circ B)^{r}
$$

If $r \in[1,2]$, then

$$
(A \circ B)^{r} \leq A^{r} \circ B^{r}
$$

If A and B are positive definite and $r \in[0,1]$, then

$$
(A \circ B)^{-r} \leq A^{-r} \circ B^{-r} .
$$

Therefore,

$$
\begin{gathered}
(A \circ B)^{2} \leq A^{2} \circ B^{2} \\
A \circ B \leq\left(A^{2} \circ B^{2}\right)^{1 / 2} \\
A^{1 / 2} \circ B^{1 / 2} \leq(A \circ B)^{1 / 2}
\end{gathered}
$$

Furthermore,

$$
A^{2} \circ B^{2}-\frac{1}{4}(\beta-\alpha)^{2} I \leq(A \circ B)^{2} \leq \frac{1}{2}\left[A^{2} \circ B^{2}+(A B)^{\circ 2}\right] \leq A^{2} \circ B^{2}
$$

and

$$
A \circ B \leq\left(A^{2} \circ B^{2}\right)^{1 / 2} \leq \frac{\alpha+\beta}{2 \sqrt{\alpha \beta}} A \circ B
$$

where $\alpha \triangleq \lambda_{\min }(A \otimes B)$ and $\beta \triangleq \lambda_{\max }(A \otimes B)$. Hence,

$$
\begin{aligned}
A \circ B-\frac{1}{4}(\sqrt{\beta}-\sqrt{\alpha})^{2} I & \leq\left(A^{1 / 2} \circ B^{1 / 2}\right)^{2} \\
& \leq \frac{1}{2}\left[A \circ B+\left(A^{1 / 2} B^{1 / 2}\right)^{\circ 2}\right] \\
& \leq A \circ B \\
& \leq\left(A^{2} \circ B^{2}\right)^{1 / 2} \\
& \leq \frac{\alpha+\beta}{2 \sqrt{\alpha \beta}} A \circ B
\end{aligned}
$$

(Proof: See [43, 1018, 1383, [709, p. 475], and [1485, p. 8].)
Fact 8.21.32. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are Hermitian. Then, there exist unitary matrices $S_{1}, S_{2} \in \mathbb{F}^{n \times n}$ such that

$$
\langle A \circ B\rangle \leq \frac{1}{2}\left[S_{1}(\langle A\rangle \circ\langle B\rangle) S_{1}^{*}+S_{2}(\langle A\rangle \circ\langle B\rangle) S_{2}^{*}\right] .
$$

(Proof: See 90.)

Fact 8.21.33. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are positive definite, and let k, l be nonzero integers such that $k \leq l$. Then,

$$
\left(A^{k} \circ B^{k}\right)^{1 / k} \leq\left(A^{l} \circ B^{l}\right)^{1 / l} .
$$

In particular,

$$
\left(A^{-1} \circ B^{-1}\right)^{-1} \leq A \circ B
$$

and

$$
(A \circ B)^{-1} \leq A^{-1} \circ B^{-1},
$$

and, for all $k \geq 1$,

$$
A \circ B \leq\left(A^{k} \circ B^{k}\right)^{1 / k}
$$

and

$$
A^{1 / k} \circ B^{1 / k} \leq(A \circ B)^{1 / k}
$$

Furthermore, $\quad(A \circ B)^{-1} \leq A^{-1} \circ B^{-1} \leq \frac{(\alpha+\beta)^{2}}{4 \alpha \beta}(A \circ B)^{-1}$,
where $\alpha \triangleq \lambda_{\min }(A \otimes B)$ and $\beta \triangleq \lambda_{\max }(A \otimes B)$. (Proof: See 1018.)
Fact 8.21.34. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A is positive definite, B is positive semidefinite, and $I \circ B$ is positive definite. Then, for all $i=1, \ldots, n$,

$$
\left[(A \circ B)^{-1}\right]_{(i, i)} \leq \frac{\left(A^{-1}\right)_{(i, i)}}{B_{(i, i)}} .
$$

Furthermore, if rank $B=1$, then equality holds. (Proof: See 1477.)
Fact 8.21.35. Let $A, B \in \mathbb{F}^{n \times n}$. Then, A is positive semidefinite if and only if, for every positive-semidefinite matrix $B \in \mathbb{F}^{n \times n}$,

$$
1_{1 \times n}(A \circ B) 1_{n \times 1} \geq 0 .
$$

(Proof: See [709, p. 459].) (Remark: This result is Fejer's theorem.)
Fact 8.21.36. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are positive definite. Then,

$$
1_{1 \times n}\left[(A-B) \circ\left(A^{-1}-B^{-1}\right)\right] 1_{n \times 1} \leq 0 .
$$

Furthermore, equality holds if and only if $A=B$. (Proof: See [148, p. 8-8].)
Fact 8.21.37. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are positive semidefinite, let $p, q \in \mathbb{R}$, and assume that one of the following conditions is satisfied:
i) $p \leq q \leq-1$, and A and B are positive definite.
ii) $p \leq-1<1 \leq q$, and A and B are positive definite.
iii) $1 \leq p \leq q$.
iv) $\frac{1}{2} \leq p \leq 1 \leq q$.
v) $p \leq-1 \leq q \leq-\frac{1}{2}$, and A and B are positive definite.

Then,

$$
\left(A^{p} \circ B^{p}\right)^{1 / p} \leq\left(A^{q} \circ B^{q}\right)^{1 / q} .
$$

(Proof: See [1019]. Consider case $i i i$). Since $p / q \leq 1$, it follows from Fact 8.21.31 that $A^{p} \circ B^{p}=\left(A^{q}\right)^{p / q} \circ\left(A^{q}\right)^{p / q} \leq\left(A^{q} \circ B^{q}\right)^{p / q}$. Then, use Corollary 8.6.11 with p replaced by $1 / p$. See [1485, p. 8].) (Remark: See [92].)

Fact 8.21.38. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are positive definite. Then,

$$
2 I \leq A \circ B^{-1}+B \circ A^{-1}
$$

(Proof: See [1383, 1492].) (Remark: Setting $B=A$ yields an inequality given by Fact 8.21.4.)

Fact 8.21.39. Let $A, B \in \mathbb{F}^{n \times m}$, and define

$$
\mathcal{A} \triangleq\left[\begin{array}{cc}
A^{*} A \circ B^{*} B & (A \circ B)^{*} \\
A \circ B & I
\end{array}\right] .
$$

Then, \mathcal{A} is positive semidefinite. Furthermore,

$$
(A \circ B)^{*}(A \circ B) \leq \frac{1}{2}\left(A^{*} A \circ B^{*} B+A^{*} B \circ B^{*} A\right) \leq A^{*} A \circ B^{*} B .
$$

(Proof: See 713, 1383, 1492.) (Remark: The inequality $(A \circ B)^{*}(A \circ B) \leq A^{*} A \circ B^{*} B$ is Amemiya's inequality. See 925.)

Fact 8.21.40. Let $A, B, C \in \mathbb{F}^{n \times n}$, define

$$
\mathcal{A} \triangleq\left[\begin{array}{cc}
A & B \\
B^{*} & C
\end{array}\right]
$$

and assume that \mathcal{A} is positive semidefinite. Then,

$$
-A \circ C \leq B \circ B^{*} \leq A \circ C
$$

and

$$
\left|\operatorname{det}\left(B \circ B^{*}\right)\right| \leq \operatorname{det}(A \circ C)
$$

If, in addition, \mathcal{A} is positive definite, then

$$
-A \circ C<B \circ B^{*}<A \circ C
$$

and

$$
\left|\operatorname{det}\left(B \circ B^{*}\right)\right|<\operatorname{det}(A \circ C)
$$

(Proof: See 1492.) (Remark: See Fact 8.11.5)
Fact 8.21.41. Let $A, B \in \mathbb{F}^{n \times m}$. Then,

$$
-A^{*} A \circ B^{*} B \leq A^{*} B \circ B^{*} A \leq A^{*} A \circ B^{*} B
$$

and

$$
\left|\operatorname{det}\left(A^{*} B \circ B^{*} A\right)\right| \leq \operatorname{det}\left(A^{*} A \circ B^{*} B\right)
$$

(Proof: Apply Fact 8.21.40 to $\left[\begin{array}{ccc}A^{*} A & A^{*} B \\ B^{*} A & B^{*} B\end{array}\right]$.) (Remark: See Fact 8.11.14 and Fact 8.21.9.)

Fact 8.21.42. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A is positive definite. Then,

$$
-A \circ B^{*} A^{-1} B \leq B \circ B^{*} \leq A \circ B^{*} A^{-1} B
$$

and

$$
\left|\operatorname{det}\left(B \circ B^{*}\right)\right| \leq \operatorname{det}\left(A \circ B^{*} A^{-1} B\right)
$$

(Proof: Use Fact 8.11.19 and Fact 8.21.40)
Fact 8.21.43. Let $A, B \in \mathbb{F}^{n \times n}$, and let $\alpha, \beta \in(0, \infty)$.

$$
\begin{aligned}
-\left(\beta^{-1 / 2} I+\alpha A^{*} A\right) \circ\left(\alpha^{-1 / 2} I+\beta B B^{*}\right) & \leq(A+B) \circ(A+B)^{*} \\
& \leq\left(\beta^{-1 / 2} I+\alpha A^{*} A\right) \circ\left(\alpha^{-1 / 2} I+\beta B B^{*}\right)
\end{aligned}
$$

(Remark: See Fact 8.11.20.)
Fact 8.21.44. Let $A, B \in \mathbb{F}^{n \times m}$, and define

$$
\mathcal{A} \triangleq\left[\begin{array}{cc}
A^{*} A \circ I & (A \circ B)^{*} \\
A \circ B & B B^{*} \circ I
\end{array}\right]
$$

Then, \mathcal{A} is positive semidefinite. Now, assume that $n=m$. Then,

$$
-A^{*} A \circ I-B B^{*} \circ I \leq A \circ B+(A \circ B)^{*} \leq A^{*} A \circ I+B B^{*} \circ I
$$

and

$$
-A^{*} A \circ B B^{*} \circ I \leq A \circ A^{*} \circ B \circ B^{*} \leq A^{*} A \circ B B^{*} \circ I
$$

(Remark: See Fact 8.21.40)
Fact 8.21.45. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are positive semidefinite. Then,

$$
A \circ B \leq \frac{1}{2}\left(A^{2}+B^{2}\right) \circ I
$$

(Proof: Use Fact 8.21.44)
Fact 8.21.46. Let $A \in \mathbb{F}^{n \times n}$, assume that A is positive semidefinite, and define $e^{\circ A} \in \mathbb{F}^{n \times n}$ by $\left[e^{\circ A}\right]_{(i, j)} \triangleq e^{A_{(i, j)}}$. Then, $e^{\circ A}$ is positive semidefinite. (Proof: Note that $e^{\circ A}=1_{n \times n}+\frac{1}{2} A \circ A+\frac{1}{3!} A \circ A \circ A+\cdots$, and use Fact 8.21.12, See 422, p. 10].)

Fact 8.21.47. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are positive definite, and let $p, q \in(0, \infty)$ satisfy $p \leq q$. Then,

$$
I \circ(\log A+\log B) \leq \log \left(A^{p} \circ B^{p}\right)^{1 / p} \leq \log \left(A^{q} \circ B^{q}\right)^{1 / q}
$$

and

$$
I \circ(\log A+\log B)=\lim _{p \downarrow 0} \log \left(A^{p} \circ B^{p}\right)^{1 / p}
$$

(Proof: See 1382.) (Remark: $\log \left(A^{p} \circ B^{p}\right)^{1 / p}=\frac{1}{p} \log \left(A^{p} \circ B^{p}\right)$.
Fact 8.21.48. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are positive definite. Then,

$$
I \circ(\log A+\log B) \leq \log (A \circ B)
$$

(Proof: Set $p=1$ in Fact 8.21.47 See [43] and [1485, p. 8].) (Remark: See Fact 11.14.21.)

Fact 8.21.49. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are positive definite, and let $C, D \in \mathbb{F}^{m \times n}$. Then,

$$
(C \circ D)(A \circ B)^{-1}(C \circ D)^{*} \leq\left(C A^{-1} C^{*}\right) \circ\left(D B^{-1} D^{*}\right)
$$

In particular,

$$
(A \circ B)^{-1} \leq A^{-1} \circ B^{-1}
$$

and

$$
(C \circ D)(C \circ D)^{*} \leq\left(C C^{*}\right) \circ\left(D D^{*}\right)
$$

(Proof: Form the Schur complement of the lower right block of the Schur product of the positive-semidefinite matrices $\left[\begin{array}{cc}A & C^{*} \\ C & C A^{-1} C^{*}\end{array}\right]$ and $\left[\begin{array}{cc}B & D^{*} \\ D & D B^{-1} D^{*}\end{array}\right]$. See [966, 1393, [1485, p. 13], or [1490 p. 198].)

Fact 8.21.50. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are positive semidefinite, and let $p, q \in(1, \infty)$ satisfy $1 / p+1 / q=1$. Then,

$$
(A \circ B)+(C \circ D) \leq\left(A^{p}+C^{p}\right)^{1 / p} \circ\left(B^{q}+D^{q}\right)^{1 / q} .
$$

(Proof: Use xxiv) of Proposition 8.6.17 with $r=1 / p$. See [1485, p. 10].) (Remark: Note the relationship between the conjugate parameters p, q and the barycentric coordinates $\alpha, 1-\alpha$. See Fact 1.16.11)

Fact 8.21.51. Let $A, B, C, D \in \mathbb{F}^{n \times n}$, assume that A, B, C, and D are positive definite. Then,

$$
(A \# C) \circ(B \# D) \leq(A \circ B) \#(C \circ D)
$$

Furthermore,

$$
(A \# B) \circ(A \# B) \leq(A \circ B)
$$

(Proof: See 92.)

8.22 Notes

The ordering $A \leq B$ is traditionally called the Löwner ordering. Proposition 8.2 .4 is given in 14 and 846 with extensions in 167 . The proof of Proposition 8.2 .7 is based on [264, p. 120], as suggested in [1249. The proof given in [540 p. 307] is incomplete.

Theorem 8.3.4 is due to Newcomb 1035. Proposition 8.4 .13 is given in 699 1022. Special cases such as Fact 8.12 .28 appear in numerous papers. The proofs of Lemma 8.4.4 and Theorem 8.4.5 are based on [1230. Theorem8.4.9 can also be obtained as a corollary of the Fischer minimax theorem given in [709, 971, which provides a geometric characterization of the eigenvalues of a symmetric matrix. Theorem8.3.5 appears in [1118, p. 121]. Theorem8.6.2 is given in 40. Additional inequalities appear in 1007.

Functions that are nondecreasing on \mathbf{P}^{n} are characterized by the theory of monotone matrix functions [197, 422. See 1012 for a summary of the principal results.

The literature on convex maps is extensive. Result xiv) of Proposition 8.6.17 is due to Lieb and Ruskai [907. Result xxiv) is the Lieb concavity theorem. See [197] p. 271] or [905. Result xxxiv) is due to Ando. Results xlv) and xlvi) are due to Fan. Some extensions to strict convexity are considered in 971. See also [43, 1024.

Products of positive-definite matrices are studied in [117, 118, 119, 121, 1458.
Essays on the legacy of Issai Schur appear in [780]. Schur complements are discussed in [288, 290, 658, 896, 922, 1057. Majorization and eigenvalue inequalities for sums and products of matrices are discussed in [198].

Chapter Nine

Norms

Norms are used to quantify vectors and matrices, and they play a basic role in convergence analysis. This chapter introduces vector and matrix norms and their properties.

9.1 Vector Norms

For many applications it is useful to have a scalar measure of the magnitude of a vector x or a matrix A. Norms provide such measures.

Definition 9.1.1. A norm $\|\cdot\|$ on \mathbb{F}^{n} is a function $\|\cdot\|: \mathbb{F}^{n} \mapsto[0, \infty)$ that satisfies the following conditions:
i) $\|x\| \geq 0$ for all $x \in \mathbb{F}^{n}$.
ii) $\|x\|=0$ if and only if $x=0$.
iii) $\|\alpha x\|=|\alpha|\|x\|$ for all $\alpha \in \mathbb{F}$ and $x \in \mathbb{F}^{n}$.
iv) $\|x+y\| \leq\|x\|+\|y\|$ for all $x, y \in \mathbb{F}^{n}$.

Condition $i v$) is the triangle inequality.
A norm $\|\cdot\|$ on \mathbb{F}^{n} is monotone if $|x| \leq \leq|y|$ implies that $\|x\| \leq\|y\|$ for all $x, y \in \mathbb{F}^{n}$, while $\|\cdot\|$ is absolute if $\||x|\|=\|x\|$ for all $x \in \mathbb{F}^{n}$.

Proposition 9.1.2. Let $\|\cdot\|$ be a norm on \mathbb{F}^{n}. Then, $\|\cdot\|$ is monotone if and only if $\|\cdot\|$ is absolute.

Proof. First, suppose that $\|\cdot\|$ is monotone. Let $x \in \mathbb{F}^{n}$, and define $y \triangleq|x|$. Then, $|y|=|x|$, and thus $|y| \leq \leq|x|$ and $|x| \leq \leq|y|$. Hence, $\|x\| \leq\|y\|$ and $\|y\| \leq\|x\|$, which implies that $\|x\|=\|y\|$. Thus, $\||x|\|=\|y\|=\|x\|$, which proves that $\|\cdot\|$ is absolute.

Conversely, suppose that $\|\cdot\|$ is absolute and, for convenience, let $n=2$. Now, let $x, y \in \mathbb{F}^{2}$ be such that $|x| \leq \leq|y|$. Then, there exist $\alpha_{1}, \alpha_{2} \in[0,1]$ and $\theta_{1}, \theta_{2} \in \mathbb{R}$ such that $x_{(i)}=\alpha_{i} e^{\jmath \theta_{i}} y_{(i)}$ for $i=1,2$. Since $\|\cdot\|$ is absolute, it follows
that

$$
\begin{aligned}
\|x\| & =\left\|\left[\begin{array}{c}
\alpha_{1} e^{\rho_{1} 1} y_{(1)} \\
\alpha_{2} e^{\jmath_{2} 2} y_{(2)}
\end{array}\right]\right\| \\
& =\left\|\left[\begin{array}{c}
\alpha_{1}\left|y_{(1)}\right| \\
\alpha_{2}\left|y_{(2)}\right|
\end{array}\right]\right\| \\
& =\left\|\frac{1}{2}\left(1-\alpha_{1}\right)\left[\begin{array}{c}
-\left|y_{(1)}\right| \\
\alpha_{2}\left|y_{(2)}\right|
\end{array}\right]+\frac{1}{2}\left(1-\alpha_{1}\right)\left[\begin{array}{c}
\left|y_{(1)}\right| \\
\alpha_{2}\left|y_{(2)}\right|
\end{array}\right]+\alpha_{1}\left[\begin{array}{c}
\left|y_{(1)}\right| \\
\alpha_{2}\left|y_{(2)}\right|
\end{array}\right]\right\| \\
& \leq\left[\frac{1}{2}\left(1-\alpha_{1}\right)+\frac{1}{2}\left(1-\alpha_{1}\right)+\alpha_{1}\right]\left\|\left[\begin{array}{c}
\left|y_{(1)}\right| \\
\alpha_{2}\left|y_{(2)}\right|
\end{array}\right]\right\| \\
& =\left\|\left[\begin{array}{c}
\left|y_{(1)}\right| \\
\alpha_{2}\left|y_{(2)}\right|
\end{array}\right]\right\| \\
& =\left\|\frac{1}{2}\left(1-\alpha_{2}\right)\left[\begin{array}{c}
\left|y_{(1)}\right| \\
-\left|y_{(2)}\right|
\end{array}\right]+\frac{1}{2}\left(1-\alpha_{2}\right)\left[\begin{array}{c}
\left|y_{(1)}\right| \\
\left|y_{(2)}\right|
\end{array}\right]+\alpha_{2}\left[\begin{array}{c}
\left|y_{(1)}\right| \\
\left|y_{(2)}\right|
\end{array}\right]\right\| \\
& \leq\left\|\left[\begin{array}{l}
\left|y_{(1)}\right| \\
\left|y_{(2)}\right|
\end{array}\right]\right\| \\
& =\|y\| .
\end{aligned}
$$

Thus, $\|\cdot\|$ is monotone.
As we shall see, there are many different norms. For $x \in \mathbb{F}^{n}$, a useful class of norms consists of the Hölder norms defined by

$$
\|x\|_{p} \triangleq \begin{cases}\left(\sum_{i=1}^{n}\left|x_{(i)}\right|^{p}\right)^{1 / p}, & 1 \leq p<\infty \tag{9.1.1}\\ \max _{i \in\{1, \ldots, n\}}\left|x_{(i)}\right|, & p=\infty\end{cases}
$$

Note that, for all $x \in \mathbb{C}^{n}$ and $p \in[1, \infty],\|\bar{x}\|_{p}=\|x\|_{p}$. These norms depend on Minkowski's inequality given by the following result.

Lemma 9.1.3. Let $p \in[1, \infty]$, and let $x, y \in \mathbb{F}^{n}$. Then,

$$
\begin{equation*}
\|x+y\|_{p} \leq\|x\|_{p}+\|y\|_{p} \tag{9.1.2}
\end{equation*}
$$

If $p=1$, then equality holds if and only if, for all $i=1, \ldots, n$, there exists $\alpha_{i} \geq 0$ such that either $x_{(i)}=\alpha_{i} y_{(i)}$ or $y_{(i)}=\alpha_{i} x_{(i)}$. If $p \in(1, \infty)$, then equality holds if and only if there exists $\alpha \geq 0$ such that either $x=\alpha y$ or $y=\alpha x$.

Proof. See [162, 963] and Fact 1.16 .25
Proposition 9.1.4. Let $p \in[1, \infty]$. Then, $\|\cdot\|_{p}$ is a norm on \mathbb{F}^{n}.
For $p=1$,

$$
\begin{equation*}
\|x\|_{1}=\sum_{i=1}^{n}\left|x_{(i)}\right| \tag{9.1.3}
\end{equation*}
$$

is the absolute sum norm; for $p=2$,

$$
\begin{equation*}
\|x\|_{2}=\left(\sum_{i=1}^{n}\left|x_{(i)}\right|^{2}\right)^{1 / 2}=\sqrt{x^{*} x} \tag{9.1.4}
\end{equation*}
$$

is the Euclidean norm; and, for $p=\infty$,

$$
\begin{equation*}
\|x\|_{\infty}=\max _{i \in\{1, \ldots, n\}}\left|x_{(i)}\right| \tag{9.1.5}
\end{equation*}
$$

is the infinity norm.
The Hölder norms satisfy the following monotonicity property, which is related to the power-sum inequality given by Fact 1.15 .34 .

Proposition 9.1.5. Let $1 \leq p \leq q \leq \infty$, and let $x \in \mathbb{F}^{n}$. Then,

$$
\begin{equation*}
\|x\|_{\infty} \leq\|x\|_{q} \leq\|x\|_{p} \leq\|x\|_{1} \tag{9.1.6}
\end{equation*}
$$

Assume, in addition, that $1<p<q<\infty$. Then, x has at least two nonzero components if and only if

$$
\begin{equation*}
\|x\|_{\infty}<\|x\|_{q}<\|x\|_{p}<\|x\|_{1} \tag{9.1.7}
\end{equation*}
$$

Proof. If either $p=q$ or $x=0$ or x has exactly one nonzero component, then $\|x\|_{q}=\|x\|_{p}$. Hence, to prove both (9.1.6) and (9.1.7), it suffices to prove (9.1.7) in the case that $1<p<q<\infty$ and x has at least two nonzero components. Thus, let $n \geq 2$, let $x \in \mathbb{F}^{n}$ have at least two nonzero components, and define $f:[1, \infty) \rightarrow[0, \infty)$ by $f(\beta) \triangleq\|x\|_{\beta}$. Hence,

$$
f^{\prime}(\beta)=\frac{1}{\beta}\|x\|_{\beta}^{1-\beta} \sum_{i=1}^{n} \gamma_{i},
$$

where, for all $i=1, \ldots, n$,

$$
\gamma_{i} \triangleq \begin{cases}\left|x_{i}\right|^{\beta}\left(\log \left|x_{(i)}\right|-\log \|x\|_{\beta}\right), & x_{(i)} \neq 0 \\ 0, & x_{(i)}=0\end{cases}
$$

If $x_{(i)} \neq 0$, then $\log \left|x_{(i)}\right|<\log \|x\|_{\beta}$. It thus follows that $f^{\prime}(\beta)<0$, which implies that f is decreasing on $[1, \infty)$. Hence, (9.1.7) holds.

The following result is Hölder's inequality. For this result we interpret $1 / \infty=$ 0 . Note that, for all $x, y \in \mathbb{F}^{n},\left|x^{\mathrm{T}} y\right| \leq|x|^{\mathrm{T}}|y|=\|x \circ y\|_{1}$.

Proposition 9.1.6. Let $p, q \in[1, \infty]$ satisfy $1 / p+1 / q=1$, and let $x, y \in \mathbb{F}^{n}$. Then,

$$
\begin{equation*}
\left|x^{\mathrm{T}} y\right| \leq\|x\|_{p}\|y\|_{q} \tag{9.1.8}
\end{equation*}
$$

Furthermore, equality holds if and only if $\left|x^{\mathrm{T}} y\right|=|x|^{\mathrm{T}}|y|$ and

$$
\begin{cases}|x| \circ|y|=\|y\|_{\infty}|x|, & p=1 \tag{9.1.9}\\ \|y\|_{q}^{1 / p}|x|^{\circ 1 / q}=\|x\|_{p}^{1 / q}|y|^{\circ 1 / p}, & 1<p<\infty \\ |x| \circ|y|=\|x\|_{\infty}|y|, & p=\infty\end{cases}
$$

Proof. See [273] p. 127], [709, p. 536], [800, p. 71], Fact 1.16.11, and Fact 1.16.12.

The case $p=q=2$ is the Cauchy-Schwarz inequality.
Corollary 9.1.7. Let $x, y \in \mathbb{F}^{n}$. Then,

$$
\begin{equation*}
\left|x^{\mathrm{T}} y\right| \leq\|x\|_{2}\|y\|_{2} \tag{9.1.10}
\end{equation*}
$$

Furthermore, equality holds if and only if x and y are linearly dependent.
Proof. Suppose that $y \neq 0$, and define $M \triangleq\left[\sqrt{y^{*} y} I \quad\left(y^{*} y\right)^{-1 / 2} y\right]$. Since $M^{*} M$
$=\left[\begin{array}{cc}y^{*} y I & y \\ y^{*} & 1\end{array}\right]$ is positive semidefinite, it follows from iii) of Proposition 8.2.4 that $y y^{*} \leq y^{*} y I$. Therefore, $x^{*} y y^{*} x \leq x^{*} x y^{*} y$, which is equivalent to 9.1.10 with x replaced by \bar{x}.

Now, suppose that x and y are linearly dependent. Then, there exists $\beta \in \mathbb{F}$ such that either $x=\beta y$ or $y=\beta x$. In both cases it follows that $\left|x^{*} y\right|=\|x\|_{2}\|y\|_{2}$. Conversely, define $f: \mathbb{F}^{n} \times \mathbb{F}^{n} \rightarrow[0, \infty)$ by $f(\mu, \nu) \triangleq \mu^{*} \mu \nu^{*} \nu-\left|\mu^{*} \nu\right|^{2}$. Now, suppose that $f(x, y)=0$ so that (x, y) minimizes f. Then, it follows that $f_{\mu}(x, y)=0$, which implies that $y^{*} y x=y^{*} x y$. Hence, x and y are linearly dependent.

The norms $\|\cdot\|$ and $\|\cdot\|^{\prime}$ on \mathbb{F}^{n} are equivalent if there exist $\alpha, \beta>0$ such that

$$
\begin{equation*}
\alpha\|x\| \leq\|x\|^{\prime} \leq \beta\|x\| \tag{9.1.11}
\end{equation*}
$$

for all $x \in \mathbb{F}^{n}$. Note that these inequalities can be written as

$$
\begin{equation*}
\frac{1}{\beta}\|x\|^{\prime} \leq\|x\| \leq \frac{1}{\alpha}\|x\|^{\prime} \tag{9.1.12}
\end{equation*}
$$

Hence, the word "equivalent" is justified.
The following result shows that every pair of norms on \mathbb{F}^{n} is equivalent.
Theorem 9.1.8. Let $\|\cdot\|$ and $\|\cdot\|^{\prime}$ be norms on \mathbb{F}^{n}. Then, $\|\cdot\|$ and $\|\cdot\|^{\prime}$ are equivalent.

Proof. See [709, p. 272].

9.2 Matrix Norms

One way to define norms for matrices is by viewing a matrix $A \in \mathbb{F}^{n \times m}$ as a vector in $\mathbb{F}^{n m}$, for example, as vec A.

Definition 9.2.1. A norm $\|\cdot\|$ on $\mathbb{F}^{n \times m}$ is a function $\|\cdot\|: \mathbb{F}^{n \times m} \mapsto[0, \infty)$ that satisfies the following conditions:
i) $\|A\| \geq 0$ for all $A \in \mathbb{F}^{n \times m}$.
ii) $\|A\|=0$ if and only if $A=0$.
iii) $\|\alpha A\|=|\alpha|\|A\|$ for all $\alpha \in \mathbb{F}$ and $A \in \mathbb{F}^{n \times m}$.
iv) $\|A+B\| \leq\|A\|+\|B\|$ for all $A, B \in \mathbb{F}^{n \times m}$.

If $\|\cdot\|$ is a norm on $\mathbb{F}^{n m}$, then $\|\cdot\|^{\prime}$ defined by $\|A\|^{\prime} \triangleq\|\operatorname{vec} A\|$ is a norm on $\mathbb{F}^{n \times m}$. For example, Hölder norms can be defined for matrices by choosing $\|\cdot\|=\|\cdot\|_{p}$. Hence, for all $A \in \mathbb{F}^{n \times m}$, define

$$
\|A\|_{p} \triangleq \begin{cases}\left(\sum_{i=1}^{n} \sum_{j=1}^{m}\left|A_{(i, j)}\right|^{p}\right)^{1 / p}, & 1 \leq p<\infty \tag{9.2.1}\\ \max _{\substack{i \in\{1, \ldots, n\} \\ j \in\{1, \ldots, m\}}}\left|A_{(i, j)}\right|, & p=\infty\end{cases}
$$

Note that the same symbol $\|\cdot\|_{p}$ is used to denote the Hölder norm for both vectors and matrices. This notation is consistent since, if $A \in \mathbb{F}^{n \times 1}$, then $\|A\|_{p}$ coincides with the vector Hölder norm. Furthermore, if $A \in \mathbb{F}^{n \times m}$ and $1 \leq p \leq \infty$, then

$$
\begin{equation*}
\|A\|_{p}=\|\operatorname{vec} A\|_{p} \tag{9.2.2}
\end{equation*}
$$

It follows from (9.1.6) that, if $A \in \mathbb{F}^{n \times m}$ and $1 \leq p \leq q \leq \infty$, then

$$
\begin{equation*}
\|A\|_{\infty} \leq\|A\|_{q} \leq\|A\|_{p} \leq\|A\|_{1} \tag{9.2.3}
\end{equation*}
$$

If, in addition, $1<p<q<\infty$ and A has at least two nonzero entries, then

$$
\begin{equation*}
\|A\|_{\infty}<\|A\|_{q}<\|A\|_{p}<\|A\|_{1} \tag{9.2.4}
\end{equation*}
$$

The Hölder norms in the cases $p=1,2, \infty$ are the most commonly used. Let $A \in \mathbb{F}^{n \times m}$. For $p=2$ we define the Frobenius norm $\|\cdot\|_{\mathrm{F}}$ by

$$
\begin{equation*}
\|A\|_{\mathrm{F}} \triangleq\|A\|_{2} \tag{9.2.5}
\end{equation*}
$$

Since $\|A\|_{2}=\|\operatorname{vec} A\|_{2}$, it follows that

$$
\begin{equation*}
\|A\|_{\mathrm{F}}=\|A\|_{2}=\|\operatorname{vec} A\|_{2}=\|\operatorname{vec} A\|_{\mathrm{F}} \tag{9.2.6}
\end{equation*}
$$

It is easy to see that

$$
\begin{equation*}
\|A\|_{\mathrm{F}}=\sqrt{\operatorname{tr} A^{*} A} \tag{9.2.7}
\end{equation*}
$$

Let $\|\cdot\|$ be a norm on $\mathbb{F}^{n \times m}$. If $\left\|S_{1} A S_{2}\right\|=\|A\|$ for all $A \in \mathbb{F}^{n \times m}$ and for all unitary matrices $S_{1} \in \mathbb{F}^{n \times n}$ and $S_{2} \in \mathbb{F}^{m \times m}$, then $\|\cdot\|$ is unitarily invariant. Now, let $m=n$. If $\|A\|=\left\|A^{*}\right\|$ for all $A \in \mathbb{F}^{n \times n}$, then $\|\cdot\|$ is self-adjoint. If $\left\|I_{n}\right\|=1$, then $\|\cdot\|$ is normalized. Note that the Frobenius norm is not normalized since $\left\|I_{n}\right\|_{\mathrm{F}}=\sqrt{n}$. If $\left\|S A S^{*}\right\|=\|A\|$ for all $A \in \mathbb{F}^{n \times n}$ and for all unitary $S \in \mathbb{F}^{n \times n}$, then $\|\cdot\|$ is weakly unitarily invariant.

Matrix norms can be defined in terms of singular values. Let $\sigma_{1}(A) \geq \sigma_{2}(A) \geq$ \cdots denote the singular values of $A \in \mathbb{F}^{n \times m}$. The following result gives a weak majorization condition for singular values.

Proposition 9.2.2. Let $A, B \in \mathbb{F}^{n \times m}$. Then, for all $k=1, \ldots, \min \{n, m\}$,

$$
\begin{equation*}
\sum_{i=1}^{k}\left[\sigma_{i}(A)-\sigma_{i}(B)\right] \leq \sum_{i=1}^{k} \sigma_{i}(A+B) \leq \sum_{i=1}^{k}\left[\sigma_{i}(A)+\sigma_{i}(B)\right] \tag{9.2.8}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
\sigma_{\max }(A)-\sigma_{\max }(B) \leq \sigma_{\max }(A+B) \leq \sigma_{\max }(A)+\sigma_{\max }(B) \tag{9.2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{tr}\langle A\rangle-\operatorname{tr}\langle B\rangle \leq \operatorname{tr}\langle A+B\rangle \leq \operatorname{tr}\langle A\rangle+\operatorname{tr}\langle B\rangle \tag{9.2.10}
\end{equation*}
$$

Proof. Define $\mathcal{A}, \mathcal{B} \in \mathbf{H}^{n+m}$ by $\mathcal{A} \triangleq\left[\begin{array}{cc}0 & A \\ A^{*} & 0\end{array}\right]$ and $\mathcal{B} \triangleq\left[\begin{array}{cc}0 & B \\ B^{*} & 0\end{array}\right]$. Then, Corollary 8.6.19 implies that, for all $k=1, \ldots, n+m$,

$$
\sum_{i=1}^{k} \lambda_{i}(\mathcal{A}+\mathcal{B}) \leq \sum_{i=1}^{k}\left[\lambda_{i}(\mathcal{A})+\lambda_{i}(\mathcal{B})\right]
$$

Now, consider $k \leq \min \{n, m\}$. Then, it follows from Proposition 5.6.6 that, for all $i=1, \ldots, k, \lambda_{i}(\mathcal{A})=\sigma_{i}(A)$. Setting $k=1$ yields (9.2.9), while setting $k=$ $\min \{n, m\}$ and using Fact 8.17.2 yields (9.2.10).

Proposition 9.2.3. Let $p \in[1, \infty]$, and let $A \in \mathbb{F}^{n \times m}$. Then, $\|\cdot\|_{\sigma p}$ defined by

$$
\|A\|_{\sigma p} \triangleq \begin{cases}\left(\sum_{i=1}^{\min \{n, m\}} \sigma_{i}^{p}(A)\right)^{1 / p}, & 1 \leq p<\infty \tag{9.2.11}\\ \sigma_{\max }(A), & p=\infty\end{cases}
$$

is a norm on $\mathbb{F}^{n \times m}$.
Proof. Let $p \in[1, \infty]$. Then, it follows from Proposition 9.2.2 and Minkowski's inequality Fact 1.16 .25 that

$$
\begin{aligned}
\|A+B\|_{\sigma p} & =\left(\sum_{i=1}^{\min \{n, m\}} \sigma_{i}^{p}(A+B)\right)^{1 / p} \\
& \leq\left(\sum_{i=1}^{\min \{n, m\}}\left[\sigma_{i}(A)+\sigma_{i}(B)\right]^{p}\right)^{1 / p} \\
& \leq\left(\sum_{i=1}^{\min \{n, m\}} \sigma_{i}^{p}(A)\right)^{1 / p}+\left(\sum_{i=1}^{\min \{n, m\}} \sigma_{i}^{p}(B)\right)^{1 / p} \\
& =\|A\|_{\sigma p}+\|B\|_{\sigma p} .
\end{aligned}
$$

The norm $\|\cdot\|_{\sigma p}$ is a Schatten norm. Let $A \in \mathbb{F}^{n \times m}$. Then, for all $p \in[1, \infty)$,

$$
\begin{equation*}
\|A\|_{\sigma p}=\left(\operatorname{tr}\langle A\rangle^{p}\right)^{1 / p} \tag{9.2.12}
\end{equation*}
$$

Special cases are

$$
\begin{gather*}
\|A\|_{\sigma 1}=\sigma_{1}(A)+\cdots+\sigma_{\min \{n, m\}}(A)=\operatorname{tr}\langle A\rangle \tag{9.2.13}\\
\|A\|_{\sigma 2}=\left[\sigma_{1}^{2}(A)+\cdots+\sigma_{\min \{n, m\}}^{2}(A)\right]^{1 / 2}=\left(\operatorname{tr} A^{*} A\right)^{1 / 2}=\|A\|_{\mathrm{F}} \tag{9.2.14}
\end{gather*}
$$

and

$$
\begin{equation*}
\|A\|_{\sigma \infty}=\sigma_{1}(A)=\sigma_{\max }(A) \tag{9.2.15}
\end{equation*}
$$

which are the trace norm, Frobenius norm, and spectral norm, respectively.
By applying Proposition 9.1 .5 to the vector $\left[\sigma_{1}(A) \cdots \sigma_{\min \{n, m\}}(A)\right]^{\mathrm{T}}$, we obtain the following result.

Proposition 9.2.4. Let $p, q \in[1, \infty)$, where $p \leq q$, and let $A \in \mathbb{F}^{n \times m}$. Then,

$$
\begin{equation*}
\|A\|_{\sigma \infty} \leq\|A\|_{\sigma q} \leq\|A\|_{\sigma p} \leq\|A\|_{\sigma 1} \tag{9.2.16}
\end{equation*}
$$

Assume, in addition, that $1<p<q<\infty$ and $\operatorname{rank} A \geq 2$. Then,

$$
\begin{equation*}
\|A\|_{\infty}<\|A\|_{q}<\|A\|_{p}<\|A\|_{1} . \tag{9.2.17}
\end{equation*}
$$

The norms $\|\cdot\|_{\sigma p}$ are not very interesting when applied to vectors. Let $x \in \mathbb{F}^{n}=\mathbb{F}^{n \times 1}$. Then, $\sigma_{\max }(x)=\left(x^{*} x\right)^{1 / 2}=\|x\|_{2}$, and, since rank $x \leq 1$, it follows that, for all $p \in[1, \infty]$,

$$
\begin{equation*}
\|x\|_{\sigma p}=\|x\|_{2} \tag{9.2.18}
\end{equation*}
$$

Proposition 9.2.5. Let $A \in \mathbb{F}^{n \times m}$. If $p \in(0,2]$, then

$$
\begin{equation*}
\|A\|_{\sigma p} \leq\|A\|_{p} \tag{9.2.19}
\end{equation*}
$$

If $p \geq 2$, then

$$
\begin{equation*}
\|A\|_{p} \leq\|A\|_{\sigma p} \tag{9.2.20}
\end{equation*}
$$

Proof. See [1485, p. 50].
Proposition 9.2.6. Let $\|\cdot\|$ be a norm on $\mathbb{F}^{n \times n}$, and let $A \in \mathbb{F}^{n \times n}$. Then,

$$
\begin{equation*}
\operatorname{sprad}(A)=\lim _{k \rightarrow \infty}\left\|A^{k}\right\|^{1 / k} \tag{9.2.21}
\end{equation*}
$$

Proof. See [709, p. 322].

9.3 Compatible Norms

The norms $\|\cdot\|,\|\cdot\|^{\prime}$, and $\|\cdot\|^{\prime \prime}$ on $\mathbb{F}^{n \times l}, \mathbb{F}^{n \times m}$, and $\mathbb{F}^{m \times l}$, respectively, are compatible if, for all $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times l}$,

$$
\begin{equation*}
\|A B\| \leq\|A\|^{\prime}\|B\|^{\prime \prime} \tag{9.3.1}
\end{equation*}
$$

For $l=1$, the norms $\|\cdot\|,\|\cdot\|^{\prime}$, and $\|\cdot\|^{\prime \prime}$ on $\mathbb{F}^{n}, \mathbb{F}^{n \times m}$, and \mathbb{F}^{m}, respectively, are compatible if, for all $A \in \mathbb{F}^{n \times m}$ and $x \in \mathbb{F}^{m}$,

$$
\begin{equation*}
\|A x\| \leq\|A\|^{\prime}\|x\|^{\prime \prime} \tag{9.3.2}
\end{equation*}
$$

Furthermore, the norm $\|\cdot\|$ on \mathbb{F}^{n} is compatible with the norm $\|\cdot\|^{\prime}$ on $\mathbb{F}^{n \times n}$ if, for all $A \in \mathbb{F}^{n \times n}$ and $x \in \mathbb{F}^{n}$,

$$
\begin{equation*}
\|A x\| \leq\|A\|^{\prime}\|x\| . \tag{9.3.3}
\end{equation*}
$$

Note that $\left\|I_{n}\right\|^{\prime} \geq 1$. The norm $\|\cdot\|$ on $\mathbb{F}^{n \times n}$ is submultiplicative if, for all $A, B \in$ $\mathbb{F}^{n \times n}$,

$$
\begin{equation*}
\|A B\| \leq\|A\|\|B\| \tag{9.3.4}
\end{equation*}
$$

Hence, the norm $\|\cdot\|$ on $\mathbb{F}^{n \times n}$ is submultiplicative if and only if $\|\cdot\|,\|\cdot\|$, and $\|\cdot\|$ are compatible. In this case, $\left\|I_{n}\right\| \geq 1$, while $\|\cdot\|$ is normalized if and only if $\left\|I_{n}\right\|=1$.

Proposition 9.3.1. Let $\|\cdot\|$ be a submultiplicative norm on $\mathbb{F}^{n \times n}$, and let $y \in \mathbb{F}^{n}$ be nonzero. Then, $\|x\|^{\prime} \triangleq\left\|x y^{*}\right\|$ is a norm on \mathbb{F}^{n}, and $\|\cdot\|^{\prime}$ is compatible with $\|\cdot\|$.

Proposition 9.3.2. Let $\|\cdot\|$ be a submultiplicative norm on $\mathbb{F}^{n \times n}$, and let $A \in \mathbb{F}^{n \times n}$. Then,

$$
\begin{equation*}
\operatorname{sprad}(A) \leq\|A\| \tag{9.3.5}
\end{equation*}
$$

Proof. Use Proposition 9.3.1 to construct a norm $\|\cdot\|^{\prime}$ on \mathbb{F}^{n} that is compatible with $\|\cdot\|$. Furthermore, let $A \in \mathbb{F}^{n \times n}$, let $\lambda \in \operatorname{spec}(A)$, and let $x \in \mathbb{C}^{n}$ be an eigenvector of A associated with λ. Then, $A x=\lambda x$ implies that $|\lambda|\|x\|^{\prime}=$ $\|A x\|^{\prime} \leq\|A\|\|x\|^{\prime}$, and thus $|\lambda| \leq\|A\|$, which implies (9.3.5). Alternatively, under the additional assumption that $\|\cdot\|$ is submultiplicative, it follows from Proposition 9.2.6 that

$$
\operatorname{sprad}(A)=\lim _{k \rightarrow \infty}\left\|A^{k}\right\|^{1 / k} \leq \lim _{k \rightarrow \infty}\|A\|^{k / k}=\|A\|
$$

Proposition 9.3.3. Let $A \in \mathbb{F}^{n \times n}$, and let $\varepsilon>0$. Then, there exists a submultiplicative norm $\|\cdot\|$ on $\mathbb{F}^{n \times n}$ such that

$$
\begin{equation*}
\operatorname{sprad}(A) \leq\|A\| \leq \operatorname{sprad}(A)+\varepsilon \tag{9.3.6}
\end{equation*}
$$

Proof. See [709, p. 297].
Corollary 9.3.4. Let $A \in \mathbb{F}^{n \times n}$, and assume that $\operatorname{sprad}(A)<1$. Then, there exists a submultiplicative norm $\|\cdot\|$ on $\mathbb{F}^{n \times n}$ such that $\|A\|<1$.

We now identify some compatible norms. We begin with the Hölder norms.
Proposition 9.3.5. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times l}$. If $p \in[1,2]$, then

$$
\begin{equation*}
\|A B\|_{p} \leq\|A\|_{p}\|B\|_{p} \tag{9.3.7}
\end{equation*}
$$

If $p \in[2, \infty]$ and q satisfies $1 / p+1 / q=1$, then

$$
\begin{equation*}
\|A B\|_{p} \leq\|A\|_{p}\|B\|_{q} \tag{9.3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\|A B\|_{p} \leq\|A\|_{q}\|B\|_{p} \tag{9.3.9}
\end{equation*}
$$

Proof. First let $1 \leq p \leq 2$ so that $q \triangleq p /(p-1) \geq 2$. Using Hölder's inequality (9.1.8) and (9.1.6) with $p \leq q$ yields

$$
\begin{aligned}
& \|A B\|_{p}=\left(\sum_{i, j=1}^{n, l}\left|\operatorname{row}_{i}(A) \operatorname{col}_{j}(B)\right|^{p}\right)^{1 / p} \\
& \quad \leq\left(\sum_{i, j=1}^{n, l}\left\|\operatorname{row}_{i}(A)\right\|_{p}^{p}\left\|\operatorname{col}_{j}(B)\right\|_{q}^{p}\right)^{1 / p} \\
& \quad=\left(\sum_{i=1}^{n}\left\|\operatorname{row}_{i}(A)\right\|_{p}^{p}\right)^{1 / p}\left(\sum_{j=1}^{l}\left\|\operatorname{col}_{j}(B)\right\|_{q}^{p}\right)^{1 / p} \\
& \quad \leq\left(\sum_{i=1}^{n}\left\|\operatorname{row}_{i}(A)\right\|_{p}^{p}\right)^{1 / p}\left(\sum_{j=1}^{l}\left\|\operatorname{col}_{j}(B)\right\|_{p}^{p}\right)^{1 / p} \\
& \quad=\|A\|_{p}\|B\|_{p}
\end{aligned}
$$

Next, let $2 \leq p \leq \infty$ so that $q \triangleq p /(p-1) \leq 2$. Using Hölder's inequality (9.1.8) and (9.1.6) with $q \leq p$ yields

$$
\begin{aligned}
\|A B\|_{p} & \leq\left(\sum_{i=1}^{n}\left\|\operatorname{row}_{i}(A)\right\|_{p}^{p}\right)^{1 / p}\left(\sum_{j=1}^{l}\left\|\operatorname{col}_{j}(B)\right\|_{q}^{p}\right)^{1 / p} \\
& \leq\left(\sum_{i=1}^{n}\left\|\operatorname{row}_{i}(A)\right\|_{p}^{p}\right)^{1 / p}\left(\sum_{j=1}^{l}\left\|\operatorname{col}_{j}(B)\right\|_{q}^{q}\right)^{1 / q} \\
& =\|A\|_{p}\|B\|_{q} .
\end{aligned}
$$

Similarly, it can be shown that (9.3.9) holds.
Proposition 9.3.6. Let $A \in \mathbb{F}^{n \times m}, B \in \mathbb{F}^{m \times l}$, and $p, q \in[1, \infty]$, define

$$
r \triangleq \frac{1}{\frac{1}{p}+\frac{1}{q}}
$$

and assume that $r \geq 1$. Then,

$$
\begin{equation*}
\|A B\|_{\sigma r} \leq\|A\|_{\sigma p}\|B\|_{\sigma q} . \tag{9.3.10}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
\|A B\|_{\sigma r} \leq\|A\|_{\sigma 2 r}\|B\|_{\sigma 2 r} \tag{9.3.11}
\end{equation*}
$$

Proof. Using Proposition 9.6 .2 and Hölder's inequality with $1 /(p / r)+1 /(q / r)$ $=1$, it follows that

$$
\begin{aligned}
\|A B\|_{\sigma r} & =\left(\sum_{i=1}^{\min \{n, m, l\}} \sigma_{i}^{r}(A B)\right)^{1 / r} \\
& \leq\left(\sum_{i=1}^{\min \{n, m, l\}} \sigma_{i}^{r}(A) \sigma_{i}^{r}(B)\right)^{1 / r} \\
& \leq\left[\left(\sum_{i=1}^{\min \{n, m, l\}} \sigma_{i}^{p}(A)\right)^{r / p}\left(\sum_{i=1}^{\min \{n, m, l\}} \sigma_{i}^{q}(B)\right)^{r / q}\right]^{1 / r} \\
& =\|A\|_{\sigma p}\|B\|_{\sigma q} .
\end{aligned}
$$

Corollary 9.3.7. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times l}$. Then,

$$
\|A B\|_{\sigma \infty} \leq\|A B\|_{\sigma 2} \leq\left\{\begin{array}{c}
\|A\|_{\sigma \infty}\|B\|_{\sigma 2} \tag{9.3.12}\\
\|A\|_{\sigma 2}\|B\|_{\sigma \infty} \\
\|A B\|_{\sigma 1}
\end{array}\right\} \leq\|A\|_{\sigma 2}\|B\|_{\sigma 2}
$$

or, equivalently,

$$
\sigma_{\max }(A B) \leq\|A B\|_{\mathrm{F}} \leq\left\{\begin{array}{c}
\sigma_{\max }(A)\|B\|_{\mathrm{F}} \tag{9.3.13}\\
\|A\|_{\mathrm{F}} \sigma_{\max }(B) \\
\operatorname{tr}\langle A B\rangle
\end{array}\right\} \leq\|A\|_{\mathrm{F}}\|B\|_{\mathrm{F}}
$$

Furthermore, for all $r \in[1, \infty]$,

$$
\|A B\|_{\sigma 2 r} \leq\|A B\|_{\sigma r} \leq\left\{\begin{array}{l}
\|A\|_{\sigma r} \sigma_{\max }(B) \tag{9.3.14}\\
\sigma_{\max }(A)\|B\|_{\sigma r} \\
\|A\|_{\sigma 2 r}\|B\|_{\sigma 2 r}
\end{array}\right\} \leq\|A\|_{\sigma r}\|B\|_{\sigma r}
$$

In particular, setting $r=\infty$ yields

$$
\begin{equation*}
\sigma_{\max }(A B) \leq \sigma_{\max }(A) \sigma_{\max }(B) \tag{9.3.15}
\end{equation*}
$$

Corollary 9.3.8. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times l}$. Then,

$$
\|A B\|_{\sigma 1} \leq\left\{\begin{array}{l}
\sigma_{\max }(A)\|B\|_{\sigma 1} \tag{9.3.16}\\
\|A\|_{\sigma 1} \sigma_{\max }(B)
\end{array}\right.
$$

Note that the inequality $\|A B\|_{\mathrm{F}} \leq\|A\|_{\mathrm{F}}\|B\|_{\mathrm{F}}$ in (9.3.13) is equivalent to (9.3.7) with $p=2$ as well as (9.3.8) and 9.3.9) with $p=q=2$.

The following result is the matrix version of the Cauchy-Schwarz inequality Corollary 9.1.7.

Corollary 9.3.9. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times n}$. Then,

$$
\begin{equation*}
\left|\operatorname{tr} A^{*} B\right| \leq\|A\|_{\mathrm{F}}\|B\|_{\mathrm{F}} \tag{9.3.17}
\end{equation*}
$$

Equality holds if and only if A and B^{*} are linearly dependent.

9.4 Induced Norms

In this section we consider the case in which there exists a nonzero vector $x \in \mathbb{F}^{m}$ such that (9.3.3) holds as an equality. This condition characterizes a special class of norms on $\mathbb{F}^{n \times n}$, namely, the induced norms.

Definition 9.4.1. Let $\|\cdot\|^{\prime \prime}$ and $\|\cdot\|$ be norms on \mathbb{F}^{m} and \mathbb{F}^{n}, respectively. Then, $\|\cdot\|^{\prime}: \mathbb{F}^{n \times m} \mapsto \mathbb{F}$ defined by

$$
\begin{equation*}
\|A\|^{\prime}=\max _{x \in \mathbb{F}^{m} \backslash\{0\}} \frac{\|A x\|}{\|x\|^{\prime \prime}} \tag{9.4.1}
\end{equation*}
$$

is an induced norm on $\mathbb{F}^{n \times m}$. In this case, $\|\cdot\|^{\prime}$ is induced by $\|\cdot\|^{\prime \prime}$ and $\|\cdot\|$. If $m=n$ and $\|\cdot\|^{\prime \prime}=\|\cdot\|$, then $\|\cdot\|^{\prime}$ is induced by $\|\cdot\|$, and $\|\cdot\|^{\prime}$ is an equi-induced norm.

The next result confirms that $\|\cdot\|^{\prime}$ defined by (9.4.1) is a norm.
Theorem 9.4.2. Every induced norm is a norm. Furthermore, every equiinduced norm is normalized.

Proof. See [709, p. 293].
Let $A \in \mathbb{F}^{n \times m}$. It can be seen that (9.4.1) is equivalent to

$$
\begin{equation*}
\|A\|^{\prime}=\max _{x \in\left\{y \in \mathbb{F}^{m}:\|y\|^{\prime \prime}=1\right\}}\|A x\| \tag{9.4.2}
\end{equation*}
$$

Theorem 10.3 .8 implies that the maximum in (9.4.2) exists. Since, for all $x \neq 0$,

$$
\begin{equation*}
\|A\|^{\prime}=\max _{x \in \mathbb{F}^{m} \backslash\{0\}} \frac{\|A x\|}{\|x\|^{\prime \prime}} \geq \frac{\|A x\|}{\|x\|^{\prime \prime}} \tag{9.4.3}
\end{equation*}
$$

it follows that, for all $x \in \mathbb{F}^{m}$,

$$
\begin{equation*}
\|A x\| \leq\|A\|^{\prime}\|x\|^{\prime \prime} \tag{9.4.4}
\end{equation*}
$$

so that $\|\cdot\|,\|\cdot\|^{\prime}$, and $\|\cdot\|^{\prime \prime}$ are compatible. If $m=n$ and $\|\cdot\|^{\prime \prime}=\|\cdot\|$, then the norm $\|\cdot\|$ is compatible with the induced norm $\|\cdot\|^{\prime}$. The next result shows that compatible norms can be obtained from induced norms.

Proposition 9.4.3. Let $\|\cdot\|,\|\cdot\|^{\prime}$, and $\|\cdot\|^{\prime \prime}$ be norms on $\mathbb{F}^{l}, \mathbb{F}^{m}$, and \mathbb{F}^{n}, respectively. Furthermore, let $\|\cdot\|^{\prime \prime \prime}$ be the norm on $\mathbb{F}^{m \times l}$ induced by $\|\cdot\|$ and $\|\cdot\|^{\prime}$, let $\|\cdot\|^{\prime \prime \prime \prime}$ be the norm on $\mathbb{F}^{n \times m}$ induced by $\|\cdot\|^{\prime}$ and $\|\cdot\|^{\prime \prime}$, and let $\|\cdot\|^{\prime \prime \prime \prime \prime \prime}$ be the norm on $\mathbb{F}^{n \times l}$ induced by $\|\cdot\|$ and $\|\cdot\|^{\prime \prime}$. If $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times l}$, then

$$
\begin{equation*}
\|A B\|^{\prime \prime \prime \prime \prime} \leq\|A\|^{\prime \prime \prime \prime}\|B\|^{\prime \prime \prime} \tag{9.4.5}
\end{equation*}
$$

Proof. Note that, for all $x \in \mathbb{F}^{l},\|B x\|^{\prime} \leq\|B\|^{\prime \prime \prime}\|x\|$, and, for all $y \in \mathbb{F}^{m}$, $\|A y\|^{\prime \prime} \leq\|A\|^{\prime \prime \prime \prime}\|y\|^{\prime}$. Hence, for all $x \in \mathbb{F}^{l}$, it follows that

$$
\|A B x\|^{\prime \prime} \leq\|A\|^{\prime \prime \prime \prime}\|B x\|^{\prime} \leq\|A\|^{\prime \prime \prime \prime}\|B\|^{\prime \prime \prime}\|x\|
$$

which implies that

$$
\|A B\|^{\prime \prime \prime \prime \prime}=\max _{x \in \mathbb{F}^{l} \backslash\{0\}} \frac{\|A B x\|^{\prime \prime}}{\|x\|} \leq\|A\|^{\prime \prime \prime \prime}\|B\|^{\prime \prime \prime}
$$

Corollary 9.4.4. Every equi-induced norm is submultiplicative.
The following result is a consequence of Corollary 9.4.4 and Proposition 9.3.2
Corollary 9.4.5. Let $\|\cdot\|$ be an equi-induced norm on $\mathbb{F}^{n \times n}$, and let $A \in \mathbb{F}^{n \times n}$. Then,

$$
\begin{equation*}
\operatorname{sprad}(A) \leq\|A\| \tag{9.4.6}
\end{equation*}
$$

By assigning $\|\cdot\|_{p}$ to \mathbb{F}^{m} and $\|\cdot\|_{q}$ to \mathbb{F}^{n}, the Hölder-induced norm on $\mathbb{F}^{n \times m}$ is defined by

$$
\begin{equation*}
\|A\|_{q, p} \triangleq \max _{x \in \mathbb{F}^{m} \backslash\{0\}} \frac{\|A x\|_{q}}{\|x\|_{p}} \tag{9.4.7}
\end{equation*}
$$

Proposition 9.4.6. Let $p, q, p^{\prime}, q^{\prime} \in[1, \infty]$, where $p \leq p^{\prime}$ and $q \leq q^{\prime}$, and let $A \in \mathbb{F}^{n \times m}$. Then,

$$
\begin{equation*}
\|A\|_{q^{\prime}, p} \leq\|A\|_{q, p} \leq\|A\|_{q, p^{\prime}} \tag{9.4.8}
\end{equation*}
$$

Proof. The result follows from Proposition 9.1.5,
A subtlety of induced norms is that the value of an induced norm may depend on the underlying field. In particular, the value of the induced norm of a real matrix A computed over the complex field may be different from the induced norm of A computed over the real field. Although the chosen field is usually not made explicit, we do so in special cases for clarity.

Proposition 9.4.7. Let $A \in \mathbb{R}^{n \times m}$, and let $\|A\|_{p, q, \mathbb{F}}$ denote the Hölderinduced norm of A evaluated over the field \mathbb{F}. Then,

$$
\begin{equation*}
\|A\|_{p, q, \mathbb{R}} \leq\|A\|_{p, q, \mathbb{C}} \tag{9.4.9}
\end{equation*}
$$

If $p \in[1, \infty]$, then

$$
\begin{equation*}
\|A\|_{p, 1, \mathbb{R}}=\|A\|_{p, 1, \mathbb{C}} \tag{9.4.10}
\end{equation*}
$$

Finally, if $p, q \in[1, \infty]$ satisfy $1 / p+1 / q=1$, then

$$
\begin{equation*}
\|A\|_{\infty, p, \mathbb{R}}=\|A\|_{\infty, p, \mathbb{C}} \tag{9.4.11}
\end{equation*}
$$

Proof. See [690, p. 716].
Example 9.4.8. Let $A=\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]$ and $x=\left[\begin{array}{ll}x_{1} & x_{2}\end{array}\right]^{\mathrm{T}}$. Then, $\|A x\|_{1}=$ $\left|x_{1}-x_{2}\right|+\left|x_{1}+x_{2}\right|$. Letting $x=\left[\begin{array}{ll}1 & \jmath\end{array}\right]^{\mathrm{T}}$ so that $\|x\|_{\infty}=1$, it follows that
$\|A\|_{1, \infty, \mathbb{C}} \geq 2 \sqrt{2}$. On the other hand, $\|A\|_{1, \infty, \mathbb{R}}=2$. Hence, in this case, the inequality (9.4.9) is strict. See 690, p. 716].

The following result gives explicit expressions for several Hölder-induced norms.

Proposition 9.4.9. Let $A \in \mathbb{F}^{n \times m}$. Then,

$$
\begin{equation*}
\|A\|_{2,2}=\sigma_{\max }(A) \tag{9.4.12}
\end{equation*}
$$

If $p \in[1, \infty]$, then

$$
\begin{equation*}
\|A\|_{p, 1}=\max _{i \in\{1, \ldots, m\}}\left\|\operatorname{col}_{i}(A)\right\|_{p} \tag{9.4.13}
\end{equation*}
$$

Finally, if $p, q \in[1, \infty]$ satisfy $1 / p+1 / q=1$, then

$$
\begin{equation*}
\|A\|_{\infty, p}=\max _{i \in\{1, \ldots, n\}}\left\|\operatorname{row}_{i}(A)\right\|_{q} \tag{9.4.14}
\end{equation*}
$$

Proof. Since $A^{*} A$ is Hermitian, it follows from Corollary 8.4.2 that, for all $x \in \mathbb{F}^{m}$,

$$
x^{*} A^{*} A x \leq \lambda_{\max }\left(A^{*} A\right) x^{*} x
$$

which implies that, for all $x \in \mathbb{F}^{m},\|A x\|_{2} \leq \sigma_{\max }(A)\|x\|_{2}$, and thus $\|A\|_{2,2} \leq$ $\sigma_{\max }(A)$. Now, let $x \in \mathbb{F}^{n \times n}$ be an eigenvector associated with $\lambda_{\max }\left(A^{*} A\right)$ so that $\|A x\|_{2}=\sigma_{\max }(A)\|x\|_{2}$, which implies that $\sigma_{\max }(A) \leq\|A\|_{2,2}$. Hence, (9.4.12) holds.

Next, note that, for all $x \in \mathbb{F}^{m}$,

$$
\|A x\|_{p}=\left\|\sum_{i=1}^{m} x_{(i)} \operatorname{col}_{i}(A)\right\|_{p} \leq \sum_{i=1}^{m}\left|x_{(i)}\right|\left\|\operatorname{col}_{i}(A)\right\|_{p} \leq \max _{i \in\{1, \ldots, m\}}\left\|\operatorname{col}_{i}(A)\right\|_{p}\|x\|_{1}
$$

and hence $\|A\|_{p, 1} \leq \max _{i \in\{1, \ldots, m\}}\left\|\operatorname{col}_{i}(A)\right\|_{p}$. Next, let $j \in\{1, \ldots, m\}$ be such that $\left\|\operatorname{col}_{j}(A)\right\|_{p}=\max _{i \in\{1, \ldots, m\}}\left\|\operatorname{col}_{i}(A)\right\|_{p}$. Now, since $\left\|e_{j}\right\|_{1}=1$, it follows that $\left\|A e_{j}\right\|_{p}=\left\|\operatorname{col}_{j}(A)\right\|_{p}\left\|e_{j}\right\|_{1}$, which implies that

$$
\max _{i \in\{1, \ldots, n\}}\left\|\operatorname{col}_{i}(A)\right\|_{p}=\left\|\operatorname{col}_{j}(A)\right\|_{p} \leq\|A\|_{p, 1}
$$

and hence (9.4.13) holds.
Next, for all $x \in \mathbb{F}^{m}$, it follows from Hölder's inequality (9.1.8) that

$$
\|A x\|_{\infty}=\max _{i \in\{1, \ldots, n\}}\left|\operatorname{row}_{i}(A) x\right| \leq \max _{i \in\{1, \ldots, n\}}\left\|\operatorname{row}_{i}(A)\right\|_{q}\|x\|_{p}
$$

which implies that $\|A\|_{\infty, p} \leq \max _{i \in\{1, \ldots, n\}}\left\|\operatorname{row}_{i}(A)\right\|_{q}$. Next, let $j \in\{1, \ldots, n\}$ be such that $\left\|\operatorname{row}_{j}(A)\right\|_{q}=\max _{i \in\{1, \ldots, n\}}\left\|\operatorname{row}_{i}(A)\right\|_{q}$, and let nonzero $x \in \mathbb{F}^{m}$ be such that $\left|\operatorname{row}_{j}(A) x\right|=\left\|\operatorname{row}_{j}(A)\right\|_{q}\|x\|_{p}$. Hence,

$$
\|A x\|_{\infty}=\max _{i \in\{1, \ldots, n\}}\left|\operatorname{row}_{i}(A) x\right| \geq\left|\operatorname{row}_{j}(A) x\right|=\left\|\operatorname{row}_{j}(A)\right\|_{q}\|x\|_{p}
$$

which implies that

$$
\max _{i \in\{1, \ldots, n\}}\left\|\operatorname{row}_{i}(A)\right\|_{q}=\left\|\operatorname{row}_{j}(A)\right\|_{q} \leq\|A\|_{\infty, p}
$$

and thus (9.4.14) holds.

Note that

$$
\begin{equation*}
\max _{i \in\{1, \ldots, m\}}\left\|\operatorname{col}_{i}(A)\right\|_{2}=\mathrm{d}_{\max }^{1 / 2}\left(A^{*} A\right) \tag{9.4.15}
\end{equation*}
$$

and

$$
\begin{equation*}
\max _{i \in\{1, \ldots, n\}}\left\|\operatorname{row}_{i}(A)\right\|_{2}=\mathrm{d}_{\max }^{1 / 2}\left(A A^{*}\right) \tag{9.4.16}
\end{equation*}
$$

Therefore, it follows from Proposition 9.4.9 that

$$
\begin{gather*}
\|A\|_{1,1}=\max _{i \in\{1, \ldots, m\}}\left\|\operatorname{col}_{i}(A)\right\|_{1} \tag{9.4.17}\\
\|A\|_{2,1}=\max _{i \in\{1, \ldots, m\}}\left\|\operatorname{col}_{i}(A)\right\|_{2}=\mathrm{d}_{\max }^{1 / 2}\left(A^{*} A\right) \tag{9.4.18}\\
\|A\|_{\infty, 1}=\|A\|_{\infty}=\max _{\substack{i \in\{1, \ldots, n\} \\
j \in\{1, \ldots, m\}}}\left|A_{(i, j)}\right| \tag{9.4.19}\\
\|A\|_{\infty, 2}=\max _{i \in\{1, \ldots, n\}}\left\|\operatorname{row}_{i}(A)\right\|_{2}=\mathrm{d}_{\max }^{1 / 2}\left(A A^{*}\right), \tag{9.4.20}\\
\|A\|_{\infty, \infty}=\max _{i \in\{1, \ldots, n\}}\left\|\operatorname{row}_{i}(A)\right\|_{1} . \tag{9.4.21}
\end{gather*}
$$

For convenience, we define the column norm

$$
\begin{equation*}
\|A\|_{\mathrm{col}} \triangleq\|A\|_{1,1} \tag{9.4.22}
\end{equation*}
$$

and the row norm

$$
\begin{equation*}
\|A\|_{\text {row }} \triangleq\|A\|_{\infty, \infty} \tag{9.4.23}
\end{equation*}
$$

The following result follows from Corollary 9.4.5.
Corollary 9.4.10. Let $A \in \mathbb{F}^{n \times n}$. Then,

$$
\begin{gather*}
\operatorname{sprad}(A) \leq \sigma_{\max }(A) \tag{9.4.24}\\
\operatorname{sprad}(A) \leq\|A\|_{\mathrm{col}} \tag{9.4.25}\\
\operatorname{sprad}(A) \leq\|A\|_{\mathrm{row}} \tag{9.4.26}
\end{gather*}
$$

Proposition 9.4.11. Let $p, q \in[1, \infty]$ be such that $1 / p+1 / q=1$, and let $A \in \mathbb{F}^{n \times m}$. Then,

$$
\begin{equation*}
\|A\|_{q, p} \leq\|A\|_{q} \tag{9.4.27}
\end{equation*}
$$

Proof. For $p=1$ and $q=\infty$, (9.4.27) follows from (9.4.19). For $q<\infty$ and $x \in \mathbb{F}^{n}$, it follows from Hölder's inequality (9.1.8) that

$$
\begin{aligned}
\|A x\|_{q} & =\left(\sum_{i=1}^{n}\left|\operatorname{row}_{i}(A) x\right|^{q}\right)^{1 / q} \leq\left(\sum_{i=1}^{n}\left\|\operatorname{row}_{i}(A)\right\|_{q}^{q}\|x\|_{p}^{q}\right)^{1 / q} \\
& =\left(\sum_{i=1}^{n} \sum_{j=1}^{m}\left|A_{(i, j)}\right|^{q}\right)^{1 / q}\|x\|_{p}=\|A\|_{q}\|x\|_{p}
\end{aligned}
$$

which implies (9.4.27).
Next, we specialize Proposition 9.4 .3 to the Hölder-induced norms.
Corollary 9.4.12. Let $p, q, r \in[1, \infty]$, and let $A \in \mathbb{F}^{n \times m}$ and $A \in \mathbb{F}^{m \times l}$. Then,

$$
\begin{equation*}
\|A B\|_{r, p} \leq\|A\|_{r, q}\|B\|_{q, p} \tag{9.4.28}
\end{equation*}
$$

In particular,

$$
\begin{gather*}
\|A B\|_{\text {col }} \leq\|A\|_{\text {col }}\|B\|_{\text {col }} \tag{9.4.29}\\
\sigma_{\max }(A B) \leq \sigma_{\max }(A) \sigma_{\max }(B) \tag{9.4.30}\\
\|A B\|_{\text {row }} \leq\|A\|_{\text {row }}\|B\|_{\text {row }} \tag{9.4.31}\\
\|A B\|_{\infty} \leq\|A\|_{\infty}\|B\|_{\mathrm{col}} \tag{9.4.32}\\
\|A B\|_{\infty} \leq\|A\|_{\text {row }}\|B\|_{\infty} \tag{9.4.33}\\
\mathrm{d}_{\max }^{1 / 2}\left(B^{*} A^{*} A B\right) \leq \mathrm{d}_{\max }^{1 / 2}\left(A^{*} A\right)\|B\|_{\mathrm{col}} \tag{9.4.34}\\
\mathrm{~d}_{\max }^{1 / 2}\left(B^{*} A^{*} A B\right) \leq \sigma_{\max }(A) \mathrm{d}_{\max }^{1 / 2}\left(B^{*} B\right) \tag{9.4.35}\\
\mathrm{d}_{\max }^{1 / 2}\left(A B B^{*} A^{*}\right) \leq \mathrm{d}_{\max }^{1 / 2}\left(A A^{*}\right) \sigma_{\max }(B) \tag{9.4.36}\\
\mathrm{d}_{\max }^{1 / 2}\left(A B B^{*} A^{*}\right) \leq\|B\|_{\text {row }} \mathrm{d}_{\max }^{1 / 2}\left(B B^{*}\right) \tag{9.4.37}
\end{gather*}
$$

The following result is often useful.
Proposition 9.4.13. Let $A \in \mathbb{F}^{n \times n}$, and assume that $\operatorname{sprad}(A)<1$. Then, there exists a submultiplicative norm $\|\cdot\|$ on $\mathbb{F}^{n \times n}$ such that $\|A\|<1$. Furthermore, the series $\sum_{k=0}^{\infty} A^{k}$ converges absolutely, and

$$
\begin{equation*}
(I-A)^{-1}=\sum_{k=0}^{\infty} A^{k} \tag{9.4.38}
\end{equation*}
$$

Finally,

$$
\begin{equation*}
\frac{1}{1+\|A\|} \leq\left\|(I-A)^{-1}\right\| \leq \frac{1}{1-\|A\|}+\|I\|-1 \tag{9.4.39}
\end{equation*}
$$

If, in addition, $\|\cdot\|$ is normalized, then

$$
\begin{equation*}
\frac{1}{1+\|A\|} \leq\left\|(I-A)^{-1}\right\| \leq \frac{1}{1-\|A\|} \tag{9.4.40}
\end{equation*}
$$

Proof. Corollary 9.3.4 implies that there exists a submultiplicative norm $\|\cdot\|$ on $\mathbb{F}^{n \times n}$ such that $\|A\|<1$. It thus follows that

$$
\left\|\sum_{k=0}^{\infty} A^{k}\right\| \leq \sum_{k=0}^{\infty}\left\|A^{k}\right\| \leq\|I\|-1+\sum_{k=0}^{\infty}\|A\|^{k}=\frac{1}{1-\|A\|}+\|I\|-1,
$$

which proves that the series $\sum_{k=0}^{\infty} A^{k}$ converges absolutely.
Next, we show that $I-A$ is nonsingular. If $I-A$ is singular, then there exists a nonzero vector $x \in \mathbb{C}^{n}$ such that $A x=x$. Hence, $1 \in \operatorname{spec}(A)$, which contradicts $\operatorname{sprad}(A)<1$. Next, to verify (9.4.38), note that

$$
(I-A) \sum_{k=0}^{\infty} A^{k}=\sum_{k=0}^{\infty} A^{k}-\sum_{k=1}^{\infty} A^{k}=I+\sum_{k=1}^{\infty} A^{k}-\sum_{k=1}^{\infty} A^{k}=I,
$$

which implies (9.4.38) and thus the right-hand inequality in (9.4.39). Furthermore,

$$
\begin{aligned}
1 & \leq\|I\| \\
& =\left\|(I-A)(I-A)^{-1}\right\| \\
& \leq\|I-A\|\left\|(I-A)^{-1}\right\| \\
& \leq(1+\|A\|)\left\|(I-A)^{-1}\right\|,
\end{aligned}
$$

which yields the left-hand inequality in (9.4.39).

9.5 Induced Lower Bound

We now consider a variation of the induced norm.
Definition 9.5.1. Let $\|\cdot\|$ and $\|\cdot\|^{\prime}$ denote norms on \mathbb{F}^{m} and \mathbb{F}^{n}, respectively, and let $A \in \mathbb{F}^{n \times m}$. Then, $\ell: \mathbb{F}^{n \times m} \mapsto \mathbb{R}$ defined by

$$
\ell(A) \triangleq \begin{cases}\min _{y \in \mathcal{R}(A) \backslash\{0\}} \max _{x \in\left\{z \in \mathbb{F}^{m}: A z=y\right\}} \frac{\|y\|^{\prime}}{\|x\|}, & A \neq 0, \tag{9.5.1}\\ 0, & A=0,\end{cases}
$$

is the lower bound induced by $\|\cdot\|$ and $\|\cdot\|^{\prime}$. Equivalently,

$$
\ell(A) \triangleq \begin{cases}\min _{x \in \mathbb{F}^{m} \backslash \mathcal{N}(A)} \max _{z \in \mathcal{N}(A)} \frac{\|A x\|^{\prime}}{\|x+z\|}, & A \neq 0, \tag{9.5.2}\\ 0, & A=0 .\end{cases}
$$

Proposition 9.5.2. Let $\|\cdot\|$ and $\|\cdot\|^{\prime}$ be norms on \mathbb{F}^{m} and \mathbb{F}^{n}, respectively, let $\|\cdot\|^{\prime \prime}$ be the norm induced by $\|\cdot\|$ and $\|\cdot\|^{\prime}$, let $\|\cdot\|^{\prime \prime \prime}$ be the norm induced by $\|\cdot\|^{\prime}$ and $\|\cdot\|$, and let ℓ be the lower bound induced by $\|\cdot\|$ and $\|\cdot\|^{\prime}$. Then, the following statements hold:
i) $\ell(A)$ exists for all $A \in \mathbb{F}^{n \times m}$, that is, the minimum in (9.5.1) is attained.
ii) If $A \in \mathbb{F}^{n \times m}$, then $\ell(A)=0$ if and only if $A=0$.
iii) For all $A \in \mathbb{F}^{n \times m}$ there exists a vector $x \in \mathbb{F}^{m}$ such that

$$
\begin{equation*}
\ell(A)\|x\|=\|A x\|^{\prime} \tag{9.5.3}
\end{equation*}
$$

iv) For all $A \in \mathbb{F}^{n \times m}$,

$$
\begin{equation*}
\ell(A) \leq\|A\|^{\prime \prime} \tag{9.5.4}
\end{equation*}
$$

v) If $A \neq 0$ and B is a (1)-inverse of A, then

$$
\begin{equation*}
1 /\|B\|^{\prime \prime \prime} \leq \ell(A) \leq\|B\|^{\prime \prime \prime} \tag{9.5.5}
\end{equation*}
$$

vi) If $A, B \in \mathbb{F}^{n \times m}$ and either $\mathcal{R}(A) \subseteq \mathcal{R}(A+B)$ or $\mathcal{N}(A) \subseteq \mathcal{N}(A+B)$, then

$$
\begin{equation*}
\ell(A)-\|B\|^{\prime \prime \prime} \leq \ell(A+B) \tag{9.5.6}
\end{equation*}
$$

vii) If $A, B \in \mathbb{F}^{n \times m}$ and either $\mathcal{R}(A+B) \subseteq \mathcal{R}(A)$ or $\mathcal{N}(A+B) \subseteq \mathcal{N}(A)$, then

$$
\begin{equation*}
\ell(A+B) \leq \ell(A)+\|B\|^{\prime \prime \prime} \tag{9.5.7}
\end{equation*}
$$

viii) If $n=m$ and $A \in \mathbb{F}^{n \times n}$ is nonsingular, then

$$
\begin{equation*}
\ell(A)=1 /\left\|A^{-1}\right\|^{\prime \prime \prime} \tag{9.5.8}
\end{equation*}
$$

Proof. See 582 .
Proposition 9.5.3. Let $\|\cdot\|,\|\cdot\|^{\prime}$, and $\|\cdot\|^{\prime \prime}$ be norms on $\mathbb{F}^{l}, \mathbb{F}^{m}$, and \mathbb{F}^{n}, respectively, let $\|\cdot\|^{\prime \prime \prime}$ denote the norm on $\mathbb{F}^{m \times l}$ induced by $\|\cdot\|$ and $\|\cdot\|^{\prime}$, let $\|\cdot\|^{\prime \prime \prime \prime}$ denote the norm on $\mathbb{F}^{n \times m}$ induced by $\|\cdot\|^{\prime}$ and $\|\cdot\|^{\prime \prime}$, and let $\|\cdot\|^{\prime \prime \prime \prime \prime \prime}$ denote the norm on $\mathbb{F}^{n \times l}$ induced by $\|\cdot\|$ and $\|\cdot\|^{\prime \prime}$. If $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times l}$, then

$$
\begin{equation*}
\ell(A) \ell^{\prime}(B) \leq \ell^{\prime \prime}(A B) \tag{9.5.9}
\end{equation*}
$$

In addition, the following statements hold:
$i)$ If either $\operatorname{rank} B=\operatorname{rank} A B$ or $\operatorname{def} B=\operatorname{def} A B$, then

$$
\begin{equation*}
\ell^{\prime \prime}(A B) \leq\|A\|^{\prime \prime} \ell(B) \tag{9.5.10}
\end{equation*}
$$

ii) If $\operatorname{rank} A=\operatorname{rank} A B$, then

$$
\begin{equation*}
\ell^{\prime \prime}(A B) \leq \ell(A)\|B\|^{\prime \prime \prime \prime} \tag{9.5.11}
\end{equation*}
$$

iii) If $\operatorname{rank} B=m$, then

$$
\begin{equation*}
\|A\|^{\prime \prime} \ell(B) \leq\|A B\|^{\prime \prime \prime \prime \prime} \tag{9.5.12}
\end{equation*}
$$

iv) If $\operatorname{rank} A=m$, then

$$
\begin{equation*}
\ell(A)\|B\|^{\prime \prime \prime \prime} \leq\|A B\|^{\prime \prime \prime \prime \prime} \tag{9.5.13}
\end{equation*}
$$

Proof. See 582.
By assigning $\|\cdot\|_{p}$ to \mathbb{F}^{m} and $\|\cdot\|_{q}$ to \mathbb{F}^{n}, the Hölder-induced lower bound on $\mathbb{F}^{n \times m}$ is defined by

$$
\ell_{q, p}(A) \triangleq \begin{cases}\min _{y \in \mathcal{R}(A) \backslash\{0\}} \max _{x \in\left\{z \in \mathbb{F}^{m}: A z=y\right\}} \frac{\|y\|_{q}}{\|x\|_{p}}, & A \neq 0 \tag{9.5.14}\\ 0, & A=0\end{cases}
$$

The following result shows that $\ell_{2,2}(A)$ is the smallest positive singular value of A.

Proposition 9.5.4. Let $A \in \mathbb{F}^{n \times m}$, assume that A is nonzero, and let $r \triangleq$ $\operatorname{rank} A$. Then,

$$
\begin{equation*}
\ell_{2,2}(A)=\sigma_{r}(A) . \tag{9.5.15}
\end{equation*}
$$

Proof. The result follows from the singular value decomposition.
Corollary 9.5.5. Let $A \in \mathbb{F}^{n \times m}$. If $n \leq m$ and A is right invertible, then

$$
\begin{equation*}
\ell_{2,2}(A)=\sigma_{\min }(A)=\sigma_{n}(A) . \tag{9.5.16}
\end{equation*}
$$

If $m \leq n$ and A is left invertible, then

$$
\begin{equation*}
\ell_{2,2}(A)=\sigma_{\min }(A)=\sigma_{m}(A) . \tag{9.5.17}
\end{equation*}
$$

Finally, if $n=m$ and A is nonsingular, then

$$
\begin{equation*}
\ell_{2,2}\left(A^{-1}\right)=\sigma_{\min }\left(A^{-1}\right)=\frac{1}{\sigma_{\max }(A)} . \tag{9.5.18}
\end{equation*}
$$

Proof. Use Proposition 5.6 .2 and Fact 6.3.29,
In contrast to the submultiplicativity condition (9.4.4) satisfied by the induced norm, the induced lower bound satisfies a supermultiplicativity condition. The following result is analogous to Proposition 9.4.3,

Proposition 9.5.6. Let $\|\cdot\|,\|\cdot\|^{\prime}$, and $\|\cdot\|^{\prime \prime}$ be norms on $\mathbb{F}^{l}, \mathbb{F}^{m}$, and \mathbb{F}^{n}, respectively. Let $\ell(\cdot)$ be the lower bound induced by $\|\cdot\|$ and $\|\cdot\|^{\prime}$, let $\ell^{\prime}(\cdot)$ be the lower bound induced by $\|\cdot\|^{\prime}$ and $\|\cdot\|^{\prime \prime}$, let $\ell^{\prime \prime}(\cdot)$ be the lower bound induced by $\|\cdot\|$ and $\|\cdot\|^{\prime \prime}$, let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times l}$, and assume that either A or B is right invertible. Then,

$$
\begin{equation*}
\ell^{\prime}(A) \ell(B) \leq \ell^{\prime \prime}(A B) . \tag{9.5.19}
\end{equation*}
$$

Furthermore, if $1 \leq p, q, r \leq \infty$, then

$$
\begin{equation*}
\ell_{r, q}(A) \ell_{q, p}(B) \leq \ell_{r, p}(A B) . \tag{9.5.20}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
\sigma_{m}(A) \sigma_{l}(B) \leq \sigma_{l}(A B) . \tag{9.5.21}
\end{equation*}
$$

Proof. See 582 and 867 pp. 369, 370].

9.6 Singular Value Inequalities

Proposition 9.6.1. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times l}$. Then, for all $i \in\{1, \ldots$, $\min \{n, m\}\}$ and $j \in\{1, \ldots, \min \{m, l\}\}$ such that $i+j \leq \min \{n, l\}+1$,

$$
\begin{equation*}
\sigma_{i+j-1}(A B) \leq \sigma_{i}(A) \sigma_{j}(B) \tag{9.6.1}
\end{equation*}
$$

In particular, for all $i=1, \ldots, \min \{n, m, l\}$,

$$
\begin{equation*}
\sigma_{i}(A B) \leq \sigma_{\max }(A) \sigma_{i}(B) \tag{9.6.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma_{i}(A B) \leq \sigma_{i}(A) \sigma_{\max }(B) \tag{9.6.3}
\end{equation*}
$$

Proof. See [711, p. 178].
Proposition 9.6.2. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times l}$. If $r \geq 0$, then, for all $k=1, \ldots, \min \{n, m, l\}$,

$$
\begin{equation*}
\sum_{i=1}^{k} \sigma_{i}^{r}(A B) \leq \sum_{i=1}^{k} \sigma_{i}^{r}(A) \sigma_{i}^{r}(B) \tag{9.6.4}
\end{equation*}
$$

In particular, for all $k=1, \ldots, \min \{n, m, l\}$,

$$
\begin{equation*}
\sum_{i=1}^{k} \sigma_{i}(A B) \leq \sum_{i=1}^{k} \sigma_{i}(A) \sigma_{i}(B) \tag{9.6.5}
\end{equation*}
$$

If $r<0, n=m=l$, and A and B are nonsingular, then

$$
\begin{equation*}
\sum_{i=1}^{n} \sigma_{i}^{r}(A B) \leq \sum_{i=1}^{n} \sigma_{i}^{r}(A) \sigma_{i}^{r}(B) \tag{9.6.6}
\end{equation*}
$$

Proof. The first statement follows from Proposition 9.6 .3 and Fact 2.21.9, For the case $r<0$, use Fact [2.21.12. See [197, p. 94] or [711, p. 177].

Proposition 9.6.3. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times l}$. Then, for all $k=1, \ldots$, $\min \{n, m, l\}$,

$$
\prod_{i=1}^{k} \sigma_{i}(A B) \leq \prod_{i=1}^{k} \sigma_{i}(A) \sigma_{i}(B)
$$

If, in addition, $n=m=l$, then

$$
\prod_{i=1}^{n} \sigma_{i}(A B)=\prod_{i=1}^{n} \sigma_{i}(A) \sigma_{i}(B)
$$

Proof. See [711, p. 172].
Proposition 9.6.4. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times l}$. If $m \leq n$, then, for all $i=1, \ldots, \min \{n, m, l\}$,

$$
\begin{equation*}
\sigma_{\min }(A) \sigma_{i}(B)=\sigma_{m}(A) \sigma_{i}(B) \leq \sigma_{i}(A B) \tag{9.6.7}
\end{equation*}
$$

If $m \leq l$, then, for all $i=1, \ldots, \min \{n, m, l\}$,

$$
\begin{equation*}
\sigma_{i}(A) \sigma_{\min }(B)=\sigma_{i}(A) \sigma_{m}(B) \leq \sigma_{i}(A B) \tag{9.6.8}
\end{equation*}
$$

Proof. Corollary 8.4 .2 implies that $\sigma_{m}^{2}(A) I_{m}=\lambda_{\min }\left(A^{*} A\right) I_{m} \leq A^{*} A$, which implies that $\sigma_{m}^{2}(A) B^{*} B \leq B^{*} A^{*} A B$. Hence, it follows from the monotonicity theorem Theorem 8.4.9 that, for all $i=1, \ldots, \min \{n, m, l\}$,

$$
\sigma_{m}(A) \sigma_{i}(B)=\lambda_{i}\left[\sigma_{m}^{2}(A) B^{*} B\right]^{1 / 2} \leq \lambda_{i}^{1 / 2}\left(B^{*} A^{*} A B\right)=\sigma_{i}(A B)
$$

which proves the left-hand inequality in (9.6.7). Similarly, for all $i=1, \ldots$, $\min \{n, m, l\}$,

$$
\sigma_{i}(A) \sigma_{m}(B)=\lambda_{i}\left[\sigma_{m}^{2}(B) A A^{*}\right]^{1 / 2} \leq \lambda_{i}^{1 / 2}\left(A B B^{*} A^{*}\right)=\sigma_{i}(A B)
$$

Corollary 9.6.5. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times l}$. Then,

$$
\begin{gather*}
\sigma_{m}(A) \sigma_{\min \{n, m, l\}}(B) \leq \sigma_{\min \{n, m, l\}}(A B) \leq \sigma_{\max }(A) \sigma_{\min \{n, m, l\}}(B) \tag{9.6.9}\\
\sigma_{m}(A) \sigma_{\max }(B) \leq \sigma_{\max }(A B) \leq \sigma_{\max }(A) \sigma_{\max }(B) \tag{9.6.10}\\
\sigma_{\min \{n, m, l\}}(A) \sigma_{m}(B) \leq \sigma_{\min \{n, m, l\}}(A B) \leq \sigma_{\min \{n, m, l\}}(A) \sigma_{\max }(B) \tag{9.6.11}\\
\sigma_{\max }(A) \sigma_{m}(B) \leq \sigma_{\max }(A B) \leq \sigma_{\max }(A) \sigma_{\max }(B) \tag{9.6.12}
\end{gather*}
$$

Specializing Corollary 9.6 .5 to the case in which A or B is square yields the following result.

Corollary 9.6.6. Let $A \in \mathbb{F}^{n \times n}$ and $B \in \mathbb{F}^{n \times l}$. Then, for all $i=1, \ldots$, $\min \{n, l\}$,

$$
\begin{equation*}
\sigma_{\min }(A) \sigma_{i}(B) \leq \sigma_{i}(A B) \leq \sigma_{\max }(A) \sigma_{i}(B) \tag{9.6.13}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
\sigma_{\min }(A) \sigma_{\max }(B) \leq \sigma_{\max }(A B) \leq \sigma_{\max }(A) \sigma_{\max }(B) \tag{9.6.14}
\end{equation*}
$$

If $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times m}$, then, for all $\left.i=1, \ldots, \min \{n, m\}\right\}$,

$$
\begin{equation*}
\sigma_{i}(A) \sigma_{\min }(B) \leq \sigma_{i}(A B) \leq \sigma_{i}(A) \sigma_{\max }(B) \tag{9.6.15}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
\sigma_{\max }(A) \sigma_{\min }(B) \leq \sigma_{\max }(A B) \leq \sigma_{\max }(A) \sigma_{\max }(B) \tag{9.6.16}
\end{equation*}
$$

Corollary 9.6.7. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times l}$. If $m \leq n$, then

$$
\begin{equation*}
\sigma_{\min }(A)\|B\|_{\mathrm{F}}=\sigma_{m}(A)\|B\|_{\mathrm{F}} \leq\|A B\|_{\mathrm{F}} \tag{9.6.17}
\end{equation*}
$$

If $m \leq l$, then

$$
\begin{equation*}
\|A\|_{\mathrm{F}} \sigma_{\min }(B)=\|A\|_{\mathrm{F}} \sigma_{m}(B) \leq\|A B\|_{\mathrm{F}} \tag{9.6.18}
\end{equation*}
$$

Proposition 9.6.8. Let $A, B \in \mathbb{F}^{n \times m}$. Then, for all $i, j \in\{1, \ldots, \min \{n, m\}\}$ such that $i+j \leq \min \{n, m\}+1$,

$$
\begin{equation*}
\sigma_{i+j-1}(A+B) \leq \sigma_{i}(A)+\sigma_{j}(B) \tag{9.6.19}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma_{i+j-1}(A)-\sigma_{j}(B) \leq \sigma_{i}(A+B) \tag{9.6.20}
\end{equation*}
$$

Proof. See [711, p. 178].
Corollary 9.6.9. Let $A, B \in \mathbb{F}^{n \times m}$. Then,

$$
\begin{equation*}
\sigma_{n}(A)-\sigma_{\max }(B) \leq \sigma_{n}(A+B) \leq \sigma_{n}(A)+\sigma_{\max }(B) \tag{9.6.21}
\end{equation*}
$$

If, in addition, $n=m$, then

$$
\begin{equation*}
\sigma_{\min }(A)-\sigma_{\max }(B) \leq \sigma_{\min }(A+B) \leq \sigma_{\min }(A)+\sigma_{\max }(B) \tag{9.6.22}
\end{equation*}
$$

Proof. The result follows from Proposition 9.6.8. Alternatively, it follows from Lemma 8.4.3 and the Cauchy-Schwarz inequality Corollary 9.1.7 that, for all
nonzero $x \in \mathbb{F}^{n}$,

$$
\begin{aligned}
\lambda_{\min }\left[(A+B)(A+B)^{*}\right] & \leq \frac{x^{*}\left(A A^{*}+B B^{*}+A B^{*}+B A^{*}\right) x}{x^{*} x} \\
& =\frac{x^{*} A A^{*} x}{\|x\|_{2}^{2}}+\frac{x^{*} B B^{*} x}{\|x\|_{2}^{2}}+\operatorname{Re} \frac{2 x^{*} A B^{*} x}{\|x\|_{2}^{2}} \\
& \leq \frac{x^{*} A A^{*} x}{\|x\|_{2}^{2}}+\sigma_{\max }^{2}(B)+2 \frac{\left(x^{*} A A^{*} x\right)^{1 / 2}}{\|x\|_{2}} \sigma_{\max }(B)
\end{aligned}
$$

Minimizing with respect to x and using Lemma 8.4.3yields

$$
\begin{aligned}
\sigma_{n}^{2}(A+B) & =\lambda_{\min }\left[(A+B)(A+B)^{*}\right] \\
& \leq \lambda_{\min }\left(A A^{*}\right)+\sigma_{\max }^{2}(B)+2 \lambda_{\min }^{1 / 2}\left(A A^{*}\right) \sigma_{\max }(B) \\
& =\left[\sigma_{n}(A)+\sigma_{\max }(B)\right]^{2}
\end{aligned}
$$

which proves the right-hand inequality of (9.6.21). Finally, the left-hand inequality follows from the right-hand inequality with A and B replaced by $A+B$ and $-B$, respectively.

9.7 Facts on Vector Norms

Fact 9.7.1. Let $x, y \in \mathbb{F}^{n}$. Then, x and y are linearly dependent if and only if $|x|^{\circ 2}$ and $|y|^{\circ 2}$ are linearly dependent and $\left|x^{*} y\right|=|x|^{\mathrm{T}}|y|$. (Remark: This equivalence clarifies the relationship between (9.1.9) with $p=2$ and Corollary 9.1.7.)

Fact 9.7.2. Let $x, y \in \mathbb{F}^{n}$, and let $\|\cdot\|$ be a norm on \mathbb{F}^{n}. Then,

$$
|\|x\|-\|y\|| \leq\left\{\begin{array}{c}
\|x+y\| \\
\|x-y\|
\end{array}\right.
$$

Fact 9.7.3. Let $x, y \in \mathbb{F}^{n}$, and let $\|\cdot\|$ be a norm on \mathbb{F}^{n}. Then, the following statements hold:
i) If there exists $\beta \geq 0$ such that either $x=\beta y$ or $y=\beta x$, then $\|x+y\|=$ $\|x\|+\|y\|$.
ii) If $\|x+y\|=\|x\|+\|y\|$ and x and y are linearly dependent, then there exists $\beta \geq 0$ such that either $x=\beta y$ or $y=\beta x$.
iii) If $\|x+y\|_{2}=\|x\|_{2}+\|y\|_{2}$, then there exists $\beta \geq 0$ such that either $x=\beta y$ or $y=\beta x$.
(Proof: For $i i i)$, use v) of Fact 9.7.4) (Problem: Consider iii) with alternative norms.) (Problem: If x and y are linearly independent, then does it follow that $\|x+y\|<\|x\|+\|y\| ?)$

Fact 9.7.4. Let $x, y, z \in \mathbb{F}^{n}$. Then, the following statements hold:
i) $\frac{1}{2}\left(\|x+y\|_{2}^{2}+\|x-y\|_{2}^{2}\right)=\|x\|_{2}^{2}+\|y\|_{2}^{2}$.
ii) If x and y are nonzero, then

$$
\frac{1}{2}\left(\|x\|_{2}+\|y\|_{2}\right)\left\|\frac{x}{\|x\|_{2}}-\frac{y}{\|y\|_{2}}\right\|_{2} \leq\|x-y\|_{2}
$$

iii) If x and y are nonzero, then

$$
\left\|\frac{1}{\|x\|_{2}} x-\right\| x\left\|_{2} y\right\|_{2}=\left\|\frac{1}{\|y\|_{2}} y-\right\| y\left\|_{2} x\right\|_{2}
$$

iv) If $\mathbb{F}=\mathbb{R}$, then

$$
4 x^{\mathrm{T}} y=\|x+y\|_{2}^{2}-\|x-y\|_{2}^{2}
$$

v) If $\mathbb{F}=\mathbb{C}$, then

$$
4 x^{*} y=\|x+y\|_{2}^{2}-\|x-y\|_{2}^{2}+\jmath\left(\|x+\jmath y\|_{2}^{2}-\|x-\jmath y\|_{2}^{2}\right)
$$

vi) $\operatorname{Re} x^{*} y=\frac{1}{4}\left(\|x+y\|_{2}^{2}-\|x-y\|_{2}^{2}\right)=\frac{1}{2}\left(\|x+y\|_{2}^{2}-\|x\|_{2}^{2}-\|y\|_{2}^{2}\right)$.
vii) If $\mathbb{F}=\mathbb{C}$, then $\operatorname{Im} x^{*} y=\frac{3}{4}\left(\|x+\jmath y\|_{2}^{2}-\|x-\jmath y\|_{2}^{2}\right)$.
viii) $\|x+y\|_{2}=\sqrt{\|x\|_{2}^{2}+\|y\|_{2}^{2}+2 \operatorname{Re} x^{*} y}$.
$i x)\|x-y\|_{2}=\sqrt{\|x\|_{2}^{2}+\|y\|_{2}^{2}-2 \operatorname{Re} x^{*} y}$.
x) $\|x+y\|_{2}\|x-y\|_{2} \leq\|x\|_{2}^{2}+\|y\|_{2}^{2}$.
xi) If $\|x+y\|_{2}=\|x\|_{2}+\|y\|_{2}$, then $\operatorname{Im} x^{*} y=0$ and $\operatorname{Re} x^{*} y \geq 0$.
xii) $\left|x^{*} y\right| \leq\|x\|_{2}\|y\|_{2}$.
xiii) If $\|x+y\|_{2} \leq 2$, then

$$
\left(1-\|x\|_{2}^{2}\right)\left(1-\|y\|_{2}^{2}\right) \leq\left|1-\operatorname{Re} x^{*} y\right|^{2}
$$

xiv) For all nonzero $\alpha \in \mathbb{R}$,

$$
\|x\|_{2}^{2}\|y\|_{2}^{2}-\left|x^{*} y\right|^{2} \leq \alpha^{-2}\|\alpha y-x\|_{2}^{2}\|x\|_{2}^{2}
$$

$x v$) If $\operatorname{Re} x^{*} y \neq 0$, then, for all nonzero $\alpha \in \mathbb{R}$,

$$
\|x\|_{2}^{2}\|y\|_{2}^{2}-\left|x^{*} y\right|^{2} \leq \alpha_{0}^{-2}\left\|\alpha_{0} y-x\right\|_{2}^{2}\|x\|_{2}^{2} \leq \alpha^{-2}\|\alpha y-x\|_{2}^{2}\|x\|_{2}^{2}
$$

where $\alpha_{0} \triangleq x^{*} x /\left(\operatorname{Re} x^{*} y\right)$.
xvi) x, y, z satisfy

$$
\|x+y\|_{2}^{2}+\|y+z\|_{2}^{2}+\|z+x\|_{2}^{2}=\|x\|_{2}^{2}+\|y\|_{2}^{2}+\|z\|_{2}^{2}+\|x+y+z\|_{2}^{2}
$$

and

$$
\|x+y\|_{2}+\|y+z\|_{2}+\|z+x\|_{2} \leq\|x\|_{2}+\|y\|_{2}+\|z\|_{2}+\|x+y+z\|_{2}
$$

xvii) $\left|x^{*} z z^{*} y-\frac{1}{2} x^{*} y\|z\|_{2}^{2}\right| \leq \frac{1}{2}\|x\|_{2}\|y\|_{2}\|z\|_{2}^{2}$.
xviii) $\left|\operatorname{Re}\left(x^{*} z z^{*} y-\frac{1}{2} x^{*} y\|z\|_{2}^{2}\right)\right| \leq \frac{1}{2}\|z\|_{2}^{2} \sqrt{\|x\|_{2}^{2}\|y\|_{2}^{2}-\left(\operatorname{Im} x^{*} y\right)^{2}}$.
xix) $\left|\operatorname{Im}\left(x^{*} z z^{*} y-\frac{1}{2} x^{*} y\|z\|_{2}^{2}\right)\right| \leq \frac{1}{2}\|z\|_{2}^{2} \sqrt{\|x\|_{2}^{2}\|y\|_{2}^{2}-\left(\operatorname{Re} x^{*} y\right)^{2}}$.

Furthermore, the following statements are equivalent:
$x x)\|x-y\|_{2}=\|x+y\|_{2}$.
xxi) $\|x+y\|_{2}^{2}=\|x\|_{2}^{2}+\|y\|_{2}^{2}$.
xxii) $\operatorname{Re} x^{*} y=0$.

Now, let $x_{1}, \ldots, x_{k} \in \mathbb{F}^{n}$, and assume that $x_{i}^{*} x_{j}=\delta_{i j}$ for all $i, j=1, \ldots, n$. Then, the following statement holds:
xxiii) $\sum_{i=1}^{k}\left|y^{*} x_{i}\right|^{2} \leq\|y\|_{2}^{2}$.

If, in addition, $k=n$, then the following statement holds:
xxiv) $\sum_{i=1}^{n}\left|y^{*} x_{i}\right|^{2}=\|y\|_{2}^{2}$.
(Remark: i) is the parallelogram law, which relates the diagonals and the sides of a parallelogram; $i i$) is the Dunkl-Williams inequality, which compares the distance between x and y with the distance between the projections of x and y onto the unit sphere (see [446, [1010, p. 515], and [1490, p. 28]); iv) and v) are the polarization identity (see [368, p. 54], [1030, p. 276], and Fact 1.18.2); ix) is the cosine law (see Fact 9.9 .13 for a matrix version); xiii) is given in 1467 and implies Aczel's inequality given by Fact 1.16 .19 xv) is given in [913; $x v i$) is Hlawka's identity and Hlawka's inequality (see Fact 1.8.6, Fact 1.18.2, [1010, p. 521], and [1039, p. 100]); xvii) is Buzano's inequality (see [514] and Fact 1.17.2); xviii) and xix) are given in 1093; the equivalence of $x x i$) and $x x i i$) is the Pythagorean theorem; xxiii) is Bessel's inequality; and xxiv) is Parseval's identity. Note that xxiv) implies xxiii).) (Remark: Hlawka's inequality is called the quadrilateral inequality in 1202, which gives a geometric interpretation. In addition, 1202 provides an extension and geometric interpretation to the polygonal inequalities. See Fact 9.7.7) (Remark: When $\mathbb{F}=\mathbb{R}$ and $n=2$ the Euclidean norm of $\left\|\left[\begin{array}{l}x \\ y\end{array}\right]\right\|_{2}$ is equivalent to the absolute value $|z|=|x+\jmath y|$. See Fact 1.18 .2)

Fact 9.7.5. Let $x, y \in \mathbb{R}^{3}$, and let $\mathcal{S} \subset \mathbb{R}^{3}$ be the parallelogram with vertices $0, x, y$, and $x+y$. Then,

$$
\operatorname{area}(\mathcal{S})=\|x \times y\|_{2}
$$

(Remark: See Fact 2.20.13, Fact 2.20.14 and Fact 3.10.1) (Remark: The parallelogram associated with the cross product can be interpreted as a bivector. See [605, 870] and [426, pp. 86-88].)

Fact 9.7.6. Let $x, y \in \mathbb{R}^{n}$, and assume that x and y are nonzero. Then,

$$
\frac{x^{\mathrm{T}} y}{\|x\|_{2}\|y\|_{2}}\left(\|x\|_{2}+\|y\|_{2}\right) \leq\|x+y\|_{2} \leq\|x\|_{2}+\|y\|_{2}
$$

Hence, if $x^{\mathrm{T}} y=\|x\|_{2}\|y\|_{2}$, then $\|x\|_{2}+\|y\|_{2}=\|x+y\|_{2}$. (Proof: See [1010, p. 517].) (Remark: This result is a reverse triangle inequality.) (Problem: Extend this result to complex vectors.)

Fact 9.7.7. Let $x_{1}, \ldots, x_{n} \in \mathbb{F}^{n}$, and let $\alpha_{1}, \ldots, \alpha_{n}$ be nonnegative numbers. Then,

$$
\sum_{i=1}^{n} \alpha_{i}\left\|x_{i}-\sum_{j=1}^{n} \alpha_{j} x_{j}\right\|_{2} \leq \sum_{i=1}^{n} \alpha_{i}\left\|x_{i}\right\|_{2}+\left[\left(\sum_{i=1}^{n} \alpha_{i}\right)-2\right]\left\|\sum_{i=1}^{n} \alpha_{i} x_{i}\right\|_{2}
$$

In particular,

$$
\sum_{i=1}^{n}\left\|\sum_{j=1, j \neq i}^{n} x_{j}\right\|_{2} \leq \sum_{i=1}^{n}\left\|x_{i}\right\|_{2}+(n-2)\left\|\sum_{i=1}^{n} x_{i}\right\|_{2} .
$$

(Remark: The first inequality is the generalized Hlawka inequality or polygonal inequalities. The second inequality is the Djokovic inequality. See 1254 and Fact 9.7.4)

Fact 9.7.8. Let $x, y \in \mathbb{R}^{n}$, let α and δ, be positive numbers, and let $p, q \in$ $(0, \infty)$ satisfy $1 / p+1 / q=1$. Then,

$$
\left(\frac{\alpha}{\alpha+\|y\|_{2}^{q}}\right)^{p-1} \delta^{p} \leq\left|\delta-x^{\mathrm{T}} y\right|^{p}+\alpha^{p-1}\|x\|_{2}^{p} .
$$

Equality holds if and only if $x=\left[\delta\|y\|_{2}^{q-2} /\left(\alpha+\|y\|_{2}^{q}\right)\right] y$. In particular,

$$
\frac{\alpha \delta^{2}}{\alpha+\|y\|_{2}^{2}} \leq\left(\delta-x^{\mathrm{T}} y\right)^{2}+\alpha\|x\|_{2}^{2} .
$$

Equality holds if and only if $x=\left[\delta /\left(\alpha+\|y\|_{2}^{2}\right)\right] y$. (Proof: See [1253].) (Remark: The first inequality is due to Pecaric. The case $p=q=2$ is due to Dragomir and Yang. These results are generalizations of Hua's inequality. See Fact 1.15 .13 and Fact 9.7.9)

Fact 9.7.9. Let $x_{1}, \ldots, x_{n}, y \in \mathbb{R}^{n}$, and let α and δ be positive numbers. Then,

$$
\frac{\alpha}{\alpha+n}\|y\|_{2}^{2} \leq\left\|y-\sum_{i=1}^{n} x_{i}\right\|_{2}^{2}+\alpha \sum_{i=1}^{n}\left\|x_{i}\right\|_{2}^{2} .
$$

Equality holds if and only if $x_{1}=\cdots=x_{n}=[1 /(\alpha+n)] y$. (Proof: See [1253].) (Remark: This inequality, which is due to Dragomir and Yang, is a generalization of Hua's inequality. See Fact 1.15 .13 and Fact 9.7.8)

Fact 9.7.10. Let $x, y \in \mathbb{F}^{n}$, and assume that x and y are nonzero. Then,

$$
\begin{aligned}
\frac{\|x-y\|_{2}-\left|\|x\|_{2}-\|y\|_{2}\right|}{\min \left\{\|x\|_{2},\|y\|_{2}\right\}} & \leq\left\|\frac{x}{\|x\|_{2}}-\frac{y}{\|y\|_{2}}\right\|_{2} \\
& \leq\left\{\begin{array}{c}
\frac{\|x-y\|_{2}+\left|\|x\|_{2}-\|y\|_{2}\right|}{\max \left\{\|x\|_{2},\|y\|_{2}\right\}} \\
\frac{2\|x-y\|_{2}}{\|x\|_{2}+\|y\|_{2}}
\end{array}\right\} \\
& \leq\left\{\begin{array}{c}
\frac{2\|x-y\|_{2}}{\max \left\{\|x\|_{2},\|y\|_{2}\right\}} \\
\frac{2\left(\|x-y\|_{2}+\left|\|x\|_{2}-\|y\|_{2}\right|\right)}{\|x\|_{2}+\|y\|_{2}}
\end{array}\right\} \\
& \leq \frac{4\|x-y\|_{2}}{\|x\|_{2}+\|y\|_{2}} .
\end{aligned}
$$

(Proof: See Fact 9.7 .13 and 991.) (Remark: In the last string of inequalities, the first inequality is the reverse Maligranda inequality, the second and upper third terms constitute the Maligranda inequality, the second and lower third terms constitute the Dunkl-Williams inequality in an inner product space, the second and upper fourth terms constitute the Massera-Schaffer inequality.) (Remark: See Fact 1.18.5.)

Fact 9.7.11. Let $x, y \in \mathbb{F}^{n}$, and let $\|\cdot\|$ be a norm on \mathbb{F}^{n}. Then, there exists a unique number $\alpha \in[1,2]$ such that, for all $x, y \in \mathbb{F}^{n}$, at least one of which is nonzero,

$$
\frac{2}{\alpha} \leq \frac{\|x+y\|^{2}+\|x-y\|^{2}}{\|x\|^{2}+\|y\|^{2}} \leq 2 \alpha
$$

Furthermore, if $\|\cdot\|=\|\cdot\|_{p}$, then

$$
\alpha= \begin{cases}2^{(2-p) / p}, & 1 \leq p \leq 2 \\ 2^{(p-2) / p}, & p \geq 2\end{cases}
$$

(Proof: See [275] p. 258].) (Remark: This result is the von Neumann-Jordan inequality.) (Remark: When $p=2$, it follows that $\alpha=2$, and this result yields i) of Fact 9.7.4.)

Fact 9.7.12. Let $x, y \in \mathbb{F}^{n}$, and let $\|\cdot\|$ be a norm on \mathbb{F}^{n}. Then,

$$
\begin{aligned}
& \|x+y\| \leq\|x\|+\|y\|-\min \{\|x\|,\|y\|\}\left(2-\left\|\frac{x}{\|x\|}+\frac{y}{\|y\|}\right\|\right) \leq\|x\|+\|y\| \\
& \|x-y\| \leq\|x\|+\|y\|-\min \{\|x\|,\|y\|\}\left(2-\left\|\frac{x}{\|x\|}-\frac{y}{\|y\|}\right\|\right) \leq\|x\|+\|y\| \\
& \|x\|+\|y\|-\max \{\|x\|,\|y\|\}\left(2-\left\|\frac{x}{\|x\|}+\frac{y}{\|y\|}\right\|\right) \leq\|x+y\| \leq\|x\|+\|y\|
\end{aligned}
$$

and

$$
\|x\|+\|y\|-\max \{\|x\|,\|y\|\}\left(2-\left\|\frac{x}{\|x\|}-\frac{y}{\|y\|}\right\|\right) \leq\|x-y\| \leq\|x\|+\|y\|
$$

(Proof: See [951.)
Fact 9.7.13. Let $x, y \in \mathbb{F}^{n}$, assume that x and y are nonzero, and let $\|\cdot\|$ be a norm on \mathbb{F}^{n}. Then,

$$
\begin{aligned}
\frac{(\|x\|+\|y\|)(\|x+y\|-\mid\|x\|-\|y\|)}{4 \min \{\|x\|,\|y\|\}} & \leq \frac{1}{4}(\|x\|+\|y\|)\left\|\frac{x}{\|x\|}+\frac{y}{\|y\|}\right\| \\
& \leq \frac{1}{2} \max \{\|x\|,\|y\|\}\left\|\frac{x}{\|x\|}+\frac{y}{\|y\|}\right\| \\
& \leq \frac{1}{2}(\|x+y\|+\max \{\|x\|,\|y\|\}-\|x\|-\|y\|) \\
& \leq \frac{1}{2}(\|x+y\|+\mid\|x\|-\|y\| \|) \\
& \leq\|x+y\|
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{(\|x\|+\|y\|)(\|x-y\|-|\|x\|-\|y\||)}{4 \min \{\|x\|,\|y\|\}} & \leq \frac{1}{4}(\|x\|+\|y\|)\left\|\frac{x}{\|x\|}-\frac{y}{\|y\|}\right\| \\
& \leq \frac{1}{2} \max \{\|x\|,\|y\|\}\left\|\frac{x}{\|x\|}-\frac{y}{\|y\|}\right\| \\
& \leq \frac{1}{2}(\|x-y\|+\max \{\|x\|,\|y\|\}-\|x\|-\|y\|) \\
& \leq \frac{1}{2}(\|x-y\|+\mid\|x\|-\|y\| \|) \\
& \leq\|x-y\| .
\end{aligned}
$$

Furthermore,

$$
\begin{aligned}
\frac{\|x-y\|-|\|x\|-\|y\||}{\min \{\|x\|,\|y\|\}} & \leq\left\|\frac{x}{\|x\|}-\frac{y}{\|y\| \|}\right\| \\
& \leq \frac{\|x-y\|+|\|x\|-\|y\||}{\max \{\|x\|,\|y\|\}} \\
& \leq\left\{\begin{array}{c}
\frac{2\|x-y\|}{\max \{\|x\|,\|y\|\}} \\
\frac{2(\|x-y\|+\mid\|x\|-\|y\|)}{\|x\|+\|y\|}
\end{array}\right\} \\
& \leq \frac{4\|x-y\|}{\|x\|+\|y\|} .
\end{aligned}
$$

(Proof: The result follows from Fact 9.7.12, [951, 991 and 1010 p. 516].) (Remark: In the last string of inequalities, the first inequality is the reverse Maligranda inequality, the second inequality is the Maligranda inequality, the second and upper fourth terms constitute the Massera-Schaffer inequality, and the second and fifth terms constitute the Dunkl-Williams inequality. See Fact 1.18.2 and Fact 9.7.4 for the case of the Euclidean norm.) (Remark: Extensions to more than two vectors are given in 794, 1078.)

Fact 9.7.14. Let $x, y \in \mathbb{F}^{n}$, and let $\|\cdot\|$ be a norm on \mathbb{F}^{n}. Then,

$$
\left.\begin{array}{rl}
\|x\|^{2}+\|y\|^{2} \\
2\|x\|^{2}-4\|x\|\|y\|+2\|y\|^{2}
\end{array}\right\} \leq\|x+y\|^{2}+\|x-y\|^{2} .
$$

(Proof: See [530, pp. 9, 10] and 1030, p. 278].)
Fact 9.7.15. Let $x, y \in \mathbb{F}^{n}$, let $\alpha \in[0,1]$, and let $\|\cdot\|$ be a norm on \mathbb{F}^{n}. Then, $\|x+y\| \leq\|\alpha x+(1-\alpha) y\|+\|(1-\alpha) x+\alpha y\| \leq\|x\|+\|y\|$.

Fact 9.7.16. Let $x, y \in \mathbb{F}^{n}$, assume that x and y are nonzero, let $\|\cdot\|$ be a norm on \mathbb{F}^{n}, and let $p \in \mathbb{R}$. Then, the following statements hold:
$i)$ If $p \leq 0$, then

$$
\left\|\|x\|^{p-1} x-\right\| y\left\|^{p-1} y\right\| \leq(2-p) \frac{\max \left\{\|x\|^{p},\|y\|^{p}\right\}}{\max \{\|x\|,\|y\|\}}\|x-y\|
$$

ii) If $p \in[0,1]$, then

$$
\left\|\|x\|^{p-1} x-\right\| y\left\|^{p-1} y\right\| \leq(2-p) \frac{\|x-y\|}{[\max \{\|x\|,\|y\|\}]^{1-p}}
$$

iii) If $p \geq 1$, then

$$
\left\|\|x\|^{p-1} x-\right\| y\left\|^{p-1} y\right\| \leq p[\max \{\|x\|,\|y\|\}]^{p-1}\|x-y\|
$$

(Proof: See [951].)
Fact 9.7.17. Let $x, y \in \mathbb{F}^{n}$, let $\|\cdot\|$ be a norm on \mathbb{F}^{n}, assume that $\|x\| \neq\|y\|$, and let $p>0$. Then,

$$
|\|x\|-\|y\|| \leq \frac{\| \| x\left\|^{p} x-\right\| y\left\|^{p} y\right\|}{\left|\|x\|^{p+1}-\|y\|^{p+1}\right|}|\|x\|-\|y\|| \leq\|x-y\|
$$

(Proof: See [1010, p. 516].)
Fact 9.7.18. Let $x \in \mathbb{F}^{n}$, and let $p, q \in[1, \infty]$ satisfy $1 / p+1 / q=1$. Then,

$$
\|x\|_{2} \leq \sqrt{\|x\|_{p}\|x\|_{q}}
$$

Fact 9.7.19. Let $x, y \in \mathbb{F}^{n}$, let $p \in(0,1]$, and define $\|\cdot\|_{p}$ as in (9.1.1). Then,

$$
\|x\|_{p}+\|y\|_{p} \leq\|x+y\|_{p}
$$

(Remark: This result is a reverse triangle inequality.)
Fact 9.7.20. Let $x, y \in \mathbb{F}^{n}$, let $\|\cdot\|$ be a norm on \mathbb{F}^{n}, let p and q be real numbers, and assume that $1 \leq p \leq q$. Then,

$$
\left[\frac{1}{2}\left(\left\|x+\frac{1}{\sqrt{q-1}} y\right\|^{q}+\left\|x-\frac{1}{\sqrt{q-1}} y\right\|^{q}\right)\right]^{1 / q} \leq\left[\frac{1}{2}\left(\left\|x+\frac{1}{\sqrt{p-1}} y\right\|^{p}+\left\|x-\frac{1}{\sqrt{p-1}} y\right\|^{p}\right)\right]^{1 / p}
$$

(Proof: See [542, p. 207].) (Remark: This result is Bonami's inequality. See Fact 1.10.16.)

Fact 9.7.21. Let $x, y \in \mathbb{F}^{n \times n}$. If $p \in[1,2]$, then

$$
\left(\|x\|_{p}+\|y\|_{p}\right)^{p}+\left|\|x\|_{p}-\|y\|_{p}\right|^{p} \leq\|x+y\|_{p}^{p}+\|x-y\|_{p}^{p}
$$

and

$$
\left(\|x+y\|_{p}+\|x-y\|_{p}\right)^{p}+\left|\|x+y\|_{p}+\|x-y\|_{p}\right|^{p} \leq 2^{p}\left(\|x\|_{p}^{p}+\|y\|_{p}^{p}\right)
$$

If $p \in[2, \infty]$, then

$$
\|x+y\|_{p}^{p}+\|x-y\|_{p}^{p} \leq\left(\|x\|_{p}+\|y\|_{\sigma p}\right)^{p}+\left|\|x\|_{p}-\|y\|_{p}\right|^{p}
$$

and

$$
2^{p}\left(\|x\|_{p}^{p}+\|y\|_{p}^{p}\right) \leq\left(\|x+y\|_{p}+\|x-y\|_{p}\right)^{p}+\left|\|x+y\|_{p}+\|x-y\|_{p}\right|^{p} .
$$

(Proof: See [116, 906.) (Remark: These inequalities are versions of Hanner's inequality. These vector versions follow from inequalities on L_{p} by appropriate choice of measure.) (Remark: Matrix versions are given in Fact 9.9.36.)

Fact 9.7.22. Let $y \in \mathbb{F}^{n}$, let $\|\cdot\|$ be a norm on \mathbb{F}^{n}, let $\|\cdot\|^{\prime}$ be the norm on $\mathbb{F}^{n \times n}$ induced by $\|\cdot\|$, and define

$$
\|y\|_{\mathrm{D}} \triangleq \max _{x \in\left\{z \in \mathbb{F}^{n}:\|z\|=1\right\}}\left|y^{*} x\right| .
$$

Then, $\|\cdot\|_{\mathrm{D}}$ is a norm on \mathbb{F}^{n}. Furthermore,

$$
\|y\|=\max _{x \in\left\{z \in \mathbb{F}^{n}:\|z\|_{\mathrm{D}}=1\right\}}\left|y^{*} x\right| .
$$

Hence, for all $x \in \mathbb{F}^{n}$,

$$
\left|x^{*} y\right| \leq\|x\|\|y\|_{\mathrm{D}}
$$

In addition,

$$
\left\|x y^{*}\right\|^{\prime}=\|x\|\|y\|_{\mathrm{D}}
$$

Finally, let $p \in[1, \infty]$, and let $1 / p+1 / q=1$. Then,

$$
\|\cdot\|_{p \mathrm{D}}=\|\cdot\|_{q}
$$

Hence, for all $x \in \mathbb{F}^{n}$,

$$
\left|x^{*} y\right| \leq\|x\|_{p}\|y\|_{q}
$$

and

$$
\left\|x y^{*}\right\|_{p, p}=\|x\|_{p}\|y\|_{q} .
$$

(Proof: See [1230, p. 57].) (Remark: $\|\cdot\|_{\mathrm{D}}$ is the dual norm of $\|\cdot\|$.)
Fact 9.7.23. Let $\|\cdot\|$ be a norm on \mathbb{F}^{n}, and let $\alpha>0$. Then, $f: \mathbb{F}^{n} \mapsto[0, \infty)$ defined by $f(x)=\|x\|$ is convex. Furthermore, $\left\{x \in \mathbb{F}^{n}:\|x\| \leq \alpha\right\}$ is symmetric, solid, convex, closed, and bounded. (Remark: See Fact 10.8.22,)

Fact 9.7.24. Let $x \in \mathbb{R}^{n}$, and let $\|\cdot\|$ be a norm on \mathbb{R}^{n}. Then, $x^{\mathrm{T}} y>0$ for all $y \in \mathbb{B}_{\|x\|}(x)=\left\{z \in \mathbb{R}^{n}:\|z-x\|<\|x\|\right\}$.

Fact 9.7.25. Let $x, y \in \mathbb{R}^{n}$, assume that x and y are nonzero, assume that $x^{\mathrm{T}} y=0$, and let $\|\cdot\|$ be a norm on \mathbb{R}^{n}. Then, $\|x\| \leq\|x+y\|$. (Proof: If $\|x+y\|<\|x\|$, then $x+y \in \mathbb{B}_{\|x\|}(0)$, and thus $y \in \mathbb{B}_{\|x\|}(-x)$. By Fact 9.7.24 $x^{\mathrm{T}} y<0$.) (Remark: See [218, 901 for related results concerning matrices.)

Fact 9.7.26. Let $x \in \mathbb{F}^{n}$ and $y \in \mathbb{F}^{m}$. Then,

$$
\sigma_{\max }\left(x y^{*}\right)=\left\|x y^{*}\right\|_{\mathrm{F}}=\|x\|_{2}\|y\|_{2}
$$

and

$$
\sigma_{\max }\left(x x^{*}\right)=\left\|x x^{*}\right\|_{\mathrm{F}}=\|x\|_{2}^{2} .
$$

(Remark: See Fact 5.11.16.)
Fact 9.7.27. Let $x \in \mathbb{F}^{n}$ and $y \in \mathbb{F}^{m}$. Then,

$$
\|x \otimes y\|_{2}=\left\|\operatorname{vec}\left(x \otimes y^{\mathrm{T}}\right)\right\|_{2}=\left\|\operatorname{vec}\left(y x^{\mathrm{T}}\right)\right\|_{2}=\left\|y x^{\mathrm{T}}\right\|_{2}=\|x\|_{2}\|y\|_{2} .
$$

Fact 9.7.28. Let $x \in \mathbb{F}^{n}$, and let $1 \leq p, q \leq \infty$. Then,

$$
\|x\|_{p}=\|x\|_{p, q}
$$

Fact 9.7.29. Let $x \in \mathbb{F}^{n}$, and let $p, q \in[1, \infty)$, where $p \leq q$. Then,

$$
\|x\|_{q} \leq\|x\|_{p} \leq n^{1 / p-1 / q}\|x\|_{q}
$$

(Proof: See [680], [681, p. 107].) (Remark: See Fact 1.15.5] and Fact 9.8.21])
Fact 9.7.30. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is positive definite. Then,

$$
\|x\|_{A} \triangleq\left(x^{*} A x\right)^{1 / 2}
$$

is a norm on \mathbb{F}^{n}.
Fact 9.7.31. Let $\|\cdot\|$ and $\|\cdot\|^{\prime}$ be norms on \mathbb{F}^{n}, and let $\alpha, \beta>0$. Then, $\alpha\|\cdot\|+\beta\|\cdot\|^{\prime}$ is also a norm on \mathbb{F}^{n}. Furthermore, $\max \left\{\|\cdot\|,\|\cdot\|^{\prime}\right\}$ is a norm on \mathbb{F}^{n}. (Remark: $\min \left\{\|\cdot\|,\|\cdot\|^{\prime}\right\}$ is not necessarily a norm.)

Fact 9.7.32. Let $A \in \mathbb{F}^{n \times n}$, assume that A is nonsingular, and let $\|\cdot\|$ be a norm on \mathbb{F}^{n}. Then, $\|x\|^{\prime} \triangleq\|A x\|$ is a norm on \mathbb{F}^{n}.

Fact 9.7.33. Let $x \in \mathbb{F}^{n}$, and let $p \in[1, \infty]$. Then,

$$
\|\bar{x}\|_{p}=\|x\|_{p}
$$

Fact 9.7.34. Let $x_{1}, \ldots, x_{k} \in \mathbb{F}^{n}$, let $\alpha_{1}, \ldots, \alpha_{k}$ be positive numbers, and assume that $\sum_{i=1}^{k} \alpha_{i}=1$. Then,

$$
\left|1_{1 \times n}\left(x_{1} \circ \cdots \circ x_{k}\right)\right| \leq \prod_{i=1}^{k}\left\|x_{i}\right\|_{1 / \alpha_{i}}
$$

(Remark: This result is the generalized Hölder inequality. See [273, p. 128].)

9.8 Facts on Matrix Norms for One Matrix

Fact 9.8.1. Let $\mathcal{S} \subseteq \mathbb{F}^{m}$, assume that \mathcal{S} is bounded, and let $A \in \mathbb{F}^{n \times m}$. Then, $A S$ is bounded.

Fact 9.8.2. Let $A \in \mathbb{F}^{n \times n}$, assume that A is a idempotent, and assume that, for all $x \in \mathbb{F}^{n}$,

$$
\|A x\|_{2} \leq\|x\|_{2}
$$

Then, A is a projector. (Proof: See [536, p. 42].)
Fact 9.8.3. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are projectors. Then, the following statements are equivalent:
i) $A \leq B$.
ii) For all $x \in \mathbb{F}^{n},\|A x\|_{2} \leq\|B x\|_{2}$.
iii) $\mathcal{R}(A) \subseteq \mathcal{R}(A)$.
iv) $A B=A$.
v) $B A=A$.
vi) $B-A$ is a projector.
(Proof: See [536 p. 43] and [1184 p. 24].) (Remark: See Fact 3.13.14 and Fact 3.13.17.)

Fact 9.8.4. Let $A \in \mathbb{F}^{n \times n}$, and assume that $\operatorname{sprad}(A)<1$. Then, there exists a submultiplicative matrix norm $\|\cdot\|$ on $\mathbb{F}^{n \times n}$ such that $\|A\|<1$. Furthermore,

$$
\lim _{k \rightarrow \infty} A^{k}=0
$$

Fact 9.8.5. Let $A \in \mathbb{F}^{n \times n}$, assume that A is nonsingular, and let $\|\cdot\|$ be a submultiplicative norm on $\mathbb{F}^{n \times n}$. Then,

$$
\left\|A^{-1}\right\| \geq\left\|I_{n}\right\| /\|A\|
$$

Fact 9.8.6. Let $A \in \mathbb{F}^{n \times n}$, assume that A is nonzero and idempotent, and let $\|\cdot\|$ be a submultiplicative norm on $\mathbb{F}^{n \times n}$. Then,

$$
\|A\| \geq 1
$$

Fact 9.8.7. Let $\|\cdot\|$ be a unitarily invariant norm on $\mathbb{F}^{n \times n}$. Then, $\|\cdot\|$ is self-adjoint.

Fact 9.8.8. Let $A \in \mathbb{F}^{n \times m}$, let $\|\cdot\|$ be a norm on $\mathbb{F}^{n \times m}$, and define $\|A\|^{\prime} \triangleq$ $\left\|A^{*}\right\|$. Then, $\|\cdot\|^{\prime}$ is a norm on $\mathbb{F}^{m \times n}$. If, in addition, $n=m$ and $\|\cdot\|$ is induced by $\|\cdot\|^{\prime \prime}$, then $\|\cdot\|^{\prime}$ is induced by $\|\cdot\|_{D}^{\prime \prime}$. (Proof: See [709, p. 309] and Fact 9.8.10.) (Remark: See Fact 9.7 .22 for the definition of the dual norm. $\|\cdot\|^{\prime}$ is the adjoint norm of $\|\cdot\|$.) (Problem: Generalize this result to nonsquare matrices and norms that are not equi-induced.)

Fact 9.8.9. Let $1 \leq p \leq \infty$. Then, $\|\cdot\|_{\sigma p}$ is unitarily invariant.
Fact 9.8.10. Let $A \in \mathbb{F}^{n \times m}$, and let $p, q \in[1, \infty]$ satisfy $1 / p+1 / q=1$. Then,

$$
\left\|A^{*}\right\|_{p, p}=\|A\|_{q, q}
$$

In particular,

$$
\left\|A^{*}\right\|_{\text {col }}=\|A\|_{\text {row }}
$$

(Proof: See Fact 9.8.8.)
Fact 9.8.11. Let $A \in \mathbb{F}^{n \times m}$, and let $p, q \in[1, \infty]$ satisfy $1 / p+1 / q=1$. Then,

$$
\left\|\left[\begin{array}{cc}
0 & A \\
A^{*} & 0
\end{array}\right]\right\|_{p, p}=\max \left\{\|A\|_{p, p},\|A\|_{q, q}\right\}
$$

In particular,

$$
\left\|\left[\begin{array}{cc}
0 & A \\
A^{*} & 0
\end{array}\right]\right\|_{\text {col }}=\left\|\left[\begin{array}{cc}
0 & A \\
A^{*} & 0
\end{array}\right]\right\|_{\text {row }}=\max \left\{\|A\|_{\text {col }},\|A\|_{\text {row }}\right\}
$$

Fact 9.8.12. Let $A \in \mathbb{F}^{n \times m}$. Then, the following inequalities hold:
i) $\|A\|_{\mathrm{F}} \leq\|A\|_{1} \leq \sqrt{m n}\|A\|_{\mathrm{F}}$.
ii) $\|A\|_{\infty} \leq\|A\|_{1} \leq m n\|A\|_{\infty}$.
iii) $\|A\|_{\text {col }} \leq\|A\|_{1} \leq m\|A\|_{\text {col }}$.
iv) $\|A\|_{\text {row }} \leq\|A\|_{1} \leq n\|A\|_{\text {row }}$.
$v) \sigma_{\max }(A) \leq\|A\|_{1} \leq \sqrt{m n \operatorname{rank} A} \sigma_{\max }(A)$.
vi) $\|A\|_{\infty} \leq\|A\|_{\mathrm{F}} \leq \sqrt{m n}\|A\|_{\infty}$.
vii) $\frac{1}{\sqrt{n}}\|A\|_{\mathrm{col}} \leq\|A\|_{\mathrm{F}} \leq \sqrt{m}\|A\|_{\mathrm{col}}$.
viii) $\frac{1}{\sqrt{m}}\|A\|_{\text {row }} \leq\|A\|_{\mathrm{F}} \leq \sqrt{n}\|A\|_{\text {row }}$.
ix) $\sigma_{\max }(A) \leq\|A\|_{\mathrm{F}} \leq \sqrt{\operatorname{rank} A} \sigma_{\max }(A)$.
x) $\frac{1}{n}\|A\|_{\mathrm{col}} \leq\|A\|_{\infty} \leq\|A\|_{\mathrm{col}}$.
xi) $\frac{1}{m}\|A\|_{\text {row }} \leq\|A\|_{\infty} \leq\|A\|_{\text {row }}$.
xii) $\frac{1}{\sqrt{m n}} \sigma_{\max }(A) \leq\|A\|_{\infty} \leq \sigma_{\max }(A)$.
xiii) $\frac{1}{m}\|A\|_{\text {row }} \leq\|A\|_{\text {col }} \leq n\|A\|_{\text {row }}$.
xiv) $\frac{1}{\sqrt{m}} \sigma_{\max }(A) \leq\|A\|_{\text {col }} \leq \sqrt{n} \sigma_{\max }(A)$.
$x v) \frac{1}{\sqrt{n}} \sigma_{\max }(A) \leq\|A\|_{\text {row }} \leq \sqrt{m} \sigma_{\max }(A)$.
(Proof: See [709, p. 314] and [1501].) (Remark: See [681, p. 115] for matrices that attain these bounds.)

Fact 9.8.13. Let $A \in \mathbb{F}^{n \times m}$, and assume that A is normal. Then,

$$
\frac{1}{\sqrt{m n}} \sigma_{\max }(A) \leq\|A\|_{\infty} \leq \operatorname{sprad}(A)=\sigma_{\max }(A)
$$

(Proof: Use Fact 5.14.15 and statement $x i i$) of Fact 9.8.12.)
Fact 9.8.14. Let $A \in \mathbb{R}^{n \times n}$, assume that A is symmetric, and assume that every diagonal entry of A is zero. Then, the following conditions are equivalent:
i) For all $x \in \mathbb{R}^{n}$ such that $1_{1 \times n} x=0$, it follows that $x^{\mathrm{T}} A x \leq 0$.
ii) There exists a positive integer k and vectors $x_{1}, \ldots, x_{n} \in \mathbb{R}^{k}$ such that, for all $i, j=1, \ldots, n, A_{(i, j)}=\left\|x_{i}-x_{j}\right\|_{2}^{2}$.
(Proof: See [18.) (Remark: This result is due to Schoenberg.) (Remark: A is a Euclidean distance matrix.)

Fact 9.8.15. Let $A \in \mathbb{F}^{n \times n}$. Then,

$$
\left\|A^{\mathrm{A}}\right\|_{\mathrm{F}} \leq n^{(2-n) / 2}\|A\|_{\mathrm{F}}^{n-1}
$$

(Proof: See [1098, pp. 151, 165].)
Fact 9.8.16. Let $A \in \mathbb{F}^{n \times n}$, let $\|\cdot\|$ and $\|\cdot\|^{\prime}$ be norms on \mathbb{F}^{n}, and define the induced norms

$$
\|A\|^{\prime \prime} \triangleq \max _{x \in\left\{y \in \mathbb{F}^{m}:\|y\|=1\right\}}\|A x\|
$$

and

$$
\|A\|^{\prime \prime \prime} \triangleq \max _{x \in\left\{y \in \mathbb{F}^{m}:\|y\|^{\prime}=1\right\}}\|A x\|^{\prime}
$$

Then,

$$
\begin{aligned}
\max _{A \in\left\{X \in \mathbb{F}^{n \times n}: X \neq 0\right\}} \frac{\|A\|^{\prime \prime}}{\|A\|^{\prime \prime \prime}} & =\max _{A \in\left\{X \in \mathbb{F}^{n \times n}: X \neq 0\right\}} \frac{\|A\|^{\prime \prime \prime}}{\|A\|^{\prime \prime}} \\
& =\max _{x \in\left\{y \in \mathbb{F}^{n}: y \neq 0\right\}} \frac{\|x\|}{\|x\|^{\prime}} \max _{x \in\left\{y \in \mathbb{F}^{n}: y \neq 0\right\}} \frac{\|x\|^{\prime}}{\|x\|} .
\end{aligned}
$$

(Proof: See [709 p. 303].) (Remark: This symmetry property is evident in Fact 9.8.12,

Fact 9.8.17. Let $A \in \mathbb{F}^{n \times m}$, let $q, r \in[1, \infty]$, assume that $1 \leq q \leq r$, define

$$
p \triangleq \frac{1}{\frac{1}{q}-\frac{1}{r}}
$$

and assume that $p \geq 2$. Then,

$$
\|A\|_{p} \leq\|A\|_{q, r}
$$

In particular,

$$
\|A\|_{\infty} \leq\|A\|_{\infty, \infty}
$$

(Proof: See [476.) (Remark: This result is due to Hardy and Littlewood.)
Fact 9.8.18. Let $A \in \mathbb{R}^{n \times m}$. Then,

$$
\begin{aligned}
& \left\|\left[\begin{array}{c}
\left\|\operatorname{row}_{1}(A)\right\|_{2} \\
\vdots \\
\left\|\operatorname{row}_{n}(A)\right\|_{2}
\end{array}\right]\right\|_{1} \leq \sqrt{2}\|A\|_{1, \infty}, \\
& \left\|\left[\begin{array}{c}
\left\|\operatorname{row}_{1}(A)\right\|_{1} \\
\vdots \\
\left\|\operatorname{row}_{n}(A)\right\|_{1}
\end{array}\right]\right\|_{2} \leq \sqrt{2}\|A\|_{1, \infty}, \\
& \|A\|_{4 / 3}^{3 / 4} \leq \sqrt{2}\|A\|_{1, \infty} .
\end{aligned}
$$

(Proof: See [542, p. 303].) (Remark: The first and third results are due to Littlewood, while the second result is due to Orlicz.)

Fact 9.8.19. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is positive semidefinite. Then,

$$
\|A\|_{1, \infty}=\max _{x \in\left\{z \in \mathbb{F}^{n}:\|z\|_{\infty}=1\right\}} x^{*} A x
$$

(Remark: This result is due to Tao. See [681, p. 116] and [1138.)
Fact 9.8.20. Let $A \in \mathbb{F}^{n \times n}$. If $p \in[1,2]$, then

$$
\|A\|_{\mathrm{F}} \leq\|A\|_{\sigma p} \leq n^{1 / p-1 / 2}\|A\|_{\mathrm{F}}
$$

If $p \in[2, \infty]$, then

$$
\|A\|_{\sigma p} \leq\|A\|_{\mathrm{F}} \leq n^{1 / 2-1 / p}\|A\|_{\sigma p}
$$

(Proof: See [200, p. 174].)
Fact 9.8.21. Let $A \in \mathbb{F}^{n \times n}$, and let $p, q \in[1, \infty]$. Then,

$$
\|A\|_{p, p} \leq \begin{cases}n^{1 / p-1 / q}\|A\|_{q, q}, & p \leq q \\ n^{1 / q-1 / p}\|A\|_{q, q}, & q \leq p\end{cases}
$$

Consequently,

$$
\begin{aligned}
n^{1 / p-1}\|A\|_{\text {col }} & \leq\|A\|_{p, p} \leq n^{1-1 / p}\|A\|_{\mathrm{col}} \\
n^{-|1 / p-1 / 2|} \sigma_{\max }(A) & \leq\|A\|_{p, p} \leq n^{|1 / p-1 / 2|} \sigma_{\max }(A) \\
n^{-1 / p}\|A\|_{\mathrm{col}} & \leq\|A\|_{p, p} \leq n^{1 / p}\|A\|_{\mathrm{row}}
\end{aligned}
$$

(Proof: See 680] and 681 p. 112].) (Remark: See Fact 9.7.29) (Problem: Extend these inequalities to nonsquare matrices.)

Fact 9.8.22. Let $A \in \mathbb{F}^{n \times m}, p, q \in[1, \infty]$, and $\alpha \in[0,1]$, and let $r \triangleq p q /[(1-$ $\alpha) p+\alpha q]$. Then,

$$
\|A\|_{r, r} \leq\|A\|_{p, p}^{\alpha}\|A\|_{q, q}^{1-\alpha}
$$

(Proof: See 680] or 681, p. 113].)
Fact 9.8.23. Let $A \in \mathbb{F}^{n \times m}$, and let $p \in[1, \infty]$. Then,

$$
\|A\|_{p, p} \leq\|A\|_{\text {col }}^{1 / p}\|A\|_{\text {row }}^{1-1 / p}
$$

In particular,

$$
\sigma_{\max }(A) \leq \sqrt{\|A\|_{\text {col }}\|A\|_{\text {row }}}
$$

(Proof: Set $\alpha=1 / p, p=1$, and $q=\infty$ in Fact 9.8.22, See 681, p. 113]. To prove the special case $p=2$ directly, note that $\lambda_{\max }\left(A^{*} A\right) \leq\left\|A^{*} A\right\|_{\text {col }} \leq\left\|A^{*}\right\|_{\text {col }}\|A\|_{\text {col }}=$ $\|A\|_{\text {row }}\|A\|_{\text {col }}$.)

Fact 9.8.24. Let $A \in \mathbb{F}^{n \times m}$. Then,

$$
\left.\begin{array}{l}
\|A\|_{2,1} \\
\|A\|_{\infty, 2}
\end{array}\right\} \leq \sigma_{\max }(A)
$$

(Proof: The result follows from Proposition 9.1.5.)

Fact 9.8.25. Let $A \in \mathbb{F}^{n \times m}$, and let $p \in[1,2]$. Then,

$$
\|A\|_{p, p} \leq\|A\|_{\mathrm{col}}^{2 / p-1} \sigma_{\max }^{2-2 / p}(A) .
$$

(Proof: Let $\alpha=2 / p-1, p=1$, and $q=2$ in Fact 9.8.22, See [681, p. 113].)
Fact 9.8.26. Let $A \in \mathbb{F}^{n \times n}$, and let $p \in[1, \infty]$. Then,

$$
\|A\|_{p, p} \leq\||A|\|_{p, p} \leq n^{\min \{1 / p, 1-1 / p\}}\|A\|_{p, p} \leq \sqrt{n}\|A\|_{p, p} .
$$

(Remark: See [681 p. 117].)
Fact 9.8.27. Let $A \in \mathbb{F}^{n \times m}$, and let $p, q \in[1, \infty]$. Then,

$$
\|\bar{A}\|_{q, p}=\|A\|_{q, p}
$$

Fact 9.8.28. Let $A \in \mathbb{F}^{n \times m}$, and let $p, q \in[1, \infty]$. Then,

$$
\left\|A^{*}\right\|_{q, p}=\|A\|_{p /(p-1), q /(q-1)} .
$$

Fact 9.8.29. Let $A \in \mathbb{F}^{n \times m}$, and let $p, q \in[1, \infty]$. Then,

$$
\|A\|_{q, p} \leq \begin{cases}\|A\|_{p /(p-1)}, & 1 / p+1 / q \leq 1 \\ \|A\|_{q}, & 1 / p+1 / q \geq 1\end{cases}
$$

Fact 9.8.30. Let $A \in \mathbb{F}^{n \times n}$, and let $\|\cdot\|$ be a unitarily invariant norm on $\mathbb{F}^{n \times n}$. Then,

$$
\|\langle A\rangle\|=\|A\| .
$$

Fact 9.8.31. Let $A, S \in \mathbb{F}^{n \times n}$, assume that S is nonsingular, and let $\|\cdot\|$ be a unitarily invariant norm on $\mathbb{F}^{n \times n}$. Then,

$$
\|A\| \leq \frac{1}{2}\left\|S A S^{-1}+S^{-*} A S^{*}\right\| .
$$

(Proof: See 61, 246].)
Fact 9.8.32. Let $A \in \mathbb{F}^{n \times n}$, assume that A is positive semidefinite, and let $\|\cdot\|$ be a submultiplicative norm on $\mathbb{F}^{n \times n}$. Then,

$$
\|A\|^{1 / 2} \leq\left\|A^{1 / 2}\right\| .
$$

In particular,

$$
\sigma_{\max }^{1 / 2}(A)=\sigma_{\max }\left(A^{1 / 2}\right) .
$$

Fact 9.8.33. Let $A_{11} \in \mathbb{F}^{n \times n}, A_{12} \in \mathbb{F}^{n \times m}$, and $A_{22} \in \mathbb{F}^{m \times m}$, assume that $\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{12}^{12} & A_{22}\end{array}\right] \in \mathbb{F}^{(n+m) \times(n+m)}$ is positive semidefinite, let $\|\cdot\|$ and $\|\cdot\|^{\prime}$ be unitarily invariant norms on $\mathbb{F}^{n \times n}$ and $\mathbb{F}^{m \times m}$, respectively, and let $p>0$. Then,

$$
\left\|\left\langle A_{12}\right\rangle^{p}\right\|^{\prime 2} \leq\left\|A_{11}^{p}\right\|\left\|A_{22}^{p}\right\|^{\prime} .
$$

(Proof: See 713].)

Fact 9.8.34. Let $A \in \mathbb{F}^{n \times n}$, let $\|\cdot\|$ be a norm on \mathbb{F}^{n}, let $\|\cdot\|_{\mathrm{D}}$ denote the dual norm on \mathbb{F}^{n}, and let $\|\cdot\|^{\prime}$ denote the norm induced by $\|\cdot\|$ on $\mathbb{F}^{n \times n}$. Then,

$$
\|A\|^{\prime}=\max _{\substack{x, y \in \mathbb{F}^{n} \\ x, y \neq 0}} \frac{\operatorname{Re} y^{*} A x}{\|y\|_{\mathrm{D}}\|x\|}
$$

(Proof: See 681, p. 115].) (Remark: See Fact 9.7 .22 for the definition of the dual norm.) (Problem: Generalize this result to obtain Fact 9.8.35 as a special case.)

Fact 9.8.35. Let $A \in \mathbb{F}^{n \times m}$, and let $p, q \in[1, \infty]$. Then,

$$
\|A\|_{q, p}=\max _{\substack{x \in \mathbb{F}^{m}, y \in \mathbb{F}^{n} \\ x, y \neq 0}} \frac{\left|y^{*} A x\right|}{\|y\|_{q /(q-1)}\|x\|_{p}}
$$

Fact 9.8.36. Let $A \in \mathbb{F}^{n \times m}$, and let $p, q \in[1, \infty]$ satisfy $1 / p+1 / q=1$. Then,

$$
\|A\|_{p, p}=\max _{\substack{x \in \mathbb{F}^{m}, y \in \mathbb{F}^{n} \\ x, y \neq 0}} \frac{\left|y^{*} A x\right|}{\|y\|_{q}\|x\|_{p}}=\max _{\substack{x \in \mathbb{F}^{m}, y \in \mathbb{F}^{n} \\ x, y \neq 0}} \frac{\left|y^{*} A x\right|}{\|y\|_{p /(p-1)}\|x\|_{p}}
$$

(Remark: See Fact 9.13.2 for the case $p=2$.)
Fact 9.8.37. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is positive definite. Then,

$$
\min _{x \in \mathbb{F}^{n} \backslash\{0\}} \frac{x^{*} A x}{\|A x\|_{2}\|x\|_{2}}=\frac{2 \sqrt{\alpha \beta}}{\alpha+\beta}
$$

and

$$
\min _{\alpha \geq 0} \sigma_{\max }(\alpha A-I)=\frac{\alpha-\beta}{\alpha+\beta}
$$

where $\alpha \triangleq \lambda_{\max }(A)$ and $\beta \triangleq \lambda_{\min }(A)$. (Proof: See 609].) (Remark: These quantities are antieigenvalues.)

Fact 9.8.38. Let $A \in \mathbb{F}^{n \times n}$, and define

$$
\operatorname{nrad}(A) \triangleq \max \left\{\left|x^{*} A x\right|: \quad x \in \mathbb{C}^{n} \text { and } x^{*} x \leq 1\right\}
$$

Then, the following statements hold:
i) $\operatorname{nrad}(A)=\max \{|z|: \quad z \in \Theta(A)\}$.
ii) $\operatorname{sprad}(A) \leq \operatorname{nrad}(A) \leq \operatorname{nrad}(|A|)=\frac{1}{2} \operatorname{sprad}\left(|A|+|A|^{\mathrm{T}}\right)$.
iii) $\frac{1}{2} \sigma_{\max }(A) \leq \operatorname{nrad}(A) \leq \frac{1}{2}\left[\sigma_{\max }(A)+\sigma_{\max }^{1 / 2}\left(A^{2}\right)\right] \leq \sigma_{\max }(A)$.
$i v)$ If $A^{2}=0$, then $\operatorname{nrad}(A)=\sigma_{\max }(A)$.
$v)$ If $\operatorname{nrad}(A)=\sigma_{\max }(A)$, then $\sigma_{\max }\left(A^{2}\right)=\sigma_{\text {max }}^{2}(A)$.
$v i)$ If A is normal, then $\operatorname{nrad}(A)=\operatorname{sprad}(A)$.
vii) $\operatorname{nrad}\left(A^{k}\right) \leq[\operatorname{nrad}(A)]^{k}$ for all $k \in \mathbb{N}$.
viii) $\operatorname{nrad}(\cdot)$ is a weakly unitarily invariant norm on $\mathbb{F}^{n \times n}$.
ix) $\operatorname{nrad}(\cdot)$ is not a submultiplicative norm on $\mathbb{F}^{n \times n}$.
x) $\|\cdot\| \triangleq \alpha \operatorname{nrad}(\cdot)$ is a submultiplicative norm on $\mathbb{F}^{n \times n}$ if and only if $\alpha \geq 4$.
xi) $\operatorname{nrad}(A B) \leq \operatorname{nrad}(A) \operatorname{nrad}(B)$ for all $A, B \in \mathbb{F}^{n \times n}$ such that A and B are normal.
xii) $\operatorname{nrad}(A \circ B) \leq \alpha \operatorname{nrad}(A) \operatorname{nrad}(B)$ for all $A, B \in \mathbb{F}^{n \times n}$ if and only if $\alpha \geq 2$.
xiii) $\operatorname{nrad}(A \oplus B)=\max \{\operatorname{nrad}(A), \operatorname{nrad}(B)\}$ for all $A \in \mathbb{F}^{n \times n}$ and $B \in \mathbb{F}^{m \times m}$.
(Proof: See [709, p. 331] and [711, pp. 43, 44]. For iii), see [823.) (Remark: $\operatorname{nrad}(A)$ is the numerical radius of $A . \Theta(A)$ is the numerical range. See Fact 8.14.7) (Remark: $\operatorname{nrad}(\cdot)$ is not submultiplicative. The example $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right], B=\left[\begin{array}{ll}0 & 2 \\ 2 & 0\end{array}\right]$, where B is normal, $\operatorname{nrad}(A)=1 / 2, \operatorname{nrad}(B)=2$, and $\operatorname{nrad}(A B)=2$, shows that $x i$) is not valid if only one of the matrices A and B is normal, which corrects [711, pp. 43, 73].) (Remark: vii) is the power inequality.)

Fact 9.8.39. Let $A \in \mathbb{F}^{n \times m}$, let $\gamma>\sigma_{\max }(A)$, and define $\beta \triangleq \sigma_{\max }(A) / \gamma$. Then,

$$
\|A\|_{\mathrm{F}} \leq \sqrt{-\left[\gamma^{2} /(2 \pi)\right] \log \operatorname{det}\left(I-\gamma^{-2} A^{*} A\right)} \leq \beta^{-1} \sqrt{-\log \left(1-\beta^{2}\right)}\|A\|_{\mathrm{F}}
$$

(Proof: See [254].)
Fact 9.8.40. Let $\|\cdot\|$ be a unitarily invariant norm on $\mathbb{F}^{n \times n}$. Then, $\|A\|=1$ for all $A \in \mathbb{F}^{n \times n}$ such that $\operatorname{rank} A=1$ if and only if $\left\|E_{1,1}\right\|=1$. (Proof: $\|A\|=$ $\left.\left\|E_{1,1}\right\| \sigma_{\max }(A).\right)$ (Remark: These equivalent normalizations are used in 1230 p. 74] and [197], respectively.)

Fact 9.8.41. Let $\|\cdot\|$ be a unitarily invariant norm on $\mathbb{F}^{n \times n}$. Then, the following statements are equivalent:
i) $\sigma_{\max }(A) \leq\|A\|$ for all $A \in \mathbb{F}^{n \times n}$.
ii) $\|\cdot\|$ is submultiplicative.
iii) $\left\|A^{2}\right\| \leq\|A\|^{2}$ for all $A \in \mathbb{F}^{n \times n}$.
iv) $\left\|A^{k}\right\| \leq\|A\|^{k}$ for all $k \geq 1$ and $A \in \mathbb{F}^{n \times n}$.
v) $\|A \circ B\| \leq\|A\|\|B\|$ for all $A, B \in \mathbb{F}^{n \times n}$.
vi) $\operatorname{sprad}(A) \leq\|A\|$ for all $A \in \mathbb{F}^{n \times n}$.
vii) $\|A x\|_{2} \leq\|A\|\|x\|_{2}$ for all $A \in \mathbb{F}^{n \times n}$ and $x \in \mathbb{F}^{n}$.
viii) $\|A\|_{\infty} \leq\|A\|$ for all $A \in \mathbb{F}^{n \times n}$.
ix) $\left\|E_{1,1}\right\| \geq 1$.
x) $\sigma_{\max }(A) \leq\|A\|$ for all $A \in \mathbb{F}^{n \times n}$ such that $\operatorname{rank} A=1$.
(Proof: The equivalence of i) $-v i$) is given in [710] and [711, p. 211]. Since $\|A\|=$ $\left\|E_{1,1}\right\| \sigma_{\max }(A)$ for all $A \in \mathbb{F}^{n \times n}$ such that $\operatorname{rank} A=1$, it follows that vii) and viii) are equivalent. To prove $i x) \Longrightarrow x$), let $A \in \mathbb{F}^{n \times n}$ satisfy rank $A=1$. Then, $\|A\|=\sigma_{\max }(A)\left\|E_{1,1}\right\| \geq \sigma_{\max }(A)$. To show $\left.\left.x\right) \Longrightarrow i i\right)$, define $\|\cdot\|^{\prime} \triangleq\left\|E_{1,1}\right\|^{-1}\|\cdot\|$. Since $\left\|E_{1,1}\right\|^{\prime}=1$, it follows from [197, p. 94] that $\|\cdot\|^{\prime}$ is submultiplicative. Since $\left\|E_{1,1}\right\|^{-1} \leq 1$, it follows that $\|\cdot\|$ is also submultiplicative. Alternatively,
$\|A\|^{\prime}=\sigma_{\max }(A)$ for all $A \in \mathbb{F}^{n \times n}$ having rank 1 . Then, Corollary 3.10 of 1230, p. 80] implies that $\|\cdot\|^{\prime}$, and thus $\|\cdot\|$, is submultiplicative.)

Fact 9.8.42. Let $\Phi: \mathbb{F}^{n} \mapsto[0, \infty)$ satisfy the following conditions:
$i)$ If $x \neq 0$, then $\Phi(x)>0$.
ii) $\Phi(\alpha x)=|\alpha| \Phi(x)$ for all $\alpha \in \mathbb{R}$.
iii) $\Phi(x+y) \leq \Phi(x)+\Phi(y)$ for all $x, y \in \mathbb{F}^{n}$.
iv) If $A \in \mathbb{F}^{n \times n}$ is a permutation matrix, then $\Phi(A x)=\Phi(x)$ for all $x \in \mathbb{F}^{n}$.
v) $\Phi(|x|)=\Phi(x)$ for all $x \in \mathbb{F}^{n}$.

Furthermore, for $A \in \mathbb{F}^{n \times m}$, where $n \leq m$, define

$$
\|A\| \triangleq \Phi\left[\sigma_{1}(A), \ldots, \sigma_{n}(A)\right]
$$

Then, $\|\cdot\|$ is a unitarily invariant norm on $\mathbb{F}^{n \times m}$. Conversely, if $\|\cdot\|$ is a unitarily invariant norm on $\mathbb{F}^{n \times m}$, where $n \leq m$, then $\Phi: \mathbb{F}^{n} \mapsto[0, \infty)$ defined by

$$
\Phi(x) \triangleq\left\|\left[\begin{array}{cccc}
x_{(1)} & \cdots & 0 & 0_{n \times(m-n)} \\
\vdots & \ddots & \vdots & \vdots \\
0 & \cdots & x_{(n)} & 0_{n \times(m-n)}
\end{array}\right]\right\|
$$

satisfies i) $-v$). (Proof: See [1230 pp. 75, 76].) (Remark: Φ is a symmetric gauge function. This result is due to von Neumann. See Fact 2.21.14,)

Fact 9.8.43. Let $\|\cdot\|$ and $\|\cdot\|^{\prime}$ denote norms on \mathbb{F}^{m} and \mathbb{F}^{n}, respectively, and define $\hat{\ell}: \mathbb{F}^{n \times m} \mapsto \mathbb{R}$ by

$$
\hat{\ell}(A) \triangleq \min _{x \in \mathbb{F}^{m} \backslash\{0\}} \frac{\|A x\|^{\prime}}{\|x\|}
$$

or, equivalently,

$$
\hat{\ell}(A) \triangleq \min _{x \in\left\{y \in \mathbb{F}^{m}:\|y\|=1\right\}}\|A x\|^{\prime}
$$

Then, for $A \in \mathbb{F}^{n \times m}$, the following statements hold:
i) $\hat{\ell}(A) \geq 0$.
ii) $\hat{\ell}(A)>0$ if and only if $\operatorname{rank} A=m$.
iii) $\hat{\ell}(A)=\ell(A)$ if and only if either $A=0$ or $\operatorname{rank} A=m$.
(Proof: See [867] pp. 369, 370].) (Remark: $\hat{\ell}$ is a weaker version of ℓ.)
Fact 9.8.44. Let $A \in \mathbb{F}^{n \times n}$, let $\|\cdot\|$ be a normalized, submultiplicative norm on $\mathbb{F}^{n \times n}$, and assume that $\|I-A\|<1$. Then, A is nonsingular. (Remark: See Fact 9.9.56.)

Fact 9.8.45. Let $\|\cdot\|$ be a normalized, submultiplicative norm on $\mathbb{F}^{n \times n}$. Then, $\|\cdot\|$ is equi-induced if and only if $\|A\| \leq\|A\|^{\prime}$ for all $A \in \mathbb{F}^{n \times n}$ and for all normalized submultiplicative norms $\|\cdot\|^{\prime}$ on $\mathbb{F}^{n \times n}$. (Proof: See [1234].) (Remark: As shown in [308, 383, not every normalized submultiplicative norm on $\mathbb{F}^{n \times n}$ is equi-induced or induced.)

9.9 Facts on Matrix Norms for Two or More Matrices

Fact 9.9.1. $\|\cdot\|_{\infty}^{\prime} \triangleq n\|\cdot\|_{\infty}$ is submultiplicative on $\mathbb{F}^{n \times n}$. (Remark: It is not necessarily true that $\|A B\|_{\infty} \leq\|A\|_{\infty}\|B\|_{\infty}$. For example, let $A=B=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$.)

Fact 9.9.2. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times l}$. Then,

$$
\|A B\|_{\infty} \leq m\|A\|_{\infty}\|B\|_{\infty}
$$

Furthermore, if $A=1_{n \times m}$ and $B=1_{m \times l}$, then $\|A B\|_{\infty}=m\|A\|_{\infty}\|B\|_{\infty}$.
Fact 9.9.3. Let $A, B \in \mathbb{F}^{n \times n}$, and let $\|\cdot\|$ be a submultiplicative norm on $\mathbb{F}^{n \times n}$. Then, $\|A B\| \leq\|A\|\|B\|$. Hence, if $\|A\| \leq 1$ and $\|B\| \leq 1$, then $\|A B\| \leq 1$. Finally, if either $\|A\|<1$ or $\|B\|<1$, then $\|A B\|<1$. (Remark: $\operatorname{sprad}(A)<1$ and $\operatorname{sprad}(B)<1$ do not imply that $\operatorname{sprad}(A B)<1$. Let $A=B^{\mathrm{T}}=\left[\begin{array}{ll}0 & 2 \\ 0 & 0\end{array}\right]$.)

Fact 9.9.4. Let $\|\cdot\|$ be a norm on $\mathbb{F}^{m \times m}$, and let

$$
\delta>\sup \left\{\frac{\|A B\|}{\|A\|\|B\|}: \quad A, B \in \mathbb{F}^{m \times m}, A, B \neq 0\right\}
$$

Then, $\|\cdot\|^{\prime} \triangleq \delta\|\cdot\|$ is a submultiplicative norm on $\mathbb{F}^{m \times m}$. (Proof: See [709, p. 323].)
Fact 9.9.5. Let $A, B \in \mathbb{F}^{n \times n}$, let $\|\cdot\|$ be a unitarily invariant norm on $\mathbb{F}^{n \times n}$, assume that A and B are Hermitian, and assume that $A \leq B$. Then,

$$
\|A\| \leq\|B\|
$$

(Proof: See [215].)
Fact 9.9.6. Let $A, B \in \mathbb{F}^{n \times n}$, let $\|\cdot\|$ be a unitarily invariant norm on $\mathbb{F}^{n \times n}$, and assume that $A B$ is normal. Then,

$$
\|A B\| \leq\|B A\|
$$

(Proof: See 197, p. 253].)
Fact 9.9.7. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are positive semidefinite and nonzero, and let $\|\cdot\|$ be a submultiplicative unitarily invariant norm on $\mathbb{F}^{n \times n}$. Then,

$$
\frac{\|A B\|}{\|A\|\|B\|} \leq \frac{\|A+B\|}{\|A\|+\|B\|}
$$

and

$$
\frac{\|A \circ B\|}{\|A\|\|B\|} \leq \frac{\|A+B\|}{\|A\|+\|B\|}
$$

(Proof: See [675].) (Remark: See Fact 9.8.41)
Fact 9.9.8. Let $A, B \in \mathbb{F}^{n \times n}$, and let $\|\cdot\|$ be a submultiplicative norm on $\mathbb{F}^{n \times n}$. Then, $\|\cdot\|^{\prime} \triangleq 2\|\cdot\|$ is a submultiplicative norm on $\mathbb{F}^{n \times n}$ and satisfies

$$
\|[A, B]\|^{\prime} \leq\|A\|^{\prime}\|B\|^{\prime}
$$

Fact 9.9.9. Let $A \in \mathbb{F}^{n \times n}$. Then, the following statements are equivalent:
i) There exist projectors $Q, P \in \mathbb{R}^{n \times n}$ such that $A=[P, Q]$.
ii) $\sigma_{\max }(A) \leq 1 / 2, A$ and $-A$ are unitarily similar, and A is skew Hermitian.
(Proof: See [903].) (Remark: Extensions are discussed in 984.) (Remark: See Fact 3.12 .16 for the case of idempotent matrices.) (Remark: In the case $\mathbb{F}=\mathbb{R}$, the condition that A is skew symmetric implies that A and $-A$ are orthogonally similar. See Fact 5.9.10)

Fact 9.9.10. Let $A, B \in \mathbb{F}^{n \times n}$, and let $\|\cdot\|$ be a unitarily invariant norm on $\mathbb{F}^{n \times n}$. Then,

$$
\|A B\| \leq \sigma_{\max }(A)\|B\|
$$

and

$$
\|A B\| \leq\|A\| \sigma_{\max }(B)
$$

Consequently, if $C \in \mathbb{F}^{n \times n}$, then

$$
\|A B C\| \leq \sigma_{\max }(A)\|B\| \sigma_{\max }(C)
$$

(Proof: See [820].)
Fact 9.9.11. Let $A, B \in \mathbb{F}^{n \times m}$, and let $\|\cdot\|$ be a unitarily invariant norm on $\mathbb{F}^{m \times m}$. If $p>0$, then

$$
\left\|\left\langle A^{*} B\right\rangle^{p}\right\|^{2} \leq\left\|\left(A^{*} A\right)^{p}\right\|\left\|\left(B^{*} B\right)^{p}\right\| .
$$

In particular,

$$
\left\|\left(A^{*} B B^{*} A\right)^{1 / 4}\right\|^{2} \leq\|\langle A\rangle\|\|\langle B\rangle\|
$$

and

$$
\left\|\left\langle A^{*} B\right\rangle\right\|=\left\|A^{*} B\right\|^{2} \leq\left\|A^{*} A\right\|\left\|B^{*} B\right\| .
$$

Furthermore,

$$
\operatorname{tr}\left\langle A^{*} B\right\rangle \leq\|A\|_{\mathrm{F}}\|B\|_{\mathrm{F}}
$$

and

$$
\left[\operatorname{tr}\left(A^{*} B B^{*} A\right)^{1 / 4}\right]^{2} \leq(\operatorname{tr}\langle A\rangle)(\operatorname{tr}\langle B\rangle)
$$

(Proof: See [713] and use Fact 9.8.30]) (Problem: Noting Fact 9.12.1 and Fact 9.12.2, compare the lower bounds for $\|A\|_{\mathrm{F}}\|B\|_{\mathrm{F}}$ given by

$$
\left.\begin{array}{c}
\operatorname{tr}\left\langle A^{*} B\right\rangle \\
\left|\operatorname{tr} A^{*} B\right| \\
\sqrt{\left|\operatorname{tr}\left(A^{*} B\right)^{2}\right|} \leq \sqrt{\operatorname{tr} A A^{*} B B^{*}}
\end{array}\right\} \leq\|A\|_{\mathrm{F}}\|B\|_{\mathrm{F} .)}
$$

Fact 9.9.12. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are positive semidefinite. Then,

$$
\begin{aligned}
\left(2\|A\|_{\mathrm{F}}\|B\|_{\mathrm{F}}\right)^{1 / 2} & \leq\left(\|A\|_{\mathrm{F}}^{2}+\|B\|_{\mathrm{F}}^{2}\right)^{1 / 2} \\
& =\left\|\left(A^{2}+B^{2}\right)^{1 / 2}\right\|_{\mathrm{F}} \\
& \leq\|A+B\|_{\mathrm{F}} \\
& \leq \sqrt{2}\left(\|A\|_{\mathrm{F}}^{2}+\|B\|_{\mathrm{F}}^{2}\right)^{1 / 2}
\end{aligned}
$$

Fact 9.9.13. Let $A, B \in \mathbb{F}^{n \times m}$. Then,

$$
\|A+B\|_{\mathrm{F}}=\sqrt{\|A\|_{\mathrm{F}}^{2}+\|B\|_{\mathrm{F}}^{2}+2 \operatorname{tr} A B^{*}} \leq\|A\|_{\mathrm{F}}+\|B\|_{\mathrm{F}}
$$

In particular,

$$
\|A-B\|_{\mathrm{F}}=\sqrt{\|A\|_{\mathrm{F}}^{2}+\|B\|_{\mathrm{F}}^{2}-2 \operatorname{tr} A B^{*}}
$$

If, in addition, A is Hermitian and B is skew Hermitian, then $\operatorname{tr} A B^{*}=0$, and thus

$$
\|A+B\|_{\mathrm{F}}^{2}=\|A-B\|_{\mathrm{F}}^{2}=\|A\|_{\mathrm{F}}^{2}+\|B\|_{\mathrm{F}}^{2}
$$

(Remark: The second identity is a matrix version of the cosine law given by $i x$) of Fact 9.7.4)

Fact 9.9.14. Let $A, B \in \mathbb{F}^{n \times n}$, and let $\|\cdot\|$ be a unitarily invariant norm on $\mathbb{F}^{n \times n}$. Then,

$$
\|A B\| \leq \frac{1}{4}\left\|\left(\langle A\rangle+\left\langle B^{*}\right\rangle\right)^{2}\right\|
$$

(Proof: See [212].)
Fact 9.9.15. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are positive semidefinite, and let $\|\cdot\|$ be a unitarily invariant norm on $\mathbb{F}^{n \times n}$. Then,

$$
\|A B\| \leq \frac{1}{4}\left\|(A+B)^{2}\right\|
$$

(Proof: See [212] or [1485, p. 77].) (Problem: Noting Fact 9.9.12, compare the lower bounds for $\|A+B\|_{\mathrm{F}}$ given by

$$
\left(2\|A\|_{\mathrm{F}}\|B\|_{\mathrm{F}}\right)^{1 / 2} \leq\left\|\left(A^{2}+B^{2}\right)^{1 / 2}\right\|_{\mathrm{F}} \leq\|A+B\|_{\mathrm{F}}
$$

and

$$
\left.2\|A B\|_{\mathrm{F}}^{1 / 2} \leq\left\|(A+B)^{2}\right\|_{\mathrm{F}}^{1 / 2} \leq\|A+B\|_{\mathrm{F} .}\right)
$$

Fact 9.9.16. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are positive semidefinite, let $\|\cdot\|$ be a unitarily invariant norm on $\mathbb{F}^{n \times n}$, and let $p \in(0, \infty)$. If $p \in[0,1]$, then

$$
\left\|A^{p} B^{p}\right\| \leq\|A B\|^{p}
$$

If $p \in[1, \infty)$, then

$$
\|A B\|^{p} \leq\left\|A^{p} B^{p}\right\|
$$

(Proof: See [203, 523].) (Remark: See Fact 8.18.26.)
Fact 9.9.17. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are positive semidefinite, and let $\|\cdot\|$ be a unitarily invariant norm on $\mathbb{F}^{n \times n}$. If $p \in[0,1]$, then

$$
\left\|B^{p} A^{p} B^{p}\right\| \leq\left\|(B A B)^{p}\right\| .
$$

Furthermore, if $p \geq 1$, then

$$
\left\|(B A B)^{p}\right\| \leq\left\|B^{p} A^{p} B^{p}\right\|
$$

(Proof: See 69] and [197, p. 258].) (Remark: Extensions and a reverse inequality are given in Fact 8.10.49, (Remark: See Fact 8.12.20 and Fact 8.18.26.)

Fact 9.9.18. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are positive semidefinite, and let $\|\cdot\|$ be a unitarily invariant norm on $\mathbb{F}^{n \times n}$. Then,

$$
\left\|A^{1 / 2} B^{1 / 2}\right\| \leq \frac{1}{2}\|A+B\| .
$$

Hence,

$$
\|A B\| \leq \frac{1}{2}\left\|A^{2}+B^{2}\right\|
$$

and thus

$$
\left\|(A+B)^{2}\right\| \leq 2\left\|A^{2}+B^{2}\right\|
$$

Consequently,

$$
\|A B\| \leq \frac{1}{4}\left\|(A+B)^{2}\right\| \leq \frac{1}{2}\left\|A^{2}+B^{2}\right\|
$$

(Proof: Let $p=1 / 2$ and $X=I$ in Fact 9.9.49. The last inequality follows from Fact 9.9.15, (Remark: See Fact 8.18.13,

Fact 9.9.19. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are positive semidefinite, and let either $p=1$ or $p \in[2, \infty]$. Then,

$$
\left\|\langle A B\rangle^{1 / 2}\right\|_{\sigma p} \leq \frac{1}{2}\|A+B\|_{\sigma p}
$$

(Proof: See 90, 212.) (Remark: The inequality holds for all Q-norms. See [197.) (Remark: See Fact 8.18.13)

Fact 9.9.20. Let $A \in \mathbb{F}^{n \times m}, B \in \mathbb{F}^{m \times l}$, and $p, q, q^{\prime}, r \in[1, \infty]$, and assume that $1 / q+1 / q^{\prime}=1$. Then,

$$
\|A B\|_{p} \leq \varepsilon_{p q}(n) \varepsilon_{p r}(l) \varepsilon_{q^{\prime} r}(m)\|A\|_{q}\|B\|_{r}
$$

where

$$
\varepsilon_{p q}(n) \triangleq \begin{cases}1, & p \geq q \\ n^{1 / p-1 / q}, & q \geq p\end{cases}
$$

Furthermore, there exist matrices $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times l}$ such that equality holds. (Proof: See 564.) (Remark: Related results are given in 475, 476, 564 , [565, 566, 828, 1313.)

Fact 9.9.21. Let $A, B \in \mathbb{C}^{n \times m}$. Then, there exist unitary matrices $S_{1}, S_{2} \in$ $\mathbb{C}^{m \times m}$ such that

$$
\langle A+B\rangle \leq S_{1}\langle A\rangle S_{1}^{*}+S_{2}\langle B\rangle S_{2}^{*}
$$

(Remark: This result is a matrix version of the triangle inequality. See 47, 1271.)
Fact 9.9.22. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are positive semidefinite, and let $p \in[1, \infty]$. Then,

$$
\|A-B\|_{\sigma 2 p}^{2} \leq\left\|A^{2}-B^{2}\right\|_{\sigma p}
$$

(Proof: See [813].) (Remark: The case $p=1$ is due to Powers and Stormer.)

Fact 9.9.23. Let $A, B \in \mathbb{F}^{n \times n}$, and let $p \in[1, \infty]$. Then,

$$
\|\langle A\rangle-\langle B\rangle\|_{\sigma p}^{2} \leq\|A+B\|_{\sigma 2 p}\|A-B\|_{\sigma 2 p} .
$$

(Proof: See 827.)
Fact 9.9.24. Let $A, B \in \mathbb{F}^{n \times n}$. Then,

$$
\|\langle A\rangle-\langle B\rangle\|_{\sigma 1}^{2} \leq 2\|A+B\|_{\sigma 1}\|A-B\|_{\sigma 1} .
$$

(Proof: See [827.) (Remark: This result is due to Borchers and Kosaki. See [827.)
Fact 9.9.25. Let $A, B \in \mathbb{F}^{n \times n}$. Then,

$$
\|\langle A\rangle-\langle B\rangle\|_{\mathrm{F}} \leq \sqrt{2}\|A-B\|_{\mathrm{F}}
$$

and

$$
\|\langle A\rangle-\langle B\rangle\|_{\mathrm{F}}^{2}+\left\|\left\langle A^{*}\right\rangle-\left\langle B^{*}\right\rangle\right\|_{\mathrm{F}}^{2} \leq 2\|A-B\|_{\mathrm{F}}^{2} .
$$

If, in addition, A and B are normal, then

$$
\|\langle A\rangle-\langle B\rangle\|_{\mathrm{F}} \leq\|A-B\|_{\mathrm{F}} .
$$

(Proof: See [47, 70, 812, 827] and [683, pp. 217, 218].)
Fact 9.9.26. Let $A, B \in \mathbb{R}^{n \times n}$. Then,

$$
\|A B-B A\|_{\mathrm{F}} \leq \sqrt{2}\|A\|_{\mathrm{F}}\|B\|_{\mathrm{F}} .
$$

(Proof: See [242, 1385.) (Remark: The constant $\sqrt{2}$ holds for all n.) (Remark: Extensions to complex matrices are given in [243].)

Fact 9.9.27. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are positive semidefinite. Then,

$$
\|A B-B A\|_{\mathrm{F}}^{2}+\left\|(A-B)^{2}\right\|_{\mathrm{F}}^{2} \leq\left\|A^{2}-B^{2}\right\|_{\mathrm{F}}^{2}
$$

(Proof: See [820.)
Fact 9.9.28. Let $A, B \in \mathbb{F}^{n \times n}$, let p be a positive number, and assume that either A is normal and $p \in[2, \infty]$, or A is Hermitian and $p \geq 1$. Then,

$$
\|\langle A\rangle B-B\langle A\rangle\|_{\sigma p} \leq\|A B-B A\|_{\sigma p} .
$$

(Proof: See [1].)
Fact 9.9.29. Let $\|\cdot\|$ be a unitarily invariant norm on $\mathbb{F}^{n \times n}$, and let $A, X, B \in$ $\mathbb{F}^{n \times n}$. Then,

$$
\|A X-X B\| \leq\left[\sigma_{\max }(A)+\sigma_{\max }(B)\right]\|X\| .
$$

In particular,

$$
\sigma_{\max }(A X-X A) \leq 2 \sigma_{\max }(A) \sigma_{\max }(X) .
$$

Now, assume that A and B are positive semidefinite. Then,

$$
\|A X-X B\| \leq \max \left\{\sigma_{\max }(A), \sigma_{\max }(B)\right\}\|X\| .
$$

In particular,

$$
\sigma_{\max }(A X-X A) \leq \sigma_{\max }(A) \sigma_{\max }(X) .
$$

Finally, assume that A and X are positive semidefinite. Then,

$$
\|A X-X A\| \leq \frac{1}{2} \sigma_{\max }(A)\left\|\left[\begin{array}{cc}
X & 0 \\
0 & X
\end{array}\right]\right\|
$$

In particular,

$$
\sigma_{\max }(A X-X A) \leq \frac{1}{2} \sigma_{\max }(A) \sigma_{\max }(X)
$$

(Proof: See [214].) (Remark: The first inequality is sharp since equality holds for $A=B=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$ and $X=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$.) (Remark: $\|\cdot\|$ can be extended to $\mathbb{F}^{2 n \times 2 n}$ by considering the n largest singular values of matrices in $\mathbb{F}^{2 n \times 2 n}$. For details, see 197, pp. 90, 98].)

Fact 9.9.30. Let $\|\cdot\|$ be a unitarily invariant norm on $\mathbb{F}^{n \times n}$, let $A, X \in \mathbb{F}^{n \times n}$, and assume that A is Hermitian. Then,

$$
\|A X-X A\| \leq\left[\lambda_{\max }(A)-\lambda_{\min }(A)\right]\|X\|
$$

(Proof: See [214].) (Remark: $\lambda_{\max }(A)-\lambda_{\min }(A)$ is the spread of A. See Fact 8.15.31 and Fact 9.9.31.)

Fact 9.9.31. Let $\|\cdot\|$ be a unitarily invariant norm on $\mathbb{F}^{n \times n}$, let $A, X \in \mathbb{F}^{n \times n}$, assume that A is normal, let $\operatorname{spec}(A)=\left\{\lambda_{1}, \ldots, \lambda_{r}\right\}$, and define

$$
\operatorname{spd}(A) \triangleq \max \left\{\left|\lambda_{i}(A)-\lambda_{j}(A)\right|: i, j=1, \ldots, r\right\}
$$

Then,

$$
\|A X-X A\| \leq \sqrt{2} \operatorname{spd}(A)\|X\|
$$

Furthermore, let $p \in[1, \infty]$. Then,

$$
\|A X-X A\|_{\sigma p} \leq 2^{|2-p| /(2 p)} \operatorname{spd}(A)\|X\|_{\sigma p}
$$

In particular,

$$
\|A X-X A\|_{\mathrm{F}} \leq \operatorname{spd}(A)\|X\|_{\mathrm{F}}
$$

and

$$
\sigma_{\max }(A X-X A) \leq \sqrt{2} \operatorname{spd}(A) \sigma_{\max }(X)
$$

(Proof: See [214.) (Remark: $\operatorname{spd}(A)$ is the spread of A. See Fact 8.15.31] and Fact 9.9.30.)

Fact 9.9.32. Let $A, B \in \mathbb{F}^{n \times n}$. Then,

$$
\sigma_{\max }(\langle A\rangle-\langle B\rangle) \leq \frac{2}{\pi}\left[2+\log \frac{\sigma_{\max }(A)+\sigma_{\max }(B)}{\sigma_{\max }(A-B)}\right] \sigma_{\max }(A-B)
$$

(Remark: This result is due to Kato. See [827.)
Fact 9.9.33. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times l}$, and let $r=1$ or $r=2$. Then,

$$
\|A B\|_{\sigma r}=\|A\|_{\sigma 2 r}\|B\|_{\sigma 2 r}
$$

if and only if there exists $\alpha \geq 0$ such that $A A^{*}=\alpha B^{*} B$. Furthermore,

$$
\|A B\|_{\infty}=\|A\|_{\infty}\|B\|_{\infty}
$$

if and only if $A A^{*}$ and $B^{*} B$ have a common eigenvector associated with $\lambda_{1}\left(A A^{*}\right)$ and $\lambda_{1}\left(B^{*} B\right)$. (Proof: See 1442 .)

Fact 9.9.34. Let $A, B \in \mathbb{F}^{n \times n}$. If $p \in(0,2]$, then

$$
2^{p-1}\left(\|A\|_{\sigma_{p}}^{p}+\|B\|_{\sigma p}^{p}\right) \leq\|A+B\|_{\sigma p}^{p}+\|A-B\|_{\sigma_{p}}^{p} \leq 2\left(\|A\|_{\sigma p}^{p}+\|B\|_{\sigma_{p}}^{p}\right) .
$$

If $p \in[2, \infty)$, then

$$
2\left(\|A\|_{\sigma_{p}}^{p}+\|B\|_{\sigma_{p}}^{p}\right) \leq\|A+B\|_{\sigma_{p}}^{p}+\|A-B\|_{\sigma_{p}}^{p} \leq 2^{p-1}\left(\|A\|_{\sigma_{p}}^{p}+\|B\|_{\sigma_{p} p}^{p}\right) .
$$

If $p \in(1,2]$ and $1 / p+1 / q=1$, then

$$
\|A+B\|_{\sigma p}^{q}+\|A-B\|_{\sigma p}^{q} \leq 2\left(\|A\|_{\sigma p}^{p}+\|B\|_{\sigma p}^{p}\right)^{q / p} .
$$

If $p \in[2, \infty)$ and $1 / p+1 / q=1$, then

$$
2\left(\|A\|_{\sigma p}^{p}+\|B\|_{\sigma p}^{p}\right)^{q / p} \leq\|A+B\|_{\sigma p}^{q}+\|A-B\|_{\sigma p}^{q} .
$$

(Proof: See [696].) (Remark: These inequalities are versions of the Clarkson inequalities. See Fact 1.18.2) (Remark: See 696 for extensions to unitarily invariant norms. See [213] for additional extensions.)

Fact 9.9.35. Let $A, B \in \mathbb{C}^{n \times m}$. If $p \in[1,2]$, then

$$
\left[\|A\|^{2}+(p-1)\|B\|^{2}\right]^{1 / 2} \leq\left[\frac{1}{2}\left(\|A+B\|^{p}+\|A-B\|^{p}\right)\right]^{1 / p} .
$$

If $p \in[2, \infty]$, then

$$
\left[\frac{1}{2}\left(\|A+B\|^{p}+\|A-B\|^{p}\right)\right]^{1 / p} \leq\left[\|A\|^{2}+(p-1)\|B\|^{2}\right]^{1 / 2} .
$$

(Proof: See [116, 164.) (Remark: This result is Beckner's two-point inequality or optimal 2-uniform convexity.)

Fact 9.9.36. Let $A, B \in \mathbb{F}^{n \times n}$. If either $p \in[1,4 / 3]$ or both $p \in(4 / 3,2]$ and $A+B$ and $A-B$ are positive semidefinite, then

$$
\left(\|A\|_{\sigma p}+\|B\|_{\sigma p}\right)^{p}+\left|\|A\|_{\sigma p}-\|B\|_{\sigma p}\right|^{p} \leq\|A+B\|_{\sigma p}^{p}+\|A-B\|_{\sigma p}^{p} .
$$

Furthermore, if either $p \in[4, \infty]$ or both $p \in[2,4)$ and A and B are positive semidefinite, then

$$
\|A+B\|_{\sigma_{p}}^{p}+\|A-B\|_{\sigma p}^{p} \leq\left(\|A\|_{\sigma p}+\|B\|_{\sigma_{p}}\right)^{p}+\left|\|A\|_{\sigma p}-\|B\|_{\sigma p}\right|^{p} .
$$

(Proof: See [116, 811.) (Remark: These inequalities are versions of Hanner's inequality.) (Remark: Vector versions are given in Fact 9.7.21)

Fact 9.9.37. Let $A, B \in \mathbb{C}^{n \times n}$, and assume that A and B are Hermitian. If $p \in[1,2]$, then

$$
2^{1 / 2-1 / p}\left\|\left(A^{2}+B^{2}\right)^{1 / 2}\right\|_{p} \leq\|A+\jmath B\|_{\sigma p} \leq\left\|\left(A^{2}+B^{2}\right)^{1 / 2}\right\|_{p}
$$

and

$$
2^{1-2 / p}\left(\|A\|_{\sigma p}^{2}+\|B\|_{\sigma p}^{2}\right) \leq\left\|A+{ }_{\sigma} B\right\|_{\sigma p}^{2} \leq 2^{2 / p-1}\left(\|A\|_{\sigma p}^{2}+\|B\|_{\sigma p}^{2}\right) .
$$

Furthermore, if $p \in[2, \infty)$, then

$$
\left\|\left(A^{2}+B^{2}\right)^{1 / 2}\right\|_{p} \leq\left\|A+{ }^{\prime} B\right\|_{\sigma p} \leq 2^{1 / 2-1 / p}\left\|\left(A^{2}+B^{2}\right)^{1 / 2}\right\|_{p}
$$

and

$$
2^{2 / p-1}\left(\|A\|_{\sigma p}^{2}+\|B\|_{\sigma p}^{2}\right) \leq\|A+\jmath B\|_{\sigma p}^{2} \leq 2^{1-2 / p}\left(\|A\|_{\sigma p}^{2}+\|B\|_{\sigma p}^{2}\right) .
$$

(Proof: See 211.)

Fact 9.9.38. Let $A, B \in \mathbb{C}^{n \times n}$, and assume that A and B are Hermitian. If $p \in[1,2]$, then

$$
2^{1-2 / p}\left(\|A\|_{\sigma p}^{p}+\|B\|_{\sigma p}^{p}\right) \leq\|A+\jmath B\|_{\sigma p}^{p}
$$

If $p \in[2, \infty]$, then

$$
\|A+\jmath B\|_{\sigma p}^{p} \leq 2^{1-2 / p}\left(\|A\|_{\sigma p}^{p}+\|B\|_{\sigma p}^{p}\right)
$$

In particular,

$$
\|A+\jmath B\|_{\mathrm{F}}^{2}=\|A\|_{\mathrm{F}}^{2}+\|B\|_{\mathrm{F}}^{2}=\left\|\left(A^{2}+B^{2}\right)^{1 / 2}\right\|_{\mathrm{F}}^{2}
$$

(Proof: See [211, 219].)
Fact 9.9.39. Let $A, B \in \mathbb{C}^{n \times n}$, and assume that A is positive semidefinite and B is Hermitian. If $p \in[1,2]$, then

$$
\|A\|_{\sigma p}^{2}+2^{1-2 / p}\|B\|_{\sigma p}^{2} \leq\|A+\jmath B\|_{\sigma p}^{2}
$$

If $p \in[2, \infty]$, then

$$
\|A+\jmath B\|_{\sigma p}^{2} \leq\|A\|_{\sigma p}^{2}+2^{1-2 / p}\|B\|_{\sigma p}^{2}
$$

In particular,

$$
\|A\|_{\sigma 1}^{2}+\frac{1}{2}\|B\|_{\sigma 1}^{2} \leq\|A+\jmath B\|_{\sigma 1}^{2}
$$

$$
\|A+\jmath B\|_{\mathrm{F}}^{2}=\|A\|_{\mathrm{F}}^{2}+\|B\|_{\mathrm{F}}^{2}
$$

and

$$
\sigma_{\max }^{2}(A+\jmath B) \leq \sigma_{\max }^{2}(A)+2 \sigma_{\max }^{2}(B)
$$

In fact,

$$
\|A\|_{\sigma 1}^{2}+\|B\|_{\sigma 1}^{2} \leq\|A+\jmath B\|_{\sigma 1}^{2}
$$

(Proof: See [219].)
Fact 9.9.40. Let $A, B \in \mathbb{C}^{n \times n}$, and assume that A and B are positive semidefinite. If $p \in[1,2]$, then

$$
\|A\|_{\sigma p}^{2}+\|B\|_{\sigma p}^{2} \leq\|A+\jmath B\|_{\sigma p}^{2}
$$

If $p \in[2, \infty]$, then

$$
\|A+\jmath B\|_{\sigma p}^{2} \leq\|A\|_{\sigma p}^{2}+\|B\|_{\sigma p}^{2}
$$

Hence,

$$
\|A\|_{\sigma 2}^{2}+\|B\|_{\sigma 2}^{2}=\|A+\jmath B\|_{\sigma 2}^{2}
$$

In particular,

$$
\begin{gathered}
\left.(\operatorname{tr}\langle A\rangle)^{2}+\langle B\rangle\right)^{2} \leq(\operatorname{tr}\langle A+\jmath B\rangle)^{2} \\
\sigma_{\max }^{2}(A+\jmath B) \leq \sigma_{\max }^{2}(A)+\sigma_{\max }^{2}(A), \\
\|A+\jmath B\|_{\mathrm{F}}^{2}=\|A\|_{\mathrm{F}}^{2}+\|B\|_{\mathrm{F}}^{2}
\end{gathered}
$$

(Proof: See [219].) (Remark: See Fact 8.18.7.)

Fact 9.9.41. Let $A \in \mathbb{F}^{n \times n}$, let $B \in \mathbb{F}^{n \times n}$, assume that B is Hermitian, and let $\|\cdot\|$ be a unitarily invariant norm on $\mathbb{F}^{n \times n}$. Then,

$$
\left\|A-\frac{1}{2}\left(A+A^{*}\right)\right\| \leq\|A-B\|
$$

In particular,

$$
\left\|A-\frac{1}{2}\left(A+A^{*}\right)\right\|_{\mathrm{F}} \leq\|A-B\|_{\mathrm{F}}
$$

and

$$
\sigma_{\max }\left[A-\frac{1}{2}\left(A+A^{*}\right)\right] \leq \sigma_{\max }(A-B)
$$

(Proof: See [197, p. 275] and [1098, p. 150].)
Fact 9.9.42. Let $A, M, S, B \in \mathbb{F}^{n \times n}$, assume that $A=M S, M$ is positive semidefinite, and S and B are unitary, and let $\|\cdot\|$ be a unitarily invariant norm on $\mathbb{F}^{n \times n}$. Then,

$$
\|A-S\| \leq\|A-B\|
$$

In particular,

$$
\|A-S\|_{\mathrm{F}} \leq\|A-B\|_{\mathrm{F}}
$$

(Proof: See [197, p. 276] and 1098 p. 150].) (Remark: $A=M S$ is the polar decomposition of A. See Corollary 5.6.5.)

Fact 9.9.43. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are Hermitian, let $\|\cdot\|$ be a unitarily invariant norm on $\mathbb{F}^{n \times n}$, and let $k \in \mathbb{N}$. Then,

$$
\left\|(A-B)^{2 k+1}\right\| \leq 2^{2 k}\left\|A^{2 k+1}-B^{2 k+1}\right\|
$$

(Proof: See [197, p. 294] or [758].)
Fact 9.9.44. Let $A, B \in \mathbb{F}^{n \times n}$, and let $\|\cdot\|$ be a unitarily invariant norm on $\mathbb{F}^{n \times n}$. Then,

$$
\|\langle A\rangle-\langle B\rangle\| \leq \sqrt{2\|A+B\|\|A-B\|}
$$

(Proof: See [47.) (Remark: This result is due to Kosaki and Bhatia.)
Fact 9.9.45. Let $A, B \in \mathbb{F}^{n \times n}$, and let $p \geq 1$. Then,

$$
\|\langle A\rangle-\langle B\rangle\|_{\sigma p} \leq \max \left\{2^{1 / p-1 / 2}, 1\right\} \sqrt{\|A+B\|_{\sigma p}\|A-B\|_{\sigma p}}
$$

(Proof: See [47.) (Remark: This result is due to Kittaneh, Kosaki, and Bhatia.)
Fact 9.9.46. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are positive semidefinite, and let $\|\cdot\|$ be a unitarily invariant norm on $\mathbb{F}^{2 n \times 2 n}$. Then,

$$
\left\|\left[\begin{array}{cc}
A+B & 0 \\
0 & 0
\end{array}\right]\right\| \leq\left\|\left[\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right]\right\|+\left\|\left[\begin{array}{cc}
A^{1 / 2} B^{1 / 2} & 0 \\
0 & A^{1 / 2} B^{1 / 2}
\end{array}\right]\right\|
$$

In particular,

$$
\sigma_{\max }(A+B) \leq \max \left\{\sigma_{\max }(A), \sigma_{\max }(B)\right\}+\sigma_{\max }\left(A^{1 / 2} B^{1 / 2}\right)
$$

and, for all $p \in[1, \infty)$,

$$
\|A+B\|_{\sigma p} \leq\left(\|A\|_{\sigma p}^{p}+\|B\|_{\sigma p}^{p}\right)^{1 / p}+2^{1 / p}\left\|A^{1 / 2} B^{1 / 2}\right\|_{\sigma p}
$$

(Proof: See [818, 821, 825].) (Remark: See Fact 9.14 .15 for a tighter upper bound for $\sigma_{\max }(A+B)$.)

Fact 9.9.47. Let $A, X, B \in \mathbb{F}^{n \times n}$, and let $\|\cdot\|$ be a unitarily invariant norm on $\mathbb{F}^{n \times n}$. Then,

$$
\left\|A^{*} X B\right\| \leq \frac{1}{2}\left\|A A^{*} X+X B B^{*}\right\|
$$

In particular,

$$
\left\|A^{*} B\right\| \leq \frac{1}{2}\left\|A A^{*}+B B^{*}\right\|
$$

(Proof: See [61, 202, 209, 525, 815].) (Remark: The first result is McIntosh's inequality.) (Remark: See Fact 9.14.23.)

Fact 9.9.48. Let $A, X, B \in \mathbb{F}^{n \times n}$, assume that X is positive semidefinite, and let $\|\cdot\|$ be a unitarily invariant norm on $\mathbb{F}^{n \times n}$. Then,

$$
\left\|A^{*} X B+B^{*} X A\right\| \leq\left\|A^{*} X A+B^{*} X B\right\|
$$

In particular,

$$
\left\|A^{*} B+B^{*} A\right\| \leq\left\|A^{*} A+B^{*} B\right\|
$$

(Proof: See 819.) (Remark: See 819 for extensions to the case in which X is not necessarily positive semidefinite.)

Fact 9.9.49. Let $A, X, B \in \mathbb{F}^{n \times n}$, assume that A and B are positive semidefinite, let $p \in[0,1]$, and let $\|\cdot\|$ be a unitarily invariant norm on $\mathbb{F}^{n \times n}$. Then,

$$
\left\|A^{p} X B^{1-p}+A^{1-p} X B^{p}\right\| \leq\|A X+X B\|
$$

and

$$
\left\|A^{p} X B^{1-p}-A^{1-p} X B^{p}\right\| \leq|2 p-1|\|A X-X B\|
$$

(Proof: See 61, 203, 216, 510.) (Remark: These results are the Heinz inequalities.)
Fact 9.9.50. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A is nonsingular and B is Hermitian, and let $\|\cdot\|$ be a unitarily invariant norm on $\mathbb{F}^{n \times n}$. Then,

$$
\|B\| \leq \frac{1}{2}\left\|A B A^{-1}+A^{-1} B A\right\|
$$

(Proof: See 347, 517].)
Fact 9.9.51. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are positive semidefinite, and let $\|\cdot\|$ be a unitarily invariant norm on $\mathbb{F}^{n \times n}$. If $r \in[0,1]$, then

$$
\left\|A^{r}-B^{r}\right\| \leq\left\|\langle A-B\rangle^{r}\right\|
$$

Furthermore, if $r \in[1, \infty)$, then

$$
\left\|\langle A-B\rangle^{r}\right\| \leq\left\|A^{r}-B^{r}\right\|
$$

In particular,

$$
\left\|(A-B)^{2}\right\| \leq\left\|A^{2}-B^{2}\right\|
$$

(Proof: See [197, pp. 293, 294] and [820].)

Fact 9.9.52. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are positive semidefinite, let $\|\cdot\|$ be a unitarily invariant norm on $\mathbb{F}^{n \times n}$, and let $z \in \mathbb{F}$. Then,

$$
\|A-|z| B\| \leq\|A+z B\| \leq\|A+|z| B\| .
$$

In particular,

$$
\|A-B\| \leq\|A+B\| .
$$

(Proof: See [210.) (Remark: Extensions to weak log majorization are given in [1483].) (Remark: The special case $z=1$ is given in [215.).

Fact 9.9.53. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are positive semidefinite, and let $\|\cdot\|$ be a unitarily invariant norm on $\mathbb{F}^{n \times n}$. If $r \in[0,1]$, then

$$
\left\|(A+B)^{r}\right\| \leq\left\|A^{r}+B^{r}\right\| .
$$

Furthermore, if $r \in[1, \infty)$, then

$$
\left\|A^{r}+B^{r}\right\| \leq\left\|(A+B)^{r}\right\| .
$$

In particular, if $k \geq 1$, then

$$
\left\|A^{k}+B^{k}\right\| \leq\left\|(A+B)^{k}\right\| .
$$

(Proof: See 588.)
Fact 9.9.54. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are positive semidefinite, and let $\|\cdot\|$ be a unitarily invariant norm on $\mathbb{F}^{n \times n}$. Then,

$$
\|\log (I+A)-\log (I+B)\| \leq\|\log (I+\langle A-B\rangle)\|
$$

and

$$
\|\log (I+A+B)\| \leq\|\log (I+A)+\log (I+B)\| .
$$

(Proof: See [58] and [197] p. 293].) (Remark: See Fact 11.16.16.)
Fact 9.9.55. Let $A, X, B \in \mathbb{F}^{n \times n}$, assume that A and B are positive definite, and let $\|\cdot\|$ be a unitarily invariant norm on $\mathbb{F}^{n \times n}$. Then,

$$
\|(\log A) X-X(\log B)\| \leq\left\|A^{1 / 2} X B^{-1 / 2}-A^{-1 / 2} X B^{1 / 2}\right\| .
$$

(Proof: See [216.) (Remark: See Fact 11.16.17)
Fact 9.9.56. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A is nonsingular, let $\|\cdot\|$ be a normalized submultiplicative norm on $\mathbb{F}^{n \times n}$, and assume that $\|A-B\|<1 /\left\|A^{-1}\right\|$. Then, B is nonsingular. (Remark: See Fact 9.8.44)

Fact 9.9.57. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A is nonsingular, let $\|\cdot\|$ be a normalized submultiplicative norm on $\mathbb{F}^{n \times n}$, let $\gamma>0$, and assume that $\left\|A^{-1}\right\|<\gamma$ and $\|A-B\|<1 / \gamma$. Then, B is nonsingular,

$$
\left\|B^{-1}\right\| \leq \frac{\gamma}{1-\gamma\|B-A\|},
$$

and

$$
\left\|A^{-1}-B^{-1}\right\| \leq \gamma^{2}\|A-B\| .
$$

(Proof: See [447, p. 148].) (Remark: See Fact 9.8.44)

Fact 9.9.58. Let $A, B \in \mathbb{F}^{n \times n}$, let $\lambda \in \mathbb{C}$, assume that $\lambda I-A$ is nonsingular, let $\|\cdot\|$ be a normalized submultiplicative norm on $\mathbb{F}^{n \times n}$, let $\gamma>0$, and assume that $\left\|(\lambda I-A)^{-1}\right\|<\gamma$ and $\|A-B\|<1 / \gamma$. Then, $\lambda I-B$ is nonsingular,

$$
\left\|(\lambda I-B)^{-1}\right\| \leq \frac{\gamma}{1-\gamma\|B-A\|}
$$

and

$$
\left\|(\lambda I-A)^{-1}-(\lambda I-B)^{-1}\right\| \leq \frac{\gamma^{2}\|A-B\|}{1-\gamma\|A-B\|}
$$

(Proof: See [447, pp. 149, 150].) (Remark: See Fact 9.9.57.)
Fact 9.9.59. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and $A+B$ are nonsingular, and let $\|\cdot\|$ be a normalized submultiplicative norm on $\mathbb{F}^{n \times n}$. Then,

$$
\left\|A^{-1}-(A+B)^{-1}\right\| \leq\left\|A^{-1}\right\|\left\|(A+B)^{-1}\right\|\|B\|
$$

If, in addition, $\left\|A^{-1} B\right\|<1$, then

$$
\left\|A^{-1}+(A+B)^{-1}\right\| \leq \frac{\left\|A^{-1}\right\|\left\|A^{-1} B\right\|}{1-\left\|A^{-1} B\right\|}
$$

Furthermore, if $\left\|A^{-1} B\right\|<1$ and $\|B\|<1 /\left\|A^{-1}\right\|$, then

$$
\left\|A^{-1}-(A+B)^{-1}\right\| \leq \frac{\left\|A^{-1}\right\|^{2}\|B\|}{1-\left\|A^{-1}\right\|\|B\|}
$$

Fact 9.9.60. Let $A \in \mathbb{F}^{n \times n}$, assume that A is nonsingular, let $E \in \mathbb{F}^{n \times n}$, and let $\|\cdot\|$ be a normalized norm on $\mathbb{F}^{n \times n}$. Then,

$$
\begin{aligned}
(A+E)^{-1} & =A^{-1}\left(I+E A^{-1}\right)^{-1} \\
& =A^{-1}-A^{-1} E A^{-1}+O\left(\|E\|^{2}\right)
\end{aligned}
$$

Fact 9.9.61. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{l \times k}$. Then,

$$
\begin{aligned}
\|A \otimes B\|_{\mathrm{col}} & =\|A\|_{\mathrm{col}}\|B\|_{\mathrm{col}} \\
\|A \otimes B\|_{\infty} & =\|A\|_{\infty}\|B\|_{\infty} \\
\|A \otimes B\|_{\mathrm{row}} & =\|A\|_{\mathrm{row}}\|B\|_{\mathrm{row}}
\end{aligned}
$$

Furthermore, if $p \in[1, \infty]$, then

$$
\|A \otimes B\|_{p}=\|A\|_{p}\|B\|_{p}
$$

Fact 9.9.62. Let $A, B \in \mathbb{F}^{n \times n}$, and let $\|\cdot\|$ be a unitarily invariant norm on $\mathbb{F}^{n \times n}$. Then,

$$
\|A \circ B\|^{2} \leq\left\|A^{*} A\right\|\left\|B^{*} B\right\|
$$

(Proof: See [712].)
Fact 9.9.63. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are normal, and let $\|\cdot\|$ be a unitarily invariant norm on $\mathbb{F}^{n \times n}$. Then,

$$
\|A+B\| \leq\|\langle A\rangle+\langle B\rangle\|
$$

and

$$
\|A \circ B\| \leq\|\langle A\rangle \circ\langle B\rangle\|
$$

(Proof: See [90, 825] and 711 p. 213].)
Fact 9.9.64. Let $A \in \mathbb{R}^{n \times n}$, assume that A is nonsingular, let $b \in \mathbb{R}^{n}$, and let $\hat{x} \in \mathbb{R}^{n}$. Then,

$$
\frac{1}{\kappa(A)} \frac{\|A \hat{x}-b\|}{\|b\|} \leq \frac{\left\|\hat{x}-A^{-1} b\right\|}{\left\|A^{-1} b\right\|} \leq \kappa(A) \frac{\|A \hat{x}-b\|}{\|b\|}
$$

where $\kappa(A) \triangleq\|A\|\left\|A^{-1}\right\|$ and the vector and matrix norms are compatible. Equivalently, letting $\hat{b} \triangleq A \hat{x}-b$ and $x \triangleq A^{-1} b$, it follows that

$$
\frac{1}{\kappa(A)} \frac{\|\hat{b}\|}{\|b\|} \leq \frac{\|\hat{x}-x\|}{\|x\|} \leq \kappa(A) \frac{\|\hat{b}\|}{\|b\|}
$$

(Remark: This result estimates the accuracy of an approximate solution \hat{x} to $A x=$ b. $\kappa(A)$ is the condition number of A.) (Remark: See [1501.)

Fact 9.9.65. Let $A \in \mathbb{R}^{n \times n}$, assume that A is nonsingular, let $\hat{A} \in \mathbb{R}^{n \times n}$, assume that $\left\|A^{-1} \hat{A}\right\|<1$, and let $b, \hat{b} \in \mathbb{R}^{n}$. Furthermore, let $x \in \mathbb{R}^{n}$ satisfy $A x=b$, and let $\hat{x} \in \mathbb{R}^{n}$ satisfy $(A+\hat{A}) \hat{x}=b+\hat{b}$. Then,

$$
\frac{\|\hat{x}-x\|}{\|x\|} \leq \frac{\kappa(A)}{1-\left\|A^{-1} \hat{A}\right\|}\left(\frac{\|\hat{b}\|}{\|b\|}+\frac{\|\hat{A}\|}{\|A\|}\right)
$$

where $\kappa(A) \triangleq\|A\|\left\|A^{-1}\right\|$ and the vector and matrix norms are compatible. If, in addition, $\left\|A^{-1}\right\|\|\hat{A}\|<1$, then

$$
\frac{1}{\kappa(A)+1} \frac{\|\hat{b}-\hat{A} x\|}{\|b\|} \leq \frac{\|\hat{x}-x\|}{\|x\|} \leq \frac{\kappa(A)}{1-\left\|A^{-1} \hat{A}\right\|} \frac{\|\hat{b}-\hat{A} x\|}{\|b\|}
$$

(Proof: See 407, 408.)
Fact 9.9.66. Let $A, \hat{A} \in \mathbb{R}^{n \times n}$ satisfy $\left\|A^{+} \hat{A}\right\|<1$, let $b \in \mathcal{R}(A)$, let $\hat{b} \in \mathbb{R}^{n}$, and assume that $b+\hat{b} \in \mathcal{R}(A+\hat{A})$. Furthermore, let $\hat{x} \in \mathbb{R}^{n}$ satisfy $(A+\hat{A}) \hat{x}=b+\hat{b}$. Then, $x \triangleq A^{+} b+\left(I-A^{+} A\right) \hat{x}$ satisfies $A x=b$ and

$$
\frac{\|\hat{x}-x\|}{\|x\|} \leq \frac{\kappa(A)}{1-\left\|A^{+} \hat{A}\right\|}\left(\frac{\|\hat{b}\|}{\|b\|}+\frac{\|\hat{A}\|}{\|A\|}\right)
$$

where $\kappa(A) \triangleq\|A\|\left\|A^{-1}\right\|$ and the vector and matrix norms are compatible. (Proof: See 407.) (Remark: See [408] for a lower bound.)

9.10 Facts on Matrix Norms for Partitioned Matrices

Fact 9.10.1. Let $A \in \mathbb{F}^{n \times m}$ be the partitioned matrix

$$
A=\left[\begin{array}{cccc}
A_{11} & A_{12} & \cdots & A_{1 k} \\
A_{21} & A_{22} & \cdots & A_{2 k} \\
\vdots & \vdots & \vdots & \vdots \\
A_{k 1} & A_{k 2} & \cdots & A_{k k}
\end{array}\right]
$$

where $A_{i j} \in \mathbb{F}^{n_{i} \times n_{j}}$ for all $i, j=1, \ldots, k$. Furthermore, define $\mu(A) \in \mathbb{R}^{k \times k}$ by

$$
\mu(A) \triangleq\left[\begin{array}{cccc}
\sigma_{\max }\left(A_{11}\right) & \sigma_{\max }\left(A_{12}\right) & \cdots & \sigma_{\max }\left(A_{1 k}\right) \\
\sigma_{\max }\left(A_{21}\right) & \sigma_{\max }\left(A_{22}\right) & \cdots & \sigma_{\max }\left(A_{2 k}\right) \\
\vdots & \vdots & \therefore & \vdots \\
\sigma_{\max }\left(A_{k 1}\right) & \sigma_{\max }\left(A_{k 2}\right) & \cdots & \sigma_{\max }\left(A_{k k}\right)
\end{array}\right]
$$

Finally, let $B \in \mathbb{F}^{n \times m}$ be partitioned conformally with A. Then, the following statements hold:
i) For all $\alpha \in \mathbb{F}, \mu(\alpha A) \leq|\alpha| \mu(A)$.
ii) $\mu(A+B) \leq \mu(A)+\mu(B)$.
iii) $\mu(A B) \leq \mu(A) \mu(B)$.
iv) $\operatorname{sprad}(A) \leq \operatorname{sprad}[\mu(A)]$.
v) $\sigma_{\max }(A) \leq \sigma_{\max }[\mu(A)]$.
(Proof: See [400, 1055, 1205].) (Remark: $\mu(A)$ is a matricial norm.) (Remark: This result is a norm-compression inequality.)

Fact 9.10.2. Let $A \in \mathbb{F}^{n \times m}$ be the partitioned matrix

$$
A=\left[\begin{array}{cccc}
A_{11} & A_{12} & \cdots & A_{1 k} \\
A_{21} & A_{22} & \cdots & A_{2 k} \\
\vdots & \vdots & \vdots & \vdots \\
A_{k 1} & A_{k 2} & \cdots & A_{k k}
\end{array}\right]
$$

where $A_{i j} \in \mathbb{F}^{n_{i} \times n_{j}}$ for all $i, j=1, \ldots, k$. Then, the following statements hold:
i) If $p \in[1,2]$, then

$$
\sum_{i, j=1}^{k}\left\|A_{i j}\right\|_{\sigma p}^{2} \leq\|A\|_{\sigma p}^{2} \leq k^{4 / p-2} \sum_{i, j=1}^{k}\left\|A_{i j}\right\|_{\sigma p}^{2}
$$

ii) If $p \in[2, \infty]$, then

$$
k^{4 / p-2} \sum_{i, j=1}^{k}\left\|A_{i j}\right\|_{\sigma p}^{2} \leq\|A\|_{\sigma p}^{2} \leq \sum_{i, j=1}^{k}\left\|A_{i j}\right\|_{\sigma p}^{2}
$$

iii) If $p \in[1,2]$, then

$$
\|A\|_{\sigma p}^{p} \leq \sum_{i, j=1}^{k}\left\|A_{i j}\right\|_{\sigma p}^{p} \leq k^{2-p}\|A\|_{\sigma p}^{p} .
$$

iv) If $p \in[2, \infty)$, then

$$
k^{2-p}\|A\|_{\sigma p}^{p} \leq \sum_{i, j=1}^{k}\left\|A_{i j}\right\|_{\sigma p}^{p} \leq\|A\|_{\sigma p}^{p}
$$

v) $\|A\|_{\sigma 2}^{2}=\sum_{i, j=1}^{k}\left\|A_{i j}\right\|_{\sigma 2}^{2}$.
$v i$ For all $p \in[1, \infty)$,

$$
\left(\sum_{i=1}^{k}\left\|A_{i i}\right\|_{\sigma p}^{p}\right)^{1 / p} \leq\|A\|_{\sigma p}
$$

vii) For all $i=1, \ldots, k$,

$$
\sigma_{\max }\left(A_{i i}\right) \leq \sigma_{\max }(A)
$$

(Proof: See 129, 208.)
Fact 9.10.3. Let $A, B \in \mathbb{F}^{n \times n}$, and define $\mathcal{A} \in \mathbb{F}^{k n \times k n}$ by

$$
\mathcal{A} \triangleq\left[\begin{array}{ccccc}
A & B & B & \cdots & B \\
B & A & B & \cdots & B \\
B & B & A & \ddots & B \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
B & B & B & \cdots & A
\end{array}\right] .
$$

Then,

$$
\sigma_{\max }(\mathcal{A})=\max \left\{\sigma_{\max }(A+(k-1) B), \sigma_{\max }(A-B)\right\}
$$

Now, let $p \in[1, \infty)$. Then,

$$
\|\mathcal{A}\|_{\sigma p}=\left(\|A+(k-1) B\|_{\sigma p}^{p}+(k-1)\|A-B\|_{\sigma p}^{p}\right)^{1 / p} .
$$

(Proof: See [129].)
Fact 9.10.4. Let $A \in \mathbb{F}^{n \times n}$, and define $\mathcal{A} \in \mathbb{F}^{k n \times k n}$ by

$$
\mathcal{A} \triangleq\left[\begin{array}{ccccc}
A & A & A & \cdots & A \\
-A & A & A & \cdots & A \\
-A & -A & A & \ddots & A \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
-A & -A & -A & \cdots & A
\end{array}\right]
$$

Then,

$$
\sigma_{\max }(\mathcal{A})=\sqrt{\frac{2}{1-\cos (\pi / k)}} \sigma_{\max }(A)
$$

Furthermore, define $\mathcal{A}_{0} \in \mathbb{F}^{k n \times k n}$ by

$$
\mathcal{A}_{0} \triangleq\left[\begin{array}{ccccc}
0 & A & A & \cdots & A \\
-A & 0 & A & \cdots & A \\
-A & -A & 0 & \ddots & A \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
-A & -A & -A & \cdots & 0
\end{array}\right]
$$

Then,

$$
\sigma_{\max }\left(\mathcal{A}_{0}\right)=\sqrt{\frac{1+\cos (\pi / k)}{1-\cos (\pi / k)}} \sigma_{\max }(A)
$$

(Proof: See [129.) (Remark: Extensions to Schatten norms are given in [129].)
Fact 9.10.5. Let $A, B, C, D \in \mathbb{F}^{n \times n}$. Then,

$$
\frac{1}{2} \max \left\{\sigma_{\max }(A+B+C+D), \sigma_{\max }(A-B-C+D)\right\} \leq \sigma_{\max }\left(\left[\begin{array}{cc}
A & B \\
C & D
\end{array}\right]\right)
$$

Now, let $p \in[1, \infty)$. Then,

$$
\frac{1}{2}\left(\|A+B+C+D\|_{\sigma p}^{p}+\|A-B-C+D\|_{\sigma p}^{p}\right)^{1 / p} \leq\left\|\left[\begin{array}{cc}
A & B \\
C & D
\end{array}\right]\right\|_{\sigma p}
$$

(Proof: See [129].)
Fact 9.10.6. Let $A, B, C \in \mathbb{F}^{n \times n}$, define

$$
\mathcal{A} \triangleq\left[\begin{array}{cc}
A & B \\
B^{*} & C
\end{array}\right]
$$

assume that \mathcal{A} is positive semidefinite, let $p \in[1, \infty]$, and define

$$
\mathcal{A}_{0} \triangleq\left[\begin{array}{cc}
\|A\|_{\sigma p} & \|B\|_{\sigma p} \\
\|B\|_{\sigma p} & \|C\|_{\sigma p}
\end{array}\right]
$$

If $p \in[1,2]$, then

$$
\left\|\mathcal{A}_{0}\right\|_{\sigma p} \leq\|\mathcal{A}\|_{\sigma p}
$$

Furthermore, if $p \in[2, \infty]$, then

$$
\|\mathcal{A}\|_{\sigma p} \leq\left\|\mathcal{A}_{0}\right\|_{\sigma p}
$$

Hence, if $p=2$, then

$$
\left\|\mathcal{A}_{0}\right\|_{\sigma p}=\|\mathcal{A}\|_{\sigma p}
$$

Finally, if $A=C, B$ is Hermitian, and p is an integer, then

$$
\|\mathcal{A}\|_{\sigma p}^{p}=\|A+B\|_{\sigma p}^{p}+\|A-B\|_{\sigma p}^{p}
$$

and

$$
\left\|\mathcal{A}_{0}\right\|_{\sigma p}^{p}=\left(\|A\|_{\sigma p}+\|B\|_{\sigma p}\right)^{p}+\left|\|A\|_{\sigma p}-\|B\|_{\sigma p}\right|^{p}
$$

(Proof: See [810].) (Remark: This result is a norm-compression inequality.)

Fact 9.10.7. Let $A \in \mathbb{F}^{n \times n}, B \in \mathbb{F}^{n \times m}$, and $C \in \mathbb{F}^{m \times m}$, define

$$
\mathcal{A} \triangleq\left[\begin{array}{cc}
A & B \\
B^{*} & C
\end{array}\right]
$$

assume that \mathcal{A} is positive semidefinite, and let $p \geq 1$. If $p \in[1,2]$, then

$$
\|\mathcal{A}\|_{\sigma p}^{p} \leq\|A\|_{\sigma p}^{p}+\left(2^{p}-2\right)\|B\|_{\sigma p}^{p}+\|C\|_{\sigma p}^{p} .
$$

Furthermore, if $p \geq 2$, then

$$
\|A\|_{\sigma p}^{p}+\left(2^{p}-2\right)\|B\|_{\sigma p}^{p}+\|C\|_{\sigma p}^{p} \leq\|\mathcal{A}\|_{\sigma p}^{p} .
$$

Finally, if $p=2$, then

$$
\|\mathcal{A}\|_{\sigma p}^{p}=\|A\|_{\sigma p}^{p}+\left(2^{p}-2\right)\|B\|_{\sigma p}^{p}+\|C\|_{\sigma p}^{p} .
$$

(Proof: See 86.)
Fact 9.10.8. Let $A \in \mathbb{F}^{n \times m}$ be the partitioned matrix

$$
A=\left[\begin{array}{lll}
A_{11} & \cdots & A_{1 k} \\
A_{21} & \cdots & A_{2 k}
\end{array}\right]
$$

where $A_{i j} \in \mathbb{F}^{n_{i} \times n_{j}}$ for all $i, j=1, \ldots, k$. Then, the following statements are conjectured to hold:
i) If $p \in[1,2]$, then

$$
\left\|\left[\begin{array}{lll}
\left\|A_{11}\right\|_{\sigma p} & \cdots & \left\|A_{1 k}\right\|_{\sigma p} \\
\left\|A_{21}\right\|_{\sigma p} & \cdots & \left\|A_{2 k}\right\|_{\sigma p}
\end{array}\right]\right\|_{\sigma p} \leq\|A\|_{\sigma p}
$$

ii) If $p \geq 2$, then

$$
\|A\|_{\sigma p} \leq\left\|\left[\begin{array}{lll}
\left\|A_{11}\right\|_{\sigma p} & \cdots & \left\|A_{1 k}\right\|_{\sigma p} \\
\left\|A_{21}\right\|_{\sigma p} & \cdots & \left\|A_{2 k}\right\|_{\sigma p}
\end{array}\right]\right\|_{\sigma p}
$$

(Proof: See [87]. The result is true when all blocks have rank 1 or when $p \geq 4$.) (Remark: This result is a norm-compression inequality.)

9.11 Facts on Matrix Norms and Eigenvalues Involving One Matrix

Fact 9.11.1. Let $A \in \mathbb{F}^{n \times n}$. Then,

$$
|\operatorname{det} A| \leq \prod_{i=1}^{n}\left\|\operatorname{row}_{i}(A)\right\|_{2}
$$

and

$$
|\operatorname{det} A| \leq \prod_{i=1}^{n}\left\|\operatorname{col}_{i}(A)\right\|_{2}
$$

(Proof: The result follows from Hadamard's inequality. See Fact 8.17.11.)

Fact 9.11.2. Let $A \in \mathbb{F}^{n \times n}$, and let $\operatorname{mspec}(A)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}_{\mathrm{ms}}$. Then,

$$
\operatorname{Re} \operatorname{tr} A \leq|\operatorname{tr} A| \leq \sum_{i=1}^{n}\left|\lambda_{i}\right| \leq\|A\|_{\sigma 1}=\operatorname{tr}\langle A\rangle=\sum_{i=1}^{n} \sigma_{i}(A)
$$

In addition, if A is normal, then

$$
\|A\|_{\sigma 1}=\sum_{i=1}^{n}\left|\lambda_{i}\right| .
$$

Finally, A is positive semidefinite if and only if

$$
\|A\|_{\sigma 1}=\operatorname{tr} A
$$

(Proof: See Fact 5.14.15 and Fact 9.13.19) (Remark: See Fact 5.11.9 and Fact 5.14.15.) (Problem: Refine the second statement for necessity and sufficiency. See [742.)

Fact 9.11.3. Let $A \in \mathbb{F}^{n \times n}$, and let $\operatorname{mspec}(A)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}_{\mathrm{ms}}$. Then,

$$
\begin{array}{r}
\operatorname{Retr} A^{2} \leq\left|\operatorname{tr} A^{2}\right| \leq \sum_{i=1}^{n}\left|\lambda_{i}\right|^{2} \leq\left\|A^{2}\right\|_{\sigma 1}=\operatorname{tr}\left\langle A^{2}\right\rangle=\sum_{i=1}^{n} \sigma_{i}\left(A^{2}\right) \\
\leq \sum_{i=1}^{n} \sigma_{i}^{2}(A)=\operatorname{tr} A^{*} A=\operatorname{tr}\langle A\rangle^{2}=\|A\|_{\sigma 2}^{2}=\|A\|_{\mathrm{F}}^{2}
\end{array}
$$

and

$$
\|A\|_{\mathrm{F}}^{2}-\sqrt{\frac{n^{3}-n}{12}}\left\|\left[A, A^{*}\right]\right\|_{\mathrm{F}} \leq \sum_{i=1}^{n}\left|\lambda_{i}\right|^{2} \leq \sqrt{\|A\|_{\mathrm{F}}^{4}-\frac{1}{2}\left\|\left[A, A^{*}\right]\right\|_{\mathrm{F}}^{2}} \leq\|A\|_{\mathrm{F}}^{2}
$$

Consequently, A is normal if and only if

$$
\|A\|_{\mathrm{F}}^{2}=\sum_{i=1}^{n}\left|\lambda_{i}\right|^{2} .
$$

Furthermore,

$$
\sum_{i=1}^{n}\left|\lambda_{i}\right|^{2} \leq \sqrt{\|A\|_{\mathrm{F}}^{4}-\frac{1}{4}\left(\operatorname{tr}\left|\left[A, A^{*}\right]\right|\right)^{2}} \leq\|A\|_{\mathrm{F}}^{2}
$$

and

$$
\sum_{i=1}^{n}\left|\lambda_{i}\right|^{2} \leq \sqrt{\|A\|_{\mathrm{F}}^{4}-\frac{n^{2}}{4}\left|\operatorname{det}\left[A, A^{*}\right]\right|^{2 / n}} \leq\|A\|_{\mathrm{F}}^{2}
$$

Finally, A is Hermitian if and only if

$$
\|A\|_{\mathrm{F}}^{2}=\operatorname{tr} A^{2}
$$

(Proof: Use Fact 8.17.5 and Fact 9.11.2. The lower bound involving the commutator is due to Henrici; the corresponding upper bound is given in 847. The bounds in the penultimate statement are given in [847]. The last statement follows from Fact 3.7.13) (Remark: $\operatorname{tr}\left(A+A^{*}\right)^{2} \geq 0$ and $\operatorname{tr}\left(A-A^{*}\right)^{2} \leq 0$ yield $\left|\operatorname{tr} A^{2}\right| \leq\|A\|_{\mathrm{F}}^{2}$.) (Remark: The result $\sum_{i=1}^{n}\left|\lambda_{i}\right|^{2} \leq\|A\|_{\mathrm{F}}^{2}$ is Schur's inequality. See Fact 8.17.5.) (Remark: See Fact 5.11.10, Fact 9.11.5, Fact 9.13.17, and Fact 9.13.20,) (Problem: Merge the first two strings.)

Fact 9.11.4. Let $A \in \mathbb{F}^{n \times n}$. Then,

$$
\left|\operatorname{tr} A^{2}\right| \leq(\operatorname{rank} A) \sqrt{\|A\|_{\mathrm{F}}^{4}-\frac{1}{2}\left\|\left[A, A^{*}\right]\right\|_{\mathrm{F}}^{2}}
$$

(Proof: See 315.)
Fact 9.11.5. Let $A \in \mathbb{F}^{n \times n}$, let $\operatorname{mspec}(A)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}_{\mathrm{ms}}$, and define

$$
\alpha \triangleq \sqrt{\left(\|A\|_{\mathrm{F}}^{2}-\frac{1}{n}|\operatorname{tr} A|^{2}\right)^{2}-\frac{1}{2}\left\|\left[A, A^{*}\right]\right\|_{\mathrm{F}}^{2}}+\frac{1}{n}|\operatorname{tr} A|^{2} .
$$

Then,

$$
\begin{gathered}
\sum_{i=1}^{n}\left|\lambda_{i}\right|^{2} \leq \alpha \leq \sqrt{\|A\|_{\mathrm{F}}^{4}-\frac{1}{2}\left\|\left[A, A^{*}\right]\right\|_{\mathrm{F}}^{2}} \leq\|A\|_{\mathrm{F}}^{2} \\
\sum_{i=1}^{n}\left(\operatorname{Re} \lambda_{i}\right)^{2} \leq \frac{1}{2}\left(\alpha+\operatorname{Retr} A^{2}\right) \\
\sum_{i=1}^{n}\left(\operatorname{Im} \lambda_{i}\right)^{2} \leq \frac{1}{2}\left(\alpha-\operatorname{Retr} A^{2}\right)
\end{gathered}
$$

(Proof: See [732.) (Remark: The first string of inequalities interpolates the upper bound for $\sum_{i=1}^{n}\left|\lambda_{i}\right|^{2}$ in the second string of inequalities in Fact 9.11.3)

Fact 9.11.6. Let $A \in \mathbb{F}^{n \times n}$, let $\operatorname{mspec}(A)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}_{\mathrm{ms}}$, and let $p \in(0,2]$. Then,

$$
\sum_{i=1}^{n}\left|\lambda_{i}\right|^{p} \leq \sum_{i=1}^{n} \sigma_{i}^{p}(A)=\|A\|_{\sigma p}^{p} \leq\|A\|_{p}^{p} .
$$

(Proof: The left-hand inequality, which holds for all $p>0$, follows from Weyl's inequality in Fact 8.17.5. The right-hand inequality is given by Proposition 9.2.5) (Remark: This result is the generalized Schur inequality.) (Remark: The case of equality is discussed in [742] for $p \in[1,2)$.)

Fact 9.11.7. Let $A \in \mathbb{F}^{n \times n}$, and let $\operatorname{mspec}(A)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}_{\mathrm{ms}}$. Then,

$$
\|A\|_{\mathrm{F}}^{2}-\sum_{i=1}^{n}\left|\lambda_{i}\right|^{2}=2\left(\left\|\frac{1}{2 \jmath}\left(A-A^{*}\right)\right\|_{\mathrm{F}}^{2}-\sum_{i=1}^{n}\left|\operatorname{Im} \lambda_{i}\right|^{2}\right) .
$$

(Proof: See Fact 5.11.22) (Remark: This result is an extension of Browne's theorem.)

Fact 9.11.8. Let $A \in \mathbb{R}^{n \times n}$, and let $\lambda \in \operatorname{spec}(A)$. Then, the following inequalities hold:
i) $|\lambda| \leq n\|A\|_{\infty}$.
ii) $|\operatorname{Re} \lambda| \leq \frac{n}{2}\left\|A+A^{\mathrm{T}}\right\|_{\infty}$.
iii) $|\operatorname{Im} \lambda| \leq \frac{\sqrt{n^{2}-n}}{2 \sqrt{2}}\left\|A-A^{\mathrm{T}}\right\|_{\infty}$.
(Proof: See [963, p. 140].) (Remark: i) and $i i$) are Hirsch's theorems, while $i i i$) is Bendixson's theorem. See Fact 5.11.21)

9.12 Facts on Matrix Norms and Eigenvalues Involving Two or More Matrices

Fact 9.12.1. Let $A, B \in \mathbb{F}^{n \times m}$, let $\operatorname{mspec}\left(A^{*} B\right)=\left\{\lambda_{1}, \ldots, \lambda_{m}\right\}_{\mathrm{ms}}$, let $p, q \in$ $[1, \infty]$ satisfy $1 / p+1 / q=1$, and define $r \triangleq \min \{m, n\}$. Then,

$$
\left|\operatorname{tr} A^{*} B\right| \leq \sum_{i=1}^{m}\left|\lambda_{i}\right| \leq\left\|A^{*} B\right\|_{\sigma 1}=\sum_{i=1}^{m} \sigma_{i}\left(A^{*} B\right) \leq \sum_{i=1}^{r} \sigma_{i}(A) \sigma_{i}(B) \leq\|A\|_{\sigma p}\|B\|_{\sigma q}
$$

In particular,

$$
\left|\operatorname{tr} A^{*} B\right| \leq\|A\|_{\mathrm{F}}\|B\|_{\mathrm{F}}
$$

(Proof: Use Proposition 9.6 .2 and Fact 9.11 .2 , The last inequality in the string of inequalities is Hölder's inequality.) (Remark: See Fact 9.9.11) (Remark: The result

$$
\left|\operatorname{tr} A^{*} B\right| \leq \sum_{i=1}^{r} \sigma_{i}(A) \sigma_{i}(B)
$$

is von Neumann's trace inequality. See [250].)
Fact 9.12.2. Let $A, B \in \mathbb{F}^{n \times m}$, and let $\operatorname{mspec}\left(A^{*} B\right)=\left\{\lambda_{1}, \ldots, \lambda_{m}\right\}_{\mathrm{ms}}$. Then, $\left|\operatorname{tr}\left(A^{*} B\right)^{2}\right| \leq \sum_{i=1}^{m}\left|\lambda_{i}\right|^{2} \leq \sum_{i=1}^{m} \sigma_{i}^{2}\left(A^{*} B\right)=\operatorname{tr} A A^{*} B B^{*}=\left\|A^{*} B\right\|_{\mathrm{F}}^{2} \leq\|A\|_{\mathrm{F}}^{2}\|B\|_{\mathrm{F}}^{2}$.
(Proof: Use Fact 8.17.5,
Fact 9.12.3. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are Hermitian, and let $\operatorname{mspec}(A+\jmath B)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}_{\mathrm{ms}}$. Then,

$$
\sum_{i=1}^{n}\left|\operatorname{Re} \lambda_{i}\right|^{2} \leq\|A\|_{\mathrm{F}}^{2}
$$

and

$$
\sum_{i=1}^{n}\left|\operatorname{Im} \lambda_{i}\right|^{2} \leq\|B\|_{\mathrm{F}}^{2}
$$

(Proof: See [1098, p. 146].)
Fact 9.12.4. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are Hermitian, and let $\|\cdot\|$ be a weakly unitarily invariant norm on $\mathbb{F}^{n \times n}$. Then,

$$
\begin{aligned}
& \left\|\left[\begin{array}{ccc}
\lambda_{1}(A) & & 0 \\
& \ddots & \\
0 & & \lambda_{n}(A)
\end{array}\right]-\left[\begin{array}{ccc}
\lambda_{1}(B) & & 0 \\
0 & \ddots & \\
0 & & \lambda_{n}(B)
\end{array}\right]\right\| \leq\|A-B\| \\
& \quad \leq\left\|\left[\begin{array}{ccc}
\lambda_{1}(A) & & 0 \\
0 & \ddots & \\
0 & & \lambda_{n}(A)
\end{array}\right]-\left[\begin{array}{ccc}
\lambda_{n}(B) & & 0 \\
& \ddots & \\
0 & & \lambda_{1}(B)
\end{array}\right]\right\| .
\end{aligned}
$$

In particular,

$$
\max _{i \in\{1, \ldots, n\}}\left|\lambda_{i}(A)-\lambda_{i}(B)\right| \leq \sigma_{\max }(A-B) \leq \max _{i \in\{1, \ldots, n\}}\left|\lambda_{i}(A)-\lambda_{n-i+1}(B)\right|
$$

and

$$
\sum_{i=1}^{n}\left[\lambda_{i}(A)-\lambda_{i}(B)\right]^{2} \leq\|A-B\|_{\mathrm{F}}^{2} \leq \sum_{i=1}^{n}\left[\lambda_{i}(A)-\lambda_{n-i+1}(B)\right]^{2}
$$

(Proof: See [47, [196, p. 38], [197, pp. 63, 69], [200, p. 38], 796, p. 126], 878, p. 134], [895], or [1230, p. 202].) (Remark: The first inequality is the Lidskii-MirskyWielandt theorem. The result can be stated without norms using Fact 9.8.42, See 895].) (Remark: See Fact 9.14.29) (Remark: The case in which A and B are normal is considered in Fact 9.12 .8 ,)

Fact 9.12.5. Let $A, B \in \mathbb{F}^{n \times n}$, let $\operatorname{mspec}(A)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}_{\mathrm{ms}}$ and $\operatorname{mspec}(B)$ $=\left\{\mu_{1}, \ldots, \mu_{n}\right\}_{\mathrm{ms}}$, and assume that A and B satisfy at least one of the following conditions:
i) A and B are Hermitian.
ii) A is Hermitian, and B is skew Hermitian.
iii) A is skew Hermitian, and B is Hermitian.
iv) A and B are unitary.
$v)$ There exist nonzero $\alpha, \beta \in \mathbb{C}$ such that αA and βB are unitary.
vi) A, B, and $A-B$ are normal.

Then,

$$
\min \sigma_{\max }\left(\left[\begin{array}{ccc}
\lambda_{1} & & 0 \\
& \ddots & \\
0 & & \lambda_{n}
\end{array}\right]-\left[\begin{array}{ccc}
\mu_{\sigma(1)} & & 0 \\
& \ddots & \\
0 & & \mu_{\sigma(n)}
\end{array}\right]\right) \leq \sigma_{\max }(A-B)
$$

where the minimum is taken over all permutations σ of $\{1, \ldots, n\}$. (Proof: See 200 , pp. 52, 152].)

Fact 9.12.6. Let $A, B \in \mathbb{F}^{n \times n}$, let $\operatorname{mspec}(A)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}_{\mathrm{ms}}$ and $\operatorname{mspec}(B)$ $=\left\{\mu_{1}, \ldots, \mu_{n}\right\}_{\mathrm{ms}}$, and assume that A is normal. Then,

$$
\min \left\|\left[\begin{array}{ccc}
\lambda_{1} & & 0 \\
& \ddots & \\
0 & & \lambda_{n}
\end{array}\right]-\left[\begin{array}{ccc}
\mu_{\sigma(1)} & & 0 \\
& \ddots & \\
0 & & \mu_{\sigma(n)}
\end{array}\right]\right\|_{\mathrm{F}} \leq \sqrt{n}\|A-B\|_{\mathrm{F}}
$$

where the minimum is taken over all permutations σ of $\{1, \ldots, n\}$. If, in addition, B is normal, then there exists $c \in(0,2.9039)$ such that

$$
\min \sigma_{\max }\left(\left[\begin{array}{ccc}
\lambda_{1} & & 0 \\
& \ddots & \\
0 & & \lambda_{n}
\end{array}\right]-\left[\begin{array}{ccc}
\mu_{\sigma(1)} & & 0 \\
& \ddots & \\
0 & & \mu_{\sigma(n)}
\end{array}\right]\right) \leq c \sigma_{\max }(A-B)
$$

(Proof: See [200, pp. 152, 153, 173].) (Remark: Constants c for alternative Schatten norms are given in [200, p. 159].) (Remark: If, in addition, $A-B$ is normal, then
it follows from Fact 9.12 .5 that the last inequality holds with $c=1$.)
Fact 9.12.7. Let $A, B \in \mathbb{F}^{n \times n}$, let $\operatorname{mspec}(A)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}_{\mathrm{ms}}$ and $\operatorname{mspec}(B)$ $=\left\{\mu_{1}, \ldots, \mu_{n}\right\}_{\mathrm{ms}}$, and assume that A is Hermitian. Then,

$$
\min \left\|\left[\begin{array}{ccc}
\lambda_{1} & & 0 \\
& \ddots & \\
0 & & \lambda_{n}
\end{array}\right]-\left[\begin{array}{ccc}
\mu_{\sigma(1)} & & 0 \\
& \ddots & \\
0 & & \mu_{\sigma(n)}
\end{array}\right]\right\|_{\mathrm{F}} \leq \sqrt{2}\|A-B\|_{\mathrm{F}}
$$

where the minimum is taken over all permutations σ of $\{1, \ldots, n\}$. (Proof: See [200, p. 174].)

Fact 9.12.8. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are normal, and let $\operatorname{spec}(A)=\left\{\lambda_{1}, \ldots, \lambda_{q}\right\}$ and $\operatorname{spec}(B)=\left\{\mu_{1}, \ldots, \mu_{r}\right\}$. Then,

$$
\sigma_{\max }(A-B) \leq \max \left\{\left|\lambda_{i}-\lambda_{j}\right|: i=1, \ldots, q, j=1, \ldots, r\right\}
$$

(Proof: See [197, p. 164].) (Remark: The case in which A and B are Hermitian is considered in Fact 9.12.4)

Fact 9.12.9. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are normal. Then, there exists a permutation σ of $1, \ldots, n$ such that

$$
\sum_{i=1}^{n}\left|\lambda_{\sigma(i)}(A)-\lambda_{i}(B)\right|^{2} \leq\|A-B\|_{\mathrm{F}}^{2}
$$

(Proof: See [709, p. 368] or [1098, pp. 160, 161].) (Remark: This inequality is the Hoffman-Wielandt theorem.) (Remark: The case in which A and B are Hermitian is considered in Fact 9.12.4)

Fact 9.12.10. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A is Hermitian and B is normal. Furthermore, let $\operatorname{mspec}(B)=\left\{\lambda_{1}(B), \ldots, \lambda_{n}(B)\right\}_{\mathrm{ms}}$, where $\operatorname{Re} \lambda_{n}(B) \leq$ $\cdots \leq \operatorname{Re} \lambda_{1}(B)$. Then,

$$
\sum_{i=1}^{n}\left|\lambda_{i}(A)-\lambda_{i}(B)\right|^{2} \leq\|A-B\|_{\mathrm{F}}^{2}
$$

(Proof: See [709, p. 370].) (Remark: This result is a special case of Fact 9.12.9.) (Remark: The left-hand side has the same value for all orderings that satisfy $\operatorname{Re} \lambda_{n}(B) \leq \cdots \leq \operatorname{Re} \lambda_{1}(B)$.)

Fact 9.12.11. Let $A, B \in \mathbb{F}^{n \times n}$, and let $\|\cdot\|$ be an induced norm on $\mathbb{F}^{n \times n}$. Then,

$$
|\operatorname{det} A-\operatorname{det} B| \leq \begin{cases}\|A-B\| \frac{\|A\|^{n}-\|B\|^{n}}{\|A\|-\|B\|}, & \|A\| \neq\|B\| \\ n\|A-B\|\|A\|^{n-1}, & \|A\|=\|B\|\end{cases}
$$

(Proof: See [505].) (Remark: See Fact 1.18 .2 ,)

9.13 Facts on Matrix Norms and Singular Values for One Matrix

Fact 9.13.1. Let $A \in \mathbb{F}^{n \times m}$. Then,

$$
\sigma_{\max }(A)=\max _{x \in \mathbb{F}^{m} \backslash\{0\}}\left(\frac{x^{*} A^{*} A x}{x^{*} x}\right)^{1 / 2},
$$

and thus

$$
\|A x\|_{2} \leq \sigma_{\max }(A)\|x\|_{2}
$$

Furthermore,

$$
\lambda_{\min }^{1 / 2}\left(A^{*} A\right)=\min _{x \in \mathbb{F}^{n} \backslash\{0\}}\left(\frac{x^{*} A^{*} A x}{x^{*} x}\right)^{1 / 2},
$$

and thus

$$
\lambda_{\min }^{1 / 2}\left(A^{*} A\right)\|x\|_{2} \leq\|A x\|_{2}
$$

If, in addition, $m \leq n$, then

$$
\sigma_{m}(A)=\min _{x \in \mathbb{F}^{n} \backslash\{0\}}\left(\frac{x^{*} A^{*} A x}{x^{*} x}\right)^{1 / 2},
$$

and thus

$$
\sigma_{m}(A)\|x\|_{2} \leq\|A x\|_{2} .
$$

Finally, if $m=n$, then

$$
\sigma_{\min }(A)=\min _{x \in \mathbb{F}^{n} \backslash\{0\}}\left(\frac{x^{*} A^{*} A x}{x^{*} x}\right)^{1 / 2},
$$

and thus

$$
\sigma_{\min }(A)\|x\|_{2} \leq\|A x\|_{2} .
$$

(Proof: See Lemma 8.4.3!)
Fact 9.13.2. Let $A \in \mathbb{F}^{n \times m}$. Then,

$$
\begin{aligned}
\sigma_{\max }(A) & =\max \left\{\left|y^{*} A x\right|: x \in \mathbb{F}^{m}, y \in \mathbb{F}^{n},\|x\|_{2}=\|y\|_{2}=1\right\} \\
& =\max \left\{\left|y^{*} A x\right|: x \in \mathbb{F}^{m}, y \in \mathbb{F}^{n},\|x\|_{2} \leq 1,\|y\|_{2} \leq 1\right\} .
\end{aligned}
$$

(Remark: See Fact 0.8.36])
Fact 9.13.3. Let $x \in \mathbb{F}^{n}$ and $y \in \mathbb{F}^{m}$, and define $\delta \triangleq\left\{A \in \mathbb{F}^{n \times m}: \sigma_{\max }(A) \leq\right.$ 1\}. Then,

$$
\max _{A \in \mathcal{S}} x^{*} A y=\sqrt{x^{*} x y^{*} y} .
$$

Fact 9.13.4. Let $\|\cdot\|$ be an equi-induced unitarily invariant norm on $\mathbb{F}^{n \times n}$. Then, $\|\cdot\|=\sigma_{\max }(\cdot)$.

Fact 9.13.5. Let $\|\cdot\|$ be an equi-induced self-adjoint norm on $\mathbb{F}^{n \times n}$. Then, $\|\cdot\|=\sigma_{\max }(\cdot)$.

Fact 9.13.6. Let $A \in \mathbb{F}^{n \times n}$. Then,

$$
\sigma_{\min }(A)-1 \leq \sigma_{\min }(A+I) \leq \sigma_{\min }(A)+1 .
$$

(Proof: Use Proposition 9.6.8)

Fact 9.13.7. Let $A \in \mathbb{F}^{n \times n}$, assume that A is normal, and let $r \in \mathbb{N}$. Then,

$$
\sigma_{\max }\left(A^{r}\right)=\sigma_{\max }^{r}(A)
$$

(Remark: Matrices that are not normal might also satisfy these conditions. Consider $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$.)

Fact 9.13.8. Let $A \in \mathbb{F}^{n \times n}$. Then,

$$
\sigma_{\max }^{2}(A)-\sigma_{\max }\left(A^{2}\right) \leq \sigma_{\max }\left(A^{*} A-A A^{*}\right) \leq \sigma_{\max }^{2}(A)-\sigma_{\min }^{2}(A)
$$

and

$$
\sigma_{\max }^{2}(A)+\sigma_{\min }^{2}(A) \leq \sigma_{\max }\left(A^{*} A+A A^{*}\right) \leq \sigma_{\max }^{2}(A)+\sigma_{\max }\left(A^{2}\right)
$$

If $A^{2}=0$, then

$$
\sigma_{\max }\left(A^{*} A-A A^{*}\right)=\sigma_{\max }^{2}(A)
$$

(Proof: See [820, 824.) (Remark: See Fact 8.18.11) (Remark: If A is normal, then it follows that $\sigma_{\max }^{2}(A) \leq \sigma_{\max }\left(A^{2}\right)$, although Fact 9.13.7 implies that equality holds.)

Fact 9.13.9. Let $A \in \mathbb{F}^{n \times n}$. Then, the following statements are equivalent:
i) $\operatorname{sprad}(A)=\sigma_{\max }(A)$.
ii) $\sigma_{\max }\left(A^{i}\right)=\sigma_{\text {max }}^{i}(A)$ for all $i \in \mathbb{P}$.
iii) $\sigma_{\max }\left(A^{n}\right)=\sigma_{\max }^{n}(A)$.
(Proof: See 493 and 711 p. 44].) (Remark: The result $i i i) \Longrightarrow i$) is due to Ptak.) (Remark: Additional conditions are given in [567].)

Fact 9.13.10. Let $A \in \mathbb{F}^{n \times n}$. Then,

$$
\sigma_{\max }(A) \leq \sigma_{\max }(|A|) \leq \sqrt{\operatorname{rank} A} \sigma_{\max }(A)
$$

(Proof: See [681, p. 111].)
Fact 9.13.11. Let $A \in \mathbb{F}^{n \times n}$, and let $p \in[1, \infty)$ be an even integer. Then,

$$
\|A\|_{\sigma p} \leq\||A|\|_{\sigma p}
$$

In particular,

$$
\|A\|_{\mathrm{F}} \leq\||A|\|_{\mathrm{F}}
$$

and

$$
\sigma_{\max }(A) \leq \sigma_{\max }(|A|)
$$

Finally, let $\|\cdot\|$ be a unitarily invariant norm on $\mathbb{C}^{n \times m}$. Then, $\|A\|_{\mathrm{F}}=\||A|\|_{\mathrm{F}}$ for all $A \in \mathbb{C}^{n \times m}$ if and only if $\|\cdot\|$ is a constant multiple of $\|\cdot\|_{\mathrm{F}}$. (Proof: See [712] and [730].)

Fact 9.13.12. Let $A \in \mathbb{R}^{n \times n}$, and assume that $r \triangleq \operatorname{rank} A \geq 2$. If $r \operatorname{tr} A^{2} \leq$ $(\operatorname{tr} A)^{2}$, then

$$
\sqrt{\frac{(\operatorname{tr} A)^{2}-\operatorname{tr} A^{2}}{r(r-1)}} \leq \operatorname{sprad}(A)
$$

If $(\operatorname{tr} A)^{2} \leq r \operatorname{tr} A^{2}$, then

$$
\frac{|\operatorname{tr} A|}{r}+\sqrt{\frac{r \operatorname{tr} A^{2}-(\operatorname{tr} A)^{2}}{r^{2}(r-1)}} \leq \operatorname{sprad}(A)
$$

If $\operatorname{rank} A=2$, then equality holds in both cases. Finally, if A is skew symmetric, then

$$
\sqrt{\frac{3}{r(r-1)}}\|A\|_{\mathrm{F}} \leq \operatorname{sprad}(A)
$$

(Proof: See [718].)
Fact 9.13.13. Let $A \in \mathbb{R}^{n \times n}$. Then,

$$
\sqrt{\frac{1}{2\left(n^{2}-n\right)}\left(\|A\|_{\mathrm{F}}^{2}+\operatorname{tr} A^{2}\right)} \leq \sigma_{\max }(A)
$$

Furthermore, if $\|A\|_{\mathrm{F}} \leq \operatorname{tr} A$, then

$$
\sigma_{\max }(A) \leq \frac{1}{n} \operatorname{tr} A+\sqrt{\frac{n-1}{n}\left[\|A\|_{\mathrm{F}}^{2}-\frac{1}{n}(\operatorname{tr} A)^{2}\right]}
$$

(Proof: See [992], which considers the complex case.)
Fact 9.13.14. Let $A \in \mathbb{F}^{n \times n}$. Then, the polynomial $p \in \mathbb{R}[s]$ defined by

$$
p(s) \triangleq s^{n}-\|A\|_{\mathrm{F}}^{2} s+(n-1)|\operatorname{det} A|^{2 /(n-1)}
$$

has either exactly one or exactly two positive roots $0<\alpha \leq \beta$. Furthermore, α and β satisfy

$$
\alpha^{(n-1) / 2} \leq \sigma_{\min }(A) \leq \sigma_{\max }(A) \leq \beta^{(n-1) / 2}
$$

(Proof: See 1139.)
Fact 9.13.15. Let $A \in \mathbb{F}^{n \times n}$, and, for all $k=1, \ldots, n$, define

$$
\alpha_{k} \triangleq \sum_{\substack{j=1 \\ j \neq k}}^{n}\left|A_{(k, j)}\right|, \quad \beta_{k} \triangleq \sum_{\substack{i=1 \\ i \neq k}}^{n}\left|A_{(i, k)}\right| .
$$

Then,

$$
\min _{1 \leq k \leq n}\left\{\left|A_{(k, k)}\right|-\frac{1}{2}\left(\alpha_{k}+\beta_{k}\right)\right\} \leq \sigma_{\min }(A)
$$

(Proof: See [764, 774].)
Fact 9.13.16. Let $A \in \mathbb{F}^{n \times n}$. Then,

$$
\operatorname{tr}\langle A\rangle=\operatorname{tr}\left\langle A^{*}\right\rangle
$$

Fact 9.13.17. Let $A \in \mathbb{F}^{n \times n}$. Then, for all $k=1, \ldots, n$,

$$
\sum_{i=1}^{k} \sigma_{i}\left(A^{2}\right) \leq \sum_{i=1}^{k} \sigma_{i}^{2}(A)
$$

Hence,

$$
\operatorname{tr}\left(A^{2 *} A^{2}\right)^{1 / 2} \leq \operatorname{tr} A^{*} A
$$

that is,

$$
\operatorname{tr}\left\langle A^{2}\right\rangle \leq \operatorname{tr}\langle A\rangle^{2}
$$

(Proof: Let $B=A$ and $r=1$ in Proposition 9.6.2. See also Fact 9.11.3.)
Fact 9.13.18. Let $A \in \mathbb{F}^{n \times n}$, and let k denote the number of nonzero eigenvalues of A. Then,

$$
\left.\begin{array}{c}
\left|\operatorname{tr} A^{2}\right| \leq \operatorname{tr}\left\langle A^{2}\right\rangle \\
\operatorname{tr}\langle A\rangle\left\langle A^{*}\right\rangle \\
\frac{1}{k}|\operatorname{tr} A|^{2}
\end{array}\right\} \leq \operatorname{tr}\langle A\rangle^{2}
$$

(Proof: The upper bound for $\left|\operatorname{tr} A^{2}\right|$ is given by Fact 9.11.3. The upper bound for $\operatorname{tr}\left\langle A^{2}\right\rangle$ is given by Fact 9.13.17 To prove the center inequality, let $A=S_{1} D S_{2}$ denote the singular value decomposition of A. Then, $\operatorname{tr}\langle A\rangle\left\langle A^{*}\right\rangle=\operatorname{tr} S_{3}^{*} D S_{3} D$, where $S_{3} \triangleq S_{1} S_{2}$, and $\operatorname{tr} A^{*} A=\operatorname{tr} D^{2}$. The result now follows using Fact 5.12.4. The remaining inequality is given by Fact 5.11.10.) (Remark: See Fact 5.11.10 and Fact 9.11.3.)

Fact 9.13.19. Let $A \in \mathbb{F}^{n \times n}$, and let $\operatorname{mspec}(A)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}_{\mathrm{ms}}$, where $\lambda_{1}, \ldots, \lambda_{n}$ are ordered such that $\left|\lambda_{1}\right| \geq \cdots \geq\left|\lambda_{n}\right|$. Then, for all $k=1, \ldots, n$,

$$
\prod_{i=1}^{k}\left|\lambda_{i}\right|^{2} \leq \prod_{i=1}^{k} \sigma_{i}\left(A^{2}\right) \leq \prod_{i=1}^{k} \sigma_{i}^{2}(A)
$$

and

$$
\prod_{i=1}^{n}\left|\lambda_{i}\right|^{2}=\prod_{i=1}^{n} \sigma_{i}\left(A^{2}\right)=\prod_{i=1}^{n} \sigma_{i}^{2}(A)=|\operatorname{det} A|^{2}
$$

Furthermore, for all $k=1, \ldots, n$,

$$
\left|\sum_{i=1}^{k} \lambda_{i}\right| \leq \sum_{i=1}^{k}\left|\lambda_{i}\right| \leq \sum_{i=1}^{k} \sigma_{i}(A)
$$

and thus

$$
|\operatorname{tr} A| \leq \sum_{i=1}^{k}\left|\lambda_{i}\right| \leq \operatorname{tr}\langle A\rangle
$$

(Proof: See [711, p. 172], and use Fact 5.11.28. For the last statement, use Fact 2.21.13) (Remark: See Fact 5.11.28, Fact 8.18.21, and Fact 9.11.2) (Remark: This result is due to Weyl.)

Fact 9.13.20. Let $A \in \mathbb{F}^{n \times n}$, and let $\operatorname{mspec}(A)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}_{\mathrm{ms}}$, where $\lambda_{1}, \ldots, \lambda_{n}$ are ordered such that $\left|\lambda_{n}\right| \leq \cdots \leq\left|\lambda_{1}\right|$, and let $p \geq 0$. Then, for all $k=1, \ldots, n$,

$$
\left|\sum_{i=1}^{k} \lambda_{i}^{p}\right| \leq \sum_{i=1}^{k}\left|\lambda_{i}\right|^{p} \leq \sum_{i=1}^{k} \sigma_{i}^{p}(A)
$$

(Proof: See [197, p. 42].) (Remark: This result is Weyl's majorant theorem.) (Remark: See Fact 9.11.3)

Fact 9.13.21. Let $A \in \mathbb{F}^{n \times n}$, and define

$$
\begin{aligned}
r_{i} \triangleq \sum_{j=1}^{n}\left|A_{(i, j)}\right|, & c_{i} \triangleq \sum_{j=1}^{n}\left|A_{(j, i)}\right|, \\
r_{\text {min }} \triangleq \min _{i=1, \ldots, n}\left\|r_{i}\right\|_{2}, & c_{\min } \triangleq \min _{i=1, \ldots, n}\left\|c_{i}\right\|_{2}, \\
\hat{r}_{i} \triangleq \sum_{\substack{j=1 \\
j \neq i}}^{n}\left|A_{(i, j)}\right|, & \hat{c}_{i} \triangleq \sum_{\substack{j=1 \\
j \neq i}}^{n}\left|A_{(j, i)}\right|,
\end{aligned}
$$

and

$$
\alpha \triangleq \min _{i=1, \ldots, n}\left(\left|A_{(i, i)}\right|-\hat{r}_{i}\right), \quad \beta \triangleq \min _{i=1, \ldots, n}\left(\left|A_{(i, i)}\right|-\hat{c}_{i}\right) .
$$

Then, the following statements hold:
i) If $\alpha>0$, then A is nonsingular and

$$
\left\|A^{-1}\right\|_{\text {row }}<1 / \alpha .
$$

ii) If $\beta>0$, then A is nonsingular and

$$
\left\|A^{-1}\right\|_{\mathrm{col}}<1 / \beta .
$$

iii) If $\alpha>0$ and $\beta>0$, then A is nonsingular, and

$$
\sqrt{\alpha \beta} \leq \sigma_{\min }(A) .
$$

iv) $\sigma_{\min }(A)$ satisfies

$$
\min _{i=1, \ldots, n} \frac{1}{2}\left[2\left|A_{(i, i)}\right|-\hat{r}_{i}-\hat{c}_{i}\right] \leq \sigma_{\min }(A) .
$$

v) $\sigma_{\min }(A)$ satisfies

$$
\min _{i=1, \ldots, n} \frac{1}{2}\left[\left(4\left|A_{(i, i)}\right|^{2}+\left[\hat{r}_{i}-\hat{c}_{i}\right]^{2}\right)^{1 / 2}-\hat{r}_{i}-\hat{c}_{i}\right] \leq \sigma_{\min }(A) .
$$

vi) $\sigma_{\min }(A)$ satisfies

$$
\left(\frac{n-1}{n}\right)^{(n-1) / 2}|\operatorname{det} A| \max \left\{\frac{c_{\min }}{\prod_{i=1}^{n} c_{i}}, \frac{r_{\text {min }}}{\prod_{i=1}^{n} r_{i}}\right\} \leq \sigma_{\min }(A) .
$$

(Proof: See Fact 9.8.23, [711, pp. 227, 231], and 707, 763, 1367.)
Fact 9.13.22. Let $A \in \mathbb{F}^{n \times n}$, and let $\operatorname{mspec}(A)=\left\{\lambda_{1}, \cdots, \lambda_{n}\right\}_{\mathrm{ms}}$, where $\lambda_{1}, \ldots, \lambda_{n}$ are ordered such that $\left|\lambda_{n}\right| \leq \cdots \leq\left|\lambda_{1}\right|$. Then, for all $i=1, \ldots, n$,

$$
\lim _{k \rightarrow \infty} \sigma_{i}^{1 / k}\left(A^{k}\right)=\left|\lambda_{i}\right| .
$$

In particular,

$$
\lim _{k \rightarrow \infty} \sigma_{\max }^{1 / k}\left(A^{k}\right)=\operatorname{sprad}(A) .
$$

(Proof: See [711, p. 180].) (Remark: This identity is due to Yamamoto.) (Remark: The expression for $\operatorname{sprad}(A)$ is a special case of Proposition 9.2.6.

Fact 9.13 .23 . Let $A \in \mathbb{F}^{n \times n}$, and assume that A is nonzero. Then,

$$
\frac{1}{\sigma_{\max }(A)}=\min _{B \in\left\{X \in \mathbb{F}^{n \times n}: \operatorname{det}(I-A X)=0\right\}} \sigma_{\max }(B) .
$$

Furthermore, there exists $B_{0} \in \mathbb{F}^{n \times n}$ such that rank $B_{0}=1$, $\operatorname{det}\left(I-A B_{0}\right)=0$, and

$$
\frac{1}{\sigma_{\max }(A)}=\sigma_{\max }\left(B_{0}\right)
$$

(Proof: If $\sigma_{\max }(B)<1 / \sigma_{\max }(A)$, then $\operatorname{sprad}(A B) \leq \sigma_{\max }(A B)<1$, and thus $I-A B$ is nonsingular. Hence,

$$
\begin{aligned}
\frac{1}{\sigma_{\max }(A)} & =\min _{B \in\left\{X \in \mathbb{F}^{n \times n}: \sigma_{\max }(X) \geq 1 / \sigma_{\max }(A)\right\}} \sigma_{\max }(B) \\
& =\min _{B \in\left\{X \in \mathbb{F}^{n \times n}: \sigma_{\max }(X)<1 / \sigma_{\max }(A)\right\}^{\sim}} \sigma_{\max }(B) \\
& \leq \min _{B \in\left\{X \in \mathbb{F}^{n \times n}: \operatorname{det}(I-A X)=0\right\}} \sigma_{\max }(B) .
\end{aligned}
$$

Using the singular value decomposition, equality holds by constructing B_{0} to have rank 1 and singular value $1 / \sigma_{\max }(A)$.) (Remark: This result is related to the smallgain theorem. See [1498, pp. 276, 277].)

9.14 Facts on Matrix Norms and Singular Values for Two or More Matrices

Fact 9.14.1. Let $a_{1}, \ldots, a_{n} \in \mathbb{F}^{n}$ be linearly independent, and, for all $i=$ $1, \ldots, n$, define

$$
A_{i} \triangleq I-\left(a_{i}^{*} a_{i}\right)^{-1} a_{i} a_{i}^{*}
$$

Then,

$$
\sigma_{\max }\left(A_{n} A_{n-1} \cdots A_{1}\right)<1
$$

(Proof: Define $A \triangleq A_{n} A_{n-1} \cdots A_{1}$. Since $\sigma_{\max }\left(A_{i}\right) \leq 1$ for all $i=1, \ldots, n$, it follows that $\sigma_{\max }(A) \leq 1$. Suppose that $\sigma_{\max }(A)=1$, and let $x \in \mathbb{F}^{n}$ satisfy $x^{*} x=1$ and $\|A x\|_{2}=1$. Then, for all $i=1, \ldots, n,\left\|A_{i} A_{i-1} \cdots A_{1} x\right\|_{2}=1$. Consequently, $\left\|A_{1} x\right\|_{2}=1$, which implies that $a_{1}^{*} x=0$, and thus $A_{1} x=x$. Hence, $\left\|A_{i} A_{i-1} \cdots A_{2} x\right\|_{2}=1$. Repeating this argument implies that, for all $i=1, \ldots, n$, $a_{i}^{*} x=0$. Since a_{1}, \ldots, a_{n} are linearly independent, it follows that $x=0$, which is a contradiction.) (Remark: This result is due to Akers and Djokovic.)

Fact 9.14.2. Let $A_{1}, \ldots, A_{n} \in \mathbb{F}^{n \times n}$, assume that, for all $i, j=1, \ldots, n$, $\left[A_{i}, A_{j}\right]=0$, and assume that, for all $i=1, \ldots, n, \sigma_{\max }\left(A_{i}\right)=1$ and $\operatorname{sprad}\left(A_{i}\right)=1$. Then,

$$
\sigma_{\max }\left(A_{n} A_{n-1} \cdots A_{1}\right)<1
$$

(Proof: See 1479.)
Fact 9.14.3. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times n}$. Then,

$$
|\operatorname{tr} A B| \leq\|A B\|_{\sigma 1}=\sum_{i=1}^{r} \sigma_{i}(A B) \leq \sum_{i=1}^{r} \sigma_{i}(A) \sigma_{i}(B)
$$

(Proof: Use Proposition 9.6 .2 and Fact 9.11.2) (Remark: This result generalizes Fact 5.12.6) (Remark: Sufficient conditions for equality are given in [1184, p. 107].)

Fact 9.14.4. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times n}$. Then,

$$
|\operatorname{tr} A B| \leq\|A B\|_{\sigma 1} \leq \sigma_{\max }(A)\|B\|_{\sigma 1}
$$

(Proof: Use Corollary 9.3.8 and Fact 9.11.2) (Remark: This result generalizes Fact 5.12.7.)

Fact 9.14.5. Let $A \in \mathbb{F}^{n \times m}, B \in \mathbb{F}^{m \times n}$, and $p \in[1, \infty)$, and assume that $A B$ is normal. Then,

$$
\|A B\|_{\sigma p} \leq\|B A\|_{\sigma p}
$$

In particular,

$$
\begin{aligned}
\operatorname{tr}\langle A B\rangle & \leq \operatorname{tr}\langle B A\rangle, \\
\|A B\|_{\mathrm{F}} & \leq\|B A\|_{\mathrm{F}}, \\
\sigma_{\max }(A B) & \leq \sigma_{\max }(B A)
\end{aligned}
$$

(Proof: This result is due to Simon. See 246.)
Fact 9.14.6. Let $A, B \in \mathbb{R}^{n \times n}$, assume that A is nonsingular, and assume that B is singular. Then,

$$
\sigma_{\min }(A) \leq \sigma_{\max }(A-B)
$$

Furthermore, if $\sigma_{\max }\left(A^{-1}\right)=\operatorname{sprad}\left(A^{-1}\right)$, then there exists a singular matrix $C \in$ $\mathbb{R}^{n \times n}$ such that $\sigma_{\max }(A-C)=\sigma_{\min }(A)$. (Proof: See [1098 p. 151].) (Remark: This result is due to Franck.)

Fact 9.14.7. Let $A \in \mathbb{C}^{n \times n}$, assume that A is nonsingular, let $\|\cdot\|$ and $\|\cdot\|^{\prime}$ be norms on \mathbb{C}^{n}, let $\|\cdot\|^{\prime \prime}$ be the norm on $\mathbb{C}^{n \times n}$ induced by $\|\cdot\|$ and $\|\cdot\|^{\prime}$, and let $\|\cdot\|^{\prime \prime \prime}$ be the norm on $\mathbb{C}^{n \times n}$ induced by $\|\cdot\|^{\prime}$ and $\|\cdot\|$. Then,

$$
\min \left\{\|B\|^{\prime \prime}: \quad B \in \mathbb{C}^{n \times n} \text { and } A+B \text { is nonsingular }\right\}=1 /\left\|A^{-1}\right\|^{\prime \prime \prime}
$$

In particular,

$$
\begin{aligned}
& \min \left\{\|B\|_{\text {col }}: B \in \mathbb{C}^{n \times n} \text { and } A+B \text { is singular }\right\}=1 /\left\|A^{-1}\right\|_{\mathrm{col}} \\
& \min \left\{\sigma_{\max }(B): B \in \mathbb{C}^{n \times n} \text { and } A+B \text { is singular }\right\}=\sigma_{\min }(A) \\
& \min \left\{\|B\|_{\text {row }}: B \in \mathbb{C}^{n \times n} \text { and } A+B \text { is singular }\right\}=1 /\left\|A^{-1}\right\|_{\text {row }}
\end{aligned}
$$

(Proof: See [679] and [681, p. 111].) (Remark: This result is due to Gastinel. See [679].) (Remark: The result involving $\sigma_{\max }(B)$ is equivalent to the inequality in Fact 9.14.6.)

Fact 9.14.8. Let $A, B \in \mathbb{F}^{n \times m}$, and assume that $\operatorname{rank} A=\operatorname{rank} B$ and $\alpha \triangleq$ $\sigma_{\max }\left(A^{+}\right) \sigma_{\max }(A-B)<1$. Then,

$$
\sigma_{\max }\left(B^{+}\right)<\frac{1}{1-\alpha} \sigma_{\max }\left(A^{+}\right)
$$

If, in addition, $n=m, A$ and B are nonsingular, and $\sigma_{\max }(A-B)<\sigma_{\min }(A)$, then

$$
\sigma_{\max }\left(B^{-1}\right)<\frac{\sigma_{\min }(A)}{\sigma_{\min }(A)-\sigma_{\max }(A-B)} \sigma_{\max }\left(A^{-1}\right)
$$

(Proof: See [681, p. 400].)
Fact 9.14.9. Let $A, B \in \mathbb{F}^{n \times n}$. Then,

$$
\sigma_{\max }(I-[A, B]) \geq 1
$$

(Proof: Since $\operatorname{tr}[A, B]=0$, it follows that there exists $\lambda \in \operatorname{spec}(I-[A, B])$ such that $\operatorname{Re} \lambda \geq 1$, and thus $|\lambda| \geq 1$. Hence, Corollary 9.4.5 implies that $\sigma_{\max }(I-[A, B]) \geq$ $\operatorname{sprad}(I-[A, B]) \geq|\lambda| \geq 1$.)

Fact 9.14.10. Let $A \in \mathbb{F}^{n \times m}$, and let $B \in \mathbb{F}^{k \times l}$ be a submatrix of A. Then, for all $i=1, \ldots, \min \{k, l\}$,

$$
\sigma_{i}(B) \leq \sigma_{i}(A)
$$

(Proof: Use Proposition 9.6.1) (Remark: Sufficient conditions for singular value interlacing are given in [709, p. 419].)

Fact 9.14.11. Let

$$
\mathcal{A} \triangleq\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right] \in \mathbb{F}^{(n+m) \times(n+m)},
$$

$$
\left[\begin{array}{ll}
E & F \\
G & H
\end{array}\right] \triangleq \mathcal{A}^{-1}
$$

Then, the following statements hold:
i) For all $i=1, \ldots, \min \{n, m\}-1$,

$$
\frac{\sigma_{n-i}(A)}{\sigma_{\max }^{2}(\mathcal{A})} \leq \sigma_{m-i}(H) \leq \frac{\sigma_{n-i}(A)}{\sigma_{\min }^{2}(\mathcal{A})}
$$

ii) Assume that $n<m$. Then, for all $i=1, \ldots, m-n$,

$$
\frac{1}{\sigma_{\max }(\mathcal{A})} \leq \sigma_{i}(H) \leq \frac{1}{\sigma_{\min }(\mathcal{A})} .
$$

iii) Assume that $m<n$. Then, for all $i=1, \ldots, m-n$,

$$
\sigma_{\min }(\mathcal{A}) \leq \sigma_{i}(H) \leq \sigma_{\max }(\mathcal{A})
$$

$i v)$ Assume that $n=m$. Then, for all $i=1, \ldots, n$,

$$
\frac{\sigma_{i}(A)}{\sigma_{\max }^{2}(\mathcal{A})} \leq \sigma_{i}(H) \leq \frac{\sigma_{i}(A)}{\sigma_{\min }^{2}(\mathcal{A})}
$$

$v)$ Assume that $m<n$. Then,

$$
\sigma_{\max }(H) \leq \frac{\sigma_{n-m+1}(A)}{\sigma_{\min }^{2}(\mathcal{A})}
$$

$v i)$ Assume that $m<n$. Then, $H=0$ if and only if def $A=m$.
Now, assume that \mathcal{A} is unitary. Then, the following statements hold:
vii) If $n<m$, then

$$
\sigma_{i}(D)= \begin{cases}1, & 1 \leq i \leq m-n \\ \sigma_{i-m+n}(A), & m-n<i \leq m\end{cases}
$$

viii) If $n=m$, then, for all $i=1, \ldots, n$,

$$
\sigma_{i}(D)=\sigma_{i}(A)
$$

$i x)$ If $n \leq m$, then

$$
|\operatorname{det} D|=\prod_{i=1}^{m} \sigma_{i}(D)=\prod_{i=1}^{n} \sigma_{i}(A)=|\operatorname{det} A|
$$

(Proof: See [575.) (Remark: Statement vi) is a special case of the nullity theorem given by Fact 2.11.20, (Remark: Statement $i x$) follows from Fact 3.11.24 using Fact 5.11.28)

Fact 9.14.12. Let $A \in \mathbb{F}^{n \times m}, B \in \mathbb{F}^{n \times l}, C \in \mathbb{F}^{k \times m}$, and $D \in \mathbb{F}^{k \times l}$. Then,

$$
\sigma_{\max }\left(\left[\begin{array}{cc}
A & B \\
C & D
\end{array}\right]\right) \leq \sigma_{\max }\left(\left[\begin{array}{cc}
\sigma_{\max }(A) & \sigma_{\max }(B) \\
\sigma_{\max }(C) & \sigma_{\max }(D)
\end{array}\right]\right)
$$

(Proof: See [719, 821.) (Remark: This result is due to Tomiyama.) (Remark: See Fact 8.18.28)

Fact 9.14.13. Let $A \in \mathbb{F}^{n \times m}, B \in \mathbb{F}^{n \times l}$, and $C \in \mathbb{F}^{k \times m}$. Then, for all $X \in$ $\mathbb{F}^{k \times l}$,

$$
\max \left\{\sigma_{\max }\left(\left[\begin{array}{ll}
A & B
\end{array}\right]\right), \sigma_{\max }\left(\left[\begin{array}{l}
A \\
C
\end{array}\right]\right)\right\} \leq \sigma_{\max }\left(\left[\begin{array}{cc}
A & B \\
C & X
\end{array}\right]\right)
$$

Furthermore, there exists a matrix $X \in \mathbb{F}^{k \times l}$ such that equality holds. (Remark: This result is Parrott's theorem. See [366], 447, pp. 271, 272], and [1498, pp. 40-42].)

Fact 9.14.14. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{n \times l}$. Then,

$$
\begin{aligned}
\max \left\{\sigma_{\max }(A), \sigma_{\max }(B)\right\} & \leq \sigma_{\max }\left(\left[\begin{array}{ll}
A & B
\end{array}\right]\right) \\
& \leq\left[\sigma_{\max }^{2}(A)+\sigma_{\max }^{2}(B)\right]^{1 / 2} \\
& \leq \sqrt{2} \max \left\{\sigma_{\max }(A), \sigma_{\max }(B)\right\}
\end{aligned}
$$

and, if $n \leq \min \{m, l\}$,

$$
\left[\sigma_{n}^{2}(A)+\sigma_{n}^{2}(B)\right]^{1 / 2} \leq \sigma_{n}\left(\left[\begin{array}{ll}
A & B
\end{array}\right]\right) \leq\left\{\begin{array}{l}
{\left[\sigma_{n}^{2}(A)+\sigma_{\max }^{2}(B)\right]^{1 / 2}} \\
{\left[\sigma_{\max }^{2}(A)+\sigma_{n}^{2}(B)\right]^{1 / 2}}
\end{array}\right.
$$

(Problem: Obtain analogous bounds for $\sigma_{i}\left(\left[\begin{array}{ll}A & B\end{array}\right]\right)$.)

Fact 9.14.15. Let $A, B \in \mathbb{F}^{n \times n}$. Then,

$$
\begin{aligned}
& \sigma_{\max }(A+B) \\
& \leq \frac{1}{2}\left[\sigma_{\max }(A)+\sigma_{\max }(B)\right. \\
& \left.\quad+\sqrt{\left[\sigma_{\max }(A)-\sigma_{\max }(B)\right]^{2}+4 \max \left\{\sigma_{\max }^{2}\left(\langle A\rangle^{1 / 2}\langle B\rangle^{1 / 2}\right), \sigma_{\max }^{2}\left(\left\langle A^{*}\right\rangle^{1 / 2}\left\langle B^{*}\right\rangle^{1 / 2}\right)\right\}}\right] \\
& \leq \sigma_{\max }(A)+\sigma_{\max }(B)
\end{aligned}
$$

(Proof: See 821.) (Remark: See Fact 8.18.14) (Remark: This result interpolates the triangle inequality for the maximum singular value.)

Fact 9.14.16. Let $A, B \in \mathbb{F}^{n \times n}$, and let $\alpha>0$. Then,

$$
\sigma_{\max }(A+B) \leq\left[(1+\alpha) \sigma_{\max }^{2}(A)+\left(1+\alpha^{-1}\right) \sigma_{\max }^{2}(B)\right]^{1 / 2}
$$

and

$$
\sigma_{\min }(A+B) \leq\left[(1+\alpha) \sigma_{\min }^{2}(A)+\left(1+\alpha^{-1}\right) \sigma_{\max }^{2}(B)\right]^{1 / 2}
$$

Fact 9.14.17. Let $A, B \in \mathbb{F}^{n \times n}$. Then,

$$
\begin{aligned}
\sigma_{\min }(A)-\sigma_{\max }(B) & \leq|\operatorname{det}(A+B)|^{1 / n} \\
& \leq \prod_{i=1}^{n}\left|\sigma_{i}(A)+\sigma_{n-i+1}(B)\right|^{1 / n} \\
& \leq \sigma_{\max }(A)+\sigma_{\max }(B)
\end{aligned}
$$

(Proof: See [721, p. 63] and [894].)
Fact 9.14.18. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that $\sigma_{\max }(B) \leq \sigma_{\min }(A)$. Then,

$$
\begin{aligned}
0 & \leq\left[\sigma_{\min }(A)-\sigma_{\max }(B)\right]^{n} \\
& \leq \prod_{i=1}^{n}\left|\sigma_{i}(A)-\sigma_{n-i+1}(B)\right| \\
& \leq|\operatorname{det}(A+B)| \\
& \leq \prod_{i=1}^{n}\left|\sigma_{i}(A)+\sigma_{n-i+1}(B)\right| \\
& \leq\left[\sigma_{\max }(A)+\sigma_{\max }(B)\right]^{n} .
\end{aligned}
$$

Hence, if $\sigma_{\max }(B)<\sigma_{\min }(A)$, then A is nonsingular and $A+\alpha B$ is nonsingular for all $-1 \leq \alpha \leq 1$. (Proof: See [894].) (Remark: See Fact 11.18.16]) (Remark: See Fact 5.12.12)

Fact 9.14.19. Let $A, B \in \mathbb{F}^{n \times m}$. Then, the following statements are equivalent:
$i)$ For all $k=1, \ldots, \min \{n, m\}$,

$$
\sum_{i=1}^{k} \sigma_{i}(A) \leq \sum_{i=1}^{k} \sigma_{i}(B)
$$

ii) For all unitarily invariant norms $\|\cdot\|$ on $\mathbb{F}^{n \times m},\|A\| \leq\|B\|$.
(Proof: See [711, pp. 205, 206].) (Remark: This result is the Fan dominance theorem.)

Fact 9.14.20. Let $A, B \in \mathbb{F}^{n \times m}$. Then, for all $k=1, \ldots, \min \{n, m\}$,

$$
\sum_{i=1}^{k}\left[\sigma_{i}(A)+\sigma_{\min \{n, m\}+1-i}(B)\right] \leq \sum_{i=1}^{k} \sigma_{i}(A+B) \leq \sum_{i=1}^{k}\left[\sigma_{i}(A)+\sigma_{i}(B)\right]
$$

Furthermore, if either $\sigma_{\max }(A)<\sigma_{\min }(B)$ or $\sigma_{\max }(B)<\sigma_{\min }(A)$, then, for all $k=1, \ldots, \min \{n, m\}$,

$$
\sum_{i=1}^{k} \sigma_{i}(A+B) \leq \sum_{i=1}^{k}\left|\sigma_{i}(A)-\sigma_{\min \{n, m\}+1-i}(B)\right|
$$

(Proof: See Proposition 9.2.2, [711, pp. 196, 197] and [894].)
Fact 9.14.21. Let $A, B \in \mathbb{F}^{n \times m}$, and let $\alpha \in[0,1]$. Then, for all $i=1, \ldots$, $\min \{n, m\}$,

$$
\sigma_{i}[\alpha A+(1-\alpha) B] \leq\left\{\begin{array}{c}
\sigma_{i}\left(\left[\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right]\right) \\
\sigma_{i}\left(\left[\begin{array}{cc}
\sqrt{2 \alpha} A & 0 \\
0 & \sqrt{2(1-\alpha)} B
\end{array}\right]\right)
\end{array}\right.
$$

and

$$
2 \sigma_{i}\left(A B^{*}\right) \leq \sigma_{i}\left(\langle A\rangle^{2}+\langle B\rangle^{2}\right)
$$

Furthermore,

$$
\langle\alpha A+(1-\alpha) B\rangle^{2} \leq \alpha\langle A\rangle^{2}+(1-\alpha)\langle B\rangle^{2}
$$

If, in addition, $n=m$, then, for all $i=1, \ldots, n$,

$$
\frac{1}{2} \sigma_{i}\left(A+A^{*}\right) \leq \sigma_{i}\left(\left[\begin{array}{cc}
A & 0 \\
0 & A
\end{array}\right]\right)
$$

(Proof: See 698.) (Remark: See Fact 9.14.23,
Fact 9.14.22. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{l \times m}$, and let $p, q>1$ satisfy $1 / p+1 / q=$ 1. Then, for all $i=1, \ldots, \min \{n, m, l\}$,

$$
\sigma_{i}\left(A B^{*}\right) \leq \sigma_{i}\left(\frac{1}{p}\langle A\rangle^{p}+\frac{1}{q}\langle B\rangle^{q}\right)
$$

Equivalently, there exists a unitary matrix $S \in \mathbb{F}^{m \times m}$ such that

$$
\left\langle A B^{*}\right\rangle^{1 / 2} \leq S^{*}\left(\frac{1}{p}\langle A\rangle^{p}+\frac{1}{q}\langle B\rangle^{q}\right) S
$$

(Proof: See 47, 49, 694 or 1485 p. 28].) (Remark: This result is a matrix version of Young's inequality. See Fact 1.10.32.,

Fact 9.14.23. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{l \times m}$. Then, for all $i=1, \ldots$, $\min \{n, m, l\}$,

$$
\sigma_{i}\left(A B^{*}\right) \leq \frac{1}{2} \sigma_{i}\left(A^{*} A+B^{*} B\right)
$$

(Proof: Set $p=q=2$ in Fact 9.14.22 See [209.) (Remark: See Fact 9.9.47 and Fact 9.14.21)

Fact 9.14.24. Let $A, B, C, D \in \mathbb{F}^{n \times m}$. Then, for all $i=1, \ldots, \min \{n, m\}$,

$$
\sqrt{2} \sigma_{i}\left(\left\langle A B^{*}+C D^{*}\right\rangle\right) \leq \sigma_{i}\left(\left[\begin{array}{cc}
A & B \\
C & D
\end{array}\right]\right)
$$

(Proof: See 693].)
Fact 9.14.25. Let $A, B, C, D, X \in \mathbb{F}^{n \times n}$, assume that A, B, C, D are positive semidefinite, and assume that $0 \leq A \leq C$ and $0 \leq B \leq D$. Then, for all $i=1, \ldots, n$,

$$
\sigma_{i}\left(A^{1 / 2} X B^{1 / 2}\right) \leq \sigma_{i}\left(C^{1 / 2} X D^{1 / 2}\right)
$$

(Proof: See [698, 816].)
Fact 9.14.26. Let $A_{1}, \ldots, A_{k} \in \mathbb{F}^{n \times n}$, and let $l \in\{1, \ldots, n\}$. Then,

$$
\sum_{i=1}^{l} \sigma_{i}\left(\prod_{j=1}^{k} A_{j}\right) \leq \sum_{i=1}^{l} \prod_{j=1}^{k} \sigma_{i}\left(A_{j}\right)
$$

(Proof: See [317].) (Remark: This result is a weak majorization relation.)
Fact 9.14.27. Let $A, B \in \mathbb{F}^{n \times m}$, and let $1 \leq l_{1}<\cdots<l_{k} \leq \min \{n, m\}$. Then,

$$
\sum_{i=1}^{k} \sigma_{l_{i}}(A) \sigma_{n-i+1}(B) \leq \sum_{i=1}^{k} \sigma_{l_{i}}(A B) \leq \sum_{i=1}^{k} \sigma_{l_{i}}(A) \sigma_{i}(B)
$$

and

$$
\sum_{i=1}^{k} \sigma_{l_{i}}(A) \sigma_{n-l_{i}+1}(B) \leq \sum_{i=1}^{k} \sigma_{i}(A B)
$$

In particular,

$$
\sum_{i=1}^{k} \sigma_{i}(A) \sigma_{n-i+1}(B) \leq \sum_{i=1}^{k} \sigma_{i}(A B) \leq \sum_{i=1}^{k} \sigma_{i}(A) \sigma_{i}(B)
$$

Furthermore,

$$
\prod_{i=1}^{k} \sigma_{l_{i}}(A B) \leq \prod_{i=1}^{k} \sigma_{l_{i}}(A) \sigma_{i}(B)
$$

with equality for $k=n$. Furthermore,

$$
\prod_{i=1}^{k} \sigma_{l_{i}}(A) \sigma_{n-l_{i}+1}(B) \leq \prod_{i=1}^{k} \sigma_{i}(A B)
$$

with equality for $k=n$. In particular,

$$
\prod_{i=1}^{k} \sigma_{i}(A) \sigma_{n-i+1}(B) \leq \prod_{i=1}^{k} \sigma_{i}(A B) \leq \prod_{i=1}^{k} \sigma_{i}(A) \sigma_{i}(B)
$$

with equality for $k=n$. (Proof: See [1388].) (Remark: See Fact 8.18.19 and Fact 8.18.22,) (Remark: The left-hand inequalities in the first and third strings are conjectures. See 1388.)

Fact 9.14.28. Let $A \in \mathbb{F}^{n \times m}$, let $k \geq 1$ satisfy $k<\operatorname{rank} A$, and let $\|\cdot\|$ be a unitarily invariant norm on $\mathbb{F}^{n \times m}$. Then,

$$
\min _{B \in\left\{X \in \mathbb{F}^{n \times n}: \operatorname{rank} X \leq k\right\}}\|A-B\|=\left\|A-B_{0}\right\|,
$$

where B_{0} is formed by replacing $(\operatorname{rank} A)-k$ smallest positive singular values in the singular value decomposition of A by 0's. Furthermore,

$$
\sigma_{\max }\left(A-B_{0}\right)=\sigma_{k+1}(A)
$$

and

$$
\left\|A-B_{0}\right\|_{\mathrm{F}}=\sqrt{\sum_{i=k+1}^{r} \sigma_{i}^{2}(A)}
$$

Furthermore, B_{0} is the unique solution if and only if $\sigma_{k+1}(A)<\sigma_{k}(A)$. (Proof: The result follows from Fact 9.14 .29 with $B_{\sigma} \triangleq \operatorname{diag}\left[\sigma_{1}(A), \ldots, \sigma_{k}(A)\right.$, $0_{(n-k) \times(m-k)}$], $S_{1}=I_{n}$, and $S_{2}=I_{m}$. See [569 and [1230, p. 208].) (Remark: This result is known as the Schmidt-Mirsky theorem. For the case of the Frobenius norm, the result is known as the Eckart-Young theorem. See 507 and 1230, p. 210].) (Remark: See Fact 9.15.4)

Fact 9.14.29. Let $A, B \in \mathbb{F}^{n \times m}$, define $A_{\sigma}, B_{\sigma} \in \mathbb{F}^{n \times m}$ by

$$
A_{\sigma} \triangleq\left[\begin{array}{llll}
\sigma_{1}(A) & & & \\
& \ddots & & \\
& & \sigma_{r}(A) & \\
& & & 0_{(n-r) \times(m-r)}
\end{array}\right]
$$

where $r \triangleq \operatorname{rank} A$, and

$$
B_{\sigma} \triangleq\left[\begin{array}{cccc}
\sigma_{1}(B) & & & \\
& \ddots & & \\
& & \sigma_{l}(B) & \\
& & & 0_{(n-l) \times(m-l)}
\end{array}\right]
$$

where $l \triangleq \operatorname{rank} B$, let $S_{1} \in \mathbb{F}^{n \times n}$ and $S_{2} \in \mathbb{F}^{m \times m}$ be unitary matrices, and let $\|\cdot\|$ be a unitarily invariant norm on $\mathbb{F}^{n \times m}$. Then,

$$
\left\|A_{\sigma}-B_{\sigma}\right\| \leq\left\|A-S_{1} B S_{2}\right\| \leq\left\|A_{\sigma}+B_{\sigma}\right\|
$$

In particular,

$$
\max _{i \in\{1, \ldots, \max \{r, l\}\}}\left|\sigma_{i}(A)-\sigma_{i}(B)\right| \leq \sigma_{\max }(A-B) \leq \sigma_{\max }(A)+\sigma_{\max }(B)
$$

(Proof: See [1390.) (Remark: In the case $S_{1}=I_{n}$ and $S_{2}=I_{m}$, the left-hand inequality is Mirsky's theorem. See [1230, p. 204].) (Remark: See Fact 9.12.4)

Fact 9.14.30. Let $A, B \in \mathbb{F}^{n \times m}$, and assume that $\operatorname{rank} A=\operatorname{rank} B$. Then,

$$
\begin{aligned}
\sigma_{\max }\left[A A^{+}\left(I-B B^{+}\right)\right] & =\sigma_{\max }\left[B B^{+}\left(I-A A^{+}\right)\right] \\
& \leq \min \left\{\sigma_{\max }\left(A^{+}\right), \sigma_{\max }\left(B^{+}\right)\right\} \sigma_{\max }(A-B)
\end{aligned}
$$

(Proof: See [681, p. 400] and [1230, p. 141].)
Fact 9.14.31. Let $A, B \in \mathbb{F}^{n \times m}$. Then, for all $k=1, \ldots, \min \{n, m\}$,

$$
\begin{aligned}
\sum_{i=1}^{k} \sigma_{i}(A \circ B) & \leq \sum_{i=1}^{k} \mathrm{~d}_{i}^{1 / 2}\left(A^{*} A\right) \mathrm{d}_{i}^{1 / 2}\left(B B^{*}\right) \\
& \leq\left\{\begin{array}{c}
\sum_{i=1}^{k} \mathrm{~d}_{i}^{1 / 2}\left(A^{*} A\right) \sigma_{i}(B) \\
\sum_{i=1}^{k} \sigma_{i}(A) \mathrm{d}_{i}^{1 / 2}\left(B B^{*}\right)
\end{array}\right\} \\
& \leq \sum_{i=1}^{k} \sigma_{i}(A) \sigma_{i}(B)
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{i=1}^{k} \sigma_{i}(A \circ B) & \leq \sum_{i=1}^{k} \mathrm{~d}_{i}^{1 / 2}\left(A A^{*}\right) \mathrm{d}_{i}^{1 / 2}\left(B^{*} B\right) \\
& \leq\left\{\begin{array}{l}
\sum_{i=1}^{k} \mathrm{~d}_{i}^{1 / 2}\left(A A^{*}\right) \sigma_{i}(B) \\
\sum_{i=1}^{k} \sigma_{i}(A) \mathrm{d}_{i}^{1 / 2}\left(B^{*} B\right)
\end{array}\right\} \\
& \leq \sum_{i=1}^{k} \sigma_{i}(A) \sigma_{i}(B)
\end{aligned}
$$

In particular,

$$
\sigma_{\max }(A \circ B) \leq\|A\|_{2,1}\|B\|_{\infty, 2} \leq\left\{\begin{array}{c}
\|A\|_{2,1} \sigma_{\max }(B) \\
\sigma_{\max }(A)\|B\|_{\infty, 2}
\end{array}\right\} \leq \sigma_{\max }(A) \sigma_{\max }(B)
$$

and

$$
\sigma_{\max }(A \circ B) \leq\|A\|_{\infty, 2}\|B\|_{2,1} \leq\left\{\begin{array}{c}
\|A\|_{\infty, 2} \sigma_{\max }(B) \\
\sigma_{\max }(A)\|B\|_{2,1}
\end{array}\right\} \leq \sigma_{\max }(A) \sigma_{\max }(B)
$$

(Proof: See [56, 976, 1481] and [711, p. 334], and use Fact 2.21.2, Fact 8.17.8, and Fact 9.8.24.) (Remark: $\mathrm{d}_{i}^{1 / 2}\left(A^{*} A\right)$ and $\mathrm{d}_{i}^{1 / 2}\left(A A^{*}\right)$ are the i th largest Euclidean norms of the columns and rows of A, respectively.) (Remark: For related results, see [1345].) (Remark: The case of equality is discussed in [319].)

Fact 9.14.32. Let $A, B \in \mathbb{C}^{n \times m}$. Then,

$$
\begin{aligned}
\sum_{i=1}^{n} \sigma_{i}^{2}(A \circ B) & =\operatorname{tr}(A \circ B)(\bar{A} \circ \bar{B})^{\mathrm{T}} \\
& =\operatorname{tr}(A \circ \bar{A})(B \circ \bar{B})^{\mathrm{T}} \\
& \leq \sum_{i=1}^{n} \sigma_{i}\left[(A \circ \bar{A})(B \circ \bar{B})^{\mathrm{T}}\right] \\
& \leq \sum_{i=1}^{n} \sigma_{i}(A \circ \bar{A}) \sigma_{i}(B \circ \bar{B}) .
\end{aligned}
$$

(Proof: See [730].)
Fact 9.14.33. Let $A, B \in \mathbb{F}^{n \times m}$. Then,

$$
\sigma_{\max }(A \circ B) \leq \sqrt{n}\|A\|_{\infty} \sigma_{\max }(B)
$$

Now, assume that $n=m$ and that either A is positive semidefinite and B is Hermitian or A and B are nonnegative and symmetric. Then,

$$
\sigma_{\max }(A \circ B) \leq\|A\|_{\infty} \sigma_{\max }(B)
$$

Next, assume that A and B are real, let β denote the smallest positive entry of $|B|$, and assume that B is symmetric and positive semidefinite. Then,

$$
\operatorname{sprad}(A \circ B) \leq \frac{\|A\|_{\infty}\|B\|_{\infty}}{\beta} \sigma_{\max }(B)
$$

and

$$
\operatorname{sprad}(B) \leq \operatorname{sprad}(|B|) \leq \frac{\|B\|_{\infty}}{\beta} \operatorname{sprad}(B)
$$

(Proof: See 1080.)
Fact 9.14.34. Let $A, B \in \mathbb{F}^{n \times m}$, and let $p \in[1, \infty)$ be an even integer. Then,

$$
\|A \circ B\|_{\sigma p}^{2} \leq\|A \circ \bar{A}\|_{\sigma p}\|B \circ \bar{B}\|_{\sigma p}
$$

In particular,

$$
\|A \circ B\|_{\mathrm{F}}^{2} \leq\|A \circ \bar{A}\|_{\mathrm{F}}\|B \circ \bar{B}\|_{\mathrm{F}}
$$

and

$$
\sigma_{\max }^{2}(A \circ B) \leq \sigma_{\max }(A \circ \bar{A}) \sigma_{\max }(B \circ \bar{B})
$$

Equality holds if $B=\bar{A}$. Furthermore,

$$
\|A \circ A\|_{\sigma p} \leq\|A \circ \bar{A}\|_{\sigma p}
$$

In particular,

$$
\|A \circ A\|_{\mathrm{F}} \leq\|A \circ \bar{A}\|_{\mathrm{F}}
$$

and

$$
\sigma_{\max }(A \circ A) \leq \sigma_{\max }(A \circ \bar{A})
$$

Now, assume that $n=m$. Then,

$$
\left\|A \circ A^{\mathrm{T}}\right\|_{\sigma p} \leq\|A \circ \bar{A}\|_{\sigma p}
$$

In particular,

$$
\left\|A \circ A^{\mathrm{T}}\right\|_{\mathrm{F}} \leq\|A \circ \bar{A}\|_{\mathrm{F}}
$$

and

$$
\sigma_{\max }\left(A \circ A^{\mathrm{T}}\right) \leq \sigma_{\max }(A \circ \bar{A})
$$

Finally,

$$
\left\|A \circ A^{*}\right\|_{\sigma p} \leq\|A \circ \bar{A}\|_{\sigma p}
$$

In particular,

$$
\left\|A \circ A^{*}\right\|_{\mathrm{F}} \leq\|A \circ \bar{A}\|_{\mathrm{F}}
$$

and

$$
\sigma_{\max }\left(A \circ A^{*}\right) \leq \sigma_{\max }(A \circ \bar{A})
$$

(Proof: See [712, 1193.) (Remark: See Fact 7.6.16.)
Fact 9.14.35. Let $A, B \in \mathbb{R}^{n \times n}$, assume that A and B are nonnegative, and let $\alpha \in[0,1]$. Then,

$$
\sigma_{\max }\left(A^{\circ \alpha} \circ B^{\circ(1-\alpha)}\right) \leq \sigma_{\max }^{\alpha}(A) \sigma_{\max }^{1-\alpha}(B)
$$

In particular,

$$
\sigma_{\max }\left(A^{\circ 1 / 2} \circ B^{\circ 1 / 2}\right) \leq \sqrt{\sigma_{\max }(A) \sigma_{\max }(B)}
$$

Finally,

$$
\sigma_{\max }\left(A^{\circ 1 / 2} \circ A^{\circ 1 / 2 \mathrm{~T}}\right) \leq \sigma_{\max }\left(A^{\circ \alpha} \circ A^{\circ(1-\alpha) \mathrm{T}}\right) \leq \sigma_{\max }(A)
$$

(Proof: See [1193.) (Remark: See Fact 7.6.17)
Fact 9.14.36. Let $\|\cdot\|$ be a unitarily invariant norm on $\mathbb{C}^{n \times n}$, and let $A, X, B \in$ $\mathbb{C}^{n \times n}$. Then,

$$
\|A \circ X \circ B\| \leq \frac{1}{2} \sqrt{n}\|A \circ X \circ \bar{A}+B \circ X \circ \bar{B}\|
$$

and

$$
\|A \circ X \circ B\|^{2} \leq n\|A \circ X \circ \bar{A}\|\|B \circ X \circ \bar{B}\|
$$

Furthermore,

$$
\|A \circ X \circ B\|_{\mathrm{F}} \leq \frac{1}{2}\|A \circ X \circ \bar{A}+B \circ X \circ \bar{B}\|_{\mathrm{F}}
$$

(Proof: See [730].)
Fact 9.14.37. Let $A \in \mathbb{F}^{n \times m}, B \in \mathbb{F}^{l \times k}$, and $p \in[1, \infty]$. Then,

$$
\|A \otimes B\|_{\sigma p}=\|A\|_{\sigma p}\|B\|_{\sigma p}
$$

In particular,

$$
\sigma_{\max }(A \otimes B)=\sigma_{\max }(A) \sigma_{\max }(B)
$$

and

$$
\|A \otimes B\|_{\mathrm{F}}=\|A\|_{\mathrm{F}}\|B\|_{\mathrm{F}}
$$

(Proof: See [690, p. 722].)

9.15 Facts on Least Squares

Fact 9.15.1. Let $A \in \mathbb{F}^{n \times m}$ and $b \in \mathbb{F}^{n}$, and define

$$
f(x) \triangleq(A x-b)^{*}(A x-b)=\|A x-b\|_{2}^{2},
$$

where $x \in \mathbb{F}^{m}$. Then, f has a minimizer. Furthermore, $x \in \mathbb{F}^{m}$ minimizes f if and only if there exists a vector $y \in \mathbb{F}^{m}$ such that

$$
x=A^{+} b+\left(I-A^{+} A\right) y .
$$

In this case,

$$
f(x)=b^{*}\left(I-A A^{+}\right) b .
$$

Furthermore, if $y \in \mathbb{F}^{m}$ is such that $\left(I-A^{+} A\right) y$ is nonzero, then

$$
\left\|A^{+} b\right\|_{2}<\left\|A^{+} b+\left(I-A^{+} A\right) y\right\|_{2}=\sqrt{\left\|A^{+} b\right\|_{2}^{2}+\left\|\left(I-A^{+} A\right) y\right\|_{2}^{2}} .
$$

Finally, $A^{+} b$ is the unique minimizer of f if and only if A is left invertible. (Remark: The minimization of f is the least squares problem. See [15, 226, 1226. Note that, unlike Proposition 6.1.7, consistency is not assumed.) (Remark: This result is a special case of Fact 8.14.15)

Fact 9.15.2. Let $A \in \mathbb{F}^{n \times m}, B \in \mathbb{F}^{n \times l}$, and define

$$
f(X) \triangleq \operatorname{tr}\left[(A X-B)^{*}(A X-B)\right]=\|A X-B\|_{\mathrm{F}}^{2},
$$

where $X \in \mathbb{F}^{m \times l}$. Then, $X=A^{+} B$ minimizes f. (Problem: Determine all minimizers.) (Problem: Consider $f(X)=\operatorname{tr}\left[(A X-B)^{*} C(A X-B)\right]$, where $C \in \mathbb{F}^{n \times n}$ is positive definite.)

Fact 9.15.3. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{l \times m}$, and define

$$
f(X) \triangleq \operatorname{tr}\left[(X A-B)^{*}(X A-B)\right]=\|X A-B\|_{\mathrm{F}}^{2},
$$

where $X \in \mathbb{F}^{l \times n}$. Then, $X=B A^{+}$minimizes f.
Fact 9.15.4. Let $A \in \mathbb{F}^{n \times m}, B \in \mathbb{F}^{n \times p}$, and $C \in \mathbb{F}^{q \times m}$, and let $k \geq 1$ satisfy $k<\operatorname{rank} A$. Then,

$$
\min _{X \in\left\{Y \in \mathbb{F}^{p \times q_{:}} \text {rank } Y \leq k\right\}}\|A-B X C\|_{\mathrm{F}}=\left\|A-B X_{0} C\right\|_{\mathrm{F}},
$$

where $X_{0}=B^{+} S C^{+}$and S is formed by replacing all but the k largest singular values in the singular value decomposition of $B B^{+} A C^{+} C$ by 0 's. Furthermore, X_{0} is a solution that minimizes $\|X\|_{\mathrm{F}}$. Finally, X_{0} is the unique solution if and only if either rank $B B^{+} A C^{+} C \leq k$ or both $k \leq B B^{+} A C^{+} C$ and $\sigma_{k+1}\left(B B^{+} A C^{+} C\right)<$ $\sigma_{k}\left(B B^{+} A C^{+} C\right)$. (Proof: See 507.) (Remark: This result generalizes Fact 9.14.28)

Fact 9.15.5. Let $A, B \in \mathbb{F}^{n \times m}$, and define

$$
f(X) \triangleq \operatorname{tr}\left[(A X-B)^{*}(A X-B)\right]=\|A X-B\|_{\mathrm{F}}^{2},
$$

where $X \in \mathbb{F}^{m \times m}$ is unitary. Then, $X=S_{1} S_{2}$ minimizes f, where $S_{1}\left[\begin{array}{cc}\hat{B} & 0 \\ 0 & 0\end{array}\right] S_{2}$ is the singular value decomposition of $A^{*} B$. (Proof: See [144 p. 224]. See also [971, pp. 269, 270].)

Fact 9.15.6. Let $A, B \in \mathbb{R}^{n \times n}$, and define

$$
f\left(X_{1}, X_{2}\right) \triangleq \operatorname{tr}\left[\left(X_{1} A X_{2}-B\right)^{\mathrm{T}}\left(X_{1} A X_{2}-B\right)\right]=\left\|X_{1} A X_{2}-B\right\|_{\mathrm{F}}^{2}
$$

where $X_{1}, X_{2} \in \mathbb{R}^{n \times n}$ are orthogonal. Then, $\left(X_{1}, X_{2}\right)=\left(V_{2}^{\mathrm{T}} U_{1}^{\mathrm{T}}, V_{1}^{\mathrm{T}} U_{2}^{\mathrm{T}}\right)$ minimizes f, where $U_{1}\left[\begin{array}{cc}\hat{A} & 0 \\ 0 & 0\end{array}\right] V_{1}$ is the singular value decomposition of A and $U_{2}\left[\begin{array}{cc}\hat{B} & 0 \\ 0 & 0\end{array}\right] V_{2}$ is the singular value decomposition of B. (Proof: See [971, p. 270].) (Remark: This result is due to Kristof.) (Remark: See Fact 3.9.5.) (Problem: Extend this result to \mathbb{C} and nonsquare matrices.)

9.16 Notes

The equivalence of absolute and monotone norms given by Proposition 9.1.2 is due to 155. More general monotonicity conditions are considered in 768. Induced lower bounds are treated in [867, pp. 369, 370]. See also [1230, pp. 33, 80]. The induced norms (9.4.13) and (9.4.14) are given in [310 and 681, p. 116]. Alternative norms for the convolution operator are given in 310 1435. Proposition 9.3 .6 is given in 1127, p. 97]. Norm-related topics are discussed in [169. Spectral perturbation theory in finite and infinite dimensions is treated in [796, where the emphasis is on the regularity of the spectrum as a function of the perturbation rather than on bounds for finite perturbations.

Chapter Ten

Functions of Matrices and Their Derivatives

The norms discussed in Chapter 9 provide the foundation for the development in this chapter of some basic results in topology and analysis.

10.1 Open Sets and Closed Sets

Let $\|\cdot\|$ be a norm on \mathbb{F}^{n}, let $x \in \mathbb{F}^{n}$, and let $\varepsilon>0$. Then, define the open ball of radius ε centered at x by

$$
\begin{equation*}
\mathbb{B}_{\varepsilon}(x) \triangleq\left\{y \in \mathbb{F}^{n}:\|x-y\|<\varepsilon\right\} \tag{10.1.1}
\end{equation*}
$$

and the sphere of radius ε centered at x by

$$
\begin{equation*}
\mathbb{S}_{\varepsilon}(x) \triangleq\left\{y \in \mathbb{F}^{n}:\|x-y\|=\varepsilon\right\} \tag{10.1.2}
\end{equation*}
$$

Definition 10.1.1. Let $\mathcal{S} \subseteq \mathbb{F}^{n}$. The vector $x \in \mathcal{S}$ is an interior point of \mathcal{S} if there exists $\varepsilon>0$ such that $\mathbb{B}_{\varepsilon}(x) \subseteq \mathcal{S}$. The interior of \mathcal{S} is the set

$$
\begin{equation*}
\operatorname{int} \mathcal{S} \triangleq\{x \in \mathcal{S}: x \text { is an interior point of } \mathcal{S}\} \tag{10.1.3}
\end{equation*}
$$

Finally, \mathcal{S} is open if every element of \mathcal{S} is an interior point, that is, if $\mathcal{S}=\operatorname{int} \mathcal{S}$.
Definition 10.1.2. Let $\mathcal{S} \subseteq \mathcal{S}^{\prime} \subseteq \mathbb{F}^{n}$. The vector $x \in \mathcal{S}$ is an interior point of \mathcal{S} relative to \mathcal{S}^{\prime} if there exists $\varepsilon>0$ such that $\mathbb{B}_{\varepsilon}(x) \cap \mathcal{S}^{\prime} \subseteq \mathcal{S}$ or, equivalently, $\mathbb{B}_{\varepsilon}(x) \cap \mathcal{S}=\mathbb{B}_{\varepsilon}(x) \cap \mathcal{S}^{\prime}$. The interior of \mathcal{S} relative to \mathcal{S}^{\prime} is the set
$\operatorname{int}_{\mathcal{S}^{\prime}} \mathcal{S} \triangleq\left\{x \in \mathcal{S}: \quad x\right.$ is an interior point of \mathcal{S} relative to $\left.\mathcal{S}^{\prime}\right\}$.
Finally, \mathcal{S} is open relative to \mathcal{S}^{\prime} if $\mathcal{S}=\operatorname{int}_{\mathcal{S}^{\prime}} \mathcal{S}$.
Definition 10.1.3. Let $\mathcal{S} \subseteq \mathbb{F}^{n}$. The vector $x \in \mathbb{F}^{n}$ is a closure point of \mathcal{S} if, for all $\varepsilon>0$, the set $\mathcal{S} \cap \mathbb{B}_{\varepsilon}(x)$ is not empty. The closure of \mathcal{S} is the set

$$
\begin{equation*}
\operatorname{cl} \mathcal{S} \triangleq\left\{x \in \mathbb{F}^{n}: x \text { is a closure point of } \mathcal{S}\right\} \tag{10.1.5}
\end{equation*}
$$

Finally, the set \mathcal{S} is closed if every closure point of \mathcal{S} is an element of \mathcal{S}, that is, if $S=\operatorname{cl} S$.

Definition 10.1.4. Let $\mathcal{S} \subseteq \mathcal{S}^{\prime} \subseteq \mathbb{F}^{n}$. The vector $x \in \mathcal{S}^{\prime}$ is a closure point of \mathcal{S} relative to \mathcal{S}^{\prime} if, for all $\varepsilon>0$, the set $\mathcal{S} \cap \mathbb{B}_{\varepsilon}(x)$ is not empty. The closure of \mathcal{S} relative to \mathcal{S}^{\prime} is the set

$$
\begin{equation*}
\operatorname{cl}_{\mathcal{S}^{\prime}} \mathcal{S} \triangleq\left\{x \in \mathbb{F}^{n}: x \text { is a closure point of } \mathcal{S} \text { relative to } \mathcal{S}^{\prime}\right\} \tag{10.1.6}
\end{equation*}
$$

Finally, \mathcal{S} is closed relative to \mathcal{S}^{\prime} if $\mathcal{S}=\operatorname{cl}_{\mathcal{S}^{\prime}} \mathcal{S}$.
It follows from Theorem 9.1.8 on the equivalence of norms on \mathbb{F}^{n} that these definitions are independent of the norm assigned to \mathbb{F}^{n}.

Let $\mathcal{S} \subseteq \mathcal{S}^{\prime} \subseteq \mathbb{F}^{n}$. Then,

$$
\begin{align*}
\operatorname{cl}_{\mathcal{S}^{\prime}} \mathcal{S} & =(\operatorname{cl} \mathcal{S}) \cap \mathcal{S}^{\prime} \tag{10.1.7}\\
\operatorname{int}_{\mathcal{S}^{\prime}} \mathcal{S} & =\mathcal{S}^{\prime} \backslash \operatorname{cl}\left(\mathcal{S}^{\prime} \backslash \mathcal{S}\right) \tag{10.1.8}
\end{align*}
$$

and

$$
\begin{equation*}
\operatorname{int} \mathcal{S} \subseteq \operatorname{int}_{\mathcal{S}^{\prime}} \mathcal{S} \subseteq \mathcal{S} \subseteq \operatorname{cl}_{\mathcal{S}^{\prime}} \mathcal{S} \subseteq \mathrm{cl} \mathcal{S} \tag{10.1.9}
\end{equation*}
$$

The set \mathcal{S} is solid if int \mathcal{S} is not empty, while \mathcal{S} is completely solid if $\operatorname{clint} \mathcal{S}=\mathrm{cl} \mathcal{S}$. If \mathcal{S} is completely solid, then \mathcal{S} is solid. The boundary of \mathcal{S} is the set

$$
\begin{equation*}
\mathrm{bd} \mathcal{S} \triangleq \operatorname{cl} \mathcal{S} \backslash \operatorname{int} \mathcal{S} \tag{10.1.10}
\end{equation*}
$$

while the boundary of \mathcal{S} relative to \mathcal{S}^{\prime} is the set

$$
\begin{equation*}
\operatorname{bd}_{\mathcal{S}^{\prime}} \mathcal{S} \triangleq \operatorname{cl}_{\mathcal{S}^{\prime}} \mathcal{S} \backslash \operatorname{int}_{\mathcal{S}^{\prime}} \mathcal{S} \tag{10.1.11}
\end{equation*}
$$

Note that the empty set is both open and closed, although it is not solid.
The set $\mathcal{S} \subset \mathbb{F}^{n}$ is bounded if there exists $\delta>0$ such that, for all $x, y \in \mathcal{S}$,

$$
\begin{equation*}
\|x-y\|<\delta \tag{10.1.12}
\end{equation*}
$$

The set $\mathcal{S} \subset \mathbb{F}^{n}$ is compact if it is both closed and bounded.

10.2 Limits

Definition 10.2.1. The sequence $\left(x_{1}, x_{2}, \ldots\right)$ is a tuple with a countably infinite number of components. We write $\left(x_{i}\right)_{i=1}^{\infty}$ for $\left(x_{1}, x_{2}, \ldots\right)$.

Definition 10.2.2. The sequence $\left(\alpha_{i}\right)_{i=1}^{\infty} \subset \mathbb{F}$ converges to $\alpha \in \mathbb{F}$ if, for all $\varepsilon>0$, there exists a positive integer $p \in \mathbb{P}$ such that $\left|\alpha_{i}-\alpha\right|<\varepsilon$ for all $i>p$. In this case, we write $\alpha=\lim _{i \rightarrow \infty} \alpha_{i}$ or $\alpha_{i} \rightarrow \alpha$ as $i \rightarrow \infty$, where $i \in \mathbb{P}$. Finally, the sequence $\left(\alpha_{i}\right)_{i=1}^{\infty} \subset \mathbb{F}$ converges if there exists $\alpha \in \mathbb{F}$ such that $\left(\alpha_{i}\right)_{i=1}^{\infty}$ converges to α.

Definition 10.2.3. The sequence $\left(x_{i}\right)_{i=1}^{\infty} \subset \mathbb{F}^{n}$ converges to $x \in \mathbb{F}^{n}$ if $\lim _{i \rightarrow \infty}\left\|x-x_{i}\right\|=0$, where $\|\cdot\|$ is a norm on \mathbb{F}^{n}. In this case, we write $x=\lim _{i \rightarrow \infty} x_{i}$ or $x_{i} \rightarrow x$ as $i \rightarrow \infty$, where $i \in \mathbb{P}$. The sequence $\left(x_{i}\right)_{i=1}^{\infty} \subset \mathbb{F}^{n}$ converges if there exists $x \in \mathbb{F}^{n}$ such that $\left(x_{i}\right)_{i=1}^{\infty}$ converges to x. Similarly, $\left(A_{i}\right)_{i=1}^{\infty} \subset \mathbb{F}^{n \times m}$ converges to $A \in \mathbb{F}^{n \times m}$ if $\lim _{i \rightarrow \infty}\left\|A-A_{i}\right\|=0$, where $\|\cdot\|$ is a norm on $\mathbb{F}^{n \times m}$. In this case, we write $A=\lim _{i \rightarrow \infty} A_{i}$ or $A_{i} \rightarrow A$ as $i \rightarrow \infty$, where $i \in \mathbb{P}$. Finally, the sequence
$\left(A_{i}\right)_{i=1}^{\infty} \subset \mathbb{F}^{n \times m}$ converges if there exists $A \in \mathbb{F}^{n \times m}$ such that $\left(A_{i}\right)_{i=1}^{\infty}$ converges to A.

It follows from Theorem 9.1.8 that convergence of a sequence is independent of the choice of norm.

Proposition 10.2.4. Let $\mathcal{S} \subseteq \mathbb{F}^{n}$. The vector $x \in \mathbb{F}^{n}$ is a closure point of \mathcal{S} if and only if there exists a sequence $\left(x_{i}\right)_{i=1}^{\infty} \subseteq \mathcal{S}$ that converges to x.

Proof. Suppose that $x \in \mathbb{F}^{n}$ is a closure point of \mathcal{S}. Then, for all $i \in \mathbb{P}$, there exists a vector $x_{i} \in \mathcal{S}$ such that $\left\|x-x_{i}\right\|<1 / i$. Hence, $x-x_{i} \rightarrow 0$ as $i \rightarrow \infty$. Conversely, suppose that $\left(x_{i}\right)_{i=1}^{\infty} \subseteq \mathcal{S}$ is such that $x_{i} \rightarrow x$ as $i \rightarrow \infty$, and let $\varepsilon>0$. Then, there exists a positive integer $p \in \mathbb{P}$ such that $\left\|x-x_{i}\right\|<\varepsilon$ for all $i>p$. Therefore, $x_{p+1} \in \mathcal{S} \cap \mathbb{B}_{\varepsilon}(x)$, and thus $\mathcal{S} \cap \mathbb{B}_{\varepsilon}(x)$ is not empty. Hence, x is a closure point of \mathcal{S}.

Theorem 10.2.5. Let $\mathcal{S} \subset \mathbb{F}^{n}$ be compact, and let $\left(x_{i}\right)_{i=1}^{\infty} \subseteq \mathcal{S}$. Then, there exists a subsequence $\left\{x_{i_{j}}\right\}_{j=1}^{\infty}$ of $\left(x_{i}\right)_{i=1}^{\infty}$ such that $\left\{x_{i_{j}}\right\}_{j=1}^{\infty}$ converges and $\lim _{j \rightarrow \infty} x_{i_{j}} \in \mathcal{S}$.

Proof. See [1030, p. 145].
Next, we define convergence for the series $\sum_{i=1}^{\infty} x_{i}$ in terms of the partial sums $\sum_{i=1}^{k} x_{i}$.

Definition 10.2.6. Let $\left(x_{i}\right)_{i=1}^{\infty} \subset \mathbb{F}^{n}$, and let $\|\cdot\|$ be a norm on \mathbb{F}^{n}. Then, the series $\sum_{i=1}^{\infty} x_{i}$ converges if $\left\{\sum_{i=1}^{k} x_{i}\right\}_{k=1}^{\infty}$ converges. Furthermore, $\sum_{i=1}^{\infty} x_{i}$ converges absolutely if the series $\sum_{i=1}^{\infty}\left\|x_{i}\right\|$ converges.

Proposition 10.2.7. Let $\left(x_{i}\right)_{i=1}^{\infty} \subset \mathbb{F}^{n}$, and assume that the series $\sum_{i=1}^{\infty} x_{i}$ converges absolutely. Then, the series $\sum_{i=1}^{\infty} x_{i}$ converges.

Definition 10.2.8. Let $\left(A_{i}\right)_{i=1}^{\infty} \subset \mathbb{F}^{n \times m}$, and let $\|\cdot\|$ be a norm on $\mathbb{F}^{n \times m}$. Then, the series $\sum_{i=1}^{\infty} A_{i}$ converges if $\left\{\sum_{i=1}^{k} A_{i}\right\}_{k=1}^{\infty}$ converges. Furthermore, $\sum_{i=1}^{\infty} A_{i}$ converges absolutely if the series $\sum_{i=1}^{\infty}\left\|A_{i}\right\|$ converges.

Proposition 10.2.9. Let $\left(A_{i}\right)_{i=1}^{\infty} \subset \mathbb{F}^{n \times m}$, and assume that the series $\sum_{i=1}^{\infty} A_{i}$ converges absolutely. Then, the series $\sum_{i=1}^{\infty} A_{i}$ converges.

10.3 Continuity

Definition 10.3.1. Let $\mathcal{D} \subseteq \mathbb{F}^{m}, f: \mathcal{D} \mapsto \mathbb{F}^{n}$, and $x \in \mathcal{D}$. Then, f is continuous at x if, for every convergent sequence $\left(x_{i}\right)_{i=1}^{\infty} \subseteq \mathcal{D}$ such that $\lim _{i \rightarrow \infty} x_{i}=x$, it follows that $\lim _{i \rightarrow \infty} f\left(x_{i}\right)=f(x)$. Furthermore, let $\mathcal{D}_{0} \subseteq \mathcal{D}$. Then, f is continuous on \mathcal{D}_{0} if f is continuous at x for all $x \in \mathcal{D}_{0}$. Finally, f is continuous if it is continuous on \mathcal{D}.

Theorem 10.3.2. Let $\mathcal{D} \subseteq \mathbb{F}^{n}$ be convex, and let $f: \mathcal{D} \rightarrow \mathbb{F}$ be convex. Then, f is continuous on $\operatorname{int}_{\text {aff }} \mathcal{D} \mathcal{D}$.

Proof. See [157, p. 81] and [1133, p. 82].
Corollary 10.3.3. Let $A \in \mathbb{F}^{n \times m}$, and define $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ by $f(x) \triangleq A x$. Then, f is continuous.

Proof. The result is a consequence of Theorem 10.3.2 Alternatively, let $x \in \mathbb{F}^{m}$, and let $\left(x_{i}\right)_{i=1}^{\infty} \subset \mathbb{F}^{m}$ be such that $x_{i} \rightarrow x$ as $i \rightarrow \infty$. Furthermore, let $\|\cdot\|$ and $\|\cdot\|^{\prime}$ be compatible norms on \mathbb{F}^{m} and $\mathbb{F}^{m \times n}$, respectively. Since $\left\|A x-A x_{i}\right\| \leq\|A\|^{\prime}\left\|x-x_{i}\right\|$, it follows that $A x_{i} \rightarrow A x$ as $i \rightarrow \infty$.

Theorem 10.3.4. Let $\mathcal{D} \subseteq \mathbb{F}^{m}$, and let $f: \mathcal{D} \mapsto \mathbb{F}^{n}$. Then, the following statements are equivalent:
i) f is continuous.
ii) For all open $\mathcal{S} \subseteq \mathbb{F}^{n}$, the set $f^{-1}(\mathcal{S})$ is open relative to \mathcal{D}.
iii) For all closed $\mathcal{S} \subseteq \mathbb{F}^{n}$, the set $f^{-1}(\mathcal{S})$ is closed relative to \mathcal{D}.

Proof. See [1030 pp. 87, 110].
Corollary 10.3.5. Let $A \in \mathbb{F}^{n \times m}$ and $\mathcal{S} \subseteq \mathbb{F}^{n}$, and define $\mathcal{S}^{\prime} \triangleq\left\{x \in \mathbb{F}^{m}: A x \in\right.$ $\mathcal{S}\}$. If \mathcal{S} is open, then \mathcal{S}^{\prime} is open. If \mathcal{S} is closed, then \mathcal{S}^{\prime} is closed.

The following result is the open mapping theorem.
Theorem 10.3.6. Let $\mathcal{D} \subseteq \mathbb{F}^{m}$, let $A \in \mathbb{F}^{n \times m}$, assume that \mathcal{D} is open, and assume that A is right invertible. Then, $A \mathcal{D}$ is open.

The following result is the invariance of domain.
Theorem 10.3.7. Let $\mathcal{D} \subseteq \mathbb{F}^{n}$, let $f: \mathcal{D} \mapsto \mathbb{F}^{n}$, assume that \mathcal{D} is open, and assume that f is continuous and one-to-one. Then, $f(\mathcal{D})$ is open.

Proof. See 1217 p. 3].
Theorem 10.3.8. Let $\mathcal{D} \subset \mathbb{F}^{m}$ be compact, and let $f: \mathcal{D} \mapsto \mathbb{F}^{n}$ be continuous. Then, $f(\mathcal{D})$ is compact.

Proof. See 1030 p. 146].

The following corollary of Theorem 10.3 .8 shows that a continuous real-valued function defined on a compact set has a minimizer.

Corollary 10.3.9. Let $\mathcal{D} \subset \mathbb{F}^{m}$ be compact, and let $f: \mathcal{D} \mapsto \mathbb{R}$ be continuous. Then, there exists $x_{0} \in \mathcal{D}$ such that $f\left(x_{0}\right) \leq f(x)$ for all $x \in \mathcal{D}$.

The following result is the Schauder fixed-point theorem.
Theorem 10.3.10. Let $\mathcal{D} \subseteq \mathbb{F}^{m}$, assume that \mathcal{D} is nonempty, closed, and convex, let $f: \mathcal{D} \rightarrow \mathcal{D}$, assume that f is continuous, and assume that $f(\mathcal{D})$ is bounded. Then, there exists $x \in \mathcal{D}$ such that $f(x)=x$.

Proof. See [1404, p. 167].
The following corollary for the case of a bounded domain is the Brouwer fixed-point theorem.

Corollary 10.3.11. Let $\mathcal{D} \subseteq \mathbb{F}^{m}$, assume that \mathcal{D} is nonempty, compact, and convex, let $f: \mathcal{D} \rightarrow \mathcal{D}$, and assume that f is continuous. Then, there exists $x \in \mathcal{D}$ such that $f(x)=x$.

Proof. See [1404, p. 163].
Definition 10.3.12. Let $\mathcal{S} \subseteq \mathbb{F}^{n \times n}$. Then, \mathcal{S} is pathwise connected if, for all $B_{1}, B_{2} \in \mathcal{S}$, there exists a continuous function $f:[0,1] \mapsto \mathcal{S}$ such that $f(0)=B_{1}$ and $f(1)=B_{2}$.

10.4 Derivatives

Let $\mathcal{D} \subseteq \mathbb{F}^{m}$, and let $x_{0} \in \mathcal{D}$. Then, the variational cone of \mathcal{D} with respect to x_{0} is the set

$$
\begin{align*}
\operatorname{vcone}\left(\mathcal{D}, x_{0}\right) \triangleq\left\{\xi \in \mathbb{F}^{m}:\right. & \text { there exists } \alpha_{0}>0 \text { such that } \\
& \left.x_{0}+\alpha \xi \in \mathcal{D}, \alpha \in\left[0, \alpha_{0}\right)\right\} . \tag{10.4.1}
\end{align*}
$$

Note that $\operatorname{vcone}\left(\mathcal{D}, x_{0}\right)$ is a pointed cone, although it may consist of only the origin as can be seen from the example $x_{0}=0$ and

$$
\mathcal{D}=\left\{x \in \mathbb{R}^{2}: 0 \leq x_{(1)} \leq 1, x_{(1)}^{3} \leq x_{(2)} \leq x_{(1)}^{2}\right\}
$$

Now, let $\mathcal{D} \subseteq \mathbb{F}^{m}$ and $f: \mathcal{D} \rightarrow \mathbb{F}^{n}$. If $\xi \in \operatorname{vcone}\left(\mathcal{D}, x_{0}\right)$, then the one-sided directional differential of f at x_{0} in the direction ξ is defined by

$$
\begin{equation*}
\mathrm{D}_{+} f\left(x_{0} ; \xi\right) \triangleq \lim _{\alpha \downarrow 0} \frac{1}{\alpha}\left[f\left(x_{0}+\alpha \xi\right)-f\left(x_{0}\right)\right] \tag{10.4.2}
\end{equation*}
$$

if the limit exists. Similarly, if $\xi \in \operatorname{vcone}\left(\mathcal{D}, x_{0}\right)$ and $-\xi \in \operatorname{vcone}\left(\mathcal{D}, x_{0}\right)$, then the two-sided directional differential $\mathrm{D} f\left(x_{0} ; \xi\right)$ of f at x_{0} in the direction ξ is defined by

$$
\begin{equation*}
\mathrm{D} f\left(x_{0} ; \xi\right) \triangleq \lim _{\alpha \rightarrow 0} \frac{1}{\alpha}\left[f\left(x_{0}+\alpha \xi\right)-f\left(x_{0}\right)\right] \tag{10.4.3}
\end{equation*}
$$

if the limit exists. If $\xi=e_{i}$ so that the direction ξ is one of the coordinate axes, then the partial derivative of f with respect to $x_{(i)}$ at x_{0}, denoted by $\frac{\partial f\left(x_{0}\right)}{\partial x_{(i)}}$, is given by

$$
\begin{equation*}
\frac{\partial f\left(x_{0}\right)}{\partial x_{(i)}} \triangleq \lim _{\alpha \rightarrow 0} \frac{1}{\alpha}\left[f\left(x_{0}+\alpha e_{i}\right)-f\left(x_{0}\right)\right] \tag{10.4.4}
\end{equation*}
$$

that is,

$$
\begin{equation*}
\frac{\partial f\left(x_{0}\right)}{\partial x_{(i)}}=\mathrm{D} f\left(x_{0} ; e_{i}\right) \tag{10.4.5}
\end{equation*}
$$

when the two-sided directional differential $\mathrm{D} f\left(x_{0} ; e_{i}\right)$ exists.
Proposition 10.4.1. Let $\mathcal{D} \subseteq \mathbb{F}^{m}$ be a convex set, let $f: \mathcal{D} \rightarrow \mathbb{F}^{n}$ be convex, and let $x_{0} \in \operatorname{int} \mathcal{D}$. Then, $\mathrm{D}_{+} f\left(x_{0} ; \xi\right)$ exists for all $\xi \in \mathbb{F}^{m}$.

Proof. See [157, p. 83].
Note that $\mathrm{D}_{+} f\left(x_{0} ; \xi\right)= \pm \infty$ is possible if x_{0} is an element of the boundary of \mathcal{D}. For example, consider the continuous function $f:[0, \infty) \mapsto \mathbb{R}$ given by $f(x)=$ $1-\sqrt{x}$. In this case, $\mathrm{D}_{+} f\left(x_{0} ; \xi\right)=-\infty$ and thus does not exist.

Next, we consider a stronger form of differentiation.
Proposition 10.4.2. Let $\mathcal{D} \subseteq \mathbb{F}^{m}$ be solid and convex, let $f: \mathcal{D} \rightarrow \mathbb{F}^{n}$, and let $x_{0} \in \mathcal{D}$. Then, there exists at most one matrix $F \in \mathbb{F}^{n \times m}$ satisfying

$$
\begin{equation*}
\lim _{\substack{x \rightarrow x_{0} \\ x \in \mathcal{D} \backslash\left\{x_{0}\right\}}}\left\|x-x_{0}\right\|^{-1}\left[f(x)-f\left(x_{0}\right)-F\left(x-x_{0}\right)\right]=0 . \tag{10.4.6}
\end{equation*}
$$

Proof. See [1404 p. 170].
In (10.4.6) the limit is taken over all sequences that are contained in \mathcal{D}, do not include x_{0}, and converge to x_{0}.

Definition 10.4.3. Let $\mathcal{D} \subseteq \mathbb{F}^{m}$ be solid and convex, let $f: \mathcal{D} \rightarrow \mathbb{F}^{n}$, let $x_{0} \in \mathcal{D}$, and assume there exists a matrix $F \in \mathbb{F}^{n \times m}$ satisfying (10.4.6). Then, f is differentiable at x_{0}, and the matrix F is the (Fréchet) derivative of f at x_{0}. In this case, we write $f^{\prime}\left(x_{0}\right)=F$ and

$$
\begin{equation*}
\lim _{\substack{x \rightarrow x_{0} \\ x \in \mathcal{D} \backslash\left\{x_{0}\right\}}}\left\|x-x_{0}\right\|^{-1}\left[f(x)-f\left(x_{0}\right)-f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)\right]=0 . \tag{10.4.7}
\end{equation*}
$$

Note that Proposition 10.4 .2 and Definition 10.4 .3 do not require that x_{0} lie in the interior of \mathcal{D}. We alternatively write $\frac{\mathrm{d} f\left(x_{0}\right)}{\mathrm{d} x}$ for $f^{\prime}\left(x_{0}\right)$.

Proposition 10.4.4. Let $\mathcal{D} \subseteq \mathbb{F}^{m}$ be solid and convex, let $f: \mathcal{D} \rightarrow \mathbb{F}^{n}$, let $x \in \mathcal{D}$, and assume that f is differentiable at x_{0}. Then, f is continuous at x_{0}.

Let $\mathcal{D} \subseteq \mathbb{F}^{m}$ be solid and convex, and let $f: \mathcal{D} \mapsto \mathbb{F}^{n}$. In terms of its scalar components, f can be written as $f=\left[\begin{array}{lll}f_{1} & \cdots & f_{n}\end{array}\right]^{\mathrm{T}}$, where $f_{i}: \mathcal{D} \mapsto \mathbb{F}$ for all $i=1, \ldots, n$ and $f(x)=\left[\begin{array}{lll}f_{1}(x) & \cdots & f_{n}(x)\end{array}\right]^{\mathrm{T}}$ for all $x \in \mathcal{D}$. With this notation,
$f^{\prime}\left(x_{0}\right)$ can be written as

$$
f^{\prime}\left(x_{0}\right)=\left[\begin{array}{c}
f_{1}^{\prime}\left(x_{0}\right) \tag{10.4.8}\\
\vdots \\
f_{n}^{\prime}\left(x_{0}\right)
\end{array}\right]
$$

where $f_{i}^{\prime}\left(x_{0}\right) \in \mathbb{F}^{1 \times m}$ is the gradient of f_{i} at x_{0} and $f^{\prime}\left(x_{0}\right)$ is the Jacobian of f at x_{0}. Furthermore, if $x \in \operatorname{int} \mathcal{D}$, then $f^{\prime}\left(x_{0}\right)$ is related to the partial derivatives of f by

$$
f^{\prime}\left(x_{0}\right)=\left[\begin{array}{lll}
\frac{\partial f\left(x_{0}\right)}{\partial x_{(1)}} & \cdots & \frac{\partial f\left(x_{0}\right)}{\partial x_{(m)}} \tag{10.4.9}
\end{array}\right],
$$

where $\frac{\partial f\left(x_{0}\right)}{\partial x_{(i)}} \in \mathbb{F}^{n \times 1}$ for all $i=1, \ldots, m$. Note that the existence of the partial derivatives of f at x_{0} does not imply that f is differentiable at x_{0}, that is, $f^{\prime}\left(x_{0}\right)$ given by (10.4.9) may not satisfy (10.4.7). Finally, note that the (i, j) entry of the $n \times m$ matrix $f^{\prime}\left(x_{0}\right)$ is $\frac{\partial f_{i}\left(x_{0}\right)}{\partial x_{(j)}}$. For example, if $x \in \mathbb{F}^{n}$ and $A \in \mathbb{F}^{n \times n}$, then

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} x} A x=A \tag{10.4.10}
\end{equation*}
$$

Let $\mathcal{D} \subseteq \mathbb{F}^{m}$ and $f: \mathcal{D} \mapsto \mathbb{F}^{n}$. If $f^{\prime}(x)$ exists for all $x \in \mathcal{D}$ and $f^{\prime}: \mathcal{D} \mapsto \mathbb{F}^{n \times n}$ is continuous, then f is continuously differentiable, or C^{1}. The second derivative of f at $x_{0} \in \mathcal{D}$, denoted by $f^{\prime \prime}\left(x_{0}\right)$, is the derivative of $f^{\prime}: \mathcal{D} \mapsto \mathbb{F}^{n \times n}$ at $x_{0} \in \mathcal{D}$. For $x_{0} \in \mathcal{D}$ it can be seen that $f^{\prime \prime}\left(x_{0}\right): \mathbb{F}^{m} \times \mathbb{F}^{m} \mapsto \mathbb{F}^{n}$ is bilinear, that is, for all $\hat{\eta} \in \mathbb{F}^{m}$, the mapping $\eta \mapsto f^{\prime \prime}\left(x_{0}\right)(\eta, \hat{\eta})$ is linear and, for all $\eta \in \mathbb{F}^{m}$, the mapping $\hat{\eta} \mapsto f^{\prime \prime}\left(x_{0}\right)(\eta, \hat{\eta})$ is linear. Letting $f=\left[\begin{array}{lll}f_{1} & \cdots & f_{n}\end{array}\right]^{\mathrm{T}}$, it follows that

$$
f^{\prime \prime}\left(x_{0}\right)(\eta, \hat{\eta})=\left[\begin{array}{c}
\eta^{\mathrm{T}} f_{1}^{\prime \prime}\left(x_{0}\right) \hat{\eta} \tag{10.4.11}\\
\vdots \\
\eta^{\mathrm{T}} f_{n}^{\prime \prime}\left(x_{0}\right) \hat{\eta}
\end{array}\right],
$$

where, for all $i=1, \ldots, n$, the matrix $f_{i}^{\prime \prime}\left(x_{0}\right)$ is the $m \times m$ Hessian of f_{i} at x_{0}. We write $f^{(2)}\left(x_{0}\right)$ for $f^{\prime \prime}\left(x_{0}\right)$ and $f^{(k)}\left(x_{0}\right)$ for the k th derivative of f at $x_{0} . f$ is C^{k} if $f^{(k)}(x)$ exists for all $x \in \mathcal{D}$ and $f^{(k)}$ is continuous on \mathcal{D}.

The following result is the inverse function theorem.
Theorem 10.4.5. Let $\mathcal{D} \subseteq \mathbb{F}^{n}$ be open, let $f: \mathcal{D} \mapsto \mathbb{F}^{n}$, and assume that f is C^{k}. Furthermore, let $x_{0} \in \mathcal{D}$ be such that det $f^{\prime}\left(x_{0}\right) \neq 0$. Then, there exists an open set $\mathcal{N} \subset \mathbb{F}^{n}$ containing $f\left(x_{0}\right)$ and a C^{k} function $g: \mathcal{N} \mapsto \mathcal{D}$ such that $f[g(y)]=y$ for all $y \in \mathcal{N}$.

Let $S:\left[t_{0}, t_{1}\right] \mapsto \mathbb{F}^{n \times m}$, and assume that every entry of $S(t)$ is differentiable. Then, define $\dot{S}(t) \triangleq \frac{\mathrm{d} S(t)}{\mathrm{d} t} \in \mathbb{F}^{n \times m}$ for all $t \in\left[t_{0}, t_{1}\right]$ entrywise, that is, for all $i=1, \ldots, n$ and $j=1, \ldots, m$,

$$
\begin{equation*}
[\dot{S}(t)]_{(i, j)} \triangleq \frac{\mathrm{d}}{\mathrm{~d} t} S_{(i, j)}(t) . \tag{10.4.12}
\end{equation*}
$$

If $t=t_{0}$ or $t=t_{1}$, then $\mathrm{d}^{+} / \mathrm{d} t$ or $\mathrm{d}^{-} / \mathrm{d} t$ (or just $\mathrm{d} / \mathrm{d} t$) denotes the right and left one-sided derivatives, respectively. Finally, define $\int_{t_{0}}^{t_{1}} S(t) \mathrm{d} t$ entrywise, that is, for
all $i=1, \ldots, n$ and $j=1, \ldots, m$,

$$
\begin{equation*}
\left[\int_{t_{0}}^{t_{1}} S(t) \mathrm{d} t\right]_{(i, j)} \triangleq \int_{t_{0}}^{t_{1}}[S(t)]_{(i, j)} \mathrm{d} t . \tag{10.4.13}
\end{equation*}
$$

10.5 Functions of a Matrix

Consider the function $f: \mathcal{D} \subseteq \mathbb{C} \mapsto \mathbb{C}$ defined by the power series

$$
\begin{equation*}
f(s)=\sum_{i=0}^{\infty} \beta_{i} s^{i}, \tag{10.5.1}
\end{equation*}
$$

where $\beta_{i} \in \mathbb{C}$ for all $i \in \mathbb{N}$, and assume that this series converges for all $|s|<\gamma$. Then, for $A \in \mathbb{C}^{n \times n}$, we define

$$
\begin{equation*}
f(A) \triangleq \sum_{i=1}^{\infty} \beta_{i} A^{i}, \tag{10.5.2}
\end{equation*}
$$

which converges for all $A \in \mathbb{C}^{n \times n}$ such that $\operatorname{sprad}(A)<\gamma$. Now, assume that $A=S B S^{-1}$, where $S \in \mathbb{C}^{n \times n}$ is nonsingular, $B \in \mathbb{C}^{n \times n}$, and $\operatorname{sprad}(B)<\gamma$. Then,

$$
\begin{equation*}
f(A)=S f(B) S^{-1} \tag{10.5.3}
\end{equation*}
$$

If, in addition, $B=\operatorname{diag}\left(J_{1}, \ldots, J_{r}\right)$ is the Jordan form of A, then

$$
\begin{equation*}
f(A)=S \operatorname{diag}\left[f\left(J_{1}\right), \ldots, f\left(J_{r}\right)\right] S^{-1} . \tag{10.5.4}
\end{equation*}
$$

Letting $J=\lambda I_{k}+N_{k}$ denote a $k \times k$ Jordan block, expanding and rearranging the infinite series $\sum_{i=1}^{\infty} \beta_{i} J^{i}$ shows that $f(J)$ is the $k \times k$ upper triangular Toeplitz matrix

$$
\begin{align*}
f(J) & =f(\lambda) N_{k}+f^{\prime}(\lambda) N_{k}+\frac{1}{2} f^{\prime \prime}(\lambda) N_{k}^{2}+\cdots+\frac{1}{(k-1)!} f^{(k-1)}(\lambda) N_{k}^{k-1} \\
& =\left[\begin{array}{ccccc}
f(\lambda) & f^{\prime}(\lambda) & \frac{1}{2} f^{\prime \prime}(\lambda) & \cdots & \frac{1}{(k-1)!} f^{(k-1)}(\lambda) \\
0 & f(\lambda) & f^{\prime}(\lambda) & \cdots & \frac{1}{(k-2)!} f^{(k-2)}(\lambda) \\
0 & 0 & f(\lambda) & \cdots & \frac{1}{(k-3)!} f^{(k-3)}(\lambda) \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & f(\lambda)
\end{array}\right] \tag{10.5.5}
\end{align*}
$$

Next, we extend the definition $f(A)$ to functions $f: \mathcal{D} \subseteq \mathbb{C} \mapsto \mathbb{C}$ that are not necessarily of the form (10.5.1).

Definition 10.5.1. Let $f: \mathcal{D} \subseteq \mathbb{C} \mapsto \mathbb{C}$, let $A \in \mathbb{C}^{n \times n}$, where $\operatorname{spec}(A) \subset \mathcal{D}$, and assume that, for all $\lambda_{i} \in \operatorname{spec}(A), f$ is $k_{i}-1$ times differentiable at λ_{i}, where $k_{i} \triangleq \operatorname{ind}_{A}\left(\lambda_{i}\right)$ is the order of the largest Jordan block associated with λ_{i} as given by Theorem 5.3.3. Then, f is defined at A, and $f(A)$ is given by (10.5.3) and (10.5.4), where $f\left(J_{i}\right)$ is defined by (10.5.5) with $k=k_{i}$ and $\lambda=\lambda_{i}$.

Theorem 10.5.2. Let $A \in \mathbb{F}^{n \times n}$, let $\operatorname{spec}(A)=\left\{\lambda_{1}, \ldots, \lambda_{r}\right\}$, and, for $i=$ $1, \ldots, r$, let $k_{i} \triangleq \operatorname{ind}_{A}\left(\lambda_{i}\right)$. Furthermore, suppose that $f: \mathcal{D} \subseteq \mathbb{C} \mapsto \mathbb{C}$ is defined at A. Then, there exists a polynomial $p \in \mathbb{F}[s]$ such that $f(A)=p(A)$. Furthermore, there exists a unique polynomial p of minimal degree $\sum_{i=1}^{r} k_{i}$ satisfying $f(A)=p(A)$ and such that, for all $i=1, \ldots, r$ and $j=0,1, \ldots, k_{i}-1$,

$$
\begin{equation*}
f^{(j)}\left(\lambda_{i}\right)=p^{(j)}\left(\lambda_{i}\right) \tag{10.5.6}
\end{equation*}
$$

This polynomial is given by

$$
\begin{equation*}
p(s)=\sum_{i=1}^{r}\left(\left.\left[\prod_{\substack{j=1 \\ j \neq i}}^{r}\left(s-\lambda_{j}\right)^{n_{j}}\right] \sum_{k=0}^{k_{i}-1} \frac{1}{k!} \frac{\mathrm{d}^{k}}{\mathrm{~d} s^{k}} \frac{f(s)}{\prod_{\substack{l=1 \\ l \neq i}}^{r}\left(s-\lambda_{l}\right)^{k_{l}}}\right|_{s=\lambda_{i}}\left(s-\lambda_{i}\right)^{k}\right) . \tag{10.5.7}
\end{equation*}
$$

If, in addition, A is diagonalizable, then p is given by

$$
\begin{equation*}
p(s)=\sum_{i=1}^{r} f\left(\lambda_{i}\right) \prod_{\substack{j=1 \\ j \neq i}}^{r} \frac{s-\lambda_{j}}{\lambda_{i}-\lambda_{j}} . \tag{10.5.8}
\end{equation*}
$$

Proof. See [359, pp. 263, 264].
The polynomial (10.5.7) is the Lagrange-Hermite interpolation polynomial for f.

The following result, which is known as the identity theorem, is a special case of Theorem 10.5.2.

Theorem 10.5.3. Let $A \in \mathbb{F}^{n \times n}$, let $\operatorname{spec}(A)=\left\{\lambda_{1}, \ldots, \lambda_{r}\right\}$, and, for $i=$ $1, \ldots, r$, let $k_{i} \triangleq \operatorname{ind}_{A}\left(\lambda_{i}\right)$. Furthermore, let $f: \mathcal{D} \subseteq \mathbb{C} \mapsto \mathbb{C}$ and $g: \mathcal{D} \subseteq \mathbb{C} \mapsto \mathbb{C}$ be analytic on a neighborhood of $\operatorname{spec}(A)$. Then, $f(A)=g(A)$ if and only if, for all $i=1, \ldots, r$ and $j=0,1, \ldots, k_{i}-1$,

$$
\begin{equation*}
f^{(j)}\left(\lambda_{i}\right)=g^{(j)}\left(\lambda_{i}\right) \tag{10.5.9}
\end{equation*}
$$

Corollary 10.5.4. Let $A \in \mathbb{F}^{n \times n}$, and let $f: \mathcal{D} \subset \mathbb{C} \rightarrow \mathbb{C}$ be analytic on a neighborhood of $\operatorname{mspec}(A)$. Then,

$$
\begin{equation*}
\operatorname{mspec}[f(A)]=f[\operatorname{mspec}(A)] \tag{10.5.10}
\end{equation*}
$$

10.6 Matrix Square Root and Matrix Sign Functions

Theorem 10.6.1. Let $A \in \mathbb{C}^{n \times n}$, and assume that A is group invertible and has no eigenvalues in $(-\infty, 0)$. Then, there exists a unique matrix $B \in \mathbb{C}^{n \times n}$ such that $\operatorname{spec}(B) \subset$ ORHP $\cup\{0\}$ and such that $B^{2}=A$. If, in addition, A is real, then B is real.

Proof. See [683, pp. 20, 31].

The matrix B given by Theorem 10.6 .1 is the principal square root of A. This matrix is denoted by $A^{1 / 2}$. The existence of a square root that is not necessarily the principal square root is discussed in Fact 5.15.19.

The following result defines the matrix sign function.
Definition 10.6.2. Let $A \in \mathbb{C}^{n \times n}$, assume that A has no eigenvalues on the imaginary axis, and let

$$
A=S\left[\begin{array}{cc}
J_{1} & 0 \\
0 & J_{2}
\end{array}\right] S^{-1}
$$

where $S \in \mathbb{C}^{n \times n}$ is nonsingular, $J_{1} \in \mathbb{C}^{p \times p}$ and $J_{2} \in \mathbb{C}^{q \times q}$ are in Jordan canonical form, and $\operatorname{spec}\left(J_{1}\right) \subset$ OLHP and $\operatorname{spec}\left(J_{1}\right) \subset$ ORHP. Then, the matrix sign of A is defined by

$$
\operatorname{Sign}(A) \triangleq S\left[\begin{array}{cc}
-I_{p} & 0 \\
0 & I_{q}
\end{array}\right] S^{-1}
$$

10.7 Matrix Derivatives

In this section we consider derivatives of differentiable scalar-valued functions with matrix arguments. Consider the linear function $f: \mathbb{F}^{m \times n} \mapsto \mathbb{F}$ given by $f(X)=\operatorname{tr} A X$, where $A \in \mathbb{F}^{n \times m}$ and $X \in \mathbb{F}^{m \times n}$. In terms of vectors $x \in \mathbb{F}^{m n}$, we can define the linear function $\hat{f}(x) \triangleq(\operatorname{vec} A)^{\mathrm{T}} x$ so that $\hat{f}(\operatorname{vec} X)=f(X)=$ $(\operatorname{vec} A)^{\mathrm{T}} \operatorname{vec} X$. Consequently, for all $Y \in \mathbb{F}^{m \times n}, f^{\prime}\left(X_{0}\right)$ can be represented by $f^{\prime}\left(X_{0}\right) Y=\operatorname{tr} A Y$.

These observations suggest that a convenient representation of the derivative $\frac{\mathrm{d}}{\mathrm{d} X} f(X)$ of a differentiable scalar-valued differentiable function $f(X)$ of a matrix argument $X \in \mathbb{F}^{m \times n}$ is the $n \times m$ matrix whose (i, j) entry is $\frac{\partial f(X)}{\partial X_{(j, i)}}$. Note the order of indices.

Proposition 10.7.1. Let $x \in \mathbb{F}^{n}$. Then, the following statements hold:
i) If $A \in \mathbb{F}^{n \times n}$, then

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} x} x^{\mathrm{T}} A x=x^{\mathrm{T}}\left(A+A^{\mathrm{T}}\right) \tag{10.7.1}
\end{equation*}
$$

ii) If $A \in \mathbb{F}^{n \times n}$ is symmetric, then

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} x} x^{\mathrm{T}} A x=2 x^{\mathrm{T}} A \tag{10.7.2}
\end{equation*}
$$

iii) If $A \in \mathbb{F}^{n \times n}$ is Hermitian, then

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} x} x^{*} A x=2 x^{*} A \tag{10.7.3}
\end{equation*}
$$

Proposition 10.7.2. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{l \times n}$. Then, the following statements hold:
i) For all $X \in \mathbb{F}^{m \times n}$,

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} X} \operatorname{tr} A X=A \tag{10.7.4}
\end{equation*}
$$

ii) For all $X \in \mathbb{F}^{m \times l}$,

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} X} \operatorname{tr} A X B=B A \tag{10.7.5}
\end{equation*}
$$

iii) For all $X \in \mathbb{F}^{l \times m}$,

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} X} \operatorname{tr} A X^{\mathrm{T}} B=A^{\mathrm{T}} B^{\mathrm{T}} \tag{10.7.6}
\end{equation*}
$$

iv) For all $X \in \mathbb{F}^{m \times l}$ and $k \geq 1$,

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} X} \operatorname{tr}(A X B)^{k}=k B(A X B)^{k-1} A \tag{10.7.7}
\end{equation*}
$$

$v)$ For all $X \in \mathbb{F}^{m \times l}$,

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} X} \operatorname{det} A X B=B(A X B)^{\mathrm{A}} A \tag{10.7.8}
\end{equation*}
$$

vi) For all $X \in \mathbb{F}^{m \times l}$ such that $A X B$ is nonsingular,

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} X} \log \operatorname{det} A X B=B(A X B)^{-1} A \tag{10.7.9}
\end{equation*}
$$

Proposition 10.7.3. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times n}$. Then, the following statements hold:
i) For all $X \in \mathbb{F}^{m \times m}$ and $k \geq 1$,

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} X} \operatorname{tr} A X^{k} B=\sum_{i=0}^{k-1} X^{k-1-i} B A X^{i} \tag{10.7.10}
\end{equation*}
$$

ii) For all nonsingular $X \in \mathbb{F}^{m \times m}$,

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} X} \operatorname{tr} A X^{-1} B=-X^{-1} B A X^{-1} \tag{10.7.11}
\end{equation*}
$$

iii) For all nonsingular $X \in \mathbb{F}^{m \times m}$,

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} X} \operatorname{det} A X^{-1} B=-X^{-1} B\left(A X^{-1} B\right)^{\mathrm{A}} A X^{-1} \tag{10.7.12}
\end{equation*}
$$

iv) For all nonsingular $X \in \mathbb{F}^{m \times m}$,

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} X} \log \operatorname{det} A X^{-1} B=-X^{-1} B\left(A X^{-1} B\right)^{-1} A X^{-1} \tag{10.7.13}
\end{equation*}
$$

Proposition 10.7.4. The following statements hold:
i) Let $A, B \in \mathbb{F}^{n \times m}$. Then, for all $X \in \mathbb{F}^{m \times n}$,

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} X} \operatorname{tr} A X B X=A X B+B X A \tag{10.7.14}
\end{equation*}
$$

ii) Let $A \in \mathbb{F}^{n \times n}$ and $B \in \mathbb{F}^{m \times m}$. Then, for all $X \in \mathbb{F}^{n \times m}$,

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} X} \operatorname{tr} A X B X^{\mathrm{T}}=B X^{\mathrm{T}} A+B^{\mathrm{T}} X^{\mathrm{T}} A^{\mathrm{T}} \tag{10.7.15}
\end{equation*}
$$

iii) Let $A \in \mathbb{F}^{k \times l}, B \in \mathbb{F}^{l \times m}, C \in \mathbb{F}^{n \times l}, D \in \mathbb{F}^{l \times l}$, and $E \in \mathbb{F}^{l \times k}$. Then, for all $X \in \mathbb{F}^{m \times n}$,

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} X} \operatorname{tr} A(D+B X C)^{-1} E=-C(D+B X C)^{-1} E A(D+B X C)^{-1} B \tag{10.7.16}
\end{equation*}
$$

iv) Let $A \in \mathbb{F}^{k \times l}, B \in \mathbb{F}^{l \times m}, C \in \mathbb{F}^{n \times l}, D \in \mathbb{F}^{l \times l}$, and $E \in \mathbb{F}^{l \times k}$. Then, for all $X \in \mathbb{F}^{n \times m}$,

$$
\begin{align*}
& \frac{\mathrm{d}}{\mathrm{~d} X} \operatorname{tr} A\left(D+B X^{\mathrm{T}} C\right)^{-1} E \\
& \quad=-B^{\mathrm{T}}\left(D+B X^{\mathrm{T}} C\right)^{-\mathrm{T}} A^{\mathrm{T}} E^{\mathrm{T}}\left(D+B X^{\mathrm{T}} C\right)^{-\mathrm{T}} C^{\mathrm{T}} \tag{10.7.17}
\end{align*}
$$

10.8 Facts Involving One Set

Fact 10.8.1. Let $x \in \mathbb{F}^{n}$, and let $\varepsilon>0$. Then, $\mathbb{B}_{\varepsilon}(x)$ is completely solid and convex.

Fact 10.8.2. Let $\mathcal{S} \subset \mathbb{F}^{n}$, assume that \mathcal{S} is bounded, let $\delta>0$ satisfy $\|x-y\|<$ δ for all $x, y \in \mathcal{S}$, and let $x_{0} \in \mathcal{S}$. Then, $\mathcal{S} \subseteq \mathbb{B}_{\delta}\left(x_{0}\right)$.

Fact 10.8.3. Let $\mathcal{S} \subseteq \mathbb{F}^{n}$. Then, cl \mathcal{S} is the smallest closed set containing \mathcal{S}, and int \mathcal{S} is the largest open set contained in \mathcal{S}.

Fact 10.8.4. Let $\mathcal{S} \subseteq \mathbb{F}^{n}$. If \mathcal{S} is (open, closed), then \mathcal{S}^{\sim} is (closed, open).
Fact 10.8.5. Let $\mathcal{S} \subseteq \mathcal{S}^{\prime} \subseteq \mathbb{F}^{n}$. If \mathcal{S} is (open relative to \mathcal{S}^{\prime}, closed relative to \mathcal{S}^{\prime}), then $\mathcal{S}^{\prime} \backslash \mathcal{S}$ is (closed relative to \mathcal{S}^{\prime}, open relative to \mathcal{S}^{\prime}).

Fact 10.8.6. Let $\mathcal{S} \subseteq \mathbb{F}^{n}$. Then,

$$
(\operatorname{int} \mathcal{S})^{\sim}=\operatorname{cl}\left(\mathcal{S}^{\sim}\right)
$$

and

$$
\operatorname{bd} \mathcal{S}=\operatorname{bd} \mathcal{S}^{\sim}=(\operatorname{cl} \mathcal{S}) \cap\left(\operatorname{cl} \mathcal{S}^{\sim}\right)=\left[(\operatorname{int} \mathcal{S}) \cup \operatorname{int}\left(\mathcal{S}^{\sim}\right)\right]^{\sim}
$$

Hence, bd S is closed.
Fact 10.8.7. Let $\mathcal{S} \subseteq \mathbb{F}^{n}$, and assume that \mathcal{S} is either open or closed. Then, int bd \mathcal{S} is empty. (Proof: See [68, p. 68].)

Fact 10.8.8. Let $\mathcal{S} \subseteq \mathbb{F}^{n}$, and assume that \mathcal{S} is convex. Then, $\operatorname{cl} \mathcal{S}$, int \mathcal{S}, and $\operatorname{int}_{\mathrm{aff}} \mathcal{S}$ S are convex. (Proof: See [1133, p. 45] and [1134, p. 64].)

Fact 10.8.9. Let $\mathcal{S} \subseteq \mathbb{F}^{n}$, and assume that \mathcal{S} is convex. Then, the following statements are equivalent:
i) \mathcal{S} is solid.
ii) \mathcal{S} is completely solid.
iii) $\operatorname{dim} \mathcal{S}=n$.
iv) aff $\mathcal{S}=\mathbb{F}^{n}$.

Fact 10.8.10. Let $\mathcal{S} \subseteq \mathbb{F}^{n}$, and assume that \mathcal{S} is solid. Then, co \mathcal{S} is completely solid.

Fact 10.8.11. Let $\mathcal{S} \subseteq \mathbb{F}^{n}$. Then,

$$
\operatorname{cl} \mathcal{S} \subseteq \operatorname{aff} \operatorname{cl} \mathcal{S}=\operatorname{aff} \mathcal{S}
$$

(Proof: See [239] p. 7].)
Fact 10.8.12. Let $k \leq n$, and let $x_{1}, \ldots, x_{k} \in \mathbb{F}^{n}$. Then,

$$
\text { int aff }\left\{x_{1}, \ldots, x_{k}\right\}=\varnothing
$$

(Remark: See Fact 2.9.7)
Fact 10.8.13. Let $\mathcal{S} \subseteq \mathbb{F}^{n}$. Then,

$$
\operatorname{cocl} \mathcal{S} \subseteq \operatorname{clco} \mathcal{S}
$$

Now, assume that \mathcal{S} is either bounded or convex. Then,

$$
\operatorname{cocl} \mathcal{S}=\operatorname{clco} \mathcal{S}
$$

(Proof: Use Fact 10.8.8 and Fact 10.8.13,) (Remark: Although

$$
\mathcal{S}=\left\{x \in \mathbb{R}^{2}: x_{(1)}^{2} x_{(2)}^{2}=1 \text { for all } x_{(1)}>0\right\}
$$

is closed, $\operatorname{co} \mathcal{S}$ is not closed. Hence, $\operatorname{cocl} \mathcal{S} \subset \operatorname{cl} \operatorname{co} \mathcal{S}$.)
Fact 10.8.14. Let $\mathcal{S} \subseteq \mathbb{F}^{n}$, and assume that \mathcal{S} is open. Then, co \mathcal{S} is open.
Fact 10.8.15. Let $\mathcal{S} \subseteq \mathbb{F}^{n}$, and assume that \mathcal{S} is compact. Then, \cos is compact.

Fact 10.8.16. Let $\mathcal{S} \subseteq \mathbb{F}^{n}$, and assume that \mathcal{S} is solid. Then, $\operatorname{dim} \mathcal{S}=n$.
Fact 10.8.17. Let $\mathcal{S} \subseteq \mathbb{F}^{m}$, assume that \mathcal{S} is solid, let $A \in \mathbb{F}^{n \times m}$, and assume that A is right invertible. Then, $A S$ is solid. (Proof: Use Theorem 10.3.6.) (Remark: See Fact 2.10.4)

Fact 10.8.18. \mathbf{N}^{n} is a closed and completely solid subset of $\mathbb{F}^{n(n+1) / 2}$. Furthermore,

$$
\operatorname{int} \mathbf{N}^{n}=\mathbf{P}^{n}
$$

Fact 10.8.19. Let $\mathcal{S} \subseteq \mathbb{F}^{n}$, and assume that \mathcal{S} is convex. Then,

$$
\operatorname{int} \operatorname{cl} \mathcal{S}=\operatorname{int} \mathcal{S}
$$

Fact 10.8.20. Let $\mathcal{D} \subseteq \mathbb{F}^{n}$, and let x_{0} belong to a solid, convex subset of \mathcal{D}. Then,

$$
\operatorname{dim} \operatorname{vcone}\left(\mathcal{D}, x_{0}\right)=n
$$

Fact 10.8.21. Let $\mathcal{S} \subseteq \mathbb{F}^{n}$, and assume that \mathcal{S} is a subspace. Then, \mathcal{S} is closed.
Fact 10.8.22. Let $\mathcal{S} \subset \mathbb{F}^{n}$, assume that \mathcal{S} is symmetric, solid, convex, closed, and bounded, and, for all $x \in \mathbb{F}^{n}$, define

$$
\|x\| \triangleq \min \{\alpha \geq 0: \quad x \in \alpha \mathcal{S}\}=\max \{\alpha \geq 0: \alpha x \in \mathcal{S}\}
$$

Then, $\|\cdot\|$ is a norm on \mathbb{F}^{n}, and $\mathbb{B}_{1}(0)=\operatorname{int} \mathcal{S}$. Conversely, let $\|\cdot\|$ be a norm on \mathbb{F}^{n}. Then, $\mathbb{B}_{1}(0)$ is convex, bounded, symmetric, and solid. (Proof: See [721] pp. $38,39]$.) (Remark: In all cases, $\mathbb{B}_{1}(0)$ is defined with respect to $\|\cdot\|$. This result is due to Minkowski.) (Remark: See Fact 9.7.23.)

Fact 10.8.23. Let $\mathcal{S} \subseteq \mathbb{R}^{m}$, assume that \mathcal{S} is nonempty, closed, and convex, and define $\mathcal{E} \subseteq \mathcal{S}$ by
$\mathcal{E} \triangleq\{x \in \mathcal{S}: x$ is not a convex combination of two distinct elements of $\mathcal{S}\}$.
Then, \mathcal{E} is nonempty, closed, and convex, and

$$
\mathcal{E}=\operatorname{co} \mathcal{S}
$$

(Proof: See [447, pp. 482-484].) (Remark: \mathcal{E} is the set of extreme points of S.) (Remark: The last result is the Krein-Milman theorem.)

10.9 Facts Involving Two or More Sets

Fact 10.9.1. Let $\mathcal{S}_{1} \subseteq \mathcal{S}_{2} \subseteq \mathbb{F}^{n}$. Then,

$$
\operatorname{cl} \mathcal{S}_{1} \subseteq \operatorname{cl} \mathcal{S}_{2}
$$

and

$$
\operatorname{int} S_{1} \subseteq \operatorname{int} S_{2}
$$

Fact 10.9.2. Let $\mathcal{S}_{1}, \mathcal{S}_{2} \subseteq \mathbb{F}^{n}$. Then, the following statements hold:
i) $\left(\operatorname{int} \mathcal{S}_{1}\right) \cap\left(\operatorname{int} \mathcal{S}_{2}\right)=\operatorname{int}\left(\mathcal{S}_{1} \cap \mathcal{S}_{2}\right)$.
ii) $\left(\operatorname{int} \mathcal{S}_{1}\right) \cup\left(\operatorname{int} \mathcal{S}_{2}\right) \subseteq \operatorname{int}\left(\mathcal{S}_{1} \cup \mathcal{S}_{2}\right)$.
iii) $\left(\operatorname{cl} \mathcal{S}_{1}\right) \cup\left(\operatorname{cl} \mathcal{S}_{2}\right)=\operatorname{cl}\left(\mathcal{S}_{1} \cup \mathcal{S}_{2}\right)$.
iv) $\operatorname{bd}\left(\mathcal{S}_{1} \cup \mathcal{S}_{2}\right) \subseteq\left(\operatorname{bd} \mathcal{S}_{1}\right) \cup\left(\operatorname{bd} \mathcal{S}_{2}\right)$.
$v)$ If $\left(\mathrm{cl} \mathcal{S}_{1}\right) \cap\left(\mathrm{cl} \mathcal{S}_{2}\right)=\varnothing$, then $\operatorname{bd}\left(\mathcal{S}_{1} \cup \mathcal{S}_{2}\right)=\left(\mathrm{bd} \mathcal{S}_{1}\right) \cup\left(\mathrm{bd} \mathcal{S}_{2}\right)$.
(Proof: See [68, p. 65].)
Fact 10.9.3. Let $\mathcal{S}_{1}, \mathcal{S}_{2} \subseteq \mathbb{F}^{n}$, assume that either \mathcal{S}_{1} or \mathcal{S}_{2} is closed, and assume that $\operatorname{int} \mathcal{S}_{1}=\operatorname{int} \mathcal{S}_{2}=\varnothing$. Then, $\operatorname{int}\left(\mathcal{S}_{1} \cup \mathcal{S}_{2}\right)$ is empty. (Proof: See [68, p. 69].) (Remark: $\operatorname{int}\left(\mathcal{S}_{1} \cup \mathcal{S}_{2}\right)$ is not necessarily empty if neither \mathcal{S}_{1} nor \mathcal{S}_{2} is closed. Consider the sets of rational and irrational numbers.)

Fact 10.9.4. Let $\mathcal{S}_{1}, \mathcal{S}_{2} \subseteq \mathbb{F}^{n}$, and assume that \mathcal{S}_{1} is closed and \mathcal{S}_{2} is compact. Then, $\mathcal{S}_{1}+\mathcal{S}_{2}$ is closed. (Proof: See [442, p. 209].)

Fact 10.9.5. Let $\mathcal{S}_{1}, \mathcal{S}_{2} \subseteq \mathbb{F}^{n}$, and assume that \mathcal{S}_{1} and \mathcal{S}_{2} are closed and compact. Then, $\mathcal{S}_{1}+\mathcal{S}_{2}$ is closed and compact. (Proof: See [153, p. 34].)

Fact 10.9.6. Let $\mathcal{S}_{1}, \mathcal{S}_{2}, \mathcal{S}_{3} \subseteq \mathbb{F}^{n}$, assume that $\mathcal{S}_{1}, \mathcal{S}_{2}$, and \mathcal{S}_{3} are closed and convex, assume that $\mathcal{S}_{1} \cap \mathcal{S}_{2} \neq \varnothing, \mathcal{S}_{2} \cap \mathcal{S}_{3} \neq \varnothing$, and $\mathcal{S}_{3} \cap \mathcal{S}_{1} \neq \varnothing$, and assume that $\mathcal{S}_{1} \cup \mathcal{S}_{2} \cup \mathcal{S}_{3}$ is convex. Then, $\mathcal{S}_{1} \cap \mathcal{S}_{2} \cap \mathcal{S}_{3} \neq \varnothing$. (Proof: See [153] p. 32].)

Fact 10.9.7. Let $\mathcal{S}_{1}, \mathcal{S}_{2}, \mathcal{S}_{3} \subseteq \mathbb{F}^{n}$, assume that \mathcal{S}_{1} and \mathcal{S}_{2} are convex, \mathcal{S}_{2} is closed, and \mathcal{S}_{3} is bounded, and assume that $\mathcal{S}_{1}+\mathcal{S}_{3} \subseteq \mathcal{S}_{2}+\mathcal{S}_{3}$. Then, $\mathcal{S}_{1} \subseteq \mathcal{S}_{2}$. (Proof: See [239, p. 5].) (Remark: This result is due to Radstrom.)

Fact 10.9.8. Let $\mathcal{S} \subseteq \mathbb{F}^{m}$, assume that \mathcal{S} is closed, let $A \in \mathbb{F}^{n \times m}$, and assume that A has full row rank. Then, $A S$ is not necessarily closed. (Remark: See Theorem 10.3.6.)

Fact 10.9.9. Let \mathcal{A} be a collection of open subsets of \mathbb{R}^{n}. Then, the union of all elements of \mathcal{A} is open. If, in addition, \mathcal{A} is finite, then the intersection of all elements of \mathcal{A} is open. (Proof: See [68, p. 50].)

Fact 10.9.10. Let \mathcal{A} be a collection of closed subsets of \mathbb{R}^{n}. Then, the intersection of all elements of \mathcal{A} is closed. If, in addition, \mathcal{A} is finite, then the union of all elements of \mathcal{A} is closed. (Proof: See [68, p. 50].)

Fact 10.9.11. Let $\mathcal{A}=\left\{A_{1}, A_{2}, \ldots\right\}$ be a collection of nonempty, closed subsets of \mathbb{R}^{n} such that A_{1} is bounded and such that, for all $i=1,2, \ldots, A_{i+1} \subseteq A_{i}$. Then, $\cap_{i=1}^{\infty} A_{i}$ is closed and nonempty. (Proof: See [68, p. 56].) (Remark: This result is the Cantor intersection theorem.)

Fact 10.9.12. Let $\|\cdot\|$ be a norm on \mathbb{F}^{n}, let $\mathcal{S} \subset \mathbb{F}^{n}$, assume that \mathcal{S} is a subspace, let $y \in \mathbb{F}^{n}$, and define

$$
\mu \triangleq \max _{x \in\{z \in S:\|z\|=1\}}\left|y^{*} x\right| .
$$

Then, there exists a vector $z \in \mathcal{S}^{\perp}$ such that

$$
\max _{x \in\left\{z \in \mathbb{F}^{n}:\|z\|=1\right\}}\left|(y+z)^{*} x\right|=\mu .
$$

(Proof: See [1230, p. 57].) (Remark: This result is a version of the Hahn-Banach theorem.) (Problem: Find a simple interpretation in \mathbb{R}^{2}.)

Fact 10.9.13. Let $\mathcal{S} \subset \mathbb{R}^{n}$, assume that \mathcal{S} is a convex cone, let $x \in \mathbb{R}^{n}$, and assume that $x \notin$ int \mathcal{S}. Then, there exists a nonzero vector $\lambda \in \mathbb{R}^{n}$ such that $\lambda^{\mathrm{T}} x \leq 0$ and $\lambda^{\mathrm{T}} z \geq 0$ for all $z \in \mathcal{S}$. (Remark: This result is a separation theorem. See 879 , p. 37], 1096 p. 443], [1133, pp. 95-101], and [1235, pp. 96-100].)

Fact 10.9.14. Let $S_{1}, \mathcal{S}_{2} \subset \mathbb{R}^{n}$, and assume that \mathcal{S}_{1} and \mathcal{S}_{2} are convex. Then, the following statements are equivalent:
i) There exist a nonzero vector $\lambda \in \mathbb{R}^{n}$ and $\alpha \in \mathbb{R}$ such that $\lambda^{\mathrm{T}} x \leq \alpha$ for all $x \in \mathcal{S}_{1}, \lambda^{\mathrm{T}} x \geq \alpha$ for all $x \in \mathcal{S}_{2}$, and either \mathcal{S}_{1} or \mathcal{S}_{2} is not contained in the affine hyperplane $\left\{x \in \mathbb{R}^{n}: \lambda^{\mathrm{T}} x=\alpha\right\}$.
ii) $\operatorname{int}_{\text {aff }} \delta_{1} \mathcal{S}_{1}$ and $\operatorname{int}_{\text {aff }} \delta_{2} \mathcal{S}_{2}$ are disjoint.
(Proof: See [180, p. 82].) (Remark: This result is a proper separation theorem.)

Fact 10.9.15. Let $\|\cdot\|$ be a norm on \mathbb{F}^{n}, let $y \in \mathbb{F}^{n}$, let $\mathcal{S} \subseteq \mathbb{F}^{n}$, and assume that \mathcal{S} is nonempty and closed. Then, there exists a vector $x_{0} \in \mathcal{S}$ such that

$$
\left\|y-x_{0}\right\|=\min _{x \in S}\|y-x\| .
$$

Now, assume that \mathcal{S} is convex. Then, there exists a unique vector $x_{0} \in \mathcal{S}$ such that

$$
\left\|y-x_{0}\right\|=\min _{x \in S}\|y-x\| .
$$

In other words, there exists a vector $x_{0} \in \mathcal{S}$ such that, for all $x \in \mathcal{S} \backslash\left\{x_{0}\right\}$,

$$
\left\|y-x_{0}\right\|<\|y-x\| .
$$

(Proof: See [447, pp. 470, 471].) (Remark: See Fact 10.9.17)
Fact 10.9.16. Let $\|\cdot\|$ be a norm on \mathbb{F}^{n}, let $y_{1}, y_{2} \in \mathbb{F}^{n}$, let $\mathcal{S} \subseteq \mathbb{F}^{n}$, assume that δ is nonempty, closed, and convex, and let x_{1} and x_{2} denote the unique elements of \mathcal{S} that are closest to y_{1} and y_{2}, respectively. Then,

$$
\left\|x_{1}-x_{2}\right\| \leq\left\|y_{1}-y_{2}\right\| .
$$

(Proof: See [447, pp. 474, 475].)
Fact 10.9.17. Let $\mathcal{S} \subseteq \mathbb{R}^{n}$, assume that \mathcal{S} is a subspace, let $A \in \mathbb{F}^{n \times n}$ be the projector onto \mathcal{S}, and let $x \in \mathbb{F}^{n}$. Then,

$$
\min _{y \in S}\|x-y\|_{2}=\left\|A_{\perp} x\right\|_{2} .
$$

(Proof: See [536] p. 41] or [1230, p. 91].) (Remark: See Fact 10.9.15.)
Fact 10.9.18. Let $\mathcal{S}_{1}, \mathcal{S}_{2} \subseteq \mathbb{R}^{n}$, assume that \mathcal{S}_{1} and \mathcal{S}_{2} are subspaces, let A_{1} and A_{2} be the projectors onto S_{1} and S_{2}, respectively, and define

$$
\operatorname{dist}\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right) \triangleq \max \left\{\max _{\substack{x \in X_{1} \\\|x\|=1}} \min _{y \in \mathcal{S}_{2}}\|x-y\|_{2}, \max _{\substack{y \in \Phi_{2} \\\|y\|_{2}=1}} \min _{x \in \mathcal{S}_{1}}\|x-y\|_{2}\right\} .
$$

Then,

$$
\operatorname{dist}\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)=\sigma_{\max }\left(A_{1}-A_{2}\right)
$$

If, in addition, $\operatorname{dim} \mathcal{S}_{1}=\operatorname{dim} \mathcal{S}_{2}$, then

$$
\operatorname{dist}\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right)=\sin \theta
$$

where θ is the minimal principal angle defined in Fact 5.11.39, (Proof: See 560 Chapter 13] and $1230 \mathrm{pp} 92,93$.$] .) (Remark: If \|\cdot\|$ is a norm on $\mathbb{F}^{n \times n}$, then

$$
\operatorname{dist}\left(\mathcal{S}_{1}, \mathcal{S}_{2}\right) \triangleq\left\|A_{1}-A_{2}\right\|_{2}
$$

defines a metric on the set of all subspaces of \mathbb{F}^{n}, yielding the gap topology.) (Remark: See Fact 5.12.17)

10.10 Facts on Matrix Functions

Fact 10.10.1. Let $A \in \mathbb{C}^{n \times n}$, and assume that A is group invertible and has no eigenvalues in $(-\infty, 0)$. Then,

$$
A^{1 / 2}=\frac{2}{\pi} A \int_{0}^{\infty}\left(t^{2} I+A\right)^{-1} \mathrm{~d} t .
$$

(Proof: See [683, p. 133].)
Fact 10.10.2. Let $A \in \mathbb{C}^{n \times n}$, and assume that A has no eigenvalues on the imaginary axis. Then, the following statements hold:
i) $\operatorname{Sign}(A)$ is involutory.
ii) $A=\operatorname{Sign}(A)$ if and only if A is involutory.
iii) $[A, \operatorname{Sign}(A)]=0$.
iv) $\operatorname{Sign}(A)=\operatorname{Sign}\left(A^{-1}\right)$.
v) If A is real, then $\operatorname{Sign}(A)$ is real.
vi) $\operatorname{Sign}(A)=A\left(A^{2}\right)^{-1 / 2}$.
vii) $\operatorname{Sign}(A)$ is given by

$$
\operatorname{Sign}(A)=\frac{2}{\pi} A \int_{0}^{\infty}\left(t^{2} I+A^{2}\right)^{-1} \mathrm{~d} t
$$

(Proof: See [683] pp. 39, 40 and Chapter 5] and [803].) (Remark: The square root in $v i$) is the principal square root.)

Fact 10.10.3. Let $A, B \in \mathbb{C}^{n \times n}$, assume that $A B$ has no eigenvalues on the imaginary axis, and define $C \triangleq A(B A)^{-1 / 2}$. Then,

$$
\operatorname{Sign}\left(\left[\begin{array}{cc}
0 & A \\
B & 0
\end{array}\right]\right)=\left[\begin{array}{cc}
0 & C \\
C^{-1} & 0
\end{array}\right]
$$

If, in addition, A has no eigenvalues on the imaginary axis, then

$$
\operatorname{Sign}\left(\left[\begin{array}{cc}
0 & A \\
I & 0
\end{array}\right]\right)=\left[\begin{array}{cc}
0 & A^{1 / 2} \\
A^{-1 / 2} & 0
\end{array}\right]
$$

(Proof: See [683, p. 108].) (Remark: The square root is the principal square root.)
Fact 10.10.4. Let $A, B \in \mathbb{C}^{n \times n}$, and assume that A and B are positive definite. Then,

$$
\operatorname{Sign}\left(\left[\begin{array}{cc}
0 & B \\
A^{-1} & 0
\end{array}\right]\right)=\left[\begin{array}{cc}
0 & A \# B \\
(A \# B)^{-1} & 0
\end{array}\right]
$$

(Proof: See [683 p. 131].) (Remark: The geometric mean is defined in Fact 8.10.43.)

10.11 Facts on Functions and Derivatives

Fact 10.11.1. Let $\left(x_{i}\right)_{i=1}^{\infty} \subset \mathbb{F}^{n}$. Then, $\lim _{i \rightarrow \infty} x_{i}=x$ if and only if $\lim _{i \rightarrow \infty} x_{i(j)}=x_{(j)}$ for all $j=1, \ldots, n$.

Fact 10.11.2. Let $p \in \mathbb{C}[s]$, where $p(s)=s^{n}+a_{n-1} s^{n-1}+\cdots+a_{0}$, define $p_{\varepsilon_{0}, \ldots, \varepsilon_{n-1}}(s) \triangleq s^{n}+\left(a_{n-1}+\varepsilon_{n-1}\right) s^{n-1}+\cdots+\left(a_{1}+\varepsilon_{1}\right) s+a_{0}+\varepsilon_{0}$, where $\varepsilon_{0}, \ldots, \varepsilon_{n-1} \in$ \mathbb{R}, let $\operatorname{roots}(p)=\left\{\lambda_{1}, \ldots, \lambda_{r}\right\}$, and, for all $i=1, \ldots, r$, let $\alpha_{i} \in \mathbb{R}$ satisfy $0<\alpha_{i}<$ $\max _{j \neq i}\left|\lambda_{i}-\lambda_{j}\right|$. Then, there exists $\varepsilon>0$ such that, for all $\varepsilon_{0}, \ldots, \varepsilon_{n-1}$ satisfying $\left|\varepsilon_{i}\right|<\varepsilon, i=1, \ldots, r$, the polynomial $p_{\varepsilon_{0}, \ldots, \varepsilon_{n-1}}$ has exactly mult ${ }_{p}\left(\lambda_{i}\right)$ roots in the disk $\left\{s \in \mathbb{C}:\left|s-\lambda_{i}\right|<\alpha_{i}\right\}$. (Proof: See [1005].) (Remark: This result shows that the roots of a polynomial are continuous functions of the coefficients.)

Fact 10.11.3. Let $p \in \mathbb{C}[s]$. Then,

$$
\operatorname{roots}\left(p^{\prime}\right) \subseteq \operatorname{co~} \operatorname{roots}(p)
$$

(Proof: See [447] p. 488].) (Remark: p^{\prime} is the derivative of p.)
Fact 10.11.4. Let $\mathcal{S}_{1} \subseteq \mathbb{F}^{n}$, assume that \mathcal{S}_{1} is compact, let $\mathcal{S}_{2} \subset \mathbb{F}^{m}$, let $f: \mathcal{S}_{1} \times \mathcal{S}_{2} \rightarrow \mathbb{R}$, and assume that f is continuous. Then, $g: \mathcal{S}_{2} \rightarrow \mathbb{R}$ defined by $g(y) \triangleq \max _{x \in \mathcal{S}_{1}} f(x, y)$ is continuous. (Remark: A related result is given in 442, p. 208].)

Fact 10.11.5. Let $\mathcal{S} \subseteq \mathbb{F}^{n}$, assume that \mathcal{S} is pathwise connected, let $f: \mathcal{S} \mapsto \mathbb{F}^{n}$, and assume that f is continuous. Then, $f(\mathcal{S})$ is pathwise connected. (Proof: See [1256, p. 65].)

Fact 10.11.6. Let $f:[0, \infty) \rightarrow \mathbb{R}$, assume that f is continuous, and assume that $\lim _{t \rightarrow \infty} f(t)$ exists. Then,

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} f(\tau) \mathrm{d} \tau=\lim _{t \rightarrow \infty} f(t)
$$

(Remark: The assumption that f is continuous can be weakened.)
Fact 10.11.7. Let $\mathcal{J} \subseteq \mathbb{R}$ be a finite or infinite interval, let $f: \mathcal{J} \rightarrow \mathbb{R}$, assume that f is continuous, and assume that, for all $x, y \in \mathcal{J}$, it follows that $f\left[\frac{1}{2}(x+y)\right] \leq$ $\frac{1}{2} f(x+y)$. Then, f is convex. (Proof: See [1039, p. 10].) (Remark: This result is due to Jensen.) (Remark: See Fact 1.8.4,

Fact 10.11.8. Let $A_{0} \in \mathbb{F}^{n \times n}$, let $\|\cdot\|$ be a norm on $\mathbb{F}^{n \times n}$, and let $\varepsilon>0$. Then, there exists $\delta>0$ such that, if $A \in \mathbb{F}^{n \times n}$ and $\left\|A-A_{0}\right\|<\delta$, then

$$
\operatorname{dist}\left[\operatorname{mspec}(A)-\operatorname{mspec}\left(A_{0}\right)\right]<\varepsilon
$$

where

$$
\operatorname{dist}\left[\operatorname{mspec}(A)-\operatorname{mspec}\left(A_{0}\right)\right] \triangleq \min _{\sigma} \max _{i=1, \ldots, n}\left|\lambda_{\sigma(i)}(A)-\lambda_{i}\left(A_{0}\right)\right|
$$

and the minimum is taken over all permutations σ of $\{1, \ldots, n\}$. (Proof: See 690, p. 399].)

Fact 10.11.9. Let $\mathcal{J} \subseteq \mathbb{R}$ be an interval, let $A: \mathcal{J} \mapsto \mathbb{F}^{n \times n}$, and assume that A is continuous. Then, for $i=1, \ldots, n$, there exist continuous functions $\lambda_{i}: \mathcal{J} \mapsto \mathbb{C}$ such that, for all $t \in \mathcal{J}, \operatorname{mspec}(A(t))=\left\{\lambda_{1}(t), \ldots, \lambda_{n}(t)\right\}_{\mathrm{ms}}$. (Proof: See 690, p. 399].) (Remark: The spectrum cannot always be continuously parameterized by more than one variable. See [690, p. 399].)

Fact 10.11.10. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}, g: \mathbb{R} \rightarrow \mathbb{R}$, and $h: \mathbb{R} \rightarrow \mathbb{R}$. Then, assuming each of the following integrals exists,

$$
\frac{\mathrm{d}}{\mathrm{~d} \alpha} \int_{g(\alpha)}^{h(\alpha)} f(t, \alpha) \mathrm{d} t=f(h(\alpha), \alpha) h^{\prime}(\alpha)-f(g(\alpha), \alpha) g^{\prime}(\alpha)+\int_{g(\alpha)}^{h(\alpha)} \frac{\partial}{\partial \alpha} f(t, \alpha) \mathrm{d} t
$$

(Remark: This identity is Leibniz's rule.)
Fact 10.11.11. Let $\mathcal{D} \subseteq \mathbb{R}^{m}$, assume that \mathcal{D} is a convex set, and let $f: \mathcal{D} \rightarrow$ \mathbb{R}. Then, f is convex if and only if the set $\left\{(x, y) \in \mathbb{R}^{n} \times \mathbb{R}: y \geq f(x)\right\}$ is convex.

Fact 10.11.12. Let $\mathcal{D} \subseteq \mathbb{R}^{m}$, assume that \mathcal{D} is a convex set, let $f: \mathcal{D} \rightarrow \mathbb{R}$, and assume that f is convex. Then, f is continuous on $\operatorname{int}_{\text {aff } \mathcal{D}} \mathcal{D}$.

Fact 10.11.13. Let $\mathcal{D} \subseteq \mathbb{R}^{m}$, assume that \mathcal{D} is a convex set, let $f: \mathcal{D} \rightarrow \mathbb{R}$, and assume that f is convex. Then, $f^{-1}((-\infty, \alpha])=\{x \in \mathcal{D}: f(x) \leq \alpha\}$ is convex.

Fact 10.11.14. Let $\mathcal{D} \subseteq \mathbb{R}^{m}$, assume that \mathcal{D} is open and convex, let $f: \mathcal{D} \rightarrow$ \mathbb{R}, and assume that f is C^{1} on \mathcal{D}. Then, the following statements hold:
i) f is convex if and only if, for all $x, y \in \mathcal{D}$,

$$
f(x)+(y-x)^{\mathrm{T}} f^{\prime}(x) \leq f(y)
$$

ii) f is strictly convex if and only if, for all distinct $x, y \in \mathcal{D}$,

$$
f(x)+(y-x)^{\mathrm{T}} f^{\prime}(x)<f(y) .
$$

(Remark: If f is not differentiable, then these inequalities can be stated in terms of directional differentials of f or the subdifferential of f. See [1039, pp. 29-31, 128-145].)

Fact 10.11.15. Let $f: \mathcal{D} \subseteq \mathbb{F}^{m} \mapsto \mathbb{F}^{n}$, and assume that $\mathrm{D}_{+} f(0 ; \xi)$ exists. Then, for all $\beta>0$,

$$
\mathrm{D}_{+} f(0 ; \beta \xi)=\beta \mathrm{D}_{+} f(0 ; \xi)
$$

Fact 10.11.16. Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x) \triangleq|x|$. Then, for all $\xi \in \mathbb{R}$,

$$
\mathrm{D}_{+} f(0 ; \xi)=|\xi|
$$

Now, define $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by $f(x) \triangleq \sqrt{x^{T} x}$. Then, for all $\xi \in \mathbb{R}^{n}$,

$$
\mathrm{D}_{+} f(0 ; \xi)=\sqrt{\xi^{\mathrm{T}} \xi}
$$

Fact 10.11.17. Let $A, B \in \mathbb{F}^{n \times n}$. Then, for all $s \in \mathbb{F}$,

$$
\frac{\mathrm{d}}{\mathrm{~d} s}(A+s B)^{2}=A B+B A+2 s B .
$$

Hence,

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} s}(A+s B)^{2}\right|_{s=0}=A B+B A
$$

Furthermore, for all $k \geq 1$,

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} s}(A+s B)^{k}\right|_{s=0}=\sum_{i=0}^{k-1} A^{i} B A^{i-1-i}
$$

Fact 10.11.18. Let $A, B \in \mathbb{F}^{n \times n}$, and let $\mathcal{D} \triangleq\{s \in \mathbb{F}$: $\operatorname{det}(A+s B) \neq 0\}$. Then, for all $s \in \mathcal{D}$,

$$
\frac{\mathrm{d}}{\mathrm{~d} s}(A+s B)^{-1}=-(A+s B)^{-1} B(A+s B)^{-1}
$$

Hence, if A is nonsingular, then

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} s}(A+s B)^{-1}\right|_{s=0}=-A^{-1} B A^{-1}
$$

Fact 10.11.19. Let $\mathcal{D} \subseteq \mathbb{F}$, let $A: \mathcal{D} \longrightarrow \mathbb{F}^{n \times n}$, and assume that A is differentiable. Then,

$$
\frac{\mathrm{d}}{\mathrm{~d} s} \operatorname{det} A(s)=\operatorname{tr}\left[A^{\mathrm{A}}(s) \frac{\mathrm{d}}{\mathrm{~d} s} A(s)\right]=\frac{1}{n-1} \operatorname{tr}\left[A(s) \frac{\mathrm{d}}{\mathrm{~d} s} A^{\mathrm{A}}(s)\right]=\sum_{i=1}^{n} \operatorname{det} A_{i}(s)
$$

where $A_{i}(s)$ is obtained by differentiating the entries of the i th row of $A(s)$. If, in addition, $A(s)$ is nonsingular for all $s \in \mathcal{D}$, then

$$
\frac{\mathrm{d}}{\mathrm{~d} s} \log \operatorname{det} A(s)=\operatorname{tr}\left[A^{-1}(s) \frac{\mathrm{d}}{\mathrm{~d} s} A(s)\right]
$$

If $A(s)$ is positive definite for all $s \in \mathcal{D}$, then

$$
\frac{\mathrm{d}}{\mathrm{~d} s} \operatorname{det} A^{1 / n}(s)=\frac{1}{n}\left[\operatorname{det} A^{1 / n}(s)\right] \operatorname{tr}\left[A^{-1}(s) \frac{\mathrm{d}}{\mathrm{~d} s} A(s)\right] .
$$

Finally, if $A(s)$ is nonsingular and has no negative eigenvalues for all $s \in \mathcal{D}$, then

$$
\frac{\mathrm{d}}{\mathrm{~d} s} \log ^{2} A(s)=2 \operatorname{tr}\left[[\log A(s)] A^{-1}(s) \frac{\mathrm{d}}{\mathrm{~d} s} A(s)\right]
$$

and

$$
\frac{\mathrm{d}}{\mathrm{~d} s} \log A(s)=\int_{0}^{1}[(A(s)-I) t+I]^{-1} \frac{\mathrm{~d}}{\mathrm{~d} s} A(s)[(A(s)-I) t+I]^{-1} \mathrm{~d} t
$$

(Proof: See [359, p. 267], [563, [1014, [1098, pp. 199, 212], [1129, p. 430], and [1183].) (Remark: See Fact 11.13.4.)

Fact 10.11.20. Let $\mathcal{D} \subseteq \mathbb{F}$, let $A: \mathcal{D} \longrightarrow \mathbb{F}^{n \times n}$, assume that A is differentiable, and assume that $A(s)$ is nonsingular for all $x \in \mathcal{D}$. Then,

$$
\frac{\mathrm{d}}{\mathrm{~d} s} A^{-1}(s)=-A^{-1}(s)\left[\frac{\mathrm{d}}{\mathrm{~d} s} A(s)\right] A^{-1}(s)
$$

and

$$
\operatorname{tr}\left[A^{-1}(s) \frac{\mathrm{d}}{\mathrm{~d} s} A(s)\right]=-\operatorname{tr}\left[A(s) \frac{\mathrm{d}}{\mathrm{~d} s} A^{-1}(s)\right] .
$$

(Proof: See [711, p. 491] and [1098, pp. 198, 212].)
Fact 10.11.21. Let $A, B \in \mathbb{F}^{n \times n}$. Then, for all $s \in \mathbb{F}$,

$$
\frac{\mathrm{d}}{\mathrm{~d} s} \operatorname{det}(A+s B)=\operatorname{tr}\left[B(A+s B)^{\mathrm{A}}\right] .
$$

Hence,

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} s} \operatorname{det}(A+s B)\right|_{s=0}=\operatorname{tr} B A^{\mathrm{A}}=\sum_{i=1}^{n} \operatorname{det}\left[A \stackrel{i}{\leftarrow} \operatorname{col}_{i}(B)\right]
$$

(Proof: Use Fact 10.11 .19 and Fact 2.16.9) (Remark: This result generalizes Lemma 4.4.8)

Fact 10.11.22. Let $A \in \mathbb{F}^{n \times n}, r \in \mathbb{R}$, and $k \geq 1$. Then, for all $s \in \mathbb{C}$,

$$
\frac{\mathrm{d}^{k}}{\mathrm{~d} s^{k}}[\operatorname{det}(I+s A)]^{r}=(r \operatorname{tr} A)^{k}[\operatorname{det}(I+s A)]^{r}
$$

Hence,

$$
\left.\frac{\mathrm{d}^{k}}{\mathrm{~d} s^{k}}[\operatorname{det}(I+s A)]^{r}\right|_{s=0}=(r \operatorname{tr} A)^{k}
$$

Fact 10.11.23. Let $A \in \mathbb{R}^{n \times n}$, assume that A is symmetric, let $X \in \mathbb{R}^{m \times n}$, and assume that $X A X^{\mathrm{T}}$ is nonsingular. Then,

$$
\left(\frac{\mathrm{d}}{\mathrm{~d} X} \operatorname{det} X A X^{\mathrm{T}}\right)=2\left(\operatorname{det} X A X^{\mathrm{T}}\right) A^{\mathrm{T}} X^{\mathrm{T}}\left(X A X^{\mathrm{T}}\right)^{-1}
$$

(Proof: See [350].)
Fact 10.11.24. The following infinite series converge for $A \in \mathbb{F}^{n \times n}$ with the given bounds on $\operatorname{sprad}(A)$:
i) For all $A \in \mathbb{F}^{n \times n}$,

$$
\sin A=A-\frac{1}{3!} A^{3}+\frac{1}{5!} A^{5}-\frac{1}{7!} A^{7}+\cdots .
$$

ii) For all $A \in \mathbb{F}^{n \times n}$,

$$
\cos A=I-\frac{1}{2!} A^{2}+\frac{1}{4!} A^{4}-\frac{1}{6!} A^{6}+\cdots
$$

iii) For all $A \in \mathbb{F}^{n \times n}$ such that $\operatorname{sprad}(A)<\pi / 2$,

$$
\tan A=A+\frac{1}{3} A^{3}+\frac{2}{15} A^{5}+\frac{17}{315} A^{7}+\frac{62}{2835} A^{9}+\cdots
$$

iv) For all $A \in \mathbb{F}^{n \times n}$ such that $\operatorname{sprad}(A)<1$,

$$
e^{A}=I+A+\frac{1}{2!} A^{2}+\frac{1}{3!} A^{3}+\frac{1}{4!} A^{4}+\cdots
$$

v) For all $A \in \mathbb{F}^{n \times n}$ such that $\operatorname{sprad}(A-I)<1$,

$$
\log A=-\left[I-A+\frac{1}{2}(I-A)^{2}+\frac{1}{3}(I-A)^{3}+\frac{1}{4}(I-A)^{4}+\cdots\right] .
$$

vi) For all $A \in \mathbb{F}^{n \times n}$ such that $\operatorname{sprad}(A)<1$,

$$
\log (I-A)=-\left(A+\frac{1}{2} A^{2}+\frac{1}{3} A^{3}+\frac{1}{4} A^{4}+\cdots\right)
$$

vii) For all $A \in \mathbb{F}^{n \times n}$ such that $\operatorname{sprad}(A)<1$,

$$
\log (I+A)=A-\frac{1}{2} A^{2}+\frac{1}{3} A^{3}-\frac{1}{4} A^{4}+\cdots
$$

viii) For all $A \in \mathbb{F}^{n \times n}$ such that $\operatorname{spec}(A) \subset$ ORHP,

$$
\log A=\sum_{i=0}^{\infty} \frac{2}{2 i+1}\left[(A-I)(A+I)^{-1}\right]^{2 i+1}
$$

$i x)$ For all $A \in \mathbb{F}^{n \times n}$,

$$
\sinh A=\sin \jmath A=A+\frac{1}{3!} A^{3}+\frac{1}{5!} A^{5}+\frac{1}{7!} A^{7}+\cdots
$$

$x)$ For all $A \in \mathbb{F}^{n \times n}$,

$$
\cosh A=\cos \jmath A=I+\frac{1}{2!} A^{2}+\frac{1}{4!} A^{4}+\frac{1}{6!} A^{6}+\cdots .
$$

xi) For all $A \in \mathbb{F}^{n \times n}$ such that $\operatorname{sprad}(A)<\pi / 2$,

$$
\tanh A=\tan \jmath A=A-\frac{1}{3} A^{3}+\frac{2}{15} A^{5}-\frac{17}{315} A^{7}+\frac{62}{2835} A^{9}-\cdots
$$

xii) Let $\alpha \in \mathbb{R}$. For all $A \in \mathbb{F}^{n \times n}$ such that $\operatorname{sprad}(A)<1$,

$$
\begin{aligned}
(I+A)^{\alpha} & =I+\alpha A+\frac{\alpha(\alpha-1)}{2!} A^{2}+\frac{\alpha(\alpha-1)(\alpha-2)}{3!} A^{3}+\frac{1}{4} A^{4}+\cdots \\
& =I+\binom{\alpha}{1} A+\binom{\alpha}{2} A^{2}+\binom{\alpha}{3} A^{3}+\binom{\alpha}{4} A^{4}+\cdots
\end{aligned}
$$

xiii) For all $A \in \mathbb{F}^{n \times n}$ such that $\operatorname{sprad}(A)<1$,

$$
(I-A)^{-1}=I+A+A^{2}+A^{3}+A^{4}+\cdots
$$

(Proof: See Fact 1.18.8.)

10.12 Notes

An introductory treatment of limits and continuity is given in 1030. Fréchet and directional derivatives are discussed in [496], while differentiation of matrix functions is considered in [654, 948, 975, 1089, 1136, 1182. In [1133, 1134 the set $\operatorname{int}_{\mathrm{aff} \mathcal{S}} \mathcal{S}$ is called the relative interior of \mathcal{S}. An extensive treatment of matrix functions is given in Chapter 6 of [711]; see also [716]. The identity theorem is discussed in [741. The chain rule for matrix functions is considered in 948, 980. Differentiation with respect to complex matrices is discussed in [776]. Extensive tables of derivatives of matrix functions are given in [374, pp. 586-593].

Chapter Eleven

The Matrix Exponential and Stability Theory

The matrix exponential function is fundamental to the study of linear ordinary differential equations. This chapter focuses on the properties of the matrix exponential as well as on stability theory.

11.1 Definition of the Matrix Exponential

The scalar initial value problem

$$
\begin{gather*}
\dot{x}(t)=a x(t) \tag{11.1.1}\\
x(0)=x_{0} \tag{11.1.2}
\end{gather*}
$$

where $t \in[0, \infty)$ and $a, x(t) \in \mathbb{R}$, has the solution

$$
\begin{equation*}
x(t)=e^{a t} x_{0} \tag{11.1.3}
\end{equation*}
$$

where $t \in[0, \infty)$. We are interested in systems of linear differential equations of the form

$$
\begin{gather*}
\dot{x}(t)=A x(t), \tag{11.1.4}\\
x(0)=x_{0} \tag{11.1.5}
\end{gather*}
$$

where $t \in[0, \infty), x(t) \in \mathbb{R}^{n}$, and $A \in \mathbb{R}^{n \times n}$. Here $\dot{x}(t)$ denotes $\frac{\mathrm{d} x(t)}{\mathrm{d} t}$, where the derivative is one sided for $t=0$ and two sided for $t>0$. The solution of (11.1.4), (11.1.5) is given by

$$
\begin{equation*}
x(t)=e^{t A} x_{0} \tag{11.1.6}
\end{equation*}
$$

where $t \in[0, \infty)$ and $e^{t A}$ is the matrix exponential. The following definition is based on (10.5.2).

Definition 11.1.1. Let $A \in \mathbb{F}^{n \times n}$. Then, the matrix exponential $e^{A} \in \mathbb{F}^{n \times n}$ or $\exp (A) \in \mathbb{F}^{n \times n}$ is the matrix

$$
\begin{equation*}
e^{A} \triangleq \sum_{k=0}^{\infty} \frac{1}{k!} A^{k} \tag{11.1.7}
\end{equation*}
$$

Note that $0!\triangleq 1$ and $e^{0_{n \times n}}=I_{n}$.

Proposition 11.1.2. Let $A \in \mathbb{F}^{n \times n}$. Then, the following statements hold:
i) The series (11.1.7) converges absolutely.
ii) The series (11.1.7) converges to e^{A}.
iii) Let $\|\cdot\|$ be a normalized submultiplicative norm on $\mathbb{F}^{n \times n}$. Then,

$$
\begin{equation*}
e^{-\|A\|} \leq\left\|e^{A}\right\| \leq e^{\|A\|} \tag{11.1.8}
\end{equation*}
$$

Proof. To prove i, let $\|\cdot\|$ be a normalized submultiplicative norm on $\mathbb{F}^{n \times n}$. Then, for all $k \geq 1$,

$$
\sum_{i=0}^{k} \frac{1}{i!}\left\|A^{i}\right\| \leq \sum_{i=0}^{k} \frac{1}{i!}\|A\|^{i} \leq e^{\|A\|}
$$

Since the sequence $\left\{\sum_{i=0}^{k} \frac{1}{i!}\left\|A^{i}\right\|\right\}_{i=0}^{\infty}$ of partial sums is increasing and bounded, there exists $\alpha>0$ such that the series $\sum_{i=0}^{\infty} \frac{1}{i!}\left\|A^{i}\right\|$ converges to α. Hence, the series $\sum_{i=0}^{\infty} \frac{1}{i!} A^{i}$ converges absolutely.

Next, $i i$) follows from i) using Proposition 10.2 .9
Next, we have

$$
\left\|e^{A}\right\|=\left\|\sum_{i=0}^{\infty} \frac{1}{i!} A^{i}\right\| \leq \sum_{i=0}^{\infty} \frac{1}{i!}\left\|A^{i}\right\| \leq \sum_{i=0}^{\infty} \frac{1}{i!}\|A\|^{i}=e^{\|A\|}
$$

which verifies (11.1.8). Finally, note that

$$
1 \leq\left\|e^{A}\right\|\left\|e^{-A}\right\| \leq\left\|e^{A}\right\| e^{\|A\|}
$$

and thus

$$
e^{-\|A\|} \leq\left\|e^{A}\right\|
$$

The following result generalizes the well-known scalar result.
Proposition 11.1.3. Let $A \in \mathbb{F}^{n \times n}$. Then,

$$
\begin{equation*}
e^{A}=\lim _{k \rightarrow \infty}\left(I+\frac{1}{k} A\right)^{k} \tag{11.1.9}
\end{equation*}
$$

Proof. It follows from the binomial theorem that

$$
\left(I+\frac{1}{k} A\right)^{k}=\sum_{i=0}^{k} \alpha_{i}(k) A^{i}
$$

where

$$
\alpha_{i}(k) \triangleq \frac{1}{k^{i}}\binom{k}{i}=\frac{1}{k^{i}} \frac{k!}{i!(k-i)!} .
$$

For all $i \in \mathbb{P}$, it follows that $\alpha_{i}(k) \rightarrow 1 / i!$ as $k \rightarrow \infty$. Hence,

$$
\lim _{k \rightarrow \infty}\left(I+\frac{1}{k} A\right)^{k}=\lim _{k \rightarrow \infty} \sum_{i=0}^{k} \alpha_{i}(k) A^{i}=\sum_{i=0}^{\infty} \frac{1}{i!} A^{i}=e^{A}
$$

Proposition 11.1.4. Let $A \in \mathbb{F}^{n \times n}$. Then, for all $t \in \mathbb{R}$,

$$
\begin{equation*}
e^{t A}-I=\int_{0}^{t} A e^{\tau A} \mathrm{~d} \tau \tag{11.1.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} e^{t A}=A e^{t A} \tag{11.1.11}
\end{equation*}
$$

Proof. Note that

$$
\int_{0}^{t} A e^{\tau A} \mathrm{~d} \tau=\int_{0}^{t} \sum_{k=0}^{\infty} \frac{1}{k!} \tau^{k} A^{k+1} \mathrm{~d} \tau=\sum_{k=0}^{\infty} \frac{1}{k!} \frac{t^{k+1}}{k+1} A^{k+1}=e^{t A}-I
$$

which yields (11.1.10), while differentiating (11.1.10) with respect to t yields (11.1.11).

Proposition 11.1.5. Let $A, B \in \mathbb{F}^{n \times n}$. Then, $A B=B A$ if and only if, for all $t \in[0, \infty)$,

$$
\begin{equation*}
e^{t A} e^{t B}=e^{t(A+B)} \tag{11.1.12}
\end{equation*}
$$

Proof. Suppose that $A B=B A$. By expanding $e^{t A}, e^{t B}$, and $e^{t(A+B)}$, it can be seen that the expansions of $e^{t A} e^{t B}$ and $e^{t(A+B)}$ are identical. Conversely, differentiating (11.1.12) twice with respect to t and setting $t=0$ yields $A B=$ $B A$.

Corollary 11.1.6. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that $A B=B A$. Then,

$$
\begin{equation*}
e^{A} e^{B}=e^{B} e^{A}=e^{A+B} \tag{11.1.13}
\end{equation*}
$$

The converse of Corollary 11.1 .6 is not true. For example, if $A \triangleq\left[\begin{array}{cc}0 & \pi \\ -\pi & 0\end{array}\right]$ and $B \triangleq\left[\begin{array}{cc}0 & (7+4 \sqrt{3}) \pi \\ (-7+4 \sqrt{3}) \pi & 0\end{array}\right]$, then $e^{A}=e^{B}=-I$ and $e^{A+B}=I$, although $A B \neq B A$. A partial converse is given by Fact 11.14.2.

Proposition 11.1.7. Let $A \in \mathbb{F}^{n \times n}$ and $B \in \mathbb{F}^{m \times m}$. Then,

$$
\begin{align*}
& e^{A \otimes I_{m}}=e^{A} \otimes I_{m} \tag{11.1.14}\\
& e^{I_{n} \otimes B}=I_{n} \otimes e^{B} \tag{11.1.15}\\
& e^{A \oplus B}=e^{A} \otimes e^{B} \tag{11.1.16}
\end{align*}
$$

Proof. Note that

$$
\begin{aligned}
e^{A \otimes I_{m}} & =I_{n m}+A \otimes I_{m}+\frac{1}{2!}\left(A \otimes I_{m}\right)^{2}+\cdots \\
& =I_{n} \otimes I_{m}+A \otimes I_{m}+\frac{1}{2!}\left(A^{2} \otimes I_{m}\right)+\cdots \\
& =\left(I_{n}+A+\frac{1}{2!} A^{2}+\cdots\right) \otimes I_{m} \\
& =e^{A} \otimes I_{m}
\end{aligned}
$$

and similarly for (11.1.15). To prove (11.1.16), note that $\left(A \otimes I_{m}\right)\left(I_{n} \otimes B\right)=A \otimes B$ and $\left(I_{n} \otimes B\right)\left(A \otimes I_{m}\right)=A \otimes B$, which shows that $A \otimes I_{m}$ and $I_{n} \otimes B$ commute. Thus, by Corollary 11.1.6,

$$
e^{A \oplus B}=e^{A \otimes I_{m}+I_{n} \otimes B}=e^{A \otimes I_{m}} e^{I_{n} \otimes B}=\left(e^{A} \otimes I_{m}\right)\left(I_{n} \otimes e^{B}\right)=e^{A} \otimes e^{B}
$$

11.2 Structure of the Matrix Exponential

To elucidate the structure of the matrix exponential, recall that, by Theorem 4.6.1, every term A^{k} in (11.1.7) for $k>r \triangleq \operatorname{deg} \mu_{A}$ can be expressed as a linear combination of I, A, \ldots, A^{r-1}. The following result provides an expression for $e^{t A}$ in terms of I, A, \ldots, A^{r-1}.

Proposition 11.2.1. Let $A \in \mathbb{F}^{n \times n}$. Then, for all $t \in \mathbb{R}$,

$$
\begin{equation*}
e^{t A}=\frac{1}{2 \pi j} \oint_{\mathbb{C}}(z I-A)^{-1} e^{t z} \mathrm{~d} z=\sum_{i=0}^{n-1} \psi_{i}(t) A^{i} \tag{11.2.1}
\end{equation*}
$$

where, for all $i=0, \ldots, n-1, \psi_{i}(t)$ is given by

$$
\begin{equation*}
\psi_{i}(t) \triangleq \frac{1}{2 \pi j} \oint_{\mathbb{C}} \frac{\chi_{A}^{[i+1]}(z)}{\chi_{A}(z)} e^{t z} \mathrm{~d} z \tag{11.2.2}
\end{equation*}
$$

where \mathcal{C} is a simple, closed contour in the complex plane enclosing $\operatorname{spec}(A)$,

$$
\begin{equation*}
\chi_{A}(s)=s^{n}+\beta_{n-1} s^{n-1}+\cdots+\beta_{1} s+\beta_{0} \tag{11.2.3}
\end{equation*}
$$

and the polynomials $\chi_{A}^{[1]}, \ldots, \chi_{A}^{[n]}$ are defined by the recursion

$$
s \chi_{A}^{[i+1]}(s)=\chi_{A}^{[i]}(s)-\beta_{i}, \quad i=0, \ldots, n-1
$$

where $\chi_{A}^{[0]} \triangleq \chi_{A}$ and $\chi_{A}^{[n]}(s)=1$. Furthermore, for all $i=0, \ldots, n-1$ and $t \geq 0$, $\psi_{i}(t)$ satisfies

$$
\begin{equation*}
\psi_{i}^{(n)}(t)+\beta_{n-1} \psi_{i}^{(n-1)}(t)+\cdots+\beta_{1} \psi_{i}^{\prime}(t)+\beta_{0} \psi_{i}(t)=0 \tag{11.2.4}
\end{equation*}
$$

where, for all $i, j=0, \ldots, n-1$,

$$
\begin{equation*}
\psi_{i}^{(j)}(0)=\delta_{i j} \tag{11.2.5}
\end{equation*}
$$

Proof. See [569, p. 381], [888, 929, [1455, p. 31], and Fact 4.9.11.
The coefficient $\psi_{i}(t)$ of A^{i} in (11.2.1) can be further characterized in terms of the Laplace transform. Define

$$
\begin{equation*}
\hat{x}(s) \triangleq \mathcal{L}\{x(t)\} \triangleq \int_{0}^{\infty} e^{-s t} x(t) \mathrm{d} t \tag{11.2.6}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\mathcal{L}\{\dot{x}(t)\}=s \hat{x}(s)-x(0) \tag{11.2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{L}\{\ddot{x}(t)\}=s^{2} \hat{x}(s)-s x(0)-\dot{x}(0) . \tag{11.2.8}
\end{equation*}
$$

The following result shows that the resolvent of A is the Laplace transform of the exponential of A. See (4.4.23).

Proposition 11.2.2. Let $A \in \mathbb{F}^{n \times n}$, and define $\psi_{0}, \ldots, \psi_{n-1}$ as in Proposition 11.2.1 Then, for all $s \in \mathbb{C} \backslash \operatorname{spec}(A)$,

$$
\begin{equation*}
\mathcal{L}\left\{e^{t A}\right\}=\int_{0}^{\infty} e^{-s t} e^{t A} \mathrm{~d} t=(s I-A)^{-1} \tag{11.2.9}
\end{equation*}
$$

Furthermore, for all $i=0, \ldots, n-1$, the Laplace transform $\hat{\psi}_{i}(s)$ of $\psi_{i}(t)$ is given by

$$
\begin{equation*}
\hat{\psi}_{i}(s)=\frac{\chi_{A}^{[i+1]}(s)}{\chi_{A}(s)} \tag{11.2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
(s I-A)^{-1}=\sum_{i=0}^{n-1} \hat{\psi}_{i}(s) A^{i} \tag{11.2.11}
\end{equation*}
$$

Proof. Let $s \in \mathbb{C}$ satisfy $\operatorname{Re} s>\operatorname{spabs}(A)$ so that $A-s I$ is asymptotically stable. Thus, it follows from Lemma 11.9.2 that

$$
\mathcal{L}\left\{e^{t A}\right\}=\int_{0}^{\infty} e^{-s t} e^{t A} \mathrm{~d} t=\int_{0}^{\infty} e^{t(A-s I)} \mathrm{d} t=(s I-A)^{-1}
$$

By analytic continuation, the expression $\mathcal{L}\left\{e^{t A}\right\}$ is given by (11.2.9) for all $s \in$ $\mathbb{C} \backslash \operatorname{spec}(A)$.

Comparing (11.2.11) with (4.4.23) yields

$$
\begin{equation*}
\sum_{i=0}^{n-1} \hat{\psi}_{i}(s) A^{i}=\frac{s^{n-1}}{\chi_{A}(s)} I+\frac{s^{n-2}}{\chi_{A}(s)} B_{n-2}+\cdots+\frac{s}{\chi_{A}(s)} B_{1}+B_{0} \tag{11.2.12}
\end{equation*}
$$

To further illustrate the structure of $e^{t A}$, where $A \in \mathbb{F}^{n \times n}$, let $A=S B S^{-1}$, where $B=\operatorname{diag}\left(B_{1}, \ldots, B_{k}\right)$ is the Jordan form of A. Hence, by Proposition 11.2.8,

$$
\begin{equation*}
e^{t A}=S e^{t B} S^{-1} \tag{11.2.13}
\end{equation*}
$$

where

$$
\begin{equation*}
e^{t B}=\operatorname{diag}\left(e^{t B_{1}}, \ldots, e^{t B_{k}}\right) \tag{11.2.14}
\end{equation*}
$$

The structure of $e^{t B}$ can thus be determined by considering the block $B_{i} \in \mathbb{F}^{\alpha_{i} \times \alpha_{i}}$, which, for all $i=1, \ldots, k$, has the form

$$
\begin{equation*}
B_{i}=\lambda_{i} I_{\alpha_{i}}+N_{\alpha_{i}} . \tag{11.2.15}
\end{equation*}
$$

Since $\lambda_{i} I_{\alpha_{i}}$ and $N_{\alpha_{i}}$ commute, it follows from Proposition 11.1.5 that

$$
\begin{equation*}
e^{t B_{i}}=e^{t\left(\lambda_{i} I_{\alpha_{i}}+N_{\alpha_{i}}\right)}=e^{\lambda_{i} t I_{\alpha_{i}}} e^{t N_{\alpha_{i}}}=e^{\lambda_{i} t} e^{t N_{\alpha_{i}}} \tag{11.2.16}
\end{equation*}
$$

Since $N_{\alpha_{i}}^{\alpha_{i}}=0$, it follows that $e^{t N_{\alpha_{i}}}$ is a finite sum of powers of $t N_{\alpha_{i}}$. Specifically,

$$
\begin{equation*}
e^{t N_{\alpha_{i}}}=I_{\alpha_{i}}+t N_{\alpha_{i}}+\frac{1}{2} t^{2} N_{\alpha_{i}}^{2}+\cdots+\frac{1}{\left(\alpha_{i}-1\right)!} t^{\alpha_{i}-1} N_{\alpha_{i}}^{\alpha_{i}-1} \tag{11.2.17}
\end{equation*}
$$

and thus

$$
e^{t N_{\alpha_{i}}}=\left[\begin{array}{ccccc}
1 & t & \frac{t^{2}}{2} & \cdots & \frac{t^{\alpha_{i}-1}}{\left(\alpha_{i}-1\right)!} \tag{11.2.18}\\
0 & 1 & t & \ddots & \frac{t^{\alpha_{i}-2}}{\left(\alpha_{i}-2\right)!} \\
0 & 0 & 1 & \ddots & \frac{t^{\alpha_{i}-3}}{\left(\alpha_{i}-3\right)!} \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1
\end{array}\right]
$$

which is upper triangular and Toeplitz (see Fact 11.13.1). Alternatively, (11.2.18) follows from (10.5.5) with $f(s)=e^{s t}$.

Note that (11.2.16) follows from (10.5.5) with $f(\lambda)=e^{\lambda t}$. Furthermore, every entry of $e^{t B_{i}}$ is of the form $\frac{1}{r!} r^{r} e^{\lambda_{i} t}$, where $r \in\left\{0, \alpha_{i}-1\right\}$ and λ_{i} is an eigenvalue of A. Reconstructing A by means of $A=S B S^{-1}$ shows that every entry of A is a linear combination of the entries of the blocks $e^{t B_{i}}$. If A is real, then $e^{t A}$ is also real. Thus, the term $e^{\lambda_{i} t}$ for complex $\lambda_{i}=\nu_{i}+\jmath \omega_{i} \in \operatorname{spec}(A)$, where ν_{i} and ω_{i} are real, yields terms of the form $e^{\nu_{i} t} \cos \omega_{i} t$ and $e^{\nu_{i} t} \sin \omega_{i} t$.

The following result follows from (11.2.18) or Corollary 10.5.4
Proposition 11.2.3. Let $A \in \mathbb{F}^{n \times n}$. Then,

$$
\begin{equation*}
\operatorname{mspec}\left(e^{A}\right)=\left\{e^{\lambda}: \lambda \in \operatorname{mspec}(A)\right\}_{\mathrm{ms}} \tag{11.2.19}
\end{equation*}
$$

Proof. It can be seen that every diagonal entry of the Jordan form of e^{A} is of the form e^{λ}, where $\lambda \in \operatorname{spec}(A)$.

Corollary 11.2.4. Let $A \in \mathbb{F}^{n \times n}$. Then,

$$
\begin{equation*}
\operatorname{det} e^{A}=e^{\operatorname{tr} A} \tag{11.2.20}
\end{equation*}
$$

Corollary 11.2.5. Let $A \in \mathbb{F}^{n \times n}$, and assume that $\operatorname{tr} A=0$. Then, $\operatorname{det} e^{A}=1$.
Corollary 11.2.6. Let $A \in \mathbb{F}^{n \times n}$. Then, the following statements hold:
i) If e^{A} is unitary, then, $\operatorname{spec}(A) \subset \jmath \mathbb{R}$.
ii) $\operatorname{spec}\left(e^{A}\right)$ is real if and only if $\operatorname{Im} \operatorname{spec}(A) \subset \pi \mathbb{Z}$.

Proposition 11.2.7. Let $A \in \mathbb{F}^{n \times n}$. Then, the following statements hold:
i) A and e^{A} have the same number of Jordan blocks of corresponding sizes.
ii) e^{A} is semisimple if and only if A is semisimple.
iii) If $\mu \in \operatorname{spec}\left(e^{A}\right)$, then

$$
\begin{equation*}
\operatorname{am}_{\exp (A)}(\mu)=\sum_{\left\{\lambda \in \operatorname{spec}(A): e^{\lambda}=\mu\right\}} \operatorname{am}_{A}(\lambda) \tag{11.2.21}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{gm}_{\exp (A)}(\mu)=\sum_{\left\{\lambda \in \operatorname{spec}(A): e^{\lambda}=\mu\right\}} \operatorname{gm}_{A}(\lambda) . \tag{11.2.22}
\end{equation*}
$$

$i v)$ If e^{A} is simple, then A is simple.
v) If e^{A} is cyclic, then A is cyclic.
$v i) e^{A}$ is a multiple of the identity if and only if A is semisimple and every pair of eigenvalues of A differs by an integer multiple of $2 \pi \jmath$.
vii) e^{A} is a real multiple of the identity if and only if A is semisimple, every pair of eigenvalues of A differs by an integer multiple of $2 \pi \jmath$, and the imaginary part of every eigenvalue of A is an integer multiple of πj.

Proof. To prove $i)$, note that, for all $t \neq 0, \operatorname{def}\left(e^{t N_{\alpha_{i}}}-I_{\alpha_{i}}\right)=1$, and thus the geometric multiplicity of (11.2.18) is 1 . Since (11.2.18) has one distinct eigenvalue, it follows that (11.2.18) is cyclic. Hence, by Proposition 5.5.15, (11.2.18) is similar to a single Jordan block. Now, i) follows by setting $t=1$ and applying this argument to each Jordan block of A. Statements $i i)-v$) follow by similar arguments.

To prove $v i$, note that, for all $\lambda_{i}, \lambda_{j} \in \operatorname{spec}(A)$, it follows that $e^{\lambda_{i}}=e^{\lambda_{j}}$. Furthermore, since A is semisimple, it follows from $i i)$ that e^{A} is also semisimple. Since all of the eigenvalues of e^{A} are equal, it follows that e^{A} is a multiple of the identity. Finally, viii) is an immediate consequence of vii).

Proposition 11.2.8. Let $A \in \mathbb{F}^{n \times n}$. Then, the following statements hold:
i) $\left(e^{A}\right)^{\mathrm{T}}=e^{A^{\mathrm{T}}}$.
ii) $\left(e^{\bar{A}}\right)=\overline{e^{A}}$.
iii) $\left(e^{A}\right)^{*}=e^{A^{*}}$.
iv) e^{A} is nonsingular, and $\left(e^{A}\right)^{-1}=e^{-A}$.
$v)$ If $S \in \mathbb{F}^{n \times n}$ is nonsingular, then $e^{S A S^{-1}}=S e^{A} S^{-1}$.
vi) If $A=\operatorname{diag}\left(A_{1}, \ldots, A_{k}\right)$, where $A_{i} \in \mathbb{F}^{n_{i} \times n_{i}}$ for all $i=1, \ldots, k$, then $e^{A}=\operatorname{diag}\left(e^{A_{1}}, \ldots, e^{A_{k}}\right)$.
vii) If A is Hermitian, then e^{A} is positive definite.
viii) e^{A} is Hermitian if and only if A is unitarily similar to a block-diagonal matrix $\operatorname{diag}\left(A_{1}, \ldots, A_{k}\right)$ such that, for all $i=1, \ldots, k, e^{A_{i}}$ is a real multiple of the identity and, for all distinct $i, j=1, \ldots, k, \operatorname{spec}\left(e^{A_{i}}\right) \neq \operatorname{spec}\left(e^{A_{j}}\right)$.

Furthermore, the following statements are equivalent:
$i x) ~ A$ is normal.
x) $\operatorname{tr} e^{A^{*}} e^{A}=\operatorname{tr} e^{A^{*}+A}$.
xi) $e^{A^{*}} e^{A}=e^{A^{*}+A}$.
xii) $e^{A} e^{A^{*}}=e^{A^{*}} e^{A}=e^{A^{*}+A}$.
xiii) A is unitarily similar to a block-diagonal matrix $\operatorname{diag}\left(A_{1}, \ldots, A_{k}\right)$ such that, for all $i=1, \ldots, k, e^{A_{i}}$ is a multiple of the identity and, for all distinct $i, j=1, \ldots, k, \operatorname{spec}\left(e^{A_{i}}\right) \neq \operatorname{spec}\left(e^{A_{j}}\right)$.
Finally, the following statements hold:
xiv) If A is normal, then e^{A} is normal.
$x v$) If e^{A} is normal and no pair of eigenvalues of A differ by an integer multiple of $2 \pi \jmath$, then A is normal.
xvi) A is skew Hermitian if and only if A is normal and e^{A} is unitary.
xvii) If $\mathbb{F}=\mathbb{R}$ and A is skew symmetric, then e^{A} is orthogonal and $\operatorname{det} e^{A}=1$.
xviii) e^{A} is unitary if and only if A is unitarily similar to a block-diagonal matrix $\operatorname{diag}\left(A_{1}, \ldots, A_{k}\right)$ such that, for all $i=1, \ldots, k, e^{A_{i}}$ is a unit-absolute-value multiple of the identity and, for all distinct $i, j=1, \ldots, k, \operatorname{spec}\left(e^{A_{i}}\right) \neq$ $\operatorname{spec}\left(e^{A_{j}}\right)$.
xix) If e^{A} is unitary, then either A is skew Hermitian or at least two eigenvalues of A differ by a nonzero integer multiple of $2 \pi j$.

Proof. The equivalence of $i x$) and x) is given in 452 1208, while the equivalence of $i x$) and $x i i$) is given in 1172 . Note that $x i i) \Longrightarrow x i) \Longrightarrow x$. Statement $x i v$) follows from the fact that $i x) \Longrightarrow x i i)$. The equivalence of $i x$) and $x i i i$) is given in [1468]; statement xviii) is analogous. To prove sufficiency in $x v i$), note that $e^{A+A^{*}}=e^{A} e^{A^{*}}=e^{A}\left(e^{A}\right)^{*}=I=e^{0}$. Since $A+A^{*}$ is Hermitian, it follows from iii) of Proposition 11.2 .9 that $A+A^{*}=0$. To prove xix), it follows from xvii) that, if every block A_{i} is scalar, then A is skew Hermitian, while, if at least one block A_{i} is not scalar, then A has at least two eigenvalues that differ by an integer multiple of $2 \pi \jmath$.

The converse of $i x)$ is false. For example, the matrix $A \triangleq\left[\begin{array}{cc}-2 \pi & 4 \pi \\ -2 \pi & 2 \pi\end{array}\right]$ satisfies $e^{A}=I$ but is not normal. Likewise, $A=\left[\begin{array}{cc}\jmath \pi & 1 \\ 0 & -\jmath \pi\end{array}\right]$ satisfies $e^{A}=-I$ but is not normal. For both matrices, $e^{A^{*}} e^{A}=e^{A} e^{A^{*}}=I$, but $e^{A^{*}} e^{A} \neq e^{A^{*}+A}$, which is consistent with xii). Both matrices have eigenvalues $\pm \jmath \pi$.

Proposition 11.2.9. The following statements hold:
i) If $A, B \in \mathbb{F}^{n \times n}$ are similar, then e^{A} and e^{B} are similar.
ii) If $A, B \in \mathbb{F}^{n \times n}$ are unitarily similar, then e^{A} and e^{B} are unitarily similar.
iii) $B \in \mathbb{F}^{n \times n}$ is positive definite if and only if there exists a unique Hermitian matrix $A \in \mathbb{F}^{n \times n}$ such that $e^{A}=B$.
iv) $B \in \mathbb{F}^{n \times n}$ is Hermitian and nonsingular if and only if there exists a normal matrix $A \in \mathbb{C}^{n \times n}$ such that, for all $\lambda \in \operatorname{spec}(A), \operatorname{Im} \lambda$ is an integer multiple of $\pi \jmath$ and $e^{A}=B$.
v) $B \in \mathbb{F}^{n \times n}$ is normal and nonsingular if and only if there exists a normal matrix $A \in \mathbb{F}^{n \times n}$ such that $e^{A}=B$.
vi) $B \in \mathbb{F}^{n \times n}$ is unitary if and only if there exists a normal matrix $A \in \mathbb{C}^{n \times n}$
such that $\operatorname{mspec}(A) \subset \jmath \mathbb{R}$ and $e^{A}=B$.
vii) $B \in \mathbb{F}^{n \times n}$ is unitary if and only if there exists a skew-Hermitian matrix $A \in \mathbb{C}^{n \times n}$ such that $e^{A}=B$.
viii) $B \in \mathbb{F}^{n \times n}$ is unitary if and only if there exists a Hermitian matrix $A \in \mathbb{F}^{n \times n}$ such that $e^{\jmath A}=B$.
ix) $B \in \mathbb{R}^{n \times n}$ is orthogonal and $\operatorname{det} B=1$ if and only if there exists a skewsymmetric matrix $A \in \mathbb{R}^{n \times n}$ such that $e^{A}=B$.
$x)$ If A and B are normal and $e^{A}=e^{B}$, then $A+A^{*}=B+B^{*}$.
Proof. Statement $i i i$) is given by Proposition 11.4.5. Statement vii) is given by v) of Proposition 11.6.7. To prove x, note that $e^{A+A^{*}}=e^{B+B^{*}}$, which, by vii) of Proposition 11.2.8, is positive definite. The result now follows from $i i i$).

The converse of i) is false. For example, $A \triangleq\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ and $B \triangleq\left[\begin{array}{cc}0 & 2 \pi \\ -2 \pi & 0\end{array}\right]$ satisfy $e^{A}=e^{B}=I$, although A and B are not similar.

11.3 Explicit Expressions

In this section we present explicit expressions for the exponential of a general 2×2 real matrix A. Expressions are given in terms of both the entries of A and the eigenvalues of A.

Lemma 11.3.1. Let $A \triangleq\left[\begin{array}{ll}a & b \\ 0 & d\end{array}\right] \in \mathbb{C}^{2 \times 2}$. Then,

$$
e^{A}= \begin{cases}e^{a}\left[\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right], & a=d, \tag{11.3.1}\\
{\left[\begin{array}{cc}
e^{a} & b \frac{e^{a}-e^{d}}{a-d} \\
0 & e^{d}
\end{array}\right],} & a \neq d .\end{cases}
$$

The following result gives an expression for e^{A} in terms of the eigenvalues of A.

Proposition 11.3.2. Let $A \in \mathbb{C}^{2 \times 2}$, and let $\operatorname{mspec}(A)=\{\lambda, \mu\}_{\mathrm{ms}}$. Then,

$$
e^{A}= \begin{cases}e^{\lambda}[(1-\lambda) I+A], & \lambda=\mu \tag{11.3.2}\\ \frac{\mu e^{\lambda}-\lambda e^{\mu}}{\mu-\lambda} I+\frac{e^{\mu}-e^{\lambda}}{\mu-\lambda} A, & \lambda \neq \mu\end{cases}
$$

Proof. The result follows from Theorem 10.5.2, Alternatively, suppose that $\lambda=\mu$. Then, there exists a nonsingular matrix $S \in \mathbb{C}^{2 \times 2}$ such that $A=S\left[\begin{array}{cc}\lambda \\ 0 & \alpha \\ 0 & \lambda\end{array}\right] S^{-1}$, where $\alpha \in \mathbb{C}$. Hence, $e^{A}=e^{\lambda} S\left[\begin{array}{cc}1 & \alpha \\ 0 & 1\end{array}\right] S^{-1}=e^{\lambda}[(1-\lambda) I+A]$. Now, suppose that $\lambda \neq \mu$. Then, there exists a nonsingular matrix $S \in \mathbb{C}^{2 \times 2}$ such that $A=S\left[\begin{array}{ll}\lambda & 0 \\ 0 & \mu\end{array}\right] S^{-1}$. Hence, $e^{A}=S\left[\begin{array}{cc}e^{\lambda} & 0 \\ 0 & e^{\mu}\end{array}\right] S^{-1}$. Then, the identity $\left[\begin{array}{cc}e^{\lambda} & 0 \\ 0 & e^{\mu}\end{array}\right]=\frac{\mu e^{\lambda}-\lambda e^{\mu}}{\mu-\lambda} I+\frac{e^{\mu}-e^{\lambda}}{\mu-\lambda}\left[\begin{array}{ll}\lambda & 0 \\ 0 & \mu\end{array}\right]$
yields the desired result.
Next, we give an expression for e^{A} in terms of the entries of $A \in \mathbb{R}^{2 \times 2}$.
Corollary 11.3.3. Let $A \triangleq\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \mathbb{R}^{2 \times 2}$, and define $\gamma \triangleq(a-d)^{2}+4 b c$ and $\delta \triangleq \frac{1}{2}|\gamma|^{1 / 2}$. Then,

$$
e^{A}=\left\{\begin{array}{cc}
e^{\frac{a+d}{2}}\left[\begin{array}{cc}
\cos \delta+\frac{a-d}{2 \delta} \sin \delta & \frac{b}{\delta} \sin \delta \\
\frac{c}{\delta} \sin \delta & \cos \delta-\frac{a-d}{2 \delta} \sin \delta
\end{array}\right], & \gamma<0, \tag{11.3.3}\\
e^{\frac{a+d}{2}\left[\begin{array}{cc}
1+\frac{a-d}{2} & b \\
c & 1-\frac{a-d}{2}
\end{array}\right],} \begin{array}{ll}
& \gamma=0, \\
e^{\frac{a+d}{2}}\left[\begin{array}{cc}
\cosh \delta+\frac{a-d}{2 \delta} \sinh \delta & \frac{b}{\delta} \sinh \delta \\
\frac{c}{\delta} \sinh \delta & \cosh \delta-\frac{a-d}{2 \delta} \sinh \delta
\end{array}\right], & \gamma>0
\end{array}, .
\end{array}\right.
$$

Proof. The eigenvalues of A are $\lambda \triangleq \frac{1}{2}(a+d-\sqrt{\gamma})$ and $\mu \triangleq \frac{1}{2}(a+d+\sqrt{\gamma})$. Hence, $\lambda=\mu$ if and only if $\gamma=0$. The result now follows from Proposition 11.3.2.

Example 11.3.4. Let $A \triangleq\left[\begin{array}{cc}\nu & \omega \\ -\omega & \nu\end{array}\right] \in \mathbb{R}^{2 \times 2}$. Then,

$$
e^{t A}=e^{\nu t}\left[\begin{array}{cc}
\cos \omega t & \sin \omega t \tag{11.3.4}\\
-\sin \omega t & \cos \omega t
\end{array}\right]
$$

On the other hand, if $A \triangleq\left[\begin{array}{cc}\nu & \omega \\ \omega & -\nu\end{array}\right]$, then

$$
e^{t A}=\left[\begin{array}{cc}
\cosh \delta t+\frac{\nu}{\delta} \sinh \delta t & \frac{\omega}{\delta} \sinh \delta t \tag{11.3.5}\\
\frac{\omega}{\delta} \sinh \delta t & \cosh \delta t-\frac{\nu}{\delta} \sinh \delta t
\end{array}\right]
$$

where $\delta \triangleq \sqrt{\omega^{2}+\nu^{2}}$.
Example 11.3.5. Let $\alpha \in \mathbb{F}$, and define $A \triangleq\left[\begin{array}{ll}0 & 1 \\ 0 & \alpha\end{array}\right]$. Then,

$$
e^{t A}= \begin{cases}{\left[\begin{array}{cc}
1 & \alpha^{-1}\left(e^{\alpha t}-1\right) \\
0 & e^{\alpha t}
\end{array}\right],} & \alpha \neq 0 \\
{\left[\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right],} & \alpha=0\end{cases}
$$

Example 11.3.6. Let $\theta \in \mathbb{R}$, and define $A \triangleq\left[\begin{array}{cc}0 & \theta \\ -\theta & 0\end{array}\right]$. Then,

$$
e^{A}=\left[\begin{array}{ll}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]
$$

Furthermore, define $B \triangleq\left[\begin{array}{cc}0 & \frac{\pi}{2}-\theta \\ \frac{-\pi}{2}+\theta & 0\end{array}\right]$. Then,

$$
e^{B}=\left[\begin{array}{cc}
\sin \theta & \cos \theta \\
-\cos \theta & \sin \theta
\end{array}\right]
$$

Example 11.3.7. Consider the second-order mechanical vibration equation

$$
\begin{equation*}
m \ddot{q}+c \dot{q}+k q=0 \tag{11.3.6}
\end{equation*}
$$

where m is positive and c and k are nonnegative. Here m, c, and k denote mass, damping, and stiffness parameters, respectively. Equation (11.3.6) can be written in companion form as the system

$$
\begin{equation*}
\dot{x}=A x \tag{11.3.7}
\end{equation*}
$$

where

$$
x \triangleq\left[\begin{array}{c}
q \tag{11.3.8}\\
\dot{q}
\end{array}\right], \quad A \triangleq\left[\begin{array}{cc}
0 & 1 \\
-k / m & -c / m
\end{array}\right]
$$

The inelastic case $k=0$ is the simplest one since A is upper triangular. In this case,

$$
e^{t A}= \begin{cases}{\left[\begin{array}{cc}
1 & t \\
0 & 1
\end{array}\right],} & k=c=0 \tag{11.3.9}\\
{\left[\begin{array}{cc}
1 & \frac{m}{c}\left(1-e^{-c t / m}\right) \\
0 & e^{-c t / m}
\end{array}\right],} & k=0, c>0\end{cases}
$$

where $c=0$ and $c>0$ correspond to a rigid body and a damped rigid body, respectively.

Next, we consider the elastic case $c \geq 0$ and $k>0$. In this case, we define

$$
\begin{equation*}
\omega_{\mathrm{n}} \triangleq \sqrt{\frac{k}{m}}, \quad \zeta \triangleq \frac{c}{2 \sqrt{m k}} \tag{11.3.10}
\end{equation*}
$$

where $\omega_{\mathrm{n}}>0$ denotes the (undamped) natural frequency of vibration and $\zeta \geq 0$ denotes the damping ratio. Now, A can be written as

$$
A=\left[\begin{array}{cc}
0 & 1 \tag{11.3.11}\\
-\omega_{\mathrm{n}}^{2} & -2 \zeta \omega_{\mathrm{n}}
\end{array}\right]
$$

and Corollary 11.3 .3 yields

$$
\begin{align*}
& e^{t A} \tag{11.3.12}\\
& =\left\{\begin{array}{cc}
{\left[\begin{array}{cc}
\cos \omega_{\mathrm{n}} t & \frac{1}{\omega_{\mathrm{n}}} \sin \omega_{\mathrm{n}} t \\
-\omega_{\mathrm{n}} \sin \omega_{\mathrm{n}} t & \cos \omega_{\mathrm{n}} t
\end{array}\right],} & \zeta=0, \\
e^{-\zeta \omega_{\mathrm{n}} \mathrm{t}}\left[\begin{array}{cc}
\cos \omega_{\mathrm{d}} t+\frac{\zeta}{\sqrt{1-\zeta^{2}}} \sin \omega_{\mathrm{d}} t & \frac{1}{\omega_{\mathrm{d}}} \sin \omega_{\mathrm{d}} t \\
\frac{-\omega_{\mathrm{d}}}{1-\zeta^{2}} \sin \omega_{\mathrm{d}} t & \cos \omega_{\mathrm{d}} t-\frac{\zeta}{\sqrt{1-\zeta^{2}}} \sin \omega_{\mathrm{d}} t
\end{array}\right], & 0<\zeta<1, \\
e^{-\omega_{\mathrm{n}} t}\left[\begin{array}{cc}
1+\omega_{\mathrm{n}} t & t \\
-\omega_{\mathrm{n}}^{2} t & 1-\omega_{\mathrm{n}} t
\end{array}\right], & \zeta=1, \\
e^{-\zeta \omega_{\mathrm{n}} t}\left[\begin{array}{cc}
\cosh \omega_{\mathrm{d}} t+\frac{\zeta}{\sqrt{\zeta^{2}-1}} \sinh \omega_{\mathrm{d}} t & \frac{1}{\omega_{\mathrm{d}}} \sinh \omega_{\mathrm{d}} t \\
\frac{-\omega_{\mathrm{d}}}{\zeta^{2}-1} \sinh \omega_{\mathrm{d}} t & \cosh \omega_{\mathrm{d}} t-\frac{\zeta}{\sqrt{\zeta^{2}-1}} \sinh \omega_{\mathrm{d}} t
\end{array}\right], \zeta>1,
\end{array}\right.
\end{align*}
$$

where $\zeta=0,0<\zeta<1, \zeta=1$, and $\zeta>1$ correspond to undamped, underdamped, critically damped, and overdamped oscillators, respectively, and where the damped natural frequency ω_{d} is the positive number

$$
\omega_{\mathrm{d}} \triangleq \begin{cases}\omega_{\mathrm{n}} \sqrt{1-\zeta^{2}}, & 0<\zeta<1 \tag{11.3.13}\\ \omega_{\mathrm{n}} \sqrt{\zeta^{2}-1}, & \zeta>1\end{cases}
$$

Note that m and k are not integers here.

11.4 Matrix Logarithms

Definition 11.4.1. Let $A \in \mathbb{F}^{n \times n}$. Then, $B \in \mathbb{F}^{n \times n}$ is a logarithm of A if $e^{B}=A$.

The following result shows that every complex, nonsingular matrix has a complex logarithm.

Proposition 11.4.2. Let $A \in \mathbb{C}^{n \times n}$. Then, there exists a matrix $B \in \mathbb{C}^{n \times n}$ such that $A=e^{B}$ if and only if A is nonsingular.

Proof. See [624, pp. 35, 60] or [711, p. 474].
Although the real number -1 does not have a real logarithm, the real matrix $B=\left[\begin{array}{cc}0 & \pi \\ -\pi & 0\end{array}\right]$ satisfies $e^{B}=\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$. These examples suggest that only certain real matrices have a real logarithm.

Proposition 11.4.3. Let $A \in \mathbb{R}^{n \times n}$. Then, there exists a matrix $B \in \mathbb{R}^{n \times n}$ such that $A=e^{B}$ if and only if A is nonsingular and, for every negative eigenvalue λ of A and for every positive integer k, the Jordan form of A has an even number of $k \times k$ blocks associated with λ.

Proof. See [711, p. 475].
Replacing A and B in Proposition 11.4.3 by e^{A} and A, respectively, yields the following result.

Corollary 11.4.4. Let $A \in \mathbb{R}^{n \times n}$. Then, for every negative eigenvalue λ of e^{A} and for every positive integer k, the Jordan form of e^{A} has an even number of $k \times k$ blocks associated with λ.

Since the matrix $A \triangleq\left[\begin{array}{cc}-2 \pi & 4 \pi \\ -2 \pi & 2 \pi\end{array}\right]$ satisfies $e^{A}=I$, it follows that a positivedefinite matrix can have a logarithm that is not normal. However, the following result shows that every positive-definite matrix has exactly one Hermitian logarithm.

Proposition 11.4.5. The function $\exp : \mathbf{H}^{n} \mapsto \mathbf{P}^{n}$ is one-to-one and onto.

Let $A \in \mathbb{R}^{n \times n}$. If there exists a matrix $B \in \mathbb{R}^{n \times n}$ such that $A=e^{B}$, then Corollary 11.2 .4 implies that $\operatorname{det} A=\operatorname{det} e^{B}=e^{\operatorname{tr} B}>0$. However, the converse is not true. Consider, for example, $A \triangleq\left[\begin{array}{cc}-1 & 0 \\ 0 & -2\end{array}\right]$, which satisfies $\operatorname{det} A>0$. However, Proposition 11.4 .3 implies that there does not exist a matrix $B \in \mathbb{R}^{2 \times 2}$ such that $A=e^{B}$. On the other hand, note that $A=e^{B} e^{C}$, where $B \triangleq\left[\begin{array}{cc}0 & \pi \\ -\pi & 0\end{array}\right]$ and $C \triangleq\left[\begin{array}{cc}0 & 0 \\ 0 & \log 2\end{array}\right]$. While the product of two exponentials of real matrices has positive determinant, the following result shows that the converse is also true.

Proposition 11.4.6. Let $A \in \mathbb{R}^{n \times n}$. Then, there exist matrices $B, C \in \mathbb{R}^{n \times n}$ such that $A=e^{B} e^{C}$ if and only if $\operatorname{det} A>0$.

Proof. Suppose that there exist $B, C \in \mathbb{R}^{n \times n}$ such that $A=e^{B} e^{C}$. Then, $\operatorname{det} A=\left(\operatorname{det} e^{B}\right)\left(\operatorname{det} e^{C}\right)>0$. Conversely, suppose that $\operatorname{det} A>0$. If A has no negative eigenvalues, then it follows from Proposition 11.4 .3 that there exists $B \in \mathbb{R}^{n \times n}$ such that $A=e^{B}$. Hence, $A=e^{B} e^{0_{n \times n}}$. Now, suppose that A has at least one negative eigenvalue. Then, Theorem 5.3.5 on the real Jordan form implies that there exist a nonsingular matrix $S \in \mathbb{R}^{n \times n}$ and matrices $A_{1} \in \mathbb{R}^{n_{1} \times n_{1}}$ and $A_{2} \in \mathbb{R}^{n_{2} \times n_{2}}$ such that $A=S\left[\begin{array}{cc}A_{1} & 0 \\ 0 & A_{2}\end{array}\right] S^{-1}$, where every eigenvalue of A_{1} is negative and where none of the eigenvalues of A_{2} are negative. Since $\operatorname{det} A$ and $\operatorname{det} A_{2}$ are positive, it follows that n_{1} is even. Now, write $A=S\left[\begin{array}{cc}-I_{n_{1}} & 0 \\ 0 & I_{n_{2}}\end{array}\right]\left[\begin{array}{cc}-A_{1} & 0 \\ 0 & A_{2}\end{array}\right] S^{-1}$. Since the eigenvalue -1 of $\left[\begin{array}{cc}-I_{n_{1}} & 0 \\ 0 & I_{n_{2}}\end{array}\right]$ appears in an even number of 1×1 Jordan blocks, it follows from Proposition 11.4 .3 that there exists a matrix $\hat{B} \in \mathbb{R}^{n \times n}$ such that $\left[\begin{array}{cc}-I_{n_{1}} & 0 \\ 0 & I_{n_{2}}\end{array}\right]=e^{\hat{B}}$. Furthermore, since $\left[\begin{array}{cc}-A_{1} & 0 \\ 0 & A_{2}\end{array}\right]$ has no negative eigenvalues, it follows that there exists a matrix $\hat{C} \in \mathbb{R}^{n \times n}$ such that $\left[\begin{array}{cc}-A_{1} & 0 \\ 0 & A_{2}\end{array}\right]=e^{\hat{C}}$. Hence, $e^{A}=S e^{\hat{B}} e^{\hat{C}} S^{-1}=e^{S \hat{B} S^{-1}} e^{S \hat{C} S^{-1}}$.

Although $e^{A} e^{B}$ may be different from e^{A+B}, the following result, known as the Baker-Campbell-Hausdorff series, provides an expansion for a matrix function $C(t)$ that satisfies $e^{C(t)}=e^{t A} e^{t B}$.

Proposition 11.4.7. Let $A_{1}, \ldots, A_{l} \in \mathbb{F}^{n \times n}$. Then, there exists $\varepsilon>0$ such that, for all $t \in(-\varepsilon, \varepsilon)$,

$$
\begin{equation*}
e^{t A_{1}} \cdots e^{t A_{l}}=e^{C(t)} \tag{11.4.1}
\end{equation*}
$$

where

$$
\begin{equation*}
C(t) \triangleq \sum_{i=1}^{l} t A_{i}+\sum_{1 \leq i<j \leq l} \frac{1}{2} t^{2}\left[A_{i}, A_{j}\right]+O\left(t^{3}\right) \tag{11.4.2}
\end{equation*}
$$

Proof. See [624, Chapter 3], 1162, p. 35], or [1366, p. 97].
To illustrate (11.4.1), let $l=2, A=A_{1}$, and $B=A_{2}$. Then, the first few terms of the series are given by

$$
\begin{equation*}
e^{t A} e^{t B}=e^{t A+t B+\left(t^{2} / 2\right)[A, B]+\left(t^{3} / 12\right)[[B, A], A+B]+\cdots} \tag{11.4.3}
\end{equation*}
$$

The radius of convergence of this series is discussed in 379, 1037.

The following result is the Lie-Trotter product formula.
Corollary 11.4.8. Let $A, B \in \mathbb{F}^{n \times n}$. Then,

$$
\begin{equation*}
e^{A+B}=\lim _{p \rightarrow \infty}\left[e^{\frac{1}{p} A} e^{\frac{1}{p} B}\right]^{p} . \tag{11.4.4}
\end{equation*}
$$

Proof. Setting $l=2$ and $t=1 / p$ in (11.4.1) yields, as $p \rightarrow \infty$,

$$
\left[e^{\frac{1}{p} A} e^{\frac{1}{p} B}\right]^{p}=\left[e^{\frac{1}{p}(A+B)+O\left(1 / p^{2}\right)}\right]^{p}=e^{A+B+O(1 / p)} \rightarrow e^{A+B} .
$$

11.5 The Logarithm Function

Let $A \in \mathbb{F}^{n \times n}$ be positive definite so that $A=S B S^{*} \in \mathbb{F}^{n \times n}$, where $S \in \mathbb{F}^{n \times n}$ is unitary and $B \in \mathbb{R}^{n \times n}$ is diagonal with positive diagonal entries. In Section 8.5, $\log A$ is defined as $\log A=S(\log B) S^{*} \in \mathbf{H}^{n}$, where $(\log B)_{(i, i)} \triangleq \log B_{(i, i)}$. Since $\log A$ satisfies $A=e^{\log A}$, it follows that $\log A$ is a $\operatorname{logarithm}$ of A. The following result extends the definition of $\log A$ to arbitrary nonsingular matrices $A \in \mathbb{C}^{n \times n}$.

Theorem 11.5.1. Let $A \in \mathbb{C}^{n \times n}$. Then, the following statements hold:
i) If A is nonsingular, then the principal branch of the \log function

$$
\log : \mathbb{C} \backslash\{0\} \mapsto\{z: \operatorname{Re} z \neq 0 \text { and }-\pi<\operatorname{Im} z \leq \pi\}
$$

is defined at A.
ii) If A is nonsingular, then $\log A$ is a \log arithm of A, that is, $e^{\log A}=A$.
iii) $\log e^{A}=A$ if and only if, for all $\lambda \in \operatorname{spec}(A)$, it follows that $|\operatorname{Im} \lambda|<\pi$.
$i v$) If A is nonsingular and $\operatorname{sprad}(A-I) \leq 1$, then $\log A$ is given by the series

$$
\begin{equation*}
\log A=\sum_{i=1}^{\infty} \frac{(-1)^{i+1}}{i}(A-I)^{i}, \tag{11.5.1}
\end{equation*}
$$

which converges absolutely with respect to every submultiplicative norm $\|\cdot\|$ such that $\|A-I\|<1$.
$v)$ If $\operatorname{spec}(A) \subset \mathrm{ORHP}$, then $\log A$ is given by the series

$$
\log A=\sum_{i=0}^{\infty} \frac{2}{2 i+1}\left[(A-I)(A+I)^{-1}\right]^{2 i+1}
$$

vi) If A has no eigenvalues in $(-\infty, 0]$, then

$$
\log A=\int_{0}^{1}(A-I)[t(A-I)+I]^{-1} \mathrm{~d} t
$$

vii) If A has no eigenvalues in $(-\infty, 0]$ and $\alpha \in[-1,1]$, then

$$
\log A^{\alpha}=\alpha \log A
$$

In particular,

$$
\log A^{-1}=-\log A
$$

and

$$
\log A^{1 / 2}=\frac{1}{2} \log A
$$

viii) If A is real and $\operatorname{spec}(A) \subset$ ORHP, then $\log A$ is real.
$i x)$ If A is real and nonsingular, then $\log A$ is real if and only if A is nonsingular and, for every negative eigenvalue λ of A and for every positive integer k, the Jordan form of A has an even number of $k \times k$ blocks associated with λ.

Now, let $\|\cdot\|$ be a submultiplicative norm on $\mathbb{C}^{n \times n}$. Then, the following statements hold:
$x)$ The function \log is continuous on $\left\{X \in \mathbb{C}^{n \times n}:\|X-I\|<1\right\}$.
xi) If $B \in \mathbb{C}^{n \times n}$ and $\|B\|<\log 2$, then $\left\|e^{B}-I\right\|<1$ and $\log e^{B}=B$.
xii) $\exp : \mathbb{B}_{\log 2}(0) \mapsto \mathbb{F}^{n \times n}$ is one-to-one.
xiii) If $\|A-I\|<1$, then

$$
\|\log A\| \leq-\log (1-\|A-I\|) \leq \frac{\|A-I\|}{1-\|A-I\|}
$$

xiv) If $\|A-I\|<2 / 3$, then

$$
\|A-I\|\left[1-\frac{\|A-I\|}{2(1-\|A-I\|)}\right] \leq\|\log A\|
$$

$x v)$ Assume that A is nonsingular, and let $\operatorname{mspec}(A)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}_{\mathrm{ms}}$. Then,

$$
\operatorname{mspec}(\log A)=\left\{\log \lambda_{1}, \ldots, \log \lambda_{n}\right\}_{\mathrm{ms}}
$$

Proof. Statement i) follows from Definition 10.5.1 as well as the properties of the principal branch of the log function given by Fact 1.18.7. Statement $i i$) follows from the discussion in [711, p. 420].

Statement $i i i$) is given in 683 p. 32].
Statements $i v$) and v) are given by Fact 10.11.24. See [624, pp. 34-35] and [683, p. 273].

Statement $v i$) is given in [683, p. 269].
Statement vii) is given in [683, p. 270].
Statement $i x$) follows from Proposition 11.4 .3 and the discussion in [711, pp. 474-475].

Statements x) and $x i$) are proved in $624 \mathrm{pp} .34-35]$. To prove the inequality in $x i$, let $\|B\|<2$, so that $e^{\|B\|}<2$, and thus

$$
\left\|e^{B}-I\right\| \leq \sum_{i=1}^{\infty}(i!)^{-1}\|B\|^{i}=e^{\|B\|}-1<1 .
$$

To prove xii), let $B_{1}, B_{2} \in \mathbb{B}_{\log 2}(0)$, and assume that $e^{B_{1}}=e^{B_{2}}$. Then, it follows from $i i$) that $B_{1}=\log e^{B_{1}}=\log e^{B_{2}}=B_{2}$.

Finally, to prove xiiii), let $\alpha \triangleq\|A-I\|<1$. Then, it follows from (11.5.1) and $i v$) of Fact 1.18 .7 that $\|\log A\| \leq \sum_{i=1}^{\infty} \alpha^{i} / i=-\log (1-\alpha)$. For xiv), see 683 p. 647].

For a nonsingular $A \in \mathbb{C}^{n \times n}$, the matrix $\log A$ given by Theorem 11.5 .1 is the principal logarithm.

11.6 Lie Groups

Definition 11.6.1. Let $\mathcal{S} \subset \mathbb{F}^{n \times n}$, and assume that \mathcal{S} is a group. Then, \mathcal{S} is a Lie group if \mathcal{S} is closed relative to $\mathrm{GL}_{\mathbb{F}}(n)$.

Proposition 11.6.2. Let $\mathcal{S} \subset \mathbb{F}^{n \times n}$, and assume that \mathcal{S} is a group. Then, \mathcal{S} is a Lie group if and only if the limit of every convergent sequence in \mathcal{S} is either an element of \mathcal{S} or is singular.

The groups $\mathrm{SL}_{\mathbb{F}}(n), \mathrm{U}(n), \mathrm{O}(n), \mathrm{SU}(n), \mathrm{SO}(n), \mathrm{U}(n, m), \mathrm{O}(n, m), \mathrm{SU}(n, m)$, $\mathrm{SO}(n, m), \mathrm{S}_{\mathbb{F}}(n), \operatorname{Aff}_{\mathbb{F}}(n), \mathrm{SE}_{\mathbb{F}}(n)$, and $\operatorname{Trans}_{\mathbb{F}}(n)$ defined in Proposition 3.3.6 are closed sets, and thus are Lie groups. Although the groups $\mathrm{GL}_{\mathbb{F}}(n), \mathrm{PL}_{\mathbb{F}}(n)$, and $\mathrm{UT}(n)$ (see Fact 3.21.5) are not closed sets, they are closed relative to $\mathrm{GL}_{\mathbb{F}}(n)$, and thus they are Lie groups. Finally, the group $\mathcal{S} \subset \mathbb{C}^{2 \times 2}$ defined by

$$
\mathcal{S} \triangleq\left\{\left[\begin{array}{cc}
e^{\jmath t} & 0 \tag{11.6.1}\\
0 & e^{\jmath \pi t}
\end{array}\right]: t \in \mathbb{R}\right\}
$$

is not closed relative to $\mathrm{GL}_{\mathbb{C}}(2)$, and thus is not a Lie group. For details, see 624 p. 4].

Proposition 11.6.3. Let $\mathcal{S} \subset \mathbb{F}^{n \times n}$, and assume that \mathcal{S} is a Lie group. Furthermore, define

$$
\begin{equation*}
\mathcal{S}_{0} \triangleq\left\{A \in \mathbb{F}^{n \times n}: e^{t A} \in \mathcal{S} \text { for all } t \in \mathbb{R}\right\} . \tag{11.6.2}
\end{equation*}
$$

Then, δ_{0} is a Lie algebra.
Proof. See [624 pp. 39, 43, 44].
The Lie algebra \mathcal{S}_{0} defined by (11.6.2) is the Lie algebra of \mathcal{S}.
Proposition 11.6.4. Let $\mathcal{S} \subset \mathbb{F}^{n \times n}$, assume that \mathcal{S} is a Lie group, and let $\mathcal{S}_{0} \subseteq \mathbb{F}^{n \times n}$ be the Lie algebra of \mathcal{S}. Furthermore, let $S \in \mathcal{S}$ and $A \in \mathcal{S}_{0}$. Then, $S A S^{-1} \in \mathcal{S}_{0}$.

Proof. For all $t \in \mathbb{R}, e^{t A} \in \mathcal{S}$, and thus $e^{t S A S^{-1}}=S e^{t A} S^{-1} \in \mathcal{S}$. Hence, $S A S^{-1} \in \mathcal{S}_{0}$.

Proposition 11.6.5. The following statements hold:
i) $\mathrm{gl}_{\mathbb{F}}(n)$ is the Lie algebra of $\mathrm{GL}_{\mathbb{F}}(n)$.
ii) $\operatorname{gl}_{\mathbb{R}}(n)=\mathrm{pl}_{\mathbb{R}}(n)$ is the Lie algebra of $\mathrm{PL}_{\mathbb{R}}(n)$.
iii) $\mathrm{pl}_{\mathbb{C}}(n)$ is the Lie algebra of $\mathrm{PL}_{\mathbb{C}}(n)$.
$i v) \operatorname{sl}_{\mathbb{F}}(n)$ is the Lie algebra of $\mathrm{SL}_{\mathbb{F}}(n)$.
$v) \mathrm{u}(n)$ is the Lie algebra of $\mathrm{U}(n)$.
$v i) \operatorname{so}(n)$ is the Lie algebra of $\mathrm{O}(n)$.
vii) $\mathrm{su}(n)$ is the Lie algebra of $\mathrm{SU}(n)$.
viii) $\mathrm{so}(n)$ is the Lie algebra of $\mathrm{SO}(n)$.
$i x) \mathrm{su}(n, m)$ is the Lie algebra of $\mathrm{U}(n, m)$.
$x) \operatorname{so}(n, m)$ is the Lie algebra of $\mathrm{O}(n, m)$.
xi) $\mathrm{su}(n, m)$ is the Lie algebra of $\mathrm{SU}(n, m)$.
xii) so (n, m) is the Lie algebra of $\mathrm{SO}(n, m)$.
xiii) $\operatorname{symp}_{\mathbb{F}}(2 n)$ is the Lie algebra of $\operatorname{Symp}_{\mathbb{F}}(2 n)$.
xiv) $\operatorname{osymp}_{\mathbb{F}}(2 n)$ is the Lie algebra of $\operatorname{OSymp}_{\mathbb{F}}(2 n)$.
$x v) \operatorname{aff}_{\mathbb{F}}(n)$ is the Lie algebra of $\operatorname{Aff}_{\mathbb{F}}(n)$.
$x v i) \operatorname{se}_{\mathbb{C}}(n)$ is the Lie algebra of $\mathrm{SE}_{\mathbb{C}}(n)$.
xvii) $\operatorname{se}_{\mathbb{R}}(n)$ is the Lie algebra of $\mathrm{SE}_{\mathbb{R}}(n)$.
xviii) $\operatorname{trans}_{\mathbb{F}}(n)$ is the Lie algebra of $\operatorname{Trans}_{\mathbb{F}}(n)$.

Proof. See [624, pp. 38-41].
Proposition 11.6.6. Let $\mathcal{S} \subset \mathbb{F}^{n \times n}$, assume that \mathcal{S} is a Lie group, and let $\mathcal{S}_{0} \subseteq \mathbb{F}^{n \times n}$ be the Lie algebra of \mathcal{S}. Then, exp: $\mathcal{S}_{0} \mapsto \mathcal{S}$. Furthermore, if \exp is onto, then \mathcal{S} is pathwise connected.

Proof. Let $A \in \mathcal{S}_{0}$ so that $e^{t A} \in \mathcal{S}$ for all $t \in \mathbb{R}$. Hence, setting $t=1$ implies that $\exp : \mathcal{S}_{0} \mapsto \mathcal{S}$. Now, suppose that \exp is onto, let $B \in \mathcal{S}$, and let $A \in \mathcal{S}_{0}$ be such that $e^{A}=B$. Then, $f(t) \triangleq e^{t A}$ satisfies $f(0)=I$ and $f(1)=B$, which implies that \mathcal{S} is pathwise connected.

A Lie group can consist of multiple pathwise-connected components.
Proposition 11.6.7. Let $n \geq 1$. Then, the following functions are onto:
i) $\exp : \operatorname{gl}_{\mathbb{C}}(n) \mapsto \mathrm{GL}_{\mathbb{C}}(n)$.
ii) $\exp : \mathrm{gl}_{\mathbb{R}}(1) \mapsto \mathrm{PL}_{\mathbb{R}}(1)$.
iii) $\exp : \mathrm{pl}_{\mathbb{C}}(n) \mapsto \mathrm{PL}_{\mathbb{C}}(n)$.
$i v) \exp : \operatorname{sl}_{\mathbb{C}}(n) \mapsto \mathrm{SL}_{\mathbb{C}}(n)$.
$v) \exp : \mathrm{u}(n) \mapsto \mathrm{U}(n)$.
$v i) \exp : \operatorname{su}(n) \mapsto \mathrm{SU}(n)$.
vii) exp: $\mathrm{so}(n) \mapsto \mathrm{SO}(n)$.

Furthermore, the following functions are not onto:
viii) $\exp : \mathrm{gl}_{\mathbb{R}}(n) \mapsto \mathrm{PL}_{\mathbb{R}}(n)$, where $n \geq 2$.
$i x) \exp : \operatorname{sl}_{\mathbb{R}}(n) \mapsto \mathrm{SL}_{\mathbb{R}}(n)$.
x) exp: $\operatorname{so}(n) \mapsto \mathrm{O}(n)$.
xi) $\exp : \operatorname{symp}_{\mathbb{R}}(2 n) \mapsto \operatorname{Symp}_{\mathbb{R}}(2 n)$.

Proof. Statement i) follows from Proposition 11.4.2, while $i i$) is immediate. Statements iii)-vii) can be verified by construction; see [1098 pp. 199, 212] for the proof of v) and vii). The example $A \triangleq\left[\begin{array}{cc}-1 & 0 \\ 0 & -2\end{array}\right]$ and Proposition 11.4.3 show that viii) is not onto. For $\lambda<0, \lambda \neq-1$, Proposition 11.4 .3 and the example $\left[\begin{array}{cc}\lambda & 0 \\ 0 & 1 / \lambda\end{array}\right]$ given in 1162 p. 39] show that $\left.i x\right)$ is not onto. See also [103, pp. 84, 85]. Statement viii) shows that x) is not onto. For $x i$), see [404].

Proposition 11.6.8. The Lie groups $\mathrm{GL}_{\mathbb{C}}(n), \mathrm{SL}_{\mathbb{F}}(n), \mathrm{U}(n), \mathrm{SU}(n)$, and $\mathrm{SO}(n)$ are pathwise connected. The Lie groups $\mathrm{GL}_{\mathbb{R}}(n), \mathrm{O}(n), \mathrm{O}(n, 1)$, and $\mathrm{SO}(n, 1)$ are not pathwise connected.

Proof. See [624 p. 15].
Proposition 11.6 .8 and $i x$) of Proposition 11.6 .7 show that the converse of Proposition 11.6 .6 does not hold, that is, pathwise connectedness does not imply that \exp is onto. See [1162, p. 39].

11.7 Lyapunov Stability Theory

Consider the dynamical system

$$
\begin{equation*}
\dot{x}(t)=f[x(t)] \tag{11.7.1}
\end{equation*}
$$

where $t \geq 0, x(t) \in \mathcal{D} \subseteq \mathbb{R}^{n}$, and $f: \mathcal{D} \rightarrow \mathbb{R}^{n}$ is continuous. We assume that, for all $x_{0} \in \mathcal{D}$ and for all $T>0$, there exists a unique C^{1} solution $x: \quad[0, T] \mapsto \mathcal{D}$ satisfying (11.7.1). If $x_{\mathrm{e}} \in \mathcal{D}$ satisfies $f\left(x_{\mathrm{e}}\right)=0$, then $x(t) \equiv x_{\mathrm{e}}$ is an equilibrium of (11.7.1). The following definition concerns the stability of an equilibrium of (11.7.1). Throughout this section, $\|\cdot\|$ denotes a norm on \mathbb{R}^{n}.

Definition 11.7.1. Let $x_{\mathrm{e}} \in \mathcal{D}$ be an equilibrium of (11.7.1). Then, x_{e} is Lyapunov stable if, for all $\varepsilon>0$, there exists $\delta>0$ such that, if $\left\|x(0)-x_{\mathrm{e}}\right\|<\delta$, then $\left\|x(t)-x_{\mathrm{e}}\right\|<\varepsilon$ for all $t \geq 0$. Furthermore, x_{e} is asymptotically stable if it is Lyapunov stable and there exists $\varepsilon>0$ such that, if $\left\|x(0)-x_{\mathrm{e}}\right\|<\varepsilon$, then
$\lim _{t \rightarrow \infty} x(t)=x_{\mathrm{e}}$. In addition, x_{e} is globally asymptotically stable if it is Lyapunov stable, $\mathcal{D}=\mathbb{R}^{n}$, and, for all $x(0) \in \mathbb{R}^{n}, \lim _{t \rightarrow \infty} x(t)=x_{\mathrm{e}}$. Finally, x_{e} is unstable if it is not Lyapunov stable.

Note that, if $x_{\mathrm{e}} \in \mathbb{R}^{n}$ is a globally asymptotically stable equilibrium, then x_{e} is the only equilibrium of (11.7.1).

The following result, known as Lyapunov's direct method, gives sufficient conditions for Lyapunov stability and asymptotic stability of an equilibrium of (11.7.1).

Theorem 11.7.2. Let $x_{\mathrm{e}} \in \mathcal{D}$ be an equilibrium of the dynamical system (11.7.1), and assume there exists a C^{1} function $V: \mathcal{D} \mapsto \mathbb{R}$ such that

$$
\begin{equation*}
V\left(x_{\mathrm{e}}\right)=0 \tag{11.7.2}
\end{equation*}
$$

such that, for all $x \in \mathcal{D} \backslash\left\{x_{\mathrm{e}}\right\}$,

$$
\begin{equation*}
V(x)>0 \tag{11.7.3}
\end{equation*}
$$

and such that, for all $x \in \mathcal{D}$,

$$
\begin{equation*}
V^{\prime}(x) f(x) \leq 0 \tag{11.7.4}
\end{equation*}
$$

Then, x_{e} is Lyapunov stable. If, in addition, for all $x \in \mathcal{D} \backslash\left\{x_{\mathrm{e}}\right\}$,

$$
\begin{equation*}
V^{\prime}(x) f(x)<0 \tag{11.7.5}
\end{equation*}
$$

then x_{e} is asymptotically stable. Finally, if $\mathcal{D}=\mathbb{R}^{n}$ and

$$
\begin{equation*}
\lim _{\|x\| \rightarrow \infty} V(x)=\infty \tag{11.7.6}
\end{equation*}
$$

then x_{e} is globally asymptotically stable.
Proof. For convenience, let $x_{\mathrm{e}}=0$. To prove Lyapunov stability, let $\varepsilon>0$ be such that $\mathbb{B}_{\varepsilon}(0) \subseteq \mathcal{D}$. Since $\mathbb{S}_{\varepsilon}(0)$ is compact and $V(x)$ is continuous, it follows from Theorem 10.3 .8 that $V\left[\mathbb{S}_{\varepsilon}(0)\right]$ is compact. Since $0 \notin \mathbb{S}_{\varepsilon}(0), V(x)>0$ for all $x \in \mathcal{D} \backslash\{0\}$, and $V\left[\mathbb{S}_{\varepsilon}(0)\right]$ is compact, it follows that $\alpha \triangleq \min V\left[\mathbb{S}_{\varepsilon}(0)\right]$ is positive. Next, since V is continuous, it follows that there exists $\delta \in(0, \varepsilon]$ such that $V(x)<\alpha$ for all $x \in \mathbb{B}_{\delta}(0)$. Now, let $x(t)$ for all $t \geq 0$ satisfy (11.7.1), where $\|x(0)\|<\delta$. Hence, $V[x(0)]<\alpha$. It thus follows from (11.7.4) that, for all $t \geq 0$,

$$
V[x(t)]-V[x(0)]=\int_{0}^{t} V^{\prime}[x(s)] f[x(s)] \mathrm{d} s \leq 0
$$

and hence, for all $t \geq 0$,

$$
V[x(t)] \leq V[x(0)]<\alpha .
$$

Now, since $V(x) \geq \alpha$ for all $x \in \mathbb{S}_{\varepsilon}(0)$, it follows that $x(t) \notin \mathbb{S}_{\varepsilon}(0)$ for all $t \geq 0$. Hence, $\|x(t)\|<\varepsilon$ for all $t \geq 0$, which proves that $x_{\mathrm{e}}=0$ is Lyapunov stable.

To prove that $x_{\mathrm{e}}=0$ is asymptotically stable, let $\varepsilon>0$ be such that $\mathbb{B}_{\varepsilon}(0) \subseteq$ D. Since (11.7.5) implies (11.7.4), it follows that there exists $\delta>0$ such that, if $\|x(0)\|<\delta$, then $\|x(t)\|<\varepsilon$ for all $t \geq 0$. Furthermore, $\frac{\mathrm{d}}{\mathrm{d} t} V[x(t)]=V^{\prime}[x(t)] f[x(t)]<$ 0 for all $t \geq 0$, and thus $V[x(t)]$ is decreasing and bounded from below by zero. Now, suppose that $V[x(t)]$ does not converge to zero. Therefore, there exists $L>0$
such that $V[x(t)] \geq L$ for all $t \geq 0$. Now, let $\delta^{\prime}>0$ be such that $V(x)<L$ for all $x \in \mathbb{B}_{\delta^{\prime}}(0)$. Therefore, $\|x(t)\| \geq \delta^{\prime}$ for all $t \geq 0$. Next, define $\gamma<0$ by $\gamma \triangleq \max _{\delta^{\prime} \leq\|x\| \leq \varepsilon} V^{\prime}(x) f(x)$. Therefore, since $\|x(t)\|<\varepsilon$ for all $t \geq 0$, it follows that

$$
V[x(t)]-V[x(0)]=\int_{0}^{t} V^{\prime}[x(\tau)] f[x(\tau)] \mathrm{d} \tau \leq \gamma t
$$

and hence

$$
V(x(t)) \leq V[x(0)]+\gamma t
$$

However, $t>-V[x(0)] / \gamma$ implies that $V[x(t)]<0$, which is a contradiction.
To prove that $x_{\mathrm{e}}=0$ is globally asymptotically stable, let $x(0) \in \mathbb{R}^{n}$, and let $\beta \triangleq V[x(0)]$. It follows from (11.7.6) that there exists $\varepsilon>0$ such that $V(x)>\beta$ for all $x \in \mathbb{R}^{n}$ such that $\|x\|>\varepsilon$. Therefore, $\|x(0)\| \leq \varepsilon$, and, since $V[x(t)]$ is decreasing, it follows that $\|x(t)\|<\varepsilon$ for all $t>0$. The remainder of the proof is identical to the proof of asymptotic stability.

11.8 Linear Stability Theory

We now specialize Definition 11.7.1 to the linear system

$$
\begin{equation*}
\dot{x}(t)=A x(t) \tag{11.8.1}
\end{equation*}
$$

where $t \geq 0, x(t) \in \mathbb{R}^{n}$, and $A \in \mathbb{R}^{n \times n}$. Note that $x_{\mathrm{e}}=0$ is an equilibrium of (11.8.1), and that $x_{\mathrm{e}} \in \mathbb{R}^{n}$ is an equilibrium of (11.8.1) if and only if $x_{\mathrm{e}} \in \mathcal{N}(A)$. Hence, if x_{e} is the globally asymptotically stable equilibrium of (11.8.1), then A is nonsingular and $x_{\mathrm{e}}=0$.

We consider three types of stability for the linear system (11.8.1). Unlike Definition 11.7.1 these definitions are stated in terms of the dynamics matrix rather than the equilibrium.

Definition 11.8.1. For $A \in \mathbb{F}^{n \times n}$, define the following classes of matrices:
i) A is Lyapunov stable if $\operatorname{spec}(A) \subset \mathrm{CLHP}$ and, if $\lambda \in \operatorname{spec}(A)$ and $\operatorname{Re} \lambda=0$, then λ is semisimple.
ii) A is semistable if $\operatorname{spec}(A) \subset \operatorname{OLHP} \cup\{0\}$ and, if $0 \in \operatorname{spec}(A)$, then 0 is semisimple.
iii) A is asymptotically stable if $\operatorname{spec}(A) \subset$ OLHP.

The following result concerns Lyapunov stability, semistability, and asymptotic stability for (11.8.1).

Proposition 11.8.2. Let $A \in \mathbb{R}^{n \times n}$. Then, the following statements are equivalent:
i) $x_{\mathrm{e}}=0$ is a Lyapunov-stable equilibrium of (11.8.1).
ii) At least one equilibrium of (11.8.1) is Lyapunov stable.
iii) Every equilibrium of (11.8.1) is Lyapunov stable.
iv) A is Lyapunov stable.
v) For every initial condition $x(0) \in \mathbb{R}^{n}, x(t)$ is bounded for all $t \geq 0$.
vi) $\left\|e^{t A}\right\|$ is bounded for all $t \geq 0$, where $\|\cdot\|$ is a norm on $\mathbb{R}^{n \times n}$.
vii) For every initial condition $x(0) \in \mathbb{R}^{n}, e^{t A} x(0)$ is bounded for all $t \geq 0$.

The following statements are equivalent:
viii) A is semistable.
ix) $\lim _{t \rightarrow \infty} e^{t A}$ exists.
$x)$ For every initial condition $x(0), \lim _{t \rightarrow \infty} x(t)$ exists.
In this case,

$$
\begin{equation*}
\lim _{t \rightarrow \infty} e^{t A}=I-A A^{\#} \tag{11.8.2}
\end{equation*}
$$

The following statements are equivalent:
xi) $x_{\mathrm{e}}=0$ is an asymptotically stable equilibrium of (11.8.1).
xii) A is asymptotically stable.
xiii) $\operatorname{spabs}(A)<0$.
xiv) For every initial condition $x(0) \in \mathbb{R}^{n}, \lim _{t \rightarrow \infty} x(t)=0$.
$x v$) For every initial condition $x(0) \in \mathbb{R}^{n}, e^{t A} x(0) \rightarrow 0$ as $t \rightarrow \infty$.
$x v i) e^{t A} \rightarrow 0$ as $t \rightarrow \infty$.
The following definition concerns the stability of a polynomial.
Definition 11.8.3. Let $p \in \mathbb{R}[s]$. Then, define the following terminology:
i) p is Lyapunov stable if $\operatorname{roots}(p) \subset$ CLHP and, if λ is an imaginary root of p, then $\mathrm{m}_{p}(\lambda)=1$.
ii) p is semistable if $\operatorname{roots}(p) \subset \operatorname{OLHP} \cup\{0\}$ and, if $0 \in \operatorname{roots}(p)$, then $\mathrm{m}_{p}(0)=$ 1.
iii) p is asymptotically stable if $\operatorname{roots}(p) \subset$ OLHP.

For the following result, recall Definition 11.8 .1 .
Proposition 11.8.4. Let $A \in \mathbb{R}^{n \times n}$. Then, the following statements hold:
i) A is Lyapunov stable if and only if μ_{A} is Lyapunov stable.
ii) A is semistable if and only if μ_{A} is semistable.

Furthermore, the following statements are equivalent:
iii) A is asymptotically stable
iv) μ_{A} is asymptotically stable.
v) χ_{A} is asymptotically stable.

Next, consider the factorization of the minimal polynomial μ_{A} of A given by

$$
\begin{equation*}
\mu_{A}=\mu_{A}^{\mathrm{s}} \mu_{A}^{\mathrm{u}}, \tag{11.8.3}
\end{equation*}
$$

where μ_{A}^{s} and μ_{A}^{u} are monic polynomials such that

$$
\begin{equation*}
\operatorname{roots}\left(\mu_{A}^{\mathrm{s}}\right) \subset \mathrm{OLHP} \tag{11.8.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{roots}\left(\mu_{A}^{\mathrm{u}}\right) \subset \mathrm{CRHP} \tag{11.8.5}
\end{equation*}
$$

Proposition 11.8.5. Let $A \in \mathbb{R}^{n \times n}$, and let $S \in \mathbb{R}^{n \times n}$ be a nonsingular matrix such that

$$
A=S\left[\begin{array}{cc}
A_{1} & A_{12} \tag{11.8.6}\\
0 & A_{2}
\end{array}\right] S^{-1}
$$

where $A_{1} \in \mathbb{R}^{r \times r}$ is asymptotically stable, $A_{12} \in \mathbb{R}^{r \times(n-r)}$, and $A_{2} \in \mathbb{R}^{(n-r) \times(n-r)}$ satisfies $\operatorname{spec}\left(A_{2}\right) \subset$ CRHP. Then,

$$
\mu_{A}^{\mathrm{s}}(A)=S\left[\begin{array}{cc}
0 & C_{12 \mathrm{~s}} \tag{11.8.7}\\
0 & \mu_{A}^{\mathrm{s}}\left(A_{2}\right)
\end{array}\right] S^{-1}
$$

where $C_{12 \mathrm{~s}} \in \mathbb{R}^{r \times(n-r)}$ and $\mu_{A}^{\mathrm{s}}\left(A_{2}\right)$ is nonsingular, and

$$
\mu_{A}^{\mathrm{u}}(A)=S\left[\begin{array}{cc}
\mu_{A}^{\mathrm{u}}\left(A_{1}\right) & C_{12 \mathrm{u}} \tag{11.8.8}\\
0 & 0
\end{array}\right] S^{-1}
$$

where $C_{12 \mathrm{u}} \in \mathbb{R}^{r \times(n-r)}$ and $\mu_{A}^{\mathrm{u}}\left(A_{1}\right)$ is nonsingular. Consequently,

$$
\mathcal{N}\left[\mu_{A}^{\mathrm{s}}(A)\right]=\mathcal{R}\left[\mu_{A}^{\mathrm{u}}(A)\right]=\mathcal{R}\left(S\left[\begin{array}{c}
I_{r} \tag{11.8.9}\\
0
\end{array}\right]\right)
$$

If, in addition, $A_{12}=0$, then

$$
\mu_{A}^{\mathrm{s}}(A)=S\left[\begin{array}{cc}
0 & 0 \tag{11.8.10}\\
0 & \mu_{A}^{\mathrm{s}}\left(A_{2}\right)
\end{array}\right] S^{-1}
$$

and

$$
\begin{array}{cc}
\mu_{A}^{\mathrm{u}}(A)=S\left[\begin{array}{cc}
\mu_{A}^{\mathrm{u}}\left(A_{1}\right) & 0 \\
0 & 0
\end{array}\right] S^{-1} . \\
\text { Consequently, } \quad \mathcal{R}\left[\mu_{A}^{\mathrm{s}}(A)\right]=\mathcal{N}\left[\mu_{A}^{\mathrm{u}}(A)\right]=\mathcal{R}\left(S\left[\begin{array}{c}
0 \\
I_{n-r}
\end{array}\right]\right) .
\end{array}
$$

Corollary 11.8.6. Let $A \in \mathbb{R}^{n \times n}$. Then,

$$
\begin{equation*}
\mathcal{N}\left[\mu_{A}^{\mathrm{s}}(A)\right]=\mathcal{R}\left[\mu_{A}^{\mathrm{u}}(A)\right] \tag{11.8.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{N}\left[\mu_{A}^{\mathrm{u}}(A)\right]=\mathcal{R}\left[\mu_{A}^{\mathrm{s}}(A)\right] \tag{11.8.14}
\end{equation*}
$$

Proof. It follows from Theorem 5.3.5 that there exists a nonsingular matrix $S \in \mathbb{R}^{n \times n}$ such that (11.8.6) is satisfied, where $A_{1} \in \mathbb{R}^{r \times r}$ is asymptotically stable, $A_{12}=0$, and $A_{2} \in \mathbb{R}^{(n-r) \times(n-r)}$ satisfies $\operatorname{spec}\left(A_{2}\right) \subset$ CRHP. The result now follows from Proposition 11.8.5.

In view of Corollary 11.8.6, we define the asymptotically stable subspace $\mathcal{S}_{\mathrm{s}}(A)$ of A by

$$
\begin{equation*}
\mathcal{S}_{\mathrm{s}}(A) \triangleq \mathcal{N}\left[\mu_{A}^{\mathrm{s}}(A)\right]=\mathcal{R}\left[\mu_{A}^{\mathrm{u}}(A)\right] \tag{11.8.15}
\end{equation*}
$$

and the unstable subspace $\mathcal{S}_{\mathrm{u}}(A)$ of A by

$$
\begin{equation*}
\mathcal{S}_{\mathrm{u}}(A) \triangleq \mathcal{N}\left[\mu_{A}^{\mathrm{u}}(A)\right]=\mathcal{R}\left[\mu_{A}^{\mathrm{s}}(A)\right] \tag{11.8.16}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\operatorname{dim} \mathcal{S}_{\mathrm{s}}(A)=\operatorname{def} \mu_{A}^{\mathrm{s}}(A)=\operatorname{rank} \mu_{A}^{\mathrm{u}}(A)=\sum_{\substack{\lambda \in \operatorname{spec}(A) \\ \operatorname{Re} \lambda<0}} \operatorname{am}_{A}(\lambda) \tag{11.8.17}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{dim} \mathcal{S}_{\mathrm{u}}(A)=\operatorname{def} \mu_{A}^{\mathrm{u}}(A)=\operatorname{rank} \mu_{A}^{\mathrm{s}}(A)=\sum_{\substack{\lambda \in \operatorname{spec}(A) \\ \operatorname{Re} \lambda \geq 0}} \operatorname{am}_{A}(\lambda) \tag{11.8.18}
\end{equation*}
$$

Lemma 11.8.7. Let $A \in \mathbb{R}^{n \times n}$, assume that $\operatorname{spec}(A) \subset$ CRHP, let $x \in \mathbb{R}^{n}$, and assume that $\lim _{t \rightarrow \infty} e^{t A} x=0$. Then, $x=0$.

For the following result, note Proposition 11.8.2, Proposition 3.5.3 Fact 3.12.3 Fact 11.18.3 and Proposition 6.1.7.

Proposition 11.8.8. Let $A \in \mathbb{R}^{n \times n}$. Then, the following statements hold:
i) $\mathcal{S}_{\mathbf{S}}(A)=\left\{x \in \mathbb{R}^{n}: \quad \lim _{t \rightarrow \infty} e^{t A} x=0\right\}$.
ii) $\mu_{A}^{\mathrm{s}}(A)$ and $\mu_{A}^{\mathrm{u}}(A)$ are group invertible.
iii) $P_{\mathrm{s}} \triangleq I-\mu_{A}^{\mathrm{s}}(A)\left[\mu_{A}^{\mathrm{s}}(A)\right]^{\#}$ and $P_{\mathrm{u}} \triangleq I-\mu_{A}^{\mathrm{u}}(A)\left[\mu_{A}^{\mathrm{u}}(A)\right]^{\#}$ are idempotent.
iv) $P_{\mathrm{s}}+P_{\mathrm{u}}=I$.
v) $P_{\mathrm{s} \perp}=P_{\mathrm{u}}$ and $P_{\mathrm{u} \perp}=P_{\mathrm{s}}$.
vi) $\mathcal{S}_{\mathrm{s}}(A)=\mathcal{R}\left(P_{\mathrm{s}}\right)=\mathcal{N}\left(P_{\mathrm{u}}\right)$.
vii) $\mathcal{S}_{\mathrm{u}}(A)=\mathcal{R}\left(P_{\mathrm{u}}\right)=\mathcal{N}\left(P_{\mathrm{s}}\right)$.
viii) $\mathcal{S}_{\mathrm{s}}(A)$ and $\mathcal{S}_{\mathrm{u}}(A)$ are invariant subspaces of A.
$i x) \mathcal{S}_{\mathrm{s}}(A)$ and $\mathcal{S}_{\mathrm{u}}(A)$ are complementary subspaces.
x) P_{s} is the idempotent matrix onto $\mathcal{S}_{\mathrm{s}}(A)$ along $\mathcal{S}_{\mathrm{u}}(A)$.
xi) P_{u} is the idempotent matrix onto $\mathcal{S}_{\mathrm{u}}(A)$ along $\mathcal{S}_{\mathrm{s}}(A)$.

Proof. To prove i), let $S \in \mathbb{R}^{n \times n}$ be a nonsingular matrix such that

$$
A=S\left[\begin{array}{cc}
A_{1} & 0 \\
0 & A_{2}
\end{array}\right] S^{-1}
$$

where $A_{1} \in \mathbb{R}^{r \times r}$ is asymptotically stable and $\operatorname{spec}\left(A_{2}\right) \subset$ CRHP. It then follows from Proposition 11.8.5 that

$$
\mathcal{S}_{\mathrm{s}}(A)=\mathcal{N}\left[\mu_{A}^{\mathrm{s}}(A)\right]=\mathcal{R}\left(S\left[\begin{array}{c}
I_{r} \\
0
\end{array}\right]\right)
$$

Furthermore,

$$
e^{t A}=S\left[\begin{array}{cc}
e^{t A_{1}} & 0 \\
0 & e^{t A_{2}}
\end{array}\right] S^{-1} .
$$

To prove $\mathcal{S}_{\mathbf{s}}(A) \subseteq\left\{z \in \mathbb{R}^{n}: \quad \lim _{t \rightarrow \infty} e^{t A} z=0\right\}$, let $x \triangleq S\left[\begin{array}{c}x_{1} \\ 0\end{array}\right] \in S_{\mathrm{s}}(A)$, where $x_{1} \in$ \mathbb{R}^{r}. Then, $e^{t A} x=S\left[\begin{array}{c}e^{t A_{1} x_{1}} \\ 0\end{array}\right] \rightarrow 0$ as $t \rightarrow \infty$. Hence, $x \in\left\{z \in \mathbb{R}^{n}: \lim _{t \rightarrow \infty} e^{t A} z=0\right\}$. Conversely, to prove $\left\{z \in \mathbb{R}^{n}: \lim _{t \rightarrow \infty} e^{t A} z=0\right\} \subseteq \mathcal{S}_{\mathrm{s}}(A)$, let $x \triangleq S\left[\begin{array}{c}x_{1} \\ x_{2}\end{array}\right] \in \mathbb{R}^{n}$ satisfy $\lim _{t \rightarrow \infty} e^{t A} x=0$. Hence, $e^{t A_{2}} x_{2} \rightarrow 0$ as $t \rightarrow \infty$. Since spec $\left(A_{2}\right) \subset$ CRHP, it follows from Lemma 11.8.7 that $x_{2}=0$. Hence, $x \in \mathcal{R}\left(S\left[\begin{array}{c}I_{r} \\ 0\end{array}\right]\right)=S_{\mathrm{s}}(A)$.

The remaining statements follow directly from Proposition 11.8.5.

11.9 The Lyapunov Equation

In this section we specialize Theorem 11.7.2 to the linear system (11.8.1).
Corollary 11.9.1. Let $A \in \mathbb{R}^{n \times n}$, and assume there exist a positive-semidefinite matrix $R \in \mathbb{R}^{n \times n}$ and a positive-definite matrix $P \in \mathbb{R}^{n \times n}$ satisfying

$$
\begin{equation*}
A^{\mathrm{T}} P+P A+R=0 \tag{11.9.1}
\end{equation*}
$$

Then, A is Lyapunov stable. If, in addition, for all nonzero $\omega \in \mathbb{R}$,

$$
\operatorname{rank}\left[\begin{array}{c}
\jmath \omega I-A \tag{11.9.2}\\
R
\end{array}\right]=n,
$$

then A is semistable. Finally, if R is positive definite, then A is asymptotically stable.

Proof. Define $V(x) \triangleq x^{\mathrm{T}} P x$, which satisfies (11.7.2) with $x_{\mathrm{e}}=0$ and satisfies (11.7.3) for all nonzero $x \in \mathcal{D}=\mathbb{R}^{n}$. Furthermore, Theorem 11.7 .2 implies that $V^{\prime}(x) f(x)=2 x^{\mathrm{T}} P A x=x^{\mathrm{T}}\left(A^{\mathrm{T}} P+P A\right) x=-x^{\mathrm{T}} R x$, which satisfies (11.7.4) for all $x \in \mathbb{R}^{n}$. Thus, Theorem 11.7 .2 implies that A is Lyapunov stable. If, in addition, R is positive definite, then (11.7.5) is satisfied for all $x \neq 0$, and thus A is asymptotically stable.

Alternatively, we now prove the first and third statements without using Theorem 11.7.2 Letting $\lambda \in \operatorname{spec}(A)$, and letting $x \in \mathbb{C}^{n}$ be an associated eigenvector, it follows that $0 \geq-x^{*} R x=x^{*}\left(A^{\mathrm{T}} P+P A\right) x=(\bar{\lambda}+\lambda) x^{*} P x$. Therefore, $\operatorname{spec}(A) \subset \operatorname{CLHP}$. Now, suppose that $\jmath \omega \in \operatorname{spec}(A)$, where $\omega \in \mathbb{R}$, and let $x \in \mathcal{N}\left[(\jmath \omega I-A)^{2}\right]$. Defining $y \triangleq(\jmath \omega I-A) x$, it follows that $(\jmath \omega I-A) y=0$, and thus $A y=\jmath \omega y$. Therefore, $-y^{*} R y=y^{*}\left(A^{\mathrm{T}} P+P A\right) y=-\jmath \omega y^{*} P y+\jmath \omega y^{*} P y=0$, and thus $R y=0$. Hence, $0=x^{*} R y=-x^{*}\left(A^{\mathrm{T}} P+P A\right) y=-x^{*}\left(A^{\mathrm{T}}+\jmath \omega I\right) P y=y^{*} P y$. Since P is positive definite, it follows that $y=0$, that is, $(\jmath \omega I-A) x=0$. Therefore, $x \in \mathcal{N}(\jmath \omega I-A)$. Now, Proposition 5.5 .8 implies that $\jmath \omega$ is semisimple. Therefore, A is Lyapunov stable.

Next, to prove that A is asymptotically stable, let $\lambda \in \operatorname{spec}(A)$, and let $x \in \mathbb{C}^{n}$ be an associated eigenvector. Thus, $0>-x^{*} R x=(\bar{\lambda}+\lambda) x^{*} P x$, which implies that A is asymptotically stable.

Finally, to prove that A is semistable, let $\jmath \omega \in \operatorname{spec}(A)$, where $\omega \in \mathbb{R}$ is nonzero, and let $x \in \mathbb{C}^{n}$ be an associated eigenvector. Then,

$$
-x^{*} R x=x^{*}\left(A^{\mathrm{T}} P+P A\right) x=x^{*}\left[(\jmath \omega I-A)^{*} P+P(\jmath \omega I-A] x=0\right.
$$

Therefore, $R x=0$, and thus

$$
\left[\begin{array}{c}
\jmath \omega I-A \\
R
\end{array}\right] x=0
$$

which implies that $x=0$, which contradicts $x \neq 0$. Consequently, $\jmath \omega \notin \operatorname{spec}(A)$ for all nonzero $\omega \in \mathbb{R}$, and thus A is semistable.

Equation (11.9.1) is a Lyapunov equation. Converse results for Corollary 11.9.1 are given by Corollary 11.9.4, Proposition 11.9.6, Proposition 11.9.5. Proposition 11.9.6, and Proposition 12.8.3. The following lemma is useful for analyzing (11.9.1).

Lemma 11.9.2. Assume that $A \in \mathbb{F}^{n \times n}$ is asymptotically stable. Then,

$$
\begin{equation*}
\int_{0}^{\infty} e^{t A} \mathrm{~d} t=-A^{-1} \tag{11.9.3}
\end{equation*}
$$

Proof. Proposition 11.1.4 implies that $\int_{0}^{t} e^{\tau A} \mathrm{~d} \tau=A^{-1}\left(e^{t A}-I\right)$. Letting $t \rightarrow$ ∞ yields (11.9.3).

The following result concerns Sylvester's equation. See Fact 5.10.21 and Proposition 7.2.4.

Proposition 11.9.3. Let $A, B, C \in \mathbb{R}^{n \times n}$. Then, there exists a unique matrix $X \in \mathbb{R}^{n \times n}$ satisfying

$$
\begin{equation*}
A X+X B+C=0 \tag{11.9.4}
\end{equation*}
$$

if and only if $B^{\mathrm{T}} \oplus A$ is nonsingular. In this case, X is given by

$$
\begin{equation*}
X=-\operatorname{vec}^{-1}\left[\left(B^{\mathrm{T}} \oplus A\right)^{-1} \operatorname{vec} C\right] \tag{11.9.5}
\end{equation*}
$$

If, in addition, $B^{\mathrm{T}} \oplus A$ is asymptotically stable, then X is given by

$$
\begin{equation*}
X=\int_{0}^{\infty} e^{t A} C e^{t B} \mathrm{~d} t \tag{11.9.6}
\end{equation*}
$$

Proof. The first two statements follow from Proposition 7.2.4 If $B^{\mathrm{T}} \oplus A$ is asymptotically stable, then it follows from (11.9.5) using Lemma 11.9.2 and Proposition 11.1.7 that

$$
\begin{aligned}
X & =\int_{0}^{\infty} \operatorname{vec}^{-1}\left(e^{t\left(B^{\mathrm{T}} \oplus A\right)} \operatorname{vec} C\right) \mathrm{d} t=\int_{0}^{\infty} \operatorname{vec}^{-1}\left(e^{t B^{\mathrm{T}}} \otimes e^{t A}\right) \operatorname{vec} C \mathrm{~d} t \\
& =\int_{0}^{\infty} \operatorname{vec}^{-1} \operatorname{vec}\left(e^{t A} C e^{t B}\right) \mathrm{d} t=\int_{0}^{\infty} e^{t A} C e^{t B} \mathrm{~d} t .
\end{aligned}
$$

The following result provides a converse to Corollary 11.9 .1 for the case of asymptotic stability.

Corollary 11.9.4. Let $A \in \mathbb{R}^{n \times n}$, and let $R \in \mathbb{R}^{n \times n}$. Then, there exists a unique matrix $P \in \mathbb{R}^{n \times n}$ satisfying (11.9.1) if and only if $A \oplus A$ is nonsingular. In this case, if R is symmetric, then P is symmetric. Now, assume that A is asymptotically stable. Then, $P \in \mathbf{S}^{n}$ is given by

$$
\begin{equation*}
P=\int_{0}^{\infty} e^{t A^{\mathrm{T}}} R e^{t A} \mathrm{~d} t \tag{11.9.7}
\end{equation*}
$$

Finally, if R is (positive semidefinite, positive definite), then P is (positive semidefinite, positive definite).

Proof. First note that $A \oplus A$ is nonsingular if and only if $(A \oplus A)^{\mathrm{T}}=A^{\mathrm{T}} \oplus A^{\mathrm{T}}$ is nonsingular. Now, the first statement follows from Proposition 11.9.3. To prove the second statement, note that $A^{\mathrm{T}}\left(P-P^{\mathrm{T}}\right)+\left(P-P^{\mathrm{T}}\right) A=0$, which implies that P is symmetric. Now, suppose that A is asymptotically stable. Then, Fact 11.18 .33 implies that $A \oplus A$ is asymptotically stable. Consequently, (11.9.7) follows from (11.9.6).

The following results also include converse statements. We first consider asymptotic stability.

Proposition 11.9.5. Let $A \in \mathbb{R}^{n \times n}$. Then, the following statements are equivalent:
i) A is asymptotically stable.
ii) For every positive-definite matrix $R \in \mathbb{R}^{n \times n}$ there exists a positive-definite matrix $P \in \mathbb{R}^{n \times n}$ such that (11.9.1) is satisfied.
iii) There exist a positive-definite matrix $R \in \mathbb{R}^{n \times n}$ and a positive-definite matrix $P \in \mathbb{R}^{n \times n}$ such that (11.9.1) is satisfied.

Proof. The result $i) \Longrightarrow i i$ follows from Corollary [1.9.1 The implication $i i$) $\Longrightarrow i i i$) is immediate. To prove $i i i) \Longrightarrow i$, note that, since there exists a positivesemidefinite matrix P satisfying (11.9.1), it follows from Proposition 12.4.3 that (A, C) is observably asymptotically stable. Thus, there exists a nonsingular matrix $S \in \mathbb{R}^{n \times n}$ such that $A=S\left[\begin{array}{cc}A_{1} & 0 \\ A_{21} & A_{2}\end{array}\right] S^{-1}$ and $C=\left[\begin{array}{cc}C_{1} & 0\end{array}\right] S^{-1}$, where $\left(C_{1}, A_{1}\right)$ is observable and A_{1} is asymptotically stable. Furthermore, since $\left(S^{-1} A S, C S\right)$ is detectable, it follows that A_{2} is also asymptotically stable. Consequently, A is asymptotically stable.

Next, we consider the case of Lyapunov stability.
Proposition 11.9.6. Let $A \in \mathbb{R}^{n \times n}$. Then, the following statements hold:
${ }^{i}$) If A is Lyapunov stable, then there exist a positive-definite matrix $P \in$ $\mathbb{R}^{n \times n}$ and a positive-semidefinite matrix $R \in \mathbb{R}^{n \times n}$ such that $\operatorname{rank} R=$ $\nu_{-}(A)$ and such that (11.9.1) is satisfied.
ii) If there exist a positive-definite matrix $P \in \mathbb{R}^{n \times n}$ and a positive-semidefinite matrix $R \in \mathbb{R}^{n \times n}$ such that (11.9.1) is satisfied, then A is Lyapunov stable.

Proof. To prove i), suppose that A is Lyapunov stable. Then, it follows from Theorem 5.3 .5 and Definition 11.8 .1 that there exists a nonsingular matrix $S \in \mathbb{R}^{n \times n}$ such that $A=S\left[\begin{array}{cc}A_{1} & 0 \\ 0 & A_{2}\end{array}\right] S^{-1}$ is in real Jordan form, where $A_{1} \in \mathbb{R}^{n_{1} \times n_{1}}$, $A_{2} \in \mathbb{R}^{n_{2} \times n_{2}}, \operatorname{spec}\left(A_{1}\right) \subset \jmath \mathbb{R}, A_{1}$ is semisimple, and $\operatorname{spec}\left(A_{2}\right) \subset$ OLHP. Next, it follows from Fact [5.9.4 that there exists a nonsingular matrix $S_{1} \in \mathbb{R}^{n_{1} \times n_{1}}$ such that $A_{1}=S_{1} J_{1} S_{1}^{-1}$, where $J_{1} \in \mathbb{R}^{n_{1} \times n_{1}}$ is skew symmetric. Then, it follows that $A_{1}^{\mathrm{T}} P_{1}+P_{1} A_{1}=S_{1}^{-\mathrm{T}}\left(J_{1}+J_{1}^{\mathrm{T}}\right) S_{1}^{-1}=0$, where $P_{1} \triangleq S_{1}^{-\mathrm{T}} S_{1}^{-1}$ is positive definite. Next, let $R_{2} \in \mathbb{R}^{n_{2} \times n_{2}}$ be positive definite, and let $P_{2} \in \mathbb{R}^{n_{2} \times n_{2}}$ be the positivedefinite solution of $A_{2}^{\mathrm{T}} P_{2}+P_{2} A_{2}+R_{2}=0$. Hence, (11.9.1) is satisfied with $P \triangleq$ $S^{-\mathrm{T}}\left[\begin{array}{ccc}P_{1} & 0 \\ 0 & P_{2}\end{array}\right] S^{-1}$ and $R \triangleq S^{-\mathrm{T}}\left[\begin{array}{cc}0 & 0 \\ 0 & R_{2}\end{array}\right] S^{-1}$.

To prove $i i$, suppose there exist a positive-semidefinite matrix $R \in \mathbb{R}^{n \times n}$ and a positive-definite matrix $P \in \mathbb{R}^{n \times n}$ such that (11.9.1) is satisfied. Let $\lambda \in \operatorname{spec}(A)$, and let $x \in \mathbb{R}^{n}$ be an eigenvector of A associated with λ. It thus follows from (11.9.1) that $0=x^{*} A^{\mathrm{T}} P x+x^{*} P A x+x^{*} R x=(\lambda+\bar{\lambda}) x^{*} P x+x^{*} R x$. Therefore, $\operatorname{Re} \lambda=-x^{*} R x /\left(2 x^{*} P x\right)$, which shows that $\operatorname{spec}(A) \subset$ CLHP. Now, let $\jmath \omega \in \operatorname{spec}(A)$, and suppose that $x \in \mathbb{R}^{n}$ satisfies $(\jmath \omega I-A)^{2} x=0$. Then, $(\jmath \omega I-A) y=0$, where $y=(\jmath \omega I-A) x$. Computing $0=y^{*}\left(A^{\mathrm{T}} P+P A\right) y+y^{*} R y$ yields $y^{*} R y=0$ and thus $R y=0$. Therefore, $\left(A^{\mathrm{T}} P+P A\right) y=0$, and thus $y^{*} P y=\left(A^{\mathrm{T}}+\jmath \omega I\right) P y=0$. Since P is positive definite, it follows that $y=(\jmath \omega I-A) x=0$. Therefore, $\mathcal{N}(\jmath \omega I-A)=$ $\mathcal{N}\left[(\jmath \omega I-A)^{2}\right]$. Hence, it follows from Proposition 5.5.8 that $\jmath \omega$ is semisimple.

Corollary 11.9.7. Let $A \in \mathbb{R}^{n \times n}$. Then, the following statements hold:
i) A is Lyapunov stable if and only if there exists a positive-definite matrix $P \in \mathbb{R}^{n \times n}$ such that $A^{\mathrm{T}} P+P A$ is negative semidefinite.
ii) A is asymptotically stable if and only if there exists a positive-definite matrix $P \in \mathbb{R}^{n \times n}$ such that $A^{\mathrm{T}} P+P A$ is negative definite.

11.10 Discrete-Time Stability Theory

The theory of difference equations is concerned with the solutions of discretetime dynamical systems of the form

$$
\begin{equation*}
x_{k+1}=f\left(x_{k}\right), \tag{11.10.1}
\end{equation*}
$$

where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, k \in \mathbb{N}, x_{k} \in \mathbb{R}^{n}$, and x_{0} is the initial condition. The solution $x_{k} \equiv x_{\mathrm{e}}$ is an equilibrium of (11.10.1) if $x_{\mathrm{e}}=f\left(x_{\mathrm{e}}\right)$.

A linear discrete-time system has the form

$$
\begin{equation*}
x_{k+1}=A x_{k} \tag{11.10.2}
\end{equation*}
$$

where $A \in \mathbb{R}^{n \times n}$. For $k \in \mathbb{N}, x_{k}$ is given by

$$
\begin{equation*}
x_{k}=A^{k} x_{0} . \tag{11.10.3}
\end{equation*}
$$

The behavior of the sequence $\left(x_{k}\right)_{k=0}^{\infty}$ is determined by the stability of A. To study the stability of discrete-time systems it is helpful to define the open unit disk (OUD) and the closed unit disk (CUD) by

$$
\begin{equation*}
\mathrm{OUD} \triangleq\{x \in \mathbb{C}:|x|<1\} \tag{11.10.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{CUD} \triangleq\{x \in \mathbb{C}:|x| \leq 1\} . \tag{11.10.5}
\end{equation*}
$$

Definition 11.10.1. For $A \in \mathbb{F}^{n \times n}$, define the following classes of matrices:
i) A is discrete-time Lyapunov stable if $\operatorname{spec}(A) \subset \mathrm{CUD}$ and, if $\lambda \in \operatorname{spec}(A)$ and $|\lambda|=1$, then λ is semisimple.
ii) A is discrete-time semistable if $\operatorname{spec}(A) \subset \mathrm{OUD} \cup\{1\}$ and, if $1 \in \operatorname{spec}(A)$, then 1 is semisimple.
iii) A is discrete-time asymptotically stable if $\operatorname{spec}(A) \subset \mathrm{OUD}$.

Proposition 11.10.2. Let $A \in \mathbb{R}^{n \times n}$ and consider the linear discrete-time system (11.10.2). Then, the following statements are equivalent:
i) A is discrete-time Lyapunov stable.
ii) For every initial condition $x_{0} \in \mathbb{R}^{n}$, the sequence $\left\{\left\|x_{k}\right\|\right\}_{k=1}^{\infty}$ is bounded, where $\|\cdot\|$ is a norm on \mathbb{R}^{n}.
iii) For every initial condition $x_{0} \in \mathbb{R}^{n}$, the sequence $\left\{\left\|A^{k} x_{0}\right\|\right\}_{k=1}^{\infty}$ is bounded, where $\|\cdot\|$ is a norm on \mathbb{R}^{n}.
iv) The sequence $\left\{\left\|A^{k}\right\|\right\}_{k=1}^{\infty}$ is bounded, where $\|\cdot\|$ is a norm on $\mathbb{R}^{n \times n}$.

The following statements are equivalent:
v) A is discrete-time semistable.
vi) $\lim _{k \rightarrow \infty} A^{k}$ exists. In fact, $\lim _{k \rightarrow \infty} A^{k}=I-(I-A)(I-A)^{\#}$.
$v i i)$ For every initial condition $x_{0} \in \mathbb{R}^{n}, \lim _{k \rightarrow \infty} x_{k}$ exists.
The following statements are equivalent:
viii) A is discrete-time asymptotically stable.
$i x) \operatorname{sprad}(A)<1$.
$x)$ For every initial condition $x_{0} \in \mathbb{R}^{n}, \lim _{k \rightarrow \infty} x_{k}=0$.
$x i)$ For every initial condition $x_{0} \in \mathbb{R}^{n}, A^{k} x_{0} \rightarrow 0$ as $k \rightarrow \infty$.
xii) $A^{k} \rightarrow 0$ as $k \rightarrow \infty$.

The following definition concerns the discrete-time stability of a polynomial.
Definition 11.10.3. Let $p \in \mathbb{R}[s]$. Then, define the following terminology:
i) p is discrete-time Lyapunov stable if $\operatorname{roots}(p) \subset$ CUD and, if λ is an imaginary root of p, then $\mathrm{m}_{p}(\lambda)=1$.
ii) p is discrete-time semistable if $\operatorname{roots}(p) \subset \mathrm{OUD} \cup\{1\}$ and, if $1 \in \operatorname{roots}(p)$, then $\mathrm{m}_{p}(1)=1$.
iii) p is discrete-time asymptotically stable if $\operatorname{roots}(p) \subset$ OUD.

Proposition 11.10.4. Let $A \in \mathbb{R}^{n \times n}$. Then, the following statements hold:
i) A is discrete-time Lyapunov stable if and only if μ_{A} is discrete-time Lyapunov stable.
ii) A is discrete-time semistable if and only if μ_{A} is discrete-time semistable.

Furthermore, the following statements are equivalent:
iii) A is discrete-time asymptotically stable.
iv) μ_{A} is discrete-time asymptotically stable.
v) χ_{A} is discrete-time asymptotically stable.

We now consider the discrete-time Lyapunov equation

$$
\begin{equation*}
P=A^{\mathrm{T}} P A+R=0 \tag{11.10.6}
\end{equation*}
$$

Proposition 11.10.5. Let $A \in \mathbb{R}^{n \times n}$. Then, the following statements are equivalent:
i) A is discrete-time asymptotically stable.
ii) For every positive-definite matrix $R \in \mathbb{R}^{n \times n}$ there exists a positive-definite matrix $P \in \mathbb{R}^{n \times n}$ such that (11.10.6) is satisfied.
iii) There exist a positive-definite matrix $R \in \mathbb{R}^{n \times n}$ and a positive-definite matrix $P \in \mathbb{R}^{n \times n}$ such that (11.10.6) is satisfied.

Proposition 11.10.6. Let $A \in \mathbb{R}^{n \times n}$. Then, A is discrete-time Lyapunovstable if and only if there exist a positive-definite matrix $P \in \mathbb{R}^{n \times n}$ and a positivesemidefinite matrix $R \in \mathbb{R}^{n \times n}$ such that (11.10.6) is satisfied.

11.11 Facts on Matrix Exponential Formulas

Fact 11.11.1. Let $A \in \mathbb{R}^{n \times n}$. Then, the following statements hold:
i) If $A^{2}=0$, then $e^{t A}=I+t A$.
ii) If $A^{2}=I$, then $e^{t A}=(\cosh t) I+(\sinh t) A$.
iii) If $A^{2}=-I$, then $e^{t A}=(\cos t) I+(\sin t) A$.
iv) If $A^{2}=A$, then $e^{t A}=I+\left(e^{t}-1\right) A$.
v) If $A^{2}=-A$, then $e^{t A}=I+\left(1-e^{-t}\right) A$.
vi) If $\operatorname{rank} A=1$ and $\operatorname{tr} A=0$, then $e^{t A}=I+t A$.
vii) If $\operatorname{rank} A=1$ and $\operatorname{tr} A \neq 0$, then $e^{t A}=I+\frac{e^{(\operatorname{tr} A) t}-1}{\operatorname{tr} A} A$.
(Remark: See [1085.)
Fact 11.11.2. Let $A \triangleq\left[\begin{array}{cc}0 & I_{n} \\ I_{n} & 0\end{array}\right]$. Then,

$$
e^{t A}=(\cosh t) I_{2 n}+(\sinh t) A
$$

Furthermore,

$$
e^{t J_{2 n}}=(\cos t) I_{2 n}+(\sin t) J_{2 n}
$$

Fact 11.11.3. Let $A \in \mathbb{R}^{n \times n}$, and assume that A is skew symmetric. Then, $\left\{e^{\theta A}: \theta \in \mathbb{R}\right\} \subseteq \mathrm{SO}(n)$ is a group. If, in addition, $n=2$, then

$$
\left\{e^{\theta J_{2}}: \quad \theta \in \mathbb{R}\right\}=\mathrm{SO}(2) .
$$

(Remark: Note that $e^{\theta J_{2}}=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$. See Fact 3.11.6.)
Fact 11.11.4. Let $A \in \mathbb{R}^{n \times n}$, where

$$
A \triangleq\left[\begin{array}{cccccc}
0 & 1 & 0 & 0 & \cdots & 0 \\
0 & 0 & 2 & 0 & \cdots & 0 \\
0 & 0 & 0 & 3 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & 0 & \ddots & n-1 \\
0 & 0 & 0 & 0 & \cdots & 0
\end{array}\right]
$$

Then,

$$
e^{A}=\left[\begin{array}{cccccc}
\binom{0}{0} & \binom{1}{0} & \binom{2}{0} & \binom{3}{0} & \cdots & \binom{n-1}{0} \\
0 & \binom{1}{1} & \binom{2}{1} & \binom{3}{1} & \cdots & \binom{n-1}{1} \\
0 & 0 & \binom{2}{2} & \binom{3}{2} & \cdots & \binom{n-1}{2} \\
\vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & 0 & \ddots & \binom{n-1}{n-2} \\
0 & 0 & 0 & 0 & \cdots & \binom{n-1}{n-1}
\end{array}\right] .
$$

Furthermore, if $k \geq n$, then

$$
\left.\sum_{i=1}^{k} i^{n-1}=\left[\begin{array}{llll}
1^{n-1} & 2^{n-1} & \cdots & n^{n-1}
\end{array}\right] e^{-A}\left[\begin{array}{c}
k \\
1
\end{array}\right) .\left[\begin{array}{c}
k \\
\vdots \\
n
\end{array}\right)\right]
$$

(Proof: See [73].) (Remark: For related results, see [5], where A is called the creation matrix. See Fact 5.16.3.)

Fact 11.11.5. Let $A \in \mathbb{F}^{3 \times 3}$. If $\operatorname{spec}(A)=\{\lambda\}$, then

$$
e^{t A}=e^{\lambda t}\left[I+t(A-\lambda I)+\frac{1}{2} t^{2}(A-\lambda I)^{2}\right] .
$$

If $\operatorname{mspec}(A)=\{\lambda, \lambda, \mu\}_{\mathrm{ms}}$, where $\mu \neq \lambda$, then

$$
e^{t A}=e^{\lambda t}[I+t(A-\lambda I)]+\left[\frac{e^{\mu t}-e^{\lambda t}}{(\mu-\lambda)^{2}}-\frac{t e^{\lambda t}}{\mu-\lambda}\right](A-\lambda I)^{2} .
$$

If $\operatorname{spec}(A)=\{\lambda, \mu, \nu\}$, then

$$
\begin{aligned}
e^{t A}= & \frac{e^{\lambda t}}{(\lambda-\mu)(\lambda-\nu)}(A-\mu I)(A-\nu I)+\frac{e^{\mu t}}{(\mu-\lambda)(\mu-\nu)}(A-\lambda I)(A-\nu I) \\
& +\frac{e^{\nu t}}{(\nu-\lambda)(\nu-\mu)}(A-\lambda I)(A-\mu I) .
\end{aligned}
$$

(Proof: See [67].) (Remark: Additional expressions are given in [2, 175, 191, 321, [640, 1085, 1088.)

Fact 11.11.6. Let $x \in \mathbb{R}^{3}$, assume that x is nonzero, and define $\theta \triangleq\|x\|_{2}$. Then,

$$
\begin{aligned}
e^{K(x)} & =I+\frac{\sin \theta}{\theta} K(x)+\frac{1-\cos \theta}{\theta^{2}} K^{2}(x) \\
& =I+\frac{\sin \theta}{\theta} K(x)+\frac{1}{2}\left[\frac{\sin \left(\frac{1}{2} \theta\right)}{\frac{1}{2} \theta}\right]^{2} K^{2}(x) \\
& =(\cos \theta) I+\frac{\sin \theta}{\theta} K(x)+\frac{1-\cos \theta}{\theta^{2}} x x^{\mathrm{T}} .
\end{aligned}
$$

Furthermore,

$$
\begin{gathered}
e^{K(x)} x=x \\
\operatorname{spec}\left[e^{K(x)}\right]=\left\{1, e^{\jmath\|x\|_{2}}, e^{-\jmath\|x\|_{2}}\right\},
\end{gathered}
$$

and

$$
\operatorname{tr} e^{K(x)}=1+2 \cos \theta=1+2 \cos \|x\|_{2}
$$

(Proof: The Cayley-Hamilton theorem or Fact3.10.1 implies that $K^{3}(x)+\theta^{2} K(x)=$ 0 . Then, every term $K^{k}(x)$ in the expansion of $e^{K(x)}$ can be expressed in terms of $K(x)$ or $K^{2}(x)$. Finally, Fact 3.10.1 implies that $\theta^{2} I+K^{2}(x)=x x^{\mathrm{T}}$.) (Remark: Fact 11.11.7 shows that, for all $z \in \mathbb{R}^{3}, e^{K(x)} z$ is the counterclockwise (right-handrule) rotation of z about the vector x through the angle θ, which is given by the Euclidean norm of x. In Fact 3.11.8, the cross product is used to construct the pivot vector x from a given pair of vectors having the same length.)

Fact 11.11.7. Let $x, y \in \mathbb{R}^{3}$, and assume that x and y are nonzero. Then, there exists a skew-symmetric matrix $A \in \mathbb{R}^{3 \times 3}$ such that $y=e^{A} x$ if and only if $x^{\mathrm{T}} x=y^{\mathrm{T}} y$. If $x \neq-y$, then one such matrix is $A=\theta K(z)$, where

$$
z \triangleq \frac{1}{\|x \times y\|_{2}} x \times y
$$

and

$$
\theta \triangleq \cos ^{-1}\left(\frac{x^{\mathrm{T}} y}{\|x\|_{2}\|y\|_{2}}\right)
$$

If $x=-y$, then one such matrix is $A=\pi K(z)$, where $z \triangleq\|y\|_{2}^{-1} \nu \times y$ and $\nu \in\{y\}^{\perp}$ satisfies $\nu^{\mathrm{T}} \nu=1$. (Proof: This result follows from Fact 3.11 .8 and Fact 11.11.6, which provide equivalent expressions for an orthogonal matrix that transforms a given vector into another given vector having the same length. This result thus provides a geometric interpretation for Fact 11.11.6.) (Remark: Note that z is the unit vector perpendicular to the plane containing x and y, where the direction of z is determined by the right-hand rule. An intuitive proof is to let x be the initial condition to the differential equation $\dot{w}(t)=K(z) w(t)$, that is, $w(0)=x$, where $t \in[0, \theta]$. Then, the derivative $\dot{w}(t)$ lies in the x, y plane and is perpendicular to $w(t)$ for all $t \in[0, \theta]$. Hence, $y=w(\theta)$.) (Remark: Since $\operatorname{det} e^{A}=e^{\operatorname{tr} A}=1$, it follows that every pair of vectors in \mathbb{R}^{3} having the same Euclidean length are related by a proper rotation. See Fact 3.9 .5 and Fact 3.14.4 This is a linear interpolation problem. See Fact 3.9.5, Fact 3.11.8, and 773.) (Remark: See Fact 3.11.31.) (Remark: Parameterizations of $\mathrm{SO}(3)$ are considered in 1195, 1246.) (Problem: Extend this result to \mathbb{R}^{n}. See [135, 1164].)

Fact 11.11.8. Let $A \in \mathrm{SO}(3)$, let $z \in \mathbb{R}^{3}$ be an eigenvector of A corresponding to the eigenvalue 1 of A, assume that $\|z\|_{2}=1$, assume that $\operatorname{tr} A>-1$, and let $\theta \in(-\pi, \pi)$ satisfy $\operatorname{tr} A=1+2 \cos \theta$. Then,

$$
A=e^{\theta K(z)}
$$

(Remark: See Fact 5.11.2)
Fact 11.11.9. Let $x, y \in \mathbb{R}^{3}$, and assume that x and y are nonzero. Then, $x^{\mathrm{T}} x=y^{\mathrm{T}} y$ if and only if

$$
y=e^{\frac{\theta}{\|x \times y\|_{2}}\left(y x^{\mathrm{T}}-x y^{\mathrm{T}}\right)} x
$$

where

$$
\theta \triangleq \cos ^{-1}\left(\frac{x^{\mathrm{T}} y}{\|x\|_{2}\|y\|_{2}}\right)
$$

(Proof: Use Fact 11.11.7) (Remark: Note that $K(x \times y)=y x^{T}-x y^{\mathrm{T}}$.)
Fact 11.11.10. Let $A \in \mathbb{R}^{3 \times 3}$, assume that $A \in \mathrm{SO}(3)$ and $\operatorname{tr} A>-1$, and let $\theta \in(-\pi, \pi)$ satisfy $\operatorname{tr} A=1+2 \cos \theta$. Then,

$$
\log A= \begin{cases}0, & \theta=0 \\ \frac{\theta}{2 \sin \theta}\left(A-A^{\mathrm{T}}\right), & \theta \neq 0\end{cases}
$$

(Proof: See [746, p. 364] and [1013].) (Remark: See Fact 11.15.10.)
Fact 11.11.11. Let $x \in \mathbb{R}^{3}$, assume that x is nonzero, and define $\theta \triangleq\|x\|_{2}$. Then,

$$
K(x)=\frac{\theta}{2 \sin \theta}\left[e^{K(x)}-e^{-K(x)}\right] .
$$

(Proof: Use Fact 11.11.10.) (Remark: See Fact 3.10.1.)
Fact 11.11.12. Let $A \in \operatorname{SO}(3)$, let $x, y \in \mathbb{R}^{3}$, and assume that $x^{\mathrm{T}} x=y^{\mathrm{T}} y$. Then, $A x=y$ if and only if, for all $t \in \mathbb{R}$,

$$
A e^{t K(x)} A^{-1}=e^{t K(y)}
$$

(Proof: See [887].)
Fact 11.11.13. Let $x, y, z \in \mathbb{R}^{3}$. Then, the following statements are equivalent:
i) For every $A \in \mathrm{SO}(3)$, there exist $\alpha, \beta, \gamma \in \mathbb{R}$ such that

$$
A=e^{\alpha K(x)} e^{\beta K(y)} e^{\gamma K(z)} .
$$

ii) $y^{\mathrm{T}} x=0$ and $y^{\mathrm{T}} z=0$.
(Proof: See [887.) (Remark: This result is due to Davenport.) (Problem: Given $A \in \mathrm{SO}(3)$, determine α, β, γ.)

Fact 11.11.14. Let $A \in \mathbb{R}^{4 \times 4}$, and assume that A is skew symmetric with $\operatorname{mspec}(A)=\{\jmath \omega,-\jmath \omega, \jmath \mu,-\jmath \mu\}_{\mathrm{ms}}$. If $\omega \neq \mu$, then

$$
e^{A}=a_{3} A^{3}+a_{2} A^{2}+a_{1} A+a_{0} I
$$

where

$$
\begin{aligned}
& a_{3}=\left(\omega^{2}-\mu^{2}\right)^{-1}\left(\frac{1}{\mu} \sin \mu-\frac{1}{\omega} \sin \omega\right) \\
& a_{2}=\left(\omega^{2}-\mu^{2}\right)^{-1}(\cos \mu-\cos \omega) \\
& a_{1}=\left(\omega^{2}-\mu^{2}\right)^{-1}\left(\frac{\omega^{2}}{\mu} \sin \mu-\frac{\mu^{2}}{\omega} \sin \omega\right), \\
& a_{0}=\left(\omega^{2}-\mu^{2}\right)^{-1}\left(\omega^{2} \cos \mu-\mu^{2} \cos \omega\right)
\end{aligned}
$$

If $\omega=\mu$, then

$$
e^{A}=(\cos \omega) I+\frac{\sin \omega}{\omega} A
$$

(Proof: See [607, p. 18] and [1088].) (Remark: There are typographical errors in [607] p. 18] and [1088.) (Remark: See Fact 4.9.20 and Fact 4.10.2.)

Fact 11.11.15. Let $a, b, c \in \mathbb{R}$, define the skew-symmetric matrix $A \in \mathbb{R}^{4 \times 4}$, by either

$$
A \triangleq\left[\begin{array}{rrrr}
0 & a & b & c \\
-a & 0 & -c & b \\
-b & c & 0 & -a \\
-c & -b & a & 0
\end{array}\right]
$$

or

$$
A \triangleq\left[\begin{array}{rrrr}
0 & a & b & c \\
-a & 0 & c & -b \\
-b & -c & 0 & a \\
-c & b & -a & 0
\end{array}\right]
$$

and define $\theta \triangleq \sqrt{a^{2}+b^{2}+c^{2}}$. Then,

$$
\operatorname{mspec}(A)=\{\jmath \theta,-\jmath \theta, \jmath \theta,-\jmath \theta\}_{\mathrm{ms}}
$$

Furthermore,

$$
A^{k}=\left\{\begin{array}{l}
(-1)^{k / 2} \theta^{k} I, \quad k \text { even } \\
(-1)^{(k-1) / 2} \theta^{k-1} A, \quad k \text { odd }
\end{array}\right.
$$

and

$$
e^{A}=(\cos \theta) I+\frac{\sin \theta}{\theta} A
$$

(Proof: See 1357.) (Remark: $(\sin 0) / 0=1$.) (Remark: The skew-symmetric matrix A arises in the kinematic relationship between the angular velocity vector and quaternion (Euler-parameter) rates. See $[152$ p. 385].) (Remark: The two matrices A are similar. To show this, note that Fact 5.9 .9 implies that A and $-A$ are similar. Then, apply the similarity transformation $S=\operatorname{diag}(-1,1,1,1)$.) (Remark: See Fact 4.9.20 and Fact 4.10.2)

Fact 11.11.16. Let $x \in \mathbb{R}^{3}$, and define the skew-symmetric matrix $A \in \mathbb{R}^{4 \times 4}$ by

$$
A=\left[\begin{array}{cc}
0 & -x^{\mathrm{T}} \\
x & -K(x)
\end{array}\right] .
$$

Then, for all $t \in \mathbb{R}$,

$$
e^{\frac{1}{2} t A}=\cos \left(\frac{1}{2}\|x\| t\right) I_{4}+\frac{\sin \left(\frac{1}{2}\|x\| t\right)}{\|x\|} A .
$$

(Proof: See [733, p. 34].) (Remark: The matrix $\frac{1}{2} A$ characterizes quaternion rates in terms of the angular velocity vector.)

Fact 11.11.17. Let $a, b \in \mathbb{R}^{3}$, define the skew-symmetric matrix $A \in \mathbb{R}^{4 \times 4}$ by

$$
A=\left[\begin{array}{cc}
K(a) & b \\
-b^{\mathrm{T}} & 0
\end{array}\right],
$$

and assume that $a^{\mathrm{T}} b=0$. Then,

$$
e^{A}=I_{4}+\frac{\sin \alpha}{\alpha} A+\frac{1-\cos \alpha}{\alpha^{2}} A^{2},
$$

where $\alpha \triangleq \sqrt{a^{\mathrm{T}} a+b^{\mathrm{T}} b}$. (Proof: See [1334].) (Remark: See Fact 4.9.20 and Fact 4.10.2)

Fact 11.11.18. Let $a, b \in \mathbb{R}^{n-1}$, define $A \in \mathbb{R}^{n \times n}$ by

$$
A \triangleq\left[\begin{array}{cc}
0 & a^{\mathrm{T}} \\
b & 0_{(n-1) \times(n-1)}
\end{array}\right],
$$

and define $\alpha \triangleq \sqrt{\left|a^{\mathrm{T}} b\right|}$. Then, the following statements hold:
i) If $a^{\mathrm{T}} b<0$, then

$$
e^{t A}=I+\frac{\sin \alpha}{\alpha} A+\frac{1}{2}\left[\frac{\sin (\alpha / 2)}{\alpha / 2}\right]^{2} A^{2} .
$$

ii) If $a^{\mathrm{T}} b=0$, then

$$
e^{t A}=I+A+\frac{1}{2} A^{2} .
$$

iii) If $a^{\mathrm{T}} b>0$, then

$$
e^{t A}=I+\frac{\sinh \alpha}{\alpha} A+\frac{1}{2}\left[\frac{\sinh (\alpha / 2)}{\alpha / 2}\right]^{2} A^{2} .
$$

(Proof: See 1480.)

11.12 Facts on the Matrix Sine and Cosine

Fact 11.12.1. Let $A \in \mathbb{C}^{n \times n}$, and define

$$
\sin A \triangleq A-\frac{1}{3!} A^{3}+\frac{1}{5!} A^{5}-\frac{1}{7!} A^{7}+\cdots
$$

and

$$
\cos A \triangleq I-\frac{1}{2!} A^{2}+\frac{1}{4!} A^{4}-\frac{1}{6!} A^{6}+\cdots .
$$

Then, the following statements hold:
i) $\sin A=\frac{1}{2 \jmath}\left(e^{\jmath A}-e^{-\jmath A}\right)$.
ii) $\cos A=\frac{1}{2}\left(e^{\jmath A}+e^{-\jmath A}\right)$.
iii) $\sin ^{2} A+\cos ^{2} A=I$.
iv) $\sin (2 A)=2(\sin A) \cos A$.
v) $\cos (2 A)=2\left(\cos ^{2} A\right)-I$.
vi) If A is real, then $\sin A=\operatorname{Re} e^{\jmath A}$ and $\cos A=\operatorname{Re} e^{\jmath A}$.
vii) $\sin (A \oplus B)=(\sin A) \otimes \cos B-(\cos A) \otimes \sin B$.
viii) $\cos (A \oplus B)=(\cos A) \otimes \cos B-(\sin A) \otimes \sin B$.
${ }^{i x}$) If A is involutory and k is an integer, then $\cos (k \pi A)=(-1)^{k} I$.
Furthermore, the following statements are equivalent:
x) For all $t \in \mathbb{R}, \sin [(A+B) t]=\sin (t A) \cos (t B)+\cos (t A) \sin (t B)$.
xi) For all $t \in \mathbb{R}, \cos [(A+B) t]=\cos (t A) \cos (t B)-\sin (t A) \sin (t B)$.
xii) $A B=B A$.
(Proof: See [683, pp. 287, 288, 300].)

11.13 Facts on the Matrix Exponential for One Matrix

Fact 11.13.1. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is (lower triangular, upper triangular). Then, so is e^{A}. If, in addition, A is Toeplitz, then so is e^{A}. (Remark: See Fact 3.18.7.)

Fact 11.13.2. Let $A \in \mathbb{F}^{n \times n}$. Then,

$$
\operatorname{sprad}\left(e^{A}\right)=e^{\operatorname{spabs}(A)} .
$$

Fact 11.13.3. Let $A \in \mathbb{R}^{n \times n}$, and let $X_{0} \in \mathbb{R}^{n \times n}$. Then, the matrix differential equation

$$
\begin{gathered}
\dot{X}(t)=A X(t), \\
X(0)=X_{0},
\end{gathered}
$$

where $t \geq 0$, has the unique solution

$$
X(t)=e^{t A} X_{0}
$$

Fact 11.13.4. Let $A: \quad[0, T] \mapsto \mathbb{R}^{n \times n}$, assume that A is continuous, and let $X_{0} \in \mathbb{R}^{n \times n}$. Then, the matrix differential equation

$$
\begin{gathered}
\dot{X}(t)=A(t) X(t), \\
X(0)=X_{0}
\end{gathered}
$$

has a unique solution $X: \quad[0, T] \mapsto \mathbb{R}^{n \times n}$. Furthermore, for all $t \in[0, T]$,

$$
\operatorname{det} X(t)=e^{\int_{0}^{t} \operatorname{tr} A(\tau) \mathrm{d} \tau} \operatorname{det} X_{0} .
$$

Therefore, if X_{0} is nonsingular, then $X(t)$ is nonsingular for all $t \in[0, T]$. If, in addition, for all $t_{1}, t_{2} \in[0, T]$,

$$
A\left(t_{2}\right) \int_{t_{1}}^{t_{2}} A(\tau) \mathrm{d} \tau=\int_{t_{1}}^{t_{2}} A(\tau) \mathrm{d} \tau A\left(t_{2}\right)
$$

then, for all $t \in[0, T]$,

$$
X(t)=e^{\int_{0}^{t} A(\tau) \mathrm{d} \tau} X_{0} .
$$

(Proof: It follows from Fact 10.11.19 that $(\mathrm{d} / \mathrm{d} t) \operatorname{det} X=\operatorname{tr}\left(X^{\mathrm{A}} \dot{X}\right)=\operatorname{tr}\left(X^{\mathrm{A}} A X\right)=$ $\operatorname{tr}\left(X X^{\mathrm{A}} A\right)=(\operatorname{det} X) \operatorname{tr} A$. This proof is given in 563. See also 711, pp. 507, 508] and $1150 \mathrm{pp}$. 64-66].) (Remark: See Fact 11.13.4) (Remark: The first result is Jacobi's identity.) (Remark: If the commutativity assumption does not hold, then the solution is given by the Peano-Baker series. See [1150, Chapter 3]. Alternative expressions for $X(t)$ are given by the Magnus, Fer, Baker-Campbell-Hausdorff-Dynkin, Wei-Norman, Goldberg, and Zassenhaus expansions. See [228, (443 745, 746, 830 , 949 1056 1244 1274 1414 1415 1419 and [621 pp. 118-120].)

Fact 11.13.5. Let $A: \quad[0, T] \mapsto \mathbb{R}^{n \times n}$, assume that A is continuous, let $B:[0, T] \mapsto \mathbb{R}^{n \times m}$, assume that B is continuous, let $X: \quad[0, T] \mapsto \mathbb{R}^{n \times n}$ satisfy the matrix differential equation

$$
\begin{gathered}
\dot{X}(t)=A(t) X(t), \\
X(0)=I,
\end{gathered}
$$

define

$$
\Phi(t, \tau) \triangleq X(t) X^{-1}(\tau),
$$

let $u: \quad[0, T] \mapsto \mathbb{R}^{m}$, and assume that u is continuous. Then, the vector differential equation

$$
\begin{gathered}
\dot{x}(t)=A(t) x(t)+B(t) u(t), \\
x(0)=x_{0}
\end{gathered}
$$

has the unique solution

$$
x(t)=X(t) x_{0}+\int_{0}^{t} \Phi(t, \tau) B(\tau) u(\tau) \mathrm{d} \tau
$$

(Remark: $\Phi(t, \tau)$ is the state transition matrix.)
Fact 11.13.6. Let $A \in \mathbb{R}^{n \times n}$, let $\lambda \in \operatorname{spec}(A)$, and let $v \in \mathbb{C}^{n}$ be an eigenvector of A associated with λ. Then, for all $t \geq 0$,

$$
x(t) \triangleq \operatorname{Re}\left(e^{\lambda t} v\right)
$$

satisfies $\dot{x}(t)=A x(t)$. (Remark: $x(t)$ is an eigensolution.)
Fact 11.13.7. Let $A \in \mathbb{R}^{n \times n}$, let $\lambda \in \operatorname{spec}(A)$, and let $\left(v_{1}, \ldots, v_{k}\right) \in\left(\mathbb{C}^{n}\right)^{k}$ be a Jordan chain of A associated with λ. Then, for all $t \geq 0$ and all \hat{k} such that $1 \leq \hat{k} \leq k$,

$$
x(t) \triangleq \operatorname{Re}\left[e^{\lambda t}\left(\frac{1}{(\hat{k}-1)!} t^{\hat{k}-1} v_{1}+\cdots+t v_{\hat{k}-1}+v_{\hat{k}}\right)\right]
$$

satisfies $\dot{x}(t)=A x(t)$. (Remark: See Fact 5.14 .8 for the definition of a Jordan chain.) (Remark: $x(t)$ is a generalized eigensolution.) (Example: Let $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$, $\lambda=0, \hat{k}=2, v_{1}=\left[\begin{array}{c}\beta \\ 0\end{array}\right]$, and $v_{2}=\left[\begin{array}{l}0 \\ \beta\end{array}\right]$. Then, $x(t)=t v_{1}+v_{2}=\left[\begin{array}{c}\beta t \\ \beta\end{array}\right]$ is a generalized eigensolution. Alternatively, choosing $\hat{k}=1$ yields the eigensolution $x(t)=v_{1}=\left[\begin{array}{c}\beta \\ 0\end{array}\right]$. Note that β is represents velocity for the generalized eigensolution and position for the eigensolution. See [1062].)

Fact 11.13.8. Let $S:\left[t_{0}, t_{1}\right] \rightarrow \mathbb{R}^{n \times n}$ be differentiable. Then, for all $t \in$ $\left[t_{0}, t_{1}\right]$,

$$
\frac{\mathrm{d}}{\mathrm{~d} t} S^{2}(t)=\dot{S}(t) S(t)+S(t) \dot{S}(t)
$$

Let $S_{1}:\left[t_{0}, t_{1}\right] \rightarrow \mathbb{R}^{n \times m}$ and $S_{2}: \quad\left[t_{0}, t_{1}\right] \rightarrow \mathbb{R}^{m \times l}$ be differentiable. Then, for all $t \in\left[t_{0}, t_{1}\right]$,

$$
\frac{\mathrm{d}}{\mathrm{~d} t} S_{1}(t) S_{2}(t)=\dot{S}_{1}(t) S_{2}(t)+S_{1}(t) \dot{S}_{2}(t)
$$

Fact 11.13.9. Let $A \in \mathbb{F}^{n \times n}$, and define $A_{1} \triangleq \frac{1}{2}\left(A+A^{*}\right)$ and $A_{2} \triangleq \frac{1}{2}\left(A-A^{*}\right)$. Then, $A_{1} A_{2}=A_{2} A_{1}$ if and only if A is normal. In this case, $e^{A_{1}} e^{A_{2}}$ is the polar decomposition of e^{A}. (Remark: See Fact 3.7.28,) (Problem: Obtain the polar decomposition of e^{A} when A is not normal.)

Fact 11.13.10. Let $A \in \mathbb{F}^{n \times m}$, and assume that $\operatorname{rank} A=m$. Then,

$$
A^{+}=\int_{0}^{\infty} e^{-t A^{*} A} A^{*} \mathrm{~d} t
$$

Fact 11.13.11. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is nonsingular. Then,

$$
A^{-1}=\int_{0}^{\infty} e^{-t A^{*} A} \mathrm{~d} t A^{*}
$$

Fact 11.13.12. Let $A \in \mathbb{F}^{n \times n}$, and let $k \triangleq$ ind A. Then,

$$
A^{\mathrm{D}}=\int_{0}^{\infty} e^{-t A^{k} A^{(2 k+1) *} A^{k+1}} \mathrm{~d} t A^{k} A^{(2 k+1) *} A^{k}
$$

(Proof: See [570].)
Fact 11.13.13. Let $A \in \mathbb{F}^{n \times n}$, and assume that ind $A=1$. Then,

$$
A^{\#}=\int_{0}^{\infty} e^{-t A A^{3 *} A^{2}} \mathrm{~d} t A A^{3 *} A
$$

(Proof: See Fact 11.13.12,
Fact 11.13.14. Let $A \in \mathbb{F}^{n \times n}$, and let $k \triangleq \operatorname{ind} A$. Then,

$$
\int_{0}^{t} e^{\tau A} \mathrm{~d} \tau=A^{\mathrm{D}}\left(e^{t A}-I\right)+\left(I-A A^{\mathrm{D}}\right)\left(t I+\frac{1}{2!} t^{2} A+\cdots+\frac{1}{k!} t^{k} A^{k-1}\right) .
$$

If, in particular, A is group invertible, then

$$
\int_{0}^{t} e^{\tau A} \mathrm{~d} \tau=A^{\#}\left(e^{t A}-I\right)+\left(I-A A^{\#}\right) t
$$

Fact 11.13.15. Let $A \in \mathbb{F}^{n \times n}$, let $\operatorname{mspec}(A)=\left\{\lambda_{1}, \ldots, \lambda_{r}, 0, \ldots, 0\right\}_{\mathrm{ms}}$, where $\lambda_{1}, \ldots, \lambda_{r}$ are nonzero, and let $t>0$. Then,

$$
\operatorname{det} \int_{0}^{t} e^{\tau A} \mathrm{~d} \tau=t^{n-r} \prod_{i=1}^{r} \lambda_{i}^{-1}\left(e^{\lambda_{i} t}-1\right)
$$

Hence, $\operatorname{det} \int_{0}^{t} e^{\tau A} \mathrm{~d} \tau \neq 0$ if and only if, for every nonzero integer $k, 2 k \pi \jmath / t \notin \operatorname{spec}(A)$. Finally, $\operatorname{det}\left(e^{t A}-I\right) \neq 0$ if and only if $\operatorname{det} A \neq 0$ and $\operatorname{det} \int_{0}^{t} e^{\tau A} \mathrm{~d} \tau \neq 0$.

Fact 11.13.16. Let $A \in \mathbb{F}^{n \times n}$, and assume that there exists $\alpha \in \mathbb{R}$ such that $\operatorname{spec}(A) \subset\{z \in \mathbb{C}: \alpha \leq \operatorname{Im} z<2 \pi+\alpha\}$. Then, e^{A} is (diagonal, upper triangular, lower triangular) if and only if A is. (Proof: See [932].)

Fact 11.13.17. Let $A \in \mathbb{F}^{n \times n}$. Then, the following statements hold:
i) If A is unipotent, then the series (11.5.1) is finite, $\log A$ exists and is nilpotent, and $e^{\log A}=A$.
ii) If A is nilpotent, then e^{A} is unipotent and $\log e^{A}=A$.
(Proof: See [624, p. 60].)
Fact 11.13.18. Let $B \in \mathbb{R}^{n \times n}$. Then, there exists a normal matrix $A \in \mathbb{R}^{n \times n}$ such that $B=e^{A}$ if and only if B is normal, nonsingular, and every negative eigenvalue of B has even algebraic multiplicity.

Fact 11.13.19. Let $C \in \mathbb{R}^{n \times n}$, assume that C is nonsingular, and let $k \geq 1$. Then, there exists a matrix $B \in \mathbb{R}^{n \times n}$ such that $C^{2 k}=e^{B}$. (Proof: Use Proposition 11.4.3 with $A=C^{2}$, and note that every negative eigenvalue $-\alpha<0$ of C^{2} arises as the square of complex conjugate eigenvalues $\pm \jmath \sqrt{\alpha}$ of C.)

11.14 Facts on the Matrix Exponential for Two or More Matrices

Fact 11.14.1. Let $A \in \mathbb{F}^{n \times n}, B \in \mathbb{F}^{n \times m}$, and $C \in \mathbb{F}^{m \times m}$. Then,

$$
e^{t\left[\begin{array}{ll}
A & B \\
0 & C
\end{array}\right]}=\left[\begin{array}{cc}
e^{t A} & \int_{0}^{t} e^{(t-\tau) A} B e^{\tau C} \mathrm{~d} \tau \\
0 & e^{t C}
\end{array}\right]
$$

Furthermore,

$$
\int_{0}^{t} e^{\tau A} \mathrm{~d} \tau=\left[\begin{array}{ll}
I & 0
\end{array}\right] e^{t\left[\begin{array}{ll}
A & I \\
0 & 0
\end{array}\right]}\left[\begin{array}{l}
0 \\
I
\end{array}\right]
$$

(Remark: The result can be extended to block- $k \times k$ matrices. See [1359]. For an application to sampled-data control, see [1053].)

Fact 11.14.2. Let $A, B \in \mathbb{F}^{n \times n}$, and consider the following conditions:
i) $A=B$.
ii) $e^{A}=e^{B}$.
iii) $A B=B A$.
iv) $A e^{B}=e^{B} A$.
v) $e^{A} e^{B}=e^{B} e^{A}$.
vi) $e^{A} e^{B}=e^{A+B}$.
vii) $e^{A} e^{B}=e^{B} e^{A}=e^{A+B}$.

Then, the following statements hold:
viii) $i i i) \Longrightarrow i v) \Longrightarrow v$).
$i x) ~ i i i) \Longrightarrow v i i)$.
x) If $\operatorname{spec}(A)$ is $2 \pi \jmath$ congruence free, then $i i) \Longrightarrow i i i) \Longrightarrow i v) \Longleftrightarrow v$).
xi) If $\operatorname{spec}(A)$ and $\operatorname{spec}(B)$ are $2 \pi \jmath$ congruence free, then $i i) \Longrightarrow i i i) \Longleftrightarrow i v$) $\Longleftrightarrow v)$.
xii) If $\operatorname{spec}(A+B)$ is $2 \pi \jmath$ congruence free, then $i i i) \Longleftrightarrow v i i)$.
xiii) If, for all $\lambda \in \operatorname{spec}(A)$ and all $\mu \in \operatorname{spec}(B)$, it follows that $(\lambda-\mu) /(2 \pi j)$ is not a nonzero integer, then $i i) \Longrightarrow i$).
$x i v$) If A and B are Hermitian, then $i) \Longleftrightarrow i i) \Longrightarrow i i i) \Longleftrightarrow i v) \Longleftrightarrow v) \Longleftrightarrow v i$).
(Remark: The set $\mathcal{S} \subset \mathbb{C}$ is 2π ر congruence free if no two elements of \mathcal{S} differ by a nonzero integer multiple of $2 \pi j$.) (Proof. See [629, pp. 88, 89, 270-272] and [1065, 1169, 1170, 1171, 1208, 1420, 1421. The assumption of normality in operator versions of some of these statements in 1065 , 1171 is not needed in the matrix case. Statement $x_{i i i}$) is given in [683, p. 32].) (Remark: The matrices $A \triangleq\left[\begin{array}{cc}0 & 1 \\ 0 & 2 \pi_{j}\end{array}\right]$ and $B \triangleq\left[\begin{array}{cc}2 \pi_{\jmath} & 0 \\ 0 & -2 \pi_{j}\end{array}\right]$ do not commute but satisfy $e^{A}=e^{B}=e^{A+B}=I$. The same
statement holds for

$$
A=2 \pi\left[\begin{array}{ccc}
0 & 0 & \sqrt{3} / 2 \\
0 & 0 & -1 / 2 \\
-\sqrt{3} / 2 & 1 / 2 & 0
\end{array}\right], \quad B=2 \pi\left[\begin{array}{ccc}
0 & 0 & -\sqrt{3} / 2 \\
0 & 0 & -1 / 2 \\
\sqrt{3} / 2 & 1 / 2 & 0
\end{array}\right]
$$

Consequently, vii) does not imply iii).) (Problem: Does vi) imply vii)? Can vii) be replaced by $v i$) in $x i i) ?$)

Fact 11.14.3. Let $A, B \in \mathbb{R}^{n \times n}$. Then,

$$
\frac{\mathrm{d}}{\mathrm{~d} t} e^{A+t B}=\int_{0}^{1} e^{\tau(A+t B)} B e^{(1-\tau)(A+t B)} \mathrm{d} \tau
$$

Hence,

$$
\operatorname{Dexp}(A ; B)=\left.\frac{\mathrm{d}}{\mathrm{~d} t} e^{A+t B}\right|_{t=0}=\int_{0}^{1} e^{\tau A} B e^{(1-\tau) A} \mathrm{~d} \tau
$$

Furthermore,

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \operatorname{tr} e^{A+t B}=\operatorname{tr}\left(e^{A+t B} B\right) .
$$

Hence,

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} t} \operatorname{tr} e^{A+t B}\right|_{t=0}=\operatorname{tr}\left(e^{A} B\right)
$$

(Proof: See [170, p. 175], 442, p. 371], or 881, 977, 1027.)
Fact 11.14.4. Let $A, B \in \mathbb{F}^{n \times n}$. Then,

$$
\begin{aligned}
\left.\frac{\mathrm{d}}{\mathrm{~d} t} e^{A+t B}\right|_{t=0} & =\left(\frac{e^{\operatorname{ad}_{A}}-I}{\operatorname{ad}_{A}}\right)(B) e^{A} \\
& =e^{A}\left(\frac{I-e^{-\mathrm{ad}_{A}}}{\operatorname{ad}_{A}}\right)(B) \\
& =\sum_{k=0}^{\infty} \frac{1}{(k+1)!} \operatorname{ad}_{A}^{k}(B) e^{A}
\end{aligned}
$$

(Proof: The second and fourth expressions are given in [103, p. 49] and 746, p. 248], while the third expression appears in [1347. See also [1366, pp. 107-110].) (Remark: See Fact 2.18.6.)

Fact 11.14.5. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that $e^{A}=e^{B}$. Then, the following statements hold:
i) If $|\lambda|<\pi$ for all $\lambda \in \operatorname{spec}(A) \cup \operatorname{spec}(B)$, then $A=B$.
ii) If $\lambda-\mu \neq 2 k \pi \jmath$ for all $\lambda \in \operatorname{spec}(A), \mu \in \operatorname{spec}(B)$, and $k \in \mathbb{Z}$, then $[A, B]=0$.
iii) If A is normal and $\sigma_{\max }(A)<\pi$, then $[A, B]=0$.
$i v)$ If A is normal and $\sigma_{\max }(A)=\pi$, then $\left[A^{2}, B\right]=0$.
(Proof: See [1173, 1208] and [1366, p. 111].) (Remark: If $[A, B]=0$, then $\left[A^{2}, B\right]=$ 0.$)$

Fact 11.14.6. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are skew Hermitian. Then, $e^{t A} e^{t B}$ is unitary, and there exists a skew-Hermitian matrix $C(t)$ such that $e^{t A} e^{t B}=e^{C(t)}$. (Problem: Does (11.4.1) converge in this case? See [227, 458, 1123].)

Fact 11.14.7. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are Hermitian. Then,

$$
\lim _{p \rightarrow 0}\left(e^{\frac{p}{2} A} e^{p B} e^{\frac{p}{2} A}\right)^{1 / p}=e^{A+B}
$$

(Proof: See [53].) (Remark: This result is related to the Lie-Trotter formula given by Corollary 11.4.8 For extensions, see [9, 533].)

Fact 11.14.8. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are Hermitian. Then,

$$
\lim _{p \rightarrow \infty}\left[\frac{1}{2}\left(e^{p A}+e^{p B}\right)\right]^{1 / p}=e^{\frac{1}{2}(A+B)}
$$

(Proof: See 193].)
Fact 11.14.9. Let $A, B \in \mathbb{F}^{n \times n}$. Then,

$$
\lim _{k \rightarrow \infty}\left[e^{\frac{1}{k} A} e^{\frac{1}{k} B} e^{-\frac{1}{k} A} e^{-\frac{1}{k} B}\right]^{k^{2}}=e^{[A, B]}
$$

Fact 11.14.10. Let $A \in \mathbb{F}^{n \times m}, X \in \mathbb{F}^{m \times l}$, and $B \in \mathbb{F}^{l \times n}$. Then,

$$
\frac{\mathrm{d}}{\mathrm{~d} X} \operatorname{tr} e^{A X B}=B e^{A X B} A
$$

Fact 11.14.11. Let $A, B \in \mathbb{F}^{n \times n}$. Then,

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} t} e^{t A} e^{t B} e^{-t A} e^{-t B}\right|_{t=0}=0
$$

and

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} t} e^{\sqrt{t} A} e^{\sqrt{t} B} e^{-\sqrt{t} A} e^{-\sqrt{t} B}\right|_{t=0}=A B-B A
$$

Fact 11.14.12. Let $A, B, C \in \mathbb{F}^{n \times n}$, assume there exists $\beta \in \mathbb{F}$ such that $[A, B]=\beta B+C$, and assume that $[A, C]=[B, C]=0$. Then,

$$
e^{A+B}=e^{A} e^{\phi(\beta) B} e^{\psi(\beta) C}
$$

where

$$
\phi(\beta) \triangleq \begin{cases}\frac{1}{\beta}\left(1-e^{-\beta}\right), & \beta \neq 0 \\ 1, & \beta=0\end{cases}
$$

and

$$
\psi(\beta) \triangleq \begin{cases}\frac{1}{\beta^{2}}\left(1-\beta-e^{-\beta}\right), & \beta \neq 0 \\ -\frac{1}{2}, & \beta=0\end{cases}
$$

(Proof: See [556, 1264].)

Fact 11.14.13. Let $A, B \in \mathbb{F}^{n \times n}$, and assume there exist $\alpha, \beta \in \mathbb{F}$ such that $[A, B]=\alpha A+\beta B$. Then,

$$
e^{t(A+B)}=e^{\phi(t) A} e^{\psi(t) B},
$$

where

$$
\phi(t) \triangleq \begin{cases}t, & \alpha=\beta=0 \\ \alpha^{-1} \log (1+\alpha t), & \alpha=\beta \neq 0,1+\alpha t>0, \\ \int_{0}^{t} \frac{\alpha-\beta}{\alpha e^{(\alpha-\beta) \tau}-\beta} \mathrm{d} \tau, & \alpha \neq \beta\end{cases}
$$

and

$$
\psi(t) \triangleq \int_{0}^{t} e^{-\beta \phi(\tau)} \mathrm{d} \tau
$$

(Proof: See 1265.)
Fact 11.14.14. Let $A, B \in \mathbb{F}^{n \times n}$, and assume there exists nonzero $\beta \in \mathbb{F}$ such that $[A, B]=\alpha B$. Then, for all $t>0$,

$$
e^{t(A+B)}=e^{t A} e^{\left[\left(1-e^{-\alpha t}\right) / \alpha\right] B} .
$$

(Proof: Apply Fact 11.14 .12 with $[t A, t B]=\alpha t(t B)$ and $\beta=\alpha t$.)
Fact 11.14.15. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that $[[A, B], A]=0$ and $[[A, B], B]=0$. Then, for all $t \in \mathbb{R}$,

$$
e^{t A} e^{t B}=e^{t A+t B+\left(t^{2} / 2\right)[A, B]} .
$$

In particular,

$$
e^{A} e^{B}=e^{A+B+\frac{1}{2}[A, B]}=e^{A+B} e^{\frac{1}{2}[A, B]}=e^{\frac{1}{2}[A, B]} e^{A+B}
$$

and

$$
e^{B} e^{2 A} e^{B}=e^{2 A+2 B} .
$$

(Proof: See [624, pp. 64-66] and [1431.)
Fact 11.14.16. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that $[A, B]=B^{2}$. Then,

$$
e^{A+B}=e^{A}(I+B) .
$$

Fact 11.14.17. Let $A, B \in \mathbb{F}^{n \times n}$. Then, for all $t \in[0, \infty)$,

$$
e^{t(A+B)}=e^{t A} e^{t B}+\sum_{k=2}^{\infty} C_{k} t^{k},
$$

where, for all $k \in \mathbb{N}$,

$$
C_{k+1} \triangleq \frac{1}{k+1}\left([A+B] C_{k}+\left[B, D_{k}\right]\right), \quad C_{0} \triangleq 0,
$$

and

$$
D_{k+1} \triangleq \frac{1}{k+1}\left(A D_{k}+D_{k} B\right), \quad D_{0} \triangleq I .
$$

(Proof: See 1125.)

Fact 11.14.18. Let $A, B \in \mathbb{F}^{n \times n}$. Then, for all $t \in[0, \infty)$,

$$
e^{t(A+B)}=e^{t A} e^{t B} e^{t C_{2}} e^{t C_{3}} \cdots
$$

where

$$
C_{2} \triangleq-\frac{1}{2}[A, B], \quad C_{3} \triangleq \frac{1}{3}[B,[A, B]]+\frac{1}{6}[A,[A, B]] .
$$

(Remark: This result is the Zassenhaus product formula. See [683, p. 236] and [1176.) (Remark: Higher order terms are given in [1176.) (Remark: Conditions for convergence do not seem to be available.)

Fact 11.14.19. Let $A \in \mathbb{R}^{2 n \times 2 n}$, and assume that A is symplectic and dis-crete-time Lyapunov stable. Then, $\operatorname{spec}(A) \subset\{s \in \mathbb{C}:|s|=1\}, \operatorname{am}_{A}(1)$ and $\operatorname{am}_{A}(-1)$ are even, A is semisimple, and there exists a Hamiltonian matrix $B \in$ $\mathbb{R}^{2 n \times 2 n}$ such that $A=e^{B}$. (Proof: Since A is symplectic and discrete-time Lyapunov stable, it follows that the spectrum of A is a subset of the unit circle and A is semisimple. Therefore, the only negative eigenvalue that A can have is -1 . Since all nonreal eigenvalues appear in complex conjugate pairs and A has even order, and since, by Fact 3.19.10, $\operatorname{det} A=1$, it follows that the eigenvalues -1 and 1 (if present) have even algebraic multiplicity. The fact that A has a Hamiltonian logarithm now follows from Theorem 2.6 of 404 .) (Remark: See xiii) of Proposition 11.6.5.)

Fact 11.14.20. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A is positive definite, and assume that B is positive semidefinite. Then,

$$
A+B \leq A^{1 / 2} e^{A^{-1 / 2} B A^{-1 / 2}} A^{1 / 2}
$$

Hence,

$$
\frac{\operatorname{det}(A+B)}{\operatorname{det} A} \leq e^{\operatorname{tr} A^{-1} B}
$$

Furthermore, for each inequality, equality holds if and only if $B=0$. (Proof: For positive-semidefinite A it follows that $e^{A} \leq I+A$.)

Fact 11.14.21. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are Hermitian. Then,

$$
I \circ(A+B) \leq \log \left(e^{A} \circ e^{B}\right)
$$

(Proof: See 43, 1485].) (Remark: See Fact 8.21.48.)
Fact 11.14.22. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are Hermitian, assume that $A \leq B$, let $\alpha, \beta \in \mathbb{R}$, assume that either $\alpha I \leq A \leq \beta I$ or $\alpha I \leq B \leq \beta I$, and let $t>0$. Then,

$$
e^{t A} \leq S\left(t, e^{\beta-\alpha}\right) e^{t B}
$$

where, for $t>0$ and $h>0$,

$$
S(t, h) \triangleq \begin{cases}\frac{\left(h^{t}-1\right) h^{t /\left(h^{t}-1\right)}}{e t \log h}, & h \neq 1 \\ 1, & h=1\end{cases}
$$

(Proof: See 518.) (Remark: $S(t, h)$ is Specht's ratio. See Fact 1.10 .22 and Fact 1.15.19.)

Fact 11.14.23. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are Hermitian, let $\alpha, \beta \in \mathbb{R}$, assume that $\alpha I \leq A \leq \beta I$ and $\alpha I \leq B \leq \beta I$, and let $t>0$. Then,

$$
\begin{aligned}
\frac{1}{S\left(1, e^{\beta-\alpha}\right) S^{1 / t}\left(t, e^{\beta-\alpha}\right)} & {\left[\alpha e^{t A}+(1-\alpha) e^{t B}\right]^{1 / t} } \\
& \leq e^{\alpha A+(1-\alpha) B} \\
& \leq S\left(1, e^{\beta-\alpha}\right)\left[\alpha e^{t A}+(1-\alpha) e^{t B}\right]^{1 / t}
\end{aligned}
$$

where $S(t, h)$ is defined in Fact 11.14.22, (Proof: See 518.)
Fact 11.14.24. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are positive definite. Then,

$$
\log \operatorname{det} A=\operatorname{tr} \log A
$$

and

$$
\log \operatorname{det} A B=\operatorname{tr}(\log A+\log B)
$$

Fact 11.14.25. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are positive definite. Then,

$$
\operatorname{tr}(A-B) \leq \operatorname{tr}[A(\log A-\log B)]
$$

and

$$
(\log \operatorname{tr} A-\log \operatorname{tr} B) \operatorname{tr} A \leq \operatorname{tr}[A(\log A-\log B)]
$$

(Proof: See 159 and 197 p. 281].) (Remark: The first inequality is Klein's inequality. See [201, p. 118].) (Remark: The second inequality is equivalent to the thermodynamic inequality. See Fact 11.14.31) (Remark: $\operatorname{tr}[A(\log A-\log B)]$ is the relative entropy of Umegaki.)

Fact 11.14.26. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are positive definite, and define

$$
\mu(A, B) \triangleq e^{\frac{1}{2}(\log A+\log B)}
$$

Then, the following statements hold:
i) $\mu\left(A, A^{-1}\right)=I$.
ii) $\mu(A, B)=\mu(B, A)$.
iii) If $A B=B A$, then $\mu(A, B)=A B$.
(Proof: See [74].) (Remark: With multiplication defined by μ, the set of $n \times n$ positive-definite matrices is a commutative Lie group. See [74].)

Fact 11.14.27. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are positive definite, and let $p>0$. Then,

$$
\frac{1}{p} \operatorname{tr}\left[A \log \left(B^{p / 2} A^{p} B^{p / 2}\right)\right] \leq \operatorname{tr}[A(\log A+\log B)] \leq \frac{1}{p} \operatorname{tr}\left[A \log \left(A^{p / 2} B^{p} A^{p / 2}\right)\right]
$$

Furthermore,

$$
\lim _{p \downarrow 0} \frac{1}{p} \operatorname{tr}\left[A \log \left(B^{p / 2} A^{p} B^{p / 2}\right)\right]=\operatorname{tr}[A(\log A+\log B)]=\lim _{p \downarrow 0} \frac{1}{p} \operatorname{tr}\left[A \log \left(A^{p / 2} B^{p} A^{p / 2}\right)\right]
$$

(Proof: See [53, 160, 533, 674.) (Remark: This inequality has applications to quantum information theory.)

Fact 11.14.28. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are Hermitian, let $q \geq p>0$, let $h \triangleq \lambda_{\text {max }}\left(e^{A}\right) / \lambda_{\text {min }}\left(e^{B}\right)$, and define

$$
S(1, h) \triangleq \frac{(h-1) h^{1 /(h-1)}}{e \log h}
$$

Then, there exist unitary matrices $U, V \in \mathbb{F}^{n \times n}$ such that

$$
\frac{1}{S(1, h)} U e^{A+B} U^{*} \leq e^{\frac{1}{2} A} e^{B} e^{\frac{1}{2} A} \leq S(1, h) V e^{A+B} V^{*}
$$

Furthermore,

$$
\begin{gathered}
\operatorname{tr} e^{A+B} \leq \operatorname{tr} e^{A} e^{B} \leq S(1, h) \operatorname{tr} e^{A+B} \\
\operatorname{tr}\left(e^{p A} \# e^{p B}\right)^{2 / p} \leq \operatorname{tr} e^{A+B} \leq \operatorname{tr}\left(e^{\frac{p}{2} B} e^{p A} e^{\frac{p}{2} B}\right)^{1 / p} \leq \operatorname{tr}\left(e^{\frac{q}{2} B} e^{q A} e^{\frac{q}{2} B}\right)^{1 / q} \\
\operatorname{tr} e^{A+B}=\lim _{p \downarrow 0} \operatorname{tr}\left(e^{\frac{p}{2} B} e^{p A} e^{\frac{p}{2} B}\right)^{1 / p} \\
e^{A+B}=\lim _{p \downarrow 0}\left(e^{p A} \# e^{p B}\right)^{2 / p}
\end{gathered}
$$

Moreover, $\operatorname{tr} e^{A+B}=\operatorname{tr} e^{A} e^{B}$ if and only if $A B=B A$. Furthermore, for all $i=$ $1, \ldots, n$,

$$
\frac{1}{S(1, h)} \lambda_{i}\left(e^{A+B}\right) \leq \lambda_{i}\left(e^{A} e^{B}\right) \leq S(1, h) \lambda_{i}\left(e^{A+B}\right)
$$

Finally, let $\alpha \in[0,1]$. Then,

$$
\lim _{p \downarrow 0}\left(e^{p A} \#{ }_{\alpha} e^{p B}\right)^{1 / p}=e^{(1-\alpha) A+\alpha B}
$$

and

$$
\operatorname{tr}\left(e^{p A} \#_{\alpha} e^{p B}\right)^{1 / p} \leq \operatorname{tr} e^{(1-\alpha) A+\alpha B}
$$

(Proof: See [252].) (Remark: The left-hand inequality in the second string of inequalities is the Golden-Thompson inequality. See Fact 11.16.4) (Remark: Since $S(1, h)>1$ for all $h>1$, the left-hand inequality in the first string of inequalities does not imply the Golden-Thompson inequality.) (Remark: For $i=1$, the stronger eigenvalue inequality $\lambda_{\max }\left(e^{A+B}\right) \leq \lambda_{\max }\left(e^{A} e^{B}\right)$ holds. See Fact 11.16.4] $)$ (Remark: $S(1, h)$ is Specht's ratio given by Fact 11.14.22) (Remark: The generalized geometric mean is defined in Fact 8.10.45.)

Fact 11.14.29. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are Hermitian. Then,

$$
\left(\operatorname{tr} e^{A}\right) e^{\operatorname{tr}\left(e^{A} B\right) / \operatorname{tr} e^{A}} \leq \operatorname{tr} e^{A+B}
$$

(Proof: See [159.) (Remark: This result is the Peierls-Bogoliubov inequality.) (Remark: This inequality is equivalent to the thermodynamic inequality. See Fact 11.14.31)

Fact 11.14.30. Let $A, B, C \in \mathbb{F}^{n \times n}$, and assume that A, B, and C are positive definite. Then,

$$
\operatorname{tr} e^{\log A-\log B+\log C} \leq \operatorname{tr} \int_{0}^{\infty} A(B+x I)^{-1} C(B+x I)^{-1} \mathrm{~d} x
$$

(Proof: See [905, 933].) (Remark: $-\log B$ is correct.) (Remark: $\operatorname{tr} e^{A+B+C} \leq$ $\left|\operatorname{tr} e^{A} e^{B} e^{C}\right|$ is not necessarily true.)

Fact 11.14.31. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A is positive definite, $\operatorname{tr} A=1$, and B is Hermitian. Then,

$$
\operatorname{tr} A B \leq \operatorname{tr}(A \log A)+\log \operatorname{tr} e^{B}
$$

Furthermore, equality holds if and only if

$$
A=\left(\operatorname{tr} e^{B}\right)^{-1} e^{B}
$$

(Proof: See 159.) (Remark: This result is the thermodynamic inequality. Equivalent forms are given by Fact 11.14.25 and Fact 11.14.29.)

Fact 11.14.32. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are Hermitian. Then,

$$
\|A-B\|_{\mathrm{F}} \leq\left\|\log \left(e^{-\frac{1}{2} A} e^{B} e^{\frac{1}{2} A}\right)\right\|_{\mathrm{F}}
$$

(Proof: See [201 p. 203].) (Remark: This result has a distance interpretation in terms of geodesics. See [201, p. 203] and [207, 1013, 1014].)

Fact 11.14.33. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are skew Hermitian. Then, there exist unitary matrices $S_{1}, S_{2} \in \mathbb{F}^{n \times n}$ such that

$$
e^{A} e^{B}=e^{S_{1} A S_{1}^{-1}+S_{2} B S_{2}^{-1}}
$$

(Proof: See 1210, 1272, 1273.)
Fact 11.14.34. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are Hermitian. Then, there exist unitary matrices $S_{1}, S_{2} \in \mathbb{F}^{n \times n}$ such that

$$
e^{\frac{1}{2} A} e^{B} e^{\frac{1}{2} A}=e^{S_{1} A S_{1}^{-1}+S_{2} B S_{2}^{-1}}
$$

(Proof: See [1209, 1210 1272, 1273.) (Problem: Determine the relationship between this result and Fact 11.14.33.)

Fact 11.14.35. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are positive semidefinite, and assume that $B \leq A$. Furthermore, let $p, q, r, t \in \mathbb{R}$, and assume that $r \geq t \geq 0, p \geq 0, p+q \geq 0$, and $p+q+r>0$. Then,

$$
\left[e^{\frac{r}{2} A} e^{q A+p B} e^{\frac{r}{2} A}\right]^{t /(p+q+r)} \leq e^{t A}
$$

(Proof: See 1350.)
Fact 11.14.36. Let $A \in \mathbb{F}^{n \times n}$ and $B \in \mathbb{F}^{m \times m}$. Then,

$$
\operatorname{tr} e^{A \oplus B}=\left(\operatorname{tr} e^{A}\right)\left(\operatorname{tr} e^{B}\right)
$$

Fact 11.14.37. Let $A \in \mathbb{F}^{n \times n}, B \in \mathbb{F}^{m \times m}$, and $C \in \mathbb{F}^{l \times l}$. Then,

$$
e^{A \oplus B \oplus C}=e^{A} \otimes e^{B} \otimes e^{C}
$$

Fact 11.14.38. Let $A \in \mathbb{F}^{n \times n}, B \in \mathbb{F}^{m \times m}, C \in \mathbb{F}^{k \times k}$, and $D \in \mathbb{F}^{l \times l}$. Then, $\operatorname{tr} e^{A \otimes I \otimes B \otimes I+I \otimes C \otimes I \otimes D}=\operatorname{tr} e^{A \otimes B} \operatorname{tr} e^{C \otimes D}$.
(Proof: By Fact 7.4.29, a similarity transformation involving the Kronecker permutation matrix can be used to reorder the inner two terms. See 1220 .)

Fact 11.14.39. Let $A, B \in \mathbb{R}^{n \times n}$, and assume that A and B are positive definite. Then, $A \# B$ is the unique positive-definite solution X of the matrix equation

$$
\log \left(A^{-1} X\right)+\log \left(B^{-1} X\right)=0
$$

(Proof: See 1014.)

11.15 Facts on the Matrix Exponential and Eigenvalues, Singular Values, and Norms for One Matrix

Fact 11.15.1. Let $A \in \mathbb{F}^{n \times n}$, assume that e^{A} is positive definite, and assume that $\sigma_{\max }(A)<2 \pi$. Then, A is Hermitian. (Proof: See [851, 1172].)

Fact 11.15.2. Let $A \in \mathbb{F}^{n \times n}$, and define $f:[0, \infty) \mapsto(0, \infty)$ by $f(t) \triangleq$ $\sigma_{\max }\left(e^{A t}\right)$. Then,

$$
f^{\prime}(0)=\frac{1}{2} \lambda_{\max }\left(A+A^{*}\right) .
$$

Hence, there exists $\varepsilon>0$ such that $f(t) \triangleq \sigma_{\max }\left(e^{t A}\right)$ is decreasing on $[0, \varepsilon)$ if and only if A is dissipative. (Proof: The result follows from iii) of Fact 11.15.7. See [1402.) (Remark: The derivative is one sided.)

Fact 11.15.3. Let $A \in \mathbb{F}^{n \times n}$. Then, for all $t \geq 0$,

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left\|e^{t A}\right\|_{\mathrm{F}}^{2}=\operatorname{tr} e^{t A}\left(A+A^{*}\right) e^{t A^{*}}
$$

Hence, if A is dissipative, then $f(t) \triangleq\left\|e^{t A}\right\|_{\mathrm{F}}$ is decreasing on $[0, \infty)$. (Proof: See [1402.)

Fact 11.15.4. Let $A \in \mathbb{F}^{n \times n}$. Then,

$$
\left|\operatorname{tr} e^{2 A}\right| \leq \operatorname{tr} e^{A} e^{A^{*}} \leq \operatorname{tr} e^{A+A^{*}} \leq\left[n \operatorname{tr} e^{2\left(A+A^{*}\right)}\right]^{1 / 2} \leq \frac{n}{2}+\frac{1}{2} \operatorname{tr} e^{2\left(A+A^{*}\right)}
$$

In addition, $\operatorname{tr} e^{A} e^{A^{*}}=\operatorname{tr} e^{A+A^{*}}$ if and only if A is normal. (Proof: See [184, [711, p. 515], and [1208.) (Remark: $\operatorname{tr} e^{A} e^{A^{*}} \leq \operatorname{tr} e^{A+A^{*}}$ is Bernstein's inequality. See [47.) (Remark: See Fact 3.7.12,)

Fact 11.15.5. Let $A \in \mathbb{F}^{n \times n}$. Then, for all $k=1, \ldots, n$,

$$
\prod_{i=1}^{k} \sigma_{i}\left(e^{A}\right) \leq \prod_{i=1}^{k} \lambda_{i}\left[e^{\frac{1}{2}\left(A+A^{*}\right)}\right]=\prod_{i=1}^{k} e^{\lambda_{i}\left[\frac{1}{2}\left(A+A^{*}\right)\right]} \leq \prod_{i=1}^{k} e^{\sigma_{i}(A)}
$$

Furthermore, for all $k=1, \ldots, n$,

$$
\sum_{i=1}^{k} \sigma_{i}\left(e^{A}\right) \leq \sum_{i=1}^{k} \lambda_{i}\left[e^{\frac{1}{2}\left(A+A^{*}\right)}\right]=\sum_{i=1}^{k} e^{\lambda_{i}\left[\frac{1}{2}\left(A+A^{*}\right)\right]} \leq \sum_{i=1}^{k} e^{\sigma_{i}(A)}
$$

In particular,

$$
\sigma_{\max }\left(e^{A}\right) \leq \lambda_{\max }\left[e^{\frac{1}{2}\left(A+A^{*}\right)}\right]=e^{\frac{1}{2} \lambda_{\max }\left(A+A^{*}\right)} \leq e^{\sigma_{\max }(A)}
$$

or, equivalently,

$$
\lambda_{\max }\left(e^{A} e^{A^{*}}\right) \leq \lambda_{\max }\left(e^{A+A^{*}}\right)=e^{\lambda_{\max }\left(A+A^{*}\right)} \leq e^{2 \sigma_{\max }(A)} .
$$

Furthermore,

$$
\left|\operatorname{det} e^{A}\right|=\left|e^{\operatorname{tr} A}\right| \leq e^{|\operatorname{tr} A|} \leq e^{\operatorname{tr}\langle A\rangle}
$$

and

$$
\operatorname{tr}\left\langle e^{A}\right\rangle \leq \sum_{i=1}^{n} e^{\sigma_{i}(A)} .
$$

(Proof: See [1211, Fact 2.21.13, Fact 8.17.4, and Fact 8.17.5)
Fact 11.15.6. Let $A \in \mathbb{F}^{n \times n}$, and let $\|\cdot\|$ be a unitarily invariant norm on $\mathbb{F}^{n \times n}$. Then,

$$
\left\|e^{A} e^{A^{*}}\right\| \leq\left\|e^{A+A^{*}}\right\| .
$$

In particular,

$$
\lambda_{\max }\left(e^{A} e^{A^{*}}\right) \leq \lambda_{\max }\left(e^{A+A^{*}}\right)
$$

and

$$
\operatorname{tr} e^{A} e^{A^{*}} \leq \operatorname{tr} e^{A+A^{*}}
$$

(Proof: See 342.)
Fact 11.15.7. Let $A, B \in \mathbb{F}^{n \times n}$, let $\|\cdot\|$ be the norm on $\mathbb{F}^{n \times n}$ induced by the norm $\|\cdot\|^{\prime}$ on \mathbb{F}^{n}, let $\operatorname{mspec}(A)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}_{\mathrm{ms}}$, and define

$$
\mu(A) \triangleq \lim _{\varepsilon \downarrow 0} \frac{\|I+\varepsilon A\|-1}{\varepsilon} .
$$

Then, the following statements hold:
i) $\mu(A)=\mathrm{D}_{+} f(A ; I)$, where $f: \mathbb{F}^{n \times n} \mapsto \mathbb{R}$ is defined by $f(A) \triangleq\|A\|$.
ii) $\mu(A)=\lim _{t \downarrow 0} t^{-1} \log \left\|e^{t A}\right\|=\sup _{t>0} t^{-1} \log \left\|e^{t A}\right\|$.
iii) $\mu(A)=\left.\frac{\mathrm{d}^{+}}{\mathrm{d} t}\left\|e^{t A}\right\|\right|_{t=0}=\left.\frac{\mathrm{d}^{+}}{\mathrm{d} t} \log \left\|e^{t A}\right\|\right|_{t=0}$.
iv) $\mu(I)=1, \mu(-I)=-1$, and $\mu(0)=0$.
v) $\operatorname{spabs}(A)=\lim _{t \rightarrow \infty} t^{-1} \log \left\|e^{t A}\right\|=\inf _{t>0} t^{-1} \log \left\|e^{t A}\right\|$.
vi) For all $i=1, \ldots, n$,

$$
-\|A\| \leq-\mu(-A) \leq \operatorname{Re} \lambda_{i} \leq \operatorname{spabs}(A) \leq \mu(A) \leq\|A\| .
$$

vii) For all $\alpha \in \mathbb{R}, \mu(\alpha A)=|\alpha| \mu[(\operatorname{sign} \alpha) A]$.
viii) For all $\alpha \in \mathbb{F}, \mu(A+\alpha I)=\mu(A)+\operatorname{Re} \alpha$.
$i x) \max \{\mu(A)-\mu(-B),-\mu(-A)+\mu(B)\} \leq \mu(A+B) \leq \mu(A)+\mu(B)$.
x) $\mu: \mathbb{F}^{n \times n} \mapsto \mathbb{R}$ is convex.
xi) $|\mu(A)-\mu(B)| \leq \max \{|\mu(A-B)|,|\mu(B-A)|\} \leq\|A-B\|$.
xii) For all $x \in \mathbb{F}^{n}$, $\max \{-\mu(-A),-\mu(A)\}\|x\|^{\prime} \leq\|A x\|^{\prime}$.
xiii) If A is nonsingular, then $\max \{-\mu(-A),-\mu(A)\} \leq 1 /\left\|A^{-1}\right\|$.
xiv) For all $t \geq 0$ and all $i=1, \ldots, n$,

$$
e^{-\|A\| t} \leq e^{-\mu(-A) t} \leq e^{\left(\operatorname{Re} \lambda_{i}\right) t} \leq e^{\operatorname{spabs}(A) t} \leq\left\|e^{t A}\right\| \leq e^{\mu(A) t} \leq e^{\|A\| t} .
$$

xv) $\mu(A)=\min \left\{\beta \in \mathbb{R}:\left\|e^{t A}\right\| \leq e^{\beta t}\right.$ for all $\left.t \geq 0\right\}$.
xvi) If $\|\cdot\|^{\prime}=\|\cdot\|_{1}$, and thus $\|\cdot\|=\|\cdot\|_{\text {col }}$, then

$$
\mu(A)=\max _{j \in\{1, \ldots, n\}}\left(\operatorname{Re} A_{(j, j)}+\sum_{\substack{i=1 \\ i \neq j}}^{n}\left|A_{(i, j)}\right|\right) .
$$

xvii) If $\|\cdot\|^{\prime}=\|\cdot\|_{2}$ and thus $\|\cdot\|=\sigma_{\max }(\cdot)$, then

$$
\mu(A)=\lambda_{\max }\left[\frac{1}{2}\left(A+A^{*}\right)\right] .
$$

xviii) If $\|\cdot\|^{\prime}=\|\cdot\|_{\infty}$, and thus $\|\cdot\|=\|\cdot\|_{\text {row }}$, then

$$
\mu(A)=\max _{i \in\{1, \ldots, n\}}\left(\operatorname{Re} A_{(i, i)}+\sum_{\substack{j=1 \\ j \neq i}}^{n}\left|A_{(i, j)}\right|\right) .
$$

(Proof: See 399 402 1067 1245, 690 pp. 653-655], and [1316 p. 150].) (Remark: $\mu(\cdot)$ is the matrix measure or logarithmic derivative or initial growth rate. For applications, see 690 and 1380 . See Fact 11.18 .11 for the logarithmic derivative of an asymptotically stable matrix.) (Remark: The directional differential $\mathrm{D}_{+} f(A ; I)$ is defined in (10.4.2).) (Remark: vi) and xvii) yield Fact 5.11.24) (Remark: Higher order logarithmic derivatives are studied in [205].)

Fact 11.15.8. Let $A \in \mathbb{F}^{n \times n}$, let $\beta>\operatorname{spabs}(A)$, let $\gamma \geq 1$, and let $\|\cdot\|$ be a normalized, submultiplicative norm on $\mathbb{F}^{n \times n}$. Then, for all $t \geq 0$,

$$
\left\|e^{t A}\right\| \leq \gamma e^{\beta t}
$$

if and only if, for all $k \geq 1$ and $\alpha>\beta$,

$$
\left\|(\alpha I-A)^{-k}\right\| \leq \frac{\gamma}{(\alpha-\beta)^{k}} .
$$

(Remark: This result is a consequence of the Hille-Yosida theorem. See 361 pp . 26] and [690 p. 672].)

Fact 11.15.9. Let $A \in \mathbb{R}^{n \times n}$, let $\beta \in \mathbb{R}$, and assume there exists a positivedefinite matrix $P \in \mathbb{R}^{n \times n}$ such that

$$
A^{\mathrm{T}} P+P A \leq 2 \beta P .
$$

Then, for all $t \geq 0$,

$$
\sigma_{\max }\left(e^{t A}\right) \leq \sqrt{\sigma_{\max }(P) / \sigma_{\min }(P)} e^{\beta t} .
$$

(Remark: See [690 p. 665].) (Remark: See Fact 11.18.9)

Fact 11.15.10. Let $A \in \operatorname{SO}(3)$. Then,

$$
\theta \triangleq 2 \cos ^{-1}\left(\frac{1}{2} \sqrt{1+\operatorname{tr} A}\right) .
$$

Then,

$$
\theta=\sigma_{\max }(\log A)=\frac{1}{\sqrt{2}}\|\log A\|_{\mathrm{F}} .
$$

(Remark: See Fact 3.11.10 and Fact 11.11.10) (Remark: θ is a Riemannian metric giving the length of the shortest geodesic curve on $\operatorname{SO}(3)$ between A and I. See [1013].)

11.16 Facts on the Matrix Exponential and Eigenvalues, Singular Values, and Norms for Two or More Matrices

Fact 11.16.1. Let $A, B \in \mathbb{F}^{n \times n}$. Then,

$$
\begin{aligned}
\left|\operatorname{tr} e^{A+B}\right| & \leq \operatorname{tr} e^{\frac{1}{2}(A+B)} e^{\frac{1}{2}(A+B)^{*}} \\
& \leq \operatorname{tr} e^{\frac{1}{2}\left(A+A^{*}+B+B^{*}\right)} \\
& \leq \operatorname{tr} e^{\frac{1}{2}\left(A+A^{*}\right)} e^{\frac{1}{2}\left(B+B^{*}\right)} \\
& \leq\left(\operatorname{tr} e^{A+A^{*}}\right)^{1 / 2}\left(\operatorname{tr} e^{B+B^{*}}\right)^{1 / 2} \\
& \leq \frac{1}{2} \operatorname{tr}\left(e^{A+A^{*}}+e^{B+B^{*}}\right)
\end{aligned}
$$

and

$$
\left.\begin{array}{c}
\operatorname{tr} e^{A} e^{B} \\
\frac{1}{2} \operatorname{tr}\left(e^{2 A}+e^{2 B}\right)
\end{array}\right\} \leq \frac{1}{2} \operatorname{tr}\left(e^{A} e^{A^{*}}+e^{B} e^{B^{*}}\right) \leq \frac{1}{2} \operatorname{tr}\left(e^{A+A^{*}}+e^{B+B^{*}}\right) .
$$

(Proof: See [184, 343, 1075, and [711, p. 514].)
Fact 11.16.2. Let $A, B \in \mathbb{F}^{n \times n}$. Then, for all $p>0$,

$$
\sigma_{\max }\left[e^{A+B}-\left(e^{\frac{1}{p} A} e^{\frac{1}{p} B}\right)^{p}\right] \leq \frac{1}{2 p} \sigma_{\max }([A, B]) e^{\sigma_{\max }(A)+\sigma_{\max }(B)} .
$$

(Proof: See [683, p. 237] and 1015].) (Remark: See Corollary 10.8 .8 and Fact 11.16.3.)

Fact 11.16.3. Let $A \in \mathbb{F}^{n \times n}$, and define $A_{\mathrm{H}} \triangleq \frac{1}{2}\left(A+A^{*}\right)$ and $A_{\mathrm{S}} \triangleq \frac{1}{2}\left(A-A^{*}\right)$. Then, for all $p>0$,

$$
\sigma_{\max }\left[e^{A}-\left(e^{\frac{1}{p} A_{\mathrm{H}}} e^{\frac{1}{p} A_{\mathrm{S}}}\right)^{p}\right] \leq \frac{1}{4 p} \sigma_{\max }\left(\left[A^{*}, A\right]\right) e^{\frac{1}{2} \lambda_{\max }\left(A+A^{*}\right)} .
$$

(Proof: See 1015.) (Remark: See Fact 10.8.8)
Fact 11.16.4. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are Hermitian, and let $\|\cdot\|$ be a unitarily invariant norm on $\mathbb{F}^{n \times n}$. Then,

$$
\left\|e^{A+B}\right\| \leq\left\|e^{\frac{1}{2} A} e^{B} e^{\frac{1}{2} A}\right\| \leq\left\|e^{A} e^{B}\right\|
$$

If, in addition, $p>0$, then

$$
\left\|e^{A+B}\right\| \leq\left\|e^{\frac{p}{2} A} e^{B} e^{\frac{p}{2} A}\right\|^{1 / p}
$$

and

$$
\left\|e^{A+B}\right\|=\lim _{p \downarrow 0}\left\|e^{\frac{p}{2} A} e^{B} e^{\frac{p}{2} A}\right\|^{1 / p}
$$

Furthermore, for all $k=1, \ldots, n$,

$$
\prod_{i=1}^{k} \lambda_{i}\left(e^{A+B}\right) \leq \prod_{i=1}^{k} \lambda_{i}\left(e^{A} e^{B}\right) \leq \prod_{i=1}^{k} \sigma_{i}\left(e^{A} e^{B}\right)
$$

with equality for $k=n$, that is,

$$
\prod_{i=1}^{n} \lambda_{i}\left(e^{A+B}\right)=\prod_{i=1}^{n} \lambda_{i}\left(e^{A} e^{B}\right)=\prod_{i=1}^{n} \sigma_{i}\left(e^{A} e^{B}\right)=\operatorname{det}\left(e^{A} e^{B}\right)
$$

In fact,

$$
\begin{aligned}
\operatorname{det}\left(e^{A+B}\right) & =\prod_{i=1}^{n} \lambda_{i}\left(e^{A+B}\right) \\
& =\prod_{i=1}^{n} e^{\lambda_{i}(A+B)} \\
& =e^{\operatorname{tr}(A+B)} \\
& =e^{(\operatorname{tr} A)+(\operatorname{tr} B)} \\
& =e^{\operatorname{tr} A} e^{\operatorname{tr} B} \\
& =\operatorname{det}\left(e^{A}\right) \operatorname{det}\left(e^{B}\right) \\
& =\operatorname{det}\left(e^{A} e^{B}\right) \\
& =\prod_{i=1}^{n} \sigma_{i}\left(e^{A} e^{B}\right)
\end{aligned}
$$

Furthermore, for all $k=1, \ldots, n$,

$$
\sum_{i=1}^{k} \lambda_{i}\left(e^{A+B}\right) \leq \sum_{i=1}^{k} \lambda_{i}\left(e^{A} e^{B}\right) \leq \sum_{i=1}^{k} \sigma_{i}\left(e^{A} e^{B}\right)
$$

In particular,

$$
\begin{gathered}
\lambda_{\max }\left(e^{A+B}\right) \leq \lambda_{\max }\left(e^{A} e^{B}\right) \leq \sigma_{\max }\left(e^{A} e^{B}\right), \\
\operatorname{tr} e^{A+B} \leq \operatorname{tr} e^{A} e^{B} \leq \operatorname{tr}\left\langle e^{A} e^{B}\right\rangle
\end{gathered}
$$

and, for all $p>0$,

$$
\operatorname{tr} e^{A+B} \leq \operatorname{tr}\left(e^{\frac{p}{2} A} e^{B} e^{\frac{p}{2} A}\right)
$$

Finally, $\operatorname{tr} e^{A+B}=\operatorname{tr} e^{A} e^{B}$ if and only if A and B commute. (Proof: See [53, [197, p. 261], Fact 5.11.28, Fact 2.21.13, and Fact 9.11.2, For the last statement, see [1208.) (Remark: Note that $\operatorname{det}\left(e^{A+B}\right)=\operatorname{det}\left(e^{A}\right) \operatorname{det}\left(e^{B}\right)$ even though e^{A+B} and $e^{A} e^{B}$ may not be equal. See [683, p. 265] or [711, p. 442].) (Remark: $\operatorname{tr} e^{A+B} \leq \operatorname{tr} e^{A} e^{B}$ is the Golden-Thompson inequality. See Fact 11.14.28) (Remark: $\left\|e^{A+B}\right\| \leq$
$\left\|e^{\frac{1}{2} A} e^{B} e^{\frac{1}{2} A}\right\|$ is Segal's inequality. See [47].) (Problem: Compare the upper bound $\operatorname{tr}\left\langle e^{A} e^{B}\right\rangle$ for $\operatorname{tr} e^{A} e^{B}$ with the upper bound $S(1, h) \operatorname{tr} e^{A+B}$ given by Fact 11.14.28.)

Fact 11.16.5. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are Hermitian, let $q, p>0$, where $q \leq p$, and let $\|\cdot\|$ be a unitarily invariant norm on $\mathbb{F}^{n \times n}$. Then,

$$
\left\|\left(e^{\frac{q}{2} A} e^{q B} e^{\frac{q}{2} A}\right)^{1 / q}\right\| \leq\left\|\left(e^{\frac{p}{2} A} e^{p B} e^{\frac{p}{2} A}\right)^{1 / p}\right\|
$$

(Proof: See 53.)
Fact 11.16.6. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are positive semidefinite. Then,

$$
e^{\sigma_{\max }^{1 / 2}(A B)}-1 \leq \sigma_{\max }^{1 / 2}\left[\left(e^{A}-I\right)\left(e^{B}-I\right)\right]
$$

and

$$
e^{\sigma_{\max }^{1 / 3}(B A B)}-1 \leq \sigma_{\max }^{1 / 3}\left[\left(e^{B}-I\right)\left(e^{A}-I\right)\left(e^{B}-I\right)\right]
$$

(Proof: See 1349 .) (Remark: See Fact 8.18.30.)
Fact 11.16.7. Let $A, B \in \mathbb{F}^{n \times n}$, and let $\|\cdot\|$ be a submultiplicative norm on $\mathbb{F}^{n \times n}$. Then, for all $t \geq 0$,

$$
\left\|e^{t A}-e^{t B}\right\| \leq e^{\|A\| t}\left(e^{\|A-B\| t}-1\right)
$$

Fact 11.16.8. Let $A, B \in \mathbb{F}^{n \times n}$, and let $t \geq 0$. Then,

$$
e^{t(A+B)}=e^{t A}+\int_{0}^{t} e^{(t-\tau) A} B e^{\tau(A+B)} \mathrm{d} \tau
$$

(Proof: See [683, p. 238].)
Fact 11.16.9. Let $A, B \in \mathbb{F}^{n \times n}$, let $\|\cdot\|$ be a normalized submultiplicative norm on $\mathbb{F}^{n \times n}$, and let $t \geq 0$. Then,

$$
\left\|e^{t A}-e^{t B}\right\| \leq t\|A-B\| e^{t \max \{\|A\|,\|B\|\}}
$$

(Proof: See 683 p. 265].)
Fact 11.16.10. Let $A, B \in \mathbb{R}^{n \times n}$, and assume that A is normal. Then, for all $t \geq 0$,

$$
\sigma_{\max }\left(e^{t A}-e^{t B}\right) \leq \sigma_{\max }\left(e^{t A}\right)\left[e^{\sigma_{\max }(A-B) t}-1\right]
$$

(Proof: See [1420.)
Fact 11.16.11. Let $A \in \mathbb{F}^{n \times n}$, let $\|\cdot\|$ be an induced norm on $\mathbb{F}^{n \times n}$, and let $\alpha>0$ and $\beta \in \mathbb{R}$ be such that, for all $t \geq 0$,

$$
\left\|e^{t A}\right\| \leq \alpha e^{\beta t}
$$

Then, for all $B \in \mathbb{F}^{n \times n}$ and $t \geq 0$,

$$
\left\|e^{t(A+B)}\right\| \leq \alpha e^{(\beta+\alpha\|B\|) t}
$$

(Proof: See [690, p. 406].)
Fact 11.16.12. Let $A, B \in \mathbb{C}^{n \times n}$, assume that A and B are idempotent, assume that $A \neq B$, and let $\|\cdot\|$ be a norm on $\mathbb{C}^{n \times n}$. Then,

$$
\left\|e^{\jmath A}-e^{\jmath B}\right\|=\left|e^{\jmath}-1\right|\|A-B\|<\|A-B\| .
$$

(Proof: See [1028].) (Remark: $\left|e^{\jmath}-1\right| \approx 0.96$.)
Fact 11.16.13. Let $A, B \in \mathbb{C}^{n \times n}$, assume that A and B are Hermitian, let $X \in \mathbb{C}^{n \times n}$, and let $\|\cdot\|$ be a unitarily invariant norm on $\mathbb{C}^{n \times n}$. Then,

$$
\left\|e^{\jmath A} X-X e^{\jmath B}\right\| \leq\|A X-X B\| .
$$

(Proof: See [1028.) (Remark: This result is a matrix version of x) of Fact 1.18.6.
Fact 11.16.14. Let $A \in \mathbb{F}^{n \times n}$, and, for all $i=1, \ldots, n$, define $f_{i}:[0, \infty) \mapsto \mathbb{R}$ by $f_{i}(t) \triangleq \log \sigma_{i}\left(e^{t A}\right)$. Then, A is normal if and only if, for all $i=1, \ldots, n, f_{i}$ is convex. (Proof: See [93] and [452].) (Remark: The statement in 93] that convexity holds on \mathbb{R} is erroneous. A counterexample is $A \triangleq\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$ for which $\log \sigma_{1}\left(e^{t A}\right)=|t|$ and $\log \sigma_{2}\left(e^{t A}\right)=-|t|$.)

Fact 11.16.15. Let $A \in \mathbb{F}^{n \times n}$, and, for nonzero $x \in \mathbb{F}^{n}$, define $f_{x}: \mathbb{R} \mapsto \mathbb{R}$ by $f_{x}(t) \triangleq \log \sigma_{\max }\left(e^{t A} x\right)$. Then, A is normal if and only if, for all nonzero $x \in \mathbb{F}^{n}, f_{x}$ is convex. (Proof: See 93.) (Remark: This result is due to Friedland.)

Fact 11.16.16. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are positive semidefinite, and let $\|\cdot\|$ be a unitarily invariant norm on $\mathbb{F}^{n \times n}$. Then,

$$
\left\|e^{\langle A-B\rangle}-I\right\| \leq\left\|e^{A}-e^{B}\right\|
$$

and

$$
\left\|e^{A}+e^{B}\right\| \leq\left\|e^{A+B}+I\right\|
$$

(Proof: See [58] and [197, p. 294].) (Remark: See Fact 9.9.54.)
Fact 11.16.17. Let $A, X, B \in \mathbb{F}^{n \times n}$, assume that A and B are Hermitian, and let $\|\cdot\|$ be a unitarily invariant norm on $\mathbb{F}^{n \times n}$. Then,

$$
\|A X-X B\| \leq\left\|e^{\frac{1}{2} A} X e^{-\frac{1}{2} B}-e^{-\frac{1}{2} B} X e^{\frac{1}{2} A}\right\|
$$

(Proof: See [216].) (Remark: See Fact 9.9.55.)

11.17 Facts on Stable Polynomials

Fact 11.17.1. Let a_{1}, \ldots, a_{n} be nonzero real numbers, let

$$
\Delta \triangleq\left\{i \in\{1, \ldots, n-1\}: \frac{a_{i+1}}{a_{i}}<0\right\}
$$

let b_{1}, \ldots, b_{n} be real numbers satisfying $b_{1}<\cdots<b_{n}$, define $f:(0, \infty) \mapsto \mathbb{R}$ by

$$
f(x)=a_{n} x^{b_{n}}+\cdots+a_{1} x^{b_{1}}
$$

and define

$$
\mathcal{S} \triangleq\{x \in(0, \infty): f(x)=0\}
$$

Furthermore, for all $x \in \mathcal{S}$, define the multiplicity of x to be the positive integer m such that $f(x)=f^{\prime}(x)=\cdots=f^{(m-1)}=0$ and $f^{(m)}(x) \neq 0$, and let \mathcal{S}^{\prime} denote the multiset consisting of all elements of \mathcal{S} counting multiplicity. Then,

$$
\operatorname{card}\left(\mathcal{S}^{\prime}\right) \leq \operatorname{card}(\Delta)
$$

If, in addition, b_{1}, \ldots, b_{n} are nonnegative integers, then $\operatorname{card}(\Delta)-\operatorname{card}\left(\mathcal{S}^{\prime}\right)$ is even. (Proof: See 839, 1400.) (Remark: This result is the Descartes rule of signs.)

Fact 11.17.2. Let $p \in \mathbb{R}[s]$, where $p(s)=s^{n}+a_{n-1} s^{n-1}+\cdots+a_{0}$. If p is asymptotically stable, then a_{0}, \ldots, a_{n-1} are positive. Now, assume that a_{0}, \ldots, a_{n-1} are positive. Then, the following statements hold:
i) If $n=1$ or $n=2$, then p is asymptotically stable.
ii) If $n=3$, then p is asymptotically stable if and only if

$$
a_{0}<a_{1} a_{2}
$$

iii) If $n=4$, then p is asymptotically stable if and only if

$$
a_{1}^{2}+a_{0} a_{3}^{2}<a_{1} a_{2} a_{3}
$$

$i v$) If $n=5$, then p is asymptotically stable if and only if

$$
\begin{gathered}
a_{2}<a_{3} a_{4} \\
a_{2}^{2}+a_{1} a_{4}^{2}<a_{0} a_{4}+a_{2} a_{3} a_{4} \\
a_{0}^{2}+a_{1} a_{2}^{2}+a_{1}^{2} a_{4}^{2}+a_{0} a_{3}^{2} a_{4}<a_{0} a_{2} a_{3}+2 a_{0} a_{1} a_{4}+a_{1} a_{2} a_{3} a_{4}
\end{gathered}
$$

(Remark: These results are special cases of the Routh criterion, which provides stability criteria for polynomials of arbitrary degree n. See 301.)

Fact 11.17.3. Let $\varepsilon \in[0,1]$, let $n \in\{2,3,4\}$, let $p_{\varepsilon} \in \mathbb{R}[s]$, where $p_{\varepsilon}(s)=$ $s^{n}+a_{n-1} s^{n-1}+\cdots+\varepsilon a_{0}$, and assume that p_{1} is asymptotically stable. Then, for all $\varepsilon \in(0,1], p_{\varepsilon}$ is asymptotically stable. Furthermore, $p_{0}(s) / s$ is asymptotically stable. (Remark: The result does not hold for $n=5$. A counterexample is $p(s)=$ $s^{5}+2 s^{4}+3 s^{3}+5 s^{2}+2 s+2.5 \varepsilon$, which is asymptotically stable if and only if $\varepsilon \in(4 / 5,1]$. This result is another instance of the quartic barrier. See [351, Fact 8.14.7 and Fact 8.15.37)

Fact 11.17.4. Let $p \in \mathbb{R}[s]$ be monic, and define $q(s) \triangleq s^{n} p(1 / s)$, where $n \triangleq \operatorname{deg} p$. Then, p is asymptotically stable if and only if q is asymptotically stable. (Remark: See Fact 4.8.1 and Fact 11.17.5.)

Fact 11.17.5. Let $p \in \mathbb{R}[s]$ be monic, and assume that p is semistable. Then, $q(s) \triangleq p(s) / s$ and $\hat{q}(s) \triangleq s^{n} p(1 / s)$ are asymptotically stable. (Remark: See Fact 4.8.1 and Fact 11.17.4)

Fact 11.17.6. Let $p, q \in \mathbb{R}[s]$, assume that p is even, assume that q is odd, and assume that every coefficient of $p+q$ is positive. Then, $p+q$ is asymptotically stable
if and only if every root of p and every root of q is imaginary, and the roots of p and the roots of q are interlaced on the imaginary axis. (Proof: See [221, 301, 705].) (Remark: This result is the Hermite-Biehler or interlacing theorem.) (Example: $\left.s^{2}+2 s+5=\left(s^{2}+5\right)+2 s.\right)$

Fact 11.17.7. Let $p \in \mathbb{R}[s]$ be asymptotically stable, and let $p(s)=\beta_{n} s^{n}+$ $\beta_{n-1} s^{n-1}+\cdots+\beta_{1} s+\beta_{0}$, where $\beta_{n}>0$. Then, for all $i=1, \ldots, n-2$,

$$
\beta_{i-1} \beta_{i+2}<\beta_{i} \beta_{i+1}
$$

(Remark: This result is a necessary condition for asymptotic stability, which can be used to show that a given polynomial with positive coefficients is unstable.) (Remark: This result is due to Xie. See [1474. For alternative conditions, see 221 p. 68].)

Fact 11.17.8. Let $n \in \mathbb{P}$ be even, let $m \triangleq n / 2$, let $p \in \mathbb{R}[s]$, where $p(s)=$ $\beta_{n} s^{n}+\beta_{n-1} s^{n-1}+\cdots+\beta_{1} s+\beta_{0}$ and $\beta_{n}>0$, and assume that p is asymptotically stable. Then, for all $i=1, \ldots, m-1$,

$$
\binom{m}{i} \beta_{0}^{(m-i) / m} \beta_{n}^{i / m} \leq \beta_{2 i} .
$$

(Remark: This result is a necessary condition for asymptotic stability, which can be used to show that a given polynomial with positive coefficients is unstable.) (Remark: This result is due to Borobia and Dormido. See [1474, 1475] for extensions to polynomials of odd degree.)

Fact 11.17.9. Let $p, q \in \mathbb{R}[s]$, where $p(s)=\alpha_{n} s^{n}+\alpha_{n-1} s^{n-1}+\cdots+\alpha_{1} s+$ α_{0} and $q(s)=\beta_{m} s^{m}+\beta_{m-1} s^{m-1}+\cdots+\beta_{1} s+\beta_{0}$. If p and q are (Lyapunov, asymptotically) stable, then $r(s) \triangleq \alpha_{l} \beta_{l} s^{l}+\alpha_{l-1} \beta_{l-1} s^{l-1}+\cdots+\alpha_{1} \beta_{1} s+\alpha_{0} \beta_{0}$, where $l \triangleq \min \{m, n\}$, is (Lyapunov, asymptotically) stable. (Proof: See 543.) (Remark: The polynomial r is the Schur product of p and q. See [82, 762].)

Fact 11.17.10. Let $A \in \mathbb{R}^{n \times n}$, and assume that A is diagonalizable over \mathbb{R}. Then, χ_{A} has all positive coefficients if and only if A is asymptotically stable. (Proof: Sufficiency follows from Fact 11.17.2, For necessity, note that all of the roots of χ_{A} are real and that $\chi_{A}(\lambda)>0$ for all $\lambda \geq 0$. Hence, $\operatorname{roots}\left(\chi_{A}\right) \subset(-\infty, 0)$.)

Fact 11.17.11. Let $A \in \mathbb{R}^{n \times n}$. Then, the following statements are equivalent:
i) $\chi_{A \oplus A}$ has all positive coefficients.
ii) $\chi_{A \oplus A}$ is asymptotically stable.
iii) $A \oplus A$ is asymptotically stable.
$i v) ~ A$ is asymptotically stable.
(Proof: If A is not asymptotically stable, then Fact 11.18 .32 implies that $A \oplus A$ has a nonnegative eigenvalue λ. Since $\chi_{A \oplus A}(\lambda)=0$, it follows that $\chi_{A \oplus A}$ cannot have all positive coefficients. See [519, Theorem 5].) (Remark: A similar method of proof is used in Proposition 8.2.7.)

Fact 11.17.12. Let $A \in \mathbb{R}^{n \times n}$. Then, the following statements are equivalent:
i) χ_{A} and $\chi_{A^{(2,1)}}$ have all positive coefficients.
ii) A is asymptotically stable.
(Proof: See [1243].) (Remark: The additive compound $A^{(2,1)}$ is defined in Fact 7.5.17.)

Fact 11.17.13. For $i=1, \ldots, n-1$, let $a_{i}, b_{i} \in \mathbb{R}$ satisfy $0<a_{i} \leq b_{i}$, define $\phi_{1}, \phi_{2}, \psi_{1}, \psi_{2} \in \mathbb{R}[s]$ by

$$
\begin{gathered}
\phi_{1}(s)=b_{n} s^{n}+a_{n-2} s^{n-2}+b_{n-4} s^{n-4}+\cdots, \\
\phi_{2}(s)=a_{n} s^{n}+b_{n-2} s^{n-2}+a_{n-4} s^{n-4}+\cdots, \\
\psi_{1}(s)=b_{n-1} s^{n-1}+a_{n-3} s^{n-3}+b_{n-5} s^{n-5}+\cdots, \\
\psi_{2}(s)=a_{n-1} s^{n-1}+b_{n-3} s^{n-3}+a_{n-5} s^{n-5}+\cdots,
\end{gathered}
$$

assume that $\phi_{1}+\psi_{1}, \phi_{1}+\psi_{2}, \phi_{2}+\psi_{1}$, and $\phi_{2}+\psi_{2}$ are asymptotically stable, let $p \in \mathbb{R}[s]$, where $p(s)=\beta_{n} s^{n}+\beta_{n-1} s^{n-1}+\cdots+\beta_{1} s+\beta_{0}$, and assume that, for all $i=1, \ldots, n, a_{i} \leq \beta_{i} \leq b_{i}$. Then, p is asymptotically stable. (Proof: See 447] pp. 466, 467].) (Remark: This result is Kharitonov's theorem.)

11.18 Facts on Stable Matrices

Fact 11.18.1. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is semistable. Then, A is Lyapunov stable.

Fact 11.18.2. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is Lyapunov stable. Then, A is group invertible.

Fact 11.18.3. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is semistable. Then, A is group invertible.

Fact 11.18.4. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are similar. Then, A is (Lyapunov stable, semistable, asymptotically stable, discrete-time Lyapunov stable, discrete-time semistable, discrete-time asymptotically stable) if and only if B is.

Fact 11.18.5. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is semistable. Then,

$$
\lim _{t \rightarrow \infty} e^{t A}=I-A A^{\#}
$$

and thus

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} e^{\tau A} \mathrm{~d} \tau=I-A A^{\#}
$$

(Remark: See Fact 10.11.6, Fact 11.18.1, and Fact 11.18.2.)

Fact 11.18.6. Let $A \in \mathbb{R}^{n \times n}$, and assume that A is Lyapunov stable. Then,

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} e^{\tau A} \mathrm{~d} \tau=I-A A^{\#}
$$

(Remark: See Fact 11.18.2,
Fact 11.18.7. Let $A, B \in \mathbb{F}^{n \times n}$. Then, $\lim _{\alpha \rightarrow \infty} e^{A+\alpha B}$ exists if and only if B is semistable. In this case,

$$
\lim _{\alpha \rightarrow \infty} e^{A+\alpha B}=e^{\left(I-B B^{\#}\right) A}\left(I-B B^{\#}\right)=\left(I-B B^{\#}\right) e^{A\left(I-B B^{\#}\right)}
$$

(Proof: See [284].)
Fact 11.18.8. Let $A \in \mathbb{F}^{n \times n}$, assume that A is asymptotically stable, let $\beta>\operatorname{spabs}(A)$, and let $\|\cdot\|$ be a submultiplicative norm on $\mathbb{F}^{n \times n}$. Then, there exists $\gamma>0$ such that, for all $t \geq 0$,

$$
\left\|e^{t A}\right\| \leq \gamma e^{\beta t}
$$

(Remark: See [558, pp. 201-206] and [786].)
Fact 11.18.9. Let $A \in \mathbb{R}^{n \times n}$, assume that A is asymptotically stable, let $\beta \in(\operatorname{spabs}(A), 0)$, let $P \in \mathbb{R}^{n \times n}$ be positive definite and satisfy

$$
A^{\mathrm{T}} P+P A \leq 2 \beta P
$$

and let $\|\cdot\|$ be a normalized, submultiplicative norm on $\mathbb{R}^{n \times n}$. Then, for all $t \geq 0$,

$$
\left\|e^{t A}\right\| \leq \sqrt{\|P\|\left\|P^{-1}\right\|} e^{\beta t}
$$

(Remark: See 689.) (Remark: See Fact 11.15.9.)
Fact 11.18.10. Let $A \in \mathbb{F}^{n \times n}$, assume that A is asymptotically stable, let $R \in \mathbb{F}^{n \times n}$, assume that R is positive definite, and let $P \in \mathbb{F}^{n \times n}$ be the positivedefinite solution of $A^{*} P+P A+R=0$. Then,

$$
\sigma_{\max }\left(e^{t A}\right) \leq \sqrt{\frac{\sigma_{\max }(P)}{\sigma_{\min }(P)}} e^{-t \lambda_{\min }\left(R P^{-1}\right) / 2}
$$

and

$$
\left\|e^{t A}\right\|_{\mathrm{F}} \leq \sqrt{\|P\|_{\mathrm{F}}\left\|P^{-1}\right\|_{\mathrm{F}}} e^{-t \lambda_{\min }\left(R P^{-1}\right) / 2}
$$

If, in addition, $A+A^{*}$ is negative definite, then

$$
\left\|e^{t A}\right\|_{\mathrm{F}} \leq e^{-t \lambda_{\min }\left(-A-A^{*}\right) / 2}
$$

(Proof: See [952].)
Fact 11.18.11. Let $A \in \mathbb{R}^{n \times n}$, assume that A is asymptotically stable, let $R \in \mathbb{R}^{n \times n}$, assume that R is positive definite, and let $P \in \mathbb{R}^{n \times n}$ be the positivedefinite solution of $A^{\mathrm{T}} P+P A+R=0$. Furthermore, define the vector norm $\|x\|^{\prime} \triangleq$ $\sqrt{x^{\mathrm{T} P x}}$ on \mathbb{R}^{n}, let $\|\cdot\|$ denote the induced norm on $\mathbb{R}^{n \times n}$, and let $\mu(\cdot)$ denote the corresponding logarithmic derivative. Then,

$$
\mu(A)=-\lambda_{\min }\left(R P^{-1}\right) / 2
$$

Consequently,

$$
\left\|e^{t A}\right\| \leq e^{-t \lambda_{\min }\left(R P^{-1}\right) / 2}
$$

(Proof: See [728] and use xiv) of Fact 11.15.7) (Remark: See Fact 11.15.7 for the definition and properties of the logarithmic derivative.)

Fact 11.18.12. Let $A \in \mathbb{F}^{n \times n}$. Then, A is similar to a skew-Hermitian matrix if and only if there exists a positive-definite matrix $P \in \mathbb{F}^{n \times n}$ such that $A^{*} P+P A=$ 0. (Remark: See Fact 5.9.4)

Fact 11.18.13. Let $A \in \mathbb{R}^{n \times n}$. Then, A and A^{2} are asymptotically stable if and only if, for all $\lambda \in \operatorname{spec}(A)$, there exist $r>0$ and $\theta \in\left(\frac{\pi}{2}, \frac{3 \pi}{4}\right) \cup\left(\frac{5 \pi}{4}, \frac{3 \pi}{2}\right)$ such that $\lambda=r e^{\jmath \theta}$.

Fact 11.18.14. Let $A \in \mathbb{R}^{n \times n}$. Then, A is group invertible and $2 k \pi \jmath \notin \operatorname{spec}(A)$ for all $k \geq 1$ if and only if

$$
A A^{\#}=\left(e^{A}-I\right)\left(e^{A}-I\right)^{\#}
$$

In particular, if A is semistable, then this identity holds. (Proof: Use $i i$) of Fact 11.21 .10 and $i x$) of Proposition 11.8.2.)

Fact 11.18.15. Let $A \in \mathbb{F}^{n \times n}$. Then, A is asymptotically stable if and only if A^{-1} is asymptotically stable. Hence, $e^{t A} \rightarrow 0$ as $t \rightarrow \infty$ if and only if $e^{t A^{-1}} \rightarrow 0$ as $t \rightarrow \infty$.

Fact 11.18.16. Let $A, B \in \mathbb{R}^{n \times n}$, assume that A is asymptotically stable, and assume that $\sigma_{\max }(B \oplus B)<\sigma_{\min }(A \oplus A)$. Then, $A+B$ is asymptotically stable. (Proof: Since $A \oplus A$ is nonsingular, Fact 9.14 .18 implies that $A \oplus A+\alpha(B \oplus B)=$ $(A+\alpha B) \oplus(A+\alpha B)$ is nonsingular for all $0 \leq \alpha \leq 1$. Now, suppose that $A+B$ is not asymptotically stable. Then, there exists $\alpha_{0} \in(0,1]$ such that $A+\alpha_{0} B$ has an imaginary eigenvalue, and thus $\left(A+\alpha_{0} B\right) \oplus\left(A+\alpha_{0} B\right)=A \oplus A+\alpha_{0}(B \oplus B)$ is singular, which is a contradiction.) (Remark: This result provides a suboptimal solution of a nearness problem. See [679, Section 7] and Fact 9.14.18,

Fact 11.18.17. Let $A \in \mathbb{C}^{n \times n}$, assume that A is asymptotically stable, let $\|\cdot\|$ denote either $\sigma_{\max }(\cdot)$ or $\|\cdot\|_{\mathrm{F}}$, and define

$$
\beta(A) \triangleq\left\{\|B\|: B \in \mathbb{C}^{n \times n} \text { and } A+B \text { is not asymptotically stable }\right\}
$$

Then,

$$
\begin{aligned}
\frac{1}{2} \sigma_{\min }(A \otimes A) & \leq \beta(A) \\
& =\min _{\gamma \in \mathbb{R}} \sigma_{\min }(A+\gamma \jmath I) \\
& \leq \min \left\{\operatorname{spabs}(A), \sigma_{\min }(A), \frac{1}{2} \sigma_{\max }\left(A+A^{*}\right)\right\}
\end{aligned}
$$

Furthermore, let $R \in \mathbb{F}^{n \times n}$, assume that R is positive definite, and let $P \in \mathbb{F}^{n \times n}$ be the positive-definite solution of $A^{*} P+P A+R=0$. Then,

$$
\frac{1}{2} \sigma_{\min }(R) /\|P\| \leq \beta(A)
$$

If, in addition, $A+A^{*}$ is negative definite, then

$$
-\frac{1}{2} \lambda_{\min }\left(A+A^{*}\right) \leq \beta(A) .
$$

(Proof: See [679, 1360].) (Remark: The analogous problem for real matrices and real perturbations is discussed in [1108.)

Fact 11.18.18. Let $A \in \mathbb{F}^{n \times n}$, assume that A is asymptotically stable, let $V \in \mathbb{F}^{n \times n}$, assume that V is positive definite, and let $Q \in \mathbb{R}^{n}$ be the positivedefinite solution of $A Q+Q A^{*}+V=0$. Then, for all $t \geq 0$,

$$
\left\|e^{t A}\right\|_{\mathrm{F}}^{2}=\operatorname{tr} e^{t A} e^{t A^{*}} \leq \kappa(Q) \operatorname{tr} e^{-t S^{-1} V S^{-*}} \leq \kappa(Q) \operatorname{tr} e^{-\left[t / \sigma_{\max }(Q)\right] V},
$$

where $S \in \mathbb{F}^{n \times n}$ satisfies $Q=S S^{*}$ and $\kappa(Q) \triangleq \sigma_{\max }(Q) / \sigma_{\min }(Q)$. If, in particular, A satisfies $A Q+Q A^{*}+I=0$, then

$$
\left\|e^{t A}\right\|_{\mathrm{F}}^{2} \leq n \kappa(Q) e^{-t / \sigma_{\max }(Q)} .
$$

(Proof: See 1468.) (Remark: Fact 11.15.4yields $e^{t A} e^{t A^{*}} \leq e^{t\left(A+A^{*}\right)}$. However, this bound is poor when $A+A^{*}$ is not asymptotically stable. See [185].) (Remark: See Fact 11.18.19)

Fact 11.18.19. Let $A \in \mathbb{F}^{n \times n}$, assume that A is asymptotically stable, let $V \in \mathbb{F}^{n \times n}$, assume that V is positive definite, and let $Q \in \mathbb{R}^{n}$ be the positivedefinite solution of $A Q+Q A^{*}+I=0$. Then, for all $t \geq 0$,

$$
\sigma_{\max }^{2}\left(e^{t A}\right) \leq \kappa(Q) e^{-t / \sigma_{\max }(Q)},
$$

where $\kappa(Q) \triangleq \sigma_{\max }(Q) / \sigma_{\min }(Q)$. (Proof: See references in 1377 1378.) (Remark: Since $\left\|e^{t A}\right\|_{\mathrm{F}} \leq \sqrt{n} \sigma_{\max }\left(e^{t A}\right)$, it follows that this inequality implies the last inequality in Fact 11.18.18)

Fact 11.18.20. Let $A \in \mathbb{R}^{n \times n}$, and assume that every entry of $A \in \mathbb{R}^{n \times n}$ is positive. Then, A is unstable. (Proof: See Fact 4.11.5)

Fact 11.18.21. Let $A \in \mathbb{R}^{n \times n}$. Then, A is asymptotically stable if and only if there exist matrices $B, C \in \mathbb{R}^{n \times n}$ such that B is positive definite, C is dissipative, and $A=B C$. (Proof: $A=P^{-1}\left(-A^{\mathrm{T}} P-R\right)$.) (Remark: To reverse the order of factors, consider A^{T}.)

Fact 11.18.22. Let $A \in \mathbb{F}^{n \times n}$. Then, the following statements hold:
i) All of the real eigenvalues of A are positive if and only if A is the product of two dissipative matrices.
ii) A is nonsingular and $A \neq \alpha I$ for all $\alpha<0$ if and only if A is the product of two asymptotically stable matrices.
iii) A is nonsingular if and only if A is the product of three or fewer asymptotically stable matrices.
(Proof: See 126, 1459.)

Fact 11.18.23. Let $p \in \mathbb{R}[s]$, where $p(s)=s^{n}+\beta_{n-1} s^{n-1}+\cdots+\beta_{1} s+\beta_{0}$ and $\beta_{0}, \ldots, \beta_{n}>0$. Furthermore, define $A \in \mathbb{R}^{n \times n}$ by

$$
A \triangleq\left[\begin{array}{ccccccc}
\beta_{n-1} & \beta_{n-3} & \beta_{n-5} & \beta_{n-7} & \cdots & \cdots & 0 \\
1 & \beta_{n-2} & \beta_{n-4} & \beta_{n-6} & \cdots & \cdots & 0 \\
0 & \beta_{n-1} & \beta_{n-3} & \beta_{n-5} & \cdots & \cdots & 0 \\
0 & 1 & \beta_{n-2} & \beta_{n-4} & \cdots & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & \cdots & \beta_{1} & 0 \\
0 & 0 & 0 & \cdots & \cdots & \beta_{2} & \beta_{0}
\end{array}\right]
$$

If p is Lyapunov stable, then every subdeterminant of A is nonnegative. (Remark: A is totally nonnegative.) Furthermore, p is asymptotically stable if and only if every leading principal subdeterminant of A is positive. (Proof: See [82].) (Remark: The second statement is due to Hurwitz.) (Remark: The diagonal entries of A are $\beta_{n-1}, \ldots, \beta_{0}$.) (Problem: Show that this condition for stability is equivalent to the condition given in [481, p. 183] in terms of an alternative matrix \hat{A}.)

Fact 11.18.24. Let $A \in \mathbb{R}^{n \times n}$, assume that A is tridiagonal, and assume that $A_{(i, i)}>0$ for all $i=1, \ldots, n$ and $A_{(i, i+1)} A_{(i+1, i)}>0$ for all $i=1, \ldots, n-1$. Then, A is asymptotically stable. (Proof: See [287].) (Remark: This result is due to Barnett and Storey.)

Fact 11.18.25. Let $A \in \mathbb{R}^{n \times n}$, and assume that A is cyclic. Then, there exists a nonsingular matrix $S \in \mathbb{R}^{n \times n}$ such that $A_{\mathrm{S}} \triangleq S A S^{-1}$ is given by the tridiagonal matrix

$$
A_{\mathrm{S}}=\left[\begin{array}{cccccc}
0 & 1 & 0 & \cdots & 0 & 0 \\
-\alpha_{n} & 0 & 1 & \cdots & 0 & 0 \\
0 & -\alpha_{n-1} & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 1 \\
0 & 0 & 0 & \cdots & -\alpha_{2} & -\alpha_{1}
\end{array}\right]
$$

where $\alpha_{1}, \ldots, \alpha_{n}$ are real numbers. If $\alpha_{1} \alpha_{2} \cdots \alpha_{n} \neq 0$, then the number of eigenvalues of A in the OLHP is equal to the number of positive elements in $\left\{\alpha_{1}, \alpha_{1} \alpha_{2}, \ldots\right.$, $\left.\alpha_{1} \alpha_{2} \cdots \alpha_{n}\right\}_{\mathrm{ms}}$. Furthermore, $A_{\mathrm{S}}^{\mathrm{T}} P+P A_{\mathrm{S}}+R=0$, where

$$
P \triangleq \operatorname{diag}\left(\alpha_{1} \alpha_{2} \cdots \alpha_{n}, \alpha_{1} \alpha_{2} \cdots \alpha_{n-1}, \ldots, \alpha_{1} \alpha_{2}, \alpha_{1}\right)
$$

and

$$
R \triangleq \operatorname{diag}\left(0, \ldots, 0,2 \alpha_{1}^{2}\right)
$$

Finally, A_{S} is asymptotically stable if and only if $\alpha_{1}, \ldots, \alpha_{n}>0$. (Remark: A_{S} is in Schwarz form.) (Proof: See [146, pp. 52, 95].) (Remark: See Fact 11.18.27 and Fact 11.18.26.)

Fact 11.18.26. Let $\alpha_{1}, \ldots, \alpha_{n}$ be real numbers, and define $A \in \mathbb{R}^{n \times n}$ by

$$
A=\left[\begin{array}{cccccc}
0 & 1 & 0 & \cdots & 0 & 0 \\
-\alpha_{n} & 0 & 1 & \cdots & 0 & 0 \\
0 & -\alpha_{n-1} & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 1 \\
0 & 0 & 0 & \cdots & -\alpha_{2} & \alpha_{1}
\end{array}\right]
$$

Then, $\operatorname{spec}(A) \subset$ ORHP if and only if $\alpha_{1}, \ldots, \alpha_{n}>0$. (Proof: See [711, p. 111].) (Remark: Note the absence of the minus sign in the (n, n) entry compared to the matrix in Fact 11.18.25. This minus sign changes the sign of all eigenvalues of A.)

Fact 11.18.27. Let $\alpha_{1}, \alpha_{2}, \alpha_{3}>0$, and define $A_{\mathrm{R}}, P, R \in \mathbb{R}^{3 \times 3}$ by the tridiagonal matrix

$$
A_{\mathrm{R}} \triangleq\left[\begin{array}{ccc}
-\alpha_{1} & \alpha_{2}^{1 / 2} & 0 \\
-\alpha_{2}^{1 / 2} & 0 & \alpha_{3}^{1 / 2} \\
0 & -\alpha_{3}^{1 / 2} & 0
\end{array}\right]
$$

and the diagonal matrices

$$
P \triangleq I, \quad R \triangleq \operatorname{diag}\left(2 \alpha_{1}, 0,0\right)
$$

Then, $A_{\mathrm{R}}^{\mathrm{T}} P+P A_{\mathrm{R}}+R=0$. (Remark: The matrix A_{R} is in Routh form. The Routh form A_{R} and the Schwarz form A_{S} are related by $A_{\mathrm{R}}=S_{\mathrm{RS}} A_{\mathrm{S}} S_{\mathrm{RS}}^{-1}$, where

$$
S_{\mathrm{RS}} \triangleq\left[\begin{array}{ccc}
0 & 0 & \alpha_{1}^{1 / 2} \\
0 & -\left(\alpha_{1} \alpha_{2}\right)^{1 / 2} & 0 \\
\left(\alpha_{1} \alpha_{2} \alpha_{3}\right)^{1 / 2} & 0 & 0
\end{array}\right]
$$

(Remark: See Fact 11.18 .25)
Fact 11.18.28. Let $\alpha_{1}, \alpha_{2}, \alpha_{3}>0$, and define $A_{\mathrm{C}}, P, R \in \mathbb{R}^{3 \times 3}$ by the tridiagonal matrix

$$
A_{\mathrm{C}} \triangleq\left[\begin{array}{ccc}
0 & 1 / a_{3} & 0 \\
-1 / a_{2} & 0 & 1 / a_{2} \\
0 & -1 / a_{1} & -1 / a_{1}
\end{array}\right]
$$

and the diagonal matrices

$$
P \triangleq \operatorname{diag}\left(a_{3}, a_{2}, a_{1}\right), \quad R \triangleq \operatorname{diag}(0,0,2)
$$

where $a_{1} \triangleq 1 / \alpha_{1}, a_{2} \triangleq \alpha_{1} / \alpha_{2}$, and $a_{3} \triangleq \alpha_{2} /\left(\alpha_{1} \alpha_{3}\right)$. Then, $A_{\mathrm{C}}^{\mathrm{T}} P+P A_{\mathrm{C}}+R=0$. (Remark: The matrix A_{C} is in Chen form.) The Schwarz form A_{S} and the Chen form A_{C} are related by $A_{\mathrm{S}}=S_{\mathrm{SC}} A_{\mathrm{C}} S_{\mathrm{SC}}^{-1}$, where

$$
S_{\mathrm{SC}} \triangleq\left[\begin{array}{ccc}
1 /\left(\alpha_{1} \alpha_{3}\right) & 0 & 0 \\
0 & 1 / \alpha_{2} & 0 \\
0 & 0 & 1 / \alpha_{1}
\end{array}\right] .
$$

(Proof: See [313, p. 346].) (Remark: The Schwarz, Routh, and Chen forms provide the basis for the Routh criterion. See [32, 268, 313, 1073].) (Remark: A circuit interpretation of the Chen form is given in 965.)

Fact 11.18.29. Let $\alpha_{1}, \ldots, \alpha_{n}>0$ and $\beta_{1}, \ldots, \beta_{n}>0$, and define $A \in \mathbb{R}^{n \times n}$ by

$$
A=\left[\begin{array}{ccccc}
-\alpha_{1} & 0 & \cdots & 0 & -\beta_{1} \\
\beta_{2} & -\alpha_{2} & \cdots & 0 & 0 \\
\vdots & \ddots & \ddots & \vdots & \vdots \\
0 & 0 & \ddots & -\alpha_{n-1} & 0 \\
0 & 0 & \cdots & \beta_{n} & -\alpha_{n}
\end{array}\right] .
$$

Then,

$$
\chi_{A}(s)=\left(s+\alpha_{1}\right)\left(s+\alpha_{2}\right) \cdots\left(s+\alpha_{n}\right)+\beta_{1} \beta_{2} \cdots \beta_{n} .
$$

Furthermore, if

$$
(\cos \pi / n)^{n}<\frac{\alpha_{1} \cdots \alpha_{n}}{\beta_{1} \cdots \beta_{n}},
$$

then A is asymptotically stable. (Remark: If $n=2$, then A is asymptotically stable for all positive $\alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}$.) (Proof: See [1213.) (Remark: This result is the secant condition.)

Fact 11.18.30. Let $A \in \mathbb{F}^{n \times n}$. Then, the following statements are equivalent:
i) A is asymptotically stable.
ii) There exist a negative-definite matrix $B \in \mathbb{F}^{n \times n}$, a skew-Hermitian matrix $C \in \mathbb{F}^{n \times n}$, and a nonsingular matrix $S \in \mathbb{F}^{n \times n}$ such that $A=B+S C S^{-1}$.
iii) There exist a negative-definite matrix $B \in \mathbb{F}^{n \times n}$, a skew-Hermitian matrix $C \in \mathbb{F}^{n \times n}$, and a nonsingular matrix $S \in \mathbb{F}^{n \times n}$ such that $A=S(B+C) S^{-1}$.
(Proof: See 370.)
Fact 11.18.31. Let $A \in \mathbb{R}^{n \times n}$, and let $k \geq 2$. Then, there exist asymptotically stable matrices $A_{1}, \ldots, A_{k} \in \mathbb{R}^{n \times n}$ such that $A=\sum_{i=1}^{k} A_{i}$ if and only if $\operatorname{tr} A<0$. (Proof: See [747].)

Fact 11.18.32. Let $A \in \mathbb{R}^{n \times n}$. Then, A is (Lyapunov stable, semistable, asymptotically stable) if and only if $A \oplus A$ is. (Proof: Use Fact 7.5.7 and the fact that $\operatorname{vec}\left(e^{t A} V e^{t A^{*}}\right)=e^{t(A \oplus \bar{A})} \operatorname{vec} V$.)

Fact 11.18.33. Let $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{m \times m}$. Then, the following statements hold:
i) If A and B are (Lyapunov stable, semistable, asymptotically stable), then so is $A \oplus B$.
ii) If $A \oplus B$ is (Lyapunov stable, semistable, asymptotically stable), then so is either A or B.
(Proof: Use Fact 7.5.7)
Fact 11.18.34. Let $A \in \mathbb{R}^{n \times n}$, and assume that A is asymptotically stable. Then,

$$
(A \oplus A)^{-1}=\int_{-\infty}^{\infty}(\jmath \omega I-A)^{-1} \otimes(\jmath \omega I-A)^{-1} \mathrm{~d} \omega
$$

and

$$
\int_{-\infty}^{\infty}\left(\omega^{2} I+A^{2}\right) \mathrm{d} \omega=-\pi A^{-1}
$$

(Proof: Use $(\jmath \omega I-A)^{-1}+(-\jmath \omega I-A)^{-1}=-2 A\left(\omega^{2} I+A^{2}\right)^{-1}$.)
Fact 11.18.35. Let $A \in \mathbb{R}^{2 \times 2}$. Then, A is asymptotically stable if and only if $\operatorname{tr} A<0$ and $\operatorname{det} A>0$.

Fact 11.18.36. Let $A \in \mathbb{C}^{n \times n}$. Then, there exists a unique asymptotically stable matrix $B \in \mathbb{C}^{n \times n}$ such that $B^{2}=-A$. (Remark: This result is stated in 1231. The uniqueness of the square root for complex matrices that have no eigenvalues in $(-\infty, 0]$ is implicitly assumed in [1232].) (Remark: See Fact 5.15.19)

Fact 11.18.37. Let $A \in \mathbb{R}^{n \times n}$. Then, the following statements hold:
i) If A is semidissipative, then A is Lyapunov stable.
ii) If A is dissipative, then A is asymptotically stable.
iii) If A is Lyapunov stable and normal, then A is semidissipative.
$i v)$ If A is asymptotically stable and normal, then A is dissipative.
$v)$ If A is discrete-time Lyapunov stable and normal, then A is semicontractive.

Fact 11.18.38. Let $M \in \mathbb{R}^{r \times r}$, assume that M is positive definite, let $C, K \in$ $\mathbb{R}^{r \times r}$, assume that C and K are positive semidefinite, and consider the equation

$$
M \ddot{q}+C \dot{q}+K q=0 .
$$

Furthermore, define

$$
A \triangleq\left[\begin{array}{cc}
0 & I \\
-M^{-1} K & -M^{-1} C
\end{array}\right]
$$

Then, the following statements hold:
i) A is Lyapunov stable if and only if $C+K$ is positive definite.
ii) A is Lyapunov stable if and only if $\operatorname{rank}\left[\begin{array}{c}C \\ K\end{array}\right]=r$.
iii) A is semistable if and only if $\left(M^{-1} K, C\right)$ is observable.
iv) A is asymptotically stable if and only if A is semistable and K is positive definite.
(Proof: See [186.) (Remark: See Fact 5.12.21)

11.19 Facts on Almost Nonnegative Matrices

Fact 11.19.1. Let $A \in \mathbb{R}^{n \times n}$. Then, $e^{t A}$ is nonnegative for all $t \geq 0$ if and only if A is almost nonnegative. (Proof: Let $\alpha>0$ be such that $\alpha I+A$ is nonnegative, and consider $e^{t(\alpha I+A)}$. See [181, p. 74], [182, p. 146], [190, 365], or [1197, p. 37].)

Fact 11.19.2. Let $A \in \mathbb{R}^{n \times n}$, and assume that A is almost nonnegative. Then, $e^{t A}$ is positive for all $t>0$ if and only if A is irreducible. (Proof: See [1184, p. 208].)

Fact 11.19.3. Let $A \in \mathbb{R}^{n \times n}$, where $n \geq 2$, and assume that A is almost nonnegative. Then, the following statements are equivalent:
i) There exist $\alpha \in(0, \infty)$ and $B \in \mathbb{R}^{n \times n}$ such that $A=B-\alpha I, B$ is nonnegative, and $\operatorname{sprad}(B) \leq \alpha$.
ii) $\operatorname{spec}(A) \subset \mathrm{OLHP} \cup\{0\}$.
iii) $\operatorname{spec}(A) \subset$ CLHP.
iv) If $\lambda \in \operatorname{spec}(A)$ is real, then $\lambda \leq 0$.
v) Every principal subdeterminant of $-A$ is nonnegative.
$v i$) For every diagonal, positive-definite matrix $B \in \mathbb{R}^{n \times n}$, it follows that $A-B$ is nonsingular.
(Example: $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$.) (Remark: A is an N-matrix if A is almost nonnegative and $i)-v i$) hold.) (Remark: This result follows from Fact 4.11.6.)

Fact 11.19.4. Let $A \in \mathbb{R}^{n \times n}$, where $n \geq 2$, and assume that A is almost nonnegative. Then, the following conditions are equivalent:
i) A is a group-invertible N-matrix.
ii) A is a Lyapunov-stable N -matrix.
iii) A is a semistable N-matrix.
$i v) ~ A$ is Lyapunov stable.
v) A is semistable.
vi) A is an N-matrix, and there exist $\alpha \in(0, \infty)$ and a nonnegative matrix $B \in \mathbb{R}^{n \times n}$ such that $A=B-\alpha I$ and $\alpha^{-1} B$ is discrete-time semistable.
vii) There exists a positive-definite matrix $P \in \mathbb{R}^{n \times n}$ such that $A^{\mathrm{T}} P+P A$ is negative semidefinite.
Furthermore, consider the following statements:
viii) There exists a positive vector $p \in \mathbb{R}^{n}$ such that $-A p$ is nonnegative.
$i x)$ There exists a nonzero nonnegative vector $p \in \mathbb{R}^{n}$ such that $-A p$ is nonnegative.

Then, viii) $\Longrightarrow[i)-v i i)] \Longrightarrow i x)$. (Proof: See [182, pp. 152-155] and [183]. The statement $[i)-v i i)] \Longrightarrow i x)$ is given by Fact 4.11.10, (Remark: The converse of
$v i i i) \Longrightarrow[i)-v i i)]$ does not hold. For example, $A=\left[\begin{array}{cc}0 & 1 \\ 0 & -1\end{array}\right]$ is almost negative and semistable, but there does not exist a positive vector $p \in \mathbb{R}^{2}$ such that $-A p$ is nonnegative. However, note that viii) holds for A^{T}, but not for $\operatorname{diag}\left(A, A^{\mathrm{T}}\right)$ or its transpose.) (Remark: A discrete-time semistable matrix is called semiconvergent in [182, p. 152].) (Remark: The last statement follows from the fact that the function $V(x)=p^{\mathrm{T}} x$ is a Lyapunov function for the system $\dot{x}=-A x$ for $x \in[0, \infty)^{n}$ with Lyapunov derivative $\dot{V}(x)=-A^{\mathrm{T}} p$. See [187, 615].)

Fact 11.19.5. Let $A \in \mathbb{R}^{n \times n}$, where $n \geq 2$, and assume that A is almost nonnegative. Then, the following conditions are equivalent:
i) A is a nonsingular N-matrix.
ii) A is asymptotically stable.
iii) A is an asymptotically stable N -matrix.
iv) There exist $\alpha \in(0, \infty)$ and a nonnegative matrix $B \in \mathbb{R}^{n \times n}$ such that $A=B-\alpha I$ and $\operatorname{sprad}(B)<\alpha$.
$v)$ If $\lambda \in \operatorname{spec}(A)$ is real, then $\lambda<0$.
vi) If $B \in \mathbb{R}^{n \times n}$ is nonnegative and diagonal, then $A-B$ is nonsingular.
vii) Every principal subdeterminant of $-A$ is positive.
viii) Every leading principal subdeterminant of $-A$ is positive.
$i x)$ For all $i=1, \ldots, n$, the sign of the i th leading principal subdeterminant of A is $(-1)^{i}$.
$x)$ For all $k \in\{1, \ldots, n\}$, the sum of all $k \times k$ principal subdeterminants of $-A$ is positive.
xi) There exists a positive-definite matrix $P \in \mathbb{R}^{n \times n}$ such that $A^{\mathrm{T}} P+P A$ is negative definite.
xii) There exists a positive vector $p \in \mathbb{R}^{n}$ such that $-A p$ is positive.
xiii) There exists a nonnegative vector $p \in \mathbb{R}^{n}$ such that $-A p$ is positive.
xiv) If $p \in \mathbb{R}^{n}$ and $-A p$ is nonnegative, then $p \geq \geq 0$ is nonnegative.
$x v$) For every nonnegative vector $y \in \mathbb{R}^{n}$, there exists a unique nonnegative vector $x \in \mathbb{R}^{n}$ such that $A x=-y$.
xvi) A is nonsingular and $-A^{-1}$ is nonnegative.
(Proof: See [181, pp. 134-140] or [711, pp. 114-116].) (Remark: $-A$ is a nonsingular M-matrix. See Fact 4.11.6.)

Fact 11.19.6. For $i, j=1, \ldots, n$, let $\sigma_{i j} \in[0, \infty)$, and define $A \in \mathbb{R}^{n \times n}$ by $A_{(i, j)} \triangleq \sigma_{i j}$ for all $i \neq j$ and $A_{(i, i)} \triangleq-\sum_{j=1}^{n} \sigma_{i j}$. Then, the following statements hold:
i) A is almost nonnegative.
ii) $-A 1_{n \times 1}=\left[\begin{array}{lll}\sigma_{11} & \ldots & \sigma_{n n}\end{array}\right]^{\mathrm{T}}$ is nonnegative.
iii) $\operatorname{spec}(A) \subset$ OLHP $\cup\{0\}$.
iv) A is an N-matrix.
v) A is a group-invertible N-matrix.
$v i) A$ is a Lyapunov-stable N-matrix.
vii) A is a semistable N-matrix.

If, in addition, $\sigma_{11}, \ldots, \sigma_{n n}$ are positive, then A is a nonsingular N-matrix. (Proof: It follows from the Gershgorin circle theorem given by Fact4.10.16 that every eigenvalue λ of A is an element of a disk in \mathbb{C} centered at $-\sum_{j=1}^{n} \sigma_{i j} \leq 0$ and with radius $\sum_{j=1, j \neq i}^{n} \sigma_{i j}$. Hence, if $\sigma_{i i}=0$, then either $\lambda=0$ or $\operatorname{Re} \lambda<0$, whereas, if $\sigma_{i i}>0$, then $\operatorname{Re} \lambda \leq \sigma_{i i}<0$. Thus, iii) holds. Statements $\left.\left.i v\right)-v i i\right)$ follow from $\left.i i\right)$ and Fact 11.19.4. The last statement follows from the Gershgorin circle theorem.) (Remark: A^{T} is a compartmental matrix. See [190, 617, 1387].) (Problem: Determine necessary and sufficient conditions on the parameters $\sigma_{i j}$ such that A is a nonsingular N-matrix.)

Fact 11.19.7. Let $\mathcal{G}=(\mathcal{X}, \mathcal{R})$ be a graph, where $\mathcal{X}=\left\{x_{1}, \ldots, x_{n}\right\}$, and let $L \in \mathbb{R}^{n \times n}$ denote either the in-Laplacian or the out-Laplacian of \mathcal{G}. Then, the following statements hold:
i) $-L$ is semistable.
ii) $\lim _{t \rightarrow \infty} e^{-L t}$ exists.
(Remark: Use Fact 11.19.6) (Remark: The spectrum of the Laplacian is discussed in 7. 7 .)

Fact 11.19.8. Let $A \in \mathbb{R}^{n \times n}$, and assume that A is asymptotically stable. Then, at least one of the following statements holds:
$i)$ All of the diagonal entries of A are negative.
ii) At least one diagonal entry of A is negative and at least one off-diagonal entry of A is negative.
(Proof: See 506.) (Remark: sign stability is discussed in 751.)

11.20 Facts on Discrete-Time-Stable Polynomials

Fact 11.20.1. Let $p \in \mathbb{R}[s]$, where $p(s)=s^{n}+a_{n-1} s^{n-1}+\cdots+a_{0}$. Then, the following statements hold:
i) If $n=1$, then p is discrete-time asymptotically stable if and only if $\left|a_{0}\right|<1$.
ii) If $n=2$, then p is discrete-time asymptotically stable if and only if $\left|a_{0}\right|<1$ and $\left|a_{1}\right|<1+a_{0}$.
iii) If $n=3$, then p is discrete-time asymptotically stable if and only if $\left|a_{0}\right|<1$, $\left|a_{0}+a_{2}\right|<\left|1+a_{1}\right|$, and $\left|a_{1}-a_{0} a_{2}\right|<1-a_{0}^{2}$.
(Remark: These results are the Schur-Cohn criterion. See [136, p. 185]. Conditions
for polynomials of arbitrary degree n follow from the Jury test. See [313, 782.) (Remark: For $n=3$, an alternative form is given in [690 p. 355].)

Fact 11.20.2. Let $p \in \mathbb{C}[s]$, where $p(s)=s^{n}+a_{n-1} s^{n-1}+\cdots+a_{0}$, and define $\hat{p} \in \mathbb{C}[s]$ by

$$
\hat{p}(s) \triangleq z^{n-1}+\frac{a_{n-1}-a_{0} \bar{a}_{1}}{1-\left|a_{0}\right|^{2}} z^{n-1}+\frac{a_{n-2}-a_{0} \bar{a}_{2}}{1-\left|a_{0}\right|^{2}} z^{n-2}+\cdots+\frac{a_{1}-a_{0} \bar{a}_{n-1}}{1-\left|a_{0}\right|^{2}}
$$

Then, p is discrete-time asymptotically stable if and only if $\left|a_{0}\right|<1$ and \hat{p} is discrete-time asymptotically stable. (Proof: See [690, p. 354].)

Fact 11.20.3. Let $p \in \mathbb{R}[s]$, where $p(s)=s^{n}+a_{n-1} s^{n-1}+\cdots+a_{0}$. Then, the following statements hold:
i) If $a_{0} \leq \cdots \leq a_{n-1} \leq 1$, then $\operatorname{roots}(p) \subset\left\{z \in \mathbb{C}:|z| \leq 1+\left|a_{0}\right|-a_{0}\right\}$.
ii) If $0<a_{0} \leq \cdots \leq a_{n-1} \leq 1$, then $\operatorname{roots}(p) \subset$ CUD.
iii) If $0<a_{0}<\cdots<a_{n-1}<1$, then p is discrete-time asymptotically stable.
(Proof: For i), see [1189]. For $i i$), see [1004, p. 272]. For $i i i$), use Fact 11.20.2, See [690, p. 355].) (Remark: If there exists $r>0$ such that $0<r a_{0}<\cdots<$ $r^{n-1} a_{n-1}<r^{n}$, then $\operatorname{roots}(p) \subset\{z \in \mathbb{C}:|z| \leq r\}$.) (Remark: Statement $i i$) is the Enestrom-Kakeya theorem.)

Fact 11.20.4. Let $p \in \mathbb{C}[s]$, where $p(s)=s^{n}+a_{n-1} s^{n-1}+\cdots+a_{0}$, assume that a_{0}, \ldots, a_{n-1} are nonzero, and let $\lambda \in \operatorname{roots}(p)$. Then,

$$
|\lambda| \leq \max \left\{2\left|a_{n-1}\right|, 2\left|a_{n-2} / a_{n-1}\right|, \ldots, 2\left|a_{1} / a_{2}\right|,\left|a_{0} / a_{1}\right|\right\}
$$

(Remark: This result is due to Bourbaki. See [1005].)
Fact 11.20.5. Let $p \in \mathbb{C}[s]$, where $p(s)=s^{n}+a_{n-1} s^{n-1}+\cdots+a_{0}$, assume that a_{0}, \ldots, a_{n-1} are nonzero, and let $\lambda \in \operatorname{roots}(p)$. Then,

$$
|\lambda| \leq \sum_{i=1}^{n-1}\left|a_{i}\right|^{1 /(n-i)}
$$

and

$$
\left|\lambda+\frac{1}{2} a_{n-1}\right| \leq \frac{1}{2}\left|a_{n-1}\right|+\sum_{i=0}^{n-2}\left|a_{i}\right|^{1 /(n-i)} .
$$

(Remark: These results are due to Walsh. See 1005.)
Fact 11.20.6. Let $p \in \mathbb{C}[s]$, where $p(s)=s^{n}+a_{n-1} s^{n-1}+\cdots+a_{0}$, and let $\lambda \in \operatorname{roots}(p)$. Then,

$$
\frac{\left|a_{0}\right|}{\left|a_{0}\right|+\max \left\{\left|a_{1}\right|, \ldots,\left|a_{n-1}\right|, 1\right\}}<|\lambda| \leq \max \left\{\left|a_{0}\right|, 1+\left|a_{1}\right|, \ldots, 1+\left|a_{n-1}\right|\right\}
$$

(Proof: The lower bound is proved in [1005, while the upper bound is proved in [401].) (Remark: The upper bound is Cauchy's estimate.) (Remark: The weaker upper bound

$$
|\lambda|<1+\max _{i=0, \ldots, n-1}\left|a_{i}\right|
$$

is given in [136, p. 184] and 1005.)
Fact 11.20.7. Let $p \in \mathbb{C}[s]$, where $p(s)=s^{n}+a_{n-1} s^{n-1}+\cdots+a_{0}$, and let $\lambda \in \operatorname{roots}(p)$. Then,

$$
\begin{gathered}
|\lambda| \leq \frac{1}{2}\left(1+\left|a_{n-1}\right|\right)+\sqrt{\max _{i=0, \ldots, n-2}\left|a_{i}\right|+\frac{1}{4}\left(1-\left|a_{n-1}\right|\right)^{2}}, \\
|\lambda| \leq \max \left\{2,\left|a_{0}\right|+\left|a_{n-1}\right|,\left|a_{1}\right|+\left|a_{n-1}\right|, \ldots,\left|a_{n-2}\right|+\left|a_{n-1}\right|\right\}, \\
|\lambda| \leq \sqrt{2+\max _{i=0, \ldots, n-2}\left|a_{i}\right|^{2}+\left|a_{n-1}\right|^{2}} .
\end{gathered}
$$

(Proof: See [401.) (Remark: The first inequality is due to Joyal, Labelle, and Rahman. See [1005.)

Fact 11.20.8. Let $p \in \mathbb{C}[s]$, where $p(s)=s^{n}+a_{n-1} s^{n-1}+\cdots+a_{0}$, assume that a_{0}, \ldots, a_{n-1} are nonzero, define

$$
\alpha \triangleq \max \left\{\left|\frac{a_{0}}{a_{1}}\right|,\left|\frac{a_{1}}{a_{2}}\right|, \ldots,\left|\frac{a_{n-2}}{a_{n-1}}\right|\right\}
$$

and

$$
\beta \triangleq \max \left\{\left|\frac{a_{1}}{a_{2}}\right|,\left|\frac{a_{2}}{a_{3}}\right|, \ldots,\left|\frac{a_{n-2}}{a_{n-1}}\right|\right\},
$$

and let $\lambda \in \operatorname{roots}(p)$. Then,

$$
\begin{gathered}
|\lambda| \leq \frac{1}{2}\left(\beta+\left|a_{n-1}\right|\right)+\sqrt{\alpha\left|a_{n-1}\right|+\frac{1}{4}\left(\beta-\left|a_{n-1}\right|\right)^{2}}, \\
|\lambda| \leq\left|a_{n-1}\right|+\alpha, \\
|\lambda| \leq \max \left\{\left|\frac{a_{0}}{a_{1}}\right|, 2 \beta, 2\left|a_{n-1}\right|\right\}, \\
|\lambda| \leq 2 \max _{i=1, \ldots, n-1}\left|a_{i}\right|^{1 /(n-i)}, \\
|\lambda| \leq \sqrt{2\left|a_{n-1}\right|^{2}+\alpha^{2}+\beta^{2}} .
\end{gathered}
$$

(Proof: See [401, 918.) (Remark: The third inequality is Kojima's bound, while the fourth inequality is Fujiwara's bound.)

Fact 11.20.9. Let $p \in \mathbb{C}[s]$, where $p(s)=s^{n}+a_{n-1} s^{n-1}+\cdots+a_{0}$, define $\alpha \triangleq 1+\sum_{i=0}^{n-1}\left|a_{i}\right|^{2}$, and let $\lambda \in \operatorname{roots}(p)$. Then,

$$
|\lambda| \leq \frac{1}{n}\left|a_{n-1}\right|+\sqrt{\frac{n}{n-1}\left(n-1+\sum_{i=0}^{n-1}\left|a_{i}\right|^{2}-\frac{1}{n}\left|a_{n-1}\right|^{2}\right)}
$$

$$
\begin{gathered}
|\lambda| \leq \frac{1}{2}\left(\left|a_{n-1}\right|+1+\sqrt{\left(\left|a_{n-1}\right|-1\right)^{2}+4 \sqrt{\sum_{i=0}^{n-2}\left|a_{i}\right|^{2}}}\right) \\
|\lambda| \leq \frac{1}{2}\left(\left|a_{n-1}\right|+\cos \frac{\pi}{n}+\sqrt{\left(\left|a_{n-1}\right|-\cos \frac{\pi}{n}\right)^{2}+\left(\left|a_{n-2}\right|+1\right)^{2}+\sum_{i=0}^{n-3}\left|a_{i}\right|^{2}}\right) \\
|\lambda| \leq \cos \frac{\pi}{n+1}+\frac{1}{2}\left(\left|a_{n-1}\right|+\sqrt{\sum_{i=0}^{n-1}\left|a_{i}\right|^{2}}\right)
\end{gathered}
$$

and

$$
\sqrt{\frac{1}{2}\left(\alpha-\sqrt{\alpha^{2}-4\left|a_{0}\right|^{2}}\right)} \leq|\lambda| \leq \sqrt{\frac{1}{2}\left(\alpha+\sqrt{\alpha^{2}-4\left|a_{0}\right|^{2}}\right)}
$$

Furthermore,
$|\operatorname{Re} \lambda| \leq \frac{1}{2}\left(\left|\operatorname{Re} a_{n-1}\right|+\cos \frac{\pi}{n}+\sqrt{\left(\left|\operatorname{Re} a_{n-1}\right|-\cos \frac{\pi}{n}\right)^{2}+\left(\left|a_{n-2}\right|-1\right)^{2}+\sum_{i=0}^{n-3}\left|a_{i}\right|^{2}}\right)$
and
$|\operatorname{Im} \lambda| \leq \frac{1}{2}\left(\left|\operatorname{Im} a_{n-1}\right|+\cos \frac{\pi}{n}+\sqrt{\left(\left|\operatorname{Im} a_{n-1}\right|-\cos \frac{\pi}{n}\right)^{2}+\left(\left|a_{n-2}\right|+1\right)^{2}+\sum_{i=0}^{n-3}\left|a_{i}\right|^{2}}\right)$.
(Proof: See [514, 822, 826, 918].) (Remark: The first bound is due to Linden (see [826]), the fourth bound is due to Fujii and Kubo, and the upper bound in the fifth result, which follows from Fact 5.11.21 and Fact 5.11.30, is due to Parodi, see also [802, 817].) (Remark: The Parodi bound is a refinement of the Carmichael-Mason Bound. See Fact 11.20.10)

Fact 11.20.10. Let $p \in \mathbb{C}[s]$, where $p(s)=s^{n}+a_{n-1} s^{n-1}+\cdots+a_{0}$, let $r, q \in$ $(1, \infty)$, assume that $1 / r+1 / q=1$, define $\alpha \triangleq\left(\sum_{i=0}^{n-1}\left|a_{i}\right|^{r}\right)^{1 / r}$, and let $\lambda \in \operatorname{roots}(p)$. Then,

$$
|\lambda| \leq\left(1+\alpha^{q}\right)^{1 / q}
$$

In particular, if $r=q=2$, then

$$
|\lambda| \leq \sqrt{1+\left|a_{n-1}\right|^{2}+\cdots+\left|a_{0}\right|^{2}}
$$

(Proof: See 918 1005].) (Remark: Letting $r \rightarrow \infty$ yields the upper bound in Fact 11.20.6, (Remark: The result for $r=q=2$ is due to Carmichael and Mason.)

Fact 11.20.11. Let $p \in \mathbb{C}[s]$, where $p(s)=s^{n}+a_{n-1} s^{n-1}+\cdots+a_{0}$, let $\operatorname{mroots}(p)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}_{\mathrm{ms}}$, and let $r>0$ be the unique positive root of $\hat{p}(s) \triangleq$ $s^{n}-\left|a_{n-1}\right| s^{n-1}-\cdots-\left|a_{0}\right|$. Then,

$$
r(\sqrt[n]{2}-1) \leq \max _{i=1, \ldots, n}\left|\lambda_{i}\right| \leq r
$$

Furthermore,

$$
r(\sqrt[n]{2}-1) \leq \frac{1}{n} \sum_{i=1}^{n}\left|\lambda_{i}\right|<r
$$

Finally, the third inequality is an equality if and only if $\lambda_{1}=\cdots=\lambda_{n}$. (Remark: The first inequality is due to Cohn, the second inequality is due to Cauchy, and the third and fourth inequalities are due to Berwald. See [1005] and [1004, p. 245].)

Fact 11.20.12. Let $p \in \mathbb{C}[s]$, where $p(s)=s^{n}+a_{n-1} s^{n-1}+\cdots+a_{0}$, define $\alpha \triangleq 1+\sum_{i=0}^{n-1}\left|a_{i}\right|^{2}$, and let $\lambda \in \operatorname{roots}(p)$. Then,

$$
\sqrt{\frac{1}{2}\left(\alpha-\sqrt{\alpha^{2}-4\left|a_{0}\right|^{2}}\right)} \leq|\lambda| \leq \sqrt{\frac{1}{2}\left(\alpha+\sqrt{\alpha^{2}-4\left|a_{0}\right|^{2}}\right)} .
$$

(Proof: See [823. The result follows from Fact 5.11.29 and Fact 5.11.30)
Fact 11.20.13. Let $p \in \mathbb{R}[s]$, where $p(s)=s^{n}+a_{n-1} s^{n-1}+\cdots+a_{0}$, assume that a_{0}, \ldots, a_{n-1} are nonnegative, and let $x_{1}, \ldots, x_{m} \in[0, \infty)$. Then,

$$
p\left(\sqrt[m]{x_{1} \cdots x_{m}}\right) \leq \sqrt[m]{p\left(x_{1}\right) \cdots p\left(x_{m}\right)}
$$

(Proof: See 1040.) (Remark: This result, which is due to Mihet, extends a result of Huygens for the case $p(x)=x+1$.)

11.21 Facts on Discrete-Time-Stable Matrices

Fact 11.21.1. Let $A \in \mathbb{R}^{2 \times 2}$. Then, A is discrete-time asymptotically stable if and only if $|\operatorname{tr} A|<1+\operatorname{det} A$ and $|\operatorname{det} A|<1$.

Fact 11.21.2. Let $A \in \mathbb{F}^{n \times n}$. Then, A is discrete-time (Lyapunov stable, semistable, asymptotically stable) if and only if A^{2} is.

Fact 11.21.3. Let $A \in \mathbb{R}^{n \times n}$, and let $\chi_{A}(s)=s^{n}+a_{n-1} s^{n-1}+\cdots+a_{1} s+a_{0}$. Then, for all $k \geq 0$,

$$
A^{k}=x_{1}(k) I+x_{2}(k) A+\cdots+x_{n}(k) A^{n-1}
$$

where, for all $i=1, \ldots, n$ and all $k \geq 0, x_{i}: \mathbb{N} \mapsto \mathbb{R}$ satisfies

$$
x_{i}(k+n)+a_{n-1} x_{i}(k+n-1)+\cdots+a_{1} x_{i}(k+1)+a_{0} x_{i}(k)=0,
$$

with, for all $i, j=1, \ldots, n$, the initial conditions

$$
x_{i}(j-1)=\delta_{i j} .
$$

(Proof: See [853].)
Fact 11.21.4. Let $A \in \mathbb{R}^{n \times n}$. Then, the following statements hold:
i) If A is semicontractive, then A is discrete-time Lyapunov stable.
${ }^{i i}$) If A is contractive, then A is discrete-time asymptotically stable.
iii) If A is discrete-time Lyapunov stable and normal, then A is semicontractive.
$i v)$ If A is discrete-time asymptotically stable and normal, then A is contractive.
(Problem: Prove these results by using Fact 11.15.6.)
Fact 11.21.5. Let $A \in \mathbb{F}^{n \times n}$. Then, A is discrete-time (Lyapunov stable, semistable, asymptotically stable) if and only if $A \otimes A$ is. (Proof: Use Fact 7.4.15.)

Fact 11.21.6. Let $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{m \times m}$. Then, the following statements hold:
i) If A and B are discrete-time (Lyapunov stable, semistable, asymptotically stable), then $A \otimes B$ is discrete-time (Lyapunov stable, semistable, asymptotically stable).
ii) If $A \otimes B$ is discrete-time (Lyapunov stable, semistable, asymptotically stable), then either A or B is discrete-time (Lyapunov stable, semistable, asymptotically stable).
(Proof: Use Fact 7.4.15.)
Fact 11.21.7. Let $A \in \mathbb{R}^{n \times n}$, and assume that A is (Lyapunov stable, semistable, asymptotically stable). Then, e^{A} is discrete-time (Lyapunov stable, semistable, asymptotically stable). (Problem: If $B \in \mathbb{R}^{n \times n}$ is discrete-time (Lyapunov stable, semistable, asymptotically stable), when does there exist a (Lyapunovstable, semistable, asymptotically stable) matrix $A \in \mathbb{R}^{n \times n}$ such that $B=e^{A}$? See Proposition 11.4.3.)

Fact 11.21.8. The following statements hold:
i) If $A \in \mathbb{R}^{n \times n}$ is discrete-time asymptotically stable, then $B \triangleq(A+I)^{-1}(A-$ I) is asymptotically stable.
ii) If $B \in \mathbb{R}^{n \times n}$ is asymptotically stable, then $A \triangleq(I+B)(I-B)^{-1}$ is discrete-time asymptotically stable.
iii) If $A \in \mathbb{R}^{n \times n}$ is discrete-time asymptotically stable, then there exists a unique asymptotically stable matrix $B \in \mathbb{R}^{n \times n}$ such that $A=(I+B)(I-$ $B)^{-1}$. In fact, $B=(A+I)^{-1}(A-I)$.
iv) If $B \in \mathbb{R}^{n \times n}$ is asymptotically stable, then there exists a unique discretetime asymptotically stable matrix $A \in \mathbb{R}^{n \times n}$ such that $B=(A+I)^{-1}(A-$ $I)$. In fact, $A=(I+B)(I-B)^{-1}$.
(Proof: See [657].) (Remark: For additional results on the Cayley transform, see Fact 3.11.29, Fact 3.11.28, Fact 3.11.30, Fact 3.19.12, and Fact 8.9.30.) (Problem: Obtain analogous results for Lyapunov-stable and semistable matrices.)

Fact 11.21.9. Let $\left[\begin{array}{cc}P_{1} & P_{12} \\ P_{12}^{\mathrm{T}} & P_{2}\end{array}\right] \in \mathbb{R}^{2 n \times 2 n}$ be positive definite, where $P_{1}, P_{12}, P_{2} \in$ $\mathbb{R}^{n \times n}$. If $P_{1} \geq P_{2}$, then $A \triangleq P_{1}^{-1} P_{12}^{\mathrm{T}}$ is discrete-time asymptotically stable, while,
if $P_{2} \geq P_{1}$, then $A \triangleq P_{2}^{-1} P_{12}$ is discrete-time asymptotically stable. (Proof: If $P_{1} \geq P_{2}$, then $P_{1}-P_{12} P_{1}^{-1} P_{1} P_{1}^{-1} P_{12}^{\mathrm{T}} \geq P_{1}-P_{12} P_{2}^{-2} P_{12}^{\mathrm{T}}>0$. See 334.)

Fact 11.21.10. Let $A \in \mathbb{R}^{n \times n}$, and let $\|\cdot\|$ be a norm on $\mathbb{R}^{n \times n}$. Then, the following statements hold:
i) A is discrete-time Lyapunov stable if and only if $\left\{\left\|A^{k}\right\|\right\}_{k=0}^{\infty}$ is bounded.
ii) A is discrete-time semistable if and only if $A_{\infty} \triangleq \lim _{k \rightarrow \infty} A^{k}$ exists.
iii) Assume that A is discrete-time semistable. Then, $A_{\infty} \triangleq I-(A-I)(A-I)^{\#}$ is idempotent and $\operatorname{rank} A_{\infty}=\operatorname{amult}_{A}(1)$. If, in addition, $\operatorname{rank} A=1$, then, for every eigenvector x of A associated with the eigenvalue 1 , there exists $y \in \mathbb{F}^{n}$ such that $y^{*} x=1$ and $A_{\infty}=x y^{*}$.
iv) A is discrete-time asymptotically stable if and only if $\lim _{k \rightarrow \infty} A^{k}=0$.
(Remark: A proof of $i i$) is given in [998, p. 640]. See Fact 11.21.14.)
Fact 11.21.11. Let $A \in \mathbb{F}^{n \times n}$. Then, A is discrete-time Lyapunov stable if and only if

$$
A_{\infty} \triangleq \lim _{k \rightarrow \infty} \frac{1}{k} \sum_{i=0}^{k-1} A^{i}
$$

exists. In this case,

$$
A_{\infty}=I-(A-I)(A-I)^{\#}
$$

(Proof: See [998, p. 633].) (Remark: A is Cesaro summable.) (Remark: See Fact 6.3.34)

Fact 11.21.12. Let $A \in \mathbb{F}^{n \times n}$. Then, A is discrete-time asymptotically stable if and only if

$$
\lim _{k \rightarrow \infty} A^{k}=0
$$

In this case,

$$
(I-A)^{-1}=\sum_{i=1}^{\infty} A^{i}
$$

where the series converges absolutely.
Fact 11.21.13. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is unitary. Then, A is discrete-time Lyapunov stable.

Fact 11.21.14. Let $A, B \in \mathbb{R}^{n \times n}$, assume that A is discrete-time semistable, and let $A_{\infty} \triangleq \lim _{k \rightarrow \infty} A^{k}$. Then,

$$
\lim _{k \rightarrow \infty}\left(A+\frac{1}{k} B\right)^{k}=A_{\infty} e^{A_{\infty} B A_{\infty}}
$$

(Proof: See 233, 1429].) (Remark: If A is idempotent, then $A_{\infty}=A$. The existence of A_{∞} is guaranteed by Fact 11.21 .10 , which also implies that A_{∞} is idempotent.)

Fact 11.21.15. Let $A \in \mathbb{R}^{n \times n}$. Then, the following statements hold:
i) A is discrete-time Lyapunov stable if and only if there exists a positivedefinite matrix $P \in \mathbb{R}^{n \times n}$ such that $P-A^{\mathrm{T}} P A$ is positive semidefinite.
ii) A is discrete-time asymptotically stable if and only if there exists a positivedefinite matrix $P \in \mathbb{R}^{n \times n}$ such that $P-A^{\mathrm{T}} P A$ is positive definite.
(Remark: The discrete-time Lyapunov equation or the Stein equation is $P=A^{\mathrm{T}} P A+$ R.)

Fact 11.21.16. Let $\left(A_{k}\right)_{k=0}^{\infty} \subset \mathbb{R}^{n \times n}$ and, for $k \in \mathbb{N}$, consider the discretetime, time-varying system

$$
x_{k+1}=A_{k} x_{k} .
$$

Furthermore, assume there exist real numbers $\beta \in(0,1), \gamma>0$, and $\varepsilon>0$ such that, for all $k \in \mathbb{N}$,

$$
\begin{gathered}
\operatorname{sprad}\left(A_{k}\right)<\beta \\
\left\|A_{k}\right\|<\gamma \\
\left\|A_{k+1}-A_{k}\right\|<\varepsilon
\end{gathered}
$$

where $\|\cdot\|$ is a norm on $\mathbb{R}^{n \times n}$. Then, $x_{k} \rightarrow 0$ as $k \rightarrow \infty$. (Proof: See 642, pp. 170-173].) (Remark: This result arises from the theory of infinite matrix products. See [76, 230, 231, 375, 608, 704, 861.)

Fact 11.21.17. Let $A \in \mathbb{F}^{n \times n}$, and define

$$
r(A) \triangleq \sup _{\{z \in \mathbb{C}:|z|>1\}} \frac{|z|-1}{\sigma_{\min }(z I-A)} .
$$

Then,

$$
r(A) \leq \sup _{k \geq 0} \sigma_{\max }\left(A^{k}\right) \leq n e r(A)
$$

Hence, if A is discrete-time Lyapunov stable, then $r(A)$ is finite. (Proof: See 1413.) (Remark: This result is the Kreiss matrix theorem.) (Remark: The constant en is the best possible. See [1413].)

Fact 11.21.18. Let $p \in \mathbb{R}[s]$, and assume that p is discrete-time semistable. Then, $C(p)$ is discrete-time semistable, and there exists $v \in \mathbb{R}^{n}$ such that

$$
\lim _{k \rightarrow \infty} C^{k}(p)=1_{n \times 1} v^{\mathrm{T}}
$$

(Proof: Since $C(p)$ is a companion form matrix, it follows from Proposition 11.10.4 that its minimal polynomial is p. Hence, $C(p)$ is discrete-time semistable. Now, it follows from Proposition 11.10 .2 that $\lim _{k \rightarrow \infty} C^{k}(p)$ exists, and thus the state x_{k} of the difference equation $x_{k+1}=C(p) x_{k}$ converges for all initial conditions x_{0}. The structure of $C(p)$ shows that all components of $\lim _{k \rightarrow \infty} x_{k}$ converge to the same value. Hence, all rows of $\lim _{k \rightarrow \infty} C^{k}(p)$ are equal.)

11.22 Facts on Lie Groups

Fact 11.22.1. The groups $\mathrm{UT}(n), \mathrm{UT}_{+}(n), \mathrm{UT}_{ \pm 1}(n), \operatorname{SUT}(n)$, and $\left\{I_{n}\right\}$ are Lie groups. Furthermore, $\operatorname{ut}(n)$ is the Lie algebra of $\mathrm{UT}(n)$, $\operatorname{sut}(n)$ is the Lie algebra of $\operatorname{SUT}(n)$, and $\left\{0_{n \times n}\right\}$ is the Lie algebra of $\left\{I_{n}\right\}$. (Remark: See Fact 3.21.4 and Fact 3.21.5.) (Problem: Determine the Lie algebras of $\mathrm{UT}_{+}(n)$ and $\mathrm{UT}_{ \pm 1}(n)$.)

11.23 Facts on Subspace Decomposition

Fact 11.23.1. Let $A \in \mathbb{R}^{n \times n}$, and let $S \in \mathbb{R}^{n \times n}$ be a nonsingular matrix such that

$$
A=S\left[\begin{array}{cc}
A_{1} & A_{12} \\
0 & A_{2}
\end{array}\right] S^{-1}
$$

where $A_{1} \in \mathbb{R}^{r \times r}$ is asymptotically stable, $A_{12} \in \mathbb{R}^{r \times(n-r)}$, and $A_{2} \in \mathbb{R}^{(n-r) \times(n-r)}$. Then,

$$
\mu_{A}^{\mathrm{s}}(A)=S\left[\begin{array}{cc}
0 & B_{12 \mathrm{~s}} \\
0 & \mu_{A}^{\mathrm{s}}\left(A_{2}\right)
\end{array}\right] S^{-1},
$$

where $B_{12 \mathrm{~s}} \in \mathbb{R}^{r \times(n-r)}$, and

$$
\mu_{A}^{\mathrm{u}}(A)=S\left[\begin{array}{cc}
\mu_{A}^{\mathrm{u}}\left(A_{1}\right) & B_{12 \mathrm{u}} \\
0 & \mu_{A}^{\mathrm{u}}\left(A_{2}\right)
\end{array}\right] S^{-1},
$$

where $B_{12 \mathrm{u}} \in \mathbb{R}^{r \times(n-r)}$ and $\mu_{A}^{\mathrm{u}}\left(A_{1}\right)$ is nonsingular. Consequently,

$$
\mathcal{R}\left(S\left[\begin{array}{c}
I_{r} \\
0
\end{array}\right]\right) \subseteq \delta_{\mathrm{s}}(A)
$$

If, in addition, $A_{12}=0$, then

$$
\begin{gathered}
\mu_{A}^{\mathrm{s}}(A)=S\left[\begin{array}{cc}
0 & 0 \\
0 & \mu_{A}^{\mathrm{s}}\left(A_{2}\right)
\end{array}\right] S^{-1}, \\
\mu_{A}^{\mathrm{u}}(A)=S\left[\begin{array}{cc}
\mu_{A}^{\mathrm{u}}\left(A_{1}\right) & 0 \\
0 & \mu_{A}^{\mathrm{u}}\left(A_{2}\right)
\end{array}\right] S^{-1}, \\
\mathcal{S}_{\mathrm{u}}(A) \subseteq \mathcal{R}\left(S\left[\begin{array}{c}
0 \\
I_{n-r}
\end{array}\right]\right) .
\end{gathered}
$$

(Proof: The result follows from Fact 4.10.12)
Fact 11.23.2. Let $A \in \mathbb{R}^{n \times n}$, and let $S \in \mathbb{R}^{n \times n}$ be a nonsingular matrix such that

$$
A=S\left[\begin{array}{cc}
A_{1} & A_{12} \\
0 & A_{2}
\end{array}\right] S^{-1}
$$

where $A_{1} \in \mathbb{R}^{r \times r}, A_{12} \in \mathbb{R}^{r \times(n-r)}$, and $A_{2} \in \mathbb{R}^{(n-r) \times(n-r)}$ satisfies $\operatorname{spec}\left(A_{2}\right) \subset$ CRHP. Then,

$$
\mu_{A}^{\mathrm{s}}(A)=S\left[\begin{array}{cc}
\mu_{A}^{\mathrm{s}}\left(A_{1}\right) & C_{12 \mathrm{~s}} \\
0 & \mu_{A}^{\mathrm{s}}\left(A_{2}\right)
\end{array}\right] S^{-1},
$$

where $C_{12 \mathrm{~s}} \in \mathbb{R}^{r \times(n-r)}$ and $\mu_{A}^{\mathrm{s}}\left(A_{2}\right)$ is nonsingular, and

$$
\mu_{A}^{\mathrm{u}}(A)=S\left[\begin{array}{cc}
\mu_{A}^{\mathrm{u}}\left(A_{1}\right) & C_{12 \mathrm{u}} \\
0 & 0
\end{array}\right] S^{-1}
$$

where $C_{12 \mathrm{u}} \in \mathbb{R}^{r \times(n-r)}$. Consequently,

$$
\delta_{\mathrm{s}}(A) \subseteq \mathcal{R}\left(S\left[\begin{array}{c}
I_{r} \\
0
\end{array}\right]\right)
$$

If, in addition, $A_{12}=0$, then

$$
\begin{gathered}
\mu_{A}^{\mathrm{s}}(A)=S\left[\begin{array}{cc}
\mu_{A}^{\mathrm{s}}\left(A_{1}\right) & 0 \\
0 & \mu_{A}^{\mathrm{s}}\left(A_{2}\right)
\end{array}\right] S^{-1} \\
\mu_{A}^{\mathrm{u}}(A)=S\left[\begin{array}{cc}
\mu_{A}^{\mathrm{u}}\left(A_{1}\right) & 0 \\
0 & 0
\end{array}\right] S^{-1} \\
\mathcal{R}\left(S\left[\begin{array}{c}
0 \\
I_{n-r}
\end{array}\right]\right) \subseteq \mathcal{S}_{\mathrm{u}}(A)
\end{gathered}
$$

Fact 11.23.3. Let $A \in \mathbb{R}^{n \times n}$, and let $S \in \mathbb{R}^{n \times n}$ be a nonsingular matrix such that

$$
A=S\left[\begin{array}{cc}
A_{1} & A_{12} \\
0 & A_{2}
\end{array}\right] S^{-1}
$$

where $A_{1} \in \mathbb{R}^{r \times r}$ satisfies $\operatorname{spec}\left(A_{1}\right) \subset \mathrm{CRHP}, A_{12} \in \mathbb{R}^{r \times(n-r)}$, and $A_{2} \in$ $\mathbb{R}^{(n-r) \times(n-r)}$. Then,

$$
\mu_{A}^{\mathrm{s}}(A)=S\left[\begin{array}{cc}
\mu_{A}^{\mathrm{s}}\left(A_{1}\right) & B_{12 \mathrm{~s}} \\
0 & \mu_{A}^{\mathrm{s}}\left(A_{2}\right)
\end{array}\right] S^{-1}
$$

where $\mu_{A}^{\mathrm{s}}\left(A_{1}\right)$ is nonsingular and $B_{12 \mathrm{~s}} \in \mathbb{R}^{r \times(n-r)}$, and

$$
\mu_{A}^{\mathrm{u}}(A)=S\left[\begin{array}{cc}
0 & B_{12 \mathrm{u}} \\
0 & \mu_{A}^{\mathrm{u}}\left(A_{2}\right)
\end{array}\right] S^{-1}
$$

where $B_{12 \mathrm{u}} \in \mathbb{R}^{r \times(n-r)}$. Consequently,

$$
\mathcal{R}\left(S\left[\begin{array}{c}
I_{r} \\
0
\end{array}\right]\right) \subseteq \mathcal{S}_{\mathrm{u}}(A)
$$

If, in addition, $A_{12}=0$, then

$$
\begin{gathered}
\mu_{A}^{\mathrm{s}}(A)=S\left[\begin{array}{cc}
\mu_{A}^{\mathrm{s}}\left(A_{1}\right) & 0 \\
0 & \mu_{A}^{\mathrm{s}}\left(A_{2}\right)
\end{array}\right] S^{-1} \\
\mu_{A}^{\mathrm{u}}(A)=S\left[\begin{array}{cc}
0 & 0 \\
0 & \mu_{A}^{\mathrm{u}}\left(A_{2}\right)
\end{array}\right] S^{-1} \\
\mathcal{S}_{\mathrm{s}}(A) \subseteq \mathcal{R}\left(S\left[\begin{array}{c}
0 \\
I_{n-r}
\end{array}\right]\right)
\end{gathered}
$$

Fact 11.23.4. Let $A \in \mathbb{R}^{n \times n}$, and let $S \in \mathbb{R}^{n \times n}$ be a nonsingular matrix such that

$$
A=S\left[\begin{array}{cc}
A_{1} & A_{12} \\
0 & A_{2}
\end{array}\right] S^{-1}
$$

where $A_{1} \in \mathbb{R}^{r \times r}, A_{12} \in \mathbb{R}^{r \times(n-r)}$, and $A_{2} \in \mathbb{R}^{(n-r) \times(n-r)}$ is asymptotically stable. Then,

$$
\mu_{A}^{\mathrm{s}}(A)=S\left[\begin{array}{cc}
\mu_{A}^{\mathrm{s}}\left(A_{1}\right) & C_{12 \mathrm{~s}} \\
0 & 0
\end{array}\right] S^{-1}
$$

where $C_{12 \mathrm{~s}} \in \mathbb{R}^{r \times(n-r)}$, and

$$
\mu_{A}^{\mathrm{u}}(A)=S\left[\begin{array}{cc}
\mu_{A}^{\mathrm{u}}\left(A_{1}\right) & C_{12 \mathrm{u}} \\
0 & \mu_{A}^{\mathrm{u}}\left(A_{2}\right)
\end{array}\right] S^{-1}
$$

where $\mu_{A}^{\mathrm{u}}\left(A_{2}\right)$ is nonsingular and $C_{12 \mathrm{u}} \in \mathbb{R}^{r \times(n-r)}$. Consequently,

$$
\mathcal{S}_{\mathrm{u}}(A) \subseteq \mathcal{R}\left(S\left[\begin{array}{c}
I_{r} \\
0
\end{array}\right]\right)
$$

If, in addition, $A_{12}=0$, then

$$
\begin{gathered}
\mu_{A}^{\mathrm{s}}(A)=S\left[\begin{array}{cc}
\mu_{A}^{\mathrm{s}}\left(A_{1}\right) & 0 \\
0 & 0
\end{array}\right] S^{-1}, \\
\mu_{A}^{\mathrm{u}}(A)=S\left[\begin{array}{cc}
\mu_{A}^{\mathrm{u}}\left(A_{1}\right) & 0 \\
0 & \mu_{A}^{\mathrm{u}}\left(A_{2}\right)
\end{array}\right] S^{-1}, \\
\mathcal{R}\left(S\left[\begin{array}{c}
0 \\
I_{n-r}
\end{array}\right]\right) \subseteq \mathcal{S}_{\mathrm{s}}(A)
\end{gathered}
$$

Fact 11.23.5. Let $A \in \mathbb{R}^{n \times n}$, and let $S \in \mathbb{R}^{n \times n}$ be a nonsingular matrix such that

$$
A=S\left[\begin{array}{cc}
A_{1} & A_{12} \\
0 & A_{2}
\end{array}\right] S^{-1}
$$

where $A_{1} \in \mathbb{R}^{r \times r}$ satisfies $\operatorname{spec}\left(A_{1}\right) \subset$ CRHP, $A_{12} \in \mathbb{R}^{r \times(n-r)}$, and $A_{2} \in$ $\mathbb{R}^{(n-r) \times(n-r)}$ is asymptotically stable. Then,

$$
\mu_{A}^{\mathrm{s}}(A)=S\left[\begin{array}{cc}
\mu_{A}^{\mathrm{s}}\left(A_{1}\right) & C_{12 \mathrm{~s}} \\
0 & 0
\end{array}\right] S^{-1}
$$

where $C_{12 \mathrm{~s}} \in \mathbb{R}^{r \times(n-r)}$ and $\mu_{A}^{\mathrm{s}}\left(A_{1}\right)$ is nonsingular, and

$$
\mu_{A}^{\mathrm{u}}(A)=S\left[\begin{array}{cc}
0 & C_{12 \mathrm{u}} \\
0 & \mu_{A}^{\mathrm{u}}\left(A_{2}\right)
\end{array}\right] S^{-1}
$$

where $C_{12 \mathrm{u}} \in \mathbb{R}^{r \times(n-r)}$ and $\mu_{A}^{\mathrm{u}}\left(A_{2}\right)$ is nonsingular. Consequently,

$$
\mathcal{S}_{\mathrm{u}}(A)=\mathcal{R}\left(S\left[\begin{array}{c}
I_{r} \\
0
\end{array}\right]\right)
$$

If, in addition, $A_{12}=0$, then

$$
\mu_{A}^{\mathrm{s}}(A)=S\left[\begin{array}{cc}
\mu_{A}^{\mathrm{s}}\left(A_{1}\right) & 0 \\
0 & 0
\end{array}\right] S^{-1}
$$

and

$$
\mu_{A}^{\mathrm{u}}(A)=S\left[\begin{array}{cc}
0 & 0 \\
0 & \mu_{A}^{\mathrm{u}}\left(A_{2}\right)
\end{array}\right] S^{-1}
$$

Consequently,

$$
\mathcal{S}_{\mathbf{s}}(A)=\mathcal{R}\left(S\left[\begin{array}{c}
0 \\
I_{n-r}
\end{array}\right]\right)
$$

Fact 11.23.6. Let $A \in \mathbb{R}^{n \times n}$, and let $S \in \mathbb{R}^{n \times n}$ be a nonsingular matrix such that

$$
A=S\left[\begin{array}{cc}
A_{1} & 0 \\
A_{21} & A_{2}
\end{array}\right] S^{-1}
$$

where $A_{1} \in \mathbb{R}^{r \times r}$ is asymptotically stable, $A_{21} \in \mathbb{R}^{(n-r) \times r}$, and $A_{2} \in \mathbb{R}^{(n-r) \times(n-r)}$. Then,

$$
\mu_{A}^{\mathrm{s}}(A)=S\left[\begin{array}{cc}
0 & 0 \\
B_{21 \mathrm{~s}} & \mu_{A}^{\mathrm{s}}\left(A_{2}\right)
\end{array}\right] S^{-1}
$$

where $B_{21 \mathrm{~s}} \in \mathbb{R}^{(n-r) \times r}$, and

$$
\mu_{A}^{\mathrm{u}}(A)=S\left[\begin{array}{cc}
\mu_{A}^{\mathrm{u}}\left(A_{1}\right) & 0 \\
B_{21 \mathrm{u}} & \mu_{A}^{\mathrm{u}}\left(A_{2}\right)
\end{array}\right] S^{-1}
$$

where $B_{21 \mathrm{u}} \in \mathbb{R}^{(n-r) \times r}$ and $\mu_{A}^{\mathrm{u}}\left(A_{1}\right)$ is nonsingular. Consequently,

$$
\mathcal{S}_{\mathrm{u}}(A) \subseteq \mathcal{R}\left(S\left[\begin{array}{c}
0 \\
I_{n-r}
\end{array}\right]\right)
$$

If, in addition, $A_{21}=0$, then

$$
\begin{gathered}
\mu_{A}^{\mathrm{s}}(A)=S\left[\begin{array}{cc}
0 & 0 \\
0 & \mu_{A}^{\mathrm{s}}\left(A_{2}\right)
\end{array}\right] S^{-1}, \\
\mu_{A}^{\mathrm{u}}(A)=S\left[\begin{array}{cc}
\mu_{A}^{\mathrm{u}}\left(A_{1}\right) & 0 \\
0 & \mu_{A}^{\mathrm{u}}\left(A_{2}\right)
\end{array}\right] S^{-1}, \\
\mathcal{R}\left(S\left[\begin{array}{c}
I_{r} \\
0
\end{array}\right]\right) \subseteq \mathcal{S}_{\mathrm{s}}(A)
\end{gathered}
$$

Fact 11.23.7. Let $A \in \mathbb{R}^{n \times n}$, and let $S \in \mathbb{R}^{n \times n}$ be a nonsingular matrix such that

$$
A=S\left[\begin{array}{cc}
A_{1} & 0 \\
A_{21} & A_{2}
\end{array}\right] S^{-1}
$$

where $A_{1} \in \mathbb{R}^{r \times r}, A_{21} \in \mathbb{R}^{(n-r) \times r}$, and $A_{2} \in \mathbb{R}^{(n-r) \times(n-r)}$ satisfies $\operatorname{spec}\left(A_{2}\right) \subset$ CRHP. Then,

$$
\mu_{A}^{\mathrm{s}}(A)=S\left[\begin{array}{cc}
\mu_{A}^{\mathrm{s}}\left(A_{1}\right) & 0 \\
C_{21 \mathrm{~s}} & \mu_{A}^{\mathrm{s}}\left(A_{2}\right)
\end{array}\right] S^{-1}
$$

where $C_{21 \mathrm{~s}} \in \mathbb{R}^{(n-r) \times r}$ and $\mu_{A}^{\mathrm{s}}\left(A_{2}\right)$ is nonsingular, and

$$
\mu_{A}^{\mathrm{u}}(A)=S\left[\begin{array}{cc}
\mu_{A}^{\mathrm{u}}\left(A_{1}\right) & 0 \\
C_{21 \mathrm{u}} & 0
\end{array}\right] S^{-1}
$$

where $C_{21 \mathrm{u}} \in \mathbb{R}^{(n-r) \times r}$. Consequently,

$$
\mathcal{R}\left(S\left[\begin{array}{c}
0 \\
I_{n-r}
\end{array}\right]\right) \subseteq \mathcal{S}_{\mathrm{u}}(A)
$$

If, in addition, $A_{21}=0$, then

$$
\mu_{A}^{\mathrm{s}}(A)=S\left[\begin{array}{cc}
\mu_{A}^{\mathrm{s}}\left(A_{1}\right) & 0 \\
0 & \mu_{A}^{\mathrm{s}}\left(A_{2}\right)
\end{array}\right] S^{-1}
$$

$$
\begin{gathered}
\mu_{A}^{\mathrm{u}}(A)=S\left[\begin{array}{cc}
\mu_{A}^{\mathrm{u}}\left(A_{1}\right) & 0 \\
0 & 0
\end{array}\right] S^{-1}, \\
\delta_{\mathrm{s}}(A) \subseteq \mathcal{R}\left(S\left[\begin{array}{c}
I_{r} \\
0
\end{array}\right]\right) .
\end{gathered}
$$

Fact 11.23.8. Let $A \in \mathbb{R}^{n \times n}$, and let $S \in \mathbb{R}^{n \times n}$ be a nonsingular matrix such that

$$
A=S\left[\begin{array}{cc}
A_{1} & 0 \\
A_{21} & A_{2}
\end{array}\right] S^{-1}
$$

where $A_{1} \in \mathbb{R}^{r \times r}$ is asymptotically stable, $A_{21} \in \mathbb{R}^{(n-r) \times r}$, and $A_{2} \in \mathbb{R}^{(n-r) \times(n-r)}$ satisfies $\operatorname{spec}\left(A_{2}\right) \subset$ CRHP. Then,

$$
\mu_{A}^{\mathrm{s}}(A)=S\left[\begin{array}{cc}
0 & 0 \\
C_{21 \mathrm{~s}}^{\mathrm{s}} & \mu_{A}^{\mathrm{s}}\left(A_{2}\right)
\end{array}\right] S^{-1},
$$

where $C_{21 \mathrm{~s}} \in \mathbb{R}^{n-r \times r}$ and $\mu_{A}^{\mathrm{s}}\left(A_{2}\right)$ is nonsingular, and

$$
\mu_{A}^{\mathrm{u}}(A)=S\left[\begin{array}{cc}
\mu_{A}^{\mathrm{u}}\left(A_{1}\right) & 0 \\
C_{21 \mathrm{u}} & 0
\end{array}\right] S^{-1}
$$

where $C_{21 \mathrm{u}} \in \mathbb{R}^{(n-r) \times r}$ and $\mu_{A}^{\mathrm{u}}\left(A_{1}\right)$ is nonsingular. Consequently,

$$
\mathcal{S}_{\mathbf{u}}(A)=\mathcal{R}\left(S\left[\begin{array}{c}
0 \\
I_{n-r}
\end{array}\right]\right)
$$

If, in addition, $A_{21}=0$, then

$$
\mu_{A}^{\mathrm{s}}(A)=S\left[\begin{array}{cc}
0 & 0 \\
0 & \mu_{A}^{\mathrm{s}}\left(A_{2}\right)
\end{array}\right] S^{-1}
$$

and

$$
\mu_{A}^{\mathrm{u}}(A)=S\left[\begin{array}{cc}
\mu_{A}^{\mathrm{u}}\left(A_{1}\right) & 0 \\
0 & 0
\end{array}\right] S^{-1}
$$

Consequently,

$$
\mathcal{S}_{\mathbf{s}}(A)=\mathcal{R}\left(S\left[\begin{array}{c}
I_{r} \\
0
\end{array}\right]\right)
$$

Fact 11.23.9. Let $A \in \mathbb{R}^{n \times n}$, and let $S \in \mathbb{R}^{n \times n}$ be a nonsingular matrix such that

$$
A=S\left[\begin{array}{cc}
A_{1} & 0 \\
A_{21} & A_{2}
\end{array}\right] S^{-1}
$$

where $A_{1} \in \mathbb{R}^{r \times r}, A_{21} \in \mathbb{R}^{(n-r) \times r}$, and $A_{2} \in \mathbb{R}^{(n-r) \times(n-r)}$ is asymptotically stable. Then,

$$
\mu_{A}^{\mathrm{s}}(A)=S\left[\begin{array}{cc}
\mu_{A}^{\mathrm{s}}\left(A_{1}\right) & 0 \\
B_{21 \mathrm{~s}} & 0
\end{array}\right] S^{-1}
$$

where $B_{21 \mathrm{~s}} \in \mathbb{R}^{(n-r) \times r}$, and

$$
\mu_{A}^{\mathrm{u}}(A)=S\left[\begin{array}{cc}
\mu_{A}^{\mathrm{u}}\left(A_{1}\right) & 0 \\
B_{21 \mathrm{u}} & \mu_{A}^{\mathrm{u}}\left(A_{2}\right)
\end{array}\right] S^{-1},
$$

where $B_{21 \mathrm{u}} \in \mathbb{R}^{(n-r) \times r}$ and $\mu_{A}^{\mathrm{u}}\left(A_{2}\right)$ is nonsingular. Consequently,

$$
\mathcal{R}\left(S\left[\begin{array}{c}
0 \\
I_{n-r}
\end{array}\right]\right) \subseteq \mathcal{S}(A)
$$

If, in addition, $A_{21}=0$, then

$$
\begin{gathered}
\mu_{A}^{\mathrm{s}}(A)=S\left[\begin{array}{cc}
\mu_{A}^{\mathrm{s}}\left(A_{1}\right) & 0 \\
0 & 0
\end{array}\right] S^{-1}, \\
\mu_{A}^{\mathrm{u}}(A)=S\left[\begin{array}{cc}
\mu_{A}^{\mathrm{u}}\left(A_{1}\right) & 0 \\
0 & \mu_{A}^{\mathrm{u}}\left(A_{2}\right)
\end{array}\right] S^{-1}, \\
\mathcal{S}_{\mathrm{u}}(A) \subseteq \mathcal{R}\left(S\left[\begin{array}{c}
I_{r} \\
0
\end{array}\right]\right)
\end{gathered}
$$

Fact 11.23.10. Let $A \in \mathbb{R}^{n \times n}$, and let $S \in \mathbb{R}^{n \times n}$ be a nonsingular matrix such that

$$
A=S\left[\begin{array}{cc}
A_{1} & 0 \\
A_{21} & A_{2}
\end{array}\right] S^{-1}
$$

where $A_{1} \in \mathbb{R}^{r \times r}$ satisfies $\operatorname{spec}\left(A_{1}\right) \subset \mathrm{CRHP}, A_{21} \in \mathbb{R}^{(n-r) \times r}$, and $A_{2} \in$ $\mathbb{R}^{(n-r) \times(n-r)}$. Then,

$$
\mu_{A}^{\mathrm{s}}(A)=S\left[\begin{array}{cc}
\mu_{A}^{\mathrm{s}}\left(A_{1}\right) & 0 \\
C_{12 \mathrm{~s}} & \mu_{A}^{\mathrm{s}}\left(A_{2}\right)
\end{array}\right] S^{-1}
$$

where $C_{21 \mathrm{~s}} \in \mathbb{R}^{(n-r) \times r}$ and $\mu_{A}^{\mathrm{s}}\left(A_{1}\right)$ is nonsingular, and

$$
\mu_{A}^{\mathrm{u}}(A)=S\left[\begin{array}{cc}
0 & 0 \\
C_{21 \mathrm{u}} & \mu_{A}^{\mathrm{u}}\left(A_{2}\right)
\end{array}\right] S^{-1}
$$

where $C_{21 \mathrm{u}} \in \mathbb{R}^{(n-r) \times r}$. Consequently,

$$
\mathcal{S}_{\mathbf{s}}(A) \subseteq \mathcal{R}\left(S\left[\begin{array}{c}
0 \\
I_{n-r}
\end{array}\right]\right)
$$

If, in addition, $A_{21}=0$, then

$$
\begin{gathered}
\mu_{A}^{\mathrm{s}}(A)=S\left[\begin{array}{cc}
\mu_{A}^{\mathrm{s}}\left(A_{1}\right) & 0 \\
0 & \mu_{A}^{\mathrm{s}}\left(A_{2}\right)
\end{array}\right] S^{-1} \\
\mu_{A}^{\mathrm{u}}(A)=S\left[\begin{array}{cc}
0 & 0 \\
0 & \mu_{A}^{\mathrm{u}}\left(A_{2}\right)
\end{array}\right] S^{-1} \\
\mathcal{R}\left(S\left[\begin{array}{c}
I_{r} \\
0
\end{array}\right]\right) \subseteq \mathcal{S}_{\mathrm{u}}(A)
\end{gathered}
$$

Fact 11.23.11. Let $A \in \mathbb{R}^{n \times n}$, and let $S \in \mathbb{R}^{n \times n}$ be a nonsingular matrix such that

$$
A=S\left[\begin{array}{cc}
A_{1} & 0 \\
A_{21} & A_{2}
\end{array}\right] S^{-1}
$$

where $A_{1} \in \mathbb{R}^{r \times r}$ satisfies $\operatorname{spec}\left(A_{1}\right) \subset \mathrm{CRHP}, A_{21} \in \mathbb{R}^{(n-r) \times r}$, and $A_{2} \in$
$\mathbb{R}^{(n-r) \times(n-r)}$ is asymptotically stable. Then,

$$
\mu_{A}^{\mathrm{s}}(A)=S\left[\begin{array}{cc}
\mu_{A}^{\mathrm{s}}\left(A_{1}\right) & 0 \\
C_{21 \mathrm{~s}} & 0
\end{array}\right] S^{-1}
$$

where $C_{21 \mathrm{~s}} \in \mathbb{R}^{(n-r) \times r}$ and $\mu_{A}^{\mathrm{s}}\left(A_{1}\right)$ is nonsingular, and

$$
\mu_{A}^{\mathrm{u}}(A)=S\left[\begin{array}{cc}
0 & 0 \\
C_{21 \mathrm{u}} & \mu_{A}^{\mathrm{u}}\left(A_{2}\right)
\end{array}\right] S^{-1}
$$

where $C_{21 \mathrm{u}} \in \mathbb{R}^{(n-r) \times r}$ and $\mu_{A}^{\mathrm{u}}\left(A_{2}\right)$ is nonsingular. Consequently,

$$
\mathcal{S}_{\mathbf{s}}(A)=\mathcal{R}\left(S\left[\begin{array}{c}
0 \\
I_{n-r}
\end{array}\right]\right)
$$

If, in addition, $A_{21}=0$, then

$$
\mu_{A}^{\mathrm{s}}(A)=S\left[\begin{array}{cc}
\mu_{A}^{\mathrm{s}}\left(A_{1}\right) & 0 \\
0 & 0
\end{array}\right] S^{-1}
$$

and

$$
\mu_{A}^{\mathrm{u}}(A)=S\left[\begin{array}{cc}
0 & 0 \\
0 & \mu_{A}^{\mathrm{u}}\left(A_{2}\right)
\end{array}\right] S^{-1}
$$

Consequently,

$$
\mathcal{S}_{\mathrm{u}}(A)=\mathcal{R}\left(S\left[\begin{array}{c}
I_{r} \\
0
\end{array}\right]\right)
$$

11.24 Notes

The Laplace transform (11.2.10) is given in [1201, p. 34]. Computational methods are discussed in 683, 1015. An arithmetic-mean-geometric-mean iteration for computing the matrix exponential and matrix logarithm is given in 1232 .

The exponential function plays a central role in the theory of Lie groups, see [168, 295, 624, 724, 740, 1162, 1366. Applications to robotics and kinematics are given in 986, 1026, 1070. Additional applications are discussed in [294].

The real logarithm is discussed in [360, 664, 1048, 1102. The multiplicity and properties of logarithms are discussed in 462 .

An asymptotically stable polynomial is traditionally called Hurwitz. Semistability is defined in 283 and developed in 186, 195. Stability theory is treated in [620, 885, 1094 and [541 Chapter XV]. Solutions of the Lyapunov equation under weak conditions are considered in [1207]. Structured solutions of the Lyapunov equation are discussed in 793.

Chapter Twelve

Linear Systems and Control Theory

This chapter considers linear state space systems with inputs and outputs. These systems are considered in both the time domain and frequency (Laplace) domain. Some basic results in control theory are also presented.

12.1 State Space and Transfer Function Models

Let $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times m}$, and, for $t \geq t_{0}$, consider the state equation

$$
\begin{equation*}
\dot{x}(t)=A x(t)+B u(t) \tag{12.1.1}
\end{equation*}
$$

with the initial condition

$$
\begin{equation*}
x\left(t_{0}\right)=x_{0} . \tag{12.1.2}
\end{equation*}
$$

In (12.1.1), $x(t) \in \mathbb{R}^{n}$ is the state, and $u(t) \in \mathbb{R}^{m}$ is the input.
The following result give the solution of (12.1.1) known as the variation of constants formula.

Proposition 12.1.1. For $t \geq t_{0}$ the state $x(t)$ of the dynamical equation (12.1.1) with initial condition (12.1.2) is given by

$$
\begin{equation*}
x(t)=e^{\left(t-t_{0}\right) A} x_{0}+\int_{t_{0}}^{t} e^{(t-\tau) A} B u(\tau) \mathrm{d} \tau \tag{12.1.3}
\end{equation*}
$$

Proof. Multiplying (12.1.1) by $e^{-t A}$ yields

$$
e^{-t A}[\dot{x}(t)-A x(t)]=e^{-t A} B u(t)
$$

which is equivalent to

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left[e^{-t A} x(t)\right]=e^{-t A} B u(t)
$$

Integrating over $\left[t_{0}, t\right]$ yields

$$
e^{-t A} x(t)=e^{-t_{0} A} x\left(t_{0}\right)+\int_{t_{0}}^{t} e^{-\tau A} B u(\tau) \mathrm{d} \tau
$$

Now, multiplying by $e^{t A}$ yields (12.1.3).

Alternatively, let $x(t)$ be given by (12.1.3). Then, it follows from Leibniz's rule Fact 10.11 .10 that

$$
\begin{aligned}
\dot{x}(t) & =\frac{\mathrm{d}}{\mathrm{~d} t} e^{\left(t-t_{0}\right) A} x_{0}+\frac{\mathrm{d}}{\mathrm{~d} t} \int_{t_{0}}^{t} e^{(t-\tau) A} B u(\tau) \mathrm{d} \tau \\
& =A e^{\left(t-t_{0}\right) A} x_{0}+\int_{t_{0}}^{t} A e^{(t-\tau) A} B u(\tau) \mathrm{d} \tau+B u(t) \\
& =A x(t)+B u(t)
\end{aligned}
$$

For convenience, we can reset the clock and assume without loss of generality that $t_{0}=0$. In this case, $x(t)$ for all $t \geq 0$ is given by

$$
\begin{equation*}
x(t)=e^{t A} x_{0}+\int_{0}^{t} e^{(t-\tau) A} B u(\tau) \mathrm{d} \tau \tag{12.1.4}
\end{equation*}
$$

If $u(t)=0$ for all $t \geq 0$, then, for all $t \geq 0, x(t)$ is given by

$$
\begin{equation*}
x(t)=e^{t A} x_{0} \tag{12.1.5}
\end{equation*}
$$

Now, let $u(t)=\delta(t) v$, where $\delta(t)$ is the unit impulse at $t=0$ and $v \in \mathbb{R}^{m}$. Then, for all $t \geq 0, x(t)$ is given by

$$
\begin{equation*}
x(t)=e^{t A} x_{0}+e^{t A} B v \tag{12.1.6}
\end{equation*}
$$

Let $a<b$. Then, $\delta(t)$, which has physical dimensions of $1 /$ time, satisfies

$$
\int_{a}^{b} \delta(\tau) \mathrm{d} \tau= \begin{cases}0, & a>0 \text { or } b \leq 0 \tag{12.1.7}\\ 1, & a \leq 0<b\end{cases}
$$

More generally, if $g: \mathcal{D} \rightarrow \mathbb{R}^{n}$, where $[a, b] \subseteq \mathcal{D} \subseteq \mathbb{R}, t_{0} \in \mathcal{D}$, and g is continuous at t_{0}, then

$$
\int_{a}^{b} \delta\left(\tau-t_{0}\right) g(\tau) \mathrm{d} \tau= \begin{cases}0, & a>t_{0} \text { or } b \leq t_{0} \tag{12.1.8}\\ g\left(t_{0}\right), & a \leq t_{0}<b\end{cases}
$$

Alternatively, let the input $u(t)$ be constant or a step function, that is, $u(t)=v$ for all $t \geq 0$, where $v \in \mathbb{R}^{m}$. Then, by a change of variable of integration, it follows that, for all $t \geq 0$,

$$
\begin{equation*}
x(t)=e^{t A} x_{0}+\int_{0}^{t} e^{\tau A} \mathrm{~d} \tau B v \tag{12.1.9}
\end{equation*}
$$

Using Fact 11.13.14 (12.1.9) can be written for all $t \geq 0$ as

$$
\begin{equation*}
x(t)=e^{t A} x_{0}+\left[A^{\mathrm{D}}\left(e^{t A}-I\right)+\left(I-A A^{\mathrm{D}}\right) \sum_{i=1}^{\text {ind } A}(i!)^{-1} t^{i} A^{i-1}\right] B v \tag{12.1.10}
\end{equation*}
$$

If A is group invertible, then, for all $t \geq 0$, (12.1.10) becomes

$$
\begin{equation*}
x(t)=e^{t A} x_{0}+\left[A^{\#}\left(e^{t A}-I\right)+t\left(I-A A^{\#}\right)\right] B v \tag{12.1.11}
\end{equation*}
$$

If, in addition, A is nonsingular, then, for all $t \geq 0$, 12.1.11) becomes

$$
\begin{equation*}
x(t)=e^{t A} x_{0}+A^{-1}\left(e^{t A}-I\right) B v . \tag{12.1.12}
\end{equation*}
$$

Next, consider the output equation

$$
\begin{equation*}
y(t)=C x(t)+D u(t) \tag{12.1.13}
\end{equation*}
$$

where $t \geq 0, y(t) \in \mathbb{R}^{l}$ is the output, $C \in \mathbb{R}^{l \times n}$, and $D \in \mathbb{R}^{l \times m}$. Then, for all $t \geq 0$, the total response is

$$
\begin{equation*}
y(t)=C e^{t A} x_{0}+\int_{0}^{t} C e^{(t-\tau) A} B u(\tau) \mathrm{d} \tau+D u(t) \tag{12.1.14}
\end{equation*}
$$

If $u(t)=0$ for all $t \geq 0$, then the free response is given by

$$
\begin{equation*}
y(t)=C e^{t A} x_{0} \tag{12.1.15}
\end{equation*}
$$

while, if $x_{0}=0$, then the forced response is given by

$$
\begin{equation*}
y(t)=\int_{0}^{t} C e^{(t-\tau) A} B u(\tau) \mathrm{d} \tau+D u(t) \tag{12.1.16}
\end{equation*}
$$

Setting $u(t)=\delta(t) v$ yields, for all $t>0$, the total response

$$
\begin{equation*}
y(t)=C e^{t A} x_{0}+H(t) v \tag{12.1.17}
\end{equation*}
$$

where, for all $t \geq 0$, the impulse response function $H(t)$ is defined by

$$
\begin{equation*}
H(t) \triangleq C e^{t A} B+\delta(t) D \tag{12.1.18}
\end{equation*}
$$

The corresponding forced response is the impulse response

$$
\begin{equation*}
y(t)=H(t) v=C e^{t A} B v+\delta(t) D v \tag{12.1.19}
\end{equation*}
$$

Alternatively, if $u(t)=v$ for all $t \geq 0$, then the total response is

$$
\begin{equation*}
y(t)=C e^{t A} x_{0}+\int_{0}^{t} C e^{\tau A} \mathrm{~d} \tau B v+D v \tag{12.1.20}
\end{equation*}
$$

and the forced response is the step response

$$
\begin{equation*}
y(t)=\int_{0}^{t} H(\tau) \mathrm{d} \tau v=\int_{0}^{t} C e^{\tau A} \mathrm{~d} \tau B v+D v \tag{12.1.21}
\end{equation*}
$$

In general, the forced response can be written as

$$
\begin{equation*}
y(t)=\int_{0}^{t} H(t-\tau) u(\tau) \mathrm{d} \tau \tag{12.1.22}
\end{equation*}
$$

Setting $u(t)=\delta(t) v$ yields (12.1.20) by noting that

$$
\begin{equation*}
\int_{0}^{t} \delta(t-\tau) \delta(\tau) \mathrm{d} \tau=\delta(t) \tag{12.1.23}
\end{equation*}
$$

Proposition 12.1.2. Let $D=0$ and $m=1$, and assume that $x_{0}=B v$. Then, the free response and the impulse response are equal and given by

$$
\begin{equation*}
y(t)=C e^{t A} x_{0}=C e^{t A} B v . \tag{12.1.24}
\end{equation*}
$$

12.2 Laplace Transform Analysis

Now, consider the linear system

$$
\begin{align*}
\dot{x}(t) & =A x(t)+B u(t), \tag{12.2.1}\\
y(t) & =C x(t)+D u(t), \tag{12.2.2}
\end{align*}
$$

with state $x(t) \in \mathbb{R}^{n}$, input $u(t) \in \mathbb{R}^{m}$, and output $y(t) \in \mathbb{R}^{l}$, where $t \geq 0$ and $x(0)=x_{0}$. Taking Laplace transforms yields

$$
\begin{gather*}
s \hat{x}(s)-x_{0}=A \hat{x}(s)+B \hat{u}(s), \tag{12.2.3}\\
\hat{y}(s)=C \hat{x}(s)+D \hat{u}(s), \tag{12.2.4}
\end{gather*}
$$

where

$$
\begin{gather*}
\hat{x}(s) \triangleq \mathcal{L}\{x(t)\}=\int_{0}^{\infty} e^{-s t} x(t) \mathrm{d} t, \tag{12.2.5}\\
\hat{u}(s) \triangleq \mathcal{L}\{u(t)\}, \tag{12.2.6}
\end{gather*}
$$

and

$$
\begin{equation*}
\hat{y}(s) \triangleq \mathcal{L}\{y(t)\} . \tag{12.2.7}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\hat{x}(s)=(s I-A)^{-1} x_{0}+(s I-A)^{-1} B \hat{u}(s), \tag{12.2.8}
\end{equation*}
$$

and thus

$$
\begin{equation*}
\hat{y}(s)=C(s I-A)^{-1} x_{0}+\left[C(s I-A)^{-1} B+D\right] \hat{u}(s) . \tag{12.2.9}
\end{equation*}
$$

We can also obtain (12.2.9) from the time-domain expression for $y(t)$ given by (12.1.14). Using Proposition 11.2.2, it follows from (12.1.14) that

$$
\begin{align*}
\hat{y}(s) & =\mathcal{L}\left\{C e^{t A} x_{0}\right\}+\mathcal{L}\left\{\int_{0}^{t} C e^{(t-\tau) A} B u(\tau) \mathrm{d} \tau\right\}+D \hat{u}(s) \\
& =C \mathcal{L}\left\{e^{t A}\right\} x_{0}+C \mathcal{L}\left\{e^{t A}\right\} B \hat{u}(s)+D \hat{u}(s) \\
& =C(s I-A)^{-1} x_{0}+\left[C(s I-A)^{-1} B+D\right] \hat{u}(s), \tag{12.2.10}
\end{align*}
$$

which coincides with (12.2.9). We define

$$
\begin{equation*}
G(s) \triangleq C(s I-A)^{-1} B+D . \tag{12.2.11}
\end{equation*}
$$

Note that $G \in \mathbb{R}^{l \times m}(s)$, that is, by Definition4.7.2, G is a rational transfer function. Since $\mathcal{L}\{\delta(t)\}=1$, it follows that

$$
\begin{equation*}
G(s)=\mathcal{L}\{H(t)\} \tag{12.2.12}
\end{equation*}
$$

Using (4.7.2), G can be written as

$$
\begin{equation*}
G(s)=\frac{1}{\chi_{A}(s)} C(s I-A)^{\mathrm{A}} B+D \tag{12.2.13}
\end{equation*}
$$

It follows from (4.7.3) that G is a proper rational transfer function. Furthermore, G is a strictly proper rational transfer function if and only if $D=0$, whereas G is an exactly proper rational transfer function if and only if $D \neq 0$. Finally, if A is nonsingular, then

$$
\begin{equation*}
G(0)=-C A^{-1} B+D \tag{12.2.14}
\end{equation*}
$$

Let $A \in \mathbb{R}^{n \times n}$. If $|s|>\operatorname{sprad}(A)$, then Proposition 9.4 .13 implies that

$$
\begin{equation*}
(s I-A)^{-1}=\frac{1}{s}\left(I-\frac{1}{s} A\right)^{-1}=\sum_{k=0}^{\infty} \frac{1}{s^{k+1}} A^{k} \tag{12.2.15}
\end{equation*}
$$

where the series is absolutely convergent, and thus

$$
\begin{align*}
G(s) & =D+\frac{1}{s} C B+\frac{1}{s^{2}} C A B+\cdots \\
& =\sum_{k=0}^{\infty} \frac{1}{s^{k}} H_{k} \tag{12.2.16}
\end{align*}
$$

where, for $k \geq 0$, the Markov parameter $H_{k} \in \mathbb{R}^{l \times m}$ is defined by

$$
H_{k} \triangleq \begin{cases}D, & k=0 \tag{12.2.17}\\ C A^{k-1} B, & k \geq 1\end{cases}
$$

It follows from (12.2.15) that $\lim _{s \rightarrow \infty}(s I-A)^{-1}=0$, and thus

$$
\begin{equation*}
\lim _{s \rightarrow \infty} G(s)=D \tag{12.2.18}
\end{equation*}
$$

Finally, it follows from Definition 4.7.3 that

$$
\begin{equation*}
\text { reldeg } G=\min \left\{k \geq 0: \quad H_{k} \neq 0\right\} \tag{12.2.19}
\end{equation*}
$$

12.3 The Unobservable Subspace and Observability

Let $A \in \mathbb{R}^{n \times n}$ and $C \in \mathbb{R}^{l \times n}$, and, for $t \geq 0$, consider the linear system

$$
\begin{gather*}
\dot{x}(t)=A x(t) \tag{12.3.1}\\
x(0)=x_{0} \tag{12.3.2}\\
y(t)=C x(t) \tag{12.3.3}
\end{gather*}
$$

Definition 12.3.1. The unobservable subspace $\mathcal{U}_{t_{\mathrm{f}}}(A, C)$ of (A, C) at time $t_{\mathrm{f}}>0$ is the subspace

$$
\begin{equation*}
\mathcal{U}_{t_{\mathrm{f}}}(A, C) \triangleq\left\{x_{0} \in \mathbb{R}^{n}: y(t)=0 \text { for all } t \in\left[0, t_{\mathrm{f}}\right]\right\} \tag{12.3.4}
\end{equation*}
$$

Let $t_{\mathrm{f}}>0$. Then, Definition 12.3 .1 states that $x_{0} \in \mathcal{U}_{t_{\mathrm{f}}}(A, C)$ if and only if $y(t)=0$ for all $t \in\left[0, t_{\mathrm{f}}\right]$. Since $y(t)=0$ for all $t \in\left[0, t_{\mathrm{f}}\right]$ is the free response corresponding to $x_{0}=0$, it follows that $0 \in \mathcal{U}_{t_{\mathrm{f}}}(A, C)$. Now, suppose there exists a nonzero vector $x_{0} \in \mathcal{U}_{t_{\mathrm{f}}}(A, C)$. Then, with $x(0)=x_{0}$, the free response is given by $y(t)=0$ for all $t \in\left[0, t_{\mathrm{f}}\right]$, and thus x_{0} cannot be determined from knowledge of $y(t)$ for all $t \in\left[0, t_{\mathrm{f}}\right]$.

The following result provides explicit expressions for $\mathcal{U}_{t_{\mathrm{f}}}(A, C)$.
Lemma 12.3.2. Let $t_{\mathrm{f}}>0$. Then, the following subspaces are equal:
i) $\mathcal{U}_{t_{\mathrm{f}}}(A, C)$.
ii) $\bigcap_{t \in\left[0, t_{\mathrm{f}}\right]} \mathcal{N}\left(C e^{t A}\right)$.
iii) $\bigcap_{i=0}^{n-1} \mathcal{N}\left(C A^{i}\right)$.
iv) $\mathcal{N}\left(\left[\begin{array}{c}C A \\ \vdots \\ C A^{n-1}\end{array}\right]\right)$.
v) $\mathcal{N}\left(\int_{0}^{t_{\mathrm{f}}} e^{t A^{\mathrm{T}}} C^{\mathrm{T}} C e^{t A} \mathrm{~d} t\right)$.

If, in addition, $\lim _{t_{\mathrm{f}} \rightarrow \infty} \int_{0}^{t_{\mathrm{f}}} e^{t A^{\mathrm{T}}} C^{\mathrm{T}} C e^{t A} \mathrm{~d} t$ exists, then the following subspace is equal to $i)-v$):
vi) $\mathcal{N}\left(\int_{0}^{\infty} e^{t A^{\mathrm{T}}} C^{\mathrm{T}} C e^{t A} \mathrm{~d} t\right)$.

Proof. The proof is dual to the proof of Lemma 12.6 .2 ,
Lemma 12.3 .2 shows that $\mathcal{U}_{t_{\mathrm{f}}}(A, C)$ is independent of t_{f}. We thus write $\mathcal{U}(A, C)$ for $\mathcal{U}_{t_{\mathrm{f}}}(A, C)$, and call $\mathcal{U}(A, C)$ the unobservable subspace of $(A, C) .(A, C)$ is observable if $\mathcal{U}(A, C)=\{0\}$. For convenience, define the $n l \times n$ observability matrix

$$
\mathcal{O}(A, C) \triangleq\left[\begin{array}{c}
C \tag{12.3.5}\\
C A \\
\vdots \\
C A^{n-1}
\end{array}\right]
$$

so that

$$
\begin{equation*}
\mathcal{U}(A, C)=\mathcal{N}[\mathcal{O}(A, C)] . \tag{12.3.6}
\end{equation*}
$$

Define

$$
\begin{equation*}
p \triangleq n-\operatorname{dim} \mathcal{U}(A, C)=n-\operatorname{def} \mathcal{O}(A, C) . \tag{12.3.7}
\end{equation*}
$$

Corollary 12.3.3. For all $t_{\mathrm{f}}>0$,

$$
\begin{equation*}
p=\operatorname{dim} \mathcal{U}(A, C)^{\perp}=\operatorname{rank} \mathcal{O}(A, C)=\operatorname{rank} \int_{0}^{t_{\mathrm{f}}} e^{t A^{\mathrm{T}}} C^{\mathrm{T}} C e^{t A} \mathrm{~d} t \tag{12.3.8}
\end{equation*}
$$

If, in addition, $\lim _{t_{\mathrm{f}} \rightarrow \infty} \int_{0}^{t_{\mathrm{f}}} e^{t A^{\mathrm{T}}} C^{\mathrm{T}} C e^{t A} \mathrm{~d} t$ exists, then

$$
\begin{equation*}
p=\operatorname{rank} \int_{0}^{\infty} e^{t A^{\mathrm{T}}} C^{\mathrm{T}} C e^{t A} \mathrm{~d} t \tag{12.3.9}
\end{equation*}
$$

Corollary 12.3.4. $\mathcal{U}(A, C)$ is an invariant subspace of A.
The following result shows that the unobservable subspace $\mathcal{U}(A, C)$ is unchanged by output injection

$$
\begin{equation*}
\dot{x}(t)=A x(t)+F y(t) \tag{12.3.10}
\end{equation*}
$$

Proposition 12.3.5. Let $F \in \mathbb{R}^{n \times l}$. Then,

$$
\begin{equation*}
\mathcal{U}(A+F C, C)=U(A, C) \tag{12.3.11}
\end{equation*}
$$

In particular, (A, C) is observable if and only if $(A+F C, C)$ is observable.
Proof. The proof is dual to the proof of Proposition 12.6 .5 ,
Let $\tilde{\mathcal{U}}(A, C) \subseteq \mathbb{R}^{n}$ be a subspace that is complementary to $\mathcal{U}(A, C)$. Then, $\tilde{\mathcal{U}}(A, C)$ is an observable subspace in the sense that, if $x_{0}=x_{0}^{\prime}+x_{0}^{\prime \prime}$, where $x_{0}^{\prime} \in$ $\tilde{\mathcal{U}}(A, C)$ is nonzero and $x_{0}^{\prime \prime} \in \mathcal{U}(A, C)$, then it is possible to determine x_{0}^{\prime} from knowledge of $y(t)$ for $t \in\left[0, t_{\mathrm{f}}\right]$. Using Proposition 3.5.3, let $\mathcal{P} \in \mathbb{R}^{n \times n}$ be the unique idempotent matrix such that $\mathcal{R}(\mathcal{P})=\tilde{\mathcal{U}}(A, C)$ and $\mathcal{N}(\mathcal{P})=\mathcal{U}(A, C)$. Then, $x_{0}^{\prime}=\mathcal{P} x_{0}$. The following result constructs \mathcal{P} and provides an expression for x_{0}^{\prime} in terms of $y(t)$ for $\tilde{U}(A, C) \triangleq \mathcal{U}(A, C)^{\perp}$. In this case, \mathcal{P} is a projector.

Lemma 12.3.6. Let $t_{\mathrm{f}}>0$, and define $\mathcal{P} \in \mathbb{R}^{n \times n}$ by

$$
\begin{equation*}
\mathcal{P} \triangleq\left(\int_{0}^{t_{\mathrm{f}}} e^{t A^{\mathrm{T}}} C^{\mathrm{T}} C e^{t A} \mathrm{~d} t\right)^{+} \int_{0}^{t_{\mathrm{f}}} e^{t A^{\mathrm{T}}} C^{\mathrm{T}} C e^{t A} \mathrm{~d} t \tag{12.3.12}
\end{equation*}
$$

Then, \mathcal{P} is the projector onto $\mathcal{U}(A, C)^{\perp}$, and \mathcal{P}_{\perp} is the projector onto $\mathcal{U}(A, C)$. Hence,

$$
\begin{gather*}
\mathcal{R}(\mathcal{P})=\mathcal{N}\left(\mathcal{P}_{\perp}\right)=\mathcal{U}(A, C)^{\perp}, \tag{12.3.13}\\
\mathcal{N}(\mathcal{P})=\mathcal{R}\left(\mathcal{P}_{\perp}\right)=\mathcal{U}(A, C), \tag{12.3.14}\\
\operatorname{rank} \mathcal{P}=\operatorname{def} \mathcal{P}_{\perp}=\operatorname{dim} \mathcal{U}(A, C)^{\perp}=p, \tag{12.3.15}\\
\operatorname{def} \mathcal{P}=\operatorname{rank} \mathcal{P}_{\perp}=\operatorname{dim} \mathcal{U}(A, C)=n-p . \tag{12.3.16}
\end{gather*}
$$

If $x_{0}=x_{0}^{\prime}+x_{0}^{\prime \prime}$, where $x_{0}^{\prime} \in \mathcal{U}(A, C)^{\perp}$ and $x_{0}^{\prime \prime} \in \mathcal{U}(A, C)$, then

$$
\begin{equation*}
x_{0}^{\prime}=\mathcal{P} x_{0}=\left(\int_{0}^{t_{\mathrm{f}}} e^{t A^{\mathrm{T}}} C^{\mathrm{T}} C e^{t A} \mathrm{~d} t\right)^{+} \int_{0}^{t_{\mathrm{f}}} e^{t A^{\mathrm{T}}} C^{\mathrm{T}} y(t) \mathrm{d} t \tag{12.3.17}
\end{equation*}
$$

Finally, (A, C) is observable if and only if $\mathcal{P}=I_{n}$. In this case, for all $x_{0} \in \mathbb{R}^{n}$,

$$
\begin{equation*}
x_{0}=\left(\int_{0}^{t_{\mathrm{f}}} e^{t A^{\mathrm{T}}} C^{\mathrm{T}} C e^{t A} \mathrm{~d} t\right)^{-1} \int_{0}^{t_{\mathrm{f}}} e^{t A^{\mathrm{T}}} C^{\mathrm{T}} y(t) \mathrm{d} t \tag{12.3.18}
\end{equation*}
$$

Lemma 12.3.7. Let $\alpha \in \mathbb{R}$. Then,

$$
\begin{equation*}
\mathcal{U}(A+\alpha I, C)=U(A, C) \tag{12.3.19}
\end{equation*}
$$

The following result uses a coordinate transformation to characterize the observable dynamics of a system.

Theorem 12.3.8. There exists an orthogonal matrix $S \in \mathbb{R}^{n \times n}$ such that

$$
A=S\left[\begin{array}{cc}
A_{1} & 0 \tag{12.3.20}\\
A_{21} & A_{2}
\end{array}\right] S^{-1}, \quad C=\left[\begin{array}{cc}
C_{1} & 0
\end{array}\right] S^{-1}
$$

where $A_{1} \in \mathbb{R}^{p \times p}, C_{1} \in \mathbb{R}^{l \times p}$, and $\left(A_{1}, C_{1}\right)$ is observable.
Proof. The proof is dual to the proof of Theorem 12.6.8.
Proposition 12.3.9. Let $S \in \mathbb{R}^{n \times n}$, and assume that S is orthogonal. Then, the following conditions are equivalent:
i) A and C have the form (12.3.20), where $A_{1} \in \mathbb{R}^{p \times p}, C_{1} \in \mathbb{R}^{l \times p}$, and $\left(A_{1}, C_{1}\right)$ is observable.
ii) $\mathcal{U}(A, C)=\mathcal{R}\left(S\left[\begin{array}{c}0 \\ I_{n-p}\end{array}\right]\right)$.
iii) $\mathcal{U}(A, C)^{\perp}=\mathcal{R}\left(S\left[\begin{array}{c}I_{p} \\ 0\end{array}\right]\right)$.
iv) $\mathcal{P}=S\left[\begin{array}{cc}I_{p} & 0 \\ 0 & 0\end{array}\right] S^{\mathrm{T}}$.

Proposition 12.3.10. Let $S \in \mathbb{R}^{n \times n}$, and assume that S is nonsingular. Then, the following conditions are equivalent:
i) A and C have the form (12.3.20), where $A_{1} \in \mathbb{R}^{p \times p}, C_{1} \in \mathbb{R}^{l \times p}$, and $\left(A_{1}, C_{1}\right)$ is observable.
ii) $\mathcal{U}(A, C)=\mathcal{R}\left(S\left[\begin{array}{c}0 \\ I_{n-p}\end{array}\right]\right)$.
iii) $\mathcal{U}(A, C)^{\perp}=\mathcal{R}\left(S^{-\mathrm{T}}\left[\begin{array}{c}I_{p} \\ 0\end{array}\right]\right)$.

Definition 12.3.11. Let $S \in \mathbb{R}^{n \times n}$, assume that S is nonsingular, and let A and C have the form (12.3.20), where $A_{1} \in \mathbb{R}^{p \times p}, C_{1} \in \mathbb{R}^{l \times p}$, and $\left(A_{1}, C_{1}\right)$ is observable. Then, the unobservable spectrum of (A, C) is $\operatorname{spec}\left(A_{2}\right)$, while the unobservable
multispectrum of (A, C) is $\operatorname{mspec}\left(A_{2}\right)$. Furthermore, $\lambda \in \mathbb{C}$ is an unobservable eigenvalue of (A, C) if $\lambda \in \operatorname{spec}\left(A_{2}\right)$.

Definition 12.3.12. The observability pencil $\mathcal{O}_{A, C}(s)$ is the pencil

$$
\mathcal{O}_{A, C}=P_{\left[\begin{array}{c}
A \tag{12.3.21}\\
-C
\end{array}\right],\left[\begin{array}{l}
I \\
0
\end{array}\right], ~}^{\text {, }}
$$

that is,

$$
\mathcal{O}_{A, C}(s)=\left[\begin{array}{c}
s I-A \tag{12.3.22}\\
C
\end{array}\right]
$$

Proposition 12.3.13. Let $\lambda \in \operatorname{spec}(A)$. Then, λ is an unobservable eigenvalue of (A, C) if and only if

$$
\operatorname{rank}\left[\begin{array}{c}
\lambda I-A \tag{12.3.23}\\
C
\end{array}\right]<n
$$

Proof. The proof is dual to the proof of Proposition 12.6 .13 ,
Proposition 12.3.14. Let $\lambda \in \operatorname{mspec}(A)$ and $F \in \mathbb{R}^{n \times m}$. Then, λ is an unobservable eigenvalue of (A, C) if and only if λ is an unobservable eigenvalue of $(A+F C, C)$.

Proof. The proof is dual to the proof of Proposition 12.6.14.
Proposition 12.3.15. Assume that (A, C) is observable. Then, the Smith form of $\mathcal{O}_{A, C}$ is $\left[\begin{array}{c}I_{n} \\ 0_{l \times n}\end{array}\right]$.

Proof. The proof is dual to the proof of Proposition 12.6 .15
Proposition 12.3.16. Let p_{1}, \ldots, p_{n-p} be the similarity invariants of A_{2}, where, for all $i=1, \ldots, n-p-1, p_{i}$ divides p_{i+1}. Then, there exist unimodular matrices $S_{1} \in \mathbb{R}^{(n+l) \times(n+l)}[s]$ and $S_{2} \in \mathbb{R}^{n \times n}[s]$ and such that, for all $s \in \mathbb{C}$,

$$
\left[\begin{array}{c}
s I-A \tag{12.3.24}\\
C
\end{array}\right]=S_{1}(s)\left[\begin{array}{cccc}
I_{p} & & & \\
& p_{1}(s) & & \\
& & \ddots & \\
& & & p_{n-p}(s)
\end{array}\right] S_{2}(s)
$$

Consequently,

$$
\begin{equation*}
\operatorname{Szeros}\left(\mathcal{O}_{A, C}\right)=\bigcup_{i=1}^{n-p} \operatorname{roots}\left(p_{i}\right)=\operatorname{roots}\left(\chi_{A_{2}}\right)=\operatorname{spec}\left(A_{2}\right) \tag{12.3.25}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{mSzeros}\left(\mathcal{O}_{A, C}\right)=\bigcup_{i=1}^{n-p} \operatorname{mroots}\left(p_{i}\right)=\operatorname{mroots}\left(\chi_{A_{2}}\right)=\operatorname{mspec}\left(A_{2}\right) \tag{12.3.26}
\end{equation*}
$$

Proof. The proof is dual to the proof of Proposition 12.6 .16

Proposition 12.3.17. Let $s \in \mathbb{C}$. Then,

$$
\mathcal{O}(A, C) \subseteq \operatorname{Re} \mathcal{R}\left(\left[\begin{array}{c}
s I-A \tag{12.3.27}\\
C
\end{array}\right]\right)
$$

Proof. The proof is dual to the proof of Proposition 12.6.17.
The next result characterizes observability in several equivalent ways.
Theorem 12.3.18. The following statements are equivalent:
i) (A, C) is observable.
ii) There exists $t>0$ such that $\int_{0}^{t} e^{\tau A^{\mathrm{T}}} C^{\mathrm{T}} C e^{\tau A} \mathrm{~d} \tau$ is positive definite.
iii) $\int_{0}^{t} e^{\tau A^{\mathrm{T}}} C^{\mathrm{T}} C e^{\tau A} \mathrm{~d} \tau$ is positive definite for all $t>0$.
iv) $\operatorname{rank} \mathcal{O}(A, C)=n$.
$v)$ Every eigenvalue of (A, C) is observable.
If, in addition, $\lim _{t \rightarrow \infty} \int_{0}^{t} e^{\tau A^{\mathrm{T}}} C^{\mathrm{T}} C e^{\tau A} \mathrm{~d} \tau$ exists, then the following condition is equivalent to i) $-v$):
vi) $\int_{0}^{\infty} e^{t A^{\mathrm{T}}} C^{\mathrm{T}} C e^{t A} \mathrm{~d} t$ is positive definite.

Proof. The proof is dual to the proof of Theorem 12.6.18.
The following result implies that arbitrary eigenvalue placement is possible for (12.3.10) when (A, C) is observable.

Proposition 12.3.19. The pair (A, C) is observable if and only if, for every polynomial $p \in \mathbb{R}[s]$ such that $\operatorname{deg} p=n$, there exists a matrix $F \in \mathbb{R}^{m \times n}$ such that $\operatorname{mspec}(A+F C)=\operatorname{mroots}(p)$.

Proof. The proof is dual to the proof of Proposition 12.6.19,

12.4 Observable Asymptotic Stability

Let $A \in \mathbb{R}^{n \times n}$ and $C \in \mathbb{R}^{l \times n}$, and define $p \triangleq n-\operatorname{dim} \mathcal{U}(A, C)$.
Definition 12.4.1. (A, C) is observably asymptotically stable if

$$
\begin{equation*}
\mathcal{S}_{\mathrm{u}}(A) \subseteq \mathcal{U}(A, C) \tag{12.4.1}
\end{equation*}
$$

Proposition 12.4.2. Let $F \in \mathbb{R}^{n \times l}$. Then, (A, C) is observably asymptotically stable if and only if $(A+F C, C)$ is observably asymptotically stable.

Proposition 12.4.3. The following statements are equivalent:
$i)(A, C)$ is observably asymptotically stable.
ii) There exists an orthogonal matrix $S \in \mathbb{R}^{n \times n}$ such that (12.3.20) holds,
where $A_{1} \in \mathbb{R}^{p \times p}$ is asymptotically stable and $C_{1} \in \mathbb{R}^{l \times p}$.
iii) There exists a nonsingular matrix $S \in \mathbb{R}^{n \times n}$ such that (12.3.20) holds, where $A_{1} \in \mathbb{R}^{p \times p}$ is asymptotically stable and $C_{1} \in \mathbb{R}^{l \times p}$.
iv) $\lim _{t \rightarrow \infty} C e^{t A}=0$.
$v)$ The positive-semidefinite matrix $P \in \mathbb{R}^{n \times n}$ defined by

$$
\begin{equation*}
P \triangleq \int_{0}^{\infty} e^{t A^{\mathrm{T}}} C^{\mathrm{T}} C e^{t A} \mathrm{~d} t \tag{12.4.2}
\end{equation*}
$$

exists.
vi) There exists a positive-semidefinite matrix $P \in \mathbb{R}^{n \times n}$ satisfying

$$
\begin{equation*}
A^{\mathrm{T}} P+P A+C^{\mathrm{T}} C=0 \tag{12.4.3}
\end{equation*}
$$

In this case, the positive-semidefinite matrix $P \in \mathbb{R}^{n \times n}$ defined by (12.4.2) satisfies (12.4.3).

Proof. The proof is dual to the proof of Proposition 12.7.3.
The matrix P defined by (12.4.2) is the observability Gramian, and (12.4.3) is the observation Lyapunov equation.

Proposition 12.4.4. Assume that (A, C) is observably asymptotically stable, let $P \in \mathbb{R}^{n \times n}$ be the positive-semidefinite matrix defined by (12.4.2), and define $\mathcal{P} \in \mathbb{R}^{n \times n}$ by (12.3.12). Then, the following statements hold:
i) $P P^{+}=\mathcal{P}$.
ii) $\mathcal{R}(P)=\mathcal{R}(\mathcal{P})=\mathcal{U}(A, C)^{\perp}$.
iii) $\mathcal{N}(P)=\mathcal{N}(\mathcal{P})=\mathcal{U}(A, C)$.
iv) $\operatorname{rank} P=\operatorname{rank} \mathcal{P}=p$.
v) P is the only positive-semidefinite solution of (12.4.3) whose rank is p.

Proof. The proof is dual to the proof of Proposition 12.7.4.
Proposition 12.4.5. Assume that (A, C) is observably asymptotically stable, let $P \in \mathbb{R}^{n \times n}$ be the positive-semidefinite matrix defined by (12.4.2), and let $\hat{P} \in$ $\mathbb{R}^{n \times n}$. Then, the following statements are equivalent:
i) \hat{P} is positive semidefinite and satisfies (12.4.3).
ii) There exists a positive-semidefinite matrix $P_{0} \in \mathbb{R}^{n \times n}$ such that $\hat{P}=P+P_{0}$ and $A^{\mathrm{T}} P_{0}+P_{0} A=0$.
In this case,

$$
\begin{equation*}
\operatorname{rank} \hat{P}=p+\operatorname{rank} P_{0} \tag{12.4.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{rank} P_{0} \leq \sum_{\substack{\lambda \in \operatorname{spec}(A) \\ \lambda \in J \mathbb{R}}} \operatorname{gmult}_{A}(\lambda) \tag{12.4.5}
\end{equation*}
$$

Proof. The proof is dual to the proof of Proposition 12.7 .5
Proposition 12.4.6. The following statements are equivalent:
i) (A, C) is observably asymptotically stable, every imaginary eigenvalue of A is semisimple, and A has no ORHP eigenvalues.
ii) (12.4.3) has a positive-definite solution $P \in \mathbb{R}^{n \times n}$.

Proof. The proof is dual to the proof of Proposition 12.7.6,
Proposition 12.4.7. The following statements are equivalent:
i) (A, C) is observably asymptotically stable, and A has no imaginary eigenvalues.
ii) (12.4.3) has exactly one positive-semidefinite solution $P \in \mathbb{R}^{n \times n}$.

In this case, $P \in \mathbb{R}^{n \times n}$ is given by (12.4.2) and satisfies $\operatorname{rank} P=p$.
Proof. The proof is dual to the proof of Proposition 12.7.7.
Corollary 12.4.8. Assume that A is asymptotically stable. Then, the pos-itive-semidefinite matrix $P \in \mathbb{R}^{n \times n}$ defined by (12.4.2) is the unique solution of (12.4.3) and satisfies rank $P=p$.

Proof. The proof is dual to the proof of Corollary 12.7.4.
Proposition 12.4.9. The following statements are equivalent:
$i)(A, C)$ is observable, and A is asymptotically stable.
ii) (12.4.3) has exactly one positive-semidefinite solution $P \in \mathbb{R}^{n \times n}$, and P is positive definite.

In this case, $P \in \mathbb{R}^{n \times n}$ is given by (12.4.2).
Proof. The proof is dual to the proof of Proposition 12.7 .9
Corollary 12.4.10. Assume that A is asymptotically stable. Then, the pos-itive-semidefinite matrix $P \in \mathbb{R}^{n \times n}$ defined by (12.4.2) exists. Furthermore, P is positive definite if and only if (A, C) is observable.

12.5 Detectability

Let $A \in \mathbb{R}^{n \times n}$ and $C \in \mathbb{R}^{l \times n}$, and define $p \triangleq n-\operatorname{dim} \mathcal{U}(A, C)$.
Definition 12.5.1. (A, C) is detectable if

$$
\begin{equation*}
\mathcal{U}(A, C) \subseteq \mathcal{S}_{\mathrm{s}}(A) \tag{12.5.1}
\end{equation*}
$$

Proposition 12.5.2. Let $F \in \mathbb{R}^{n \times l}$. Then, (A, C) is detectable if and only if $(A+F C, C)$ is detectable.

Proposition 12.5.3. The following statements are equivalent:
i) A is asymptotically stable.
ii) (A, C) is detectable and observably asymptotically stable.

Proof. The proof is dual to the proof of Proposition 12.8.3.
Proposition 12.5.4. The following statements are equivalent:
i) (A, C) is detectable.
ii) There exists an orthogonal matrix $S \in \mathbb{R}^{n \times n}$ such that (12.3.20) holds, where $A_{1} \in \mathbb{R}^{p \times p}, C_{1} \in \mathbb{R}^{l \times p},\left(A_{1}, C_{1}\right)$ is observable, and $A_{2} \in$ $\mathbb{R}^{(n-p) \times(n-p)}$ is asymptotically stable.
iii) There exists a nonsingular matrix $S \in \mathbb{R}^{n \times n}$ such that (12.3.20) holds, where $A_{1} \in \mathbb{R}^{p \times p}, C_{1} \in \mathbb{R}^{l \times p},\left(A_{1}, C_{1}\right)$ is observable, and $A_{2} \in$ $\mathbb{R}^{(n-p) \times(n-p)}$ is asymptotically stable.
$i v)$ Every CRHP eigenvalue of (A, C) is observable.
Proof. The proof is dual to the proof of Proposition 12.8.4.
Proposition 12.5.5. The following statements are equivalent:
i) (A, C) is observably asymptotically stable and detectable.
ii) A is asymptotically stable.

Proof. The proof is dual to the proof of Proposition 12.8.5.
Corollary 12.5.6. The following statements are equivalent:
i) There exists a positive-semidefinite matrix $P \in \mathbb{R}^{n \times n}$ satisfying (12.4.3), and (A, C) is detectable.
ii) A is asymptotically stable.

Proof. The proof is dual to the proof of Proposition 12.8 .6 ,

12.6 The Controllable Subspace and Controllability

Let $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times m}$, and, for $t \geq 0$, consider the linear system

$$
\begin{gather*}
\dot{x}(t)=A x(t)+B u(t), \tag{12.6.1}\\
x(0)=0 . \tag{12.6.2}
\end{gather*}
$$

Definition 12.6.1. The controllable subspace $\mathcal{C}_{t_{\mathrm{f}}}(A, B)$ of (A, B) at time $t_{\mathrm{f}}>0$ is the subspace
$\mathcal{C}_{t_{\mathrm{f}}}(A, B) \triangleq\left\{x_{\mathrm{f}} \in \mathbb{R}^{n}: \quad\right.$ there exists a continuous control $u: \quad\left[0, t_{\mathrm{f}}\right] \mapsto \mathbb{R}^{m}$ such that the solution $x(\cdot)$ of (12.6.1), (12.6.2) satisfies $\left.x\left(t_{\mathrm{f}}\right)=x_{\mathrm{f}}\right\}$.

Let $t_{\mathrm{f}}>0$. Then, Definition 12.6 .1 states that $x_{\mathrm{f}} \in \mathcal{C}_{t_{\mathrm{f}}}(A, B)$ if and only if there exists a continuous control $u:\left[0, t_{\mathrm{f}}\right] \mapsto \mathbb{R}^{m}$ such that

$$
\begin{equation*}
x_{\mathrm{f}}=\int_{0}^{t_{\mathrm{f}}} e^{\left(t_{\mathrm{f}}-t\right) A} B u(t) \mathrm{d} t \tag{12.6.4}
\end{equation*}
$$

The following result provides explicit expressions for $\mathcal{C}_{t_{\mathrm{f}}}(A, B)$.
Lemma 12.6.2. Let $t_{\mathrm{f}}>0$. Then, the following subspaces are equal:
i) $\mathcal{C}_{t_{\mathrm{f}}}(A, B)$.
ii) $\left[\bigcap_{t \in\left[0, t_{\mathrm{f}}\right]} \mathcal{N}\left(B^{\mathrm{T}} e^{t A^{\mathrm{T}}}\right)\right]^{\perp}$.
iii) $\left[\bigcap_{i=0}^{n-1} \mathcal{N}\left(B^{\mathrm{T}} A^{i \mathrm{~T}}\right)\right]^{\perp}$.
iv) $\mathcal{R}\left(\left[\begin{array}{llll}B & A B & \cdots & A^{n-1} B\end{array}\right]\right)$.
v) $\mathcal{R}\left(\int_{0}^{t_{\mathrm{f}}} e^{t A} B B^{\mathrm{T}} e^{t A^{\mathrm{T}}} \mathrm{d} t\right)$.

If, in addition, $\lim _{t_{\mathrm{f}} \rightarrow \infty} \int_{0}^{t_{\mathrm{f}}} e^{t A} B B^{\mathrm{T}} e^{t A^{\mathrm{T}}} \mathrm{d} t$ exists, then the following subspace is equal to i) $-v$):
vi) $\mathcal{R}\left(\int_{0}^{\infty} e^{t A} B B^{\mathrm{T}} e^{t A^{\mathrm{T}}} \mathrm{d} t\right)$.

Proof. To prove that $i) \subseteq i i)$, let $\eta \in \bigcap_{t \in\left[0, t_{\mathrm{f}}\right]} \mathcal{N}\left(B^{\mathrm{T}} e^{t A^{\mathrm{T}}}\right)$ so that $\eta^{\mathrm{T}} e^{t A} B=0$ for all $t \in\left[0, t_{\mathrm{f}}\right]$. Now, let $u:\left[0, t_{\mathrm{f}}\right] \mapsto \mathbb{R}^{m}$ be continuous. Then, $\eta^{\mathrm{T}} \int_{0}^{t_{\mathrm{f}}} e^{\left(t_{\mathrm{f}}-t\right) A} B u(t) \mathrm{d} t$ $=0$, which implies that $\eta \in \mathcal{C}_{t_{\mathrm{f}}}(A, B)^{\perp}$.

To prove that $i i) \subseteq i i i)$, let $\eta \in \bigcap_{i=0}^{n-1} \mathcal{N}\left(B^{\mathrm{T}} A^{i \mathrm{~T}}\right)$ so that $\eta^{\mathrm{T}} A^{i} B=0$ for all $i=0,1, \ldots, n-1$. It follows from the Cayley-Hamilton theorem Theorem4.4.7 that $\eta^{\mathrm{T}} A^{i} B=0$ for all $i \geq 0$. Now, let $t \in\left[0, t_{\mathrm{f}}\right]$. Then, $\eta^{\mathrm{T}} e^{t A} B=\sum_{i=0}^{\infty} t^{i}(i!)^{-1} \eta^{\mathrm{T}} A^{i} B=0$, and thus $\eta \in \mathcal{N}\left(B^{\mathrm{T}} e^{t A^{\mathrm{T}}}\right)$.

To show that iii) $\subseteq i v)$, let $\eta \in \mathcal{R}\left(\left[\begin{array}{llll}B & A B & \cdots & A^{n-1} B\end{array}\right]\right)^{\perp}$. Then, $\eta \in$ $\mathcal{N}\left(\left[\begin{array}{llll}B & A B & \cdots & A^{n-1} B\end{array}\right]^{\mathrm{T}}\right)$, which implies that $\eta^{\mathrm{T}} A^{i} B=0$ for all $i=0,1, \ldots$, $n-1$.

To prove that $i v) \subseteq v)$, let $\eta \in \mathcal{N}\left(\int_{0}^{t_{\mathrm{f}}} e^{t A} B B^{\mathrm{T}} e^{t A^{\mathrm{T}}} \mathrm{d} t\right)$. Then,

$$
\eta^{\mathrm{T}} \int_{0}^{t_{\mathrm{f}}} e^{t A} B B^{\mathrm{T}} e^{t A^{\mathrm{T}}} \mathrm{~d} t \eta=0
$$

which implies that $\eta^{\mathrm{T}} e^{t A} B=0$ for all $t \in\left[0, t_{\mathrm{f}}\right]$. Differentiating with respect to t and setting $t=0$ implies that $\eta^{\mathrm{T}} A^{i} B=0$ for all $i=0,1, \ldots, n-1$. Hence, $\eta \in \mathcal{R}\left(\left[\begin{array}{llll}B & A B & \cdots & A^{n-1} B\end{array}\right]\right)^{\perp}$.

To prove that $v) \subseteq i$, let $\eta \in \mathcal{C}_{t_{\mathrm{f}}}(A, B)^{\perp}$. Then, $\eta^{\mathrm{T}} \int_{0}^{t_{\mathrm{f}}} e^{\left(t_{\mathrm{f}}-t\right) A} B u(t) \mathrm{d} t=0$ for all continuous u : $\left[0, t_{\mathrm{f}}\right] \mapsto \mathbb{R}^{m}$. Letting $u(t)=B^{\mathrm{T}} e^{\left(t_{\mathrm{f}}-t\right) A^{\mathrm{T}}} \eta^{\mathrm{T}}$, implies that $\eta^{\mathrm{T}} \int_{0}^{t_{\mathrm{f}}} e^{t A} B B^{\mathrm{T}} e^{t A^{\mathrm{T}}} \mathrm{d} t \eta=0$, and thus $\eta \in \mathcal{N}\left(\int_{0}^{t_{\mathrm{f}}} e^{t A} B B^{\mathrm{T}} e^{t A^{\mathrm{T}}} \mathrm{d} t\right)$.

Lemma 12.6 .2 shows that $\mathcal{C}_{t_{\mathrm{f}}}(A, B)$ is independent of t_{f}. We thus write $\mathcal{C}(A, B)$ for $\mathcal{C}_{t_{\mathrm{f}}}(A, B)$, and call $\mathcal{C}(A, B)$ the controllable subspace of $(A, B) .(A, B)$ is controllable if $\mathcal{C}(A, B)=\mathbb{R}^{n}$. For convenience, define the $m \times n m$ controllability matrix

$$
\mathcal{K}(A, B) \triangleq\left[\begin{array}{llll}
B & A B & \cdots & A^{n-1} B \tag{12.6.5}
\end{array}\right]
$$

so that

$$
\begin{equation*}
\mathcal{C}(A, B)=\mathcal{R}[\mathcal{K}(A, B)] \tag{12.6.6}
\end{equation*}
$$

Define

$$
\begin{equation*}
q \triangleq \operatorname{dim} \mathcal{C}(A, B)=\operatorname{rank} \mathcal{K}(A, B) \tag{12.6.7}
\end{equation*}
$$

Corollary 12.6.3. For all $t_{\mathrm{f}}>0$,

$$
\begin{equation*}
q=\operatorname{dim} \mathcal{C}(A, B)=\operatorname{rank} \mathcal{K}(A, B)=\operatorname{rank} \int_{0}^{t_{\mathrm{f}}} e^{t A} B B^{\mathrm{T}} e^{t A^{\mathrm{T}}} \mathrm{~d} t \tag{12.6.8}
\end{equation*}
$$

If, in addition, $\lim _{t_{\mathrm{f}} \rightarrow \infty} \int_{0}^{t_{\mathrm{f}}} e^{t A} B B^{\mathrm{T}} e^{t A^{\mathrm{T}}} \mathrm{d} t$ exists, then

$$
\begin{equation*}
q=\operatorname{rank} \int_{0}^{\infty} e^{t A} B B^{\mathrm{T}} e^{t A^{\mathrm{T}}} \mathrm{~d} t \tag{12.6.9}
\end{equation*}
$$

Corollary 12.6.4. $\mathcal{C}(A, B)$ is an invariant subspace of A.
The following result shows that the controllable subspace $\mathcal{C}(A, B)$ is unchanged by full-state feedback $u(t)=K x(t)+v(t)$.

Proposition 12.6.5. Let $K \in \mathbb{R}^{m \times n}$. Then,

$$
\begin{equation*}
\mathcal{C}(A+B K, B)=\mathcal{C}(A, B) \tag{12.6.10}
\end{equation*}
$$

In particular, (A, B) is controllable if and only if $(A+B K, B)$ is controllable.
Proof. Note that

$$
\begin{aligned}
\mathcal{C}(A & +B K, B) \\
& =\mathcal{R}[\mathcal{K}(A+B K, B)] \\
& =\mathcal{R}\left(\left[\begin{array}{lll}
B & A B+B K B & A^{2} B+A B K B+B K A B+B K B K B
\end{array} \cdots\right]\right) \\
& =\mathcal{R}[\mathcal{K}(A, B)]=\mathcal{C}(A, B) .
\end{aligned}
$$

Let $\tilde{\mathcal{C}}(A, B) \subseteq \mathbb{R}^{n}$ be a subspace that is complementary to $\mathcal{C}(A, B)$. Then, $\tilde{\mathcal{C}}(A, B)$ is an uncontrollable subspace in the sense that, if $x_{\mathrm{f}}=x_{\mathrm{f}}^{\prime}+x_{\mathrm{f}}^{\prime \prime} \in \mathbb{R}^{n}$, where $x_{\mathrm{f}}^{\prime} \in \mathcal{C}(A, B)$ and $x_{\mathrm{f}}^{\prime \prime} \in \tilde{\mathcal{C}}(A, B)$ is nonzero, then there exists a continuous control $u:\left[0, t_{\mathrm{f}}\right] \rightarrow \mathbb{R}^{m}$ such that $x\left(t_{\mathrm{f}}\right)=x_{\mathrm{f}}^{\prime}$, but there exists no continuous control such that $x\left(t_{\mathrm{f}}\right)=x_{\mathrm{f}}$. Using Proposition 3.5.3, let $\mathcal{Q} \in \mathbb{R}_{\tilde{\mathbb{C}}}{ }^{n \times n}$ be the unique idempotent matrix such that $\mathcal{R}(\mathbb{Q})=\mathcal{C}(A, B)$ and $\mathcal{N}(Q)=\tilde{\mathcal{C}}(A, B)$. Then, $x_{\mathrm{f}}^{\prime}=\mathcal{Q} x_{\mathrm{f}}$. The following result constructs \mathcal{Q} and a continuous control $u(\cdot)$ that yields $x\left(t_{\mathrm{f}}\right)=x_{\mathrm{f}}^{\prime}$ for $\tilde{\mathcal{C}}(A, B) \triangleq \mathcal{C}(A, B)^{\perp}$. In this case, Q is a projector.

Lemma 12.6.6. Let $t_{\mathrm{f}}>0$, and define $Q \in \mathbb{R}^{n \times n}$ by

$$
\begin{equation*}
Q \triangleq\left(\int_{0}^{t_{\mathrm{f}}} e^{t A} B B^{\mathrm{T}} e^{t A^{\mathrm{T}}} \mathrm{~d} t\right)^{+} \int_{0}^{t_{\mathrm{f}}} e^{t A} B B^{\mathrm{T}} e^{t A^{\mathrm{T}}} \mathrm{~d} t \tag{12.6.11}
\end{equation*}
$$

Then, \mathcal{Q} is the projector onto $\mathcal{C}(A, B)$, and Q_{\perp} is the projector onto $\mathcal{C}(A, B)^{\perp}$. Hence,

$$
\begin{gather*}
\mathcal{R}(\mathbb{Q})=\mathcal{N}\left(Q_{\perp}\right)=\mathcal{C}(A, B), \tag{12.6.12}\\
\mathcal{N}(\mathbb{Q})=\mathcal{R}(\mathbb{Q})=\mathcal{C}(A, B)^{\perp}, \tag{12.6.13}\\
\operatorname{rank} \mathcal{Q}=\operatorname{def} Q_{\perp}=\operatorname{dim} \mathcal{C}(A, B)=q, \tag{12.6.14}\\
\operatorname{def} \mathcal{Q}=\operatorname{rank} Q_{\perp}=\operatorname{dim} \mathcal{C}(A, B)^{\perp}=n-q . \tag{12.6.15}
\end{gather*}
$$

Now, define $u:\left[0, t_{f}\right] \mapsto \mathbb{R}^{m}$ by

$$
\begin{equation*}
u(t) \triangleq B^{\mathrm{T}} e^{\left(t_{\mathrm{f}}-t\right) A^{\mathrm{T}}}\left(\int_{0}^{t_{\mathrm{f}}} e^{\tau A} B B^{\mathrm{T}} e^{\tau A^{\mathrm{T}}} \mathrm{~d} \tau\right)^{+} x_{\mathrm{f}} \tag{12.6.16}
\end{equation*}
$$

If $x_{\mathrm{f}}=x_{\mathrm{f}}^{\prime}+x_{\mathrm{f}}^{\prime \prime}$, where $x_{\mathrm{f}}^{\prime} \in \mathcal{C}(A, B)$ and $x_{\mathrm{f}}^{\prime \prime} \in \mathcal{C}(A, B)^{\perp}$, then

$$
\begin{equation*}
x_{\mathrm{f}}^{\prime}=Q x_{\mathrm{f}}=\int_{0}^{t_{\mathrm{f}}} e^{\left(t_{\mathrm{f}}-t\right) A} B u(t) \mathrm{d} t \tag{12.6.17}
\end{equation*}
$$

Finally, (A, B) is controllable if and only if $Q=I_{n}$. In this case, for all $x_{\mathrm{f}} \in \mathbb{R}^{n}$,

$$
\begin{equation*}
x_{\mathrm{f}}=\int_{0}^{t_{\mathrm{f}}} e^{\left(t_{\mathrm{f}}-t\right) A} B u(t) \mathrm{d} t \tag{12.6.18}
\end{equation*}
$$

where $u: \quad\left[0, t_{\mathrm{f}}\right] \mapsto \mathbb{R}^{m}$ is given by

$$
\begin{equation*}
u(t)=B^{\mathrm{T}} e^{\left(t_{\mathrm{f}}-t\right) A^{\mathrm{T}}}\left(\int_{0}^{t_{\mathrm{f}}} e^{\tau A} B B^{\mathrm{T}} e^{\tau A^{\mathrm{T}}} \mathrm{~d} \tau\right)^{-1} x_{\mathrm{f}} \tag{12.6.19}
\end{equation*}
$$

Lemma 12.6.7. Let $\alpha \in \mathbb{R}$. Then,

$$
\begin{equation*}
\mathcal{C}(A+\alpha I, B)=\mathcal{C}(A, B) \tag{12.6.20}
\end{equation*}
$$

The following result uses a coordinate transformation to characterize the controllable dynamics of (12.6.1).

Theorem 12.6.8. There exists an orthogonal matrix $S \in \mathbb{R}^{n \times n}$ such that

$$
A=S\left[\begin{array}{cc}
A_{1} & A_{12} \tag{12.6.21}\\
0 & A_{2}
\end{array}\right] S^{-1}, \quad B=S\left[\begin{array}{c}
B_{1} \\
0
\end{array}\right]
$$

where $A_{1} \in \mathbb{R}^{q \times q}, B_{1} \in \mathbb{R}^{q \times m}$, and $\left(A_{1}, B_{1}\right)$ is controllable.
Proof. Let $\alpha<0$ be such that $A_{\alpha} \triangleq A+\alpha I$ is asymptotically stable, and let $Q \in \mathbb{R}^{n \times n}$ be the positive-semidefinite solution of

$$
\begin{equation*}
A_{\alpha} Q+Q A_{\alpha}^{\mathrm{T}}+B B^{\mathrm{T}}=0 \tag{12.6.22}
\end{equation*}
$$

given by

$$
Q=\int_{0}^{\infty} e^{t A_{\alpha}} B B^{\mathrm{T}} e^{t A_{\alpha}^{\mathrm{T}}} \mathrm{~d} t
$$

It now follows from Lemma 12.6 .2 and Lemma 12.6 .7 that

$$
\mathcal{R}(Q)=\mathcal{R}\left[\mathcal{C}\left(A_{\alpha}, B\right)\right]=\mathcal{R}[\mathcal{C}(A, B)] .
$$

Hence,

$$
\operatorname{rank} Q=\operatorname{dim} \mathcal{C}\left(A_{\alpha}, B\right)=\operatorname{dim} \mathcal{C}(A, B)=q
$$

Next, let $S \in \mathbb{R}^{n \times n}$ be an orthogonal matrix such that $Q=S\left[\begin{array}{cc}Q_{1} & 0 \\ 0 & 0\end{array}\right] S^{\mathrm{T}}$, where $Q_{1} \in \mathbb{R}^{q \times q}$ is positive definite. Writing $A_{\alpha}=S\left[\begin{array}{cc}\hat{A}_{1} & \hat{A}_{12} \\ \hat{A}_{21} & \hat{A}_{2}\end{array}\right] S^{-1}$ and $B=S\left[\begin{array}{c}B_{1} \\ B_{2}\end{array}\right]$, where $\hat{A}_{1} \in \mathbb{R}^{q \times q}$ and $B_{1} \in \mathbb{R}^{q \times m}$, it follows from (12.6.22) that

$$
\begin{gathered}
\hat{A}_{1} Q_{1}+Q_{1} \hat{A}_{1}^{\mathrm{T}}+B_{1} B_{1}^{\mathrm{T}}=0 \\
\hat{A}_{21} Q_{1}+B_{2} B_{1}^{\mathrm{T}}=0 \\
B_{2} B_{2}^{\mathrm{T}}=0
\end{gathered}
$$

Therefore, $B_{2}=0$ and $\hat{A}_{21}=0$, and thus

$$
A_{\alpha}=S\left[\begin{array}{cc}
\hat{A}_{1} & \hat{A}_{12} \\
0 & \hat{A}_{2}
\end{array}\right] S^{-1}, \quad B=S\left[\begin{array}{c}
B_{1} \\
0
\end{array}\right]
$$

Furthermore,

$$
A=S\left[\begin{array}{cc}
\hat{A}_{1} & \hat{A}_{12} \\
0 & \hat{A}_{2}
\end{array}\right] S^{-1}-\alpha I=S\left(\left[\begin{array}{cc}
\hat{A}_{1} & \hat{A}_{12} \\
0 & \hat{A}_{2}
\end{array}\right]-\alpha I\right) S^{-1}
$$

Hence,

$$
A=S\left[\begin{array}{cc}
A_{1} & A_{12} \\
0 & A_{2}
\end{array}\right] S^{-1}
$$

where $A_{1} \triangleq \hat{A}_{1}-\alpha I_{q}, A_{12} \triangleq \hat{A}_{12}$, and $A_{2} \triangleq \hat{A}_{2}-\alpha I_{n-q}$.
Proposition 12.6.9. Let $S \in \mathbb{R}^{n \times n}$, and assume that S is orthogonal. Then, the following conditions are equivalent:
i) A and B have the form (12.6.21), where $A_{1} \in \mathbb{R}^{q \times q}, B_{1} \in \mathbb{R}^{q \times m}$, and $\left(A_{1}, B_{1}\right)$ is controllable.
ii) $\mathcal{C}(A, B)=\mathcal{R}\left(S\left[\begin{array}{c}I_{q} \\ 0\end{array}\right]\right)$.
iii) $\mathcal{C}(A, B)^{\perp}=\mathcal{R}\left(S\left[\begin{array}{c}0 \\ I_{n-q}\end{array}\right]\right)$.
iv) $\mathcal{Q}=S\left[\begin{array}{cc}I_{q} & 0 \\ 0 & 0\end{array}\right] S^{\mathrm{T}}$.

Proposition 12.6.10. Let $S \in \mathbb{R}^{n \times n}$, and assume that S is nonsingular. Then, the following conditions are equivalent:
i) A and B have the form (12.6.21), where $A_{1} \in \mathbb{R}^{q \times q}, B_{1} \in \mathbb{R}^{q \times m}$, and $\left(A_{1}, B_{1}\right)$ is controllable.
ii) $\mathcal{C}(A, B)=\mathcal{R}\left(S\left[\begin{array}{c}I_{q} \\ 0\end{array}\right]\right)$.
iii) $\mathcal{C}(A, B)^{\perp}=\mathcal{R}\left(S^{-\mathrm{T}}\left[\begin{array}{c}0 \\ I_{n-q}\end{array}\right]\right)$.

Definition 12.6.11. Let $S \in \mathbb{R}^{n \times n}$, assume that S is nonsingular, and let A and B have the form (12.6.21), where $A_{1} \in \mathbb{R}^{q \times q}, B_{1} \in \mathbb{R}^{q \times m}$, and $\left(A_{1}, B_{1}\right)$ is controllable. Then, the uncontrollable spectrum of (A, B) is $\operatorname{spec}\left(A_{2}\right)$, while the uncontrollable multispectrum of (A, B) is $\operatorname{mspec}\left(A_{2}\right)$. Furthermore, $\lambda \in \mathbb{C}$ is an uncontrollable eigenvalue of (A, B) if $\lambda \in \operatorname{spec}\left(A_{2}\right)$.

Definition 12.6.12. The controllability pencil $\mathcal{C}_{A, B}(s)$ is the pencil

$$
\begin{equation*}
\mathcal{C}_{A, B}=P_{[A-B],[I 0]}, \tag{12.6.23}
\end{equation*}
$$

that is,

$$
\mathcal{C}_{A, B}(s)=\left[\begin{array}{ll}
s I-A & B \tag{12.6.24}
\end{array}\right]
$$

Proposition 12.6.13. Let $\lambda \in \operatorname{spec}(A)$. Then, λ is an uncontrollable eigenvalue of (A, B) if and only if

$$
\operatorname{rank}\left[\begin{array}{cc}
\lambda I-A & B]<n \tag{12.6.25}
\end{array}\right.
$$

Proof. Since $\left(A_{1}, B_{1}\right)$ is controllable, it follows from (12.6.21) that

$$
\begin{aligned}
\operatorname{rank}\left[\begin{array}{cc}
\lambda I-A & B
\end{array}\right] & =\operatorname{rank}\left[\begin{array}{ccc}
\lambda I-A_{1} & A_{12} & B_{1} \\
0 & \lambda I-A_{2} & 0
\end{array}\right] \\
& =\operatorname{rank}\left[\begin{array}{cc}
\lambda I-A_{1} & B_{1}
\end{array}\right]+\operatorname{rank}\left(\lambda I-A_{2}\right) \\
& =q+\operatorname{rank}\left(\lambda I-A_{2}\right)
\end{aligned}
$$

Hence, $\operatorname{rank}\left[\begin{array}{ll}\lambda I-A & B\end{array}\right]<n$ if and only if $\operatorname{rank}\left(\lambda I-A_{2}\right)<n-q$, that is, if and only if $\lambda \in \operatorname{spec}\left(A_{2}\right)$.

Proposition 12.6.14. Let $\lambda \in \operatorname{mspec}(A)$ and $K \in \mathbb{R}^{n \times m}$. Then, λ is an uncontrollable eigenvalue of (A, B) if and only if λ is an uncontrollable eigenvalue of $(A+B K, B)$.

Proof. In the notation of Theorem 12.6.8, partition $B_{1}=\left[\begin{array}{ll}B_{11} & B_{12}\end{array}\right]$, where $B_{11} \in \mathbb{F}^{q \times m}$, and partition $K=\left[\begin{array}{l}K_{1} \\ K_{2}\end{array}\right]$, where $K_{1} \in \mathbb{R}^{q \times m}$. Then,

$$
A+B K=\left[\begin{array}{cc}
A_{1}+B_{11} K_{1} & A_{12}+B_{12} K_{2} \\
0 & A_{2}
\end{array}\right]
$$

Consequently, the uncontrollable spectrum of $A+B K$ is $\operatorname{spec}\left(A_{2}\right)$.
Proposition 12.6.15. Assume that (A, B) is controllable. Then, the Smith form of $\mathcal{C}_{A, B}$ is $\left[\begin{array}{ll}I_{n} & 0_{n \times m}\end{array}\right]$.

Proof. First, note that, if $\lambda \in \mathbb{C}$ is not an eigenvalue of A, then $n=$ $\operatorname{rank}(\lambda I-A)=\operatorname{rank}\left[\begin{array}{cc}\lambda I-A & B\end{array}\right]=\operatorname{rank} \mathcal{C}_{A, B}(\lambda)$. Therefore, $\operatorname{rank} \mathcal{C}_{A, B}=n$, and thus $\mathcal{C}_{A, B}$ has n Smith polynomials. Furthermore, since (A, B) is controllable, it follows that (A, B) has no uncontrollable eigenvalues. Therefore, it follows from Proposition 12.6 .13 that, for all $\lambda \in \operatorname{spec}(A)$, $\operatorname{rank}\left[\begin{array}{cc}\lambda I-A & B\end{array}\right]=n$. Consequently, $\operatorname{rank} \mathcal{C}_{A, B}(\lambda)=n$ for all $\lambda \in \mathbb{C}$. Thus, every Smith polynomial $\mathcal{C}_{A, B}$ is 1.

Proposition 12.6.16. Let p_{1}, \ldots, p_{n-q} be the similarity invariants of A_{2}, where, for all $i=1, \ldots, n-q-1, p_{i}$ divides p_{i+1}. Then, there exist unimodular matrices $S_{1} \in \mathbb{R}^{n \times n}[s]$ and $S_{2} \in \mathbb{R}^{(n+m) \times(n+m)}[s]$ such that, for all $s \in \mathbb{C}$,

$$
\left[\begin{array}{cc}
s I-A & B
\end{array}\right]=S_{1}(s)\left[\begin{array}{ccccc}
I_{q} & & & & 0_{n \times m} \tag{12.6.26}\\
& p_{1}(s) & & & \\
& & \ddots & & p_{n-q}(s)
\end{array}\right] S_{2}(s)
$$

Consequently,

$$
\begin{equation*}
\operatorname{Szeros}\left(\mathcal{C}_{A, B}\right)=\bigcup_{i=1}^{n-q} \operatorname{roots}\left(p_{i}\right)=\operatorname{roots}\left(\chi_{A_{2}}\right)=\operatorname{spec}\left(A_{2}\right) \tag{12.6.27}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{mSzeros}\left(\mathcal{C}_{A, B}\right)=\bigcup_{i=1}^{n-q} \operatorname{mroots}\left(p_{i}\right)=\operatorname{mroots}\left(\chi_{A_{2}}\right)=\operatorname{mspec}\left(A_{2}\right) \tag{12.6.28}
\end{equation*}
$$

Proof. Let $S \in \mathbb{R}^{n \times n}$ be as in Theorem 12.6.8, let $\hat{S}_{1} \in \mathbb{R}^{q \times q}[s]$ and $\hat{S}_{2} \in$ $\mathbb{R}^{(q+m) \times(q+m)}[s]$ be unimodular matrices such that

$$
\hat{S}_{1}(s)\left[\begin{array}{cc}
s I_{q}-A_{1} & B_{1}
\end{array}\right] \hat{S}_{2}(s)=\left[\begin{array}{cc}
I_{q} & 0_{q \times m}
\end{array}\right]
$$

and let $\hat{S}_{3}, \hat{S}_{4} \in \mathbb{R}^{(n-q) \times(n-q)}$ be unimodular matrices such that

$$
\hat{S}_{3}(s)\left(s I-A_{2}\right) \hat{S}_{4}(s)=\hat{P}(s),
$$

where $\hat{P} \triangleq \operatorname{diag}\left(p_{1}, \ldots, p_{n-q}\right)$. Then,

$$
\begin{aligned}
& {\left[\begin{array}{cc}
s I-A & B
\end{array}\right]=S\left[\begin{array}{cc}
\hat{S}_{1}^{-1}(s) & 0 \\
0 & \hat{S}_{3}^{-1}(s)
\end{array}\right]\left[\begin{array}{ccc}
I_{q} & 0 & 0_{q \times m} \\
0 & \hat{P}(s) & 0
\end{array}\right] } \\
\times & {\left[\begin{array}{ccc}
I_{q} & 0 & -\hat{S}_{1}(s) A_{12} \\
0 & 0 & \hat{S}_{4}^{-1}(s) \\
0 & I_{m} & 0
\end{array}\right]\left[\begin{array}{cc}
\hat{S}_{2}^{-1}(s) & 0 \\
0 & I_{n-q}
\end{array}\right]\left[\begin{array}{ccc}
I_{q} & 0 & 0_{q \times m} \\
0 & 0 & I_{m} \\
0 & I_{n-q} & 0
\end{array}\right]\left[\begin{array}{cc}
S^{-1} & 0 \\
0 & I_{m}
\end{array}\right] . }
\end{aligned}
$$

Proposition 12.6.17. Let $s \in \mathbb{C}$. Then,

$$
\mathcal{C}(A, B) \subseteq \operatorname{Re} \mathcal{R}\left(\left[\begin{array}{cc}
s I-A & B \tag{12.6.29}
\end{array}\right]\right)
$$

Proof. Using Proposition 12.6 .9 and the notation in the proof of Proposition 12.6.16, it follows that, for all $s \in \mathbb{C}$,

$$
\mathcal{C}(A, B)=\mathcal{R}\left(S\left[\begin{array}{c}
I_{q} \\
0
\end{array}\right]\right) \subseteq \mathcal{R}\left(S\left[\begin{array}{cc}
\hat{S}_{1}^{-1}(s) & 0 \\
0 & \hat{S}_{3}^{-1}(s) \hat{P}(s)
\end{array}\right]\right)=\mathcal{R}\left(\left[\begin{array}{cc}
s I-A & B
\end{array}\right]\right) .
$$

The next result characterizes controllability in several equivalent ways.
Theorem 12.6.18. The following statements are equivalent:
i) (A, B) is controllable.
ii) There exists $t>0$ such that $\int_{0}^{t} e^{\tau A} B B^{\mathrm{T}} e^{\tau A^{\mathrm{T}}} \mathrm{d} \tau$ is positive definite.
iii) $\int_{0}^{t} e^{\tau A} B B^{\mathrm{T}} e^{\tau A^{\mathrm{T}}} \mathrm{d} \tau$ is positive definite for all $t>0$.
iv) $\operatorname{rank} \mathcal{K}(A, B)=n$.
$v)$ Every eigenvalue of (A, B) is controllable.
If, in addition, $\lim _{t \rightarrow \infty} \int_{0}^{t} e^{\tau A} B B^{\mathrm{T}} e^{\tau A^{\mathrm{T}}} \mathrm{d} \tau$ exists, then the following condition is equivalent to i) $-v$):
vi) $\int_{0}^{\infty} e^{t A} B B^{\mathrm{T}} e^{t A^{\mathrm{T}}} \mathrm{d} t$ is positive definite.

Proof. The equivalence of i) $-i v$) follows from Lemma 12.6.2,
To prove $i v) \Longrightarrow v$), suppose that v) does not hold, that is, there exist $\lambda \in$ $\operatorname{spec}(A)$ and a nonzero vector $x \in \mathbb{C}^{n}$ such that $x^{*} A=\lambda x^{*}$ and $x^{*} B=0$. It thus follows that $x^{*} A B=\lambda x^{*} B=0$. Similarly, $x^{*} A^{i} B=0$ for all $i=0,1, \ldots, n-1$. Hence, $(\operatorname{Re} x)^{\mathrm{T}} \mathcal{K}(A, B)=0$ and $(\operatorname{Im} x)^{\mathrm{T}} \mathcal{K}(A, B)=0$. Since $\operatorname{Re} x$ and $\operatorname{Im} x$ are not both zero, it follows that $\operatorname{dim} \mathcal{C}(A, B)<n$.

Conversely, to show that v) implies $i v$), suppose that $\operatorname{rank} \mathcal{K}(A, B)<n$. Then, there exists a nonzero vector $x \in \mathbb{R}^{n}$ such that $x^{\mathrm{T}} A^{i} B=0$ for all $i=0, \ldots, n-1$. Now, let $p \in \mathbb{R}[s]$ be a nonzero polynomial of minimal degree such that $x^{\mathrm{T}} p(A)=0$. Note that p is not a constant polynomial and that $x^{\mathrm{T}} \mu_{A}(A)=0$. Thus, $1 \leq \operatorname{deg} p \leq$ $\operatorname{deg} \mu_{A}$. Now, let $\lambda \in \mathbb{C}$ be such that $p(\lambda)=0$, and let $q \in \mathbb{R}[s]$ be such that $p(s)=q(s)(s-\lambda)$ for all $s \in \mathbb{C}$. Since $\operatorname{deg} q<\operatorname{deg} p$, it follows that $x^{\mathrm{T}} q(A) \neq 0$.

Therefore, $\eta \triangleq q(A) x$ is nonzero. Furthermore, $\eta^{\mathrm{T}}(A-\lambda I)=x^{\mathrm{T}} p(A)=0$. Since $x^{\mathrm{T}} A^{i} B=0$ for all $i=0, \ldots, n-1$, it follows that $\eta^{\mathrm{T}} B=x^{\mathrm{T}} q(A) B=0$. Consequently, v) does not hold.

The following result implies that arbitrary eigenvalue placement is possible for (12.6.1) when (A, B) is controllable.

Proposition 12.6.19. The pair (A, B) is controllable if and only if, for every polynomial $p \in \mathbb{R}[s]$ such that $\operatorname{deg} p=n$, there exists a matrix $K \in \mathbb{R}^{m \times n}$ such that $\operatorname{mspec}(A+B K)=\operatorname{mroots}(p)$.

Proof. For the case $m=1$ let $A_{\mathrm{c}} \triangleq C\left(\chi_{A}\right)$ and $B_{\mathrm{c}} \triangleq e_{n}$ as in (12.9.5). Then, Proposition 12.9.3 implies that $\mathcal{K}\left(A_{\mathrm{c}}, B_{\mathrm{c}}\right)$ is nonsingular, while Corollary 12.9.9 implies that $A_{\mathrm{c}}=S^{-1} A S$ and $B_{\mathrm{c}}=S^{-1} B$. Now, let $\operatorname{mroots}(p)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}_{\mathrm{ms}} \subset$ \mathbb{C}. Letting $K \triangleq e_{n}^{\mathrm{T}}\left[C(p)-A_{\mathrm{c}}\right] S^{-1}$ it follows that

$$
\begin{aligned}
A+B K & =S\left(A_{\mathrm{c}}+B_{\mathrm{c}} K S\right) S^{-1} \\
& =S\left(A_{\mathrm{c}}+E_{n, n}\left[C(p)-A_{\mathrm{c}}\right]\right) S^{-1} \\
& =S C(p) S^{-1}
\end{aligned}
$$

The case $m>1$ requires the multivariable controllable canonical form. See 1150 , p. 248].

12.7 Controllable Asymptotic Stability

Let $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times m}$, and define $q \triangleq \operatorname{dim} \mathcal{C}(A, C)$.
Definition 12.7.1. (A, B) is controllably asymptotically stable if

$$
\begin{equation*}
\mathcal{C}(A, B) \subseteq \mathcal{S}_{\mathrm{s}}(A) \tag{12.7.1}
\end{equation*}
$$

Proposition 12.7.2. Let $K \in \mathbb{R}^{m \times n}$. Then, (A, B) is controllably asymptotically stable if and only if $(A+B K, B)$ is controllably asymptotically stable.

Proposition 12.7.3. The following statements are equivalent:
i) (A, B) is controllably asymptotically stable.
ii) There exists an orthogonal matrix $S \in \mathbb{R}^{n \times n}$ such that (12.6.21) holds, where $A_{1} \in \mathbb{R}^{q \times q}$ is asymptotically stable and $B_{1} \in \mathbb{R}^{q \times m}$.
iii) There exists a nonsingular matrix $S \in \mathbb{R}^{n \times n}$ such that (12.6.21) holds, where $A_{1} \in \mathbb{R}^{q \times q}$ is asymptotically stable and $B_{1} \in \mathbb{R}^{q \times m}$.
iv) $\lim _{t \rightarrow \infty} e^{t A} B=0$.
$v)$ The positive-semidefinite matrix $Q \in \mathbb{R}^{n \times n}$ defined by

$$
\begin{equation*}
Q \triangleq \int_{0}^{\infty} e^{t A} B B^{\mathrm{T}} e^{t A^{\mathrm{T}}} \mathrm{~d} t \tag{12.7.2}
\end{equation*}
$$

exists.
$v i)$ There exists a positive-semidefinite matrix $Q \in \mathbb{R}^{n \times n}$ satisfying

$$
\begin{equation*}
A Q+Q A^{\mathrm{T}}+B B^{\mathrm{T}}=0 \tag{12.7.3}
\end{equation*}
$$

In this case, the positive-semidefinite matrix $Q \in \mathbb{R}^{n \times n}$ defined by (12.7.2) satisfies (12.7.3).

Proof. To prove $i) \Longrightarrow i i)$, assume that (A, B) is controllably asymptotically stable so that $\mathcal{C}(A, B) \subseteq \mathcal{S}_{\mathrm{s}}(A)=\mathcal{N}\left[\mu_{A}^{\mathrm{s}}(A)\right]=\mathcal{R}\left[\mu_{A}^{\mathrm{u}}(A)\right]$. Using Theorem 12.6.8, it follows that there exists an orthogonal matrix $S \in \mathbb{R}^{n \times n}$ such that (12.6.21) is satisfied, where $A_{1} \in \mathbb{R}^{q \times q}$ and $\left(A_{1}, B_{1}\right)$ is controllable. Thus, $\mathcal{R}\left(S\left[\begin{array}{c}I_{q} \\ 0\end{array}\right]\right)=$ $\mathcal{C}(A, B) \subseteq \mathcal{R}\left[\mu_{A}^{\mathrm{s}}(A)\right]$.

Next, note that

$$
\mu_{A}^{\mathrm{s}}(A)=S\left[\begin{array}{cc}
\mu_{A}^{\mathrm{s}}\left(A_{1}\right) & B_{12 \mathrm{~s}} \\
0 & \mu_{A}^{\mathrm{s}}\left(A_{2}\right)
\end{array}\right] S^{-1}
$$

where $B_{12 \mathrm{~s}} \in \mathbb{R}^{q \times(n-q)}$, and suppose that A_{1} is not asymptotically stable with CRHP eigenvalue λ. Then, $\lambda \notin \operatorname{roots}\left(\mu_{A}^{\mathrm{s}}\right)$, and thus $\mu_{A}^{\mathrm{s}}\left(A_{1}\right) \neq 0$. Let $x_{1} \in \mathbb{R}^{n-q}$ satisfy $\mu_{A}^{\mathrm{s}}\left(A_{1}\right) x_{1} \neq 0$. Then,

$$
\left[\begin{array}{c}
x_{1} \\
0
\end{array}\right] \in \mathcal{R}\left(S\left[\begin{array}{c}
I_{q} \\
0
\end{array}\right]\right)=\mathcal{C}(A, B)
$$

and

$$
\mu_{A}^{\mathrm{s}}(A) S\left[\begin{array}{c}
x_{1} \\
0
\end{array}\right]=S\left[\begin{array}{c}
\mu_{A}^{\mathrm{s}}\left(A_{1}\right) x_{1} \\
0
\end{array}\right]
$$

and thus $\left[\begin{array}{c}x_{1} \\ 0\end{array}\right] \notin \mathcal{N}\left[\mu_{A}^{\mathrm{s}}(A)\right]=\mathcal{S}_{\mathrm{s}}(A)$, which implies that $\mathcal{C}(A, B)$ is not contained in $\mathcal{S}_{\mathrm{s}}(A)$. Hence, A_{1} is asymptotically stable.

To prove $i i i) \Longrightarrow i v$, assume there exists a nonsingular matrix $S \in \mathbb{R}^{n \times n}$ such that (12.6.21) holds, where $A_{1} \in \mathbb{R}^{k \times k}$ is asymptotically stable and $B_{1} \in \mathbb{R}^{k \times m}$. Thus, $e^{t A} B=\left[\begin{array}{c}e^{t A_{1} B_{1}} \\ 0\end{array}\right] S \rightarrow 0$ as $t \rightarrow \infty$.

Next, to prove that $i v$) implies v), assume that $e^{t A} B \rightarrow 0$ as $t \rightarrow \infty$. Then, every entry of $e^{t A} B$ involves exponentials of t, where the coefficients of t have negative real part. Hence, so does every entry of $e^{t A} B B^{\mathrm{T}} e^{t A^{\mathrm{T}}}$, which implies that $\int_{0}^{\infty} e^{t A} B B^{\mathrm{T}} e^{t A^{\mathrm{T}}} \mathrm{d} t$ exists.

To prove $v) \Longrightarrow v i$, note that, since $Q=\int_{0}^{\infty} e^{t A} B B^{\mathrm{T}} e^{t A^{\mathrm{T}}} \mathrm{d} t$ exists, it follows that $e^{t A} B B^{\mathrm{T}} e^{t A^{\mathrm{T}}} \rightarrow 0$ as $t \rightarrow \infty$. Thus,

$$
\begin{aligned}
A Q+Q A^{\mathrm{T}} & =\int_{0}^{\infty}\left[A e^{t A} B B^{\mathrm{T}} e^{t A^{\mathrm{T}}}+e^{t A} B B^{\mathrm{T}} e^{t A^{\mathrm{T}}} A\right] \mathrm{d} t \\
& =\int_{0}^{\infty} \frac{\mathrm{d}}{\mathrm{~d} t} e^{t A} B B^{\mathrm{T}} e^{t A^{\mathrm{T}}} \mathrm{~d} t \\
& =\lim _{t \rightarrow \infty} e^{t A} B B^{\mathrm{T}} e^{t A^{\mathrm{T}}}-B B^{\mathrm{T}}=-B B^{\mathrm{T}},
\end{aligned}
$$

which shows that Q satisfies (12.4.3).
To prove $v i) \Longrightarrow i$, suppose there exists a positive-semidefinite matrix $Q \in$ $\mathbb{R}^{n \times n}$ satisfying (12.7.3). Then,

$$
\begin{aligned}
\int_{0}^{t} e^{t A} B B^{\mathrm{T}} e^{t A^{\mathrm{T}}} \mathrm{~d} \tau & =-\int_{0}^{t} e^{\tau A}\left(A Q+Q A^{\mathrm{T}}\right) e^{t A^{\mathrm{T}}} \mathrm{~d} \tau=-\int_{0}^{t} \frac{\mathrm{~d}}{\mathrm{~d} \tau} e^{\tau A} Q A^{\mathrm{T}} \mathrm{~d} \tau \\
& =Q-e^{t A} Q e^{t A^{\mathrm{T}}} \leq Q .
\end{aligned}
$$

Next, it follows from Theorem 12.6.8 that there exists an orthogonal matrix $S \in$ $\mathbb{R}^{n \times n}$ such that (12.6.21) is satisfied, where $A_{1} \in \mathbb{R}^{q \times q}, B_{1} \in \mathbb{R}^{q \times m}$, and $\left(A_{1}, B_{1}\right)$ is controllable. Consequently, we have

$$
\begin{aligned}
\int_{0}^{t} e^{\tau A_{1}} B_{1} B_{1}^{\mathrm{T}} e^{\tau A_{1}^{\mathrm{T}}} \mathrm{~d} \tau & =\left[\begin{array}{ll}
I & 0
\end{array}\right] S \int_{0}^{t} e^{\tau A} B B^{\mathrm{T}} e^{\tau A^{\mathrm{T}}} \mathrm{~d} \tau S^{\mathrm{T}}\left[\begin{array}{l}
I \\
0
\end{array}\right] \\
& \leq\left[\begin{array}{ll}
I & 0
\end{array}\right] S Q S^{\mathrm{T}}\left[\begin{array}{l}
I \\
0
\end{array}\right] .
\end{aligned}
$$

Thus, it follows from Proposition 8.6 .3 that $Q_{1} \triangleq \int_{0}^{\infty} e^{t A_{1}} B_{1} B_{1}^{\mathrm{T}} e^{t A_{1}^{\mathrm{T}}} \mathrm{d} t$ exists. Since $\left(A_{1}, B_{1}\right)$ is controllable, it follows from vii) of Theorem 12.6.18 that Q_{1} is positive definite.

Now, let λ be an eigenvalue of A_{1}^{T}, and let $x_{1} \in \mathbb{C}^{n}$ be an associated eigenvector. Consequently, $\alpha \triangleq x_{1}^{*} Q_{1} x_{1}$ is positive, and

$$
\alpha=x_{1}^{*} \int_{0}^{\infty} e^{\bar{\lambda} t} B B_{1}^{\mathrm{T}} e^{\lambda t} \mathrm{~d} t x_{1}=x_{1}^{*} B_{1} B_{1}^{\mathrm{T}} x_{1} \int_{0}^{\infty} e^{2(\operatorname{Re} \lambda) t} \mathrm{~d} t .
$$

Hence, $\int_{0}^{\infty} e^{2(\operatorname{Re} \lambda) t} \mathrm{~d} t=\alpha / x_{1}^{*} B_{1} B_{1}^{\mathrm{T}} x_{1}$ exists, and thus Re $\lambda<0$. Consequently, A_{1} is asymptotically stable, and thus $\mathcal{C}(A, B) \subseteq \mathcal{S}_{\mathrm{s}}(A)$, that is, (A, B) is controllably asymptotically stable.

The matrix $Q \in \mathbb{R}^{n \times n}$ defined by (12.7.2) is the controllability Gramian, and (12.7.3) is the control Lyapunov equation.

Proposition 12.7.4. Assume that (A, B) is controllably asymptotically stable, let $Q \in \mathbb{R}^{n \times n}$ be the positive-semidefinite matrix defined by (12.7.2), and define $Q \in \mathbb{R}^{n \times n}$ by (12.6.11). Then, the following statements hold:
i) $Q Q^{+}=Q$.
ii) $\mathcal{R}(Q)=\mathcal{R}(Q)=\mathcal{C}(A, B)$.
iii) $\mathcal{N}(Q)=\mathcal{N}(Q)=\mathcal{C}(A, B)^{\perp}$.
iv) $\operatorname{rank} Q=\operatorname{rank} Q=q$.
$v) Q$ is the only positive-semidefinite solution of (12.7.3) whose rank is q.
Proof. See [1207] for the proof of v).
Proposition 12.7.5. Assume that (A, B) is controllably asymptotically stable, let $Q \in \mathbb{R}^{n \times n}$ be the positive-semidefinite matrix defined by (12.7.2), and let $\hat{Q} \in \mathbb{R}^{n \times n}$. Then, the following statements are equivalent:
i) \hat{Q} is positive semidefinite and satisfies (12.7.3).
ii) There exists a positive-semidefinite matrix $Q_{0} \in \mathbb{R}^{n \times n}$ such that $\hat{Q}=$ $Q+Q_{0}$ and $A Q_{0}+Q_{0} A^{\mathrm{T}}=0$.
In this case,

$$
\begin{equation*}
\operatorname{rank} \hat{Q}=q+\operatorname{rank} Q_{0} \tag{12.7.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{rank} Q_{0} \leq \sum_{\substack{\lambda \in \operatorname{spec}(A) \\ \lambda \in J \mathbb{R}}} \operatorname{gmult}_{A}(\lambda) \tag{12.7.5}
\end{equation*}
$$

Proof. See 1207 .
Proposition 12.7.6. The following statements are equivalent:
i) (A, B) is controllably asymptotically stable, every imaginary eigenvalue of A is semisimple, and A has no ORHP eigenvalues.
ii) (12.7.3) has a positive-definite solution $Q \in \mathbb{R}^{n \times n}$.

Proof. See [1207].
Proposition 12.7.7. The following statements are equivalent:
i) (A, B) is controllably asymptotically stable, and A has no imaginary eigenvalues.
ii) (12.7.3) has exactly one positive-semidefinite solution $Q \in \mathbb{R}^{n \times n}$.

In this case, $Q \in \mathbb{R}^{n \times n}$ is given by (12.7.2) and satisfies $\operatorname{rank} Q=q$.
Proof. See [1207].
Corollary 12.7.8. Assume that A is asymptotically stable. Then, the pos-itive-semidefinite matrix $Q \in \mathbb{R}^{n \times n}$ defined by (12.7.2) is the unique solution of (12.7.3) and satisfies $\operatorname{rank} Q=q$.

Proof. See [1207.

Proposition 12.7.9. The following statements are equivalent:
i) (A, B) is controllable, and A is asymptotically stable.
ii) (12.7.3) has exactly one positive-semidefinite solution $Q \in \mathbb{R}^{n \times n}$, and Q is positive definite.
In this case, $Q \in \mathbb{R}^{n \times n}$ is given by (12.7.2).
Proof. See 1207.
Corollary 12.7.10. Assume that A is asymptotically stable. Then, the pos-itive-semidefinite matrix $Q \in \mathbb{R}^{n \times n}$ defined by (12.7.2) exists. Furthermore, Q is positive definite if and only if (A, B) is controllable.

12.8 Stabilizability

Let $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times m}$, and define $q \triangleq \operatorname{dim} \mathcal{C}(A, B)$.
Definition 12.8.1. (A, B) is stabilizable if

$$
\begin{equation*}
\mathcal{S}_{\mathrm{u}}(A) \subseteq \mathcal{C}(A, B) \tag{12.8.1}
\end{equation*}
$$

Proposition 12.8.2. Let $K \in \mathbb{R}^{m \times n}$. Then, (A, B) is stabilizable if and only if $(A+B K, B)$ is stabilizable.

Proposition 12.8.3. The following statements are equivalent:
i) A is asymptotically stable.
ii) (A, B) is stabilizable and controllably asymptotically stable.

Proof. Suppose that A is asymptotically stable. Then, $\mathcal{S}_{\mathrm{u}}(A)=\{0\}$, and $\mathcal{S}_{\mathrm{s}}(A)=\mathbb{R}^{n}$. Thus, $\mathcal{S}_{\mathrm{u}}(A) \subseteq \mathcal{C}(A, B)$, and $\mathcal{C}(A, B) \subseteq \mathcal{S}_{\mathrm{s}}(A)$. Conversely, assume that (A, B) is stabilizable and controllably asymptotically stable. Then, $\mathcal{S}_{\mathrm{u}}(A) \subseteq$ $\mathcal{C}(A, B) \subseteq \mathcal{S}_{\mathrm{s}}(A)$, and thus $\mathcal{S}_{\mathrm{u}}(A)=\{0\}$.

Proposition 12.8.4. The following statements are equivalent:
i) (A, B) is stabilizable.
ii) There exists an orthogonal matrix $S \in \mathbb{R}^{n \times n}$ such that (12.6.21) holds, where $A_{1} \in \mathbb{R}^{q \times q}, B_{1} \in \mathbb{R}^{q \times m},\left(A_{1}, B_{1}\right)$ is controllable, and $A_{2} \in$ $\mathbb{R}^{(n-q) \times(n-q)}$ is asymptotically stable.
iii) There exists a nonsingular matrix $S \in \mathbb{R}^{n \times n}$ such that (12.6.21) holds, where $A_{1} \in \mathbb{R}^{q \times q}, B_{1} \in \mathbb{R}^{q \times m},\left(A_{1}, B_{1}\right)$ is controllable, and $A_{2} \in$ $\mathbb{R}^{(n-q) \times(n-q)}$ is asymptotically stable.
$i v)$ Every CRHP eigenvalue of (A, B) is controllable.
Proof. To prove $i) \Longrightarrow i i$, assume that (A, B) is stabilizable so that $\mathcal{S}_{\mathrm{u}}(A)=$ $\mathcal{N}\left[\mu_{A}^{\mathrm{u}}(A)\right]=\mathcal{R}\left[\mu_{A}^{\mathrm{s}}(A)\right] \subseteq \mathcal{C}(A, B)$. Using Theorem 12.6.8, it follows that there exists
an orthogonal matrix $S \in \mathbb{R}^{n \times n}$ such that (12.6.21) is satisfied, where $A_{1} \in \mathbb{R}^{q \times q}$ and $\left(A_{1}, B_{1}\right)$ is controllable. Thus, $\mathcal{R}\left[\mu_{A}^{\mathrm{s}}(A)\right] \subseteq \mathcal{C}(A, B)=\mathcal{R}\left(S\left[\begin{array}{c}I_{q} \\ 0\end{array}\right]\right)$.

Next, note that

$$
\mu_{A}^{\mathrm{s}}(A)=S\left[\begin{array}{cc}
\mu_{A}^{\mathrm{s}}\left(A_{1}\right) & B_{12 \mathrm{~s}} \\
0 & \mu_{A}^{\mathrm{s}}\left(A_{2}\right)
\end{array}\right] S^{-1}
$$

where $B_{12 \mathrm{~s}} \in \mathbb{R}^{q \times(n-q)}$, and suppose that A_{2} is not asymptotically stable with CRHP eigenvalue λ. Then, $\lambda \notin \operatorname{roots}\left(\mu_{A}^{\mathrm{s}}\right)$, and thus $\mu_{A}^{\mathrm{s}}\left(A_{2}\right) \neq 0$. Let $x_{2} \in \mathbb{R}^{n-q}$ satisfy $\mu_{A}^{\mathrm{s}}\left(A_{2}\right) x_{2} \neq 0$. Then,

$$
\mu_{A}^{\mathrm{s}}(A) S\left[\begin{array}{c}
0 \\
x_{2}
\end{array}\right]=S\left[\begin{array}{c}
B_{12 \mathrm{~s}} x_{2} \\
\mu_{A}^{\mathrm{s}}\left(A_{2}\right) x_{2}
\end{array}\right] \notin \mathcal{R}\left(S\left[\begin{array}{c}
I_{q} \\
0
\end{array}\right]\right)=\mathcal{C}(A, B)
$$

which implies that $\mathcal{S}_{\mathrm{u}}(A)$ is not contained in $\mathcal{C}(A, B)$. Hence, A_{2} is asymptotically stable.

The statement $i i$) implies $i i i$) is immediate.
To prove $i i i) \Longrightarrow i v$, let $\lambda \in \operatorname{spec}(A)$ be a CRHP eigenvalue of A. Since A_{2} is asymptotically stable, it follows that $\lambda \notin \operatorname{spec}\left(A_{2}\right)$. Consequently, Proposition 12.6.13 implies that λ is not an uncontrollable eigenvalue of (A, B), and thus λ is a controllable eigenvalue of (A, B).

To prove $i v) \Longrightarrow i$, let $S \in \mathbb{R}^{n \times n}$ be nonsingular and such that A and B have the form (12.6.21), where $A_{1} \in \mathbb{R}^{q \times q}, B_{1} \in \mathbb{R}^{q \times m}$, and $\left(A_{1}, B_{1}\right)$ is controllable. Since every CRHP eigenvalue of (A, B) is controllable, it follows from Proposition 12.6 .13 that A_{2} is asymptotically stable. From Fact 11.23 .4 it follows that $\mathcal{S}_{\mathrm{u}}(A) \subseteq$ $\mathcal{R}\left(S\left[\begin{array}{c}I_{q} \\ 0\end{array}\right]\right)=\mathcal{C}(A, B)$, which implies that (A, B) is stabilizable.

Proposition 12.8.5. The following statements are equivalent:
i) (A, B) is controllably asymptotically stable and stabilizable.
ii) A is asymptotically stable.

Proof. Since (A, B) is stabilizable, it follows from Proposition 12.5.4 that there exists a nonsingular matrix $S \in \mathbb{R}^{n \times n}$ such that (12.6.21) holds, where $A_{1} \in$ $\mathbb{R}^{q \times q}, B_{1} \in \mathbb{R}^{q \times m},\left(A_{1}, B_{1}\right)$ is controllable, and $A_{2} \in \mathbb{R}^{(n-q) \times(n-q)}$ is asymptotically stable. Then,

$$
\int_{0}^{\infty} e^{t A} B B^{\mathrm{T}} e^{t A^{\mathrm{T}}} \mathrm{~d} t=S\left[\begin{array}{cc}
\int_{0}^{\infty} e^{t A_{1}} B_{1} B_{1}^{\mathrm{T}} e^{t A_{1}^{\mathrm{T}}} \mathrm{~d} t & 0 \\
0 & 0
\end{array}\right] S^{-1}
$$

Since the integral on the left-hand side exists by assumption, the integral on the right-hand side also exists. Since $\left(A_{1}, B_{1}\right)$ is controllable, it follows from vii) of Theorem 12.6 .18 that $Q_{1} \triangleq \int_{0}^{\infty} e^{t A_{1}} B_{1} B_{1}^{\mathrm{T}} e^{t A_{1}^{\mathrm{T}}} \mathrm{d} t$ is positive definite.

Now, let λ be an eigenvalue of A_{1}^{T}, and let $x_{1} \in \mathbb{C}^{q}$ be an associated eigenvector. Consequently, $\alpha \triangleq x_{1}^{*} Q_{1} x_{1}$ is positive, and

$$
\alpha=x_{1}^{*} \int_{0}^{\infty} e^{\bar{\lambda} t} B_{1} B_{1}^{\mathrm{T}} e^{\lambda t} \mathrm{~d} t x_{1}=x_{1}^{*} B_{1} B_{1}^{\mathrm{T}} x_{1} \int_{0}^{\infty} e^{2(\operatorname{Re} \lambda) t} \mathrm{~d} t
$$

Hence, $\int_{0}^{\infty} e^{2(\operatorname{Re} \lambda) t} \mathrm{~d} t$ exists, and thus $\operatorname{Re} \lambda<0$. Consequently, A_{1} is asymptotically stable, and thus A is asymptotically stable.

Corollary 12.8.6. The following statements are equivalent:
i) There exists a positive-semidefinite matrix $Q \in \mathbb{R}^{n \times n}$ satisfying (12.7.3), and (A, B) is stabilizable.
ii) A is asymptotically stable.

Proof. The result follows from Proposition 12.7 .3 and Proposition 12.8 .5 ,

12.9 Realization Theory

Given a proper rational transfer function G we wish to determine (A, B, C, D) such that (12.2.11) holds. The following terminology is convenient.

Definition 12.9.1. Let $G \in \mathbb{R}^{l \times m}(s)$. If $l=m=1$, then G is a single-input/single-output (SISO) rational transfer function; if $l=1$ and $m>1$, then G is a multiple-input/single-output (MISO) rational transfer function; if $l>1$ and $m=1$, then G is a single-input/multiple-output (SIMO) rational transfer function; and, if $l>1$ or $m>1$, then G is a multiple-input/multiple output (MIMO) rational transfer function.

Definition 12.9.2. Let $G \in \mathbb{R}_{\text {prop }}^{l \times m}(s)$, and assume that $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}$, $C \in \mathbb{R}^{l \times n}$, and $D \in \mathbb{R}^{l \times m}$ satisfy $G(s)=C(s I-A)^{-1} B+D$. Then, $\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$ is a realization of G, which is written as

$$
G \sim\left[\begin{array}{c|c}
A & B \tag{12.9.1}\\
\hline C & D
\end{array}\right]
$$

The order of the realization (12.9.1) is the order of A. Finally, the realization (12.9.1) is controllable and observable if (A, B) is controllable and (A, C) is observable.

Suppose that $n=0$. Then, A, B, and C are empty matrices, and $G \in \mathbb{R}_{\mathrm{prop}}^{l \times m}(s)$ is given by

$$
\begin{equation*}
G(s)=0_{l \times 0}\left(s I_{0 \times 0}-0_{0 \times 0}\right)^{-1} 0_{0 \times m}+D=0_{l \times m}+D=D . \tag{12.9.2}
\end{equation*}
$$

Therefore, the order of the realization $\left[\begin{array}{c|c}0_{0 \times 0} & 0_{0 \times m} \\ \hline 0_{l \times 0} & D\end{array}\right]$ is zero.
Although the realization (12.9.1) is not unique, the matrix D is unique and is given by

$$
\begin{equation*}
D=G(\infty) \tag{12.9.3}
\end{equation*}
$$

Furthermore, note that $G \sim\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$ if and only if $G-D \sim\left[\begin{array}{l|l}A & B \\ \hline C & 0\end{array}\right]$. Therefore, it suffices to construct realizations for strictly proper transfer functions.

The following result shows that every strictly proper, SISO rational transfer function G has a realization. In fact, two realizations are the controllable canonical form $G \sim\left[\begin{array}{c|c}A_{\mathrm{c}} & B_{\mathrm{c}} \\ \hline C_{\mathrm{c}} & 0\end{array}\right]$ and the observable canonical form $G \sim\left[\begin{array}{c|c}A_{\mathrm{o}} & B_{\mathrm{o}} \\ \hline C_{\mathrm{o}} & 0\end{array}\right]$. If G is exactly proper, then a realization can be obtained for $G-G(\infty)$.

Proposition 12.9.3. Let $G \in \mathbb{R}_{\text {prop }}(s)$ be the SISO strictly proper rational transfer function

$$
\begin{equation*}
G(s)=\frac{\alpha_{n-1} s^{n-1}+\alpha_{n-2} s^{n-2}+\cdots+\alpha_{1} s+\alpha_{0}}{s^{n}+\beta_{n-1} s^{n-1}+\cdots+\beta_{1} s+\beta_{0}} \tag{12.9.4}
\end{equation*}
$$

Then, $G \sim\left[\begin{array}{c|c}A_{\mathrm{c}} & B_{\mathrm{c}} \\ \hline C_{\mathrm{c}} & 0\end{array}\right]$, where $A_{\mathrm{c}}, B_{\mathrm{c}}, C_{\mathrm{c}}$ are defined by

$$
\begin{align*}
& A_{\mathrm{c}} \triangleq\left[\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
-\beta_{0} & -\beta_{1} & -\beta_{2} & \cdots & -\beta_{n-1}
\end{array}\right], \quad B_{\mathrm{c}} \triangleq\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right] \tag{12.9.5}\\
& C_{\mathrm{c}} \triangleq\left[\begin{array}{ccccc}
\alpha_{0} & \alpha_{1} & \alpha_{2} & \cdots & \alpha_{n-1}
\end{array}\right] \tag{12.9.6}
\end{align*}
$$

and $G \sim\left[\begin{array}{c|c}A_{\mathrm{o}} & B_{\mathrm{o}} \\ \hline C_{\mathrm{o}} & 0\end{array}\right]$, where $A_{\mathrm{o}}, B_{\mathrm{o}}, C_{\mathrm{o}}$ are defined by

$$
\begin{align*}
& A_{\mathrm{o}} \triangleq\left[\begin{array}{ccccc}
0 & 0 & \cdots & 0 & -\beta_{0} \\
1 & 0 & \cdots & 0 & -\beta_{1} \\
0 & 1 & \cdots & 0 & -\beta_{2} \\
\vdots & \vdots & \ddots & & \vdots \\
0 & 0 & \cdots & 1 & -\beta_{n-1}
\end{array}\right], \quad B_{\mathrm{o}} \triangleq\left[\begin{array}{c}
\alpha_{0} \\
\alpha_{1} \\
\alpha_{2} \\
\vdots \\
\alpha_{n-1}
\end{array}\right] \tag{12.9.7}\\
& C_{\mathrm{o}} \triangleq\left[\begin{array}{lllll}
0 & 0 & \cdots & 0 & 1
\end{array}\right] \tag{12.9.8}
\end{align*}
$$

Furthermore, $\left(A_{\mathrm{c}}, B_{\mathrm{c}}\right)$ is controllable, and $\left(A_{\mathrm{o}}, C_{\mathrm{o}}\right)$ is observable. Finally, the following statements are equivalent:
$i)$ The numerator and denominator of G given in (12.9.4) are coprime.
ii) $\left(A_{\mathrm{c}}, C_{\mathrm{c}}\right)$ is observable.
iii) $\left(A_{\mathrm{c}}, B_{\mathrm{c}}, C_{\mathrm{c}}\right)$ is controllable and observable.
iv) $\left(A_{\mathrm{o}}, B_{\mathrm{o}}\right)$ is controllable.
v) $\left(A_{\mathrm{o}}, B_{\mathrm{o}}, C_{\mathrm{o}}\right)$ is controllable and observable.

Proof. The realizations can be verified directly. Furthermore, note that

$$
\mathcal{K}\left(A_{\mathrm{c}}, B_{\mathrm{c}}\right)=\mathcal{O}\left(A_{\mathrm{o}}, C_{\mathrm{o}}\right)=\left[\begin{array}{cccccc}
0 & 0 & 0 & \cdots & 0 & 1 \\
0 & 0 & 0 & . & 1 & -\beta_{n-1} \\
\vdots & \vdots & . & . & . & \vdots \\
0 & 0 & 1 & . \cdot & -\beta_{3} & -\beta_{2} \\
0 & 1 & -\beta_{n-1} & \cdots & -\beta_{2} & -\beta_{1} \\
1 & -\beta_{n-1} & -\beta_{n-2} & \cdots & -\beta_{1} & -\beta_{0}
\end{array}\right] .
$$

It follows from Fact 2.13 .8 that $\operatorname{det} \mathcal{K}\left(A_{\mathrm{c}}, B_{\mathrm{c}}\right)=\operatorname{det} \mathcal{O}\left(A_{\mathrm{o}}, C_{\mathrm{o}}\right)=(-1)^{\lfloor n / 2\rfloor}$, which implies that $\left(A_{\mathrm{c}}, B_{\mathrm{c}}\right)$ is controllable and $\left(A_{\mathrm{o}}, C_{\mathrm{o}}\right)$ is observable.

To prove the last statement, let $p, q \in \mathbb{R}[s]$ denote the numerator and denominator, respectively, of G in (12.9.4). Then, for $n=2$,

$$
\mathcal{K}\left(A_{\mathrm{o}}, B_{\mathrm{o}}\right)=\mathcal{O}^{\mathrm{T}}\left(A_{\mathrm{c}}, C_{\mathrm{c}}\right)=B(p, q) \hat{I}\left[\begin{array}{cc}
1 & -\beta_{1} \\
0 & 1
\end{array}\right],
$$

where $B(p, q)$ is the Bezout matrix of p and q. It follows from $i x)$ of Fact 4.8.6 that $B(p, q)$ is nonsingular if and only if p and q are coprime.

The following result shows that every proper rational transfer function has a realization.

Theorem 12.9.4. Let $G \in \mathbb{R}_{\text {prop }}^{l \times m}(s)$. Then, there exist $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}$, $C \in \mathbb{R}^{l \times n}$, and $D \in \mathbb{R}^{l \times m}$ such that $G \sim\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$.

Proof. By Proposition 12.9.3, every entry $G_{(i, j)}$ of G has a realization $G_{(i, j)} \sim$ $\left[\begin{array}{c|c}A_{i j} & B_{i j} \\ \hline C_{i j} & D_{i j}\end{array}\right]$. Combining these realizations yields a realization of G.

Proposition 12.9.5. Let $G \in \mathbb{R}_{\text {prop }}^{l \times m}(s)$ have the n th-order realization $\left[\begin{array}{c|c}A & B \\ \hline C & D\end{array}\right]$, let $S \in \mathbb{R}^{n \times n}$, and assume that S is nonsingular. Then,

$$
G \sim\left[\begin{array}{c|c}
S A S^{-1} & S B \tag{12.9.9}\\
\hline C S^{-1} & D
\end{array}\right]
$$

If, in addition, $\left[\begin{array}{c|c}A & B \\ \hline C & D\end{array}\right]$ is controllable and observable, then so is $\left[\begin{array}{c|c}S A S^{-1} & S B \\ \hline C S^{-1} & D\end{array}\right]$.
Definition 12.9.6. Let $G \in \mathbb{R}_{\text {prop }}^{l \times m}(s)$, and let $\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$ and $\left[\begin{array}{c|c}\hat{A} & \hat{B} \\ \hline \hat{C} & D\end{array}\right]$ be n thorder realizations of G. Then, $\left[\begin{array}{c|c}A & B \\ \hline C & D\end{array}\right]$ and $\left[\begin{array}{c|c}\hat{A} & \hat{B} \\ \hline \hat{C} & D\end{array}\right]$ are equivalent if there exists a nonsingular matrix $S \in \mathbb{R}^{n \times n}$ such that $\hat{A}=S A S^{-1}, \hat{B}=S B$, and $\hat{C}=C S^{-1}$.

The following result shows that the Markov parameters of a rational transfer function are independent of the realization.

Proposition 12.9.7. Let $G \in \mathbb{R}_{\text {prop }}^{l \times m}(s)$, and assume that $G \sim\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$, where $A \in \mathbb{R}^{n \times n}$, and $G \sim\left[\begin{array}{c|c}\hat{A} & \hat{B} \\ \hline \hat{C} & \hat{D}\end{array}\right]$, where $A \in \mathbb{R}^{\hat{n} \times \hat{n}}$. Then, $D=\hat{D}$, and, for all $k \geq 0$, $C A^{k} B=\hat{C} \hat{A}^{k} \hat{B}$.

Proposition 12.9.8. Let $G \in \mathbb{R}_{\text {prop }}^{l \times m}(s)$, assume that G has the n th-order realizations $\left[\begin{array}{c|c}A_{1} & B_{1} \\ \hline C_{1} & D\end{array}\right]$ and $\left[\begin{array}{c|c}A_{2} & B_{2} \\ \hline C_{2} & D\end{array}\right]$, and assume that both of these realizations are controllable and observable. Then, these realizations are equivalent. Furthermore, there exists a unique matrix $S \in \mathbb{R}^{n \times n}$ such that

$$
\left[\begin{array}{c|c}
A_{2} & B_{2} \tag{12.9.10}\\
\hline C_{2} & D
\end{array}\right]=\left[\begin{array}{c|c}
S A_{1} S^{-1} & S B_{1} \\
\hline C_{1} S^{-1} & D
\end{array}\right] .
$$

In fact,

$$
\begin{equation*}
S=\left(\mathcal{O}_{2}^{\mathrm{T}} \mathcal{O}_{2}\right)^{-1} \mathcal{O}_{2}^{\mathrm{T}} \mathcal{O}_{1}, \quad S^{-1}=\mathcal{K}_{1} \mathcal{K}_{2}^{\mathrm{T}}\left(\mathcal{K}_{2} \mathcal{K}_{2}^{\mathrm{T}}\right)^{-1} \tag{12.9.11}
\end{equation*}
$$

where, for $i=1,2, \mathcal{K}_{i} \triangleq \mathcal{K}\left(A_{i}, B_{i}\right)$ and $\mathcal{O}_{i} \triangleq \mathcal{O}\left(A_{i}, C_{i}\right)$.
Proof. By Proposition 12.9.7, the realizations $\left[\begin{array}{c|c}A_{1} & B_{1} \\ \hline C_{1} & D\end{array}\right]$ and $\left[\begin{array}{c|c}A_{2} & B_{2} \\ \hline C_{2} & D\end{array}\right]$ generate the same Markov parameters. Hence, $\mathcal{O}_{1} A_{1} \mathcal{K}_{1}=\mathcal{O}_{2} A_{2} \mathcal{K}_{2}, \mathcal{O}_{1} B_{1}=\mathcal{O}_{2} B_{2}$, and $C_{1} \mathcal{K}_{1}=C_{2} \mathcal{K}_{2}$. Since $\left[\begin{array}{c|c}A_{2} & B_{2} \\ \hline C_{2} & D\end{array}\right]$ is controllable and observable, it follows that the $n \times n$ matrices $\mathcal{K}_{2} \mathcal{K}_{2}^{\mathrm{T}}$ and $\mathcal{O}_{2}^{\mathrm{T}} \mathcal{O}_{2}$ are nonsingular. Consequently, $A_{2}=S A_{1} S^{-1}$, $B_{2}=S B_{1}$, and $C_{2}=C_{1} S^{-1}$.

To prove uniqueness, assume there exists a matrix $\hat{S} \in \mathbb{R}^{n \times n}$ such that $A_{2}=$ $\hat{S} A_{1} \hat{S}^{-1}, B_{2}=\hat{S} B_{1}$, and $C_{2}=C_{1} \hat{S}^{-1}$. Then, it follows that $\mathcal{O}_{1} \hat{S}=\mathcal{O}_{2}$. Since $\mathcal{O}_{1} S=\mathcal{O}_{2}$, it follows that $\mathcal{O}_{1}(S-\hat{S})=0$. Consequently, $S=\hat{S}$.

Corollary 12.9.9. Let $G \in \mathbb{R}_{\text {prop }}(s)$ be given by (12.9.4), assume that G has the n th-order controllable and observable realization $\left[\begin{array}{l|l}A & B \\ \hline C & 0\end{array}\right]$, and define $A_{\mathrm{c}}, B_{\mathrm{c}}, C_{\mathrm{c}}$ by (12.9.5), 12.9.6) and $A_{\mathrm{o}}, B_{\mathrm{o}}, C_{\mathrm{o}}$ by (12.9.7), (12.9.8). Furthermore, define $S_{\mathrm{c}} \triangleq[\mathcal{O}(A, B)]^{-1} \mathcal{O}\left(A_{\mathrm{c}}, B_{\mathrm{c}}\right)$. Then,

$$
\begin{equation*}
S_{\mathrm{c}}^{-1}=\mathcal{K}(A, B)\left[\mathcal{K}\left(A_{\mathrm{c}}, B_{\mathrm{c}}\right)\right]^{-1} \tag{12.9.12}
\end{equation*}
$$

and

$$
\left[\begin{array}{c|c}
S_{\mathrm{c}} A S_{\mathrm{c}}^{-1} & S_{\mathrm{c}} B \tag{12.9.13}\\
\hline C S_{\mathrm{c}}^{-1} & 0
\end{array}\right]=\left[\begin{array}{c|c}
A_{\mathrm{c}} & B_{\mathrm{c}} \\
\hline C_{\mathrm{c}} & 0
\end{array}\right] .
$$

Furthermore, define $S_{\mathrm{o}} \triangleq[\mathcal{O}(A, B)]^{-1} \mathcal{O}\left(A_{\mathrm{o}}, B_{\mathrm{o}}\right)$. Then,

$$
\begin{equation*}
S_{\mathrm{o}}^{-1}=\mathcal{K}(A, B)\left[\mathcal{K}\left(A_{\mathrm{o}}, B_{\mathrm{o}}\right)\right]^{-1} \tag{12.9.14}
\end{equation*}
$$

and

$$
\left[\begin{array}{c|c}
S_{\mathrm{o}} A S_{\mathrm{o}}^{-1} & S_{\mathrm{o}} B \tag{12.9.15}\\
\hline C S_{\mathrm{o}}^{-1} & 0
\end{array}\right]=\left[\begin{array}{c|c}
A_{\mathrm{o}} & B_{\mathrm{o}} \\
\hline C_{\mathrm{o}} & 0
\end{array}\right] .
$$

The following result, known as the Kalman decomposition, is useful for constructing controllable and observable realizations.

Proposition 12.9.10. Let $G \in \mathbb{R}_{\text {prop }}^{l \times m}(s)$, where $G \sim\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$. Then, there exists a nonsingular matrix $S \in \mathbb{R}^{n \times n}$ such that

$$
\begin{align*}
& A=S\left[\begin{array}{cccc}
A_{1} & 0 & A_{13} & 0 \\
A_{21} & A_{2} & A_{23} & A_{24} \\
0 & 0 & A_{3} & 0 \\
0 & 0 & A_{43} & A_{4}
\end{array}\right] S^{-1}, \quad B=S\left[\begin{array}{c}
B_{1} \\
B_{2} \\
0 \\
0
\end{array}\right], \tag{12.9.16}\\
& C=\left[\begin{array}{llll}
C_{1} & 0 & C_{3} & 0
\end{array}\right] S^{-1}, \tag{12.9.17}
\end{align*}
$$

where, for $i=1, \ldots, 4, A_{i} \in \mathbb{R}^{n_{i} \times n_{i}},\left(\left[\begin{array}{cc}A_{1} & 0 \\ A_{21} & A_{2}\end{array}\right],\left[\begin{array}{c}B_{1} \\ B_{2}\end{array}\right]\right)$ is controllable, and $\left(\left[\begin{array}{cc}A_{1} & A_{13} \\ 0 & A_{3}\end{array}\right],\left[\begin{array}{ll}C_{1} & C_{3}\end{array}\right]\right)$ is observable. Furthermore, the following statements hold:
i) (A, B) is stabilizable if and only if A_{3} and A_{4} are asymptotically stable.
ii) (A, B) is controllable if and only if A_{3} and A_{4} are empty.
iii) (A, C) is detectable if and only if A_{2} and A_{4} are asymptotically stable.
iv) (A, C) is observable if and only if A_{2} and A_{4} are empty.
v) $G \sim\left[\begin{array}{c|c}A_{1} & B_{1} \\ \hline C_{1} & D\end{array}\right]$.
vi) The realization $\left[\begin{array}{c|c}A_{1} & B_{1} \\ \hline C_{1} & D\end{array}\right]$ is controllable and observable.

Proof. Let $\alpha \leq 0$ be such that $A+\alpha I$ is asymptotically stable, and let $Q \in \mathbb{R}^{n \times n}$ and $P \in \mathbb{R}^{n \times n}$ denote the controllability and observability Gramians of the system $(A+\alpha I, B, C)$. Then, Theorem 8.3.4 implies that there exists a nonsingular matrix $S \in \mathbb{R}^{n \times n}$ such that

$$
Q=S\left[\begin{array}{cccc}
Q_{1} & & & 0 \\
& Q_{2} & & \\
& & 0 & \\
0 & & & 0
\end{array}\right] S^{\mathrm{T}}, \quad P=S^{-\mathrm{T}}\left[\begin{array}{cccc}
P_{1} & & & 0 \\
& 0 & & \\
& & P_{2} & \\
0 & & & 0
\end{array}\right] S^{-1},
$$

where Q_{1} and P_{1} are the same order, and where Q_{1}, Q_{2}, P_{1}, and P_{2} are positive definite and diagonal. The form of $S A S^{-1}, S B$, and $C S^{-1}$ given by (12.9.17) now follows from (12.7.3) and (12.4.3) with A replaced by $A+\alpha I$, where, as in the proof of Theorem 12.6.8, $S A S^{-1}=S(A+\alpha I) S^{-1}-\alpha I$. Finally, statements $\left.i\right)-v$) are immediate, while it can be verified directly that $\left[\begin{array}{l|l}A_{1} & B_{1} \\ \hline C_{1} & D_{1}\end{array}\right]$ is a realization of G.

Note that the uncontrollable multispectrum of (A, B) is given by mspec $\left(A_{3}\right) \cup$ $\operatorname{mspec}\left(A_{4}\right)$, while the unobservable multispectrum of (A, C) is given by $\operatorname{mspec}\left(A_{2}\right) \cup$ $\operatorname{mspec}\left(A_{4}\right)$. Likewise, the uncontrollable-unobservable multispectrum of (A, B, C) is given by $\operatorname{mspec}\left(A_{4}\right)$.

Let $G \sim\left[\begin{array}{l|l}A & B \\ \hline C & 0\end{array}\right]$. Then, define the i-step observability matrix $\mathcal{O}_{i}(A, C) \in$
$\mathbb{R}^{i l \times n}$ by

$$
\mathcal{O}_{i}(A, C) \triangleq\left[\begin{array}{c}
C \tag{12.9.18}\\
C A \\
\vdots \\
C A^{i-1}
\end{array}\right]
$$

and the j-step controllability matrix $\mathcal{K}_{j}(A, B) \in \mathbb{R}^{n \times j m}$ by

$$
\mathcal{K}_{j}(A, B) \triangleq\left[\begin{array}{llll}
B & A B & \cdots & A^{j-1} B \tag{12.9.19}
\end{array}\right] .
$$

Note that $\mathcal{O}(A, C)=\mathcal{O}_{n}(A, C)$ and $\mathcal{K}(A, B)=\mathcal{K}_{n}(A, B)$. Furthermore, define the Markov block-Hankel matrix $\mathcal{H}_{i, j, k}(G) \in \mathbb{R}^{i l \times j m}$ of G by

$$
\begin{equation*}
\mathcal{H}_{i, j, k}(G) \triangleq \mathcal{O}_{i}(A, C) A^{k} \mathcal{K}_{j}(A, B) \tag{12.9.20}
\end{equation*}
$$

Note that $\mathcal{H}_{i, j, k}(G)$ is the block-Hankel matrix of Markov parameters given by

$$
\begin{align*}
\mathcal{H}_{i, j, k}(G) & =\left[\begin{array}{ccccc}
C A^{k} B & C A^{k+1} B & C A^{k+2} B & \cdots & C A^{k+j-1} B \\
C A^{k+1} B & C A^{k+2} B & . & . . & . \\
C A^{k+2} B & . & . & . & . \\
\vdots & . & . & . & . \\
\vdots & . & . & . & . \\
C A^{k+i-1} B & . & . & . & C A^{k+j+i-2} B
\end{array}\right] \\
& =\left[\begin{array}{ccccc}
H_{k+1} & H_{k+2} & H_{k+3} & \cdots & H_{k+j} \\
H_{k+2} & H_{k+3} & . \cdot & . & . \\
H_{k+3} & . & . . & . & . . \\
\vdots & . & . & . & . \\
\vdots & . & . & . & . \\
H_{k+i} & . & . & . & H_{k+j+i-1}
\end{array}\right] \tag{12.9.21}
\end{align*}
$$

Note that

$$
\begin{equation*}
\mathcal{H}_{i, j, 0}(G)=\mathcal{O}_{i}(A, C) \mathcal{K}_{j}(A, B) \tag{12.9.22}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{H}_{i, j, 1}(G)=\mathcal{O}_{i}(A, C) A \mathcal{K}_{j}(A, B) \tag{12.9.23}
\end{equation*}
$$

Furthermore, define

$$
\begin{equation*}
\mathcal{H}(G) \triangleq \mathcal{H}_{n, n, 0}(G)=\mathcal{O}(A, C) \mathcal{K}(A, B) \tag{12.9.24}
\end{equation*}
$$

The following result provides a MIMO extension of Fact 4.8.8
Proposition 12.9.11. Let $G \sim\left[\begin{array}{c|c}A & B \\ \hline C & 0\end{array}\right]$, where $A \in \mathbb{R}^{n \times n}$. Then, the following statements are equivalent:
i) The realization $\left[\begin{array}{l|l}A & B \\ \hline C & 0\end{array}\right]$ is controllable and observable.
ii) $\operatorname{rank} \mathcal{H}(G)=n$.
iii) For all $i, j \geq n, \operatorname{rank} \mathcal{H}_{i, j, 0}(G)=n$.
iv) There exist $i, j \geq n$ such that $\operatorname{rank} \mathcal{H}_{i, j, 0}(G)=n$.

Proof. The equivalence of $i i$, $i i i$), and $i v$) follows from Fact 2.11.7. To prove $i) \Longrightarrow i i)$, note that, since the $n \times n$ matrices $\mathcal{O}^{\mathrm{T}}(A, C) \mathcal{O}(A, C)$ and $\mathcal{K}(A, B) \mathcal{K}^{\mathrm{T}}(A, B)$ are positive definite, it follows that

$$
n=\operatorname{rank} \mathcal{O}^{\mathrm{T}}(A, C) \mathcal{O}(A, C) \mathcal{K}(A, B) \mathcal{K}^{\mathrm{T}}(A, B) \leq \operatorname{rank} \mathcal{H}(G) \leq n
$$

Conversely, $n=\operatorname{rank} \mathcal{H}(G) \leq \min \{\operatorname{rank} \mathcal{O}(A, C), \operatorname{rank} \mathcal{K}(A, B)\} \leq n$.
Proposition 12.9.12. Let $G \sim\left[\begin{array}{c|c}A & B \\ \hline C & 0\end{array}\right]$, where $A \in \mathbb{R}^{n \times n}$, assume that $\left[\begin{array}{c|c}A & B \\ \hline C & 0\end{array}\right]$ is controllable and observable, and let $i, j \geq 1$ be such that $\operatorname{rank} \mathcal{O}_{i}(A, C)$ $=\operatorname{rank} \mathcal{K}_{j}(A, B)=n$. Then,

$$
\begin{gather*}
A=\mathcal{O}_{i}^{+}(A, C) \mathcal{H}_{i, j, 1}(G) \mathcal{K}_{j}^{+}(A, B), \tag{12.9.25}\\
B=\mathcal{K}_{j}(A, B)\left[\begin{array}{c}
I_{m} \\
0_{(j-1) n \times m}
\end{array}\right] \tag{12.9.26}\\
C=\left[\begin{array}{ll}
I_{l} & 0_{l \times(i-1) l}
\end{array}\right] \mathcal{O}_{i}(A, C) \tag{12.9.27}
\end{gather*}
$$

Proposition 12.9.13. Let $G \in \mathbb{R}_{\text {prop }}^{l \times m}(s)$, let $i, j \geq 1$, define $n \triangleq$ $\operatorname{rank} \mathcal{H}_{i, j, 0}(G)$, and let $L \in \mathbb{R}^{i l \times n}$ and $R \in \mathbb{R}^{n \times j m}$ be such that $\mathcal{H}_{i, j, 0}(G)=L R$. Then, the realization

$$
G \sim\left[\begin{array}{c|c}
L^{+} \mathcal{H}_{i, j, 1}(G) R^{+} & R\left[\begin{array}{c}
I_{m} \\
0_{(j-1) n \times m}
\end{array}\right] \tag{12.9.28}\\
\hline\left[\begin{array}{ll}
I_{l} & 0_{l \times(i-1) l}
\end{array}\right] L & 0
\end{array}\right]
$$

is controllable and observable.
A rational transfer function $G \in \mathbb{R}_{\text {prop }}^{l \times m}(s)$ can have realizations of different orders. For example, letting

$$
A=1, \quad B=1, \quad C=1, \quad D=0
$$

and

$$
\hat{A}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad \hat{B}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad \hat{C}=\left[\begin{array}{ll}
1 & 0
\end{array}\right], \quad \hat{D}=0
$$

it follows that

$$
G(s)=C(s I-A)^{-1} B+D=\hat{C}(s I-\hat{A})^{-1} \hat{B}+\hat{D}=\frac{1}{s-1}
$$

Generally, it is desirable to find realizations whose order is as small as possible.

Definition 12.9.14. Let $G \in \mathbb{R}_{\text {prop }}^{l \times m}(s)$, and assume that $G \sim\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$. Then, $\left[\begin{array}{c|c}A & B \\ \hline C & D\end{array}\right]$ is a minimal realization of G if its order is less than or equal to the order of every realization of G. In this case, we write

$$
G \stackrel{\min }{\sim}\left[\begin{array}{l|l}
A & B \tag{12.9.29}\\
\hline C & D
\end{array}\right] .
$$

Note that the minimality of a realization is independent of D.
The following result show that the controllable and observable realization $\left[\begin{array}{l|l}A_{1} & B_{1} \\ \hline C_{1} & D_{1}\end{array}\right]$ of G in Proposition 12.9 .10 is, in fact, minimal.

Corollary 12.9.15. Let $G \in \mathbb{R}^{l \times m}(s)$, and assume that $G \sim\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$. Then, $\left[\begin{array}{c|c}A & B \\ \hline C & D\end{array}\right]$ is minimal if and only if it is controllable and observable.

Proof. To prove necessity, suppose that $\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$ is either not controllable or not observable. Then, Proposition 12.9 .10 can be used to construct a realization of G of order less than n. Hence, $\left[\begin{array}{l|l|}A & B \\ \hline C & D\end{array}\right]$ is not minimal.

To prove sufficiency, assume that $A \in \mathbb{R}^{n \times n}$, and assume that $\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$ is not minimal. Hence, G has a minimal realization $\left[\begin{array}{l|l}\hat{A} & \hat{B} \\ \hline \hat{C} & D\end{array}\right]$ of order $\hat{n}<n$. Since the Markov parameters of G are independent of the realization, it follows from Proposition 12.9.11 that rank $\mathcal{H}(G)=\hat{n}\left\langle n\right.$. However, since $\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$ is observable and controllable, it follows from Proposition 12.9.11 that $\operatorname{rank} \mathcal{H}(G)=n$, which is a contradiction.

Theorem 12.9.16. Let $G \in \mathbb{R}_{\text {prop }}^{l \times m}(s)$, where $G \sim\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$ and $A \in \mathbb{R}^{n \times n}$. Then,

$$
\begin{equation*}
\operatorname{poles}(G) \subseteq \operatorname{spec}(A) \tag{12.9.30}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{mpoles}(G) \subseteq \operatorname{mspec}(A) . \tag{12.9.31}
\end{equation*}
$$

Furthermore, the following statements are equivalent:
i) $G \stackrel{\min }{\sim}\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$.
ii) $\operatorname{Mcdeg}(G)=n$.
iii) $\operatorname{mpoles}(G)=\operatorname{mspec}(A)$.

Proof. See [1150 p. 319].

Definition 12.9.17. Let $G \in \mathbb{R}_{\text {prop }}^{l \times m}(s)$, where $G \stackrel{\min }{\sim}\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$. Then, G is (asymptotically stable, semistable, Lyapunov stable) if A is.

Proposition 12.9.18. Let $G=p / q \in \mathbb{R}_{\text {prop }}(s)$, where $p, q \in \mathbb{R}[s]$, and assume that p and q are coprime. Then, G is (asymptotically stable, semistable, Lyapunov stable) if and only if q is.

Proposition 12.9.19. Let $G \in \mathbb{R}_{\text {prop }}^{l \times m}(s)$. Then, G is (asymptotically stable, semistable, Lyapunov stable) if and only if every entry of G is.

Definition 12.9.20. Let $G \in \mathbb{R}_{\text {prop }}^{l \times m}(s)$, where $G \stackrel{\min }{\sim}\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$ and A is asymptotically stable. Then, the realization $\left[\begin{array}{c|c}A & B \\ \hline C & D\end{array}\right]$ is balanced if the controllability and observability Gramians (12.7.2) and (12.4.2) are diagonal and equal.

Proposition 12.9.21. Let $G \in \mathbb{R}_{\text {prop }}^{l \times m}(s)$, where $G \stackrel{\min }{\sim}\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$ and A is asymptotically stable. Then, there exists a nonsingular matrix $S \in \mathbb{R}^{n \times n}$ such that the realization $G \sim\left[\begin{array}{c|c}S A S^{-1} & S B \\ \hline C S^{-1} & D\end{array}\right]$ is balanced.

Proof. It follows from Corollary 8.3.7 that there exists a nonsingular matrix $S \in \mathbb{R}^{n \times n}$ such that $S Q S^{\mathrm{T}}$ and $S^{-\mathrm{T}} P S^{-1}$ are diagonal, where Q and P are the controllability and observability Gramians (12.7.2) and (12.4.2). Hence, the realization $\left[\begin{array}{c|c}S A S^{-1} & S B \\ \hline C S^{-1} & D\end{array}\right]$ is balanced.

12.10 Zeros

In Section 4.7 the Smith-McMillan decomposition is used to define transmission zeros and blocking zeros of a transfer function $G(s)$. We now define the invariant zeros of a realization of $G(s)$ and relate these zeros to the transmission zeros. These zeros are related to the Smith zeros of a polynomial matrix as well as the spectrum of a pencil.

Definition 12.10.1. Let $G \in \mathbb{R}_{\text {prop }}^{l \times m}(s)$, where $G \sim\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$. Then, the Rosenbrock system matrix $\mathcal{Z} \in \mathbb{R}^{(n+l) \times(n+m)}[s]$ is the polynomial matrix

$$
z(s) \triangleq\left[\begin{array}{cc}
s I-A & B \tag{12.10.1}\\
C & -D
\end{array}\right]
$$

Furthermore, $z \in \mathbb{C}$ is an invariant zero of the realization $\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$ if

$$
\begin{equation*}
\operatorname{rank} Z(z)<\operatorname{rank} Z \tag{12.10.2}
\end{equation*}
$$

Let $G \in \mathbb{R}_{\text {prop }}^{l \times m}(s)$, where $G \sim\left[\begin{array}{c|c}A & B \\ \hline C & D\end{array}\right]$ and $A \in \mathbb{R}^{n \times n}$, and note that \mathcal{Z} is the pencil

$$
\begin{align*}
Z(s) & =P_{\left[\begin{array}{cc}
A & -B \\
-C & D
\end{array}\right],\left[\begin{array}{ll}
I_{n} & 0 \\
0 & 0
\end{array}\right](s)} \tag{12.10.3}\\
& =s\left[\begin{array}{cc}
I_{n} & 0 \\
0 & 0
\end{array}\right]-\left[\begin{array}{cc}
A & -B \\
-C & D
\end{array}\right] . \tag{12.10.4}
\end{align*}
$$

Thus,

$$
\operatorname{Szeros}(\mathcal{Z})=\operatorname{spec}\left(\left[\begin{array}{cc}
A & -B \tag{12.10.5}\\
-C & D
\end{array}\right],\left[\begin{array}{cc}
I_{n} & 0 \\
0 & 0
\end{array}\right]\right)
$$

and

$$
\operatorname{mSzeros}(z)=\operatorname{mspec}\left(\left[\begin{array}{cc}
A & -B \tag{12.10.6}\\
-C & D
\end{array}\right],\left[\begin{array}{cc}
I_{n} & 0 \\
0 & 0
\end{array}\right]\right) .
$$

Hence, we define the set of invariant zeros of $\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$ by

$$
\operatorname{izeros}\left(\left[\begin{array}{l|l}
A & B \\
\hline C & D
\end{array}\right]\right) \triangleq \operatorname{Szeros}(z)
$$

and the multiset of invariant zeros of $\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$ by

$$
\operatorname{mizeros}\left(\left[\begin{array}{l|l}
A & B \\
\hline C & D
\end{array}\right]\right) \triangleq \operatorname{Szeros}(\mathfrak{Z}) .
$$

Note that $\left.P^{A} \begin{array}{cc}A & -B \\ -C & D\end{array}\right],\left[\begin{array}{cc}I_{n} & 0 \\ 0 & 0\end{array}\right]$ is regular if and only if $\operatorname{rank} \mathcal{Z}=n+\min \{l, m\}$.
The following result shows that a strictly proper transfer function with fullstate observation or full-state actuation has no invariant zeros.

Proposition 12.10.2. Let $G \in \mathbb{R}_{\text {prop }}^{l \times m}(s)$, where $G \sim\left[\begin{array}{c|c}A & B \\ \hline C & 0\end{array}\right]$ and $A \in \mathbb{R}^{n \times n}$. Then, the following statements hold:
i) If $m=n$ and B is nonsingular, then $\operatorname{rank} \mathcal{Z}=n+\operatorname{rank} C$ and $\left[\begin{array}{l|l}A & B \\ \hline C & 0\end{array}\right]$ has no invariant zeros.
ii) If $l=n$ and C is nonsingular, then $\operatorname{rank} z=n+\operatorname{rank} B$ and $\left[\begin{array}{l|l}A & B \\ \hline C & 0\end{array}\right]$ has no invariant zeros.
 if $\operatorname{rank} C=\min \{l, n\}$.
 if $\operatorname{rank} B=\min \{m, n\}$.

It is useful to note that, for all $s \notin \operatorname{spec}(A)$,

$$
\begin{align*}
Z(s) & =\left[\begin{array}{cc}
I & 0 \\
C(s I-A)^{-1} & I
\end{array}\right]\left[\begin{array}{cc}
s I-A & B \\
0 & -G(s)
\end{array}\right] \tag{12.10.7}\\
& =\left[\begin{array}{cc}
s I-A & 0 \\
C & -G(s)
\end{array}\right]\left[\begin{array}{cc}
I & (s I-A)^{-1} B \\
0 & I
\end{array}\right] . \tag{12.10.8}
\end{align*}
$$

Proposition 12.10.3. Let $G \in \mathbb{R}_{\text {prop }}^{l \times m}(s)$, where $G \sim\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$. If $s \notin \operatorname{spec}(A)$, then

$$
\begin{equation*}
\operatorname{rank} Z(s)=n+\operatorname{rank} G(s) \tag{12.10.9}
\end{equation*}
$$

Furthermore,

$$
\begin{equation*}
\operatorname{rank} Z=n+\operatorname{rank} G \tag{12.10.10}
\end{equation*}
$$

Proof. For $s \notin \operatorname{spec}(A)$, (12.10.9) follows from (12.10.7). Therefore, it follows from Proposition 4.3.6 and Proposition 4.7.8 that

$$
\begin{aligned}
\operatorname{rank} Z & =\max _{s \in \mathbb{C}} \operatorname{rank} Z(s) \\
& =\max _{s \in \mathbb{C} \backslash \operatorname{spec}(A)} \operatorname{rank} Z(s) \\
& =n+\max _{s \in \mathbb{C} \backslash \operatorname{spec}(A)} \operatorname{rank} G(s) \\
& =n+\operatorname{rank} G .
\end{aligned}
$$

Note that the realization in Proposition 12.10 .3 is not assumed to be minimal.
 if it is (regular, singular) for every realization of G. In fact, the following result shows that $P_{\left[\begin{array}{cc}A & -B \\ -C & D\end{array}\right],\left[\begin{array}{cc}I_{n} & 0 \\ 0 & 0\end{array}\right]}$ is regular if and only if G has full rank.

Corollary 12.10.4. Let $G \in \mathbb{R}_{\mathrm{prop}}^{l \times m}(s)$, where $G \sim\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$. Then, $P_{\left[\begin{array}{cc}A & -B \\ -C & D\end{array}\right],\left[\begin{array}{cc}I_{n} & 0 \\ 0 & 0\end{array}\right]}$ is regular if and only if $\operatorname{rank} G=\min \{l, m\}$.

In the SISO case, it follows from (12.10.7) and (12.10.8) that, for all $s \in$ $\mathbb{C} \backslash \operatorname{spec}(A)$,

$$
\begin{equation*}
\operatorname{det} Z(s)=-[\operatorname{det}(s I-A)] G(s) \tag{12.10.11}
\end{equation*}
$$

Consequently, for all $s \in \mathbb{C}$,

$$
\begin{equation*}
\operatorname{det} Z(s)=-C(s I-A)^{\mathrm{A}} B-\operatorname{det}(s I-A) D . \tag{12.10.12}
\end{equation*}
$$

The identity (12.10.12) also follows from Fact 2.14.2.
In particular, if $s \in \operatorname{spec}(A)$, then

$$
\begin{equation*}
\operatorname{det} Z(s)=-C(s I-A)^{\mathrm{A}} B \tag{12.10.13}
\end{equation*}
$$

If, in addition, $n \geq 2$ and $\operatorname{rank}(s I-A) \leq n-2$, then it follows from Fact 2.16.8 that $(s I-A)^{\mathrm{A}}=0$, and thus

$$
\begin{equation*}
\operatorname{det} Z(s)=0 \tag{12.10.14}
\end{equation*}
$$

Alternatively, in the case $n=1$, it follows that, for all $s \in \mathbb{C},(s I-A)^{\mathrm{A}}=1$, and thus, for all $s \in \mathbb{C}$,

$$
\begin{equation*}
\operatorname{det} Z(s)=-C B-(s I-A) D \tag{12.10.15}
\end{equation*}
$$

Next, it follows from (12.10.11) and (12.10.12) that

$$
\begin{align*}
G(s) & =\frac{C(s I-A)^{\mathrm{A}} B+\operatorname{det}(s I-A) D}{\operatorname{det}(s I-A)} \tag{12.10.16}\\
& =\frac{-\operatorname{det} Z(s)}{\operatorname{det}(s I-A)} . \tag{12.10.17}
\end{align*}
$$

Consequently, $G \neq 0$ if and only if $\operatorname{det} Z \neq 0$.
We now have the following result for scalar transfer functions.
Corollary 12.10.5. Let $G \in \mathbb{R}_{\text {prop }}(s)$, where $G \sim\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$. Then, the following statements are equivalent:

ii) $G \neq 0$.
iii) $\operatorname{rank} G=1$.
iv) $\operatorname{det} z \neq 0$.
v) $\operatorname{rank} z=n+1$.
vi) $C(s I-A)^{\mathrm{A}} B+\operatorname{det}(s I-A) D$ is not the zero polynomial.

In this case,

$$
\operatorname{mizeros}\left(\left[\begin{array}{c|c}
A & B \tag{12.10.18}\\
\hline C & D
\end{array}\right]\right)=\operatorname{mroots}(\operatorname{det} Z)
$$

and

$$
\operatorname{mizeros}\left(\left[\begin{array}{c|c}
A & B \tag{12.10.19}\\
\hline C & D
\end{array}\right]\right)=\operatorname{mtzeros}(G) \cup[\operatorname{mspec}(A) \backslash \operatorname{mpoles}(G)] .
$$

If, in addition, $G \stackrel{\min }{\sim}\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$, then

$$
\operatorname{mizeros}\left(\left[\begin{array}{c|c}
A & B \tag{12.10.20}\\
\hline C & D
\end{array}\right]\right)=\operatorname{mtzeros}(G)
$$

Now, suppose that G is square, that is, $l=m$. Then, it follows from (12.10.7) and (12.10.8) that, for all $s \in \mathbb{C} \backslash \operatorname{spec}(A)$,

$$
\begin{equation*}
\operatorname{det} Z(s)=(-1)^{l} \operatorname{det}(s I-A) \operatorname{det} G(s) \tag{12.10.21}
\end{equation*}
$$

and thus

$$
\begin{equation*}
\operatorname{det} G(s)=\frac{(-1)^{l} \operatorname{det} \mathcal{Z}(s)}{\operatorname{det}(s I-A)} . \tag{12.10.22}
\end{equation*}
$$

Furthermore, for all $s \in \mathbb{C}$,

$$
\begin{equation*}
[\operatorname{det}(s I-A)]^{l-1} \operatorname{det} \mathcal{Z}(s)=(-1)^{l} \operatorname{det}\left[C(s I-A)^{\mathrm{A}} B+\operatorname{det}(s I-A) D\right] \tag{12.10.23}
\end{equation*}
$$

Hence, for all $s \in \operatorname{spec}(A)$, it follows that

$$
\begin{equation*}
\operatorname{det}\left[C(s I-A)^{\mathrm{A}} B\right]=0 \tag{12.10.24}
\end{equation*}
$$

We thus have the following result for square transfer functions G that satisfy $\operatorname{det} G \neq 0$.

Corollary 12.10.6. Let $G \in \mathbb{R}_{\text {prop }}^{l \times l}(s)$, where $G \sim\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$. Then, the following statements are equivalent:

ii) $\operatorname{det} G \neq 0$.
iii) $\operatorname{rank} G=l$.
iv) $\operatorname{det} z \neq 0$.
v) $\operatorname{rank} Z=n+l$.
vi) $\operatorname{det}\left[C(s I-A)^{\mathrm{A}} B+\operatorname{det}(s I-A) D\right]$ is not the zero polynomial.

In this case,

$$
\operatorname{mizeros}\left(\left[\begin{array}{c|c}
A & B \tag{12.10.25}\\
\hline C & D
\end{array}\right]\right)=\operatorname{mroots}(\operatorname{det} Z)
$$

$$
\operatorname{mizeros}\left(\left[\begin{array}{l|l}
A & B \tag{12.10.26}\\
\hline C & D
\end{array}\right]\right)=\operatorname{mtzeros}(G) \cup[\operatorname{mspec}(A) \backslash \operatorname{mpoles}(G)],
$$

and

$$
\operatorname{izeros}\left(\left[\begin{array}{l|l}
A & B \tag{12.10.27}\\
\hline C & D
\end{array}\right]\right)=\operatorname{tzeros}(G) \cup[\operatorname{spec}(A) \backslash \operatorname{poles}(G)] .
$$

If, in addition, $G \stackrel{\min }{\sim}\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$, then

$$
\operatorname{mizeros}\left(\left[\begin{array}{l|l}
A & B \tag{12.10.28}\\
\hline C & D
\end{array}\right]\right)=\operatorname{mtzeros}(G)
$$

Example 12.10.7. Consider $G \in \mathbb{R}^{2 \times 2}(s)$ defined by

$$
G(s) \triangleq\left[\begin{array}{cc}
\frac{s-1}{s+1} & 0 \tag{12.10.29}\\
0 & \frac{s+1}{s-1}
\end{array}\right]
$$

Then, the Smith-McMillan form of G is given by

$$
G(s) \triangleq S_{1}(s)\left[\begin{array}{cc}
\frac{1}{s^{2}-1} & 0 \tag{12.10.30}\\
0 & s^{2}-1
\end{array}\right] S_{2}(s),
$$

where $S_{1}, S_{2} \in \mathbb{R}^{2 \times 2}[s]$ are the unimodular matrices

$$
S_{1}(s) \triangleq\left[\begin{array}{cc}
(s-1)^{2} & -1 \tag{12.10.31}\\
-\frac{1}{4}(s+1)^{2}(s-2) & \frac{1}{4}(s+2)
\end{array}\right]
$$

and

$$
S_{2}(s) \triangleq\left[\begin{array}{cc}
\frac{1}{4}(s-1)^{2}(s+2) & (s+1)^{2} \tag{12.10.32}\\
\frac{1}{4}(s-2) & 1
\end{array}\right] .
$$

Thus, $\operatorname{mpoles}(G)=\operatorname{mtzeros}(G)=\{1,-1\}$. Furthermore, a minimal realization of G is given by

$$
G \stackrel{\min }{\sim}\left[\begin{array}{cc|cc}
-1 & 0 & 1 & 0 \tag{12.10.33}\\
0 & 1 & 0 & 1 \\
\hline-2 & 0 & 1 & 0 \\
0 & 2 & 0 & 1
\end{array}\right]
$$

Finally, note that $\operatorname{det} Z(s)=(-1)^{2} \operatorname{det}(s I-A) \operatorname{det} G=s^{2}-1$, which confirms (12.10.28).

Theorem 12.10.8. Let $G \in \mathbb{R}_{\text {prop }}^{l \times m}(s)$, where $G \sim\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$. Then,

$$
\operatorname{izeros}\left(\left[\begin{array}{c|c}
A & B \tag{12.10.34}\\
\hline C & D
\end{array}\right]\right) \backslash \operatorname{spec}(A) \subseteq \operatorname{tzeros}(G)
$$

and

$$
\operatorname{tzeros}(G) \backslash \operatorname{poles}(G) \subseteq \operatorname{izeros}\left(\left[\begin{array}{l|l}
A & B \tag{12.10.35}\\
\hline C & D
\end{array}\right]\right)
$$

If, in addition, $G \stackrel{\min }{\sim}\left[\begin{array}{c|c}A & B \\ \hline C & D\end{array}\right]$, then

$$
\operatorname{izeros}\left(\left[\begin{array}{c|c}
A & B \tag{12.10.36}\\
\hline C & D
\end{array}\right]\right) \backslash \operatorname{poles}(G)=\operatorname{tzeros}(G) \backslash \operatorname{poles}(G) .
$$

Proof. To prove (12.10.34), let $z \in \operatorname{izeros}\left(\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]\right) \backslash \operatorname{spec}(A)$. Since $z \notin$ $\operatorname{spec}(A)$ it follows from Theorem 12.9 .16 that $z \notin \operatorname{poles}(G)$. It now follows from Proposition 12.10.3 that $n+\operatorname{rank} G(z)=\operatorname{rank} \mathcal{Z}(z)<\operatorname{rank} \mathcal{Z}=n+\operatorname{rank} G$, which implies that $\operatorname{rank} G(z)<\operatorname{rank} G$. Thus, $z \in \operatorname{tzeros}(G)$.

To prove (12.10.35), let $z \in \operatorname{tzeros}(G) \backslash \operatorname{poles}(G)$. Then, it follows from Proposition 12.10 .3 that $\operatorname{rank} \mathcal{Z}(z)=n+\operatorname{rank} G(z)<n+\operatorname{rank} G=\operatorname{rank} Z$, which implies that $z \in \operatorname{izeros}\left(\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]\right)$. The last statement follows from (12.10.34), (12.10.35), and Theorem 12.9.16.

The following result is a stronger form of Theorem 12.10.8.
Theorem 12.10.9. Let $G \in \mathbb{R}_{\text {prop }}^{l \times m}(s)$, where $G \sim\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$, let $S \in \mathbb{R}^{n \times n}$, assume that S is nonsingular, and let A, B, and C have the form (12.9.16), (12.9.17), where $\left(\left[\begin{array}{cc}A_{1} & 0 \\ A_{21} & A_{2}\end{array}\right],\left[\begin{array}{c}B_{1} \\ B_{2}\end{array}\right]\right)$ is controllable and $\left(\left[\begin{array}{cc}A_{1} & A_{13} \\ 0 & A_{3}\end{array}\right],\left[\begin{array}{ll}C_{1} C_{3}\end{array}\right]\right)$ is observable. Then,

$$
\operatorname{mtzeros}(G)=\operatorname{mizeros}\left(\left[\begin{array}{c|c}
A_{1} & B_{1} \tag{12.10.37}\\
\hline C_{1} & D
\end{array}\right]\right)
$$

and
$\operatorname{mizeros}\left(\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]\right)=\operatorname{mspec}\left(A_{2}\right) \cup \operatorname{mspec}\left(A_{3}\right) \cup \operatorname{mspec}\left(A_{4}\right) \cup \operatorname{mtzeros}(G)$.

Proof. Defining Z by (12.10.1), note that, in the notation of Proposition 12.9.10, Z has the same Smith form as

$$
\tilde{\mathrm{z}} \triangleq\left[\begin{array}{ccccc}
s I-A_{4} & -A_{43} & 0 & 0 & 0 \\
0 & s I-A_{3} & 0 & 0 & 0 \\
-A_{24} & -A_{23} & s I-A_{2} & -A_{21} & B_{2} \\
0 & -A_{13} & 0 & s I-A_{1} & B_{1} \\
0 & C_{3} & 0 & C_{1} & -D
\end{array}\right] .
$$

Hence, it follows from Proposition 12.10 .3 that $\operatorname{rank} Z=\operatorname{rank} \tilde{\mathcal{Z}}=n+r$, where $r \triangleq \operatorname{rank} G$. Let $\tilde{p}_{1}, \ldots, \tilde{p}_{n+r}$ be the Smith polynomials of $\tilde{\mathcal{z}}$. Then, since \tilde{p}_{n+r} is the monic greatest common divisor of all $(n+r) \times(n+r)$ subdeterminants of \tilde{z}, it follows that $\tilde{p}_{n+r}=\chi_{A_{1}} \chi_{A_{2}} \chi_{A_{3}} p_{r}$, where p_{r} is the r th Smith polynomial of $\left[\begin{array}{ccc}s I-A_{1} & B_{1} \\ C_{1} & -D\end{array}\right]$. Therefore,

$$
\operatorname{mSzeros}(\mathbb{Z})=\operatorname{mspec}\left(A_{2}\right) \cup \operatorname{mspec}\left(A_{3}\right) \cup \operatorname{mspec}\left(A_{4}\right) \cup \operatorname{mSzeros}\left(\left[\begin{array}{cc}
s I-A_{1} & B_{1} \\
C_{1} & -D
\end{array}\right]\right) .
$$

Next, using the Smith-McMillan decomposition Theorem4.7.5 it follows that there exist unimodular matrices $S_{1} \in \mathbb{R}^{l \times l}[s]$ and $S_{2} \in \mathbb{R}^{m \times m}[s]$ such that $G=$ $S_{1} D_{0}^{-1} N_{0} S_{2}$, where

$$
D_{0} \triangleq\left[\begin{array}{cccc}
q_{1} & & & 0 \\
& \ddots & & \\
& & q_{r} & \\
0 & & & I_{l-r}
\end{array}\right], \quad N_{0} \triangleq\left[\begin{array}{cccc}
p_{1} & & & 0 \\
& \ddots & & \\
& & p_{r} & \\
0 & & & 0_{(l-r) \times(m-r)}
\end{array}\right] .
$$

Now, define the polynomial matrix $\hat{\mathcal{Z}} \in \mathbb{R}^{(n+l) \times(n+m)}[s]$ by

$$
\hat{z} \triangleq\left[\begin{array}{ccc}
I_{n-l} & 0_{(n-l) \times l} & 0_{(n-l) \times m} \\
0_{l \times(n-l)} & D_{0} & N_{0} S_{2} \\
0_{l \times(n-l)} & S_{1} & 0_{l \times m}
\end{array}\right] .
$$

Since S_{1} is unimodular, it follows that the Smith form \mathcal{S} of $\hat{\mathcal{Z}}$ is given by

$$
\mathcal{S}=\left[\begin{array}{cc}
I_{n} & 0_{n \times m} \\
0_{l \times n} & N_{0}
\end{array}\right] .
$$

Consequently, $\operatorname{mSzeros}(\hat{\mathcal{Z}})=\operatorname{mSzeros}(\mathcal{S})=\operatorname{mtzeros}(G)$.
Next, note that

$$
\operatorname{rank}\left[\begin{array}{ccc}
I_{n-l} & 0_{(n-l) \times l} & 0_{(n-l) \times m} \\
0_{l \times(n-l)} & D_{0} & N_{0} S_{2}
\end{array}\right]=\operatorname{rank}\left[\begin{array}{cc}
I_{n-l} & 0_{(n-l) \times l} \\
0_{l \times(n-l)} & D_{0} \\
0_{l \times(n-l)} & S_{1}
\end{array}\right]=n
$$

and that

$$
G=\left[\begin{array}{lll}
0_{l \times(n-l)} & S_{1} & 0_{l \times m}
\end{array}\right]\left[\begin{array}{cc}
I_{n-l} & 0_{(n-l) \times l} \\
0_{l \times(n-l)} & D_{0}
\end{array}\right]^{-1}\left[\begin{array}{c}
0_{(n-l) \times m} \\
N_{0} S_{2}
\end{array}\right] .
$$

Furthermore, $G \stackrel{\min }{\sim}\left[\begin{array}{l|l}A_{1} & B_{1} \\ \hline C_{1} & D\end{array}\right]$, Consequently, \hat{z} and $\left[\begin{array}{ccc}s I-A_{1} & B_{1} \\ C_{1} & D\end{array}\right]$ have no decoupling zeros [1144, pp. 64-70], and it thus follows from Theorem 3.1 of [1144 p.

106] that \hat{z} and $\left[\begin{array}{cc}s I-A_{1} & B_{1} \\ C_{1} & D\end{array}\right]$ have the same Smith form. Thus,

$$
\operatorname{mSzeros}\left(\left[\begin{array}{cc}
s I-A_{1} & B_{1} \\
C_{1} & -D
\end{array}\right]\right)=\operatorname{mSzeros}(\hat{z})=\operatorname{mtzeros}(G)
$$

Consequently,

$$
\operatorname{mizeros}\left(\left[\begin{array}{c|c}
A_{1} & B_{1} \\
\hline C_{1} & D
\end{array}\right]\right)=\mathrm{mSzeros}\left(\left[\begin{array}{cc}
s I-A_{1} & B_{1} \\
C_{1} & -D
\end{array}\right]\right)=\operatorname{mtzeros}(G)
$$

which proves (12.10.37).
Finally, to prove (12.10.34) note that

$$
\begin{aligned}
& \operatorname{mizeros}\left(\left[\begin{array}{l|l}
A & B \\
\hline C & D
\end{array}\right]\right) \\
&=\operatorname{mSzeros}(\mathcal{Z}) \\
&=\operatorname{mspec}\left(A_{2}\right) \cup \operatorname{mspec}\left(A_{3}\right) \cup \operatorname{mspec}\left(A_{4}\right) \cup \operatorname{mSzeros}\left(\left[\begin{array}{cc}
s I-A_{1} & B_{1} \\
-C_{1} & -D
\end{array}\right]\right) \\
& \quad=\operatorname{mspec}\left(A_{2}\right) \cup \operatorname{mspec}\left(A_{3}\right) \cup \operatorname{mspec}\left(A_{4}\right) \cup \operatorname{mtzeros}(G) .
\end{aligned}
$$

Proposition 12.10.10. Equivalent realizations have the same invariant zeros. Furthermore, invariant zeros are not changed by full-state feedback.

Proof. Let $u=K x+v$, which leads to the rational transfer function

$$
G_{K} \sim\left[\begin{array}{l|l}
A+B K & B \tag{12.10.39}\\
\hline C+D K & D
\end{array}\right] .
$$

Since

$$
\left[\begin{array}{cc}
z I-(A+B K) & B \tag{12.10.40}\\
C+D K & -D
\end{array}\right]=\left[\begin{array}{cc}
z I-A & B \\
C & -D
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
-K & I
\end{array}\right],
$$

it follows that $\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$ and $\left[\begin{array}{l|l}A+B K & B \\ \hline C+D K & D\end{array}\right]$ have the same invariant zeros.
The following result provides an interpretation of condition i) of Theorem 12.17.9.

Proposition 12.10.11. Let $G \in \mathbb{R}_{\text {prop }}^{l \times m}(s)$, where $G \sim\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$, and assume that $R \triangleq D^{\mathrm{T}} D$ is positive definite. Then, the following statements hold:
i) $\operatorname{rank} Z=n+m$.
ii) $z \in \mathbb{C}$ is an invariant zero of $\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$ if and only if z is an unobservable eigenvalue of $\left(A-B R^{-1} D^{\mathrm{T}} C,\left[I-D R^{-1} D^{\mathrm{T}}\right] C\right)$.

Proof. To prove i, assume that $\operatorname{rank} Z<n+m$. Then, for every $s \in \mathbb{C}$, there exists a nonzero vector $\left[\begin{array}{l}x \\ y\end{array}\right] \in \mathcal{N}[\mathcal{Z}(s)]$, that is,

$$
\left[\begin{array}{cc}
s I-A & B \\
C & -D
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=0
$$

Consequently, $C x-D y=0$, which implies that $D^{\mathrm{T}} C x-R y=0$, and thus $y=$ $R^{-1} D^{\mathrm{T}} C x$. Furthermore, since $\left(s I-A+B R^{-1} D^{\mathrm{T}} C\right) x=0$, choosing $s \notin$
$\operatorname{spec}\left(A-B R^{-1} D^{\mathrm{T}} C\right)$ yields $x=0$, and thus $y=0$, which is a contradiction.
To prove $i i$), note that z is an invariant zero of $\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$ if and only if $\operatorname{rank} \mathcal{Z}(z)<n+m$, which holds if and only if there exists a nonzero vector $\left[\begin{array}{l}x \\ y\end{array}\right] \in$ $\mathcal{N}[\mathcal{Z}(z)]$. This condition is equivalent to

$$
\left[\begin{array}{c}
s I-A+B R^{-1} D^{\mathrm{T}} C \\
\left(I-D R^{-1} D^{\mathrm{T}}\right) C
\end{array}\right] x=0,
$$

where $x \neq 0$. This last condition is equivalent to the fact that z is an unobservable eigenvalue of $\left(A-B R^{-1} D^{\mathrm{T}} C,\left[I-D R^{-1} D^{\mathrm{T}}\right] C\right)$.

Corollary 12.10.12. Assume that $R \triangleq D^{\mathrm{T}} D$ is positive definite, and assume that $\left(A-B R^{-1} D^{\mathrm{T}} C,\left[I-D R^{-1} D^{\mathrm{T}}\right] C\right)$ is observable. Then, $\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$ has no invariant zeros.

12.11 H_{2} System Norm

Consider the system

$$
\begin{align*}
\dot{x}(t) & =A x(t)+B u(t), \tag{12.11.1}\\
y(t) & =C x(t), \tag{12.11.2}
\end{align*}
$$

where $A \in \mathbb{R}^{n \times n}$ is asymptotically stable, $B \in \mathbb{R}^{n \times m}$, and $C \in \mathbb{R}^{l \times n}$. Then, for all $t \geq 0$, the impulse response function defined by (12.1.18) is given by

$$
\begin{equation*}
H(t)=C e^{t A} B . \tag{12.11.3}
\end{equation*}
$$

The L_{2} norm of $H(\cdot)$ is given by

$$
\begin{equation*}
\|H\|_{\mathrm{L}_{2}} \triangleq\left(\int_{0}^{\infty}\|H(t)\|_{\mathrm{F}}^{2} \mathrm{~d} t\right)^{1 / 2} . \tag{12.11.4}
\end{equation*}
$$

The following result provides expressions for $\|H(\cdot)\|_{\mathrm{L}_{2}}$ in terms of the controllability and observability Gramians.

Theorem 12.11.1. Assume that A is asymptotically stable. Then, the L_{2} norm of H is given by

$$
\begin{equation*}
\|H\|_{\mathrm{L}_{2}}^{2}=\operatorname{tr} C Q C^{\mathrm{T}}=\operatorname{tr} B^{\mathrm{T}} P B, \tag{12.11.5}
\end{equation*}
$$

where $Q, P \in \mathbb{R}^{n \times n}$ satisfy

$$
\begin{align*}
& A Q+Q A^{\mathrm{T}}+B B^{\mathrm{T}}=0, \tag{12.11.6}\\
& A^{\mathrm{T}} P+P A+C^{\mathrm{T}} C=0 . \tag{12.11.7}
\end{align*}
$$

Proof. Note that

$$
\|H\|_{\mathrm{L}_{2}}^{2}=\int_{0}^{\infty} \operatorname{tr} C e^{t A} B B^{\mathrm{T}} e^{t A^{\mathrm{T}}} C^{\mathrm{T}} \mathrm{~d} t=\operatorname{tr} C Q C^{\mathrm{T}}
$$

where Q satisfies (12.11.6). The dual expression (12.11.7) follows in a similar manner or by noting that

$$
\begin{aligned}
\operatorname{tr} C Q C^{\mathrm{T}} & =\operatorname{tr} C^{\mathrm{T}} C Q=-\operatorname{tr}\left(A^{\mathrm{T}} P+P A\right) Q \\
& =-\operatorname{tr}\left(A Q+Q A^{\mathrm{T}}\right) P=\operatorname{tr} B B^{\mathrm{T}} P=\operatorname{tr} B^{\mathrm{T}} P B .
\end{aligned}
$$

For the following definition, note that

$$
\begin{equation*}
\|G(s)\|_{\mathrm{F}}=\left[\operatorname{tr} G(s) G^{*}(s)\right]^{1 / 2} \tag{12.11.8}
\end{equation*}
$$

Definition 12.11.2. The H_{2} norm of $G \in \mathbb{R}^{l \times m}(s)$ is the nonnegative number

$$
\begin{equation*}
\|G\|_{\mathrm{H}_{2}} \triangleq\left(\frac{1}{2 \pi} \int_{-\infty}^{\infty}\|G(\jmath \omega)\|_{\mathrm{F}}^{2} \mathrm{~d} \omega\right)^{1 / 2} \tag{12.11.9}
\end{equation*}
$$

The following result is Parseval's theorem, which relates the L_{2} norm of the impulse response function to the H_{2} norm of its transform.

Theorem 12.11.3. Let $G \in \mathbb{R}_{\text {prop }}^{l \times m}(s)$, where $G \sim\left[\begin{array}{c|c}A & B \\ \hline C & 0\end{array}\right]$, and assume that $A \in \mathbb{R}^{n \times n}$ is asymptotically stable. Then,

$$
\begin{equation*}
\int_{0}^{\infty} H(t) H^{\mathrm{T}}(t) \mathrm{d} t=\frac{1}{2 \pi} \int_{-\infty}^{\infty} G(\jmath \omega) G^{*}(\jmath \omega) \mathrm{d} \omega \tag{12.11.10}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\|H\|_{\mathrm{L}_{2}}=\|G\|_{\mathrm{H}_{2}} . \tag{12.11.11}
\end{equation*}
$$

Proof. First note that

$$
G(s)=\mathcal{L}\{H(t)\}=\int_{0}^{\infty} H(t) e^{-s t} \mathrm{~d} t
$$

and that

$$
H(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} G(\jmath \omega) e^{\jmath \omega t} \mathrm{~d} \omega .
$$

Hence,

$$
\begin{aligned}
\int_{0}^{\infty} H(t) H^{\mathrm{T}}(t) e^{-s t} \mathrm{~d} t & =\int_{0}^{\infty}\left(\frac{1}{2 \pi} \int_{-\infty}^{\infty} G(\jmath \omega) e^{\jmath \omega t} \mathrm{~d} \omega\right) H^{\mathrm{T}}(t) e^{-s t} \mathrm{~d} t \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} G(\jmath \omega)\left(\int_{0}^{\infty} H^{\mathrm{T}}(t) e^{-(s-\jmath \omega) t} \mathrm{~d} t\right) \mathrm{d} \omega \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} G(\jmath \omega) G^{\mathrm{T}}(s-\jmath \omega) \mathrm{d} \omega
\end{aligned}
$$

Setting $s=0$ yields (12.11.7), while taking the trace of (12.11.10) yields (12.11.11).

Corollary 12.11.4. Let $G \in \mathbb{R}_{\text {prop }}^{l \times m}(s)$, where $G \sim\left[\begin{array}{l|l}A & B \\ \hline C & 0\end{array}\right]$, and assume that $A \in \mathbb{R}^{n \times n}$ is asymptotically stable. Then,

$$
\begin{equation*}
\|G\|_{\mathrm{H}_{2}}^{2}=\|H\|_{\mathrm{L}_{2}}^{2}=\operatorname{tr} C Q C^{\mathrm{T}}=\operatorname{tr} B^{\mathrm{T}} P B \tag{12.11.12}
\end{equation*}
$$

where $Q, P \in \mathbb{R}^{n \times n}$ satisfy (12.11.6) and (12.11.7), respectively.
The following corollary of Theorem 12.11 .3 provides a frequency domain expression for the solution of the Lyapunov equation.

Corollary 12.11.5. Let $A \in \mathbb{R}^{n \times n}$, assume that A is asymptotically stable, let $B \in \mathbb{R}^{n \times m}$, and define $Q \in \mathbb{R}^{n \times n}$ by

$$
\begin{equation*}
Q=\frac{1}{2 \pi} \int_{-\infty}^{\infty}(\jmath \omega I-A)^{-1} B B^{\mathrm{T}}(\jmath \omega I-A)^{-*} \mathrm{~d} \omega . \tag{12.11.13}
\end{equation*}
$$

Then, Q satisfies

$$
\begin{equation*}
A Q+Q A^{\mathrm{T}}+B B^{\mathrm{T}}=0 . \tag{12.11.14}
\end{equation*}
$$

Proof. The result follows directly from Theorem 12.11 .3 with $H(t)=e^{t A} B$ and $G(s)=(s I-A)^{-1} B$. Alternatively, it follows from (12.11.14) that

$$
\int_{-\infty}^{\infty}(\jmath \omega I-A)^{-1} \mathrm{~d} \omega Q+Q \int_{-\infty}^{\infty}(\jmath \omega I-A)^{-*} \mathrm{~d} \omega=\int_{-\infty}^{\infty}(\jmath \omega I-A)^{-1} B B^{\mathrm{T}}(\jmath \omega I-A)^{-*} \mathrm{~d} \omega .
$$

Assuming that A is diagonalizable with eigenvalues $\lambda_{i}=-\sigma_{i}+\jmath \omega_{i}$, it follows that

$$
\int_{-\infty}^{\infty} \frac{\mathrm{d} \omega}{\jmath \omega-\lambda_{i}}=\int_{-\infty}^{\infty} \frac{\sigma_{i}-\jmath \omega}{\sigma_{i}^{2}+\omega^{2}} \mathrm{~d} \omega=\frac{\sigma_{i} \pi}{\left|\sigma_{i}\right|}-\jmath \lim _{r \rightarrow \infty} \int_{-r}^{r} \frac{\omega}{\sigma_{i}^{2}+\omega^{2}} \mathrm{~d} \omega=\pi,
$$

which implies that

$$
\int_{-\infty}^{\infty}(\jmath \omega I-A)^{-1} \mathrm{~d} \omega=\pi I_{n},
$$

which yields (12.11.13). See [309] for a proof of the general case.
Proposition 12.11.6. Let $G_{1}, G_{2} \in \mathbb{R}_{\text {prop }}^{l \times m}(s)$ be asymptotically stable rational transfer functions. Then,

$$
\begin{equation*}
\left\|G_{1}+G_{2}\right\|_{\mathrm{H}_{2}} \leq\left\|G_{1}\right\|_{\mathrm{H}_{2}}+\left\|G_{2}\right\|_{\mathrm{H}_{2}} . \tag{12.11.15}
\end{equation*}
$$

Proof. Let $G_{1} \stackrel{\min }{\sim}\left[\begin{array}{l|l}A_{1} & B_{1} \\ \hline C_{1} & 0\end{array}\right]$ and $G_{2} \stackrel{\min }{\sim}\left[\begin{array}{l|l}A_{2} & B_{2} \\ \hline C_{2} & 0\end{array}\right]$, where $A_{1} \in \mathbb{R}^{n_{1} \times n_{1}}$ and $A_{2} \in \mathbb{R}^{n_{2} \times n_{2}}$. It follows from Proposition 12.13 .2 that

$$
G_{1}+G_{2} \sim\left[\begin{array}{cc|c}
A_{1} & 0 & B_{1} \\
0 & A_{2} & B_{2} \\
\hline C_{1} & C_{2} & 0
\end{array}\right] .
$$

Now, Theorem 12.11.3 implies that $\left\|G_{1}\right\|_{\mathrm{H}_{2}}=\sqrt{\operatorname{tr} C_{1} Q_{1} C_{1}^{\mathrm{T}}}$ and $\left\|G_{2}\right\|_{\mathrm{H}_{2}}=$ $\sqrt{\operatorname{tr} C_{2} Q_{2} C_{2}^{\mathrm{T}}}$, where $Q_{1} \in \mathbb{R}^{n_{1} \times n_{1}}$ and $Q_{2} \in \mathbb{R}^{n_{2} \times n_{2}}$ are the unique positive-definite matrices satisfying $A_{1} Q_{1}+Q_{1} A_{1}^{\mathrm{T}}+B_{1} B_{1}^{\mathrm{T}}=0$ and $A_{2} Q_{2}+Q_{2} A_{2}^{\mathrm{T}}+B_{2} B_{2}^{\mathrm{T}}=0$. Furthermore,

$$
\left\|G_{2}+G_{2}\right\|_{\mathrm{H}_{2}}^{2}=\operatorname{tr}\left[\begin{array}{ll}
C_{1} & C_{2}
\end{array}\right] Q\left[\begin{array}{c}
C_{1}^{\mathrm{T}} \\
C_{2}^{\mathrm{T}}
\end{array}\right]
$$

where $Q \in \mathbb{R}^{\left(n_{1}+n_{2}\right) \times\left(n_{1}+n_{2}\right)}$ is the unique, positive-semidefinite matrix satisfying

$$
\left[\begin{array}{cc}
A_{1} & 0 \\
0 & A_{2}
\end{array}\right] Q+Q\left[\begin{array}{cc}
A_{1} & 0 \\
0 & A_{2}
\end{array}\right]^{\mathrm{T}}+\left[\begin{array}{c}
B_{1} \\
B_{2}
\end{array}\right]\left[\begin{array}{c}
B_{1} \\
B_{2}
\end{array}\right]^{\mathrm{T}}=0
$$

It can be seen that $Q=\left[\begin{array}{cc}Q_{1} & Q_{12} \\ Q_{12}^{\mathrm{T}} & Q_{2}\end{array}\right]$, where Q_{1} and Q_{2} are as given above and where Q_{12} satisfies $A_{1} Q_{12}+Q_{12} A_{2}^{\mathrm{T}}+B_{1} B_{2}^{\mathrm{T}}=0$. Now, using the Cauchy-Schwarz inequality (9.3.17) and iii) of Proposition 8.2.4 it follows that

$$
\begin{aligned}
\left\|G_{1}+G_{2}\right\|_{\mathrm{H}_{2}}^{2} & =\operatorname{tr}\left(C_{1} Q_{1} C_{1}^{\mathrm{T}}+C_{2} Q_{2} C_{2}^{\mathrm{T}}+C_{2} Q_{12}^{\mathrm{T}} C_{1}^{\mathrm{T}}+C_{1} Q_{12} C_{2}^{\mathrm{T}}\right) \\
& =\left\|G_{1}\right\|_{\mathrm{H}_{2}}^{2}+\left\|G_{2}\right\|_{\mathrm{H}_{2}}^{2}+2 \operatorname{tr} C_{1} Q_{12} Q_{2}^{-1 / 2} Q_{2}^{1 / 2} C_{2}^{\mathrm{T}} \\
& \leq\left\|G_{1}\right\|_{\mathrm{H}_{2}}^{2}+\left\|G_{2}\right\|_{\mathrm{H}_{2}}^{2}+2 \operatorname{tr}\left(C_{1} Q_{12} Q_{2}^{-1} Q_{12}^{\mathrm{T}} C_{1}^{\mathrm{T}}\right) \operatorname{tr}\left(C_{2} Q_{2} C_{2}^{\mathrm{T}}\right) \\
& \leq\left\|G_{1}\right\|_{\mathrm{H}_{2}}^{2}+\left\|G_{2}\right\|_{\mathrm{H}_{2}}^{2}+2 \operatorname{tr}\left(C_{1} Q_{1} C_{1}^{\mathrm{T}}\right) \operatorname{tr}\left(C_{2} Q_{2} C_{2}^{\mathrm{T}}\right) \\
& =\left(\left\|G_{1}\right\|_{\mathrm{H}_{2}}+\left\|G_{2}\right\|_{\mathrm{H}_{2}}\right)^{2} .
\end{aligned}
$$

12.12 Harmonic Steady-State Response

The following result concerns the response of a linear system to a harmonic input.

Theorem 12.12.1. For $t \geq 0$, consider the linear system

$$
\begin{equation*}
\dot{x}(t)=A x(t)+B u(t) \tag{12.12.1}
\end{equation*}
$$

with harmonic input

$$
\begin{equation*}
u(t)=\operatorname{Re} u_{0} e^{\jmath \omega_{0} t} \tag{12.12.2}
\end{equation*}
$$

where $u_{0} \in \mathbb{C}^{m}$ and $\omega_{0} \in \mathbb{R}$ is such that $\jmath \omega_{0} \notin \operatorname{spec}(A)$. Then, $x(t)$ is given by

$$
\begin{equation*}
x(t)=e^{t A}\left(x(0)-\operatorname{Re}\left[\left(\jmath \omega_{0} I-A\right)^{-1} B u_{0}\right]\right)+\operatorname{Re}\left[\left(\jmath \omega_{0} I-A\right)^{-1} B u_{0} e^{\jmath \omega_{0} t}\right] \tag{12.12.3}
\end{equation*}
$$

Proof. We have

$$
\begin{aligned}
x(t) & =e^{t A} x(0)+\int_{0}^{t} e^{(t-\tau) A} B \operatorname{Re}\left(u_{0} e^{\jmath \omega_{0} \tau}\right) \mathrm{d} \tau \\
& =e^{t A} x(0)+e^{t A} \operatorname{Re}\left[\int_{0}^{t} e^{-\tau A} e^{\jmath \omega_{0} \tau} \mathrm{~d} \tau B u_{0}\right] \\
& =e^{t A} x(0)+e^{t A} \operatorname{Re}\left[\int_{0}^{t} e^{\tau\left(\jmath \omega_{0} I-A\right)} \mathrm{d} \tau B u_{0}\right] \\
& =e^{t A} x(0)+e^{t A} \operatorname{Re}\left[\left(\jmath \omega_{0} I-A\right)^{-1}\left(e^{t\left(\jmath \omega_{0} I-A\right)}-I\right) B u_{0}\right] \\
& =e^{t A} x(0)+\operatorname{Re}\left[\left(\jmath \omega_{0} I-A\right)^{-1}\left(e^{\jmath \omega_{0} t I}-e^{t A}\right) B u_{0}\right] \\
& =e^{t A} x(0)+\operatorname{Re}\left[\left(\jmath \omega_{0} I-A\right)^{-1}\left(-e^{t A}\right) B u_{0}\right]+\operatorname{Re}\left[\left(\jmath \omega_{0} I-A\right)^{-1} e^{\jmath \omega_{0} t} B u_{0}\right] \\
& =e^{t A}\left(x(0)-\operatorname{Re}\left[\left(\jmath \omega_{0} I-A\right)^{-1} B u_{0}\right]\right)+\operatorname{Re}\left[\left(\jmath \omega_{0} I-A\right)^{-1} B u_{0} e^{\jmath \omega_{0} t}\right] .
\end{aligned}
$$

Theorem 12.12 .1 shows that the total response $y(t)$ of the linear system $G \sim$ $\left[\begin{array}{c|c}A & B \\ \hline C & 0\end{array}\right]$ to a harmonic input can be written as $y(t)=y_{\text {trans }}(t)+y_{\text {hiss }}(t)$, where the transient component

$$
\begin{equation*}
y_{\text {trans }}(t) \triangleq C e^{t A}\left(x(0)-\operatorname{Re}\left[\left(\jmath \omega_{0} I-A\right)^{-1} B u_{0}\right]\right) \tag{12.12.4}
\end{equation*}
$$

depends on the initial condition and the input, and the harmonic steady-state component

$$
\begin{equation*}
y_{\mathrm{hss}}(t)=\operatorname{Re}\left[G\left(\jmath \omega_{0}\right) u_{0} e^{\jmath \omega_{0} t}\right] \tag{12.12.5}
\end{equation*}
$$

depends only on the input.
If A is asymptotically stable, then $\lim _{t \rightarrow \infty} y_{\text {trans }}(t)=0$, and thus $y(t)$ approaches its harmonic steady-state component $y_{\text {hss }}(t)$ for large t. Since the harmonic steady-state component is sinusoidal, it follows that $y(t)$ does not converge in the usual sense.

Finally, if A is semistable, then it follows from vii) of Proposition 11.8.2 that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} y_{\text {trans }}(t)=C\left(I-A A^{\#}\right)\left(x(0)-\operatorname{Re}\left[\left(\jmath \omega_{0} I-A\right)^{-1} B u_{0}\right]\right), \tag{12.12.6}
\end{equation*}
$$

which represents a constant offset to the harmonic steady-state component.
In the SISO case, let $u_{0} \triangleq a_{0}\left(\sin \phi_{0}+\jmath \cos \phi_{0}\right)$, and consider the input

$$
\begin{equation*}
u(t)=a_{0} \sin \left(\omega_{0} t+\phi_{0}\right)=\operatorname{Re} u_{0} e^{\jmath \omega_{0} t} . \tag{12.12.7}
\end{equation*}
$$

Then, writing $G\left(\jmath \omega_{0}\right)=\operatorname{Re} M e^{\jmath \theta}$, it follows that

$$
\begin{equation*}
y_{\mathrm{hss}}(t)=a_{0} M \sin \left(\omega_{0} t+\phi_{0}+\theta\right) . \tag{12.12.8}
\end{equation*}
$$

12.13 System Interconnections

Let $G \in \mathbb{R}_{\text {prop }}^{l \times m}(s)$. We define the parahermitian conjugate G^{\sim} of G by

$$
\begin{equation*}
G^{\sim} \triangleq G^{\mathrm{T}}(-s) . \tag{12.13.1}
\end{equation*}
$$

The following result provides realizations for G^{T}, G^{\sim}, and G^{-1}.
Proposition 12.13.1. Let $G_{\text {prop }}^{l \times m}(s)$, and assume that $G \sim\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$. Then,

$$
G^{\mathrm{T}} \sim\left[\begin{array}{c|c}
A^{\mathrm{T}} & C^{\mathrm{T}} \tag{12.13.2}\\
\hline B^{\mathrm{T}} & D^{\mathrm{T}}
\end{array}\right]
$$

and

$$
G^{\sim} \sim\left[\begin{array}{c|c}
-A^{\mathrm{T}} & -C^{\mathrm{T}} \tag{12.13.3}\\
\hline B^{\mathrm{T}} & D^{\mathrm{T}}
\end{array}\right]
$$

Furthermore, if G is square and D is nonsingular, then

$$
G^{-1} \sim\left[\begin{array}{c|c}
A-B D^{-1} C & B D^{-1} \tag{12.13.4}\\
\hline-D^{-1} C & D^{-1}
\end{array}\right] .
$$

Proof. Since $y=G u$, it follows that G^{-1} satisfies $u=G^{-1} y$. Since $\dot{x}=$ $A x+B u$ and $y=C x+D u$, it follows that $u=-D^{-1} C x+D^{-1} y$, and thus $\dot{x}=$ $A x+B\left(-D^{-1} C x+D^{-1} y\right)=\left(A-B D^{-1} C\right) x+B D^{-1} y$.

Note that, if $G \in \mathbb{R}_{\text {prop }}(s)$ and $G \sim\left[\begin{array}{c|c}A & B \\ \hline C & D\end{array}\right]$, then $G \sim\left[\begin{array}{c|c}A^{\mathrm{T}} & B^{\mathrm{T}} \\ \hline C^{\mathrm{T}} & D\end{array}\right]$.
Let $G_{1} \in \mathbb{R}_{\text {prop }}^{l_{1} \times m_{1}}(s)$ and $G_{2} \in \mathbb{R}_{\text {prop }}^{l_{2} \times m_{2}}(s)$. If $m_{2}=l_{2}$, then the cascade interconnection of G_{1} and G_{2} shown in Figure 12.13 .1 is the product $G_{2} G_{1}$, while the parallel interconnection shown in Figure 12.13 .2 is the sum $G_{1}+G_{2}$. Note that $G_{2} G_{1}$ is defined only if $m_{2}=l_{1}$, whereas $G_{1}+G_{2}$ requires that $m_{1}=m_{2}$ and $l_{1}=l_{2}$.

Figure 12.13.1
Cascade Interconnection of Linear Systems

Proposition 12.13.2. Let $G_{1} \sim\left[\begin{array}{c|c}A_{1} & B_{1} \\ \hline C_{1} & D_{1}\end{array}\right]$ and $G_{2} \sim\left[\begin{array}{l|l}A_{2} & B_{2} \\ \hline C_{2} & D_{2}\end{array}\right]$. Then,

$$
G_{2} G_{1} \sim\left[\begin{array}{cc|c}
A_{1} & 0 & B_{1} \tag{12.13.5}\\
B_{2} C_{1} & A_{2} & B_{2} D_{1} \\
\hline D_{2} C_{1} & C_{2} & D_{2} D_{1}
\end{array}\right]
$$

Figure 12.13.2
Parallel Interconnection of Linear Systems
and

$$
G_{1}+G_{2} \sim\left[\begin{array}{cc|c}
A_{1} & 0 & B_{1} \tag{12.13.6}\\
0 & A_{2} & B_{2} \\
\hline C_{1} & C_{2} & D_{1}+D_{2}
\end{array}\right] .
$$

Proof. Consider the state space equations

$$
\begin{aligned}
\dot{x}_{1}=A_{1} x_{1}+B_{1} u_{1}, & \dot{x}_{2}=A_{2} x_{2}+B_{2} u_{2}, \\
y_{1}=C_{1} x_{1}+D_{1} u_{1}, & y_{2}=C_{2} x_{2}+D_{2} u_{2} .
\end{aligned}
$$

Since $u_{2}=y_{1}$, it follows that

$$
\begin{aligned}
\dot{x}_{2} & =A_{2} x_{2}+B_{2} C_{1} x_{1}+B_{2} D_{1} u_{1}, \\
y_{2} & =C_{2} x_{2}+D_{2} C_{1} x_{1}+D_{2} D_{1} u_{1},
\end{aligned}
$$

and thus

$$
\begin{aligned}
{\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right] } & =\left[\begin{array}{cc}
A_{1} & 0 \\
B_{2} C_{1} & A_{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{c}
B_{1} \\
B_{2} D_{1}
\end{array}\right] u_{1}, \\
y_{2} & =\left[\begin{array}{ll}
D_{2} C_{1} & C_{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+D_{2} D_{1} u_{1},
\end{aligned}
$$

which yields the realization (12.13.5) of $G_{2} G_{1}$. The realization (12.13.6) for $G_{1}+G_{2}$ can be obtained by similar techniques.

It is sometimes useful to combine transfer functions by concatenating them into row, column, or block-diagonal transfer functions.

Proposition 12.13.3. Let $G_{1} \sim\left[\begin{array}{l|l}A_{1} & B_{1} \\ \hline C_{1} & D_{1}\end{array}\right]$ and $G_{2} \sim\left[\begin{array}{l|l}A_{2} & B_{2} \\ \hline C_{2} & D_{2}\end{array}\right]$. Then,

$$
\begin{align*}
{\left[\begin{array}{ll}
G_{1} & G_{2}
\end{array}\right] } & \sim\left[\begin{array}{cc|cc}
A_{1} & 0 & B_{1} & 0 \\
0 & A_{2} & 0 & B_{2} \\
\hline C_{1} & C_{2} & D_{1} & D_{2}
\end{array}\right], \tag{12.13.7}\\
{\left[\begin{array}{l}
G_{1} \\
G_{2}
\end{array}\right] } & \sim\left[\begin{array}{cc|c}
A_{1} & 0 & B_{1} \\
0 & A_{2} & B_{2} \\
\hline C_{1} & 0 & D_{1} \\
0 & C_{2} & D_{2}
\end{array}\right], \tag{12.13.8}
\end{align*}
$$

$$
\left[\begin{array}{cc}
G_{1} & 0 \tag{12.13.9}\\
0 & G_{2}
\end{array}\right] \sim\left[\begin{array}{cc|cc}
A_{1} & 0 & B_{1} & 0 \\
0 & A_{2} & 0 & B_{2} \\
\hline C_{1} & 0 & D_{1} & 0 \\
0 & C_{2} & 0 & D_{2}
\end{array}\right]
$$

Next, we interconnect a pair of systems G_{1}, G_{2} by means of feedback as shown in Figure 12.13.3, It can be seen that u and y are related by

$$
\begin{equation*}
\hat{y}=\left(I+G_{1} G_{2}\right)^{-1} G_{1} \hat{u} \tag{12.13.10}
\end{equation*}
$$

or

$$
\begin{equation*}
\hat{y}=G_{1}\left(I+G_{2} G_{1}\right)^{-1} \hat{u} \tag{12.13.11}
\end{equation*}
$$

The equivalence of (12.13.10) and (12.13.11) follows from the push-through identity given by Fact 2.16.16,

$$
\begin{equation*}
\left(I+G_{1} G_{2}\right)^{-1} G_{1}=G_{1}\left(I+G_{2} G_{1}\right)^{-1} \tag{12.13.12}
\end{equation*}
$$

A realization of this rational transfer function is given by the following result.

Figure 12.13.3
Feedback Interconnection of Linear Systems

Proposition 12.13.4. Let $G_{1} \sim\left[\begin{array}{l|l}A_{1} & B_{1} \\ \hline C_{1} & D_{1}\end{array}\right]$ and $G_{2} \sim\left[\begin{array}{c|c}A_{2} & B_{2} \\ \hline C_{2} & D_{2}\end{array}\right]$, and assume that $\operatorname{det}\left(I+D_{1} D_{2}\right) \neq 0$. Then,

$$
\begin{align*}
{[I} & \left.+G_{1} G_{2}\right]^{-1} G_{1} \\
& \sim\left[\begin{array}{cc|c}
A_{1}-B_{1}\left(I+D_{2} D_{1}\right)^{-1} D_{2} C_{1} & -B_{1}\left(I+D_{2} D_{1}\right)^{-1} C_{2} & B_{1}\left(I+D_{2} D_{1}\right)^{-1} \\
B_{2}\left(I+D_{1} D_{2}\right)^{-1} C_{1} & A_{2}-B_{2}\left(I+D_{1} D_{2}\right)^{-1} D_{1} C_{2} & B_{2}\left(I+D_{1} D_{2}\right)^{-1} D_{1} \\
\hline\left(I+D_{1} D_{2}\right)^{-1} C_{1} & -\left(I+D_{1} D_{2}\right)^{-1} D_{1} C_{2} & \left(I+D_{1} D_{2}\right)^{-1} D_{1}
\end{array}\right] . \tag{12.13.13}
\end{align*}
$$

12.14 Standard Control Problem

The standard control problem shown in Figure 12.14 .1 involves four distinct signals, namely, an exogenous input w, a control input u, a performance variable z, and a feedback signal y. This system can be written as

$$
\left[\begin{array}{l}
\hat{z}(s) \tag{12.14.1}\\
\hat{y}(s)
\end{array}\right]=\tilde{\mathcal{G}}(s)\left[\begin{array}{l}
\hat{w}(s) \\
\hat{u}(s)
\end{array}\right]
$$

where $\mathcal{G}(s)$ is partitioned as

$$
\mathcal{G} \triangleq\left[\begin{array}{ll}
G_{11} & G_{12} \tag{12.14.2}\\
G_{21} & G_{22}
\end{array}\right]
$$

with the realization

$$
\mathcal{G} \sim\left[\begin{array}{c|cc}
A & D_{1} & B \tag{12.14.3}\\
\hline E_{1} & E_{0} & E_{2} \\
C & D_{2} & D
\end{array}\right]
$$

which represents the equations

$$
\begin{align*}
\dot{x} & =A x+D_{1} w+B u \tag{12.14.4}\\
z & =E_{1} x+E_{0} w+E_{2} u \tag{12.14.5}\\
y & =C x+D_{2} w+D u \tag{12.14.6}
\end{align*}
$$

Consequently,

$$
\mathcal{G}(s)=\left[\begin{array}{cc}
E_{1}(s I-A)^{-1} D_{1}+E_{0} & E_{1}(s I-A)^{-1} B+E_{2} \tag{12.14.7}\\
C(s I-A)^{-1} D_{1}+D_{2} & C(s I-A)^{-1} B+D
\end{array}\right]
$$

which shows that G_{11}, G_{12}, G_{21}, and G_{22} have the realizations

$$
\begin{array}{ll}
G_{11} \sim\left[\begin{array}{c|c}
A & D_{1} \\
\hline E_{1} & E_{0}
\end{array}\right], & G_{12} \sim\left[\begin{array}{c|c}
A & B \\
\hline E_{1} & E_{2}
\end{array}\right], \\
G_{21} \sim\left[\begin{array}{c|c}
A & D_{1} \\
\hline C & D_{2}
\end{array}\right], & G_{22} \sim\left[\begin{array}{c|c}
A & B \\
\hline C & D
\end{array}\right] . \tag{12.14.9}
\end{array}
$$

Figure 12.14.1
Standard Control Problem

Letting G_{c} denote a feedback controller with realization

$$
G_{\mathrm{c}} \sim\left[\begin{array}{c|c}
A_{\mathrm{c}} & B_{\mathrm{c}} \tag{12.14.10}\\
\hline C_{\mathrm{c}} & D_{\mathrm{c}}
\end{array}\right]
$$

we interconnect G and G_{c} according to

$$
\begin{equation*}
\hat{u}(s)=G_{\mathrm{C}}(s) \hat{y}(s) \tag{12.14.11}
\end{equation*}
$$

The resulting rational transfer function $\tilde{\mathcal{G}}$ satisfying $\hat{z}(s)=\tilde{\mathcal{G}}(s) \hat{w}(s)$ is thus given by

$$
\begin{equation*}
\tilde{\mathcal{G}}=G_{11}+G_{12} G_{\mathrm{c}}\left(I-G_{22} G_{\mathrm{c}}\right)^{-1} G_{21} \tag{12.14.12}
\end{equation*}
$$

or

$$
\begin{equation*}
\tilde{\mathcal{G}}=G_{11}+G_{12}\left(I-G_{\mathrm{c}} G_{22}\right)^{-1} G_{\mathrm{c}} G_{21} \tag{12.14.13}
\end{equation*}
$$

A realization of $\tilde{\mathcal{G}}$ is given by the following result.
Proposition 12.14.1. Let \mathcal{G} and G_{c} have the realizations (12.14.3) and (12.14.10), and assume that $\operatorname{det}\left(I-D D_{\mathrm{c}}\right) \neq 0$. Then,

$$
\tilde{\mathcal{G}} \sim\left[\begin{array}{cc|c}
A+B D_{\mathrm{c}}\left(I-D D_{\mathrm{c}}\right)^{-1} C & B\left(I-D_{\mathrm{c}} D\right)^{-1} C_{\mathrm{c}} & D_{1}+B D_{\mathrm{c}}\left(I+D D_{\mathrm{c}}\right)^{-1} D_{2} \tag{12.14.14}\\
B_{\mathrm{c}}\left(I-D D_{\mathrm{c}}\right)^{-1} C & A_{\mathrm{c}}+B_{\mathrm{c}}\left(I-D D_{\mathrm{c}}\right)^{-1} D C_{\mathrm{c}} & B_{\mathrm{c}}\left(I-D D_{\mathrm{c}}\right)^{-1} D_{2} \\
\hline E_{1}+E_{2} D_{\mathrm{c}}\left(I-D D_{\mathrm{c}}\right)^{-1} C & E_{2}\left(I-D_{\mathrm{c}} D\right)^{-1} C_{\mathrm{c}} & E_{0}+E_{2} D_{\mathrm{c}}\left(I-D D_{\mathrm{c}}\right)^{-1} D_{2}
\end{array}\right] .
$$

The realization (12.14.14) can be simplified when $D D_{\mathrm{c}}=0$. For example, if $D=0$, then

$$
\tilde{\mathcal{G}} \sim\left[\begin{array}{cc|c}
A+B D_{\mathrm{c}} C & B C_{\mathrm{c}} & D_{1}+B D_{\mathrm{c}} D_{2} \tag{12.14.15}\\
B_{\mathrm{c}} C & A_{c} & B_{\mathrm{c}} D_{2} \\
\hline E_{1}+E_{2} D_{\mathrm{c}} C & E_{2} C_{\mathrm{c}} & E_{0}+E_{2} D_{\mathrm{c}} D_{2}
\end{array}\right],
$$

whereas, if $D_{\mathrm{c}}=0$, then

$$
\tilde{\mathcal{G}} \sim\left[\begin{array}{cc|c}
A & B C_{\mathrm{c}} & D_{1} \tag{12.14.16}\\
B_{\mathrm{c}} C & A_{\mathrm{c}}+B_{\mathrm{c}} D C_{\mathrm{c}} & B_{\mathrm{c}} D_{2} \\
\hline E_{1} & E_{2} C_{\mathrm{c}} & E_{0}
\end{array}\right] .
$$

Finally, if both $D=0$ and $D_{\mathrm{c}}=0$, then

$$
\tilde{\mathcal{G}} \sim\left[\begin{array}{cc|c}
A & B C_{\mathrm{c}} & D_{1} \tag{12.14.17}\\
B_{\mathrm{c}} C & A_{\mathrm{c}} & B_{\mathrm{c}} D_{2} \\
\hline E_{1} & E_{2} C_{\mathrm{c}} & E_{0}
\end{array}\right] .
$$

The feedback interconnection shown in Figure 12.14 .1 forms the basis for the standard control problem in feedback control. For this problem the signal w is an exogenous signal representing a command or a disturbance, while the signal z is the performance variable, that is, the variable whose behavior reflects the performance of the closed-loop system. The performance variable may or may not be physically measured. The controlled input or the control u is the output of the feedback controller G_{c}, while the measurement signal y serves as the input to the feedback controller G_{c}. The standard control problem is the following: Given knowledge of w, determine G_{c} to minimize a performance criterion $J\left(G_{\mathrm{c}}\right)$.

12.15 Linear-Quadratic Control

Let $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times m}$, and consider the system

$$
\begin{gather*}
\dot{x}(t)=A x(t)+B u(t), \tag{12.15.1}\\
x(0)=x_{0}, \tag{12.15.2}
\end{gather*}
$$

where $t \geq 0$. Furthermore, let $K \in \mathbb{R}^{m \times n}$, and consider the full-state-feedback control law

$$
\begin{equation*}
u(t)=K x(t) \tag{12.15.3}
\end{equation*}
$$

The objective of the linear-quadratic control problem is to minimize the quadratic performance measure

$$
\begin{equation*}
J\left(K, x_{0}\right)=\int_{0}^{\infty}\left[x^{\mathrm{T}}(t) R_{1} x(t)+2 x^{\mathrm{T}}(t) R_{12} u(t)+u^{\mathrm{T}}(t) R_{2} u(t)\right] \mathrm{d} t \tag{12.15.4}
\end{equation*}
$$

where $R_{1} \in \mathbb{R}^{n \times n}, R_{12} \in \mathbb{R}^{n \times m}$, and $R_{2} \in \mathbb{R}^{m \times m}$. We assume that $\left[\begin{array}{cc}R_{1} & R_{12} \\ R_{12}^{T} & R_{2}\end{array}\right]$ is positive semidefinite and R_{2} is positive definite.

The performance measure (12.15.4) indicates the desire to maintain the state vector $x(t)$ close to the zero equilibrium without an excessive expenditure of control effort. Specifically, the term $x^{\mathrm{T}}(t) R_{1} x(t)$ is a measure of the deviation of the state $x(t)$ from the zero state, where the $n \times n$ positive-semidefinite matrix R_{1} determines how much weighting is associated with each component of the state. Likewise, the $m \times m$ positive-definite matrix R_{2} weights the magnitude of the control input. Finally, the cross-weighting term R_{12} arises naturally when additional filters are used to shape the system response or in specialized applications.

Using (12.15.1) and (12.15.3), the closed-loop dynamic system can be written as

$$
\begin{equation*}
\dot{x}(t)=(A+B K) x(t) \tag{12.15.5}
\end{equation*}
$$

so that

$$
\begin{equation*}
x(t)=e^{t \tilde{A}} x_{0} \tag{12.15.6}
\end{equation*}
$$

where $\tilde{A} \triangleq A+B K$. Thus, the performance measure (12.15.4) becomes

$$
\begin{align*}
J\left(K, x_{0}\right) & =\int_{0}^{\infty} x^{\mathrm{T}}(t) \tilde{R} x(t) \mathrm{d} t=\int_{0}^{\infty} x_{0}^{\mathrm{T}} e^{t \tilde{A}^{\mathrm{T}}} \tilde{R} e^{t \tilde{A}} x_{0} \mathrm{~d} t \\
& =\operatorname{tr} x_{0}^{\mathrm{T}} \int_{0}^{\infty} e^{t \tilde{A}^{\mathrm{T}}} \tilde{R} e^{t \tilde{A}} \mathrm{~d} t x_{0}=\operatorname{tr} \int_{0}^{\infty} e^{t \tilde{A}^{\mathrm{T}}} \tilde{R} e^{t \tilde{A}} \mathrm{~d} t x_{0} x_{0}^{\mathrm{T}} \tag{12.15.7}
\end{align*}
$$

where

$$
\begin{equation*}
\tilde{R} \triangleq R_{1}+R_{12} K+K^{\mathrm{T}} R_{12}^{\mathrm{T}}+K^{\mathrm{T}} R_{2} K \tag{12.15.8}
\end{equation*}
$$

Now, consider the standard control problem with plant

$$
\mathcal{G} \sim\left[\begin{array}{c|cc}
A & D_{1} & B \tag{12.15.9}\\
\hline E_{1} & 0 & E_{2} \\
I_{n} & 0 & 0
\end{array}\right]
$$

and full-state feedback $u=K x$. Then, the closed-loop transfer function is given by

$$
\tilde{\mathcal{G}} \sim\left[\begin{array}{c|c}
A+B K & D_{1} \tag{12.15.10}\\
\hline E_{1}+E_{2} K & 0
\end{array}\right] .
$$

The following result shows that the quadratic performance measure (12.15.4) is equal to the H_{2} norm of a transfer function.

Proposition 12.15.1. Assume that $D_{1}=x_{0}$ and

$$
\left[\begin{array}{cc}
R_{1} & R_{12} \tag{12.15.11}\\
R_{12}^{\mathrm{T}} & R_{2}
\end{array}\right]=\left[\begin{array}{c}
E_{1}^{\mathrm{T}} \\
E_{2}^{\mathrm{T}}
\end{array}\right]\left[\begin{array}{ll}
E_{1} & E_{2}
\end{array}\right],
$$

and let $\tilde{\mathcal{G}}$ be given by (12.15.10). Then,

$$
\begin{equation*}
J\left(K, x_{0}\right)=\|\tilde{\mathcal{G}}\|_{\mathrm{H}_{2}}^{2} \tag{12.15.12}
\end{equation*}
$$

Proof. The result follows from Proposition 12.1.2,
For the following development, we assume that (12.15.11) holds so that R_{1}, R_{12}, and R_{2} are given by

$$
\begin{equation*}
R_{1}=E_{1}^{\mathrm{T}} E_{1}, \quad R_{12}=E_{1}^{\mathrm{T}} E_{2}, \quad R_{2}=E_{2}^{\mathrm{T}} E_{2} \tag{12.15.13}
\end{equation*}
$$

To develop necessary conditions for the linear-quadratic control problem, we restrict K to the set of stabilizing gains

$$
\begin{equation*}
\mathcal{S} \triangleq\left\{K \in \mathbb{R}^{m \times n}: A+B K \text { is asymptotically stable }\right\} \tag{12.15.14}
\end{equation*}
$$

Obviously, \mathcal{S} is nonempty if and only if (A, B) is stabilizable. The following result gives necessary conditions that characterize a stabilizing solution K of the linearquadratic control problem.

Theorem 12.15.2. Assume that (A, B) is stabilizable, assume that $K \in \mathcal{S}$ solves the linear-quadratic control problem, and assume that $\left(A+B K, D_{1}\right)$ is controllable. Then, there exists an $n \times n$ positive-semidefinite matrix P such that K is given by

$$
\begin{equation*}
K=-R_{2}^{-1}\left(B^{\mathrm{T}} P+R_{12}^{\mathrm{T}}\right) \tag{12.15.15}
\end{equation*}
$$

and such that P satisfies

$$
\begin{equation*}
\hat{A}_{\mathrm{R}}^{\mathrm{T}} P+P \hat{A}_{\mathrm{R}}+\hat{R}_{1}-P B R_{2}^{-1} B^{\mathrm{T}} P=0 \tag{12.15.16}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{A}_{\mathrm{R}} \triangleq A-B R_{2}^{-1} R_{12}^{\mathrm{T}} \tag{12.15.17}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{R}_{1} \triangleq R_{1}-R_{12} R_{2}^{-1} R_{12}^{\mathrm{T}} . \tag{12.15.18}
\end{equation*}
$$

Furthermore, the minimal cost is given by

$$
\begin{equation*}
J(K)=\operatorname{tr} P V, \tag{12.15.19}
\end{equation*}
$$

where $V \triangleq D_{1} D_{1}^{\mathrm{T}}$.
Proof. Since $K \in \mathcal{S}$, it follows that \tilde{A} is asymptotically stable. It then follows that $J(K)$ is given by (12.15.19), where $P \triangleq \int_{0}^{\infty} e^{t \tilde{A}^{\mathrm{T}} \tilde{R}} e^{t \tilde{A}} \mathrm{~d} t$ is positive semidefinite and satisfies the Lyapunov equation

$$
\begin{equation*}
\tilde{A}^{\mathrm{T}} P+P \tilde{A}+\tilde{R}=0 . \tag{12.15.20}
\end{equation*}
$$

Note that (12.15.20) can be written as

$$
\begin{equation*}
(A+B K)^{\mathrm{T}} P+P(A+B K)+R_{1}+R_{12} K+K^{\mathrm{T}} R_{12}^{\mathrm{T}}+K^{\mathrm{T}} R_{2} K=0 . \tag{12.15.21}
\end{equation*}
$$

To optimize (12.15.19) subject to the constraint (12.15.20) over the open set \mathcal{S}, form the Lagrangian

$$
\begin{equation*}
\mathcal{L}\left(K, P, Q, \lambda_{0}\right) \triangleq \operatorname{tr}\left[\lambda_{0} P V+Q\left(\tilde{A}^{\mathrm{T}} P+P \tilde{A}+\tilde{R}\right)\right], \tag{12.15.22}
\end{equation*}
$$

where the Lagrange multipliers $\lambda_{0} \geq 0$ and $Q \in \mathbb{R}^{n \times n}$ are not both zero. Note that the $n \times n$ Lagrange multiplier Q accounts for the $n \times n$ constraint equation (12.15.20).

The necessary condition $\partial \mathcal{L} / \partial P=0$ implies

$$
\begin{equation*}
\tilde{A} Q+Q \tilde{A}^{\mathrm{T}}+\lambda_{0} V=0 . \tag{12.15.23}
\end{equation*}
$$

Since \tilde{A} is asymptotically stable, it follows from Proposition [1.9.3 that, for all $\lambda_{0} \geq$ 0 , 12.15.23) has a unique solution Q and, furthermore, Q is positive semidefinite. In particular, if $\lambda_{0}=0$, then $Q=0$. Since λ_{0} and Q are not both zero, we can set $\lambda_{0}=1$ so that (12.15.23) becomes

$$
\begin{equation*}
\tilde{A} Q+Q \tilde{A}^{\mathrm{T}}+V=0 . \tag{12.15.24}
\end{equation*}
$$

Since $\left(\tilde{A}, D_{1}\right)$ is controllable, it follows from Corollary 12.7 .10 that Q is positive definite.

Next, evaluating $\partial \mathcal{L} / \partial K=0$ yields

$$
\begin{equation*}
R_{2} K Q+\left(B^{\mathrm{T}} P+R_{12}^{\mathrm{T}}\right) Q=0 . \tag{12.15.25}
\end{equation*}
$$

Since Q is positive definite, it follows from (12.15.25) that (12.15.15) is satisfied. Furthermore, using (12.15.15), it follows that (12.15.20) is equivalent to (12.15.16).

With K given by (12.15.15) the closed-loop dynamics matrix $\tilde{A}=A+B K$ is given by

$$
\begin{equation*}
\tilde{A}=A-B R_{2}^{-1}\left(B^{\mathrm{T}} P+R_{12}^{\mathrm{T}}\right), \tag{12.15.26}
\end{equation*}
$$

where P is the solution of the Riccati equation (12.15.16).

12.16 Solutions of the Riccati Equation

For convenience in the following development, we assume that $R_{12}=0$. With this assumption, the gain K given by (12.15.15) becomes

$$
\begin{equation*}
K=-R_{2}^{-1} B^{\mathrm{T}} P \tag{12.16.1}
\end{equation*}
$$

Defining

$$
\begin{equation*}
\Sigma \triangleq B R_{2}^{-1} B^{\mathrm{T}} \tag{12.16.2}
\end{equation*}
$$

(12.15.26) becomes

$$
\begin{equation*}
\tilde{A}=A-\Sigma P \tag{12.16.3}
\end{equation*}
$$

while the Riccati equation (12.15.16) can be written as

$$
\begin{equation*}
A^{\mathrm{T}} P+P A+R_{1}-P \Sigma P=0 \tag{12.16.4}
\end{equation*}
$$

Note that (12.16.4) has the alternative representation

$$
\begin{equation*}
(A-\Sigma P)^{\mathrm{T}} P+P(A-\Sigma P)+R_{1}+P \Sigma P=0 \tag{12.16.5}
\end{equation*}
$$

which is equivalent to the Lyapunov equation

$$
\begin{equation*}
\tilde{A}^{\mathrm{T}} P+P \tilde{A}+\tilde{R}=0 \tag{12.16.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\tilde{R} \triangleq R_{1}+P \Sigma P \tag{12.16.7}
\end{equation*}
$$

By comparing (12.15.16) and (12.16.4), it can be seen that the linear-quadratic control problems with $\left(A, B, R_{1}, R_{12}, R_{2}\right)$ and ($\hat{A}_{\mathrm{R}}, B, \hat{R}_{1}, 0, R_{2}$) are equivalent. Hence, there is no loss of generality in assuming that $R_{12}=0$ in the following development, where A and R_{1} take the place of \hat{A}_{R} and \hat{R}_{1}, respectively.

To motivate the subsequent development, the following examples demonstrate the existence of solutions under various assumptions on $\left(A, B, E_{1}\right)$. In the following four examples, (A, B) is not stabilizable.

Example 12.16.1. Let $n=1, A=1, B=0, E_{1}=0$, and $R_{2}>0$. Hence, $\left(A, B, E_{1}\right)$ has an ORHP eigenvalue that is uncontrollable and unobservable. In this case, (12.16.4) has the unique solution $P=0$. Furthermore, since $B=0$, it follows that $\tilde{A}=A$.

Example 12.16.2. Let $n=1, A=1, B=0, E_{1}=1$, and $R_{2}>0$. Hence, $\left(A, B, E_{1}\right)$ has an ORHP eigenvalue that is uncontrollable and observable. In this case, (12.16.4) has the unique solution $P=-1 / 2<0$. Furthermore, since $B=0$, it follows that $A=A$.

Example 12.16.3. Let $n=1, A=0, B=0, E_{1}=0$, and $R_{2}>0$. Hence, $\left(A, B, E_{1}\right)$ has an imaginary eigenvalue that is uncontrollable and unobservable. In this case, (12.16.4) has infinitely many solutions $P \in \mathbb{R}$. Hence, (12.16.4) has no maximal solution. Furthermore, since $B=0$, it follows that, for every solution P, $\tilde{A}=A$.

Example 12.16.4. Let $n=1, A=0, B=0, E_{1}=1$, and $R_{2}>0$. Hence, $\left(A, B, E_{1}\right)$ has an imaginary eigenvalue that is uncontrollable and observable. In this case, (12.16.4) becomes $R_{1}=0$. Thus, (12.16.4) has no solution.

In the remaining examples, (A, B) is controllable.
Example 12.16.5. Let $n=1, A=1, B=1, E_{1}=0$, and $R_{2}>0$. Hence, $\left(A, B, E_{1}\right)$ has an ORHP eigenvalue that is controllable and unobservable. In this case, (12.16.4) has the solutions $P=0$ and $P=2 R_{2}>0$. The corresponding closed-loop dynamics matrices are $\tilde{A}=1>0$ and $\tilde{A}=-1<0$. Hence, the solution $P=2 R_{2}$ is stabilizing, and the closed-loop eigenvalue 1 , which does not depend on R_{2}, is the reflection of the open-loop eigenvalue -1 across the imaginary axis.

Example 12.16.6. Let $n=1, A=1, B=1, E_{1}=1$, and $R_{2}>0$. Hence, (A, B, E_{1}) has an ORHP eigenvalue that is controllable and observable. In this case, (12.16.4) has the solutions $P=R_{2}-\sqrt{R_{2}^{2}+R_{2}}<0$ and $P=R_{2}+\sqrt{R_{2}^{2}+R_{2}}>0$. The corresponding closed-loop dynamics matrices are $\tilde{A}=\sqrt{1+1 / R_{2}}>0$ and $\tilde{A}=-\sqrt{1+1 / R_{2}}<0$. Hence, the positive-definite solution $P=R_{2}+\sqrt{R_{2}^{2}+R_{2}}$ is stabilizing.

Example 12.16.7. Let $n=1, A=0, B=1, E_{1}=0$, and $R_{2}>0$. Hence, $\left(A, B, E_{1}\right)$ has an imaginary eigenvalue that is controllable and unobservable. In this case, (12.16.4) has the unique solution $P=0$, which is not stabilizing.

Example 12.16.8. Let $n=1, A=0, B=1, E_{1}=1$, and $R_{2}>0$. Hence, $\left(A, B, E_{1}\right)$ has an imaginary eigenvalue that is controllable and observable. In this case, (12.16.4) has the solutions $P=-\sqrt{R_{2}}<0$ and $P=\sqrt{R_{2}}>0$. The corresponding closed-loop dynamics matrices are $\tilde{A}=\sqrt{R_{2}}>0$ and $\tilde{A}=-\sqrt{R_{2}}<$ 0 . Hence, the positive-definite solution $P=\sqrt{R_{2}}$ is stabilizing.

Example 12.16.9. Let $n=2, A=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right], B=I_{2}, E_{1}=0$, and $R_{2}=$ 1. Hence, as in Example 12.16.7, both eigenvalues of $\left(A, B, E_{1}\right)$ are imaginary, controllable, and unobservable. Taking the trace of (12.16.4) yields $\operatorname{tr} P^{2}=0$. Thus, the only symmetric matrix P satisfying (12.16.4) is $P=0$, which implies that $\tilde{A}=A$. Consequently, the open-loop eigenvalues $\pm \jmath$ are unmoved by the feedback gain (12.15.15) even though (A, B) is controllable.

Example 12.16.10. Let $n=2, A=0, B=I_{2}, E_{1}=I_{2}$, and $R_{2}=I$. Hence, as in Example 12.16.8, both eigenvalues of $\left(A, B, E_{1}\right)$ are imaginary, controllable, and observable. Furthermore, (12.16.4) becomes $P^{2}=I$. Requiring that P be symmetric, it follows that P is a reflector. Hence, $P=I$ is the only positivesemidefinite solution. In fact, P is positive definite and stabilizing since $\tilde{A}=-I$.

Example 12.16.11. Let $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right], B=\left[\begin{array}{l}1 \\ 1\end{array}\right], E_{1}=0$, and $R_{2}=1$ so that (A, B) is controllable, although neither of the states is weighted. In this case, (12.16.4) has four positive-semidefinite solutions, which are given by

$$
P_{1}=\left[\begin{array}{cc}
18 & -24 \\
-24 & 36
\end{array}\right], \quad P_{2}=\left[\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right], \quad P_{3}=\left[\begin{array}{ll}
0 & 0 \\
0 & 4
\end{array}\right], \quad P_{4}=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] .
$$

The corresponding feedback matrices are given by $K_{1}=\left[\begin{array}{cc}6 & -12\end{array}\right]$, $K_{2}=\left[\begin{array}{ll}-2 & 0\end{array}\right], K_{3}=\left[\begin{array}{ll}0 & -4\end{array}\right]$, and $K_{4}=\left[\begin{array}{ll}0 & 0\end{array}\right]$. Letting $\tilde{A}_{i}=A-\Sigma P_{i}$, it follows that $\operatorname{spec}\left(\tilde{A}_{1}\right)=\{-1,-2\}, \operatorname{spec}\left(\tilde{A}_{2}\right)=\{-1,2\}, \operatorname{spec}\left(\tilde{A}_{3}\right)=\{1,-2\}$, and $\operatorname{spec}\left(\tilde{A}_{4}\right)=\{1,2\}$. Thus, P_{1} is the only solution that stabilizes the closed-loop system, while the solutions P_{2} and P_{3} partially stabilize the closed-loop system. Note also that the closed-loop poles that differ from those of the open-loop system are mirror images of the open-loop poles as reflected across the imaginary axis. Finally, note that these solutions satisfy the partial ordering $P_{1} \geq P_{2} \geq P_{4}$ and $P_{1} \geq P_{3} \geq P_{4}$, and that "larger" solutions are more stabilizing than "smaller" solutions. Moreover, letting $J\left(K_{i}\right)=\operatorname{tr} P_{i} V$, it can be seen that larger solutions incur a greater closed-loop cost, with the greatest cost incurred by the stabilizing solution P_{4}. However, the cost expression $J(K)=\operatorname{tr} P V$ does not follow from (12.15.4) when $A+B K$ is not asymptotically stable.

The following definition concerns solutions of the Riccati equation.
Definition 12.16.12. A matrix $P \in \mathbb{R}^{n \times n}$ is a solution of the Riccati equation (12.16.4) if P is symmetric and satisfies (12.16.4). Furthermore, P is the stabilizing solution of (12.16.4) if $\tilde{A}=A-\Sigma P$ is asymptotically stable. Finally, a solution $P_{\max }$ of $(12.16 .4)$ is the maximal solution to (12.16.4) if $P \leq P_{\max }$ for every solution P to (12.16.4).

Since the ordering " \leq " is antisymmetric, it follows that (12.16.4) has at most one maximal solution. The uniqueness of the stabilizing solution is shown in the following section.

Next, define the $2 n \times 2 n$ Hamiltonian

$$
\mathcal{H} \triangleq\left[\begin{array}{cc}
A & \Sigma \tag{12.16.8}\\
R_{1} & -A^{\mathrm{T}}
\end{array}\right] .
$$

Proposition 12.16.13. The following statements hold:
i) \mathcal{H} is Hamiltonian.
ii) $\chi_{\mathcal{H}}$ has a spectral factorization, that is, there exists a monic polynomial $p \in \mathbb{R}[s]$ such that, for all $s \in \mathbb{C}, \chi_{\mathcal{H}}(s)=p(s) p(-s)$.
iii) $\chi_{\mathcal{H}}(\jmath \omega) \geq 0$ for all $\omega \in \mathbb{R}$.
$i v)$ If either $R_{1}=0$ or $\Sigma=0$, then $\operatorname{mspec}(\mathcal{H})=\operatorname{mspec}(A) \cup \operatorname{mspec}(-A)$.
v) $\chi_{\mathcal{H}}$ is even.
vi) $\lambda \in \operatorname{spec}(\mathcal{H})$ if and only if $-\lambda \in \operatorname{spec}(\mathcal{H})$.
vii) If $\lambda \in \operatorname{spec}(\mathcal{H})$, then amult $\mathcal{H}(\lambda)=$ amult $_{\mathcal{H}}(-\lambda)$.
viii) Every imaginary root of $\chi_{\mathcal{H}}$ has even multiplicity.
$i x)$ Every imaginary eigenvalue of \mathcal{H} has even algebraic multiplicity.
Proof. The result follows from Proposition 4.1.1 and Fact 4.9.23

It is helpful to keep in mind that spectral factorizations are not unique. For example, if $\chi_{\mathcal{H}}(s)=(s+1)(s+2)(-s+1)(-s+2)$, then $\chi_{\mathcal{H}}(s)=p(s) p(-s)=$ $\hat{p}(s) \hat{p}(-s)$, where $p(s)=(s+1)(s+2)$ and $\hat{p}(s)=(s+1)(s-2)$. Thus, the spectral factors $p(s)$ and $p(-s)$ can "trade" roots. These roots are the eigenvalues of \mathcal{H}.

The following result shows that the Hamiltonian matrix \mathcal{H} is closely linked to the Riccati equation (12.16.4).

Proposition 12.16.14. Let $P \in \mathbb{R}^{n \times n}$ be symmetric. Then, the following statements are equivalent:
i) P is a solution of (12.16.4).
ii) P satisfies

$$
\left[\begin{array}{ll}
P & I
\end{array}\right] \mathcal{H}\left[\begin{array}{c}
I \tag{12.16.9}\\
-P
\end{array}\right]=0
$$

iii) P satisfies

$$
\mathcal{H}\left[\begin{array}{c}
I \tag{12.16.10}\\
-P
\end{array}\right]=\left[\begin{array}{c}
I \\
-P
\end{array}\right](A-\Sigma P)
$$

iv) P satisfies

$$
\mathcal{H}=\left[\begin{array}{cc}
I & 0 \tag{12.16.11}\\
-P & I
\end{array}\right]\left[\begin{array}{cc}
A-\Sigma P & \Sigma \\
0 & -(A-\Sigma P)^{\mathrm{T}}
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
P & I
\end{array}\right] .
$$

In this case, the following statements hold:
$v) \operatorname{mspec}(\mathcal{H})=\operatorname{mspec}(A-\Sigma P) \cup \operatorname{mspec}[-(A-\Sigma P)]$.
vi) $\chi_{\mathcal{H}}(s)=(-1)^{n} \chi_{A-\Sigma P}(s) \chi_{A-\Sigma P}(-s)$.
vii) $\mathcal{R}\left(\left[\begin{array}{c}I \\ -P\end{array}\right]\right)$ is an invariant subspace of \mathcal{H}.

Corollary 12.16.15. Assume that (12.16.4) has a stabilizing solution. Then, \mathcal{H} has no imaginary eigenvalues.

For the next two results, P is not necessarily a solution of (12.16.4).
Lemma 12.16.16. Assume that $\lambda \in \operatorname{spec}(A)$ is an observable eigenvalue of $\left(A, R_{1}\right)$, and let $\underset{\tilde{R}}{P} \in \mathbb{R}^{n \times n}$ be symmetric. Then, $\lambda \in \operatorname{spec}(A)$ is an observable eigenvalue of (\tilde{A}, \tilde{R}).

Proof. Suppose that $\operatorname{rank}\left[\begin{array}{c}\lambda I-\tilde{A} \\ \tilde{R}\end{array}\right]<n$. Then, there exists a nonzero vector $v \in \mathbb{C}^{n}$ such that $\tilde{A} v=\lambda v$ and $\tilde{R} v=0$. Hence, $v^{*} R_{1} v=-v^{*} P \Sigma P v \leq 0$, which implies that $R_{1} v=0$ and $P \Sigma P v=0$. Hence, $\Sigma P v=0$, and thus $A v=\lambda v$. Therefore, $\operatorname{rank}\left[\begin{array}{c}\lambda I-A \\ R_{1}\end{array}\right]<n$.

Lemma 12.16.17. Assume that $\left(A, R_{1}\right)$ is (observable, detectable), and let $P \in \mathbb{R}^{n \times n}$ be symmetric. Then, (\tilde{A}, \tilde{R}) is (observable, detectable).

Lemma 12.16.18. Assume that $\left(A, E_{1}\right)$ is observable, and assume that (12.16.4) has a solution P. Then, the following statements hold:
i) $\nu_{-}(\tilde{A})=\nu_{+}(P)$.
ii) $\nu_{0}(\tilde{A})=\nu_{0}(P)=0$.
iii) $\nu_{+}(\tilde{A})=\nu_{-}(P)$.

Proof. Since $\left(A, R_{1}\right)$ is observable, it follows from Lemma 12.16.17that (\tilde{A}, \tilde{R}) is observable. By writing (12.16.4) as the Lyapunov equation (12.16.6), the result now follows from Fact 12.21.1.

12.17 The Stabilizing Solution of the Riccati Equation

Proposition 12.17.1. The following statements hold:
i) 12.16.4 has at most one stabilizing solution.
ii) If P is the stabilizing solution of (12.16.4), then P is positive semidefinite.
iii) If P is the stabilizing solution of (12.16.4), then

$$
\begin{equation*}
\operatorname{rank} P=\operatorname{rank} \mathcal{O}(\tilde{A}, \tilde{R}) \tag{12.17.1}
\end{equation*}
$$

Proof. To prove i), suppose that (12.16.4) has stabilizing solutions P_{1} and P_{2}. Then,

$$
\begin{aligned}
& A^{\mathrm{T}} P_{1}+P_{1} A+R_{1}-P_{1} \Sigma P_{1}=0, \\
& A^{\mathrm{T}} P_{2}+P_{2} A+R_{1}-P_{2} \Sigma P_{2}=0
\end{aligned}
$$

Subtracting these equations and rearranging yields

$$
\left(A-\Sigma P_{1}\right)^{\mathrm{T}}\left(P_{1}-P_{2}\right)+\left(P_{1}-P_{2}\right)\left(A-\Sigma P_{2}\right)=0 .
$$

Since $A-\Sigma P_{1}$ and $A-\Sigma P_{2}$ are asymptotically stable, it follows from Proposition 11.9 .3 and Fact 11.18 .33 that $P_{1}-P_{2}=0$. Hence, (12.16.4) has at most one stabilizing solution.

Next, to prove $i i$), suppose that P is a stabilizing solution of (12.16.4). Then, it follows from (12.16.4) that

$$
P=\int_{0}^{\infty} e^{t(A-\Sigma P)^{\mathrm{T}}}\left(R_{1}+P \Sigma P\right) e^{t(A-\Sigma P)} \mathrm{d} t
$$

which shows that P is positive semidefinite.
Finally, iii) follows from Corollary 12.3 .3
Theorem 12.17.2. Assume that (12.16.4) has a positive-semidefinite solution P, and assume that $\left(A, E_{1}\right)$ is detectable. Then, P is the stabilizing solution of (12.16.4), and thus P is the only positive-semidefinite solution of (12.16.4). If, in addition, $\left(A, E_{1}\right)$ is observable, then P is positive definite.

Proof. Since $\left(A, R_{1}\right)$ is detectable, it follows from Lemma 12.16.17 that (\tilde{A}, \tilde{R}) is detectable. Next, since (12.16.4) has a positive-semidefinite solution P, it follows
from Corollary 12.8 .6 that \tilde{A} is asymptotically stable. Hence, P is the stabilizing solution of (12.16.4). The last statement follows from Lemma 12.16.18,

Corollary 12.17.3. Assume that $\left(A, E_{1}\right)$ is detectable. Then, (12.16.4) has at most one positive-semidefinite solution.

Lemma 12.17.4. Let $\lambda \in \mathbb{C}$, and assume that λ is either an uncontrollable eigenvalue of (A, B) or an unobservable eigenvalue of $\left(A, E_{1}\right)$. Then, $\lambda \in \operatorname{spec}(\mathcal{H})$.

Proof. Note that

$$
\lambda I-\mathcal{H}=\left[\begin{array}{cc}
\lambda I-A & -\Sigma \\
-R_{1} & \lambda I+A^{\mathrm{T}}
\end{array}\right]
$$

If λ is an uncontrollable eigenvalue of (A, B), then the first n rows of $\lambda I-\mathcal{H}$ are linearly dependent, and thus $\lambda \in \operatorname{spec}(\mathcal{H})$. On the other hand, if λ is an unobservable eigenvalue of $\left(A, E_{1}\right)$, then the first n columns of $\lambda I-\mathcal{H}$ are linearly dependent, and thus $\lambda \in \operatorname{spec}(\mathcal{H})$.

The following result is a consequence of Lemma 12.17.4.
Proposition 12.17.5. Let $S \in \mathbb{R}^{n \times n}$ be a nonsingular matrix such that

$$
\begin{align*}
& A=S\left[\begin{array}{cccc}
A_{1} & 0 & A_{13} & 0 \\
A_{21} & A_{2} & A_{23} & A_{24} \\
0 & 0 & A_{3} & 0 \\
0 & 0 & A_{43} & A_{4}
\end{array}\right] S^{-1}, \quad B=S\left[\begin{array}{c}
B_{1} \\
B_{2} \\
0 \\
0
\end{array}\right], \tag{12.17.2}\\
& E_{1}=\left[\begin{array}{llll}
E_{11} & 0 & E_{13} & 0
\end{array}\right] S^{-1}, \tag{12.17.3}
\end{align*}
$$

where $\left(\left[\begin{array}{cc}A_{1} & 0 \\ A_{21} & A_{2}\end{array}\right],\left[\begin{array}{l}B_{1} \\ B_{2}\end{array}\right]\right)$ is controllable and $\left(\left[\begin{array}{cc}A_{1} & A_{13} \\ 0 & A_{3}\end{array}\right],\left[\begin{array}{ll}E_{11} & E_{13}\end{array}\right]\right)$ is observable. Then,

$$
\begin{align*}
& \operatorname{mspec}\left(A_{2}\right) \cup \operatorname{mspec}\left(-A_{2}\right) \subseteq \operatorname{mspec}(\mathcal{H}) \tag{12.17.4}\\
& \operatorname{mspec}\left(A_{3}\right) \cup \operatorname{mspec}\left(-A_{3}\right) \subseteq \operatorname{mspec}(\mathcal{H}) \tag{12.17.5}\\
& \operatorname{mspec}\left(A_{4}\right) \cup \operatorname{mspec}\left(-A_{4}\right) \subseteq \operatorname{mspec}(\mathcal{H}) \tag{12.17.6}
\end{align*}
$$

Next, we present a partial converse of Lemma 12.17.4.
Lemma 12.17.6. Let $\lambda \in \operatorname{spec}(\mathcal{H})$, and assume that $\operatorname{Re} \lambda=0$. Then, λ is either an uncontrollable eigenvalue of (A, B) or an unobservable eigenvalue of $\left(A, E_{1}\right)$.

Proof. Suppose that $\lambda=\jmath \omega$ is an eigenvalue of \mathcal{H}, where $\omega \in \mathbb{R}$. Then, there exist $x, y \in \mathbb{C}^{n}$ such that $\left[\begin{array}{l}x \\ y\end{array}\right] \neq 0$ and $\mathcal{H}\left[\begin{array}{l}x \\ y\end{array}\right]=\jmath \omega\left[\begin{array}{l}x \\ y\end{array}\right]$. Consequently,

$$
A x+\Sigma y=\jmath \omega x, \quad R_{1} x-A^{\mathrm{T}} y=\jmath \omega y
$$

Rewriting these identities as

$$
(A-\jmath \omega I) x=-\Sigma y, \quad(A-\jmath \omega I)^{*} y=R_{1} x
$$

yields

$$
y^{*}(A-\jmath \omega I) x=-y^{*} \Sigma y, \quad x^{*}(A-\jmath \omega I)^{*} y=x^{*} R_{1} x
$$

Since $x^{*}(A-\jmath \omega I)^{*} y$ is real, it follows that $-y^{*} \Sigma y=x^{*} R_{1} x$, and thus $y^{*} \Sigma y=$ $x^{*} R_{1} x=0$, which implies that $B^{\mathrm{T}} y=0$ and $E_{1} x=0$. Therefore,

$$
(A-\jmath \omega I) x=0, \quad(A-\jmath \omega I)^{*} y=0
$$

and hence

$$
\left[\begin{array}{c}
A-\jmath \omega I \\
E_{1}
\end{array}\right] x=0, \quad y^{*}\left[\begin{array}{cc}
A-\jmath \omega I & B
\end{array}\right]=0
$$

Since $\left[\begin{array}{l}x \\ y\end{array}\right] \neq 0$, it follows that either $x \neq 0$ or $y \neq 0$, and thus either $\operatorname{rank}\left[\begin{array}{c}A-\jmath \omega I \\ E_{1}\end{array}\right]<$ n or $\operatorname{rank}\left[\begin{array}{ll}A-\jmath \omega I & B\end{array}\right]<n$.

The following result is a restatement of Lemma 12.17 .6 ,
Proposition 12.17.7. Let $S \in \mathbb{R}^{n \times n}$ be a nonsingular matrix such that (12.17.2) and (12.17.3) are satisfied, where $\left(\left[\begin{array}{cc}A_{1} & 0 \\ A_{21} & A_{2}\end{array}\right],\left[\begin{array}{l}B_{1} \\ B_{2}\end{array}\right]\right)$ is controllable and $\left(\left[\begin{array}{cc}A_{1} & A_{13} \\ 0 & A_{3}\end{array}\right],\left[\begin{array}{ll}E_{11} & E_{13}\end{array}\right]\right)$ is observable. Then,

$$
\begin{align*}
\operatorname{mspec}(\mathcal{H}) \cap \jmath \mathbb{R} \subseteq & \operatorname{mspec}\left(A_{2}\right) \cup \operatorname{mspec}\left(-A_{2}\right) \cup \operatorname{mspec}\left(A_{3}\right) \\
& \cup \operatorname{mspec}\left(-A_{3}\right) \cup \operatorname{mspec}\left(A_{4}\right) \cup \operatorname{mspec}\left(-A_{4}\right) . \tag{12.17.7}
\end{align*}
$$

Combining Lemma 12.17 .4 and Lemma 12.17 .6 yields the following result.
Proposition 12.17.8. Let $\lambda \in \mathbb{C}$, assume that $\operatorname{Re} \lambda=0$, and let $S \in \mathbb{R}^{n \times n}$ be a nonsingular matrix such that (12.17.2) and (12.17.3) are satisfied, where $\left(A_{1}, B_{1}, E_{11}\right)$ is controllable and observable, $\left(A_{2}, B_{2}\right)$ is controllable, and $\left(A_{3}, E_{13}\right)$ is observable. Then, the following statements are equivalent:
i) λ is either an uncontrollable eigenvalue of (A, B) or an unobservable eigenvalue of $\left(A, E_{1}\right)$.
ii) $\lambda \in \operatorname{mspec}\left(A_{2}\right) \cup \operatorname{mspec}\left(A_{3}\right) \cup \operatorname{mspec}\left(A_{4}\right)$.
iii) λ is an eigenvalue of \mathcal{H}.

The next result gives necessary and sufficient conditions under which (12.16.4) has a stabilizing solution. This result also provides a constructive characterization of the stabilizing solution. Result $i i$) of Proposition 12.10.11 shows that the condition in i) that every imaginary eigenvalue of $\left(A, E_{1}\right)$ is observable is equivalent to the condition that $\left[\begin{array}{c|c}A & B \\ \hline E_{1} & E_{2}\end{array}\right]$ has no imaginary invariant zeros.

Theorem 12.17.9. The following statements are equivalent:
i) (A, B) is stabilizable, and every imaginary eigenvalue of $\left(A, E_{1}\right)$ is observable.
ii) There exists a nonsingular matrix $S \in \mathbb{R}^{n \times n}$ such that (12.17.2) and (12.17.3) are satisfied, where $\left(\left[\begin{array}{cc}A_{1} & 0 \\ A_{21} & A_{2}\end{array}\right],\left[\begin{array}{l}B_{1} \\ B_{2}\end{array}\right]\right)$ is controllable, $\left(\left[\begin{array}{cc}A_{1} & A_{13} \\ 0 & A_{3}\end{array}\right],\left[\begin{array}{ll}E_{11} & E_{13}\end{array}\right]\right)$ is observable, $\nu_{0}\left(A_{2}\right)=0$, and A_{3} and A_{4} are asymp-
totically stable.
iii) (12.16.4) has a stabilizing solution.

In this case, let

$$
M=\left[\begin{array}{cc}
M_{1} & M_{12} \tag{12.17.8}\\
M_{21} & M_{2}
\end{array}\right] \in \mathbb{R}^{2 n \times 2 n}
$$

be a nonsingular matrix such that $\mathcal{H}=M Z M^{-1}$, where

$$
Z=\left[\begin{array}{cc}
Z_{1} & Z_{12} \tag{12.17.9}\\
0 & Z_{2}
\end{array}\right] \in \mathbb{R}^{2 n \times 2 n}
$$

and $Z_{1} \in \mathbb{R}^{n \times n}$ is asymptotically stable. Then, M_{1} is nonsingular, and

$$
\begin{equation*}
P \triangleq-M_{21} M_{1}^{-1} \tag{12.17.10}
\end{equation*}
$$

is the stabilizing solution of (12.16.4).
Proof. The equivalence of i) and i) is immediate.
To prove $i) \Longrightarrow$ iii), first note that Lemma 12.17 .6 implies that \mathcal{H} has no imaginary eigenvalues. Hence, since \mathcal{H} is Hamiltonian, it follows that there exists a matrix $M \in \mathbb{R}^{2 n \times 2 n}$ of the form (12.17.8) such that M is nonsingular and $\mathcal{H}=$ $M Z M^{-1}$, where $Z \in \mathbb{R}^{n \times n}$ is of the form (12.17.9) and $Z_{1} \in \mathbb{R}^{n \times n}$ is asymptotically stable.

Next, note that $\mathcal{H} M=M Z$ implies that

$$
\mathcal{H}\left[\begin{array}{c}
M_{1} \\
M_{21}
\end{array}\right]=M\left[\begin{array}{c}
Z_{1} \\
0
\end{array}\right]=\left[\begin{array}{c}
M_{1} \\
M_{21}
\end{array}\right] Z_{1} .
$$

Therefore,

$$
\begin{aligned}
{\left[\begin{array}{c}
M_{1} \\
M_{21}
\end{array}\right]^{\mathrm{T}} J_{n} \mathcal{H}\left[\begin{array}{c}
M_{1} \\
M_{21}
\end{array}\right] } & =\left[\begin{array}{c}
M_{1} \\
M_{21}
\end{array}\right]^{\mathrm{T}} J_{n}\left[\begin{array}{c}
M_{1} \\
M_{21}
\end{array}\right] Z_{1} \\
& =\left[\begin{array}{ll}
M_{1}^{\mathrm{T}} & M_{21}^{\mathrm{T}}
\end{array}\right]\left[\begin{array}{c}
M_{21} \\
-M_{1}
\end{array}\right] Z_{1} \\
& =L Z_{1}
\end{aligned}
$$

where $L \triangleq M_{1}^{\mathrm{T}} M_{21}-M_{21}^{\mathrm{T}} M_{1}$. Since $J_{n} \mathcal{H}=\left(J_{n} \mathcal{H}\right)^{\mathrm{T}}$, it follows that $L Z_{1}$ is symmetric, that is, $L Z_{1}=Z_{1}^{\mathrm{T}} L^{\mathrm{T}}$. Since, in addition, L is skew symmetric, it follows that $0=Z_{1}^{\mathrm{T}} L+L Z_{1}$. Now, since Z_{1} is asymptotically stable, it follows that $L=0$. Hence, $M_{1}^{\mathrm{T}} M_{21}=M_{21}^{\mathrm{T}} M_{1}$, which shows that $M_{21}^{\mathrm{T}} M_{1}$ is symmetric.

To show that M_{1} is nonsingular, note that it follows from the identity

$$
\left[\begin{array}{ll}
I & 0
\end{array}\right] \mathcal{H}\left[\begin{array}{c}
M_{1} \\
M_{21}
\end{array}\right]=\left[\begin{array}{ll}
I & 0
\end{array}\right]\left[\begin{array}{l}
M_{1} \\
M_{21}
\end{array}\right] Z_{1}
$$

that

$$
A M_{1}+\Sigma M_{21}=M_{1} Z_{1}
$$

Now, let $x \in \mathbb{R}^{n}$ satisfy $M_{1} x=0$. We thus have

$$
\begin{aligned}
x^{\mathrm{T}} M_{21} \Sigma M_{21} x & =x^{\mathrm{T}} M_{21}^{\mathrm{T}}\left(A M_{1}+\Sigma M_{21}\right) x \\
& =x^{\mathrm{T}} M_{21}^{\mathrm{T}} M_{1} Z_{1} x \\
& =x^{\mathrm{T}} M_{1}^{\mathrm{T}} M_{21} Z_{1} x \\
& =0,
\end{aligned}
$$

which implies that $B^{\mathrm{T}} M_{21} x=0$. Hence, $M_{1} Z_{1} x=\left(A M_{1}+\Sigma M_{21}\right) x=0$. Thus, $Z_{1} \mathcal{N}\left(M_{1}\right) \subseteq \mathcal{N}\left(M_{1}\right)$.

Now, suppose that M_{1} is singular. Since $Z_{1} \mathcal{N}\left(M_{1}\right) \subseteq \mathcal{N}\left(M_{1}\right)$, it follows that there exists $\lambda \in \operatorname{spec}\left(Z_{1}\right)$ and $x \in \mathbb{C}^{n}$ such that $Z_{1} x=\lambda x$ and $M_{1} x=0$. Forming

$$
\left[\begin{array}{ll}
0 & I
\end{array}\right] \mathcal{H}\left[\begin{array}{c}
M_{1} \\
M_{21}
\end{array}\right] x=\left[\begin{array}{ll}
0 & I
\end{array}\right]\left[\begin{array}{c}
M_{1} \\
M_{21}
\end{array}\right] Z_{1} x
$$

yields $-A^{\mathrm{T}} M_{21} x=M_{21} \lambda Z$, and thus $\left(\lambda I+A^{\mathrm{T}}\right) M_{21} x=0$. Since, in addition, as shown above, $B^{\mathrm{T}} M_{21} x=0$, it follows that $x^{*} M_{21}^{\mathrm{T}}\left[\begin{array}{ll}-\bar{\lambda} I-A & B\end{array}\right]=0$. Since $\lambda \in \operatorname{spec}\left(Z_{1}\right)$, it follows that $\operatorname{Re}(-\bar{\lambda})>0$. Furthermore, since, by assumption, (A, B) is stabilizable, it follows that rank $\left[\begin{array}{cc}\bar{\lambda} I-A & B\end{array}\right]=n$. Therefore, $M_{21} x=0$. Combining this fact with $M_{1} x=0$ yields $\left[\begin{array}{c}M_{1} \\ M_{21}\end{array}\right] x=0$. Since x is nonzero, it follows that M is singular, which is a contradiction. Consequently, M_{1} is nonsingular. Next, define $P \triangleq-M_{21} M_{1}^{-1}$ and note that, since $M_{1}^{\mathrm{T}} M_{21}$ is symmetric, it follows that $P=-M_{1}^{-\mathrm{T}}\left(M_{1}^{\mathrm{T}} M_{21}\right) M_{1}^{-1}$ is also symmetric.

Since $\mathscr{H}\left[\begin{array}{c}M_{1} \\ M_{21}\end{array}\right]=\left[\begin{array}{c}M_{1} \\ M_{21}\end{array}\right] Z_{1}$, it follows that

$$
\mathcal{H}\left[\begin{array}{c}
I \\
M_{21} M_{1}^{-1}
\end{array}\right]=\left[\begin{array}{c}
I \\
M_{21} M_{1}^{-1}
\end{array}\right] M_{1} Z_{1} M_{1}^{-1},
$$

and thus

$$
\mathcal{H}\left[\begin{array}{c}
I \\
-P
\end{array}\right]=\left[\begin{array}{c}
I \\
-P
\end{array}\right] M_{1} Z_{1} M_{1}^{-1} .
$$

Multiplying on the left by [$\left.\begin{array}{ll}P & I\end{array}\right]$ yields

$$
0=\left[\begin{array}{ll}
P & I
\end{array}\right] \mathcal{H}\left[\begin{array}{c}
I \\
-P
\end{array}\right]=A^{\mathrm{T}} P+P A+R_{1}-P \Sigma P,
$$

which shows that P is a solution of (12.16.4). Similarly, multiplying on the left by [$\left.\begin{array}{ll}I & 0\end{array}\right]$ yields $A-\Sigma P=M_{1} Z_{1} M_{1}^{-1}$. Since Z_{1} is asymptotically stable, it follows that $A-\Sigma P$ is also asymptotically stable.

To prove $i i i) \Longrightarrow i$, note that the existence of a stabilizing solution P implies that (A, B) is stabilizable, and that (12.16.11) implies that \mathscr{H} has no imaginary eigenvalues.

Corollary 12.17.10. Assume that (A, B) is stabilizable and $\left(A, E_{1}\right)$ is detectable. Then, (12.16.4) has a stabilizing solution.

12.18 The Maximal Solution of the Riccati Equation

In this section we consider the existence of the maximal solution of (12.16.4). Example 12.16.3shows that the assumptions of Proposition 12.19.1 are not sufficient to guarantee that (12.16.4) has a maximal solution.

Theorem 12.18.1. The following statements are equivalent:
i) (A, B) is stabilizable.
ii) (12.16.4) has a solution $P_{\text {max }}$ that is positive semidefinite, maximal, and satisfies $\operatorname{spec}\left(A-\Sigma P_{\max }\right) \subset$ CLHP.

Proof. The result $i) \Longrightarrow i i$) is given by Theorem 2.1 and Theorem 2.2 of 561 . See also (i) of Theorem 13.11 of [1498]. The converse result follows from Corollary 3 of (1166.

Proposition 12.18.2. Assume that (12.16.4) has a maximal solution $P_{\max }$, let P be a solution of (12.16.4), and assume that $\operatorname{spec}\left(A-\Sigma P_{\max }\right) \subset$ CLHP and $\operatorname{spec}(A-\Sigma P) \subset$ CLHP. Then, $P=P_{\max }$.

Proof. It follows from i) of $\operatorname{Proposition~12.16.14that~} \operatorname{spec}(A-\Sigma P)=\operatorname{spec}(A-$ $\left.\Sigma P_{\max }\right)$. Since $P_{\max }$ is the maximal solution of (12.16.4), it follows that $P \leq P_{\max }$. Consequently, it follows from the contrapositive form of the second statement of Theorem 8.4.9 that $P=P_{\text {max }}$.

Proposition 12.18.3. Assume that (12.16.4) has a solution P such that $\operatorname{spec}(A-\Sigma P) \subset$ CLHP. Then, P is stabilizing if and only if \mathcal{H} has no imaginary eigenvalues

It follows from Proposition 12.18 .2 that (12.16.4) has at most one positivesemidefinite solution P such that $\operatorname{spec}(A-\Sigma P) \subset$ CLHP. Consequently, (12.16.4) has at most one positive-semidefinite stabilizing solution.

Theorem 12.18.4. The following statements hold:
i) (12.16.4) has at most one stabilizing solution.
ii) If P is the stabilizing solution of (12.16.4), then P is positive semidefinite.
iii) If P is the stabilizing solution of (12.16.4), then P is maximal.

Proof. To prove i), assume that (12.16.4) has stabilizing solutions P_{1} and P_{2}. Then, (A, B) is stabilizable, and Theorem 12.18 .1 implies that (12.16.4) has a maximal solution $P_{\text {max }}$ such that $\operatorname{spec}\left(A-\Sigma P_{\max }\right) \subset$ CLHP. Now, Proposition 12.18 .2 implies that $P_{1}=P_{\max }$ and $P_{2}=P_{\max }$. Hence, $P_{1}=P_{2}$.

Alternatively, suppose that (12.16.4) has the stabilizing solutions P_{1} and P_{2}. Then,

$$
\begin{aligned}
& A^{\mathrm{T}} P_{1}+P_{1} A+R_{1}-P_{1} \Sigma P_{1}=0, \\
& A^{\mathrm{T}} P_{2}+P_{2} A+R_{1}-P_{2} \Sigma P_{2}=0 .
\end{aligned}
$$

Subtracting these equations and rearranging yields

$$
\left(A-\Sigma P_{1}\right)^{\mathrm{T}}\left(P_{1}-P_{2}\right)+\left(P_{1}-P_{2}\right)\left(A-\Sigma P_{2}\right)=0 .
$$

Since $A-\Sigma P_{1}$ and $A-\Sigma P_{2}$ are asymptotically stable, it follows from Proposition 11.9 .3 and Fact 11.18 .33 that $P_{1}-P_{2}=0$. Hence, (12.16.4) has at most one stabilizing solution.

Next, to prove $i i$), suppose that P is a stabilizing solution of (12.16.4). Then, it follows from (12.16.4) that

$$
P=\int_{0}^{\infty} e^{t(A-\Sigma P)^{\mathrm{T}}}\left(R_{1}+P \Sigma P\right) e^{t(A-\Sigma P)} \mathrm{d} t
$$

which shows that P is positive semidefinite.
To prove $i i i$), let P^{\prime} be a solution of (12.16.4). Then, it follows that

$$
(A-\Sigma P)^{\mathrm{T}}\left(P-P^{\prime}\right)+\left(P-P^{\prime}\right)(A-\Sigma P)+\left(P-P^{\prime}\right) \Sigma\left(P-P^{\prime}\right)=0,
$$

which implies that $P^{\prime} \leq P$. Thus, P is also the maximal solution of (12.16.4).
The following results concerns the monotonicity of solutions of the Riccati equation (12.16.4).

Proposition 12.18.5. Assume that (A, B) is stabilizable, and let $P_{\max }$ denote the maximal solution of (12.16.4). Furthermore, let $\hat{R}_{1} \in \mathbb{R}^{n \times n}$ be positive semidefinite, let $\hat{R}_{2} \in \mathbb{R}^{m \times m}$ be positive definite, let $\hat{A} \in \mathbb{R}^{n \times n}$, let $\hat{B} \in \mathbb{R}^{n \times m}$, define $\hat{\Sigma} \triangleq \hat{B} \hat{R}_{2}^{-1} B^{T}$, assume that

$$
\left[\begin{array}{cc}
\hat{R}_{1} & \hat{A}^{\mathrm{T}} \\
\hat{A} & -\hat{\Sigma}
\end{array}\right] \leq\left[\begin{array}{cc}
R_{1} & A^{\mathrm{T}} \\
A & -\Sigma
\end{array}\right],
$$

and let \hat{P} be a solution of

$$
\begin{equation*}
\hat{A}^{\mathrm{T}} \hat{P}+\hat{P} \hat{A}+\hat{R}_{1}-\hat{P} \hat{\Sigma} \hat{P}=0 . \tag{12.18.1}
\end{equation*}
$$

Then,

$$
\begin{equation*}
\hat{P} \leq P_{\max } . \tag{12.18.2}
\end{equation*}
$$

Proof. The result is given by Theorem 1 of 1441 .
Corollary 12.18.6. Assume that (A, B) is stabilizable, let $\hat{R}_{1} \in \mathbb{R}^{n \times n}$ be positive semidefinite, assume that $\hat{R}_{1} \leq R_{1}$, and let $P_{\max }$ and $\hat{P}_{\text {max }}$ denote, respectively, the maximal solutions of (12.16.4) and

$$
\begin{equation*}
A^{\mathrm{T}} P+P A+\hat{R}_{1}-P \Sigma P=0 . \tag{12.18.3}
\end{equation*}
$$

Then,

$$
\begin{equation*}
\hat{P}_{\max } \leq P_{\max } . \tag{12.18.4}
\end{equation*}
$$

Proof. The result follows from Proposition 12.18.5 or Theorem 2.3 of 561 .

The following result shows that, if $R_{1}=0$, then the closed-loop eigenvalues of the closed-loop dynamics obtained from the maximal solution consist of the CLHP open-loop eigenvalues and reflections of the ORHP open-loop eigenvalues.

Proposition 12.18.7. Assume that (A, B) is stabilizable, assume that $R_{1}=0$, and let $P \in \mathbb{R}^{n \times n}$ be a positive-semidefinite solution of (12.16.4). Then, P is the maximal solution of (12.16.4) if and only if

$$
\begin{equation*}
\operatorname{mspec}(A-\Sigma P)=[\operatorname{mspec}(A) \cap \mathrm{CLHP}] \cup[\operatorname{mspec}(-A) \cap \mathrm{OLHP}] \tag{12.18.5}
\end{equation*}
$$

Proof. Sufficiency follows from Proposition 12.18.2 To prove necessity, note that it follows from the definition (12.16.8) of \mathcal{H} with $R_{1}=0$ and from $i v$) of Proposition 12.16.14 that

$$
\operatorname{mspec}(A) \cup \operatorname{mspec}(-A)=\operatorname{mspec}(A-\Sigma P) \cup \operatorname{mspec}[-(A-\Sigma P)]
$$

Now, Theorem 12.18 .1 implies that $\operatorname{mspec}(A-\Sigma P) \subseteq$ CLHP, which implies that (12.18.5) is satisfied.

Corollary 12.18.8. Let $R_{1}=0$, and assume that $\operatorname{spec}(A) \subset$ CLHP. Then, $P=0$ is the only positive-semidefinite solution of (12.16.4).

12.19 Positive-Semidefinite and Positive-Definite Solutions of the Riccati Equation

The following result gives sufficient conditions under which (12.16.4) has a positive-semidefinite solution.

Proposition 12.19.1. Assume that there exists a nonsingular matrix $S \in$ $\mathbb{R}^{n \times n}$ such that (12.17.2) and (12.17.3) are satisfied, where $\left(\left[\begin{array}{cc}A_{1} & 0 \\ A_{21} & A_{2}\end{array}\right],\left[\begin{array}{l}B_{1} \\ B_{2}\end{array}\right]\right)$ is controllable, $\left(\left[\begin{array}{cc}A_{1} & A_{13} \\ 0 & A_{3}\end{array}\right],\left[\begin{array}{ll}E_{11} & E_{13}\end{array}\right]\right)$ is observable, and A_{3} is asymptotically stable. Then, (12.16.4) has a positive-semidefinite solution.

Proof. First, rewrite (12.17.2) and (12.17.3) as

$$
\begin{aligned}
A & =S\left[\begin{array}{cccc}
A_{1} & A_{13} & 0 & 0 \\
0 & A_{3} & 0 & 0 \\
A_{21} & A_{23} & A_{2} & A_{24} \\
0 & A_{43} & 0 & A_{4}
\end{array}\right] S^{-1}, \quad B=S\left[\begin{array}{c}
B_{1} \\
0 \\
B_{2} \\
0
\end{array}\right], \\
E_{1} & =\left[\begin{array}{llll}
E_{11} & E_{13} & 0 & 0
\end{array}\right] S^{-1},
\end{aligned}
$$

where $\left(\left[\begin{array}{cc}A_{1} & 0 \\ A_{21} & A_{2}\end{array}\right],\left[\begin{array}{c}B_{1} \\ B_{2}\end{array}\right]\right)$ is controllable, $\left(\left[\begin{array}{cc}A_{1} & A_{13} \\ 0 & A_{3}\end{array}\right],\left[\begin{array}{ll}E_{11} & E_{13}\end{array}\right]\right)$ is observable, and A_{3} is asymptotically stable. Since $\left(\left[\begin{array}{cc}A_{1} & A_{13} \\ 0 & A_{3}\end{array}\right],\left[\begin{array}{c}B_{1} \\ 0\end{array}\right]\right)$ is stabilizable, it follows from Theorem 12.18 .1 that there exists a positive-semidefinite matrix \hat{P}_{1} that satisfies

$$
\left[\begin{array}{cc}
A_{1} & A_{13} \\
0 & A_{3}
\end{array}\right]^{\mathrm{T}} \hat{P}_{1}+\hat{P}_{1}\left[\begin{array}{cc}
A_{1} & A_{13} \\
0 & A_{3}
\end{array}\right]+\left[\begin{array}{cc}
E_{11}^{\mathrm{T}} E_{11} & E_{11}^{\mathrm{T}} E_{13} \\
E_{13}^{\mathrm{T}} E_{11} & E_{13}^{\mathrm{T}} E_{13}
\end{array}\right]-\hat{P}_{1}\left[\begin{array}{cc}
B_{1} R_{2}^{-1} B_{1}^{\mathrm{T}} & 0 \\
0 & 0
\end{array}\right] \hat{P}_{1}=0 .
$$

Consequently, $P \triangleq S^{\mathrm{T}} \operatorname{diag}\left(\hat{P}_{1}, 0,0\right) S$ is a positive-semidefinite solution of (12.16.4).

Corollary 12.19.2. Assume that (A, B) is stabilizable. Then, (12.16.4) has a positive-semidefinite solution P. If, in addition, $\left(A, E_{1}\right)$ is detectable, then P is the stabilizing solution of (12.16.4), and thus P is the only positive-semidefinite solution of (12.16.4). Finally, if $\left(A, E_{1}\right)$ is observable, then P is positive definite.

Proof. The first statement is given by Theorem 12.18.1 Next, assume that $\left(A, E_{1}\right)$ is detectable. Then, Theorem 12.17 .2 implies that P is a stabilizing solution of (12.16.4), which is the only positive-semidefinite solution of (12.16.4). Finally, Theorem 12.17 .2 implies that, if $\left(A, E_{1}\right)$ is observable, then P is positive definite.

The next result gives necessary and sufficient conditions under which (12.16.4) has a positive-definite solution.

Proposition 12.19.3. The following statements are equivalent:
i) (12.16.4) has a positive-definite solution.
ii) There exists a nonsingular matrix $S \in \mathbb{R}^{n \times n}$ such that (12.17.2) and (12.17.3) are satisfied, where $\left(\left[\begin{array}{cc}A_{1} & 0 \\ A_{21} & A_{2}\end{array}\right],\left[\begin{array}{l}B_{1} \\ B_{2}\end{array}\right]\right)$ is controllable, $\left(\left[\begin{array}{ccc}A_{1} & A_{13} \\ 0 & A_{3}\end{array}\right],\left[E_{11} E_{13}\right]\right)$ is observable, A_{3} is asymptotically stable, $-A_{2}$ is asymptotically stable, $\operatorname{spec}\left(A_{4}\right) \subset \mathfrak{J}$, and A_{4} is semisimple.
In this case, (12.16.4) has exactly one positive-definite solution if and only if A_{4} is empty, and infinitely many positive-definite solutions if and only if A_{4} is not empty.

Proof. See 1124 .
Proposition 12.19.4. Assume that (12.16.4) has a stabilizing solution P, and let $S \in \mathbb{R}^{n \times n}$ be a nonsingular matrix such that (12.17.2) and (12.17.3) are satisfied, where $\left(A_{1}, B_{1}, E_{11}\right)$ is controllable and observable, $\left(A_{2}, B_{2}\right)$ is controllable, $\left(A_{3}, E_{13}\right)$ is observable, $\nu_{0}\left(A_{2}\right)=0$, and A_{3} and A_{4} are asymptotically stable. Then,

$$
\begin{equation*}
\operatorname{def} P=\nu_{-}\left(A_{2}\right) . \tag{12.19.1}
\end{equation*}
$$

Hence, P is positive definite if and only if $\operatorname{spec}\left(A_{2}\right) \subset \mathrm{ORHP}$.

12.20 Facts on Stability, Observability, and Controllability

Fact 12.20.1. Let $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}$, and $C \in \mathbb{R}^{p \times n}$, and assume that (A, B) is controllable and (A, C) is observable. Then, for all $v \in \mathbb{R}^{m}$, the step response

$$
y(t)=\int_{0}^{t} C e^{t A} \mathrm{~d} \tau B v+D v
$$

is bounded on $[0, \infty)$ if and only if A is Lyapunov stable and nonsingular.

Fact 12.20.2. Let $A \in \mathbb{R}^{n \times n}$ and $C \in \mathbb{R}^{p \times n}$, assume that (A, C) is detectable, and let $x(t)$ and $y(t)$ satisfy $\dot{x}(t)=A x(t)$ and $y(t)=C x(t)$ for $t \in[0, \infty)$. Then, the following statements hold:
i) y is bounded if and only if x is bounded.
ii) $\lim _{t \rightarrow \infty} y(t)$ exists if and only if $\lim _{t \rightarrow \infty} x(t)$ exists.
iii) $y(t) \rightarrow 0$ as $t \rightarrow \infty$ if and only if $x(t) \rightarrow 0$ as $t \rightarrow \infty$.

Fact 12.20.3. Let $x(0)=x_{0}$, and let $x_{\mathrm{f}}-e^{t_{\mathrm{f}} A} x_{0} \in \mathcal{C}(A, B)$. Then, for all $t \in\left[0, t_{f}\right]$, the control $u:\left[0, t_{f}\right] \mapsto \mathbb{R}^{m}$ defined by

$$
u(t) \triangleq B^{\mathrm{T}} e^{\left(t_{\mathrm{f}}-t\right) A^{\mathrm{T}}}\left(\int_{0}^{t_{\mathrm{f}}} e^{\tau A} B B^{\mathrm{T}} e^{\tau A^{\mathrm{T}}} \mathrm{~d} \tau\right)^{+}\left(x_{\mathrm{f}}-e^{t_{\mathrm{f}} A} x_{0}\right)
$$

yields $x\left(t_{\mathrm{f}}\right)=x_{\mathrm{f}}$.
Fact 12.20.4. Let $x(0)=x_{0}$, let $x_{\mathrm{f}} \in \mathbb{R}^{n}$, and assume that (A, B) is controllable. Then, for all $t \in\left[0, t_{f}\right]$, the control $u:\left[0, t_{f}\right] \mapsto \mathbb{R}^{m}$ defined by

$$
u(t) \triangleq B^{\mathrm{T}} e^{\left(t_{\mathrm{f}}-t\right) A^{\mathrm{T}}}\left(\int_{0}^{t_{\mathrm{f}}} e^{\tau A} B B^{\mathrm{T}} e^{\tau A^{\mathrm{T}}} \mathrm{~d} \tau\right)^{-1}\left(x_{\mathrm{f}}-e^{t_{\mathrm{f}} A} x_{0}\right)
$$

yields $x\left(t_{\mathrm{f}}\right)=x_{\mathrm{f}}$.
Fact 12.20.5. Let $A \in \mathbb{R}^{n \times n}$, let $B \in \mathbb{R}^{n \times m}$, assume that A is skew symmetric, and assume that (A, B) is controllable. Then, for all $\alpha>0, A-\alpha B B^{\mathrm{T}}$ is asymptotically stable.

Fact 12.20.6. Let $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times m}$. Then, (A, B) is (controllable, stabilizable) if and only if $\left(A, B B^{\mathrm{T}}\right)$ is (controllable, stabilizable). Now, assume that B is positive semidefinite. Then, (A, B) is (controllable, stabilizable) if and only if $\left(A, B^{1 / 2}\right)$ is (controllable, stabilizable).

Fact 12.20.7. Let $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}$, and $\hat{B} \in \mathbb{R}^{n \times \hat{m}}$, and assume that (A, B) is (controllable, stabilizable) and $\mathcal{R}(B) \subseteq \mathcal{R}(\hat{B})$. Then, (A, \hat{B}) is also (controllable, stabilizable).

Fact 12.20.8. Let $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}$, and $\hat{B} \in \mathbb{R}^{n \times \hat{m}}$, and assume that (A, B) is (controllable, stabilizable) and $B B^{\mathrm{T}} \leq \hat{B} \hat{B}^{\mathrm{T}}$. Then, (A, \hat{B}) is also (controllable, stabilizable). (Proof: Use Lemma 8.6.1 and Fact 12.20.7)

Fact 12.20.9. Let $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, \hat{B} \in \mathbb{R}^{n \times \hat{m}}$, and $\hat{C} \in \mathbb{R}^{\hat{m} \times n}$, and assume that (A, B) is (controllable, stabilizable). Then,

$$
\left(A+\hat{B} \hat{C},\left[B B^{\mathrm{T}}+\hat{B} \hat{B}^{\mathrm{T}}\right]^{1 / 2}\right)
$$

is also (controllable, stabilizable). (Proof: See [1455, p. 79].)

Fact 12.20.10. Let $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times m}$. Then, the following statements are equivalent:
i) (A, B) is controllable.
ii) There exists $\alpha \in \mathbb{R}$ such that $(A+\alpha I, B)$ is controllable.
iii) $(A+\alpha I, B)$ is controllable for all $\alpha \in \mathbb{R}$.

Fact 12.20.11. Let $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times m}$. Then, the following statements are equivalent:
i) (A, B) is stabilizable.
ii) There exists $\alpha \leq \max \{0,-\operatorname{spabs}(A)\}$ such that $(A+\alpha I, B)$ is stabilizable.
iii) $(A+\alpha I, B)$ is stabilizable for all $\alpha \leq \max \{0,-\operatorname{spabs}(A)\}$.

Fact 12.20.12. Let $A \in \mathbb{R}^{n \times n}$, assume that A is diagonal, and let $B \in \mathbb{R}^{n \times 1}$. Then, (A, B) is controllable if and only if the diagonal entries of A are distinct and every entry of B is nonzero. (Proof: Note that

$$
\begin{aligned}
\operatorname{det} \mathcal{K}(A, B) & =\operatorname{det}\left[\begin{array}{lll}
b_{1} & & 0 \\
& \ddots & \\
0 & & b_{n}
\end{array}\right]\left[\begin{array}{cccc}
1 & a_{1} & \cdots & a_{1}^{n-1} \\
\vdots & \vdots & \ddots & \vdots \\
1 & a_{n} & \cdots & a_{n}^{n-1}
\end{array}\right] \\
& \left.=\left(\prod_{i=1}^{n} b_{i}\right) \prod_{i<j}\left(a_{i}-a_{j}\right) .\right)
\end{aligned}
$$

Fact 12.20.13. Let $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times 1}$, and assume that (A, B) is controllable. Then, A is cyclic. (Proof: See Fact 5.14.9.)

Fact 12.20.14. Let $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times m}$, and assume that (A, B) is controllable. Then,

$$
\max _{\lambda \in \operatorname{spec}(A)} \operatorname{gmult}_{A}(\lambda) \leq m
$$

Fact 12.20.15. Let $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times m}$. Then, the following conditions are equivalent:
i) (A, B) is (controllable, stabilizable) and A is nonsingular.
ii) $(A, A B)$ is (controllable, stabilizable).

Fact 12.20.16. Let $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times m}$, and assume that (A, B) is controllable. Then, $\left(A, B^{\mathrm{T}} S^{-\mathrm{T}}\right)$ is observable, where $S \in \mathbb{R}^{n \times n}$ is a nonsingular matrix satisfying $A^{\mathrm{T}}=S^{-1} A S$.

Fact 12.20.17. Let (A, B) be controllable, let $t_{1}>0$, and define

$$
P=\left(\int_{0}^{t_{1}} e^{-t A} B B^{\mathrm{T}} e^{-t A^{\mathrm{T}}} \mathrm{~d} t\right)^{-1} .
$$

Then, $A-B B^{\mathrm{T}} P$ is asymptotically stable. (Proof: P satisfies

$$
\left(A-B B^{\mathrm{T}} P\right)^{\mathrm{T}} P+P\left(A-B B^{\mathrm{T}} P\right)+P\left(B B^{\mathrm{T}}+e^{t_{1} A} B B^{\mathrm{T}} e^{t_{1} A^{\mathrm{T}}}\right) P=0
$$

Since $\left(A-B B^{\mathrm{T}} P, B B^{\mathrm{T}}+e^{t_{1} A} B B^{\mathrm{T}} e^{t_{1} A^{\mathrm{T}}}\right)$ is observable and P is positive definite, Proposition 11.9 .5 implies that $A-B B^{\mathrm{T}} P$ is asymptotically stable.) (Remark: This result is due to Lukes and Kleinman. See [1152, pp. 113, 114].)

Fact 12.20.18. Let $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times m}$, assume that A is asymptotically stable, and, for $t \geq 0$, consider the linear system $\dot{x}=A x+B u$. Then, if u is bounded, then x is bounded. Furthermore, if $u(t) \rightarrow 0$ as $t \rightarrow \infty$, then $x(t) \rightarrow 0$ as $t \rightarrow \infty$. (Proof: See [1212 p. 330].) (Remark: These results are consequences of input-to-state stability.)

Fact 12.20.19. Let $A \in \mathbb{R}^{n \times n}$ and $C \in \mathbb{R}^{l \times n}$, assume that (A, C) is observable, define

$$
\mathcal{O}_{k}(A, C) \triangleq\left[\begin{array}{c}
C \\
C A \\
C A^{2} \\
\vdots \\
C A^{k}
\end{array}\right]
$$

and assume that $k \geq n-1$. Then,

$$
A=\left[\begin{array}{c}
0_{l \times n} \\
\mathcal{O}_{k}(A, C)
\end{array}\right]^{+} \mathcal{O}_{k+1}(A, C) .
$$

(Remark: This result is due to Palanthandalam-Madapusi.)

12.21 Facts on the Lyapunov Equation and Inertia

Fact 12.21.1. Let $A, P \in \mathbb{F}^{n \times n}$, assume that P is Hermitian, let $C \in \mathbb{F}^{l \times n}$, and assume that $A^{*} P+P A+C^{*} C=0$. Then, the following statements hold:
i) $\left|\nu_{-}(A)-\nu_{+}(P)\right| \leq n-\operatorname{rank} \mathcal{O}(A, C)$.
ii) $\left|\nu_{+}(A)-\nu_{-}(P)\right| \leq n-\operatorname{rank} \mathcal{O}(A, C)$.
iii) If $\nu_{0}(A)=0$, then

$$
\left|\nu_{-}(A)-\nu_{+}(P)\right|+\left|\nu_{+}(A)-\nu_{-}(P)\right| \leq n-\operatorname{rank} \mathcal{O}(A, C)
$$

If, in addition, (A, C) is observable, then the following statements hold:
iv) $\nu_{-}(A)=\nu_{+}(P)$.
v) $\nu_{0}(A)=\nu_{0}(P)=0$.
vi) $\nu_{+}(A)=\nu_{-}(P)$.
vii) If P is positive definite, then A is asymptotically stable.
(Proof: See [64, 312, 930, 1437] and 867, p. 448].) (Remark: v) does not follow
from i-iiii).) (Remark: For related results, see 1054 and references given in 930 . See also [289 372].)

Fact 12.21.2. Let $A, P \in \mathbb{F}^{n \times n}$, assume that P is nonsingular and Hermitian, and assume that $A^{*} P+P A$ is negative semidefinite. Then, the following statements hold:
i) $\nu_{-}(A) \leq \nu_{+}(P)$.
ii) $\nu_{+}(A) \leq \nu_{-}(P)$.
iii) If P is positive definite, then $\operatorname{spec}(A) \subset$ CLHP.
(Proof: See [867, p. 447].) (Remark: If P is positive definite, then A is Lyapunov stable, although this result does not follow from i) and $i i$).)

Fact 12.21.3. Let $A, P \in \mathbb{F}^{n \times n}$, and assume that $\nu_{0}(A)=0, P$ is Hermitian, and $A^{*} P+P A$ is negative semidefinite. Then, the following statements hold:
i) $\nu_{-}(P) \leq \nu_{+}(A)$.
ii) $\nu_{+}(P) \leq \nu_{-}(A)$.
iii) If P is nonsingular, then $\nu_{-}(P)=\nu_{+}(A)$ and $\nu_{+}(P)=\nu_{-}(A)$.
$i v)$ If P is positive definite, then A is asymptotically stable.
(Proof: See [867, p. 447].)
Fact 12.21.4. Let $A, P \in \mathbb{F}^{n \times n}$, and assume that $\nu_{0}(A)=0, P$ is nonsingular and Hermitian, and $A^{*} P+P A$ is negative semidefinite. Then, the following statements hold:
i) $\nu_{-}(A)=\nu_{+}(P)$.
ii) $\nu_{+}(A)=\nu_{-}(P)$.
(Proof: Combine Fact 12.21 .2 and Fact 12.21 .3 , See [867, p. 448].) (Remark: This result is due to Carlson and Schneider.)

Fact 12.21.5. Let $A, P \in \mathbb{F}^{n \times n}$, assume that P is Hermitian, and assume that $A^{*} P+P A$ is negative definite. Then, the following statements hold:
i) $\nu_{-}(A)=\nu_{+}(P)$.
ii) $\nu_{0}(A)=0$.
iii) $\nu_{+}(A)=\nu_{-}(P)$.
iv) P is nonsingular.
v) If P is positive definite, then A is asymptotically stable.
(Proof: See 447, pp. 441, 442], 867, p. 445], or 1054. This result follows from Fact 12.21 .1 with positive-definite $C=-\left(A^{*} P+P A\right)^{1 / 2}$.) (Remark: This result is due to Krein, Ostrowski, and Schneider.) (Remark: These conditions are the classical constraints. An analogous result holds for the discrete-time Lyapunov equation, where the analogous definition of inertia counts the numbers of eigenvalues inside
the open unit disk, outside the open unit disk, and on the unit circle. See [280, 393].)
Fact 12.21.6. Let $A \in \mathbb{F}^{n \times n}$. Then, the following statements are equivalent:
i) $\nu_{0}(A)=0$.
ii) There exists a nonsingular Hermitian matrix $P \in \mathbb{F}^{n \times n}$ such that $A^{*} P+P A$ is negative definite.
iii) There exists a Hermitian matrix $P \in \mathbb{F}^{n \times n}$ such that $A^{*} P+P A$ is negative definite.

In this case, the following statements hold for P given by $i i$) and $i i i)$:
iv) $\nu_{-}(A)=\nu_{+}(P)$.
v) $\nu_{0}(A)=\nu_{0}(P)=0$.
vi) $\nu_{+}(A)=\nu_{-}(P)$.
vii) P is nonsingular.
viii) If P is positive definite, then A is asymptotically stable.
(Proof: For the result i) $\Longrightarrow i i$), see [867] p. 445]. The result $i i i) \Longrightarrow i$) follows from Fact 12.21.5, See [51, 280, 291.)

Fact 12.21.7. Let $A \in \mathbb{F}^{n \times n}$. Then, the following statements are equivalent:
i) A is Lyapunov stable.
ii) There exists a positive-definite matrix $P \in \mathbb{F}^{n \times n}$ such that $A^{*} P+P A$ is negative semidefinite.
Furthermore, the following statements are equivalent:
iii) A is asymptotically stable.
iv) There exists a positive-definite matrix $P \in \mathbb{F}^{n \times n}$ such that $A^{*} P+P A$ is negative definite.
$v)$ For every positive-definite matrix $R \in \mathbb{F}^{n \times n}$, there exists a positive-definite matrix $P \in \mathbb{F}^{n \times n}$ such that $A^{*} P+P A$ is negative definite.
(Remark: See Proposition 11.9.5 and Proposition 11.9.6)
Fact 12.21.8. Let $A, P \in \mathbb{F}^{n \times n}$, and assume P is Hermitian. Then, the following statements hold:
i) $\nu_{+}\left(A^{*} P+P A\right) \leq \operatorname{rank} P$.
ii) $\nu_{-}\left(A^{*} P+P A\right) \leq \operatorname{rank} P$.

If, in addition, A is asymptotically stable, then the following statement holds:
iii) $1 \leq \nu_{-}\left(A^{*} P+P A\right) \leq \operatorname{rank} P$.
(Proof: See [120, 393].)

Fact 12.21.9. Let $A, P \in \mathbb{R}^{n \times n}$, assume that $\nu_{0}(A)=n$, and assume that P is positive semidefinite. Then, exactly one of the following statements holds:
i) $A^{\mathrm{T}} P+P A=0$.
ii) $\nu_{-}\left(A^{\mathrm{T}} P+P A\right) \geq 1$ and $\nu_{+}\left(A^{\mathrm{T}} P+P A\right) \geq 1$.
(Proof: See 1348.)
Fact 12.21.10. Let $R \in \mathbb{F}^{n \times n}$, and assume that R is Hermitian and $\nu_{+}(R) \geq$ 1. Then, there exist an asymptotically stable matrix $A \in \mathbb{F}^{n \times n}$ and a positivedefinite matrix $P \in \mathbb{F}^{n \times n}$ such that $A^{*} P+P A+R=0$. (Proof: See 120.)

Fact 12.21.11. Let $A \in \mathbb{F}^{n \times n}$, assume that A is cyclic, and let a, b, c, d, e be nonnegative integers such that $a+b=c+d+e=n, c \geq 1$, and $e \geq 1$. Then, there exists a nonsingular, Hermitian matrix $P \in \mathbb{F}^{n \times n}$ such that

$$
\operatorname{In} P=\left[\begin{array}{l}
a \\
0 \\
b
\end{array}\right]
$$

and

$$
\operatorname{In}\left(A^{*} P+P A\right)=\left[\begin{array}{l}
c \\
d \\
e
\end{array}\right]
$$

(Proof: See [1199.) (Remark: See also [1198.)
Fact 12.21.12. Let $P, R \in \mathbb{F}^{n \times n}$, and assume that P is positive and R is Hermitian. Then, the following statements are equivalent:
i) $\operatorname{tr} R P^{-1}>0$.
ii) There exists an asymptotically stable matrix $A \in \mathbb{F}^{n \times n}$ such that $A^{*} P+$ $P A+R=0$.
(Proof: See [120].)
Fact 12.21.13. Let $A_{1} \in \mathbb{R}^{n_{1} \times n_{1}}, A_{2} \in \mathbb{R}^{n_{2} \times n_{2}}, B \in \mathbb{R}^{n_{1} \times m}$, and $C \in \mathbb{R}^{m \times n_{2}}$, assume that $A_{1} \oplus A_{2}$ is nonsingular, and assume that $\operatorname{rank} B=\operatorname{rank} C=m$. Furthermore, let $X \in \mathbb{R}^{n_{1} \times n_{2}}$ be the unique solution of

$$
A_{1} X+X A_{2}+B C=0
$$

Then,

$$
\operatorname{rank} X \leq \min \left\{\operatorname{rank} \mathcal{K}\left(A_{1}, B\right), \operatorname{rank} \mathcal{O}\left(A_{2}, C\right)\right\}
$$

Furthermore, equality holds if $m=1$. (Proof: See [390].) (Remark: Related results are given in 1437, 1443].)

Fact 12.21.14. Let $A_{1}, A_{2} \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n}, C \in \mathbb{R}^{1 \times n}$, assume that $A_{1} \oplus A_{2}$ is nonsingular, let $X \in \mathbb{R}^{n \times n}$ satisfy

$$
A_{1} X+X A_{2}+B C=0
$$

and assume that $\left(A_{1}, B\right)$ is controllable and $\left(A_{2}, C\right)$ is observable. Then, X is nonsingular. (Proof: See Fact 12.21 .13 and 1443 .)

Fact 12.21.15. Let $A, P, R \in \mathbb{R}^{n \times n}$, and assume that P and R are positive semidefinite, $A^{\mathrm{T}} P+P A+R=0$, and $\mathcal{N}[\mathcal{O}(A, R)]=\mathcal{N}(A)$. Then, A is semistable. (Proof: See [195].)

Fact 12.21.16. Let $A, V \in \mathbb{R}^{n \times n}$, assume that A is asymptotically stable, assume that V is positive semidefinite, and let $Q \in \mathbb{R}^{n \times n}$ be the unique, positivedefinite solution to $A Q+Q A^{\mathrm{T}}+V=0$. Furthermore, let $C \in \mathbb{R}^{l \times n}$, and assume that $C V C^{\mathrm{T}}$ is positive definite. Then, $C Q C^{\mathrm{T}}$ is positive definite.

Fact 12.21.17. Let $A, R \in \mathbb{R}^{n \times n}$, assume that A is asymptotically stable, assume that $R \in \mathbb{R}^{n \times n}$ is positive semidefinite, and let $P \in \mathbb{R}^{n \times n}$ satisfy $A^{\mathrm{T}} P+$ $P A+R=0$. Then, for all $i, j=1, \ldots, n$, there exist $\alpha_{i j} \in \mathbb{R}$ such that

$$
P=\sum_{i, j=1}^{n} \alpha_{i j} A^{(i-1) \mathrm{T}} R A^{j-1}
$$

In particular, for all $i, j=1, \ldots, n, \alpha_{i j}=\hat{P}_{(i, j)}$, where $\hat{P} \in \mathbb{R}^{n \times n}$ satisfies $\hat{A}^{\mathrm{T}} \hat{P}+$ $\hat{P} \hat{A}+\hat{R}=0$, where $\hat{A}=C\left(\chi_{A}\right)$ and $\hat{R}=E_{1,1}$. (Proof: See [1204].) (Remark: This identity is Smith's method. See [391, 413, 644, 940 for finite-sum solutions of linear matrix equations.)

Fact 12.21.18. Let $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{C}$, assume that, for all $i=1, \ldots, n, \operatorname{Re} \lambda_{i}<0$, define $\Lambda \triangleq \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, let k be a nonnegative integer, and, for all $i, j=$ $1, \ldots, n$, define $P \in \mathbb{C}^{n \times n}$ by

$$
P \triangleq \frac{1}{k!} \int_{0}^{\infty} t^{k} e^{\bar{\Lambda} t} e^{\Lambda t} \mathrm{~d} t
$$

Then, P is positive definite, P satisfies the Lyapunov equation

$$
\bar{\Lambda} P+P \Lambda+I=0
$$

and, for all $i, j=1, \ldots, n$,

$$
P_{(i, j)}=\left(\frac{-1}{\overline{\lambda_{i}}+\lambda_{j}}\right)^{k+1}
$$

(Proof: For all nonzero $x \in \mathbb{C}^{n}$, it follows that

$$
x^{*} P x=\int_{0}^{\infty} t^{k}\left\|e^{\Lambda t} x\right\|_{2}^{2} \mathrm{~d} t
$$

is positive. Hence, P is positive definite. Furthermore, note that

$$
P_{(i, j)}=\int_{0}^{\infty} t^{k} e^{\overline{\lambda_{i}} t} e^{\lambda_{j} t} \mathrm{~d} t=\frac{(-1)^{k+1} k!}{\left(\overline{\lambda_{i}}+\lambda_{j}\right)^{k+1}}
$$

(Remark: See [262] and [711, p. 348].) (Remark: See Fact 8.8.16 and Fact 12.21.19)
Fact 12.21.19. Let $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{C}$, assume that, for all $i=1, \ldots, n, \operatorname{Re} \lambda_{i}<0$, define $\Lambda \triangleq \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, let k be a nonnegative integer, let $R \in \mathbb{C}^{n \times n}$, assume that R is positive semidefinite, and, for all $i, j=1, \ldots, n$, define $P \in \mathbb{C}^{n \times n}$ by

$$
P \triangleq \frac{1}{k!} \int_{0}^{\infty} t^{k} e^{\bar{\Lambda} t} R e^{\Lambda t} \mathrm{~d} t
$$

Then, P is positive semidefinite, P satisfies the Lyapunov equation

$$
\bar{\Lambda} P+P \Lambda+R=0
$$

and, for all $i, j=1, \ldots, n$,

$$
P_{(i, j)}=R_{(i, j)}\left(\frac{-1}{\overline{\lambda_{i}}+\lambda_{j}}\right)^{k+1}
$$

If, in addition, $I \circ R$ is positive definite, then P is positive definite. (Proof: Use Fact 8.21 .12 and Fact 12.21 .18) (Remark: See Fact 8.8.16 and Fact 12.21 .18 Note that $P=\hat{P} \circ R$, where \hat{P} is the solution to the Lyapunov equation with $R=I$.)

Fact 12.21.20. Let $A, R \in \mathbb{R}^{n \times n}$, assume that $R \in \mathbb{R}^{n \times n}$ is positive semidefinite, let $q, r \in \mathbb{R}$, where $r>0$, and assume that there exists a positive-definite matrix $P \in \mathbb{R}^{n \times n}$ satisfying

$$
[A-(q+r) I]^{\mathrm{T}} P+P[A-(q+r) I]+\frac{1}{r} A^{\mathrm{T}} P A+R=0
$$

Then, the spectrum of A is contained in a disk centered at $q+j 0$ with radius r. (Remark: The disk is an eigenvalue inclusion region. See [141, 614, 1401 for related results concerning elliptical, parabolic, hyperbolic, sector, and vertical strip regions.)

12.22 Facts on Realizations and the $\mathrm{H}_{\mathbf{2}}$ System Norm

Fact 12.22.1. Let $x:[0, \infty) \mapsto \mathbb{R}^{n}$ and $y:[0, \infty) \mapsto \mathbb{R}^{n}$, assume that $\int_{0}^{\infty} x^{\mathrm{T}}(t) x(t) \mathrm{d} t$ and $\int_{0}^{\infty} y^{\mathrm{T}}(t) y(t) \mathrm{d} t$ exist, and let $\hat{x}: \jmath \mathbb{R} \mapsto \mathbb{C}^{n}$ and $\hat{y}: \jmath \mathbb{R} \mapsto \mathbb{C}^{n}$ denote the Fourier transforms of x and y, respectively. Then,

$$
\int_{0}^{\infty} x^{\mathrm{T}}(t) x(t) \mathrm{d} t=\int_{-\infty}^{\infty} \hat{x}^{*}(\jmath \omega) \hat{x}(\jmath \omega) \mathrm{d} \omega
$$

and

$$
\int_{0}^{\infty} x^{\mathrm{T}}(t) y(t) \mathrm{d} t=\int_{-\infty}^{\infty} \hat{x}^{*}(\jmath \omega) \hat{y}(\jmath \omega) \mathrm{d} \omega
$$

(Remark: These identities are equivalent versions of Parseval's theorem. The second identity follows from the first identity by replacing x with $x+y$.)

Fact 12.22.2. Let $G \in \mathbb{R}_{\text {prop }}^{l \times m}(s)$, where $G \stackrel{\min }{\sim}\left[\begin{array}{c|c}A & B \\ \hline C & D\end{array}\right]$, and assume that, for all $i=1, \ldots, l$ and $j=1, \ldots, m, G_{(i, j)}=p_{i, j} / q_{i, j}$, where $p_{i, j}, q_{i, j} \in \mathbb{R}[s]$ are coprime. Then,

$$
\operatorname{spec}(A)=\bigcup_{i, j=1}^{l, m} \operatorname{roots}\left(p_{i, j}\right)
$$

Fact 12.22.3. Let $G \sim\left[\begin{array}{c|c}A & B \\ \hline C & D\end{array}\right]$, let $a, b \in \mathbb{R}$, where $a \neq 0$, and define $H(s) \triangleq G(a s+b)$. Then,

$$
H \sim\left[\begin{array}{c|c}
a^{-1}(A-b I) & B \\
\hline a^{-1} C & D
\end{array}\right]
$$

Fact 12.22.4. Let $G \sim\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$, where A is nonsingular, and define $H(s) \triangleq$ $G(1 / s)$. Then,

$$
H \sim\left[\begin{array}{c|c}
A^{-1} & -A^{-1} B \\
\hline C A^{-1} & D-C A^{-1} B
\end{array}\right]
$$

Fact 12.22.5. Let $G(s)=C(s I-A)^{-1} B$. Then,

$$
G(\jmath \omega)=-C A\left(\omega^{2} I+A^{2}\right)^{-1} B-\jmath \omega C\left(\omega^{2} I+A^{2}\right)^{-1} B
$$

Fact 12.22.6. Let $G \sim\left[\begin{array}{l|l}A & B \\ \hline C & 0\end{array}\right]$ and $H(s)=s G(s)$. Then,

$$
H \sim\left[\begin{array}{c|c}
A & B \\
\hline C A & C B
\end{array}\right]
$$

Consequently,

$$
s C(s I-A)^{-1} B=C A(s I-A)^{-1} B+C B
$$

Fact 12.22.7. Let $G=\left[\begin{array}{ll}G_{11} & G_{12} \\ G_{21} & G_{22}\end{array}\right]$, where $G_{i j} \sim\left[\begin{array}{l|l}A_{i j} & B_{i j} \\ \hline C_{i j} & D_{i j}\end{array}\right]$ for all $i, j=$ 1,2. Then,

$$
\left[\begin{array}{ll}
G_{11} & G_{12} \\
G_{21} & G_{22}
\end{array}\right] \sim\left[\begin{array}{cccc|cc}
A_{11} & 0 & 0 & 0 & B_{11} & 0 \\
0 & A_{12} & 0 & 0 & 0 & B_{12} \\
0 & 0 & A_{21} & 0 & B_{21} & 0 \\
0 & 0 & 0 & A_{22} & 0 & B_{22} \\
\hline C_{11} & C_{12} & 0 & 0 & D_{11} & D_{12} \\
0 & 0 & C_{21} & C_{22} & D_{21} & D_{22}
\end{array}\right] .
$$

Fact 12.22.8. Let $G \sim\left[\begin{array}{c|c}A & B \\ \hline C & 0\end{array}\right]$, where $G \in \mathbb{R}^{l \times m}(s)$, and let $M \in \mathbb{R}^{m \times l}$. Then,

$$
[I+G M]^{-1} \sim\left[\begin{array}{c|c}
A-B M C & B \\
\hline-C & I
\end{array}\right]
$$

and

$$
[I+G M]^{-1} G \sim\left[\begin{array}{c|c}
A-B M C & B \\
\hline C & 0
\end{array}\right]
$$

Fact 12.22.9. Let $G \sim\left[\begin{array}{c|c}A & B \\ \hline C & D\end{array}\right]$, where $G \in \mathbb{R}^{l \times m}(s)$. If D has a left inverse $D^{\mathrm{L}} \in \mathbb{R}^{m \times l}$, then

$$
G^{\mathrm{L}} \sim\left[\begin{array}{c|c}
A-B D^{\mathrm{L}} C & B D^{\mathrm{L}} \\
\hline-D^{\mathrm{L}} C & D^{\mathrm{L}}
\end{array}\right]
$$

satisfies $G^{\mathrm{L}} G=I$. If D has a right inverse $D^{\mathrm{R}} \in \mathbb{R}^{m \times l}$, then

$$
G^{\mathrm{R}} \sim\left[\begin{array}{c|c}
A-B D^{\mathrm{R}} C & B D^{\mathrm{R}} \\
\hline-D^{\mathrm{R}} C & D^{\mathrm{R}}
\end{array}\right]
$$

satisfies $G G^{\mathrm{R}}=I$.

Fact 12.22.10. Let $G \sim\left[\begin{array}{c|c}A & B \\ \hline C & 0\end{array}\right]$ be a SISO rational transfer function, and let $\lambda \in \mathbb{C}$. Then, there exists a rational function H such that

$$
G(s)=\frac{1}{(s+\lambda)^{r}} H(s)
$$

and such that λ is neither a pole nor a zero of H if and only if the Jordan form of A has exactly one block associated with λ, which is of order r.

Fact 12.22.11. Let $G \sim\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$. Then, $G(s)$ is given by the Schur complement

$$
G(s)=(A-s I) \left\lvert\,\left[\begin{array}{cc}
A-s I & B \\
C & D
\end{array}\right]\right.
$$

(Remark: See [151].)
Fact 12.22.12. Let $G \in \mathbb{F}^{n \times m}(s)$, where $G \stackrel{\min }{\sim}\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$, and, for all $i=$ $1, \ldots, n$ and $j=1, \ldots, m$, let $G_{(i, j)}=p_{i j} / q_{i j}$, where $p_{i j}, q_{i j} \in \mathbb{F}[s]$ are coprime. Then,

$$
\bigcup_{i, j=1}^{n, m} \operatorname{roots}\left(q_{i j}\right)=\operatorname{spec}(A)
$$

Fact 12.22.13. Let $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}$, and $C \in \mathbb{R}^{m \times n}$. Then,

$$
\operatorname{det}[s I-(A+B C)]=\operatorname{det}\left[I-C(s I-A)^{-1} B\right] \operatorname{det}(s I-A)
$$

If, in addition, $n=m=1$, then

$$
\operatorname{det}[s I-(A+B C)]=\operatorname{det}(s I-A)-C(s I-A)^{\mathrm{A}} B
$$

(Remark: The last expression is used in [1009] to compute the frequency response of a transfer function.) (Proof: Note that

$$
\begin{aligned}
\operatorname{det}\left[I-C(s I-A)^{-1} B\right] \operatorname{det}(s I-A) & =\operatorname{det}\left[\begin{array}{cc}
s I-A & B \\
C & I
\end{array}\right] \\
& =\operatorname{det}\left[\begin{array}{cc}
s I-A & B \\
C & I
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
-C & I
\end{array}\right] \\
& =\operatorname{det}\left[\begin{array}{cc}
s I-A-B C & B \\
0 & I
\end{array}\right] \\
& =\operatorname{det}(s I-A-B C) .)
\end{aligned}
$$

Fact 12.22.14. Let $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{m \times n}$, and $K \in \mathbb{R}^{m \times n}$, and assume that $A+B K$ is nonsingular. Then,

$$
\operatorname{det}\left[\begin{array}{cc}
A & B \\
C & 0
\end{array}\right]=(-1)^{m} \operatorname{det}(A+B K) \operatorname{det}\left[C(A+B K)^{-1} B\right]
$$

Hence, $\left[\begin{array}{cc}A & B \\ C & 0\end{array}\right]$ is nonsingular if and only if $C(A+B K)^{-1} B$ is nonsingular. (Proof: Note that

$$
\begin{aligned}
\operatorname{det}\left[\begin{array}{cc}
A & B \\
C & 0
\end{array}\right] & =\operatorname{det}\left[\begin{array}{cc}
A & B \\
C & 0
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
K & I
\end{array}\right] \\
& =\operatorname{det}\left[\begin{array}{cc}
A+B K & B \\
C & 0
\end{array}\right] \\
& \left.=\operatorname{det}(A+B K) \operatorname{det}\left[-C(A+B K)^{-1} B\right] .\right)
\end{aligned}
$$

Fact 12.22.15. Let $A_{1} \in \mathbb{R}^{n \times n}, C_{1} \in \mathbb{R}^{1 \times n}, A_{2} \in \mathbb{R}^{m \times m}$, and $B_{2} \in \mathbb{R}^{m \times 1}$, let $\lambda \in \mathbb{C}$, assume that λ is an observable eigenvalue of $\left(A_{1}, C_{1}\right)$ and a controllable eigenvalue of $\left(A_{2}, B_{2}\right)$, and define the dynamics matrix \mathcal{A} of the cascaded system by

$$
\mathcal{A} \triangleq\left[\begin{array}{cc}
A_{1} & 0 \\
B_{2} C_{1} & A_{2}
\end{array}\right]
$$

Then,

$$
\operatorname{amult}_{\mathcal{A}}(\lambda)=\operatorname{amult}_{A_{1}}(\lambda)+\operatorname{amult}_{A_{2}}(\lambda)
$$

and

$$
\operatorname{gmult}_{\mathcal{A}}(\lambda)=1
$$

(Remark: The eigenvalue λ is a cyclic eigenvalue of both subsystems as well as the cascaded system. In other words, λ, which occurs in a single Jordan block of each subsystem, occurs in a single Jordan block in the cascaded system. Effectively, the Jordan blocks of the subsystems corresponding to λ are merged.)

Fact 12.22.16. Let $G_{1} \in \mathbb{R}^{l_{1} \times m}(s)$ and $G_{2} \in \mathbb{R}^{l_{2} \times m}(s)$ be strictly proper. Then,

$$
\left\|\left[\begin{array}{l}
G_{1} \\
G_{2}
\end{array}\right]\right\|_{\mathrm{H}_{2}}^{2}=\left\|G_{1}\right\|_{\mathrm{H}_{2}}^{2}+\left\|G_{2}\right\|_{\mathrm{H}_{2}}^{2}
$$

Fact 12.22.17. Let $G_{1}, G_{2} \in \mathbb{R}^{m \times m}(s)$ be strictly proper. Then,

$$
\left\|\left[\begin{array}{l}
G_{1} \\
G_{2}
\end{array}\right]\right\|_{\mathrm{H}_{2}}=\left\|\left[\begin{array}{ll}
G_{1} & G_{2}
\end{array}\right]\right\|_{\mathrm{H}_{2}}
$$

Fact 12.22.18. Let $G(s) \triangleq \frac{\alpha}{s+\beta}$, where $\beta>0$. Then,

$$
\|G\|_{\mathrm{H}_{2}}=\frac{|\alpha|}{\sqrt{2 \beta}}
$$

Fact 12.22.19. Let $G(s) \triangleq \frac{\alpha_{1} s+\alpha_{0}}{s^{2}+\beta_{1} s+\beta_{0}}$, where $\beta_{0}, \beta_{1}>0$. Then,

$$
\|G\|_{\mathrm{H}_{2}}=\sqrt{\frac{\alpha_{0}^{2}}{2 \beta_{0} \beta_{1}}+\frac{\alpha_{1}^{2}}{2 \beta_{1}}}
$$

Fact 12.22.20. Let $G_{1}(s)=\frac{\alpha_{1}}{s+\beta_{1}}$ and $G_{2}(s)=\frac{\alpha_{2}}{s+\beta_{2}}$, where $\beta_{1}, \beta_{2}>0$. Then,

$$
\left\|G_{1} G_{2}\right\|_{\mathrm{H}_{2}} \leq\left\|G_{1}\right\|_{\mathrm{H}_{2}}\left\|G_{2}\right\|_{\mathrm{H}_{2}}
$$

if and only if $\beta_{1}+\beta_{2} \geq 2$. (Remark: The H_{2} norm is not submultiplicative.)

12.23 Facts on the Riccati Equation

Fact 12.23.1. Assume that (A, B) is stabilizable, and assume that \mathcal{H} defined by (12.16.8) has an imaginary eigenvalue λ. Then, every Jordan block of \mathcal{H} associated with λ has even order. (Proof: Let P be a solution of (12.16.4), and let \mathcal{J} denote the Jordan form of $A-\Sigma P$. Then, there exists a nonsingular $2 n \times 2 n$ block-diagonal matrix \mathcal{S} such that $\hat{\mathcal{H}} \triangleq \mathcal{S}^{-1} \mathcal{H} \mathcal{S}=\left[\begin{array}{cc}\mathcal{J} & \hat{\Sigma} \\ 0 & -\mathcal{J}^{\mathrm{T}}\end{array}\right]$, where $\hat{\Sigma}$ is positive semidefinite. Next, let $\mathcal{J}_{\lambda} \triangleq \lambda I_{r}+N_{r}$ be a Jordan block of \mathcal{J} associated with λ, and consider the submatrix of $\lambda I-\hat{\mathcal{H}}$ consisting of the rows and columns of $\lambda I-\mathcal{J}_{\lambda}$ and $\lambda I+\partial_{\lambda}^{\mathrm{T}}$. Since (A, B) is stabilizable, it follows that the rank of this submatrix is $2 r-1$. Hence, every Jordan block of \mathcal{H} associated with λ has even order.) (Remark: Canonical forms for symplectic and Hamiltonian matrices are discussed in 873.)

Fact 12.23.2. Let $A, B \in \mathbb{C}^{n \times n}$, assume that A and B are positive definite, let $S \in \mathbb{C}^{n \times n}$, satisfy $A=S^{*} S$, and define

$$
X \triangleq S^{-1}\left(S B S^{*}\right)^{1 / 2} S^{-*}
$$

Then, X satisfies $X A X=B$. (Proof: See [683, p. 52].)
Fact 12.23.3. Let $A, B \in \mathbb{C}^{n \times n}$, and assume that the $2 n \times 2 n$ matrix

$$
\left[\begin{array}{cc}
A & -2 I \\
2 B-\frac{1}{2} A^{2} & A
\end{array}\right]
$$

is simple. Then, there exists a matrix $X \in \mathbb{C}^{n \times n}$ satisfying

$$
X^{2}+A X+B=0
$$

(Proof: See 1337.)
Fact 12.23.4. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are positive semidefinite. Then, the following statements hold:
i) If A is positive definite, then $X=A \# B$ is the unique positive-definite solution of

$$
X A^{-1} X-B=0
$$

ii) If A is positive definite, then $X=\frac{1}{2}[-A+A \#(A+4 B)]$ is the unique positive-definite solution of

$$
X A^{-1} X+X-B=0
$$

iii) If A is positive definite, then $X=\frac{1}{2}[A+A \#(A+4 B)]$ is the unique positive-definite solution of

$$
X A^{-1} X-X-B=0
$$

iv) If B is positive definite, then $X=A \# B$ is the unique positive-definite solution of

$$
X B^{-1} X=A
$$

$v)$ If A is positive definite, then $X=\frac{1}{2}\left[A+A \#\left(A+4 B A^{-1} B\right)\right]$ is the unique positive-definite solution of

$$
B X^{-1} B-X+A=0
$$

vi) If A is positive definite, then $X=\frac{1}{2}\left[-A+A \#\left(A+4 B A^{-1} B\right)\right]$ is the unique positive-definite solution of

$$
B X^{-1} B-X-A=0
$$

vii) If $0<A \leq B$, then $X=\frac{1}{2}[A+A \#(4 B-3 A)]$ is the unique positive-definite solution of

$$
X A^{-1} X-X-(B-A)=0
$$

viii) If $0<A \leq B$, then $X=\frac{1}{2}[-A+A \#(4 B-3 A)]$ is the unique positivedefinite solution of

$$
X A^{-1} X+X-(B-A)=0
$$

$i x)$ If $0<A<B, X(0)$ is positive definite, and $X(t)$ satisfies

$$
\dot{X}=-X A^{-1} X+X+(B-A)
$$

then

$$
\lim _{t \rightarrow \infty} X(t)=\frac{1}{2}[A+A \#(4 B-3 A)]
$$

$x)$ If $0<A<B, X(0)$ is positive definite, and $X(t)$ satisfies

$$
\dot{X}=-X A^{-1} X-X+(B-A)
$$

then

$$
\lim _{t \rightarrow \infty} X(t)=\frac{1}{2}[A+A \#(4 B-3 A)]
$$

$x i)$ If $0<A<B, X(0)$ and $Y(0)$ are positive definite, $X(t)$ satisfies

$$
\dot{X}=-X A^{-1} X+X+(B-A)
$$

and $Y(t)$ satisfies

$$
\dot{Y}=-Y A^{-1} Y-Y+(B-A)
$$

then

$$
\lim _{t \rightarrow \infty} X(t) \# Y(t)=A \#(B-A)
$$

(Proof: See 910.) (Remark: See Fact 8.10.43,) (Remark: The solution X given by vii) is the golden mean of A and B. In the scalar case with $A=1$ and $B=2$, the solution X of $X^{2}-X-1=0$ is the golden ratio $\frac{1}{2}(1+\sqrt{5})$. See Fact 4.11.12 $)$

Fact 12.23.5. Let $P_{0} \in \mathbb{R}^{n \times n}$, assume that P_{0} is positive definite, and, for all $t \geq 0$, let $P(t) \in \mathbb{R}^{n \times n}$ satisfy

$$
\begin{gathered}
\dot{P}(t)=A^{\mathrm{T}} P(t)+P(t) A+P(t) V P(t), \\
P(0)=P_{0}
\end{gathered}
$$

Then, for all $t \geq 0$,

$$
P(t)=e^{t A^{\mathrm{T}}}\left[P_{0}^{-1}-\int_{0}^{t} e^{\tau A} V e^{\tau A^{\mathrm{T}}} \mathrm{~d} \tau\right]^{-1} e^{t A}
$$

(Remark: $P(t)$ satisfies a Riccati differential equation.)

Fact 12.23.6. Let $G_{\mathrm{c}} \sim\left[\begin{array}{c|c}A_{\mathrm{c}} & B_{\mathrm{c}} \\ \hline C_{\mathrm{c}} & 0\end{array}\right]$ denote an n th-order dynamic controller for the standard control problem. If G_{c} minimizes $\|\tilde{\mathcal{G}}\|_{2}$, then G_{c} is given by

$$
\begin{aligned}
& A_{\mathrm{c}} \triangleq A+B C_{\mathrm{c}}-B_{\mathrm{c}} C-B_{\mathrm{c}} D C_{\mathrm{c}} \\
& B_{\mathrm{c}} \triangleq\left(Q C^{\mathrm{T}}+V_{12}\right) V_{2}^{-1} \\
& C_{\mathrm{c}} \triangleq-R_{2}^{-1}\left(B^{\mathrm{T}} P+R_{12}^{\mathrm{T}}\right)
\end{aligned}
$$

where P and Q are positive-semidefinite solutions to the algebraic Riccati equations

$$
\begin{aligned}
& \hat{A}_{\mathrm{R}}^{\mathrm{T}} P+P \hat{A}_{\mathrm{R}}-P B R_{2}^{-1} B^{\mathrm{T}} P+\hat{R}_{1}=0 \\
& \hat{A}_{\mathrm{E}} Q+Q \hat{A}_{\mathrm{E}}^{\mathrm{T}}-Q C^{\mathrm{T}} V_{2}^{-1} C Q+\hat{V}_{1}=0
\end{aligned}
$$

where \hat{A}_{R} and \hat{R}_{1} are defined by

$$
\hat{A}_{\mathrm{R}} \triangleq A-B R_{2}^{-1} R_{12}^{\mathrm{T}}, \quad \hat{R}_{1} \triangleq R_{1}-R_{12} R_{2}^{-1} R_{12}^{\mathrm{T}}
$$

and \hat{A}_{E} and \hat{V}_{1} are defined by

$$
\hat{A}_{\mathrm{E}} \triangleq A-V_{12} V_{2}^{-1} C, \quad \hat{V}_{1} \triangleq V_{1}-V_{12} V_{2}^{-1} V_{12}^{\mathrm{T}}
$$

Furthermore, the eigenvalues of the closed-loop system are given by

$$
\operatorname{mspec}\left(\left[\begin{array}{cc}
A & B C_{\mathrm{c}} \\
B_{\mathrm{c}} C & A_{\mathrm{c}}+B_{\mathrm{c}} D C_{\mathrm{c}}
\end{array}\right]\right)=\operatorname{mspec}\left(A+B C_{\mathrm{c}}\right) \cup \operatorname{mspec}\left(A-B_{\mathrm{c}} C\right)
$$

Fact 12.23.7. Let $G_{\mathrm{c}} \sim\left[\begin{array}{c|c}A_{\mathrm{c}} & B_{\mathrm{c}} \\ \hline C_{\mathrm{c}} & 0\end{array}\right]$ denote an n th-order dynamic controller for the discrete-time standard control problem. If G_{c} minimizes $\|\tilde{\mathcal{G}}\|_{2}$, then G_{c} is given by

$$
\begin{aligned}
& A_{\mathrm{c}} \triangleq A+B C_{\mathrm{c}}-B_{\mathrm{c}} C-B_{\mathrm{c}} D C_{\mathrm{c}} \\
& B_{\mathrm{c}} \triangleq\left(A Q C^{\mathrm{T}}+V_{12}\right)\left(V_{2}+C Q C^{\mathrm{T}}\right)^{-1} \\
& C_{\mathrm{c}} \triangleq-\left(R_{2}+B^{\mathrm{T}} P B\right)^{-1}\left(R_{12}^{\mathrm{T}}+B^{\mathrm{T}} P A\right) \\
& D_{\mathrm{c}} \triangleq 0
\end{aligned}
$$

and the eigenvalues of the closed-loop system are given by

$$
\operatorname{mspec}\left(\left[\begin{array}{cc}
A & B C_{\mathrm{c}} \\
B_{\mathrm{c}} C & A_{\mathrm{c}}+B_{\mathrm{c}} D C_{\mathrm{c}}
\end{array}\right]\right)=\operatorname{mspec}\left(A+B C_{\mathrm{c}}\right) \cup \operatorname{mspec}\left(A-B_{\mathrm{c}} C\right)
$$

Now, assume that $D=0$ and $G_{\mathrm{c}} \sim\left[\begin{array}{c|c}A_{\mathrm{c}} & B_{\mathrm{c}} \\ \hline C_{\mathrm{c}} & D_{\mathrm{c}}\end{array}\right]$. Then,

$$
\begin{aligned}
& A_{\mathrm{c}} \triangleq A+B C_{\mathrm{c}}-B_{\mathrm{c}} C-B D_{\mathrm{c}} C \\
& B_{\mathrm{c}} \triangleq\left(A Q C^{\mathrm{T}}+V_{12}\right)\left(V_{2}+C Q C^{\mathrm{T}}\right)^{-1}+B D_{\mathrm{c}} \\
& C_{\mathrm{c}} \triangleq-\left(R_{2}+B^{\mathrm{T}} P B\right)^{-1}\left(R_{12}^{\mathrm{T}}+B^{\mathrm{T}} P A\right)-D_{\mathrm{c}} C \\
& D_{\mathrm{c}} \triangleq\left(R_{2}+B^{\mathrm{T}} P B\right)^{-1}\left[B^{\mathrm{T}} P A Q C^{\mathrm{T}}+R_{12}^{\mathrm{T}} Q C^{\mathrm{T}}+B^{\mathrm{T}} P V_{12}\right]\left(V_{2}+C Q C^{\mathrm{T}}\right)^{-1}
\end{aligned}
$$

and the eigenvalues of the closed-loop system are given by

$$
\operatorname{mspec}\left(\left[\begin{array}{cc}
A+B D_{\mathrm{c}} C & B C_{\mathrm{c}} \\
B_{\mathrm{c}} C & A_{\mathrm{c}}
\end{array}\right]\right)=\operatorname{mspec}\left(A+B C_{\mathrm{c}}\right) \cup \operatorname{mspec}\left(A-B_{\mathrm{c}} C\right)
$$

In both cases, P and Q are positive-semidefinite solutions to the discrete-time algebraic Riccati equations

$$
\begin{aligned}
& P=\hat{A}_{\mathrm{R}}^{\mathrm{T}} P \hat{A}_{\mathrm{R}}-\hat{A}_{\mathrm{R}}^{\mathrm{T}} P B\left(R_{2}+B^{\mathrm{T}} P B\right)^{-1} B^{\mathrm{T}} P \hat{A}_{\mathrm{R}}+\hat{R}_{1} \\
& Q=\hat{A}_{\mathrm{E}} Q \hat{A}_{\mathrm{E}}^{\mathrm{T}}-\hat{A}_{\mathrm{E}} Q C^{\mathrm{T}}\left(V_{2}+C Q C^{\mathrm{T}}\right)^{-1} C Q \hat{A}_{\mathrm{E}}^{\mathrm{T}}+\hat{V}_{1}
\end{aligned}
$$

where \hat{A}_{R} and \hat{R}_{1} are defined by

$$
\hat{A}_{\mathrm{R}} \triangleq A-B R_{2}^{-1} R_{12}^{\mathrm{T}}, \quad \hat{R}_{1} \triangleq R_{1}-R_{12} R_{2}^{-1} R_{12}^{\mathrm{T}}
$$

and \hat{A}_{E} and \hat{V}_{1} are defined by

$$
\hat{A}_{\mathrm{E}} \triangleq A-V_{12} V_{2}^{-1} C, \quad \hat{V}_{1} \triangleq V_{1}-V_{12} V_{2}^{-1} V_{12}^{\mathrm{T}}
$$

(Proof: See 618].)

12.24 Notes

Linear system theory is treated in 261, 1150, 1336, 1450. Time-varying linear systems are considered in 367,1150 , while discrete-time systems are emphasized in 660 . The equivalence of $i v$) and v) of Theorem 12.6 .18 is the $P B H$ test, due to [656]. Spectral factorization results are given in 337. Stabilization aspects are discussed in 429. Observable asymptotic stability and controllable asymptotic stability were introduced and used to analyze Lyapunov equations in 1207. Zeros are treated in [21, 478, 787, 791, 943, 1074, 1154, 1178. Matrix-based methods for linear system identification are developed in [1363, while stochastic theory is considered in 633.

Solutions of the LQR problem under weak conditions are given in 544. Solutions of the Riccati equation are considered in $562,845,848,864,865,974,1124$, 1434 1441, 1446. Proposition 12.16.16 is based on Theorem 3.6 of 1455, p. 79]. A variation of Theorem 12.18.1] is given without proof by Theorem 7.2.1 of [749, p. 125].

There are numerous extensions to the results given in this chapter relating to various generalizations of (12.16.4). These generalizations include the case in which R_{1} is indefinite [561, 14381440 as well as the case in which Σ is indefinite 1166. The latter case is relevant to H_{∞} optimal control theory [188]. Additional extensions include the Riccati inequality $A^{\mathrm{T}} P+P A+R_{1}-P \Sigma P \geq 0$ [1116, 1165, 1166, 1167, the discrete-time Riccati equation [8, 661, 743, 864, 1116, 1445, and fixed-order control 738.

Bibliography

[1] A. Abdessemed and E. B. Davies, "Some Commutator Estimates in the Schatten Classes," J. London Math. Soc., Vol. s2-39, pp. 299-308, 1989. (Cited on page 584)
[2] R. Ablamowicz, "Matrix Exponential via Clifford Algebras," J. Nonlin. Math. Phys., Vol. 5, pp. 294-313, 1998. (Cited on page 673)
[3] H. Abou-Kandil, G. Freiling, V. Ionescu, and G. Jank, Matrix Riccati Equations in Control and Systems Theory. Basel: Birkhauser, 2003. (Cited on page xviil)
[4] S. Abramovich, J. Baric, M. Matic, and J. Pecaric, "On Van De Lune-Alzer's Inequality," J. Math. Ineq., Vol. 1, pp. 563-587, 2007. (Cited on page 30)
[5] L. Aceto and D. Trigiante, "The Matrices of Pascal and Other Greats," Amer. Math. Monthly, Vol. 108, pp. 232-245, 2001. (Cited on pages [354, 362, 447 and 672)
[6] S. Afriat, "Orthogonal and Oblique Projectors and the Characteristics of Pairs of Vector Spaces," Proc. Cambridge Phil. Soc., Vol. 53, pp. 800-816, 1957. (Cited on page 210)
[7] R. Agaev and P. Chebotarev, "On the Spectra of Nonsymmetric Laplacian Matrices," Lin. Alg. Appl., Vol. 399, pp. 157-168, 2005. (Cited on page 708)
[8] C. D. Ahlbrandt and A. C. Peterson, Discrete Hamiltonian Systems: Difference Equations, Continued Fractions, and Riccati Equations. Dordrecht: Kluwer, 1996. (Cited on page 805])
[9] E. Ahn, S. Kim, and Y. Lim, "An Extended Lie-Trotter Formula and Its Application," Lin. Alg. Appl., Vol. 427, pp. 190-196, 2007. (Cited on page 683.)
[10] A. C. Aitken, Determinants and Matrices, 9th ed. Edinburgh: Oliver and Boyd, 1956. (Cited on page xix)
[11] M. Aivazis, Group Theory in Physics—Problems and Solutions. Singapore: World Scientific, 1991. (Cited on page 190)
[12] M. Al-Ahmar, "An Identity of Jacobi," Amer. Math. Monthly, Vol. 103, pp. 78-79, 1996. (Cited on page 196)
[13] A. A. Albert and B. Muckenhoupt, "On Matrices of Trace Zero," Michigan Math. J., Vol. 4, pp. 1-3, 1957. (Cited on page 313)
[14] A. E. Albert, "Conditions for Positive and Nonnegative Definiteness in Terms of Pseudoinverses," SIAM J. Appl. Math., Vol. 17, pp. 434-440, 1969. (Cited on page 541)
[15] A. E. Albert, Regression and the Moore-Penrose Pseudoinverse. New York: Academic Press, 1972. (Cited on pages $380,382,385$ 390, and 618)
[16] R. Aldrovandi, Special Matrices of Mathematical Physics: Stochastic, Circulant and Bell Matrices. Singapore: World Scientific, 2001. (Cited on pages xvii 275 and 357)
[17] M. Aleksiejczuk and A. Smoktunowicz, "On Properties of Quadratic Matrices," Mathematica Pannonica, Vol. 112, pp. 239-248, 2000. (Cited on page 391.)
[18] A. Y. Alfakih, "On the Nullspace, the Rangespace and the Characteristic Polynomial of Euclidean Distance Matrices," Lin. Alg. Appl., Vol. 416, pp. 348-354, 2006. (Cited on page 573)
[19] M. Alic, P. S. Bullen, J. E. Pecaric, and V. Volenec, "On the Geometric-Arithmetic Mean Inequality for Matrices," Mathematical Communications, Vol. 2, pp. 125-128, 1997. (Cited on page 53)
[20] M. Alic, B. Mond, J. E. Pecaric, and V. Volenec, "Bounds for the Differences of Matrix Means," SIAM J. Matrix Anal. Appl., Vol. 18, pp. 119-123, 1997. (Cited on page 463)
[21] H. Aling and J. M. Schumacher, "A Nine-Fold Decomposition for Linear Systems," Int. J. Contr., Vol. 39, pp. 779-805, 1984. (Cited on page 805)
[22] G. Alpargu and G. P. H. Styan, "Some Remarks and a Bibliography on the Kantorovich Inequality," in Multidimensional Statistical Analysis and Theory of Random Matrices, A. K. Gupta and V. L. Girko, Eds. Utrecht: VSP, 1996, pp. 1-13. (Cited on page 501)
[23] R. C. Alperin, "The Matrix of a Rotation," College Math. J., Vol. 20, p. 230, 1989. (Cited on page 194)
[24] C. Alsina and R. Ger, "On Some Inequalities and Stability Results Related to the Exponential Function," J. Ineq. Appl., Vol. 2, pp. 373-380, 1998. (Cited on page 34)
[25] C. Alsina and R. B. Nelsen, "On Candido's Identity," Math. Mag., Vol. 80, pp. 226-228, 2007. (Cited on page 32)
[26] S. L. Altmann, Rotations, Quaternions, and Double Groups. New York: Oxford University Press, 1986. (Cited on pages xvii 226, and 228)
[27] S. L. Altmann, "Hamilton, Rodrigues, and the Quaternion Scandal," Math. Mag., Vol. 62, pp. 291-308, 1989. (Cited on pages 193 and 194)
[28] H. Alzer, "A Lower Bound for the Difference between the Arithmetic and Geometric Means," Nieuw. Arch. Wisk., Vol. 8, pp. 195-197, 1990. (Cited on page 52.)
[29] S. Amghibech, "Problem 11296," Amer. Math. Monthly, Vol. 114, p. 452, 2007. (Cited on page 487)
[30] B. D. O. Anderson, "Orthogonal Decomposition Defined by a Pair of SkewSymmetric Forms," Lin. Alg. Appl., Vol. 8, pp. 91-93, 1974. (Cited on pages xvii and 343)
[31] B. D. O. Anderson, "Weighted Hankel-Norm Approximation: Calculation of Bounds," Sys. Contr. Lett., Vol. 7, pp. 247-255, 1986. (Cited on page 502)
[32] B. D. O. Anderson, E. I. Jury, and M. Mansour, "Schwarz Matrix Properties for Continuous and Discrete Time Systems," Int. J. Contr., Vol. 23, pp. 1-16, 1976. (Cited on page 704)
[33] B. D. O. Anderson and J. B. Moore, "A Matrix Kronecker Lemma," Lin. Alg. Appl., Vol. 15, pp. 227-234, 1976. (Cited on page 465)
[34] G. Anderson, M. Vamanamurthy, and M. Vuorinen, "Monotonicity Rules in Calculus," Amer. Math. Monthly, Vol. 113, pp. 805-816, 2006. (Cited on pages 232 and 29.)
[35] T. W. Anderson and I. Olkin, "An Extremal Problem for Positive Definite Matrices," Lin. Multilin. Alg., Vol. 6, pp. 257-262, 1978. (Cited on page 459)
[36] W. N. Anderson, "Shorted Operators," SIAM J. Appl. Math., Vol. 20, pp. 520-525, 1971. (Cited on pages 529 and 530)
[37] W. N. Anderson and R. J. Duffin, "Series and Parallel Addition of Matrices," J. Math. Anal. Appl., Vol. 26, pp. 576-594, 1969. (Cited on page 529)
[38] W. N. Anderson, E. J. Harner, and G. E. Trapp, "Eigenvalues of the Difference and Product of Projections," Lin. Multilin. Alg., Vol. 17, pp. 295-299, 1985. (Cited on page 335)
[39] W. N. Anderson and M. Schreiber, "On the Infimum of Two Projections," Acta Sci. Math., Vol. 33, pp. 165-168, 1972. (Cited on pages 384 385 and 460)
[40] W. N. Anderson and G. E. Trapp, "Shorted Operators II," SIAM J. Appl. Math., Vol. 28, pp. 60-71, 1975. (Cited on pages 443 529 530 and 541)
[41] W. N. Anderson and G. E. Trapp, "Inverse Problems for Means of Matrices," SIAM J. Alg. Disc. Meth., Vol. 7, pp. 188-192, 1986. (Cited on page 463)
[42] W. N. Anderson and G. E. Trapp, "Symmetric Positive Definite Matrices," Amer. Math. Monthly, Vol. 95, pp. 261-262, 1988. (Cited on page475)
[43] T. Ando, "Concavity of Certain Maps on Positive Definite Matrices and Applications to Hadamard Products," Lin. Alg. Appl., Vol. 26, pp. 203-241, 1979. (Cited on pages 439 536, 537, 540, 542 and 685)
[44] T. Ando, "Inequalities for M-Matrices," Lin. Multilin. Alg., Vol. 8, pp. 291-316, 1980. (Cited on page 535)
[45] T. Ando, "On the Arithmetic-Geometric-Harmonic-Mean Inequalities for Positive Definite Matrices," Lin. Alg. Appl., Vol. 52/53, pp. 31-37, 1983. (Cited on page 463)
[46] T. Ando, "On Some Operator Inequalities," Math. Ann., Vol. 279, pp. 157-159, 1987. (Cited on pages 463 and 464)
[47] T. Ando, "Majorizations and Inequalities in Matrix Theory," Lin. Alg. Appl., Vol. 199, pp. 17-67, 1994. (Cited on pages 472, 490 583 584588,600612689 and 694)
[48] T. Ando, "Majorization Relations for Hadamard Products," Lin. Alg. Appl., Vol. 223-224, pp. 57-64, 1995. (Cited on page 535)
[49] T. Ando, "Matrix Young Inequalities," Oper. Theory Adv. Appl., Vol. 75, pp. 3338, 1995. (Cited on page 612,)
[50] T. Ando, "Problem of Infimum in the Positive Cone," in Analytic and Geometric Inequalities and Applications, T. M. Rassias and H. M. Srivastava, Eds. Dordrecht: Kluwer, 1999, pp. 1-12. (Cited on pages 460 and 530)
[51] T. Ando, "Lowner Inequality of Indefinite Type," Lin. Alg. Appl., Vol. 385, pp. 73-80, 2004. (Cited on pages 457 and 795,)
[52] T. Ando and R. Bhatia, "Eigenvalue Inequalities Associated with the Cartesian Decomposition," Lin. Multilin. Alg., Vol. 22, pp. 133-147, 1987. (Cited on page 515)
[53] T. Ando and F. Hiai, "Log-Majorization and Complementary Golden-Thompson Type Inequalities," Lin. Alg. Appl., Vol. 197/198, pp. 113-131, 1994. (Cited on pages 465 683, 686 693 and 694)
[54] T. Ando and F. Hiai, "Hölder Type Inequalities for Matrices," Math. Ineq. Appl., Vol. 1, pp. 1-30, 1998. (Cited on pages 442460 and 461)
[55] T. Ando, F. Hiai, and K. Okubo, "Trace Inequalities for Multiple Products of Two Matrices," Math. Ineq. Appl., Vol. 3, pp. 307-318, 2000. (Cited on pages 477 and 478)
[56] T. Ando, R. A. Horn, and C. R. Johnson, "The Singular Values of a Hadamard Product: A Basic Inequality," Lin. Multilin. Alg., Vol. 21, pp. 345-365, 1987. (Cited on page 615)
[57] T. Ando, C.-K. Li, and R. Mathias, "Geometric Means," Lin. Alg. Appl., Vol. 385, pp. 305-334, 2004. (Cited on page 463)
[58] T. Ando and X. Zhan, "Norm Inequalities Related to Operator Monotone Functions," Math. Ann., Vol. 315, pp. 771-780, 1999. (Cited on pages 514,590 and 695)
[59] T. Andreescu and D. Andrica, Complex Numbers from A to Z. Boston: Birkhauser, 2006. (Cited on pages 70, 71, 155 156, 158 159, and 160)
[60] T. Andreescu and Z. Feng, 103 Trigonometry Problems. Boston: Birkhauser, 2004. (Cited on page 159)
[61] E. Andruchow, G. Corach, and D. Stojanoff, "Geometric Operator Inequalities," Lin. Alg. Appl., Vol. 258, pp. 295-310, 1997. (Cited on pages 576 and 589.)
[62] E. Angel, Interactive Computer Graphics, 3rd ed. Reading: Addison-Wesley, 2002. (Cited on pages xviil and 194)
[63] Anonymous, "Like the Carlson's inequality," http://www.mathlinks.ro/viewtopic. $\mathrm{php} ? \mathrm{t}=151210$. (Cited on page 42)
[64] A. C. Antoulas and D. C. Sorensen, "Lyapunov, Lanczos, and Inertia," Lin. Alg. Appl., Vol. 326, pp. 137-150, 2001. (Cited on page 793)
[65] J. D. Aplevich, Implicit Linear Systems. Berlin: Springer, 1991. (Cited on pages xvii and 304)
[66] T. Apostol, Introduction to Analytic Number Theory. New York: Springer, 1998. (Cited on page 447)
[67] T. M. Apostol, "Some Explicit Formulas for the Exponential Matrix," Amer. Math. Monthly, Vol. 76, pp. 289-292, 1969. (Cited on page 673)
[68] T. M. Apostol, Ed., Mathematical Analysis, 2nd ed. Reading: Addison Wesley, 1974. (Cited on pages xxxiv 13666636634 and 635)
[69] H. Araki, "On an Inequality of Lieb and Thirring," Lett. Math. Phys., Vol. 19, pp. 167-170, 1990. (Cited on pages 479 and 583)
[70] H. Araki and S. Yamagami, "An Inequality for Hilbert-Schmidt Norm," Comm. Math. Phys., Vol. 81, pp. 89-96, 1981. (Cited on page 584)
[71] J. Araujo and J. D. Mitchell, "An Elementary Proof that Every Singular Matrix Is a Product of Idempotent Matrices," Amer. Math. Monthly, Vol. 112, pp. 641-645, 2005. (Cited on page 350)
[72] A. Arimoto, "A Simple Proof of the Classification of Normal Toeplitz Matrices," Elec. J. Lin. Alg., Vol. 9, pp. 108-111, 2002. (Cited on page 357)
[73] T. Arponen, "A Matrix Approach to Polynomials," Lin. Alg. Appl., Vol. 359, pp. 181-196, 2003. (Cited on page 672)
[74] V. Arsigny, P. Fillard, X. Pennec, and N. Ayache, "Geometric Means in a Novel Vector Space Structure on Symmetric Positive-Definite Matrices," SIAM J. Matrix Anal. Appl., Vol. 29, pp. 328-347, 2007. (Cited on page 686)
[75] M. Artin, Algebra. Englewood Cliffs: Prentice-Hall, 1991. (Cited on pages 223 and (229),
[76] M. Artzrouni, "A Theorem on Products of Matrices," Lin. Alg. Appl., Vol. 49, pp. 153-159, 1983. (Cited on page 715)
[77] A. Arvanitoyeorgos, An Introduction to Lie Groups and the Geometry of Homogeneous Spaces. Providence: American Mathematical Society, 2003. (Cited on page 229)
[78] H. Aslaksen, "SO(2) Invariants of a Set of 2×2 Matrices," Math. Scand., Vol. 65, pp. 59-66, 1989. (Cited on pages 260 and 261)
[79] H. Aslaksen, "Laws of Trigonometry on SU(3)," Trans. Amer. Math. Soc., Vol. 317, pp. 127-142, 1990. (Cited on pages 152183 and 261)
[80] H. Aslaksen, "Quaternionic Determinants," Mathematical Intelligencer, Vol. 18, no. 3, pp. 57-65, 1996. (Cited on pages 226 and 229)
[81] H. Aslaksen, "Defining Relations of Invariants of Two 3×3 Matrices," J. Algebra, Vol. 298, pp. 41-57, 2006. (Cited on page 261)
[82] B. A. Asner, "On the Total Nonnegativity of the Hurwitz Matrix," SIAM J. Appl. Math., Vol. 18, pp. 407-414, 1970. (Cited on pages 697 and 702)
[83] Y.-H. Au-Yeung, "A note on Some Theorems on Simultaneous Diagonalization of Two Hermitian Matrices," Proc. Cambridge Phil. Soc., Vol. 70, pp. 383-386, 1971. (Cited on pages 504 and 507)
[84] Y.-H. Au-Yeung, "Some Inequalities for the Rational Power of a Nonnegative Definite Matrix," Lin. Alg. Appl., Vol. 7, pp. 347-350, 1973. (Cited on page 458)
[85] Y.-H. Au-Yeung, "On the Semi-Definiteness of the Real Pencil of Two Hermitian Matrices," Lin. Alg. Appl., Vol. 10, pp. 71-76, 1975. (Cited on page 362)
[86] K. M. R. Audenaert, "A Norm Compression Inequality for Block Partitioned Positive Semidefinite Matrices," Lin. Alg. Appl., Vol. 413, pp. 155-176, 2006. (Cited on page 596.)
[87] K. M. R. Audenaert, "On a Norm Compression Inequality for $2 \times N$ Partitioned Block Matrices," Lin. Alg. Appl., Vol. 428, pp. 781-795, 2008. (Cited on page596)
[88] K. M. R. Audenaert, "On the Araki-Lieb-Thirring Inequality," Int. J. Inform. Sys. Sci., Vol. 4, pp. 78-83, 2008. (Cited on pages 479 and 480)
[89] J. S. Aujla, "Some Norm Inequalities for Completely Monotone Functions," SIAM J. Matrix Anal. Appl., Vol. 22, pp. 569-573, 2000. (Cited on page 514)
[90] J. S. Aujla and J.-C. Bourin, "Eigenvalue Inequalities for Convex and Log-Convex Functions," Lin. Alg. Appl., Vol. 424, pp. 25-35, 2007. (Cited on pages 458521 537, 583 and 592)
[91] J. S. Aujla and F. C. Silva, "Weak Majorization Inequalities and Convex Functions," Lin. Alg. Appl., Vol. 369, pp. 217-233, 2003. (Cited on page 514)
[92] J. S. Aujla and H. L. Vasudeva, "Inequalities Involving Hadamard Product and Operator Means," Math. Japonica, Vol. 42, pp. 265-272, 1995. (Cited on pages 533 539, and 541)
[93] B. Aupetit and J. Zemanek, "A Characterization of Normal Matrices by Their Exponentials," Lin. Alg. Appl., Vol. 132, pp. 119-121, 1990. (Cited on page 695)
[94] M. Avriel, Nonlinear Programming: Analysis and Methods. Englewood Cliffs: Prentice-Hall, 1976, reprinted by Dover, Mineola, 2003. (Cited on page 505)
[95] O. Axelsson, Iterative Solution Methods. Cambridge: Cambridge University Press, 1994. (Cited on page xviii)
[96] L. E. Azar, "On Some Extensions of Hardy-Hilbert's Inequality and Applications," J. Ineq. Appl., pp. 1-14, 2008, article ID 546829. (Cited on page 63)
[97] J. C. Baez, "Symplectic, Quaternionic, Fermionic," http://math.ucr.edu/home /baez/symplectic.html. (Cited on pages 222 and 227)
[98] J. C. Baez, "The Octonions," Bull. Amer. Math. Soc., Vol. 39, pp. 145-205, 2001. (Cited on page 227)
[99] O. Bagdasar, Inequalities and Applications. Cluj-Napoca: Babes-Bolyai University, 2006, Bachelor's Degree Thesis, http://rgmia.vu.edu.au/monographs/index.html. (Cited on pages 223742 and 54)
[100] Z. Bai and G. Golub, "Bounds for the Trace of the Inverse and the Determinant of Symmetric Positive Definite Matrices," Ann. Numer. Math., Vol. 4, pp. 29-38, 1997. (Cited on page 476)
[101] D. W. Bailey and D. E. Crabtree, "Bounds for Determinants," Lin. Alg. Appl., Vol. 2, pp. 303-309, 1969. (Cited on page 270)
[102] H. Bailey and Y. A. Rubinstein, "A Variety of Triangle Inequalities," College Math. J., Vol. 31, pp. 350-355, 2000. (Cited on page 158)
[103] A. Baker, Matrix Groups: An Introduction to Lie Group Theory. New York: Springer, 2001. (Cited on pages 184, 217, 226, 229, 347 660, and 682,)
[104] J. K. Baksalary and O. M. Baksalary, "Nonsingularity of Linear Combinations of Idempotent Matrices," Lin. Alg. Appl., Vol. 388, pp. 25-29, 2004. (Cited on page 203)
[105] J. K. Baksalary and O. M. Baksalary, "Particular Formulae for the Moore-Penrose Inverse of a Columnwise Partitioned Matrix," Lin. Alg. Appl., Vol. 421, pp. 16-23, 2007. (Cited on page 391)
[106] J. K. Baksalary, O. M. Baksalary, and X. Liu, "Further Relationships between Certain Partial Orders of Matrices and their Squares," Lin. Alg. Appl., Vol. 375, pp. 171-180, 2003. (Cited on page 120.)
[107] J. K. Baksalary, O. M. Baksalary, and T. Szulc, "Properties of Schur Complements in Partitioned Idempotent Matrices," Lin. Alg. Appl., Vol. 397, pp. 303-318, 2004. (Cited on page 387)
[108] J. K. Baksalary, O. M. Baksalary, and G. Trenkler, "A Revisitation of Formulae for the Moore-Penrose Inverse of Modified Matrices," Lin. Alg. Appl., Vol. 372, pp. 207-224, 2003. (Cited on page 378.)
[109] J. K. Baksalary, K. Nordstrom, and G. P. H. Styan, "Lowner-Ordering Antitonicity of Generalized Inverses of Hermitian Matrices," Lin. Alg. Appl., Vol. 127, pp. 171182, 1990. (Cited on pages 310457 and 527)
[110] J. K. Baksalary and F. Pukelsheim, "On the Lowner, Minus, and Star Partial Orderings of Nonnegative Definite Matrices," Lin. Alg. Appl., Vol. 151, pp. 135141, 1990. (Cited on pages 467523 and 526)
[111] J. K. Baksalary, F. Pukelsheim, and G. P. H. Styan, "Some Properties of Matrix Partial Orderings," Lin. Alg. Appl., Vol. 119, pp. 57-85, 1989. (Cited on pages 120 527 and 536)
[112] J. K. Baksalary and G. P. H. Styan, "Generalized Inverses of Bordered Matrices," Lin. Alg. Appl., Vol. 354, pp. 41-47, 2002. (Cited on page 391)
[113] O. M. Baksalary, A. Mickiewicz, and G. Trenkler, "Rank of a Nonnegative Definite Matrix," IMAGE, Vol. 39, pp. 27-28, 2007. (Cited on page525)
[114] O. M. Baksalary and G. Trenkler, "Rank of a Generalized Projector," IMAGE, Vol. 39, pp. 25-27, 2007. (Cited on page 178)
[115] O. M. Baksalary and G. Trenkler, "Characterizations of EP, Normal, and Hermitian Matrices," Lin. Multilin. Alg., Vol. 56, pp. 299-304, 2008. (Cited on pages 180 181, 315, 373, 396, 397, and 398)
[116] K. Ball, E. Carlen, and E. Lieb, "Sharp Uniform Convexity and Smoothness Inequalities for Trace Norms," Invent. Math., Vol. 115, pp. 463-482, 1994. (Cited on pages 570 and 586)
[117] C. S. Ballantine, "Products of Positive Semidefinite Matrices," Pac. J. Math., Vol. 23, pp. 427-433, 1967. (Cited on pages 350 and 542)
[118] C. S. Ballantine, "Products of Positive Definite Matrices II," Pac. J. Math., Vol. 24, pp. 7-17, 1968. (Cited on page 542)
[119] C. S. Ballantine, "Products of Positive Definite Matrices III," J. Algebra, Vol. 10, pp. 174-182, 1968. (Cited on page 542)
[120] C. S. Ballantine, "A Note on the Matrix Equation $H=A P+P A^{*}$," Lin. Alg. Appl., Vol. 2, pp. 37-47, 1969. (Cited on pages 314 795, and 796)
[121] C. S. Ballantine, "Products of Positive Definite Matrices IV," Lin. Alg. Appl., Vol. 3, pp. 79-114, 1970. (Cited on page 542)
[122] C. S. Ballantine, "Products of EP Matrices," Lin. Alg. Appl., Vol. 12, pp. 257-267, 1975. (Cited on page 178)
[123] C. S. Ballantine, "Some Involutory Similarities," Lin. Multilin. Alg., Vol. 3, pp. 19-23, 1975. (Cited on page 350.)
[124] C. S. Ballantine, "Products of Involutory Matrices I," Lin. Multilin. Alg., Vol. 5, pp. 53-62, 1977. (Cited on page 351)
[125] C. S. Ballantine, "Products of Idempotent Matrices," Lin. Alg. Appl., Vol. 19, pp. 81-86, 1978. (Cited on page 350.)
[126] C. S. Ballantine and C. R. Johnson, "Accretive Matrix Products," Lin. Multilin. Alg., Vol. 3, pp. 169-185, 1975. (Cited on page 701)
[127] S. Banerjee, "Revisiting Spherical Trigonometry with Orthogonal Projectors," College Math. J., Vol. 35, pp. 375-381, 2004. (Cited on page 161)
[128] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications. New York: Springer, 2001. (Cited on page xviil)
[129] W. Bani-Domi and F. Kittaneh, "Norm Equalities and Inequalities for Operator Matrices," Lin. Alg. Appl., Vol. 429, pp. 57-67, 2008. (Cited on pages 594 and 595)
[130] R. B. Bapat, "Two Inequalities for the Perron Root," Lin. Alg. Appl., Vol. 85, pp. 241-248, 1987. (Cited on pages 66 and 280)
[131] R. B. Bapat, "On Generalized Inverses of Banded Matrices," Elec. J. Lin. Alg., Vol. 16, pp. 284-290, 2007. (Cited on page 218)
[132] R. B. Bapat and M. K. Kwong, "A Generalization of $A \circ A^{-1} \geq I$," Lin. Alg. Appl., Vol. 93, pp. 107-112, 1987. (Cited on page 533)
[133] R. B. Bapat and T. E. S. Raghavan, Nonnegative Matrices and Applications. Cambridge: Cambridge University Press, 1997. (Cited on page 275)
[134] R. B. Bapat and B. Zheng, "Generalized Inverses of Bordered Matrices," Elec. J. Lin. Alg., Vol. 10, pp. 16-30, 2003. (Cited on pages 124 and 391)
[135] I. Y. Bar-Itzhack, D. Hershkowitz, and L. Rodman, "Pointing in Real Euclidean Space," J. Guid. Contr. Dyn., Vol. 20, pp. 916-922, 1997. (Cited on pages 191 and 674)
[136] E. J. Barbeau, Polynomials. New York: Springer, 1989. (Cited on pages 3139 42 47, 158, 708 and 710)
[137] E. R. Barnes and A. J. Hoffman, "On Bounds for Eigenvalues of Real Symmetric Matrices," Lin. Alg. Appl., Vol. 40, pp. 217-223, 1981. (Cited on page 271)
[138] S. Barnett, "A Note on the Bezoutian Matrix," SIAM J. Appl. Math., Vol. 22, pp. 84-86, 1972. (Cited on page 257.)
[139] S. Barnett, "Congenial Matrices," Lin. Alg. Appl., Vol. 41, pp. 277-298, 1981. (Cited on pages 354361 and 362)
[140] S. Barnett, "Inversion of Partitioned Matrices with Patterned Blocks," Int. J. Sys. Sci., Vol. 14, pp. 235-237, 1983. (Cited on page 215)
[141] S. Barnett, Polynomials and Linear Control Systems. New York: Marcel Dekker, 1983. (Cited on pages 362 and 798)
[142] S. Barnett, Matrices in Control Theory, revised ed. Malabar: Krieger, 1984. (Cited on page xviil)
[143] S. Barnett, "Leverrier's Algorithm: A New Proof and Extensions," SIAM J. Matrix Anal. Appl., Vol. 10, pp. 551-556, 1989. (Cited on page 281)
[144] S. Barnett, Matrices: Methods and Applications. Oxford: Clarendon, 1990. (Cited on pages $146,353,362,377,393,454$ and 618)
[145] S. Barnett and P. Lancaster, "Some Properties of the Bezoutian for Polynomial Matrices," Lin. Multilin. Alg., Vol. 9, pp. 99-110, 1980. (Cited on page 257)
[146] S. Barnett and C. Storey, Matrix Methods in Stability Theory. New York: Barnes and Noble, 1970. (Cited on pages Xvii, $135,361,450$ and 702)
[147] W. Barrett, "A Theorem on Inverses of Tridiagonal Matrices," Lin. Alg. Appl., Vol. 27, pp. 211-217, 1979. (Cited on page 220)
[148] W. Barrett, "Hermitian and Positive Definite Matrices," in Handbook of Linear Algebra, L. Hogben, Ed. Boca Raton: Chapman \& Hall/CRC, 2007, pp. 8-1-812. (Cited on page 538)
[149] W. Barrett, C. R. Johnson, and P. Tarazaga, "The Real Positive Definite Completion Problem for a Simple Cycle," Lin. Alg. Appl., Vol. 192, pp. 3-31, 1993. (Cited on page 449)
[150] J. Barria and P. R. Halmos, "Vector Bases for Two Commuting Matrices," Lin. Multilin. Alg., Vol. 27, pp. 147-157, 1990. (Cited on page 319)
[151] H. Bart, I. Gohberg, M. A. Kaashoek, and A. C. M. Ran, "Schur Complements and State Space Realizations," Lin. Alg. Appl., Vol. 399, pp. 203-224, 2005. (Cited on page 800.)
[152] H. Baruh, Analytical Dynamics. Boston: McGraw-Hill, 1999. (Cited on pages 193 , [226, and 676)
[153] A. Barvinok, A Course in Convexity. Providence: American Mathematical Society, 2002. (Cited on pages $43,47,110,111,115,498,511$ and 634)
[154] S. Barza, J. Pecaric, and L.-E. Persson, "Carlson Type Inequalities," J. Ineq. Appl., Vol. 2, pp. 121-135, 1998. (Cited on page 58)
[155] F. L. Bauer, J. Stoer, and C. Witzgall, "Absolute and Monotonic Norms," Numer. Math., Vol. 3, pp. 257-264, 1961. (Cited on page 619)
[156] D. S. Bayard, "An Optimization Result with Application to Optimal Spacecraft Reaction Wheel Orientation Design," in Proc. Amer. Contr. Conf., Arlington, VA, June 2001, pp. 1473-1478. (Cited on page 334.)
[157] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear Programming, 2nd ed. New York: Wiley, 1993. (Cited on pages 279,624 and 626)
[158] N. Bebiano and J. da Providencia, "On the Determinant of Certain Strictly Dissipative Matrices," Lin. Alg. Appl., Vol. 83, pp. 117-128, 1986. (Cited on page 486)
[159] N. Bebiano, J. da Providencia, and R. Lemos, "Matrix Inequalities in Statistical Mechanics," Lin. Alg. Appl., Vol. 376, pp. 265-273, 2004. (Cited on pages xvii 686. 687 and 688)
[160] N. Bebiano, R. Lemos, and J. da Providencia, "Inequalities for Quantum Relative Entropy," Lin. Alg. Appl., Vol. 401, pp. 159-172, 2005. (Cited on pages xvii and 686)
[161] N. Bebiano and M. E. Miranda, "On a Recent Determinantal Inequality," Lin. Alg. Appl., Vol. 201, pp. 99-102, 1994. (Cited on page 335)
[162] E. F. Beckenbach and R. Bellman, Inequalities. Berlin: Springer, 1965. (Cited on pages 76 and 544)
[163] R. I. Becker, "Necessary and Sufficient Conditions for the Simultaneous Diagonability of Two Quadratic Forms," Lin. Alg. Appl., Vol. 30, pp. 129-139, 1980. (Cited on pages 362 and 504)
[164] W. Beckner, "Inequalities in Fourier Analysis," Ann. Math., Vol. 102, p. 159182, 1975. (Cited on page586)
[165] L. W. Beineke and R. J. Wilson, Eds., Topics in Algebraic Graph Theory. Cambridge: Cambridge University Press, 2005. (Cited on page xvii)
[166] T. N. Bekjan, "On Joint Convexity of Trace Functions," Lin. Alg. Appl., Vol. 390, pp. 321-327, 2004. (Cited on page 500)
[167] P. A. Bekker, "The Positive Semidefiniteness of Partitioned Matrices," Lin. Alg. Appl., Vol. 111, pp. 261-278, 1988. (Cited on pages 483484 and 541)
[168] J. G. Belinfante, B. Kolman, and H. A. Smith, "An Introduction to Lie Groups and Lie Algebras with Applications," SIAM Rev., Vol. 8, pp. 11-46, 1966. (Cited on page 722)
[169] G. R. Belitskii and Y. I. Lyubich, Matrix Norms and Their Applications. Basel: Birkhauser, 1988. (Cited on page 619)
[170] R. Bellman, Introduction to Matrix Analysis, 2nd ed. New York: McGraw-Hill, 1960, reprinted by SIAM, Philadelphia, 1995. (Cited on pages $146,280,454$ and 682)
[171] R. Bellman, "Some Inequalities for the Square Root of a Positive Definite Matrix," Lin. Alg. Appl., Vol. 1, pp. 321-324, 1968. (Cited on page 460)
[172] A. Ben-Israel, "A Note on Partitioned Matrices and Equations," SIAM Rev., Vol. 11, pp. 247-250, 1969. (Cited on page 391)
[173] A. Ben-Israel, "The Moore of the Moore-Penrose Inverse," Elect. J. Lin. Alg., Vol. 9, pp. 150-157, 2002. (Cited on page 398)
[174] A. Ben-Israel and T. N. E. Greville, Generalized Inverses: Theory and Applications, 2nd ed. New York: Springer, 2003. (Cited on pages 372 376 391394395398 and 507)
[175] B. Ben Taher and M. Rachidi, "Some Explicit Formulas for the Polynomial Decomposition of the Matrix Exponential and Applications," Lin. Alg. Appl., Vol. 350, pp. 171-184, 2002. (Cited on page 673)
[176] A. Ben-Tal and A. Nemirovski, Lectures on Modern Convex Optimization. Philadelphia: SIAM, 2001. (Cited on pages 110 and 164)
[177] A. T. Benjamin and J. J. Quinn, Proofs That Really Count: The Art of Combinatorial Proof. Washington, DC: Mathematical Association of America, 2003. (Cited on pages 1117 and 278)
[178] L. Berg, "Three Results in Connection with Inverse Matrices," Lin. Alg. Appl., Vol. 84, pp. 63-77, 1986. (Cited on page 129)
[179] C. Berge, The Theory of Graphs. London: Methuen, 1962, reprinted by Dover, Mineola, 2001. (Cited on page xvii)
[180] L. D. Berkovitz, Convexity and Optimization in \mathbb{R}^{n}. New York: Wiley, 2002. (Cited on pages 164 and 635)
[181] A. Berman, M. Neumann, and R. J. Stern, Nonnegative Matrices in Dynamic Systems. New York: Wiley, 1989. (Cited on pages 275 706 and 707)
[182] A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences. New York: Academic Press, 1979, reprinted by SIAM, Philadelphia, 1994. (Cited on pages 176, 230, 275, 277, 706, and 707)
[183] A. Berman, R. S. Varga, and R. C. Ward, "ALPS: Matrices with Nonpositive OffDiagonal Entries," Lin. Alg. Appl., Vol. 21, pp. 233-244, 1978. (Cited on page 706)
[184] D. S. Bernstein, "Inequalities for the Trace of Matrix Exponentials," SIAM J. Matrix Anal. Appl., Vol. 9, pp. 156-158, 1988. (Cited on pages 689 and 692)
[185] D. S. Bernstein, "Some Open Problems in Matrix Theory Arising in Linear Systems and Control," Lin. Alg. Appl., Vol. 162-164, pp. 409-432, 1992. (Cited on page 701)
[186] D. S. Bernstein and S. P. Bhat, "Lyapunov Stability, Semistability, and Asymptotic Stability of Matrix Second-Order Systems," ASME Trans. J. Vibr. Acoustics, Vol. 117, pp. 145-153, 1995. (Cited on pages 338 705 and 722)
[187] D. S. Bernstein and S. P. Bhat, "Nonnegativity, Reducibility, and Semistability of Mass Action Kinetics," in Proc. Conf. Dec. Contr., Phoenix, AZ, December 1999, pp. 2206-2211. (Cited on page 707)
[188] D. S. Bernstein and W. M. Haddad, "LQG Control with an H_{∞} Performance Bound: A Riccati Equation Approach," IEEE Trans. Autom. Contr., Vol. 34, pp. 293-305, 1989. (Cited on page 805)
[189] D. S. Bernstein, W. M. Haddad, D. C. Hyland, and F. Tyan, "Maximum EntropyType Lyapunov Functions for Robust Stability and Performance Analysis," Sys. Contr. Lett., Vol. 21, pp. 73-87, 1993. (Cited on page 343)
[190] D. S. Bernstein and D. C. Hyland, "Compartmental Modeling and Second-Moment Analysis of State Space Systems," SIAM J. Matrix Anal. Appl., Vol. 14, pp. 880901, 1993. (Cited on pages 230 706 and 708)
[191] D. S. Bernstein and W. So, "Some Explicit Formulas for the Matrix Exponential," IEEE Trans. Autom. Contr., Vol. 38, pp. 1228-1232, 1993. (Cited on page 673)
[192] D. S. Bernstein and C. F. Van Loan, "Rational Matrix Functions and Rank-1 Updates," SIAM J. Matrix Anal. Appl., Vol. 22, pp. 145-154, 2000. (Cited on page 127)
[193] K. V. Bhagwat and R. Subramanian, "Inequalities between Means of Positive Operators," Math. Proc. Camb. Phil. Soc., Vol. 83, pp. 393-401, 1978. (Cited on pages 433,459 and 683)
[194] S. P. Bhat and D. S. Bernstein, "Average-Preserving Symmetries and Energy Equipartition in Linear Hamiltonian Systems," preprint. (Cited on page 227)
[195] S. P. Bhat and D. S. Bernstein, "Nontangency-Based Lyapunov Tests for Convergence and Stability in Systems Having a Continuum of Equilibria," SIAM J. Contr. Optim., Vol. 42, pp. 1745-1775, 2003. (Cited on pages 722 and 797)
[196] R. Bhatia, Perturbation Bounds for Matrix Eigenvalues. Essex: Longman Scientific and Technical, 1987. (Cited on page 600.)
[197] R. Bhatia, Matrix Analysis. New York: Springer, 1997. (Cited on pages 163332 [327, $433,436,439,441,442,443,479,480,509,510,513,520,521,541,542,561]$ 578, 580, 583, 585, 588, $589,590,600,601,605,686,693$, and 695)
[198] R. Bhatia, "Linear Algebra to Quantum Cohomology: The Story of Alfred Horn's Inequalities," Amer. Math. Monthly, Vol. 108, pp. 289-318, 2001. (Cited on pages 511513 and 542)
[199] R. Bhatia, "Infinitely Divisible Matrices," Amer. Math. Monthly, Vol. 113, pp. 221-235, 2006. (Cited on pages 221, 446, 447, and 531)
[200] R. Bhatia, Perturbation Bounds for Matrix Eigenvalues. Philadelphia: SIAM, 2007. (Cited on pages $272,518,575,600$ and 601)
[201] R. Bhatia, Positive Definite Matrices. Princeton: Princeton University Press, 2007. (Cited on pages $441,442,445,446,447,449,457,463,686$ and 688)
[202] R. Bhatia and C. Davis, "More Matrix Forms of the Arithmetic-Geometric Mean Inequality," SIAM J. Matrix Anal. Appl., Vol. 14, pp. 132-136, 1993. (Cited on page 589)
[203] R. Bhatia and C. Davis, "A Cauchy-Schwarz Inequality for Operators with Applications," Lin. Alg. Appl., Vol. 223/224, pp. 119-129, 1995. (Cited on pages 582 and 589)
[204] R. Bhatia and D. Drissi, "Generalized Lyapunov Equations and Positive Definite Functions," SIAM J. Matrix Anal. Appl., Vol. 27, pp. 103-114, 2005. (Cited on page 448)
[205] R. Bhatia and L. Elsner, "Higher Order Logarithmic Derivatives of Matrices in the Spectral Norm," SIAM J. Matrix Anal. Appl., Vol. 25, pp. 662-668, 2003. (Cited on page 691)
[206] R. Bhatia and J. Holbrook, "Frechet Derivatives of the Power Function," Indiana University Math. J., Vol. 49, pp. 1155-1173, 2000. (Cited on pages 24 and 515)
[207] R. Bhatia and J. Holbrook, "Riemannian Geometry and Matrix Geometric Means," Lin. Alg. Appl., Vol. 413, pp. 594-618, 2006. (Cited on page 688)
[208] R. Bhatia and F. Kittaneh, "Norm Inequalities for Partitioned Operators and an Application," Math. Ann., Vol. 287, pp. 719-726, 1990. (Cited on page 594.)
[209] R. Bhatia and F. Kittaneh, "On the Singular Values of a Product of Operators," SIAM J. Matrix Anal. Appl., Vol. 11, pp. 272-277, 1990. (Cited on pages 458,589 and 613)
[210] R. Bhatia and F. Kittaneh, "Norm Inequalities for Positive Operators," Lett. Math. Phys., Vol. 43, pp. 225-231, 1998. (Cited on page 590)
[211] R. Bhatia and F. Kittaneh, "Cartesian Decompositions and Schatten Norms," Lin. Alg. Appl., Vol. 318, pp. 109-116, 2000. (Cited on pages 586 and 587)
[212] R. Bhatia and F. Kittaneh, "Notes on Matrix Arithmetic-Geometric Mean Inequalities," Lin. Alg. Appl., Vol. 308, pp. 203-211, 2000. (Cited on pages 582 and 583)
[213] R. Bhatia and F. Kittaneh, "Clarkson Inequalities with Several Operators," Bull. London Math. Soc., Vol. 36, pp. 820-832, 2004. (Cited on page 586])
[214] R. Bhatia and F. Kittaneh, "Commutators, Pinchings, and Spectral Variation," Oper. Matrices, Vol. 2, pp. 143-151, 2008. (Cited on page 585)
[215] R. Bhatia and F. Kittaneh, "The Matrix Arithmetic-Geometric Mean Inequality," Lin. Alg. Appl., Vol. 428, pp. 2177-2191, 2008. (Cited on pages 515580 and 590)
[216] R. Bhatia and K. R. Parthasarathy, "Positive Definite Functions and Operator Inequalities," Bull. London Math. Soc., Vol. 32, pp. 214-228, 2000. (Cited on pages 446, 589, 590, and 695)
[217] R. Bhatia and P. Rosenthal, "How and Why to Solve the Operator Equation $A X-$ $X B=Y$," Bull. London Math. Soc., Vol. 29, pp. 1-21, 1997. (Cited on pages 320 and 335)
[218] R. Bhatia and P. Semrl, "Orthogonality of Matrices and Some Distance Problems," Lin. Alg. Appl., Vol. 287, pp. 77-85, 1999. (Cited on page 570)
[219] R. Bhatia and X. Zhan, "Norm Inequalities for Operators with Positive Real Part," J. Operator Theory, Vol. 50, pp. 67-76, 2003. (Cited on pages 486 and 587)
[220] R. Bhattacharya and K. Mukherjea, "On Unitary Similarity of Matrices," Lin. Alg. Appl., Vol. 126, pp. 95-105, 1989. (Cited on page 318)
[221] S. P. Bhattacharyya, H. Chapellat, and L. Keel, Robust Control: The Parametric Approach. Englewood Cliffs: Prentice-Hall, 1995. (Cited on page 697)
[222] M. R. Bicknell, "The Lambda Number of a Matrix: The Sum of Its n^{2} Cofactors," Amer. Math. Monthly, Vol. 72, pp. 260-264, 1965. (Cited on page 142)
[223] N. Biggs, Algebraic Graph Theory, 2nd ed. Cambridge: Cambridge University Press, 2000. (Cited on pages xvii and 337)
[224] P. Binding, B. Najman, and Q. Ye, "A Variational Principle for Eigenvalues of Pencils of Hermitian Matrices," Integ. Equ. Oper. Theory, Vol. 35, pp. 398-422, 1999. (Cited on page 362)
[225] K. Binmore, Fun and Games: A Text on Game Theory. Lexington: D. C. Heath and Co., 1992. (Cited on page xviil)
[226] A. Bjorck, Numerical Methods for Least Squares Problems. Philadelphia: SIAM, 1996. (Cited on page 618)
[227] S. Blanes and F. Casas, "On the Convergence and Optimization of the Baker-Campbell-Hausdorff Formula," Lin. Alg. Appl., Vol. 378, pp. 135-158, 2004. (Cited on page 683)
[228] S. Blanes, F. Casas, J. A. Oteo, and J. Ros, "Magnus and Fer Expansions for Matrix Differential Equations: The Convergence Problem," J. Phys. A: Math. Gen., Vol. 31, pp. 259-268, 1998. (Cited on page 678.)
[229] E. D. Bloch, Proofs and Fundamentals: A First Course in Abstract Mathematics. Boston: Birkhauser, 2000. (Cited on pages 10 and 76)
[230] V. Blondel and J. N. Tsitsiklis, "When Is a Pair of Matrices Mortal?" Inform. Proc. Lett., Vol. 63, pp. 283-286, 1997. (Cited on page 715.)
[231] V. Blondel and J. N. Tsitsiklis, "The Boundedness of All Products of a Pair of Matrices Is Undecidable," Sys. Contr. Lett., Vol. 41, pp. 135-140, 2000. (Cited on page 715.)
[232] L. M. Blumenthal, Theory and Applications of Distance Geometry. Oxford: Oxford University Press, 1953. (Cited on page 161)
[233] W. Boehm, "An Operator Limit," SIAM Rev., Vol. 36, p. 659, 1994. (Cited on page 714)
[234] A. W. Bojanczyk and A. Lutoborski, "Computation of the Euler Angles of a Symmetric 3×3 Matrix," SIAM J. Matrix Anal. Appl., Vol. 12, pp. 41-48, 1991. (Cited on page 265 .)
[235] B. Bollobas, Modern Graph Theory. New York: Springer, 1998. (Cited on page Xvii)
[236] J. V. Bondar, "Comments on and Complements to Inequalities: Theory of Majorization and Its Applications," Lin. Alg. Appl., Vol. 199, pp. 115-129, 1994. (Cited on pages 45 and 60.)
[237] A. Borck, Numerical Methods for Least Squares Problems. Philadelphia: SIAM, 1996. (Cited on page 398)
[238] J. Borwein, D. Bailey, and R. Girgensohn, Experimentation in Mathematics: Computational Paths to Discovery. Natick: A K Peters, 2004. (Cited on pages 1718 20. 21 56 161 and 275)
[239] J. M. Borwein and A. S. Lewis, Convex Analysis and Nonlinear Optimization. New York: Springer, 2000. (Cited on pages 110, 111, $164,279,333,334,441,460,633$ and 635)
[240] A. J. Bosch, "The Factorization of a Square Matrix into Two Symmetric Matrices," Amer. Math. Monthly, Vol. 93, pp. 462-464, 1986. (Cited on pages 349 and 361.)
[241] A. J. Bosch, "Note on the Factorization of a Square Matrix into Two Hermitian or Symmetric Matrices," SIAM Rev., Vol. 29, pp. 463-468, 1987. (Cited on pages 349 and 361)
[242] A. Bottcher and D. Wenzel, "How Big Can the Commutator of Two Matrices Be and How Big Is it Typically?" Lin. Alg. Appl., Vol. 403, pp. 216-228, 2005. (Cited on page 584.)
[243] A. Bottcher and D. Wenzel, "The Frobenius Norm and the Commutator," Lin. Alg. Appl., Vol. 429, pp. 1864-1885, 2008. (Cited on page 584)
[244] O. Bottema, Z. Djordjovic, R. R. Janic, D. S. Mitrinovic, and P. M. Vasic, Inequalities: Theory of Majorization and Its Applications. Groningen: Wolters-Noordhoff, 1969. (Cited on page 158)
[245] T. L. Boullion and P. L. Odell, Generalized Inverse Matrices. New York: Wiley, 1971. (Cited on page 398)
[246] J.-C. Bourin, "Some Inequalities for Norms on Matrices and Operators," Lin. Alg. Appl., Vol. 292, pp. 139-154, 1999. (Cited on pages 480, 481576 and 608)
[247] J.-C. Bourin, "Convexity or Concavity Inequalities for Hermitian Operators," Math. Ineq. Appl., Vol. 7, pp. 607-620, 2004. (Cited on page 482)
[248] J.-C. Bourin, "Hermitian Operators and Convex Functions," J. Ineq. Pure Appl. Math., Vol. 6, no. 5, pp. 1-6, 2005, Article 139. (Cited on pages 482 and 483)
[249] J.-C. Bourin, "Reverse Inequality to Araki's Inequality Comparison of $A^{p} Z^{p} Z^{p}$ and $(A Z A)^{p}, "$ Math. Ineq. Appl., Vol. 232, pp. 373-378, 2005. (Cited on page 465)
[250] J.-C. Bourin, "Matrix Versions of Some Classical Inequalities," Lin. Alg. Appl., Vol. 407, pp. 890-907, 2006. (Cited on pages 483 and 599)
[251] J.-C. Bourin, "Reverse Rearrangement Inequalities via Matrix Technics," J. Ineq. Pure Appl. Math., Vol. 7, no. 2, pp. 1-6, 2006, Article 43. (Cited on pages 61 and 458)
[252] J.-C. Bourin and Y. Seo, "Reverse Inequality to Golden-Thompson Type Inequalities: Comparison of e^{A+B} and $e^{A} e^{B}, "$ Lin. Alg. Appl., Vol. 426, pp. 312-316, 2007. (Cited on page 687)
[253] K. Bourque and S. Ligh, "Matrices Associated with Classes of Arithmetical Functions," J. Number Theory, Vol. 45, pp. 367-376, 1993. (Cited on page 447)
[254] S. Boyd, "Entropy and Random Feedback," in Open Problems in Mathematical Systems and Control Theory, V. D. Blondel, E. D. Sontag, M. Vidyasagar, and J. C. Willems, Eds. New York: Springer, 1998, pp. 71-74. (Cited on page 578])
[255] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge: Cambridge University Press, 2004. (Cited on pages xvii and 164)
[256] J. L. Brenner, "A Bound for a Determinant with Dominant Main Diagonal," Proc. Amer. Math. Soc., Vol. 5, pp. 631-634, 1954. (Cited on page 270.)
[257] J. L. Brenner, "Expanded Matrices from Matrices with Complex Elements," SIAM Rev., Vol. 3, pp. 165-166, 1961. (Cited on pages 154 and 229)
[258] J. L. Brenner and J. S. Lim, "The Matrix Equations $A=X Y Z$ and $B=Z Y X$ and Related Ones," Canad. Math. Bull., Vol. 17, pp. 179-183, 1974. (Cited on page 346)
[259] J. W. Brewer, "Kronecker Products and Matrix Calculus in System Theory," IEEE Trans. Circ. Sys., Vol. CAS-25, pp. 772-781, 1978, correction: CAS-26, p. 360, 1979. (Cited on page 416)
[260] L. Brickman, "On the Field of Values of a Matrix," Proc. Amer. Math. Soc., Vol. 12, pp. 61-66, 1961. (Cited on page 498)
[261] R. Brockett, Finite Dimensional Linear Systems. New York: Wiley, 1970. (Cited on page 805)
[262] R. W. Brockett, "Using Feedback to Improve System Identification," in Control of Uncertain Systems, B. A. Francis, M. C. Smith, and J. C. Willems, Eds. Berlin: Springer, 2006, pp. 45-65. (Cited on pages 511 and 797)
[263] G. Brown, "Convexity and Minkowski's Inequality," Amer. Math. Monthly, Vol. 112, pp. 740-742, 2005. (Cited on page 66)
[264] E. T. Browne, Introduction to the Theory of Determinants and Matrices. Chapel Hill: University of North Carolina Press, 1958. (Cited on page 541)
[265] R. Bru, J. J. Climent, and M. Neumann, "On the Index of Block Upper Triangular Matrices," SIAM J. Matrix Anal. Appl., Vol. 16, pp. 436-447, 1995. (Cited on page 343)
[266] R. A. Brualdi, Combinatorial Matrix Classes. Cambridge: Cambridge University Press, 2006. (Cited on page xviil)
[267] R. A. Brualdi and J. Q. Massey, "Some Applications of Elementary Linear Algebra in Combinatorics," College Math. J., Vol. 24, pp. 10-19, 1993. (Cited on page 131)
[268] R. A. Brualdi and S. Mellendorf, "Regions in the Complex Plane Containing the Eigenvalues of a Matrix," Amer. Math. Monthly, Vol. 101, pp. 975-985, 1994. (Cited on pages 269 and 704)
[269] R. A. Brualdi and H. J. Ryser, Combinatorial Matrix Theory. Cambridge: Cambridge University Press, 1991. (Cited on pages Xvii 126131 and 506)
[270] R. A. Brualdi and H. Schneider, "Determinantal Identities: Gauss, Schur, Cauchy, Sylvester, Kronecker, Jacobi, Binet, Laplace, Muir, and Cayley," Lin. Alg. Appl., Vol. 52/53, pp. 769-791, 1983. (Cited on page 129)
[271] D. Buckholtz, "Inverting the Difference of Hilbert Space Projections," Amer. Math. Monthly, Vol. 104, pp. 60-61, 1997. (Cited on page 210)
[272] D. Buckholtz, "Hilbert Space Idempotents and Involutions," Proc. Amer. Math. Soc., Vol. 128, pp. 1415-1418, 1999. (Cited on pages 336 and 337)
[273] P. S. Bullen, A Dictionary of Inequalities. Essex: Longman, 1998. (Cited on pages 29 (35, $42,55,57,64$ 766 546] and 571)
[274] P. S. Bullen, Handbook of Means and Their Inequalities. Dordrecht: Kluwer, 2003. (Cited on pages 23, 25, 27, 29, and 76)
[275] P. S. Bullen, D. S. Mitrinovic, and P. M. Vasic, Means and Their Inequalities. Dordrecht: Reidel, 1988. (Cited on pages 385276 and 567)
[276] A. Bultheel and M. Van Barel, Linear Algebra, Rational Approximation and Orthogonal Polynomials. Amsterdam: Elsevier, 1997. (Cited on page 281)
[277] F. Burns, D. Carlson, E. V. Haynsworth, and T. L. Markham, "Generalized Inverse Formulas Using the Schur-Complement," SIAM J. Appl. Math, Vol. 26, pp. 254259, 1974. (Cited on page 391)
[278] P. J. Bushell and G. B. Trustrum, "Trace Inequalities for Positive Definite Matrix Power Products," Lin. Alg. Appl., Vol. 132, pp. 173-178, 1990. (Cited on page 519)
[279] N. D. Cahill, J. R. D'Errico, D. A. Narayan, and J. Y. Narayan, "Fibonacci Determinants," College Math. J., Vol. 33, pp. 221-225, 2002. (Cited on page 278)
[280] B. E. Cain, "Inertia Theory," Lin. Alg. Appl., Vol. 30, pp. 211-240, 1980. (Cited on pages 309 and 795)
[281] D. Callan, "When Is "Rank" Additive?" College Math. J., Vol. 29, pp. 145-147, 1998. (Cited on page 118)
[282] S. L. Campbell, Singular Systems. London: Pitman, 1980. (Cited on page 398)
[283] S. L. Campbell and C. D. Meyer, Generalized Inverses of Linear Transformations. London: Pitman, 1979, reprinted by Dover, Mineola, 1991. (Cited on pages 377 (384, 391 395, 398 and 722)
[284] S. L. Campbell and N. J. Rose, "Singular Perturbation of Autonomous Linear Systems," SIAM J. Math. Anal., Vol. 10, pp. 542-551, 1979. (Cited on page 699)
[285] L. Cao and H. M. Schwartz, "A Decomposition Method for Positive Semidefinite Matrices and its Application to Recursive Parameter Estimation," SIAM J. Matrix Anal. Appl., Vol. 22, pp. 1095-1111, 2001. (Cited on pages 418 and 457)
[286] E. A. Carlen and E. H. Lieb, "A Minkowski Type Trace Inequality and Strong Subadditivity of Quantum Entropy," Amer. Math. Soc. Transl., Vol. 189, pp. 5962, 1999. (Cited on page 441)
[287] D. Carlson, "Controllability, Inertia, and Stability for Tridiagonal Matrices," Lin. Alg. Appl., Vol. 56, pp. 207-220, 1984. (Cited on page 702,)
[288] D. Carlson, "What Are Schur Complements Anyway?" Lin. Alg. Appl., Vol. 74, pp. 257-275, 1986. (Cited on page 542)
[289] D. Carlson, "On the Controllability of Matrix Pairs (A, K) with K Positive Semidefinite, II," SIAM J. Matrix Anal. Appl., Vol. 15, pp. 129-133, 1994. (Cited on page 794)
[290] D. Carlson, E. V. Haynsworth, and T. L. Markham, "A Generalization of the Schur Complement by Means of the Moore-Penrose Inverse," SIAM J. Appl. Math., Vol. 26, pp. 169-175, 1974. (Cited on pages 387442 and 542)
[291] D. Carlson and R. Hill, "Generalized Controllability and Inertia Theory," Lin. Alg. Appl., Vol. 15, pp. 177-187, 1976. (Cited on page 795)
[292] D. Carlson, C. R. Johnson, D. C. Lay, and A. D. Porter, Eds., Linear Algebra Gems: Assets for Undergraduate Mathematics. Washington, DC: Mathematical Association of America, 2002. (Cited on page 164])
[293] D. Carlson, C. R. Johnson, D. C. Lay, A. D. Porter, A. E. Watkins, and W. Watkins, Eds., Resources for Teaching Linear Algebra. Washington, DC: Mathematical Association of America, 1997. (Cited on page 164)
[294] P. Cartier, "Mathemagics, A Tribute to L. Euler and R. Feynman," in Noise, Oscillators and Algebraic Randomness, M. Planat, Ed. New York: Springer, 2000, pp. 6-67. (Cited on page 722)
[295] D. I. Cartwright and M. J. Field, "A Refinement of the Arithmetic Mean-Geometric Mean Inequality," Proc. Amer. Math. Soc., Vol. 71, pp. 36-38, 1978. (Cited on pages 52 and 722)
[296] N. Castro-Gonzalez and E. Dopazo, "Representations of the Drazin Inverse for a Class of Block Matrices," Lin. Alg. Appl., Vol. 400, pp. 253-269, 2005. (Cited on page 391)
[297] H. Caswell, Matrix Population Models: Construction, Analysis, and Interpretation, 2nd ed. Sunderland: Sinauer Associates, 2000. (Cited on page xvii)
[298] F. S. Cater, "Products of Central Collineations," Lin. Alg. Appl., Vol. 19, pp. 251-274, 1978. (Cited on page 348)
[299] Y. Chabrillac and J.-P. Crouzeix, "Definiteness and Semidefiniteness of Quadratic Forms Revisited," Lin. Alg. Appl., Vol. 63, pp. 283-292, 1984. (Cited on page504)
[300] N. N. Chan and M. K. Kwong, "Hermitian Matrix Inequalities and a Conjecture," Amer. Math. Monthly, Vol. 92, pp. 533-541, 1985. (Cited on page 458)
[301] H. Chapellat, M. Mansour, and S. P. Bhattacharyya, "Elementary Proofs of Some Classical Stability Criteria," IEEE Trans. Educ., Vol. 33, pp. 232-239, 1990. (Cited on pages 696 and 697)
[302] G. Chartrand, Graphs and Digraphs, 4th ed. Boca Raton: Chapman \& Hall, 2004. (Cited on page xviil)
[303] G. Chartrand and L. Lesniak, Graphs and Digraphs, 4th ed. Boca Raton: Chapman \& Hall/CRC, 2004. (Cited on page xvii)
[304] F. Chatelin, Eigenvalues of Matrices. New York: Wiley, 1993. (Cited on page xviii)
[305] J.-J. Chattot, Computational Aerodynamics and Fluid Dynamics. Berlin: Springer, 2002. (Cited on page xvii)
[306] N. A. Chaturvedi, N. H. McClamroch, and D. S. Bernstein, "Asymptotic Smooth Stabilization of the Inverted 3D Pendulum," IEEE Trans. Autom. Contr., preprint. (Cited on page 189)
[307] J.-P. Chehab and M. Raydan, "Geometrical Properties of the Frobenius Condition Number for Positive Definite Matrices," Lin. Alg. Appl., Vol. 429, pp. 2089-2097, 2008. (Cited on page 476)
[308] V.-S. Chellaboina and W. M. Haddad, "Is the Frobenius Matrix Norm Induced?" IEEE Trans. Autom. Contr., Vol. 40, pp. 2137-2139, 1995. (Cited on page 579)
[309] V.-S. Chellaboina and W. M. Haddad, "Solution to 'Some Matrix Integral Identities'," SIAM Rev., Vol. 39, pp. 763-765, 1997. (Cited on page 767)
[310] V.-S. Chellaboina, W. M. Haddad, D. S. Bernstein, and D. A. Wilson, "Induced Convolution Operator Norms of Linear Dynamical Systems," Math. Contr. Sig. Sys., Vol. 13, pp. 216-239, 2000. (Cited on page 619)
[311] B. M. Chen, Z. Lin, and Y. Shamash, Linear Systems Theory: A Structural Decomposition Approach. Boston: Birkhauser, 2004. (Cited on pages xvii 114325 (333, and 362)
[312] C. T. Chen, "A Generalization of the Inertia Theorem," SIAM J. Appl. Math., Vol. 25, pp. 158-161, 1973. (Cited on page 793)
[313] C.-T. Chen, Linear System Theory and Design. New York: Holt, Rinehart, Winston, 1984. (Cited on pages xvii 704 and 709)
[314] H. Chen, "A Unified Elementary Approach to Some Classical Inequalities," Int. J. Math. Educ. Sci. Tech., Vol. 31, pp. 289-292, 2000. (Cited on pages 52 and 61)
[315] J. Chen, "On Bounds of Matrix Eigenvalues," Math. Ineq. Appl., Vol. 10, pp. 723726, 2007. (Cited on page 598)
[316] J.-Q. Chen, J. Ping, and F. Wang, Group Representation for Physicists, 2nd ed. Singapore: World Scientific, 2002. (Cited on page 224)
[317] L. Chen and C. S. Wong, "Inequalities for Singular Values and Traces," Lin. Alg. Appl., Vol. 171, pp. 109-120, 1992. (Cited on pages 478 and 613)
[318] S. Chen, "Inequalities for M-Matrices and Inverse M-Matrices," Lin. Alg. Appl., Vol. 426, pp. 610-618, 2007. (Cited on page 535)
[319] C.-M. Cheng, "Cases of Equality for a Singular Value Inequality for the Hadamard Product," Lin. Alg. Appl., Vol. 177, pp. 209-231, 1992. (Cited on page 615)
[320] C.-M. Cheng, R. A. Horn, and C.-K. Li, "Inequalities and Equalities for the Cartesian Decomposition of Complex Matrices," Lin. Alg. Appl., Vol. 341, pp. 219-237, 2002. (Cited on pages 443 486, and 515)
[321] H.-W. Cheng and S. S.-T. Yau, "More Explicit Formulas for the Matrix Exponential," Lin. Alg. Appl., Vol. 262, pp. 131-163, 1997. (Cited on page 673)
[322] S. Cheng and Y. Tian, "Moore-Penrose Inverses of Products and Differences of Orthogonal Projectors," Acta Scientiarum Math., Vol. 69, pp. 533-542, 2003. (Cited on pages 380 383, and 388)
[323] S. Cheng and Y. Tian, "Two Sets of New Characterizations for Normal and EP Matrices," Lin. Alg. Appl., Vol. 375, pp. 181-195, 2003. (Cited on pages $178,180$. [372, 373, 394, and 395)
[324] M.-T. Chien and M. Neumann, "Positive Definiteness of Tridiagonal Matrices via the Numerical Range," Elec. J. Lin. Alg., Vol. 3, pp. 93-102, 1998. (Cited on page 219)
[325] M.-D. Choi, "Tricks or Treats with the Hilbert Matrix," Amer. Math. Monthly, Vol. 90, pp. 301-312, 1983. (Cited on page 215)
[326] M. D. Choi, T. Y. Lam, and B. Reznick, "Sums of Squares of Real Polynomials," in K Theory and Algebraic Geometry, B. Jacob and A. Rosenberg, Eds. Providence: American Mathematical Society, 1995, pp. 103-126. (Cited on page 42)
[327] M.-D. Choi and P. Y. Wu, "Convex Combinations of Projections," Lin. Alg. Appl., Vol. 136, pp. 25-42, 1990. (Cited on pages 208 and 360)
[328] J. Chollet, "Some Inequalities for Principal Submatrices," Amer. Math. Monthly, Vol. 104, pp. 609-617, 1997. (Cited on page 474)
[329] A. Choudhry, "Extraction of nth Roots of 2×2 Matrices," Lin. Alg. Appl., Vol. 387, pp. 183-192, 2004. (Cited on page 348)
[330] M. T. Chu, R. E. Funderlic, and G. H. Golub, "A Rank-One Reduction Formula and Its Application to Matrix Factorizations," SIAM Rev., Vol. 37, pp. 512-530, 1995. (Cited on pages 378 and 388)
[331] M. T. Chu, R. E. Funderlic, and G. H. Golub, "Rank Modifications of Semidefinite Matrices Associated with a Secant Update Formula," SIAM J. Matrix Anal. Appl., Vol. 20, pp. 428-436, 1998. (Cited on page 457)
[332] X.-G. Chu, C.-E. Zhang, and F. Qi, "Two New Algebraic Inequalities with $2 n$ Variables," J. Ineq. Pure Appl. Math., Vol. 8, no. 4, pp. 1-6, 2007, Article 102. (Cited on page 17)
[333] J. Chuai and Y. Tian, "Rank Equalities and Inequalities for Kronecker Products of Matrices with Applications," Appl. Math. Comp., Vol. 150, pp. 129-137, 2004. (Cited on pages 407 and 410)
[334] N. L. C. Chui and J. M. Maciejowski, "Realization of Stable Models with Subspace Methods," Automatica, Vol. 32, pp. 1587-1595, 1996. (Cited on page 714)
[335] F. R. K. Chung, Spectral Graph Theory. Providence: American Mathematical Society, 2000. (Cited on page xviil)
[336] A. Cizmesija and J. Pecaric, "Classical Hardy's and Carleman's Inequalities and Mixed Means," in Survey on Classical Inequalities, T. M. Rassias, Ed. Dordrecht: Kluwer, 2000, pp. 27-65. (Cited on page 58)
[337] D. J. Clements, B. D. O. Anderson, A. J. Laub, and J. B. Matson, "Spectral Factorization with Imaginary-Axis Zeros," Lin. Alg. Appl., Vol. 250, pp. 225-252, 1997. (Cited on page 805)
[338] R. E. Cline, "Representations for the Generalized Inverse of a Partitioned Matrix," SIAM J. Appl. Math., Vol. 12, pp. 588-600, 1964. (Cited on page 390.)
[339] R. E. Cline and R. E. Funderlic, "The Rank of a Difference of Matrices and Associated Generalized Inverses," Lin. Alg. Appl., Vol. 24, pp. 185-215, 1979. (Cited on pages 119121 and 383)
[340] M. J. Cloud and B. C. Drachman, Inequalities with Applications to Engineering. New York: Springer, 1998. (Cited on page 76)
[341] E. S. Coakley, F. M. Dopico, and C. R. Johnson, "Matrices for Orthogonal Groups Admitting Only Determinant One," Lin. Alg. Appl., Vol. 428, pp. 796-813, 2008. (Cited on page 225)
[342] J. E. Cohen, "Spectral Inequalities for Matrix Exponentials," Lin. Alg. Appl., Vol. 111, pp. 25-28, 1988. (Cited on page 690)
[343] J. E. Cohen, S. Friedland, T. Kato, and F. P. Kelly, "Eigenvalue Inequalities for Products of Matrix Exponentials," Lin. Alg. Appl., Vol. 45, pp. 55-95, 1982. (Cited on page 692,
[344] D. K. Cohoon, "Sufficient Conditions for the Zero Matrix," Amer. Math. Monthly, Vol. 96, pp. 448-449, 1989. (Cited on page 127)
[345] D. Constales, "A Closed Formula for the Moore-Penrose Generalized Inverse of a Complex Matrix of Given Rank," Acta Math. Hung., Vol. 80, pp. 83-88, 1998. (Cited on page 371)
[346] J. C. Conway and D. A. Smith, On Quaternions and Octonions: Their Geometry, Arithmetic, and Symmetry. Natick: A. K. Peters, 2003. (Cited on pages 4748 223, 226, and 227)
[347] G. Corach, H. Porta, and L. Recht, "An Operator Inequality," Lin. Alg. Appl., Vol. 142, pp. 153-158, 1990. (Cited on page 589)
[348] M. J. Corless and A. E. Frazho, Linear Systems and Control: An Operator Perspective. New York: Marcel Dekker, 2003. (Cited on page xvii)
[349] E. B. Corrachano and G. Sobczyk, Eds., Geometric Algebra with Applications in Science and Engineering. Boston: Birkhauser, 2001. (Cited on pages 188 and 227)
[350] P. J. Costa and S. Rabinowitz, "Matrix Differentiation Identities," SIAM Rev., Vol. 36, pp. 657-659, 1994. (Cited on page 641)
[351] R. W. Cottle, "Quartic Barriers," Comp. Optim. Appl., Vol. 12, pp. 81-105, 1999. (Cited on pages 497507 and 696)
[352] T. M. Cover and J. A. Thomas, "Determinant Inequalities via Information Theory," SIAM J. Matrix Anal. Appl., Vol. 9, pp. 384-392, 1988. (Cited on pages 442,487 and 506)
[353] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed. New York: Wiley, 2006. (Cited on pages xvii 442487 and 492)
[354] D. E. Crabtree, "The Characteristic Vector of the Adjoint Matrix," Amer. Math. Monthly, Vol. 75, pp. 1127-1128, 1968. (Cited on page 342)
[355] C. R. Crawford and Y. S. Moon, "Finding a Positive Definite Linear Combination of Two Hermitian Matrices," Lin. Alg. Appl., Vol. 51, pp. 37-48, 1983. (Cited on page 504)
[356] T. Crilly, "Cayley's Anticipation of a Generalised Cayley-Hamilton Theorem," Historia Mathematica, Vol. 5, pp. 211-219, 1978. (Cited on page 261)
[357] M. D. Crossley, Essential Topology. New York: Springer, 2005. (Cited on page 192)
[358] C. G. Cullen, "A Note on Normal Matrices," Amer. Math. Monthly, Vol. 72, pp. 643-644, 1965. (Cited on page 343)
[359] C. G. Cullen, Matrices and Linear Transformations, 2nd ed. Reading: AddisonWesley, 1972, reprinted by Dover, Mineola, 1990. (Cited on pages 629 and 640)
[360] W. J. Culver, "On the Existence and Uniqueness of the Real Logarithm of a Matrix," Proc. Amer. Math. Soc., Vol. 17, pp. 1146-1151, 1966. (Cited on page 722)
[361] R. F. Curtain and H. J. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory. New York: Springer, 1995. (Cited on page 691)
[362] M. L. Curtis, Matrix Groups, 2nd ed. New York: Springer, 1984. (Cited on pages 193, 226, and 229)
[363] D. Cvetkovic, P. Rowlinson, and S. Simic, Eigenspaces of Graphs. Cambridge: Cambridge University Press, 1997. (Cited on page xviil)
[364] P. J. Daboul and R. Delbourgo, "Matrix Representations of Octonions and Generalizations," J. Math. Phys., Vol. 40, pp. 4134-4150, 1999. (Cited on page 227)
[365] G. Dahlquist, "On Matrix Majorants and Minorants, with Application to Differential Equations," Lin. Alg. Appl., Vol. 52/53, pp. 199-216, 1983. (Cited on page 706)
[366] R. D'Andrea, "Extension of Parrott's Theorem to Nondefinite Scalings," IEEE Trans. Autom. Contr., Vol. 45, pp. 937-940, 2000. (Cited on page 610)
[367] H. D'Angelo, Linear Time-Varying Systems: Analysis and Synthesis. Boston: Allyn and Bacon, 1970. (Cited on page 805.)
[368] J. P. D'Angelo, Inequalities from Complex Analysis. Washington, DC: The Mathematical Association of America, 2002. (Cited on pages 70 and 565)
[369] F. M. Dannan, "Matrix and Operator Inequalities," J. Ineq. Pure. Appl. Math., Vol. 2, no. 3/34, pp. 1-7, 2001. (Cited on pages 480 and 488)
[370] R. Datko and V. Seshadri, "A Characterization and a Canonical Decomposition of Hurwitzian Matrices," Amer. Math. Monthly, Vol. 77, pp. 732-733, 1970. (Cited on page 704,
[371] B. N. Datta, Numerical Linear Algebra and Applications. Pacific Grove: Brooks/Cole, 1995. (Cited on page xviil)
[372] B. N. Datta, "Stability and Inertia," Lin. Alg. Appl., Vol. 302-303, pp. 563-600, 1999. (Cited on page 794)
[373] B. N. Datta, Numerical Methods for Linear Control Systems. San Diego, CA: Elsevier Academic Press, 2003. (Cited on page xvii)
[374] J. Dattorro, Convex Optimization and Euclidean Distance Geometry. Palo Alto: Meboo Publishing, 2005. (Cited on pages xvii, 118, 126 323, and 642)
[375] I. Daubechies and J. C. Lagarias, "Sets of Matrices all Infinite Products of Which Converge," Lin. Alg. Appl., Vol. 162, pp. 227-263, 1992. (Cited on page 715.)
[376] P. J. Davis, The Mathematics of Matrices, 2nd ed. Boston: Ginn, 1965. (Cited on page xix)
[377] P. J. Davis, Circulant Matrices, 2nd ed. New York: Chelsea, 1994. (Cited on page 357)
[378] R. J. H. Dawlings, "Products of Idempotents in the Semigroup of Singular Endomorphisms of a Finite-Dimensional Vector Space," Proc. Royal Soc. Edinburgh, Vol. 91A, pp. 123-133, 1981. (Cited on page 350)
[379] J. Day, W. So, and R. C. Thompson, "Some Properties of the Campbell-BakerHausdorff Formula," Lin. Multilin. Alg., Vol. 29, pp. 207-224, 1991. (Cited on page 655)
[380] J. Day, W. So, and R. C. Thompson, "The Spectrum of a Hermitian Matrix Sum," Lin. Alg. Appl., Vol. 280, pp. 289-332, 1998. (Cited on page513)
[381] P. W. Day, "Rearrangement Inequalities," Canad. J. Math., Vol. 24, pp. 930-943, 1972. (Cited on page 61)
[382] C. de Boor, "An Empty Exercise," SIGNUM, Vol. 25, pp. 2-6, 1990. (Cited on page 164)
[383] P. P. N. de Groen, "A Counterexample on Vector Norms and the Subordinate Matrix Norms," Amer. Math. Monthly, Vol. 97, pp. 406-407, 1990. (Cited on page 579.)
[384] F. R. de Hoog, R. P. Speed, and E. R. Williams, "On a Matrix Identity Associated with Generalized Least Squares," Lin. Alg. Appl., Vol. 127, pp. 449-456, 1990. (Cited on page 378)
[385] W. de Launey and J. Seberry, "The Strong Kronecker Product," J. Combinatorial Thy., Series A, Vol. 66, pp. 192-213, 1994. (Cited on page 416.)
[386] J. de Pillis, "Transformations on Partitioned Matrices," Duke Math. J., Vol. 36, pp. 511-515, 1969. (Cited on pages 484 and 494.)
[387] J. de Pillis, "Inequalities for Partitioned Semidefinite Matrices," Lin. Alg. Appl., Vol. 4, pp. 79-94, 1971. (Cited on page 494)
[388] J. E. De Pillis, "Linear Operators and their Partitioned Matrices," Notices Amer. Math. Soc., Vol. 14, p. 636, 1967. (Cited on page 494)
[389] L. G. de Pillis, "Determinants and Polynomial Root Structure," Int. J. Math. Educ. Sci. Technol., Vol. 36, pp. 469-481, 2005. (Cited on page 255.)
[390] E. de Souza and S. P. Bhattacharyya, "Controllability, Observability and the Solution of $A X-X B=C$," Lin. Alg. Appl., Vol. 39, pp. 167-188, 1981. (Cited on page 796)
[391] E. de Souza and S. P. Bhattarcharyya, "Controllability, Observability, and the Solution of $A X-X B=-C, "$ Lin. Alg. Appl., Vol. 39, pp. 167-188, 1981. (Cited on page 797,
[392] P. N. De Souza and J.-N. Silva, Berkeley Problems in Mathematics, 3rd ed. New York: Springer, 2004. (Cited on pages 113118150151 and 457)
[393] L. M. DeAlba and C. R. Johnson, "Possible Inertia Combinations in the Stein and Lyapunov Equations," Lin. Alg. Appl., Vol. 222, pp. 227-240, 1995. (Cited on pages 428 and 795)
[394] H. P. Decell, "An Application of the Cayley-Hamilton Theorem to Generalized Matrix Inversion," SIAM Rev., Vol. 7, pp. 526-528, 1965. (Cited on page 374)
[395] N. Del Buono, L. Lopez, and T. Politi, "Computation of Functions of Hamiltonian and Skew-Symmetric Matrices," Math. Computers Simulation, preprint. (Cited on page 217)
[396] J. W. Demmel, Applied Numerical Linear Algebra. Philadelphia: SIAM, 1997. (Cited on page xviii)
[397] E. D. Denman and A. N. Beavers, "The Matrix Sign Function and Computations in Systems," Appl. Math. Computation, Vol. 2, pp. 63-94, 1976. (Cited on page 349)
[398] C. R. DePrima and C. R. Johnson, "The Range of $A^{-1} A^{*}$ in GL(n, C)," Lin. Alg. Appl., Vol. 9, pp. 209-222, 1974. (Cited on page 346)
[399] C. A. Desoer and H. Haneda, "The Measure of a Matrix as a Tool to Analyze Computer Algorithms for Circuit Analysis," IEEE Trans. Circ. Thy., Vol. 19, pp. 480-486, 1972. (Cited on page 691)
[400] E. Deutsch, "Matricial Norms," Numer. Math., Vol. 16, pp. 73-84, 1970. (Cited on page 593)
[401] E. Deutsch, "Matricial Norms and the Zeros of Polynomials," Lin. Alg. Appl., Vol. 3, pp. 483-489, 1970. (Cited on pages 709 and 710)
[402] E. Deutsch and M. Mlynarski, "Matricial Logarithmic Derivatives," Lin. Alg. Appl., Vol. 19, pp. 17-31, 1978. (Cited on page 691)
[403] P. J. Dhrymes, Mathematics for Econometrics, 3rd ed. New York: Springer, 2000. (Cited on page xviil)
[404] L. Dieci, "Real Hamiltonian Logarithm of a Symplectic Matrix," Lin. Alg. Appl., Vol. 281, pp. 227-246, 1998. (Cited on pages 660 and 685)
[405] R. Diestel, Graph Theory, 3rd ed. Berlin: Springer, 2006. (Cited on page xviil)
[406] L. L. Dines, "On the Mapping of Quadratic Forms," Bull. Amer. Math. Soc., Vol. 47, pp. 494-498, 1941. (Cited on page 498)
[407] J. Ding, "Perturbation of Systems in Linear Algebraic Equations," Lin. Multilin. Alg., Vol. 47, pp. 119-127, 2000. (Cited on page 592)
[408] J. Ding, "Lower and Upper Bounds for the Perturbation of General Linear Algebraic Equations," Appl. Math. Lett., Vol. 14, pp. 49-52, 2001. (Cited on page 592)
[409] J. Ding and W. C. Pye, "On the Spectrum and Pseudoinverse of a Special Bordered Matrix," Lin. Alg. Appl., Vol. 331, pp. 11-20, 2001. (Cited on page 263.)
[410] A. Dittmer, "Cross Product Identities in Arbitrary Dimension," Amer. Math. Monthly, Vol. 101, pp. 887-891, 1994. (Cited on page 188,
[411] G. M. Dixon, Division Algebras: Octonions, Quaternions, Complex Numbers and the Algebraic Design of Physics. Dordrecht: Kluwer, 1994. (Cited on page 227)
[412] J. D. Dixon, "How Good Is Hadamard's Inequality for Determinants?" Canad. Math. Bull., Vol. 27, pp. 260-264, 1984. (Cited on page 491)
[413] T. E. Djaferis and S. K. Mitter, "Algebraic Methods for the Study of Some Linear Matrix Equations," Lin. Alg. Appl., Vol. 44, pp. 125-142, 1982. (Cited on page 797)
[414] D. Z. Djokovic, "Product of Two Involutions," Arch. Math., Vol. 18, pp. 582-584, 1967. (Cited on page 350)
[415] D. Z. Djokovic, "On Some Representations of Matrices," Lin. Multilin. Alg., Vol. 4, pp. 33-40, 1976. (Cited on pages 150 and 316)
[416] D. Z. Djokovic and O. P. Lossers, "A Determinant Inequality," Amer. Math. Monthly, Vol. 83, pp. 483-484, 1976. (Cited on page 153)
[417] D. Z. Djokovic and J. Malzan, "Products of Reflections in the Unitary Group," Proc. Amer. Math. Soc., Vol. 73, pp. 157-160, 1979. (Cited on page 348)
[418] D. Z. Dokovic, "On the Product of Two Alternating Matrices," Amer. Math. Monthly, Vol. 98, pp. 935-936, 1991. (Cited on page 343)
[419] D. Z. Dokovic, "Unitary Similarity of Projectors," Aequationes Mathematicae, Vol. 42, pp. 220-224, 1991. (Cited on pages 314 315 and 318)
[420] D. Z. Dokovic, F. Szechtman, and K. Zhao, "An Algorithm that Carries a Square Matrix into Its Transpose by an Involutory Congruence Transformation," Elec. J. Lin. Alg., Vol. 10, pp. 320-340, 2003. (Cited on page 312)
[421] V. Dolotin and A. Morozov, Introduction to Non-Linear Algebra. Singapore: World Scientific, 2007. (Cited on page 416)
[422] W. F. Donoghue, Monotone Matrix Functions and Analytic Continuation. New York: Springer, 1974. (Cited on pages 446,540 and 541 .)
[423] F. M. Dopico and C. R. Johnson, "Complementary Bases in Symplectic Matrices and a Proof That Their Determinant Is One," Lin. Alg. Appl., Vol. 419, pp. 772778, 2006. (Cited on page 217)
[424] F. M. Dopico, C. R. Johnson, and J. M. Molera, "Multiple LU Factorizations of a Singular Matrix," Lin. Alg. Appl., Vol. 419, pp. 24-36, 2006. (Cited on page 346)
[425] C. Doran and A. Lasenby, Geometric Algebra for Physicists. Cambridge: Cambridge University Press, 2005. (Cited on pages 188 and 227)
[426] L. Dorst, D. Fontijne, and S. Mann, Geometric Algebra for Computer Science: An Object-Oriented Approach to Geometry. Amsterdam: Elsevier, 2007. (Cited on pages 227 and 565)
[427] R. G. Douglas, "On Majorization, Factorization, and Range Inclusion of Operators on Hilbert Space," Proc. Amer. Math. Soc., Vol. 17, pp. 413-415, 1966. (Cited on page 431)
[428] P. G. Doyle and J. L. Snell, Random Walks and Electric Networks. Washington, DC: Mathematical Association of America, 1984. (Cited on page xvii])
[429] V. Dragan and A. Halanay, Stabilization of Linear Systems. Boston: Birkhauser, 1999. (Cited on page 805)
[430] S. S. Dragomir, "A Survey on Cauchy-Bunyakovsky-Schwarz Type Discrete Inequalities," J. Ineq. Pure Appl. Math., Vol. 4, no. 3, pp. 1-142, 2003, Article 3. (Cited on pages 36 57 61 63 64 65, 66 and 70)
[431] S. S. Dragomir, Discrete Inequalities of the Cauchy-Bunyakovsky-Schwarz Type. Hauppauge: Nova Science Publishers, 2004. (Cited on pages 365761636465 [66, and 70)
[432] S. S. Dragomir, "Some Reverses of the Generalised Triangle Inequality in Complex Inner Product Spaces," Lin. Alg. Appl., Vol. 402, pp. 245-254, 2005. (Cited on page 70)
[433] S. S. Dragomir and C. J. Goh, "A Counterpart of Jensen's Discrete Inequality for Differentiable Convex Mappings and Applications in Information Theory," Math. Comput. Modelling, Vol. 24, pp. 1-11, 1996. (Cited on page 59)
[434] S. S. Dragomir and C. J. Goh, "Some Bounds on Entropy Measures in Information Theory," Appl. Math. Lett., Vol. 10, pp. 23-28, 1997. (Cited on page 59)
[435] S. S. Dragomir, C. E. Pearce, and J. Pecaric, "Some New Inequalities for the Logarithmic Map, with Applications to Entropy and Mutual Information," Kyungpook Math. J., Vol. 41, pp. 115-125, 2001. (Cited on pages 59 and 64)
[436] M. P. Drazin, "A Note on Skew-Symmetric Matrices," Math. Gaz., Vol. 36, pp. 253-255, 1952. (Cited on page 259)
[437] D. Drissi, "Sharp Inequalities for Some Operator Means," SIAM J. Matrix Anal. Appl., Vol. 28, pp. 822-828, 2006. (Cited on page 38)
[438] D. Drivaliaris, S. Karanasios, and D. Pappas, "Factorizations of EP Operators," Lin. Alg. Appl., Vol. 429, pp. 1555-1567, 2008. (Cited on page 372)
[439] R. Drnovsek, H. Radjavi, and P. Rosenthal, "A Characterization of Commutators of Idempotents," Lin. Alg. Appl., Vol. 347, pp. 91-99, 2002. (Cited on page 200.)
[440] S. W. Drury and G. P. H. Styan, "Normal Matrix and a Commutator," IMAGE, Vol. 31, p. 24, 2003. (Cited on page 185)
[441] H. Du, C. Deng, and Q. Li, "On the Infimum Problem of Hilbert Space Effects," Science in China: Series A Math., Vol. 49, pp. 545-556, 2006. (Cited on page 460)
[442] J. J. Duistermaat and J. A. C. Kolk, Eds., Multidimensional Real Analysis I: Differentiation. Cambridge: Cambridge University Press, 2004. (Cited on pages 634 638, and 682)
[443] I. Duleba, "On a Computationally Simple Form of the Generalized Campbell-Baker-Hausdorff-Dynkin Formula," Sys. Contr. Lett., Vol. 34, pp. 191-202, 1998. (Cited on page 678)
[444] G. E. Dullerud and F. Paganini, A Course in Robust Control Theory: A Convex Approach, 2nd ed. New York: Springer, 1999. (Cited on page xviil)
[445] D. S. Dummit and R. M. Foote, Abstract Algebra, 3rd ed. New York: Wiley, 2004. (Cited on pages $222,223,357$ and 361)
[446] C. F. Dunkl and K. S. Williams, "A Simple Inequality," Amer. Math. Monthly, Vol. 71, pp. 53-54, 1964. (Cited on page 565)
[447] H. Dym, Linear Algebra in Action. Providence: American Mathematical Society, 2006. (Cited on pages 56, 129, 131 134 [160, 280 309 310,311 335] 336,391 431, 458, 507, 510, 525, 590, 591, 610, 634, 636, 638, 698, and 794)
[448] A. Edelman and G. Strang, "Pascal Matrices," Amer. Math. Monthly, Vol. 111, pp. 189-197, 2004. (Cited on page 447)
[449] O. Egecioglu, "Parallelogram-Law-Type Identities," Lin. Alg. Appl., Vol. 225, pp. 1-12, 1995. (Cited on page 70)
[450] H. G. Eggleston, Convexity. Cambridge: Cambridge University Press, 1958. (Cited on page 164])
[451] L. Elsner, D. Hershkowitz, and H. Schneider, "Bounds on Norms of Compound Matrices and on Products of Eigenvalues," Bull. London Math. Soc., Vol. 32, pp. 15-24, 2000. (Cited on pages 17 and 413)
[452] L. Elsner and K. D. Ikramov, "Normal Matrices: An Update," Lin. Alg. Appl., Vol. 285, pp. 291-303, 1998. (Cited on pages 180 650 and 695)
[453] L. Elsner, C. R. Johnson, and J. A. D. Da Silva, "The Perron Root of a Weighted Geometric Mean of Nonnegative Matrices," Lin. Multilin. Alg., Vol. 24, pp. 1-13, 1988. (Cited on page 415)
[454] L. Elsner and M. H. C. Paardekooper, "On Measures of Nonnormality of Matrices," Lin. Alg. Appl., Vol. 92, pp. 107-124, 1987. (Cited on page 180)
[455] L. Elsner and P. Rozsa, "On Eigenvectors and Adjoints of Modified Matrices," Lin. Multilin. Alg., Vol. 10, pp. 235-247, 1981. (Cited on page 142)
[456] L. Elsner and T. Szulc, "Convex Sets of Schur Stable and Stable Matrices," Lin. Multilin. Alg., Vol. 48, pp. 1-19, 2000. (Cited on page 269)
[457] A. Engel, Problem-Solving Strategies. New York: Springer, 1998. (Cited on pages $31,32,34,39,40,41,42,43,44,45,46,495,52,60$ and 158)
[458] K. Engo, "On the BCH Formula in so(3)," Numer. Math. BIT, Vol. 41, pp. 629632, 2001. (Cited on page 683)
[459] K. Erdmann and M. J. Wildon, Introduction to Lie Algebras. New York: Springer, 2006. (Cited on page 229)
[460] J. A. Erdos, "On Products of Idempotent Matrices," Glasgow Math. J., Vol. 8, pp. 118-122, 1967. (Cited on page 350)
[461] R. Eriksson, "On the Measure of Solid Angles," Math. Mag., Vol. 63, pp. 184-187, 1990. (Cited on page 161)
[462] J.-C. Evard and F. Uhlig, "On the Matrix Equation $f(X)=A$," Lin. Alg. Appl., Vol. 162-164, pp. 447-519, 1992. (Cited on page 722)
[463] S. Fallat and M. J. Tsatsomeros, "On the Cayley Transform of Positivity Classes of Matrices," Elec. J. Lin. Alg., Vol. 9, pp. 190-196, 2002. (Cited on page 453)
[464] K. Fan, "Generalized Cayley Transforms and Strictly Dissipative Matrices," Lin. Alg. Appl., Vol. 5, pp. 155-172, 1972. (Cited on page 453)
[465] K. Fan, "On Real Matrices with Positive Definite Symmetric Component," Lin. Multilin. Alg., Vol. 1, pp. 1-4, 1973. (Cited on pages 453 and 487)
[466] K. Fan, "On Strictly Dissipative Matrices," Lin. Alg. Appl., Vol. 9, pp. 223-241, 1974. (Cited on pages 453 and 485)
[467] M. Fang, "Bounds on Eigenvalues of the Hadamard Product and the Fan Product of Matrices," Lin. Alg. Appl., Vol. 425, pp. 7-15, 2007. (Cited on page 415)
[468] Y. Fang, K. A. Loparo, and X. Feng, "Inequalities for the Trace of Matrix Product," IEEE Trans. Autom. Contr., Vol. 39, pp. 2489-2490, 1994. (Cited on page 334)
[469] R. W. Farebrother, "A Class of Square Roots of Involutory Matrices," IMAGE, Vol. 28, pp. 26-28, 2002. (Cited on page 398)
[470] R. W. Farebrother, J. Gross, and S.-O. Troschke, "Matrix Representation of Quaternions," Lin. Alg. Appl., Vol. 362, pp. 251-255, 2003. (Cited on page 229])
[471] R. W. Farebrother and I. Wrobel, "Regular and Reflected Rotation Matrices," IMAGE, Vol. 29, pp. 24-25, 2002. (Cited on page 348)
[472] D. R. Farenick, M. Krupnik, N. Krupnik, and W. Y. Lee, "Normal Toeplitz Matrices," SIAM J. Matrix Anal. Appl., Vol. 17, pp. 1037-1043, 1996. (Cited on page 357)
[473] A. Fassler and E. Stiefel, Group Theoretical Methods and Their Applications. Boston: Birkhauser, 1992. (Cited on page 229)
[474] A. E. Fekete, Real Linear Algebra. New York: Marcel Dekker, 1985. (Cited on pages 188 and 200)
[475] B. Q. Feng, "Equivalence Constants for Certain Matrix Norms," Lin. Alg. Appl., Vol. 374, pp. 247-253, 2003. (Cited on page 583)
[476] B. Q. Feng and A. Tonge, "Equivalence Constants for Certain Matrix Norms, II," Lin. Alg. Appl., Vol. 420, pp. 388-399, 2007. (Cited on pages 574 and 583)
[477] R. Fenn, Geometry. New York: Springer, 2001. (Cited on pages 30, 161, 188, 193 , 226, 227, and 278,
[478] P. G. Ferreira and S. P. Bhattacharyya, "On Blocking Zeros," IEEE Trans. Autom. Contr., Vol. AC-22, pp. 258-259, 1977. (Cited on page 805)
[479] J. H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics, 3rd ed. Berlin: Springer, 2002. (Cited on page xvii)
[480] M. Fiedler, "A Note on the Hadamard Product of Matrices," Lin. Alg. Appl., Vol. 49, pp. 233-235, 1983. (Cited on pages 532 and 535)
[481] M. Fiedler, Special Matrices and Their Applications in Numerical Mathematics. Dordrecht: Martinus Nijhoff, 1986. (Cited on pages xvii $2552257[275,329355$ [390, 412 and 702)
[482] M. Fiedler, "Some Applications of Matrices and Graphs in Euclidean Geometry," in Handbook of Linear Algebra, L. Hogben, Ed. Boca Raton: Chapman \& Hall/CRC, 2007, pp. 66-1-66-15. (Cited on pages 160 and 532)
[483] M. Fiedler and T. L. Markham, "A Characterization of the Moore-Penrose Inverse," Lin. Alg. Appl., Vol. 179, pp. 129-133, 1993. (Cited on pages 149 and 376)
[484] M. Fiedler and T. L. Markham, "An Observation on the Hadamard Product of Hermitian Matrices," Lin. Alg. Appl., Vol. 215, pp. 179-182, 1995. (Cited on page 534)
[485] M. Fiedler and T. L. Markham, "Some Results on the Bergstrom and Minkowski Inequalities," Lin. Alg. Appl., Vol. 232, pp. 199-211, 1996. (Cited on page 468)
[486] M. Fiedler and V. Ptak, "A New Positive Definite Geometric Mean of Two Positive Definite Matrices," Lin. Alg. Appl., Vol. 251, pp. 1-20, 1997. (Cited on page 463)
[487] J. A. Fill and D. E. Fishkind, "The Moore-Penrose Generalized Inverse for Sums of Matrices," SIAM J. Matrix Anal. Appl., Vol. 21, pp. 629-635, 1999. (Cited on page 378)
[488] P. A. Fillmore, "On Similarity and the Diagonal of a Matrix," Amer. Math. Monthly, Vol. 76, pp. 167-169, 1969. (Cited on page 313)
[489] P. A. Fillmore, "On Sums of Projections," J. Funct. Anal., Vol. 4, pp. 146-152, 1969. (Cited on page 360)
[490] P. A. Fillmore and J. P. Williams, "On Operator Ranges," Adv. Math., Vol. 7, pp. 254-281, 1971. (Cited on page 431)
[491] C. H. Fitzgerald and R. A. Horn, "On Fractional Hadamard Powers of Positive Definite Matrices," J. Math. Anal. Appl., Vol. 61, pp. 633-642, 1977. (Cited on page 531)
[492] H. Flanders, "Methods of Proof in Linear Algebra," Amer. Math. Monthly, Vol. 63, pp. 1-15, 1956. (Cited on page 214)
[493] H. Flanders, "On the Norm and Spectral Radius," Lin. Multilin. Alg., Vol. 2, pp. 239-240, 1974. (Cited on page 603)
[494] H. Flanders, "An Extremal Problem in the Space of Positive Definite Matrices," Lin. Multilin. Alg., Vol. 3, pp. 33-39, 1975. (Cited on page 459)
[495] W. Fleming, Functions of Several Variables, 2nd ed. New York: Springer, 1987. (Cited on page 494)
[496] T. M. Flett, Differential Analysis. Cambridge: Cambridge University Press, 1980. (Cited on page 642)
[497] S. Foldes, Fundamental Structures of Algebra and Discrete Mathematics. New York: Wiley, 1994. (Cited on page 222)
[498] J. Foley, A. van Dam, S. Feiner, and J. Hughes, Computer Graphics Principles and Practice, 2nd ed. Reading: Addison-Wesley, 1990. (Cited on pages xvii and 194)
[499] E. Formanek, "Polynomial Identities and the Cayley-Hamilton Theorem," Mathematical Intelligencer, Vol. 11, pp. 37-39, 1989. (Cited on pages 149214 and 260)
[500] E. Formanek, The Polynomial Identities and Invariants of $n \times n$ Matrices. Providence: American Mathematical Society, 1991. (Cited on pages 149 214, and 260)
[501] L. R. Foulds, Graph Theory Applications. New York: Springer, 1992. (Cited on page xviil)
[502] B. A. Francis, A Course in H_{∞} Control Theory. New York: Springer, 1987. (Cited on page xvii)
[503] J. Franklin, Matrix Theory. Englewood Cliffs: Prentice-Hall, 1968. (Cited on page xix)
[504] M. Frazier, An Introduction to Wavelets through Linear Algebra. New York: Springer, 1999. (Cited on page xvii)
[505] S. Friedland, "A Note on a Determinantal Inequality," Lin. Alg. Appl., Vol. 141, pp. 221-222, 1990. (Cited on page 601)
[506] S. Friedland, D. Hershkowitz, and S. M. Rump, "Positive Entries of Stable Matrices," Elec. J. Lin. Alg., Vol. 12, pp. 17-24, 2005. (Cited on page 708.)
[507] S. Friedland and A. Torokhti, "Generalized Rank-Constrained Matrix Approximation," SIAM J. Matrix Anal. Appl., Vol. 29, pp. 656-659, 2007. (Cited on pages 614 and 618)
[508] P. A. Fuhrmann, A Polynomial Approach to Linear Algebra. New York: Springer, 1996. (Cited on pages $1 9 7 \longdiv { 2 5 5 } \boxed { 2 5 7 } \boxed { 2 5 8 } 2 8 1 3 0 9$ and 473)
[509] J. I. Fujii and M. Fujii, "Kolmogorov's Complexity for Positive Definite Matrices," Lin. Alg. Appl., Vol. 341, pp. 171-180, 2002. (Cited on page 502.)
[510] J. I. Fujii, M. Fujii, T. Furuta, and R. Nakamoto, "Norm Inequalities Equivalent to Heinz Inequality," Proc. Amer. Math. Soc., Vol. 118, pp. 827-830, 1993. (Cited on page 589,
[511] J.-I. Fujii, S. Izumino, and Y. Seo, "Determinant for Positive Operators and Specht's Theorem," Scientiae Mathematicae, Vol. 1, pp. 307-310, 1998. (Cited on page 53)
[512] M. Fujii, E. Kamei, and R. Nakamoto, "On a Question of Furuta on Chaotic Order," Lin. Alg. Appl., Vol. 341, pp. 119-129, 2002. (Cited on pages 461466 [522, and 523])
[513] M. Fujii, E. Kamei, and R. Nakamoto, "On a Question of Furuta on Chaotic Order, II," Math. J. Okayama University, Vol. 45, pp. 123-131, 2003. (Cited on page466)
[514] M. Fujii and F. Kubo, "Buzano's Inequality and Bounds for Roots of Algebraic Equations," Proc. Amer. Math. Soc., Vol. 117, pp. 359-361, 1993. (Cited on pages 67, 565, and 711)
[515] M. Fujii, S. H. Lee, Y. Seo, and D. Jung, "Reverse Inequalities on Chaotically Geometric Mean via Specht Ratio," Math. Ineq. Appl., Vol. 6, pp. 509-519, 2003. (Cited on page 34)
[516] M. Fujii, S. H. Lee, Y. Seo, and D. Jung, "Reverse Inequalities on Chaotically Geometric Mean via Specht Ratio, II," J. Ineq. Pure Appl. Math., Vol. 4/40, pp. $1-8,2003$. (Cited on page 53)
[517] M. Fujii and R. Nakamoto, "Rota's Theorem and Heinz Inequalities," Lin. Alg. Appl., Vol. 214, pp. 271-275, 1995. (Cited on page 589)
[518] M. Fujii, Y. Seo, and M. Tominaga, "Golden-Thompson Type Inequalities Related to a Geometric Mean via Specht's Ratio," Math. Ineq. Appl., Vol. 5, pp. 573-582, 2002. (Cited on pages 685 and 686)
[519] A. T. Fuller, "Conditions for a Matrix to Have Only Characteristic Roots with Negative Real Parts," J. Math. Anal. Appl., Vol. 23, pp. 71-98, 1968. (Cited on pages 406413416 and 697)
[520] W. Fulton and J. Harris, Representation Theory. New York: Springer, 2004. (Cited on page 223)
[521] S. Furuichi, "Matrix Trace Inequalities on the Tsallis Entropies," J. Ineq. Pure Appl. Math., Vol. 9, no. 1, pp. 1-7, 2008, Article 1. (Cited on page 479)
[522] T. Furuta, " $A \geq B \geq 0$ Assures $\left(B^{r} A^{p} B^{r}\right)^{1 / q} \geq B^{(p+2 r) / q}$ for $r \geq 0, p \geq 0, q \geq 1$ with $(1+2 r) q \geq p+2 r$," Proc. Amer. Math. Soc., Vol. 101, pp. 85-88, 1987. (Cited on page 433)
[523] T. Furuta, "Norm Inequalities Equivalent to Loewner-Heinz Theorem," Rev. Math. Phys., Vol. 1, pp. 135-137, 1989. (Cited on pages 520 and 582)
[524] T. Furuta, "Two Operator Functions with Monotone Property," Proc. Amer. Math. Soc., Vol. 111, pp. 511-516, 1991. (Cited on page 461)
[525] T. Furuta, "A Note on the Arithmetic-Geometric-Mean Inequality for Every Unitarily Invariant Matrix Norm," Lin. Alg. Appl., Vol. 208/209, pp. 223-228, 1994. (Cited on page 589)
[526] T. Furuta, "Extension of the Furuta Inequality and Ando-Hiai Log-Majorization," Lin. Alg. Appl., Vol. 219, pp. 139-155, 1995. (Cited on page 461)
[527] T. Furuta, "Generalizations of Kosaki Trace Inequalities and Related Trace Inequalities on Chaotic Order," Lin. Alg. Appl., Vol. 235, pp. 153-161, 1996. (Cited on page 481)
[528] T. Furuta, "Operator Inequalities Associated with Hölder-McCarthy and Kantorovich Inequalities," J. Ineq. Appl., Vol. 2, pp. 137-148, 1998. (Cited on page 465)
[529] T. Furuta, "Simple Proof of the Concavity of Operator Entropy $f(A)=-A \log A$," Math. Ineq. Appl., Vol. 3, pp. 305-306, 2000. (Cited on page 441)
[530] T. Furuta, Invitation to Linear Operators: From Matrices to Bounded Linear Operators on a Hilbert Space. London: Taylor and Francis, 2001. (Cited on pages 24 209, 433, 434, 436, 455, 461, 464, 465, 502, 511, 522, and 568),
[531] T. Furuta, "Spectral Order $A \succ B$ if and only if $A^{2 p-r} \geq$ $\left(A^{-r / 2} B^{p} A^{-r / 2}\right)^{(2 p-r) /(p-r)}$ for all $p>r \geq 0$ and Its Application," Math. Ineq. Appl., Vol. 4, pp. 619-624, 2001. (Cited on pages 466 and 523)
[532] T. Furuta, "The Hölder-McCarthy and the Young Inequalities Are Equivalent for Hilbert Space Operators," Amer. Math. Monthly, Vol. 108, pp. 68-69, 2001. (Cited on page 502)
[533] T. Furuta, "Convergence of Logarithmic Trace Inequalities via Generalized LieTrotter Formulae," Lin. Alg. Appl., Vol. 396, pp. 353-372, 2005. (Cited on pages 683 and 686)
[534] T. Furuta, "Concrete Examples of Operator Monotone Functions Obtained by an Elementary Method without Appealing to Löwner Integral Representation," Lin. Alg. Appl., Vol. 429, pp. 972-980, 2008. (Cited on page 467)
[535] F. Gaines, "A Note on Matrices with Zero Trace," Amer. Math. Monthly, Vol. 73, pp. 630-631, 1966. (Cited on pages 184185 and 313)
[536] A. Galantai, Projectors and Projection Methods. Dordrecht: Kluwer, 2004. (Cited on pages 204 , 230, 315 , 316, 329, 335, 336, 571, 572, and 636)
[537] A. Galantai, "Subspaces, Angles and Pairs of Orthogonal Projections," Lin. Multilin. Alg., Vol. 56, pp. 227-260, 2008. (Cited on pages $112,209,210,315,316,329$, (335, 336, 337, and 380)
[538] J. Gallier and D. Xu, "Computing Exponentials of Skew-Symmetric Matrices and Logarithms of Orthogonal Matrices," Int. J. Robotics Automation, Vol. 17, pp. 1-11, 2002. (Cited on page 193),
[539] L. Gangsong and Z. Guobiao, "Inverse Forms of Hadamard Inequality," SIAM J. Matrix Anal. Appl., Vol. 23, pp. 990-997, 2002. (Cited on page 511)
[540] F. R. Gantmacher, The Theory of Matrices. New York: Chelsea, 1959, Vol. I. (Cited on pages xix and 541)
[541] F. R. Gantmacher, The Theory of Matrices. New York: Chelsea, 1959, Vol. II. (Cited on pages xix 304 318 and 722)
[542] D. J. H. Garling, Inequalities: A Journey into Linear Analysis. Cambridge: Cambridge University Press, 2007. (Cited on pages $33535458,63 \boxed{75} 162,163,569$ and 574)
[543] J. Garloff and D. G. Wagner, "Hadamard Products of Stable Polynomials Are Stable," J. Math. Anal. Appl., Vol. 202, pp. 797-809, 1996. (Cited on page 697)
[544] T. Geerts, "A Necessary and Sufficient Condition for Solvability of the LinearQuadratic Control Problem without Stability," Sys. Contr. Lett., Vol. 11, pp. 4751, 1988. (Cited on page 805)
[545] I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky, Discriminants, Resultants, and Multidimensional Determinants. Boston: Birkhauser, 1994. (Cited on page 416.
[546] M. G. Genton, "Classes of Kernels for Machine Learning: A Statistics Perspective," J. Machine Learning Res., Vol. 2, pp. 299-312, 2001. (Cited on page 445)
[547] A. George and K. D. Ikramov, "Common Invariant Subspaces of Two Matrices," Lin. Alg. Appl., Vol. 287, pp. 171-179, 1999. (Cited on pages 342 and 358)
[548] P. Gerdes, Adventures in the World of Matrices. Hauppauge: Nova Publishers, 2007. (Cited on page 357)
[549] A. Gerrard and J. M. Burch, Introduction to Matrix Methods in Optics. New York: Wiley, 1975. (Cited on page xviil)
[550] A. Gheondea, S. Gudder, and P. Jonas, "On the Infimum of Quantum Effects," J. Math. Phys., Vol. 46, pp. 1-11, 2005, paper 062102. (Cited on page 460)
[551] F. A. A. Ghouraba and M. A. Seoud, "Set Matrices," Int. J. Math. Educ. Sci. Technol., Vol. 30, pp. 651-659, 1999. (Cited on page 230)
[552] M. I. Gil, "On Inequalities for Eigenvalues of Matrices," Lin. Alg. Appl., Vol. 184, pp. 201-206, 1993. (Cited on page 325)
[553] R. Gilmore, Lie Groups, Lie Algebras, and Some of Their Applications. New York: Wiley, 1974, reprinted by Dover, Mineola, 2005. (Cited on page 229)
[554] R. Gilmore, Lie Groups, Physics, and Geometry: An Introduction for Physicists, Engineers, and Chemists. Cambridge: Cambridge University Press, 2008. (Cited on page 229.)
[555] P. R. Girard, Quaternions, Clifford Algebras and Relativistic Physics. Boston: Birkhauser, 2007. (Cited on pages 188193 and 225)
[556] M. L. Glasser, "Exponentials of Certain Hilbert Space Operators," SIAM Rev., Vol. 34, pp. 498-500, 1992. (Cited on page 683)
[557] C. Godsil and G. Royle, Algebraic Graph Theory. New York: Springer, 2001. (Cited on page xviil)
[558] S. K. Godunov, Modern Aspects of Linear Algebra. Providence: American Mathematical Society, 1998. (Cited on pages xix 211 and 699)
[559] I. Gohberg, P. Lancaster, and L. Rodman, Matrix Polynomials. New York: Academic Press, 1982. (Cited on pages [234, 281 and 361)
[560] I. Gohberg, P. Lancaster, and L. Rodman, Invariant Subspaces of Matrices with Applications. New York: Wiley, 1986. (Cited on pages 336361 and 636)
[561] I. Gohberg, P. Lancaster, and L. Rodman, "On Hermitian Solutions of the Symmetric Algebraic Riccati Equation," SIAM J. Contr. Optim., Vol. 24, pp. 1323-1334, 1986. (Cited on pages 787, 788, and 805)
[562] I. Gohberg, P. Lancaster, and L. Rodman, Indefinite Linear Algebra and Applications. Boston: Birkhauser, 2005. (Cited on pages 361 and 805)
[563] M. A. Golberg, "The Derivative of a Determinant," Amer. Math. Monthly, Vol. 79, pp. 1124-1126, 1972. (Cited on pages 640 and 678)
[564] M. Goldberg, "Mixed Multiplicativity and l_{p} Norms for Matrices," Lin. Alg. Appl., Vol. 73, pp. 123-131, 1986. (Cited on page 583)
[565] M. Goldberg, "Equivalence Constants for l_{p} Norms of Matrices," Lin. Multilin. Alg., Vol. 21, pp. 173-179, 1987. (Cited on page 583)
[566] M. Goldberg, "Multiplicativity Factors and Mixed Multiplicativity," Lin. Alg. Appl., Vol. 97, pp. 45-56, 1987. (Cited on page 583))
[567] M. Goldberg and G. Zwas, "On Matrices Having Equal Spectral Radius and Spectral Norm," Lin. Alg. Appl., Vol. 8, pp. 427-434, 1974. (Cited on page 603)
[568] H. Goller, "Shorted Operators and Rank Decomposition Matrices," Lin. Alg. Appl., Vol. 81, pp. 207-236, 1986. (Cited on page 530)
[569] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed. Baltimore: Johns Hopkins University Press, 1996. (Cited on pages xviii 614 and 646)
[570] N. C. Gonzalez, J. J. Koliha, and Y. Wei, "Integral Representation of the Drazin Inverse," Elect. J. Lin. Alg., Vol. 9, pp. 129-131, 2002. (Cited on page 680)
[571] F. M. Goodman, Algebra: Abstract and Concrete, 2nd ed. Englewood Cliffs: Prentice-Hall, 2003. (Cited on page 223)
[572] L. E. Goodman and W. H. Warner, Statics. Belmont: Wadsworth Publishing Company, 1964, reprinted by Dover, Mineola, 2001. (Cited on page 188)
[573] N. Gordon and D. Salmond, "Bayesian Pattern Matching Technique for Target Acquisition," J. Guid. Contr. Dyn., Vol. 22, pp. 68-77, 1999. (Cited on page 139)
[574] A. Goroncy and T. Rychlik, "How Deviant Can You Be? The Complete Solution," Math. Ineq. Appl., Vol. 9, pp. 633-647, 2006. (Cited on page 51)
[575] W. Govaerts and J. D. Pryce, "A Singular Value Inequality for Block Matrices," Lin. Alg. Appl., Vol. 125, pp. 141-145, 1989. (Cited on page 610)
[576] W. Govaerts and B. Sijnave, "Matrix Manifolds and the Jordan Structure of the Bialternate Matrix Product," Lin. Alg. Appl., Vol. 292, pp. 245-266, 1999. (Cited on pages 413 and 416)
[577] R. Gow, "The Equivalence of an Invertible Matrix to Its Transpose," Lin. Alg. Appl., Vol. 8, pp. 329-336, 1980. (Cited on pages 312 and 351.)
[578] R. Gow and T. J. Laffey, "Pairs of Alternating Forms and Products of Two SkewSymmetric Matrices," Lin. Alg. Appl., Vol. 63, pp. 119-132, 1984. (Cited on pages 343 and 351)
[579] A. Graham, Kronecker Products and Matrix Calculus with Applications. Chichester: Ellis Horwood, 1981. (Cited on page 416)
[580] F. A. Graybill, Matrices with Applications in Statistics, 2nd ed. Belmont: Wadsworth, 1983. (Cited on page xviil)
[581] J. Grcar, "Linear Algebra People," http://seesar.lbl.gov/ccse/people/grcar/index. html. (Cited on page 164)
[582] J. F. Grcar, "A Matrix Lower Bound," Lawrence Berkeley National Laboratory, Report LBNL-50635, 2002. (Cited on pages 559 and 560 .)
[583] W. L. Green and T. D. Morley, "Operator Means and Matrix Functions," Lin. Alg. Appl., Vol. 137/138, pp. 453-465, 1990. (Cited on pages 463 and 529)
[584] D. H. Greene and D. E. Knuth, Mathematics for the Analysis of Algorithms, 3rd ed. Boston: Birkhauser, 1990. (Cited on page 17)
[585] W. H. Greub, Multilinear Algebra. New York: Springer, 1967. (Cited on page416)
[586] W. H. Greub, Linear Algebra. New York: Springer, 1981. (Cited on page xix)
[587] T. N. E. Greville, "Notes on the Generalized Inverse of a Matrix Product," SIAM Rev., Vol. 8, pp. 518-521, 1966. (Cited on page 380)
[588] T. N. E. Greville, "Solutions of the Matrix Equation $X A X=X$ and Relations between Oblique and Orthogonal projectors," SIAM J. Appl. Math, Vol. 26, pp. 828-832, 1974. (Cited on pages 210 and 381)
[589] R. Grone, C. R. Johnson, E. M. Sa, and H. Wolkowicz, "Normal Matrices," Lin. Alg. Appl., Vol. 87, pp. 213-225, 1987. (Cited on pages 180, 190 and 341)
[590] J. Gross, "A Note on a Partial Ordering in the Set of Hermitian Matrices," SIAM J. Matrix Anal. Appl., Vol. 18, pp. 887-892, 1997. (Cited on pages 523 and 526])
[591] J. Gross, "Some Remarks on Partial Orderings of Hermitian Matrices," Lin. Multilin. Alg., Vol. 42, pp. 53-60, 1997. (Cited on pages 523 and 526)
[592] J. Gross, "More on Concavity of a Matrix Function," SIAM J. Matrix Anal. Appl., Vol. 19, pp. 365-368, 1998. (Cited on page 530.)
[593] J. Gross, "On Oblique Projection, Rank Additivity and the Moore-Penrose Inverse of the Sum of Two Matrices," Lin. Multilin. Alg., Vol. 46, pp. 265-275, 1999. (Cited on page 381)
[594] J. Gross, "On the Product of Orthogonal Projectors," Lin. Alg. Appl., Vol. 289, pp. 141-150, 1999. (Cited on pages 209 and 381)
[595] J. Gross, "The Moore-Penrose Inverse of a Partitioned Nonnegative Definite Matrix," Lin. Alg. Appl., Vol. 321, pp. 113-121, 2000. (Cited on page 391)
[596] J. Gross and G. Trenkler, "On the Product of Oblique Projectors," Lin. Multilin. Alg., Vol. 44, pp. 247-259, 1998. (Cited on page 204)
[597] J. Gross and G. Trenkler, "Nonsingularity of the Difference of Two Oblique Projectors," SIAM J. Matrix Anal. Appl., Vol. 21, pp. 390-395, 1999. (Cited on pages 202 203, and 204)
[598] J. Gross and G. Trenkler, "Product and Sum of Projections," Amer. Math. Monthly, Vol. 111, pp. 261-262, 2004. (Cited on page 335.)
[599] J. Gross, G. Trenkler, and S.-O. Troschke, "The Vector Cross Product in \mathbb{C}," Int. J. Math. Educ. Sci. Tech., Vol. 30, pp. 549-555, 1999. (Cited on page 188)
[600] J. Gross, G. Trenkler, and S.-O. Troschke, "Quaternions: Further Contributions to a Matrix Oriented Approach," Lin. Alg. Appl., Vol. 326, pp. 205-213, 2001. (Cited on page 229.)
[601] J. Gross and S.-O. Troschke, "Some Remarks on Partial Orderings of Nonnegative Definite Matrices," Lin. Alg. Appl., Vol. 264, pp. 457-461, 1997. (Cited on pages 524 and 526)
[602] J. Gross and J. Yellen, Graph Theory and Its Applications, 2nd ed. Boca Raton: Chapman \& Hall/CRC, 2005. (Cited on page xviil)
[603] L. C. Grove and C. T. Benson, Finite Reflection Groups, 2nd ed. New York: Springer, 1996. (Cited on page 223)
[604] K. Guan and H. Zhu, "A Generalized Heronian Mean and Its Inequalities," University Beogradu Publ. Elektrotehn. Fak., Vol. 17, pp. 1-16, 2006, http://pefmath.etf.bg.ac.yu/to\ appear/rad528.pdf. (Cited on page 38)
[605] S. Gull, A. Lasenby, and C. Doran, "Imaginary Numbers Are not Real: The Geometric Algebra of Spacetime," Found. Phys., Vol. 23, pp. 1175-1201, 1993. (Cited on pages 188 227 and 565)
[606] A. K. Gupta and D. K. Nagar, Matrix Variate Distributions. Boca Raton: CRC, 1999. (Cited on page xvii)
[607] K. Gurlebeck and W. Sprossig, Quaternionic and Clifford Calculus for Physicists and Engineers. New York: Chichester, 1997. (Cited on pages 227228 and 675)
[608] L. Gurvits, "Stability of Discrete Linear Inclusion," Lin. Alg. Appl., Vol. 231, pp. 47-85, 1995. (Cited on page 715.)
[609] K. E. Gustafson, "Matrix Trigonometry," Lin. Alg. Appl., Vol. 217, pp. 117-140, 1995. (Cited on page 577)
[610] K. E. Gustafson and D. K. M. Rao, Numerical Range. New York: Springer, 1997. (Cited on page 497)
[611] W. H. Gustafson, P. R. Halmos, and H. Radjavi, "Products of Involutions," Lin. Alg. Appl., Vol. 13, pp. 157-162, 1976. (Cited on page 351)
[612] P. W. Gwanyama, "The HM-GM-QM-QM Inequalities," College Math. J., Vol. 35, pp. 47-50, 2004. (Cited on page 52)
[613] W. M. Haddad and D. S. Bernstein, "Robust Stabilization with Positive Real Uncertainty: Beyond the Small Gain Theorem," Sys. Contr. Lett., Vol. 17, pp. 191-208, 1991. (Cited on page 491)
[614] W. M. Haddad and D. S. Bernstein, "Controller Design with Regional Pole Constraints," IEEE Trans. Autom. Contr., Vol. 37, pp. 54-69, 1992. (Cited on page 798)
[615] W. M. Haddad and V. Chellaboina, "Stability and Dissipativity Theory for Nonnegative Dynamical Systems: A Unified Analysis Framework for Biological and Physiological Systems," Nonlinear Anal. Real World Appl., Vol. 6, pp. 35-65, 2005. (Cited on page 707)
[616] W. M. Haddad and V. Chellaboina, Nonlinear Dynamical Systems and Control. Princeton: Princeton University Press, 2008. (Cited on page xvii)
[617] W. M. Haddad, V. Chellaboina, and S. G. Nersesov, Thermodynamics: A Dynamical Systems Approach. Princeton: Princeton University Press, 2005. (Cited on pages 230 and 708)
[618] W. M. Haddad, V. Kapila, and E. G. Collins, "Optimality Conditions for ReducedOrder Modeling, Estimation, and Control for Discrete-Time Linear Periodic Plants," J. Math. Sys. Est. Contr., Vol. 6, pp. 437-460, 1996. (Cited on page 805)
[619] W. W. Hager, "Updating the Inverse of a Matrix," SIAM Rev., Vol. 31, pp. 221239, 1989. (Cited on page 164)
[620] W. Hahn, Stability of Motion. Berlin: Springer, 1967. (Cited on page 722.)
[621] E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration: StructurePreserving Algorithms for Ordinary Differential Equations. Berlin: Springer, 2002. (Cited on page 678)
[622] M. Hajja, "A Method for Establishing Certain Trigonometric Inequalities," J. Ineq. Pure Appl. Math., Vol. 8, no. 1, pp. 1-11, 2007, Article 29. (Cited on page 158)
[623] A. Hall, "Conditions for a Matrix Kronecker Lemma," Lin. Alg. Appl., Vol. 76, pp. 271-277, 1986. (Cited on page 465)
[624] B. C. Hall, Lie Groups, Lie Algebras, and Representations: An Elementary Introduction. New York: Springer, 2003. (Cited on pages 217, 654, 655, 657, 658, 659, 660, 680, 684, and 622)
[625] G. T. Halliwell and P. R. Mercer, "A Refinement of an Inequality from Information Theory," J. Ineq. Pure Appl. Math., Vol. 5, no. 1, pp. 1-3, 2004, Article 3. (Cited on pages 27 and 67)
[626] P. R. Halmos, Finite-Dimensional Vector Spaces. Princeton: Van Nostrand, 1958, reprinted by Springer, New York, 1974. (Cited on pages 313 and 376)
[627] P. R. Halmos, A Hilbert Space Problem Book, 2nd ed. New York: Springer, 1982. (Cited on pages 318343,384 and 385)
[628] P. R. Halmos, "Bad Products of Good Matrices," Lin. Multilin. Alg., Vol. 29, pp. 1-20, 1991. (Cited on pages 349 and 350)
[629] P. R. Halmos, Problems for Mathematicians Young and Old. Washington, DC: Mathematical Association of America, 1991. (Cited on pages $113,279,451$ and 681)
[630] P. R. Halmos, Linear Algebra Problem Book. Washington, DC: Mathematical Association of America, 1995. (Cited on pages 90,202 and 343)
[631] M. Hamermesh, Group Theory and its Application to Physical Problems. Reading: Addison-Wesley, 1962, reprinted by Dover, Mineola, 1989. (Cited on page 224)
[632] J. H. Han and M. D. Hirschhorn, "Another Look at an Amazing Identity of Ramanujan," Math. Mag., Vol. 79, pp. 302-304, 2006. (Cited on page 128)
[633] E. J. Hannan and M. Deistler, The Statistical Theory of Linear Systems. New York: Wiley, 1988. (Cited on page 805)
[634] F. Hansen, "Extrema for Concave Operator Mappings," Math. Japonica, Vol. 40, pp. 331-338, 1994. (Cited on page 483)
[635] F. Hansen, "Operator Inequalities Associated with Jensen's Inequality," in Survey on Classical Inequalities, T. M. Rassias, Ed. Dordrecht: Kluwer, 2000, pp. 67-98. (Cited on page 483)
[636] A. J. Hanson, Visualizing Quaternions. Amsterdam: Elsevier, 2006. (Cited on pages 227 and 228)
[637] G. Hardy, J. E. Littlewood, and G. Polya, Inequalities. Cambridge: Cambridge University Press, 1988. (Cited on page 76)
[638] L. A. Harris, "Factorizations of Operator Matrices," Lin. Alg. Appl., Vol. 225, pp. 37-41, 1995. (Cited on pages 473 and 474)
[639] L. A. Harris, "The Inverse of a Block Matrix," Amer. Math. Monthly, Vol. 102, pp. 656-657, 1995. (Cited on page 148)
[640] W. A. Harris, J. P. Fillmore, and D. R. Smith, "Matrix Exponentials-Another Approach," SIAM Rev., Vol. 43, pp. 694-706, 2001. (Cited on page 673)
[641] G. W. Hart, Multidimensional Analysis: Algebras and Systems for Science and Engineering. New York: Springer, 1995. (Cited on pages xvii and 230)
[642] D. J. Hartfiel, Nonhomogeneous Matrix Products. Singapore: World Scientific, 2002. (Cited on pages xvii and 715)
[643] R. Hartwig, X. Li, and Y. Wei, "Representations for the Drazin Inverse of a 2×2 Block Matrix," SIAM J. Matrix Anal. Appl., Vol. 27, pp. 757-771, 2006. (Cited on page 391.)
[644] R. E. Hartwig, "Resultants and the Solutions of $A X-X B=-C$," SIAM J. Appl. Math., Vol. 23, pp. 104-117, 1972. (Cited on page 797)
[645] R. E. Hartwig, "Block Generalized Inverses," Arch. Rat. Mech. Anal., Vol. 61, pp. 197-251, 1976. (Cited on page 391.)
[646] R. E. Hartwig, "A Note on the Partial Ordering of Positive Semi-Definite Matrices," Lin. Multilin. Alg., Vol. 6, pp. 223-226, 1978. (Cited on pages 524 526, and 527)
[647] R. E. Hartwig, "How to Partially Order Regular Elements," Math. Japonica, Vol. 25, pp. 1-13, 1980. (Cited on page 119)
[648] R. E. Hartwig and I. J. Katz, "On Products of EP Matrices," Lin. Alg. Appl., Vol. 252, pp. 339-345, 1997. (Cited on page 382)
[649] R. E. Hartwig and M. S. Putcha, "When Is a Matrix a Difference of Two Idempotents?" Lin. Multilin. Alg., Vol. 26, pp. 267-277, 1990. (Cited on pages 322 and 337)
[650] R. E. Hartwig and M. S. Putcha, "When Is a Matrix a Sum of Idempotents?" Lin. Multilin. Alg., Vol. 26, pp. 279-286, 1990. (Cited on page 361.)
[651] R. E. Hartwig and K. Spindelbock, "Matrices for which A^{*} and A^{+}Commute," Lin. Multilin. Alg., Vol. 14, pp. 241-256, 1984. (Cited on pages 315372373 and 396.)
[652] R. E. Hartwig and G. P. H. Styan, "On Some Characterizations of the "Star" Partial Ordering for Matrices and Rank Subtractivity," Lin. Alg. Appl., Vol. 82, pp. 145-161, 1989. (Cited on pages 119 (120) 385, and 526)
[653] R. E. Hartwig, G. Wang, and Y. Wei, "Some Additive Results on Drazin Inverse," Lin. Alg. Appl., Vol. 322, pp. 207-217, 2001. (Cited on page 394.)
[654] D. A. Harville, Matrix Algebra from a Statistician's Perspective. New York: Springer, 1997. (Cited on pages xvii $199,202,371,377$ [378, $381,383,486,506$, and 642)
[655] J. Hauke and A. Markiewicz, "On Partial Orderings on the Set of Rectangular Matrices," Lin. Alg. Appl., Vol. 219, pp. 187-193, 1995. (Cited on page 524.)
[656] M. L. J. Hautus, "Controllability and Observability Conditions of Linear Autonomous Systems," Proc. Koniklijke Akademic Van Wetenshappen, Vol. 72, pp. 443-448, 1969. (Cited on page 805.)
[657] T. Haynes, "Stable Matrices, the Cayley Transform, and Convergent Matrices," Int. J. Math. Math. Sci., Vol. 14, pp. 77-81, 1991. (Cited on page 713)
[658] E. V. Haynsworth, "Applications of an Inequality for the Schur Complement," Proc. Amer. Math. Soc., Vol. 24, pp. 512-516, 1970. (Cited on pages 442474, and 542)
[659] E. Hecht, Optics, 4th ed. Reading: Addison Wesley, 2002. (Cited on page xvii)
[660] C. Heij, A. Ran, and F. van Schagen, Eds., Introduction to Mathematical Systems Theory: Linear Systems, Identification and Control. Basel: Birkhauser, 2007. (Cited on page 805)
[661] C. Heij, A. Ran, and F. van Schagen, Introduction to Mathematical Systems Theory: Linear Systems, Identification and Control. Basel: Birkhauser, 2007. (Cited on page 805)
[662] G. Heinig, "Matrix Representations of Bezoutians," Lin. Alg. Appl., Vol. 223/224, pp. 337-354, 1995. (Cited on page 257)
[663] U. Helmke and P. A. Fuhrmann, "Bezoutians," Lin. Alg. Appl., Vol. 122-124, pp. 1039-1097, 1989. (Cited on page 257)
[664] B. W. Helton, "Logarithms of Matrices," Proc. Amer. Math. Soc., Vol. 19, pp. 733-738, 1968. (Cited on page 722)
[665] H. V. Henderson, F. Pukelsheim, and S. R. Searle, "On the History of the Kronecker Product," Lin. Multilin. Alg., Vol. 14, pp. 113-120, 1983. (Cited on page 416.)
[666] H. V. Henderson and S. R. Searle, "On Deriving the Inverse of a Sum of Matrices," SIAM Rev., Vol. 23, pp. 53-60, 1981. (Cited on pages 145 and 164)
[667] H. V. Henderson and S. R. Searle, "The Vec-Permutation Matrix, The Vec Operator and Kronecker Products: A Review," Lin. Multilin. Alg., Vol. 9, pp. 271-288, 1981. (Cited on page 416)
[668] J. Herman, R. Kucera, and J. Simsa, Equations and Inequalities. New York: Springer, 2000. (Cited on pages [17, 18, 23, 24, 25, 26, 32, 36, 37, $39,40,41,42$ $43,44,46,47,49,52$, and 60)
[669] D. Hershkowitz, "Positive Semidefinite Pattern Decompositions," SIAM J. Matrix Anal. Appl., Vol. 11, pp. 612-619, 1990. (Cited on page 475)
[670] D. Hestenes, Space-Time Algebra. New York: Gordon and Breach, 1966. (Cited on page 227,)
[671] D. Hestenes, New Foundations for Classical Mechanics. Dordrecht: Kluwer, 1986. (Cited on pages 188 and 227)
[672] D. Hestenes and G. Sobczyk, Clifford Algebra to Geometric Calculus: A Unified Language for Mathematics and Physics. Dordrecht: D. Riedel, 1984. (Cited on pages 188 and 227)
[673] F. Hiai and H. Kosaki, Eds., Means of Hilbert Space Operators. Berlin: Springer, 2003. (Cited on pages 29, 35 and 447)
[674] F. Hiai and D. Petz, "The Golden-Thompson Trace Inequality Is Complemented," Lin. Alg. Appl., Vol. 181, pp. 153-185, 1993. (Cited on pages 461 and 686)
[675] F. Hiai and X. Zhan, "Submultiplicativity vs Subadditivity for Unitarily Invariant Norms," Lin. Alg. Appl., Vol. 377, pp. 155-164, 2004. (Cited on page 580)
[676] D. J. Higham and N. J. Higham, Matlab Guide, 2nd ed. Philadelphia: SIAM, 2005. (Cited on page 164)
[677] N. J. Higham, "Newton's Method for the Matrix Square Root," Math. Computation, Vol. 46, pp. 537-549, 1986. (Cited on page 349])
[678] N. J. Higham, "Computing Real Square Roots of a Real Matrix," Lin. Alg. Appl., Vol. 88/89, pp. 405-430, 1987. (Cited on page 348)
[679] N. J. Higham, "Matrix Nearness Problems and Applications," in Applications of Matrix Theory, M. J. C. Gover and S. Barnett, Eds. Oxford: Oxford University Press, 1989, pp. 1-27. (Cited on pages 608, 700 and 701)
[680] N. J. Higham, "Estimating the Matrix p-Norm," Numer. Math., Vol. 62, pp. 539555, 1992. (Cited on pages 571 and 575)
[681] N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed. Philadelphia: SIAM, 2002. (Cited on pages xviii, 215, $221,327,328,331,571,573,575$, 576, 577, 603, 608, 609, 615 and 619)
[682] N. J. Higham, "Cayley, Sylvester, and Early Matrix Theory," Lin. Alg. Appl., Vol. 428, pp. 39-43, 2008. (Cited on page 261)
[683] N. J. Higham, Functions of Matrices: Theory and Computation. Philadelphia: SIAM, 2008. (Cited on pages xviii 727 74, 348 359 $360 \boxed{584} 629637657658$ 677, 681 685, $692,693,694,722$ and 802)
[684] G. N. Hile and P. Lounesto, "Matrix Representations of Clifford Algebras," Lin. Alg. Appl., Vol. 128, pp. 51-63, 1990. (Cited on page 227)
[685] R. D. Hill, R. G. Bates, and S. R. Waters, "On Centrohermitian Matrices," SIAM J. Matrix Anal. Appl., Vol. 11, pp. 128-133, 1990. (Cited on page 221)
[686] R. D. Hill and E. E. Underwood, "On the Matrix Adjoint (Adjugate)," SIAM J. Alg. Disc. Meth., Vol. 6, pp. 731-737, 1985. (Cited on page 142)
[687] C.-J. Hillar, "Advances on the Bessis-Moussa-Villani Trace Conjecture," Lin. Alg. Appl., Vol. 426, pp. 130-142, 2007. (Cited on page 482)
[688] L. O. Hilliard, "The Case of Equality in Hopf's Inequality," SIAM J. Alg. Disc. Meth., Vol. 8, pp. 691-709, 1987. (Cited on page 280)
[689] D. Hinrichsen, E. Plischke, and F. Wirth, "Robustness of Transient Behavior," in Unsolved Problems in Mathematical Systems and Control Theory, V. D. Blondel and A. Megretski, Eds. Princeton: Princeton University Press, 2004. (Cited on page 699)
[690] D. Hinrichsen and A. J. Pritchard, Mathematical Systems Theory I: Modelling, State Space Analysis, Stability and Robustness. Berlin: Springer, 2005. (Cited on pages 318, 326, 327, 554, 555 617, 638, 639, 691, 695] and 709)
[691] M. W. Hirsch and S. Smale, Differential Equations, Dynamical Systems, and Linear Algebra. San Diego: Academic Press, 1974. (Cited on pages xvii and 311)
[692] M. W. Hirsch, S. Smale, and R. L. Devaney, Differential Equations, Dynamical Systems and an Introduction to Chaos, 2nd ed. New York: Elsevier, 2003. (Cited on page xvii)
[693] O. Hirzallah, "Inequalities for Sums and Products of Operators," Lin. Alg. Appl., Vol. 407, pp. 32-42, 2005. (Cited on page 613)
[694] O. Hirzallah and F. Kittaneh, "Matrix Young Inequalities for the Hilbert-Schmidt Norm," Lin. Alg. Appl., Vol. 308, pp. 77-84, 2000. (Cited on page 612)
[695] O. Hirzallah and F. Kittaneh, "Commutator Inequalities for Hilbert-Schmidt Norm," J. Math. Anal. Appl., Vol. 268, pp. 67-73, 2002. (Cited on pages 38 and 70.)
[696] O. Hirzallah and F. Kittaneh, "Non-Commutative Clarkson Inequalities for Unitarily Invariant Norms," Pac. J. Math., Vol. 202, pp. 363-369, 2002. (Cited on page 586)
[697] O. Hirzallah and F. Kittaneh, "Norm Inequalities for Weighted Power Means of Operators," Lin. Alg. Appl., Vol. 341, pp. 181-193, 2002. (Cited on page 502])
[698] O. Hirzallah and F. Kittaneh, "Inequalities for Sums and Direct Sums of Hilbert Space Operators," Lin. Alg. Appl., Vol. 424, pp. 71-82, 2007. (Cited on pages 612 and 613)
[699] A. Hmamed, "A Matrix Inequality," Int. J. Contr., Vol. 49, pp. 363-365, 1989. (Cited on page 541)
[700] J. B. Hoagg, J. Chandrasekar, and D. S. Bernstein, "On the Zeros, Initial Undershoot, and Relative Degree of Lumped-Parameter Structures," ASME J. Dyn. Sys. Meas. Contr., Vol. 129, pp. 493-502, 2007. (Cited on page 219)
[701] K. Hoffman and R. Kunze, Linear Algebra, 2nd ed. Englewood Cliffs: PrenticeHall, 1971. (Cited on page xix)
[702] L. Hogben, Ed., Handbook of Linear Algebra. Boca Raton: Chapman \& Hall/CRC, 2007. (Cited on page xvii)
[703] R. R. Holmes and T. Y. Tam, "Group Representations," in Handbook of Linear Algebra, L. Hogben, Ed. Boca Raton: Chapman \& Hall/CRC, 2007, pp. 68-1-68-11. (Cited on page 224)
[704] O. Holtz, "On Convergence of Infinite Matrix Products," Elec. J. Lin. Alg., Vol. 7, pp. 178-181, 2000. (Cited on page 715)
[705] O. Holtz, "Hermite-Biehler, Routh-Hurwitz, and Total Positivity," Lin. Alg. Appl., Vol. 372, pp. 105-110, 2003. (Cited on page 697)
[706] Y. Hong and R. A. Horn, "The Jordan Canonical Form of a Product of a Hermitian and a Positive Semidefinite Matrix," Lin. Alg. Appl., Vol. 147, pp. 373-386, 1991. (Cited on page 350)
[707] Y. P. Hong and C.-T. Pan, "A Lower Bound for the Smallest Singular Value," Lin. Alg. Appl., Vol. 172, pp. 27-32, 1992. (Cited on page 606])
[708] A. Horn, "Doubly Stochastic Matrices and the Diagonal of a Rotation Matrix," Amer. J. Math., Vol. 76, pp. 620-630, 1954. (Cited on page 511)
[709] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge: Cambridge University Press, 1985. (Cited on pages $139,163,214][254, ~ 271, ~ 273, ~ 275] ~[280, ~ 281, ~ 293] ~$
 512, 532, 537, 538, 541, 546, 549, 550, 553, 572, 573, 574, 578, 580, 601] and 609)
[710] R. A. Horn and C. R. Johnson, "Hadamard and Conventional Submultiplicativity for Unitarily Invariant Norms on Matrices," Lin. Multilin. Alg., Vol. 20, pp. 91-106, 1987. (Cited on page 578)
[711] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis. Cambridge: Cambridge University Press, 1991. (Cited on pages 163197276326327341342348405 407, 416, 431, $443,470,497,505,509,561,562,578,592,603,605,606,612,615$ 641, 642, 654, 657, 678, 689, 692, 693, 703, 707, and 797)
[712] R. A. Horn and R. Mathias, "An Analog of the Cauchy-Schwarz Inequality for Hadamard Products and Unitarily Invariant Norms," SIAM J. Matrix Anal. Appl., Vol. 11, pp. 481-498, 1990. (Cited on pages 591603 and 617)
[713] R. A. Horn and R. Mathias, "Cauchy-Schwarz Inequalities Associated with Positive Semidefinite Matrices," Lin. Alg. Appl., Vol. 142, pp. 63-82, 1990. (Cited on pages 539 576 and 581)
[714] R. A. Horn and R. Mathias, "Block-Matrix Generalizations of Schur's Basic Theorems on Hadamard Products," Lin. Alg. Appl., Vol. 172, pp. 337-346, 1992. (Cited on page 416)
[715] R. A. Horn and I. Olkin, "When Does $A^{*} A=B^{*} B$ and Why Does One Want to Know?" Amer. Math. Monthly, Vol. 103, pp. 470-482, 1996. (Cited on page 319)
[716] R. A. Horn and G. G. Piepmeyer, "Two Applications of the Theory of Primary Matrix Functions," Lin. Alg. Appl., Vol. 361, pp. 99-106, 2003. (Cited on page642)
[717] R. A. Horn and F. Zhang, "Basic Properties of the Schur Complement," in The Schur Complement and Its Applications, F. Zhang, Ed. New York: Springer, 2004, pp. 17-46. (Cited on pages 333, 393, 461 490 and 493)
[718] B. G. Horne, "Lower Bounds for the Spectral Radius of a Matrix," Lin. Alg. Appl., Vol. 263, pp. 261-273, 1997. (Cited on page 604)
[719] H.-C. Hou and H.-K. Du, "Norm Inequalities of Positive Operator Matrices," Integ. Eqns. Operator Theory, Vol. 22, pp. 281-294, 1995. (Cited on pages 469521. and 610)
[720] S.-H. Hou, "A Simple Proof of the Leverrier-Faddeev Characteristic Polynomial Algorithm," SIAM Rev., Vol. 40, pp. 706-709, 1998. (Cited on page 281)
[721] A. S. Householder, The Theory of Matrices in Numerical Analysis. New York: Blaisdell, 1964, reprinted by Dover, New York, 1975. (Cited on pages xviii 378 611 and 634)
[722] A. S. Householder, "Bezoutiants, Elimination and Localization," SIAM Rev., Vol. 12, pp. 73-78, 1970. (Cited on page 257)
[723] A. S. Householder and J. A. Carpenter, "The Singular Values of Involutory and of Idempotent Matrices," Numer. Math., Vol. 5, pp. 234-237, 1963. (Cited on page 329)
[724] R. Howe, "Very Basic Lie Theory," Amer. Math. Monthly, Vol. 90, pp. 600-623, 1983. (Cited on pages 229 and 722)
[725] J. M. Howie, Complex Analysis. New York: Springer, 2003. (Cited on page 76])
[726] R. A. Howland, Intermediate Dynamics: A Linear Algebraic Approach. New York: Springer, 2006. (Cited on page xvii)
[727] P.-F. Hsieh and Y. Sibuya, Basic Theory of Ordinary Differential Equations. New York: Springer, 1999. (Cited on pages xvii and 311)
[728] G.-D. Hu and G.-H. Hu, "A Relation between the Weighted Logarithmic Norm of a Matrix and the Lyapunov Equation," Numer. Math. BIT, Vol. 40, pp. 606-610, 2000. (Cited on page 700)
[729] S. Hu-yun, "Estimation of the Eigenvalues of $A B$ for $A>0$ and $B>0$," Lin. Alg. Appl., Vol. 73, pp. 147-150, 1986. (Cited on pages 127 and 519.)
[730] R. Huang, "Some Inequalities for Hadamard Products of Matrices," Lin. Multilin. Alg., Vol. 56, pp. 543-554, 2008. (Cited on pages 603 616, and 617)
[731] R. Huang, "Some Inequalities for the Hadamard Product and the Fan Product of Matrices," Lin. Alg. Appl., Vol. 428, pp. 1551-1559, 2008. (Cited on pages 415 and 416)
[732] T.-Z. Huang and L. Wang, "Improving Bounds for Eigenvalues of Complex Matrices Using Traces," Lin. Alg. Appl., Vol. 426, pp. 841-854, 2007. (Cited on pages 51 and 598)
[733] P. C. Hughes, Spacecraft Attitude Dynamics. New York: Wiley, 1986. (Cited on pages xvii and 676)
[734] M. Huhtanen, "Real Linear Kronecker Product Operations," Lin. Alg. Appl., Vol. 418, pp. 347-361, 2006. (Cited on page 70.)
[735] S. Humphries and C. Krattenthaler, "Trace Identities from Identities for Determinants," Lin. Alg. Appl., Vol. 411, pp. 328-342, 2005. (Cited on page 132)
[736] C. H. Hung and T. L. Markham, "The Moore-Penrose Inverse of a Partitioned Matrix," Lin. Alg. Appl., Vol. 11, pp. 73-86, 1975. (Cited on page 391)
[737] J. J. Hunter, "Generalized Inverses and Their Application to Applied Probability Problems," Lin. Alg. Appl., Vol. 45, pp. 157-198, 1982. (Cited on page 398)
[738] D. C. Hyland and D. S. Bernstein, "The Optimal Projection Equations for FixedOrder Dynamic Compensation," IEEE Trans. Autom. Contr., Vol. AC-29, pp. 1034-1037, 1984. (Cited on page 805)
[739] D. C. Hyland and E. G. Collins, "Block Kronecker Products and Block Norm Matrices in Large-Scale Systems Analysis," SIAM J. Matrix Anal. Appl., Vol. 10, pp. 18-29, 1989. (Cited on page 416.)
[740] N. H. Ibragimov, Elementary Lie Group Analysis and Ordinary Differential Equations. Chichester: Wiley, 1999. (Cited on page 722])
[741] Y. Ikebe and T. Inagaki, "An Elementary Approach to the Functional Calculus for Matrices," Amer. Math. Monthly, Vol. 93, pp. 390-392, 1986. (Cited on page642)
[742] K. D. Ikramov, "A Simple Proof of the Generalized Schur Inequality," Lin. Alg. Appl., Vol. 199, pp. 143-149, 1994. (Cited on pages 597 and 598)
[743] V. Ionescu, C. Oar, and M. Weiss, Generalized Riccati Theory and Robust Control. Chichester: Wiley, 1999. (Cited on pages xvii and 805)
[744] I. Ipsen and C. Meyer, "The Angle between Complementary Subspaces," Amer. Math. Monthly, Vol. 102, pp. 904-911, 1995. (Cited on pages $112,210,329,336$ and 381)
[745] A. Iserles, "Solving Linear Ordinary Differential Equations by Exponentials of Iterated Commutators," Numer. Math., Vol. 45, pp. 183-199, 1984. (Cited on page 678)
[746] A. Iserles, H. Z. Munthe-Kaas, S. P. Norsett, and A. Zanna, "Lie-Group Methods," Acta Numerica, Vol. 9, pp. 215-365, 2000. (Cited on pages 188 674 678, and 682)
[747] Y. Ito, S. Hattori, and H. Maeda, "On the Decomposition of a Matrix into the Sum of Stable Matrices," Lin. Alg. Appl., Vol. 297, pp. 177-182, 1999. (Cited on page 704)
[748] S. Izumino, H. Mori, and Y. Seo, "On Ozeki's Inequality," J. Ineq. Appl., Vol. 2, pp. 235-253, 1998. (Cited on pages 65 and 501)
[749] D. H. Jacobson, D. H. Martin, M. Pachter, and T. Geveci, Extensions of Linear Quadratic Control Theory. Berlin: Springer, 1980. (Cited on page 805)
[750] A. Jeffrey, Handbook of Mathematical Formulas and Integrals. San Diego: Academic Press, 1995. (Cited on pages 7475 and 76)
[751] C. Jeffries, V. Klee, and P. van der Driessche, "Quality Stability of Linear Systems," Lin. Alg. Appl., Vol. 87, pp. 1-48, 1987. (Cited on page 708)
[752] A. Jennings and J. J. McKeown, Matrix Computation, 2nd ed. New York: Wiley, 1992. (Cited on page xviii)
[753] G. A. Jennings, Modern Geometry with Applications. New York: Springer, 1997. (Cited on page 161)
[754] S. T. Jensen and G. P. H. Styan, "Some Comments and a Bibliography on the Laguerre-Samuelson Inequality with Extensions and Applications in Statistics and Matrix Theory," in Analytic and Geometric Inequalities and Applications, T. M. Rassias and H. M. Srivastava, Eds. Dordrecht: Kluwer, 1999, pp. 151-181. (Cited on pages 51 and 454)
[755] J. Ji, "Explicit Expressions of the Generalized Inverses and Condensed Cramer Rules," Lin. Alg. Appl., Vol. 404, pp. 183-192, 2005. (Cited on page 129.)
[756] G. Jia and J. Cao, "A New Upper Bound of the Logarithmic Mean," J. Ineq. Pure Appl. Math., Vol. 4, no. 4, pp. 1-4, 2003, Article 80. (Cited on pages 27 and 38)
[757] Y. Jiang, W. W. Hager, and J. Li, "The Geometric Mean Decomposition," Lin. Alg. Appl., Vol. 396, pp. 373-384, 2005. (Cited on page 316)
[758] D. Jocic and F. Kittaneh, "Some Perturbation Inequalities for Self-Adjoint Operators," J. Operator Theory, Vol. 31, pp. 3-10, 1994. (Cited on page 588])
[759] C. R. Johnson, "An Inequality for Matrices Whose Symmetric Part Is Positive Definite," Lin. Alg. Appl., Vol. 6, pp. 13-18, 1973. (Cited on page 487)
[760] C. R. Johnson, "Inequalities for a Complex Matrix whose Real Part Is Positive Definite," Trans. Amer. Math. Soc., Vol. 212, pp. 149-154, 1975. (Cited on page 485)
[761] C. R. Johnson, "The Inertia of a Product of Two Hermitian Matrices," J. Math. Anal. Appl., Vol. 57, pp. 85-90, 1977. (Cited on page 309)
[762] C. R. Johnson, "Closure Properties of Certain Positivity Classes of Matrices under Various Algebraic Operations," Lin. Alg. Appl., Vol. 97, pp. 243-247, 1987. (Cited on page 697.)
[763] C. R. Johnson, "A Gersgoren-Type Lower Bound for the Smallest Singular Value," Lin. Alg. Appl., Vol. 112, pp. 1-7, 1989. (Cited on page 606)
[764] C. R. Johnson, "A Gersgorin-Type Lower Bound for the Smallest Singular Value," Lin. Alg. Appl., Vol. 112, pp. 1-7, 1989. (Cited on page 604)
[765] C. R. Johnson and L. Elsner, "The Relationship between Hadamard and Conventional Multiplication for Positive Definite Matrices," Lin. Alg. Appl., Vol. 92, pp. 231-240, 1987. (Cited on page [534])
[766] C. R. Johnson, M. Neumann, and M. J. Tsatsomeros, "Conditions for the Positivity of Determinants," Lin. Multilin. Alg., Vol. 40, pp. 241-248, 1996. (Cited on page 219)
[767] C. R. Johnson and M. Newman, "A Surprising Determinantal Inequality for Real Matrices," Math. Ann., Vol. 247, pp. 179-186, 1980. (Cited on page 132)
[768] C. R. Johnson and P. Nylen, "Monotonicity Properties of Norms," Lin. Alg. Appl., Vol. 148, pp. 43-58, 1991. (Cited on page 619)
[769] C. R. Johnson, K. Okubo, and R. Beams, "Uniqueness of Matrix Square Roots," Lin. Alg. Appl., Vol. 323, pp. 51-60, 2001. (Cited on page 348)
[770] C. R. Johnson and L. Rodman, "Convex Sets of Hermitian Matrices with Constant Inertia," SIAM J. Alg. Disc. Meth., Vol. 6, pp. 351-359, 1985. (Cited on pages 308 and 310)
[771] C. R. Johnson and R. Schreiner, "The Relationship between $A B$ and BA," Amer. Math. Monthly, Vol. 103, pp. 578-582, 1996. (Cited on page 346)
[772] C. R. Johnson and H. M. Shapiro, "Mathematical Aspects of the Relative Gain Array $A \circ A^{-\mathrm{T}}, "$ SIAM J. Alg. Disc. Meth., Vol. 7, pp. 627-644, 1986. (Cited on pages 415 and 532)
[773] C. R. Johnson and R. L. Smith, "Linear Interpolation Problems for Matrix Classes and a Transformational Characterization of M-Matrices," Lin. Alg. Appl., Vol. 330, pp. 43-48, 2001. (Cited on pages 185 . 191 and 674)
[774] C. R. Johnson and T. Szulc, "Further Lower Bounds for the Smallest Singular Value," Lin. Alg. Appl., Vol. 272, pp. 169-179, 1998. (Cited on page 604.)
[775] C. R. Johnson and F. Zhang, "An Operator Inequality and Matrix Normality," Lin. Alg. Appl., Vol. 240, pp. 105-110, 1996. (Cited on page 502)
[776] M. Jolly, "On the Calculus of Complex Matrices," Int. J. Contr., Vol. 61, pp. 749-755, 1995. (Cited on page 642)
[777] T. F. Jordan, Quantum Mechanics in Simple Matrix Form. New York: Wiley, 1986, reprinted by Dover, Mineola, 2005. (Cited on page 228)
[778] E. A. Jorswieck and H. Boche, "Majorization and Matrix Monotone Functions in Wireless Communications," Found. Trends Comm. Inform. Theory, Vol. 3, pp. 553-701, 2006. (Cited on page Xviil)
[779] E. A. Jorswieck and H. Boche, "Performance Analysis of MIMO Systems in Spatially Correlated Fading Using Matrix-Monotone Functions," IEICE Trans. Fund., Vol. E89-A, pp. 1454-1472, 2006. (Cited on pages xvii and 162)
[780] A. Joseph, A. Melnikov, and R. Rentschler, Eds., Studies in Memory of Issai Schur. Boston: Birkhauser, 2002. (Cited on page 542)
[781] D. Joyner, Adventures in Group Theory. Baltimore: Johns Hopkins University Press, 2002. (Cited on page 230)
[782] E. I. Jury, Inners and Stability of Dynamic Systems, 2nd ed. Malabar: Krieger, 1982. (Cited on pages 413416 and 709)
[783] W. J. Kaczor and M. T. Nowak, Problems in Mathematical Analysis II. American Mathematical Society, 2001. (Cited on pages 24] 27] 29, 34, and 66])
[784] R. V. Kadison, "Order Properties of Bounded Self-Adjoint Operators," Proc. Amer. Math. Soc., Vol. 2, pp. 505-510, 1951. (Cited on page 459)
[785] A. Kagan and P. J. Smith, "A Stronger Version of Matrix Convexity as Applied to Functions of Hermitian Matrices," J. Ineq. Appl., Vol. 3, pp. 143-152, 1999. (Cited on page 483.)
[786] J. B. Kagstrom, "Bounds and Perturbation Bounds for the Matrix Exponential," Numer. Math. BIT, Vol. 17, pp. 39-57, 1977. (Cited on page 699)
[787] T. Kailath, Linear Systems. Englewood Cliffs: Prentice-Hall, 1980. (Cited on pages 237, 281, 304, 353, and 805)
[788] D. Kalman and J. E. White, "Polynomial Equations and Circulant Matrices," Amer. Math. Monthly, Vol. 108, pp. 821-840, 2001. (Cited on page 357)
[789] T. R. Kane, P. W. Likins, and D. A. Levinson, Spacecraft Dynamics. New York: McGraw-Hill, 1983. (Cited on page xvii)
[790] I. Kaplansky, Linear Algebra and Geometry: A Second Course. New York: Chelsea, 1974, reprinted by Dover, Mineola, 2003. (Cited on pages xix and 318)
[791] N. Karcanias, "Matrix Pencil Approach to Geometric System Theory," Proc. IEE, Vol. 126, pp. 585-590, 1979. (Cited on pages 362 and 805)
[792] S. Karlin and F. Ost, "Some Monotonicity Properties of Schur Powers of Matrices and Related Inequalities," Lin. Alg. Appl., Vol. 68, pp. 47-65, 1985. (Cited on page 415)
[793] E. Kaszkurewicz and A. Bhaya, Matrix Diagonal Stability in Systems and Computation. Boston: Birkhauser, 2000. (Cited on page 722)
[794] M. Kato, K.-S. Saito, and T. Tamura, "Sharp Triangle Inequality and Its Reverse in Banach Space," Math. Ineq. Appl., Vol. 10, pp. 451-460, 2007. (Cited on page568)
[795] T. Kato, "Spectral Order and a Matrix Limit Theorem," Lin. Multilin. Alg., Vol. 8, pp. 15-19, 1979. (Cited on page 460)
[796] T. Kato, Perturbation Theory for Linear Operators. Berlin: Springer, 1980. (Cited on pages 600 and 619)
[797] H. Katsuura, "Generalizations of the Arithmetic-Geometric Mean Inequality and a Three Dimensional Puzzle," College Math. J., Vol. 34, pp. 280-282, 2003. (Cited on pages 4653 and 54.)
[798] M. Kauderer, Symplectic Matrices: First Order Systems and Special Relativity. Singapore: World Scientific, 1994. (Cited on page xviil)
[799] J. Y. Kazakia, "Orthogonal Transformation of a Trace Free Symmetric Matrix into One with Zero Diagonal Elements," Int. J. Eng. Sci., Vol. 26, pp. 903-906, 1988. (Cited on page 313)
[800] N. D. Kazarinoff, Analytic Inequalities. New York: Holt, Rinehart, and Winston, 1961, reprinted by Dover, Mineola, 2003. (Cited on pages 36 and 546)
[801] M. G. Kendall, A Course in the Geometry of n Dimensions. London: Griffin, 1961, reprinted by Dover, Mineola, 2004. (Cited on page 184)
[802] C. Kenney and A. J. Laub, "Controllability and Stability Radii for Companion Form Systems," Math. Contr. Sig. Sys., Vol. 1, pp. 239-256, 1988. (Cited on pages 327 and 711)
[803] C. Kenney and A. J. Laub, "Rational Iteration Methods for the Matrix Sign Function," SIAM J. Matrix Anal. Appl., Vol. 12, pp. 273-291, 1991. (Cited on page637)
[804] H. Kestelman, "Eigenvectors of a Cross-Diagonal Matrix," Amer. Math. Monthly, Vol. 93, p. 566, 1986. (Cited on page 340)
[805] N. Keyfitz, Introduction to the Mathematics of Population. Reading: AddisonWesley, 1968. (Cited on pages xviil and 275)
[806] W. Khalil and E. Dombre, Modeling, Identification, and Control of Robots. New York: Taylor and Francis, 2002. (Cited on page xvii)
[807] C. G. Khatri, "A Note on Idempotent Matrices," Lin. Alg. Appl., Vol. 70, pp. 185-195, 1985. (Cited on page 374)
[808] C. G. Khatri and S. K. Mitra, "Hermitian and Nonnegative Definite Solutions of Linear Matrix Equations," SIAM J. Appl. Math., Vol. 31, pp. 579-585, 1976. (Cited on page 384)
[809] S. Kim and Y. Lim, "A Converse Inequality of Higher Order Weighted Arithmetic and Geometric Means of Positive Definite Operators," Lin. Alg. Appl., Vol. 426, pp. 490-496, 2007. (Cited on pages 53 and 463)
[810] C. King, "Inequalities for Trace Norms of 2×2 Block Matrices," Comm. Math. Phys., Vol. 242, pp. 531-545, 2003. (Cited on page 595)
[811] C. King and M. Nathanson, "New Trace Norm Inequalities for 2×2 Blocks of Diagonal Matrices," Lin. Alg. Appl., Vol. 389, pp. 77-93, 2004. (Cited on page586)
[812] F. Kittaneh, "Inequalities for the Schatten p-Norm III," Commun. Math. Phys., Vol. 104, pp. 307-310, 1986. (Cited on page 584)
[813] F. Kittaneh, "Inequalities for the Schatten p-Norm. IV," Commun. Math. Phys., Vol. 106, pp. 581-585, 1986. (Cited on page 583)
[814] F. Kittaneh, "On Zero-Trace Matrices," Lin. Alg. Appl., Vol. 151, pp. 119-124, 1991. (Cited on page 313)
[815] F. Kittaneh, "A Note on the Arithmetic-Geometric-Mean Inequality for Matrices," Lin. Alg. Appl., Vol. 171, pp. 1-8, 1992. (Cited on page 589)
[816] F. Kittaneh, "Norm Inequalities for Fractional Powers of Positive Operators," Lett. Math. Phys., Vol. 27, pp. 279-285, 1993. (Cited on pages 515 and 613)
[817] F. Kittaneh, "Singular Values of Companion Matrices and Bounds on Zeros of Polynomials," SIAM J. Matrix Anal. Appl., Vol. 16, pp. 333-340, 1995. (Cited on pages 327 and 711)
[818] F. Kittaneh, "Norm Inequalities for Certain Operator Sums," J. Funct. Anal., Vol. 143 , pp. 337-348, 1997. (Cited on pages 516517 and 589)
[819] F. Kittaneh, "Some Norm Inequalities for Operators," Canad. Math. Bull., Vol. 42, pp. 87-96, 1999. (Cited on page 589)
[820] F. Kittaneh, "Commutator Inequalities Associated with the Polar Decomposition," Proc. Amer. Math. Soc., Vol. 130, pp. 1279-1283, 2001. (Cited on pages 581584 589, and 603)
[821] F. Kittaneh, "Norm Inequalities for Sums of Positive Operators," J. Operator Theory, Vol. 48, pp. 95-103, 2002. (Cited on pages 517589610 and 611)
[822] F. Kittaneh, "Bounds for the Zeros of Polynomials from Matrix Inequalities," Arch. Math., Vol. 81, pp. 601-608, 2003. (Cited on pages 331 and 711)
[823] F. Kittaneh, "A Numerical Radius Inequality and an Estimate for the Numerical Radius of the Frobenius Companion Matrix," Studia Mathematica, Vol. 158, pp. 11-17, 2003. (Cited on pages 578 and 712)
[824] F. Kittaneh, "Norm Inequalities for Sums and Differences of Positive Operators," Lin. Alg. Appl., Vol. 383, pp. 85-91, 2004. (Cited on pages 516517 and 603)
[825] F. Kittaneh, "Norm Inequalities for Sums of Positive Operators II," Positivity, Vol. 10, pp. 251-260, 2006. (Cited on pages 589 and 592)
[826] F. Kittaneh, "Bounds for the Zeros of Polynomials from Matrix Inequalities-II," Lin. Multilin. Alg., Vol. 55, pp. 147-158, 2007. (Cited on page 711)
[827] F. Kittaneh and H. Kosaki, "Inequalities for the Schatten p-Norm. V," Publications of RIMS Kyoto University, Vol. 23, pp. 433-443, 1987. (Cited on pages 584 and 585)
[828] A.-L. Klaus and C.-K. Li, "Isometries for the Vector (p, q) Norm and the Induced (p, q) Norm," Lin. Multilin. Alg., Vol. 38, pp. 315-332, 1995. (Cited on page 583)
[829] J. A. Knox and H. J. Brothers, "Novel Series-Based Approximations to e," College Math. J., Vol. 30, pp. 269-275, 1999. (Cited on pages 25) and 26)
[830] C. T. Koch and J. C. H. Spence, "A Useful Expansion of the Exponential of the Sum of Two Non-Commuting Matrices, One of Which is Diagonal," J. Phys. A: Math. Gen., Vol. 36, pp. 803-816, 2003. (Cited on page 678)
[831] D. Koks, Explorations in Mathematical Physics. New York: Springer, 2006. (Cited on page 227,
[832] J. J. Koliha, "A Simple Proof of the Product Theorem for EP Matrices," Lin. Alg. Appl., Vol. 294, pp. 213-215, 1999. (Cited on page 382)
[833] J. J. Koliha and V. Rakocevic, "Invertibility of the Sum of Idempotents," Lin. Multilin. Alg., Vol. 50, pp. 285-292, 2002. (Cited on page 203.)
[834] J. J. Koliha and V. Rakocevic, "Invertibility of the Difference of Idempotents," Lin. Multilin. Alg., Vol. 51, pp. 97-110, 2003. (Cited on page 203.)
[835] J. J. Koliha and V. Rakocevic, "The Nullity and Rank of Linear Combinations of Idempotent Matrices," Lin. Alg. Appl., Vol. 418, pp. 11-14, 2006. (Cited on page 202)
[836] J. J. Koliha, V. Rakocevic, and I. Straskraba, "The Difference and Sum of Projectors," Lin. Alg. Appl., Vol. 388, pp. 279-288, 2004. (Cited on pages 202 203 and 205)
[837] N. Komaroff, "Bounds on Eigenvalues of Matrix Products with an Applicaton to the Algebraic Riccati Equation," IEEE Trans. Autom. Contr., Vol. 35, pp. 348-350, 1990. (Cited on page 333)
[838] N. Komaroff, "Rearrangement and Matrix Product Inequalities," Lin. Alg. Appl., Vol. 140, pp. 155-161, 1990. (Cited on pages 61 and 518)
[839] V. Komornik, "Another Short Proof of Descartes's Rule of Signs," Amer. Math. Monthly, Vol. 113, pp. 829-830, 2006. (Cited on page 696)
[840] R. H. Koning, H. Neudecker, and T. Wansbeek, "Block Kronecker Products and the vecb Operator," Lin. Alg. Appl., Vol. 149, pp. 165-184, 1991. (Cited on page416)
[841] T. Koshy, Fibonacci and Lucas Numbers with Applications. New York: Wiley, 2001. (Cited on pages xvii 218 and 278)
[842] J. Kovac-Striko and K. Veselic, "Trace Minimization and Definiteness of Symmetric Pencils," Lin. Alg. Appl., Vol. 216, pp. 139-158, 1995. (Cited on page 362)
[843] O. Krafft, "An Arithmetic-Harmonic-Mean Inequality for Nonnegative Definite Matrices," Lin. Alg. Appl., Vol. 268, pp. 243-246, 1998. (Cited on page 529)
[844] C. Krattenthaler, "Advanced Determinant Calculus: A Complement," Lin. Alg. Appl., Vol. 411, pp. 68-166, 2005. (Cited on page xviil)
[845] W. Kratz, Quadratic Functionals in Variational Analysis and Control Theory. New York: Wiley, 1995. (Cited on page 805)
[846] E. Kreindler and A. Jameson, "Conditions for Nonnegativeness of Partitioned Matrices," IEEE Trans. Autom. Contr., Vol. AC-17, pp. 147-148, 1972. (Cited on page 541)
[847] R. Kress, H. L. de Vries, and R. Wegmann, "On Nonnormal Matrices," Lin. Alg. Appl., Vol. 8, pp. 109-120, 1974. (Cited on page 597)
[848] V. Kucera, "On Nonnegative Definite Solutions to Matrix Quadratic Equations," Automatica, Vol. 8, pp. 413-423, 1972. (Cited on page 805)
[849] A. Kufner, L. Maligranda, and L.-E. Persson, "The Prehistory of the Hardy Inequality," Amer. Math. Monthly, Vol. 113, pp. 715-732, 2006. (Cited on pages 58 59 and 63)
[850] J. B. Kuipers, Quaternions and Rotation Sequences: A Primer with Applications to Orbits, Aerospace, and Virtual Reality. Princeton: Princeton University Press, 1999. (Cited on pages xvii 226 and 228)
[851] S. Kurepa, "A Note on Logarithms of Normal Operators," Proc. Amer. Math. Soc., Vol. 13, pp. 307-311, 1962. (Cited on page 689)
[852] K. Kwakernaak and R. Sivan, Linear Optimal Control Systems. New York: Wiley, 1972. (Cited on page xvii)
[853] M. Kwapisz, "The Power of a Matrix," SIAM Rev., Vol. 40, pp. 703-705, 1998. (Cited on page 712)
[854] M. K. Kwong, "Some Results on Matrix Monotone Functions," Lin. Alg. Appl., Vol. 118, pp. 129-153, 1989. (Cited on pages 221 and 460)
[855] I. I. Kyrchei, "Analogs of the Adjoint Matrix for Generalized Inverses and Corresponding Cramer Rules," Lin. Multilin. Alg., Vol. 56, pp. 453-469, 2008. (Cited on page [129.)
[856] K. R. Laberteaux, "Hermitian Matrices," Amer. Math. Monthly, Vol. 104, p. 277, 1997. (Cited on page 181)
[857] T. J. Laffey, "Products of Skew-Symmetric Matrices," Lin. Alg. Appl., Vol. 68, pp. 249-251, 1985. (Cited on page 351)
[858] T. J. Laffey, "Products of Matrices," in Generators and Relations in Groups and Geometries, A. Barlotti, E. W. Ellers, P. Plaumann, and K. Strambach, Eds. Dordrecht: Kluwer, 1991, pp. 95-123. (Cited on page 351)
[859] T. J. Laffey and S. Lazarus, "Two-Generated Commutative Matrix Subalgebras," Lin. Alg. Appl., Vol. 147, pp. 249-273, 1991. (Cited on page 319.)
[860] T. J. Laffey and E. Meehan, "A Refinement of an Inequality of Johnson, Loewy and London on Nonnegative Matrices and Some Applications," Elec. J. Lin. Alg., Vol. 3, pp. 119-128, 1998. (Cited on page 281)
[861] J. C. Lagarias and Y. Wang, "The Finiteness Conjecture for the Generalized Spectral Radius of a Set of Matrices," Lin. Alg. Appl., Vol. 214, pp. 17-42, 1995. (Cited on page 715)
[862] S. Lakshminarayanan, S. L. Shah, and K. Nandakumar, "Cramer's Rule for NonSquare Matrices," Amer. Math. Monthly, Vol. 106, p. 865, 1999. (Cited on page 129)
[863] P. Lancaster, Lambda-Matrices and Vibrating Systems. Oxford: Pergamon, 1966, reprinted by Dover, Mineola, 2002. (Cited on page xviil)
[864] P. Lancaster and L. Rodman, "Solutions of the Continuous and Discrete Time Algebraic Riccati Equations: A Review," in The Riccati Equation, S. Bittanti, J. C. Willems, and A. Laub, Eds. New York: Springer, 1991, pp. 11-51. (Cited on page 805.)
[865] P. Lancaster and L. Rodman, Algebraic Riccati Equations. Oxford: Clarendon, 1995. (Cited on pages xvii and 805)
[866] P. Lancaster and L. Rodman, "Canonical Forms for Hermitian Matrix Pairs under Strict Equivalence and Congruence," SIAM Rev., Vol. 47, pp. 407-443, 2005. (Cited on pages 304 and 504)
[867] P. Lancaster and M. Tismenetsky, The Theory of Matrices, 2nd ed. Orlando: Academic Press, 1985. (Cited on pages 3206340406560579679793 and 795)
[868] L. Larson, Problem Solving Through Problems. New York: Springer, 1983. (Cited on pages $24 \sqrt[29]{33} \sqrt[355]{38} 40,41,42,434443,155$ and 158)
[869] L. Larsson, L. Maligranda, J. Pecaric, and L.-E. Persson, Multiplicative Inequalities of Carlson Type and Interpolation. Singapore: World Scientific, 2006. (Cited on page 58)
[870] J. Lasenby, A. N. Lasenby, and C. J. L. Doran, "A Unified Mathematical Language for Physics and Engineering in the 21st Century," Phil. Trans. Math. Phys. Eng. Sci., Vol. 358, pp. 21-39, 2000. (Cited on pages 188,227 and 565)
[871] J. B. Lasserre, "A Trace Inequality for Matrix Product," IEEE Trans. Autom. Contr., Vol. 40, pp. 1500-1501, 1995. (Cited on page 333)
[872] A. J. Laub, Matrix Analysis for Scientists and Engineers. Philadelphia: SIAM, 2004. (Cited on pages xix 113 304 306 and 338)
[873] A. J. Laub and K. Meyer, "Canonical Forms for Symplectic and Hamiltonian Matrices," Celestial Mechanics, Vol. 9, pp. 213-238, 1974. (Cited on page 802)
[874] C. Laurie, B. Mathes, and H. Radjavi, "Sums of Idempotents," Lin. Alg. Appl., Vol. 208/209, pp. 175-197, 1994. (Cited on page 361)
[875] J. L. Lavoie, "A Determinantal Inequality Involving the Moore-Penrose Inverse," Lin. Alg. Appl., Vol. 31, pp. 77-80, 1980. (Cited on page 392)
[876] C. L. Lawson, Solving Least Squares Problems. Englewood Cliffs: Prentice-Hall, 1974, reprinted by SIAM, Philadelphia, 1995. (Cited on page 398.)
[877] J. D. Lawson and Y. Lim, "The Geometric Mean, Matrices, Metrics, and More," Amer. Math. Monthly, Vol. 108, pp. 797-812, 2001. (Cited on pages 431 and 463)
[878] P. D. Lax, Linear Algebra. New York: Wiley, 1997. (Cited on pages 160259 457 and 600)
[879] S. R. Lay, Convex Sets and Their Applications. New York: Wiley, 1982. (Cited on pages 93 (164 and 635)
[880] B. Leclerc, "On Identities Satisfied by Minors of a Matrix," Adv. Math., Vol. 100, pp. 101-132, 1993. (Cited on page 129)
[881] K. J. LeCouteur, "Representation of the Function $\operatorname{Tr}(\exp (A-\lambda B))$ as a Laplace Transform with Positive Weight and Some Matrix Inequalities," J. Phys. A: Math. Gen., Vol. 13, pp. 3147-3159, 1980. (Cited on pages 519 and 682)
[882] A. Lee, "On S-Symmetric, S-Skewsymmetric, and S-Orthogonal Matrices," Periodica Math. Hungar., Vol. 7, pp. 71-76, 1976. (Cited on page 313)
[883] A. Lee, "Centrohermitian and Skew-Centrohermitian Matrices," Lin. Alg. Appl., Vol. 29, pp. 205-210, 1980. (Cited on pages 230 and 376.)
[884] J. M. Lee and D. A. Weinberg, "A Note on Canonical Forms for Matrix Congruence," Lin. Alg. Appl., Vol. 249, pp. 207-215, 1996. (Cited on page 361)
[885] S. H. Lehnigk, Stability Theorems for Linear Motions. Englewood Cliffs: PrenticeHall, 1966. (Cited on page 722)
[886] T.-G. Lei, C.-W. Woo, and F. Zhang, "Matrix Inequalities by Means of Embedding," Elect. J. Lin. Alg., Vol. 11, pp. 66-77, 2004. (Cited on pages 453483493 501, 505, 508, and 510)
[887] F. S. Leite, "Bounds on the Order of Generation of so (n, r) by One-Parameter Subgroups," Rocky Mountain J. Math., Vol. 21, pp. 879-911, 1183-1188, 1991. (Cited on pages 348 and 675)
[888] E. Leonard, "The Matrix Exponential," SIAM Rev., Vol. 38, pp. 507-512, 1996. (Cited on page 646)
[889] G. Letac, "A Matrix and Its Matrix of Reciprocals Both Positive Semi-Definite," Amer. Math. Monthly, Vol. 82, pp. 80-81, 1975. (Cited on page 531)
[890] J. S. Lew, "The Cayley Hamilton Theorem in n Dimensions," Z. Angew. Math. Phys., Vol. 17, pp. 650-653, 1966. (Cited on pages 260 and 261)
[891] A. S. Lewis, "Convex Analysis on the Hermitian Matrices," SIAM J. Optim., Vol. 6, pp. 164-177, 1996. (Cited on pages 333 and 334)
[892] D. C. Lewis, "A Qualitative Analysis of S-Systems: Hopf Bifurcations," in Canonical Nonlinear Modeling, E. O. Voit, Ed. New York: Van Nostrand Reinhold, 1991, pp. 304-344. (Cited on page 414)
[893] C.-K. Li and R.-C. Li, "A Note on Eigenvalues of Perturbed Hermitian Matrices," Lin. Alg. Appl., Vol. 395, pp. 183-190, 2005. (Cited on page 272)
[894] C.-K. Li and R. Mathias, "The Determinant of the Sum of Two Matrices," Bull. Austral. Math. Soc., Vol. 52, pp. 425-429, 1995. (Cited on pages 611 and 612)
[895] C.-K. Li and R. Mathias, "The Lidskii-Mirsky-Wielandt Theorem-Additive and Multiplicative Versions," Numer. Math., Vol. 81, pp. 377-413, 1999. (Cited on page 600)
[896] C.-K. Li and R. Mathias, "Extremal Characterizations of the Schur Complement and Resulting Inequalities," SIAM Rev., Vol. 42, pp. 233-246, 2000. (Cited on pages 436, 442 533, and 542)
[897] C.-K. Li and R. Mathias, "Inequalities on Singular Values of Block Triangular Matrices," SIAM J. Matrix Anal. Appl., Vol. 24, pp. 126-131, 2002. (Cited on page 328)
[898] C.-K. Li and S. Nataraj, "Some Matrix Techniques in Game Theory," Math. Ineq. Appl., Vol. 3, pp. 133-141, 2000. (Cited on page xvii)
[899] C.-K. Li and E. Poon, "Additive Decomposition of Real Matrices," Lin. Multilin. Alg., Vol. 50, pp. 321-326, 2002. (Cited on page 360)
[900] C.-K. Li and L. Rodman, "Some Extremal Problems for Positive Definite Matrices and Operators," Lin. Alg. Appl., Vol. 140, pp. 139-154, 1990. (Cited on pages 459 and 460)
[901] C.-K. Li and H. Schneider, "Orthogonality of Matrices," Lin. Alg. Appl., Vol. 347, pp. 115-122, 2002. (Cited on page 570)
[902] J.-L. Li and Y.-L. Li, "On the Strengthened Jordan's Inequality," J. Ineq. Appl., pp. 1-8, 2007, article ID 74328. (Cited on page 29)
[903] Q. Li, "Commutators of Orthogonal Projections," Nihonkai. Math. J., Vol. 15, pp. 93-99, 2004. (Cited on page 581)
[904] X. Li and Y. Wei, "A Note on the Representations for the Drazin Inverse of 2×2 Block Matrices," Lin. Alg. Appl., Vol. 423, pp. 332-338, 2007. (Cited on page 391)
[905] E. H. Lieb, "Convex Trace Functions and the Wigner-Yanase-Dyson Conjecture," Adv. Math., Vol. 11, pp. 267-288, 1973. (Cited on pages 441500542 and 688)
[906] E. H. Lieb and M. Loss, Analysis. Providence: American Mathematical Society, 2001. (Cited on page 570)
[907] E. H. Lieb and M. B. Ruskai, "Some Operator Inequalities of the Schwarz Type," Adv. Math., Vol. 12, pp. 269-273, 1974. (Cited on pages 474 and 542)
[908] E. H. Lieb and R. Seiringer, "Equivalent Forms of the Bessis-Moussa-Villani Conjecture," J. Stat. Phys., Vol. 115, pp. 185-190, 2004. (Cited on page 482)
[909] E. H. Lieb and W. E. Thirring, "Inequalities for the Moments of the Eigenvalues of the Schrodinger Hamiltonian and Their Relation to Sobolev Inequalities," in Studies in Mathematical Physics, E. H. Lieb, B. Simon, and A. Wightman, Eds. Princeton: Princeton University Press, 1976, pp. 269-303. (Cited on page 519)
[910] Y. Lim, "The Matrix Golden Mean and its Applications to Riccati Matrix Equations," SIAM J. Matrix Anal. Appl., Vol. 29, pp. 54-66, 2006. (Cited on page 803)
[911] C.-S. Lin, "On Halmos's Sharpening of Reid's Inequality," Math. Reports Acad. Sci. Canada, Vol. 20, pp. 62-64, 1998. (Cited on page 503)
[912] C.-S. Lin, "Inequalities of Reid Type and Furuta," Proc. Amer. Math. Soc., Vol. 129, pp. 855-859, 2000. (Cited on page 503)
[913] C.-S. Lin, "Heinz-Kato-Furuta Inequalities with Bounds and Equality Conditions," Math. Ineq. Appl., Vol. 5, pp. 735-743, 2002. (Cited on page 565.)
[914] C.-S. Lin, "On Operator Order and Chaotic Operator Order for Two Operators," Lin. Alg. Appl., Vol. 425, pp. 1-6, 2007. (Cited on pages 466 and 522.)
[915] C.-S. Lin, "On Operator Order and Chaotic Operator Order for Two Operators," Lin. Alg. Appl., Vol. 425, pp. 1-6, 2007. (Cited on page 522)
[916] T.-P. Lin, "The Power Mean and the Logarithmic Mean," Amer. Math. Monthly, Vol. 81, pp. 879-883, 1974. (Cited on pages 36 and 37)
[917] W.-W. Lin, "The Computation of the Kronecker Canonical Form of an Arbitrary Symmetric Pencil," Lin. Alg. Appl., Vol. 103, pp. 41-71, 1988. (Cited on page 362)
[918] H. Linden, "Numerical Radii of Some Companion Matrices and Bounds for the Zeros of Polynomials," in Analytic and Geometric Inequalities and Applications, T. M. Rassias and H. M. Srivastava, Eds. Dordrecht: Kluwer, 1999, pp. 205-229. (Cited on pages 710 and 711)
[919] L. Lipsky, Queuing Theory: A Linear Algebraic Approach, 2nd ed. New York: Springer, 2008. (Cited on page xvii)
[920] B. Liu and H.-J. Lai, Matrices in Combinatorics and Graph Theory. New York: Springer, 2000. (Cited on page xvii)
[921] H. Liu and L. Zhu, "New Strengthened Carleman's Inequality and Hardy's Inequality," J. Ineq. Appl., pp. 1-7, 2007, article ID 84104. (Cited on page 26])
[922] J. Liu and J. Wang, "Some Inequalities for Schur Complements," Lin. Alg. Appl., Vol. 293, pp. 233-241, 1999. (Cited on pages 442 and 542)
[923] J. Liu and Q. Xie, "Inequalities Involving Khatri-Rao Products of Positive Semidefinite Hermitian Matrices," Int. J. Inform. Sys. Sci., Vol. 4, pp. 30-40-135, 2008. (Cited on page 416)
[924] R.-W. Liu and R. J. Leake, "Exhaustive Equivalence Classes of Optimal Systems with Separable Controls," SIAM Rev., Vol. 4, pp. 678-685, 1966. (Cited on page 186.)
[925] S. Liu, "Matrix Results on the Khatri-Rao and Tracy-Singh Products," Lin. Alg. Appl., Vol. 289, pp. 267-277, 1999. (Cited on pages 416533536 and 539)
[926] S. Liu, "Several Inequalities Involving Khatri-Rao Products of Positive Semidefinite Matrices," Lin. Alg. Appl., Vol. 354, pp. 175-186, 2002. (Cited on page 416)
[927] S. Liu and H. Neudecker, "Several Matrix Kantorovich-Type Inequalities," Math. Anal. Appl., Vol. 197, pp. 23-26, 1996. (Cited on pages 57 and 501)
[928] S. Liu and G. Trenkler, "Hadamard, Khatri-Rao, Kronecker and Other Matrix Products," Int. J. Inform. Sys. Sci., Vol. 4, pp. 160-177, 2008. (Cited on page 416)
[929] E. Liz, "A Note on the Matrix Exponential," SIAM Rev., Vol. 40, pp. 700-702, 1998. (Cited on page 646)
[930] R. Loewy, "An Inertia Theorem for Lyapunov's Equation and the Dimension of a Controllability Space," Lin. Alg. Appl., Vol. 260, pp. 1-7, 1997. (Cited on pages 793 and 794)
[931] D. O. Logofet, Matrices and Graphs: Stability Problems in Mathematical Ecology. Boca Raton: CRC Press, 1993. (Cited on page xviil)
[932] R. Lopez-Valcarce and S. Dasgupta, "Some Properties of the Matrix Exponential," IEEE Trans. Circ. Sys. Analog. Dig. Sig. Proc., Vol. 48, pp. 213-215, 2001. (Cited on page 680)
[933] M. Loss and M. B. Ruskai, Eds., Inequalities: Selecta of Elliott H. Lieb. New York: Springer, 2002. (Cited on pages 500 and 688)
[934] P. Lounesto, Clifford Algebras and Spinors, 2nd ed. Cambridge: Cambridge University Press, 2001. (Cited on pages 188 and 227)
[935] D. G. Luenberger, Optimization by Vector Space Methods. New York: Wiley, 1969. (Cited on page xvii)
[936] D. G. Luenberger, Introduction to Linear and Nonlinear Programming, 2nd ed. Reading: Addison-Wesley, 1984. (Cited on page 505)
[937] M. Lundquist and W. Barrett, "Rank Inequalities for Positive Semidefinite Matrices," Lin. Alg. Appl., Vol. 248, pp. 91-100, 1996. (Cited on page 124)
[938] M. Lundquist and W. Barrett, "Rank Inequalities for Positive Semidefinite Matrices," Lin. Alg. Appl., Vol. 248, pp. 91-100, 1996. (Cited on pages 444 and 492)
[939] H. Lutkepohl, Handbook of Matrices. Chichester: Wiley, 1996. (Cited on page xix)
[940] E.-C. Ma, "A Finite Series Solution of the Matrix Equation $A X-X B=C$," SIAM J. Appl. Math., Vol. 14, pp. 490-495, 1966. (Cited on page 797)
[941] Y. Ma, S. Soatto, J. Kosecka, and S. S. Sastry, An Invitation to 3-D Vision. New York: Springer, 2004. (Cited on page xvii)
[942] C. C. MacDuffee, The Theory of Matrices. New York: Chelsea, 1956. (Cited on pages 406, 410 413 and 416)
[943] A. G. J. Macfarlane and N. Karcanias, "Poles and Zeros of Linear Multivariable Systems: A Survey of the Algebraic, Geometric, and Complex-Variable Theory," Int. J. Contr., Vol. 24, pp. 33-74, 1976. (Cited on page 805)
[944] D. S. Mackey, N. Mackey, and F. Tisseur, "Structured Tools for Structured Matrices," Elec. J. Lin. Alg., Vol. 10, pp. 106-145, 2003. (Cited on page 230)
[945] J. H. Maddocks, "Restricted Quadratic Forms, Inertia Theorems, and the Schur Complement," Lin. Alg. Appl., Vol. 108, pp. 1-36, 1988. (Cited on pages 311 and 504)
[946] J. R. Magnus, "A Representation Theorem for $\left(\operatorname{tr} A^{p}\right)^{1 / p}$," Lin. Alg. Appl., Vol. 95, pp. 127-134, 1987. (Cited on pages 476, 477 and 481)
[947] J. R. Magnus, Linear Structures. London: Griffin, 1988. (Cited on pages xvii (390, and 416)
[948] J. R. Magnus and H. Neudecker, Matrix Differential Calculus with Applications in Statistics and Econometrics. Chichester: Wiley, 1988. (Cited on pages xvii 370 384, 388 391, $398,416,476477$ 503 and 642)
[949] W. Magnus, "On the Exponential Solution of Differential Equations for a Linear Operator," Commun. Pure Appl. Math., Vol. VII, pp. 649-673, 1954. (Cited on page 678)
[950] K. N. Majindar, "On Simultaneous Hermitian Congruence Transformations of Matrices," Amer. Math. Monthly, Vol. 70, pp. 842-844, 1963. (Cited on page 508.)
[951] L. Maligranda, "Simple Norm Inequalities," Amer. Math. Monthly, Vol. 113, pp. 256-260, 2006. (Cited on pages 5675 568 and 569)
[952] A. N. Malyshev and M. Sadkane, "On the Stability of Large Matrices," J. Comp. Appl. Math., Vol. 102, pp. 303-313, 1999. (Cited on page 699)
[953] O. Mangasarian, Nonlinear Programming. New York: McGraw-Hill, 1969, reprinted by Krieger, Malabar, 1982. (Cited on page Xviil)
[954] S. M. Manjegani, "Hölder and Young Inequalities for the Trace of Operators," Positivity, Vol. 11, pp. 239-250, 2007. (Cited on page 477)
[955] H. B. Mann, "Quadratic Forms with Linear Constraints," Amer. Math. Monthly, Vol. 50, pp. 430-433, 1943. (Cited on page 505])
[956] L. E. Mansfield, Linear Algebra with Geometric Application. New York: MarcelDekker, 1976. (Cited on page xix)
[957] M. Marcus, "An Eigenvalue Inequality for the Product of Normal Matrices," Amer. Math. Monthly, Vol. 63, pp. 173-174, 1956. (Cited on page 333)
[958] M. Marcus, Finite Dimensional Multilinear Algebra, Part I. Marcel Dekker, 1973. (Cited on pages 412 and 416)
[959] M. Marcus, Finite Dimensional Multilinear Algebra, Part II. Marcel Dekker, 1975. (Cited on page 416)
[960] M. Marcus, "Two Determinant Condensation Formulas," Lin. Multilin. Alg., Vol. 22, pp. 95-102, 1987. (Cited on page 136)
[961] M. Marcus and S. M. Katz, "Matrices of Schur Functions," Duke Math. J., Vol. 36, pp. 343-352, 1969. (Cited on page 494)
[962] M. Marcus and N. A. Khan, "A Note on the Hadamard Product," Canad. Math. J., Vol. 2, pp. 81-83, 1959. (Cited on pages 405416 and 536)
[963] M. Marcus and H. Minc, A Survey of Matrix Theory and Matrix Inequalities. Boston: Prindle, Weber, and Schmidt, 1964, reprinted by Dover, New York, 1992. (Cited on pages xix 55, 76, 229 [325, 544, and 598)
[964] M. Marcus and W. Watkins, "Partitioned Hermitian Matrices," Duke Math. J., Vol. 38, pp. 237-249, 1971. (Cited on pages 450484494 and 513)
[965] M. Margaliot and G. Langholz, "The Routh-Hurwitz Array and Realization of Characteristic Polynomials," IEEE Trans. Autom. Contr., Vol. 45, pp. 2424-2427, 2000. (Cited on page 704)
[966] T. L. Markham, "An Application of Theorems of Schur and Albert," Proc. Amer. Math. Soc., Vol. 59, pp. 205-210, 1976. (Cited on page 541)
[967] T. L. Markham, "Oppenheim's Inequality for Positive Definite Matrices," Amer. Math. Monthly, Vol. 93, pp. 642-644, 1986. (Cited on page 535)
[968] G. Marsaglia and G. P. H. Styan, "Equalities and Inequalities for Ranks of Matrices," Lin. Multilin. Alg., Vol. 2, pp. 269-292, 1974. (Cited on pages 121164387 and 389)
[969] J. E. Marsden and R. S. Ratiu, Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems, 2nd ed. New York: Springer, 1994. (Cited on page 193)
[970] J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry. New York: Springer, 1994. (Cited on page xviil)
[971] A. W. Marshall and I. Olkin, Inequalities: Theory of Majorization and Its Applications. New York: Academic Press, 1979. (Cited on pages 444560676 158, 162, 163, $164,326,334,412,442,443,510,541,542,618$ and 619)
[972] A. W. Marshall and I. Olkin, "Matrix Versions of the Cauchy and Kantorovich Inequalities," Aequationes Math., Vol. 40, pp. 89-93, 1990. (Cited on page 455)
[973] A. W. Marshall, I. Olkin, and B. Arnold, Inequalities: Theory of Majorization and Its Applications, 2nd ed. New York: Springer, 2009. (Cited on page 164)
[974] K. Martensson, "On the Matrix Riccati Equation," Inform. Sci., Vol. 3, pp. 17-49, 1971. (Cited on page 805)
[975] A. M. Mathai, Jacobians of Matrix Transformations and Functions of Matrix Argument. Singapore: World Scientific, 1997. (Cited on page 642)
[976] R. Mathias, "The Spectral Norm of a Nonnegative Matrix," Lin. Alg. Appl., Vol. 131, pp. 269-284, 1990. (Cited on page 615)
[977] R. Mathias, "Evaluating the Frechet Derivative of the Matrix Exponential," Numer. Math., Vol. 63, pp. 213-226, 1992. (Cited on page 682)
[978] R. Mathias, "Matrices with Positive Definite Hermitian Part: Inequalities and Linear Systems," SIAM J. Matrix Anal. Appl., Vol. 13, pp. 640-654, 1992. (Cited on pages 440 and 512)
[979] R. Mathias, "An Arithmetic-Geometric-Harmonic Mean Inequality Involving Hadamard Products," Lin. Alg. Appl., Vol. 184, pp. 71-78, 1993. (Cited on page 448)
[980] R. Mathias, "A Chain Rule for Matrix Functions and Applications," SIAM J. Matrix Anal. Appl., Vol. 17, pp. 610-620, 1996. (Cited on page 642)
[981] R. Mathias, "Singular Values and Singular Value Inequalities," in Handbook of Linear Algebra, L. Hogben, Ed. Boca Raton: Chapman \& Hall/CRC, 2007, pp. 17-1-17-16. (Cited on page 332)
[982] M. Matic, C. E. M. Pearce, and J. Pecaric, "Shannon's and Related Inequalities in Information Theory," in Survey on Classical Inequalities, T. M. Rassias, Ed. Dordrecht: Kluwer, 2000, pp. 127-164. (Cited on pages 59 and 67)
[983] T. Matsuda, "An Inductive Proof of a Mixed Arithmetic-Geometric Mean Inequality," Amer. Math. Monthly, Vol. 102, pp. 634-637, 1995. (Cited on page 58)
[984] V. Mazorchuk and S. Rabanovich, "Multicommutators and Multianticommutators of Orthogonal Projectors," Lin. Multilin. Alg., preprint. (Cited on page 581)
[985] J. E. McCarthy, "Pick's Theorem-What's the Big Deal?" Amer. Math. Monthly, Vol. 110, pp. 36-45, 2003. (Cited on page 450)
[986] J. M. McCarthy, Geometric Design of Linkages. New York: Springer, 2000. (Cited on page 722,
[987] J. P. McCloskey, "Characterizations of r-Potent Matrices," Math. Proc. Camb. Phil. Soc., Vol. 96, pp. 213-222, 1984. (Cited on page 213)
[988] A. R. Meenakshi and C. Rajian, "On a Product of Positive Semidefinite Matrices," Lin. Alg. Appl., Vol. 295, pp. 3-6, 1999. (Cited on page 530)
[989] C. L. Mehta, "Some Inequalities Involving Traces of Operators," J. Math. Phys., Vol. 9, pp. 693-697, 1968. (Cited on page 500)
[990] Y. A. Melnikov, Influence Functions and Matrices. New York: Marcel Dekker, 1998. (Cited on page xvii)
[991] P. R. Mercer, "The Dunkl-Williams Inequality in an Inner Product Space," Math. Ineq. Appl., Vol. 10, pp. 447-450, 2007. (Cited on pages 567 and 568)
[992] J. K. Merikoski, H. Sarria, and P. Tarazaga, "Bounds for Singular Values Using Traces," Lin. Alg. Appl., Vol. 210, pp. 227-254, 1994. (Cited on page 604)
[993] R. Merris, "Laplacian Matrices of Graphs: A Survey," Lin. Alg. Appl., Vol. 198, pp. 143-176, 1994. (Cited on pages 277 and 506.)
[994] R. Merris, Multilinear Algebra. Amsterdam: Gordon and Breach, 1997. (Cited on pages 416 and 536])
[995] R. Merris and S. Pierce, "Monotonicity of Positive Semidefinite Hermitian Matrices," Proc. Amer. Math. Soc., Vol. 31, pp. 437-440, 1972. (Cited on pages 461 and 469)
[996] C. D. Meyer, "The Moore-Penrose Inverse of a Bordered Matrix," Lin. Alg. Appl., Vol. 5, pp. 375-382, 1972. (Cited on page 391)
[997] C. D. Meyer, "Generalized Inverses and Ranks of Block Matrices," SIAM J. Appl. Math, Vol. 25, pp. 597-602, 1973. (Cited on pages 357 and 391)
[998] C. D. Meyer, Matrix Analysis and Applied Linear Algebra. Philadelphia: SIAM, 2000. (Cited on pages $160,175,176,177,212,243,279,375$, and 714)
[999] C. D. Meyer and N. J. Rose, "The Index and the Drazin Inverse of Block Triangular Matrices," SIAM J. Appl. Math., Vol. 33, pp. 1-7, 1977. (Cited on pages 343391 and 395)
[1000] J.-M. Miao, "General Expressions for the Moore-Penrose Inverse of a 2×2 Block Matrix," Lin. Alg. Appl., Vol. 151, pp. 1-15, 1991. (Cited on page 391.)
[1001] L. Mihalyffy, "An Alternative Representation of the Generalized Inverse of Partitioned Matrices," Lin. Alg. Appl., Vol. 4, pp. 95-100, 1971. (Cited on page 391)
[1002] K. S. Miller, Some Eclectic Matrix Theory. Malabar: Krieger, 1987. (Cited on pages 254410 and 506)
[1003] G. A. Milliken and F. Akdeniz, "A Theorem on the Difference of the Generalized Inverses of Two Nonnegative Matrices," Commun. Statist. Theory Methods, Vol. 6, pp. 73-79, 1977. (Cited on pages 526 and 527)
[1004] G. V. Milovanovic, D. S. Mitrinovic, and T. M. Rassias, Topics in Polynomials: Extremal Problems, Inequalities, Zeros. Singapore: World Scientific, 1994. (Cited on pages 709 and 712)
[1005] G. V. Milovanovic and T. M. Rassias, "Inequalities for Polynomial Zeros," in Survey on Classical Inequalities, T. M. Rassias, Ed. Dordrecht: Kluwer, 2000, pp. 165202. (Cited on pages 638, 709, 710,711 and 712)
[1006] N. Minamide, "An Extension of the Matrix Inversion Lemma," SIAM J. Alg. Disc. Meth., Vol. 6, pp. 371-377, 1985. (Cited on page 378)
[1007] H. Miranda and R. C. Thompson, "A Trace Inequality with a Subtracted Term," Lin. Alg. Appl., Vol. 185, pp. 165-172, 1993. (Cited on page 541)
[1008] L. Mirsky, An Introduction to Linear Algebra. Oxford: Clarendon, 1972, reprinted by Dover, Mineola, 1990. (Cited on pages xix 190 and 198)
[1009] P. Misra and R. V. Patel, "A Determinant Identity and its Application in Evaluating Frequency Response Matrices," SIAM J. Matrix Anal. Appl., Vol. 9, pp. 248-255, 1988. (Cited on page 800.)
[1010] D. S. Mitrinovic, J. E. Pecaric, and A. M. Fink, Classical and New Inequalities in Analysis. Dordrecht: Kluwer, 1993. (Cited on pages 23, 70, 76] 271 565, 568, and 569)
[1011] D. S. Mitrinovic, J. E. Pecaric, and V. Volenec, Recent Advances in Geometric Inequalities. Dordrecht: Kluwer, 1989. (Cited on page 158)
[1012] B. Mityagin, "An Inequality in Linear Algebra," SIAM Rev., Vol. 33, pp. 125-127, 1991. (Cited on pages 458 and 541)
[1013] M. Moakher, "Means and Averaging in the Group of Rotations," SIAM J. Matrix Anal. Appl., Vol. 24, pp. 1-16, 2002. (Cited on pages 196 360 674, 688 and 692)
[1014] M. Moakher, "A Differential Geometric Approach to the Geometric Mean of Symmetric Positive-Definite Matrices," SIAM J. Matrix Anal. Appl., Vol. 26, pp. 735747, 2005. (Cited on pages 463640688 and 689)
[1015] C. Moler and C. F. Van Loan, "Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later," SIAM Rev., Vol. 45, pp. 3-49, 2000. (Cited on pages 692 and 722)
[1016] B. Mond, "Generalized Inverse Extensions of Matrix Inequalities," Lin. Alg. Appl., Vol. 2, pp. 393-399, 1969. (Cited on page 502)
[1017] B. Mond and J. E. Pecaric, "Reverse Forms of a Convex Matrix Inequality," Lin. Alg. Appl., Vol. 220, pp. 359-364, 1995. (Cited on page 457)
[1018] B. Mond and J. E. Pecaric, "Inequalities for the Hadamard Product of Matrices," SIAM J. Matrix Anal. Appl., Vol. 19, pp. 66-70, 1998. (Cited on pages 537 and 538)
[1019] B. Mond and J. E. Pecaric, "On Inequalities Involving the Hadamard Product of Matrices," Elec. J. Lin. Alg., Vol. 6, pp. 56-61, 2000. (Cited on pages 537 and 539)
[1020] V. V. Monov, "On the Spectrum of Convex Sets of Matrices," IEEE Trans. Autom. Contr., Vol. 44, pp. 1009-1012, 1992. (Cited on page 269.)
[1021] T. Moreland and S. Gudder, "Infima of Hilbert Space Effects," Lin. Alg. Appl., Vol. 286, pp. 1-17, 1999. (Cited on page 460)
[1022] T. Mori, "Comments on 'A Matrix Inequality Associated with Bounds on Solutions of Algebraic Riccati and Lyapunov Equation'," IEEE Trans. Autom. Contr., Vol. 33, p. 1088, 1988. (Cited on page 541)
[1023] T. Muir, The Theory of Determinants in the Historical Order of Development. New York: Dover, 1966. (Cited on page 164)
[1024] W. W. Muir, "Inequalities Concerning the Inverses of Positive Definite Matrices," Proc. Edinburgh Math. Soc., Vol. 19, pp. 109-113, 1974-75. (Cited on pages 441 442 and 542)
[1025] I. S. Murphy, "A Note on the Product of Complementary Principal Minors of a Positive Definite Matrix," Lin. Alg. Appl., Vol. 44, pp. 169-172, 1982. (Cited on page 492)
[1026] R. M. Murray, Z. Li, and S. S. Sastry, A Mathematical Introduction to Robotic Manipulation. Boca Raton: CRC, 1994. (Cited on pages xvii and 722)
[1027] I. Najfeld and T. F. Havel, "Derivatives of the Matrix Exponential and Their Computation," Adv. Appl. Math., Vol. 16, pp. 321-375, 1995. (Cited on page682)
[1028] R. Nakamoto, "A Norm Inequality for Hermitian Operators," Amer. Math. Monthly, Vol. 110, pp. 238-239, 2003. (Cited on page 695)
[1029] Y. Nakamura, "Any Hermitian Matrix is a Linear Combination of Four Projections," Lin. Alg. Appl., Vol. 61, pp. 133-139, 1984. (Cited on page 361)
[1030] A. W. Naylor and G. R. Sell, Linear Operator Theory in Engineering and Science. New York: Springer, 1986. (Cited on pages 70 76, 565, 568 623,624 and 642)
[1031] T. Needham, Visual Complex Analysis. Oxford: Oxford University Press, 1997. (Cited on page 76)
[1032] C. N. Nett and W. M. Haddad, "A System-Theoretic Appropriate Realization of the Empty Matrix Concept," IEEE Trans. Autom. Contr., Vol. 38, pp. 771-775, 1993. (Cited on page 164)
[1033] M. G. Neubauer, "An Inequality for Positive Definite Matrices with Applications to Combinatorial Matrices," Lin. Alg. Appl., Vol. 267, pp. 163-174, 1997. (Cited on page 491,
[1034] M. F. Neuts, Matrix-Geometric Solutions in Stochastic Models. Baltimore: Johns Hopkins University Press, 1981, reprinted by Dover, Mineola, 1994. (Cited on page Xvii)
[1035] R. W. Newcomb, "On the Simultaneous Diagonalization of Two Semi-Definite Matrices," Quart. Appl. Math., Vol. 19, pp. 144-146, 1961. (Cited on page 541)
[1036] M. Newman, "Lyapunov Revisited," Lin. Alg. Appl., Vol. 52/53, pp. 525-528, 1983. (Cited on page 309)
[1037] M. Newman, W. So, and R. C. Thompson, "Convergence Domains for the Campbell-Baker-Hausdorff Formula," Lin. Multilin. Alg., Vol. 24, pp. 301-310, 1989. (Cited on page 655)
[1038] D. W. Nicholson, "Eigenvalue Bounds for of $A B+B A$ for A, B Positive Definite Matrices," Lin. Alg. Appl., Vol. 24, pp. 173-183, 1979. (Cited on page 520)
[1039] C. Niculescu and L.-E. Persson, Convex Functions and Their Applications: A Contemporary Approach. New York: Springer, 2006. (Cited on pages 21] 223537 42 54, 55, 56, 62, 132,483 , 5655 638, and 639)
[1040] C. P. Niculescu, "Convexity According to the Geometric Mean," Math. Ineq. Appl., Vol. 3, pp. 155-167, 2000. (Cited on pages 59 54, 158, and 712)
[1041] C. P. Niculescu and F. Popovici, "A Refinement of Popoviciu's Inequality," Bull. Math. Soc. Sci. Math. Roumanie, Vol. 49(97), pp. 285-290, 2006. (Cited on page 22)
[1042] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information. Cambridge: Cambridge University Press, 2000. (Cited on page xvii)
[1043] M. Niezgoda, "Laguerre-Samuelson Type Inequalities," Lin. Alg. Appl., Vol. 422, pp. 574-581, 2007. (Cited on pages 51 and 454)
[1044] K. Nishio, "The Structure of a Real Linear Combination of Two Projections," Lin. Alg. Appl., Vol. 66, pp. 169-176, 1985. (Cited on page 200.)
[1045] B. Noble and J. W. Daniel, Applied Linear Algebra, 3rd ed. Englewood Cliffs: Prentice-Hall, 1988. (Cited on pages xix and 164)
[1046] K. Nomakuchi, "On the Characterization of Generalized Inverses by Bordered Matrices," Lin. Alg. Appl., Vol. 33, pp. 1-8, 1980. (Cited on page 391)
[1047] K. Nordstrom, "Some Further Aspects of the Lowner-Ordering Antitonicity of the Moore-Penrose Inverse," Commun. Statist. Theory Meth., Vol. 18, pp. 4471-4489, 1989. (Cited on pages 457 and 527)
[1048] J. Nunemacher, "Which Real Matrices Have Real Logarithms?" Math. Mag., Vol. 62, pp. 132-135, 1989. (Cited on page 722)
[1049] H. Ogawa, "An Operator Pseudo-Inversion Lemma," SIAM J. Appl. Math., Vol. 48, pp. 1527-1531, 1988. (Cited on page 378.)
[1050] I. Olkin, "An Inequality for a Sum of Forms," Lin. Alg. Appl., Vol. 52-53, pp. 529-532, 1983. (Cited on page 456.)
[1051] J. M. Ortega, Matrix Theory, A Second Course. New York: Plenum, 1987. (Cited on page xix)
[1052] B. Ortner and A. R. Krauter, "Lower Bounds for the Determinant and the Trace of a Class of Hermitian Matrices," Lin. Alg. Appl., Vol. 236, pp. 147-180, 1996. (Cited on page 476)
[1053] S. L. Osburn and D. S. Bernstein, "An Exact Treatment of the Achievable ClosedLoop H_{2} Performance of Sampled-Data Controllers: From Continuous-Time to Open-Loop," Automatica, Vol. 31, pp. 617-620, 1995. (Cited on page 681)
[1054] A. Ostrowski and H. Schneider, "Some Theorems on the Inertia of General Matrices," J. Math. Anal. Appl., Vol. 4, pp. 72-84, 1962. (Cited on page 794)
[1055] A. M. Ostrowski, "On Some Metrical Properties of Operator Matrices and Matrices Partitioned into Blocks," J. Math. Anal. Appl., Vol. 2, pp. 161-209, 1961. (Cited on page 593])
[1056] J. A. Oteo, "The Baker-Campbell-Hausdorff Formula and Nested Commutator Identities," J. Math. Phys., Vol. 32, pp. 419-424, 1991. (Cited on page 678)
[1057] D. V. Ouellette, "Schur Complements and Statistics," Lin. Alg. Appl., Vol. 36, pp. 187-295, 1981. (Cited on pages 468487 and 542)
[1058] D. A. Overdijk, "Skew-Symmetric Matrices in Classical Mechanics," Eindhoven University, Memorandum COSOR 89-23, 1989. (Cited on page 188)
[1059] C. C. Paige and M. Saunders, "Towards a Generalized Singular Value Decomposition," SIAM J. Numer. Anal., Vol. 18, pp. 398-405, 1981. (Cited on page 316)
[1060] C. C. Paige, G. P. H. Styan, B. Y. Wang, and F. Zhang, "Hua's Matrix Equality and Schur Complements," Int. J. Inform. Sys. Sci., Vol. 4, pp. 124-135, 2008. (Cited on pages 310472473,490 and 503)
[1061] C. C. Paige and M. Wei, "History and Generality of the CS Decomposition," Lin. Alg. Appl., Vol. 208/209, pp. 303-326, 1994. (Cited on page 316)
[1062] H. Palanthandalam-Madapusi, D. S. Bernstein, and R. Venugopal, "Dimensional Analysis of Matrices: State-Space Models and Dimensionless Units," IEEE Contr. Sys. Mag., Vol. 27, no. December, pp. 100-109, 2007. (Cited on pages 230 and 679)
[1063] H. Palanthandalam-Madapusi, T. Van Pelt, and D. S. Bernstein, "Existence Conditions for Quadratic Programming with a Sign-Indefinite Quadratic Equality Constraint," preprint. (Cited on page 498)
[1064] H. Palanthandalam-Madapusi, T. Van Pelt, and D. S. Bernstein, "Parameter Consistency and Quadratically Constrained Errors-in-Variables Least-Squares Identification," preprint. (Cited on page 498)
[1065] F. C. Paliogiannis, "On Commuting Operator Exponentials," Proc. Amer. Math. Soc., Vol. 131, pp. 3777-3781, 2003. (Cited on page 681)
[1066] B. P. Palka, An Introduction to Complex Function Theory. New York: Springer, 1991. (Cited on page 76])
[1067] C. V. Pao, "Logarithmic Derivatives of a Square Matrix," Lin. Alg. Appl., Vol. 6, pp. 159-164, 1973. (Cited on page 691)
[1068] J. G. Papastavridis, Tensor Calculus and Analytical Dynamics. Boca Raton: CRC, 1998. (Cited on page xviil)
[1069] J. G. Papastavridis, Analytical Mechanics. Oxford: Oxford University Press, 2002. (Cited on pages xvii and 451)
[1070] F. C. Park, "Computational Aspects of the Product-of-Exponentials Formula for Robot Kinematics," IEEE Trans. Autom. Contr., Vol. 39, pp. 643-647, 1994. (Cited on page 722)
[1071] P. Park, "On the Trace Bound of a Matrix Product," IEEE Trans. Autom. Contr., Vol. 41, pp. 1799-1802, 1996. (Cited on page 334)
[1072] D. F. Parker, Fields, Flow and Waves: An Introduction to Continuum Models. London: Springer, 2003. (Cited on page 362)
[1073] P. C. Parks, "A New Proof of the Routh-Hurwitz Stability Criterion Using the Second Method of Liapunov," Proc. Camb. Phil. Soc., Vol. 58, pp. 694-702, 1962. (Cited on page 704)
[1074] R. V. Patel, "On Blocking Zeros in Linear Multivariable Systems," IEEE Trans. Autom. Contr., Vol. AC-31, pp. 239-241, 1986. (Cited on page 805)
[1075] R. V. Patel and M. Toda, "Trace Inequalities Involving Hermitian Matrices," Lin. Alg. Appl., Vol. 23, pp. 13-20, 1979. (Cited on pages 484 and 692)
[1076] C. Pearcy, "A Complete Set of Unitary Invariants for Operators Generating Finite W^{*}-Algebras of Type I," Pac. J. Math., Vol. 12, pp. 1405-1414, 1962. (Cited on page 318)
[1077] M. C. Pease, Methods of Matrix Algebra. New York: Academic Press, 1965. (Cited on page 229)
[1078] J. Pecaric and R. Rajic, "The Dunkl-Williams Inequality with n Elements in Normed Linear Spaces," Math. Ineq. Appl., Vol. 10, pp. 461-470, 2007. (Cited on page 568)
[1079] J. E. Pecaric, S. Puntanen, and G. P. H. Styan, "Some Further Matrix Extensions of the Cauchy-Schwarz and Kantorovich Inequalities, with Some Statistical Applications," Lin. Alg. Appl., Vol. 237/238, pp. 455-476, 1996. (Cited on pages 501 and 502)
[1080] J. E. Pecaric, S. Puntanen, and G. P. H. Styan, "Some Further Matrix Extensions of the Cauchy-Schwarz and Kantorovich Inequalities, with Some Statistical Applications," Lin. Alg. Appl., Vol. 237/238, pp. 455-476, 1996. (Cited on page 616])
[1081] S. Perlis, Theory of Matrices. Reading: Addison-Wesley, 1952, reprinted by Dover, New York, 1991. (Cited on pages [164, 233, 234, 237, 281, and 361)
[1082] T. Peter, "Maximizing the Area of a Quadrilateral," College Math. J., Vol. 34, pp. 315-316, 2003. (Cited on page 159)
[1083] I. R. Petersen and C. V. Hollot, "A Riccati Equation Approach to the Stabilization of Uncertain Systems," Automatica, Vol. 22, pp. 397-411, 1986. (Cited on page 504)
[1084] D. Petz and R. Temesi, "Means of Positive Numbers and Matrices," SIAM J. Matrix Anal. Appl., Vol. 27, pp. 712-720, 2005. (Cited on pages 463 and 467)
[1085] L. A. Pipes, "Applications of Laplace Transforms of Matrix Functions," J. Franklin Inst., Vol. 285, pp. 436-451, 1968. (Cited on pages 672 and 673)
[1086] A. O. Pittenger and M. H. Rubin, "Convexity and Separation Problem of Quantum Mechanical Density Matrices," Lin. Alg. Appl., Vol. 346, pp. 47-71, 2002. (Cited on page xvii)
[1087] I. Polik and T. Terlaky, "A Survey of the S-Lemma," SIAM Rev., Vol. 49, pp. 371-418, 2007. (Cited on page 498)
[1088] T. Politi, "A Formula for the Exponential of a Real Skew-Symmetric Matrix of Order 4," Numer. Math. BIT, Vol. 41, pp. 842-845, 2001. (Cited on pages 673 and 675)
[1089] D. S. G. Pollock, "Tensor Products and Matrix Differential Calculus," Lin. Alg. Appl., Vol. 67, pp. 169-193, 1985. (Cited on page 642)
[1090] B. T. Polyak, "Convexity of Quadratic Transformations and Its Use in Control and Optimization," J. Optim. Theory Appl., Vol. 99, pp. 553-583, 1998. (Cited on pages 497,498 and 499)
[1091] B. Poonen, "A Unique (2k+1)-th Root of a Matrix," Amer. Math. Monthly, Vol. 98, p. 763, 1991. (Cited on page 349)
[1092] B. Poonen, "Positive Deformations of the Cauchy Matrix," Amer. Math. Monthly, Vol. 102, pp. 842-843, 1995. (Cited on page 447)
[1093] D. Popa and I. Rasa, "Inequalities Involving the Inner Product," J. Ineq. Pure Appl. Math., Vol. 8, no. 3, pp. 1-4, 2007, Article 86. (Cited on page 565.)
[1094] V. M. Popov, Hyperstability of Control Systems. Berlin: Springer, 1973. (Cited on pages xvii and [722])
[1095] G. J. Porter, "Linear Algebra and Affine Planar Transformations," College Math. J., Vol. 24, pp. 47-51, 1993. (Cited on page 194)
[1096] B. H. Pourciau, "Modern Multiplier Rules," Amer. Math. Monthly, Vol. 87, pp. 433-452, 1980. (Cited on page 635)
[1097] C. R. Pranesachar, "Ratio Circum-to-In-Radius," Amer. Math. Monthly, Vol. 114, p. 648, 2007. (Cited on page 158)
[1098] V. V. Prasolov, Problems and Theorems in Linear Algebra. Providence: American Mathematical Society, 1994. (Cited on pages xix $143,150,184,185,197,208,214$

 608, 640, 641, and 660)
[1099] U. Prells, M. I. Friswell, and S. D. Garvey, "Use of Geometric Algebra: Compound Matrices and the Determinant of the Sum of Two Matrices," Proc. Royal Soc. Lond. A, Vol. 459, pp. 273-285, 2003. (Cited on pages 412 and 413)
[1100] J. S. Przemieniecki, Theory of Matrix Structural Analysis. New York: McGrawHill, 1968. (Cited on page xvii)
[1101] P. J. Psarrakos, "On the m th Roots of a Complex Matrix," Elec. J. Lin. Alg., Vol. 9, pp. 32-41, 2002. (Cited on page 348)
[1102] N. J. Pullman, Matrix Theory and Its Applications: Selected Topics. New York: Marcel Dekker, 1976. (Cited on page 722)
[1103] S. Puntanen and G. P. H. Styan, "Historical Introduction: Issai Schur and the Early Development of the Schur Complement," in The Schur Complement and Its Applications, F. Zhang, Ed. New York: Springer, 2004, pp. 1-16. (Cited on page 386)
[1104] F. Qi, "Inequalities between the Sum of Squares and the Exponential of Sum of a Nonnegative Sequence," J. Ineq. Pure Appl. Math., Vol. 8, no. 3, pp. 1-5, 2007, Article 78. (Cited on page 60)
[1105] F. Qi and L. Debnath, "Inequalities for Power-Exponential Functions," J. Ineq. Pure. Appl. Math., Vol. 1, no. 2/15, pp. 1-5, 2000. (Cited on page 38)
[1106] C. Qian and J. Li, "Global Finite-Time Stabilization by Output Feedback for Planar Systems without Observation Linearization," IEEE Trans. Autom. Contr., Vol. 50, pp. 885-890, 2005. (Cited on page 38)
[1107] R. X. Qian and C. L. DeMarco, "An Approach to Robust Stability of Matrix Polytopes through Copositive Homogeneous Polynomials," IEEE Trans. Autom. Contr., Vol. 37, pp. 848-852, 1992. (Cited on page 269,)
[1108] L. Qiu, B. Bernhardsson, A. Rantzer, E. J. Davison, P. M. Young, and J. C. Doyle, "A Formula for Computation of the Real Stability Radius," Automatica, Vol. 31, pp. 879-890, 1995. (Cited on page 701)
[1109] L. Qiu and X. Zhan, "On the Span of Hadamard Products of Vectors," Lin. Alg. Appl., Vol. 422, pp. 304-307, 2007. (Cited on page 413)
[1110] J. F. Queiro and A. Kovacec, "A Bound for the Determinant of the Sum of Two Normal Matrices," Lin. Multilin. Alg., Vol. 33, pp. 171-173, 1993. (Cited on page 335)
[1111] V. Rabanovich, "Every Matrix Is a Linear Combination of Three Idempotents," Lin. Alg. Appl., Vol. 390, pp. 137-143, 2004. (Cited on page 361)
[1112] H. Radjavi, "Decomposition of Matrices into Simple Involutions," Lin. Alg. Appl., Vol. 12, pp. 247-255, 1975. (Cited on page 348)
[1113] H. Radjavi and P. Rosenthal, Simultaneous Triangularization. New York: Springer, 2000. (Cited on page 358)
[1114] H. Radjavi and J. P. Williams, "Products of Self-Adjoint Operators," Michigan Math. J., Vol. 16, pp. 177-185, 1969. (Cited on pages 319 348, and 376)
[1115] V. Rakocevic, "On the Norm of Idempotent Operators in a Hilbert Space," Amer. Math. Monthly, Vol. 107, pp. 748-750, 2000. (Cited on pages 210 and 336)
[1116] A. C. M. Ran and R. Vreugdenhil, "Existence and Comparison Theorems for Algebraic Riccati Equations for Continuous- and Discrete-Time Systems," Lin. Alg. Appl., Vol. 99, pp. 63-83, 1988. (Cited on page 805)
[1117] A. Rantzer, "On the Kalman-Yakubovich-Popov Lemma," Sys. Contr. Lett., Vol. 28, pp. 7-10, 1996. (Cited on page 320)
[1118] C. R. Rao and S. K. Mitra, Generalized Inverse of Matrices and Its Applications. New York: Wiley, 1971. (Cited on pages 3985 , 529 and 541)
[1119] C. R. Rao and M. B. Rao, Matrix Algebra and Its Applications to Statistics and Econometrics. Singapore: World Scientific, 1998. (Cited on pages xvii 278, and 416)
[1120] J. V. Rao, "Some More Representations for the Generalized Inverse of a Partitioned Matrix," SIAM J. Appl. Math., Vol. 24, pp. 272-276, 1973. (Cited on page 391)
[1121] U. A. Rauhala, "Array Algebra Expansion of Matrix and Tensor Calculus: Part 1," SIAM J. Matrix Anal. Appl., Vol. 24, pp. 490-508, 2003. (Cited on page 416)
[1122] P. A. Regalia and S. K. Mitra, "Kronecker Products, Unitary Matrices and Signal Processing Applications," SIAM Rev., Vol. 31, pp. 586-613, 1989. (Cited on page 416)
[1123] M. W. Reinsch, "A Simple Expression for the Terms in the Baker-CampbellHausdorff Series," J. Math. Physics, Vol. 41, pp. 2434-2442, 2000. (Cited on page 683)
[1124] T. J. Richardson and R. H. Kwong, "On Positive Definite Solutions to the Algebraic Riccati Equation," Sys. Contr. Lett., Vol. 7, pp. 99-104, 1986. (Cited on pages 790 and 805)
[1125] A. N. Richmond, "Expansions for the Exponential of a Sum of Matrices," in $A p$ plications of Matrix Theory, M. J. C. Gover and S. Barnett, Eds. Oxford: Oxford University Press, 1989, pp. 283-289. (Cited on page 684)
[1126] K. S. Riedel, "A Sherman-Morrison-Woodbury Identity for Rank Augmenting Matrices with Application to Centering," SIAM J. Matrix Anal. Appl., Vol. 13, pp. 659-662, 1992. (Cited on page 378)
[1127] J. R. Ringrose, Compact Non-Self-Adjoint Operators. New York: Van Nostrand Reinhold, 1971. (Cited on page 619,
[1128] R. S. Rivlin, "Further Remarks on the Stress Deformation Relations for Isotropic Materials," J. Rational Mech. Anal., Vol. 4, pp. 681-702, 1955. (Cited on pages 260 and 261)
[1129] J. W. Robbin, Matrix Algebra Using MINImal MATlab. Wellesley: A. K. Peters, 1995. (Cited on pages [76, $115,164,211,[229,281,283,319, ~ 346]$ and 640)
[1130] J. W. Robbin and D. A. Salamon, "The Exponential Vandermonde Matrix," Lin. Alg. Appl., Vol. 317, pp. 225-226, 2000. (Cited on page 414)
[1131] D. W. Robinson, "Nullities of Submatrices of the Moore-Penrose Inverse," Lin. Alg. Appl., Vol. 94, pp. 127-132, 1987. (Cited on page 218)
[1132] P. Robinson and A. J. Wathen, "Variational Bounds on the Entries of the Inverse of a Matrix," IMA J. Numerical Anal., Vol. 12, pp. 463-486, 1992. (Cited on page 476)
[1133] R. T. Rockafellar, Convex Analysis. Princeton: Princeton University Press, 1990. (Cited on pages 164 624, 632, 635, and 642)
[1134] R. T. Rockafellar and R. J. B. Wets, Variational Analysis. Berlin: Springer, 1998. (Cited on pages 632 and 642)
[1135] L. Rodman, "Products of Symmetric and Skew Symmetric Matrices," Lin. Multilin. Alg., Vol. 43, pp. 19-34, 1997. (Cited on page 351)
[1136] G. S. Rogers, Matrix Derivatives. New York: Marcel Dekker, 1980. (Cited on page 642)
[1137] C. A. Rohde, "Generalized Inverses of Partitioned Matrices," SIAM J. Appl. Math., Vol. 13, pp. 1033-1035, 1965. (Cited on page 391)
[1138] J. Rohn, "Computing the Norm $\|A\|_{\infty, 1}$ Is NP-Hard," Lin. Multilin. Alg., Vol. 47, pp. 195-204, 2000. (Cited on page 575)
[1139] O. Rojo, "Further Bounds for the Smallest Singular Value and the Spectral Condition Number," Computers Math. Appl., Vol. 38, pp. 215-228, 1999. (Cited on page 604)
[1140] O. Rojo, "Inequalities Involving the Mean and the Standard Deviation of Nonnegative Real Numbers," J. Ineq. Appl., Vol. 2006, pp. 1-15, 2006, article ID 43465. (Cited on page 51)
[1141] J. Rooin, "On Ky Fan's Inequality and its Additive Analogues," Math. Ineq. Appl., Vol. 6, pp. 595-604, 2003. (Cited on page 55)
[1142] D. J. Rose, "Matrix Identities of the Fast Fourier Transform," Lin. Alg. Appl., Vol. 29, pp. 423-443, 1980. (Cited on page 357)
[1143] K. H. Rosen, Ed., Handbook of Discrete and Combinatorial Mathematics. Boca Raton: CRC, 2000. (Cited on pages xviil and xix)
[1144] H. H. Rosenbrock, State-Space and Multivariable Theory. New York: Wiley, 1970. (Cited on pages 763 and 764)
[1145] M. Rosenfeld, "A Sufficient Condition for Nilpotence," Amer. Math. Monthly, Vol. 103, pp. 907-909, 1996. (Cited on pages xvii and 215)
[1146] A. Rosoiu, "Triangle Radii Inequality," Amer. Math. Monthly, Vol. 114, p. 640, 2007. (Cited on page 158)
[1147] W. Rossmann, Lie Groups: An Introduction Through Linear Groups. Oxford: Oxford University Press, 2002. (Cited on page 229)
[1148] U. G. Rothblum, "Nonnegative Matrices and Stochastic Matrices," in Handbook of Linear Algebra, L. Hogben, Ed. Boca Raton: Chapman \& Hall/CRC, 2007, pp. 9-1-9-25. (Cited on pages 275, 280 and 398)
[1149] J. J. Rotman, An Introduction to the Theory of Groups, 4th ed. New York: Springer, 1999. (Cited on pages 223 and 357)
[1150] W. J. Rugh, Linear System Theory, 2nd ed. Upper Saddle River: Prentice Hall, 1996. (Cited on pages $252,253,678,743,756$ and 805)
[1151] A. M. Russell and C. J. F. Upton, "A Class of Positive Semidefinite Matrices," Lin. Alg. Appl., Vol. 93, pp. 121-126, 1987. (Cited on page 449)
[1152] D. L. Russell, Mathematics of Finite-Dimensional Control Systems. New York: Marcel Dekker, 1979. (Cited on page 793)
[1153] A. Saberi, P. Sannuti, and B. M. Chen, H_{2} Optimal Control. Englewood Cliffs: Prentice-Hall, 1995. (Cited on page xvii)
[1154] M. K. Sain and C. B. Schrader, "The Role of Zeros in the Performance of Multiinput, Multioutput Feedback Systems," IEEE Trans. Educ., Vol. 33, pp. 244-257, 1990. (Cited on page 805)
[1155] J. Sandor, "On Certain Inequalities for Means, II," J. Math. Anal. Appl., Vol. 199, pp. 629-635, 1996. (Cited on page 37.)
[1156] J. Sandor, "Inequalities for Generalized Convex Functions with Applications I," Studia University Babes-Bolyai, Mathematica, Vol. XLIV, pp. 93-107, 1999. (Cited on page 22])
[1157] J. Sandor, "On Certain Limits Related to the Number e," Libertas Mathematica, Vol. XX, pp. 155-159, 2000. (Cited on page 26)
[1158] J. Sandor, "Inequalities for Generalized Convex Functions with Applications II," Studia University Babes-Bolyai, Mathematica, Vol. XLVI, pp. 79-91, 2001. (Cited on page 22)
[1159] J. Sandor, "On an Inequality of Ky Fan," Int. J. Math. Educ. Sci. Tech., Vol. 32, pp. 133-160, 2001. (Cited on page 55.)
[1160] J. Sandor and L. Debnath, "On Certain Inequalities Involving the Constant e and Their Applications," J. Math. Anal. Appl., Vol. 249, pp. 569-582, 2000. (Cited on pages 25, 26, and 66)
[1161] R. A. Satnoianu, "General Power Inequalities between the Sides and the Circumscribed and Inscribed Radii Related to the Fundamental Triangle Inequality," Math. Ineq. Appl., Vol. 5, pp. 745-751, 2002. (Cited on page 158)
[1162] D. H. Sattinger and O. L. Weaver, Lie Groups and Algebras with Applications to Physics, Geometry, and Mechanics. New York: Springer, 1986. (Cited on pages 150, $172,655,660$ and 722)
[1163] A. H. Sayed, Fundamentals of Adaptive Filtering. New York: Wiley, 2003. (Cited on page xviil)
[1164] H. Schaub, P. Tsiotras, and J. L. Junkins, "Principal Rotation Representations of Proper $N \times N$ Orthogonal Matrices," Int. J. Eng. Sci., Vol. 33, pp. 2277-2295, 1995. (Cited on page 674)
[1165] C. W. Scherer, "The Solution Set of the Algebraic Riccati Equation and the Algebraic Riccati Inequality," Lin. Alg. Appl., Vol. 153, pp. 99-122, 1991. (Cited on page 805)
[1166] C. W. Scherer, "The Algebraic Riccati Equation and Inequality for Systems with Uncontrollable Modes on the Imaginary Axis," SIAM J. Matrix Anal. Appl., Vol. 16, pp. 1308-1327, 1995. (Cited on pages 787 and 805.)
[1167] C. W. Scherer, "The General Nonstrict Algebraic Riccati Inequality," Lin. Alg. Appl., Vol. 219, pp. 1-33, 1995. (Cited on page 805)
[1168] P. Scherk, "On the Decomposition of Orthogonalities into Symmetries," Proc. Amer. Math. Soc., Vol. 1, pp. 481-491, 1950. (Cited on page 347)
[1169] C. Schmoeger, "Remarks on Commuting Exponentials in Banach Algebras," Proc. Amer. Math. Soc., Vol. 127, pp. 1337-1338, 1999. (Cited on page 681)
[1170] C. Schmoeger, "Remarks on Commuting Exponentials in Banach Algebras, II," Proc. Amer. Math. Soc., Vol. 128, pp. 3405-3409, 2000. (Cited on page 681.)
[1171] C. Schmoeger, "On Normal Operator Exponentials," Proc. Amer. Math. Soc., Vol. 130, pp. 697-702, 2001. (Cited on page 681)
[1172] C. Schmoeger, "On Logarithms of Linear Operators on Hilbert Spaces," Demonstratio Math., Vol. XXXV, pp. 375-384, 2002. (Cited on pages 650 and 689)
[1173] C. Schmoeger, "On the Operator Equation $e^{A}=e^{B}$," Lin. Alg. Appl., Vol. 359, pp. 169-179, 2003. (Cited on page 682)
[1174] H. Schneider, "Olga Taussky-Todd's Influence on Matrix Theory and Matrix Theorists," Lin. Multilin. Alg., Vol. 5, pp. 197-224, 1977. (Cited on page 269.)
[1175] B. Scholkopf and A. J. Smola, Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. Cambridge: MIT Press, 2001. (Cited on page 445)
[1176] D. Scholz and M. Weyrauch, "A Note on the Zassenhaus Product Formula," J. Math. Phys., Vol. 47, pp. 033 505/1-7, 2006. (Cited on page 685)
[1177] J. R. Schott, Matrix Analysis for Statistics. New York: Wiley, 2005. (Cited on pages xvii 379443,513 and 518,
[1178] C. B. Schrader and M. K. Sain, "Research on System Zeros: A Survey," Int. J. Contr., Vol. 50, pp. 1407-1433, 1989. (Cited on page 805)
[1179] B. S. W. Schroder, Ordered Sets: An Introduction. Boston: Birkhauser, 2003. (Cited on page 76)
[1180] A. J. Schwenk, "Tight Bounds on the Spectral Radius of Asymmetric Nonnegative Matrices," Lin. Alg. Appl., Vol. 75, pp. 257-265, 1986. (Cited on page 415)
[1181] S. R. Searle, Matrix Algebra Useful for Statistics. New York: Wiley, 1982. (Cited on page xvii)
[1182] P. Sebastian, "On the Derivatives of Matrix Powers," SIAM J. Matrix Anal. Appl., Vol. 17, pp. 640-648, 1996. (Cited on page 642)
[1183] P. Sebastiani, "On the Derivatives of Matrix Powers," SIAM J. Matrix Anal. Appl., Vol. 17, pp. 640-648, 1996. (Cited on page 640)
[1184] G. A. F. Seber, A Matrix Handbook for Statisticians. New York: Wiley, 2008.
 [271, 374, 375, $379,393,487,500,526,535,572,607$ and 706)
[1185] J. M. Selig, Geometric Fundamentals of Robotics, 2nd ed. New York: Springer, 2005. (Cited on pages xvii 193, 227, and 229)
[1186] D. Serre, Matrices: Theory and Applications. New York: Springer, 2002. (Cited on pages 172 217, 260 and 390)
[1187] J.-P. Serre and L. L. Scott, Linear Representations of Finite Groups . New York: Springer, 1996. (Cited on page 223)
[1188] C. Shafroth, "A Generalization of the Formula for Computing the Inverse of a Matrix," Amer. Math. Monthly, Vol. 88, pp. 614-616, 1981. (Cited on pages 139 and 196)
[1189] W. M. Shah and A. Liman, "On the Zeros of a Class of Polynomials," Math. Ineq. Appl., Vol. 10, pp. 733-744, 2007. (Cited on page 709)
[1190] H. Shapiro, "A Survey of Canonical Forms and Invariants for Unitary Similarity," Lin. Alg. Appl., Vol. 147, pp. 101-167, 1991. (Cited on page 318)
[1191] H. Shapiro, "Notes from Math 223: Olga Taussky Todd's Matrix Theory Course, 1976-1977," Mathematical Intelligencer, Vol. 19, no. 1, pp. 21-27, 1997. (Cited on page 351)
[1192] R. Shaw and F. I. Yeadon, "On $(a \times b) \times c$," Amer. Math. Monthly, Vol. 96, pp. 623-629, 1989. (Cited on page 188)
[1193] S.-Q. Shen and T.-Z. Huang, "Several Inequalities for the Largest Singular Value and the Spectral Radius of Matrices," Math. Ineq. Appl., Vol. 10, pp. 713-722, 2007. (Cited on pages 275416 and 617)
[1194] G. E. Shilov, Linear Algebra. Englewood Cliffs: Prentice-Hall, 1971, reprinted by Dover, New York, 1977. (Cited on page xix)
[1195] M. D. Shuster, "A Survey of Attitude Representations," J. Astron. Sci., Vol. 41, pp. 439-517, 1993. (Cited on pages 226 and 674)
[1196] M. D. Shuster, "Attitude Analysis in Flatland: The Plane Truth," J. Astronautical Sci., Vol. 52, pp. 195-209, 2004. (Cited on page 193.)
[1197] D. D. Siljak, Large-Scale Dynamic Systems: Stability and Structure. New York: North-Holland, 1978. (Cited on pages xvii and 706)
[1198] F. C. Silva and R. Simoes, "On the Lyapunov and Stein Equations," Lin. Alg. Appl., Vol. 420, pp. 329-338, 2007. (Cited on page 796)
[1199] F. C. Silva and R. Simoes, "On the Lyapunov and Stein Equations, II," Lin. Alg. Appl., Vol. 426, pp. 305-311, 2007. (Cited on page 796)
[1200] S. F. Singer, Symmetry in Mechanics: A Gentle, Modern Introduction. Boston: Birkhauser, 2001. (Cited on page xvii)
[1201] R. E. Skelton, T. Iwasaki, and K. Grigoriadis, A Unified Algebraic Approach to Linear Control Design. London: Taylor and Francis, 1998. (Cited on pages xvii and 722)
[1202] D. M. Smiley and M. F. Smiley, "The Polygonal Inequalities," Amer. Math. Monthly, Vol. 71, pp. 755-760, 1964. (Cited on page 565)
[1203] O. K. Smith, "Eigenvalues of a Symmetric 3×3 Matrix," Comm. ACM, Vol. 4, p. 168, 1961. (Cited on page 265.)
[1204] R. A. Smith, "Matrix Calculations for Lyapunov Quadratic Forms," J. Diff. Eqns., Vol. 2, pp. 208-217, 1966. (Cited on page 797)
[1205] A. Smoktunowicz, "Block Matrices and Symmetric Perturbations," Lin. Alg. Appl., Vol. 429, pp. 2628-2635, 2008. (Cited on pages 186 and 593)
[1206] R. Snieder, A Guided Tour of Mathematical Methods for the Physical Sciences, 2nd ed. Cambridge: Cambridge University Press, 2004. (Cited on page 370)
[1207] J. Snyders and M. Zakai, "On Nonnegative Solutions of the Equation $A D+D A^{\prime}=$ C," SIAM J. Appl. Math., Vol. 18, pp. 704-714, 1970. (Cited on pages 722, 746. 747, and 805)
[1208] W. So, "Equality Cases in Matrix Exponential Inequalities," SIAM J. Matrix Anal. Appl., Vol. 13, pp. 1154-1158, 1992. (Cited on pages 180, 476, 650, $681,682,689$ and 693)
[1209] W. So, "The High Road to an Exponential Formula," Lin. Alg. Appl., Vol. 379, pp. 69-75, 2004. (Cited on page 688,
[1210] W. So and R. C. Thompson, "Product of Exponentials of Hermitian and Complex Symmetric Matrices," Lin. Multilin. Alg., Vol. 29, pp. 225-233, 1991. (Cited on page 688)
[1211] W. So and R. C. Thompson, "Singular Values of Matrix Exponentials," Lin. Multilin. Alg., Vol. 47, pp. 249-258, 2000. (Cited on pages 509 and 690)
[1212] E. D. Sontag, Mathematical Control Theory: Deterministic Finite-Dimensional Systems, 2nd ed. New York: Springer, 1998. (Cited on pages xvii and 793)
[1213] E. D. Sontag, "Passivity Gains and the 'Secant Condition' for Stability," Sys. Contr. Lett., Vol. 55, pp. 177-183, 2006. (Cited on page 704)
[1214] A. R. Sourour, "A Factorization Theorem for Matrices," Lin. Multilin. Alg., Vol. 19, pp. 141-147, 1986. (Cited on page 351)
[1215] A. R. Sourour, "Nilpotent Factorization of Matrices," Lin. Multilin. Alg., Vol. 31, pp. 303-308, 1992. (Cited on page 350)
[1216] E. Spiegel, "Sums of Projections," Lin. Alg. Appl., Vol. 187, pp. 239-249, 1993. (Cited on page 361)
[1217] M. Spivak, A Comprehensive Introduction to Differential Geometry, 3rd ed. Houston: Publish or Perish, 1999. (Cited on pages 227 and 624)
[1218] R. P. Stanley, Enumerative Combinatorics, Volume 1, 2nd ed. Cambridge: Cambridge University Press, 2000. (Cited on page 11)
[1219] W.-H. Steeb, Matrix Calculus and Kronecker Product with Applications and C++ Programs. Singapore: World Scientific, 2001. (Cited on page 416)
[1220] W.-H. Steeb and F. Wilhelm, "Exponential Functions of Kronecker Products and Trace Calculation," Lin. Multilin. Alg., Vol. 9, pp. 345-346, 1981. (Cited on page 689)
[1221] J. M. Steele, The Cauchy-Schwarz Master Class. Washington, DC: Mathematical Association of America, 2004. (Cited on page 76)
[1222] R. F. Stengel, Flight Dynamics. Princeton: Princeton University Press, 2004. (Cited on page xvii)
[1223] C. Stepniak, "Ordering of Nonnegative Definite Matrices with Application to Comparison of Linear Models," Lin. Alg. Appl., Vol. 70, pp. 67-71, 1985. (Cited on page 526)
[1224] H. J. Stetter, Numerical Polynomial Algebra. Philadelphia: SIAM, 2004. (Cited on page xviii)
[1225] G. W. Stewart, Introduction to Matrix Computations. New York: Academic Press, 1973. (Cited on page xviii)
[1226] G. W. Stewart, "On the Perturbation of Pseudo-Inverses, Projections and Linear Least Squares Problems," SIAM Rev., Vol. 19, pp. 634-662, 1977. (Cited on page 618)
[1227] G. W. Stewart, Matrix Algorithms Volume I: Basic Decompositions. Philadelphia: SIAM, 1998. (Cited on page xviii)
[1228] G. W. Stewart, "On the Adjugate Matrix," Lin. Alg. Appl., Vol. 283, pp. 151-164, 1998. (Cited on pages xxxvi and 164)
[1229] G. W. Stewart, Matrix Algorithms Volume II: Eigensystems. Philadelphia: SIAM, 2001. (Cited on page xviii)
[1230] G. W. Stewart and J. Sun, Matrix Perturbation Theory. Boston: Academic Press, 1990. (Cited on pages 304, 306, 316, 336, 358, 504 ,541, 570, 578, 579, 600, 614, 615, 619 635, and 636)
[1231] E. U. Stickel, "Fast Computation of Matrix Exponential and Logarithm," Analysis, Vol. 5, pp. 163-173, 1985. (Cited on page 705)
[1232] E. U. Stickel, "An Algorithm for Fast High Precision Computation of Matrix Exponential and Logarithm," Analysis, Vol. 10, pp. 85-95, 1990. (Cited on pages 705 and (722)
[1233] L. Stiller, "Multilinear Algebra and Chess Endgames," in Games of No Chance, R. Nowakowski, Ed. Berkeley: Mathematical Sciences Research Institute, 1996, pp. 151-192. (Cited on page xvii)
[1234] J. Stoer, "On the Characterization of Least Upper Bound Norms in Matrix Space," Numer. Math, Vol. 6, pp. 302-314, 1964. (Cited on page 579)
[1235] J. Stoer and C. Witzgall, Convexity and Optimization in Finite Dimensions I. Berlin: Springer, 1970. (Cited on pages 164 and 635)
[1236] K. B. Stolarsky, "Generalizations of the Logarithmic Mean," J. Math. Anal. Appl., Vol. 48, pp. 87-92, 1975. (Cited on page 37)
[1237] M. G. Stone, "A Mnemonic for Areas of Polygons," Amer. Math. Monthly, Vol. 93, pp. 479-480, 1986. (Cited on page 160)
[1238] G. Strang, Linear Algebra and Its Applications, 3rd ed. San Diego: Harcourt, Brace, Jovanovich, 1988. (Cited on pages xvii and xix)
[1239] G. Strang, "The Fundamental Theorem of Linear Algebra," Amer. Math. Monthly, Vol. 100, pp. 848-855, 1993. (Cited on page 164)
[1240] G. Strang, "Every Unit Matrix is a LULU," Lin. Alg. Appl., Vol. 265, pp. 165-172, 1997. (Cited on page 347)
[1241] G. Strang and K. Borre, Linear Algebra, Geodesy, and GPS. Wellesley-Cambridge Press, 1997. (Cited on page xvii)
[1242] G. Strang and T. Nguyen, "The Interplay of Ranks of Submatrices," SIAM Rev., Vol. 46, pp. 637-646, 2004. (Cited on pages 125 and 218,
[1243] S. Strelitz, "On the Routh-Hurwitz Problem," Amer. Math. Monthly, Vol. 84, pp. 542-544, 1977. (Cited on page 698)
[1244] R. S. Strichartz, "The Campbell-Baker-Hausdorff-Dynkin Formula and Solutions of Differential Equations," J. Funct. Anal., Vol. 72, pp. 320-345, 1987. (Cited on page 678)
[1245] T. Strom, "On Logarithmic Norms," SIAM J. Numer. Anal., Vol. 12, pp. 741-753, 1975. (Cited on page 691)
[1246] J. Stuelpnagel, "On the Parametrization of the Three-Dimensional Rotation Group," SIAM Rev., Vol. 6, pp. 422-430, 1964. (Cited on page 674)
[1247] G. P. H. Styan, "On Lavoie's Determinantal Inequality," Lin. Alg. Appl., Vol. 37, pp. 77-80, 1981. (Cited on page 392)
[1248] R. P. Sullivan, "Products of Nilpotent Matrices," Lin. Multilin. Alg., Vol. 56, pp. 311-317, 2008. (Cited on page 350)
[1249] K. N. Swamy, "On Sylvester's Criterion for Positive-Semidefinite Matrices," IEEE Trans. Autom. Contr., Vol. AC-18, p. 306, 1973. (Cited on page 541)
[1250] P. Szekeres, A Course in Modern Mathematical Physics: Groups, Hilbert Space and Differential Geometry. Cambridge: Cambridge University Press, 2004. (Cited on page 227)
[1251] G. Szep, "Simultaneous Triangularization of Projector Matrices," Acta Math. Hung., Vol. 48, pp. 285-288, 1986. (Cited on page 358)
[1252] T. Szirtes, Applied Dimensional Analysis and Modeling. New York: McGraw-Hill, 1998. (Cited on page xvii)
[1253] H. Takagi, T. Miura, T. Kanzo, and S.-E. Takahasi, "A Reconsideration of Hua's Inequality," J. Ineq. Appl., Vol. 2005, pp. 15-23, 2005. (Cited on pages 51 and 566)
[1254] Y. Takahashi, S.-E. Takahasi, and S. Wada, "A General Hlawka Inequality and Its Reverse Inequality," Math. Ineq. Appl., preprint. (Cited on page 566.)
[1255] Y. Tao, "More Results on Singular Value Inequalities of Matrices," Lin. Alg. Appl., Vol. 416, pp. 724-729, 2006. (Cited on page 515)
[1256] K. Tapp, Matrix Groups for Undergraduates. Providence: American Mathematical Society, 2005. (Cited on pages $193,222,223,226,227$ and 638)
[1257] O. Taussky, "Positive-Definite Matrices and Their Role in the Study of the Characteristic Roots of General Matrices," Adv. Math., Vol. 2, pp. 175-186, 1968. (Cited on page 361)
[1258] O. Taussky, "The Role of Symmetric Matrices in the Study of General Matrices," Lin. Alg. Appl., Vol. 5, pp. 147-154, 1972. (Cited on page 361)
[1259] O. Taussky, "How I Became a Torchbearer for Matrix Theory," Amer. Math. Monthly, Vol. 95, pp. 801-812, 1988. (Cited on page 164)
[1260] O. Taussky and J. Todd, "Another Look at a Matrix of Mark Kac," Lin. Alg. Appl., Vol. 150, pp. 341-360, 1991. (Cited on page 330)
[1261] O. Taussky and H. Zassenhaus, "On the Similarity Transformation between a Matrix and Its Transpose," Pac. J. Math., Vol. 9, pp. 893-896, 1959. (Cited on page 361)
[1262] W. Tempelman, "The Linear Algebra of Cross Product Operations," J. Astron. Sci., Vol. 36, pp. 447-461, 1988. (Cited on page 188,)
[1263] G. ten Have, "Structure of the nth Roots of a Matrix," Lin. Alg. Appl., Vol. 187, pp. 59-66, 1993. (Cited on page 348)
[1264] R. E. Terrell, "Solution to 'Exponentials of Certain Hilbert Space Operators'," SIAM Rev., Vol. 34, pp. 498-500, 1992. (Cited on page 683)
[1265] R. E. Terrell, "Matrix Exponentials," SIAM Rev., Vol. 38, pp. 313-314, 1996. (Cited on page 684)
[1266] R. C. Thompson, "On Matrix Commutators," J. Washington Acad. Sci., Vol. 48, pp. 306-307, 1958. (Cited on page 185)
[1267] R. C. Thompson, "A Determinantal Inequality for Positive Definite Matrices," Canad. Math. Bull., Vol. 4, pp. 57-62, 1961. (Cited on page 494)
[1268] R. C. Thompson, "Some Matrix Factorization Theorems," Pac. J. Math., Vol. 33, pp. 763-810, 1970. (Cited on page 351)
[1269] R. C. Thompson, "Dissipative Matrices and Related Results," Lin. Alg. Appl., Vol. 11, pp. 155-169, 1975. (Cited on page 485)
[1270] R. C. Thompson, "A Matrix Inequality," Comment. Math. Univ. Carolinae, Vol. 17, pp. 393-397, 1976. (Cited on page 490)
[1271] R. C. Thompson, "Matrix Type Metric Inequalities," Lin. Multilin. Alg., Vol. 5, pp. 303-319, 1978. (Cited on pages 68, 70, and 583)
[1272] R. C. Thompson, "Proof of a Conjectured Exponential Formula," Lin. Multilin. Alg., Vol. 19, pp. 187-197, 1986. (Cited on page 688)
[1273] R. C. Thompson, "Special Cases of a Matrix Exponential Formula," Lin. Alg. Appl., Vol. 107, pp. 283-292, 1988. (Cited on page 688)
[1274] R. C. Thompson, "Convergence Proof for Goldberg's Exponential Series," Lin. Alg. Appl., Vol. 121, pp. 3-7, 1989. (Cited on page 678)
[1275] R. C. Thompson, "Pencils of Complex and Real Symmetric and Skew Matrices," Lin. Alg. Appl., Vol. 147, pp. 323-371, 1991. (Cited on page 361)
[1276] R. C. Thompson, "High, Low, and Quantitative Roads in Linear Algebra," Lin. Alg. Appl., Vol. 162-164, pp. 23-64, 1992. (Cited on page 164)
[1277] Y. Tian, "EP Matrices Revisited," preprint. (Cited on pages 178 and 312)
[1278] Y. Tian, "The Moore-Penrose Inverses of $m \times n$ Block Matrices and Their Applications," Lin. Alg. Appl., Vol. 283, pp. 35-60, 1998. (Cited on pages 386 and 391)
[1279] Y. Tian, "Matrix Representations of Octonions and Their Applications," Adv. Appl. Clifford Algebras, Vol. 10, pp. 61-90, 2000. (Cited on page 227)
[1280] Y. Tian, "Commutativity of EP Matrices," IMAGE, Vol. 27, pp. 25-27, 2001. (Cited on page 382)
[1281] Y. Tian, "How to Characterize Equalities for the Moore-Penrose Inverse of a Matrix," Kyungpook Math. J., Vol. 41, pp. 1-15, 2001. (Cited on pages 152,202372 and 375)
[1282] Y. Tian, "Some Equalities for Generalized Inverses of Matrix Sums and Block Circulant Matrices," Archivum Mathematicum (BRNO), Vol. 37, pp. 301-306, 2001. (Cited on pages 148153386 and 393)
[1283] Y. Tian, "Some Inequalities for Sums of Matrices," Scientiae Mathematicae Japonicae, Vol. 54, pp. 355-361, 2001. (Cited on page 465)
[1284] Y. Tian, "How to Express a Parallel Sum of k Matrices," J. Math. Anal. Appl., Vol. 266, pp. 333-341, 2002. (Cited on page 529)
[1285] Y. Tian, "The Minimal Rank of the Matrix Expression $A-B X-Y C$," Missouri J. Math. Sci., Vol. 14, pp. 40-48, 2002. (Cited on page 387)
[1286] Y. Tian, "Upper and Lower Bounds for Ranks of Matrix Expressions Using Generalized Inverses," Lin. Alg. Appl., Vol. 355, pp. 187-214, 2002. (Cited on page 388)
[1287] Y. Tian, "A Range Equality for Idempotent Matrix," IMAGE, Vol. 30, pp. 26-27, 2003. (Cited on page 199)
[1288] Y. Tian, "A Range Equality for the Difference of Orthogonal Projectors," IMAGE, Vol. 30, p. 36, 2003. (Cited on page 380)
[1289] Y. Tian, "On Mixed-Type Reverse Order Laws for the Moore-Penrose Inverse of a Matrix Product," Int. J. Math. Math. Sci., Vol. 58, pp. 3103-3116, 2004. (Cited on pages 380 and 391)
[1290] Y. Tian, "Rank Equalities for Block Matrices and Their Moore-Penrose Inverses," Houston J. Math., Vol. 30, pp. 483-510, 2004. (Cited on page 386)
[1291] Y. Tian, "Using Rank Formulas to Characterize Equalities for Moore-Penrose Inverses of Matrix Products," Appl. Math. Comp., Vol. 147, pp. 581-600, 2004. (Cited on page 380.)
[1292] Y. Tian, "A Range Equality for the Commutator with Two Involutory Matrices," IMAGE, Vol. 35, pp. 32-33, 2005. (Cited on page 212)
[1293] Y. Tian, "A Range Equality for the Kronecker Product of Matrices," IMAGE, Vol. 34, pp. 26-27, 2005. (Cited on page 407)
[1294] Y. Tian, "Similarity of Two Block Matrices," IMAGE, Vol. 34, pp. 27-32, 2005. (Cited on page 321)
[1295] Y. Tian, "The Schur Complement in an Orthogonal Projector," IMAGE, Vol. 35, pp. 34-36, 2005. (Cited on page 387)
[1296] Y. Tian, "Two Characterizations of an EP Matrix," IMAGE, Vol. 34, p. 32, 2005. (Cited on page 372)
[1297] Y. Tian, "Inequalities Involving Rank and Kronecker Product," Amer. Math. Monthly, Vol. 113, p. 851, 2006. (Cited on page 407.)
[1298] Y. Tian, "On the Inverse of a Product of Orthogonal Projectors," Amer. Math. Monthly, Vol. 113, pp. 467-468, 2006. (Cited on page 381)
[1299] Y. Tian, "Two Commutativity Equalities for the Regularized Tikhonov Inverse," IMAGE, Vol. 39, p. 31, 2007. (Cited on page 455)
[1300] Y. Tian, "Two Equalities for the Moore-Penrose Inverse of a Row Block Matrix," IMAGE, Vol. 39, p. 31, 2007. (Cited on page 391)
[1301] Y. Tian and S. Cheng, "Some Identities for Moore-Penrose Inverses of Matrix Products," Lin. Multilin. Alg., Vol. 52, pp. 405-420, 2004. (Cited on page 379)
[1302] Y. Tian and S. Cheng, "The Moore-Penrose Inverse for Sums of Matrices under Rank Additivity Conditions," Lin. Multilin. Alg., Vol. 53, pp. 45-65, 2005. (Cited on pages 383 (386, and 531)
[1303] Y. Tian and Y. Liu, "Extremal Ranks of Some Symmetric Matrix Expressions with Applications," SIAM J. Matrix Anal. Appl., Vol. 28, pp. 890-905, 2006. (Cited on page 387)
[1304] Y. Tian and G. P. H. Styan, "Universal Factorization Inequalities for Quaternion Matrices and their Applications," Math. J. Okayama University, Vol. 41, pp. 45-62, 1999. (Cited on page 229)
[1305] Y. Tian and G. P. H. Styan, "How to Establish Universal Block-Matrix Factorizations," Elec. J. Lin. Alg., Vol. 8, pp. 115-127, 2001. (Cited on pages 135 and 229)
[1306] Y. Tian and G. P. H. Styan, "Rank Equalities for Idempotent and Involutory Matrices," Lin. Alg. Appl., Vol. 335, pp. 101-117, 2001. (Cited on pages 202, 203 210, and 371)
[1307] Y. Tian and G. P. H. Styan, "A New Rank Formula for Idempotent Matrices with Applications," Comment. Math. University Carolinae, Vol. 43, pp. 379-384, 2002. (Cited on pages 124 and 201)
[1308] Y. Tian and G. P. H. Styan, "When Does rank $(A B C)=\operatorname{rank}(A B)+\operatorname{rank}(B C)-$ rank(B) Hold?" Int. J. Math. Educ. Sci. Tech., Vol. 33, pp. 127-137, 2002. (Cited on pages $118,124,203,208,388$ and 389)
[1309] Y. Tian and G. P. H. Styan, "Rank Equalities for Idempotent Matrices with Applications," J. Comp. Appl. Math., Vol. 191, pp. 77-97, 2006. (Cited on pages 202 203, and 210)
[1310] Y. Tian and Y. Takane, "Schur Complements and Banachiewicz-Schur Forms," Elec. J. Lin. Alg., Vol. 13, pp. 405-418, 2005. (Cited on page 391)
[1311] T. Toffoli and J. Quick, "Three-Dimensional Rotations by Three Shears," Graph. Models Image Process., Vol. 59, pp. 89-96, 1997. (Cited on page 347)
[1312] M. Tominaga, "A Generalized Reverse Inequality of the Cordes Inequality," Math. Ineq. Appl., Vol. 11, pp. 221-227, 2008. (Cited on page 520.)
[1313] A. Tonge, "Equivalence Constants for Matrix Norms: A Problem of Goldberg," Lin. Alg. Appl., Vol. 306, pp. 1-13, 2000. (Cited on page 583)
[1314] G. E. Trapp, "Hermitian Semidefinite Matrix Means and Related Matrix Inequalities-An Introduction," Lin. Multilin. Alg., Vol. 16, pp. 113-123, 1984. (Cited on page 463)
[1315] L. N. Trefethen and D. Bau, Numerical Linear Algebra. Philadelphia: SIAM, 1997. (Cited on page xviii)
[1316] L. N. Trefethen and M. Embree, Spectra and Pseudospectra. Princeton: Princeton University Press, 2005. (Cited on page 691)
[1317] D. Trenkler, G. Trenkler, C.-K. Li, and H. J. Werner, "Square Roots and Additivity," IMAGE, Vol. 29, p. 30, 2002. (Cited on page 458)
[1318] G. Trenkler, "A Trace Inequality," Amer. Math. Monthly, Vol. 102, pp. 362-363, 1995. (Cited on page 477)
[1319] G. Trenkler, "The Moore-Penrose Inverse and the Vector Product," Int. J. Math. Educ. Sci. Tech., Vol. 33, pp. 431-436, 2002. (Cited on pages 188 and 389)
[1320] G. Trenkler, "A Matrix Related to an Idempotent Matrix," IMAGE, Vol. 31, pp. 39-40, 2003. (Cited on page 375)
[1321] G. Trenkler, "On the Product of Orthogonal Projectors," IMAGE, Vol. 31, p. 43, 2003. (Cited on pages 209 and 381)
[1322] G. Trenkler, "An Extension of Lagrange's Identity to Matrices," Int. J. Math. Educ. Sci. Technol., Vol. 35, pp. 245-249, 2004. (Cited on page 61)
[1323] G. Trenkler, "A Property for the Sum of a Matrix A and its Moore-Penrose Inverse A^{+}," IMAGE, Vol. 35, pp. 38-40, 2005. (Cited on page 372)
[1324] G. Trenkler, "Factorization of a Projector," IMAGE, Vol. 34, pp. 33-35, 2005. (Cited on page 350)
[1325] G. Trenkler, "On the Product of Orthogonal Projectors," IMAGE, Vol. 35, pp. 42-43, 2005. (Cited on page 458)
[1326] G. Trenkler, "Projectors and Similarity," IMAGE, Vol. 34, pp. 35-36, 2005. (Cited on pages 375 and 391)
[1327] G. Trenkler, "Property of the Cross Product," IMAGE, Vol. 34, pp. 36-37, 2005. (Cited on page 188)
[1328] G. Trenkler, "A Range Equality for Idempotent Hermitian Matrices," IMAGE, Vol. 36, pp. 34-35, 2006. (Cited on page 209)
[1329] G. Trenkler, "Necessary and Sufficient Conditions for $A+A^{*}$ to be a Nonnegative Definite Matrix," IMAGE, Vol. 37, pp. 28-30, 2006. (Cited on page 525)
[1330] G. Trenkler, "Another Property for the Sum of a Matrix A and its Moore-Penrose Inverse A^{+}," IMAGE, Vol. 39, pp. 23-25, 2007. (Cited on page 372)
[1331] G. Trenkler, "Characterization of EP-ness," IMAGE, Vol. 39, pp. 30-31, 2007. (Cited on page 372)
[1332] G. Trenkler and S. Puntanen, "A Multivariate Version of Samuelson's Inequality," Lin. Alg. Appl., Vol. 410, pp. 143-149, 2005. (Cited on pages 51 and 454)
[1333] G. Trenkler and D. Trenkler, "The Sherman-Morrison Formula and Eigenvalues of a Special Bordered Matrix," Acta Math. University Comenianae, Vol. 74, pp. 255-258, 2005. (Cited on page 263)
[1334] G. Trenkler and D. Trenkler, "The Vector Cross Product and 4×4 Skew-Symmetric Matrices," in Recent Advances in Linear Models and Related Areas, Shalabh and C. Heumann, Eds. Berlin: Springer, 2008, pp. 95-104. (Cited on pages 188264 and 676)
[1335] G. Trenkler and H. J. Werner, "Partial Isometry and Idempotent Matrices," IMAGE, Vol. 29, pp. 30-32, 2002. (Cited on page 207)
[1336] H. L. Trentelman, A. A. Stoorvogel, and M. L. J. Hautus, Control Theory for Linear Systems. New York: Springer, 2001. (Cited on pages Xviil and 805)
[1337] P. Treuenfels, "The Matrix Equation $X^{2}-2 A X+B=0$," Amer. Math. Monthly, Vol. 66, pp. 145-146, 1959. (Cited on page 802)
[1338] B. Tromborg and S. Waldenstrom, "Bounds on the Diagonal Elements of a Unitary Matrix," Lin. Alg. Appl., Vol. 20, pp. 189-195, 1978. (Cited on page 196)
[1339] M. Tsatsomeros, J. S. Maybee, D. D. Olesky, and P. Van Den Driessche, "Nullspaces of Matrices and Their Compounds," Lin. Multilin. Alg., Vol. 34, pp. 291-300, 1993. (Cited on page 338,)
[1340] N.-K. Tsing and F. Uhlig, "Inertia, Numerical Range, and Zeros of Quadratic Forms for Matrix Pencils," SIAM J. Matrix Anal. Appl., Vol. 12, pp. 146-159, 1991. (Cited on pages 362 and 504)
[1341] P. Tsiotras, "Further Passivity Results for the Attitude Control Problem," IEEE Trans. Autom. Contr., Vol. 43, pp. 1597-1600, 1998. (Cited on page 188)
[1342] P. Tsiotras, J. L. Junkins, and H. Schaub, "Higher-Order Cayley Transforms with Applications to Attitude Representations," J. Guid. Contr. Dyn., Vol. 20, pp. 528534, 1997. (Cited on page 191)
[1343] S. H. Tung, "On Lower and Upper Bounds of the Difference between the Arithmetic and the Geometric Mean," Math. Comput., Vol. 29, pp. 834-836, 1975. (Cited on page 52)
[1344] D. A. Turkington, Matrix Calculus and Zero-One Matrices. Cambridge: Cambridge University Press, 2002. (Cited on page 416)
[1345] R. Turkmen and D. Bozkurt, "A Note for Bounds of Norms of Hadamard Product of Matrices," Math. Ineq. Appl., Vol. 9, pp. 211-217, 2006. (Cited on page 615)
[1346] H. W. Turnbull, The Theory of Determinants, Matrices and Invariants. London: Blackie, 1950. (Cited on page 164)
[1347] G. M. Tuynman, "The Derivation of the Exponential Map of Matrices," Amer. Math. Monthly, Vol. 102, pp. 818-820, 1995. (Cited on page 682)
[1348] F. Tyan and D. S. Bernstein, "Global Stabilization of Systems Containing a Double Integrator Using a Saturated Linear Controller," Int. J. Robust Nonlin. Contr., Vol. 9, pp. 1143-1156, 1999. (Cited on page 796)
[1349] M. Uchiyama, "Norms and Determinants of Products of Logarithmic Functions of Positive Semi-Definite Operators," Math. Ineq. Appl., Vol. 1, pp. 279-284, 1998. (Cited on pages 522 and 694)
[1350] M. Uchiyama, "Some Exponential Operator Inequalities," Math. Ineq. Appl., Vol. 2, pp. 469-471, 1999. (Cited on page 688)
[1351] F. E. Udwadia and R. E. Kalaba, Analytical Dynamics: A New Approach. Cambridge: Cambridge University Press, 1996. (Cited on page Xvii)
[1352] F. Uhlig, "A Recurring Theorem About Pairs of Quadratic Forms and Extensions: A Survey," Lin. Alg. Appl., Vol. 25, pp. 219-237, 1979. (Cited on pages 362504 507, and 508)
[1353] F. Uhlig, "On the Matrix Equation $A X=B$ with Applications to the Generators of a Controllability Matrix," Lin. Alg. Appl., Vol. 85, pp. 203-209, 1987. (Cited on page 117,
[1354] F. Uhlig, "Constructive Ways for Generating (Generalized) Real Orthogonal Matrices as Products of (Generalized) Symmetries," Lin. Alg. Appl., Vol. 332-334, pp. 459-467, 2001. (Cited on page 347)
[1355] F. A. Valentine, Convex Sets. New York: McGraw-Hill, 1964. (Cited on page 164)
[1356] M. Van Barel, V. Ptak, and Z. Vavrin, "Bezout and Hankel Matrices Associated with Row Reduced Matrix Polynomials, Barnett-Type Formulas," Lin. Alg. Appl., Vol. 332-334, pp. 583-606, 2001. (Cited on page 257)
[1357] R. van der Merwe, Sigma-Point Kalman Filters for Probabilistic Inference in Dynamic State-Space Models. Portland: Oregon Health and Science University, 2004, Ph.D. Dissertation. (Cited on page 676)
[1358] P. Van Dooren, "The Computation of Kronecker's Canonical Form of a Singular Pencil," Lin. Alg. Appl., Vol. 27, pp. 103-140, 1979. (Cited on page 362)
[1359] C. F. Van Loan, "Computing Integrals Involving the Matrix Exponential," IEEE Trans. Autom. Contr., Vol. AC-23, pp. 395-404, 1978. (Cited on page 681)
[1360] C. F. Van Loan, "How Near Is a Stable Matrix to an Unstable Matrix," Contemporary Math., Vol. 47, pp. 465-478, 1985. (Cited on page 701)
[1361] C. F. Van Loan, Computational Frameworks for the Fast Fourier Transform. Philadelphia: SIAM, 1992. (Cited on pages xvii and 357)
[1362] C. F. Van Loan, "The Ubiquitous Kronecker Product," J. Comp. Appl. Math., Vol. 123, pp. 85-100, 2000. (Cited on page 416])
[1363] P. Van Overschee and B. De Moor, Subspace Identification for Linear Systems: Theory, Implementation, Applications. Dordrecht: Kluwer, 1996. (Cited on page 805)
[1364] R. Vandebril and M. Van Barel, "A Note on the Nullity Theorem," J. Comp. Appl. Math., Vol. 189, pp. 179-190, 2006. (Cited on page 125)
[1365] R. Vandebril, M. Van Barel, and N. Mastronardi, Matrix Computations and Semiseparable Matrices. Baltimore: Johns Hopkins University Press, 2008. (Cited on pages 125 and 129)
[1366] V. S. Varadarajan, Lie Groups, Lie Algebras, and Their Representations. New York: Springer, 1984. (Cited on pages 230, 655682 and 722)
[1367] J. M. Varah, "A Lower Bound for the Smallest Singular Value of a Matrix," Lin. Alg. Appl., Vol. 11, pp. 3-5, 1975. (Cited on page 606)
[1368] A. I. G. Vardulakis, Linear Multivariable Control: Algebraic Analysis and Synthesis Methods. Chichester: Wiley, 1991. (Cited on pages xvii and 281)
[1369] R. S. Varga, Matrix Iterative Analysis. Englewood Cliffs: Prentice-Hall, 1962. (Cited on pages xviii and 275)
[1370] R. S. Varga, Gersgorin and His Circles. New York: Springer, 2004. (Cited on page 269)
[1371] P. R. Vein, "A Short Survey of Some Recent Applications of Determinants," Lin. Alg. Appl., Vol. 42, pp. 287-297, 1982. (Cited on page 164)
[1372] R. Vein and P. Dale, Determinants and Their Applications in Mathematical Physics. New York: Springer, 1999. (Cited on pages xvii and 164)
[1373] D. Veljan, "The Sine Theorem and Inequalities for Volumes of Simplices and Determinants," Lin. Alg. Appl., Vol. 219, pp. 79-91, 1995. (Cited on page 160)
[1374] D. Veljan and S. Wu, "Parametrized Klamkin's Inequality and Improved Euler's Inequality," Math. Ineq. Appl., preprint. (Cited on pages 42 and 158)
[1375] J. Vermeer, "Orthogonal Similarity of a Real Matrix and Its Transpose," Lin. Alg. Appl., Vol. 428, pp. 382-392, 2008. (Cited on page 345)
[1376] K. Veselic, "On Real Eigenvalues of Real Tridiagonal Matrices," Lin. Alg. Appl., Vol. 27, pp. 167-171, 1979. (Cited on page 330)
[1377] K. Veselic, "Estimating the Operator Exponential," Lin. Alg. Appl., Vol. 280, pp. 241-244, 1998. (Cited on page 701])
[1378] K. Veselic, "Bounds for Exponentially Stable Semigroups," Lin. Alg. Appl., Vol. 358, pp. 309-333, 2003. (Cited on page 701)
[1379] W. J. Vetter, "Matrix Calculus Operations and Taylor Expansions," SIAM Rev., Vol. 15, pp. 352-369, 1973. (Cited on page 416)
[1380] M. Vidyasagar, "On Matrix Measures and Convex Liapunov Functions," J. Math. Anal. Appl., Vol. 62, pp. 90-103, 1978. (Cited on page 691)
[1381] G. Visick, "A Weak Majorization Involving the Matrices $A \circ B$ and $A B, "$ Lin. Alg. Appl., Vol. 223/224, pp. 731-744, 1995. (Cited on page 535)
[1382] G. Visick, "Majorizations of Hadamard Products of Matrix Powers," Lin. Alg. Appl., Vol. 269, pp. 233-240, 1998. (Cited on pages 535 and 540)
[1383] G. Visick, "A Quantitative Version of the Observation that the Hadamard Product Is a Principal Submatrix of the Kronecker Product," Lin. Alg. Appl., Vol. 304, pp. 45-68, 2000. (Cited on pages 532 537 and 539)
[1384] G. Visick, "Another Inequality for Hadamard Products," IMAGE, Vol. 29, pp. 32-33, 2002. (Cited on page 532)
[1385] S.-W. Vong and X.-Q. Jin, "Proof of Bottcher and Wenzel's Conjecture," Oper. Matrices, Vol. 2, pp. 435-442, 2008. (Cited on page 584)
[1386] S. Wada, "On Some Refinement of the Cauchy-Schwarz Inequality," Lin. Alg. Appl., Vol. 420, pp. 433-440, 2007. (Cited on pages 60, 63, and 64)
[1387] G. G. Walter and M. Contreras, Compartmental Modeling with Networks. Boston: Birkhauser, 1999. (Cited on pages xvii and 708)
[1388] B. Wang and F. Zhang, "Some Inequalities for the Eigenvalues of the Product of Positive Semidefinite Hermitian Matrices," Lin. Alg. Appl., Vol. 160, pp. 113-118, 1992. (Cited on pages 518519 and 614)
[1389] B.-Y. Wang and M.-P. Gong, "Some Eigenvalue Inequalities for Positive Semidefinite Matrix Power Products," Lin. Alg. Appl., Vol. 184, pp. 249-260, 1993. (Cited on page 519.)
[1390] B.-Y. Wang, B.-Y. Xi, and F. Zhang, "Some Inequalities for Sum and Product of Positive Semidefinite Matrices," Lin. Alg. Appl., Vol. 293, pp. 39-49, 1999. (Cited on pages 528 and 614)
[1391] B.-Y. Wang and F. Zhang, "A Trace Inequality for Unitary Matrices," Amer. Math. Monthly, Vol. 101, pp. 453-455, 1994. (Cited on page 198)
[1392] B.-Y. Wang and F. Zhang, "Trace and Eigenvalue Inequalities for Ordinary and Hadamard Products of Positive Semidefinite Hermitian Matrices," SIAM J. Matrix Anal. Appl., Vol. 16, pp. 1173-1183, 1995. (Cited on pages 519 and 534)
[1393] B.-Y. Wang and F. Zhang, "Schur Complements and Matrix Inequalities of Hadamard Products," Lin. Multilin. Alg., Vol. 43, pp. 315-326, 1997. (Cited on page 541)
[1394] C.-L. Wang, "On Development of Inverses of the Cauchy and Hölder Inequalities," SIAM Rev., Vol. 21, pp. 550-557, 1979. (Cited on pages 57 and 65)
[1395] D. Wang, "The Polar Decomposition and a Matrix Inequality," Amer. Math. Monthly, Vol. 96, pp. 517-519, 1989. (Cited on page 433)
[1396] G. Wang, Y. Wei, and S. Qiao, Generalized Inverses: Theory and Computations. Beijing/New York: Science Press, 2004. (Cited on pages 129202 378 and 398)
[1397] J.-H. Wang, "The Length Problem for a Sum of Idempotents," Lin. Alg. Appl., Vol. 215, pp. 135-159, 1995. (Cited on page 361)
[1398] L.-C. Wang and C.-L. Li, "On Some New Mean Value Inequalities," J. Ineq. Pure Appl. Math., Vol. 8, no. 3, pp. 1-8, 2007, Article 87. (Cited on page 58)
[1399] Q.-G. Wang, "Necessary and Sufficient Conditions for Stability of a Matrix Polytope with Normal Vertex Matrices," Automatica, Vol. 27, pp. 887-888, 1991. (Cited on page 271.)
[1400] X. Wang, "A Simple Proof of Descartes's Rule of Signs," Amer. Math. Monthly, Vol. 111, pp. 525-526, 2004. (Cited on page 696)
[1401] Y. W. Wang and D. S. Bernstein, "Controller Design with Regional Pole Constraints: Hyperbolic and Horizontal Strip Regions," AIAA J. Guid. Contr. Dyn., Vol. 16, pp. 784-787, 1993. (Cited on page 798)
[1402] Y. W. Wang and D. S. Bernstein, " L_{2} Controller Synthesis with L_{∞}-Bounded Closed-Loop Impulse Response," Int. J. Contr., Vol. 60, pp. 1295-1306, 1994. (Cited on page 689)
[1403] A. J. B. Ward and F. Gerrish, "A Constructive Proof by Elementary Transformations of Roth's Removal Theorems in the Theory of Matrix Equations," Int. J. Math. Educ. Sci. Tech., Vol. 31, pp. 425-429, 2000. (Cited on page 320)
[1404] J. Warga, Optimal Control of Differential and Functional Equations. New York: Academic Press, 1972. (Cited on pages 625 and 626.)
[1405] W. E. Waterhouse, "A Determinant Identity with Matrix Entries," Amer. Math. Monthly, Vol. 97, pp. 249-250, 1990. (Cited on pages 136 and 137)
[1406] W. Watkins, "Convex Matrix Functions," Proc. Amer. Math. Soc., Vol. 44, pp. 31-34, 1974. (Cited on pages 488 and 536)
[1407] W. Watkins, "Generating Functions," Coll. Math. J., Vol. 18, pp. 195-211, 1987. (Cited on page 278)
[1408] W. Watkins, "A Determinantal Inequality for Correlation Matrices," Lin. Alg. Appl., Vol. 104, pp. 59-63, 1988. (Cited on page 533)
[1409] G. S. Watson, G. Alpargu, and G. P. H. Styan, "Some Comments on Six Inequalities Associated with the Inefficiency of Ordinary Least Squares with One Regressor," Lin. Alg. Appl., Vol. 264, pp. 13-54, 1997. (Cited on pages 57 and 66.)
[1410] J. R. Weaver, "Centrosymmetric (Cross-Symmetric) Matrices, Their Basic Properties, Eigenvalues, and Eigenvectors," Amer. Math. Monthly, Vol. 92, pp. 711-717, 1985. (Cited on pages 230 and 314)
[1411] J. H. Webb, "An Inequality in Algebra and Geometry," College Math. J., Vol. 36, p. 164, 2005. (Cited on page 45)
[1412] R. Webster, Convexity. Oxford: Oxford University Press, 1994. (Cited on page 164)
[1413] E. Wegert and L. N. Trefethen, "From the Buffon Needle Problem to the Kreiss Matrix Theorem," Amer. Math. Monthly, Vol. 101, pp. 132-139, 1994. (Cited on page 715)
[1414] J. Wei and E. Norman, "Lie Algebraic Solution of Linear Differential Equations," J. Math. Phys., Vol. 4, pp. 575-581, 1963. (Cited on page 678)
[1415] J. Wei and E. Norman, "On Global Representations of the Solutions of Linear Differential Equations as a Product of Exponentials," Proc. Amer. Math. Soc., Vol. 15, pp. 327-334, 1964. (Cited on page 678)
[1416] M. Wei, "Reverse Order Laws for Generalized Inverses of Multiple Matrix Products," Lin. Alg. Appl., Vol. 293, pp. 273-288, 1999. (Cited on page 380)
[1417] Y. Wei, "A Characterization and Representation of the Drazin Inverse," SIAM J. Matrix Anal. Appl., Vol. 17, pp. 744-747, 1996. (Cited on page 393)
[1418] Y. Wei, "Expressions for the Drazin Inverse of a 2×2 Block Matrix," Lin. Multilin. Alg., Vol. 45, pp. 131-146, 1998. (Cited on page 391)
[1419] G. H. Weiss and A. A. Maradudin, "The Baker-Hausdorff Formula and a Problem in Crystal Physics," J. Math. Phys., Vol. 3, pp. 771-777, 1962. (Cited on page 678)
[1420] E. M. E. Wermuth, "Two Remarks on Matrix Exponentials," Lin. Alg. Appl., Vol. 117, pp. 127-132, 1989. (Cited on pages 681 and 694)
[1421] E. M. E. Wermuth, "A Remark on Commuting Operator Exponentials," Proc. Amer. Math. Soc., Vol. 125, pp. 1685-1688, 1997. (Cited on page 681)
[1422] H.-J. Werner, "On the Matrix Monotonicity of Generalized Inversion," Lin. Alg. Appl., Vol. 27, pp. 141-145, 1979. (Cited on page 527)
[1423] H. J. Werner, "On the Product of Orthogonal Projectors," IMAGE, Vol. 32, pp. 30-37, 2004. (Cited on pages 209 375 and 380.)
[1424] H. J. Werner, "Solution 34-4.2 to 'A Range Equality for the Commutator with Two Involutory Matrices'," IMAGE, Vol. 35, pp. 32-33, 2005. (Cited on page 200)
[1425] J. R. Wertz and W. J. Larson, Eds., Space Mission Analysis and Design. Dordrecht: Kluwer, 1999. (Cited on page 161.)
[1426] P. Wesseling, Principles of Computational Fluid Dynamics. Berlin: Springer, 2001. (Cited on page xvii)
[1427] J. R. Westlake, A Handbook of Numerical Matrix Inversion and Solution of Linear Equations. New York: Wiley, 1968. (Cited on page xviii)
[1428] N. A. Wiegmann, "Normal Products of Matrices," Duke Math. J., Vol. 15, pp. 633-638, 1948. (Cited on page 343)
[1429] Z. Wiener, "An Interesting Matrix Exponent Formula," Lin. Alg. Appl., Vol. 257, pp. 307-310, 1997. (Cited on page 714)
[1430] E. P. Wigner and M. M. Yanase, "On the Positive Semidefinite Nature of a Certain Matrix Expression," Canad. J. Math., Vol. 16, pp. 397-406, 1964. (Cited on page 457)
[1431] R. M. Wilcox, "Exponential Operators and Parameter Differentiation in Quantum Physics," J. Math. Phys., Vol. 8, pp. 962-982, 1967. (Cited on pages xviii and 684)
[1432] J. B. Wilker, J. S. Sumner, A. A. Jagers, M. Vowe, and J. Anglesio, "Inequalities Involving Trigonometric Functions," Amer. Math. Monthly, Vol. 98, pp. 264-266, 1991. (Cited on page 29)
[1433] J. H. Wilkinson, The Algebraic Eigenvalue Problem. London: Oxford University Press, 1965. (Cited on page xviii)
[1434] J. C. Willems, "Least Squares Stationary Optimal Control and the Algebraic Riccati Equation," IEEE Trans. Autom. Contr., Vol. AC-16, pp. 621-634, 1971. (Cited on page 805)
[1435] D. A. Wilson, "Convolution and Hankel Operator Norms for Linear Systems," IEEE Trans. Autom. Contr., Vol. AC-34, pp. 94-97, 1989. (Cited on page 619)
[1436] P. M. H. Wilson, Curved Spaces: From Classical Geometries to Elementary Differential Geometry. Cambridge: Cambridge University Press, 2008. (Cited on pages 161 and 193)
[1437] H. K. Wimmer, "Inertia Theorems for Matrices, Controllability, and Linear Vibrations," Lin. Alg. Appl., Vol. 8, pp. 337-343, 1974. (Cited on pages 793 and 796)
[1438] H. K. Wimmer, "The Algebraic Riccati Equation without Complete Controllability," SIAM J. Alg. Disc. Math., Vol. 3, pp. 1-12, 1982. (Cited on page 805.)
[1439] H. K. Wimmer, "On Ostrowski's Generalization of Sylvester's Law of Inertia," Lin. Alg. Appl., Vol. 52/53, pp. 739-741, 1983. (Cited on page 310)
[1440] H. K. Wimmer, "The Algebraic Riccati Equation: Conditions for the Existence and Uniqueness of Solutions," Lin. Alg. Appl., Vol. 58, pp. 441-452, 1984. (Cited on page 805)
[1441] H. K. Wimmer, "Monotonicity of Maximal Solutions of Algebraic Riccati Equations," Sys. Contr. Lett., Vol. 5, pp. 317-319, 1985. (Cited on pages 788 and 805)
[1442] H. K. Wimmer, "Extremal Problems for Hölder Norms of Matrices and Realizations of Linear Systems," SIAM J. Matrix Anal. Appl., Vol. 9, pp. 314-322, 1988. (Cited on pages 459 and 585)
[1443] H. K. Wimmer, "Linear Matrix Equations, Controllability and Observability, and the Rank of Solutions," SIAM J. Matrix Anal. Appl., Vol. 9, pp. 570-578, 1988. (Cited on page 796])
[1444] H. K. Wimmer, "On the History of the Bezoutian and the Resultant Matrix," Lin. Alg. Appl., Vol. 128, pp. 27-34, 1990. (Cited on page 257)
[1445] H. K. Wimmer, "Normal Forms of Symplectic Pencils and the Discrete-Time Algebraic Riccati Equation," Lin. Alg. Appl., Vol. 147, pp. 411-440, 1991. (Cited on page 805)
[1446] H. K. Wimmer, "Lattice Properties of Sets of Semidefinite Solutions of ContinuousTime Algebraic Riccati Equations," Automatica, Vol. 31, pp. 173-182, 1995. (Cited on page 805)
[1447] A. Witkowski, "A New Proof of the Monotonicity of Power Means," J. Ineq. Pure Appl. Math., Vol. 5, no. 1, pp. 1-2, 2004, Article 6. (Cited on pages 23 and 27)
[1448] H. Wolkowicz and G. P. H. Styan, "Bounds for Eigenvalues Using Traces," Lin. Alg. Appl., Vol. 29, pp. 471-506, 1980. (Cited on pages 51322 and 332)
[1449] H. Wolkowicz and G. P. H. Styan, "More Bounds for Eigenvalues Using Traces," Lin. Alg. Appl., Vol. 31, pp. 1-17, 1980. (Cited on page 332)
[1450] W. A. Wolovich, Linear Multivariable Systems. New York: Springer, 1974. (Cited on page 805.)
[1451] M. J. Wonenburger, "A Decomposition of Orthogonal Transformations," Canad. Math. Bull., Vol. 7, pp. 379-383, 1964. (Cited on page 350)
[1452] M. J. Wonenburger, "Transformations Which are Products of Two Involutions," J. Math. Mech., Vol. 16, pp. 327-338, 1966. (Cited on page 350)
[1453] C. S. Wong, "Characterizations of Products of Symmetric Matrices," Lin. Alg. Appl., Vol. 42, pp. 243-251, 1982. (Cited on page 350)
[1454] E. Wong, Ed., Stochastic Processes in Information and Dynamical Systems. New York: McGraw-Hill, 1971. (Cited on page 447)
[1455] W. M. Wonham, Linear Multivariable Control: A Geometric Approach, 2nd ed. New York: Springer, 1979. (Cited on pages xvii 262646 791 and 805])
[1456] C.-F. Wu, "On Some Ordering Properties of the Generalized Inverses of Nonnegative Definite Matrices," Lin. Alg. Appl., Vol. 32, pp. 49-60, 1980. (Cited on page 527)
[1457] P. Y. Wu, "Products of Nilpotent Matrices," Lin. Alg. Appl., Vol. 96, pp. 227-232, 1987. (Cited on page 350)
[1458] P. Y. Wu, "Products of Positive Semidefinite Matrices," Lin. Alg. Appl., Vol. 111, pp. 53-61, 1988. (Cited on pages 350 and 542)
[1459] P. Y. Wu, "The Operator Factorization Problems," Lin. Alg. Appl., Vol. 117, pp. 35-63, 1989. (Cited on pages 349 350 351 and 701)
[1460] P. Y. Wu, "Sums of Idempotent Matrices," Lin. Alg. Appl., Vol. 142, pp. 43-54, 1990. (Cited on pages 360 and 361)
[1461] S. Wu, "Note on a Conjecture of R. A. Satnoianu," Math. Ineq. Appl., preprint. (Cited on page 59)
[1462] S. Wu, "A Further Generalization of Aczel's Inequality and Popoviciu's Inequality," Math. Ineq. Appl., Vol. 10, pp. 565-573, 2007. (Cited on page 64)
[1463] S. Wu, "A Sharpened Version of the Fundamental Triangle Inequality," Math. Ineq. Appl., Vol. 11, pp. 477-482, 2008. (Cited on page 158)
[1464] Y.-D. Wu, Z.-H. Zhang, and V. Lokesha, "Sharpening on Mircea's Inequality," J. Ineq. Pure Appl. Math., Vol. 8, no. 4, pp. 1-6, 2007, Article 116. (Cited on page 158)
[1465] Z.-G. Xiao and Z.-H. Zhang, "The Inequalities $G \leq L \leq I \leq A$ in n Variables," J. Ineq. Pure. Appl. Math., Vol. 4, no. 2/39, pp. 1-6, 2003. (Cited on page [54])
[1466] C. Xu, "Bellman's Inequality," Lin. Alg. Appl., Vol. 229, pp. 9-14, 1995. (Cited on page 480)
[1467] C. Xu, Z. Xu, and F. Zhang, "Revisiting Hua-Marcus-Bellman-Ando Inequalities on Contractive Matrices," Lin. Alg. Appl., preprint. (Cited on pages 70145472 490, and 565)
[1468] H. Xu, "Two Results About the Matrix Exponential," Lin. Alg. Appl., Vol. 262, pp. 99-109, 1997. (Cited on pages 650 and 701)
[1469] A. Yakub, "Symmetric Inequality," Amer. Math. Monthly, Vol. 114, p. 649, 2007. (Cited on page 45)
[1470] T. Yamazaki, "An Extension of Specht's Theorem via Kantorovich Inequality and Related Results," Math. Ineq. Appl., Vol. 3, pp. 89-96, 2000. (Cited on page 53)
[1471] T. Yamazaki, "Further Characterizations of Chaotic Order via Specht's Ratio," Math. Ineq. Appl., Vol. 3, pp. 259-268, 2000. (Cited on page522)
[1472] B. Yang, "On a New Inequality Similar to Hardy-Hilbert's Inequality," Math. Ineq. Appl., Vol. 6, pp. 37-44, 2003. (Cited on page 63)
[1473] B. Yang and T. M. Rassias, "On the Way of Weight Coefficient and Research for the Hilbert-Type Inequalities," Math. Ineq. Appl., Vol. 6, pp. 625-658, 2003. (Cited on page 63)
[1474] X. Yang, "Necessary Conditions of Hurwitz Polynomials," Lin. Alg. Appl., Vol. 359, pp. 21-27, 2003. (Cited on page 697)
[1475] X. Yang, "Some Necessary Conditions for Hurwitz Stability," Automatica, Vol. 40, pp. 527-529, 2004. (Cited on page 697)
[1476] Z. P. Yang and X. X. Feng, "A Note on the Trace Inequality for Products of Hermitian Matrix Power," J. Ineq. Pure. Appl. Math., Vol. 3, no. 5/78, pp. 1-12, 2002. (Cited on pages 476 478, and 480)
[1477] S. F. Yau and Y. Bresler, "A Generalization of Bergstrom's Inequality and Some Applications," Lin. Alg. Appl., Vol. 161, pp. 135-151, 1992. (Cited on pages 535 and 538)
[1478] D. M. Young, Iterative Solution of Large Linear Systems. New York: Academic Press, 1971, reprinted by Dover, Mineola, 2003. (Cited on page xviii)
[1479] N. J. Young, "Matrices which Maximise any Analytic Function," Acta Math. Hung., Vol. 34, pp. 239-243, 1979. (Cited on page 607)
[1480] A. Zanna and H. Z. Munthe-Kaas, "Generalized Polar Decompositions for the Approximation of the Matrix Exponential," SIAM J. Matrix Anal. Appl., Vol. 23, pp. 840-862, 2002. (Cited on page 677)
[1481] X. Zhan, "Inequalities for the Singular Values of Hadamard Products," SIAM J. Matrix Anal. Appl., Vol. 18, pp. 1093-1095, 1997. (Cited on page 615)
[1482] X. Zhan, "Inequalities for Unitarily Invariant Norms," SIAM J. Matrix Anal. Appl., Vol. 20, pp. 466-470, 1998. (Cited on page 448)
[1483] X. Zhan, "Singular Values of Differences of Positive Semidefinite Matrices," SIAM J. Matrix Anal. Appl., Vol. 22, pp. 819-823, 2000. (Cited on pages 515 and 590)
[1484] X. Zhan, "Span of the Orthogonal Orbit of Real Matrices," Lin. Multilin. Alg., Vol. 49, pp. 337-346, 2001. (Cited on page 360)
[1485] X. Zhan, Matrix Inequalities. New York: Springer, 2002. (Cited on pages 164 [327, $434, ~ 442, ~ 447, ~ 448, ~ 509,510,511,521,529,530,531,535,537,539,540,541$, 549, 582 612, and 685)
[1486] X. Zhan, "On Some Matrix Inequalities," Lin. Alg. Appl., Vol. 376, pp. 299-303, 2004. (Cited on page 516)
[1487] F. Zhang, Linear Algebra: Challenging Problems for Students. Baltimore: Johns Hopkins University Press, 1996. (Cited on pages 131184 and 185)
[1488] F. Zhang, "Quaternions and Matrices of Quaternions," Lin. Alg. Appl., Vol. 251, pp. 21-57, 1997. (Cited on page 229)
[1489] F. Zhang, "A Compound Matrix with Positive Determinant," Amer. Math. Monthly, Vol. 105, p. 958, 1998. (Cited on page 153)
[1490] F. Zhang, Matrix Theory: Basic Results and Techniques. New York: Springer, 1999. (Cited on pages $126, ~ 127, ~ 219,312,342,357,456,465,471,476,478,489$, 541, and 565)
[1491] F. Zhang, "Schur Complements and Matrix Inequalities in the Lowner Ordering," Lin. Alg. Appl., Vol. 321, pp. 399-410, 2000. (Cited on page 490)
[1492] F. Zhang, "Matrix Inequalities by Means of Block Matrices," Math. Ineq. Appl., Vol. 4, pp. 481-490, 2001. (Cited on pages 45246949355085255 533, 534 and 539)
[1493] F. Zhang, "Inequalities Involving Square Roots," IMAGE, Vol. 29, pp. 33-34, 2002. (Cited on page 458)
[1494] F. Zhang, "Block Matrix Techniques," in The Schur Complement and Its Applications, F. Zhang, Ed. New York: Springer, 2004, pp. 83-110. (Cited on pages 453 483, 493, 501, 505, 508, and 510)
[1495] F. Zhang, "A Matrix Identity on the Schur Complement," Lin. Multilin. Alg., Vol. 52, pp. 367-373, 2004. (Cited on page 393)
[1496] L. Zhang, "A Characterization of the Drazin Inverse," Lin. Alg. Appl., Vol. 335, pp. 183-188, 2001. (Cited on page 393)
[1497] Q.-C. Zhong, "J-Spectral Factorization of Regular Para-Hermitian Transfer Matrices," Automatica, Vol. 41, pp. 1289-1293, 2005. (Cited on page 206.)
[1498] K. Zhou, Robust and Optimal Control. Upper Saddle River: Prentice-Hall, 1996. (Cited on pages xvii 281607610 and 787)
[1499] L. Zhu, "A New Simple Proof of Wilker's Inequality," Math. Ineq. Appl., Vol. 8, pp. 749-750, 2005. (Cited on page 29)
[1500] L. Zhu, "On Wilker-Type Inequalities," Math. Ineq. Appl., Vol. 10, pp. 727-731, 2005. (Cited on page 29)
[1501] G. Zielke, "Some Remarks on Matrix Norms, Condition Numbers, and Error Estimates for Linear Equations," Lin. Alg. Appl., Vol. 110, pp. 29-41, 1988. (Cited on pages 573 and 592)
[1502] S. Zlobec, "An Explicit Form of the Moore-Penrose Inverse of an Arbitrary Complex Matrix," SIAM Rev., Vol. 12, pp. 132-134, 1970. (Cited on page 366)
[1503] D. Zwillinger, Standard Mathematical Tables and Formulae, 31st ed. Boca Raton: Chapman \& Hall/CRC, 2003. (Cited on pages 75158161255 and 357)

Author Index

Abdessemed, A. 584
Ablamowicz, R. 673
Abou-Kandil, H. xvii
Abramovich, S. 30
Aceto, L. 354, 362, 447, 672
Afriat, S. 210
Agaev, R. 708
Ahlbrandt, C. D. 805
Ahn, E. 683
Aitken, A. C. xix
Aivazis, M. 190
Akdeniz, F. 526, 527
Al-Ahmar, M. 196
Albert, A. A. 313
Albert, A. E. 380, 382, 385, 390, 541, 618
Aldrovandi, R. xvii, 275, 357
Aleksiejczuk, M. 391
Alfakih, A. Y. 573
Alic, M. 53, 463
Aling, H. 805
Alpargu, G. 57, 66, 501
Alperin, R. C. 194
Alsina, C. 32, 34
Altmann, S. L. xvii, 193, 194, 226, 228
Alzer, H. 52
Amghibech, S. 487
Anderson, B. D. O. xvii, 343, 465, 502, 704, 805
Anderson, G. 23, 27, 29
Anderson, T. W. 459
Anderson, W. N. 335, 384, $385,443,460,463,475$, 529, 530, 541
Ando, T. 439, 442, 457, 460, 461, 463-465, 472, 477, 478, 490, 514, 515, 530, 535-537, 540, 542, 583, 584, 588, 590, 600,

612, 615, 683, 685, 686, 689, 693-695, 795
Andreescu, T. 70, 71, 155, 156, 158-160
Andrica, D. 70, 71, 155, 156, 158-160
Andruchow, E. 576, 589
Angel, E. xvii, 194
Anglesio, J. 29
Anonymous 42
Antoulas, A. C. 793
Aplevich, J. D. xvii, 304
Apostol, T. 447
Apostol, T. M. 673
Araki, H. 479, 583, 584
Araujo, J. 350
Arimoto, A. 357
Arnold, B. 164
Arponen, T. 672
Arsigny, V. 686
Artin, M. 223, 229
Artzrouni, M. 715
Arvanitoyeorgos, A. 229
Aslaksen, H. 152, 183, 226, 229, 260, 261
Asner, B. A. 697, 702
Au-Yeung, Y.-H. 362, 458, 504, 507
Audenaert, K. M. R. 479, 480, 596
Aujla, J. S. 458, 514, 521, 533, 537, 539, 541, 583, 592
Aupetit, B. 695
Avriel, M. 505
Axelsson, O. xviii
Ayache, N. 686
Azar, L. E. 63

Baez, J. C. 222, 227
Bagdasar, O. 22, 37, 42, 54
Bai, Z. 476

Bailey, D. 17, 18, 20, 21, 56, 161, 275
Bailey, D. W. 270
Bailey, H. 158
Baker, A. 184, 217, 226, 229, 347, 660, 682
Baksalary, J. K. 120, 203, 310, 378, 387, 391, 457, 467, 523, 526, 527, 536
Baksalary, O. M. 120, 178, 180, 181, 203, 315, 373, 378, 387, 391, 396-398, 525
Ball, K. 570, 586
Ballantine, C. S. 178, 314, 350, 351, 542, 701, 795, 796
Banerjee, S. 161
Bang-Jensen, J. xvii
Bani-Domi, W. 594, 595
Bapat, R. B. 66, 124, 218, 275, 280, 391, 533
Bar-Itzhack, I. Y. 191, 674
Barbeau, E. J. 31, 39, 42, 47, 158, 708, 710
Baric, J. 30
Barnes, E. R. 271
Barnett, S. xvii, 135, 146, 215, 257, 281, 353, 354, 361, 362, 377, 393, 450, 454, 618, 702, 798
Barrett, W. 124, 220, 444, 449, 492, 538
Barria, J. 319
Bart, H. 800
Baruh, H. 193, 226, 676
Barvinok, A. 43, 47, 110, 111, 115, 498, 511, 634
Barza, S. 58
Bates, R. G. 221
Bau, D. xviii
Bauer, F. L. 619

Bayard, D. S. 334
Bazaraa, M. S. 279, 624, 626
Beams, R. 348
Beavers, A. N. 349
Bebiano, N. xvii, 335, 486, 686-688
Beckenbach, E. F. 76, 544
Becker, R. I. 362, 504
Beckner, W. 586
Bekjan, T. N. 500
Bekker, P. A. 483, 484, 541
Belinfante, J. G. 722
Belitskii, G. R. 619
Bellman, R. 76, 146, 280, 454, 460, 544, 682
Ben-Israel, A. 372, 376, 391, 394, 395, 398, 507
Ben Taher, B. 673
Ben-Tal, A. 110, 164
Benjamin, A. T. 11, 17, 278
Benson, C. T. 223
Berg, L. 129
Berge, C. xvii
Berkovitz, L. D. 164, 635
Berman, A. 176, 230, 275, 277, 706, 707
Bernhardsson, B. 701
Bernstein, D. S. 127, 189, 219, 227, 230, 338, 343, 491, 498, 619, 673, 679, 681, 689, 692, 701, 705-708, 722, 796-798, 805
Bhagwat, K. V. 433, 459, 683
Bhat, S. P. 227, 338, 705, 707, 722, 797
Bhatia, R. 24, 163, 221, 272, 320, 326, 327, 335, 433, 436, 439, 441-443, 445-449, 457, 458, 463, 479, 480, 486, 509-511, $513,515,518,520,521$, 531, 541, 542, 561, 570, $575,578,580,582,583$, 585-590, 594, 600, 601, 605, 613, 686, 688, 691, 693, 695
Bhattacharya, R. 318
Bhattacharyya, S. P. 696, 697, 796, 805
Bhattarcharyya, S. P. 797
Bhaya, A. 722

Bicknell, M. R. 142
Biggs, N. xvii, 337
Binding, P. 362
Binmore, K. xvii
Bjorck, A. 618
Blanes, S. 678, 683
Bloch, E. D. 10, 76
Blondel, V. 715
Blumenthal, L. M. 161
Boche, H. xvii, 162
Boehm, W. 714
Bojanczyk, A. W. 265
Bollobas, B. xvii
Bondar, J. V. 45, 60
Borck, A. 398
Borre, K. xvii
Borwein, J. 17, 18, 20, 21, 56, 161, 275
Borwein, J. M. 110, 111, 164, 279, 333, 334, 441, 460, 633, 635
Bosch, A. J. 349, 361
Bottcher, A. 584
Bottema, O. 158
Boullion, T. L. 398
Bourin, J.-C. 61, 458, 465, 480-483, 521, 537, 576, 583, 592, 599, 608, 687
Bourque, K. 447
Boyd, S. xvii, 164, 578
Bozkurt, D. 615
Brenner, J. L. 154, 229, 270, 346
Bresler, Y. 535, 538
Brewer, J. W. 416
Brickman, L. 498
Brockett, R. 805
Brockett, R. W. 511, 797
Brothers, H. J. 25, 26
Brown, G. 66
Browne, E. T. 541
Bru, R. 343
Brualdi, R. A. xvii, 126, 129, 131, 269, 506, 704
Buckholtz, D. 210, 336, 337
Bullen, P. S. 23, 25, 27, 29,
$35,38,42,52,53,55,57$,
$64,76,546,567,571$
Bultheel, A. 281
Burch, J. M. xvii
Burns, F. 391
Bushell, P. J. 519
Cahill, N. D. 278

Cain, B. E. 309, 795
Callan, D. 118
Campbell, S. L. 377, 384, 391, 395, 398, 699, 722
Cao, J. 27, 38
Cao, L. 418, 457
Carlen, E. 570, 586
Carlen, E. A. 441
Carlson, D. 387, 391, 442, 542, 702, 794, 795
Carpenter, J. A. 329
Cartier, P. 722
Cartwright, D. I. 52, 722
Casas, F. 678, 683
Castro-Gonzalez, N. 391
Caswell, H. xvii
Cater, F. S. 348
Chabrillac, Y. 504
Chan, N. N. 458
Chandrasekar, J. 219
Chapellat, H. 696, 697
Chartrand, G. xvii
Chatelin, F. xviii
Chattot, J.-J. xvii
Chaturvedi, N. A. 189
Chebotarev, P. 708
Chehab, J.-P. 476
Chellaboina, V. xvii, 230, 707, 708
Chellaboina, V.-S. 579, 619, 767
Chen, B. M. xvii, 114, 325, 333, 362
Chen, C. T. 793
Chen, H. 52, 61
Chen, J. 598
Chen, J.-Q. 224
Chen, L. 478, 613
Chen, S. 535
Cheng, C.-M. 443, 486, 515, 615
Cheng, H.-W. 673
Cheng, S. 178, 180, 372, 373, 379, 380, 383, 386, 388, 394, 395, 531
Chien, M.-T. 219
Choi, M.-D. 208, 215, 360
Chollet, J. 474
Choudhry, A. 348
Chu, M. T. 378, 388, 457
Chu, X.-G. 17
Chuai, J. 407, 410
Chuang, I. L. xvii
Chui, N. L. C. 714

Chung, F. R. K. xvii
Cizmesija, A. 58
Clements, D. J. 805
Climent, J. J. 343
Cline, R. E. 119, 121, 383, 390
Cloud, M. J. 76
Coakley, E. S. 225
Cohen, J. E. 690, 692
Cohoon, D. K. 127
Collins, E. G. 416, 805
Constales, D. 371
Contreras, M. xvii, 708
Conway, J. C. 47, 48, 223, 226, 227
Corach, G. 576, 589
Corless, M. J. xvii
Costa, P. J. 641
Cottle, R. W. 497, 507, 696
Cover, T. M. xvii, 442, 487, 492, 506
Crabtree, D. E. 270, 342
Crawford, C. R. 504
Crilly, T. 261
Crossley, M. D. 192
Crouzeix, J.-P. 504
Cullen, C. G. 343, 629, 640
Culver, W. J. 722
Curtain, R. F. 691
Curtis, M. L. 193, 226, 229
Cvetkovic, D. xvii
da Providencia, J. xvii, 486, 686-688
Da Silva, J. A. D. 415
Daboul, P. J. 227
Dahlquist, G. 706
Dale, P. xvii, 164
D'Andrea, R. 610
D'Angelo, H. 805
D'Angelo, J. P. 70, 565
Daniel, J. W. xix, 164
Dannan, F. M. 480, 488
Dasgupta, S. 680
Datko, R. 704
Datta, B. N. xvii, 794
Dattorro, J. xvii, 118, 126, 323, 642
Daubechies, I. 715
Davies, E. B. 584
Davis, C. 582, 589
Davis, P. J. xix, 357
Davison, E. J. 701
Dawlings, R. J. H. 350

Day, J. 513, 655
Day, P. W. 61
de Boor, C. 164
de Groen, P. P. N. 579
de Hoog, F. R. 378
de Launey, W. 416
De Moor, B. 805
de Pillis, J. 484, 494
De Pillis, J. E. 494
de Pillis, L. G. 255
de Souza, E. 796, 797
De Souza, P. N. 113, 118, 150, 151, 457
de Vries, H. L. 597
DeAlba, L. M. 428, 795
Debnath, L. 25, 26, 38, 66
Decell, H. P. 374
Deistler, M. 805
Del Buono, N. 217
Delbourgo, R. 227
DeMarco, C. L. 269
Demmel, J. W. xviii
Deng, C. 460
Denman, E. D. 349
DePrima, C. R. 346
D'Errico, J. R. 278
Desoer, C. A. 691
Deutsch, E. 593, 691, 709, 710
Devaney, R. L. xvii
Dhrymes, P. J. xvii
Dieci, L. 660, 685
Diestel, R. xvii
Dines, L. L. 498
Ding, J. 263, 592
Dittmer, A. 188
Dixon, G. M. 227
Dixon, J. D. 491
Djaferis, T. E. 797
Djokovic, D. Z. 150, 153, 316, 348, 350
Djordjovic, Z. 158
Dokovic, D. Z. 312, 314, 315, 318, 343
Dolotin, V. 416
Dombre, E. xvii
Donoghue, W. F. 446, 540, 541
Dopazo, E. 391
Dopico, F. M. 217, 225, 346
Doran, C. 188, 227, 565
Doran, C. J. L. 188, 227, 565
Dorst, L. 227, 565

Douglas, R. G. 431
Doyle, J. C. 701
Doyle, P. G. xvii
Drachman, B. C. 76
Dragan, V. 805
Dragomir, S. S. 36, 57, 59, 61, 63-66, 70
Drazin, M. P. 259
Drissi, D. 38, 448
Drivaliaris, D. 372
Drnovsek, R. 200
Drury, S. W. 185
Du, H. 460
Du, H.-K. 469, 521, 610
Duffin, R. J. 529
Duleba, I. 678
Dullerud, G. E. xvii
Dummit, D. S. 222, 223, 357, 361
Dunkl, C. F. 565
Dym, H. 56, 129, 131, 134, 160, 280, 309-311, 335, 336, 391, 431, 458, 507, 510, 525, 590, 591, 610, 634, 636, 638, 698, 794

Edelman, A. 447
Egecioglu, O. 70
Eggleston, H. G. 164
Elsner, L. 17, 142, 180, 269, 413, 415, 534, 650, 691, 695
Embree, M. 691
Engel, A. 31, 32, 34, 39-46, 49, 52, 58, 60, 158
Engo, K. 683
Erdmann, K. 229
Erdos, J. A. 350
Eriksson, R. 161
Evard, J.-C. 722
Fallat, S. 453
Fan, K. 453, 485, 487
Fang, M. 415
Fang, Y. 334
Farebrother, R. W. 229, 348, 398
Farenick, D. R. 357
Fassler, A. 229
Feiner, S. xvii, 194
Fekete, A. E. 188, 200
Feng, B. Q. 574, 583
Feng, X. 334
Feng, X. X. 476, 478, 480

Feng, Z. 159	Gaines, F. 184, 185, 313	Grcar, J. 164
$\begin{aligned} & \text { Fenn, R. } 30,161,188,193, \\ & 226,227,278 \end{aligned}$	$\begin{aligned} & \text { Galantai, A. 112, 204, 209, } \\ & 210,230,315,316,329 \end{aligned}$	Grcar, J. F. 559, 560 Green, W. L. 463, 529
Ferreira, P. G. 805	335-337, 380, 571, 572,	Greene, D. H. 17
Ferziger, J. H. xvii	636	Greub, W. H. xix, 416
Fiedler, M. xvii, 149, 160,	Gallier, J. 193	Greville, T. N. E. 210, 372,
255, 257, 275, 329, 355,	Gangsong, L. 511	376, 380, 381, 391, 394,
$376,390,412,463,468 \text {, }$ $532,534,535,702$	Gantmacher, F. R. xix, 304, 318, 541, 722	$395,398,507$
Field, M. J. 52, 722	Garling, D. J. H. 33, 53,	Grone, R. 180, 190, 341
Fill, J. A. 378	54, 58, 63, 75, 162, 163,	Gross, J. xvii, 188,
Fillard, P. 686	569, 574	202-204, 209, 229, 335,
Fillmore, J. P. 673	Garloff, J. 697	381, 391, 523, 524, 526,
Fillmore, P. A. 313, 360,	Garvey, S. D. 412, 413	530
431	Geerts, T. 805	Grove, L. C. 223
Fink, A. M. 23, 70, 76, 271,	Gelfand, I. M. 416	Guan, K. 38
565, 568, 569	Genton, M. G. 445	Gudder, S. 460
Fishkind, D. E. 378	George, A. 342, 358	Gull, S. 188, 227, 565
Fitzgerald, C. H. 531	Ger, R. 34	Guobiao, Z. 511
Flanders, H. 214, 459, 603	Gerdes, P. 357	Gupta, A. K. xvii
Fleming, W. 494	Gerrard, A. xvii	Gurlebeck, K. 227, 228, 675
Flett, T. M. 642	Gerrish, F. 320	Gurvits, L. 715
Foldes, S. 222	Geveci, T. 805	Gustafson, K. E. 497, 577
Foley, J. xvii, 194	Gheondea, A. 460	Gustafson, W. H. 351
Fontijne, D. 227, 565	Ghouraba, F. A. A. 230	Gutin, G. xvii
Foote, R. M. 222, 223, 357, 361	Gil, M. I. 325 Gilmore, R. 229	Gwanyama, P. W. 52
Formanek, E. 149, 214, 260	Girard, P. R. 188, 193, 225	Haddad, W. M. xvii, 164,
Foulds, L. R. xvii	Girgensohn, R. 17, 18, 20,	230, 343, 491, 579, 619,
Francis, B. A. xvii	21, 56, 161, 275	707, 708, 767, 798, 805
Franklin, J. xix	Glasser, M. L. 683	Hager, W. W. 164, 316
Frazho, A. E. xvii	Godsil, C. xvii	Hahn, W. 722
Frazier, M. xvii	Godunov, S. K. xix, 211,	Hairer, E. 678
Freiling, G. xvii	699	Hajja, M. 158
Friedland, S. 601, 614, 618,	Goh, C. J. 59	Halanay, A. 805
692, 708	Gohberg, I. 234, 281, 336,	Hall, A. 465
Friswell, M. I. 412, 413	361, 636, 787, 788, 800,	Hall, B. C. 217, 654, 655,
Fuhrmann, P. A. 197, 255,	805	657-660, 680, 684, 722
257, 258, 281, 309, 473	Golberg, M. A. 640, 678	Halliwell, G. T. 27, 67
Fujii, J. I. 502, 589	Goldberg, M. 583, 603	Halmos, P. R. 90, 113, 202,
Fujii, M. 34, 53, 67, 461,	Goller, H. 530	279, 313, 318, 319, 340,
$\begin{aligned} & 466,502,522,523,565, \\ & 589,685,686,711 \end{aligned}$	Golub, G. H. xviii, 378, 388, 457, 614, 646	$\begin{aligned} & 343,349-351,376,384 \text {, } \\ & 385,451,681 \end{aligned}$
Fuller, A. T. 406, 413, 416,	Golub, G.H. 476	Hamermesh, M. 224
697	Gong, M.-P. 519	Han, J. H. 128
Fulton, W. 223	Gonzalez, N. C. 680	Haneda, H. 691
Funderlic, R. E. 119, 121,	Goodman, F. M. 223	Hannan, E. J. 805
$378,383,388,457$	Goodman, L. E. 188	Hansen, F. 483
Furuichi, S. 479	Gordon, N. 139	Hanson, A. J. 227, 228
Furuta, T. 24, 209, 433,	Goroncy, A. 51	Hardy, G. 76
434, 436, 441, 455, 461,	Govaerts, W. 413, 416, 610	Harner, E. J. 335
464-467, 481, 502, 511,	Gow, R. 312, 343, 351	Harris, J. 223
520, 522, 523, 568, 582,	Graham, A. 416	Harris, L. A. 148, 473, 474
589, 683, 686	Graybill, F. A. xvii	Harris, W. A. 673

Hart, G. W. xvii, 230
Hartfiel, D. J. xvii, 715
Hartwig, R. 391
Hartwig, R. E. 119, 120, 315, 322, 337, 361, 372, 373, 382, 385, 391, 394, 396, 524, 526, 527, 797
Harville, D. A. xvii, 199,
202, 371, 377, 378, 381,
383, 486, 506, 642
Hattori, S. 704
Hauke, J. 524
Hautus, M. L. J. xvii, 805
Havel, T. F. 682
Haynes, T. 713
Haynsworth, E. V. 387, 391, 442, 474, 542
Hecht, E. xvii
Heij, C. 805
Heinig, G. 257
Helmke, U. 257
Helton, B. W. 722
Henderson, H. V. 145, 164, 416
Herman, J. 17, 18, 23-26, $32,36,37,39-44,46,47$, 49, 52, 60
Hershkowitz, D. 17, 191, 413, 475, 674, 708
Hestenes, D. 188, 227
Hiai, F. 442, 460, 461, 465, 477, 478, 580, 683, 686, 693, 694
Higham, D. J. 164
Higham, N. J. xviii, 72, 74, 164, 215, 221, 261, 327, 328, 331, 348, 349, 359, 360, 571, 573, 575-577, 584, 603, 608, 609, 615, 619, 629, 637, 657, 658, 677, 681, 685, 692-694, 700, 701, 722, 802
Hile, G. N. 227
Hill, R. 795
Hill, R. D. 142, 221
Hillar, C.-J. 482
Hilliard, L. O. 280
Hinrichsen, D. 318, 326, 327, 554, 555, 617, 638, 639, 691, 695, 699, 709
Hirsch, M. W. xvii, 311
Hirschhorn, M. D. 128
Hirzallah, O. 38, 70, 502, 586, 612, 613

Hmamed, A. 541
Hoagg, J. B. 219
Hoffman, A. J. 271
Hoffman, K. xix
Holbrook, J. 24, 515, 688
Hollot, C. V. 504
Holmes, R. R. 224
Holtz, O. 697, 715
Hong, Y. 350
Hong, Y. P. 606
Horn, A. 511
Horn, R. A. 139, 163, 197, 214, 254, 271, 273, 275, 276, 280, 281, 293, 314, 319, 320, 326, 327, 333, 341, 342, 345, 346, 348,
350, 358, 360, 393, 405,
407, 412, 416, 428, 431,
443, 446, 461, 470, 474,
486, 490, 492, 493, 497,
505, 507, 509-512, 515,
531, 532, 537-539, 541,
546, 549, 550, 553, 561,
562, 572-574, 576, 578,
580, 581, 591, 592, 601,
603, 605, 606, 609, 612,
615, 617, 641, 642, 654,
657, 678, 689, 692, 693,
703, 707, 797
Horne, B. G. 604
Hou, H.-C. 469, 521, 610
Hou, S.-H. 281
Householder, A. S. xviii, 257, 329, 378, 611, 634
Howe, R. 229, 722
Howie, J. M. 76
Howland, R. A. xvii
Hsieh, P.-F. xvii, 311
Hu, G.-D. 700
Hu, G.-H. 700
Hu-yun, S. 127, 519
Huang, R. 415, 416, 603, 616, 617
Huang, T.-Z. 51, 275, 416, 598, 617
Hughes, J. xvii, 194
Hughes, P. C. xvii, 676
Huhtanen, M. 70
Humphries, S. 132
Hung, C. H. 391
Hunter, J. J. 398
Hyland, D. C. 230, 343, 416, 706, 708, 805

Ibragimov, N. H. 722
Ikebe, Y. 642
Ikramov, K. D. 180, 342, 358, 597, 598, 650, 695
Inagaki, T. 642
Ionescu, V. xvii, 805
Ipsen, I. 112, 210, 329, 336, 381
Iserles, A. 188, 674, 678, 682
Ito, Y. 704
Iwasaki, T. xvii, 722
Izumino, S. 53, 65, 501
Jacobson, D. H. 805
Jagers, A. A. 29
Jameson, A. 541
Janic, R. R. 158
Jank, G. xvii
Jeffrey, A. 74-76
Jeffries, C. 708
Jennings, A. xviii
Jennings, G. A. 161
Jensen, S. T. 51, 454
Ji, J. 129
Jia, G. 27, 38
Jiang, Y. 316
Jin, X.-Q. 584
Jocic, D. 588
Johnson, C. R. 132, 139,
163, 180, 185, 190, 191, 197, 214, 217, 219, 225,
254, 271, 273, 275, 276,
280, 281, 293, 308-310,
314, 320, 326, 327, 341,
342, 345, 346, 348, 358,
360, 405, 407, 412, 415,
416, 428, 431, 443, 446,
449, 470, 474, 485, 487,
492, 497, 502, 505, 507,
509-512, 532, 534, 537,
538, 541, 546, 549, 550,
553, 561, 562, 572-574,
578, 580, 592, 601,
603-606, 609, 612, 615, 619, 641, 642, 654, 657, 674, 678, 689, 692, 693,
697, 701, 703, 707, 795, 797
Jolly, M. 642
Jonas, P. 460
Jordan, T. F. 228
Jorswieck, E. A. xvii, 162
Joyner, D. 230

Jung, D. 34, 53
Junkins, J. L. 191, 674
Jury, E. I. 413, 416, 704, 709

Kaashoek, M. A. 800
Kaczor, W. J. 24, 27, 29, 34, 66
Kadison, R. V. 459
Kagan, A. 483
Kagstrom, J. B. 699
Kailath, T. 237, 281, 304, 353, 805
Kalaba, R. E. xvii
Kalman, D. 357
Kamei, E. 461, 466, 522, 523
Kane, T. R. xvii
Kanzo, T. 51, 566
Kapila, V. 805
Kaplansky, I. xix, 318
Kapranov, M. M. 416
Karanasios, S. 372
Karcanias, N. 362, 805
Karlin, S. 415
Kaszkurewicz, E. 722
Kato, M. 568
Kato, T. 460, 600, 619, 692
Katsuura, H. 46, 53, 54
Katz, I. J. 382
Katz, S. M. 494
Kauderer, M. xvii
Kazakia, J. Y. 313
Kazarinoff, N. D. 36, 546
Keel, L. 697
Kelly, F. P. 692
Kendall, M. G. 184
Kenney, C. 327, 637, 711
Kestelman, H. 340
Keyfitz, N. xvii, 275
Khalil, W. xvii
Khan, N. A. 405, 416, 536
Khatri, C. G. 374, 384
Kim, S. 53, 463, 683
King, C. 586, 595
Kittaneh, F. 38, 70, 313, 327, 331, 458, 502, 515-517, 578, 580-590, 592, 594, 595, 603, 610-613, 711, 712
Klaus, A.-L. 583
Klee, V. 708
Knox, J. A. 25, 26
Knuth, D. E. 17

Koch, C. T. 678
Koks, D. 227
Koliha, J. J. 202, 203, 205, 382, 680
Kolman, B. 722
Komaroff, N. 61, 333, 518
Komornik, V. 696
Koning, R. H. 416
Kosaki, H. 584, 585
Kosecka, J. xvii
Koshy, T. xvii, 218, 278
Kovac-Striko, J. 362
Kovacec, A. 335
Krafft, O. 529
Krattenthaler, C. xvii, 132
Kratz, W. 805
Krauter, A. R. 476
Kreindler, E. 541
Kress, R. 597
Krupnik, M. 357
Krupnik, N. 357
Kubo, F. 67, 565, 711
Kucera, R. 17, 18, 23-26,
32, 36, 37, 39-44, 46, 47, 49, 52, 60
Kucera, V. 805
Kufner, A. 58, 59, 63
Kuipers, J. B. xvii, 226, 228
Kunze, R. xix
Kurepa, S. 689
Kwakernaak, K. xvii
Kwapisz, M. 712
Kwong, M. K. 221, 458, 460, 533
Kwong, R. H. 790, 805
Kyrchei, I. I. 129

Laberteaux, K. R. 181
Laffey, T. J. 281, 319, 343, 351
Lagarias, J. C. 715
Lai, H.-J. xvii
Lakshminarayanan, S. 129
Lam, T. Y. 42
Lancaster, P. xvii, 234, 257, 281, 304, 320, 336, 340, 361, 406, 504, 560, 579, 619, 636, 787, 788, 793-795, 805
Langholz, G. 704
Larson, L. 24, 29, 33, 35, $38,40-44,49,155,158$
Larsson, L. 58

Lasenby, A. 188, 227, 565
Lasenby, A. N. 188, 227, 565
Lasenby, J. 188, 227, 565
Lasserre, J. B. 333
Laub, A. J. xix, 113, 304, 306, 327, 338, 637, 711, 802, 805
Laurie, C. 361
Lavoie, J. L. 392
Lawson, C. L. 398
Lawson, J. D. 431, 463
Lax, P. D. 160, 259, 457, 600
Lay, S. R. 93, 164, 635
Lazarus, S. 319
Leake, R. J. 186
Leclerc, B. 129
LeCouteur, K. J. 519, 682
Lee, A. 230, 313, 376
Lee, J. M. 361
Lee, S. H. 34, 53
Lee, W. Y. 357
Lehnigk, S. H. 722
Lei, T.-G. 453, 483, 493, 501, 505, 508, 510
Leite, F. S. 348, 675
Lemos, R. xvii, 686-688
Leonard, E. 646
Lesniak, L. xvii
Letac, G. 531
Levinson, D. A. xvii
Lew, J. S. 260, 261
Lewis, A. S. 110, 111, 164, 279, 333, 334, 441, 460, 633, 635
Lewis, D. C. 414
Li, C.-K. xvii, 272, 328, 360, 436, 442, 443, 458-460, 463, 486, 515, 533, 542, 570, 583, 600, 611, 612
Li, C.-L. 58
Li, J. 38, 316
Li, J.-L. 29
Li, Q. 460,581
Li, R.-C. 272
Li, X. 391
Li, Y.-L. 29
Li, Z. xvii, 722
Lieb, E. 570, 586
Lieb, E. H. 441, 474, 482, 500, 519, 542, 570, 688
Ligh, S. 447

Likins, P. W. xvii	Magnus, W. 678	Melnikov, Y. A. xvii
Lim, J. S. 346	Majindar, K. N. 508	Mercer, P. R. 27, 67, 567,
$\begin{aligned} & \mathrm{Lim}, \mathrm{Y} .53,431,463,683, \\ & 803 \end{aligned}$	Maligranda, L. 58, 59, 63, 567-569	568 Merikoski, J. K. 604
Liman, A. 709	Malyshev, A. N. 699	Merris, R. 277, 416, 461,
Lin, C.-S. 466, 503, 522,	Malzan, J. 348	469, 506, 536
565	Mangasarian, O. xvii	Meyer, C. 112, 210, 329,
Lin, T.-P. 36, 37	Manjegani, S. M. 477	336, 381
Lin, W.-W. 362	Mann, H. B. 505	Meyer, C. D. 160, 175-177,
Lin, Z. xvii, 114, 325, 333, 362	Mann, S. 227, 565 Mansfield, L. E. xix	$\begin{aligned} & 212,243,279,343,357, \\ & 375,377,384,391,395, \end{aligned}$
Linden, H. 710, 711	Mansour, M. 696, 697, 704	398, 714, 722
Lipsky, L. xvii	Maradudin, A. A. 678	Meyer, K. 802
Littlewood, J. E. 76	Marcus, M. xix, 55, 76,	Miao, J.-M. 391
Liu, B. xvii	136, 229, 325, 333, 405,	Mickiewicz, A. 525
Liu, H. 26	412, 416, 450, 484, 494,	Mihalyffy, L. 391
Liu, J. 416, 442, 542	513, 536, 544, 598	Miller, K. S. 254, 410, 506
Liu, R.-W. 186	Margaliot, M. 704	Milliken, G. A. 526, 527
$\begin{aligned} & \text { Liu, S. } 57,416,501,533 \text {, } \\ & 536,539 \end{aligned}$	Markham, T. L. 149, 376, 387, 391, 442, 468, 534,	$\begin{aligned} & \text { Milovanovic, G. V. 638, } \\ & 709-712 \end{aligned}$
Liu, X. 120	535, 541, 542	Minamide, N. 378
Liu, Y. 387	Markiewicz, A. 524	Minc, H. xix, 55, 76, 229,
Liz, E. 646	Marsaglia, G. 121, 164,	325, 544, 598
Loewy, R. 793, 794	387, 389	Miranda, H. 541
Logofet, D. O. xvii	Marsden, J. E. xvii, 193	Miranda, M. E. 335
Lokesha, V. 158	Marshall, A. W. 44, 45, 60,	Mirsky, L. xix, 190, 198
Loparo, K. A. 334	61, 76, 158, 162-164, 326,	Misra, P. 800
Lopez, L. 217	334, 412, 442, 443, 455,	Mitchell, J. D. 350
Lopez-Valcarce, R. 680	510, 541, 542, 618, 619	Mitra, S. K. 384, 398, 416,
Loss, M. 570	Martensson, K. 805	529, 541
Lossers, O. P. 153	Martin, D. H. 805	Mitrinovic, D. S. 23, 38, 52,
Lounesto, P. 188, 227	Massey, J. Q. 131	70, 76, 158, 271, 565,
Lubich, C. 678	Mastronardi, N. 125, 129	567-569, 709, 712
Luenberger, D. G. xvii, 505	Mathai, A. M. 642	Mitter, S. K. 797
Lundquist, M. 124, 444,	Mathes, B. 361	Mityagin, B. 458, 541
492	Mathias, R. 328, 332, 416,	Miura, T. 51, 566
Lutkepohl, H. xix	436, 440, 442, 448, 463,	Mlynarski, M. 691
Lutoborski, A. 265	512, 533, 539, 542, 576,	Moakher, M. 196, 360, 463,
Lyubich, Y. I. 619	$\begin{aligned} & 581,591,600,603,611, \\ & 612,615,617,642,682 \end{aligned}$	$\begin{aligned} & \text { 640, } 674,688,689,692 \\ & \text { Moler, C. 692, } 722 \end{aligned}$
Ma, E.-C. 797	Matic, M. 30, 59, 67	Molera, J. M. 346
Ma, Y. xvii	Matson, J. B. 805	Mond, B. 457, 463, 502,
MacDuffee, C. C. 406, 410,	Matsuda, T. 58	537-539
413, 416	Maybee, J. S. 338	Monov, V. V. 269
Macfarlane, A. G. J. 805	Mazorchuk, V. 581	Moon, Y. S. 504
Maciejowski, J. M. 714	McCarthy, J. E. 450	Moore, J. B. 465
Mackey, D. S. 230	McCarthy, J. M. 722	Moreland, T. 460
Mackey, N. 230	McClamroch, N. H. 189	Mori, H. 65, 501
Maddocks, J. H. 311, 504	McCloskey, J. P. 213	Mori, T. 541
Maeda, H. 704	McKeown, J. J. xviii	Morley, T. D. 463, 529
Magnus, J. R. xvii, 370,	Meehan, E. 281	Morozov, A. 416
384, 388, 390, 391, 398,	Meenakshi, A. R. 530	Muckenhoupt, B. 313
416, 476, 477, 481, 503,	Mehta, C. L. 500	Muir, T. 164
642	Mellendorf, S. 269, 704	Muir, W. W. 441, 442, 542

Mukherjea, K. 318
Munthe-Kaas, H. Z. 188, 674, 677, 678, 682
Murphy, I. S. 492
Murray, R. M. xvii, 722

Nagar, D. K. xvii
Najfeld, I. 682
Najman, B. 362
Nakamoto, R. 461, 466, 522, 523, 589, 695
Nakamura, Y. 361
Nandakumar, K. 129
Narayan, D. A. 278
Narayan, J. Y. 278
Nataraj, S. xvii
Nathanson, M. 586
Naylor, A. W. 70, 76, 565, 568, 623, 624, 642
Needham, T. 76
Nelsen, R. B. 32
Nemirovski, A. 110, 164
Nersesov, S. G. 230, 708
Nett, C. N. 164
Neubauer, M. G. 491
Neudecker, H. xvii, 57, 370, 384, 388, 391, 398, 416, 476, 477, 501, 503, 642
Neumann, M. 219, 275, 343, 706, 707
Neuts, M. F. xvii
Newcomb, R. W. 541
Newman, M. 132, 309, 655
Nguyen, T. 125, 218
Nicholson, D. W. 520
Niculescu, C. 21, 22, 35, 37, 42, 54-56, 62, 132, $483,565,638,639$
Niculescu, C. P. 22, 39, 54, 158, 712
Nielsen, M. A. xvii
Niezgoda, M. 51, 454
Nishio, K. 200
Noble, B. xix, 164
Nomakuchi, K. 391
Nordstrom, K. 310, 457, 527
Norman, E. 678
Norsett, S. P. 188, 674, 678, 682
Nowak, M. T. 24, 27, 29, 34, 66
Nunemacher, J. 722
Nylen, P. 619

Oar, C. xvii, 805
Odell, P. L. 398
Ogawa, H. 378
Okubo, K. 348, 477, 478
Olesky, D. D. 338
Olkin, I. 44, 45, 60, 61, 76, 158, 162-164, 319, 326, 334, 412, 442, 443, 455,
456, 459, 510, 541, 542, 618, 619
Ortega, J. M. xix
Ortner, B. 476
Osburn, S. L. 681
Ost, F. 415
Ostrowski, A. 794
Ostrowski, A. M. 593
Oteo, J. A. 678
Ouellette, D. V. 468, 487, 542
Overdijk, D. A. 188

Paardekooper, M. H. C. 180
Pachter, M. 805
Paganini, F. xvii
Paige, C. C. 310, 316, 472, 473, 490, 503
Palanthandalam-Madapusi, H. 230, 498, 679

Paliogiannis, F. C. 681
Palka, B. P. 76
Pan, C.-T. 606
Pao, C. V. 691
Papastavridis, J. G. xvii, 451
Pappas, D. 372
Park, F. C. 722
Park, P. 334
Parker, D. F. 362
Parks, P. C. 704
Parthasarathy, K. R. 446, 589, 590, 695
Patel, R. V. 484, 692, 800, 805
Pearce, C. E. 59, 64
Pearce, C. E. M. 59, 67
Pearcy, C. 318
Pease, M. C. 229
Pecaric, J. 30, 58, 59, 64, 67, 568
Pecaric, J. E. 23, 53, 70, 76, 158, 271, 457, 463, 501, 502, 537-539, 565, 568, 569, 616

Pennec, X. 686
Peric, M. xvii
Perlis, S. 164, 233, 234, 237, 281, 361
Persson, L.-E. 21, 22, 35, 37, 42, 54-56, 58, 59, 62, 63, 132, 483, 565, 638, 639
Peter, T. 159
Petersen, I. R. 504
Peterson, A. C. 805
Petz, D. 461, 463, 467, 686
Piepmeyer, G. G. 642
Pierce, S. 461, 469
Ping, J. 224
Pipes, L. A. 672, 673
Pittenger, A. O. xvii
Plemmons, R. J. 176, 230, 275, 277, 706, 707
Plischke, E. 699
Polik, I. 498
Politi, T. 217, 673, 675
Pollock, D. S. G. 642
Polya, G. 76
Polyak, B. T. 497-499
Poon, E. 360
Poonen, B. 349, 447
Popa, D. 565
Popov, V. M. xvii, 722
Popovici, F. 22
Porta, H. 589
Porter, G. J. 194
Pourciau, B. H. 635
Pranesachar, C. R. 158
Prasolov, V. V. xix, 143, 150, 184, 185, 197, 208, 214, 227, 255, 257, 259, 271, 275, 313, 320, 328, 334, 335, 340, 341, 343, 345, 349, 350, 358, 393, 412, 442, 474, 486-488, 493, 507, 508, 533, 534, 574, 588, 599, 601, 608, 640, 641, 660
Prells, U. 412, 413
Pritchard, A. J. 318, 326, 327, 554, 555, 617, 638, 639, 691, 695, 709
Pryce, J. D. 610
Przemieniecki, J. S. xvii
Psarrakos, P. J. 348
Ptak, V. 257, 463
Pukelsheim, F. 120, 416, 467, 523, 526, 527, 536

Pullman, N. J. 722
Puntanen, S. 51, 386, 454, 501, 502, 616
Putcha, M. S. 322, 337, 361
Pye, W. C. 263
Qi, F. 17, 38, 60
Qian, C. 38
Qian, R. X. 269
Qiao, S. 129, 202, 378, 398
Qiu, L. 413, 701
Queiro, J. F. 335
Quick, J. 347
Quinn, J. J. 11, 17, 278
Rabanovich, S. 581
Rabanovich, V. 361
Rabinowitz, S. 641
Rachidi, M. 673
Radjavi, H. 200, 319, 348, 351, 358, 361, 376
Raghavan, T. E. S. 275
Rajian, C. 530
Rajic, R. 568
Rakocevic, V. 202, 203, 205, 210, 336
Ran, A. 805
Ran, A. C. M. 800, 805
Rantzer, A. 320, 701
Rao, C. R. xvii, 278, 398, 416, 529, 541
Rao, D. K. M. 497
Rao, J. V. 391
Rao, M. B. xvii, 278,416
Rasa, I. 565
Rassias, T. M. 63, 638, 709-712
Ratiu, R. S. 193
Ratiu, T. S. xvii
Rauhala, U. A. 416
Raydan, M. 476
Recht, L. 589
Regalia, P. A. 416
Reinsch, M. W. 683
Reznick, B. 42
Richardson, T. J. 790, 805
Richmond, A. N. 684
Riedel, K. S. 378
Ringrose, J. R. 619
Rivlin, R. S. 260, 261
Robbin, J. W. 76, 115, 164, 211, 229, 281, 283, 319,
346, 414, 640
Robinson, D. W. 218

Robinson, P. 476
Rockafellar, R. T. 164, 624, 632, 635, 642
Rodman, L. xvii, 191, 234, 281, 304, 308, 310, 336, 351, 361, 459, 460, 504, 636, 674, 787, 788, 805
Rogers, G. S. 642
Rohde, C. A. 391
Rohn, J. 575
Rojo, O. 51, 604
Rooin, J. 55
Ros, J. 678
Rose, D. J. 357
Rose, N. J. 343, 391, 395, 699
Rosenbrock, H. H. 763, 764
Rosenfeld, M. xvii, 215
Rosenthal, P. 200, 320, 335, 358
Rosoiu, A. 158
Rossmann, W. 229
Rothblum, U. G. 275, 280, 398
Rotman, J. J. 223, 357
Rowlinson, P. xvii
Royle, G. xvii
Rozsa, P. 142
Rubin, M. H. xvii
Rubinstein, Y. A. 158
Rugh, W. J. 252, 253, 678, 743, 756, 805
Rump, S. M. 708
Ruskai, M. B. 474, 542
Russell, A. M. 449
Russell, D. L. 793
Rychlik, T. 51
Ryser, H. J. xvii, 126, 131, 506

Sa, E. M. 180, 190, 341
Saberi, A. xvii
Sadkane, M. 699
Sain, M. K. 805
Saito, K.-S. 568
Salamon, D. A. 414
Salmond, D. 139
Sandor, J. 22, 25, 26, 37, 55, 66
Sannuti, P. xvii
Sarria, H. 604
Sastry, S. S. xvii, 722
Satnoianu, R. A. 158

Sattinger, D. H. 150, 172, 655, 660, 722
Saunders, M. 316
Sayed, A. H. xvii
Schaub, H. 191, 674
Scherer, C. W. 787, 805
Scherk, P. 347
Schmoeger, C. 650, 681, 682, 689
Schneider, H. 17, 129, 269, 413, 570, 794
Scholkopf, B. 445
Scholz, D. 685
Schott, J. R. xvii, 379, 443, 513, 518
Schrader, C. B. 805
Schreiber, M. 384, 385, 460
Schreiner, R. 346
Schroder, B. S. W. 76
Schumacher, J. M. 805
Schwartz, H. M. 418, 457
Schwenk, A. J. 415
Scott, L. L. 223
Searle, S. R. xvii, 145, 164, 416
Sebastian, P. 642
Sebastiani, P. 640
Seber, G. A. F. 67, 111, 118, 139, 154, 156, 184, 206, 208, 213, 217, 220, 230, 269, 271, 374, 375, 379, 393, 487, 500, 526, 535, 572, 607, 706
Seberry, J. 416
Seiringer, R. 482
Selig, J. M. xvii, 193, 227, 229
Sell, G. R. 70, 76, 565, 568, 623, 624, 642
Semrl, P. 570
Seo, Y. 34, 53, 65, 501, 685-687
Seoud, M. A. 230
Serre, D. 172, 217, 260, 390
Serre, J.-P. 223
Seshadri, V. 704
Shafroth, C. 139, 196
Shah, S. L. 129
Shah, W. M. 709
Shamash, Y. xvii, 114, 325, 333, 362
Shapiro, H. 318, 351
Shapiro, H. M. 415, 532
Shaw, R. 188

Shen, S.-Q. 275, 416, 617
Sherali, H. D. 279, 624, 626
Shetty, C. M. 279, 624, 626
Shilov, G. E. xix
Shuster, M. D. 193, 226, 674
Sibuya, Y. xvii, 311
Sijnave, B. 413, 416
Siljak, D. D. xvii, 706
Silva, F. C. 514, 796
Silva, J.-N. 113, 118, 150, 151, 457
Simic, S. xvii
Simoes, R. 796
Simsa, J. 17, 18, 23-26, 32, 36, 37, 39-44, 46, 47, 49, 52, 60
Singer, S. F. xvii
Sivan, R. xvii
Skelton, R. E. xvii, 722
Smale, S. xvii, 311
Smiley, D. M. 565
Smiley, M. F. 565
Smith, D. A. 47, 48, 223, 226, 227
Smith, D. R. 673
Smith, H. A. 722
Smith, O. K. 265
Smith, P. J. 483
Smith, R. A. 797
Smith, R. L. 185, 191, 674
Smoktunowicz, A. 186, 391, 593
Smola, A. J. 445
Snell, J. L. xvii
Snieder, R. 370
Snyders, J. 722, 746, 747, 805
So, W. 180, 476, 509, 513, 650, 655, 673, 681, 682, 688-690, 693
Soatto, S. xvii
Sobczyk, G. 188, 227
Sontag, E. D. xvii, 704, 793
Sorensen, D. C. 793
Sourour, A. R. 350, 351
Speed, R. P. 378
Spence, J. C. H. 678
Spiegel, E. 361
Spindelbock, K. 315, 372, 373, 396
Spivak, M. 227, 624
Sprossig, W. 227, 228, 675
Stanley, R. P. 11

Steeb, W.-H. 416, 689
Steele, J. M. 76
Stengel, R. F. xvii
Stepniak, C. 526
Stern, R. J. 275, 706, 707
Stetter, H. J. xviii
Stewart, G. W. xviii, xxxvi, 164, 304, 306, 316, 336 ,
358, 504, 541, 570, 578,
579, 600, 614, 615, 618,
619, 635, 636
Stickel, E. U. 705, 722
Stiefel, E. 229
Stiller, L. xvii
Stoer, J. 164, 579, 619, 635
Stojanoff, D. 576, 589
Stolarsky, K. B. 37
Stone, M. G. 160
Stoorvogel, A. A. xvii, 805
Storey, C. xvii, 135, 361, 450, 702
Strang, G. xvii, xix, 125, 164, 218, 347, 447
Straskraba, I. 202, 203, 205
Strelitz, S. 698
Strichartz, R. S. 678
Strom, T. 691
Stuelpnagel, J. 674
Styan, G. P. H. 51, 57, 66, 118-121, 124, 135, 164, 185, 201-203, 208, 210, 229, 310, 322, 332, 371, 385-389, 391, 392, 454, 457, 472, 473, 490, 501-503, 526, 527, 536, 616
Subramanian, R. 433, 459, 683
Sullivan, R. P. 350
Sumner, J. S. 29
Sun, J. 304, 306, 316, 336, 358, 504, 541, 570, 578, $579,600,614,615,619$, 635, 636
Swamy, K. N. 541
Szechtman, F. 312
Szekeres, P. 227
Szep, G. 358
Szirtes, T. xvii
Szulc, T. 269, 387, 604

Takagi, H. 51, 566
Takahashi, Y. 566
Takahasi, S.-E. 51, 566

Takane, Y. 391
Tam, T. Y. 224
Tamura, T. 568
Tao, Y. 515
Tapp, K. 193, 222, 223, 226, 227, 638
Tarazaga, P. 449, 604
Taussky, O. 164, 330, 361
Temesi, R. 463, 467
Tempelman, W. 188
ten Have, G. 348
Terlaky, T. 498
Terrell, R. E. 683, 684
Thirring, W. E. 519
Thomas, J. A. xvii, 442, 487, 492, 506
Thompson, R. C. 68, 70, $164,185,351,361,485$, 490, 494, 509, 513, 541, 583, 655, 678, 688, 690
Tian, Y. 118, 124, 135, 148, $152,153,178,180,199$, 201-203, 208, 210, 212, 227, 229, 312, 321, 371-373, 375, 379-383, 386-389, 391, 393-395, 407, 410, 455, 465, 529, 531
Tismenetsky, M. 320, 340, 406, 560, 579, 619, 793-795
Tisseur, F. 230
Toda, M. 484, 692
Todd, J. 330
Toffoli, T. 347
Tominaga, M. 520, 685, 686
Tonge, A. 574, 583
Torokhti, A. 614, 618
Trapp, G. E. 335, 443, 463, 475, 529, 530, 541
Trefethen, L. N. xviii, 691, 715
Trenkler, D. 188, 263, 264, 458, 676
Trenkler, G. 51, 61, 178, 180, 181, 188, 202-204, 207, 209, 229, 263, 264, 315, 335, 350, 372, 373, 375, 378, 381, 389, 391, 396-398, 416, 454, 458, 477, 525, 676
Trentelman, H. L. xvii, 805
Treuenfels, P. 802

Trigiante, D. 354, 362, 447, Vasudeva, H. L. 533, 539, 672
Tromborg, B. 196
Troschke, S.-O. 188, 229, 524, 526
Trustrum, G. B. 519
Tsatsomeros, M. 338
Tsatsomeros, M. J. 219, 453
Tsing, N.-K. 362, 504
Tsiotras, P. 188, 191, 674
Tsitsiklis, J. N. 715
Tung, S. H. 52
Turkington, D. A. 416
Turkmen, R. 615
Turnbull, H. W. 164
Tuynman, G. M. 682
Tyan, F. 343, 796

Uchiyama, M. 522, 688, 694
Udwadia, F. E. xvii
Uhlig, F. 117, 347, 362, 504, 507, 508, 722
Underwood, E. E. 142
Upton, C. J. F. 449

Valentine, F. A. 164
Vamanamurthy, M. 23, 27, 29
Van Barel, M. 125, 129, 257, 281
van Dam, A. xvii, 194
Van Den Driessche, P. 338
van der Driessche, P. 708
van der Merwe, R. 676
Van Dooren, P. 362
Van Loan, C. F. xvii, xviii, 127, 357, 416, 614, 646, 681, 692, 701, 722
Van Overschee, P. 805
Van Pelt, T. 498
van Schagen, F. 805
Vandebril, R. 125, 129
Vandenberghe, L. xvii, 164
Varadarajan, V. S. 230, 655, 682, 722
Varah, J. M. 606
Vardulakis, A. I. G. xvii, 281
Varga, R. S. xviii, 269, 275, 706
Vasic, P. M. 38, 52, 76, 158, 567

541
Vavrin, Z. 257
Vein, P. R. 164
Vein, R. xvii, 164
Veljan, D. 42, 158, 160
Venugopal, R. 230, 679
Vermeer, J. 345
Veselic, K. 330, 362, 701
Vetter, W. J. 416
Vidyasagar, M. 691
Visick, G. 532, 535, 537, 539, 540
Volenec, V. 53, 158, 463
Vong, S.-W. 584
Vowe, M. 29
Vreugdenhil, R. 805
Vuorinen, M. 23, 27, 29

Wada, S. 60, 63, 64, 566
Wagner, D. G. 697
Waldenstrom, S. 196
Walter, G. G. xvii, 708
Wang, B. 518, 519, 614
Wang, B.-Y. 198, 519, 528, 534, 541, 614
Wang, C.-L. 57, 65
Wang, D. 433
Wang, F. 224
Wang, G. 129, 202, 378, 394, 398
Wang, J. 442, 542
Wang, J.-H. 361
Wang, L. 51, 598
Wang, L.-C. 58
Wang, Q.-G. 271
Wang, X. 696
Wang, Y. 715
Wang, Y. W. 689, 798
Wanner, G. 678
Wansbeek, T. 416
Ward, A. J. B. 320
Ward, R. C. 706
Warga, J. 625, 626
Warner, W. H. 188
Waterhouse, W. E. 136, 137
Waters, S. R. 221
Wathen, A. J. 476
Watkins, W. 278, 450, 484, 488, 494, 513, 533, 536
Watson, G. S. 57, 66
Weaver, J. R. 230, 314

Weaver, O. L. 150, 172, 655, 660, 722
Webb, J. H. 45
Webster, R. 164
Wegert, E. 715
Wegmann, R. 597
Wei, J. 678
Wei, M. 316, 380
Wei, Y. 129, 202, 378, 391, 393, 394, 398, 680
Weinberg, D. A. 361
Weiss, G. H. 678
Weiss, M. xvii, 805
Wenzel, D. 584
Wermuth, E. M. E. 681, 694
Werner, H.-J. 527
Wesseling, P. xvii
Westlake, J. R. xviii
Wets, R. J. B. 632, 642
Weyrauch, M. 685
White, J. E. 357
Wiegmann, N. A. 343
Wiener, Z. 714
Wigner, E. P. 457
Wilcox, R. M. xviii, 684
Wildon, M. J. 229
Wilhelm, F. 689
Wilker, J. B. 29
Wilkinson, J. H. xviii
Willems, J. C. 805
Williams, E. R. 378
Williams, J. P. 319, 348, 376, 431
Williams, K. S. 565
Wilson, D. A. 619
Wilson, P. M. H. 161, 193
Wimmer, H. K. 257, 310, 459, 585, 788, 793, 796, 805
Wirth, F. 699
Witkowski, A. 23, 27
Witzgall, C. 164, 619, 635
Wolkowicz, H. 51, 180, 190, 322, 332, 341
Wolovich, W. A. 805
Wonenburger, M. J. 350
Wong, C. S. 350, 478, 613
Wonham, W. M. xvii, 262, 646, 791, 805
Woo, C.-W. 453, 483, 493, 501, 505, 508, 510
Wrobel, I. 348
Wu, C.-F. 527

Wu, P. Y. 208, 349-351, 360, 361, 542, 701
Wu, S. 42, 59, 64, 158
Wu, Y.-D. 158
Xi, B.-Y. 528, 614
Xiao, Z.-G. 54
Xie, Q. 416
$\mathrm{Xu}, \mathrm{C} .70,145,472,480$, 490, 565
Xu, D. 193
Xu, H. 650, 701
Xu, Z. 70, 145, 472, 490, 565

Yakub, A. 45
Yamagami, S. 584
Yamazaki, T. 53, 522
Yanase, M. M. 457
Yang, B. 63
Yang, X. 697
Yang, Z. P. 476, 478, 480
Yau, S. F. 535, 538
Yau, S. S.-T. 673

Ye, Q. 362
Yeadon, F. I. 188
Yellen, J. xvii
Young, D. M. xviii
Young, N. J. 607
Young, P. M. 701
Zakai, M. 722, 746, 747, 805
Zanna, A. 188, 674, 677, 678, 682
Zassenhaus, H. 361
Zelevinsky, A. V. 416
Zemanek, J. 695
Zhan, X. 164, 327, 360, 413, 434, 442, 447, 448, 486, 509-511, 514-516, 521, 529-531, 535, 537, 539-541, 549, 580, 582, 587, 590, 612, 615, 685, 695
Zhang, C.-E. 17
Zhang, F. 70, 126, 127, 131, 145, 153, 184, 185,

198, 219, 229, 310, 312,
333, 342, 357, 393, 452,
453, 456, 458, 461, 465, 469, 471-473, 476, 478, 483, 489, 490, 493,
501-503, 505, 508, 510, 518, 519, 525, 528, 533, 534, 539, 541, 565, 614
Zhang, L. 393
Zhang, Z.-H. 54, 158
Zhao, K. 312
Zheng, B. 124, 391
Zhong, Q.-C. 206
Zhou, K. xvii, 281, 607, 610, 787
Zhu, H. 38
Zhu, L. 26, 29
Zielke, G. 573, 592
Zlobec, S. 366
Zwart, H. J. 691
Zwas, G. 603
Zwillinger, D. 75, 158, 161, 255, 357

Index

Symbols	definition, 403	parallel sum
	$\boldsymbol{A} \#$ B	definition, 528
$0_{n \times m}$	geometric mean	$\boldsymbol{A}^{\text {* }}$
definition, 83	definition, 461	reverse complex
$\mathbf{1}_{n \times m}$	$A \#{ }_{\alpha} B$	conjugate transpose
$n \times m$ ones matrix	generalized	definition, 88
definition, 84	geometric mean	$\boldsymbol{A}^{\circ \boldsymbol{\alpha}}$
	definition, 464	Schur power
2×2 matrices commutator	A^{-1}	definition, 404
Fact 2.18.1, 149	inverse matrix	A $^{+}$
2×2 matrix		generalized inverse
discrete-time	$A \stackrel{\text { GL }}{\leq} B$	definition, 363
asymptotically	generalized Löwner	$A^{1 / 2}$
stable matrix	partial ordering	positive-semidefinite
Fact 11.21.1. 712	definition, 524	matrix square root
eigenvalue inequality		definition, 431
Fact 8.17.1, 508	$A \leq B$	
singular value	rank subtractivity	$A^{\#}$
Fact 5.11.31, 328	partial ordering	group generalized inverse
2×2	definition, 119	definition, 369
positive-semidefinite matrix	$\boldsymbol{A} \stackrel{*}{\leq} B$	$\boldsymbol{A}^{\text {A }}$
square root	star partial ordering definition, 120	adjugate
Fact 8.9.6. 451		definition, 105
2×2 trace	$A \stackrel{i}{\leftarrow} b$	$A^{\text {D }}$
Fact 2.12.9, 126	column replacement definition, 80	Drazin generalized
3×3 matrix identity	$\boldsymbol{A} \circ \boldsymbol{B}$	inverse definition, 367
Fact 4.9.5, 261	Schur product	$\boldsymbol{A}^{\text {L }}$
3×3 symmetric matrix eigenvalue	definition, 404	left inverse
	$\boldsymbol{A} \otimes \boldsymbol{B}$	definition, 98
Fact 4.10.1, 265	Kronecker product	A^{R}
$\boldsymbol{A} \oplus \boldsymbol{B}$	definition, 400	right inverse
Kronecker sum	$A: B$	definition, 98

$A^{T} \quad J$
transpose
definition, 86
$A^{\hat{T}}$
reverse transpose
definition, 88
$\boldsymbol{A}_{[i ; j]}$
\quad submatrix
\quad definition, 105
A_{\perp}
complementary idempotent matrix definition, 176 complementary projector definition, 175
$B(p, q)$
Bezout matrix definition, 255
$C(p)$ companion matrix definition, 283
C^{*}
complex conjugate transpose
definition, 87
$D \mid \mathcal{A}$
Schur complement definition, 367
$\boldsymbol{E}_{i, j, n \times m}$
$n \times m$ matrix with a single unit entry definition, 84
$\boldsymbol{E}_{i, j}$ matrix with a single unit entry definition, 84
H(g) Hankel matrix definition, 257
I_{n}
identity matrix definition, 83
definition, 169
$J_{2 n}$
$\left[\begin{array}{cc}0 & I_{n} \\ -I_{n} & 0\end{array}\right]$
definition, 169
$K(x)$
cross-product matrix definition, 82
N
standard nilpotent matrix definition, 166
N_{n}
$n \times n$ standard nilpotent matrix definition, 166
$P_{A, B}$
pencil
definition, 304
$P_{n, m}$
Kronecker permutation matrix definition, 402
$V\left(\lambda_{1}, \ldots, \lambda_{n}\right)$
Vandermonde matrix definition, 354

```
\([A, B]\) commutator definition, 82
\(\mathbb{B}_{\varepsilon}(x)\) open ball
definition, 621
```

$\mathbb{C}^{n \times m}$
$n \times m$ complex matrices definition, 79
F
real or complex numbers definition, 78
$\mathbb{F}(s)$ rational functions
definition, 249
$\mathbb{F}[s]$
polynomials with coefficients in \mathbb{F} definition, 231
$\mathbb{F}^{n \times m}$
$n \times m$ real or complex matrices definition, 79

$$
\mathbb{F}^{n \times m}[s]
$$

polynomial matrices with coefficients in $\mathbb{F}^{n \times m}$
definition, 234

$$
\mathbb{F}^{n \times m}(s)
$$

$n \times m$ rational transfer functions definition, 249
$\mathbb{F}_{\text {prop }}^{n \times m}(s)$
$n \times m$ proper rational transfer functions
definition, 249
$\mathbb{F}_{\text {prop }}(s)$ proper rational functions definition, 249
\mathbb{R}
complex numbers
definition, 78
real numbers
definition, 78
$\mathbb{R}^{n \times m}$ $n \times m$ real matrices definition, 79
$\mathbb{S}_{\varepsilon}(x)$
sphere
definition, 621
\mathbf{H}^{n}
$n \times n$ Hermitian matrices definition, 417
N^{n}

definition, 89
cocos
convex conical hull definition, 89
$\operatorname{col}_{i}(A)$
column
definition, 79
cone \mathcal{S}
conical hull
definition, 89
dcone S
dual cone
definition, 91
$\operatorname{def} A$
defect
definition, 96
$\operatorname{deg} p$ degree definition, 231
$\operatorname{det} A$ determinant definition, 103
$\operatorname{diag}\left(A_{1}, \ldots, A_{k}\right)$
block-diagonal matrix
definition, 167
$\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right)$ diagonal matrix definition, 167
$\operatorname{dim} \mathcal{S}$ dimension of a set definition, 90
$\ell(A)$ lower bound definition, 558
$\ell_{q, p}(A)$
Hölder-induced lower bound definition, 559
\hat{I}_{n}
reverse identity matrix
definition, 84
ind A
index of a matrix definition, 176
$\operatorname{ind}_{A}(\lambda)$
index of an eigenvalue definition, 295
int S
interior definition, 621
ints ${ }^{\prime} \mathcal{S}$
relative interior definition, 621
$\lambda_{1}(A)$
maximum eigenvalue
definition, 240
minimum eigenvalue definition, 240
$\lambda_{i}(A)$
eigenvalue definition, 240
$\log (A)$
matrix logarithm definition, 654
$\operatorname{mroots}(p)$
multiset of roots definition, 232
$\operatorname{mspec}(A)$ multispectrum definition, 240
μ_{A}
minimal polynomial definition, 247
$\nu_{-}(A), \nu_{0}(A)$
inertia definition, 245
\bar{C}
complex conjugate definition, 87
π
prime numbers Fact 1.7.8, 19
polar S
dual cone
definition, 91
$\operatorname{rank} A$
rank
definition, 95
$\operatorname{rank} G$ normal rank for a rational transfer function
definition, 249
rank P
normal rank for a polynomial matrix definition, 235
reldeg G
relative degree definition, 249
$\operatorname{revdiag}\left(a_{1}, \ldots, a_{n}\right)$ reverse diagonal matrix definition, 167
$\mathrm{d}_{\text {max }}(A)$
maximum diagonal entry definition, 80
$\mathrm{d}_{\text {min }}(A)$
minimum diagonal entry definition, 80

$\mathrm{d}_{i}(A)$

 diagonal entry definition, 80$\operatorname{roots}(p)$
set of roots definition, 232
$\operatorname{row}_{i}(A)$
row
definition, 79
$\operatorname{sig} A$
signature definition, 245
$\sigma_{\max }(A)$

maximum singular value definition, 301	i th column of the identity matrix definition, 84	$\begin{aligned} & \text { gmult }_{\boldsymbol{A}} \\ & \text { geometric } \\ & \text { multiplicity } \\ & \text { definition, } 245 \end{aligned}$
$\begin{aligned} & \sigma_{\min }(\boldsymbol{A}) \\ & \text { minimum singular } \\ & \quad \text { value } \\ & \text { definition, } 301 \end{aligned}$	$e_{i, n}$ i th column of the $n \times n$ identity matrix	$\inf (\mathcal{S})$ infimum definition, 7
$\begin{aligned} & \sigma_{i}(A) \\ & \quad \text { singular value } \\ & \quad \text { definition, } 301 \end{aligned}$	$f^{(k)}\left(x_{0}\right)$ k th Fréchet derivative	$\operatorname{lub}(\mathcal{S})$ least upper bound definition, 7
$\operatorname{sign} x$ sign definition, 89	definition, 627 $f^{\prime}\left(x_{0}\right)$	$\operatorname{mult}_{p}(\lambda)$ multiplicity definition, 232
$\operatorname{sign} \alpha$ sign definition, xxi	Fréchet derivative definition, 626 k th Fréchet derivative definition, 627	$\begin{aligned} & \operatorname{sh}(\boldsymbol{A}, \boldsymbol{B}) \\ & \text { shorted operator } \\ & \text { definition, } 530 \end{aligned}$
$\operatorname{spabs}(A)$ spectral abscissa definition, 245	n-tuple definition, 3	$\sup (\mathcal{S})$ supremum definition, 7
$\operatorname{spec}(A)$ spectrum definition, 240	$x \gg 0$ positive vector definition, 79	$\begin{aligned} & \mathrm{D}_{+} f\left(x_{0} ; \xi\right) \\ & \text { one-sided directional } \\ & \text { differential } \\ & \text { definition, } 625 \end{aligned}$
$\operatorname{sprad}(A)$ spectral abscissa definition, 245	nonnegative vector definition, 79	(1)-inverse definition, 364 determinant
```tr A trace definition, }8```	$\begin{aligned} & \text { logarithm } \\ & \text { Fact } 11.15 .10,692 \end{aligned}$	$\begin{aligned} & \text { Fact } 6.5 .28,393 \\ & \text { left inverse } \\ & \text { Proposition } 6.1 .3 \end{aligned}$
$\operatorname{vcone}\left(\mathcal{D}, x_{0}\right)$   variational cone definition, 625	$\mathrm{SO}(n)$   eigenvalue   Fact 5.11.2, 321	right inverse   Proposition 6.1.2 364   (1,2)-inverse
```vec A column-stacking operator definition, 399```	```\mp@subsup{mmult}{A}{(}}\boldsymbol{\lambda} algebraic multiplicity definition, 240 circ(a circulant matrix```	definition, 364 A
$\|x\|$ absolute value definition, 88	definition, 355 $\exp (A)$ matrix exponential	Abel quintic polynomial Fact 3.21.7, 223
```e matrix exponential definition, }64 ei```	definition, 643 $\operatorname{glb}(\mathcal{S})$   greatest lower bound definition, 7	Abelian group definition Definition 3.3.3, 172 equivalence relation Proposition 3.4.2 173

## absolute norm

monotone norm
Proposition 9.1.2, 543
absolute sum norm definition, 545
absolute value
Frobenius norm
Fact 9.13.11, 603
Hölder-induced
norm
Fact 9.8.26, 576
inequality
Fact 1.11.24, 45
Fact 1.11.25, 45
irreducible matrix
Fact 3.20.4, 218
matrix, 88
maximum singular value
Fact 9.13.10, 603
reducible matrix
Fact 3.20.4, 218
scalar inequality
Fact 1.11.1 39
Fact 1.11.12, 43
Fact 1.12.3, 46
Schatten norm
Fact 9.13.11, 603
spectral radius
Fact 4.11.16, 279
vector, 88
absolute-value function
Niculescu's
inequality
Fact 1.10.19, 33
absolute-value matrix
positive-semidefinite matrix
Fact 8.9.1, 450
absolutely convergent sequence
convergent sequence
Proposition 10.2.7, 623
Proposition 10.2.9, 623
absolutely convergent series
definition
Definition 10.2.6, 623
Definition 10.2.8, 623
Aczel's inequality
norm inequality Fact 9.7.4, 563
quadratic inequality Fact 1.16.19, 64
additive compound
asymptotically stable polynomial Fact 11.17.12 697
additive decomposition
diagonalizable matrix
Fact 5.9.3, 311
Hermitian matrix Fact 3.7.29 183
nilpotent matrix Fact 5.9.3, 311
orthogonal matrix Fact 5.19.2 360
Fact 5.19.3 360
unitary matrix Fact 5.19.1 360
adjacency matrix definition Definition 3.2.1, 170
graph of a matrix Proposition 3.2.5, 171
inbound Laplacian matrix Theorem 3.2.2, 170
Laplacian matrix Theorem 3.2.2, 170 Theorem 3.2.3, 171
Fact 4.11.11, 277
outbound Laplacian matrix
Theorem 3.2.2, 170
symmetric graph
Fact 4.11.1 272
adjacent
Definition 1.4.2, 8
adjoint norm
definition

Fact 9.8.8, 572
dual norm
Fact 9.8.8, 572
Hölder-induced norm
Fact 9.8.10, 572
adjoint operator commutator Fact 2.18.5, 149
Fact 2.18.6, 150
adjugate
basic properties, 106
characteristic
polynomial
Fact 4.9.8, 261
cross product
Fact 6.5.16, 389
defect
Fact 2.16.7, 143
definition, 105
derivative
Fact 10.11.19, 640
Fact 10.11.21, 641
determinant
Fact 2.14.27, 139
Fact 2.16.3, 141
Fact 2.16.5, 142
Fact 2.16.6, 142
diagonalizable
matrix
Fact 5.14.5, 339
eigenvalue
Fact 4.10.7, 267
eigenvector
Fact 5.14.26, 342
elementary matrix Fact 2.16.1, 141
factor
Fact 2.16.9, 143
Frobenius norm
Fact 9.8.15, 573
generalized inverse
Fact 6.3.6 370
Fact 6.3.7 371
Fact 6.5.16, 389
Hermitian matrix
Fact 3.7.10, 179
iterated

Fact 2.16.5, 142
matrix powers
Fact 4.9.8, 261
matrix product
Fact 2.16.10, 143
nilpotent matrix
Fact 6.3.6, 370
null space
Fact 2.16.7, 143
outer-product
perturbation
Fact 2.16.3, 141
partitioned matrix
Fact 2.14.27, 139
range
Fact 2.16.7, 143
rank
Fact 2.16.7, 143
Fact 2.16.8, 143
scalar factor
Fact 2.16.5, 142
singular value Fact 5.11.36, 328
skew-Hermitian matrix
Fact 3.7.10, 179
Fact 3.7.11, 179
skew-symmetric matrix
Fact 4.9.20, 263
spectrum
Fact 4.10.7, 267
trace
Fact 4.9.8, 261
transpose
Fact 2.16.5, 142
affine closed half space
closed half space
Fact 2.9.6, 111
definition, 91
affine function definition, 81
affine hull
closure Fact 10.8.11, 633
constructive characterization Theorem 2.3.5 91
convex hull
Fact 2.9.3, 110
convex set
Theorem 10.3.2, 624
Fact 10.8.8, 632
definition, 90
linear mapping
Fact 2.10.4, 115
affine hyperplane
affine subspace
Fact 2.9.6, 111
definition, 91
determinant
Fact 2.20.3, 154
affine mapping
Hermitian matrix
Fact 3.7.14, 181
normal matrix
Fact 3.7.14, 181
affine open half space
definition, 91
open half space Fact 2.9.6, 111
affine subspace
affine hull of image
Fact 2.9.26, 113
affine hyperplane
Fact 2.9.6, 111
definition, 89
image under linear mapping
Fact 2.9.26, 113
left inverse Fact 2.9.26, 113
span
Fact 2.9.7, 111
Fact 2.20.4, 154
Fact 10.8.12 633
subspace
Fact 2.9.8. 111

## Afriat

spectrum of a product of projectors Fact 5.12.15, 335

Akers
maximum singular value of a product
of elementary
projectors
Fact 9.14.1, 607
algebraic multiplicity
block-triangular matrix
Proposition 5.5.13, 298
definition
Definition 4.4.4. 240
geometric
multiplicity
Proposition 5.5.3 295
index of an
eigenvalue
Proposition 5.5.6 296
orthogonal matrix
Fact 5.11.2, 321
outer-product
matrix
Fact 5.14.3, 338
almost nonnegative matrix
asymptotically stable matrix
Fact 11.19.5, 707
definition, 230 Definition 3.1.4, 168
group-invertible matrix
Fact 11.19.4. 706
irreducible matrix Fact 11.19.2, 706
Lyapunov-stable matrix
Fact 11.19.4, 706
matrix exponential Fact 11.19.1 706 Fact 11.19.2 706
N-matrix
Fact 11.19.3, 706
Fact 11.19.5, 707
nonnegative matrix Fact 11.19.1. 706
positive matrix Fact 11.19.2, 706
alternating group
group
Fact 3.21.7, 223
Alzer's inequality
sum of integers
Fact 1.9.31, 30
Amemiya's inequality
Schur product
Fact 8.21.39, 539
Anderson
rank of a tripotent matrix Fact 2.10.23, 118

## Ando

convex function
Proposition 8.6.17, 542
inertia of congruent, normal matrices
Fact 5.10.17, 319
angle
definition, 85
angular velocity vector
quaternions
Fact 11.11.15 675
antieigenvalue
definition
Fact 9.8.37, 577
antisymmetric graph
Laplacian
Fact 4.11.1 272
antisymmetric relation definition
Definition 1.3.8. 7
one-sided cone
induced by
Proposition 2.3.6, 93
positive-semidefinite matrix
Proposition 8.1.1, 41
aperiodic graph
Definition 1.4.3, 9
nonnegative matrix
Fact 4.11.5, 273
Araki
positive-semidefinite matrix inequality Fact 8.12.21, 480

Araki-Lieb-Thirring inequality
positive-semidefinite matrix inequality Fact 8.12.20, 479
arc
definition, 8
area
parallelogram
Fact 2.20.17, 160
Fact 9.7.5, 565
polygon
Fact 2.20.14, 159
triangle
Fact 2.20.7 155
Fact 2.20.8 156
Fact 2.20.10, 156
arithmetic mean
Carleman's
inequality
Fact 1.15.40, 58
geometric mean
Fact 1.10.36, 37
Fact 1.15.21, 53
Fact 1.15.23, 53
Fact 1.15.24, 54
Fact 1.15.25, 54
Fact 1.15.26, 54
Fact 1.15.27, 54
identric mean
Fact 1.10.36, 37
logarithmic mean Fact 1.15.26, 54
mixed arithmeticgeometric mean inequality Fact 1.15.39, 58
Muirhead's theorem Fact 1.15.25, 54
positive-definite matrix Fact 8.10.34, 460
scalar inequality Fact 1.11.6 39

Fact 1.11.7, 39
Fact 1.11.8, 40
Fact 1.11.9, 41
Fact 1.11.10 41
arithmetic-mean inequality
harmonic mean
Fact 1.15.16 52
Fact 1.15.17 52
arithmetic-mean-geometric-mean inequality
alternative form
Fact 1.15.33 56
difference
Fact 1.15.29 55
harmonic mean
Fact 1.15.15 52
Jensen's inequality
Fact 1.8.4 21
main form
Fact 1.15.14, 51
Fact 1.15.28, 54
Popoviciu
Fact 1.15.29, 55
positive-definite matrix
Fact 8.13.8, 486
quartic identity
Fact 1.12.5, 47
Rado
Fact 1.15.29 55
ratio Fact 1.15.29 55
reverse inequality Fact 1.15.18, 52
Fact 1.15.19, 52
sextic identity Fact 1.13.1, 47
variation Fact 1.10.13 32
weighted arithmetic-mean-geometric-mean inequality Fact 1.15.32 56

## arithmetic-mean- <br> harmonic-mean inequality <br> scalar inequality <br> Fact 1.15.37 57 <br> associative identities <br> definition, 82

associativity composition Proposition 1.2.1, 3
asymptotic stability
eigenvalue
Proposition 11.8.2 662
input-to-state
stability
Fact 12.20.18, 793
linear dynamical system Proposition 11.8.2 662
Lyapunov equation Corollary 11.9.1, 666
matrix exponential Proposition 11.8.2 662
nonlinear system Theorem 11.7.2, 661
asymptotically stable equilibrium
definition Definition 11.7.1, 660
asymptotically stable matrix
$2 \times 2$ matrix Fact 11.18.35, 705
almost nonnegative matrix Fact 11.19.5, 707
asymptotically stable polynomial Proposition 11.8.4 663
Cayley transform Fact 11.21.8, 713
compartmental matrix Fact 11.19.6 707
controllability Fact 12.20.5, 791
controllability
Gramian
Proposition 12.7.9, 747
Corollary 12.7.10, 747
controllable pair
Proposition 12.7.9, 747
Corollary 12.7.10, 747
controllably asymptotically stable
Proposition 12.8.3, 747
Proposition 12.8.5, 748
cyclic matrix
Fact 11.18.25, 702
definition
Definition 11.8.1, 662
detectability
Proposition 12.5.5. 735
Corollary 12.5.6 735
diagonalizable over $\mathbb{R}$
Fact 11.17.10, 697
discrete-time asymptotically stable matrix
Fact 11.21.8, 713
dissipative matrix
Fact 11.18.21, 701
Fact 11.18.37, 705
factorization
Fact 11.18.22, 701
integral
Lemma 11.9.2 667
inverse matrix Fact 11.18.15, 700
Kronecker sum
Fact 11.18.32, 704
Fact 11.18.33, 704
Fact 11.18.34, 705
linear matrix
equation
Proposition 11.9.3, 667
logarithmic
derivative
Fact 11.18.11 699
Lyapunov equation Proposition 11.9.5, 668 Corollary 11.9.4 668
Corollary 11.9.7 669
Corollary 12.4.4 734

Corollary 12.5.6 735
Corollary 12.7.4 746
Corollary 12.8.6 749
Fact 12.21 .7795
Fact 12.21.17, 797
matrix exponential
Lemma 11.9.2, 667
Fact 11.18.8 699
Fact 11.18.9 699
Fact 11.18.10 699
Fact 11.18.15, 700
Fact 11.18.18, 701
Fact 11.18.19, 701
Fact 11.21.7 713
minimal realization
Definition 12.9.17, 757
negative-definite
matrix
Fact 11.18.30, 704
nonsingular
N -matrix
Fact 11.19.5, 707
normal matrix
Fact 11.18.37, 705
observability
Gramian
Corollary 12.4.10. 734
observable pair
Proposition [12.4.97 734
Corollary 12.4.10, 734
observably
asymptotically
stable
Proposition 11.9.5, 735
Proposition 12.5.5, 735
perturbation
Fact 11.18.16, 700
positive-definite matrix
Proposition 11.9.5 668
Proposition 12.4.9, 734
Corollary 11.9 .7669
Fact 11.18.21, 701
secant condition
Fact 11.18.29, 704
sign of entries Fact 11.19.5 708
sign stability Fact 11.19.5 708

similar matrices Fact 11.18.4, 698	polynomial coefficients	time-varying dynamics
skew-Hermitian	Fact 11.17.2, 696	Fact 11.13.4, 678
matrix	Fact $11.17 .3,696$	b
Fact 11.18.30, 704	Fact 11.17.7, 697	
spectrum	Fact 11.17.8, 697	
Fact 11.18.13, 700	Fact 11.17 .10697	
square root	Fact 11.17.11 697	
Fact 11.18.36, 705	Fact 11.17.12 697	757
stability radius	reciprocal argument	757
Fact 11.18.17	Fact 11.17.4, 696	balan
stabilizability	Schur product of	form
Proposition 11.9.5,	polynomials	existenc
Proposition 12.8.3, 7	Fact 11.17.9, 697	Corollary 8.3.3, 423
Proposition 12.8.5, 748	subdeterminant	
Corollary 12.8.6 749 subdeterminant	Fact 11.18.23, 702	$\begin{aligned} & \text { Bandila's inequality } \\ & \text { triangle } \end{aligned}$
Fact 11.19.1. 7	asymptotically stable	Fact 2.20.11 156
trace	subspace	Barnett
Fact 11.18.31	definition, 665	symptotic stability
idiagonal ma	asymptotically stable	f a tridiagonal
Fact 11.18.24, 702	transfer function	matrix
Fact 11.18 .25	minimal realizatio	Fact 11.18.24, 702
Fact 11.18 .26 , 7	Proposition 12.9.1	
Fact 11.18.27, 70	$757$	Barnett factorization
Fact 11.18.28, 703	SISO entries	$\text { Fact 4.8.6 } 255$
asymptotically stable polynomial	$\begin{aligned} & \text { Proposition 12.9.19 } \\ & 757 \end{aligned}$	barycentric coordinates
$\text { ct } 11 .$	ave	onjuga
asymptotically stable	itive-sen	parameter
matrix		Fact 1.16.11, 62
Proposition 11.8.4, 663	Fact 5.19.5 36	definition, 89
definition	averaged limit	basis
Definition 11	integr	definition, 90
even polynomia   Fact 11.17.6, 696	Fact 10.11.6, 638	Beckner's two-point
Hermite-Biehler		inequali
theorem	B	powers
Fact 11.17.6, 696		Fact 1.10.15, 33
interlacing theorem	Baker	Fact 9.9.35, 586
Fact 11.17.6, 696	ausd	Bellma
Kharitonov's theorem	series	quadratic form
Fact 11.17.13, 698	matrix expone	eq
Kronecker sum	Proposition 11.4.7, 65	Fact 8.15.7, 501
Fact 11.17.11, 697	Bak	Ben-Israel
odd polynomial	Hausdorff-Dynk	generalized inverse
Fact 11.17.6, 696	expansion	Fact 6.3.35, 376

## Bencze

 arithmetic-mean-geometric-mean-logarithmic-mean inequality Fact 1.15.26, 54Bendixson's theorem eigenvalue bound Fact 5.11.21, 325 Fact 9.11.8, 598

## Berezin

trace of a convex function Fact 8.12.33, 482

## Bergstrom

 positive-definite matrix determinant Fact 8.13.15, 488Bergstrom's inequality quadratic form Fact 8.11.3, 468 Fact 8.15.18, 503

Bernoulli matrix
Vandermonde matrix Fact 5.16.3, 354

Bernoulli's inequality scalar inequality Fact 1.9.1, 22 Fact 1.9.2, 23
Bernstein matrix Vandermonde matrix Fact 5.16.3, 354

Bernstein's inequality matrix exponential Fact 11.15.4. 689

Berwald polynomial root bounds Fact 11.20.11, 711
Bessel's inequality norm inequality Fact 9.7.4, 563

Bessis-Moussa-Villani trace conjecture
derivative of a
matrix exponential Fact 8.12.31 482
power of a positivesemidefinite matrix Fact 8.12.30, 482

Bezout equation
coprime polynomials Fact 4.8.5, 255

Bezout identity
right coprime polynomial matrices Theorem 4.7.14, 252
Bezout matrix
coprime polynomials
Fact 4.8.6, 255
Fact 4.8.7, 257
Fact 4.8.8, 257
definition
Fact 4.8.6, 255
distinct roots
Fact 4.8.9, 258
factorization
Fact 5.15.24 349
polynomial roots Fact 4.8.9, 258
Bhatia
Schatten norm inequality Fact 9.9.45, 588 unitarily invariant norm inequality Fact 9.9.44, 588
bialternate product compound matrix Fact 7.5.17, 411
Kronecker product, 416
bidiagonal matrix singular value Fact 5.11.47, 332
biequivalent matrices congruent matrices Proposition 3.4.5, 174
definition
Definition 3.4.3, 174
Kronecker product
Fact 7.4.11, 405
rank
Proposition 5.1.3 283
similar matrices
Proposition 3.4.5 174
Smith form
Theorem 5.1.1 283
Corollary 5.1.2, 283
unitarily similar matrices
Proposition 3.4.5 174
bijective function definition, 76
bilinear function definition, 627

Binet-Cauchy formula determinant Fact 2.13.4, 129

Binet-Cauchy theorem
compound of a matrix product
Fact 7.5.17, 411
binomial identity
sum
Fact 1.7.1 14
Fact 1.7.2, 17
binomial series
infinite series
Fact 1.18.8, 73

## bivector

parallelogram
Fact 9.7.5, 565
block
definition, 80
block decomposition
Hamiltonian
Proposition 12.17 .5 783
minimal realization
Proposition 12.9 .10 753

block-circulant matrix circulant matrix Fact 3.18.3 215	block-Hankel matrix definition   Definition 3.1.3, 167	observably asymptotically stable
Drazin generalized inverse	Hankel matrix Fact 3.18.3 215	Proposition 12.4.3, 732 spectrum
Fact 6.6.1, 393	Markov	Proposition 5.5.13, 298
generalized inverse	block-Hankel	stabilizability
Fact 6.5.2, 386	matrix	Proposition 12.8.4, 747
inverse matrix	definition, 754	unobservable
Fact 2.17.6, 148	block-Kronecker	subspace
block-diagonal matrix	product	Proposition 12.3.9, 730
companion matrix Proposition 5.2.8 286	Kronecker product, 416	$730$
Lemma 5.2.2, 285 definition	block-Toeplitz matrix	blocking zero
Definition 3.1.3, 167	definition	Definition 4.7.10, 251
geometric	Toeplitz matrix	rational transfer
multiplicity	Fact 3.18.3 215	function
Proposition 5.5.13, 2		Definition 4.7.4, 249
Hermitian matrix Fact 3.7.8, 179	block-triangular matrix algebraic multiplicity	Smith-McMillan form
least common multiple	Proposition 5.5.13, 298 controllable	Proposition 4.7.11, 251
Lemma 5.2.7, 286	dynamics	Blundon
matrix exponential	Theorem 12.6.8, 739	triangle inequality
Proposition 11.2.8, 649	controllable subspace	Fact 2.20.11, 156
maximum singular	Proposition 12.6.9, 739	blunt cone
value	Proposition 12.6.10,	efinition, 89
Fact 5.11.33, 328	740	
minimal polynomial   Lemma 5.2.7, 286	controllably asymptotically	Bonami's inequality powers
normal matrix	stable	Fact 1.10.16 33
Fact 3.7.8, 179	Proposition 12.7.3, 743	Fact 9.7.20, 569
shifted-unitary matrix	detectability   Proposition 12.5.4. 73	Borchers
Fact 3.11.25, 196	determinant	matrix difference
similar matrices	Fact 2.14.8, 134	Fact 9.9.24, 584
Theorem 5.3.2, 288	index of a matrix	
Theorem 5.3.3, 289	Fact 5.14.32, 343	Borobia
singular value	Fact 6.6.13 395	asymptotically stable
Fact 8.18.9, 515	inverse matrix	polynomial
Fact 8.18.10, 515	Fact 2.17.1 146	Fact 11.17.8, 697
Fact 9.14.21, 612	maximum singular	
Fact 9.14.25, 613	value	
skew-Hermitian	Fact 5.11.32, 328	
matrix	minimal polynomial	boundary
Fact 3.7.8, 179	Fact 4.10.12, 268	definition, 622
unitary matrix	observable dynamics	interior
Fact 3.11.25, 196	Theorem 12.3.8, 730	Fact 10.8.7, 632


		Cartesian product 915
union	positive-semidefinite	union
Fact 10.9.2, 634	matrix	Fact 1.5.5, 11
boundary relative to a	Fact 8.8.4, 446	Carleman's inequality
set	Buzano's inequality	arithmetic mean
definition, 622	Cauchy-Schwarz	Fact 1.15.40, 58
bounded set	inequality	Carlson
continuous function	Fact 1.17.2, 67	inertia of a
Theorem 10.3.10, 625	norm inequality	Hermitian matrix
Corollary 10.3.11, 625		Fact 12.21.4, 794
definition, 622		Carlson inequality
image under linear mapping	C	sum of powers
Fact 9.8.1, 571	Callan	Fact 1.15.41, 58
open ball	determinant of a	Carmichael
Fact 10.8.2, 632	partitioned matrix	polynomial root
	Fact 2.14.15, 136	bound
polynomial root	Callebaut	Fact 11.20.10, 711
bound	monotonicity	Cartesian
Fact 11.20.4, 709	Fact 1.16.1, 60	decomposition
Bourin	Callebaut's inequality refined	determinant   Fact 8.13.4, 485
spectral radius of product	Cauchy-Schwarz	Fact 8.13.11 486
Fact 8.18.25, 520	inequality	eigenvalue
Fact 8.18 .25	Fact 1.16.16, 63	Fact 5.11.21, 325
Brahmagupta's formula quadrilateral	canonical form	Hermitian matrix   Fact 3.7.27, 182
Fact 2.20.13, 159	definition, 4	Fact 3.7.28, 183
Brauer	canonical mapping	Fact 3.7.29, 183
spectrum bounds	definition, 4	positive-semidefinite matrix
Fact 4.10.21, 271	Cantor intersection	Fact 9.9.40, 587
Brouwer fixed-point	theorem	Schatten norm
theorem	intersection of closed	Fact 9.9.37, 586
image of a	sets	Fact 9.9.38, 587
continuous function	Fact 10.9.11, 635	Fact 9.9.39, 587
Corollary 10.3.11 625	Cardano's	Fact 9.9.40, 587
Brown	trigonometric	singular value
trace of a convex	solution	Fact 8.18.7, 514
function	cubic polynomial	skew-Hermitian
Fact 8.12.33, 482	Fact 4.10.1, 265	matrix
Fact 8.12.33, 482	eigenvalue	Fact 3.7.27, 182
Browne's theorem	Fact 4.10.1, 265	Fact 3.7.28, 183
eigenvalue bound		Fact 3.7.29, 183
Fact 5.11.21, 325	cardinality	spectrum
Fact 5.11.22, 325		Fact 5.11.21, 325
Fact 9.11.7, 598	principle	Cartesian product
Brownian motion	Fact 1.5.5, 11	definition, 3

```
cascade
 interconnection
 definition, 770
 transfer function
 Proposition 12.13.2
 70
```

cascaded systems
geometric
multiplicity
Fact 12.22.15 801
Cauchy
polynomial root
bounds
Fact 11.20.11 711
Cauchy interlacing
theorem
Hermitian matrix
eigenvalue
Lemma 8.4.4, 425
Cauchy matrix
determinant
Fact 3.20.14, 220
Fact 3.20.15, 221
positive-definite
matrix
Fact 8.8.16, 449
Fact 12.21.18 797
positive-semidefinite
matrix
Fact 8.8.7, 447
Fact 8.8.9, 448
Fact 12.21 .19797
Cauchy's estimate
polynomial root
bound
Fact 11.20.6, 709
Cauchy-Schwarz
inequality
Buzano's inequality
Fact 1.17.2, 67
Callebaut's
inequality
Fact 1.16.16, 63
De Bruijn's
inequality
Fact 1.16.20, 64
determinant
Fact 8.13.22, 489
Frobenius norm Corollary 9.3.9, 553
inner product bound Corollary 9.1.7 546
McLaughlin's inequality Fact 1.16.17, 64
Milne's inequality Fact 1.16.15, 63
Ozeki's inequality Fact 1.16.23, 65
Polya-Szego inequality
Fact 1.16.21, 64
positive-semidefinite matrix
Fact 8.11.14, 470
Fact 8.11.15, 470
Fact 8.15.8 501
vector case
Fact 1.16.9, 62
Cayley transform
asymptotically stable matrix
Fact 11.21.8. 713
cross product Fact 3.11.8 190
cross-product matrix Fact 3.10.1 186
definition
Fact 3.11.29, 197
discrete-time asymptotically stable matrix
Fact 11.21.8, 713
Hamiltonian matrix Fact 3.19.12, 217
Hermitian matrix
Fact 3.11.29, 197
orthogonal matrix
Fact 3.11.8, 190
Fact 3.11.28, 196
Fact 3.11.30, 197
Fact 3.11.31, 198
positive-definite matrix
Fact 8.9.30, 453
skew-Hermitian matrix
Fact 3.11.28, 196
skew-symmetric matrix
Fact 3.11.8, 190
Fact 3.11.28, 196
Fact 3.11.30, 197
Fact 3.11.31 198
symplectic matrix Fact 3.19.12, 217
unitary matrix
Fact 3.11.28, 196

## Cayley-Hamilton

 theoremcharacteristic
polynomial
Theorem 4.4.7, 243
generalized version
Fact 4.9.7, 261
center subgroup
commutator
Fact 2.18.10, 150
centralizer
commutator
Fact 2.18.9, 150
Fact 7.5.2 409
commuting matrices
Fact 5.14.22, 341
Fact 5.14.24, 342
centrohermitian matrix
complex conjugate
transpose
Fact 3.20.16, 221
definition
Definition 3.1.2, 166
generalized inverse
Fact 6.3.31, 376
matrix product
Fact 3.20.17 221
centrosymmetric matrix
definition
Definition 3.1.2, 166
matrix product
Fact 3.20.17 221
matrix transpose

		inertia 91
Fact 3.20.16, 221	Fact 4.9.23, 264	Fact 1.16.3, 60
Cesaro summable	identities   Proposition 4.4.5, 241	Chen form
discrete-time	inverse matrix	tridiagonal matrix
Lyapunov-stable	Fact 4.9.9, 261	Fact 11.18.27, 703
Fact 11.21.11, 714	Leverrier's algorithm Proposition 4.4.9 244	child   Definition 1.4.2, 8
aotic order	matrix product	Cholesky
atrix logarithm	Proposition 4.4.10, 244	
Fact 8.19.1, 522	Corollary 4.4.11 245	existence
act 8.19.2, 523	minimal polynomial	Fact 8.9.37, 454
positive-semidefinite order	$\begin{aligned} & \text { Fact } \begin{array}{l} 4.9 .24, \\ \text { monic } \end{array} \end{aligned}$	
Fact 8.19.2, 523	Proposition 4.4.3, 240	complex numbers
characteristic equation definition, 240	outer-product matrix   Fact 4.9.16, 262	Fact 2.20.12 158   circulant matrix   block-circulant
characteristic polynomial	Fact 4.9.18, 263 output feedback	matrix
$2 \times 2$ matrix	Fact 12.22.13, 800	
Fact 4.9.1, 260	partitioned matrix	ompanion mat
$3 \times 3$ matrix	Fact 4.9.14, 262	Fourier matrix
Fact 4.9.2, 260	Fact 4.9.15, 262	Fact 5.16.7 355
adjugate	Fact 4.9.17, 263	group
Fact 4.9.8, 261	Fact 4.9.18, 263	Fact 3.21.7, 224
Cayley-Hamilton	Fact 4.9.22, 264	Fact 3.21.8, 224
theorem	Fact 4.9.23, 264	permutation matrix
companion matrix	Fact 4.9.10, 262	Fact 5.16.8, 357
Proposition 5.2.1, 284	similarity invariant	$\text { Fact 5.16.7, } 355$
Corollary [5.2.4, 286	Proposition 4.4.2, 240	spectrum
Corollary 5.2.5, 286	Proposition 4.6.2, 248	Fact 5.16.7 355
cross-product matrix Fact 4.9.19, 263	matrix	Clarkson inequalities
Fact 4.9.20, 263	Fact 4.9.13, 262	complex number
cyclic matrix	skew-symmetric	Fact 1.18.2, 69
Proposition 5.5.15 299	matrix	Schatten norm
definition	Fact 4.9.12, 262	Fact 9.9.34, 586
Definition 4.4.1, 239	Fact 4.9.19, 263	
degree	Fact 4.9.20, 263	closed left half
Proposition 4.4.3, 240	Fact 5.14.34 343	definition, 77
derivative   Lemma 4.4.8, 244	$\text { Fact 4.9.11 } 262$   upper	Clifford algebra real matrix
Proposition 4.4.6, 242	block-triangular	representation
generalized inverse	matrix	Fact 3.22.1, 225
Fact 6.3.20, 374	Fact 4.10.11, 267	Cline
Hamiltonian matrix   Fact 4.9.21, 264	Chebyshev's inequality rearrangement	factorization expression for the

group generalized inverse
Fact 6.6.12 395
generalized inverse of a matrix product
Fact 6.4.10, 379
closed half space
affine closed half space
Fact 2.9.6, 111
definition, 91
closed relative to a set
continuous function
Theorem 10.3.4, 624
definition
Definition 10.1.4, 622
closed set
complement
Fact 10.8.4, 632
continuous function
Theorem 10.3.10, 625
Corollary 10.3.5 624
Corollary 10.3.11, 625
definition
Definition 10.1.3, 621
image under linear
mapping
Fact 10.9 .8635
intersection
Fact 10.9.10, 635
Fact 10.9.11, 635
polar
Fact 2.9.4, 110
positive-semidefinite
matrix
Fact 10.8.18, 633
subspace
Fact 10.8.21, 633
union
Fact 10.9.10, 635
closed-loop spectrum
detectability
detectability
Lemma 12.16.17, 781
Hamiltonian
Proposition 12.16.14,
maximal solution of the Riccati
equation
Proposition 12.18.2, 787
observability
Lemma 12.16.17, 781
observable
eigenvalue
Lemma 12.16.16, 781
Riccati equation
Proposition 12.16.14. 781
Proposition 12.18.2, 787
Proposition 12.18 .3 , 787
Proposition 12.18 .7 . 789
closure
affine hull Fact 10.8.11, 633
complement
Fact 10.8.6 632
convex hull
Fact 10.8.13, 633
convex set
Fact 10.8.8 632
Fact 10.8.19, 633
definition
Definition 10.1.3, 621
smallest closed set
Fact 10.8.3 632
subset
Fact 10.9.1 634
union
Fact 10.9.2 634
closure point
definition
Definition 10.1.3, 621
closure point relative to a set
definition
Definition 10.1.4, 622
closure relative to a set
definition
Definition 10.1.4, 622
codomain
definition, 3
cofactor
definition, 105
determinant
expansion
Proposition 2.7.5, 105

## cogredient

diagonalization
commuting matrices
Fact 8.16.1, 507
definition, 422
diagonalizable matrix
Fact 8.16.2, 507
Fact 8.16.3, 507
positive-definite
matrix
Theorem 8.3.1, 423
Fact 8.16.5 507
positive-semidefinite matrix
Theorem 8.3.4, 423
unitary matrix
Fact 8.16.1, 507
cogredient diagonalization of positive-definite matrices
Weierstrass
Fact 8.16.2, 507

## cogredient

 transformationHermitian matrix
Fact 8.16.4, 507
Fact 8.16.6, 507
simultaneous diagonalization
Fact 8.16.4, 507
Fact 8.16.6, 507
simultaneous triangularization Fact 5.17.9, 358
Cohn
polynomial root bounds
Fact 11.20.11 711

## colinear

determinant Fact 2.20.1, 154
Fact 2.20.5, 155
Fact 2.20.9, 156
colleague form definition, 362
column
definition, 79
column norm
definition, 556
Hölder-induced norm
Fact 9.8.21, 575
Fact 9.8.23, 575
Kronecker product
Fact 9.9.61, 591
partitioned matrix Fact 9.8.11, 572
row norm
Fact 9.8.10, 572
spectral radius
Corollary 9.4.10, 556
column vector
definition, 78
column-stacking
operator, see vec
common divisor
definition, 233
common eigenvector commuting matrices
Fact 5.14.28, 342
norm equality
Fact 9.9.33, 585
simultaneous triangularization
Fact 5.17.1, 358
subspace
Fact 5.14.27, 342
common multiple
definition, 234
commutant
commutator
Fact 2.18.9, 150
Fact 7.5.2, 409
commutator
$2 \times 2$ matrices Fact 2.18.1, 149
adjoint operator
Fact 2.18.5, 149
Fact 2.18.6, 150
center subgroup
Fact 2.18.10, 150
centralizer
Fact 2.18.9, 150
Fact 7.5.2, 409
convergent sequence
Fact 11.14.9, 683
definition, 82
derivative of a matrix
Fact 11.14.11, 683
determinant
Fact 2.18.7, 150
dimension
Fact 2.18.9, 150
Fact 2.18.10, 150
Fact 2.18.11 150
Fact 7.5.2, 409
factorization
Fact 5.15.33, 351
Frobenius norm
Fact 9.9.26, 584
Fact 9.9.27, 584
Hermitian matrix
Fact 3.8.1, 184
Fact 3.8.3, 185
Fact 9.9.30, 585
idempotent matrix Fact 3.12.16, 200
Fact 3.12.17, 200
Fact 3.12.30, 204
Fact 3.12.31, 204
Fact 3.12.32, 205
Fact 3.15.4, 200
identities
Fact 2.12.19, 127
Fact 2.18.4, 149
infinite product Fact 11.14.18, 685
involutory matrix Fact 3.15.4, 212
lower triangular matrix

Fact 3.17.11, 214
matrix exponential Fact $11.14 .9,683$
Fact 11.14.11, 683
Fact 11.14.12, 683
Fact 11.14.13, 684
Fact 11.14.14, 684
Fact 11.14.15, 684
Fact 11.14.16, 684
Fact 11.14.17, 684
Fact 11.14.18, 685
maximum eigenvalue
Fact 9.9.30, 585
Fact 9.9.31, 585
maximum singular value
Fact 9.9.29, 584
Fact 9.14.9, 609
nilpotent matrix
Fact 3.12.16, 200
Fact 3.17.11 214
Fact 3.17.12, 214
Fact 3.17.13, 214
normal matrix
Fact 3.8.6, 185
Fact 3.8.7, 185
Fact 9.9.31, 585
power
Fact 2.18.2, 149
powers
Fact 2.18.3, 149
projector
Fact 3.13.23, 210
Fact 9.9.9, 581
rank
Fact 3.12.31 204
Fact 3.13.23, 210
Fact 5.17.5, 358
Fact 6.3.9, 371
Schatten norm
Fact 9.9.27, 584
series
Fact 11.14.17, 684
simultaneous triangularization
Fact 5.17.5, 358
Fact 5.17.6, 358
skew-Hermitian matrix

Fact 3.8.1, 184
Fact 3.8.4, 185
skew-symmetric
matrix
Fact 3.8.5, 185
spectrum
Fact 5.12.14, 335
spread
Fact 9.9.30, 585
Fact 9.9.31 585
submultiplicative
norm
Fact 9.9.8, 580
subspace
Fact 2.18.9, 150
Fact 2.18.10, 150
Fact 2.18.12, 151
sum
Fact 2.18.12, 151
trace
Fact 2.18.1 149
Fact 2.18.2, 149
Fact 5.9.18, 313
triangularization
Fact 5.17.5, 358
unitarily invariant norm
Fact 9.9.29, 584
Fact $9.9 .30,585$
Fact 9.9.31, 585
upper triangular matrix
Fact 3.17.11, 214
zero diagonal
Fact 3.8.2, 184
zero trace
Fact 2.18.11, 150
commutator realization
Shoda's theorem
Fact 5.9.18, 313
commuting matrices
centralizer
Fact 5.14.22, 341
Fact 5.14.24, 342
cogredient
diagonalization
Fact 8.16.1, 507
common eigenvector

Fact 5.14.28, 342
cyclic matrix
Fact 5.14.22, 341
diagonalizable
matrix
Fact 5.17.8, 358
dimension
Fact 5.10.15, 319
Fact 5.10.16, 319
Drazin generalized inverse
Fact 6.6.4, 394
Fact 6.6.5, 394
eigenvector
Fact 5.14.25, 342
generalized
Cayley-Hamilton
theorem
Fact 4.9.7, 261
Hermitian matrix
Fact 5.14.29, 342
idempotent matrix
Fact 3.16.5 213
Kronecker sum
Fact 7.5.4, 409
matrix exponential
Proposition 11.1.5, 645
Corollary 11.1.6, 645
Fact 11.14.2, 681
Fact 11.14.5, 682
nilpotent matrix
Fact 3.17.9 214
Fact 3.17.10, 214
normal matrix
Fact 3.7.28, 183
Fact 3.7.29 183
Fact 5.14.29, 342
Fact 5.17.7 358
Fact 11.14.5, 682
polynomial representation
Fact 5.14.22, 341
Fact 5.14.23, 342
Fact 5.14.24, 342
positive-definite matrix
Fact 8.9.40 455
positive-semidefinite matrix

Fact 8.19.5, 467,523
projector
Fact 6.4.33, 383
Fact $8.10 .23,458$
Fact 8.10.25 458
range-Hermitian matrix
Fact 6.4.26, 382
Fact 6.4.27, 382
rank subtractivity partial ordering
Fact 8.19.5, 523
simple matrix Fact 5.14.23, 342
simultaneous diagonalization Fact 8.16.1, 507
simultaneous triangularization
Fact 5.17.4, 358
spectral radius Fact 5.12.11 334
spectrum Fact 5.12.14, 335
square root
Fact 5.18.1, 359
Fact 8.10.25 458
star partial ordering Fact 2.10.36, 120
time-varying dynamics
Fact 11.13.4, 678
triangularization
Fact 5.17.4, 358

## compact set

continuous function
Theorem 10.3.8, 624
convergent subsequence Theorem 10.2.5, 623
convex hull
Fact 10.8.15, 633
definition, 622
existence of minimizer Corollary 10.3.9, 624
companion form matrix


Fact 2.19.8, 153
Fact 2.19.9, 153
matrix exponential
Proposition 11.2.8, 649
partitioned matrix
Fact 2.19.9, 153
similar matrices
Fact 5.9.31, 316
complex conjugate of a
matrix definition, 87
complex conjugate of a vector
definition, 85
complex conjugate transpose
complementary
subspaces
Fact 3.12.1, 198
definition, 87
determinant
Fact 9.11.1, 596
diagonalizable
matrix
Fact 5.14.5, 339
factorization
Fact 5.15.23, 349
generalized inverse
Fact 6.3.9, 371
Fact 6.3.10, 371
Fact 6.3.13, 372
Fact 6.3.16, 373
Fact 6.3.17, 373
Fact 6.3.18, 373
Fact 6.3.22, 374
Fact 6.3.27, 375
Fact 6.3.28, 375
Fact 6.4.7, 379
Fact 6.6.16, 396
Fact 6.6.17, 397
Fact 6.6.18, 397
group generalized
inverse
Fact 6.6.10, 394
Hermitian matrix
Fact 3.7.13, 180
Fact 5.9.8, 312
Fact 6.6.18, 397
idempotent matrix
Fact 5.9.21, 314
identity
Fact 2.10.33, 119
Fact 2.10.34, 120
Kronecker product Proposition 7.1.3, 400
left inverse
Fact 2.15.1] 140
Fact 2.15.2 140
matrix exponential
Proposition 11.2.8, 649
Fact 11.15.4, 689
Fact 11.15.6, 690
maximum singular value
Fact 8.17.3 508
Fact 8.18.11, 515
Fact 8.21.10, 533
nonsingular matrix
Fact 2.16.30, 146
norm
Fact 9.8.8, 572
normal matrix
Fact 5.14.30, 343
Fact 6.3.16, 373
Fact 6.3.17 373
Fact 6.6.10 394
Fact 6.6.17 397
partitioned matrix Fact 6.5.3, 386
positive-definite matrix
Fact 8.9.39 455
projector
Fact 3.13.1, 206
range
Fact 6.5.3, 386
Fact 8.7.2, 443
range-Hermitian matrix
Fact 3.6.4, 178
Fact 6.3.10 371
Fact 6.6.16 396
Schur product
Fact 8.21 .9533
similarity transformation Fact 5.9.8, 312

Fact 5.15.4, 345
singular value
Fact 5.11.34 328
subspace
Fact 2.9.28, 114
trace
Fact 8.12.4, 476
Fact 8.12.5, 476
Fact 9.13 .16604
unitarily invariant
norm
Fact 9.8.30, 576
unitarily
left-equivalent
matrices
Fact 5.10.18 319
Fact 5.10.19 319
unitarily
right-equivalent
matrices
Fact 5.10.18, 319
unitarily similar matrices
Fact 5.9.20, 314
Fact 5.9.21, 314

## complex conjugate transpose of a vector

definition, 85
complex inequality
Petrovich
Fact 1.18.2, 69
complex matrix
block $2 \times 2$
representation
Fact 2.19.3, 151
complex conjugate
Fact 2.19.4, 152
determinant
Fact 2.19.3, 151
Fact 2.19.10 153
partitioned matrix Fact 2.19.4, 152
Fact 2.19.5, 152
Fact 2.19.6, 152
Fact 2.19.7, 153
Fact 3.11.27 196
positive-definite matrix

Fact 3.7.9, 179
positive-semidefinite matrix
Fact 3.7.9, 179
rank
Fact 2.19.3, 151
complex numbers
$2 \times 2$ representation Fact 2.19.1, 151
circle
Fact 2.20.12, 158
Clarkson inequalities Fact 1.18.2, 69
Dunkl-Williams inequality
Fact 1.18.5, 71
equilateral triangle
Fact 2.20.6, 155
exponential function Fact 1.18.6, 71
identities
Fact 1.18.1, 68
Fact 1.18.2, 69
identity
Fact 1.18.4, 71
inequalities
Fact 1.18.1, 68
Fact 1.18.2, 69
Fact 1.18.5, 71
inequality
Fact 1.12.4, 47
infinite series
Fact 1.18.8, 73
logarithm function Fact 1.18.7, 72
Maligranda
inequality
Fact 1.18.5. 71
Massera-Schaffer inequality Fact 1.18.5, 71
parallelogram law Fact 1.18.2, 69
polarization identity Fact 1.18.2, 69
quadratic formula
Fact 1.18.3, 70
trigonometric function

Fact 1.19.3, 76
complex symmetric Jordan form similarity transformation
Fact 5.15.2, 345
Fact 5.15.3, 345
complex-symmetric matrix
T-congruence
Fact 5.9.22, 314
T-congruent
diagonalization
Fact 5.9.22, 314
unitary matrix
Fact 5.9.22, 314
component
definition, 78
composition
associativity
Proposition 1.2.1, 3
definition, 3
composition of functions
one-to-one function
Fact 1.5.16, 13
onto function
Fact 1.5.16, 13
compound matrix
matrix product
Fact 7.5.17, 411
compound of a matrix product
Binet-Cauchy
theorem
Fact 7.5.17, 411
comrade form
definition, 362
concave function
definition
Definition 8.6.14, 436
function composition Lemma 8.6.16, 436
nonincreasing function

Lemma 8.6.16, 436
condition number
linear system
solution
Fact 9.9.64, 592
Fact 9.9.65, 592
Fact 9.9.66, 592
cone
blunt
definition, 89
cone of image
Fact 2.9.26, 113
constructive characterization
Theorem 2.3.5 91
definition, 89
dictionary ordering
Fact 2.9.31, 115
image under linear mapping
Fact 2.9.26, 113
intersection
Fact 2.9.9, 111
left inverse Fact 2.9.26, 113
lexicographic ordering Fact 2.9.31, 115
one-sided definition, 89
pointed definition, 89
quadratic form Fact 8.14.11, 498
Fact 8.14.13, 498
Fact 8.14.14, 498
sum
Fact 2.9.9, 111
variational definition, 625
confederate form definition, 362
congenial matrix definition, 362
congruence
equivalence relation Fact 5.10.3, 317
generalized inverse
Fact 8.20.5 525
congruence transformation normal matrix
Fact 5.10.17, 319
congruent matrices biequivalent matrices Proposition 3.4.5, 174 definition
Definition 3.4.4 174
Hermitian matrix
Proposition 3.4.5, 174
Corollary 5.4.7 294
inertia
Corollary 5.4.7 294
Fact 5.8.22 311
Kronecker product
Fact 7.4.12 406
matrix classes
Proposition 3.4.5, 174
positive-definite matrix
Proposition 3.4.5, 174
Corollary 8.1.3, 419
positive-semidefinite matrix
Proposition 3.4.5, 174
Corollary 8.1.3, 419
range-Hermitian matrix
Proposition 3.4.5, 174
Fact 5.9.6, 312
skew-Hermitian
matrix
Proposition 3.4.5, 174
skew-symmetric
matrix
Fact 3.7.34 184
Fact 5.9.16 313
Sylvester's law of inertia, 294
symmetric matrix
Fact 5.9.16 313
unit imaginary
matrix
Fact 3.7 .34184
conical hull
definition, 89
conjugate parameters
barycentric
coordinates
Fact 1.16.11 62
connected graph
Definition 1.4.3, 9 irreducible matrix
Fact 4.11.2 273 walk
Fact 4.11.4 273
constant polynomial definition, 231
contained
definition, 2
continuity
spectrum
Fact 10.11.8, 638
Fact 10.11.9, 639
continuity of roots coefficients
polynomial
Fact 10.11.2, 638
continuous function
bounded set
Theorem 10.3.10, 625
Corollary 10.3 .11625
closed relative to a set
Theorem 10.3.4. 624
closed set
Theorem 10.3.10 625
Corollary $10.3 .5,624$
Corollary 10.3.11 625
compact set
Theorem 10.3.8, 624
convex function
Theorem 10.3.2, 624
Fact 10.11.12 639
convex set
Theorem 10.3.10, 625
Corollary 10.3.11 625
definition
Definition 10.3.1, 623
differentiable
function

Proposition 10.4.4, 626
existence of minimizer
Corollary 10.3.9, 624
fixed-point theorem
Theorem 10.3.10 625
Corollary 10.3.11, 625
linear function
Corollary 10.3.3 624
maximization
Fact 10.11 .4638
open relative to a set Theorem 10.3.4, 624
open set Corollary 10.3.5 624
open set image Theorem 10.3.7, 624
pathwise-connected set
Fact 10.11 .5638
continuous-time control problem
LQG controller Fact 12.23 .6804
continuously differentiable function
definition, 627
contractive matrix
complex conjugate transpose
Fact 3.20.12 220
definition
Definition 3.1.2, 166
partitioned matrix Fact 8.11.24 473
positive-definite matrix
Fact 8.11.13 470
contradiction
definition, 1
contragredient diagonalization
definition, 422
positive-definite matrix Theorem 8.3.2, 423

Corollary 8.3.3, 423
positive-semidefinite matrix
Theorem 8.3.5, 424
Corollary 8.3.7, 424
contrapositive
definition, 1
controllability
asymptotically stable matrix
Fact 12.20.5. 791
cyclic matrix
Fact 12.20 .13 , 792
diagonal matrix
Fact $12.20 .12,792$
final state
Fact 12.20.4, 791
geometric multiplicity Fact 12.20.14, 792
Gramian
Fact 12.20.17, 792
input matrix
Fact $12.20 .15,792$
positive-semidefinite matrix Fact 12.20.6, 791
positive-semidefinite ordering
Fact 12.20.8, 791
range
Fact 12.20.7, 791
shift
Fact 12.20.10, 792
shifted dynamics
Fact $12.20 .9,791$
skew-symmetric matrix Fact 12.20.5, 791
stabilization Fact 12.20.17, 792
Sylvester's equation Fact 12.21.14, 796
transpose Fact 12.20.16. 792
controllability Gramian asymptotically stable matrix

Proposition 12.7.9, 747
Corollary 12.7.10, 747
controllably
asymptotically
stable
Proposition 12.7.3, 743
Proposition 12.7.4. 745
Proposition 12.7.5, 746
Proposition 12.7.6, 746
Proposition 12.7.7, 746
frequency domain
Corollary 12.11.5, 767
$\mathbf{H}_{2}$ norm
Corollary 12.11.4, 767
Corollary 12.11.5, 767
$\mathrm{L}_{2}$ norm
Theorem 12.11.1 765
controllability matrix
controllable pair
Theorem 12.6.18, 742
definition, 737
rank
Corollary 12.6.3, 737
Sylvester's equation
Fact $12.21 .13,796$
controllability pencil
definition
Definition 12.6.12 740
Smith form
Proposition 12.6.15 741
Smith zeros
Proposition 12.6.16 741
uncontrollable eigenvalue Proposition 12.6 .13 740
uncontrollable
spectrum
Proposition 12.6.16, 741
controllable canonical form
definition, 750
equivalent
realizations
Corollary 12.9.9 752
realization
Proposition 12.9.3, 750
controllable dynamics
block-triangular matrix
Theorem 12.6.8, 739
orthogonal matrix
Theorem 12.6.8, 739
controllable eigenvalue
controllable subspace
Proposition 12.6 .17 742
controllable pair
asymptotically stable matrix
Proposition 12.7.9, 747
Corollary 12.7.10, 747
controllability matrix
Theorem 12.6.18, 742
cyclic matrix
Fact 5.14.9, 340
eigenvalue placement
Proposition 12.6 .19 743
equivalent realizations
Proposition 12.9.8, 752
Markov
block-Hankel
matrix
Proposition 12.9.11 754
minimal realization
Proposition 12.9.10 753
Corollary 12.9.15, 756
positive-definite matrix
Theorem 12.6.18 742
rank
Fact 5.14.10, 340
controllable subspace
block-triangular matrix
Proposition 12.6.9, 739

Proposition 12.6.10 740
controllable
eigenvalue
Proposition 12.6.17 742
definition
Definition 12.6.1, 735
equivalent
expressions
Lemma 12.6.2, 736
final state
Fact 12.20.3, 791
full-state feedback
Proposition 12.6.5, 737
identity shift
Lemma 12.6.7, 738
invariant subspace
Corollary 12.6.4 737
nonsingular matrix
Proposition 12.6 .10 . 740
orthogonal matrix
Proposition 12.6.9, 739
projector
Lemma 12.6.6. 738
controllably
asymptotically stable
asymptotically stable matrix
Proposition 12.8.3, 747
Proposition 12.8.5, 748
block-triangular
matrix
Proposition 12.7.3, 743
controllability
Gramian
Proposition 12.7.3, 743
Proposition 12.7.4, 745
Proposition 12.7.5, 746
Proposition 12.7.6, 746
Proposition 12.7.7, 746
definition
Definition 12.7.1, 743
full-state feedback
Proposition 12.7.2, 743
Lyapunov equation
Proposition 12.7.3, 743
orthogonal matrix

Proposition 12.7.3, 743 rank
Proposition 12.7.4, 745
Proposition 12.7.5, 746
stabilizability
Proposition 12.8.3, 747
Proposition 12.8.5, 748
convergent sequence
absolutely convergent
sequence
Proposition 10.2.7, 623
Proposition 10.2.9, 623
closure point
Proposition 10.2.4, 623
commutator
Fact 11.14.9, 683
discrete-time semistable matrix
Fact 11.21 .14714
generalized inverse
Fact 6.3.35 376
Fact 6.3.36 377
Hermitian matrix
Fact 11.14.7, 683
Fact 11.14.8, 683
inverse matrix
Fact 2.16.29, 146
Fact 4.10.5, 266
matrix exponential
Proposition 11.1.3, 644
Fact 11.14.7, 683
Fact 11.14.8, 683
Fact 11.14.9, 683
Fact 11.21 .14714
matrix sign function
Fact 5.15.21, 348
spectral radius
Fact 4.10.5 266
Fact 9.8.4, 572
square root
Fact 5.15.21, 348
Fact 8.9.32 454
unitary matrix
Fact 8.9.33 454
vectors
Fact 10.11.1, 638

## convergent sequence of matrices <br> definition <br> Definition 10.2.3, 622

convergent sequence of scalars
definition
Definition 10.2.2, 622
convergent sequence of vectors
definition
Definition 10.2.3, 622
convergent series definition
Definition 10.2.6, 623
Definition 10.2.8, 623
matrix exponential
Proposition 11.1.2, 644
convergent subsequence
compact set
Theorem 10.2.5, 623
converse
definition, 1
convex combination
definition, 89
determinant Fact 8.13.16 488
norm inequality Fact 9.7.15, 568
positive-semidefinite matrix
Fact 5.19.6, 360
Fact 8.13.16 488
convex cone
definition, 89
induced by transitive relation
Proposition 2.3.6. 93
inner product
Fact 10.9.13, 635
intersection
Fact 2.9.9 111
polar
Fact 2.9.4 110

		stable subspace 927
positive-semidefinite matrix, 417	Hermite-Hadamard inequality	positive-definite matrix
quadratic form	Fact 1.8.6, 22	Fact 8.14.17, 499
Fact 8.14.11, 498	Hermitian matrix	positive-semidefinite
Fact 8.14.13, 498	Fact 8.12.32, 482	matrix
Fact 8.14.14, 498	Fact 8.12.33, 482	Fact 8.14.15, 499
separation theorem	increasing function	Fact 8.20.20, 530
Fact 10.9.13, 635	Theorem 8.6.15, 436	reverse inequality
sum	Jensen	Fact 8.10.9, 457
Fact 2.9.9, 111	Fact 10.11.7 638	scalar inequality
union	Jensen's inequality	Fact 1.8.1, 21
Fact 2.9.10, 111	Fact 1.8.4, 21	Schur complement
	Fact 1.15.35, 57	Proposition 8.6.17 437
convex conical hul	Kronecker product	Lemma 8.6.16, 436
constructive	Proposition 8.6.17, 437	singular value
characterization	log majorization	Fact 11.16.14, 695
Theorem 2.3.5, 91	Fact 2.21.12, 163	Fact 11.16.15, 695
convex hull	logarithm	strong log
Fact 2.9.3, 110	Fact 11.16.14, 695	majorization
definition, 89	Fact 11.16.15, 695	Fact 2.21.9, 163
dual cone	logarithm	strong majorization
Fact 2.9.3, 110	determinant	Fact 2.21.8, 163
convex function	Proposition 8.6.17, 437	Fact 2.21.11, 163
constant funct	logarithm of trace	subdifferential
$\text { Fact 1.8.3, } 21$	Proposition8.6.17, 437	$\text { Fact 10.11.14, } 639$
continuous function	matrix exponential   Fact 8.14.18, 500	trace Proposition 8.6.17, 437
Theorem 10.3.2, 624	Fact 11.16.14, 695	Fact 8.14.17, 499
Fact 10.11.12, 639	Fact 11.16.15, 695	transformation
convex set	matrix functions	Fact 1.8.2, 21
Fact 10.11.11, 639	Proposition 8.6.17, 437	weak majorization
Fact 10.11.12, 639	matrix logarithm	Fact 2.21.8, 163
Fact 10.11.13, 639	Proposition 8.6.17, 4	Fact 2.21.9, 163
definition	midpoint convex	Fact 2.21.10, 163
Definition 1.2.3, 5	Fact 10.11.7, 638	Fact 2.21.11, 163
Definition 8.6.14, 436	minimizer	Fact 8.18.5, 513
derivative	Fact 8.14.15, 499	convex hull
Fact 10.11.14, 639	Niculescu's	affine hull
determinant	inequality	Fact 2.9.3, 110
Proposition 8.6.17, 437	Fact 1.8.5, 22	closure
Fact 2.13.17, 132	nondecreasing	Fact 10.8.13, 633
directional	function	compact set
differential	Lemma 8.6.16 436	Fact 10.8.15, 633
Fact 10.11.14, 639	one-sided directional	constructive
eigenvalue	differential	characterization
Corollary 8.6.19, 442	Proposition 10.4.1, 626	Theorem 2.3.5 91
Fact 8.18.5, 513	Popoviciu's	definition, 89
function composition	inequality	Hermitian matrix
Lemma 8.6.16 436	Fact 1.8.6, 22	diagonal

Fact 8.17.8, 510
open set
Fact 10.8.14, 633
simplex
Fact 2.20.4, 154
solid set
Fact 10.8.10, 632
spectrum
Fact 8.14.7, 496
Fact 8.14.8, 497
strong majorization
Fact 2.21.7, 163
convex polyhedron
volume
Fact 2.20.20, 160
convex set
affine hull
Theorem 10.3.2, 624
Fact 10.8.8, 632
closure
Fact 10.8.8, 632
Fact 10.8.19, 633
completely solid set
Fact 10.8.9 632
continuous function
Theorem 10.3.10, 625
Corollary 10.3.11, 625
convexity of image
Fact 2.9.26, 113
definition, 89
distance from a point
Fact 10.9.15, 636
Fact 10.9.16, 636
extreme point
Fact 10.8.23, 634
image under linear
mapping
Fact 2.9.26, 113
interior
Fact 10.8.8, 632
Fact 10.8.19, 633
intersection
Fact 2.9.9, 111
Fact 10.9.6, 634
left inverse
Fact 2.9.26, 113
norm
Fact 9.7.23, 570
open ball
Fact 10.8.1 632
positive-semidefinite
matrix
Fact 8.14.2 494
Fact 8.14.3 495
Fact 8.14.4 495
Fact 8.14.5 495
Fact 8.14.6 496
quadratic form
Fact 8.14.2, 494
Fact 8.14.3 495
Fact 8.14.4 495
Fact 8.14.5 495
Fact 8.14.6 496
Fact 8.14.9 497
Fact 8.14.11, 498
Fact 8.14.12, 498
Fact 8.14.13, 498
Fact 8.14.14, 498
set cancellation
Fact 10.9.7 635
solid set
Fact 10.8 .9632
sublevel set
Fact 8.14.1 494
sum
Fact 2.9.9, 111
sum of sets
Fact 2.9.1, 110
Fact 2.9.2, 110
Fact 10.9.4 634
Fact 10.9.5 634
Fact 10.9.7 635
union
Fact 10.9.7 634
convex sets
proper separation
theorem
Fact 10.9.14, 635
coplanar
determinant
Fact 2.20.2 154
copositive matrix
nonnegative matrix Fact 8.15.37, 507
positive-semidefinite matrix

Fact 8.15.37, 507
quadratic form
Fact 8.15.37 507

## coprime

polynomial
Fact 4.8.3 254
Fact 4.8.4 254

## coprime polynomials

Bezout matrix
Fact 4.8.6 255
Fact 4.8.7, 257
Fact 4.8.8, 257
definition, 233
resultant
Fact 4.8.4, 254
Smith-McMillan form
Fact 4.8.15, 259
Sylvester matrix Fact 4.8.4 254

## coprime right

 polynomial fraction descriptionSmith-McMillan form Proposition 4.7.16, 253
unimodular matrix Proposition 4.7.15, 253

## Copson inequality

sum of powers Fact 1.15.43 59
Cordes inequality maximum singular value
Fact 8.18.26 520
corollary definition, 1
cosine law
vector identity
Fact 9.7.4 563
cosine rule
triangle
Fact 2.20.11, 156

## Crabtree

Schur complement of a partitioned matrix
Fact 6.5.29, 393
Crabtree-Haynsworth quotient formula
Schur complement of a partitioned matrix Fact 6.5.29, 393

## Cramer's rule

linear system solution Fact 2.13.6, 129
creation matrix
upper triangular matrix Fact 11.11.4, 672

CRHP
closed right half plane definition, 77

## Crimmins

product of projectors Fact 6.3.32, 376
cross product adjugate Fact 6.5.16, 389
Cayley transform Fact 3.11.8, 190 identities Fact 3.10.1, 186 matrix exponential Fact 11.11.7, 673 Fact $11.11 .8,674$ Fact 11.11.9, 674
orthogonal matrix Fact 3.10.2, 189 Fact 3.10.3, 189 Fact 3.11.8, 190
outer-product
matrix Fact 3.11.8, 190
parallelogram
Fact 9.7.5, 565
cross-product matrix

Cayley transform
Fact 3.10.1, 186
characteristic
polynomial
Fact 4.9.19, 263
Fact 4.9.20, 263
identities
Fact 3.10.1, 186
matrix exponential
Fact 11.11.6, 673
Fact 11.11.12, 674
Fact 11.11.13, 675
Fact 11.11.16, 676
Fact 11.11.17, 676
orthogonal matrix
Fact 11.11.12, 674
Fact $11.11 .13,675$
spectrum
Fact 4.9.19, 263
CS decomposition
unitary matrix
Fact 5.9.29, 316
cube root
identity
Fact 2.12.23, 128
cubes
identity
Fact 2.12.24, 128
cubic
scalar inequality
Fact 1.11.14, 43
Fact 1.11.15, 43
Fact 1.11.16, 43
cubic polynomial
Cardano's
trigonometric solution
Fact 4.10.1, 265
CUD
closed unit disk definition, 670
cycle
definition
Definition 1.4.3, 9
graph Fact 1.6.4 13
symmetric graph
Fact 1.6.5, 14
cyclic eigenvalue
definition
Definition 5.5.4, 296
eigenvector
Fact 5.14.2, 338
semisimple
eigenvalue
Proposition 5.5.5, 296
simple eigenvalue
Proposition 5.5.5, 296
cyclic group
group
Fact 3.21.7, 223
cyclic inequality
scalar inequality Fact 1.11.11 42
cyclic matrix
asymptotically stable matrix
Fact $11.18 .25,702$
campanion matrix
Fact 5.16.5, 354
characteristic polynomial Proposition 5.5.15, 299
commuting matrices Fact 5.14.22, 341
controllability
Fact 12.20.13, 792
controllable pair
Fact 5.14.9, 340
definition
Definition 5.5.4, 296
determinant Fact 5.14.9, 340
identity perturbation Fact 5.14.16, 341
linear independence Fact 5.14.9, 340
matrix power Fact 5.14.9, 340
minimal polynomial
Proposition 5.5.15, 299
nonsingular matrix
Fact 5.14.9, 340
rank
Fact 5.11.1, 32
semisimple matrix
Fact [5.14.11, 340
similar matrices
Fact 5.16.5 354
simple matrix
Fact 5.14.11, 340
tridiagonal matrix
Fact 11.18.25, 702

## D

damped natural
frequency
definition, $\mathbf{6 5 4}$
Fact 5.14.35, 344
damping definition, 654
damping matrix partitioned matrix Fact 5.12.21, 337
damping ratio
definition, 654
Fact 5.14.35, 344
Davenport
orthogonal matrices and matrix exponentials Fact 11.11.13, 675

De Bruijn's inequality refined Cauchy-Schwarz inequality Fact 1.16.20, 64

De Morgan's laws logical equivalents Fact 1.5.1, 10

Decell
generalized inverse Fact 6.4.31 382
decreasing function definition Definition 8.6.12, 434
defect
adjugate
Fact 2.16.7 143
definition, 96
geometric
multiplicity
Proposition 4.5.2, 246
group-invertible matrix
Fact 3.6.1, 177
Hermitian matrix
Fact 5.8.7, 308
Fact 8.9.7, 451
identity
Fact 2.10.20, 117
identity involving defect
Corollary 2.5.5 97
identity with powers Proposition 2.5.8, 97
identity with
transpose
Corollary 2.5.3, 96
Kronecker sum
Fact 7.5.2, 409
partitioned matrix
Fact 2.11.3, 121
Fact 2.11.8 122
Fact 2.11.11, 123
product
Proposition 2.6.3, 99
product of matrices
Fact 2.10.14, 116
semisimple
eigenvalue
Proposition 5.5.8, 296
submatrix
Fact 2.11.20, 125
Sylvester's law of nullity
Fact 2.10.15, 117
defective eigenvalue
definition
Definition 5.5.4, 296
defective matrix
definition
Definition 5.5.4, 296
identity perturbation

Fact 5.14.16, 341
nilpotent matrix
Fact 5.14.18 341
outer-product matrix
Fact 5.14.3, 338
deflating subspace pencil Fact 5.13.1, 338

## degree

graph
Definition 1.4.3, 9
degree matrix
definition
Definition 3.2.1, 170
symmetric graph
Fact 4.11.1, 272
degree of a polynomial
definition, 231
degree of a polynomial matrix
definition, 234
derivative
adjugate
Fact 10.11.19, 640
Fact 10.11.21, 641
convex function
Fact 10.11.14, 639
determinant
Proposition 10.7.3, 631
Fact 10.11.19. 640
Fact $10.11 .21,641$
Fact 10.11.22, 641
Fact 10.11.23, 641
inverse matrix
Proposition 10.7.2, 630
Fact 10.11.18, 640
Fact 10.11.19, 641
logarithm of determinant
Proposition 10.7.3, 631
matrix
definition, 628
matrix exponential
Fact 8.12.31 482
Fact 11.14.3, 682

Fact 11.14.4, 682
Fact 11.14.10, 683
Fact 11.15.2, 689
matrix power
Proposition 10.7.2, 630
maximum singular value
Fact 11.15.2, 689
realization
Fact $12.22 .6,799$
squared matrix
Fact 10.11.17, 640
trace
Proposition 10.7.4 631
Fact 11.14.3, 682
transfer function
Fact 12.22.6. 799
derivative of a matrix commutator
Fact 11.14.11, 683
matrix exponential
Fact 11.14.11, 683
matrix product
Fact 11.13.8, 679
derivative of a matrix exponential
Bessis-Moussa-
Villani trace
conjecture
Fact 8.12.31, 482
derivative of an integral
Leibniz's rule
Fact 10.11.10, 639
derogatory eigenvalue definition
Definition 5.5.4 296
derogatory matrix
definition
Definition 5.5.4, 296
identity perturbation
Fact 5.14.16, 341
Descartes rule of signs
polynomial
Fact 11.17.1, 695
detectability
asymptotically stable matrix
Proposition 12.5.5, 735
Corollary 12.5.6, 735
block-triangular
matrix
Proposition 12.5.4. 735
closed-loop spectrum Lemma 12.16.17, 781
definition
Definition 12.5.1, 734
Lyapunov equation
Corollary 12.5.6. 735
observably
asymptotically
stable
Proposition 12.5.5, 735
orthogonal matrix Proposition 12.5.4, 735
output convergence
Fact 12.20 .2791
output injection
Proposition 12.5.2, 734
Riccati equation
Corollary 12.17.3, 783
Corollary 12.19.2, 790
state convergence Fact 12.20.2. 791
determinant
(1)-inverse

Fact 6.5.28, 393
adjugate
Fact 2.14.27, 139
Fact 2.16.3, 141
Fact 2.16.5, 142
affine hyperplane
Fact 2.20.3, 154
basic properties
Proposition 2.7.2, 103
Binet-Cauchy
formula
Fact 2.13.4, 129
block-triangular
matrix
Fact 2.14.8, 134
Cartesian
decomposition
Fact 8.13.4, 485
Fact 8.13.11 486

Cauchy matrix
Fact 3.20.14, 220
Fact 3.20.15, 221
Cauchy-Schwarz inequality
Fact 8.13.22, 489
cofactor expansion
Proposition 2.7.5 105
colinear
Fact 2.20.1, 154
Fact 2.20.5, 155
Fact 2.20.9, 156
column interchange
Proposition 2.7.2 103
commutator
Fact 2.18.7, 150
complex conjugate
Fact 2.19.8, 153
Fact 2.19.9, 153
complex conjugate transpose
Proposition 2.7.1 103
Fact 9.11.1, 596
complex matrix
Fact 2.19.3, 151
Fact 2.19.10, 153
convex combination
Fact 8.13.16, 488
convex function
Proposition 8.6.17, 437
Fact 2.13.17, 132
coplanar
Fact 2.20.2, 154
cyclic matrix
Fact 5.14.9, 340
definition, 103
derivative
Proposition 10.7.3, 631
Fact 10.11.19, 640
Fact 10.11.21, 641
Fact 10.11.22, 641
Fact 10.11.23, 641
dissipative matrix
Fact 8.13.2, 485
Fact 8.13.11, 486, 487
Fact 8.13.31, 491
eigenvalue
Fact 5.11.28, 326
Fact 5.11.29, 327

Fact 8.13.1, 485	invariant zero	ones matrix
elementary matrix	Fact 12.22 .14800	Fact 2.13.2, 129
Fact 2.16.1, 141	inverse	ones matrix
factorization	Fact 2.13.5, 129	perturbation
Fact 5.15.7, 346	inverse function	Fact 2.16.6, 142
Fact 5.15.34, 351	theorem	orthogonal matrix
Fibonacci numbers	Theorem 10.4.5, 627	Fact 3.11.21 196
Fact 4.11.12, 277	involutory matrix	Fact 3.11.22 196
Frobenius norm	Fact 3.15.1 212	Ostrowski-Taussky
Fact 9.8.39, 578	Fact 5.15.32, 351	inequality
full-state feedback	Kronecker product	Fact 8.13.2, 485
Fact 12.22 .14800	Proposition 7.1.11, 402	outer-product
generalized inverse	Kronecker sum	perturbation
Fact 6.5.26, 392	Fact 7.5.11 410	Fact 2.16.3, 141
Fact 6.5.27, 392	linear combination	output feedback
Fact 6.5.28, 393	Fact 8.13.18, 488	Fact $12.22 .13,800$
geometric mean	lower	partitioned matrix
Fact 8.10.43, 461	block-triangular	Corollary 2.8.5, 107
group	matrix	Lemma 8.2.6, 421
Proposition 3.3.6, 172	Proposition 2.7.1, 103	Fact 2.14.2, 133
Hadamard's	lower	Fact 2.14.3, 133
inequality	reverse-triangular	Fact 2.14.4, 133
Fact 8.13.33, 491	matrix	Fact 2.14.5, 134
Fact 8.13.34, 491	Fact 2.13.8, 130	Fact 2.14.6, 134
Hankel matrix	matrix exponential	Fact 2.14.7, 134
Fact 3.18.4 215	Proposition 11.4.6, 655	Fact 2.14.9, 134
Hermitian matrix	Corollary 11.2.4, 648	Fact 2.14.10 135
Corollary 8.4.10 427	Corollary 11.2.5, 648	Fact 2.14.11 135
Fact 3.7.21, 182	Fact 11.13.15 680	Fact 2.14.13 135
Fact 8.13.7 486	Fact 11.15.5, 689	Fact 2.14.14 136
Hua's inequalities	matrix logarithm	Fact 2.14.15, 136
Fact 8.13.25, 489	Fact 8.13.8 486	Fact 2.14.16 136
identity	Fact 8.18.30, 521	Fact 2.14.17 136
Fact 2.13.10, 130	Fact 9.8.39 578	Fact 2.14.18 137
Fact 2.13.11, 130	Fact 11.14.24 686	Fact 2.14.19 137
Fact 2.13.12, 130	maximum singular	Fact 2.14.20 137
Fact 2.13.13, 131	value	Fact 2.14.21 137
induced norm	Fact 9.14.17, 611	Fact 2.14.22 138
Fact 9.12.11, 601	Fact 9.14.18, 611	Fact 2.14.23 138
inequality	minimum singular	Fact 2.14.24, 138
Fact 8.13.24, 489	value	Fact 2.14.25, 138
Fact 8.13.25, 489	Fact 9.14.18, 611	Fact 2.14.26, 139
Fact 8.13.26, 490	nilpotent matrix	Fact 2.14.28 139
Fact 8.13.27, 490	Fact 3.17.9, 214	Fact 2.17.5, 147
Fact 8.13.28, 490	nonsingular matrix	Fact 2.19.3, 151
Fact 8.13.30, 490	Corollary[2.7.4, 104	Fact 2.19.9, 153
Fact 8.21.19, 534	Lemma 2.8.6, 108	Fact 5.12.21 337
integral	normal matrix	Fact 6.5.26, 392
Fact 11.13.15 680	Fact 5.12.12, 335	Fact 6.5.27, 392


		transfer function 933
Fact 6.5.28, 393	Fact 8.21.19, 534	sum of Kronecker product
Fact 8.13.35, 492	Fact 8.21.20, 535	
Fact 8.13.36, 492	Fact 9.8.39, 578	Fact 7.5.12, 410
Fact 8.13.38, 492	product	Fact 7.5.13, 410
Fact 8.13.39, 493	Proposition 2.7.3, 104	sum of matrices
Fact 8.13.40 493	rank-deficient matrix	Fact 5.12.12, 335
Fact 8.13.41, 493	Fact 2.13.3, 129	Fact 9.14.18, 611
Fact 8.13.42 493	reverse identity	sum of orthogonal
partitioned positive-	matrix	matrices
semidefinite	Fact 2.13.1, 128	Fact 3.11.22, 196
matrix	row interchange	Sylvester's identity
Proposition 8.2.3, 420	Proposition 2.7.2, 103	Fact 2.14.1, 132
permutation matrix	Schur complement	symplectic matrix
Fact 2.13.9, 130	Proposition 8.2.3, 420	Fact 3.19.10, 217
positive-definite	semidissipative	Fact 3.19.11 217
matrix	matrix	time-varying
Proposition 8.4.14 429	Fact 8.13.3, 485	dynamics
Fact 8.12.1, 475	Fact 8.13.4, 485	Fact 11.13.4, 678
Fact 8.13.6, 486	Fact 8.13.11 486, 487	Toeplitz matrix
Fact 8.13.7, 486	singular value	Fact 2.13.13, 131
Fact 8.13.8, 486	Fact 5.11.28, 326	Fact 3.20.7, 219
Fact 8.13.9, 486	Fact 5.11.29, 327	trace
Fact 8.13.10, 487	Fact 8.13.1, 485	Proposition 8.4.14 429
Fact 8.13.12, 487	Fact 9.13.23, 606	Corollary 11.2.4 648
Fact 8.13.13, 487	singular values	Corollary 11.2.5 648
Fact 8.13.14, 487	Fact 5.12.13, 335	Fact 2.13.16, 132
Fact 8.13.15, 488	skew-Hermitian	Fact 8.12.1, 475
Fact 8.13.17 488	matrix	Fact 8.13.20, 488
Fact 8.13.19, 488	Fact 3.7.11, 179	Fact 11.14.20, 685
Fact 8.13.21, 488	Fact 3.7.16, 181	transpose
Fact 8.13.23, 489	Fact 8.13.6, 486	Proposition 2.7.1] 103
positive-semidefinite matrix	skew-symmetric matrix	tridiagonal matrix Fact 3.20.6, 218
Corollary 8.4.15, 429	Fact 3.7.15, 181	Fact 3.20.7, 219
Fact 8.13.16, 488	Fact 3.7.33, 184	Fact 3.20.8, 219
Fact 8.13.18, 488	Fact 4.8.14, 259	Fact 3.20.9, 219
Fact 8.13.20, 488	Fact 4.9.20, 263	Fact 3.20.11, 220
Fact 8.13.21, 488	Fact 4.10.2, 266	unimodular matrix
Fact 8.13.24, 489	strongly increasing	Proposition 4.3.7 238
Fact 8.13.29, 490	function	unitary matrix
Fact 8.13.35, 492	Proposition 8.6.13, 435	Fact 3.11.15, 194
Fact 8.13.36, 492	subdeterminant	Fact 3.11.20, 196
Fact 8.13.38, 492	Fact 2.13.4, 129	Fact 3.11.23, 196
Fact 8.13.39, 493	Fact 2.14.12, 135	Fact 3.11.24, 196
Fact 8.13.40, 493	subdeterminant	upper bound
Fact 8.13.41, 493	expansion	Fact 2.13.14, 131
Fact 8.17.11, 511	Corollary 2.7.6, 106	Fact 2.13.15, 131
Fact 8.18.30, 521	submatrix	Fact 8.13.32, 491
Fact 8.21.8, 533	Fact 2.14.1, 132	Fact 8.13.33, 491

Fact 8.13.34, 491
Vandermonde matrix
Fact 5.16.3, 354
determinant identities
Magnus
Fact 2.13.16, 132
determinant inequality
Hua's inequalities
Fact 8.11.21, 472
determinant lower bound
nonsingular matrix
Fact 4.10.18, 269
determinant of a partitioned matrix
Hadamard's
inequality
Fact 6.5.26 392
determinant of an
outer-product
perturbation
Sherman-Morrison-
Woodbury
formula
Fact 2.16.3, 141
determinantal
compression
partitioned matrix
Fact 8.13.42, 493
diagonal
eigenvalue
Fact 8.12.3, 476
positive-semidefinite matrix
Fact 8.12.3, 476
zero
Fact 5.9.18, 313
diagonal dominance rank
Fact 4.10.23, 271
diagonal dominance theorem
nonsingular matrix
Fact 4.10.17, 269
Fact 4.10.18, 269
diagonal entries
definition, 80
Hermitian matrix
Fact 8.17.13, 512
similar matrices
Fact 5.9.13 313
unitarily similar matrices
Fact 5.9.17 313
Fact 5.9.19 313
unitary matrix
Fact 3.11.19, 195
Fact 8.17.10, 511
diagonal entries of a unitary matrix
Schur-Horn theorem
Fact 3.11.19, 195
Fact 8.17.10, 511
diagonal entry
eigenvalue
Fact 8.17.8, 510
Hermitian matrix Corollary 8.4.7 427
Fact 8.17.8 510
Fact 8.17.9 510
positive-semidefinite matrix
Fact 8.10.16, 457
strong majorization Fact 8.17.8 510
diagonal matrix
controllability
Fact 12.20 .12792
definition
Definition 3.1.3, 167
Hermitian matrix Corollary 5.4.5, 294
Kronecker product
Fact 7.4.3, 405
matrix exponential Fact 11.13 .16680
orthogonally similar matrices
Fact 5.9.15 313
unitary matrix
Theorem 5.6.4, 302
diagonalizable matrix
$S-N$ decomposition
Fact 5.9.3 311
additive
decomposition
Fact 5.9.3 311
adjugate
Fact 5.14.5, 339
cogredient
diagonalization
Fact 8.16.2, 507
Fact 8.16.3, 507
commuting matrices
Fact 5.17.8, 358
complex conjugate
transpose
Fact 5.14.5, 339
eigenvector
Fact 5.14.6. 339
example
Example 5.5.18, 299
factorization
Fact 5.15.27, 350
involutory matrix
Fact 5.14.20, 341
Jordan-Chevalley
decomposition
Fact 5.9.3 311
simultaneous
diagonalization
Fact 8.16.2, 507
Fact 8.16.3, 507
transpose
Fact 5.14.5, 339
diagonalizable over $\mathbb{C}$ definition
Definition 5.5.4, 296
diagonalizable over $\mathbb{F}$
identity perturbation Fact 5.14.16, 341
diagonalizable over $\mathbb{R}$
asymptotically stable matrix
Fact 11.17.10, 697
definition
Definition 5.5.4, 296
factorization
Proposition 5.5.12, 297
Corollary 5.5.22, 301
similar matrices
Proposition 5.5.12, 29
Corollary 5.5.22, 301
diagonally dominant matrix
nonsingular matrix Fact 4.10.17, 269
diagonally located block
definition, 80
Diaz-Goldman-Metcalf inequality
Hölder's inequality Fact 1.16.22, 65
dictionary ordering cone
Fact 2.9.31, 115
total ordering
Fact 1.5.8, 12
difference
Frobenius norm
Fact 9.9.25, 584
generalized inverse
Fact 6.4.37, 384
idempotent matrix
Fact 5.12.19, 337
maximum singular value
Fact 8.18.8, 515
Fact 9.9.32, 585
projector
Fact 3.13.24, 210
Fact 5.12.17, 335
Fact 6.4.20, 381
Schatten norm
Fact 9.9.23, 584
singular value
Fact 8.18.9, 515
Fact 8.18.10, 515
trace norm
Fact 9.9.24, 584
difference equation
golden ratio
Fact 4.11.12, 277
nonnegative matrix
Fact 4.11.12, 277
difference of
idempotent matrices
Makelainen
Fact 5.12.19 337
Styan
Fact 5.12.19, 337
difference of matrices
idempotent matrix
Fact 3.12.25, 202
Fact 3.12.27, 203
Fact 3.12.28, 203
Fact 3.12.30, 204
Fact 3.12.32, 205
differentiable function
continuous function
Proposition 10.4.4, 626
definition
Definition 10.4.3, 626
dihedral group
group
Fact 3.21.7, 223
Klein four-group
Fact 3.21.7, 223
dimension
commuting matrices
Fact 5.10.15, 319
Fact 5.10.16, 319
product of matrices
Fact 2.10.14, 116
rank inequality
Fact 2.10.4, 115
solid set
Fact 10.8.16, 633
subspace
Fact 2.10.4, 115
subspace dimension
theorem
Theorem 2.3.1 90
subspace intersection
Fact 2.9.20, 112
Fact 2.9.21, 113
Fact 2.9.22, 113
variational cone
Fact 10.8.20, 633
zero trace
Fact 2.18.11, 150
dimension of a subspace
definition, 90
dimension of an affine subspace
definition, 90
dimension of an arbitrary set
definition, 90
dimension theorem
rank and defect
Corollary 2.5.5, 97
directed cut
graph Fact 4.11.2, 273
direction cosines
Euler parameters Fact 3.11.10, 192
orthogonal matrix Fact 3.11.10, 192
directional differential
convex function
Fact 10.11.14, 639
discrete Fourier analysis
circulant matrix
Fact 5.16.7, 355
discrete-time
asymptotic stability
eigenvalue
Proposition 11.10.2 670
linear dynamical
system
Proposition 11.10.2
670
matrix exponential
Proposition 11.10.2 670
discrete-time asymptotically stable matrix
$2 \times 2$ matrix
Fact 11.21.1 712
asymptotically stable matrix
Fact 11.21.8, 713
Cayley transform
Fact 11.21.8, 713
definition
Definition 11.10.1, 670
discrete-time
asymptotically
stable polynomial
Proposition 11.10.4. 671
dissipative matrix
Fact 11.21.4, 712
Kronecker product
Fact 11.21.5, 713
Fact 11.21.6, 713
Lyapunov equation Proposition 11.10.5. 671
matrix exponential
Fact 11.21.7, 713
matrix limit
Fact $11.21 .12,714$
matrix power
Fact 11.21.2, 712
normal matrix
Fact 11.21.4, 712
partitioned matrix
Fact 11.21.9, 713
positive-definite matrix
Proposition 11.10.5. 671
Fact 11.21.9. 713
Fact 11.21 .15714
similar matrices
Fact 11.18.4, 698
discrete-time
asymptotically
stable polynomial
definition
Definition 11.10.3, 671
discrete-time asymptotically stable matrix
Proposition 11.10.4.
polynomial coefficients
Fact $11.20 .1,708$
Fact 11.20.2, 709
Fact 11.20 .3709
discrete-time control problem
LQG controller Fact 12.23.7, 804
discrete-time dynamics
matrix power Fact 11.21.3, 712
discrete-time Lyapunov equation
discrete-time asymptotically stable matrix
Fact 11.21 .15714
discrete-time
Lyapunov-stable
matrix
Proposition 11.10.6, 671
Stein equation
Fact 11.21.15 714
discrete-time Lyapunov stability
eigenvalue Proposition 11.10 .2 670
linear dynamical system
Proposition 11.10.2 670
matrix exponential
Proposition 11.10.2, 670
discrete-time Lyapunov-stable matrix
definition
Definition 11.10.1, 670
discrete-time Lyapunov equation
Proposition 11.10.6. 671
discrete-time
Lyapunov-stable
polynomial
Proposition 11.10.4, 671
group generalized inverse
Fact 11.21.11, 714
Kreiss matrix
theorem
Fact 11.21.17, 715
Kronecker product
Fact 11.21.5. 713
Fact 11.21 .6713
logarithm
Fact 11.14.19, 685
matrix exponential Fact 11.21 .7713
matrix limit
Fact $11.21 .11,714$
matrix power
Fact 11.21 .2712
Fact $11.21 .10,714$
maximum singular value
Fact 11.21.17. 715
normal matrix Fact 11.21.4, 712
positive-definite matrix
Proposition 11.10.6, 671
positive-semidefinite matrix
Fact $11.21 .15,714$
semicontractive matrix
Fact 11.21.4 712
semidissipative matrix
Fact 11.21.4 712
similar matrices Fact 11.18.4 698
unitary matrix Fact 11.21.13. 714
discrete-time
Lyapunov-stable polynomial definition

Definition 11.10.3, 671
discrete-time
Lyapunov-stable matrix
Proposition 11.10.4, 671
discrete-time semistability
eigenvalue
Proposition 11.10.2. 670
linear dynamical system
Proposition 11.10.2. 670
matrix exponential
Proposition 11.10.2, 670
discrete-time
semistable matrix
companion form
matrix
Fact 11.21.18, 715
convergent sequence
Fact 11.21 .14 . 714
definition
Definition 11.10.1, 670
discrete-time
semistable
polynomial
Proposition 11.10.4. 671
idempotent matrix Fact 11.21.10, 714
Kronecker product Fact 11.21.5. 713 Fact 11.21.6. 713
limit
Fact 11.21.10, 714
matrix exponential
Fact 11.21.7, 713
Fact 11.21.14. 714
similar matrices
Fact 11.18.4, 698
discrete-time semistable polynomial definition

Definition 11.10.3, 671
discrete-time semistable matrix Proposition 11.10.4 671
discrete-time time-varying system
state convergence Fact 11.21.16, 715
discriminant compound matrix Fact 7.5.17, 411
disjoint
definition, 3
dissipative matrix
asymptotically stable matrix
Fact 11.18.21, 701
Fact 11.18.37, 705
definition Definition 3.1.1 165
determinant
Fact 8.13.2, 485
Fact 8.13.11, 486, 487
Fact 8.13.31 491
discrete-time asymptotically stable matrix Fact 11.21.4, 712
Frobenius norm Fact 11.15.3, 689
inertia
Fact 5.8.12, 309
Kronecker sum
Fact 7.5.8, 409
matrix exponential
Fact $11.15 .3,689$
maximum singular value
Fact 8.17.12, 511
nonsingular matrix Fact 3.20.13, 220
normal matrix
Fact 11.18.37, 705
positive-definite matrix
Fact 8.17.12, 511

Fact 11.18.21, 701
range-Hermitian matrix
Fact 5.14.31, 343
semidissipative
matrix
Fact 8.13.31, 491
spectrum
Fact 8.13.31, 491
strictly dissipative matrix Fact 8.9.31, 453
unitary matrix Fact 8.9.31, 453
distance from a point set
Fact 10.9.15, 636
Fact 10.9.16, 636
distance to singularity nonsingular matrix Fact 9.14.7, 608
distinct eigenvalues
eigenvector
Proposition 4.5.4 246
distinct roots
Bezout matrix
Fact 4.8.9, 258
distributive identities
definition, 82
divides
definition, 233
division of polynomial matrices
quotient and remainder
Lemma 4.2.1, 234
Dixmier
projectors and unitarily similar matrices Fact 5.10.12, 319

Djokovic
maximum singular value of a product
of elementary
projectors
Fact 9.14.1 607
rank of a Kronecker
product
Fact 8.21.16, 534
Schur product of positive-definite matrices
Fact 8.21.13, 533
Djokovic inequality
Euclidean norm
Fact 9.7.7, 565
domain
definition, 3
Dormido
asymptotically stable
polynomial
Fact 11.17.8, 697
double cover
orthogonal matrix
parameterization
Fact 3.11.10, 192
spin group
Fact 3.11.10, 192
doublet
definition
Fact 2.10.24, 118
outer-product matrix
Fact 2.10.24. 118
Fact 2.12.6. 126
spectrum
Fact 5.11.13, 323
doubly stochastic matrix
strong majorization
Fact 2.21.7, 163
Douglas-FillmoreWilliams
lemma
factorization
Theorem 8.6.2, 431
Dragomir's inequality
harmonic mean

Fact 1.16.24, 65
Dragomir-Yang inequalities
Euclidean norm
Fact 9.7.8, 566
Fact 9.7.9, 566
Drazin
real eigenvalues
Fact 5.14.13, 340
Drazin generalized inverse
block-circulant matrix
Fact 6.6.1, 393
commuting matrices
Fact 6.6.4, 394
Fact 6.6.5, 394
definition, 367
idempotent matrix Proposition 6.2.2, 368
integral
Fact 11.13 .12679
Fact 11.13.14, 680
Kronecker product
Fact 7.4.31 408
matrix exponential
Fact 11.13 .12679
Fact 11.13 .14680
matrix limit
Fact 6.6.11 395
matrix product
Fact 6.6.3, 393
Fact 6.6.4, 394
matrix sum
Fact 6.6.5, 394
null space
Proposition6.2.2, 368
partitioned matrix
Fact 6.6.1, 393
Fact 6.6.2, 393
positive-semidefinite matrix
Fact 8.20.2, 525
range
Proposition 6.2.2, 368
sum
Fact 6.6.1, 393
tripotent matrix

Proposition6.2.2, 368
uniqueness
Theorem 6.2.1, 367
dual cone
convex conical hull
Fact 2.9.3, 110
definition, 91
intersection
Fact 2.9.5 111
sum of sets
Fact 2.9.5 111
dual norm
adjoint norm
Fact 9.8.8, 572
definition
Fact 9.7.22, 570
induced norm
Fact 9.7.22, 570
quadratic form
Fact 9.8.34, 577
Dunkl-Williams
inequality
complex numbers
Fact 1.18.5, 71
norm
Fact 9.7.10, 566
Fact 9.7.13, 567
dynamic compensator
LQG controller
Fact 12.23.6, 804
Fact 12.23.7 804

## E

## Eckart-Young theorem

fixed-rank
approximation
Fact 9.14.28 614
eigensolution
eigenvector
Fact 11.13.6, 679
Fact 11.13.7 679
eigenvalue
$\mathrm{SO}(n)$
Fact 5.11.2, 321
adjugate

		Young inequality 939
Fact 4.10.7, 267	generalized Schur	orthogonal matrix
asymptotic spectrum	inequality	Fact 5.11.2, 321
Fact 4.10.28, 272	Fact 9.11.6. 598	partitioned matrix
asymptotic stability	Hermitian matrix	Proposition 5.6.6 303
Proposition 11.8.2, 662	Theorem 8.4.5 426	Fact 5.12.20, 337
bound	Theorem 8.4.9, 427	Fact 5.12.21, 337
Fact 4.10.22, 271	Theorem 8.4.11, 428	Fact 5.12.22, 338
Fact 5.11.22, 325	Corollary 8.4.2, 425	positive-definite
Fact 5.11.23, 325	Corollary 8.4.6, 426	matrix
Fact 9.11.7, 598	Corollary 8.4.7, 427	Fact 8.10.24, 458
bounds	Corollary 8.6.19, 442	Fact 8.15.20, 503
Fact 4.10.16, 269	Lemma 8.4.3, 425	Fact 8.15.29, 505
Fact 4.10.20, 270	Lemma 8.4.4, 425	Fact 8.15.30, 505
Cardano's	Fact 8.10.4, 456	Fact 8.18.29, 521
trigonometric	Fact 8.15.20, 503	Fact 8.21.21, 535
solution	Fact 8.15.31 505	positive-semidefinite
Fact 4.10.1, 265	Fact 8.17.8, 510	matrix
	Fact 8.17.9, 510	Fact 8.12.3, 476
decomposition	Fact 8.17.13, 512	Fact 8.15.11, 501
Fact 5.11.21, 325	Fact 8.17.15, 512	Fact 8.18.6, 514
convex function	Fact 8.17.16, 512	Fact 8.18.19, 518
Corollary 8.6 .19442	Fact 8.18.4, 513	Fact 8.18.20, 518
	Fact 8.18.17 517	Fact 8.18.22, 519
18.5	Fact 8.21.28, 536	Fact 8.18.23, 519
definition, 240	Hermitian part	Fact 8.18.24, 520
determinant	Fact 5.11.24, 325	Fact 8.18.27, 521
Fact 5.11.28, 326, 327	Hölder matrix norm	Fact 8.20.17, 528
Fact 8.13.1, 485	Fact 9.11.6, 598	Fact 8.21.18, 534
diagonal entry	Kronecker product	Fact 8.21.20, 535
Fact 8.12.3, 476	Proposition 7.1.10, 401	quadratic form
Fact 8.17.8, 510	Fact 7.4.13, 406	Lemma 8.4.3, 425
discrete-time	Fact 7.4.15, 406	Fact 8.15.20, 503
asymptotic stability	Fact 7.4.21, 406	root locus
Proposition 11.10.2,	Fact 7.4.28, 407	Fact 4.10.28, 272
670	Fact 7.4.32, 408	Schatten norm
discrete-time	Kronecker sum	Fact 9.11.6, 598
Lyapunov stability	Proposition 7.2.3, 403	Schur product
Proposition 11.10.2,	Fact 7.5.5, 409	Fact 8.21.18, 534
670	Fact 7.5.7, 409	Schur's inequality
discrete-time	Fact 7.5.16, 411	Fact 8.17.5, 509
semistability	Lyapunov stability	Fact 9.11.3, 597
Proposition 11.10.2,	Proposition 11.8.2, 662	semistability
670	matrix logarithm	Proposition 11.8.2, 662
Frobenius norm	Theorem 11.5.1, 656	singular value
Fact 9.11.3, 597	matrix sum	Fact 8.17.5, 509
Fact 9.11.5, 598	Fact 5.12.2, 333	Fact 8.17.6, 509
generalized	Fact 5.12.3, 333	Fact 9.13.22, 606
eigenvector	normal matrix	skew-Hermitian
Fact 5.14.8, 339	Fact 5.14.15, 341	matrix

Fact 5.11.6, 321
skew-symmetric
matrix
Fact 4.10.2, 266
spectral abscissa
Fact 5.11.24, 325
strong majorization
Corollary 8.6.19 442
Fact 8.17.8, 510
Fact 8.18.4 513
Fact 8.18.29, 521
subscript convention, 240
symmetric matrix
Fact 4.10.1, 265
trace
Proposition 8.4.13, 428
Fact 5.11.11, 322
Fact 8.17.5, 509
Fact 8.18.18, 518
weak $\log$
majorization
Fact 8.18.27, 521
weak majorization
Fact 8.17.5, 509
Fact 8.18.5, 513
Fact 8.18.6, 514
Fact 8.18.27, 521
eigenvalue bound
Bendixson's theorem
Fact 5.11.21, 325
Fact 9.11.8, 598
Browne's theorem
Fact 5.11.21, 325
Frobenius norm
Fact 9.12.3, 599
Henrici
Fact 9.11.3, 597
Hermitian matrix
Fact 9.12.3, 599
Hirsch's theorem
Fact 5.11.21, 325
Hirsch's theorems
Fact $9.11 .8,598$
Hölder norm
Fact 9.11.8, 598
trace
Fact 5.11.45, 331
eigenvalue bounds
ovals of Cassini Fact 4.10.21, 271
eigenvalue characterization
minimum principle Fact 8.17.15, 512
eigenvalue inclusion region
Lyapunov equation Fact 12.21 .20798
eigenvalue inequality
$2 \times 2$ matrix Fact 8.17.1 508
Hermitian matrix Lemma 8.4.1, 424 Fact 8.18.3 513
Poincaré separation theorem Fact 8.17.16, 512
eigenvalue of Hermitian part
maximum singular value
Fact 5.11.25, 326
minimum singular value
Fact 5.11.25, 326
singular value Fact 5.11.27, 326
Fact 8.17.4 509
weak majorization Fact 5.11.27, 326
eigenvalue perturbation
Frobenius norm
Fact 9.12.4 599
Fact 9.12.9 601
Fact 9.12.10, 601
Hermitian matrix
Fact 4.10.27, 272
maximum singular value
Fact 9.12.4 599
Fact 9.12.8 601
normal matrix
Fact 9.12.8 601
partitioned matrix Fact 4.10.27, 272
unitarily invariant norm Fact 9.12.4, 599
eigenvalue placement
controllable pair
Proposition 12.6.19, 743
observable pair
Proposition 12.3.19, 732
eigenvector
adjugate
Fact 5.14.26 342
commuting matrices
Fact 5.14.25 342
cyclic eigenvalue
Fact 5.14.2, 338
definition, 245
diagonalizable matrix
Fact 5.14.6, 339
distinct eigenvalues
Proposition 4.5.4, 246
eigensolution
Fact 11.13.6, 679
Fact 11.13.7, 679
generalized eigensolution
Fact 11.13.7, 679
Kronecker product
Proposition 7.1.10, 401
Fact 7.4.21, 406
Fact 7.4.32, 408
Kronecker sum
Proposition 7.2.3, 403
Fact 7.5.16, 411
M-matrix
Fact 4.11.10, 276
normal matrix
Proposition 4.5.4, 246
Lemma 4.5.3, 246
similarity
transformation
Fact 5.14.6, 339
Fact 5.14.7, 339
upper triangular matrix Fact 5.17.1, 358
either definition, 1
element definition, 2
elementary divisor companion matrix Theorem 5.2.9, 287
definition, 287
factorization Fact 5.15.37, 351
hypercompanion matrix Lemma 5.3.1, 288
elementary matrix definition Definition 3.1.2, 166
inverse matrix
Fact 3.7.20, 182 nonsingular matrix Fact 5.15.12, 347 properties and matrix types Fact 3.7.19, 181
semisimple matrix Fact 5.14.17, 341
spectrum
Proposition 5.5.21, 300
unitarily similar matrices Proposition 5.6.3, 302
elementary multicompanion form
definition, 287
elementary polynomial matrix
definition, 236
elementary projector definition Definition 3.1.1, 165
elementary reflector Fact 3.13.7, 207 Fact 3.14.3, 211
hyperplane
Fact 3.13.8, 207
maximum singular value
Fact 9.14.1, 607
reflector
Fact 5.15.13, 347
spectrum
Proposition 5.5.21, 300
trace
Fact 5.8.11, 309
unitarily similar matrices
Proposition 5.6.3, 302
elementary reflector
definition Definition 3.1.1, 165
elementary projector
Fact 3.13.7, 207
Fact 3.14.3, 211
hyperplane Fact 3.14.5, 211
null space
Fact 3.13.7, 207
orthogonal matrix Fact 5.15.15 347
range
Fact 3.13.7, 207
rank
Fact 3.13.7, 207
reflection theorem
Fact 3.14.4, 211
reflector
Fact 5.15.14, 347
spectrum
Proposition 5.5.21, 300
trace
Fact 5.8.11, 309
unitarily similar matrices
Proposition 5.6.3, 302
elementary symmetric function
Schur concave function
Fact 1.15.20, 53
elementary symmetric mean

Newton's inequality
Fact 1.15.11, 50
elementary symmetric polynomial
inequality
Fact 1.15.11, 50
Newton's identities
Fact 4.8.2, 254
ellipsoid
positive-definite matrix Fact 3.7.35, 184
volume
Fact 3.7.35, 184
Embry
commuting matrices
Fact 5.12.14, 335
empty matrix
definition, 83
empty set
definition, 2
Enestrom-Kakeya theorem
polynomial root locations
Fact 11.20.3. 709
entropy
logarithm Fact 1.15.45, 59
Fact 1.15.46, 59
Fact 1.15.47, 59
Fact 1.16.30, 67
Schur concave function Fact 2.21.6, 162
strong majorization Fact 2.21.6. 162
entry
definition, 79
EP matrix, see range-Hermitian matrix
definition, 229
equi-induced norm
definition
Definition 9.4.1, 553
normalized norm
Theorem 9.4.2, 553
spectral radius
Corollary 9.4.5, 554
submultiplicative norm
Corollary 9.4.4, 554
Fact 9.8.45 579
equi-induced self-adjoint norm
maximum singular value
Fact 9.13.5 602
equi-induced unitarily invariant norm maximum singular value
Fact 9.13.4 602
equilateral triangle complex numbers Fact 2.20.6, 155
equilibrium definition, 660
equivalence
equivalence relation
Fact 5.10.3, 317
equivalence class equivalent matrices Fact 5.10.4, 317
induced by equivalence relation Theorem 1.3.6, 6 similar matrices Fact 5.10.4 317
unitarily similar matrices
Fact 5.10.4 317
equivalence class induced by definition, 6
equivalence hull definition Definition 1.3.4, 5
relation
Proposition 1.3.5, 6
equivalence relation
Abelian group
Proposition 3.4.2, 173
congruence
Fact 5.10.3, 317
definition
Definition 1.3.2, 5
equivalence
Fact 5.10.3, 317
equivalence class
Theorem 1.3.6, 6
group
Proposition 3.4.1, 173
Proposition 3.4.2, 173
intersection
Proposition 1.3.3, 5
left equivalence
Fact 5.10.3, 317
partition
Theorem 1.3.7. 7
right equivalence
Fact 5.10.3, 317
similarity
Fact 5.10.3, 317
unitary
biequivalence
Fact 5.10.3, 317
unitary left equivalence
Fact 5.10.3 317
unitary right equivalence Fact 5.10.3 317 unitary similarity Fact 5.10.3 317
equivalent matrices
equivalence class
Fact 5.10.4 317
equivalent norms equivalence Theorem 9.1.8, 546
norms Fact 9.8.12 573
equivalent realizations
controllable
canonical form
Corollary 12.9.9, 752
controllable pair
Proposition 12.9.8, 752
invariant zero
Proposition 12.10.10, 764
observable canonical form
Corollary $12.9 .9,752$
observable pair
Proposition 12.9.8, 752
similar matrices
Definition 12.9.6. 751
ergodic theorem
unitary matrix limit
Fact 6.3.34, 376
Euclidean distance matrix
negative-semidefinite matrix
Fact 9.8.14, 573
Schoenberg
Fact 9.8.14, 573
Euclidean norm
Cauchy-Schwarz inequality Corollary 9.1.7, 546
definition, 545
Djokovic inequality Fact 9.7.7 565
Dragomir-Yang inequalities
Fact 9.7.8 566
Fact 9.7.9 566
generalized Hlawka inequality
Fact 9.7.7 565
inequality
Fact 9.7.4 563
Fact 9.7.6 565
Fact 9.7.7 565
Fact 9.7.8, 566
Fact 9.7.9, 566
Fact 9.7.18, 569
Kronecker product
Fact 9.7.27, 570

outer-product matrix	positivesemidefinite	convex function Fact 1.10.26 34
Fact 9.7.27, 570	matrix	inequality
projector	Fact 8.13.38, 492	Fact 1.10.27 34
Fact 9.8.2 571		limit
Fact 9.8.3, 571	exactly proper rational	Fact 1.9.18, 26
Fact 10.9.17, 636		scalar inequalities
reverse triangle	ition	Fact $1.10 .28,35$
inequality	finition 4.7.1, 249	scalar inequality
Fact 9.7.6, 565	exactly proper ration	Fact 1.9.14, 25
	ransfer function	Fact 1.9.15, 25
Euler constan	definition	Fact 1.9.16, 25
logarithm Fact 1.7 .5, 18	Definition 4.7.2 249	Fact 1.9.17, 26
Euler	existence	exponential inequality
rection cosines	matis	
Fact 3.11.10, 192		
orthogonal matrix		extended infinite
Fact 3.11.10, 192	orthogonal matrix	interval
Fact 3.11.11, 193		definition, xxxv
Rodrigues's formulas Fact 3.11.11 193	matrix   Fact 3.9.1 185	extreme point convex set
Euler product formula	skew-Hermitian	Fact 10.8.23 634
ime num	tri	Krein-Milma
Fact 1.7.8, 19	Fact 3.9.4, 186	
zeta function   Fact 1.7.8, 19	existential statement definition, 2	Fat 0.8 .23
Euler totient function positive-semidefinite	logical equivalents   Fact 1.5.4. 11	F
$\begin{aligned} & \text { matrix } \\ & \text { Fact 8.8.5, } 447 \end{aligned}$	exogenous input definition, 772	face Euler's polyhedron formula
Euler's inequality triangle Fact [2.20.111 156	exponent scalar inequality Fact 1.9.1, 22	$\begin{aligned} & \text { Fact } 1.6 .714 \\ & \text { fact } \\ & \text { definition, } 1 \end{aligned}$
Euler's polyhedron formula	exponential, see matrix	factori
face	exponential	bounds
Fact 1.6.7, 14	inequality	Fact 1.9.20, 26
ven polynomial	matrix logarithm	
asymptotically stable	Fact 11.14.26, 686	Stirling's formula
polynomial	positive-definite	Fact 1.9.19, 26
Fact 11.17 .6696	atrix	
definition, 232	Fact 11.14.26, 686	asymptotically stable
Everitt determinant of a partitioned	exponential function complex numbers Fact 1.18.6, 71	matrix   Fact 11.18.22, 701   Bezout matrix

Fact 5.15.24, 349
commutator
Fact 5.15.33, 351
complex conjugate
transpose
Fact 5.15.23, 349
determinant
Fact 5.15.7, 346
Fact 5.15.34, 351
diagonalizable
matrix
Fact 5.15.27, 350
diagonalizable over $\mathbb{R}$
Proposition 5.5.12, 297
Corollary 5.5.22, 301
Douglas-FillmoreWilliams
lemma
Theorem 8.6.2, 431
elementary divisor
Fact 5.15.37, 351
full rank
Fact 5.15.40, 351
generalized inverse
Fact 6.5.25 392
group generalized
inverse
Fact 6.6.12, 395
Hermitian matrix
Fact 5.15.17, 348
Fact 5.15.25, 349
Fact 5.15.26, 349
Fact 5.15.41, 351
Fact 8.16.1, 507
idempotent matrix
Fact 5.15.28, 350
Fact 5.15.30, 350
involutory matrix
Fact 5.15.18, 348
Fact 5.15.31, 350
Fact 5.15.32, 351
Jordan form
Fact 5.15.5, 346
lower triangular matrix
Fact 5.15.10, 346
LULU
decomposition
Fact 5.15.11, 346
nilpotent matrix
Fact 5.15.29, 350
nonsingular matrix
Fact 5.15.12, 347
Fact 5.15.36, 351
orthogonal matrix
Fact 5.15.15, 347
Fact 5.15.16, 347
Fact 5.15.31, 350
Fact 5.15.35, 351
partitioned matrix, 420
Proposition 2.8.3, 107
Proposition 2.8.4, 107
Fact 2.14.9 134
Fact 2.16.2 141
Fact 2.17.3 147
Fact 2.17.4 147
Fact 2.17.5 147
Fact 6.5.25 392
Fact 8.11.25, 473
Fact 8.11.26, 473
positive-definite
matrix
Fact 5.15.26, 349
Fact 5.18.4 359
Fact 5.18.5 359
Fact 5.18.6 359
Fact 5.18.8, 360
positive-semidefinite matrix
Fact 5.15.22, 349
Fact 5.15.26, 349
Fact 5.18.2 359
Fact 5.18.3 359
Fact 5.18.7 359
Fact 8.9.36 454
Fact 8.9.37 454
projector
Fact 5.15.13, 347
Fact 5.15.17, 348
Fact 6.3.32 376
range
Theorem 8.6.2, 431
reflector
Fact 5.15.14, 347
reverse-symmetric matrix
Fact 5.9.12 313
rotation-dilation
Fact 2.19.2, 151
shear
Fact 5.15.11, 346
similar matrices
Fact 5.15.6, 346
skew-symmetric
matrix
Fact 5.15.37 351
Fact 5.15.38, 351
symmetric matrix
Corollary 5.3.9, 292
Fact 5.15.24, 349
ULU decomposition Fact 5.15.11, 346
unitary matrix
Fact 5.15.8, 346
Fact 5.18.6, 359
upper triangular matrix
Fact 5.15.8, 346
Fact 5.15.10, 346
Fan
convex function
Proposition 8.6.17, 542
trace of a Hermitian matrix product
Fact 5.12.4, 333
trace of a product of orthogonal matrices
Fact 5.12.10, 334
Fan constant definition Fact 8.10.48, 465

## Fan dominance theorem

singular value Fact 9.14.19, 611

Farkas theorem
linear system solution
Fact 4.11.14, 279
fast Fourier transform
circulant matrix Fact 5.16.7, 355

		companion matrix 945
feedback interconnection realization	Lyapunov equation Fact 12.21.17. 797	circulant matrix   Fact 5.16.7, 355
	Finsler's lemma	Vandermonde matrix
$\begin{aligned} & \text { Proposition 12.13.4, } \\ & 772 \end{aligned}$	positive-definite	Fact 5.16.7, 355
Proposition 12.14.1	near combination	Fourier
774	24	Parseval's theorem
Fact 12.22.8, 799	Fact 8.15.25, 504	Fact 12.22.1
transfer function   Fact 12.22.8, 799	Fischer's inequality positive-semidefinite	Frame finite sequence for
feedback signal definition, 772	inant	inverse matr
	Fact 8.13.36, 492	Fact 2.16.28
Fejer's theorem   positive-semidefinite matrix   Fact 8.21.35, 538	positive-semidefinite matrix determinant reverse inequality Fact 8.13.41, 493	Franck   maximum singular value lower bound on distance to
		singularity
Fer expansion time-varyin	fixed-point theorem continuous function	Fact 9.14.6, 608
dynamics	Theorem 10.3.10, 625	Fréchet derivative
Fact 11.13.4, 678	Corollary 10.3.11, 625	definiti
Fibonacci numbers determinant   Fact 4.11.12, 277 generating function   Fact 4.11.12, 277 nonnegative matrix Fact 4.11.12, 277	fixed-rank approximatio	Definition 10.4.3, 626 uniqueness
	Eckart-Young theorem	-
	Fact 9.14.28, 614	definition, 725
	Frobenius norm	
	Fact $9.14 .28,614$	controllability
field of values spectrum of convex hull	Fact 9.15.4, 618	controllability Gramian
	least squares   Fact 9.14.28, 614	Corollary 12.11.5, 767
	Fact 9.15.4, 618	frequency response
	Schmidt-Mirsky	imaginary part
	theorem	Fact 12.22.5, 799
final state controllability	Fact 9.14.28, 614	real part
	singular value	Fact 12.22.5, 799
Fact 12.20.4, 791	Fact 9.14.28, 614	transfer function
controllable subspace	Fact 9.15.4, 618	Fact 12.22.5. 799
Fact 12.20.3, 791	unitarily invariant	
finite group group	norm	Friedland
	act 9.14.28, 614	matrix exponential and singular value
Fact 3.21.7, 22	forced response	Fact 11.16.15, 695
representation	definition, 725	
Fact 3.21.9, 224		Frobenius
finite interval definition, xxxv	symmetric graph Fact 1.6.5, 14	similar to transpose Corollary 5.3.8, 291 singular value
finite-sum solution	Fourier matrix	Corollary 9.6.7, 562

symmetric matrix
factorization
Fact 5.15.24, 349
Frobenius canonical form, see multicompanion form
definition, 362
Frobenius inequality
rank of partitioned matrix
Fact 2.11.14, 123
Fact 6.5.15, 389
Frobenius matrix definition, 362

Frobenius norm
absolute value
Fact 9.13.11, 603
adjugate
Fact 9.8.15, 573
Cauchy-Schwarz
inequality
Corollary 9.3.9, 553
commutator
Fact 9.9.26, 584
Fact 9.9.27, 584
definition, 547
determinant
Fact 9.8.39, 578
dissipative matrix
Fact 11.15.3, 689
eigenvalue
Fact 9.11.3, 597
Fact 9.11.5, 598
eigenvalue bound
Fact 9.12.3, 599
eigenvalue
perturbation
Fact 9.12.4 599
Fact 9.12.9, 601
Fact 9.12.10, 601
fixed-rank approximation Fact 9.14.28, 614
Fact 9.15.4, 618
Hermitian matrix
Fact 9.9.41 588
inequality
Fact 9.9.25, 584
Kronecker product
Fact 9.14.37, 617
matrix difference Fact 9.9.25 584
matrix exponential Fact 11.14.32 688
Fact 11.15.3, 689
maximum singular value bound
Fact 9.13.13, 604
normal matrix
Fact 9.12.9 601
outer-product
matrix
Fact 9.7.26 570
polar decomposition
Fact 9.9.42 588
positive-semidefinite matrix
Fact 9.8.39 578
Fact 9.9.12, 581
Fact 9.9.15 582
Fact 9.9.27 584
rank
Fact 9.11.4 598
Fact 9.14.28, 614
Fact 9.15.4 618
Schatten norm, 549
Fact 9.8.20 575
Schur product
Fact 9.14.34, 616
Schur's inequality
Fact 9.11.3 597
spectral radius
Fact 9.13.12, 603
trace
Fact 9.11.3 597
Fact 9.11.4 598
Fact 9.11.5 598
Fact 9.12.2 599
trace norm
Fact 9.9.11 581
triangle inequality
Fact 9.9.13, 582
unitarily invariant norm
Fact 9.14.34, 616
unitary matrix
Fact 9.9.42, 588

## Fujii-Kubo

polynomial root bound Fact 11.20 .9710
Fujiwara's bound
polynomial
Fact 11.20.8, 710
full column rank
definition, 95
equivalent properties
Theorem 2.6.1, 98
nonsingular equivalence Corollary 2.6.6, 101

## full rank

definition, 96

## full row rank

definition, 95
equivalent properties Theorem 2.6.1 98
nonsingular
equivalence
Corollary 2.6.6, 101
full-rank factorization
generalized inverse
Fact 6.4.9, 379
idempotent matrix Fact 3.12.23 202
full-state feedback
controllable subspace
Proposition 12.6.5, 737
controllably
asymptotically
stable
Proposition 12.7.2, 743
determinant
Fact 12.22.14, 800
invariant zero
Proposition 12.10.10. 764
Fact 12.22.14, 800
stabilizability
Proposition 12.8.2, 747

uncontrollable   eigenvalue   Proposition 12.6.14   740	spectral order   Fact 8.19.4, 523	generalized eigenvector eigenvalue Fact 5.14.8, 339
unobservable eigenvalue	G	generalized geometric
$\begin{aligned} & \text { Proposition } 12.3 .14 \\ & 731 \\ & \text { unobservable } \\ & \text { subspace } \end{aligned}$	Galois quintic polynomial Fact 3.21.7, 223	ositive-definite matrix   Fact 8.10.45 464
Proposition 12.3.5 72		generalized geometric
function definiti	Fact 1.7.5 1	efinition, 30
aph	gap topology	eralized Hölder
Fact 1.6	nimal principa	nequality
Fact 1.6.2, 13	angle	ector
Fact 1.6.3, 13	Fact 10.9.18, 636	Fact 9.7.34, 571
intersection	subspace	
Fact 1.5.11	Fact 10.9.18 636	generalized inverse
Fact 1.5.12, 12 relation	Gastinel	Fact 6.3.14, 372
Propo	distance to singularity	$(1,4)$ inverse
$\mathrm{tIT}$	nonsingular matrix	adjugate
Fact 1.5.12, 12	Fact 9.14.7 608	Fact 6.3.6 370
function composition		Fact 6.3.7 371
Itiplicat	definition, 305	basic properties   Proposition 6.1.6 36
fundamental theorem of algebra definition, 232	generalized   Cayley-Hamilton theorem commuting matrices Fact 4.9.7 261	block-circulant matrix   Fact 6.5.2 386 centrohermitian matrix
fundamental triangle inequality	gener	Fact 6.3.31, 376   characteristic
硣	eigensolutio	polynomial
Fact 2.20	eigenvector   Fact 11.13.7 679	Fact 6.3.20, 374
$\text { Fact [2.20.11, } 156$	ralized eigenvalue	characterization
Wu	definition, 304	complex conjugate
Fact [2.20.11,	pencil	transpose
ruta inequa	Proposition 5.7.3	Fact 6.3.9 371
positive-definite	Proposition 5.7.4 306	Fact 6.3.10, 371
matrix	regular pencil	Fact 6.3.13, 372
Fact 8.10.50, 465	Proposition 5.7.3 305	Fact 6.3.16 373
sitive-semidefi	Proposition 5.7.4 306	Fact 6.3.17, 373
matrix inequality	singular pencil	Fact 6.3.18, 373
Proposition [8.6.7] 433	Proposition 5.7.3 30	Fact 6.3.22, 374

Fact 6.3.27, 375
Fact 6.3.28, 375
Fact 6.4.7, 379
Fact 6.6.16 396
Fact 6.6.17] 397
Fact 6.6.18, 397
congruence
Fact 8.20.5, 525
convergent sequence
Fact 6.3.35 376
Fact 6.3.36, 377
definition, 363
determinant
Fact 6.5.26, 392
Fact 6.5.27 392
Fact 6.5.28, 393
difference
Fact 6.4.33, 383
factorization
Fact 6.5.25 392
full-rank
factorization
Fact 6.4.9, 379
group generalized
inverse
Fact 6.6.7, 394
Hermitian matrix
Fact 6.3.21, 374
Fact 6.4.3, 378
Fact 8.20.12, 527
idempotent matrix
Fact 5.12.18, 336
Fact 6.3.22, 374
Fact 6.3.23, 374
Fact 6.3.24 374
Fact 6.3.25, 375
Fact 6.3.26, 375
Fact 6.3.27, 375
Fact 6.4.18, 381
Fact 6.4.19 381
Fact 6.4.20 381
Fact 6.4.22, 381
Fact 6.4.25 381
identity
Fact 6.3.33, 376
inertia
Fact 6.3.21 374
Fact 8.20.12, 527
integral

Fact 11.13 .10679
Jordan canonical form
Fact 6.6.9, 394
Kronecker product
Fact 7.4.30, 408
least squares
Fact 9.15.1 618
Fact 9.15 .2618
Fact 9.15.3 618
left inverse
Corollary 6.1.4 364
Fact 6.4.39 384
Fact 6.4.40 384
left-inner matrix
Fact 6.3.8, 371
left-invertible matrix
Proposition 6.1.5, 364
linear matrix equation
Fact 6.4.38 384
linear system Proposition6.1.7, 366
matrix difference Fact 6.4.37 384
matrix exponential
Fact 11.13.10 679
matrix inversion lemma
Fact 6.4.4, 378
matrix limit
Fact 6.3.19 374
matrix product
Fact 6.4.5, 378
Fact 6.4.6, 378
Fact 6.4.8, 379
Fact 6.4.9, 379
Fact 6.4.10 379
Fact 6.4.11 379
Fact 6.4.12 379
Fact 6.4.13, 380
Fact 6.4.14 380
Fact 6.4.16 380
Fact 6.4.17 380
Fact 6.4.21 381
Fact 6.4.22 381
Fact 6.4.23 381
Fact 6.4.30 382
Fact 6.4.31 382
matrix sum
Fact 6.4.34, 383
Fact 6.4.35, 383
Fact 6.4.36, 383
maximum singular value
Fact 9.14.8, 608
Fact 9.14.30, 615
Newton-Raphson
algorithm
Fact 6.3.35, 376
normal matrix
Proposition 6.1.6, 365
Fact 6.3.16, 373
Fact 6.3.17, 373
null space
Proposition 6.1.6, 365
Fact 6.3.24, 374
observability matrix
Fact $12.20 .19,793$
outer-product matrix
Fact 6.3.2 370
outer-product
perturbation
Fact 6.4.2 377
partial isometry
Fact 6.3.28, 375
partitioned matrix
Fact 6.3.30, 376
Fact 6.5.1 385
Fact 6.5.2, 386
Fact 6.5.3, 386
Fact 6.5.4 386
Fact 6.5.13, 388
Fact 6.5.17, 390
Fact 6.5.18, 390
Fact 6.5.19, 390
Fact 6.5.20, 391
Fact 6.5.21, 391
Fact 6.5.22, 391
Fact 6.5.23, 391
Fact 6.5.24, 391
Fact $8.20 .22,530$
positive-definite
matrix
Proposition 6.1.6, 365
Fact 6.4.7 379
positive-semidefinite matrix
Proposition 6.1.6, 365
Fact 6.4.4, 378
Fact 8.20.1, 525
Fact 8.20.2, 525
Fact 8.20.3, 525
Fact 8.20.4, 525
Fact 8.20.6, 526
Fact 8.20.7, 526
Fact 8.20.8, 526
Fact 8.20.9, 526
Fact 8.20.10, 526
Fact 8.20.11 527
Fact 8.20.13, 527
Fact 8.20.15, 527
Fact 8.20.16, 527
Fact 8.20.17, 528
Fact 8.20.18, 528
Fact $8.20 .19,530$
Fact $8.20 .20,530$
Fact 8.20.22, 530
Fact 8.20.23, 531
projector
Fact 6.3.3, 370
Fact 6.3.4, 370
Fact 6.3.5, 370
Fact 6.3.26, 375
Fact 6.3.27, 375
Fact 6.3.32, 376
Fact 6.4.15, 380
Fact 6.4.16, 380
Fact 6.4.17, 380
Fact 6.4.18, 381
Fact 6.4.19, 381
Fact 6.4.21, 381
Fact 6.4.23, 381
Fact 6.4.24, 381
Fact 6.4.25, 381
Fact 6.4.33, 383
Fact 6.4.41, 384
Fact 6.4.46, 385
Fact 6.5.10, 388
range
Proposition 6.1.6, 365
Fact 6.3.24, 374
Fact 6.4.42, 384
Fact 6.4.43, 385
Fact 6.5.3, 386
range-Hermitian matrix
Proposition 6.1.6 365
Fact 6.3.10, 371
Fact 6.3.11, 372
Fact 6.3.12, 372
Fact 6.3.16, 373
Fact 6.3.17, 373
Fact 6.4.26, 382
Fact 6.4.27, 382
Fact 6.4.28, 382
Fact 6.4.29, 382
rank
Fact 6.3.9, 371
Fact 6.3.22, 374
Fact 6.3.36, 377
Fact 6.4.2, 377
Fact 6.4.44, 385
Fact 6.5.6, 386
Fact 6.5.8, 387
Fact 6.5.9, 387
Fact 6.5.12, 388
Fact 6.5.13, 388
Fact 6.5.14, 388
rank subtractivity partial ordering
Fact 6.5.30, 393
right inverse
Corollary 6.1.4, 364
right-inner matrix
Fact 6.3.8, 371
right-invertible
matrix
Proposition 6.1.5, 364
sequence
Fact 6.3.36, 377
singular value
Fact 6.3.29, 376
singular value decomposition
Fact 6.3.15, 373
square root
Fact 8.20.4, 525
star partial ordering
Fact 8.19.8, 524
star-dagger matrix
Fact 6.3.13, 372
sum
Fact 6.5.1, 385

Fact 6.5.2, 386
trace
Fact 6.3.22, 374
uniqueness
Theorem 6.1.1] 363
unitary matrix
Fact 6.3.34, 376
Urquhart
Fact 6.3.14, 372
generalized Löwner partial ordering definition
Fact 8.19.10, 524
generalized multispectrum
definition, 304
generalized projector range-Hermitian matrix
Fact 3.6.4, 178
generalized Schur inequality
eigenvalues Fact 9.11.6, 598
generalized spectrum definition, 304
generating function
Fibonacci numbers Fact 4.11.12, 277
geometric mean
arithmetic mean
Fact 1.15.21, 53
Fact 1.15.23, 53
Fact 1.15.24, 54
Fact 1.15 .2554
Fact 1.15.26, 54
Fact 1.15.27, 54
determinant Fact 8.10.43, 461
matrix exponential Fact 8.10.44, 464
matrix logarithm Fact 11.14.39, 689
Muirhead's theorem Fact 1.15.25, 54
nondecreasing
function
Fact 8.10.43, 461
Fact 8.10.44, 464
positive-definite
matrix
Fact 8.10.43, 461
Fact 8.10.46, 464
Fact 8.21.51, 541
positive-semidefinite
matrix
Fact 8.10.43, 461
Riccati equation
Fact 12.23.4, 802
scalar inequality
Fact 1.11.6, 39
Schur product
Fact 8.21.51, 541
geometric multiplicity
algebraic multiplicity
Proposition 5.5.3, 295
block-diagonal
matrix
Proposition 5.5.13, 298
cascaded systems
Fact 12.22.15, 801
controllability
Fact 12.20 .14792
defect
Proposition 4.5.2, 246
definition
Definition 4.5.1, 245
partitioned matrix
Proposition 5.5.14, 298
rank
Proposition 4.5.2, 246
similar matrices
Proposition 5.5.10, 297
geometric-mean decomposition
unitary matrix
Fact 5.9.30, 316
Gershgorin circle theorem
eigenvalue bounds
Fact 4.10.16, 269
Fact 4.10.20, 270

Gerstenhaber
dimension of the algebra generated by two commuting matrices Fact 5.10.21, 319

Gibson
diagonal entries of similar matrices Fact 5.9.13 313

## Givens rotation

orthogonal matrix Fact 5.15.16, 347
global asymptotic stability
nonlinear system Theorem 11.7.2, 661
globally asymptotically stable equilibrium
definition Definition 11.7.1, 660

Gohberg-Semencul formulas
Bezout matrix Fact 4.8.6, 255
golden mean
positive-definite solution of a Riccati equation
Fact 12.23.4, 802
Riccati equation Fact 12.23.4, 802
golden ratio
difference equation Fact 4.11.12, 277
Riccati equation Fact 12.23.4, 802

Golden-Thompson inequality
matrix exponential Fact 11.14.28 687 Fact 11.16.4, 692

Gordan's theorem positive vector Fact 4.11.15, 279
gradient
definition, 627

## Gram matrix

positive-semidefinite matrix Fact 8.9.36, 454
Gram-Schmidt orthonormalization upper triangular matrix factorization Fact 5.15.9, 346

## Gramian

controllability
Fact 12.20.17, 792
stabilization Fact 12.20.17, 792

## Graph

definition, 3
graph
antisymmetric graph
Fact 4.11.1, 272
cycle Fact 1.6.4, 13
definition, 8
directed cut Fact 4.11.2, 273
function
Fact 1.6.1, 13
Fact 1.6.2, 13
Fact 1.6.3, 13
Hamiltonian cycle Fact 1.6.6 14
irreducible matrix Fact 4.11.2, 273
Laplacian matrix Fact 8.15.36 506
spanning path Fact 1.6.6, 14
symmetric graph
Fact 4.11.1, 272
tournament Fact 1.6.6, 14
walk Fact 4.11.3, 273
graph of a matrix adjacency matrix

		damping ratio 951
Proposition [3.2.5, 171	Fact 3.21.7, 223	integral
definition	isomorphism	Fact 11.13.13 680
Definition 3.2.4 171	Proposition 3.3.5 172	Fact 11.13.14, 680
greatest common	Lie group	irreducible matrix
greatest ${ }^{\text {divisor }}$	Definition 11.6.1, 658	Fact 6.6.20,
definition, 233	Proposition 11.6.2, 658 matrix exponential	Kronecker product   Fact 7.4.31, 408
greatest lower bound	Proposition 11.6.7, 659	limit
ojector	octahedral group	Fact 6.6.14 395
Fact 6.4.41, 384	Fact 3.21.7, 223	matrix exponential
	orthogonal matrix	Fact 11.13.13, 680
	Fact 3.21.11 225	Fact 11.13.14 680
or a partial	pathwise connected	Fact 11.18.5 698
definition	Proposition 11.6.8, 660	Fact 11.18.6 698
Definition 1.3.9, 7	permutation group	normal matrix
Gregory's series	Fact 3.21.7, 223	Fact 6.6.10 394
infinite serie	real numbers	null space
Fact 1.18.8, 73	Fact 3.21.1, 221	Proposition 6.2.3 369
	symmetry group	positive-semidefinite
ville	Fact 3.21.7, 223	matrix
generalized inverse   of a matrix product	tetrahedral group	Fact 8.20.1, 525
Fact 6.4.10, 379	Fact 3.21.7, 223	range
Fact 6.4.12, 379	transpose	Proposition 6.2.3 369
generalized inverse	Fact 3.21.10, 225	range-Hermitian
of a partitioned	Fact 3.21.5, 222	Fact 6.6.8, 394
matrix	Fact 11.22.1 715	singular value
Fact 6.5.17, 390	unit sphere	decomposition
roup	Fact 3.21.2, 221	Fact 6.6.15, 395
alternating group	upper triangular	trace
Fact 3.21.7, 223	matrix	Fact 6.6.6, 394
irculant matrix	Fact 3.21.5, 222	
Fact 3.21.7, 224	Fact 11.22.1 715	almost nonnegative
Fact 3.21.8, 224	group generalized	ri
classical	inverse	Fact 11.19.4 706
Proposition [3.3.6], 172	complex conjugate	complementary
cyclic group	transpose	subspaces
Fact 3.21.7, 223	Fact 6.6.10, 394	Corollary 3.5.8, 176
definition	definition, 369	definition
Definition 3.3.3, 172	discrete-time	Definition 3.1.1, 165
dihedral group	Lyapunov-stable	equivalent
Fact 3.21.7, 223	matrix	characterizations
equivalence relation	Fact 11.21.11, 714	Fact 3.6.1 177
Proposition 3.4.1, 173	factorization	Hermitian matrix
Proposition 3.4.2, 173	Fact 6.6.12, 395	Fact 6.6.18, 397
finite group	generalized inverse	idempotent matrix
Fact 3.21.7, 223	Fact 6.6.7 394	Proposition 3.1.6 169
Fact 3.21.9, 224	idempotent matrix	Proposition 3.5.9 176
icosahedral group	Proposition 6.2.3 369	Proposition 6.2.3 369

Fact 5.11.8, 322
index of a matrix
Proposition 3.5.6, 176
Corollary 5.5.9, 297
Fact 5.14.4 339
inertia
Fact 5.8.5, 308
Jordan canonical form
Fact 6.6.9, 394
Kronecker product
Fact 7.4.16, 406
Fact 7.4.31 408
Lyapunov-stable matrix
Fact 11.18.2, 698
matrix exponential
Fact 11.18.14 700
matrix power
Fact 3.6.2, 177
Fact 6.6.19 398
N-matrix
Fact 11.19.4, 706
normal matrix
Fact 6.6.17, 397
outer-product
matrix
Fact 5.14.3, 338
positive-definite
matrix
Fact 8.10.12, 457
positive-semidefinite matrix
Fact 8.10.12, 457
projector
Fact 3.13.21, 209
range
Fact 5.14.4, 339
range-Hermitian matrix
Proposition 3.1.6, 169
Fact 6.6.16, 396
rank
Fact 5.8.5, 308
Fact 5.14.4, 339
semistable matrix
Fact 11.18.3, 698
similar matrices
Proposition 3.4.5, 174

Fact 5.9.5, 312
spectrum
Proposition 5.5.21, 300
square root
Fact 5.15.20, 348
stable subspace
Proposition 11.8.8, 665
tripotent matrix
Proposition 3.1.6, 169
unitarily similar
matrices
Proposition 3.4.5, 174

## groups

complex
representation
Fact 3.21.8, 224
representation
Fact 3.21.8, 224

## H

$\mathrm{H}_{2}$ norm
controllability
Gramian
Corollary 12.11.4, 767
Corollary 12.11.5 767
definition
Definition 12.11.2, 766
observability
Gramian
Corollary 12.11.4 767
Parseval's theorem Theorem 12.11.3, 766
partitioned transfer
function
Fact 12.22.16 801
Fact 12.22 .17801
quadratic
performance
measure
Proposition 12.15.1 776
submultiplicative norm
Fact 12.22 .20801
sum of transfer
functions

Proposition 12.11.6 767
transfer function
Fact 12.22 .16 . 801
Fact 12.22.17, 801
Fact $12.22 .18,801$
Fact 12.22 .19801
Hadamard product, see
Schur product
Hadamard's inequality
determinant
Fact 8.13.33 491
Fact 8.13.34, 491
determinant bound Fact 9.11.1, 596
determinant of a partitioned matrix Fact 6.5.26, 392
positive-semidefinite matrix determinant Fact 8.17.11 511

Hadamard-Fischer inequality
positive-semidefinite matrix Fact 8.13.36, 492

Hahn-Banach theorem
inner product inequality Fact 10.9.12 635
half-vectorization operator
Kronecker product, 416

Hamiltonian
block decomposition
Proposition 12.17.5. 783
closed-loop spectrum
Proposition 12.16 .14 , 781
definition, 780
Jordan form
Fact 12.23.1 802
Riccati equation
Theorem 12.17.9, 784

		determinant
Proposition 12.16.14	Hamiltonian matrix	trace
781	Cayley transform	Fact 3.19.7. 216
Corollary 12.16.15, 781	Fact 3.19.12 217	unit imaginary
spectral factorization	characteristic	matrix
Proposition 12.16.13	polynomial	Fact 3.19.3, 216
780	Fact 4.9.21, 264	
spectrum	Fact 4.9.23, 264	Hamiltonian path
Theorem 12.17.9 784	definition	
Proposition 12.16.13,	Definition 3.1.5 169	Hankel matrix
780	identity	Hankel matrix
$\begin{aligned} & \text { Proposition } 12.17 .5 \\ & 783 \end{aligned}$	Fact 3.19.1, 216   inverse matrix	block-Hankel matrix   Fact 3.18.3, 215
Proposition 12.17.7	Fact 3.19.5, 216	definition
784	matrix exponential	Definition 3.1.3, 167
Proposition 12.17.8,	Proposition 11.6.7, 659	Hilbert matrix
784	matrix logarithm	Fact 3.18.4, 215
Lemma 12.17.4 783	Fact 11.14.19, 685	Markov
Lemma 12.17.6, 783	matrix sum	block-Hankel
stabilizability	Fact 3.19.5, 216	matrix
Fact $12.23 .1,802$	orthogonal matrix	definition, 754
stabilizing solution	Fact 3.19.13, 217	rational function
Corollary 12.16 .15 781	orthosymplectic	Fact 4.8.8, 257
uncontrollable	matrix	symmetric matrix
eigenvalue	Fact 3.19.13, 217	Fact 3.18.2, 215
Proposition 12.17.7	partitioned matrix	Toeplitz matrix
784	Proposition 3.1.7 169	Fact 3.18.1, 215
Proposition 12.17.8,	Fact 3.19.6, 216	
784	Fact 3.19.8, 217	Hanner inequality
Lemma 12.17.4 783	Fact 4.9.22, 264	Hölder norm
Lemma 12.17.6, 783	Fact 5.12.21 337	Fact 9.7.21, 569
unobservable	skew reflector	Schatten norm
eigenvalue	Fact 3.19.3, 216	Fact 0.9.36, 586
Proposition 12.17.7 784	skew-involutory matrix	Hansen
Proposition 12.17.8,	Fact 3.19.2, 216	
784	Fact 3.19.3, 216	Fact 8.12.33 482
Lemma 12.17 .4783	skew-symmetric	Fact 8.12 .38
Lemma 12.17.6, 783	matrix	Hardy
miltonia	Fact 3.7.34, 184	Hölder-induced
definition	Fact 3.19.3, 216	norm
Definition 1.4.3 9	Fact 3.19.8, 217	Fact 9.8.17, 574
graph	spectrum	Hardy inequality
Fact 1.6.6, 14		sum of powers
tournament		Fact 1.15.42, 58
Fact 1.6.6, 14	Fact 3.19.12 217	Hardy-Hilbert inequality
Hamiltonian graph	Fact 3.19.13 217	sum of powers
definition	symplectic similarity	Fact 1.16.13 63
Definition 1.4.3 9	Fact 3.19.4, 216	Fact 1.16.14 63


Hardy-Littlewood rearrangement inequality	unitarily invariant norm   Fact 9.9.49 589	commutator   Fact 3.8.1 184   Fact 3.8.3 185
sum of products	Heinz mean	Fact 9.9.30, 585
Fact 1.16.4, 60	Heinz mean	commuting matrices
um of products	Fact 1.10.38, 38	Fact 5.14.29, 342
Fact 1.16.5, 60	Heisenberg group	transpose
Hardy-Littlewood-Polya	unipotent matrix	Fact 3.7.13, 180
theorem	Fact 3.21.5, 222	Fact 5.9.8, 312
bly s	Fact 11.22.1, 715	Fact 6.6.18, 397
matrix	upper triangular	congruent matrices
Fact 2.21.7 163	matrix	Proposition 3.4.5, 174
	Fact 3.21.5, 222	Corollary 5.4.7, 294
harmonic mean	Fact 11.22.1. 715	convergent sequence
rithme		Fact 11.14.7 683
inequali		Fact $11.14 .8,683$
Fact 1.15.16,	eigenvalue bound	convex function
Fact 1.15.17, 52		Fact 8.12.32, 482
arithmetic-mean-	Hermite-Biehler	$\text { Fact 8.12.33 } 482$
inequality	heorem	convex hull
Fact 1.15.15, 52	lynomial	defect
Dragomir's	Fact 11.17.6, 696	Fact 5.8.7 308
inequality		Fact 8.9.7 451
Fact 1.16 .24	Hermite-Hadamar inequality	definition
harmonic steady-state response	convex function   Fact 1.8.6. 22	Definition 3.1.1, 165 determinant
linear system	Fact 1.8.6,	Corollary 8.4.10, 427
Theorem 12.12.1, 768	Hermitian matrix	Fact 3.7.21, 182
	additive	Fact 8.13.7, 486
Hartwig	decomposition	diagonal
ank of an	Fact 3.7.29, 183	Fact 8.17.8, 510
idempotent	adjugate	diagonal entries
Fact 3.12.27, 20	Fact 3.7.10, 179	Fact 8.17.13, 512
Hayn	affine mapping	diagonal entry
positive-semidefinite	Fact 3.7.14 181	Corollary 8.4.7, 427
matrix	block-diagonal	Fact 8.17.8, 510
Fact 5.14.13, 340	matrix	Fact 8.17.9, 510
Schur complement of	Fact 3.7.8, 179	diagonal matrix
a partitione	Cartesi	Corollary 5.4.5, 294
matrix	decomposition	eigenvalue
Fact 6.5.29, 393	Fact 3.7.27 182	Theorem 8.4.5, 426
	Fact 3.7.28, 183	Theorem 8.4.9, 427
aynsworth inertia additivity formula	Fact 3.7.29 183	Theorem 8.4.11, 428
Schur complement	cogredient	Corollary 8.4.2, 425
	transformation	Corollary 8.4.6, 426
	Fact 8.16.4 507	Corollary 8.4.7, 427
Heinz inequality	Fact 8.16.6, 507	Corollary 8.6.19, 442

Lemma 8.4.3, 425
Lemma 8.4.4, 425
Fact 8.10.4, 456
Fact 8.15.20, 503
Fact 8.15.31 505
Fact 8.17.8, 510
Fact 8.17.9, 510
Fact 8.17.15, 512
Fact 8.17.16, 512
Fact 8.18.4, 513
Fact 8.18.17, 517
Fact 8.21.28, 536
eigenvalue bound
Fact 9.12.3, 599
eigenvalue inequality
Lemma 8.4.1, 424
Fact 8.18.3, 513
eigenvalue
perturbation
Fact 4.10.27, 272
eigenvalues
Fact 8.17.13, 512
existence of
transformation
Fact 3.9.2, 185
factorization
Fact 5.15.17, 348
Fact 5.15.25, 349
Fact 5.15.26, 349
Fact 5.15.41, 351
Fact 8.16.1, 507
Frobenius norm
Fact 9.9.41, 588
generalized inverse
Fact 6.3.21, 374
Fact 6.4.3, 378
Fact 8.20.12, 527
group-invertible
matrix
Fact 6.6.18, 397
inequality
Fact 8.9.13, 452
Fact 8.9.15, 452
Fact 8.9.20, 452
Fact 8.13.26, 490
Fact 8.13.30, 490
inertia
Theorem 8.4.11, 428
Proposition 5.4.6, 294

Fact 5.8.6, 308
Fact 5.8.8, 308
Fact 5.8.12, 309
Fact 5.8.13, 309
Fact 5.8.14, 309
Fact 5.8.15, 309
Fact 5.8.16, 310
Fact 5.8.17, 310
Fact 5.8.18, 310
Fact 5.8.19, 310
Fact 5.12.1, 333
Fact 6.3.21, 374
Fact 8.10.15, 457
Fact 8.20.12, 527
Fact 8.20.14, 527
Fact 12.21.1 793
Fact $12.21 .2,794$
Fact 12.21.3 794
Fact 12.21.4 794
Fact 12.21.5 794
Fact 12.21.6 795
Fact 12.21 .7795
Fact $12.21 .8,795$
Fact 12.21.10, 796
Fact 12.21.11, 796
Fact 12.21.12, 796
Kronecker product
Fact 7.4.16, 406
Fact 8.21.28, 536
Kronecker sum
Fact 7.5.8, 409
limit
Fact 8.10.1, 456
linear combination
Fact 8.15.24, 504
Fact 8.15.25, 504
Fact 8.15.26, 504
linear combination of projectors
Fact 5.19.10, 361
matrix exponential
Proposition 11.2.8, 649
Proposition 11.2.9, 650
Proposition 11.4.5, 654
Corollary 11.2.6, 648
Fact 11.14.7, 683
Fact 11.14.8, 683
Fact 11.14.21, 685
Fact 11.14.28, 687

Fact 11.14.29, 687
Fact 11.14.31, 688
Fact 11.14.32, 688
Fact 11.14.34, 688
Fact 11.15.1 689
Fact 11.16.4, 692
Fact 11.16.5, 694
Fact 11.16.13, 695
Fact 11.16.17, 695
maximum eigenvalue Lemma 8.4.3, 425
Fact 5.11.5, 321
Fact 8.10.3, 456
maximum singular value
Fact 5.11.5, 321
Fact 9.9.41, 588
minimum eigenvalue
Lemma 8.4.3, 425
Fact 8.10.3, 456
normal matrix
Proposition 3.1.6 169
outer-product
matrix
Fact 3.7.18, 181
Fact 3.9.2, 185
partitioned matrix
Fact 3.7.27, 182
Fact 4.10.27, 272
Fact 5.8.19, 310
Fact 5.12.1, 333
Fact 6.5.5, 386
positive-definite
matrix
Fact 5.15.41, 351
Fact 8.10.13, 457
Fact 8.13.7, 486
positive-semidefinite matrix
Fact 5.15.41 351
Fact 8.9.11, 452
Fact 8.10.13, 457
product
Example 5.5.19 300
projector
Fact 3.13.2, 206
Fact 3.13.13, 208
Fact 3.13.20, 209
Fact 5.15.17, 348
properties of $<$ and
$\leq$
Proposition 8.1.2 418
quadratic form
Fact 3.7.6, 178
Fact 3.7.7, 179
Fact 8.15.24, 504
Fact 8.15.25, 504
Fact 8.15.26, 504
Fact 8.15.31, 505
quadratic matrix equation
Fact 5.11.4 321
range
Lemma 8.6.1, 431
rank
Fact 3.7.22, 182
Fact 3.7.30, 183
Fact 5.8.6, 308
Fact 5.8.7, 308
Fact 8.9.7, 451
Rayleigh quotient
Lemma 8.4.3, 425
reflector
Fact 3.14.2, 211
Schatten norm
Fact 9.9.27, 584
Fact 9.9.39, 587
Schur decomposition
Corollary 5.4.5, 294
Schur product
Fact 8.21.28, 536
Fact 8.21.32, 537
signature
Fact 5.8.6, 308
Fact 5.8.7, 308
Fact 8.10.17, 457
similar matrices
Proposition 5.5.12, 297
simultaneous
diagonalization
Fact 8.16.1 507
Fact 8.16.4 507
Fact 8.16.6, 507
skew-Hermitian
matrix
Fact 3.7.9, 179
Fact 3.7.28, 183
skew-symmetric matrix Fact 3.7.9, 179
spectral abscissa
Fact 5.11.5 321
spectral radius
Fact 5.11.5, 321
spectral variation
Fact 9.12.5 600
Fact 9.12.7 601
spectrum
Proposition 5.5.21, 300
Lemma 8.4.8, 427
spread
Fact 8.15.31, 505
strong majorization
Fact 8.17.8, 510
submatrix
Theorem 8.4.5, 426
Corollary 8.4.6 426
Lemma 8.4.4, 425
Fact 5.8.8, 308
symmetric matrix
Fact 3.7.9, 179
trace
Proposition 8.4.13, 428
Corollary 8.4.10, 427
Lemma 8.4.12, 428
Fact 3.7.13, 180
Fact 3.7.22 182
Fact 8.12.38, 483
trace of a product
Fact 8.12.6 476
Fact 8.12.7 477
Fact 8.12.8 477
Fact 8.12.16, 478
trace of product
Fact 5.12.4 333
Fact 5.12.5 333
Fact 8.18.18, 518
tripotent matrix
Fact 3.16.3 213
unitarily invariant norm
Fact 9.9.5, 580
Fact 9.9.41 588
Fact 9.9.43 588
Fact 11.16.13, 695
unitarily similar matrices
Proposition 3.4.5, 174
Proposition 5.6.3, 302
Corollary 5.4.5, 294
unitary matrix
Fact 3.11.29, 197
Fact 8.16.1, 507
Fact 11.14.34, 688
Hermitian matrix eigenvalue
Cauchy interlacing theorem
Lemma 8.4.4 425
inclusion principle Theorem 8.4.5, 426

## Hermitian matrix

 eigenvaluesmonotonicity theorem
Theorem 8.4.9, 427
Fact 8.10.4, 456
Weyl's inequality
Theorem 8.4.9, 427
Fact 8.10.4, 456
Hermitian matrix inertia
identity identity
Styan
Fact 8.10.15 457
Hermitian part
eigenvalue
Fact 5.11.24 325

## Hermitian perturbation

Lidskii-MirskyWielandt
theorem
Fact 9.12.4, 599
Heron mean logarithmic mean Fact 1.10.37 37

Heron's formula
triangle Fact 2.20.11, 156

Hessenberg matrix lower or upper

Definition 3.1.3, 167
Hessian definition, 627
hidden convexity quadratic form Fact 8.14.11, 498
Hilbert matrix Hankel matrix Fact 3.18.4, 215 positive-definite matrix Fact 3.18.4, 215

Hille-Yosida theorem matrix exponential bound
Fact 11.15.8, 691
Hirsch's theorem eigenvalue bound Fact 5.11.21, 325 Fact 9.11.8, 598
Hlawka's equality norm identity Fact 9.7.4, 563

Hlawka's inequality Euclidean norm Fact 9.7.7, 565 norm inequality Fact 9.7.4, 563

Hoffman eigenvalue perturbation Fact 9.12.9, 601

Hoffman-Wielandt theorem eigenvalue perturbation Fact 9.12.9, 601

Hölder norm
compatible norms Proposition 9.3.5, 550 complex conjugate Fact 9.7.33, 571 definition, 544 eigenvalue

Fact 9.11.6, 598
eigenvalue bound Fact 9.11.8, 598
Hanner inequality
Fact 9.7.21, 569
Hölder-induced norm
Proposition 9.4.11, 556
Fact 9.7.28, 571
Fact 9.8.12, 573
Fact 9.8.17, 574
Fact 9.8.18, 574
Fact 9.8.19, 575
Fact 9.8.29, 576
inequality
Proposition 9.1.5, 545
Proposition 9.1.6, 545
Fact 9.7.18, 569
Fact 9.7.19, 569
Fact 9.7.21, 569
Fact 9.7.29, 571
Kronecker product
Fact 9.9.61, 591
matrix
definition, 547
Minkowski's
inequality
Lemma 9.1.3, 544
monotonicity
Proposition 9.1.5, 545
power-sum inequality
Fact 1.15.34, 57
Schatten norm
Proposition 9.2.5, 549
Fact 9.11.6. 598
submultiplicative
norm
Fact 9.9.20, 583
vector
Fact 9.7.34, 571
vector norm Proposition 9.1.4, 544
Hölder's inequality
Diaz-GoldmanMetcalf inequality Fact 1.16.22, 65
positive-semidefinite matrix
Fact 8.12.12, 477
positive-semidefinite matrix trace Fact 8.12.11, 477
reversal
Fact 1.16.22, 65
scalar case
Fact 1.16.11, 62
Fact 1.16.12, 62
vector inequality
Proposition 9.1.6, 545
Hölder-induced lower bound
definition, 559
Hölder-induced norm
absolute value
Fact 9.8.26, 576
adjoint norm
Fact 9.8.10, 572
column norm
Fact 9.8.21, 575
Fact 9.8.23, 575
Fact 9.8.25, 576
complex conjugate Fact 9.8.27, 576
complex conjugate transpose
Fact 9.8.28, 576
definition, 554
field
Proposition 9.4.7, 554
formulas
Proposition 9.4.9 555
Hardy
Fact 9.8.17, 574
Hölder norm
Proposition 9.4.11, 556
Fact 9.7.28, 571
Fact 9.8.12, 573
Fact 9.8.17, 574
Fact 9.8.18, 574
Fact 9.8.19, 575
Fact 9.8.29, 576
inequality
Fact 9.8.21, 575
Fact 9.8.22, 575

Littlewood
Fact 9.8.17, 574
Fact 9.8.18 574
maximum singular value
Fact 9.8.21, 575
monotonicity Proposition 9.4.6, 554
Orlicz
Fact 9.8.18, 574
partitioned matrix
Fact 9.8.11 572
quadratic form
Fact 9.8.35 577
Fact 9.8.36, 577
row norm
Fact 9.8.21 575
Fact 9.8.23, 575
Fact 9.8.25, 576
Hölder-McCarthy inequality
quadratic form Fact 8.15.14, 502

Hopf's theorem eigenvalues of a positive matrix Fact 4.11.20, 280

## Horn

diagonal entries of a unitary matrix Fact 8.17.10, 511
Householder matrix, see elementary reflector
definition, 229
Householder reflector, see elementary reflector
definition, 229
Hsu
orthogonally similar matrices Fact 5.9.15 313

Hua's inequalities determinant Fact 8.13.25, 489
determinant
inequality
Fact 8.11.21, 472
positive-semidefinite matrix Fact 8.11.21, 472
Hua's inequality
scalar inequality
Fact 1.15.13. 51
Hua's matrix equality
positive-semidefinite matrix Fact 8.11.21, 472

Hurwitz matrix, see asymptotically stable matrix

Hurwitz polynomial, see asymptotically stable polynomial
asymptotically stable polynomial Fact 11.18.23 702

Huygens polynomial bound Fact 11.20.13, 712

Huygens's inequality trigonometric inequality Fact 1.9.29 28
hyperbolic identities
Fact 1.19.2, 75
hyperbolic inequality
scalar
Fact 1.9.29 28
Fact 1.10.29, 35
hypercompanion form
existence
Theorem 5.3.2, 288
Theorem 5.3.3, 289
hypercompanion matrix
companion matrix Corollary 5.3.4, 289 Lemma 5.3.1, 288
definition, 288
elementary divisor Lemma 5.3.1, 288
example
Example 5.3.6, 290
Example 5.3.7, 291
real Jordan form
Fact 5.10.1, 316
similarity
transformation
Fact 5.10.1, 316
hyperellipsoid
volume
Fact 3.7.35, 184
hyperplane
definition, 91
elementary projector
Fact 3.13.8, 207
elementary reflector Fact 3.14.5, 211

## I

icosahedral group group Fact 3.21.7, 223
idempotent matrix commutator
Fact 3.12.16, 200
Fact 3.12.17, 200
Fact 3.12.30, 204
Fact 3.12.31 204
Fact 3.12.32 205
Fact 3.15.4, 200
commuting matrices
Fact 3.16.5, 213
complementary idempotent matrix
Fact 3.12.12 199
complementary subspaces
Proposition 3.5.3, 176
Proposition 3.5.4 176
Fact 3.12.1, 198
Fact 3.12.33, 205
complex conjugate
Fact 3.12.7, 199
complex conjugate
transpose
Fact 3.12.7, 199
Fact 5.9.21, 314
definition
Definition 3.1.1, 165
difference
Fact 3.12.25, 202
Fact 3.12.30, 204
Fact 5.12.19, 337
difference of
matrices
Fact 3.12.27, 203
Fact 3.12.28, 203
Fact 3.12.32, 205
discrete-time
semistable matrix
Fact 11.21.10. 714
Drazin generalized
inverse
Proposition6.2.2, 368
factorization
Fact 5.15.28, 350
Fact 5.15.30, 350
full-rank
factorization
Fact 3.12.23, 202
generalized inverse
Fact 5.12.18, 336
Fact 6.3.22, 374
Fact 6.3.23, 374
Fact 6.3.24, 374
Fact 6.3.25, 375
Fact 6.3.26, 375
Fact 6.3.27, 375
Fact 6.4.18, 381
Fact 6.4.19, 381
Fact 6.4.20, 381
Fact 6.4.22, 381
Fact 6.4.25, 381
group generalized
inverse
Proposition 6.2.3, 369
group-invertible matrix
Proposition 3.1.6, 169
Proposition 3.5.9, 176
Proposition 6.2.3, 369
Fact 5.11.8, 322
identities
Fact 3.12.18, 200
identity perturbation
Fact 3.12.13, 199
inertia
Fact 5.8.1, 307
involutory matrix
Fact 3.15.2, 212
Kronecker product
Fact 7.4.16, 406
left inverse
Fact 3.12.10, 199
linear combination
Fact 3.12.26, 203
Fact 3.12.28, 203
Fact 5.19.9, 361
matrix exponential
Fact 11.11.1, 671
Fact 11.16.12, 695
matrix product
Fact 3.12.21, 201
Fact 3.12.23, 202
matrix sum
Fact 3.12.26, 203
Fact 5.19.7, 361
Fact 5.19.8, 361
Fact 5.19.9, 361
maximum singular
value
Fact 5.11.38, 328
Fact 5.11.39, 329
Fact 5.12.18, 336
nilpotent matrix
Fact 3.12.16, 200
nonsingular matrix
Fact 3.12.11 199
Fact 3.12.26, 203
Fact 3.12.28, 203
Fact 3.12.32 205
norm
Fact 11.16.12, 695
normal matrix
Fact 3.13.3, 206
null space
Fact 3.12.3, 199
Fact 3.15.4, 200
Fact 6.3.24, 374
onto a subspace along another subspace definition, 176
outer-product matrix
Fact 3.7.18, 181
Fact 3.12.6, 199
partitioned matrix
Fact 3.12.14, 200
Fact 3.12.20, 201
Fact 3.12.33, 205
Fact 5.10.22, 320
positive-definite matrix
Fact 5.15.30, 350
positive-semidefinite matrix
Fact 5.15.30, 350
power
Fact 3.12.3, 198
product Fact 3.12.29, 203
projector
Fact 3.13.3, 206
Fact 3.13.13, 208
Fact 3.13.20, 209
Fact 3.13.24, 210
Fact 5.10.13, 319
Fact 5.12.18, 336
Fact 6.3.26, 375
Fact 6.4.18, 381
Fact 6.4.19, 381
Fact 6.4.20, 381
Fact 6.4.25, 381
quadratic form
Fact 3.13.11, 208
range
Fact 3.12.3, 199
Fact 3.12.4, 199
Fact 3.15.4, 200
Fact 6.3.24, 374
range-Hermitian matrix
Fact 3.13.3, 206
Fact 6.3.27, 375
rank
Fact 3.12.6, 199
Fact 3.12.9, 199

Fact 3.12.19, 201
Fact 3.12.20, 201
Fact 3.12.22, 201
Fact 3.12.24, 202
Fact 3.12.25, 202
Fact 3.12.27, 203
Fact 3.12.31, 204
Fact 5.8.1, 307
Fact 5.11.7 322
right inverse
Fact 3.12.10, 199
semisimple matrix
Fact 5.14.21, 341
similar matrices
Proposition 3.4.5, 174
Proposition 5.6.3, 302
Corollary 5.5.22 301
Fact 5.10.9, 318
Fact 5.10.13, 319
Fact 5.10.14, 319
Fact 5.10.22, 320
singular value
Fact 5.11.38, 328
skew-Hermitian
matrix
Fact 3.12.8, 199
skew-idempotent
matrix
Fact 3.12.5, 199
spectrum
Proposition 5.5.21, 300
Fact 5.11.7, 322
stable subspace
Proposition 11.8.8, 665
submultiplicative norm
Fact 9.8.6, 572
sum
Fact 3.12.22, 201
trace
Fact 5.8.1, 307
Fact 5.11.7 322
transpose
Fact 3.12.7, 199
tripotent matrix
Fact 3.16.1, 212
Fact 3.16.5, 213
unitarily similar matrices

Proposition 3.4.5, 174
Fact 5.9.21 314
Fact 5.9.26 315
Fact 5.9.27 315
Fact 5.10.10, 318
unstable subspace
Proposition 11.8.8, 665
idempotent matrix onto a subspace along another subspace
definition, 176
identity
cube root Fact 2.12.23, 128
identity function definition, 3
identity matrix
definition, 83
symplectic matrix Fact 3.19.3, 216
identity perturbation
cyclic matrix
Fact 5.14.16, 341
defective matrix
Fact 5.14.16, 341
derogatory matrix
Fact 5.14.16. 341
diagonalizable over $\mathbb{F}$ Fact 5.14.16, 341
inverse matrix
Fact 4.8.12 259
semisimple matrix
Fact 5.14.16, 341
simple matrix
Fact 5.14.16. 341
spectrum
Fact 4.10.13, 268
Fact 4.10.14, 269
identity shift
controllable subspace
Lemma 12.6.7, 738
unobservable
subspace
Lemma 12.3.7, 730
identity theorem
matrix function evaluation
Theorem 10.5.3, 629

## identric mean

arithmetic mean Fact 1.10.36 37
logarithmic mean Fact 1.10.36 37
image
definition, 3
imaginary part
frequency response Fact 12.22.5 799
transfer function
Fact 12.22.5 799
imaginary vector
definition, 85
implication
definition, 1
improper rational function
definition Definition 4.7.1, 249
improper rational transfer function definition Definition 4.7.2, 249
impulse function
definition, 724
impulse response
definition, 725
impulse response function
definition, 725
inbound Laplacian matrix
adjacency matrix Theorem 3.2.2, 170
definition Definition 3.2.1, 170
incidence matrix definition Definition 3.2.1, 170

Laplacian matrix
Theorem 3.2.2, 170
Theorem 3.2.3, 171
inclusion principle
Hermitian matrix eigenvalue
Theorem 8.4.5, 426
inclusion-exclusion principle
cardinality
Fact 1.5.5, 11
increasing function
convex function
Theorem 8.6.15, 436
definition
Definition 8.6.12, 434
log majorization Fact 2.21.12, 163
logarithm
Proposition 8.6.13, 435
matrix functions
Proposition 8.6.13, 435
positive-definite matrix
Fact 8.10.53, 466
Schur complement Proposition 8.6.13, 435
weak majorization Fact 2.21.10, 163
increasing sequence positive-semidefinite matrix
Proposition 8.6.3, 432
indecomposable matrix, see irreducible matrix definition, 229
indegree graph Definition 1.4.3, 9
indegree matrix definition Definition 3.2.1, 170
index of a matrix
block-triangular matrix
Fact 5.14.32, 343
Fact 6.6.13, 395
complementary
subspaces
Proposition 3.5.7, 176
definition
Definition 3.5.5, 176
group-invertible matrix
Proposition 3.5.6, 176
Corollary 5.5.9, 297
Fact 5.14.4, 339
Kronecker product
Fact 7.4.26, 407
outer-product
matrix
Fact 5.14.3, 338
partitioned matrix
Fact 5.14.32, 343
Fact 6.6.13, 395
range
Fact 5.14.4, 339
rank
Proposition 5.5.2, 295
index of an eigenvalue
algebraic multiplicity
Proposition 5.5.6, 296
definition Definition 5.5.1, 295
Jordan block
Proposition 5.5.3, 295
minimal polynomial
Proposition 5.5.15, 299
rank
Proposition 5.5.2, 295
semisimple
eigenvalue
Proposition 5.5.8, 296
induced lower bound
definition
Definition 9.5.1, 558 Proposition 9.5.2, 558
lower bound Fact 9.8.43, 579
maximum singular value

Corollary 9.5.5. 560
minimum singular value
Corollary 9.5.5, 560
properties
Proposition 9.5.2 558
Proposition 9.5.3, 559
singular value Proposition 9.5.4, 560
supermultiplicativity
Proposition 9.5.6, 560
induced norm
compatible norm
Proposition 9.4.3 553
definition
Definition 9.4.1, 553
determinant
Fact 9.12.11, 601
dual norm
Fact 9.7.22, 570
field
Example 9.4.8, 554
maximum singular value
Fact 9.8.24, 575
norm
Theorem 9.4.2 553
quadratic form
Fact 9.8.34, 577
spectral radius
Corollary 9.4.5, 554
Corollary 9.4.10, 556
induced norms
symmetry property
Fact 9.8.16, 574
inequality
elementary symmetric function Fact $1.15 .20,53$
sum of products Fact 1.15.20, 53
inertia
congruent matrices Corollary 5.4.7, 294
Fact 5.8.22, 311
definition, 245
dissipative matrix
Fact 5.8.12 309
generalized inverse
Fact 6.3.21 374
Fact 8.20.12, 527
group-invertible matrix
Fact 5.8.5, 308
Hermitian matrix
Theorem 8.4.11, 428
Proposition 5.4.6, 294
Fact [5.8.6, 308
Fact 5.8.8, 308
Fact 5.8.12 309
Fact 55.8.13 309
Fact 5.8.14 309
Fact 5.8.15 309
Fact 5.8.16 310
Fact 5.8.17 310
Fact 5.8.18 310
Fact 5.8.19 310
Fact 5.12.1 333
Fact 6.3.21 374
Fact 8.10.15, 457
Fact 8.20.12 527
Fact 8.20 .14
Fact 12.21.1 793
Fact 12.21.2, 794
Fact 12.21.3, 794
Fact 12.21.4 794
Fact 12.21.5, 794
Fact 12.21.6, 795
Fact 12.21.7 795
Fact 12.21.8, 795
Fact 12.21 .10796
Fact 12.21 .11796
Fact 12.21 .12796
idempotent matrix
Fact 5.8.1 307
inequalities
Fact 5.8.16 310
involutory matrix
Fact 5.8.2, 307
Lyapunov equation
Fact 12.21.1, 793
Fact 12.21.2, 794
Fact 12.21.3 794
Fact 12.21.4, 794
Fact 12.21.5, 794

Fact 12.21.6. 795
Fact 12.21.7. 795
Fact 12.21.8, 795
Fact $12.21 .9,796$
Fact 12.21 .10796
Fact 12.21 .11796
Fact 12.21 .12796
nilpotent matrix Fact [5.8.4, 307
normal matrix
Fact 5.10.17, 319
partitioned matrix
Fact 5.8.19 310
Fact 5.8 .20310
Fact 5.8 .21311
Fact 5.12.1 333
Fact 6.5.5, 386
positive-definite matrix
Fact 5.8.10, 308
positive-semidefinite
matrix
Fact 5.8.9, 308
Fact 5.8.10, 308
Fact 12.21 .9 , 796
rank
Fact 5.8.5, 308
Fact 5.8.18, 310
Riccati equation
Lemma 12.16.18, 781
Schur complement
Fact 6.5.5, 386
skew-Hermitian matrix
Fact 5.8.4, 307
skew-involutory
matrix
Fact 5.8.4 307
submatrix
Fact 5.8.8, 308
tripotent matrix
Fact 5.8.3 307
inertia matrix
positive-definite
matrix
Fact 8.9.5, 451
rigid body
Fact 8.9.5. 451
infinite finite interval
definition, xxxv
infinite matrix product
convergence
Fact $11.21 .16,715$
infinite product
commutator
Fact 11.14.18, 685
convergence
Fact 11.21.16. 715
identity
Fact 1.7.10, 20
Fact 1.7.11, 20
matrix exponential
Fact 11.14.18, 685
infinite series
binomial series
Fact 1.18.8, 73
complex numbers
Fact 1.18.8, 73
Gregory's series
Fact 1.18.8, 73
identity
Fact 1.7.6, 18
Fact 1.7.7 19
Fact 1.7.9, 19
Mercator's series
Fact 1.18.8. 73
spectral radius Fact 10.11.24, 641
infinity norm
definition, 545
Kronecker product Fact 9.9.61, 591
submultiplicative norm
Fact 9.9.1 580
Fact 9.9.2 580
injective function
definition, 76
inner product
convex cone Fact 10.9.13, 635
inequality
Fact 2.12.1, 126
open ball

Fact 9.7.24, 570
separation theorem
Fact 10.9.13, 635
Fact 10.9.14, 635
subspace
Fact 10.9.12, 635
inner product of complex matrices definition, 87
inner product of complex vectors definition, 85
inner product of real matrices definition, 86
inner product of real vectors definition, 85
inner-product minimization
positive-definite matrix Fact 8.15.12, 502
input matrix controllability Fact 12.20.15, 792 stabilizability Fact 12.20.15, 792
input-to-state stability asymptotic stability Fact 12.20.18, 793
integers identity Fact 1.10.1, 30 Fact 1.10.2, 30
integral
asymptotically stable matrix Lemma 11.9.2, 667
averaged limit Fact 10.11.6, 638
determinant Fact 11.13.15, 680
Drazin generalized inverse

Fact 11.13.12, 679
Fact 11.13.14, 680
generalized inverse Fact 11.13.10, 679 group generalized inverse
Fact 11.13.13, 680
Fact 11.13.14, 680
inverse matrix
Fact 11.13.11, 679
matrix
definition, 628
matrix exponential
Proposition 11.1.4, 645
Lemma 11.9.2, 667
Fact 11.13.10, 679
Fact 11.13.11, 679
Fact 11.13.12, 679
Fact 11.13.13, 680
Fact 11.13.14, 680
Fact $11.13 .15,680$
Fact 11.14.1, 681
Fact 11.18.5, 698
Fact 11.18.6, 698
positive-definite matrix
Fact 8.15.32, 505
Fact 8.15.33, 506
Fact 8.15.34, 506
Fact 8.15.35 506
positive-semidefinite
matrix
Proposition 8.6.10, 433
quadratic form
Fact 8.15.34, 506
Fact 8.15.35, 506
integral representation
Kronecker sum
Fact 11.18.34, 705
interior
boundary
Fact 10.8.7, 632
complement Fact 10.8.6, 632
convex set
Fact 10.8.8, 632
Fact 10.8.19, 633
definition

Definition 10.1.1 621
intersection
Fact 10.9.2, 634
largest open set
Fact 10.8.3, 632
simplex
Fact 2.20.4, 154
subset
Fact 10.9.1, 634
union
Fact 10.9.2, 634
Fact 10.9.3, 634
interior point
definition
Definition 10.1.1, 621
interior point relative to a set
definition
Definition 10.1.2, 621
interior relative to a set definition
Definition 10.1.2, 621
interlacing
singular value
Fact 9.14.10, 609
interlacing theorem
asymptotically stable polynomial Fact 11.17.6, 696
interpolation
polynomial
Fact 4.8.11, 259
intersection
closed set
Fact 10.9 .10635
Fact 10.9.11, 635
convex set
Fact 10.9.7, 634
definition, 2
dual cone
Fact 2.9.5, 111
equivalence relation
Proposition 1.3.3 5
interior
Fact 10.9.2, 634
open set

Fact 10.9.9, 635
reflexive relation
Proposition 1.3.3, 5
span
Fact 2.9.12, 111
symmetric relation Proposition 1.3.3, 5 transitive relation Proposition 1.3.3, 5
intersection of closed sets
Cantor intersection theorem
Fact 10.9.11, 635
intersection of ranges
projector
Fact 6.4.41, 384
intersection of subspaces
subspace dimension theorem
Theorem 2.3.1, 90
interval
definition, $x x x v$
invariance of domain
open set image
Theorem 10.3.7, 624
invariant subspace
controllable subspace
Corollary 12.6.4 737
definition, 94
lower triangular
matrix
Fact 5.9.2, 311
matrix
representation
Fact 2.9.25, 113
stable subspace
Proposition 11.8.8, 665
unobservable
subspace
Corollary 12.3.4 729
unstable subspace
Proposition 11.8.8, 665
upper triangular matrix

Fact 5.9.2, 311
invariant zero
definition
Definition 12.10.1, 757
determinant
Fact 12.22 .14800
equivalent
realizations
Proposition 12.10 .10 , 764
full actuation
Definition 12.10.2, 758
full observation
Definition 12.10.2, 758
full-state feedback
Proposition 12.10.10. 764
Fact 12.22 .14800
observable pair
Corollary 12.10.12 765
pencil
Corollary 12.10.4 759
Corollary 12.10.5 760
Corollary 12.10.6, 761
regular pencil
Corollary 12.10.4 759
Corollary 12.10.5, 760
Corollary 12.10.6, 761
transmission zero
Theorem 12.10.8, 762
Theorem 12.10.9, 762
uncontrollable
spectrum
Theorem 12.10.9, 762
uncontrollable-
unobservable
spectrum
Theorem 12.10.9, 762
unobservable
eigenvalue
Proposition 12.10.11, 764
unobservable
spectrum
Theorem 12.10.9. 762
inverse
determinant
Fact 2.13.5 129
left-invertible matrix
Proposition 2.6.5, 101
polynomial matrix
definition, 235
positive-definite matrix
Fact 8.11.10, 469
rank
Fact 2.11.21 125
Fact 2.11.22, 125
right-invertible matrix
Proposition 2.6.5, 101
subdeterminant
Fact 2.13.5, 129
inverse function
definition, 4
uniqueness
Theorem 1.2.2, 4
inverse function
theorem
determinant
Theorem 10.4.5, 627
existence of local inverse
Theorem 10.4.5, 627
inverse image
definition, 4
subspace intersection
Fact 2.9.30, 114
subspace sum
Fact 2.9.30, 114
inverse matrix
$2 \times 2$
Fact 2.16.12, 143
$2 \times 2$ block triangular
Lemma 2.8.2, 107
$3 \times 3$
Fact 2.16.12 143
asymptotically stable matrix
Fact 11.18.15, 700
block-circulant matrix
Fact 2.17.6, 148
block-triangular matrix

Fact 2.17.1, 146	matrix inversion	Fact 6.5.11, 388
characteristic	lemma	series
polynomial	Corollary 2.8.8, 108	Proposition 9.4.13, 557
Fact 4.9.9, 261	matrix sum	similar matrices
companion matrix	Corollary 2.8.10, 110	Fact 5.15.31, 350
Fact 5.16.2, 353	maximum singular	similarity
convergent sequence	value	transformation
Fact 2.16.29, 146	Fact 9.14.8, 608	Fact 5.15.4, 345
Fact 4.10.5, 266	Newton-Raphson	spectral radius
definition, 101	algorithm	Proposition 9.4.13, 557
derivative	Fact 2.16.29, 146	spectrum
Proposition 10.7.2, 630	normalized	Fact 5.11.14, 324
Fact 10.11.19, 641	submultiplicative	sum
elementary matrix	norm	Fact 2.17.6, 148
Fact 2.16.1, 141	Fact 9.8.44, 579	tridiagonal matrix
Fact 3.7.20, 182	Fact 9.9.56, 590	Fact 3.20.9, 219
finite sequence	Fact 9.9.57, 590	Fact 3.20.10, 219
Fact 2.16.28, 146	Fact 9.9.58, 591	Fact 3.20.11 220
Hamiltonian matrix	Fact 9.9.59, 591	upper
Fact 3.19.5, 216	outer-product	block-triangular
Hankel matrix	perturbation	matrix
Fact 3.18.4, 215	Fact 2.16.3, 141	Fact 2.17.7, 148
identity	partitioned matrix	Fact 2.17.9, 148
Fact 2.16.13, 143	Fact 2.16.4, 142	inverse operation
Fact 2.16.14, 144	Fact 2.17.2, 146	composition
Fact 2.16.15, 144	Fact 2.17.3, 147	Fact 1.5.10, 12
Fact 2.16.16, 144	Fact 2.17.4, 147	iterated
Fact 2.16.17, 144	Fact 2.17.5, 147	Fact 1.5.9, 12
Fact 2.16.18, 144	Fact 2.17.6, 148	
Fact 2.16.19, 144	Fact 2.17.8, 148	invertible function
Fact 2.16.20, 144	Fact 5.12.21 337	definition, 4
Fact 2.16.21, 145	perturbation	involutory matrix
Fact 2.16.22, 145	Fact 9.9.60, 591	commutator
Fact 2.16.23, 145	polynomial	Fact 3.15.4, 212
Fact 2.16.24, 145	representation	definition
Fact 2.16.25, 145	Fact 4.8.13, 259	Definition 3.1.1, 165
Fact 2.16.26, 145	positive-definite	determinant
Fact 2.16.27, 146	matrix	Fact 3.15.1, 212
identity perturbation	Proposition 8.6.6. 432	Fact 5.15.32, 351
Fact 4.8.12, 259	Lemma 8.6.5, 432	diagonalizable
integral	Fact 8.9.17, 452	matrix
Fact 11.13.11, 679	Fact 8.9.41, 455	Fact 5.14.20, 341
Kronecker product	positive-semidefinite	factorization
Proposition 7.1.7, 401	matrix	Fact 5.15.18, 348
lower bound	Fact 8.10.37, 461	Fact 5.15.31, 350
Fact 8.9.17, 452	product	Fact 5.15.32, 351
matrix exponential	Proposition 2.6.9, 102	idempotent matrix
Proposition 11.2.8, 649	rank	Fact 3.15.2, 212
Fact 11.13.11, 679	Fact 2.17.10, 149	identity

Fact 3.15.3, 212
inertia
Fact 5.8.2, 307
Kronecker product
Fact 7.4.16, 406
matrix exponential
Fact 11.11.1, 671
normal matrix
Fact 5.9.9, 312
Fact 5.9.10, 312
null space
Fact 3.15.4, 212
partitioned matrix
Fact 3.15.5, 212
range
Fact 3.15.4 212
reflector
Fact 3.14.2, 211
semisimple matrix
Fact 5.14.19, 341
signature
Fact 5.8.2, 307
similar matrices
Proposition 3.4.5, 174
Corollary 5.5.22, 301
Fact 5.15.31, 350
spectrum
Proposition 5.5.21, 300
symmetric matrix
Fact 5.15.36, 351
trace
Fact 5.8.2, 307
transpose
Fact 5.9.7, 312
tripotent matrix Fact 3.16.2, 212
unitarily similar matrices
Proposition 3.4.5. 174
irreducible matrix
absolute value Fact 3.20.4 218
almost nonnegative matrix
Fact 11.19.2, 706
connected graph
Fact 4.11.2, 273
definition
Definition 3.1.1, 165
graph
Fact 4.11.2, 273
group generalized inverse
Fact 6.6.20 398
M-matrix Fact 4.11.10, 276
permutation matrix
Fact 3.20 .3217
positive matrix
Fact 4.11.5, 273
primary circulant Fact 3.20.3 217
spectral radius convexity Fact 4.11.18, 280
spectral radius monotonicity Fact 4.11.18, 280
irreducible polynomial
definition, 233
isomorphic groups
symplectic group and unitary group
Fact 3.21.3 222
isomorphism
definition
Definition 3.3.4, 172
group
Proposition 3.3.5, 172

## J

Jacobi identity
commutator
Fact 2.18.4 149
Jacobi's identity
determinant
Fact 2.14.28, 139
matrix differential equation
Fact 11.13.4, 678
Jacobian
definition, 627
Jacobson
nilpotent
commutator
Fact 3.17.12, 214

## Jensen

convex function
Fact 10.11.7 638
Jensen's inequality
arithmetic-mean-geometric-mean inequality
Fact 1.8.4 21
convex function
Fact 1.8.4 21
Fact 1.15.35 57

## JLL inequality

trace of a matrix power Fact 4.11.22, 281

Jordan block
index of an eigenvalue Proposition 5.5.3, 295
Jordan canonical form
generalized inverse Fact 6.6.9, 394
group-invertible matrix
Fact 6.6.9 394
Jordan form
existence Theorem 5.3.3, 289
factorization Fact 5.15.5, 346
Hamiltonian Fact 12.23.1 802
minimal polynomial Proposition 5.5.15, 299
normal matrix Fact 5.10.6, 317
real Jordan form Fact 5.10.2, 317
Schur decomposition
Fact 5.10.6, 317
square root Fact 5.15.19, 348
transfer function

Fact 12.22.10, 800

## Jordan matrix

example
Example 5.3.6, 290
Example 5.3.7, 291
Jordan structure
logarithm
Corollary 11.4.4, 654
matrix exponential
Corollary 11.4.4, 654
Jordan's inequality
trigonometric inequality Fact 1.9.29, 28

Jordan-Chevalley decomposition
diagonalizable matrix Fact 5.9.3, 311
nilpotent matrix Fact 5.9.3, 311

Joyal
polynomial root bound Fact 11.20.7, 710

Jury test
discrete-time asymptotically stable polynomial Fact 11.20.1, 708

## K

## Kalman decomposition

minimal realization Proposition 12.9.10, 753
Kantorovich inequality positive-semidefinite matrix Fact 8.15.9, 501
quadratic form Fact 8.15.9, 501
scalar case Fact 1.15.36, 57

Kato
maximum singular value of a matrix difference Fact 9.9.32, 585
kernel function
positive-semidefinite matrix
Fact 8.8.1, 444
Fact 8.8.2, 445
Kharitonov's theorem
asymptotically stable
polynomial
Fact 11.17.13, 698
Khatri-Rao product
Kronecker product, 416

Kittaneh
Schatten norm inequality
Fact 9.9.45, 588
Klamkin's inequality
triangle Fact 2.20.11, 156
Klein four-group
dihedral group
Fact 3.21.7, 223
Klein's inequality
trace of a matrix logarithm Fact 11.14.25, 686

Kleinman stabilization and Gramian Fact 12.20.17, 792

## Kojima's bound

 polynomial Fact $11.20 .8,710$Kosaki
Schatten norm inequality Fact 9.9.45, 588
trace norm of a matrix difference

Fact 9.9.24, 584
trace of a convex function
Fact 8.12.33, 482
unitarily invariant norm inequality Fact 9.9.44, 588

## Krein

inertia of a Hermitian matrix Fact 12.21.5. 794

Krein-Milman theorem extreme points of a convex set
Fact 10.8.23, 634
Kreiss matrix theorem maximum singular value Fact 11.21.17, 715

## Kristof

least squares and unitary
biequivalence
Fact 9.15.6, 619

## Kronecker canonical

 formpencil
Theorem 5.7.1, 304
regular pencil
Proposition 5.7.2 305

## Kronecker permutation matrix

definition, 402
Kronecker product Fact 7.4.29, 407
orthogonal matrix Fact 7.4.29, 407
trace Fact 7.4.29, 407
transpose
Proposition 7.1.13, 402
vec
Fact 7.4.29, 407
Kronecker product
biequivalent matrices Fact 7.4.11, 405

column norm	generalized inverse	maximum singular
Fact 9.9.61, 591	Fact 7.4.30, 408	value
complex conjugate	group generalized	Fact 9.14.37 617
transpose	inverse	nilpotent matrix
Proposition 7.1.3, 400	Fact 7.4.31 408	Fact 7.4.16, 406
congruent matrices	group-invertible	normal matrix
Fact 7.4.12, 406	matrix	Fact 7.4.16, 406
convex function	Fact 7.4.16, 406	orthogonal matrix
Proposition 8.6.17, 437	Fact 7.4.31 408	Fact 7.4.16, 406
definition	Hermitian matrix	outer-product
Definition 7.1.2, 400	Fact 7.4.16 406	matrix
determinant	Fact 8.21.28, 536	Proposition 7.1.8, 401
Proposition 7.1.11, 402	Hölder norm	partitioned matrix
Fact 7.5.12, 410	Fact 9.9.61 591	Fact 7.4.18, 406
Fact 7.5.13, 410	idempotent matrix	Fact 7.4.19, 406
diagonal matrix	Fact 7.4.16, 406	Fact 7.4.24, 407
Fact 7.4.3, 405	index of a matrix	positive-definite
discrete-time	Fact 7.4.26, 407	matrix
asymptotically	infinity norm	Fact 7.4.16, 406
stable matrix	$\text { Fact } 9.9 .61591$	positive-semidefinite
Fact 11.21.5, 713	inverse matrix	matrix
Fact 11.21.6, 713		Fact 7.4.16, 406
discrete-time		Fact 8.21.16, 534
Lyapunov-stable	involutory matrix   Fact 7.4.16 406	Fact $8.21 .22,536$
matrix	Fact 7.4.16 406	Fact 8.21.23, 536
Fact 11.21.5, 713	Kronecker	Fact 8.21.24, 536
Fact 11.21.6, 713	permutation matrix	Fact $8.21 .26,536$
discrete-time	Fact 7.4.29, 407	Fact 8.21 .27536
semistable matrix	Kronecker sum	Fact 8.21.29, 536
Fact 11.21.5, 713	Fact 11.14.37 688	projector
Fact 11.21.6. 713	left-equivalent	Fact 7.4.16, 406
Drazin generalized	matrices	range
inverse	Fact 7.4.11 405	Fact 7.4.22, 407
Fact 7.4.31, 408	lower triangular	range-Hermitian
eigenvalue	matrix	matrix
Proposition 7.1.10, 401	Fact 7.4.3, 405	Fact 7.4.16, 406
Fact 7.4.13, 406	matrix exponential	rank
Fact 7.4.15 406	Proposition 11.1.7, 645	Fact 7.4.23, 407
Fact 7.4.21, 406	Fact 11.14.37 688	Fact 7.4.24, 407
Fact 7.4.28, 407	Fact 11.14.38, 688	Fact 7.4.25, 407
Fact 7.4.32, 408	matrix	Fact 8.21.16, 534
eigenvector	multiplication	reflector
Proposition 7.1.10, 401	Proposition 7.1.6, 400	Fact 7.4.16, 406
Fact 7.4.21, 406	matrix power	right-equivalent
Fact 7.4.32, 408	Fact 7.4.4, 405	matrices
Euclidean norm	Fact 7.4.10, 405	Fact 7.4.11, 405
Fact 9.7.27, 570	Fact 7.4.21 406	row norm
Frobenius norm	matrix sum	Fact 9.9.61, 591
Fact 9.14.37, 617	Proposition 7.1.4, 400	Schatten norm

Fact 9.14.37, 617
Schur product Proposition 7.3.1, 404
semisimple matrix Fact 7.4.16, 406
similar matrices
Fact 7.4.12, 406
singular matrix
Fact 7.4.27, 407
skew-Hermitian
matrix
Fact 7.4.17, 406
spectral radius
Fact 7.4.14, 406
square root
Fact 8.21.29, 536
Fact 8.21.30, 537
submatrix
Proposition 7.3.1, 404
trace
Proposition 7.1.12, 402
Fact 11.14.38, 688
transpose
Proposition 7.1.3, 400
triple product
Proposition 7.1.5, 400
Fact 7.4.7, 405
tripotent matrix
Fact 7.4.16, 406
unitarily similar matrices
Fact 7.4.12, 406
unitary matrix
Fact 7.4.16, 406
upper triangular matrix
Fact 7.4.3, 405
vec
Fact 7.4.5, 405
Fact 7.4.6, 405
Fact 7.4.8, 405
vector
Fact 7.4.1, 405
Fact 7.4.2, 405
Fact 7.4.20, 406
Kronecker sum
associativity
Proposition 7.2.2, 403
asymptotically stable matrix
Fact 11.18.32, 704
Fact $11.18 .33,704$
Fact $11.18 .34,705$
asymptotically stable
polynomial
Fact 11.17.11, 697
commuting matrices
Fact 7.5.4. 409
defect
Fact 7.5.2, 409
definition
Definition 7.2.1 403
determinant
Fact 7.5.11, 410
dissipative matrix
Fact 7.5.8, 409
eigenvalue
Proposition 7.2.3, 403
Fact 7.5.5, 409
Fact 7.5.7, 409
Fact 7.5.16, 411
eigenvector
Proposition 7.2.3, 403
Fact 7.5.16, 411
Hermitian matrix
Fact 7.5.8, 409
integral representation Fact 11.18.34, 705
Kronecker product
Fact 11.14.37, 688
linear matrix
equation
Proposition 11.9.3, 667
linear system
Fact 7.5.15, 411
Lyapunov equation Corollary 11.9.4 668
Lyapunov-stable matrix
Fact 11.18.32, 704
Fact 11.18.33, 704
matrix exponential
Proposition 11.1.7, 645
Fact 11.14.36, 688
Fact 11.14.37, 688
matrix power

Fact 7.5.1] 409
nilpotent matrix
Fact 7.5.3, 409
Fact 7.5.8, 409
normal matrix
Fact 7.5.8, 409
positive matrix Fact 7.5.8, 409
positive-semidefinite matrix
Fact 7.5.8, 409
range-Hermitian matrix
Fact 7.5.8, 409
rank
Fact 7.5.2, 409
Fact 7.5.9, 409
Fact 7.5.10, 410
semidissipative
matrix
Fact 7.5.8, 409
semistable matrix Fact 11.18.32, 704
Fact 11.18.33, 704
similar matrices Fact 7.5.9, 409
skew-Hermitian matrix
Fact 7.5.8, 409
spectral abscissa Fact 7.5.6. 409
trace Fact 11.14.36, 688

## L

$L_{2}$ norm
controllability Gramian
Theorem 12.11.1 765
definition, 765
observability
Gramian
Theorem 12.11.1. 765
Löwner-Heinz inequality
positive-semidefinite matrix inequality

Corollary 8.6.11 434
Labelle
polynomial root bound
Fact 11.20.7, 710
Laffey
simultaneous
triangularization
Fact 5.17.5 358
Lagrange identity product identity
Fact 1.16.8, 61
Lagrange interpolation formula
polynomial
interpolation
Fact 4.8.11 259
Lagrange-Hermite interpolation polynomial
matrix function
Theorem 10.5.2, 629
Laguerre-Samuelson inequality mean
Fact 1.15.12, 51
Fact 8.9.35, 454
Lancaster's formulas quadratic form integral
Fact 8.15.34, 506
Laplace transform
matrix exponential
Proposition 11.2.2, 647
resolvent
Proposition 11.2.2, 64
Laplacian
symmetric graph Fact 4.11.1, 272

Laplacian matrix
adjacency matrix
Theorem 3.2.2, 170
Theorem 3.2.3, 171
Fact 4.11.11, 277
definition
Definition 3.2.1, 170
incidence matrix
Theorem 3.2.2, 170
Theorem 3.2.3, 171
quadratic form
Fact 8.15.36, 506
spectrum
Fact 11.19.7, 708
symmetric graph
Fact 8.15.36, 506
lattice
definition
Definition 1.3.9, 7
positive-semidefinite matrix
Fact 8.10.32, 459
Fact 8.10.33, 459
leading principal submatrix
definition, 80
leaf
Definition 1.4.2, 8
least common multiple block-diagonal matrix
Lemma 5.2.7, 286
definition, 234
least lower bound for a partial ordering
definition
Definition 1.3.9, 7
least squares
fixed-rank approximation
Fact 9.14.28, 614
Fact 9.15 .4618
generalized inverse Fact 9.15.1 618
Fact 9.15.2 618
Fact 9.15 .3618
singular value decomposition
Fact 9.14.28, 614
Fact 9.15.4 618
Fact 9.15.5 618

Fact 9.15.6, 619
least squares and unitary biequivalence
Kristof Fact 9.15.6, 619
least upper bound projector Fact 6.4.41, 385

## left divides

definition, 234

## left equivalence

equivalence relation Fact 5.10.3, 317
left inverse
(1)-inverse

Proposition 6.1.3, 364
affine subspace
Fact 2.9.26, 113
complex conjugate
transpose
Fact 2.15.1, 140
Fact 2.15.2, 140
cone
Fact 2.9.26, 113
convex set
Fact 2.9.26, 113
definition, 4
generalized inverse
Corollary 6.1.4, 364
Fact 6.4.39, 384
Fact 6.4.40, 384
idempotent matrix Fact 3.12.10, 199
left-inner matrix Fact 3.11.5, 190
matrix product Fact 2.15.5, 141
positive-definite matrix
Fact 3.7.25, 182
representation Fact 2.15.3, 140
subspace
Fact 2.9.26. 113
uniqueness
Theorem 1.2.2, 4

		ix 971
left-equivalent matrices definition	derivative of an integral	Lie algebra of a Lie group
Definition 3.4.3, 174	Fact 10.11.10, 639	matrix exponential
group-invertible	Iemma	Proposition 11.6.3, 658
matrix 177	definition, 1	Lie group
Fact 3.6.1, 177	Leslie matrix	definition
Kronecker product   Fact 7.4.11, 405	Leslie matrix definition, 362	Definition 11.6.1, 658 group
null space	Leverrier's algorithm	Proposition 11.6.2, 658
Proposition 5.1.3, 283	characteristic	Lie algebra
positive-semidefinite	polynomia	Proposition 11.6.4, 658
matrix	Proposition 4.4.9, 244	Proposition 11.6.5, 659
Fact 5.10.19, 319	lexicographic ordering	Proposition 11.6.6, 659
left-inner matrix definition	$\begin{aligned} & \text { cone } \\ & \text { Fact } 2.9 .31,115 \end{aligned}$	Lie-Trotter formula matrix exponential
Definition 3.1.2, 166	total ordering	Fact 11.14.7 683
generalized inverse   Fact 6.3.8, 371	Fact 1.5.8, 12	Lie-Trotter product
left inverse	Lidskii-Mirsky-Wielandt	ormula
Fact 3.11.5, 190	eo	matrix exponential
		Corollary 11.4.8, 656
left-invertible function	erturbation	Fact 11.16.2, 692
definition,	,	Fact 11.16.3, 692
left-invertible matrix definition, 98	Lidskii-Wielandt inequalities	Lieb concavity theorem, 542
equivalent properties   Theorem 2.6.1, 98   generalized inverse	for Hermitian   matrices	Lieb-Thirring inequality positive-semidefinite
Proposition 6.1.5, 364	Fact 8.18.3, 513	
inverse	Lie alge	Fact 8.18.20, 518
Proposition 2.6.5, 101	classical examples   Proposition 3.3.2, 17	limit
Fact 2.10.3, 115	definition	discrete-time
nonsingu	Definition 3.3.1, 171	semistable matrix
equivalence	Lie group	Fact 11.21.10, 71
Corollary [2.6.6, 101	Proposition 11.6.4, 658	Drazin generalized
unique left inverse	Proposition 11.6.5, 659	inverse
Proposition 2.6.2, 99	Proposition 11.6.6, 659	Fact 6.6.11, 395
	matrix exponential	Hermitian matrix
Lehmer matrix positive-semidefinite	Proposition 11.6.7, 659	Fact 8.10.1, 456   matrix exponential
matrix	triangular matrix	$\text { Fact 11.18.5, } 698$
Fact 8.8.5, 447	Fact 3.21.4, 222	Fact 11.18.6, 698
Lehmer mean	Fact 11.22.1 715	Fact 11.18.7, 699
power ineq	upper triangular	matrix logarithm
Fact 1.10.35, 36	matrix	Proposition 8.6.4 432
	Fact 3.21.4, 222	positive-definite
Leibniz's rule	Fact 11.22.1 715	matrix

Fact 8.10.47, 465
positive-semidefinite matrix
Proposition 8.6.3, 432
Fact 8.10.47, 465
projector
Fact 6.4.41, 384
Fact 6.4.46, 385
semistable matrix
Fact 11.18.7, 699
Linden
polynomial root bound Fact 11.20.9, 710
linear combination
determinant Fact 8.13.18, 488
Hermitian matrix Fact 8.15.24, 504 Fact 8.15.25, 504 Fact 8.15.26, 504
idempotent matrix Fact 5.19.9, 361
positive-semidefinite matrix
Fact 8.13.18, 488
linear combination of projectors
Hermitian matrix Fact 5.19.10, 361
linear combination of two vectors
definition, 79
linear constraint
quadratic form Fact 8.14.10, 497
linear dependence
absolute value
Fact 9.7.1, 563
triangle inequality Fact 9.7.3, 563
linear dependence of two matrices
definition, 80
linear dependence of two vectors
definition, 79
linear dependence of vectors
definition, 90
linear dynamical system
asymptotically stable
Proposition 11.8.2, 662
discrete-time
asymptotically
stable
Proposition 11.10 .2 , 670
discrete-time
Lyapunov stable
Proposition 11.10.2, 670
discrete-time
semistable
Proposition 11.10.2, 670
Lyapunov stable
Proposition 11.8.2, 662
semistable
Proposition 11.8.2, 662
linear function
continuous function
Corollary 10.3.3, 624
definition, 81
linear independence
cyclic matrix
Fact 5.14.9, 340
definition, 90
outer-product
matrix
Fact 2.12.8, 126
linear matrix equation
asymptotically stable matrix
Proposition 11.9.3, 667
existence of solutions
Fact 5.10.20, 320
Fact 5.10.21, 320
generalized inverse
Fact 6.4.38 384

Kronecker sum
Proposition 11.9.3, 667
matrix exponential
Proposition 11.9.3, 667
rank
Fact 2.10.16, 117
skew-symmetric
matrix
Fact 3.7.3, 178
solution
Fact 6.4.38, 384
Sylvester's equation
Proposition 7.2.4, 403
Proposition 11.9.3, 667
Fact 5.10.20 320
Fact 5.10.21 320
Fact 6.5.7, 387
symmetric matrix
Fact 3.7.3 178
linear system
generalized inverse
Proposition 6.1.7, 366
harmonic
steady-state
response
Theorem 12.12.1, 768
Kronecker sum
Fact 7.5.15, 411
right inverse
Fact 6.3.1 369
solutions
Proposition 6.1.7, 366
Fact 2.10.6, 116

## linear system solution

Cramer's rule
Fact 2.13.6, 129
nonnegative vector
Fact 4.11.14 279
norm
Fact 9.9.64, 592
Fact 9.9.65, 592
Fact 9.9.66, 592
rank
Theorem 2.6.4 100
Corollary 2.6.7, 101
right-invertible matrix
Fact 2.13.7, 129
linear-quadratic control problem
definition, 775
Riccati equation
Theorem 12.15.2, 776
solution
Theorem 12.15.2, 776
linearly independent rational functions
definition, 250
Littlewood
Hölder-induced norm
Fact 9.8.17, 574
Fact 9.8.18, 574
Ljance
minimal principal angle and subspaces Fact 5.11.39, 329
log majorization convex function Fact 2.21.12, 163
increasing function Fact 2.21.12, 163 positive-semidefinite matrix
Fact 8.11.9, 469
logarithm, see matrix logarithm
SO(3)
Fact 11.15.10, 692
convex function
Fact 11.16.14, 695
Fact 11.16.15, 695
determinant
Fact 8.13.8, 486
determinant and convex function Proposition 8.6.17 437
entropy
Fact 1.15.45, 59
Fact 1.15.46, 59
Fact 1.15.47, 59
Fact $1.16 .30,67$
Euler constant Fact 1.7.5, 18 gamma

Fact 1.7.5, 18
increasing function
Proposition 8.6.13, 435
inequality
Fact 1.15.45, 59
Fact 1.15.46, 59
Fact 1.15.47 59
Jordan structure
Corollary 11.4.4, 654
orthogonal matrix
Fact $11.15 .10,692$
rotation matrix
Fact 11.15.10, 692
scalar inequalities
Fact 1.9.21, 26
Fact 1.9.22, 26
Fact 1.9.23, 27
Fact 1.9.24, 27
Fact 1.9.25, 27
Fact 1.10.24, 34
Fact 1.10.25, 34
Fact 1.10.40, 38
Shannon's inequality
Fact 1.16.30, 67
trace and convex function
Proposition 8.6.17, 437
logarithm function
complex numbers
Fact 1.18.7, 72
principal branch
Fact 1.18.7, 72
scalar inequalities
Fact 1.9.26, 27
Fact 1.9.27, 27
Fact 1.9.28, 27
logarithmic derivative
asymptotically stable matrix Fact 11.18.11, 699
Lyapunov equation Fact 11.18.11, 699
properties
Fact 11.15.7, 690
logarithmic mean
arithmetic mean
Fact 1.15.26, 54
Heron mean

Fact 1.10.37, 37
identric mean
Fact 1.10.36, 37
Polya's inequality
Fact 1.10.36, 37
logical equivalents
De Morgan's laws Fact 1.5.1, 10
existential statement Fact 1.5.4, 11
implication
Fact 1.5.1 10
Fact 1.5.2, 10
Fact 1.5.3, 11
universal statement Fact 1.5.4 11
loop
Definition 1.4.2, 8
lower block-triangular matrix
definition
Definition 3.1.3, 167
determinant
Proposition 2.7.1 103
lower bound
induced lower bound
Fact 9.8.43, 579
minimum singular value
Fact 9.13.15 604
Fact 9.13.21 606
lower bound for a partial ordering
definition
Definition 1.3.9, 7
lower Hessenberg matrix
definition
Definition 3.1.3, 167
lower
reverse-triangular
matrix
definition
Fact 2.13.8, 130
determinant
Fact 2.13.8, 130


		inertia 975
Theorem 11.7.2, 661	similar matrices	determinant
Lyapunov's direct method stability theory Theorem 11.7.2, 661	Fact 11.18.4, 698	identities
	step response	Fact 2.13.16, 132
	Fact 12.20.1 790	Magnus expansion
	Lyapunov-stable	time-varying
Lyapunov-stable equilibrium definition	ynom	dynamics
	definition	Fact 11.13.4, 678
	Lyapunov-stable	Makelainen
	matrix	difference of
Lyapunov-stable matrix almost nonnegative matrix	Proposition 11.8.4, 663	idempotent matrices
	$\text { Fact } 11.18 .23,702$	Fact 5.12.19 337
Fact 11.19.4, 706   compartmental   matrix   Fact 11.19.6. 707	Lya	Maligranda inequality
	transfer functio	complex numbers
	minimal realization	Fact 1.18.5, 71
	Proposition 12.9.18.	norm
Definition 11.8.1, 662	757	Fact 9.7.10, 566
group-invertible	SISO entries	Fact 9.7.13, 567
matrix	Proposition 12.9.19 757	Mann
Fact 11.18.2, 698		positivity of a
Fact 11.18.32, 704   Fact 11.18.33, 704		quadratic form on a
	M	subspace
	M	Fact 8.15.27, 504
Lyapunov equation   Proposition 11.9.6 669   Corollary 11.9.7, 669		
	definition	Marcus
	Fact 4.11.6, 275	quadratic form
Lyapunov-stable   polynomial   Proposition 11.8.4 663	determinant	inequality   Fact 8.15.19, 503
	Fact 4.11.8, 276 eigenvector	similar matrices and
matrix exponential	Fact 4.11.10, 276	nonzero diagonal
Fact 11.18.6, 698	inverse	entries
Fact 11.21.7, 713	Fact 4.11.8, 276	Fact 5.9.14, 313
minimal realization   Definition 12.9.17 757	irreducible matrix	Markov block-Hankel
Fact 11.19.4, 706		matr
	$\text { Fact 4.11.6, } 275$	controllable pair Proposition 12.9.11
normal matrix	rank	$754$
positive-definite	Fact 8.7.7, 444	definition, 754
matrix	Schur product	minimal realization
Proposition 11.9.6, 669	Fact 7.6.15, 415	Proposition 12.9.12
Corollary 11.9.7, 669		755
semidissipative		observable pair
matrix		Proposition 12.9.11
Fact 11.18.37, 705	Fact 4.11.6, 275	754
semistable matrix	Fact 4.11.8, 276	rational transfer
Fact 11.18.1, 698	Magnus	function

Proposition 12.9.11. 754
Proposition 12.9.12 755
Proposition 12.9.13. 755

Markov parameter definition, 727
rational transfer function
Proposition 12.9.7, 751
Martins's inequality
sum of integers
Fact 1.9.31 30
Mason
polynomial root
bound
Fact 11.20 .10711
mass
definition, 654
mass matrix
partitioned matrix
Fact 5.12.21, 337
mass-spring system
spectrum
Fact 5.12.21, 337
stability
Fact 11.18.38, 705
Massera-Schaffer inequality
complex numbers Fact 1.18.5, 71
norm
Fact 9.7.10, 566
Fact 9.7.13, 567
matricial norm
partitioned matrix Fact 9.10.1 593
matrix
definition, 79
matrix cosine
matrix exponential Fact 11.12.1, 677
matrix sine

Fact 11.12.1, 677
matrix derivative
definition, 630
matrix differential equation
Jacobi's identity Fact 11.13.4, 678
matrix exponential Fact 11.13.3, 677
Riccati differential equation
Fact 12.23.5, 803
time-varying
dynamics
Fact 11.13.4, 678
Fact 11.13.5, 678
matrix exponential
$2 \times 2$ matrix
Proposition 11.3.2, 651
Corollary 11.3.3, 652
Lemma 11.3.1, 651
Example 11.3.4, 652
Example 11.3.5, 652
$3 \times 3$ matrix
Fact 11.11.5, 673
$3 \times 3$ orthogonal matrix
Fact 11.11.10 674
Fact 11.11.11 674
$3 \times 3$ skew-symmetric matrix
Fact 11.11.6, 673
Fact 11.11.10 674
Fact 11.11.11 674
$4 \times 4$ skew-symmetric matrix
Fact 11.11 .14675
Fact 11.11.15 675
Fact $11.11 .16,676$
Fact 11.11 .17676
$\mathrm{SO}(n)$
Fact 11.11.3, 672
almost nonnegative matrix
Fact 11.19.1, 706
Fact 11.19.2, 706
asymptotic stability
Proposition 11.8.2, 662
asymptotically stable matrix
Lemma 11.9.2, 667
Fact 11.18.8, 699
Fact 11.18.9 699
Fact 11.18.10, 699
Fact 11.18.15, 700
Fact 11.18.18, 701
Fact 11.18.19, 701
Fact 11.21 .7713
block-diagonal matrix
Proposition 11.2.8, 649
commutator
Fact 11.14 .9683
Fact 11.14.11, 683
Fact 11.14.12, 683
Fact 11.14.13, 684
Fact 11.14.14, 684
Fact 11.14.15, 684
Fact 11.14.16, 684
Fact 11.14.17, 684
Fact 11.14.18, 685
commuting matrices
Proposition 11.1.5, 645
Corollary 11.1.6, 645
Fact 11.14.2, 681
Fact 11.14.5, 682
complex conjugate
Proposition 11.2.8, 649
complex conjugate transpose
Proposition 11.2.8, 649
Fact $11.15 .4,689$
Fact 11.15.6 690
convergence in time
Proposition 11.8.7, 665
convergent sequence
Proposition 11.1.3, 644
Fact 11.14.7 683
Fact $11.14 .8,683$
Fact 11.14 .9683
Fact 11.21 .14 .714
convergent series
Proposition 11.1.2, 644
convex function
Fact 8.14.18 500
Fact 11.16.14, 695
Fact 11.16.15, 695

		inertia
cross product	discrete-time	Fact 11.15.1, 689
Fact 11.11.7, 673	semistable matrix	Fact 11.16.4, 692
Fact 11.11.8, 674	Fact 11.21.7 713	Fact 11.16.5, 694
Fact 11.11.9, 674	Fact $11.21 .14,714$	Fact 11.16.13, 695
cross-product matrix	dissipative matrix	Fact 11.16.17, 695
Fact 11.11.6, 673	Fact 11.15.3, 689	idempotent matrix
Fact 11.11.12, 674	Drazin generalized	Fact 11.11.1, 671
Fact 11.11.13, 675	inverse	Fact 11.16.12, 695
Fact 11.11.16, 676	Fact 11.13.12, 679	infinite product
Fact 11.11.17, 676	Fact 11.13.14, 680	Fact 11.14.18, 685
definition	eigenstructure	integral
Definition 11.1.1, 643	Proposition 11.2.7, 648	Proposition 11.1.4, 645
derivative	Frobenius norm	Lemma 11.9.2, 667
Fact 8.12.31, 482	Fact 11.14.32, 688	Fact 11.13.10, 679
Fact 11.14.3, 682	Fact 11.15.3, 689	Fact 11.13.11, 679
Fact 11.14.4, 682	generalized inverse	Fact 11.13.12, 679
Fact 11.14.10, 683	Fact 11.13.10, 679	Fact 11.13.13, 680
Fact 11.15.2, 689	geometric mean	Fact 11.13.14, 680
derivative of a	Fact 8.10.44, 464	Fact 11.13.15, 680
matrix	Golden-Thompson	Fact 11.14.1, 681
Fact 11.14.11, 683	inequality	Fact 11.16.8, 694
determinant	Fact 11.14.28, 687	Fact 11.18.5, 698
Proposition 11.4.6, 655	Fact 11.16.4, 692	Fact 11.18.6, 698
Corollary 11.2.4, 648	group	inverse matrix
Corollary 11.2.5, 648	Proposition 11.6.7, 659	Proposition 11.2.8, 649
Fact 11.13.15, 680	group generalized	Fact 11.13.11, 679
Fact 11.15.5, 689	inverse	involutory matrix
diagonal matrix	Fact 11.13.13, 680	Fact 11.11.1 671
Fact 11.13.16, 680	Fact 11.13.14, 680	Jordan structure
discrete-time	Fact 11.18.5, 698	Corollary 11.4.4 654
asymptotic stability	Fact 11.18.6, 698	Kronecker product
Proposition 11.10.2,	group-invertible	Proposition 11.1.7, 645
670	matrix	Fact 11.14.37, 688
discrete-time	Fact 11.18.14, 700	Fact 11.14.38, 688
asymptotically	Hamiltonian matr	Kronecker sum
stable matrix	Proposition 11.6.7, 659	Proposition 11.1.7 645
Fact 11.21.7, 713	Hermitian matrix	Fact 11.14.36, 688
discrete-time	Proposition 11.2.8, 649	Fact 11.14.37, 688
Lyapunov stability	Proposition 11.2.9, 650	Laplace transform
Proposition 11.10.2,	Proposition 11.4.5, 654	Proposition 11.2.2, 647
670	Corollary 11.2.6, 648	Lie algebra
discrete-time	Fact 11.14.7 683	Proposition 11.6.7 659
Lyapunov-stable	Fact 11.14.8, 683	Lie algebra of a Lie
matrix	Fact 11.14.21, 685	group
Fact 11.21.7, 713	Fact 11.14.28, 687	Proposition 11.6.3, 658
discrete-time	Fact 11.14.29, 687	Lie-Trotter formula
semistability	Fact 11.14.31, 688	Fact 11.14.7, 683
Proposition 11.10.2,	Fact 11.14.32, 688	Lie-Trotter product
670	Fact 11.14.34, 688	formula


Corollary 11.4.8 656	nilpotent matrix	Fact 11.14.20, 685
Fact 11.16.2, 692	Fact 11.11.1, 671	Fact 11.14.35, 688
Fact 11.16.3, 692	Fact 11.13.17 680	Fact 11.16.6, 694
limit	nondecreasing	Fact 11.16.16, 695
Fact 11.18.5, 698	function	quaternions
Fact 11.18.6, 698	Fact 8.10.44, 464	Fact 11.11.15, 675
Fact 11.18.7, 699	norm	rank-two matrix
linear matrix	Fact 11.16.9, 694	Fact 11.11.18, 676
equation	Fact 11.16.11, 694	resolvent
Proposition 11.9.3, 667	Fact 11.16.12 695	Proposition 11.2.2, 647
logarithm	norm bound	Schur product
Fact 11.14.21, 685	Fact 11.18.10, 699	Fact 11.14.21, 685
lower triangular	normal matrix	semisimple matrix
matrix	Proposition 11.2.8, 649	Proposition 11.2.7, 648
Fact 11.13.1, 677	Fact 11.13.18, 680	semistability
Fact 11.13.16, 680	Fact 11.14.5, 682	Proposition 11.8.2, 662
Lyapunov equation	Fact 11.16.10, 694	semistable matrix
Corollary 11.9.4 668	orthogonal matrix	Fact 11.18.5, 698
Fact 11.18.18, 701	Proposition 11.6.7, 659	Fact 11.18 .7699
Fact 11.18.19, 701	Fact 11.11.6, 673	Fact 11.21 .7713
Lyapunov stability	Fact 11.11.7, 673	series
Proposition 11.8.2, 662	Fact 11.11.8, 674	Proposition 11.4.7, 655
Lyapunov-stable	Fact 11.11.9, 674	Fact 11.14.17, 684
matrix	Fact 11.11 .12674	similar matrices
Fact 11.18.6, 698	Fact 11.11 .13675	Proposition 11.2.9, 650
Fact 11.21.7, 713	Fact 11.15.10, 692	singular value
matrix cosine	outer-product	Fact 11.15.5, 689
Fact 11.12.1, 677	matrix	Fact 11.16.14, 695
matrix differential	Fact 11.11.1, 671	Fact 11.16.15, 695
equation	partitioned matrix	skew-Hermitian
Fact 11.13.3, 677	Fact 11.11.2, 672	matrix
matrix logarithm	Fact 11.14.1, 681	Proposition 11.2.8, 649
Theorem 11.5.1, 656	Peierls-Bogoliubov	Proposition 11.2.9, 650
Proposition 11.4.2, 654	inequality	Fact 11.14 .6683
Fact 11.13.17, 680	Fact 11.14.29, 687	Fact 11.14.33, 688
Fact 11.14.31, 688	polar decomposition	skew-involutory
matrix power	Fact 11.13.9, 679	matrix
Fact 11.13.19, 680	polynomial matrix	Fact 11.11.1 671
matrix sine	Proposition 11.2.1, 646	skew-symmetric
Fact 11.12.1, 677	positive-definite	matrix
maximum eigenvalue	matrix	Example 11.3.6, 652
Fact 11.16.4, 692	Proposition 11.2.8, 649	Fact 11.11.3, 672
maximum singular	Proposition 11.2.9, 650	Fact 11.11 .6673
value	Fact 11.14.20, 685	Fact 11.11.7 673
Fact 11.15.1, 689	Fact 11.14.22 685	Fact 11.11.8, 674
Fact 11.15.2, 689	Fact 11.14.23 686	Fact 11.11.9 674
Fact 11.15.5, 689	Fact 11.15.1, 689	Fact 11.11.15, 675
Fact 11.16.6, 694	positive-semidefinite	Specht's ratio
Fact 11.16.10, 694	matrix	Fact 11.14.28, 687


		inertia 979
spectral abscissa	Fact 11.16.1 692	matrix function
Fact 11.13.2, 677	Fact 11.16.4, 692	aluation
Fact 11.15.8, 691	transpose	identity theorem
Fact 11.15.9, 691	Proposition 11.2.8, 649	Theorem 10.5.3, 629
Fact 11.18.8, 699	unipotent matrix	
Fact 11.18.9, 699	Fact 11.13.17, 680	matrix logarithm
spectral radius	unitarily invariant	Proposition 8.6.4 432
Fact 11.13.2, 677	norm	
spectrum	Fact 11.15.6, 690	matrix inversion lemma
Proposition 11.2.3, 648	Fact 11.16.4, 692	generalization
Corollary 11.2.6, 648	Fact 11.16.5, 694	Fact 2.16.21, 145
stable subspace	Fact 11.16.13, 695	generalized inverse
Proposition 11.8.8 665	Fact 11.16.16, 695	Fact 6.4.4, 378
state equation	Fact 11.16.17, 695	inverse matrix
Proposition 12.1.1, 723	unitary matrix	Corollary 2.8.8, 108
strong log	Proposition 11.2.8, 649	matrix logarithm
majorization	Proposition 11.2.9, 650	chaotic order
Fact 11.16.4, 692	Proposition 11.6.7, 659	Fact 8.19.1, 522
submultiplicative	Corollary 11.2.6, 648	complex matrix
rm	Fact 11.14.6, 683	Definition 11.4.1 654
Proposition 11.1.2, 644	Fact 11.14.33, 688	convergent series
Fact 11.15.8, 691	Fact 11.14.34, 688	Theorem 11.5.1, 656
Fact 11.15.9, 691	upper triangular	convex function
Fact 11.16.7, 694	matrix	Proposition 8.6.17, 437
Fact 11.18.8, 699	Fact 11.11.4, 672	determinant
Fact 11.18.9, 699	Fact 11.13.1, 677	Fact 8.18.30, 521
sum of integer	Fact 11.13.16, 680	Fact 9.8.39, 578
powers	vibration equation	Fact 11.14.24, 686
Fact 11.11.4, 672	Example 11.3.7, 653	determinant and
symplectic matrix	weak majorization	derivative
Proposition 11.6.7 659	Fact 11.16.4, 692	Proposition 10.7.3, 631
thermodynamic	Z-matrix	discrete-time
inequality	Fact 11.19.1 706	Lyapunov-stable
Fact 11.14.31, 688	Zassenhaus product	matrix
trace	formula	Fact 11.14.19, 685
Corollary 11.2.4, 648	Fact 11.14.18, 685	eigenvalues
Corollary 11.2.5, 648		Theorem 11.5.1, 656
Fact 8.14.18, 500		exponential
Fact 11.11.6, 673	Lagrange-Hermit	Fact 11.14.26, 686
Fact 11.14.3, 682	Lagrange-Hermite	geometric mean
Fact 11.14.10, 683	erpolation	Fact 11.14.39, 689
Fact 11.14.28, 687	Theorem 10.52629	Hamiltonian matrix
Fact 11.14.29, 687	Theorem 10.5.2, 629	Fact 11.14.19, 685
Fact 11.14.30, 687	spectrum 629	Klein's inequality
Fact 11.14.31, 688	Corollary 10.5.4, 629	Fact 11.14.25, 686
Fact 11.14.36, 688	matrix function defined	limit
Fact 11.14.38, 688	at a point	Proposition 8.6.4, 432
Fact 11.15.4, 689	definition	matrix exponential
Fact 11.15.5, 689	Definition 10.5.1, 628	Theorem 11.5.1, 656

Proposition 11.4.2, 654
Fact 11.13.17, 680
Fact 11.14 .21685
Fact 11.14.31 688
matrix inequality
Proposition 8.6.4, 432
maximum singular
value
Fact 8.18.30, 521
nonsingular matrix
Proposition 11.4.2, 654
norm
Theorem 11.5.1, 656
positive-definite
matrix
Proposition 8.6.4, 432
Proposition 11.4.5, 654
Fact 8.9.43, 455
Fact 8.13.8, 486
Fact 8.18.29, 521
Fact 8.19.1 522
Fact 8.19.2, 523
Fact 9.9.55, 590
Fact 11.14 .24686
Fact 11.14 .25686
Fact 11.14.26 686
Fact 11.14 .27686
positive-semidefinite
matrix
Fact 9.9.54, 590
quadratic form
Fact 8.15.15, 502
real matrix
Proposition 11.4.3,
Fact 11.14 .19685
relative entropy
Fact $11.14 .25,686$
Schur product
Fact 8.21.47, 540
Fact 8.21.48, 540
spectrum
Theorem 11.5.1, 656
symplectic matrix
Fact 11.14.19, 685
trace
Fact 11.14.24, 686
Fact 11.14.25 686
Fact 11.14.27, 686
Fact 11.14.31 688
unitarily invariant norm
Fact 9.9.54 590
matrix measure
properties Fact 11.15.7, 690
matrix polynomial
definition, 234
matrix power
outer-product perturbation Fact 2.12.18, 127
positive-definite matrix inequality
Fact 8.10.51 466
Fact 8.19.3, 523
positive-semidefinite matrix
Fact 8.12.30, 482
Fact 8.15.16, 502
matrix product
lower triangular matrix
Fact 3.20.18, 221
normal matrix Fact 9.9.6, 580
strictly lower triangular matrix Fact 3.20.18, 221
strictly upper triangular matrix Fact 3.20.18, 221
unitarily invariant norm
Fact 9.9.6, 580
upper triangular matrix Fact 3.20.18, 221
matrix sign function
convergent sequence Fact 5.15.21, 348
definition
Definition 10.6.2, 630
partitioned matrix Fact 10.10.3, 637
positive-definite matrix

Fact 10.10.4 637
properties
Fact 10.10.2 637
square root
Fact 5.15.21 348
matrix sine
matrix cosine
Fact 11.12.1, 677
matrix exponential
Fact 11.12.1 677
maximal solution
Riccati equation
Definition 12.16.12, 780
Theorem 12.18.1, 787
Theorem 12.18.4 787
Proposition 12.18.2 787
Proposition 12.18.7 789
maximal solution of the Riccati equation
closed-loop spectrum
Proposition 12.18.2, 787
stabilizability Theorem 12.18.1. 787
maximization continuous function Fact 10.11.4, 638
maximum eigenvalue commutator
Fact 9.9.30, 585
Fact 9.9.31, 585
Hermitian matrix
Lemma 8.4.3, 425
Fact 5.11.5, 321
Fact 8.10.3, 456
matrix exponential Fact 11.16.4 692
positive-semidefinite matrix
Fact 8.18.11 515
Fact 8.18.13, 516
Fact 8.18.14, 516
quadratic form
Lemma 8.4.3, 425

spectral abscissa	equi-induced	Fact 8.18.26, 520
Fact 5.11.5, 321	self-adjoint norm	Fact 9.13.7, 603
unitarily invariant	Fact 9.13.5, 602	Fact 9.13.9, 603
norm	equi-induced	normal matrix
Fact 9.9.30, 585	unitarily invariant	Fact 5.14.15, 341
Fact 9.9.31, 585	norm	Fact 9.8.13, 573
	Fact 9.13.4, 602	Fact 9.12.8, 601
maximum singular	generalized inverse	Fact 9.13.7, 603
	Fact 9.14.8, 608	Fact 9.13.8, 603
absolute value	Fact 9.14.30, 615	Fact 9.14.5, 608
Fact 9.13.10, 603	Hermitian matrix	Fact 11.16.10, 694
block-diagonal	Fact 5.11.5, 321	outer-product
matrix	Fact 9.9.41, 588	matrix
Fact 5.11.33, 328	Hölder-induced	Fact 5.11.16, 324
block-triangular	norm	Fact 5.11.18, 324
matrix	Fact 9.8.21, 575	Fact 9.7.26, 570
Fact 5.11.32, 328	idempotent matrix	partitioned matrix
bound	Fact 5.11.38, 328	Fact 8.17.3, 508
Fact 5.11.35, 328	Fact 5.11.39, 329	Fact 8.17.14, 512
commutator	Fact 5.12.18, 336	Fact 8.18.1, 512
Fact 9.9.29, 584	induced lower bound	Fact 8.18.2, 513
Fact 9.14.9, 609	Corollary 9.5.5, 560	Fact 9.10.1, 593
complex conjugate	induced norm	Fact 9.10.3, 594
transpose	Fact 9.8.24, 575	Fact 9.10.4, 594
Fact 8.17.3, 508	inequality	Fact 9.10.5, 595
Fact 8.18.11, 515	Proposition 9.2.2, 548	Fact 9.14.12, 610
Fact 8.21.10, 533	Corollary 9.6.5, 562	Fact 9.14.13, 610
Cordes inequality	Corollary 9.6.9, 562	Fact 9.14.14, 610
Fact 8.18.26, 520	Fact 9.9.32, 585	positive-definite
derivative	Fact 9.14.16, 611	matrix
Fact 11.15.2, 689	inverse matrix	Fact 8.18.25, 520
determinant	Fact 9.14.8, 608	positive-semidefinite
Fact 9.14.17, 611	Kreiss matrix	matrix
Fact 9.14.18, 611	theorem	Fact 8.18.1, 512
discrete-time	Fact 11.21.17, 715	Fact 8.18.2, 513
Lyapunov-stable	Kronecker product	Fact 8.18.8, 515
matrix	Fact 9.14.37, 617	Fact 8.18.12, 516
Fact 11.21.17, 715	matrix difference	Fact 8.18.13, 516
dissipative matrix	Fact 8.18.8, 515	Fact 8.18.14, 516
Fact 8.17.12, 511	Fact 9.9.32, 585	Fact 8.18.15, 517
eigenvalue of	matrix exponential	Fact 8.18.16, 517
Hermitian part	Fact 11.15.1 689	Fact 8.18.25, 520
Fact 5.11.25, 326	Fact 11.15.2, 689	Fact 8.18.26, 520
eigenvalue	Fact 11.15.5, 689	Fact 8.18.28, 521
perturbation	Fact 11.16.6, 694	Fact 8.18.30, 521
Fact 9.12.4, 599	Fact 11.16.10, 694	Fact 8.18.31, 522
Fact 9.12.8, 601	matrix logarithm	Fact 8.20.9, 526
elementary projector	Fact 8.18.30, 521	Fact 11.16.6, 694
Fact 9.14.1, 607	matrix power	power

Fact 11.21.17 715
product
Fact 9.14.2, 607
projector
Fact 5.11.38, 328
Fact 5.12.17, 335
Fact 5.12.18, 336
Fact 9.14.1, 607
Fact 9.14.30, 615
quadratic form
Fact 9.13.1 602
Fact 9.13.2, 602
Schur product
Fact 8.21.10, 533
Fact 9.14.31, 615
Fact 9.14.33, 616
Fact 9.14.35, 617
spectral abscissa
Fact 5.11.26, 326
spectral radius
Corollary 9.4.10, 556
Fact 5.11.5 321
Fact 5.11.26, 326
Fact 8.18.25, 520
Fact 9.8.13, 573
Fact 9.13.9, 603
square root
Fact 8.18.14, 516
Fact 9.8.32 576
Fact 9.14.15, 611
sum of matrices
Fact 9.14.15, 611
trace
Fact 5.12.7, 334
Fact 9.14.4, 608
trace norm
Corollary 9.3.8, 552
unitarily invariant
norm
Fact 9.9.10, 581
Fact 9.9.29 584
maximum singular
value bound
Frobenius norm
Fact 9.13.13, 604
minimum singular value bound
Fact 9.13.14, 604
polynomial root

Fact 9.13.14, 604
trace
Fact 9.13.13, 604
maximum singular value of a matrix difference
Kato
Fact 9.9.32, 585
maximum singular value of a partitioned matrix
Parrott's theorem
Fact 9.14.13, 610
Tomiyama
Fact 9.14.12, 610
McCarthy inequality
positive-semidefinite matrix
Fact 8.12.29, 481
McCoy
simultaneous
triangularization
Fact 5.17.5 358
McIntosh's inequality
unitarily invariant norm
Fact 9.9.47 589
McLaughlin's inequality refined

Cauchy-Schwarz inequality
Fact 1.16.17, 64
McMillan degree
Definition 4.7.10, 251
minimal realization Theorem 12.9.16, 756
mean
inequality
Fact 1.16.18, 64
Laguerre-Samuelson
inequality
Fact 1.15.12, 51
Fact 8.9.35 454
variance inequality
Fact 1.15.12, 51

Fact 8.9.35, 454
mean-value inequality product of means
Fact 1.15.38, 57
Fact 1.15.44 59
Mercator's series
infinite series
Fact 1.18.8, 73

## Minet

polynomial bound
Fact 11.20 .13 , 712
Milne's inequality
refined
Cauchy-Schwarz
inequality
Fact 1.16.15 63
Milnor
simultaneous diagonalization of symmetric matrices Fact 8.16.6, 507

MIMO transfer function
definition
Definition 12.9.1, 749
minimal polynomial
block-diagonal
matrix
Lemma 5.2.7, 286
block-triangular matrix
Fact 4.10.12, 268
characteristic
polynomial
Fact 4.9.24, 265
companion matrix
Proposition 5.2.1, 284
Corollary 5.2.4, 286
Corollary 5.2.5, 286
cyclic matrix
Proposition 5.5.15, 299
definition, 247
existence
Theorem 4.6.1. 247
index of an eigenvalue Proposition 5.5.15, 299

Jordan form Proposition 5.5.15, 299 null space Corollary 11.8.6, 664
partitioned matrix Fact 4.10.12, 268
range
Corollary 11.8.6, 664
similar matrices
Proposition 4.6.3, 248
Fact 11.23.3, 717
Fact 11.23.4 717
Fact $11.23 .5,718$
Fact 11.23.6. 719
Fact 11.23.7. 719
Fact 11.23.8, 720
Fact 11.23 .9720
Fact 11.23.10, 721
Fact 11.23.11, 721
spectrum
Fact 4.10.8, 267
stable subspace
Proposition 11.8.5 664
Fact 11.23.1 716
Fact 11.23.2, 716
upper
block-triangular matrix
Fact 4.10.12, 268
minimal realization
asymptotically stable matrix
Definition 12.9.17 757
asymptotically stable transfer function Proposition 12.9.18, 757
balanced realization Proposition 12.9.21, 757
block decomposition Proposition 12.9.10, 753
controllable pair
Proposition 12.9.10, 753
Corollary 12.9.15, 756
definition
Definition 12.9.14 756

Kalman
decomposition
Proposition 12.9.10 753
Lyapunov-stable matrix
Definition 12.9.17 757
Lyapunov-stable transfer function
Proposition 12.9.18 757
Markov
block-Hankel
matrix
Proposition 12.9.12 755
McMillan degree
Theorem 12.9.16, 756
observable pair
Proposition 12.9.10 753
Corollary 12.9.15, 756
pole
Fact 12.22 .2798
Fact 12.22.12, 800
rational transfer function Fact 12.22.12, 800
semistable matrix Definition 12.9.17 757
semistable transfer function
Proposition 12.9.18 757
minimal-rank identity
partitioned matrix
Fact 6.5.7 387
minimum eigenvalue
Hermitian matrix
Lemma 8.4.3, 425
Fact 8.10.3, 456
nonnegative matrix
Fact 4.11.9, 276
quadratic form
Lemma 8.4.3, 425
Z-matrix
Fact 4.11.9, 276
minimum principle
eigenvalue
characterization
Fact 8.17.15 512
minimum singular value
determinant
Fact 9.14.18 611
eigenvalue of
Hermitian part
Fact 5.11.25 326
induced lower bound
Corollary 0.5.5, 560
inequality
Corollary 0.6.6, 562
Fact 9.13.6, 602
lower bound
Fact 0.13.15 604
Fact 9.13 .21606
quadratic form
Fact 9.13.1, 602
spectral abscissa Fact 5.11.26 326
spectral radius
Fact 5.11.26, 326
minimum singular value bound
maximum singular value bound Fact 9.13.14 604
polynomial root Fact 9.13.14 604
Minkowski
set-defined norm
Fact 10.8.22 633
Minkowski's determinant theorem positive-semidefinite matrix determinant Corollary 8.4.15 429
Minkowski's inequality Hölder norm Lemma 9.1.3 544
positive-semidefinite matrix Fact 8.12.29, 481
scalar case
Fact 1.16.25 66

minor, see subdeterminant	$\begin{aligned} & \text { Proposition } 12.18 .5 \\ & 788 \end{aligned}$	multiplicative perturbation
Mircea's inequality triangle	Corollary 12.18.6, 788 monotonicity theorem	small-gain theorem Fact 9.13.23 606
Fact 2.20.11, 156	Hermitian matrix eigenvalues	multiplicity of a root definition, 232
Mirsky singular value trace bound	Theorem 8.4.9, 427   Fact 8.10 .4456	multirelation definition, 5
Fact 5.12.6 334		multi
Mirsky's theorem singular value perturbation	see generalized inverse	definition, 2 multispectrum
Fact 9.14.29, 614	Muirhead's	
MISO transfer function definition   Definition [12.9.1, 749	Schur convex   function   Fact 1.15.25, 54   strong majorization	properties   Proposition 4.4.5, 241
mi	Fact [2.21.5 162	N
arithmetic-geometric mean inequality arithmetic mean Fact 1.15.39, 58	multicompanion form definition, 285 existence Theorem 5.2.3 285	N-matrix   almost nonnegative matrix
ML-matrix	similar matrices	Fact 11.19 .3706
definition, 230	Corollary [5.2.6 286	Fact 11.19.5 707
	similarity invariant Corollary 5.2.6 286	asymptotically stable matrix
Fact $5.17 .3,358$	multigraph	Fact 11.19.5 707 definition
monic polynomial definition, 231	definition, 8 multinomial theorem	Fact 11.19 .3706 group-invertible
monic polynomial matrix	power of sum   Fact 1.15.1 48	matrix   Fact 11.19 .4706
definition, 234	multiple   definition, 233	Lyapunov-stable matrix
absolute norm Proposition 9.1.2, 543	multiplication definition, 81	nonnegative matrix   Fact 11.19.3 706
definition, 543	function composition	Nanjundiah
monotonicity	Kronecker produc	mixed arith
Callebaut Fact 1.16.1 60	$\text { Proposition 7.1.6, } 400$	geometric mean inequality
power inequality	multiplicative	Fact 1.15.39 58
ct 1.10.33, 36	mmutator	natural frequency
power mean	realization	definition, 654
inequality   Fact 1.15.30, 55	Fact 5.15.34 351 reflector realizatio	Fact 5.14.35, 344
Riccati equation	Fact 5.15.35, 351	necessity


		inertia 985
definition, 1 negation definition, 1	Niculescu's inequality	Fact 3.17.11, 214
	absolute-value	matrix exponential
	function	Fact 11.11.1, 671
	Fact 1.10.19, 3	Fact 11.13.17, 680
negative-definite matrix asymptotically stable matrix	convex function	matrix sum
	Fact 1.8.5, 22	Fact 3.17.10, 214
	square-root function	null space
Fact 11.18.30, 704	Fact 1.10.20, 33	Fact 3.17.1, 213
definition	nilpotent matrix	Fact 3.17.2, 213
Definition 3.1.1 165	additive	Fact 3.17.3, 213
negative-semidefinite matrix	decomposition	outer-product
	Fact 5.9.3 311	matrix
definition	adjugate	Fact 5.14.3, 338
Definition 3.1.1, 165	Fact 6.3.6, 370	partitioned matrix
Euclidean distance	commutator	Fact 3.12.14, 200
matrix	Fact 3.12.16, 200	Fact 5.10.23, 321
Fact 9.8.14, 573	Fact 3.17.11, 214	range
	Fact 3.17.12, 214	Fact 3.17.1, 213
scalar inequality	Fact 3.17.13, 214	Fact 3.17.2, 213
Fact 1.11.21, 44	commuting matrice   Fact 3.17.9, 214	Fact 3.17.3, 213
com	Fact 3.17.10, 214	Fact 317.4213
simultaneo	defective matrix	Fact 3.17.5, 213
cogredient	Fact 5.14.18, 341	S-N decomposition
diagonalization, 541	Definition 3.1.1, 165	Fact 5.9.3, 311
Newton's identities	determinant	similar matrices
elementar	Fact 3.17.9, 214	Proposition 3.4.5, 174
symmetric	example	Fact 5.10.23, 321
polynomial	Example 5.5.17, 299	simultaneous
Fact 4.8.2, 254	factorization	triangularization
polynomial roots	Fact 5.15.29, 350	Fact 5.17.6, 358
Fact 4.8.2, 254	idempotent matrix	spectrum
spectrum	Fact 3.12.16, 200	Proposition 5.5.21, 300
Fact 4.10.6, 267	identity perturbation	Toeplitz matrix
Newton's inequality	Fact 3.17.7, 214	Fact 3.18.6, 216
	Fact 3.17.8, 214	trace
symm	inertia	Fact 3.17.6, 214
polynomial	Fact 5.8.4 307	triangular matrix
Fact 1.15.11, 50	Jordan-Chevalley decomposition	Fact 5.17.6, 358
Newton-Raphson algorithm	Fact 5.9.3, 311	matrices
	Kronecker product	Proposition 3.4.5 174
generalized inverse	Fact 7.4.16, 406	upper triangular
Fact 6.3.35, 376	Kronecker sum	matrix
inverse matrix	Fact 7.5.3, 409	Fact 3.17.11 214
Fact 2.16.29, 146	Fact 7.5.8, 409	
square root	lower triangular	node
Fact 5.15.21, 348	matrix	definition, 8


986 inertia		
nondecreasing function	eigenvalue   Fact 4.11 .5273	complex conjugate transpose
convex function	Fibonacci numbers	Proposition [2.6.8] 102
Lemma 8.6.16, 436	Fact 4.11.12, 277	Fact 2.16.30 146
definition	limit of matrix	controllable subspace
Definition 8.6.12, 434	powers	Proposition 12.6.10
function composition	Fact 4.11.21, 280	740
Lemma 8.6.16, 436	Lucas numbers	cyclic matrix
geometric mean	Fact 4.11.12, 277	Fact 5.14.9 340
Fact 8.10.43, 461	M-matrix	definition, 100
Fact 8.10.44, 464	Fact 4.11.6 275	determinant
matrix exponential	matrix power	Corollary [2.7.4, 104
Fact 8.10.44, 464	Fact 4.11.22, 281	Lemma 2.8.6, 108
matrix functions	minimum eigenvalu	determinant lower
Proposition 8.6.13,	Fact 4.11.9 276	bound
Schur complement	N -matr	Fact 4.10.18 269
Proposition 8.6.13, 43	Fact 11.19 .3 706	diagonal dominance
nonderogatory	spectral radius	theorem
eigenvalue	Fact 4.11.5 273	Fact 4.10 .17269
definition	Fact 4.11.6 275	Fact 4.10.18, 269
Definition 5.5.4 296	Fact 4.11.16, 279	diagonally dominant
	Fact 4.11.17 280	matrix
nonderogatory matrix	Fact 7.6.13 41	Fact 4.10 .17269
definition	Fact	dissipative matrix
Definition 55.5.4 296	spectral radius	Fact 3.20.13, 220
nonempty set definition, 2	convexity   Fact 4.11.19, 280	distance to singularity
increasing function	spectral radius	
ncave function	monotonicity	Fact 5.15.12 347
Lemma 8.6.16, 436	Fact 4.11.18, 280	factorization
definition	trace 281	Fact 5.15.12 347
Definition 8.6.12, 434	Fact	Fact 5.15.36 351
function composition	nonnegative matrix	group
Lemma 8.6.16, 436	eigenvalues	Proposition 3.3.6 172
negative matrix	Perron-Frobenius	idempotent matrix
most nonnegative	eore	Fact 3.12.11 199
matrix	Fact 4.11.5 273	Fact 3.12.26 203
Fact 11.19.1, 706		Fact 3.12.28 203
aperiodic graph		Fact 3.12.32 205
Fact 4.11.5 273		inverse matrix
companion matrix	solution	Fact 3.7.1 178
Fact 4.11.13, 279	Fact 4.11.14	matrix logarithm
copositive matrix		Proposition 11.4.2, 654
Fact 8.15.37, 507	Fact 41115279	norm
definition, 81		Fact 9.7.32, 571
Definition 3.1.4, 168	nonsingular matrix	normal matrix
difference equation	complex conjugate	Fact 3.7.1 178
Fact 4.11.12, 277	Proposition [2.6.8, 102	perturbation


inertia 987		
Fact 9.14.6, 608	absolute su	linear system
Fact 9.14.18, 611	definition, 545	solution
range-Hermitian	column	Fact 0.9.64, 592
matrix	definition, 556	Fact 9.9.65, 592
Proposition 3.1.6, 169	compatible	Fact 0.9.66, 592
similar matrices	definition, 549	Maligranda
Fact 5.10.11 318	complex conjugate	inequality
simplex	transpose	Fact 9.7.10, 566
Fact 2.20.4, 154	Fact 9.8.8, 572	Fact 0.7.13, 567
skew Hermitian matrix	convex set   Fact 9.7.23, 570	Massera-Schaffer inequality
Fact 3.7.1, 178	Dunkl-Williams	Fact 9.7.10, 566
spectral radius	inequality	Fact 9.7.13, 567
Fact 4.10.29, 272	Fact 0.7.10, 566	matrix
submultiplicative	Fact 9.7.13, 567	Definition 9.2.1, 546
norm	equi-induced	matrix exponential
Fact 9.8.5, 572	Definition 9.4.1 553	Fact 11.16 .9694
Sylvester's equation	equivalent	Fact 11.16.11 694
Fact 12.21.14, 796	Theorem 9.1.8 546	Fact 11.16.12, 695
transpose   Proposition[2.6.8, 102	Euclidean	matrix logarithm   Theorem [11.5.1 656
unitary matrix	definition, 545   Euclidean-norm	monotone
Fact 3.7.1, 178	inequality	definition, 543
unobservable	Fact 9.7.4 563	nonsingular matrix
subspace	Fact 9.7.18, 569	Fact 9.7.32, 571
$\begin{aligned} & \text { Proposition 12.3.10 } \\ & 730 \end{aligned}$	Frobenius   definition, 547	normalized definition, 547
weak diagonal dominance theorem Fact 4.10.19, 270	Hölder-norm inequality	partitioned matrix   Fact 9.10.1, 593   Fact 9.10.2, 593
	Fact 9.7.18, 569	Fact 9.10.8, 596
nonsingular matrix transformation	idempotent matrix Fact 11.16.12, 695	positive-definite matrix
Smith polynomial   Proposition 4.3.8, 238	induced   Definition 9.4.1 553	Fact 0.7.30, 571
nonsingular polynomial matrix	induced norm   Theorem 9.4.2 553	$\begin{aligned} & \text { quacratic rorm } \\ & \text { Fact 0.7.30, } 571 \\ & \text { row } \end{aligned}$
Definition 4.2.5, 235	inequality	definition, 556
regular polynomial	Fact 9.7.2, 563	self-adjoint
matrix	Fact 9.7.4, 563	definition, 547
Proposition 4.2.5, 235	Fact 9.7.10, 566	set-defined
	Fact 0.7.13, 567	Fact 10.8.22 633
nonzero diagon entries	Fact 0.7.16, 568	spectral
	Fact 9.7.17, 569	definition, 549
milar matrices	infinity	spectral radius
Fact 5.9.14, 313	definition, 545	Proposition 9.2.6 549
norm absolute definition, 543	linear combination of norms   Fact 0.7.31, 571	submultiplicative definition, 550 trace

definition, 549
triangle inequality
Definition 9.1.1, 543
unitarily invariant
definition, 547
vector
Definition 9.1.1, 543
weakly unitarily invariant
definition, 547
norm bound
matrix exponential
Fact 11.18.10 699
norm equality
common eigenvector
Fact 9.9.33, 585
Schatten norm
Fact 9.9.33, 585
norm identity
Hlawka's equality
Fact 9.7.4, 563
polarization identity
Fact 9.7.4, 563
Pythagorean theorem
Fact 9.7.4, 563
norm inequality
Aczel's inequality
Fact 9.7.4, 563
Bessel's inequality
Fact 9.7.4, 563
Buzano's inequality
Fact 9.7.4, 563
convex combination
Fact 9.7.15 568
Hlawka's inequality
Fact 9.7.4, 563
Hölder norm
Fact 9.7.21 569
orthogonal vectors
Fact 9.7.25, 570
Parseval's inequality
Fact 9.7.4, 563
polygonal
inequalities
Fact 9.7.4, 563
quadrilateral inequality
Fact 9.7.4, 563
Schatten norm
Fact 9.9.34 586
Fact 9.9.36 586
Fact 9.9.37 586
Fact 9.9.38 587
unitarily invariant norm
Fact 9.9.47 589
Fact 9.9.48 589
Fact 9.9.49 589
Fact 9.9.50 589
vector inequality
Fact 9.7.11 567
Fact 9.7.12, 567
Fact 9.7.14 568
Fact 9.7.15 568
von
Neumann-Jordan
inequality
Fact 9.7.11 567
norm monotonicity
power-sum
inequality
Fact 1.10.30, 35
Fact 1.15.34, 57
norm-compression inequality
partitioned matrix
Fact 9.10.1 593
Fact 9.10.8, 596
positive-semidefinite matrix
Fact 9.10.6 595
normal matrix
affine mapping Fact 3.7.14 181
asymptotically stable matrix
Fact 11.18 .37705
block-diagonal matrix
Fact 3.7.8, 179
characterizations
Fact 3.7.12 180
commutator

Fact 3.8.6, 185
Fact 3.8.7, 185
Fact 9.9.31, 585
commuting matrices
Fact 3.7.28, 183
Fact 3.7.29, 183
Fact 5.14.29, 342
Fact 5.17.7, 358
Fact 11.14.5 682
complex conjugate
transpose
Fact 5.14.30, 343
Fact 6.3.16, 373
Fact 6.3.17, 373
Fact 6.6.10, 394
Fact 6.6.17, 397
congruence
transformation
Fact 5.10.17 319
definition
Definition 3.1.1, 165
determinant
Fact 5.12.12 335
discrete-time
asymptotically
stable matrix
Fact 11.21.4, 712
discrete-time
Lyapunov-stable
matrix
Fact 11.21.4 712
dissipative matrix
Fact 11.18.37, 705
eigenvalue
Fact 5.14.15 341
eigenvalue
perturbation
Fact 9.12.8, 601
eigenvector
Proposition 4.5.4, 246
Lemma 4.5.3, 246
example
Example 5.5.17, 299
Frobenius norm
Fact 9.12.9, 601
generalized inverse
Proposition 6.1.6, 365
Fact 6.3.16, 373
Fact 6.3.17, 373

inertia		
group generalized	Fact 11.13.9, 679	Fact 5.14.14, 340
inverse	positive-semidefinite	spectral radius
Fact 6.6.10, 394	matrix	Fact 5.14.15, 341
group-invertible	Fact 8.9.22, 452	spectral variation
matrix	Fact 8.10.11 457	Fact 9.12.5, 600
Fact 6.6.17, 397	Fact 8.11.12, 470	Fact 9.12.6, 600
Hermitian matrix	projector	spectrum
Proposition 3.1.6, 169	Fact 3.13.3, 206	Fact 4.10.24, 271
idempotent matrix	Fact 3.13.20, 209	Fact 8.14.7, 496
Fact 3.13.3, 206	Putnam-Fuglede	Fact 8.14.8, 497
inertia	theorem	square root
Fact 5.10.17, 319	Fact 5.14.30, 343	Fact 8.9.27, 453
involutory matrix	range-Hermitian	Fact 8.9.28, 453
Fact 5.9.9, 312	matrix	Fact 8.9.29, 453
Fact 5.9.10, 312	Proposition 3.1.6, 169	trace
Jordan form	reflector	Fact 3.7.12, 180
Fact 5.10.6, 317	Fact 5.9.9, 312	Fact 8.12.5, 476
Kronecker product	Fact 5.9.10, 312	trace of product
Fact 7.4.16, 406	Schatten norm	Fact 5.12.4, 333
Kronecker sum	Fact 9.9.27, 584	transpose
Fact 7.5.8, 409	Fact 9.14.5, 608	Fact 5.9.9, 312
Lyapunov-stable matrix	Schur decomposition Corollary 5.4.4, 293	Fact 5.9.10, 312 unitarily invariant
Fact 11.18.37, 705	Fact 5.10.6, 317	norm
matrix exponential	Schur product	Fact 9.9.6, 580
Proposition 11.2.8, 649	Fact 9.9.63, 591	unitarily similar
Fact 11.13.18, 680	semidissipative	matrices
Fact 11.14.5, 682	matrix	Proposition 3.4.5, 174
Fact 11.16.10, 694	Fact 11.18.37, 705	Corollary 5.4.4, 293
matrix power	semisimple matrix	Fact 5.10.6, 317
Fact 9.13.7, 603	Proposition 5.5.11, 297	Fact 5.10.7, 317
matrix product	shifted-unitary	unitary matrix
Fact 9.9.6, 580	matrix	Proposition 3.1.6, 169
maximum singular	Fact 3.11.34 198	Fact 3.11.4, 189
value	similar matrices	Fact 5.15.1, 345
Fact 5.14.15, 341	Proposition 5.5.11, 297	
Fact 9.8.13, 573	Fact 5.9.9, 312	
Fact 9.12.8, 601	Fact 5.9.10, 312	definition for a
Fact 9.13.7, 603	Fact 5.10.7, 317	polynomial matrix
Fact 9.13.8, 603	similarity	Definition 4.2.4, 235
Fact 9.14.5, 608	transformation	definition for a
Fact 11.16.10, 694	Fact 5.15.3, 345	
orthogonal	singular value	Definition 4.7.4, 249
eigenvectors	Fact 5.14.15, 341	rational transfer
Corollary 5.4.8, 294 partitioned matrix	skew-Hermitian matrix	function, 281
Fact 3.12.14, 200	Proposition 3.1.6, 169	normalized norm
Fact 8.11.12, 470	spectral	definition, 547
polar decomposition	decomposition	equi-induced norm

Theorem 9.4.2, 553
normalized
submultiplicative
norm
inverse matrix
Fact 9.8.44 579
Fact 9.9 .56590
Fact 9.9.57, 590
Fact 9.9.58, 591
Fact 9.9.59, 591
null space
adjugate
Fact 2.16.7, 143
definition, 94
Drazin generalized
inverse
Proposition 6.2.2, 368
generalized inverse
Proposition 6.1.6, 365
Fact 6.3.24 374
group generalized inverse
Proposition 6.2.3, 369
group-invertible
matrix
Fact 3.6.1, 177
idempotent matrix
Fact 3.12.3, 199
Fact 3.15.4, 200
Fact 6.3.24 374
identity
Fact 2.10.20, 117
inclusion
Fact 2.10.5, 116
Fact 2.10.7, 116
inclusion for a matrix power Corollary 2.4.2, 94
inclusion for a matrix product
Lemma 2.4.1, 94
Fact 2.10.2, 115
intersection Fact 2.10.9, 116 involutory matrix Fact 3.15.4, 212 left-equivalent matrices

Proposition 5.1.3, 283
Lyapunov equation
Fact 12.21 .15797
matrix sum
Fact 2.10.10, 116
minimal polynomial
Corollary 11.8.6, 664
nilpotent matrix
Fact 3.17.1 213
Fact 3.17.2, 213
Fact 3.17.3, 213
outer-product
matrix
Fact 2.10.11, 116
partitioned matrix
Fact 2.11.3, 121
positive-semidefinite matrix
Fact 8.7.3, 443
Fact 8.7.5, 443
Fact 8.15.1 500
quadratic form Fact 8.15.1 500
range
Corollary 2.5.6 97
Fact 2.10.1 115
range inclusions
Theorem 2.4.3, 94
range-Hermitian matrix
Fact 3.6.3, 177
semisimple
eigenvalue
Proposition 5.5.8, 296
skew-Hermitian matrix
Fact 8.7.3, 443
symmetric matrix Fact 3.7.4, 178
nullity, see defect
nullity theorem
defect of a submatrix Fact 2.11.20, 125
partitioned matrix Fact 9.14.11, 609
numerical radius weakly unitarily invariant norm

Fact 9.8.38, 577

## numerical range

spectrum of convex hull
Fact 8.14.7, 496
Fact 8.14.8, 497

0
oblique projector, see idempotent matrix

## observability

closed-loop spectrum
Lemma 12.16.17, 781
Riccati equation
Lemma 12.16.18, 781
Sylvester's equation Fact 12.21.14. 796
observability Gramian
asymptotically stable matrix
Corollary 12.4.10, 734
$\mathrm{H}_{2}$ norm
Corollary 12.11.4, 767
$\mathbf{L}_{2}$ norm
Theorem 12.11.1. 765
observably
asymptotically
stable
Proposition 12.4.3, 732
Proposition 12.4.4, 733
Proposition 12.4.5, 733
Proposition 12.4.6, 734
Proposition 12.4.7, 734

## observability matrix

definition, 728
generalized inverse
Fact 12.20.19, 793
Lyapunov equation Fact 12.21.15. 797
observable pair
Theorem 12.3.18, 732
Fact 12.20.19, 793
rank
Corollary 12.3.3. 729
Sylvester's equation Fact 12.21.13, 796


Fact 10.11.15 639   one-to-one   definition, 3 inverse function   Theorem 1.2.2, 4	Fact 10.8.1 632 convex set   Fact 10.8.1 632 inner product Fact 9.7.24 570	```Fact 1.10.15 33 Fact 0.9.35, 586 order definition, }7 Definition 12.9.2, 749```
one-to-one functio composition of functions	open ball of radius $\varepsilon$ definition, 621   open half space	ORHP open right half plane definition, 77
equivalent conditions   Fact 1.5.14 12   finite domain	space   Fact 2.9.6, 111   definition, 91	Orlicz   Hölder-induced norm
Fact 1.5.13 12	open mapping theorem	Fact 9.8.18, 574
one-to-one matrix equivalent properties	open set image   Theorem 10.3.6, 624	complement definition, 91
Theorem 2.6.1 98   nonsingular equivalence Corollary 2.6.6. 101	open relative to a set continuous function Theorem 10.3.4 624 definition	intersection   Fact 2.9.15, 112   projector   Proposition 3.5.2, 175
ones matrix	Definition 10.1.2 621	subspace
definition, 84   rank   Fact 2.10.18, 117	open set complement Fact 10.8.4 632	Proposition 3.5.2, 175   Fact 2.9.16, 112   Fact 2.9.27, 114
defini	continuous function   Theorem 10.3.7, 624	Fact 2.9.15, 112
inverse function Theorem 1.2.2, 4	Corollary 10.3.5, 624 convex hull Fact 10.8.14, 633	orthogonal eigenvectors normal matrix
onto function	definitio	Corollary 5.4.8, 29
functions   Fact [1.5.16] 13	Definition 10.1.1, 621 intersection	orthogonal matrice and matrix
equivalent conditions Fact 1.5.15 13	invariance of domain	Davenport
finite domain Fact 1.5.13, 12	right-invertible matrix	act 11.11.13, 675
onto matrix equivalent properties	Theorem 10.3.6, 624 union	unitary matrix $2 \times 2$
Theorem [2.6.1] 98	Fact 10.	parameterizatio   Fact 3.11.6, 190
nonsingular equivalence Corollary 2.6.6, 101	Oppenheim's inequality determinant inequality	$3 \times 3$ skew-symmetric matrix   Fact 11.11.10 674
open	t	Fact 11.11.11 674
bounded set   Fact 10.8.2 632 completely solid set	optimal 2-uniform convexity powers	additive decomposition Fact 5.19.2 360


inertia 993		
algebraic multiplicity	group	Fact 3.11.9, 191
Fact 5.11.2, 321	Proposition 3.3.6, 172	Fact 3.11.10, 192
Cayley transform	Hamiltonian matrix	Fact 3.11.11 193
Fact 3.11.8, 190	Fact 3.19.13, 217	Fact 3.11.12, 194
Fact 3.11.28, 196	Kronecker	Fact 3.11.31, 198
Fact 3.11.30, 197	permutation matrix	skew-symmetric
Fact 3.11.31, 198	Fact 7.4.29, 407	matrix
controllable	Kronecker product	Fact 3.11.28, 196
dynamics	Fact 7.4.16, 406	Fact 3.11.30 197
Theorem 12.6.8, 739	logarithm	Fact 3.11.31 198
controllable subspace	Fact 11.15.10, 692	SO(3)
Proposition 12.6.9, 739	matrix exponential	Fact 3.11.7, 190
controllably	Proposition 11.6.7, 659	square root
asymptotically	Fact 11.11.6, 673	Fact 8.9.26, 453
stable	Fact 11.11.7, 673	stabilizability
Proposition 12.7.3, 743	Fact 11.11.8, 674	Proposition 12.8.4, 747
convex combination	Fact 11.11.9, 674	subspace
Fact 5.19.3, 360	Fact 11.11.10, 674	Fact 3.11.1, 189
cross product	Fact 11.11.11, 674	Fact 3.11.2, 189
Fact 3.10.2, 189	Fact 11.11.12, 674	trace
Fact 3.10.3, 189	Fact 11.11.13, 675	Fact 3.11.17, 195
Fact 3.11.8, 190	Fact 11.15.10, 692	Fact 3.11.18, 195
cross-product matrix	observable dynamics	Fact 5.12.9, 334
Fact 11.11.12, 674	Theorem 12.3.8, 730	Fact 5.12.10, 334
Fact 11.11.13, 675	observably	unobservable
definition	asymptotically	subspace
Definition 3.1.1, 165	stable	Proposition 12.3.9, 730
detectability	Proposition 12.4.3, 732	orthogonal projector,
Proposition 12.5.4, 735	orthosymplectic	see projector
determinant	matrix	
Fact 3.11.21, 196	Fact 3.19.13, 217	orthogonal vectors
Fact 3.11.22, 196	parameterization	norm inequality
direction cosines	Fact 3.11.9, 191	Fact 9.7.25, 570
Fact 3.11.10, 192	Fact 3.11.10, 192	unitary matrix
eigenvalue	partitioned matrix	Fact 3.11.14, 194
Fact 5.11.2, 321	Fact 3.11.27, 196	vector sum and
elementary reflector	permutation matrix	difference
Fact 5.15.15, 347	Proposition 3.1.6, 169	Fact 2.12.2, 126
Euler parameters	quaternions	orthogonality
Fact 3.11.10, 192	Fact 3.11.10, 192	single complex
Fact 3.11.11, 193	reflector	matrix
existence of	Fact 3.11.9, 191	Lemma 2.2.4 87
transformation	Fact 5.15.31, 350	single complex
Fact 3.9.5, 186	Fact 5.15.35, 351	vector
factorization	Rodrigues	Lemma 2.2.2 85
Fact 5.15.15, 347	Fact 3.11.10, 192	single real matrix
Fact 5.15.16, 347	Rodrigues's formulas	Lemma 2.2.3, 86
Fact 5.15.31, 350	Fact 3.11.11 193	single real vector
Fact 5.15.35, 351	rotation matrix	Lemma 2.2.1 85

orthogonality of complex matrices definition, 87
orthogonality of complex vectors definition, 85
orthogonality of real matrices
definition, 86
orthogonality of real vectors
definition, 85
orthogonally complementary subspaces
definition, 91
orthogonal complement Proposition 2.3.3, 91
orthogonally similar matrices
definition
Definition 3.4.4, 174
diagonal matrix Fact 5.9.15, 313
skew-symmetric matrix
Fact 5.14.33, 343
symmetric matrix Fact 5.9.15 313
upper
block-triangular matrix
Corollary 5.4.2, 293
upper triangular matrix
Corollary 5.4.3, 293
orthosymplectic matrix group
Proposition 3.3.6, 172
Hamiltonian matrix
Fact 3.19.13, 217
orthogonal matrix
Fact 3.19.13, 217
oscillator
companion matrix

Fact 5.14.35, 344
definition, 654

## Ostrowski

inertia of a Hermitian matrix Fact 12.21.5, 794
quantitative form of Sylvester's law of inertia Fact 5.8.17, 310

Ostrowski-Taussky inequality
determinant Fact 8.13.2 485

## OUD

open unit disk definition, 670
outbound Laplacian matrix
adjacency matrix Theorem 3.2.2, 170 definition Definition 3.2.1, 170
outdegree
graph
Definition 1.4.3, 9
outdegree matrix
definition
Definition 3.2.1, 170
outer-product matrix
algebraic multiplicity Fact 5.14.3 338
characteristic polynomial
Fact 4.9.16, 262
Fact 4.9.18, 263
cross product
Fact 3.11.8 190
defective matrix
Fact 5.14.3, 338
definition, 86
Definition 3.1.2, 166
doublet
Fact 2.10.24, 118
Fact 2.12.6, 126
Euclidean norm

Fact 9.7.27, 570
existence of transformation Fact 3.9.1 185
Frobenius norm
Fact 9.7.26, 570
generalized inverse
Fact 6.3.2, 370
group-invertible
matrix
Fact 5.14.3, 338
Hermitian matrix
Fact 3.7.18, 181
Fact 3.9.2 185
idempotent matrix
Fact 3.7.18, 181
Fact 3.12.6. 199
identity
Fact 2.12.3, 126
Fact 2.12.5, 126
index of a matrix
Fact 5.14.3, 338
Kronecker product
Proposition 7.1.8, 401
linear independence
Fact 2.12.4, 126
Fact 2.12.8, 126
matrix exponential Fact 11.11.1, 671
matrix power
Fact 2.12.7, 126
maximum singular value
Fact 5.11.16, 324
Fact 5.11.18, 324
Fact 9.7.26, 570
nilpotent matrix
Fact 5.14.3, 338
null space
Fact 2.10.11, 116
partitioned matrix
Fact 4.9.18, 263
positive-definite
matrix
Fact 3.9.3 186
positive-semidefinite matrix
Fact 8.9.2, 450
Fact 8.9.3 450

Fact 8.9.4, 450
Fact 8.15.2, 500
Fact 8.15.3, 500
quadratic form
Fact 9.13.3, 602
range
Fact 2.10.11, 116
rank
Fact 2.10.19, 117
Fact 2.10.24, 118
Fact 3.7.17, 181
Fact 3.12.6, 199
semisimple matrix
Fact 5.14.3, 338
singular value
Fact 5.11.17, 324
skew-Hermitian matrix
Fact 3.7.17, 181
Fact 3.9.4, 186
spectral abscissa
Fact 5.11.13, 323
spectral radius
Fact 5.11.13, 323
spectrum
Fact 5.11.13, 323
Fact 5.14.1, 338
sum
Fact 2.10.24, 118
trace
Fact 5.14.3, 338
unitarily invariant norm
Fact 9.8.40, 578
outer-product perturbation adjugate Fact 2.16.3, 141 determinant Fact 2.16.3, 141
elementary matrix Fact 3.7.19, 181
generalized inverse Fact 6.4.2, 377
inverse matrix Fact 2.16.3, 141
matrix power Fact 2.12.18, 127
rank

Fact 2.10.25, 118
Fact 6.4.2, 377
unitary matrix
Fact 3.11.15, 194
output convergence
detectability
Fact 12.20.2, 791
output equation
definition, 725
output feedback
characteristic polynomial
Fact $12.22 .13,800$
determinant
Fact $12.22 .13,800$
output injection
detectability
Proposition 12.5.2, 734
observably
asymptotically
stable
Proposition 12.4.2, 732
ovals of Cassini
spectrum bounds Fact 4.10.21, 271

Ozeki's inequality reversed Cauchy-Schwarz inequality Fact 1.16.23, 65

## P

parallel affine
subspaces
definition, 89
parallel interconnection
definition, 770
transfer function
Proposition 12.13.2 770
parallel sum
definition
Fact 8.20.18, 528
parallelepiped
volume
Fact 2.20.16 160
Fact 2.20.17, 160

## parallelogram

area
Fact 2.20.17, 160
Fact 9.7.5, 565
bivector
Fact 9.7.5, 565
cross product
Fact 9.7.5, 565
parallelogram law
complex numbers
Fact 1.18.2, 69
vector identity
Fact 9.7.4, 563
parent
Definition 1.4.2, 8
Parker
equal diagonal
entries by unitary
similarity
Fact 5.9.17, 313
Parodi
polynomial root bound
Fact 11.20.9, 710
Parrott's theorem
maximum singular value of a partitioned matrix Fact 9.14.13, 610

Parseval's inequality
norm inequality
Fact 9.7.4 563
Parseval's theorem
Fourier transform Fact 12.22.1 798
$\mathrm{H}_{2}$ norm
Theorem 12.11.3, 766
partial derivative
definition, 625
partial isometry
generalized inverse
Fact 6.3.28, 375
partial ordering
definition
Definition 1.3.8, 7
generalized Löwner ordering
Fact 8.19.10, 524
planar case
Fact 1.5.7, 12
positive-semidefinite
matrix
Proposition 8.1.1, 417
rank subtractivity
Fact 2.10.32, 119
partition
definition, 3
equivalence relation
Theorem 1.3.7 7
partitioned matrix adjugate
Fact 2.14.27, 139
characteristic
polynomial
Fact 4.9.14 262
Fact 4.9.15 262
Fact 4.9.17, 263
Fact 4.9.18, 263
Fact 4.9.22, 264
Fact 4.9.23, 264
column norm
Fact 9.8.11 572
complementary
subspaces
Fact 3.12.33, 205
complex conjugate
Fact 2.19.9 153
complex conjugate transpose
Proposition [2.8.1, 106
Fact 6.5.3, 386
complex matrix
Fact 2.19.4 152
Fact 2.19.5 152
Fact 2.19.6 152
Fact 2.19.7 153
Fact 3.11.27, 196
contractive matrix

Fact 8.11.24, 473
damping matrix
Fact 5.12.21, 337
defect
Fact 2.11.3 121
Fact 2.11.8 122
Fact 2.11.11, 123
definition, 80
determinant
Proposition [2.8.1, 106
Corollary [2.8.5] 107
Lemma 8.2.6, 421
Fact [2.14.2 133
Fact [2.14.3 133
Fact 2.14.4 133
Fact [2.14.5 134
Fact 2.14.6 134
Fact 2.14.7 134
Fact 2.14.9 134
Fact 2.14.10, 135
Fact 2.14.11, 135
Fact 2.14.13, 135
Fact 2.14.14, 136
Fact 2.14.15, 136
Fact 2.14.16, 136
Fact 2.14.17, 136
Fact 2.14.18, 137
Fact 2.14.19, 137
Fact 2.14.20 137
Fact 2.14.21, 137
Fact 2.14.22, 138
Fact 2.14.23, 138
Fact 2.14.24, 138
Fact 2.14.25, 138
Fact 2.14.26, 139
Fact 2.14.28, 139
Fact 2.17.5 147
Fact 2.19.3 151
Fact 2.19.9 153
Fact 5.12.21, 337
Fact 6.5.26 392
Fact 6.5.27 392
Fact 6.5.28 393
Fact 8.13.35, 492
Fact 8.13.36, 492
Fact 8.13.38, 492
Fact 8.13.39 493
Fact 8.13.40, 493
Fact 8.13.41 493

Fact 8.13.42 493
determinant of block $2 \times 2$
Proposition 2.8.3, 107
Proposition 2.8.4, 107
discrete-time
asymptotically
stable matrix
Fact 11.21 .9713
Drazin generalized
inverse
Fact 6.6.1 393
Fact 6.6.2 393
eigenvalue
Proposition 5.6.6, 303
Fact 5.12.20 337
Fact 5.12.21 337
Fact 5.12.22 338
eigenvalue
perturbation
Fact 4.10.27 272
factorization, 420
Fact 2.14.9, 134
Fact 2.16.2, 141
Fact 2.17.3, 147
Fact 2.17.4, 147
Fact 2.17.5, 147
Fact 6.5.25, 392
Fact 8.11 .25473
Fact 8.11.26 473
factorization of block
$2 \times 2$
Proposition [2.8.3] 107
Proposition [2.8.4] 107
generalized inverse
Fact 6.3.30 376
Fact 6.5.1 385
Fact 6.5.2 386
Fact 6.5.3 386
Fact 6.5.4 386
Fact 6.5.13, 388
Fact 6.5.17, 390
Fact 6.5.18, 390
Fact 6.5.19, 390
Fact 6.5.20, 391
Fact 6.5.21, 391
Fact 6.5.22, 391
Fact 6.5.23 391
Fact 6.5.24, 391

		inertia
Fact 8.20.22, 530	Fact 7.4.18, 406	Fact 8.11.12, 470
geometric	Fact 7.4.19, 406	null space
multiplicity	Fact 7.4.24, 407	Fact 2.11.3, 121
Proposition 5.5.14, 298	mass matrix	orthogonal matrix
Hamiltonian matrix	Fact 5.12.21, 337	Fact 3.11.27, 196
Proposition 3.1.7, 169	matricial norm	outer-product
Fact 3.19.6, 216	Fact 9.10.1, 593	matrix
Fact 3.19.8, 217	matrix exponential	Fact 4.9.18, 263
Fact 4.9.22, 264	Fact 11.11.2, 672	polynomial
Fact 5.12.21, 337	Fact 11.14.1, 681	Fact 4.10.10, 267
Hermitian matrix	matrix sign function	positive-definite
Fact 3.7.27, 182	Fact 10.10.3, 637	matrix
Fact 4.10.27, 272	maximum eigenvalue	Proposition 8.2.4 420
Fact 5.8.19, 310	Fact 5.12.20, 337	Proposition 8.2.5 420
Fact 5.12.1, 333	maximum singular	Lemma 8.2.6, 421
Fact 6.5.5, 386	value	Fact 8.9.18, 452
Hölder-induced	Fact 8.17.3, 508	Fact 8.11.1, 467
norm	Fact 8.17.14, 512	Fact 8.11.2, 467
Fact 9.8.11, 572	Fact 8.18.1, 512	Fact 8.11.5, 468
idempotent matrix	Fact 8.18.2, 513	Fact 8.11.8, 469
Fact 3.12.14, 200	Fact 9.10.1, 593	Fact 8.11.10, 469
Fact 3.12.20, 201	Fact 9.10.3, 594	Fact 8.11.13, 470
Fact 3.12.33, 205	Fact 9.10.4, 594	Fact 8.11.29, 474
Fact 5.10.22, 320	Fact 9.10.5, 595	Fact 8.11.30, 475
index of a matrix	Fact 9.14.12, 610	Fact 8.13.21 488
Fact 5.14.32, 343	Fact 9.14.13, 610	Fact 8.17.14, 512
Fact 6.6.13, 395	Fact 9.14.14, 610	Fact 8.21.6, 532
inertia	minimal polynomial	Fact 11.21.9, 713
Fact 5.8.19, 310	Fact 4.10.12, 268	positive-semidefinite
Fact 5.8.20, 310	minimal-rank	matrix
Fact 5.8.21, 311	identity	Proposition 8.2.3, 420
Fact 5.12.1, 333	Fact 6.5.7, 387	Proposition 8.2.4, 420
Fact 6.5.5, 386	minimum eigenvalue	Corollary 8.2.2, 419
inverse matrix	Fact 5.12.20, 337	Lemma 8.2.1, 419
Fact 2.16.4, 142	multiplicative	Lemma 8.2.6, 421
Fact 2.17.2, 146	identities, 82	Fact 5.12.22, 338
Fact 2.17.3, 147	nilpotent matrix	Fact 8.7.6, 443
Fact 2.17.4, 147	Fact 3.12.14, 200	Fact 8.9.18, 452
Fact 2.17.5, 147	Fact 5.10.23, 321	Fact 8.11.1, 467
Fact 2.17.6, 148	norm	Fact 8.11.2, 467
Fact 2.17.8, 148	Fact 9.10.1, 593	Fact 8.11.5, 468
Fact 2.17.9, 148	Fact 9.10.2, 593	Fact 8.11.6, 469
Fact 5.12.21, 337	Fact 9.10.8, 596	Fact 8.11.7, 469
inverse of block $2 \times 2$	norm-compression	Fact 8.11.8, 469
Proposition [2.8.7, 108	inequality	Fact 8.11.9, 469
Corollary 2.8.9, 109	Fact 9.10.1, 593	Fact 8.11.11 469
involutory matrix	Fact 9.10.8, 596	Fact 8.11.12, 470
Fact 3.15.5, 212	normal matrix	Fact 8.11.13, 470
Kronecker product	Fact 3.12.14, 200	Fact 8.11.14, 470

Fact 8.11.15, 470
Fact 8.11.17, 471
Fact 8.11.18, 471
Fact 8.11.19, 471
Fact 8.11.20, 472
Fact 8.11.21, 472
Fact 8.11.30, 475
Fact 8.11.31, 475
Fact 8.12.36, 483
Fact 8.12.39, 484
Fact 8.12.40, 484
Fact 8.12.41, 484
Fact 8.13.21, 488
Fact 8.13.35, 492
Fact 8.13.36, 492
Fact 8.13.38, 492
Fact 8.13.39, 493
Fact 8.13.40, 493
Fact 8.13.41, 493
Fact 8.13.42, 493
Fact 8.15.4 500
Fact 8.17.14, 512
Fact 8.18.1, 512
Fact 8.18.2, 513
Fact 8.18.28, 521
Fact 8.20.22, 530
Fact $8.21 .39,539$
Fact $8.21 .40,539$
Fact 8.21.43, 540
Fact 8.21.44, 540
Fact 9.8.33, 576
Fact 9.10.6, 595
Fact 9.10.7 596
power
Fact 2.12.21, 128
product
Fact 2.12.22, 128
projector
Fact 3.13.12, 208
Fact 3.13.22, 210
Fact 3.13.23, 210
Fact 6.5.13, 388
quadratic form
Fact 8.15.5, 500
Fact 8.15.6 501
range
Fact 2.11.1. 120
Fact 2.11.2, 121
Fact 6.5.3, 386
rank
Corollary 2.8.5, 107
Fact 2.11.6 121
Fact 2.11.8 122
Fact 2.11.9 122
Fact 2.11.10, 122
Fact 2.11.11, 123
Fact 2.11.12, 123
Fact 2.11.13, 123
Fact 2.11.14, 123
Fact 2.11.15, 124
Fact 2.11.16, 124
Fact 2.11.18, 124
Fact 2.11.19, 125
Fact 2.14.4 133
Fact 2.14.5 134
Fact 2.14.11, 135
Fact 2.17.5 147
Fact 2.17.10, 149
Fact 3.12.20, 201
Fact 3.13.12, 208
Fact 3.13.22, 210
Fact 5.12.21, 337
Fact 6.3.30, 376
Fact 6.5.6, 386
Fact 6.5.7, 387
Fact 6.5.8, 387
Fact 6.5.9, 387
Fact 6.5.10, 388
Fact 6.5.12 388
Fact 6.5.13, 388
Fact 6.5.14 388
Fact 6.5.15, 389
Fact 6.6.2, 393
Fact 8.7.6, 443
Fact 8.7.7, 444
rank of block $2 \times 2$
Proposition 2.8.3, 107
Proposition 2.8.4, 107
row norm
Fact 9.8.11 572
Schatten norm
Fact 9.10 .2593
Fact 9.10 .3594
Fact 9.10.4 594
Fact $9.10 .5,595$
Fact 9.10.6 595
Fact 9.10.7 596
Fact 9.10.8 596

## Schur complement

Fact 6.5.4, 386
Fact 6.5.5, 386
Fact 6.5.6. 386
Fact 6.5.8 387
Fact 6.5.12, 388
Fact 6.5.29, 393
Fact 8.21.39, 539
Schur product
Fact 8.21.6, 532
Fact 8.21 .39539
Fact 8.21 .40539
semicontractive
matrix
Fact 8.11.6, 469
Fact 8.11.22, 473
similar matrices
Fact 5.10.21, 320
Fact 5.10.22, 320
Fact 5.10.23, 321
singular value
Proposition 5.6.6, 303
Fact 9.14.11 609
Fact 9.14.24 613
skew-Hermitian matrix
Fact 3.7.27, 182
skew-symmetric matrix
Fact 3.11.27, 196
spectrum
Fact 2.19.3, 151
Fact 4.10.25 271
Fact 4.10.26, 271
stability
Fact $11.18 .38,705$
stiffness matrix
Fact 5.12.21 337
Sylvester's equation
Fact 5.10.20, 320
Fact 5.10.21 320
Fact 6.5.7 387
symmetric matrix
Fact 3.11.27, 196
symplectic matrix Fact 3.19.9, 217
trace
Proposition 2.8.1, 106
Fact 8.12.36, 483

		inertia 999
Fact 8.12.39, 484	pathwise connected	period
Fact 8.12.40, 484	continuous function	definition
Fact 8.12.41 484	Fact 10.11 .5638	Definition 1.4.3, 9
Fact 8.12.42, 484	definition	graph
transpose	Definition 10.3.12, 625	Definition 1.4.3,
Proposition 2.8.1, 106	group	perm
norm		finition, 103
Fact 9.8.33, 576 unitarily similar matrices	quaternions   Fact 3.22.6, 227	permutation group group   Fact 3.21.7, 223
Fact 5.9.23, 314 unitary matrix	PBH test definition, 805	permutation matrix
Fact 3.11.24, 196	Pecaric	Fact 5.16.8, 357
Fact 3.11.26, 196	Euclidean norm	definition
Fact 3.11.27, 196	inequality	Definition 3.1.1, 165
Fact 8.11.22, 473	Fact 9.7.8, 566	determinant
Fact 8.11.23, 473		Fact 2.13.9, 130
Fact 8.11.24, 473	Pedersen	irreducible matrix
Fact 9.14.11 609	trace of a convex function	$\text { Fact 3.20.3, } 217$
partitioned positive-semidefinite	Fact 8.12.33, 482	orthogonal matrix $\text { Proposition 3.1.6 } 169$
matrix	Peierls-Bog	spectrum
determinant	inequality	Fact 5.16.8, 3
$\begin{aligned} & \text { Proposition 8.2.3, } 420 \\ & \text { rank } \end{aligned}$	matrix exponential Fact 11.14.29, 687	transposition matrix Fact 3.21.6, 222
Proposition 8.2.3, 420	pencil	Perron-Frobenius
partitioned transfer function	definition, 304 deflating subspace	nonnegative matrix
$\mathrm{H}_{2}$ norm	Fact 5.13.1, 338	eigenvalues
Fact 12.22.16, 801	generalized	Fact 4.11.5, 273
Fact 12.22.17, 801	eigenvalue	perturbation
realization	Proposition 5.7.3 305	asymptotically stable
Proposition 12.13 .3   771	Proposition 5.7.4 306 invariant zero	matrix
Fact 12.22.7, 799	Corollary 12.10.4, 759	verse matrix
transfer function	Corollary 12.10.5, 760	Fact 9.9.60, 591
Fact 12.22.7 799	Corollary 12.10.6, 761	nonsingular matrix
Pascal matrix	Kronecker canonical	Fact 9.14.18 611
positive-semidefinite matrix	Theorem 5.7.1 304 Weierstrass	perturbed matrix spectrum
Fact 8.8.5, 447	canonical form	Fact 4.10.3, 266
Vandermonde matrix	Proposition 5.7.3, 305	Peson
	Pe	multaneo
pa	generalized invers	diagonalization of
definition	of a matrix sum	symmetric matrices
Definition 1.4.3 9	Fact 6.4.34, 383	Fact 8.16.6, 507


skew-symmetric matrix Fact 4.8.14, 259

Pick matrix positive-semidefinite matrix Fact 8.8.17, 449
plane rotation orthogonal matrix Fact 5.15.16, 347

Poincaré separation theorem
eigenvalue inequality Fact 8.17.16, 512
pointed cone
definition, 89
induced by reflexive relation Proposition 2.3.6, 93 positive-semidefinite matrix, 417
polar
closed set
Fact 2.9.4, 110
convex cone
Fact 2.9.4, 110
definition, 91
polar cone
definition, 164
polar decomposition existence
Corollary 5.6.5, 303
Frobenius norm
Fact 9.9.42, 588
matrix exponential Fact 11.13.9, 679
normal matrix
Fact 5.18.8 360
Fact 11.13.9, 679
uniqueness
Fact 5.18.2, 359
Fact 5.18.3 359
Fact 5.18.4 359
Fact 5.18.5 359
Fact 5.18.6 359
Fact 5.18.7, 359
unitarily invariant norm Fact 9.9 .42588 unitary matrix Fact 5.18.8, 360
polarization identity complex numbers Fact 1.18.2 69 norm identity Fact 9.7.4, 563 vector identity Fact 9.7.4, 563
polarized Cayley-Hamilton theorem
trace Fact 4.9.3, 260
triple product identity
Fact 4.9.4, 260
Fact 4.9.6, 261
pole
minimal realization
Fact $12.22 .2,798$
Fact 12.22 .12800
rational transfer function
Definition 4.7.4, 249
Smith-McMillan
form
Proposition4.7.11, 251
pole of a rational function
definition Definition 4.7.1, 249
pole of a transfer function
definition
Definition 4.7.10, 251

## Polya's inequality

logarithmic mean Fact 1.10.36 37

## Polya-Szego inequality

reversed
Cauchy-Schwarz
inequality
Fact 1.16.21 64

## polygon

area
Fact 2.20.14 159
polygonal inequalities
Euclidean norm
Fact 9.7.4 563
Fact 9.7.7 565
polyhedral convex cone
definition, 90

## polynomial

asymptotically stable
Definition 11.8.3, 663
Bezout matrix
Fact 4.8.6, 255
Fact 4.8.8, 257
bound
Fact $11.20 .13,712$
continuity of roots
Fact 10.11.2 638
coprime
Fact 4.8.3 254
Fact 4.8.4, 254
Fact 4.8.5 255
definition, 231
Descartes rule of signs
Fact 11.17.1 695
discrete-time asymptotically stable
Definition 11.10.3, 671
discrete-time
Lyapunov stable
Definition 11.10.3, 671
discrete-time
semistable
Definition 11.10.3 671
Fujiwara's bound
Fact $11.20 .8,710$
greatest common
divisor
Fact 4.8.5, 255
interpolation
Fact 4.8.11, 259
Kojima's bound
Fact 11.20.8, 710
least common
multiple
Fact 4.8.3, 254
Lyapunov stable
Definition 11.8.3, 663
partitioned matrix
Fact 4.10.10, 267
root bound
Fact 11.20.4 709
Fact 11.20.5. 709
Fact 11.20.6, 709
Fact 11.20.7, 710
Fact 11.20.8, 710
Fact $11.20 .9,710$
Fact 11.20.10, 711
root bounds
Fact 11.20.11, 711
Fact 11.20.12, 712
roots
Fact 4.8.1, 253
Fact 4.8.2, 254
roots of derivative Fact 10.11.3, 638 semistable Definition 11.8.3. 663
spectrum
Fact 4.10.9, 267
Fact 4.10.10, 267
Vandermonde matrix Fact 5.16.6, 355
polynomial bound
Huygens
Fact 11.20.13, 712
Mihet
Fact 11.20.13, 712
polynomial coefficients
asymptotically stable polynomial
Fact 11.17.2, 696
Fact 11.17 .3696
Fact 11.17.7, 697
Fact 11.17.8, 697
Fact 11.17.10, 697
Fact 11.17.11, 697
Fact 11.17.12, 697
discrete-time asymptotically stable polynomial
Fact 11.20.1. 708
Fact 11.20.2, 709
Fact 11.20.3, 709
polynomial division
quotient and
remainder
Lemma 4.1.2, 233
polynomial matrix
definition, 234
matrix exponential
Proposition 11.2.1, 646
Smith form
Proposition 4.3.4, 237
polynomial matrix division
linear divisor Corollary 4.2.3, 235
Lemma 4.2.2, 235
polynomial multiplication
Toeplitz matrix
Fact 4.8.10, 258
polynomial representation
commuting matrices
Fact 5.14.22, 341
Fact 5.14.23, 342
Fact 5.14.24, 342
inverse matrix
Fact 4.8.13, 259
polynomial root
maximum singular value bound
Fact 9.13.14, 604
minimum singular value bound Fact 9.13.14 604

## polynomial root bound

Bourbaki
Fact 11.20.4, 709
Carmichael
Fact 11.20.10. 711
Fujii-Kubo
Fact 11.20.9, 710
Joyal
Fact 11.20.7, 710
Labelle
Fact 11.20.7, 710
Linden
Fact $11.20 .9,710$
Mason
Fact 11.20.10, 711
Parodi
Fact 11.20.9. 710
Rahman
Fact 11.20.7, 710
Walsh
Fact 11.20.5. 709
polynomial root bounds
Berwald
Fact 11.20.11, 711
Cauchy
Fact 11.20.11, 711
Cohn Fact 11.20.11, 711
polynomial root locations
Enestrom-Kakeya theorem Fact 11.20.3. 709
polynomial roots
Bezout matrix
Fact 4.8.9, 258
Newton's identities
Fact 4.8.2, 254
polytope
definition, 90
Popoviciu
 convex function Fact 1.8.6, 22
positive diagonal upper triangular matrix
Fact 5.15.9, 346
positive matrix almost nonnegative matrix
Fact 11.19.2, 706
definition, 81
Definition 3.1.4, 168
eigenvalue
Fact 4.11.20, 280
Kronecker sum
Fact 7.5.8, 409
Schur product
Fact 7.6.13, 415
Fact 7.6.14, 415
spectral radius
Fact 7.6.14 415
spectrum
Fact 5.11.12, 323
unstable matrix
Fact 11.18 .20701
positive vector
definition, 79
null space
Fact 4.11.15, 279
positive-definite matrix
arithmetic mean
Fact 8.10.34, 460
arithmetic-mean-
geometric-mean
inequality
Fact 8.13.8, 486
asymptotically stable matrix
Proposition 11.9.5, 668
Proposition 12.4.9, 734
Corollary 11.9.7 669
Fact $11.18 .21,701$

Cauchy matrix
Fact 8.8.16 449
Fact 12.21.18, 797
Cayley transform Fact 8.9.30 453
cogredient diagonalization
Theorem 8.3.1, 423
Fact 8.16.5 507
commuting matrices Fact 8.9.40 455
complex conjugate transpose
Fact 8.9.39 455
complex matrix
Fact 3.7.9, 179
congruent matrices
Proposition 3.4.5, 174
Corollary 8.1.3, 419
contractive matrix
Fact 8.11.13, 470
contragredient diagonalization
Theorem 8.3.2, 423
Corollary 8.3.3, 423
controllable pair
Theorem 12.6.18, 742
convex function
Fact 8.14.17, 499
definition
Definition 3.1.1, 165
determinant
Proposition 8.4.14, 429
Fact 8.12.1 475
Fact 8.13.6, 486
Fact 8.13.7 486
Fact 8.13.8 486
Fact 8.13.9 486
Fact $8.13 .10,487$
Fact 8.13.12, 487
Fact 8.13.13, 487
Fact 8.13.14, 487
Fact 8.13.15, 488
Fact 8.13.17, 488
Fact 8.13.19, 488
Fact 8.13.21, 488
Fact 8.13.23, 489
discrete-time
asymptotically
stable matrix
Proposition 11.10.5, 671
Fact 11.21.9 713
Fact 11.21.15, 714
discrete-time
Lyapunov-stable
matrix
Proposition 11.10.6. 671
dissipative matrix
Fact 8.17.12 511
Fact 11.18.21, 701
eigenvalue
Fact 8.10.24 458
Fact 8.15.20 503
Fact 8.15.29 505
Fact 8.15.30 505
Fact 8.18.29 521
Fact 8.21 .21535
ellipsoid
Fact 3.7.35, 184
exponential
Fact 11.14.26, 686
factorization
Fact 5.15.26 349
Fact 5.18.4, 359
Fact 5.18.5, 359
Fact 5.18.6, 359
Fact 5.18.8, 360
Furuta inequality
Fact 8.10.50, 465
generalized
geometric mean
Fact 8.10.45 464
generalized inverse
Proposition 6.1.6, 365
Fact 6.4.7 379
geometric mean
Fact 8.10.43 461
Fact 8.10.46 464
Fact 8.21.51, 541
group-invertible matrix
Fact 8.10.12, 457
Hermitian matrix
Fact 5.15.41, 351

		inertia 1003
Fact 8.10.13, 457	Fact 7.4.16, 406	Fact 3.9.3, 186
Fact 8.13.7, 486	left inverse	partitioned matrix
Hilbert matrix	Fact 3.7.25, 182	Proposition 8.2.4 420
Fact 3.18.4, 215	limit	Proposition 8.2.5 420
idempotent matrix	Fact 8.10.47, 465	Lemma 8.2.6, 421
Fact 5.15.30, 350	Lyapunov equation	Fact 8.9.18, 452
identity	Fact 12.21.16, 797	Fact 8.11.1, 467
Fact 8.10.6, 456	Fact 12.21.18, 797	Fact 8.11.2, 467
Fact 8.10.7, 456	Lyapunov-stable	Fact 8.11.5, 468
increasing function	matrix	Fact 8.11.8, 469
Fact 8.10.53, 466	Proposition 11.9.6, 669	Fact 8.11.10, 469
inequality	Corollary 11.9.7 669	Fact 8.11.13, 470
Fact 8.9.41, 455	matrix exponential	Fact 8.11.29, 474
Fact 8.9.42, 455	Proposition 11.2.8, 649	Fact 8.11.30, 475
Fact 8.10.8, 456	Proposition 11.2.9, 650	Fact 8.13.21 488
Fact 8.10.9, 457	Fact 11.14.20, 685	Fact 8.17.14, 512
Fact 8.10.19, 458	Fact 11.14.22, 685	Fact 8.21.6, 532
Fact 8.10.20, 458	Fact 11.14.23, 686	Fact $11.21 .9,713$
Fact 8.10.21, 458	Fact 11.15.1, 689	positive-semidefinite
Fact 8.10.22, 458	matrix logarithm	matrix
Fact 8.10.28, 459	Proposition 8.6.4, 432	Fact 8.8.13, 448
Fact 8.10.40, 461	Proposition 11.4.5, 654	Fact 8.8.14, 449
Fact 8.10.48, 465	Fact 8.9.43, 455	Fact 8.10.27, 458
Fact 8.10.51 466	Fact 8.13.8, 486	Fact 8.12.25, 481
Fact 8.11.27, 474	Fact 8.18.29, 521	power
Fact 8.15.21, 503	Fact 8.19.1, 522	Fact 8.9.42, 455
Fact 8.15.22, 503	Fact 8.19.2, 523	Fact 8.10.38, 461
Fact 8.19.3, 523	Fact 9.9.55, 590	Fact 8.10.39, 461
Fact 8.21.42, 539	Fact 11.14.24, 686	Fact 8.10.48, 465
inertia	Fact 11.14.25, 686	power inequality
Fact 5.8.10, 308	Fact 11.14.26, 686	Fact 8.10.52, 466
inertia matrix	Fact 11.14.27, 686	properties of $<$ and
Fact 8.9.5, 451	matrix power	$\leq$
inner-product	Fact 8.10.41, 461	Proposition 8.1.2 418
minimization	Fact 8.10.42, 461	quadratic form
Fact 8.15.12, 502	matrix product	Fact 8.15.24, 504
integral	Corollary 8.3.6, 424	Fact 8.15.25, 504
Fact 8.15.32, 505	matrix sign function	Fact 8.15.26, 504
Fact 8.15.33, 506	Fact 10.10.4, 637	Fact 8.15.29, 505
Fact 8.15.34, 506	maximum singular	Fact 8.15.30, 505
Fact 8.15.35, 506	value	Fact 9.8.37, 577
inverse	Fact 8.18.8, 515	quadratic form
Fact 8.11.10, 469	Fact 8.18.25, 520	inequality
inverse matrix	norm	Fact 8.15.4, 500
Proposition 8.6.6, 432	Fact 9.7.30, 571	regularized Tikhonov
Lemma 8.6.5, 432	observable pair	inverse
Fact 8.9.17, 452	Theorem 12.3.18, 732	Fact 8.9.40, 455
Fact 8.9.41, 455	outer-product	Riccati equation
Kronecker product	matrix	Fact 12.23.4, 802


Schur product	Fact 8.12.1 475	Cartesian
Fact 8.21.4, 531	Fact 8.12.2 475	decomposition
Fact 8.21.5, 532	Fact 8.12.24, 480	Fact 9.9.40, 587
Fact 8.21.6, 532	Fact 8.12.27, 481	Cauchy matrix
Fact 8.21.7 533	Fact 8.12.37, 483	Fact 8.8.7 447
Fact 8.21.13, 533	Fact 8.13.12, 487	Fact 8.8.9, 448
Fact 8.21.14, 534	Fact 11.14.24, 686	Fact 12.21.19, 797
Fact 8.21.15, 534	Fact 11.14.25 686	Cauchy-Schwarz
Fact 8.21.21, 535	Fact 11.14.27 686	inequality
Fact 8.21.33, 538	tridiagonal matrix	Fact 8.11.14 470
Fact 8.21.34, 538	Fact 8.8.18 450	Fact 8.11.15 470
Fact 8.21.36, 538	unitarily similar	Fact 8.15.8, 501
Fact 8.21.38, 539	matrices	closed set
Fact 8.21.42, 539	Proposition 3.4.5, 174	Fact 10.8.18, 633
Fact 8.21.47, 540	Proposition 5.6.3, 302	cogredient
Fact 8.21.49, 541	upper bound	diagonalization
Fact 8.21.50, 541	Fact 8.10.31, 459	Theorem 8.3.4, 423
Fact 8.21.51, 541	Fact 8.10.31	commuting matrices
simultaneous diagonalization	positive-definite matrix product	Fact 8.19.5, 467, 523 completely solid set
Fact 8.16.5, 507	inequality	Fact 10.8.18, 633
skew-Hermitian	Fact 8.10.43, 461	complex matrix
matrix	Fact 8.10.45, 464	Fact 3.7.9, 179
Fact 8.13.6, 486		congruent matrices
Fact 11.18.12 700	positive-definite solution	Proposition 3.4.5, 174
spectral order		Corollary 8.1.3, 419
Fact 8.19.4, 523	Riccati equation   Theorem 12.17.2	contragredient
spectral radius	Theorem 12.17.2,	diagonalization
Fact 8.10.5, 456	Proposition 12.19.3,	Theorem 8.3.5, 424
Fact 8.18.25, 520	790	Corollary 8.3.7, 424
spectrum	Corollary 12.19.2 790	controllability
Proposition 5.5.21, 300	positive-semidefinite	Fact 12.20.6, 791
strictly convex	function	convex combination
function	positive-semidefinite	Fact 5.19.6, 360
Fact 8.14.15, 499	matrix	Fact 8.13.16, 488
Fact 8.14.16, 499	Fact 8.8.1. 444	convex cone, 417
subdeterminant		convex function
Proposition 8.2.8, 422	positive-semidefinite	Fact 8.14.15, 499
Fact 8.13.17, 488	matrix	Fact 8.20.20 530
submatrix	absolute-value	convex set
Proposition 8.2.8, 422	matrix	Fact 8.14.2, 494
Fact 8.11.28, 474	Fact 8.9.1, 450	Fact 8.14.3, 495
Toeplitz matrix	antisymmetric	Fact 8.14.4, 495
Fact 8.13.13, 487	relation	Fact 8.14.5, 495
trace	Proposition 8.1.1, 417	Fact 8.14.6, 496
Proposition 8.4.14, 429	average	copositive matrix
Fact 8.9.16, 452	Fact 5.19.5, 360	Fact 8.15.37 507
Fact 8.10.46, 464	Brownian motion	cosines
Fact 8.11.10, 469	Fact 8.8.4, 446	Fact 8.8.15, 449


		inertia 1005
definition	Euler totient	Fact 8.10.12, 457
Definition 3.1.1, 165	function	Hadamard-Fischer
determinant	Fact 8.8.5, 447	inequality
Corollary 8.4.15, 429	factorization	Fact 8.13.36, 492
Fact 8.13.16, 488	Fact 5.15.22, 349	Hermitian matrix
Fact 8.13.18, 488	Fact 5.15.26, 349	Fact 5.15.41 351
Fact 8.13.20, 488	Fact 5.18.2, 359	Fact 8.9.11, 452
Fact 8.13.21, 488	Fact 5.18.3, 359	Fact 8.10.13, 457
Fact 8.13.24, 489	Fact 5.18.7, 359	Hölder's inequality
Fact 8.13.29, 490	Fact 8.9.36, 454	Fact 8.12.11 477
Fact 8.13.35, 492	Fact 8.9.37, 454	Fact 8.12.12, 477
Fact 8.13.36, 492	Fejer's theorem	Hua's inequalities
Fact 8.13.38, 492	Fact 8.21.35, 538	Fact 8.11.21 472
Fact 8.13.39, 493	Frobenius norm	Hua's matrix
Fact 8.13.40, 493	Fact 9.8.39, 578	equality
Fact 8.13.41, 493	Fact 9.9.12, 581	Fact 8.11.21, 472
Fact 8.17.11, 511	Fact 9.9.15, 582	idempotent matrix
Fact 8.18.30, 521	Fact 9.9.27, 584	Fact 5.15.30, 350
Fact 8.21.8, 533	Furuta inequality	identity
Fact 8.21.19, 534	Proposition 8.6.7, 433	Fact 8.11.16, 470
Fact 8.21.20, 535	generalized inverse	Fact 8.19.6, 523
Fact 9.8.39, 578	Proposition 6.1.6, 365	increasing sequence
diagonal entries	Fact 6.4.4 378	Proposition 8.6.3, 432
Fact 8.9.8	Fact 8.20.1, 525	inequality
	Fact 8.20.2, 525	Proposition 8.6.7 433
Fact 8.9.9, 451	Fact 8.20.3, 525	Corollary 8.6.8, 433
diagonal entry	Fact 8.20.4, 525	Corollary 8.6.9, 433
Fact 8.10.16, 457	Fact 8.20.6, 526	Fact 8.9.10, 451
Fact 8.12.3, 476	Fact 8.20.7, 526	Fact 8.9.19, 452
discrete-time	Fact 8.20.8, 526	Fact 8.9.21, 452
Lyapunov-stable	Fact 8.20.9, 526	Fact 8.9.38, 455
matrix	Fact $8.20 .10,526$	Fact 8.10.19, 458
Fact 11.21.15, 714	Fact 8.20.11 527	Fact 8.10.20, 458
Drazin generalized	Fact 8.20.13, 527	Fact 8.10.21 458
inverse	Fact 8.20.15, 527	Fact 8.10.28, 459
Fact 8.20.2, 525	Fact 8.20.16, 527	Fact 8.10.29, 459
eigenvalue	Fact 8.20.17, 528	Fact 8.10.30, 459
Fact 8.12.3, 476	Fact 8.20.18, 528	Fact 8.15.21 503
Fact 8.15.11, 501	Fact 8.20.19, 530	Fact 8.15.22, 503
Fact 8.18.6, 514	Fact $8.20 .20,530$	Fact 8.21.42, 539
Fact 8.18.19, 518	Fact $8.20 .22,530$	Fact 9.14.22, 612
Fact 8.18.20, 518	Fact $8.20 .23,531$	inertia
Fact 8.18.22, 519	geometric mean	Fact 5.8.9, 308
Fact 8.18.23, 519	Fact 8.10.43, 461	Fact 5.8.10, 308
Fact 8.18.24, 520	group generalized	Fact 12.21.9, 796
Fact 8.18.27, 521	inverse	integral
Fact 8.20.17, 528	Fact 8.20.1, 525	Proposition8.6.10, 433
Fact 8.21.18, 534	group-invertible	inverse matrix
Fact 8.21.20, 535	matrix	Fact 8.10.37 461


Kantorovich	Fact 8.15.14, 502	Fact 8.15.2, 500
inequality	Fact 8.15.15, 502	Fact 8.15.3, 500
Fact 8.15.9, 501	Fact 8.15.16, 502	partial ordering
kernel function	Fact 9.9.17 582	Proposition 8.1.1 417
Fact 8.8.1, 444	matrix product	Fact 8.19.9, 524
Fact 8.8.2, 445	Corollary 8.3.6, 424	partitioned matrix
Kronecker product	maximum eigenvalue	Proposition 8.2.3, 420
Fact 7.4.16, 406	Fact 8.18.14, 516	Proposition 8.2.4, 420
Fact 8.21.16, 534	maximum singular	Corollary 8.2.2, 419
Fact 8.21.22, 536	value	Lemma 8.2.1, 419
Fact 8.21.23, 536	Fact 8.18.1 512	Lemma 8.2.6, 421
Fact 8.21.24, 536	Fact 8.18.2 513	Fact 5.12.22, 338
Fact 8.21.26, 536	Fact 8.18.11, 515	Fact 8.7.6 443
Fact 8.21.27, 536	Fact 8.18.12, 516	Fact 8.9.18, 452
Fact 8.21.29, 536	Fact 8.18.13, 516	Fact 8.11.1, 467
Kronecker sum	Fact 8.18.14, 516	Fact 8.11.2, 467
Fact 7.5.8, 409	Fact 8.18.15, 517	Fact 8.11.5, 468
lattice	Fact 8.18.16, 517	Fact 8.11.6, 469
Fact 8.10.32, 459	Fact 8.18.25, 520	Fact 8.11.7, 469
Fact 8.10.33, 459	Fact 8.18.26, 520	Fact 8.11.8, 469
left-equivalent	Fact 8.18.28, 521	Fact 8.11.9, 469
matrices	Fact 8.18.30, 521	Fact 8.11.11 469
Fact 5.10.19, 319	Fact 8.18.31, 522	Fact 8.11.12, 470
Lehmer matrix	Fact 8.20.9, 526	Fact 8.11.13, 470
Fact 8.8.5, 447	Fact 11.16.6, 694	Fact 8.11.14, 470
limit	McCarthy inequality	Fact 8.11.15, 470
Proposition 8.6.3, 432	Fact 8.12.29, 481	Fact 8.11.17 471
Fact 8.10.47, 465	Minkowski's	Fact 8.11.18 471
linear combination	inequality	Fact 8.11.19, 471
Fact 8.13.18, 488	Fact 8.12.29, 481	Fact 8.11.20 472
log majorization	norm-compression	Fact 8.11.21 472
Fact 8.11.9, 469	inequality	Fact 8.11.30 475
Lyapunov equation	Fact 9.10.6, 595	Fact 8.11.31 475
Fact 12.21.15, 797	normal matrix	Fact 8.12.36 483
Fact $12.21 .19,797$	Fact 8.9.22, 452	Fact 8.12.39 484
matrix exponential	Fact 8.10.11, 457	Fact 8.12.40 484
Fact $11.14 .20,685$	Fact 8.11.12, 470	Fact 8.12.41 484
Fact 11.14.35, 688	null space	Fact 8.13.21 488
Fact 11.16.6, 694	Fact 8.7.3, 443	Fact 8.13.35 492
Fact 11.16.16, 695	Fact 8.7.5, 443	Fact 8.13.36 492
matrix logarithm	Fact 8.15.1 500	Fact 8.13.38, 492
Fact 9.9.54, 590	Fact 8.15.23, 504	Fact 8.13.39 493
matrix power	one-sided cone, 417	Fact 8.13.40 493
Corollary 8.6.11 434	outer-product	Fact 8.13.41 493
Fact 8.9.14, 452	Fact 8.9.3, 450	Fact 8.13.42, 493
Fact 8.10.36, 461	outer-product	Fact 8.15.4, 500
Fact 8.10.49, 465	matrix	Fact 8.17.14 512
Fact 8.12.30, 482	Fact 8.9.2, 450	Fact 8.18.1, 512
Fact 8.15.13, 502	Fact 8.9.4, 450	Fact 8.18.2, 513


		inertia 100
Fact 8.18.28, 521	quadratic form	Fact 9.10.7, 596
Fact 8.20.22, 530	inequality	Schur complement
Fact 8.21.39, 539	Fact 8.15.4, 500	Corollary 8.6.18, 442
Fact 8.21.40, 539	Fact 8.15.7, 501	Fact 8.11.3 468
Fact 8.21.43, 540	range	Fact 8.11.4, 468
Fact 8.21.44 540	Theorem 8.6.2, 431	Fact 8.11.17 471
Fact 9.8.33, 576	Corollary [8.2.2, 419	Fact 8.11.18, 471
Fact 0.10.6, 595	Fact 8.7.1 443	Fact 8.11.19 471
Fact 9.10.7, 596	Fact 8.7.2, 443	Fact 8.11.20, 472
Pascal matrix	Fact 8.7.3 443	Fact 8.11.27 474
Fact 8.8.5, 447	Fact [8.7.4 443	Fact 8.20.19, 530
Pick matrix	Fact 8.7.5, 443	Fact 8.21.11 533
Fact 8.8.17, 449	Fact 8.10.2, 456	Schur inverse
pointed cone, 417	Fact 8.20.7, 526	Fact 8.21.1, 531
positive-definite	Fact 8.20.8, 526	Schur power
matrix	Fact 8.20.10 526	Fact 8.21.2, 531
Fact 8.8.13, 448	Fact 8.20.11 527	Fact 8.21.3, 531
Fact 8.8.14, 449	range-Hermitian	Fact 8.21.25, 536
Fact 8.10.27 458	matrix	Schur product
Fact 8.12.25, 481	Fact 8.20.21, 530	Fact 8.21.4, 531
positive-semidefinite	rank	Fact 8.21.7, 533
function	Fact 5.8.9 308	Fact 8.21 .11533
Fact 8.8.11 444	Fact 8.7.1, 443	Fact 8.21.12, 533
power	Fact 8.7.5, 443	Fact 8.21.14 534
Fact 8.10.38, 461	Fact 8.7.6 443	Fact 8.21.17, 534
Fact 8.10.39, 461	Fact 8.7.7 444	Fact 8.21.18, 534
projector	Fact 8.10.2, 456	Fact 8.21.20, 535
projector ${ }_{\text {Fact 3 3.13.4, }} 207$	Fact 8.10.14 457	Fact 8.21.22, 536
	Fact 8.20.11 527	Fact 8.21.23, 536
properties of $<$ and	Fact 8.21.16 534	Fact 8.21.31, 537
	rank subtractivity	Fact 8.21.35, 538
Proposition 8.1.2, 418	partial ordering	Fact 8.21.37, 538
quadratic form	Fact 8.19.5, 523	Fact 8.21.39 539
Fact 8.14.2, 494	Fact 8.20.7, 526	Fact 8.21.40 539
Fact 8.14.3, 495	Fact 8.20.8, 526	Fact 8.21.41 539
Fact 8.14.4, 495	real eigenvalues	Fact 8.21.42, 539
Fact 8.14.5, 495	Fact 5.14.13 340	Fact 8.21.43, 540
Fact 8.14.6, 496	reflexive relation	Fact 8.21.44 540
Fact 8.15.1, 500	Proposition 8.1.1 417	Fact 8.21.45, 540
Fact 8.15.9, 501	reproducing kernel	Fact 8.21.46, 540
Fact 8.15.10 501	space	semicontractive
Fact 8.15.11 501	Fact 8.8.2 445	matrix
Fact 8.15.13, 502	right inverse	Fact 8.11.6, 469
Fact 8.15.14 502	Fact 3.7.26, 182	Fact 8.11.13 470
Fact 8.15.15, 502	Schatten norm	semisimple matrix
Fact 8.15.16 502	Fact 9.9.22, 583	Corollary 8.3.6, 424
Fact 8.15.17 503	Fact 0.9.39, 587	shorted operator
Fact 8.15.18 503	Fact 0.9.40, 587	Fact 8.20.19 530
Fact 8.15.23 504	Fact 0.10.6, 595	signature

Fact 5.8.9, 308
singular value
Fact 8.18.7 514
Fact 9.14.27, 613
singular values
Fact 8.11.9, 469
skew-Hermitian
matrix
Fact 8.9.12, 452
spectral order
Fact 8.19.4, 523
spectral radius
Fact 8.18.25, 520
Fact 8.20.8, 526
spectrum
Proposition 5.5.21, 300
Fact $8.20 .16,527$
square root
Fact 8.9.6, 451
Fact 8.10.18, 458
Fact 8.10.26, 458
Fact $8.21 .29,536$
Fact 9.8.32, 576
stabilizability
Fact $12.20 .6,791$
star partial ordering
Fact 8.19.8, 524
Fact 8.20.8, 526
structured matrix
Fact 8.8.2, 445
Fact 8.8.3, 446
Fact 8.8.4, 446
Fact 8.8.5, 447
Fact 8.8.6, 447
Fact 8.8.7, 447
Fact 8.8.8, 447
Fact 8.8.9, 448
Fact 8.8.10, 448
Fact 8.8.11 448
Fact 8.8.12, 448
subdeterminant
Proposition 8.2.7, 421
submatrix
Proposition 8.2.7, 421
Fact 8.7.7, 444
Fact 8.13.36, 492
submultiplicative
norm
Fact 9.9.7, 580

Szasz's inequality
Fact 8.13.36, 492
trace
Proposition 8.4.13, 428
Fact 2.12.16, 127
Fact 8.12.3, 476
Fact 8.12.9 477
Fact 8.12.10, 477
Fact 8.12.11, 477
Fact 8.12.12, 477
Fact 8.12.13, 477
Fact 8.12.17, 478
Fact 8.12.18, 478
Fact 8.12.19, 479
Fact 8.12.20, 479
Fact 8.12.21, 480
Fact 8.12.22, 480
Fact 8.12.23, 480
Fact 8.12.24, 480
Fact 8.12.26, 481
Fact 8.12.28, 481
Fact 8.12.29, 481
Fact 8.12.34, 483
Fact 8.12.35, 483
Fact 8.12.36, 483
Fact 8.12.38, 483
Fact 8.12.39, 484
Fact 8.12.40, 484
Fact 8.12.41, 484
Fact 8.13.20, 488
Fact 8.18.16, 517
Fact 8.18.20, 518
Fact 8.20.3, 525
Fact 8.20.17, 528
trace norm
Fact 9.9.15 582
transitive relation
Proposition 8.1.1, 417
triangle inequality
Fact 9.9.21 583
unitarily invariant
norm
Fact 9.9.7, 580
Fact 9.9.14 582
Fact 9.9.15, 582
Fact 9.9.16 582
Fact 9.9.17 582
Fact 9.9.27 584
Fact 9.9.46 588

Fact 9.9.51, 589
Fact 9.9.52, 590
Fact $9.9 .53,590$
Fact 9.9.54, 590
Fact $11.16 .16,695$
Fact 11.16.17, 695
unitarily
left-equivalent
matrices
Fact 5.10.18, 319
Fact 5.10.19, 319
unitarily
right-equivalent
matrices
Fact 5.10.18, 319
unitarily similar matrices
Proposition 3.4.5, 174
Proposition 5.6.3, 302
upper bound
Fact 8.10.35 460
upper triangular matrix
Fact 8.9.37, 454
weak majorization Fact 8.18.6, 514
Young's inequality Fact 8.12.12 477
zero matrix Fact 8.10.10, 457
positive-semidefinite matrix determinant
Fischer's inequality
Fact 8.13.35 492
Fact 8.13.36, 492
Minkowski's determinant theorem Corollary 8.4.15, 429
reverse Fischer inequality Fact 8.13.41, 493
positive-semidefinite matrix inequality
Araki
Fact 8.12.21 480
Araki-Lieb-Thirring inequality

inertia 1009		
Fact 8.12.20, 479	discrete-time	Fact 2.12.7, 126
positive-semidefinite	semistable matrix   Fact 11212712	positive-definite   matrix
matrix root	group-invertible	Fact 8.10.41 461
definition, 431	matrix	Fact 8.10.42, 461
positive-semidefinite	Fact 3.6.2, 177	positive-semidefinite
matrix square root	Fact 6.6.19, 398	matrix
definition, 431	idempotent matrix	Corollary 8.6.11 434
	Fact 3.12.3, 198	Fact 8.9.14, 452
positive-semidefinite	identities	Fact 8.10.36, 461
solution	Fact 7.6.11, 414	Fact 8.10.49, 465
Riccati equation	inequality	Fact 9.9.17, 582
Theorem 12.17.2, 782	Fact 1.9.7, 24	scalar inequality
Theorem 12.18.4 787	Fact 1.10.12, 32	Fact 1.9.3, 23
Proposition 12.17.1,	Fact 1.10.31, 36	Fact 1.9.4, 23
782	Fact 1.15.2, 48	Fact 1.9.5, 23
Proposition 12.19.1,	Fact 1.15.4, 48	Fact 1.9.8, 24
789	Fact 1.15.5, 49	Fact 1.9.9, 24
Corollary 12.17.3, 783	Fact 1.15.6, 49	Fact 1.9.10, 24
Corollary 12.18.8, 789	Fact 1.15.7, 49	Fact 1.10.18, 33
Corollary 12.19.2, 790	Fact 1.15.8, 49	Fact 1.11.5, 39
positive-semidefinite	Fact 1.15.9, 49	Schur product
square root	Fact 1.15.11, 50	Fact 7.6.11, 414
definition, 431	Fact 1.15.22, 53	similar matrices
definition, 431	Kronecker product	Fact 5.9.1, 311
positivity	Fact 7.4.4, 405	singular value
quadratic form on a	Fact 7.4.10, 405	inequality
subspace	Fact 7.4.21, 406	Fact 9.13.19, 605
Fact 8.15.27, 504	Kronecker sum	Fact 9.13.20, 605
Fact 8.15.28, 504	Fact 7.5.1 409	skew-Hermitian
	lower triangular	matrix
power	matrix	Fact 8.9.14, 452
adjugate	Fact 3.18.7, 216	strictly lower
Fact 4.9.8, 261	matrix classes	triangular matrix
cyclic matrix	Fact 3.7.32, 183	Fact 3.18.7, 216
Fact 5.14.9, 340	matrix exponential	strictly upper
derivative	Fact 11.13.19, 680	triangular matrix
Proposition 10.7.2, 630	maximum singular	Fact 3.18.7, 216
discrete-time	value	symmetric matrix
asymptotically	Fact 8.18.26, 520	Fact 3.7.4 178
stable matrix	Fact 9.13.7, 603	trace
Fact 11.21.2, 712	Fact 9.13.9, 603	Fact 2.12.13, 127
discrete-time	Fact 11.21.17, 715	Fact 2.12.17, 127
dynamics	nonnegative matrix	Fact 4.10.22, 271
Fact 11.21.3, 712	Fact 4.11.22, 281	Fact 4.11.22, 281
discrete-time	normal matrix	Fact 5.11.9, 322
Lyapunov-stable	Fact 9.13.7, 603	Fact 5.11.10, 322
matrix	outer-product	Fact 8.12.4, 476
Fact 11.21.10, 714	matrix	Fact 8.12.5, 476



convergence of the Baker-CampbellHausdorff series Fact 11.14.6 683	factorization of an orthogonal matrix by reflectors Fact 5.15.31, 350 factorization of	least squares and unitary   biequivalence   Fact 9.15.6, 619   Lie algebra of upp
convergent sequence for the generalized inverse	nonsingular matrix by elementary matrices	triangular Lie groups   Fact $11.22 .1,715$
Fact 6.3.35, 376 cross product of complex vectors Fact 3.10.1, 186	Fact 5.15.12, 347   Frobenius norm lower bound Fact 9.9.11, 581	lower bounds for the difference of complex numbers Fact 1.18.2, 69
determinant lower   bound   Fact 8.13.31, 491	Fact 9.9.15, 582 generalized inverse least squares solution	Lyapunov-stable matrix and the matrix exponential Fact 11.18.37, 705
determinant of partitioned matrix Fact 2.14.13, 135	Fact 9.15.2, 618 generalized inverse	majorization and singular values Fact 8.17.5, 509
determinant of the geometric mean Fact 8.21.19, 534	matrix   Fact 6.5.24, 391	matrix exponential Fact 11.14 .2681 matrix exponential
dimension of the centralizer Fact 7.5.2, 409	generalized inverses   Fact 8.10.43, 461	and proper rotation   Fact 11.11.7 673   Fact 11.11.8, 674
discrete-time   Lyapunov-stable matrix and the matrix exponent	theorem   interpretation   Fact 10.9.12, 635	Fact $11.11 .9,674$ matrix exponential formula Fact 11.14.34, 688
Fact 11.21.4. 712   entries of an orthogonal matrix Fact 3.11.9, 191	Hölder-induced norm inequality Fact 9.8.21, 575 Hurwitz stability test	maximum eigenvalue of the difference of positivesemidefinite matrices
equality in the triangle inequality   Fact 9.7.3, 563	$\begin{aligned} & \text { Fact } 11.18 .23,702 \\ & \text { inequalities involving } \\ & \text { the trace and } \end{aligned}$	Fact 8.18.14, 516 maximum singular value of an
exponential representation of a	Frobenius norm   Fact 9.11.3, 597	idempotent matrix Fact 5.11.38, 328
discrete-time   Lyapunov-stable matrix	inverse image of a subspace   Fact 2.9.30, 114	modification of a positivesemidefinite
	inverse matrix	matrix
factorization of a partitioned matrix Fact 6.5.25, 392	Fact 2.17.8, 148 Kronecker product of positive-	Fact 8.8.13, 448 orthogonal complement
factorization of a unitary matrix	semidefinite   matrices	Fact 2.9.15, 112 orthogonal matrix
Fact 5.15.16, 347	Fact 8.21.22, 536	Fact 3.9.5, 186

polar decomposition of a matrix
exponential
Fact 11.13.9, 679
Popoviciu's inequality and Hlawka's inequality
Fact 1.8.6, 22
positive-definite matrix
Fact 8.8.9, 448
positive-semidefinite matrix trace upper bound Fact 8.12.20, 479
power inequality
Fact 1.9.2, 23
Fact 1.10.41, 38
Fact 1.15.7, 49
quadrilateral with an inscribed circle
Fact 2.20.13, 159
rank of a positivesemidefinite matrix
Fact 8.8.2, 445
reflector
Fact 3.14.7, 211
reverse triangle inequality
Fact 9.7.6, 565
simisimple imaginary eigenvalues of a partitioned matrix Fact 5.12.21, 337
singular value of a partitioned matrix Fact 9.14.14, 610
singular values of a normal matrix Fact 9.11.2, 597
special orthogonal group and matrix exponentials
Fact $11.11 .13,675$
spectrum of a partitioned positive-
semidefinite
matrix
Fact 5.12.22, 338
spectrum of a sum of outer products
Fact 5.11.13, 323
spectrum of the Laplacian matrix Fact 4.11.11, 277
sum of commutators Fact 2.18.12, 151
trace of a positive-definite matrix
Fact 8.12.27, 481
upper bounds for the trace of a product
of matrix
exponentials
Fact 11.16.4, 692
product
adjugate
Fact 2.16.10, 143
characteristic polynomial
Corollary 4.4.11, 245
compound matrix
Fact 7.5.17 411
Drazin generalized inverse
Fact 6.6.3, 393
Fact 6.6.4, 394
generalized inverse
Fact 6.4.5, 378
Fact 6.4.6, 378
Fact 6.4.8, 379
Fact 6.4.9, 379
Fact 6.4.10 379
Fact 6.4.11 379
Fact 6.4.12 379
Fact 6.4.13 380
Fact 6.4.14 380
Fact 6.4.16 380
Fact 6.4.17 380
Fact 6.4.21 381
Fact 6.4.22, 381
Fact 6.4.23, 381
Fact 6.4.30 382
idempotent matrix

Fact 3.12.29, 203
identities
Fact 2.12.19 127
induced lower bound
Proposition 9.5.3, 559
left inverse
Fact 2.15.5, 141
left-invertible matrix Fact 2.10.3, 115
maximum singular value
Fact 9.14.2, 607
positive-definite matrix
Corollary 8.3.6, 424
positive-semidefinite matrix
Corollary 8.3.6, 424
projector
Fact 3.13.18, 209
Fact 3.13.20 209
Fact 3.13.21, 209
Fact 6.4.16, 380
Fact 6.4.17, 380
Fact 6.4.21, 381
Fact 6.4.23, 381
Fact 8.10.23, 458
quadruple
Fact 2.16.11 143
rank
Fact 3.7.30, 183
right inverse
Fact 2.15.6, 141
right-invertible matrix
Fact 2.10.3, 115
singular value
Proposition 9.6.1, 560
Proposition 9.6.2 561
Proposition 9.6.3, 561
Proposition 9.6.4, 561
Fact 8.18.21 519
Fact 9.14.26 613
singular value
inequality
Fact 9.13.17 604
Fact 9.13.18, 605
skew-symmetric matrix

Fact 5.15.37 351	Fact 9.8.3 571	Fact 3.13.9, 207
trace	Fact 10.9.17 636	inequality
Fact 5.12.6, 334	factorization	Fact 8.9.23, 452
Fact 5.12.7, 334	Fact 5.15.13 347	intersection of
Fact 8.12.14 478	Fact 5.15.17 348	ranges
Fact 8.12.15 478	Fact 6.3.32, 376	Fact 6.4.41, 384
Fact 9.14.3, 607	generalized inverse	Kronecker product
Fact 9.14.4, 608	Fact 6.3.3, 370	Fact 7.4.16, 406
vec	Fact 6.3.4 370	least upper bound
Fact 7.4.6, 405	Fact 6.3.5 370	Fact 6.4.41 385
product identity	Fact 6.3.26, 375	matrix difference
Lagrange identity	Fact 6.3.27, 375	Fact 3.13.24 210
Fact 1.16.8, 61	Fact 6.3.32, 376	Fact 6.4.20, 381
	Fact 6.4.15, 380	matrix limit
product of matrices	Fact 6.4.16, 380	Fact 6.4.41, 384
definition, 81	Fact 6.4.17, 380	Fact 6.4.46, 385
product of projectors	Fact 6.4.18, 381	matrix product
Crimmins	Fact 6.4.19, 381	Fact 3.13.18 209
Fact 6.3.32, 376	Fact 6.4.21, 381	Fact 3.13.20, 209
	Fact 6.4.23, 381	Fact 3.13.21 209
product of sums	Fact 6.4.24 381	Fact 6.4.16, 380
inequality	Fact 6.4.25, 381	Fact 6.4.17, 380
Fact 1.16.10, 62	Fact 6.4.33, 383	Fact 6.4.21, 381
projector	Fact 6.4.41, 384	Fact 6.4.23, 381
commutator	Fact 6.4.46, 385	matrix sum
Fact 3.13.23, 210	Fact 6.5.10, 388	Fact 5.19.4, 360
Fact 9.9.9 581	greatest lower bound	maximum singular
commuting matrices	Fact 6.4.41, 384	alu
Fact 6.4.33, 383	group-invertible	Fact 5.11.38 328
Fact 8.10.23, 458	matrix	Fact 5.12.17 335
Fact 8.10.25, 458	Fact 3.13.21 209	Fact 5.12.18, 336
complementary	Hermitian matrix	Fact 9.14.1, 607
subspaces	Fact 3.13.2, 206	Fact 9.14.30 615
Fact 3.13.24 210	Fact 3.13.13, 208	normal matrix
complex conjugate	Fact 3.13.20, 209	Fact 3.13.3, 206
transpose	Fact 5.15.17 348	Fact 3.13.20, 209
Fact 3.13.1, 206	idempotent matrix	onto a subspace
controllable subspace	Fact 3.13.3, 206	definition, 175
Lemma 12.6.6 738	Fact 3.13.13, 208	orthogonal
definition	Fact 3.13.20 209	complement
Definition 3.1.11 165	Fact 3.13.24 210	Proposition 3.5.2 175
difference	Fact 5.10.13 319	partitioned matrix
Fact 3.13.24, 210	Fact 5.12.18, 336	Fact 3.13.12, 208
Fact 5.12.17 335	Fact 6.3.26, 375	Fact 3.13.22, 210
Fact 6.4.33, 383	Fact 6.4.18, 381	Fact 3.13.23, 210
elementary reflector	Fact 6.4.19, 381	Fact 6.5.13, 388
Fact 5.15.13, 347	Fact 6.4.20, 381	positive-semidefinite
Euclidean norm	Fact 6.4.25, 381	matrix
Fact 9.8.2, 571	identity	Fact 3.13.4, 207

product
Fact 3.13.24, 210
Fact 5.12.16, 335
Fact 6.4.19 381
Fact 8.10.23, 458
quadratic form
Fact 3.13.10, 208
Fact 3.13.11, 208
range
Proposition 3.5.1 175
Fact 3.13.5, 207
Fact 3.13.14, 208
Fact 3.13.15, 208
Fact 3.13.17, 208
Fact 3.13.18, 209
Fact 3.13.19, 209
Fact 3.13.20, 209
Fact 6.4.41 384
Fact 6.4.45, 385
Fact 6.4.46 385
range-Hermitian matrix
Fact 3.13.3, 206
Fact 3.13.20, 209
rank
Fact 3.13.9, 207
Fact 3.13.12, 208
Fact 3.13.22, 210
Fact 3.13.23, 210
Fact 5.12.17, 335
reflector
Fact 3.13.16, 208
Fact 3.14.1 211
right inverse
Fact 3.13.6. 207
similar matrices
Corollary 5.5.22 301
Fact 5.10.13, 319
simultaneous triangularization
Fact 5.17.6. 358
skew-Hermitian matrix Fact 9.9.9, 581
spectrum
Proposition 5.5.21, 300
Fact 5.12.15, 335
Fact 5.12.16, 335
square root

Fact 8.10.25, 458
subspace
Proposition 3.5.2, 175
Fact 9.8.3, 571
Fact 10.9.17, 636
sum
Fact 3.13.23, 210
Fact 5.12.17, 335
trace
Fact 5.8.11 309
tripotent matrix Fact 6.4.33 383
union of ranges
Fact 6.4.41 385
unitarily similar
matrices
Fact 5.10.12, 319
unobservable subspace
Lemma 12.3.6, 729
projector onto a subspace
definition, 175
proper rational function definition
Definition 4.7.1, 249
proper rational transfer function
definition
Definition 4.7.2, 249
realization
Theorem 12.9.4, 751
proper rotation
matrix exponential Fact 11.11.7, 673
Fact 11.11.8, 674
Fact 11.11.9, 674
proper separation theorem
convex sets Fact 10.9.14, 635
proper subset
definition, 3
proposition
definition, 1

Ptak
maximum singular value Fact 9.13.9, 603

Ptolemy's inequality quadrilateral Fact 2.20.131 159

Ptolemy's theorem
quadrilateral
Fact 2.20.13, 159

## Purves

similar matrices and nonzero diagonal entries Fact 5.9.14, 313

Putnam-Fuglede theorem
normal matrix
Fact 5.14.30 343
Pythagorean theorem
norm identity
Fact 9.7.4 563
vector identity
Fact 9.7.4 563
Pythagorean triples
quadratic identity Fact 1.10.1, 30

## Q

## QR decomposition

existence
Fact 5.15.8, 346
quadratic
identity
Fact 1.11.2, 39
inequality
Fact 1.10.4, 31
Fact 1.10.5, 31
Fact 1.10.6, 31
Fact 1.10.7, 31
Fact $1.11 .3,39$
Fact 1.11.4, 39
quadratic form
cone

		ertia 1015
Fact 8.14.11, 498	Fact 8.15.14, 502	Fact 8.15.30, 505
Fact 8.14.13, 498	Fact 8.15.15, 502	Fact 9.8.37, 577
Fact 8.14.14, 498	Fact 8.15.16, 502	positive-definite
convex cone	Fact 8.15.18, 503	matrix inequality
Fact 8.14.11 498	Fact 8.15.19, 503	Fact 8.15.4, 500
Fact 8.14.13, 498	Fact 8.15.21 503	positive-semidefinite
Fact 8.14.14, 498	Fact 8.15.22, 503	matrix
convex set	integral	Fact 8.14.2, 494
Fact 8.14.2, 494	Fact 8.15.34, 506	Fact 8.14.3, 495
Fact 8.14.3, 495	Fact 8.15.35, 506	Fact 8.14.4, 495
Fact 8.14.4, 495	Kantorovich	Fact 8.14.5, 495
Fact 8.14.5, 495	inequality	Fact 8.14.6, 496
Fact 8.14.6, 496	Fact 8.15.9, 501	Fact 8.15.1, 500
Fact 8.14.9, 497	Laplacian matrix	Fact 8.15.9, 501
Fact 8.14.11, 498	Fact 8.15.36, 506	Fact 8.15.10, 501
Fact 8.14.12, 498	linear constraint	Fact 8.15.11, 501
Fact 8.14.13, 498	Fact 8.14.10, 497	Fact 8.15.13, 502
Fact 8.14.14, 498	matrix logarithm	Fact 8.15.14, 502
copositive matrix	Fact 8.15.15, 502	Fact 8.15.15, 502
Fact 8.15.37, 507	maximum eigenvalue	Fact 8.15.16, 502
definition, 166	Lemma 8.4.3, 425	Fact 8.15.17, 503
dual norm	maximum singular	Fact 8.15.18, 503
Fact 9.8.34, 577	value	positive-semidefinite
eigenvalue	Fact 9.13.1, 602	matrix inequality
Lemma 8.4.3, 425	Fact 9.13.2, 602	Fact 8.15.4, 500
Fact 8.15.20, 503	minimum eigenvalue	Fact 8.15.7, 501
field	Lemma 8.4.3, 425	projector
Fact 3.7.7, 179	minimum singular	Fact 3.13.10, 208
Hermitian matrix	value	Fact 3.13.11 208
Fact 3.7.6, 178	Fact 9.13.1, 602	quadratic
Fact 3.7.7, 179	norm	minimization
Fact 8.15.24, 504	Fact 9.7.30, 571	lemma
Fact 8.15.25, 504	null space	Fact 8.14.15, 499
Fact 8.15.26, 504	Fact 8.15.1, 500	Rayleigh quotient
Fact 8.15.31, 505	Fact 8.15.23, 504	Lemma 8.4.3, 425
hidden convexity	one-sided cone	Reid's inequality
Fact 8.14.11, 498	Fact 8.14.14, 498	Fact 8.15.18, 503
Hölder-induced norm	outer-product matrix	skew-Hermitian matrix
Fact 9.8.35, 577	Fact 9.13.3, 602	Fact 3.7.6, 178
Fact 9.8.36, 577	partitioned matrix	skew-symmetric
idempotent matrix	Fact 8.15.5, 500	matrix
Fact 3.13.11, 208	Fact 8.15.6, 501	Fact 3.7.5, 178
induced norm	positive-definite	spectrum
Fact 9.8.34, 577	matrix	Fact 8.14.7, 496
inequality	Fact 8.15.24, 504	Fact 8.14.8, 497
Fact 8.15.7, 501	Fact 8.15.25, 504	subspace
Fact 8.15.8, 501	Fact 8.15.26, 504	Fact 8.15.27 504
Fact 8.15.13, 502	Fact 8.15.29, 505	Fact 8.15.28, 504

symmetric matrix Fact 3.7.5, 178
vector derivative
Proposition 10.7.1, 630
quadratic form inequality
Marcus
Fact 8.15.19, 503
quadratic form on a subspace
positivity
Fact 8.15.27, 504
Fact 8.15.28, 504
quadratic formula complex numbers Fact 1.18.3, 70
quadratic inequality Aczel's inequality Fact 1.16.19 64 sum
Fact 1.10.17, 33
sum of squares
Fact 1.12.4, 47
Fact 1.14.1 47
quadratic matrix equation spectrum
Fact 5.11.3 321
Fact 5.11.4 321
quadratic minimization lemma
quadratic form
Fact 8.14.15, 499
quadratic performance measure
definition, 775
$\mathrm{H}_{2}$ norm
Proposition 12.15.1, 776
quadrilateral
Brahmagupta's formula
Fact 2.20.13, 159
Ptolemy's inequality Fact 2.20.13, 159

Ptolemy's theorem Fact 2.20.13, 159
semiperimeter Fact 2.20.13, 159
quadrilateral inequality
Euclidean norm
Fact 9.7.4, 563
quadruple product
trace
Fact 7.4.9, 405
vec
Fact 7.4.9, 405
quantum information
matrix logarithm
Fact 11.14.27 686
quartic
arithmetic-mean-geometric-mean inequality
Fact [1.12.5 47
identity Fact 1.10.3, 30
inequality Fact 1.17 .167
quaternion group
symplectic group Fact 3.22 .4227
quaternions
$2 \times 2$ matrix representation
Fact 3.22.6 227
$4 \times 4$ matrix representation Fact 3.22.3 227
angular velocity vector
Fact 11.11.15 675
complex decomposition
Fact 3.22 .2227
complex matrix representation Fact 3.22.7 229
inequality Fact 1.14.1 47
matrix exponential

Fact 11.11.15, 675
orthogonal matrix
Fact 3.11.10, 192
Pauli spin matrices
Fact 3.22.6, 227
real matrix
representation
Fact 3.22.1, 225
Fact 3.22.8, 229
Rodrigues's formulas
Fact 3.11.11 193
unitary matrix
Fact 3.22.9, 229
quintic
inequality
Fact 1.10.11, 32

## quintic polynomial

Abel
Fact 3.21.7, 223
Galois
Fact 3.21.7, 223
quotient
definition, 233

## R

## Rado

arithmetic-mean-geometric-mean inequality Fact 1.15 .2955 convex hull interpretation of strong majorization
Fact 2.21.7, 163

## Radstrom

set cancellation
Fact 10.9.7, 635

## Rahman

polynomial root bound Fact 11.20.7 710

Ramanujan
cube identity
Fact 2.12.24, 128

		ertia 1017
Ramus	inclusion for a	Fact 3.13.20, 209
fundamental triangle	matrix product	Fact 6.4.41, 384
inequality	Lemma 2.4.1, 94	Fact 6.4.45, 385
Fact 2.20.11, 156	Fact 2.10.2, 115	Fact 6.4.46, 385
	index of a matrix	rank
range	Fact 5.14.4, 339	Fact 2.11.5, 121
adjugat	involutory matrix	right-equivalent
Fact 2.16.7,	Fact 3.15.4, 212	matrices
complex conjugate transpose	Kronecker product	Proposition 5.1.3 283
	Fact 7.4.22, 407	Schur product
Fact 6.5.3, 386	minimal polynomial	Fact 7.6.5, 413
Fact 8.7.2, 443	Corollary 11.8.6, 664	skew-Hermitian
controllability	nilpotent matrix	matrix
Fact 12.20.7, 791	Fact 3.17.1, 213	Fact 8.7.3, 443
Drazin generalized	Fact 3.17.2, 213	square root
inverse	Fact 3.17.3, 213	Fact 8.7.2, 443
Proposition 6.2.2, 368	null space	stabilizability
factorization	Corollary 2.5.6, 97	Fact 12.20.7 791
Theorem 8.6.2, 431	Fact 2.10.1, 115	subspace
generalized inverse	null space inclusions	Fact 2.9.24, 113
Proposition 6.1.6, 365	Theorem 2.4.3 94	symmetric matrix
Fact 6.3.24, 374	outer-product	Fact 3.7.4, 178
Fact 6.4.42, 384	matrix	range of a functio
Fact 6.4.43, 385	Fact 2.10.11 116	definition, 3
Fact 6.5.3, 386	partitioned matrix	
group generalized	Fact 2.11.1, 120	range of a matrix
inverse	Fact 2.11.2, 121	definition, 93
Proposition 6.2.3, 369	Fact 6.5.3, 386	range-Hermitian matrix
group-invertible matrix	positive-semidefinite	commuting matrices
Fact 3.6.	matrix	Fact 6.4.26, 382
Fact 5.14.4, 339	Theorem 8.6.2, 431	Fact 6.4.27, 382
Hermitian matrix		complex conjugate
Lemma 8.6.1, 431		transpose
idempotent matrix	Fact 8.7.3 443	Fa
Fact 3.12.3, 199	Fact 8.7.4, 443	Fact 6.6.16, 396
Fact 3.12.4, 199	Fact 8.7.5, 443	congruent matrices
Fact 3.15.4, 200	Fact 8.10.2, 456	Proposition 3.4.5, 174
Fact 6.3.24, 374	Fact 8.20.7, 526	Fact 5.9.6, 312
identity	Fact 8.20.8, 526	definition
Fact 2.10.8, 116	Fact 8.20.10, 526	Definition 3.1.1, 165
Fact 2.10.12, 116	Fact 8.20.11, 527	dissipative matrix
Fact 2.10.20, 117	projector	Fact 5.14.31, 343
inclusion	Proposition 3.5.1 175	generalized inverse
Fact 2.10.7, 116	Fact 3.13.14, 208	Proposition 6.1.6 365
Fact 2.10.8, 116	Fact 3.13.15, 208	Fact 6.3.10, 371
inclusion for a	Fact 3.13.17 208	Fact 6.3.11, 372
matrix power	Fact 3.13.18, 209	Fact 6.3.12, 372
Corollary 2.4.2, 94	Fact 3.13.19, 209	Fact 6.3.16, 373

Fact 6.3.17, 373
Fact 6.4.26 382
Fact 6.4.27 382
Fact 6.4.28, 382
Fact 6.4.29, 382
generalized projector
Fact 3.6.4, 178
group generalized inverse
Fact 6.6.8, 394
group-invertible
matrix
Proposition 3.1.6, 169
Fact 6.6.16, 396
idempotent matrix
Fact 3.13.3, 206
Fact 6.3.27 375
Kronecker product
Fact 7.4.16, 406
Kronecker sum
Fact 7.5.8, 409
nonsingular matrix
Proposition 3.1.6, 169
normal matrix
Proposition 3.1.6, 169
null space
Fact 3.6.3, 177
positive-semidefinite matrix
Fact 8.20.21, 530
product
Fact 6.4.29 382
projector
Fact 3.13.3, 206
Fact 3.13.20, 209
rank
Fact 3.6.3, 177
Fact 3.6.5, 178
right-equivalent
matrices
Fact 3.6.3, 177
Schur decomposition Corollary 5.4.4, 293
unitarily similar
matrices
Proposition 3.4.5, 174
Corollary 5.4.4, 293
rank
additivity

Fact 2.11.4 121
Fact 6.4.32, 382
adjugate
Fact 2.16.7 143
Fact 2.16.8, 143
biequivalent matrices
Proposition 5.1.3, 283
commutator
Fact 3.12.31, 204
Fact 3.13.23, 210
Fact 5.17.5 358
Fact 6.3.9, 371
complex conjugate transpose
Fact 2.10.21, 117
complex matrix
Fact 2.19.3, 151
controllability
matrix
Corollary 12.6.3, 737
controllable pair
Fact 5.14.10, 340
controllably asymptotically stable
Proposition 12.7.4, 745
Proposition 12.7.5, 746
cyclic matrix
Fact 5.11.1 321
definition, 95
diagonal dominance
Fact 4.10.23, 271
difference
Fact 2.10.31, 119
dimension inequality
Fact 2.10.4 115
factorization
Fact 5.15.40, 351
Frobenius norm
Fact 9.11.4 598
Fact 9.14.28, 614
Fact 9.15.4 618
generalized inverse
Fact 6.3.9, 371
Fact 6.3.22 374
Fact 6.3.36 377
Fact 6.4.2, 377
Fact 6.4.32 382
Fact 6.4.44 385

Fact 6.5.6 386
Fact 6.5.8, 387
Fact 6.5.9 387
Fact 6.5.12, 388
Fact 6.5.13, 388
Fact 6.5.14, 388
geometric
multiplicity
Proposition 4.5.2, 246
group-invertible
matrix
Fact 3.6.1 177
Fact 5.8.5 308
Fact 5.14.4, 339
Hermitian matrix
Fact 3.7.22, 182
Fact 3.7.30, 183
Fact 5.8.6, 308
Fact 5.8.7, 308
Fact 8.9.7 451
idempotent matrix
Fact 3.12.6, 199
Fact 3.12.9, 199
Fact 3.12.19 201
Fact 3.12.20 201
Fact 3.12.22, 201
Fact 3.12.24 202
Fact 3.12.25, 202
Fact 3.12.27, 203
Fact 3.12.31, 204
Fact 5.8.1 307
Fact 5.11.7, 322
identities with defect
Corollary 2.5.1, 96
identities with
transpose
Corollary 2.5.3, 96
identity
Fact 2.10.12 116
Fact 2.10.13, 116
Fact 2.10.17, 117
Fact 2.10.20, 117
Fact 2.10.23 118
identity with defect
Corollary 2.5.5, 97
identity with powers
Proposition 2.5.8, 97
inequality
Fact 2.10.22, 118

		inertia 1019
inertia	Proposition 2.7.7, 106	Fact 6.5.14, 388
Fact 5.8.5, 308	observability matrix	Fact 6.5.15, 389
Fact 5.8.18, 310	Corollary 12.3.3, 729	Fact 6.6.2, 393
inverse	observably	Fact 8.7.6, 443
Fact 2.11.21, 125	asymptotically	Fact 8.7.7 444
Fact 2.11.22, 125	stable	partitioned positive-
inverse matrix	Proposition 12.4.4, 733	semidefinite
Fact 2.17.10, 149	ones matrix	matrix
Fact 6.5.11, 388	Fact 2.10.18, 117	Proposition 8.2.3, 420
Kronecker product	outer-product	positive-semidefinite
Fact 7.4.23, 407	matrix	matrix
Fact 7.4.24, 407	Fact 2.10.19, 117	Fact 5.8.9, 308
Fact 7.4.25, 407	Fact 2.10.24, 118	Fact 8.7.1, 443
Fact 8.21.16, 534	Fact 3.12.6, 199	Fact 8.7.5, 443
Kronecker sum	outer-product	Fact 8.7.6, 443
Fact 7.5.2, 409	perturbation	Fact 8.7.7 444
Fact 7.5.9, 409	Fact 2.10.25, 118	Fact 8.10.2, 456
Fact 7.5.10, 410	Fact 6.4.2, 377	Fact 8.10.14, 457
linear matrix	partitioned matrix	Fact 8.20.11, 527
equation	Corollary [2.8.5, 107	Fact 8.21.16, 534
Fact 2.10.16, 117	Fact 2.11.7, 121	product
linear system	Fact 2.11.8, 122	Proposition 2.6.3 99
solution	Fact 2.11.9, 122	$\text { Fact 3.7.30, } 183$
Theorem 2.6.4, 100	Fact 2.11.10, 122	product of matrices
Corollary 2.6.7, 101	Fact 2.11.11, 123	product of matrices
lower bound for	Fact 2.11.12, 123	Fact 2.10.14, 116
product	Fact 2.11.13, 123	Fact 2.10.26, 118
Proposition 2.5.9, 97	Fact 2.11.14, 123	projector
Corollary 2.5.10, 98	Fact 2.11.15, 124	Fact 3.13.9, 207
M-matrix	Fact 2.11.16, 124	Fact 3.13.12, 208
Fact 8.7.7, 444	Fact 2.11.18, 124	Fact 3.13.22, 210
matrix difference	Fact 2.11.19, 125	Fact 3.13.23, 210
Fact 2.10.27, 118	Fact 2.14.4, 133	Fact 5.12.17, 335
Fact 2.10.30, 119	Fact 2.14.5, 134	range
matrix power	Fact 2.14.11 135	Fact 2.11.5, 121
Fact 2.10.22, 118	Fact 2.17.5, 147	range-Hermitian
matrix powers	Fact 2.17.10, 149	matrix
Corollary 2.5.7 97	Fact 3.12.20, 201	Fact 3.6.3, 177
Fact 3.17.5, 213	Fact 3.13.12, 208	Fact 3.6.5, 178
matrix sum	Fact 3.13.22, 210	rational transfer
Fact 2.10.27, 118	Fact 5.12.21 337	function
Fact 2.10.28, 118	Fact 6.3.30, 376	Definition 4.7.4, 249
Fact 2.10.29, 119	Fact 6.5.6 386	Riccati equation
Fact 2.11.4, 121	Fact 6.5.7 387	Proposition 12.19.4
nilpotent matrix	Fact 6.5.8, 387	790
Fact 3.17.4, 213	Fact 6.5.9, 387	Rosenbrock system
Fact 3.17.5, 213	Fact 6.5.10, 388	matrix
nonsingular	Fact 6.5.12, 388	Proposition 12.10.3,
submatrices	Fact 6.5.13, 388	759

Proposition 12.10.11 764
Schur complement Proposition 8.2.3, 420
Fact 6.5.6, 386
Fact 6.5.8, 387
Fact 6.5.11 388
Schur product Fact 7.6.6, 413
Fact 8.21.16, 534
simple matrix
Fact 5.11.1] 321
singular value
Proposition 5.6.2, 302
Fact 9.14.28, 614
Fact 9.15.4 618
skew-Hermitian matrix
Fact 3.7.17, 181
Fact 3.7.30, 183
Smith form
Proposition 4.3.5, 237
Proposition 4.3.6, 238
Smith-McMillan form
Proposition4.7.7, 250
Proposition 4.7.8, 250
subapce dimension
theorem
Fact 2.11.10, 122
submatrix
Proposition 4.3.5, 237
Proposition 4.7.7, 250
Fact 2.11.6, 121
Fact 2.11.17, 124
Fact 2.11.20, 125
Fact 2.11.21, 125
Fact 2.11.22, 125
Fact 3.20.5, 218
subspace dimension theorem
Fact 2.11.9, 122
subtractivity
Fact 2.10.30, 119
Fact 2.10.31, 119
Sylvester's equation Fact 12.21.13, 796
totally positive matrix

Fact 8.7.7, 444
trace
Fact 5.11.10, 322
Fact 9.11.4 598
tripotent matrix
Fact 2.10.23, 118
Fact 3.16.3 213
Fact 3.16.4 213
unitarily invariant
norm
Fact 9.14.28, 614
upper bound for product
Corollary 2.5.10, 98
upper bound on rank of a product Lemma 2.5.2, 96
upper bound with dimensions Corollary 2.5.4, 97
rank of a polynomial matrix
definition
Definition 4.2.4, 235
Definition 4.3.3, 237
submatrix
Proposition 4.2.7, 236
rank of a rational function
linearly independent columns
Proposition 4.7.6, 250
Proposition 4.7.9, 251
rank subtractivity
equivalent conditions
Fact 2.10.30, 119
transitivity
Fact 2.10.31, 119
rank subtractivity partial ordering
commuting matrices
Fact 8.19.5 523
definition
Fact 2.10.32, 119
generalized inverse
Fact 6.5.30 393
positive-semidefinite matrix
Fact 8.19.5, 523
Fact 8.19.9, 524
Fact 8.20.7, 526
Fact 8.20.8, 526
rank-deficient matrix
determinant
Fact 2.13.3, 129
rank-two matrix
matrix exponential
Fact 11.11.18, 676
ratio of powers
scalar inequalities Fact 1.10.39, 38
rational canonical form, see multicompanion
form or elementary
multicompanion
form
rational function
complex conjugate
Fact 4.8.17, 260
definition
Definition 4.7.1, 249
Hankel matrix
Fact 4.8.8, 257
imaginary part
Fact 4.8.17, 260
spectrum
Fact 5.11.15, 324
rational transfer function
blocking zero
Definition 4.7.4, 249
definition
Definition 4.7.2, 249
Markov
block-Hankel
matrix
Proposition 12.9.11 754
Proposition 12.9.12 755
Proposition 12.9.13, 755

Markov parameter	real Schur	Fact 12.22.6 799
Proposition 12.9.7, 751	decomposition	Fact 12.22.7 799
minimal realization	definition, 293	Fact 12.22.8, 799
Fact 12.22.12, 800	existence	rearrangement
normal rank	Corollary 5.4.2, 293	inequality
Definition 4.7.4 249	Corollary [5.4.3, 293	
oles	real symplectic group	inequality
Definition 4.7.4, 249	special orthogonal	Fact 1.16.3, 60
Definition $4.7 .4,249$	group	product of sums
realization	Fact 3.22.5, 227	Fact 1.16.4, 60
Fact 12.22.11, 800	rea	reverse inequality
Rayleigh quotient	n,	sum of differences
Hermitian matrix	realization	Fact 1.16.4, 60
Lemma 8.4.3, 425	controllable	sum of products
quadratic form	canonical form	Fact 1.16.4
Lemma 8.4.3, 425	Proposition 12.9.3, 750	sum of products
eigenvalue	definition	inequality
positive-semidefinite	Definition 12.9.2,   derivative	Fact 1.16.5, 60
matrix	Fact 12.22 .6799	reciprocal
Fact 5.14.13, 340	feedback	scalar inequality
real hypercompanion	interconnectio	Fact 1.11.13 43
form	Proposition 12.13.4	Fact 1.11.18, 44
definition, 289	772	Fact 1.11.19 44
real Jordan form	Proposition 12.14.1	Fact 1.11.20, 44
existence	$774$	reciprocal argument
Theorem 5.3.5, 290	Fact 12.22.8, 799	transfer function
hypercompanion	observable canonical form	Fact 12.22 .4799
matrix   Fact 5.10 .1316	Proposition 12.9.3, 750	reciprocal powers
	partitioned transfer	inequality
	function	Fact 1.16 .2666
similarity	Proposition 12.13.3	Fact 1.16.27 66
transformation	771	reciprocals
Fact 5.10.1, 316	Fact 12.22 .7799	scalar inequality
Fact 5.10.2, 317	proper rational	Fact 1.11.23 45
	transfer function	Fact 1.11.26 45
real Jordan matrix definition, 289	Theorem 12.9.4. 751 rational transfer	Walker's inequality Fact 1.11 .2245
real normal form	function	
existence	Fact 12.22.11, 800	reducible matrix
Corollary 5.4.9, 295	similar matrices	absolute value Fact 3.20 .4 .218
real part	transfer function	definition
frequency response	Proposition 12.13.1	Definition 3.1.11 165
Fact 12.22.5, 799	770	zero entry
transfer function	Fact 12.22 .3798	Fact 3.20.1, 217
Fact $12.22 .5,799$	Fact 12.22.4 799	Fact 3.20.2, 21

redundant assumptions
definition, 2
reflection theorem
elementary reflector
Fact 3.14.4 211
reflector
definition
Definition 3.1.1, 165
elementary reflector
Fact 5.15.14, 347
factorization
Fact 5.15.14 347
Hermitian matrix Fact 3.14.2 211
identity
Fact 3.14.8, 212
involutory matrix Fact 3.14.2 211
Kronecker product
Fact 7.4.16, 406
normal matrix
Fact 5.9.9 312
Fact 5.9.10 312
orthogonal matrix
Fact 3.11.9 191
Fact 5.15.31, 350
Fact 5.15.35, 351
projector
Fact 3.13.16, 208
Fact 3.14.1 211
rotation matrix Fact 3.11.9 191
similar matrices
Corollary [5.5.22 301
skew reflector
Fact 3.14.7 211
spectrum
Proposition 5.5.21, 300
trace
Fact 5.8.11 309
tripotent matrix
Proposition 3.1.6, 169
unitary matrix
Fact 3.14.2 211
reflexive hull
definition
Definition 1.3.4, 5
relation
Proposition 1.3.5, 6
reflexive relation
definition
Definition 1.3.2, 5
graph
Definition 1.4.1, 8
intersection
Proposition 1.3.3, 5
pointed cone
induced by
Proposition [2.3.6, 93
positive-semidefinite
matrix
Proposition 8.1.1, 417
regular pencil
definition, 304
generalized
eigenvalue
Proposition 5.7.3, 305
Proposition 5.7.4, 306
invariant zero
Corollary 12.10 .4759
Corollary 12.10.5 760
Corollary 12.10 .6761
Kronecker canonical form
Proposition 5.7.2, 305
Moler
Fact 5.17 .3358
simultaneous triangularization Fact 5.17.2 358
Stewart
Fact 5.17 .3358
upper Hessenberg
Fact 5.17.3 358
upper triangular
Fact 5.17.3 358
regular polynomial matrix
definition, 234
nonsingular
polynomial matrix
Proposition 4.2.5, 235
regularized Tikhonov
inverse
positive-definite
matrix
Fact 8.9.40, 455
Reid's inequality
quadratic form Fact 8.15.18 503
relation
definition, 5
function
Proposition 1.3.1 5
relative complement
definition, 2

## relative degree

definition
Definition 4.7.1. 249
Definition 4.7.3, 249
relative entropy
matrix logarithm Fact 11.14.25, 686
relative gain array
definition
Fact 8.21.4, 531
relatively closed set complement
Fact 10.8.5, 632
relatively open set complement
Fact 10.8.5, 632
remainder
definition, 233
representation
groups
Fact 3.21.8, 224
reproducing kernel
space
positive-semidefinite
matrix
Fact 8.8.2 445
resolvent
definition, 243
Laplace transform
Proposition 11.2.2, 647
matrix exponential

definition, 88
similar matrices Fact 5.9.11, 313
reverse-diagonal entries
definition, 80
reverse-diagonal matrix definition Definition 3.1.3, 167
semisimple matrix Fact 5.14.12, 340
reverse-Hermitian matrix
definition Definition 3.1.1, 165
reverse-symmetric matrix
definition Definition 3.1.1 165
factorization
Fact 5.9.12, 313
similar matrices
Fact 5.9.11, 313
Toeplitz matrix
Fact 3.18.5, 215
reversed relation
relation
Proposition 1.3.5, 6
Riccati differential equation
matrix differential equation
Fact 12.23 .5803
Riccati equation
closed-loop spectrum
Proposition 12.16 .14 . 781
Proposition 12.18.2. 787
Proposition 12.18 .3 787
Proposition 12.18 .7 789
detectability
Corollary 12.17.3, 783
Corollary 12.19.2, 790
existence
Fact 12.23.3, 802
geometric mean
Fact 12.23.4, 802
golden mean Fact 12.23.4 802
golden ratio Fact 12.23.4, 802
Hamiltonian
Theorem 12.17.9 784
Proposition 12.16.14, 781
Corollary 12.16.15, 781
inertia
Lemma 12.16.18, 781
linear-quadratic
control problem
Theorem 12.15.2, 776
maximal solution
Definition 12.16.12, 780
Theorem 12.18.1 787
Theorem 12.18.4 787
Proposition 12.18.2 787
Proposition 12.18 .7 789
monotonicity
Proposition 12.18.5 788
Corollary 12.18.6, 788
observability
Lemma 12.16.18, 781
positive-definite
matrix
Fact 12.23.4 802
positive-definite
solution
Theorem 12.17.2 782
Proposition 12.19.3 790
Corollary 12.19.2, 790
positive-semidefinite solution
Theorem 12.17.2, 782
Theorem 12.18.4 787
Proposition 12.17.1 782

Proposition 12.19.1 789
Corollary 12.17.3, 783
Corollary 12.18.8, 789
Corollary 12.19.2, 790
rank
Proposition 12.19.4, 790
solution
Definition 12.16.12, 780
Fact 12.23.2, 802
stabilizability
Theorem 12.17.9, 784
Theorem 12.18.1, 787
Corollary 12.19.2, 790
stabilizing solution
Definition 12.16.12, 780
Theorem 12.17.2, 782
Theorem 12.17.9, 784
Theorem 12.18.4. 787
Proposition 12.17.1, 782
Proposition 12.18.3. 787
Proposition 12.19.4 790
Corollary 12.16.15 781
right divides
definition, 234
right coprime
polynomial matrices
Bezout identity
Theorem4.7.14, 252
right equivalence
equivalence relation
Fact 5.10.3, 317
right inverse
(1)-inverse

Proposition 6.1.2, 364
definition, 4
generalized inverse
Corollary 6.1.4, 364
idempotent matrix
Fact 3.12.10, 199
linear system

Fact 6.3.1, 369
matrix product
Fact 2.15.6 141
positive-semidefinite matrix
Fact 3.7.26 182
projector
Fact 3.13.6 207
representation
Fact 2.15.4 140
right-inner matrix Fact 3.11.5 190
transfer function
Fact $12.22 .9,799$
uniqueness
Theorem 1.2.2, 4
right-equivalent matrices
definition
Definition 3.4.3, 174
group-invertible matrix
Fact 3.6.1, 177
Kronecker product
Fact 7.4.11 405
range
Proposition 5.1.3, 283
range-Hermitian matrix Fact 3.6.3, 177
right-inner matrix
definition
Definition 3.1.2, 166
generalized inverse
Fact 6.3.8, 371
right inverse
Fact 3.11.5 190
right-invertible function definition, 4
right-invertible matrix
definition, 98
equivalent properties
Theorem 2.6.1, 98
generalized inverse
Proposition 6.1.5, 364
inverse
Proposition 2.6.5, 101
linear system solution Fact 2.13.7, 129
matrix product Fact 2.10.3, 115
nonsingular equivalence Corollary 2.6.6, 101
open set
Theorem 10.3.6, 624
unique right inverse
Proposition 2.6.2 99
rigid body
inertia matrix
Fact 8.9.5 451
rigid-body rotation
matrix exponential Fact 11.11.6, 673
Rodrigues
orthogonal matrix
Fact 3.11.10, 192

## Rodrigues's formulas

Euler parameters
Fact 3.11.11, 193
orthogonal matrix
Fact 3.11.11 193
quaternions
Fact 3.11.11 193
Rogers-Hölder
inequality
scalar case
Fact 1.16.12 62
root
Definition 1.4.2, 8
polynomial
Fact $11.20 .4,709$
Fact 11.20.5, 709
Fact 11.20.6, 709
Fact 11.20 .7710
Fact 11.20.8, 710
Fact 11.20 .9710
Fact $11.20 .10,711$
root bounds
polynomial
Fact 11.20.11, 711
Fact $11.20 .12,712$

inertia 1025		
root locus	positive-definite	Fact 1.9.15, 25
eigenvalue	matrix	Fact 1.9.16, 25
Fact 4.10.28, 272	Fact 8.8.14, 449	Fact 1.9.17, 26
roots	Routh criterion	geometric mean   Fact 1.11.6, 39
polynomial   Fact 4.81253	asymptotically stable polynomial	Hölder's inequality
$\begin{aligned} & \text { Fact 4.8.1, } 253 \\ & \text { Fact } 4.8 .2,254 \end{aligned}$	polynomial 606	Fact 1.16.11, 62
Fact 4.8.2, 254	Fact 11.17.2, 696	Fact 1.16.12, 62
roots of polynomial	Routh form	Hua's inequality
convex hull	tridiagonal matrix	Fact 1.15.13, 51
Fact 10.11.3, 638	Fact 11.18.27, 703	Kantorovich
		inequality
Rosenbrock system matrix	definition, 79	Fact 1.15.36, 57
definition		logarithm
definition ${ }^{\text {Definition } 12.10 .1} 757$	row norm	Fact 1.15.45, 59
Definition 12.10.1, 757	column norm	Fact 1.15.46, 59
rank	Fact 9.8.10, 572	Fact 1.15.47, 59
Proposition 12.10.3.	definition, 556	Minkowski's
759	Hölder-induced	inequality
Proposition 12.10.11	norm	Fact 1.16.25, 66
764	Fact 9.8.21, 575	rearrangement
rotation	Fact 9.8.23, 575	inequality
vector	Kronecker product	Fact 1.16.7, 61
Fact 3.11.13, 194	Fact 9.9.61, 591	reciprocal powers
	partitioned matrix	Fact 1.16.26, 66
rotation matrix	Fact 9.8.11, 572	Fact 1.16.27, 66
definition, 172	spectral radius	reversal of Hölder's
logarithm	Corollary 9.4.10, 556	inequality
Fact 11.15.10, 692		Fact 1.16.22, 65
orthogonal matrix		Rogers-Hölder
Fact 3.11.9, 191	S	inequality
Fact 3.11.10, 192		Fact 1.16.12, 62
Fact 3.11.11, 193	S-N decomposition	Schweitzer's
Fact 3.11.12, 194	diagonalizable	inequality
Fact 3.11.31, 198	matrix	Fact 1.15.37, 57
reflector	Fact 5.9.3, 311	Wang's inequality
Fact 3.11.9, 191	nilpotent matrix	Fact 1.15.13, 51
trace	Fact 5.9.3, 311	Young inequality
Fact 3.11.17, 195		Fact 1.10.21, 33
rotation-dilation	arithmetic mean	Young's inequality
factorization	Fact 1.11.6, 39	Fact 1.10.32, 36
Fact 2.19.2, 151	Bernoulli's	Fact 1.15.31, 56
Roth	inequality	Schatten norm
solutions of	Fact 1.9.1 22	absolute value
Sylvester's equation	Cauchy-Schwarz	Fact 9.13.11, 603
Fact 5.10.20, 320	inequality	Cartesian
Fact 5.10.21, 320	Fact 1.16.9, 62	decomposition
Fact 5.10.21 320	exponential function	Fact 9.9.37, 586
Roup	Fact 1.9.14, 25	Fact 9.9.39, 587

Fact 9.9.40, 587
Clarkson inequalities
Fact 9.9.34 586
commutator
Fact 9.9.27 584
compatible norms
Proposition 9.3.6, 551
Corollary 9.3.7, 552
Corollary 9.3.8, 552
definition
Proposition 9.2.3, 548
eigenvalue
Fact 9.11.6, 598
equality
Fact 9.9.33, 585
Frobenius norm
Fact 9.8.20, 575
Hanner inequality
Fact 9.9.36, 586
Hermitian matrix
Fact 9.9.27, 584
Fact 9.9.39, 587
Hölder matrix norm
Fact 9.11.6, 598
Hölder norm
Proposition 9.2.5, 549
inequality
Fact 9.9 .34586
Fact 9.9.36, 586
Fact 9.9.37, 586
Fact 9.9.38, 587
Fact 9.9.45, 588
Kronecker product
Fact 9.14.37, 617
matrix difference
Fact 9.9.23, 584
monotonicity
Proposition 9.2.4, 549
normal matrix
Fact 9.9.27 584
Fact 9.14.5 608
partitioned matrix
Fact $9.10 .2,593$
Fact $9.10 .3,594$
Fact 9.10.4, 594
Fact 9.10 .5595
Fact $9.10 .6,595$
Fact 9.10.7 596
Fact $9.10 .8,596$
positive-semidefinite matrix
Fact 9.9.22 583
Fact 9.9.39 587
Fact 9.9.40 587
Fact 9.10.6 595
Fact 9.10.7 596
Schur product
Fact 9.14.34, 616
trace
Fact 9.12.1 599
unitarily invariant norm
Fact 9.8.9, 572
Schauder fixed-point theorem
image of a continuous function Theorem 10.3.10, 625

Schinzel
determinant upper bound
Fact 2.13.15, 131
Schmidt-Mirsky theorem
fixed-rank approximation
Fact 9.14.28, 614

## Schneider

inertia of a
Hermitian matrix
Fact 12.21.4, 794
Fact 12.21.5, 794
Schoenberg
Euclidean distance matrix
Fact 9.8.14 573
Schott's theorem
Schur product of positivesemidefinite matrices Fact 8.21.12, 533

Schur
dimension of the algebra generated
by commuting
matrices
Fact 5.10.15 319

## Schur complement

convex function
Proposition 8.6.17, 437
Lemma 8.6.16, 436
definition
Definition 6.1.8, 367
determinant
Proposition 8.2.3, 420
increasing function
Proposition 8.6.13, 435
inequality
Fact 8.11.17 471
inertia
Fact 6.5.5 386
nondecreasing
function
Proposition 8.6.13, 435
partitioned matrix
Fact 6.5.4, 386
Fact 6.5.5, 386
Fact 6.5.6, 386
Fact 6.5.8, 387
Fact 6.5.12, 388
Fact 6.5.29, 393
Fact 8.21.39, 539
positive-semidefinite
matrix
Corollary 8.6.18, 442
Fact 8.11.3, 468
Fact 8.11.4, 468
Fact 8.11.18 471
Fact 8.11.19 471
Fact 8.11.20 472
Fact 8.11.27 474
Fact 8.20.19 530
Fact 8.21.11 533
rank
Proposition 8.2.3, 420
Fact 6.5.6 386
Fact 6.5.8 387
Fact 6.5.11, 388
Schur product
Fact 8.21.11 533
Schur concave function definition

inertia		
Definition 2.1.2 78	Fact 8.21.9, 533	positive-definite
elementary	definition, 404	matrix
symmetric function	distributive	Fact 8.21.4, 531
Fact 1.15.20, 53	identities, 404	Fact 8.21.5, 532
entropy	eigenvalue	Fact 8.21.6, 532
Fact 2.21.6, 162	Fact 8.21.18, 534	Fact 8.21.7, 533
strong majorization	Frobenius norm	Fact 8.21.13, 533
Fact 2.21.6, 162	Fact 9.14.34 616	Fact 8.21.14 534
Schur convex function definition	geometric mean	Fact 8.21.15 534
	Fact 8.21.51 541	Fact 8.21.21 535
Definition 2.1.2 78	Hermitian matrix	Fact 8.21.33, 538
Muirhead's theorem	Fact $8.21 .28,536$	Fact 8.21.34 538
Fact 1.15.25, 54	Fact 8.21.32 537	Fact 8.21.36 538
strong majorization	Kronecker product	Fact 8.21.38 539
Fact 2.21.4. 162	Proposition [7.3.1, 404	Fact 8.21.42 539
Fact 2.21.5, 162	lower bound	Fact 8.21.47 540
	Fact 8.21.14 534	Fact 8.21.49 541
Schur decomposition	M-matrix	Fact 8.21.50 541
Hermitian matrix	Fact 7.6.15, 415	Fact 8.21.51 541
Corollary [5.4.5, 294	matrix exponential	positive-semidefinite
Jordan form	Fact 11.14.21 685	matrix
Fact 5.10.6, 317	matrix identity	Fact 8.21.4, 531
normal matrix	Fact 7.6.3, 413	Fact 8.21.7, 533
Corollary [5.4.4, 293	Fact 7.6.4, 413	Fact 8.21.11 533
Fact 5.10.6, 317	Fact 7.6.10, 414	Fact 8.21.12, 533
range-Hermitian	matrix logarithm	Fact 8.21.14 534
matrix	Fact 8.21 .47 540	Fact 8.21 .17534
Corollary [5.4.4 293	Fact $8.21 .48,540$	Fact $8.21 .18,534$
Schur inverse   positive-semidefinite matrix   Fact 8.21.1, 531	matrix power	Fact 8.21.20 535
	Fact 7.6.11, 414	Fact 8.21.22 536
	matrix-vector	Fact 8.21.23, 536
	identity	Fact 8.21.31 537
	Fact 7.6.9 414	Fact 8.21.35 538
Schur power definition, 404	maximum singular	Fact 8.21.37 538
	value	Fact 8.21.39 539
Lyapunov equation   Fact 8.8.16, 449	Fact 8.21.10 533	Fact 8.21.40 539
	Fact 9.14.31, 615	Fact 8.21.41 539
positive-semidefinite matrix	Fact 9.14.33 616	Fact 8.21.42 539
	Fact 9.14.35 617	Fact 8.21.43 540
Fact 8.21.2, 531	nonnegative matrix	Fact 8.21.44 540
Fact 8.21.3, 531	Fact 7.6.13, 415	Fact 8.21.45, 540
Fact 8.21.25, 536	normal matrix	Fact 8.21.46 540
Schur product associative identities, 404	Fact 9.9.63, 591	quadratic form
	partitioned matrix	Fact 7.6.7 413
	Fact 8.21.6, 532	range
commutative	Fact 8.21.39, 539	Fact 7.6.5, 413
identities, 404	Fact 8.21.40, 539	rank
complex conjugate	positive matrix	Fact 7.6.6 413
transpose	Fact 7.6.14, 415	Fact 8.21.16 534

Schatten norm
Fact 9.14.34, 616
Schur complement
Fact 8.21.11, 533
singular value
Fact 0.14.31, 615
Fact 0.14.32, 615
Fact 9.14.33, 616
spectral radius
Fact 7.6.13 415
Fact 7.6.14 415
Fact 7.6.16 416
Fact 7.6.17 416
Fact 9.14.33, 616
submultiplicative norm
Fact 9.8.41, 578
trace
Fact 7.6.8, 413
Fact 8.21.17, 534
Fact 9.14.32, 615
transpose
Fact 7.6.12 414
unitarily invariant norm
Fact 9.8 .41578
Fact 0.9.62, 591
Fact 0.9.63, 591
Fact 9.14.36, 617
vector identity
Fact 7.6.1, 413
Fact 7.6.2, 413
weak majorization Fact 9.14.31 615

Schur product of polynomials
asymptotically stable polynomial Fact 11.17.9, 697

Schur's formulas determinant of partitioned matrix Fact 2.14.13, 135

Schur's inequality eigenvalue Fact 8.17.5, 509
eigenvalues and the Frobenius norm

Fact 9.11.3 597
Schur's theorem
eigenvalue inequality
Fact 8.17.8 510
Schur product of positive-
semidefinite
matrices
Fact 8.21.12, 533
Schur-Cohn criterion
discrete-time asymptotically stable polynomial Fact 11.20.1, 708

Schur-Horn theorem
diagonal entries of a unitary matrix
Fact 3.11.19, 195
Fact 8.17.10, 511
Schwarz form
tridiagonal matrix
Fact 11.18 .25702
Fact 11.18 .26702
Schweitzer's inequality
scalar inequality
Fact 1.15.37, 57
secant condition asymptotically stable matrix
Fact 11.18.29 704
second derivative
definition, 627
Seiler
determinant
inequality
Fact 8.13.30, 490
self-adjoint norm
definition, 547
unitarily invariant norm
Fact 9.8.7 572
self-conjugate set
definition, 232
semicontractive matrix
complex conjugate
transpose
Fact 3.20.12, 220
definition
Definition 3.1.2, 166
discrete-time
Lyapunov-stable matrix
Fact 11.21 .4712
partitioned matrix Fact 8.11.6, 469
Fact 8.11.22 473
positive-semidefinite matrix
Fact 8.11.6. 469
Fact 8.11.13, 470
unitary matrix
Fact 8.11.22, 473
semidissipative matrix
definition
Definition 3.1.1, 165
determinant
Fact 8.13.3, 485
Fact 8.13.4, 485
Fact 8.13.11 486, 487
discrete-time
Lyapunov-stable matrix
Fact 11.21 .4712
dissipative matrix
Fact 8.13.31 491
Kronecker sum
Fact 7.5.8 409
Lyapunov-stable matrix
Fact 11.18.37, 705
normal matrix
Fact 11.18.37 705
semiperimeter
quadrilateral Fact 2.20.13, 159
triangle Fact 2.20.11, 156
semisimple eigenvalue
cyclic eigenvalue
Proposition 5.5.5, 296
defect
Proposition 5.5.8, 296
definition
Definition 5.5.4 296
index of an
eigenvalue
Proposition 5.5.8, 296
null space Proposition 5.5.8, 296
simple eigenvalue Proposition 55.5.5, 296
semisimple matrix cyclic matrix Fact 5.14.11 340 definition Definition 55.5.4 296
elementary matrix Fact 5.14.17, 341
idempotent matrix Fact 5.14.21, 341
identity perturbation Fact 5.14.16, 341
involutory matrix Fact 5.14.19, 341
Kronecker product
Fact 7.4.16, 406
matrix exponential Proposition 11.2 .7648
normal matrix Proposition [5.5.11, 297
outer-product matrix Fact 5.14.3, 338
positive-semidefinite matrix
Corollary 8.3.6, 424
reverse-diagonal matrix Fact 5.14.12 340
similar matrices Proposition 5.5.11 297
Fact 5.9.4 312
Fact 5.10.5, 317
simple matrix Fact 5.14.11, 340
skew-involutory matrix Fact 5.14.19, 341
semistability
eigenvalue

Proposition 11.8.2, 662
linear dynamical system
Proposition 11.8.2, 662
Lyapunov equation Corollary 11.9.1 666 matrix exponential Proposition 11.8.2, 662
semistable matrix compartmental matrix
Fact 11.19.6 707
definition
Definition 11.8.1, 662
group-invertible matrix
Fact 11.18.3 698
Kronecker sum
Fact 11.18.32, 704
Fact 11.18.33, 704
limit
Fact 11.18.7 699
Lyapunov equation Fact 12.21.15, 797
Lyapunov-stable matrix
Fact 11.18.1 698
matrix exponential
Fact 11.18 .5698
Fact 11.18.7 699
Fact 11.21 .7713
minimal realization
Definition 12.9.17 757
semistable
polynomial
Proposition 11.8.4, 663
similar matrices
Fact 11.18.4 698
unstable subspace
Proposition 11.8.8, 665
semistable polynomial
definition
Definition 11.8.3, 663
reciprocal argument Fact 11.17 .5696
semistable matrix
Proposition 11.8.4, 663
semistable transfer function
minimal realization
Proposition 12.9.18 757
SISO entries
Proposition 12.9.19 757
separation theorem convex cone
Fact 10.9.13 635
inner product
Fact 10.9.13 635
Fact 10.9.14 635
sequence
definition
Definition 10.2.1 622
generalized inverse
Fact 6.3.36, 377
series
commutator
Fact 11.14.17, 684
definition
Definition 10.2.6 623
Definition 10.2.8 623
inverse matrix Proposition 9.4.13, 557
matrix exponential Fact 11.14.17, 684
set
definition, 2
distance from a point
Fact 10.9.15 636
Fact 10.9.16 636
set cancellation
convex set
Fact 10.9.7, 635
Radstrom
Fact 10.9.7, 635
set identities
intersection Fact 1.5.6 11
union
Fact 1.5.6. 11
sextic

similar matrices
asymptotically stable matrix
Fact 11.18.4, 698
biequivalent matrices
Proposition 3.4.5, 174
block-diagonal matrix
Theorem 5.3.2, 288
Theorem 5.3.3, 289
campanion matrix
Fact 5.16.5, 354
characteristic
polynomial
Fact 4.9.10, 262
complex conjugate
Fact 5.9.31, 316
cyclic matrix
Fact 5.16.5, 354
definition
Definition 3.4.4, 174
diagonal entries
Fact 5.9.13, 313
diagonalizable over $\mathbb{R}$
Proposition 5.5.12, 297
Corollary 5.5.22, 301
discrete-time asymptotically stable matrix
Fact 11.18.4, 698
discrete-time
Lyapunov-stable matrix
Fact 11.18.4, 698
discrete-time semistable matrix
Fact 11.18.4, 698
equivalence class Fact 5.10.4, 317
equivalent realizations
Definition 12.9.6, 751
example
Example 5.5.20, 300
factorization
Fact 5.15.6, 346
geometric multiplicity
Proposition 5.5.10, 297

		031
group-invertible matrix	Corollary 5.2.6, 286 nilpotent matrix	skew-involutory matrix
Proposition 3.4.5, 174	Proposition 3.4.5, 174	Proposition 3.4.5 174
Fact 5.9.5, 312	Fact 5.10.23, 321	skew-symmetric
Hermitian matrix	nonsingular matrix	matrix
Proposition 5.5.12, 297	Fact 5.10.11, 318	Fact 5.15.39, 351
idempotent matrix	nonzero diagonal	Sylvester's equation
Proposition 3.4.5, 174	entries	Corollary 7.2.5, 404
Proposition 5.6.3, 302	Fact 5.9.14, 313	Fact 7.5.14, 410
Corollary 5.5.22, 301	normal matrix	symmetric matrix
Fact 5.10.9, 318	Proposition 5.5.11, 297	Fact 5.15.39, 351
Fact 5.10.13, 319	Fact 5.9.9, 312	transpose
Fact 5.10.14, 319	Fact 5.9.10, 312	Proposition 5.5.12, 297
Fact 5.10.22, 320	Fact 5.10.7, 317	Corollary 4.3.11, 239
inverse matrix	partitioned matrix	Corollary 5.3.8, 291
Fact 5.15.31, 350	Fact 5.10.21, 320	Corollary 5.5.22, 301
involutory matrix	Fact 5.10.22, 320	Fact 5.9.9, 312
Proposition 3.4.5, 174	Fact 5.10.23, 321	Fact 5.9.10, 312
Corollary 5.5.22, 301	projector	tripotent matrix
Fact 5.15.31, 350	Corollary 5.5.22, 301	Proposition 3.4.5, 174
Kronecker product	Fact 5.10.13, 319	Corollary 5.5.22, 301
Fact 7.4.12, 406	realization	unitarily invariant
Kronecker sum	Proposition 12.9.5, 751	norm
Fact 7.5.9, 409	reflector	Fact 9.8.31, 576
lower triangular matrix	Corollary 5.5.22 301 reverse transpose	unitarily similar matrices
Fact 5.9.2, 311	Fact 5.9.11, 313	Fact 5.10.7, 317
Lyapunov-stable matrix	reverse-symmetric matrix	upper triangular matrix
Fact 11.18.4, 698	Fact 5.9.11, 313	Fact 5.9.2, 311
matrix classes	semisimple matrix	Vandermonde matrix
Proposition 3.4.5, 174	Proposition 5.5.11, 297	Fact 5.16.5, 354
matrix exponential	Fact 5.9.4, 312	
Proposition 11.2.9, 650	Fact 5.10.5, 317	equivalence relation
matrix power	semistable matrix	Fact 5.10.3, 317
Fact 5.9.1, 311	Fact 11.18.4, 698	
minimal polynomial	similarity invariant	similarity invaria
Proposition 4.6.3, 248	Theorem4.3.10, 239	characteristic
Fact 11.23.3, 717	Corollary 5.2.6, 286	polynomial
Fact 11.23.4, 717	simultaneous	Proposition 4.4.2 240
Fact 11.23.5, 718	diagonalization	Proposition 4.6.2, 248
Fact 11.23.6. 719	Fact 5.17.8, 358	definition
Fact 11.23.7, 719	skew-Hermitian	Definition 4.3.9, 239
Fact 11.23.8, 720	matrix	multicompanion
Fact 11.23.9, 720	Fact 5.9.4, 312	form
Fact 11.23.10, 721	Fact 11.18.12, 700	Corollary 5.2.6, 286
Fact 11.23.11, 721	skew-idempotent	similar matrices
multicompanion	matrix	Theorem4.3.10, 239
form	Corollary 5.5.22, 301	Corollary 5.2.6, 286

similarity transformation
complex conjugate
transpose
Fact 5.9.8, 312
Fact 5.15.4, 345
complex symmetric
Jordan form
Fact 5.15.2 345
Fact 5.15 .3345
eigenvector
Fact 5.14.6 339
Fact 5.14.7 339
hypercompanion matrix
Fact 5.10 .1316
inverse matrix
Fact 5.15.4 345
normal matrix
Fact 5.15.3 345
real Jordan form
Fact 5.10.1 316
Fact 5.10.2 317
symmetric matrix
Fact 5.15.2, 345
Fact 5.15 .3345
SIMO transfer function
definition
Definition 12.9.1. 749
Simon
determinant inequality Fact 8.13.30, 490
normal product and
Schatten norm
Fact 9.14.5 608
simple eigenvalue
cyclic eigenvalue
Proposition 5.5.5, 296
definition
Definition 5.5.4 296
semisimple
eigenvalue
Proposition 5.5.5, 296
simple graph definition Definition 1.4.3, 9
simple matrix
commuting matrices
Fact 5.14.23, 342
cyclic matrix Fact 5.14.11, 340
definition Definition [5.5.4, 296
identity perturbation
Fact 5.14.16, 341
rank
Fact 5.11 .1321
semisimple matrix
Fact 5.14.11, 340
simplex
convex hull
Fact 2.20.4 154
definition, 90
interior
Fact 2.20.4 154
nonsingular matrix Fact 2.20.4 154
signed volume Fact 2.20.15, 160
volume
Fact 2.20.19, 160
simultaneous diagonalization
cogredient transformation
Fact 8.16.4 507
Fact 8.16.6 507
commuting matrices
Fact 8.16.1 507
definition, 422
diagonalizable
matrix
Fact 8.16.2 507
Fact 8.16.3 507
Hermitian matrix
Fact 8.16.1 507
Fact 8.16.4 507
Fact 8.16.6 507
positive-definite matrix
Fact 8.16.5 507
similar matrices
Fact 5.17.8 358
unitarily similar matrices
Fact 5.17.7, 358
unitary matrix Fact 8.16.1 507

## simultaneous

 diagonalization of symmetric matricesMilnor
Fact 8.16.6, 507
Pesonen
Fact 8.16.6, 507
simultaneous
orthogonal
biequivalence
transformation
upper Hessenberg
Fact 5.17.3, 358
upper triangular Fact 5.17.3, 358
simultaneous
triangularization
cogredient
transformation
Fact 5.17.9, 358
common eigenvector
Fact 5.17.1, 358
commutator Fact 5.17.5 358
Fact 5.17.6, 358
commuting matrices Fact 5.17.4, 358
nilpotent matrix
Fact 5.17.6, 358
projector
Fact 5.17.6, 358
regular pencil
Fact 5.17.2 358
simultaneous unitary biequivalence
transformation
Fact 5.17.2 358
unitarily similar matrices
Fact $5.17 .4,358$
Fact 5.17.6, 358

```
simultaneous unitary
 biequivalence
 transformation
 simultaneous
 triangularization
 Fact 5.17.2, 358
sine rule
 triangle
 Fact[2.20.11] 156
```

singular matrix
definition, 101
Kronecker product
Fact 7.4.27, 407
spectrum
Proposition [5.5.21] 300
singular pencil
definition, 304
generalized
eigenvalue
Proposition 5.7.3, 305
singular polynomial
matrix
Definition 4.2.5, 235
singular value
$2 \times 2$ matrix
Fact 5.11.31, 328
adjugate
Fact 5.11.36, 328
bidiagonal matrix
Fact 5.11.47, 332
block-diagonal
matrix
Fact 8.18.9, 515
Fact 8.18.10, 515
Fact 9.14.21, 612
Fact 9.14.25, 613
Cartesian
decomposition
Fact 8.18.7, 514
companion matrix
Fact 5.11.30, 327
complex conjugate
transpose
Fact 5.11.20, 324
Fact 5.11.34 328
convex function
Fact 11.16.14, 695

Fact 11.16.15, 695
definition
Definition 5.6.1 301
determinant
Fact 5.11.28 326
Fact 5.11.29, 327
Fact $8.13 .1,485$
Fact 9.13.23 606
eigenvalue
Fact 8.17.5, 509
Fact 8.17.6, 509
Fact 9.13.22 606
eigenvalue of
Hermitian part
Fact 5.11.27 326
Fact 8.17.4, 509
Fan dominance
theorem
Fact 9.14.19 611
fixed-rank approximation
Fact 9.14.28 614
Fact 9.15.4, 618
Frobenius
Corollary 9.6.7, 562
generalized inverse
Fact 6.3.29, 376
homogeneity
Fact 5.11.19 324
idempotent matrix
Fact 5.11.38, 328
induced lower bound
Proposition 9.5.4 560
inequality
Proposition 9.2.2 548
Corollary 9.6.5, 562
Fact 9.14.23 612
Fact 9.14.24 613
interlacing
Fact 9.14.10 609
matrix difference
Fact 8.18.9, 515
Fact 8.18 .10515
matrix exponential
Fact 11.15.5 689
Fact 11.16.14, 695
Fact 11.16.15, 695
matrix power
Fact 9.13.19 605

Fact 9.13 .20605
matrix product
Proposition 0.6.1 560
Proposition 0.6.2 561
Proposition 0.6.3 561
Proposition 9.6.4 561
Fact 8.18.21, 519
Fact 9.13.17 604
Fact 9.13.18 605
Fact 9.14.26 613
matrix sum
Proposition 9.6.8, 562
Fact 9.14 .20612
Fact 9.14.21 612
Fact 9.14.25 613
normal matrix
Fact 5.14.15 341
outer-product matrix
Fact 5.11.17 324
partitioned matrix Proposition 5.6.6 303
Fact 9.14.11 609
Fact 9.14.24 613
perturbation Fact 9.14.6, 608
positive-semidefinite matrix
Fact 8.18.7, 514
Fact 9.14.27 613
rank
Proposition 5.6.2 302
Fact 9.14 .28614
Fact 9.15.4 618
Schur product
Fact 9.14.31 615
Fact 9.14.32 615
Fact 9.14.33, 616
strong log majorization
Fact 9.13.19 605
submatrix
Fact 9.14 .10609
trace
Fact [5.12.6, 334
Fact 8.17.2, 508
Fact 9.12.1, 599
Fact 9.13.16 604
Fact 9.14.3, 607

Fact 9.14.32, 615
unitarily invariant norm
Fact 9.14.28, 614
unitary matrix
Fact 5.11.37, 328
Fact 9.14.11, 609
weak log
majorization
Proposition 9.6.2, 561
weak majorization
Proposition 9.2.2, 548
Proposition 9.6.3, 561
Fact 5.11.27, 326
Fact 8.17.5, 509
Fact 8.18.7 514
Fact 8.18.21, 519
Fact 9.13.17, 604
Fact $9.13 .18,605$
Fact 9.13.20, 605
Fact 9.14.19, 611
Fact 9.14.20, 612
Fact 9.14.31, 615
Weyl majorant
theorem
Fact 9.13.20, 605
singular value decomposition
existence
Theorem 5.6.4, 302
generalized inverse
Fact 6.3.15 373
group generalized
inverse
Fact 6.6.15 395
least squares
Fact 9.14.28, 614
Fact 9.15.4 618
Fact 9.15.5, 618
Fact 9.15.6, 619
unitary similarity
Fact 5.9.28, 315
Fact 6.3.15, 373
Fact 6.6.15 395
singular value perturbation
unitarily invariant norm

Fact 9.14.29, 614
singular values
determinant
Fact 5.12.13, 335
positive-semidefinite matrix
Fact 8.11.9, 469
unitarily
biequivalent
matrices
Fact 5.10.18, 319
SISO transfer function
definition
Definition 12.9.1, 749
size
definition, 79
skew reflector
Hamiltonian matrix
Fact 3.19.3 216
reflector
Fact 3.14.7, 211
skew-Hermitian
matrix
Fact 3.14.6, 211
skew-involutory
matrix
Fact 3.14.6 211
spectrum
Proposition 5.5.21, 300
unitary matrix
Fact 3.14.6 211
skew-Hermitian matrix, see skew-symmetric matrix
adjugate
Fact 3.7.10 179
Fact 3.7.11 179
asymptotically stable matrix
Fact 11.18 .30704
block-diagonal matrix
Fact 3.7.8, 179
Cartesian decomposition
Fact 3.7.27 182
Fact 3.7.28 183

Fact 3.7.29, 183
Cayley transform Fact 3.11.28 196
characteristic polynomial Fact 4.9.13, 262
commutator
Fact 3.8.1 184
Fact 3.8.4 185
complex conjugate
Fact 3.12.8, 199
congruent matrices
Proposition 3.4.5, 174
definition
Definition 3.1.1, 165
determinant
Fact 3.7.11, 179
Fact 3.7.16, 181
Fact 8.13.6, 486
eigenvalue
Fact 5.11.6, 321
existence of transformation
Fact 3.9.4 186
Hermitian matrix
Fact 3.7.9 179
Fact 3.7.28, 183
inertia
Fact 5.8.4, 307
Kronecker product
Fact 7.4.17, 406
Kronecker sum
Fact 7.5.8, 409
Lyapunov equation Fact $11.18 .12,700$
matrix exponential Proposition 11.2.8, 649
Proposition 11.2.9, 650
Fact 11.14.6, 683
Fact $11.14 .33,688$
matrix power
Fact 8.9.14, 452
normal matrix
Proposition 3.1.6, 169
null space
Fact 8.7.3 443
outer-product matrix
Fact 3.7.17, 181

inertia 1035		
Fact 3.9.4 186	Fact 3.12.5, 199	characteristic
partitioned matrix	similar matrices	polynomial
Fact 3.7.27, 182	Corollary 5.5.22, 301	Fact 4.9.12, 262
positive-definite		Fact 4.9.19, 263
matrix	skew-involutory matrix	Fact 4.9.20, 263
Fact 8.13.6, 486	definition	Fact 5.14.34 343
Fact 11.18.12, 700	Definition 3.1.1] 165	commutator
positive-semidefinite	Hamiltonian matrix Fact 3.19.2, 216	$\text { Fact 3.8.5 } 185$
Fact 8.9.12, 452	Fact 3.19.3, 216	Fact 3.7.34, 184
projector	inertia	Fact 5.9.16, 313
Fact 0.9.9, 581	Fact 5.8.4 307	controllability
quadratic form	matrix exponential	Fact 12.20.5, 791
Fact 3.7.6, 178	Fact 11.11.1] 671	definition
range	semisimple matrix	Definition 3.1.1, 165
Fact 8.7.3, 443	Fact 5.14.19 341	determinant
rank	similar matrices	Fact 3.7.15, 181
Fact 3.7.17, 181	Proposition 3.4.5, 174	Fact 3.7.33, 184
Fact 3.7.30, 183	size	Fact 4.8.14, 259
similar matrices	Fact 3.15.6, 212	Fact 4.9.20, 263
Fact 5.9.4 312	skew reflector	Fact 4.10.2, 266
Fact 11.18.12, 700	Fact 3.14.6, 211	eigenvalue
skew reflector	skew-Hermitian	Fact 4.10.2, 266
Fact 3.14.6, 211	matrix	factorization
skew-involutory	Fact 3.14.6, 211	Fact 5.15.37 351
matrix	skew-symmetric	Fact 5.15.38, 351
Fact 3.14.6, 211	matrix	Hamiltonian matrix
skew-symmetric	Fact 3.19.3, 216	Fact 3.7.34, 184
matrix	spectrum	Fact 3.19.3, 216
Fact 3.7.9, 179	$\text { Proposition 5.5.21, } 300$	Fact 3.19.8, 217
spectrum   Proporio 552130	symplectic matrix	Hermitian matrix
Proposition 5.5.21] 300 symmetric matrix	Fact 3.19.2, 216	Fact 3.7.9 179
Fact 3.7.9 179	unitarily similar matrices	linear matrix equation
trace		Fact 3.7.3 178
Fact 3.7.24, 182	unitary matrix	matrix exponential
trace of a product	Fact 3.14.6, 211	Example 11.3.6 652
Fact 8.12.6, 476		Fact 11.11.3 672
unitarily similar	skew-symmetric	Fact 11.11.6 673
matrices	matrix, see	Fact 11.11.7 673
Proposition 3.4.5, 174	skew-Hermitian	Fact 11.11.8, 674
Proposition 5.6.3, 302	matrix	Fact 11.11.9 674
unitary matrix	adjugate	Fact 11.11.10 674
Fact 3.11.28, 196	Fact 4.9.20, 263	Fact 11.11.11 674
Fact 3.14.6, 211	Cayley transform	Fact 11.11.14 675
Fact 11.14.33, 688	Fact 3.11.8, 190	Fact 11.11.15, 675
skew-idempotent	Fact 3.11.28, 196	Fact 11.11.16 676
matrix	Fact 3.11.30, 197	Fact 11.11.17 676
idempotent matrix	Fact 3.11.31 198	matrix product

Fact 5.15.37, 351
orthogonal matrix
Fact 3.11.28, 196
Fact 3.11.30, 197
Fact 3.11.31, 198
Fact 11.11 .10674
Fact 11.11.11, 674
orthogonally similar
matrices
Fact 5.14.33, 343
partitioned matrix
Fact 3.11.27, 196
Pfaffian
Fact 4.8.14, 259
quadratic form
Fact 3.7.5, 178
similar matrices
Fact 5.15.39, 351
skew-Hermitian
matrix
Fact 3.7.9, 179
skew-involutory
matrix
Fact 3.19.3, 216
spectrum
Fact 4.9.20, 263
Fact 4.10.2, 266
Fact 5.14.33, 343
symmetric matrix
Fact 5.9.16, 313
Fact 5.15.39, 351
trace
Fact 3.7.23, 182
Fact 3.7.31, 183
unit imaginary
matrix
Fact 3.7.34, 184
small-gain theorem multiplicative perturbation Fact 9.13.23, 606

## Smith form

biequivalent matrices
Theorem 5.1.1, 283
Corollary 5.1.2, 283
controllability pencil
Proposition 12.6.15.
existence
Theorem 4.3.2, 237
observability pencil
Proposition 12.3.15, 731
polynomial matrix
Proposition 4.3.4, 237
rank
Proposition 4.3.5, 237
Proposition 4.3.6, 238
submatrix
Proposition 4.3.5, 237 unimodular matrix
Proposition 4.3.7, 238

## Smith polynomial

nonsingular matrix
transformation
Proposition 4.3.8, 238
Smith polynomials definition Definition 4.3.3, 237

## Smith zeros

controllability pencil
Proposition 12.6 .16 . 741
definition
Definition 4.3.3, 237
observability pencil
Proposition 12.3.16, 731
uncontrollable
spectrum
Proposition 12.6.16, 741
unobservable
spectrum
Proposition 12.3.16, 731
Smith's method
finite-sum solution of Lyapunov equation Fact 12.21.17 797
Smith-McMillan form
blocking zero
Proposition 4.7.11, 251
coprime polynomials
Fact 4.8.15 259
coprime right
polynomial fraction
description
Proposition 4.7.16, 253
existence
Theorem 4.7.5, 250
poles
Proposition 4.7.11, 251
rank
Proposition 4.7.7, 250
Proposition 4.7.8, 250
submatrix
Proposition 4.7.7, 250
SO(2)
parameterization
Fact 3.11.6, 190
solid angle
circular cone
Fact 2.20.22 161
Fact 2.20.23 161
cone
Fact 2.20.21 161
solid set
completely solid set
Fact 10.8.9, 632
convex hull
Fact 10.8.10, 632
convex set
Fact 10.8.9, 632
definition, 622
dimension
Fact 10.8.16, 633
image
Fact 10.8.17, 633
solution
Riccati equation
Definition 12.16.12, 780
span
affine subspace
Fact 2.9.7, 111
Fact 2.20.4, 154
Fact 10.8.12, 633
constructive
characterization
Theorem 2.3.5, 91
convex conical hull

		inertia 1037
Fact 2.9.3, 110	Kronecker sum	Fact 5.12.11 334
definition, 90	Fact 7.5.6 409	convergent sequence
intersection	matrix exponential	Fact 4.10.5, 266
Fact [2.9.12, 111	Fact 11.13 .2677	Fact 9.8.4 572
union	Fact 11.15.8 691	convexity for
Fact 2.9.12, 111	Fact 11.15 .9691	nonnegative
	Fact 11.18.8 699	matrices
spanning path graph	Fact 11.18.9 699	Fact 4.11.19, 280
graph	maximum eigenvalu	definition, 245
tournament	Fact 5.11.5, 321	equi-induced norm
Fact [1.6.6, 14	maximum singular value	Corollary 9.4.5, 554   Frobenius norm
spanning subgraph	Fact 5.11.26, 326	Fact 9.13.12 603
Definition 1.4.3, 9	minimum singular value	Hermitian matrix   Fact 5.11.5, 321
Specht	Fact 5.11.26 326	induced norm
everse arithme	outer-product	Corollary 9.4.5, 554
geometric-mean	matrix	Corollary 9.4.10 556
inequality	spectral radius	infinite series   Fact 101124641
Fact 1.15.19 52	Fact 4.10.4, 266	inverse matrix
Specht's ratio	Fact 11.13.2 677	Proposition 9.4.13, 557
matrix exponential Fact 11.14.28, 687	spectral decomposition normal matrix	Kronecker product Fact 7.4.14, 406
power of a positive-definite	Fact 5.14.14 340	lower bound Fact 9.13.12 603
matrix	spectral factorization	matrix exponential
Fact 11.14.22, 685	definition, 232	Fact 11.13.2 677
Fact [11.14.23, 686	Hamiltonian	matrix sum
everse	Proposition 12.16.13,	Fact 5.12.2, 333
rithmetic-mean-	780	Fact 5.12.3, 333
geometric-mean	polynomial roots   Proposition 411	maximum singular
inequality	Proposition 4.1.1	value
Fact 1.15.19, 52	spectral norm	Corollary 9.4.10, 556
reverse Young	definition, 549	Fact 5.11.5, 321
inequality		Fact 5.11.26 326
Fact 1.10.22, 34	spectral ord	Fact 8.18.25 520
		Fact 9.8.13, 573
group	Fact 8.19.4, 523	Fact 9.13.9, 603
real symplectic group	positive-semidefinite matrix	minimum singular value
Fact 3.22.5, 227	Fact 8.19.4, 523	Fact 5.11.26 326
spectral abscissa	spectral radius	monotonicity for nonnegative
definition, 245	bound	atrices
eigenvalue	Fact 4.10.22 271	Fact 4.11.18, 280
Fact 5.11.24 325	column norm	nonnegative matrix
Hermitian matrix	Corollary 9.4.10 556	Fact 4.11.6, 275
Fact 5.11.5, 321	commuting matrices	Fact 4.11 .16279

Fact 4.11.17, 280
Fact 7.6.13 415
Fact 11.19.3, 706
nonsingular matrix
Fact 4.10.29, 272
norm
Proposition 9.2.6, 549
normal matrix
Fact 5.14.15, 341
outer-product
matrix
Fact 5.11.13, 323
perturbation
Fact 9.14.6, 608
positive matrix
Fact 7.6.14, 415
positive-definite
matrix
Fact 8.10.5, 456
Fact 8.18.25, 520
positive-semidefinite matrix
Fact 8.18.25, 520
Fact 8.20.8, 526
row norm
Corollary 9.4.10 556
Schur product
Fact 7.6.13, 415
Fact 7.6.14 415
Fact 7.6.16, 416
Fact 7.6.17, 416
Fact 9.14.33, 616
spectral abscissa
Fact 4.10.4, 266
Fact 11.13.2, 677
submultiplicative
norm
Proposition 9.3.2, 550
Proposition 9.3.3, 550
Corollary 9.3.4, 550
Fact 9.8.4, 572
Fact 9.9.3, 580
trace
Fact 4.10.22, 271
Fact 5.11.46, 332
Fact 9.13.12, 603
spectral radius of a product
Bourin

Fact 8.18.25, 520
spectral variation
Hermitian matrix
Fact 9.12 .5600
Fact 9.12.7 601
normal matrix
Fact 9.12.5 600
Fact 9.12.6 600
spectrum
adjugate
Fact 4.10.7 267
asymptotic
eigenvalue
Fact 4.10.28, 272
asymptotically stable matrix
Fact 11.18 .13700
block-triangular
matrix
Proposition 5.5.13, 298
bounds
Fact 4.10.16, 269
Fact 4.10.20, 270
Fact 4.10.21, 271
Cartesian decomposition
Fact 5.11.21, 325
circulant matrix
Fact 5.16.7, 355
commutator
Fact 5.12.14, 335
commuting matrices
Fact 5.12.14, 335
continuity
Fact 10.11.8, 638
Fact 10.11.9, 639
convex hull
Fact 8.14.7 496
Fact 8.14.8 497
cross-product matrix
Fact 4.9.19 263
definition
Definition 4.4.4, 240
dissipative matrix
Fact 8.13.31, 491
doublet
Fact 5.11.13, 323
elementary matrix

Proposition 5.5.21, 300 elementary projector Proposition 5.5.21, 300
elementary reflector
Proposition 5.5.21, 300
group-invertible
matrix
Proposition 5.5.21, 300
Hamiltonian
Theorem 12.17.9, 784
Proposition 12.16.13,
780
Proposition 12.17.5, 783
Proposition 12.17.7. 784
Proposition 12.17.8. 784
Lemma 12.17.4, 783
Lemma 12.17.6, 783
Hamiltonian matrix
Proposition 5.5.21, 300
Hermitian matrix
Proposition 5.5.21, 300
Lemma 8.4.8, 427
idempotent matrix
Proposition 5.5.21, 300
Fact 5.11.7, 322
identity perturbation
Fact 4.10.13 268
Fact 4.10.14 269
inverse matrix
Fact 5.11.14 324
involutory matrix
Proposition 5.5.21, 300
Laplacian matrix
Fact 11.19.7 708
mass-spring system
Fact 5.12.21 337
matrix exponential
Proposition 11.2.3, 648
Corollary 11.2.6, 648
matrix function
Corollary 10.5.4, 629
matrix logarithm
Theorem 11.5.1, 656
minimal polynomial
Fact 4.10.8, 267
nilpotent matrix

Proposition 5.5.21, 300
normal matrix
Fact 4.10.24, 271
Fact 8.14.7, 496
Fact 8.14.8, 497
outer-product
matrix
Fact 5.11.13, 323
Fact 5.14.1, 338
partitioned matrix
Fact 2.19.3, 151
Fact 4.10.25, 271
Fact 4.10.26, 271
permutation matrix
Fact 5.16.8, 357
perturbed matrix
Fact 4.10.3, 266
polynomial
Fact 4.10.9, 267
Fact 4.10.10, 267
positive matrix
Fact 5.11.12, 323
positive-definite matrix
Proposition 5.5.21, 300
positive-semidefinite matrix
Proposition 5.5.21, 300
Fact 8.20.16, 527
projector
Proposition 5.5.21, 300
Fact 5.12.15, 335
Fact 5.12.16, 335
properties
Proposition 4.4.5, 241
quadratic form
Fact 8.14.7, 496
Fact 8.14.8, 497
quadratic matrix equation
Fact 5.11.3, 321
Fact 5.11.4, 321
rational function
Fact 5.11.15, 324
reflector
Proposition 5.5.21 300
reverse identity matrix
Fact 5.9.24, 314
shifted-unitary
matrix
Proposition 5.5.21, 300
singular matrix
Proposition 5.5.21, 300
skew reflector
Proposition 5.5.21, 300
skew-Hermitian
matrix
Proposition 5.5.21, 300
skew-involutory
matrix
Proposition 5.5.21, 300
skew-symmetric matrix
Fact 4.9.20, 263
Fact 4.10.2, 266
Fact 5.14.33, 343
subspace
decomposition
Proposition 5.5.7, 296
Sylvester's equation
Corollary 7.2.5, 404
Fact 7.5.14, 410
symplectic matrix
Proposition 5.5.21, 300
Toeplitz matrix
Fact 4.10.15, 269
Fact 5.11.43, 331
Fact 5.11.44, 331
Fact 8.9.34, 454
trace
Fact 4.10.6, 267
tridiagonal matrix
Fact 5.11.40, 329
Fact 5.11.41, 329
Fact 5.11.42, 330
Fact 5.11.43, 331
Fact 5.11.44 331
tripotent matrix
Proposition 5.5.21, 300
unipotent matrix
Proposition 5.5.21, 300
unit imaginary
matrix
Fact 5.9.25, 315
unitary matrix
Proposition 5.5.21, 300
spectrum bounds

Brauer
Fact 4.10.21, 271
ovals of Cassini
Fact 4.10.21, 271
spectrum of convex hull
field of values
Fact 8.14.7, 496
Fact 8.14.8, 497
numerical range
Fact 8.14.7, 496
Fact 8.14.8, 497
sphere of radius $\varepsilon$
definition, 621
spin group
double cover
Fact 3.11.10, 192

## spread

commutator
Fact 9.9.30, 585
Fact 9.9.31, 585
Hermitian matrix
Fact 8.15.31 505
square
definition, 79
trace
Fact 8.17.7, 510
square root
$2 \times 2$ positivesemidefinite matrix Fact 8.9.6, 451
asymptotically stable matrix
Fact 11.18.36, 705
commuting matrices
Fact 5.18.1, 359
Fact 8.10.25, 458
convergent sequence
Fact 5.15.21 348
Fact 8.9.32, 454
definition, 431
generalized inverse Fact 8.20.4, 525
group-invertible matrix

Fact 5.15.20, 348
identity
Fact 8.9.24 453
Fact 8.9.25 453
Jordan form
Fact 5.15.19, 348
Kronecker product
Fact 8.21.29, 536
Fact 8.21.30, 537
matrix sign function
Fact 5.15.21, 348
maximum singular value
Fact 8.18.14, 516
Fact 9.8.32, 576
Fact 9.14.15, 611
Newton-Raphson
algorithm
Fact 5.15.21, 348
normal matrix
Fact 8.9.27, 453
Fact 8.9.28, 453
Fact 8.9.29, 453
orthogonal matrix
Fact 8.9.26, 453
positive-semidefinite
matrix
Fact 8.10.18, 458
Fact 8.10.26, 458
Fact 8.21.29, 536
Fact 9.8.32, 576
principal square root Theorem 10.6.1, 629
projector
Fact 8.10.25, 458
range
Fact 8.7.2, 443
scalar inequality
Fact 1.9.6, 24
Fact 1.12.1, 46
Fact 1.12.2, 46
submultiplicative norm Fact 9.8.32, 576
sum of squares Fact 2.18.8, 150
unitarily invariant norm
Fact 9.9.18, 583

Fact 9.9.19 583
unitary matrix
Fact 8.9.26 453
square-root function
Niculescu's
inequality
Fact 1.10.20, 33
squares
scalar inequality Fact 1.11.21, 44
stability
mass-spring system
Fact 11.18 .38705
partitioned matrix Fact 11.18 .38705
stability radius
asymptotically stable matrix
Fact 11.18.17 700
stabilizability
asymptotically stable matrix
Proposition 11.9.5, 735
Proposition 12.8.3, 747
Proposition 12.8.5, 748
Corollary 12.8.6, 749
block-triangular matrix
Proposition 12.8.4. 747
controllably asymptotically stable
Proposition 12.8.3, 747
Proposition 12.8.5, 748
definition
Definition 12.8.1. 747
full-state feedback
Proposition 12.8.2, 747
Hamiltonian
Fact 12.23.1, 802
input matrix Fact $12.20 .15,792$
Lyapunov equation Corollary 12.8.6, 749
maximal solution of the Riccati equation

Theorem 12.18.1, 787
observably
asymptotically
stable
Proposition 11.9.5, 735
orthogonal matrix
Proposition 12.8.4, 747
positive-semidefinite matrix
Fact 12.20.6, 791
positive-semidefinite ordering
Fact 12.20.8, 791
range
Fact 12.20 .7791
Riccati equation
Theorem 12.17.9. 784
Theorem 12.18.1. 787
Corollary 12.19.2, 790
shift
Fact 12.20.11, 792
stabilization
controllability
Fact 12.20.17, 792
Gramian
Fact 12.20.17, 792
stabilizing solution
Hamiltonian
Corollary 12.16.15, 781
Riccati equation
Definition 12.16.12, 780
Theorem 12.17.2, 782
Theorem 12.17.9, 784
Theorem 12.18.4, 787
Proposition 12.17.1. 782
Proposition 12.18.3. 787
Proposition 12.19.4 790
Corollary 12.16.15 781
stable subspace
complementary subspaces
Proposition 11.8.8, 665
group-invertible matrix

Proposition 11.8.8, 665 idempotent matrix Proposition 11.8.8, 665 invariant subspace
Proposition 11.8.8, 665
matrix exponential
Proposition 11.8.8, 665
minimal polynomial
Proposition 11.8.5, 664
Fact 11.23.1, 716
Fact 11.23.2, 716
standard control
problem
definition, 774
standard nilpotent matrix
definition, 166
star partial ordering
characterization
Fact 6.4.47, 385
commuting matrices
Fact 2.10.36, 120
definition
Fact 2.10.35. 120
Fact 8.19.7, 524
generalized inverse
Fact 8.19.8, 524
positive-semidefinite matrix
Fact 8.19.8, 524
Fact 8.19.9, 524
Fact 8.20.8, 526
star-dagger matrix generalized inverse
Fact 6.3.13, 372
state convergence detectability
Fact 12.20.2, 791
discrete-time
time-varying
system
Fact 11.21.16, 715
state equation
definition, 723
matrix exponential
Proposition 12.1.1 723
variation of constants formula
Proposition 12.1.1, 723
state transition matrix
time-varying
dynamics
Fact 11.13.5, 678
statement
definition, 1
Stein equation
discrete-time
Lyapunov equation Fact 11.21.15, 714
step function, 724
step response
definition, 725
Lyapunov-stable matrix
Fact 12.20.1, 790
step-down matrix
resultant
Fact 4.8.4, 254
Stephanos
eigenvector of a Kronecker product Fact 7.4.21, 406

Stewart
regular pencil
Fact 5.17.3, 358
stiffness
definition, 654
stiffness matrix
partitioned matrix Fact 5.12.21, 337

Stirling matrix
Vandermonde matrix Fact 5.16.3, 354

## Stirling's formula

factorial
Fact 1.9.19, 26
Storey
asymptotic stability of a tridiagonal matrix
Fact 11.18.24, 702

## Stormer

Schatten norm for positivesemidefinite matrices Fact 9.9.22, 583
strengthening
definition, 2
strictly concave function
definition
Definition 8.6.14 436
strictly convex function definition
Definition 8.6.14, 436
positive-definite matrix
Fact 8.14.15, 499
Fact 8.14.16, 499
trace
Fact 8.14.16, 499
transformation
Fact 1.8.2, 21
strictly dissipative matrix
dissipative matrix Fact 8.9.31, 453
strictly lower triangular matrix
definition
Definition 3.1.3, 167
matrix power
Fact 3.18.7, 216
matrix product
Fact 3.20.18, 221
strictly proper rational function
definition Definition 4.7.1, 249
strictly proper rational transfer function

## definition <br> Definition 4.7.2, 249

strictly upper triangular matrix
definition
Definition 3.1.3, 167
Lie algebra
Fact 3.21.4, 222
Fact 11.22.1, 715
matrix power
Fact 3.18.7, 216
matrix product
Fact 3.20.18, 221
strong Kronecker product
Kronecker product, 416
strong log majorization
convex function
Fact 2.21.9, 163
definition
Definition 2.1.1. 78
matrix exponential Fact 11.16.4, 692
singular value inequality Fact 9.13.19, 605
strong majorization
convex function
Fact 2.21.8, 163
Fact 2.21.11, 163
convex hull
Fact 2.21.7, 163
definition
Definition 2.1.1, 78
diagonal entry
Fact 8.17.8, 510
doubly stochastic matrix
Fact 2.21.7, 163
eigenvalue
Corollary 8.6.19, 442
Fact 8.18.4 513
Fact 8.18.29, 521
entropy
Fact 2.21.6, 162
Hermitian matrix

Fact 8.17.8, 510
Muirhead's theorem
Fact 2.21.5 162
ones vector
Fact 2.21.1 162
Schur concave
function
Fact 2.21.6, 162
Schur convex
function
Fact 2.21.4 162
Fact 2.21.5 162
strongly decreasing function
definition
Definition 8.6.12, 434
strongly increasing function
definition
Definition 8.6.12, 434
determinant
Proposition 8.6.13, 435
matrix functions
Proposition 8.6.13, 435
structured matrix
positive-semidefinite
matrix
Fact 8.8.2, 445
Fact 8.8.3, 446
Fact 8.8.4, 446
Fact 8.8.5, 447
Fact 8.8.6, 447
Fact 8.8.7, 447
Fact 8.8.8, 447
Fact 8.8.9, 448
Fact 8.8.10 448
Fact 8.8.11 448
Fact 8.8.12 448

## Styan

difference of idempotent matrices
Fact 5.12.19, 337
Hermitian matrix inertia identity
Fact 8.10.15, 457
rank of a tripotent matrix
Fact 2.10.23, 118
rank of an
idempotent matrix
Fact 3.12.27 203

## SU(2)

quaternions
Fact 3.22.6, 227
subdeterminant
asymptotically stable matrix
Fact 11.19.1 707
asymptotically stable polynomial
Fact $11.18 .23,702$
definition, 105
inverse Fact 2.13.5, 129
Lyapunov-stable polynomial
Fact 11.18.23, 702
positive-definite matrix
Proposition 8.2.8, 422
Fact 8.13.17 488
positive-semidefinite matrix
Proposition 8.2.7. 421
subdiagonal
definition, 80
subdifferential
convex function
Fact 10.11.14, 639
subgraph
Definition 1.4.3, 9
sublevel set
convex set Fact 8.14.1, 494
submatrix
complementary
Fact 2.11.20, 125
defect
Fact 2.11.20, 125
definition, 80
determinant

inertia 1043		
Fact 2.14.1, 132	Fact 0.9.20, 583	Fact 1.5.17, 13
Hermitian matrix	idempotent matrix	
Theorem 8.4.5, 426	Fact 9.8.6 572	subspace
Corollary 8.4.6, 426	infinity norm	
Lemma 8.4.4, 425	Fact 9.9.1 580	
Fact 5.8.8, 308	Fact 0.9.2 580	$\begin{aligned} & \text { ffine subspace } \\ & \text { Fact [2.9.8] } 111 \end{aligned}$
inertia	matrix exponential	closed set
Fact 5.8.8, 308	Proposition 11.1.2, 644	Fact 10.8 .21633
Kronecker product	Fact 11.15.8 691	common eigenvector
Proposition [7.3.1, 404	Fact 11.15 .9691	Fact 5.14.27, 342
M-matrix	Fact 11.16 .7694	complementary
Fact 4.11.7, 276	Fact 11.18.8 699	$\begin{aligned} & \text { complementary } \\ & \text { Fact [2.9.18, } 112 \end{aligned}$
positive-definite	Fact 11.18.9 699	Fact 2.9.23, 113
matrix	matrix norm	complex conjugate
itive-semidefin		transpose
matrix	Fact 9.8.5 572	Fact 2.9.28, 114
Proposition [8.2.7, 421	positive-semidefinite	nition, 89
Fact 8.7.7, 444	matrix	dimension
Fact 8.13.36, 492	Fact 9.9.7 580	Fact [2.9.20, 112
rank	Schur product	Fact 2.9.21, 113
Proposition 4.3.5, 237	Fact 9.8.41, 578	[2.9.22, 113
Proposition 4.7.7, 250	spectral radius	dimension inequality
Fact 2.11.6, 121	Proposition 9.3.2 550	
Fact 2.11.17 124	Proposition 9.3.3 550	
Fact 2.11.20, 125	Corollary 9.3.4, 550	
Fact 2.11.21 125	Fact 9.8.4 572	
Fact 2.11.22 125	Fact 0.9.3, 580	
Fact 3.20.5, 218	square root	
singular value	Fact 9.8.32, 576	
Fact 9.14.10, 609	unitarily invariant	Fact 2.9.14, 112
Smith form	norm	
Proposition 4.3.5, 237	Fact 9.8.41, 578	
Smith-McMillan	Fact 9.9.7 580	inclusion and
form	submultiplicative	Lemma 2.3.4 91
Proposition 4.7.7, 250	norms	inner product
Z-matrix	definition, 550	Fact 10.9.12 635
4.11.7		intersection
submultiplicative norm	closure	Fact 2.9.9 111
commutator	Fact 10.9.1, 634	Fact 2.9.16, 112
Fact 9.9.8, 580	definition, 2	
compatible norms	interior	Fact 2.9.29, 114
Proposition 9.3.1, 550 equi-induced norm	Fact 10.9.1 634	Fact 2.9.30, 114   left inverse
Corollary 9.4.4 554	subset operation	Fact 2.9.26, 113
Fact 9.8.45, 579	induced partial	minimal principal
$\mathrm{H}_{2}$ norm	ordering	angle
Fact 12.22.20, 801	Fact 1.5.17, 13	Fact 5.11.39 329
Hölder norm	transitivity	Fact 5.12.17 335

Fact 10.9.18, 636
orthogonal
complement
Proposition 3.5.2, 175
Fact 2.9.14, 112
Fact 2.9.16, 112
Fact 2.9.18, 112
Fact 2.9.27, 114
orthogonal matrix
Fact 3.11.1, 189
Fact 3.11.2, 189
principal angle
Fact 2.9.19, 112
projector
Proposition 3.5.1, 175
Proposition 3.5.2, 175
Fact 9.8.3, 571
Fact 10.9.17, 636
quadratic form
Fact 8.15.27, 504
Fact 8.15.28, 504
range
Proposition 3.5.1, 175
Fact 2.9.24 113
span
Fact 2.9.13, 111
span of image
Fact 2.9.26, 113
sum
Fact 2.9.9, 111
Fact 2.9.13, 111
Fact 2.9.16, 112
Fact 2.9.17, 112
Fact 2.9.29, 114
Fact 2.9.30, 114
union
Fact 2.9.11, 111
Fact 2.9.13, 111
unitary matrix
Fact 3.11.1 189
Fact 3.11.2, 189
subspace decomposition
spectrum
Proposition 5.5.7, 296
subspace dimension theorem
dimension

Theorem 2.3.1, 90
rank
Fact 2.11.9 122
Fact 2.11.10, 122
subspace intersection
inverse image
Fact 2.9.30, 114
subspace sum inverse image Fact 2.9.30 114
sufficiency
definition, 1
sum
Drazin generalized inverse Fact 6.6.5, 394
eigenvalue
Fact 5.12.2, 333
Fact 5.12.3 333
generalized inverse Fact 6.4.34 383
Fact 6.4.35 383
Fact 6.4.36 383
Hamiltonian matrix
Fact 3.19.5 216
outer-product
matrix
Fact 2.10.24, 118
projector
Fact 5.12.17, 335
singular value
Fact 9.14.20, 612
Fact 9.14.21, 612
Fact 9.14.25, 613
spectral radius
Fact 5.12.2 333
Fact 5.12.3, 333
sum inequality
power inequality
Fact $1.16 .28,66$
Fact 1.16.29, 66
sum of integer powers
inequality
Fact 1.9.31 30
matrix exponential
Fact 11.11.4, 672
sum of matrices
determinant
Fact 5.12.12 335
Fact 9.14.18, 611
idempotent matrix
Fact 3.12.22, 201
Fact 3.12.26, 203
Fact 5.19.7, 361
Fact 5.19.8, 361
Fact 5.19.9, 361
inverse matrix
Corollary 2.8.10, 110
Kronecker product
Proposition 7.1.4, 400
nilpotent matrix
Fact 3.17.10 214
projector
Fact 3.13.23, 210
Fact 5.19.4, 360
sum of orthogonal matrices
determinant
Fact 3.11.22 196
sum of powers
Carlson inequality Fact 1.15.41 58
Copson inequality Fact 1.15.43 59
Hardy inequality
Fact 1.15.42 58
sum of products
Hardy-Hilbert inequality
Fact 1.16.13, 63
Fact 1.16.14 63
inequality
Fact 1.15 .2053
sum of products inequality
Hardy-Littlewood rearrangement inequality
Fact 1.16.4, 60
Fact 1.16.5, 60
sum of sets
convex set
Fact 2.9.1 110

Fact 2.9.2, 110
Fact 10.9.4, 634
Fact 10.9.5, 634
Fact 10.9.7, 635
dual cone
Fact 2.9.5, 111
sum of squares
square root
Fact 2.18.8, 150
sum of subspaces
subspace dimension theorem
Theorem 2.3.1] 90
sum of transfer
functions
$\mathbf{H}_{2}$ norm
Proposition 12.11.6, 767
sum-of-squares inequality
square-of-sum inequality
Fact 1.15.14 48
summation
identity
Fact 1.7.3, 17
Fact 1.7.4, 18
Fact 1.7.5, 18
superdiagonal definition, 80
supermultiplicativity induced lower bound
Proposition 9.5.6, 560
support of a relation definition Definition 1.3.4 5
surjective function definition, 76
Sylvester matrix coprime polynomials Fact 4.8.4, 254

Sylvester's equation controllability
Fact 12.21.14, 796
controllability
matrix
Fact 12.21.13, 796
linear matrix
equation
Proposition 7.2.4, 403
Proposition 11.9.3, 667
Fact 5.10.20, 320
Fact 5.10.21, 320
Fact 6.5.7, 387
nonsingular matrix
Fact 12.21.14, 796
observability
Fact 12.21.14, 796
observability matrix
Fact 12.21.13, 796
partitioned matrix
Fact 5.10.20, 320
Fact 5.10.21, 320
Fact 6.5.7, 387
rank
Fact 12.21.13, 796
similar matrices
Corollary 7.2.5, 404
Fact 7.5.14, 410
spectrum
Corollary 7.2.5, 404
Fact 7.5.14, 410
Sylvester's identity
determinant
Fact 2.14.1, 132
Sylvester's inequality
rank of a product, 97
Sylvester's law of inertia
definition, 294
Ostrowski
Fact 5.8.17, 310
Sylvester's law of nullity
defect
Fact 2.10.15, 117
symmetric cone
induced by symmetric relation
Proposition 2.3.6, 93
symmetric gauge function
unitarily invariant norm
Fact 9.8.42, 579
weak majorization
Fact 2.21.14, 164
symmetric graph
adjacency matrix
Fact 4.11.1, 272
cycle
Fact 1.6.5 14
degree matrix Fact 4.11.1, 272
forest Fact 1.6.5, 14
Laplacian Fact 4.11.1, 272
Laplacian matrix Fact 8.15.36. 506
symmetric hull definition Definition 1.3.4, 5
relation Proposition 1.3.5, 6
symmetric matrix
congruent matrices Fact 5.9.16, 313
definition Definition 3.1.1, 165
eigenvalue Fact 4.10.1, 265
factorization Corollary [5.3.9, 292
Fact 5.15.24, 349
Hankel matrix
Fact 3.18.2, 215
Hermitian matrix Fact 3.7.9, 179
involutory matrix Fact 5.15.36. 351
linear matrix equation
Fact 3.7.3, 178
matrix power
Fact 3.7.4, 178
matrix transpose Fact 3.7.2, 178
maximum eigenvalue Fact 5.12.20, 337
minimum eigenvalue Fact 5.12.20, 337
orthogonally similar matrices
Fact 5.9.15 313
partitioned matrix Fact 3.11.27, 196
quadratic form Fact 3.7.5. 178
similar matrices
Fact 5.15.39, 351
similarity transformation Fact 5.15.2, 345
Fact 5.15.3, 345
skew-Hermitian matrix
Fact 3.7.9, 179
skew-symmetric matrix Fact 5.9.16, 313 Fact 5.15.39, 351
trace Fact 5.12.8, 334
symmetric relation definition Definition 1.3.2, 5 graph Definition 1.4.1, 8 intersection Proposition 1.3.3, 5
symmetric cone induced by Proposition 2.3.6, 93
symmetric set definition, 89
symmetry group group Fact 3.21.7, 223
symplectic group determinant
Fact 3.19.11, 217
quaternion group Fact 3.22.4, 227
special orthogonal
group
Fact 3.22.5 227
unitary group
Fact 3.21.3 222
symplectic matrix
Cayley transform
Fact 3.19.12, 217
definition
Definition 3.1.5, 169
determinant
Fact 3.19.10, 217
Fact 3.19.11, 217
group
Proposition 3.3.6, 172
Hamiltonian matrix
Fact 3.19.2 216
Fact 3.19.12, 217
Fact 3.19.13, 217
identity
Fact 3.19.1 216
identity matrix
Fact 3.19.3 216
matrix exponential
Proposition 11.6.7, 659
matrix logarithm
Fact 11.14.19 685
partitioned matrix
Fact 3.19.9, 217
reverse identity
matrix
Fact 3.19.3 216
skew-involutory
matrix
Fact 3.19.2 216
spectrum
Proposition 5.5.21, 300
unit imaginary
matrix
Fact 3.19.3 216
symplectic similarity
Hamiltonian matrix
Fact 3.19.4 216
Szasz's inequality
positive-semidefinite matrix
Fact 8.13.36, 492

## T

## T-congruence

complex-symmetric matrix
Fact 5.9.22, 314
T-congruent diagonalization
complex-symmetric matrix
Fact 5.9.22, 314

## T-congruent matrices

 definitionDefinition 3.4.4, 174
Tao
Hölder-induced norm Fact 9.8.19, 575
Taussky-Todd
factorization
Fact 5.15.7, 346

## tautology

definition, 1
tetrahedral group
group Fact 3.21.7, 223

## tetrahedron

volume
Fact 2.20.15, 160

## theorem

definition, 1
thermodynamic inequality
matrix exponential Fact $11.14 .31,688$
relative entropy Fact 11.14.25, 686

Tian idempotent matrix and similar matrices Fact 5.10.22 320
range of a partitioned matrix

Fact 6.5.3, 386
Tikhonov inverse positive-definite matrix Fact 8.9.40, 455
time-varying dynamics commuting matrices
Fact 11.13.4, 678
determinant
Fact 11.13.4, 678
matrix differential equation
Fact 11.13.4, 678
Fact 11.13.5. 678
state transition matrix
Fact 11.13.5, 678
trace Fact 11.13.4, 678

Toeplitz matrix
block-Toeplitz matrix
Fact 3.18.3, 215
definition
Definition 3.1.3, 167
determinant Fact 2.13.13, 131
Fact 3.20.7, 219
Hankel matrix Fact 3.18.1, 215
lower triangular matrix
Fact 3.18.7, 216
Fact 11.13.1, 677
nilpotent matrix Fact 3.18.6, 216
polynomial multiplication Fact 4.8.10, 258
positive-definite matrix
Fact 8.13.13, 487
reverse-symmetric matrix
Fact 3.18.5, 215
spectrum
Fact 4.10.15, 269
Fact 5.11.43, 331

Fact 5.11.44, 331
Fact 8.9.34, 454
tridiagonal matrix
Fact 3.20.7, 219
Fact 5.11.43, 331
Fact 5.11.44, 331
upper triangular matrix
Fact 3.18.7, 216
Fact 11.13.1, 677

## Tomiyama

maximum singular value of a partitioned matrix Fact 9.14.12, 610
total ordering
definition
Definition 1.3.9. 7
dictionary ordering
Fact 1.5.8, 12
lexicographic ordering
Fact 1.5.8, 12
planar example
Fact 1.5.8, 12
total response, 725
totally nonnegative matrix
definition
Fact 11.18.23, 702
totally positive matrix
rank
Fact 8.7.7, 444
tournament
graph
Fact 1.6.6, 14
Hamiltonian cycle Fact 1.6.6, 14
spanning path
Fact 1.6.6, 14
trace
$2 \times 2$ matrices
Fact 2.12.9, 126
$2 \times 2$ matrix identity
Fact 4.9.3, 260
Fact 4.9.4, 260
$3 \times 3$ matrix identity
Fact 4.9.5, 261
Fact 4.9.6, 261
adjugate
Fact 4.9.8, 261
asymptotically stable matrix
Fact 11.18.31, 704
commutator
Fact 2.18.1, 149
Fact 2.18.2, 149
Fact 5.9.18, 313
complex conjugate transpose
Fact 8.12.4, 476
Fact 8.12.5, 476
Fact 9.13.16, 604
convex function
Proposition 8.6.17, 437
Fact 8.14.17, 499
definition, 86
derivative
Proposition 10.7.4, 631
Fact 11.14.3, 682
determinant
Proposition 8.4.14, 429
Corollary 11.2 .4648
Corollary 11.2.5, 648
Fact 2.13.16, 132
Fact 8.12.1, 475
Fact 8.13.20, 488
Fact 11.14.20, 685
dimension
Fact 2.18.11, 150
eigenvalue
Proposition 8.4.13, 428
Fact 5.11.11, 322
Fact 8.17.5, 509
Fact 8.18.18, 518
eigenvalue bound
Fact 5.11.45, 331
elementary projector
Fact 5.8.11, 309
elementary reflector Fact 5.8.11, 309
Frobenius norm
Fact 9.11.3, 597
Fact 9.11.4, 598
Fact 9.11.5, 598

Fact 9.12.2 599
generalized inverse
Fact 6.3.22, 374
group generalized inverse
Fact 6.6.6, 394
Hamiltonian matrix
Fact 3.19.7 216
Hermitian matrix
Proposition 8.4.13, 428
Corollary 8.4.10 427
Lemma 8.4.12, 428
Fact 3.7.13 180
Fact 3.7.22, 182
Fact 8.12.38, 483
Hermitian matrix product
Fact 5.12.4 333
Fact 5.12.5 333
Fact 8.12 .6476
Fact 8.12.7 477
Fact 8.12.8 477
Fact 8.12.16, 478
Fact 8.18.18 518
idempotent matrix
Fact 5.8.1 307
Fact 5.11.7 322
identities, 86
inequality
Fact 5.12 .9334
involutory matrix
Fact 5.8.2, 307
Klein's inequality
Fact 11.14.25 686
Kronecker
permutation matrix
Fact 7.4.29 407
Kronecker product
Proposition 7.1.12, 402
Fact 11.14.38 688
Kronecker sum
Fact 11.14.36, 688
matrix exponential
Corollary 11.2.4 648
Corollary [11.2.5 648
Fact 8.14.18, 500
Fact 11.11.6, 673
Fact 11.14.3, 682
Fact 11.14.10 683

Fact 11.14 .28687
Fact 11.14.29 687
Fact 11.14.30 687
Fact 11.14 .31688
Fact 11.14 .36688
Fact 11.14.38 688
Fact 11.15.4, 689
Fact 11.15.5, 689
Fact 11.16.1 692
Fact 11.16.4 692
matrix logarithm
Fact 11.14 .24686
Fact 11.14 .25686
Fact 11.14.27 686
Fact 11.14 .31688
matrix power
Fact 2.12.13, 127
Fact 2.12.17, 127
Fact 4.10.22, 271
Fact 4.11.22, 281
Fact 5.11.9 322
Fact 5.11.10 322
Fact 8.12.4 476
Fact 8.12.5, 476
matrix product
Fact 2.12.16, 127
Fact 5.12.6 334
Fact 5.12.7 334
Fact 8.12.14 478
Fact 8.12.15, 478
Fact 0.14.3 607
Fact 9.14.4 608
matrix squared
Fact 5.11 .9322
Fact 5.11.10, 322
maximum singular value
Fact [5.12.7 334
Fact 9.14.4 608
maximum singular value bound Fact 9.13.13, 604
nilpotent matrix Fact 3.17.6 214
nonnegative matrix Fact 4.11.22, 281
normal matrix
Fact 3.7.12 180
Fact 8.12.5 476
normal matrix product
Fact 5.12.4, 333
orthogonal matrix
Fact 3.11.17 195
Fact 3.11.18 195
Fact $5.12 .9,334$
Fact 5.12.10 334
outer-product
matrix
Fact 5.14.3, 338
partitioned matrix
Fact 8.12.36 483
Fact 8.12.39 484
Fact 8.12 .40484
Fact 8.12 .41484
Fact 8.12.42 484
polarized
Cayley-Hamilton
theorem
Fact 4.9.3 260
positive-definite
matrix
Proposition 8.4.14, 429
Fact 8.9.16, 452
Fact 8.10.46 464
Fact 8.11.10 469
Fact 8.12.1, 475
Fact 8.12.2, 475
Fact 8.12 .24480
Fact 8.12.27 481
Fact 8.12 .37483
Fact 8.13 .12487
Fact [11.14.24 686
Fact 11.14 .25686
Fact 11.14.27, 686
positive-semidefinite
matrix
Proposition 8.4.13, 428
Fact 8.12.3, 476
Fact 8.12.9, 477
Fact 8.12 .10477
Fact 8.12 .11477
Fact 8.12.12 477
Fact 8.12.13 477
Fact 8.12.17 478
Fact 8.12.18 478
Fact 8.12 .19479
Fact 8.12 .20479

Fact 8.12.21, 480
Fact 8.12.22, 480
Fact 8.12.23, 480
Fact 8.12.24, 480
Fact 8.12.26, 481
Fact 8.12.28, 481
Fact 8.12.29, 481
Fact 8.12.34, 483
Fact 8.12.35, 483
Fact 8.12.36, 483
Fact 8.12.38, 483
Fact 8.12.39, 484
Fact $8.12 .40,484$
Fact 8.12.41, 484
Fact 8.13.20, 488
Fact 8.18.16, 517
Fact 8.18.20, 518
Fact 8.20.3, 525
Fact 8.20.17, 528
projector
Fact 5.8.11, 309
quadruple product
Fact 7.4.9, 405
rank
Fact 5.11.10, 322
Fact 9.11.4, 598
reflector
Fact 5.8.11, 309
rotation matrix
Fact 3.11.17, 195
Schatten norm
Fact 9.12.1, 599
Schur product
Fact 8.21.17, 534
Fact 9.14.32, 615
singular value
Fact 5.12.6, 334
Fact 8.17.2, 508
Fact 9.12.1, 599
Fact 9.13.16, 604
Fact 9.14.3, 607
Fact 9.14.32, 615
skew-Hermitian matrix
Fact 3.7.24, 182
skew-Hermitian matrix product Fact 8.12.6, 476
skew-symmetric matrix
Fact 3.7.23, 182
Fact 3.7.31, 183
spectral radius
Fact 4.10.22 271
Fact 5.11.46, 332
Fact 9.13.12, 603
spectrum
Fact 4.10.6, 267
square
Fact 8.17.7, 510
strictly convex function
Fact 8.14.16, 499
symmetric matrix Fact 5.12.8, 334
time-varying dynamics
Fact 11.13.4, 678
trace norm Fact 9.11.2, 597
triple product Fact 2.12.11, 127
Fact 7.4.7, 405
tripotent matrix
Fact 3.16.4, 213
Fact 5.8.3, 307
unitarily similar matrices
Fact 5.10.8, 318
unitary matrix
Fact 3.11.16, 194
Fact 3.11.32, 198
vec
Proposition 7.1.1, 399
Fact 7.4.7, 405
Fact 7.4.9, 405
zero matrix
Fact 2.12.14, 127
Fact 2.12.15, 127
trace and singular value
von Neumann's trace
inequality
Fact 9.12.1, 599
trace norm
compatible norms

Corollary 9.3.8, 552
definition, 549
Frobenius norm
Fact 9.9.11, 581
matrix difference
Fact 9.9.24, 584
maximum singular value
Corollary 9.3.8, 552
positive-semidefinite matrix
Fact 9.9.15, 582
trace
Fact 9.11.2, 597
trace of a convex function
Berezin
Fact 8.12.33, 482
Brown
Fact 8.12.33, 482
Hansen
Fact 8.12.33, 482
Kosaki
Fact 8.12.33, 482
Pedersen
Fact 8.12.33, 482

## trace of a Hermitian

 matrix productFan
Fact 5.12.4, 333

## trace of a product

Fan
Fact 5.12.10, 334

## traceable graph

definition
Definition 1.4.3, 9
Tracy-Singh product
Kronecker product, 416
trail
definition
Definition 1.4.3, 9
transfer function
cascade interconnection

Proposition 12.13.2, 770
derivative
Fact 12.22.6, 799
feedback interconnection
Fact $12.22 .8,799$
frequency response
Fact 12.22.5, 799
$\mathbf{H}_{2}$ norm
Fact 12.22.16 801
Fact 12.22 .17801
Fact 12.22.18, 801
Fact 12.22.19, 801
imaginary part
Fact $12.22 .5,799$
Jordan form
Fact 12.22 .10800
parallel
interconnection
Proposition 12.13.2 770
partitioned transfer function
Fact 12.22.7, 799
real part
Fact 12.22.5, 799
realization
Fact 12.22.3, 798
Fact 12.22.4, 799
Fact 12.22.6, 799
Fact 12.22.7, 799
Fact $12.22 .8,799$
realization of inverse
Proposition 12.13 .1 , 770
realization of parahermitian conjugate
Proposition 12.13.1, 770
realization of transpose Proposition 12.13.1, 770
reciprocal argument Fact 12.22.4, 799
right inverse Fact 12.22.9, 799
shifted argument
Fact $12.22 .3,798$
transitive hull
definition
Definition 1.3.4, 5
relation
Proposition 1.3.5, 6
transitive relation
convex cone induced by
Proposition 2.3.6, 93
definition
Definition 1.3.2, 5
graph
Definition 1.4.1, 8
intersection
Proposition 1.3.3, 5
positive-semidefinite
matrix
Proposition 8.1.1, 417

## transmission zero

definition
Definition 4.7.10, 251
Definition 4.7.13, 252
invariant zero
Theorem 12.10.8, 762
Theorem 12.10.9, 762
null space
Fact 4.8.16, 260
rank
Proposition 4.7.12, 251
transpose
controllability
Fact 12.20.16, 792
diagonalizable
matrix
Fact 5.14.5 339
involutory matrix
Fact 5.9.7, 312
Kronecker
permutation matrix
Proposition 7.1.13, 402
Kronecker product
Proposition 7.1.3, 400
matrix exponential
Proposition 11.2.8, 649
normal matrix

Fact 5.9.9 312
Fact 5.9.10, 312
similar matrices
Proposition 5.5.12, 297
Corollary 4.3.11, 239
Corollary 5.3.8, 291
Corollary 5.5.22, 301
Fact 5.9.9, 312
Fact 5.9.10, 312
transpose of a matrix
definition, 86
transpose of a vector
definition, 84
transposition matrix
permutation matrix Fact 3.21.6, 222
triangle
area
Fact 2.20.7, 155
Fact 2.20.8, 156
Fact 2.20.10 156
Bandila's inequality
Fact 2.20.11 156
cosine rule
Fact 2.20.11, 156
Euler's inequality
Fact 2.20.11, 156
fundamental triangle
inequality
Fact 2.20.11, 156
Heron's formula
Fact 2.20.11 156
inequality
Fact 1.11.17, 43
Klamkin's inequality
Fact 2.20.11 156
Mircea's inequality
Fact 2.20.11, 156
semiperimeter
Fact 2.20.11 156
sine rule
Fact 2.20.11 156
triangle inequality
Blundon
Fact 2.20.11, 156
definition
Definition 9.1.1, 543
equality
Fact 9.7.3, 563
Frobenius norm
Fact 9.9.13, 582
linear dependence
Fact 9.7.3, 563
positive-semidefinite matrix
Fact 9.9.21, 583
reverse Hölder norm
inequality
Fact 9.7.19, 569
Satnoianu
Fact 2.20.11, 156
triangular matrix
nilpotent matrix
Fact 5.17.6, 358
triangularization
commutator
Fact 5.17.5, 358
commuting matrices
Fact 5.17.4, 358
tridiagonal matrix
asymptotically stable matrix
Fact 11.18.24, 702
Fact 11.18.25, 702
Fact 11.18.26, 702
Fact 11.18.27, 703
Fact 11.18.28, 703
cyclic matrix
Fact 11.18.25, 702
definition
Definition 3.1.3, 167
determinant
Fact 3.20.6, 218
Fact 3.20.7, 219
Fact 3.20.8, 219
Fact 3.20.9, 219
Fact 3.20.11, 220
inverse matrix
Fact 3.20.9, 219
Fact 3.20.10, 219
Fact 3.20.11, 220
positive-definite
matrix
Fact 8.8.18, 450
Routh form

Fact 11.18.27, 703
Schwarz form
Fact $11.18 .25,702$
Fact $11.18 .26,702$
spectrum
Fact 5.11.40, 329
Fact 5.11.41 329
Fact 5.11.42, 330
Fact 5.11.43, 331
Fact 5.11.44, 331
Toeplitz matrix
Fact 3.20.7, 219
Fact 5.11.43 331
Fact 5.11.44, 331
trigonometric identities
Fact 1.19.1, 74
trigonometric inequality
Huygens's inequality
Fact 1.9.29, 28
Jordan's inequality
Fact 1.9.29, 28
scalar
Fact 1.9.29, 28
Fact 1.9.30, 29
Fact 1.10.29, 35
triple product
identity
Fact 2.12.10, 126
Kronecker product
Proposition 7.1.5, 400 Fact 7.4.7, 405
trace
Fact 4.9.4, 260
Fact 4.9.6, 261
Fact 7.4.7, 405
vec
Proposition 7.1.9, 401
tripotent matrix
definition
Definition 3.1.1, 165
Drazin generalized inverse
Proposition 6.2.2, 368
group-invertible
matrix
Proposition 3.1.6, 169

Hermitian matrix
Fact 3.16.3, 213
idempotent matrix
Fact 3.16.1, 212
Fact 3.16.5, 213
inertia
Fact 5.8.3, 307
involutory matrix Fact 3.16.2, 212
Kronecker product
Fact 7.4.16, 406
projector
Fact 6.4.33, 383
rank
Fact 2.10.23, 118
Fact 3.16.3, 213
Fact 3.16.4, 213
reflector
Proposition 3.1.6 169
signature
Fact 5.8.3, 307
similar matrices
Proposition 3.4.5, 174
Corollary 5.5.22, 301
spectrum
Proposition 5.5.21, 300
trace
Fact 3.16.4, 213
Fact 5.8.3, 307
unitarily similar matrices
Proposition 3.4.5, 174
tuple
definition, 3
Turan's inequalities
spectral radius bound
Fact 4.10.22, 271
two-sided directional differential
definition, 625

## U

## ULU decomposition

 factorizationFact 5.15.11, 346

## Umegaki

relative entropy
Fact 11.14.25, 686
uncontrollable eigenvalue
controllability pencil
Proposition 12.6.13, 740
full-state feedback
Proposition 12.6.14 740
Hamiltonian Proposition 12.17 .7 784
Proposition 12.17.8, 784
Lemma 12.17.4, 783 Lemma 12.17.6, 783
uncontrollable multispectrum
definition Definition 12.6.11, 740
uncontrollable spectrum
controllability pencil
Proposition 12.6.16. 741
definition Definition 12.6.11, 740
invariant zero Theorem 12.10.9, 762
Smith zeros Proposition 12.6.16, 741
uncontrollableunobservable spectrum
invariant zero Theorem 12.10.9, 762
unimodular matrix coprime right polynomial fraction
description
Proposition 4.7.15, 253
definition
Definition 4.3.1, 236
determinant

Proposition 4.3.7, 238
Smith form Proposition 4.3.7, 238
union
boundary
Fact 10.9.2 634
cardinality
Fact 1.5.5, 11
closed set
Fact 10.9.10, 635
closure
Fact 10.9.2 634
convex cone
Fact 2.9.10, 111
convex set
Fact 10.9.7 634
definition, 2
interior
Fact 10.9.2 634
Fact 10.9.3, 634
open set
Fact 10.9.9 635
span
Fact 2.9.12 111
union of ranges
projector Fact 6.4.41 385
unipotent matrix
definition
Definition 3.1.1, 165
group
Fact 3.21.5 222
Fact 11.22.1, 715
Heisenberg group
Fact 3.21.5 222
Fact 11.22.1. 715
matrix exponential
Fact 11.13.17 680
spectrum
Proposition 5.5.21, 300
unit imaginary matrix
congruent matrices
Fact 3.7.34 184
definition, 169
Hamiltonian matrix
Fact 3.19.3 216
skew-symmetric matrix
Fact 3.7.34, 184
spectrum
Fact 5.9.25, 315
symplectic matrix
Fact 3.19.3, 216
unit impulse function
definition, 724
unit sphere
group
Fact 3.21.2, 221
unit-length quaternions
Sp(1)
Fact 3.22.1, 225
unitarily biequivalent matrices
definition
Definition 3.4.3, 174
singular values
Fact 5.10.18 319
unitarily invariant norm
commutator
Fact 9.9.29, 584
Fact $9.9 .30,585$
Fact 9.9.31, 585
complex conjugate
transpose
Fact 9.8.30, 576
definition, 547
fixed-rank
approximation
Fact 9.14.28, 614
Frobenius norm
Fact 9.14.34 616
Heinz inequality Fact 9.9.49, 589
Hermitian matrix Fact 9.9.5 580
Fact 9.9.41 588
Fact 9.9.43, 588
Fact 11.16.13, 695
Hermitian
perturbation
Fact 9.12.4, 599
inequality
Fact 9.9.11, 581

		inertia 1053
Fact 9.9.44, 588	Fact 9.9.54, 590	complex conjugate
Fact 9.9.47, 589	Fact 11.16.166 695	transpose
Fact 90.9.48, 589	Fact 11.16.17, 695	Fact 5.10.18 319
Fact 0.9.49, 589	properties	definition
Fact 9.9.50, 589	Fact 9.8.41, 578	Definition 3.4.3, 174
matrix exponential	rank	positive-semidefinite
Fact 11.15.6, 690	Fact 9.14 .28614	matrix
Fact 11.16 .4692	Schatten norm	Fact 5.10.18, 319
Fact 11.16 .5694	Fact 9.8.9, 572	
Fact 11.16.13, 695	Schur product	matrices
Fact 11.16.16, 695	Fact 9.8.41, 578	biequivalent matrices
Fact 11.16.17, 695	Fact 0.9.62, 591	Proposition 3.4.5 174
matrix logarithm	Fact 0.9.63, 591	complex conjugate
Fact 9.9.54, 590	Fact 9.14.36 617	transpose
matrix power	self-adjoint norm	Fact 5.9.20, 314
Fact 9.9.17, 582	Fact 9.8.7 572	Fact [5.9.21, 314
matrix product	similar matrices	definition
Fact 9.9.6, 580	Fact 9.8.31, 576	Definition 3.4.4, 174
maximum eigenvalue	singular value	diagonal entries
Fact 9.9.30, 585	Fact 9.14.28, 614	Fact [5.9.17, 313
Fact 0.9.31, 585	singular value	Fact [5.9.19, 313
maximum singular	perturbation	elementary matrix
value	Fact 9.14.29, 614	Proposition 5.6.3 302
Fact 9.9.10, 581	square root	elementary projector
Fact 0.9.29, 584	Fact 9.9.18, 583	Proposition 5.6.3] 302
McIntosh's	Fact 0.9.19, 583	elementary reflector
inequality	submultiplicative	Proposition [5.6.3] 302
Fact 9.9.47, 589	norm	group-invertible
normal matrix	Fact 9.8.41, 578	matrix
Fact 0.9.6, 580	Fact 0.9.7 580	Proposition 3.4.5 174
outer-product	symmetric gauge	Hermitian matrix
matrix	function	Proposition 3.4.5 174
Fact 9.8.40, 578	Fact 9.8.42, 579	Proposition 5.6.3 302
partitioned matrix		Corollary 5.4.5, 294
Fact 9.8.33, 576	matrices	idempotent matrix
polar decomposition	complex conjugate	Proposition 3.4.5 174
Fact 0.9.42, 588	transpose	Fact 5.9 .21314
positive-semidefinite	Fact 5.10.18, 319	Fact 5.9.26, 315
matrix		Fact 5.9.27, 315
Fact 9.9.7, 580		Fact 5.10.10 318
Fact 0.9.14, 582	Definition	involutory matrix
Fact 9.9.15, 582	nite	Proposition 3.4.5 174
Fact 0.9.16, 582		Kronecker product
Fact 0.9.17, 582	matrix 319	Fact [7.4.12, 406
Fact 0.9.27, 584	Fact	matrix classes
Fact 0.9.46, 588	Fact 5.10.19 319	Proposition [3.4.5 174
Fact 0.9.51, 589	unitarily	nilpotent matrix
Fact 90.9.52, 590	right-equivalent	Proposition[3.4.5] 174
Fact 0.9.53, 590	matrices	normal matrix

Proposition 3.4.5, 174
Corollary 5.4.4, 293
Fact 5.10.6, 317
Fact 5.10.7, 317
partitioned matrix
Fact 5.9.23, 314
positive-definite matrix
Proposition 3.4.5, 174
Proposition 5.6.3, 302
positive-semidefinite matrix
Proposition 3.4.5, 174
Proposition 5.6.3, 302
projector
Fact 5.10.12, 319
range-Hermitian matrix
Proposition 3.4.5, 174
Corollary 5.4.4, 293
similar matrices
Fact 5.10.7, 317
simultaneous
diagonalization
Fact 5.17.7, 358
simultaneous
triangularization
Fact 5.17.4, 358
Fact 5.17.6, 358
skew-Hermitian
matrix
Proposition 3.4.5, 174
Proposition 5.6.3, 302
skew-involutory
matrix
Proposition 3.4.5, 174
trace
Fact 5.10.8, 318
tripotent matrix
Proposition 3.4.5, 174
unitary matrix
Proposition 3.4.5, 174
Proposition 5.6.3, 302
upper triangular matrix
Theorem 5.4.1, 292
unitary biequivalence
equivalence relation
Fact 5.10.3, 317
unitary group
symplectic group
Fact 3.21.3, 222
unitary left equivalence
equivalence relation
Fact 5.10.3, 317
unitary matrix, see orthogonal matrix
additive
decomposition
Fact 5.19.1 360
block-diagonal matrix
Fact 3.11.25, 196
Cayley transform
Fact 3.11.28, 196
cogredient
diagonalization
Fact 8.16.1 507
complex-symmetric matrix
Fact 5.9.22, 314
convergent sequence
Fact 8.9.33, 454
CS decomposition
Fact 5.9.29 316
definition
Definition 3.1.1, 165
determinant
Fact 3.11.15, 194
Fact 3.11.20, 196
Fact 3.11.23, 196
Fact 3.11.24, 196
diagonal entries
Fact 3.11.19, 195
Fact 8.17.10, 511
diagonal matrix
Theorem 5.6.4, 302
discrete-time
Lyapunov-stable
matrix
Fact 11.21.13 714
dissipative matrix
Fact 8.9.31 453
factorization
Fact 5.15.8, 346
Fact 5.18.6 359
Frobenius norm

Fact 9.9.42, 588
geometric-mean decomposition
Fact 5.9.30, 316
group
Proposition 3.3.6, 172
group generalized inverse
Fact 6.3.34, 376
Hermitian matrix
Fact 3.11.29, 197
Fact 8.16.1, 507
Fact 11.14.34, 688
identities
Fact 3.11.3, 189
Kronecker product
Fact 7.4.16, 406
matrix exponential Proposition 11.2.8, 649
Proposition 11.2.9, 650
Proposition 11.6.7, 659
Corollary 11.2.6, 648
Fact $11.14 .6,683$
Fact 11.14.33, 688
Fact 11.14.34, 688
matrix limit
Fact 6.3.34, 376
normal matrix
Proposition 3.1.6, 169
Fact 3.11.4, 189
Fact 5.15.1, 345
orthogonal vectors
Fact 3.11.14 194
outer-product
perturbation
Fact 3.11.15 194
partitioned matrix
Fact 3.11.24, 196
Fact 3.11.26 196
Fact 3.11.27 196
Fact 8.11.22, 473
Fact 8.11.23, 473
Fact 8.11.24 473
Fact 9.14.11 609
polar decomposition
Fact 5.18.8, 360
quaternions
Fact 3.22.9, 229
reflector

Fact 3.14.2, 211
semicontractive matrix
Fact 8.11.22, 473
shifted-unitary matrix
Fact 3.11.33, 198
simultaneous diagonalization
Fact 8.16.1, 507
singular value
Fact 5.11.37, 328
Fact 9.14.11, 609
skew reflector
Fact 3.14.6, 211
skew-Hermitian matrix
Fact 3.11.28, 196
Fact 3.14.6, 211
Fact 11.14.33, 688
skew-involutory
matrix
Fact 3.14.6, 211
spectrum
Proposition 5.5.21 300
square root
Fact 8.9.26, 453
subspace
Fact 3.11.1, 189
Fact 3.11.2, 189
sum
Fact 3.11.23, 196
trace
Fact 3.11.16, 194
Fact 3.11.32, 198
unitarily similar matrices
Proposition 3.4.5, 174
Proposition 5.6.3, 302
upper triangular matrix
Fact 5.15.8, 346
unitary right equivalence
equivalence relation Fact 5.10.3, 317
unitary similarity equivalence relation

Fact 5.10.3, 317
singular value decomposition
Fact 5.9.28, 315
Fact 6.3.15, 373
Fact 6.6.15, 395
universal statement definition, 2
logical equivalents Fact 1.5.4, 11
unobservable eigenvalue
definition
Definition 12.3.11, 730
full-state feedback
Proposition 12.3.14. 731
Hamiltonian
Proposition 12.17.7, 784
Proposition 12.17.8, 784
Lemma 12.17.4, 783
Lemma 12.17.6, 783
invariant zero
Proposition 12.10.11, 764
observability pencil
Proposition 12.3.13, 731
unobservable multispectrum
definition
Definition 12.3.11, 730
unobservable spectrum definition
Definition 12.3.11, 730
invariant zero
Theorem 12.10.9, 762
observability pencil
Proposition 12.3.16, 731
Smith zeros
Proposition 12.3.16, 731
unobservable subspace
block-triangular matrix
Proposition 12.3.9, 730
Proposition 12.3 .10 730
definition
Definition 12.3.1, 728
equivalent
expressions
Lemma 12.3.2, 728
full-state feedback
Proposition 12.3.5, 729
identity shift
Lemma 12.3.7, 730
invariant subspace
Corollary 12.3.4. 729
nonsingular matrix
Proposition 12.3 .10 730
orthogonal matrix
Proposition 12.3.9, 730
projector
Lemma 12.3.6. 729
unstable equilibrium
definition Definition 11.7.1 660
unstable matrix
positive matrix Fact 11.18.20, 701
unstable subspace
complementary subspaces
Proposition 11.8.8, 665
definition, 665
idempotent matrix Proposition 11.8.8, 665
invariant subspace
Proposition 11.8.8, 665
semistable matrix
Proposition 11.8.8, 665
upper block-triangular matrix
characteristic polynomial Fact 4.10.11, 267
definition Definition 3.1.3, 167
inverse matrix
Fact 2.17.7 148
Fact 2.17.9, 148
minimal polynomial
Fact 4.10.12, 268
orthogonally similar matrices
Corollary 5.4.2, 293
power
Fact 2.12.21, 128
upper bound
positive-definite matrix
Fact 8.10.31, 459
upper bound for a partial ordering definition
Definition 1.3.9. 7
upper Hessenberg
regular pencil
Fact 5.17.3, 358
simultaneous
orthogonal
biequivalence transformation
Fact 5.17.3, 358
upper Hessenberg matrix
definition
Definition 3.1.3, 167
upper triangular regular pencil Fact 5.17.3, 358 simultaneous orthogonal biequivalence transformation Fact 5.17.3 358
upper triangular matrix commutator
Fact 3.17.11, 214
definition Definition 3.1.3, 167
factorization
Fact 5.15.8, 346
Fact 5.15.10, 346
group
Fact 3.21.5 222
Fact 11.22.1, 715
Heisenberg group Fact 3.21.5 222
Fact 11.22.1. 715
invariant subspace Fact 5.9.2, 311
Kronecker product
Fact 7.4.3, 405
Lie algebra
Fact 3.21.4, 222
Fact 11.22 .1 . 715
matrix exponential
Fact 11.11.4, 672
Fact 11.13.1, 677
Fact 11.13 .16680
matrix power Fact 3.18.7 216
matrix product Fact 3.20.18, 221
nilpotent matrix Fact 3.17.11, 214
orthogonally similar matrices Corollary 5.4.3, 293
positive diagonal Fact 5.15.9 346
positive-semidefinite matrix
Fact 8.9.37 454
similar matrices Fact 5.9.2, 311
Toeplitz matrix Fact 3.18.7 216
Fact 11.13.1, 677
unitarily similar matrices
Theorem 5.4.1, 292
unitary matrix
Fact 5.15.8, 346
Urquhart
generalized inverse Fact 6.3.14 372

## V

Vandermonde matrix
companion matrix
Fact 5.16.4, 354
determinant
Fact 5.16.3, 354
Fourier matrix
Fact 5.16.7, 355
polynomial
Fact 5.16.6, 355
similar matrices
Fact 5.16.5, 354

## variance

Laguerre-Samuelson inequality
Fact 1.15.12, 51
Fact 8.9.35, 454
variance inequality mean
Fact 1.15.12, 51
Fact 8.9.35, 454
variation of constants formula
state equation
Proposition 12.1.1, 723
variational cone
definition, 625
dimension Fact 10.8.20 633
vec
definition, 399
Kronecker permutation matrix Fact 7.4.29, 407
Kronecker product Fact 7.4.5 405 Fact 7.4.6 405
Fact 7.4.8, 405
matrix product Fact 7.4.6 405
quadruple product Fact 7.4.9, 405
trace
Proposition 7.1.1 399
Fact 7.4.7 405
Fact 7.4.9, 405
triple product
Proposition 7.1.9, 401

		inertia 1057
vector definition, 78 Hölder norm Fact 9.7.34, 571	symmetric gauge	weak majorization
	function and	Fact 2.21.13, 164
	unitarily invariant	
	norm	convex function
vector derivative quadratic form	Fact 9.8.42, 579	Fact 2.21.8, 163
	von Neumann's trace	Fact 2.21.9, 163
Proposition 10.7.1 630	nequality	Fact 2.21.10 163
	trace and singular	Fact 2.21.11 163
vector identity cosine law	value	Fact 8.18.5, 513
	Fact 9.12.1, 599	definition
Fact 9.7.4, 563 parallelogram	von Neumann-Jordan	Definition 2.1.1. 78
$\text { act 9.7.4, } 563$	inequality	eigenvalue
olarization iden	norm inequality	Fact 8.17.5, 509
Fact 9.7.4, 563	Fact 9.7.11, 567	Fact 8.18.5, 513
		Fact 8.18.6, 514
Pythagorean   theorem		$\text { Fact 8.18.27, } 521$
Fact 9.7.4, 563	W	eigenvalue of Hermitian part
vector inequality	walk	Fact 5.11.27, 326
Hölder's inequality	connected graph	increasing function
Proposition 9.1.6, 545	Fact 4.11.4, 273	Fact 2.21.10, 163
norm inequality	definition	matrix exponential
Fact 9.7.11, 567	Definition 1.4.3, 9	Fact 11.16.4, 692
Fact 9.7.12, 567	graph	positive-semidefinite
Fact 9.7.14, 568	Fact 4.11.3, 273	matrix
Fact 9.7.15, 568	Walker's inequality	Fact 8.18.6, 514
vibration equation matrix exponential Example 11.3.7 653	scalar inequality	powers
	Fact 1.11.22, 45	Fact 2.21.14, 164 scalar inequality
	Walsh	Fact 2.21.2, 162
volume	polynomial root	Fact 2.21.3, 162
convex polyhedron	bound	Schur product
Fact 2.20.20, 160	Fact 11.20.5, 709	Fact 9.14.31 615
ellipsoid	Wang's inequality	singular value
Fact 3.7.35, 184	scalar inequality	Proposition 9.2.2 548
hyperellipsoid	Fact 1.15.13, 51	Proposition 9.6.3 561
Fact 3.7.35, 184		Fact 5.11.27, 326
parallelepiped	dominance theorem	Fact 8.17.5, 509
Fact 2.20.16, 160	nonsingular matrix	Fact 8.18.7, 514
Fact 2.20.17, 160	Fact 4.10.19, 270	Fact 9.14.19, 611
simplex	Fact 4.10.19,	Fact 9.14.20, 612
Fact 2.20.19, 160	weak log majorization	singular value
tetrahedron	efinition	inequality
Fact 2.20.15, 16	Definition 2.1.1 78	Fact 8.18.21, 519
transformed set	eigenvalue	Fact 9.13.17, 604
	Fact 8.18.27, 521	Fact 9.13.18, 605
Fact 2.20.18, 160	singular value	Fact 9.13.20, 605
von Neumann	Proposition 9.6.2, 561	Fact 9.14.31 615

symmetric gauge
function
Fact [2.21.14, 164
weak $\log$
majorization
Fact [2.21.13, 164
Weyl majorant
theorem
Fact [9.13.20, 605
Weyl's inequalities
Fact [8.17.5, 509
weakly unitarily
invariant norm
definition, 547
matrix power
Fact 9.8.38, 577
numerical radius
Fact 9.8.38, 577

Wei-Norman expansion time-varying dynamics Fact 11.13 .4678

Weierstrass
cogredient
diagonalization of positive-definite matrices
Fact 8.16.2 507
Weierstrass canonical form
pencil
Proposition 5.7.3 305
weighted arithmetic-mean-geometric-mean inequality
arithmetic-mean-geometric-mean
inequality
Fact 1.15.32, 56
Weyl, 428
singular value
inequality
Fact 5.11.28, 326
singular values and strong log majorization Fact 9.13.19, 605

Weyl majorant theorem singular values and weak majorization Fact 9.13.20, 605

Weyl's inequalities weak majorization and singular values Fact 8.17.5 509

Weyl's inequality
Hermitian matrix eigenvalues Theorem [8.4.9, 427
Fact 8.10.4 456
Wielandt
eigenvalue perturbation Fact 9.12 .9601
positive power of a primitive matrix Fact 4.11.5 273

Wielandt inequality quadratic form inequality Fact 8.15.29, 505

## X

Xie
asymptotically stable polynomial Fact 11.17.7 697

## Y

Yamamoto
singular value limit Fact 9.13.22, 606

## Young inequality

 positive-definite matrix Fact 8.9.42 455Fact 8.10.46, 464
reverse inequality Fact 1.10 .2234
scalar inequality Fact 1.10.21 33
Specht's ratio Fact 1.10 .2234

Young's inequality
positive-semidefinite matrix
Fact 8.12.12 477
positive-semidefinite matrix inequality
Fact 9.14.22 612
scalar case
Fact 1.10.32 36
Fact 1.15 .3156

## Z

## Z-matrix

definition
Definition 3.1.4. 168
M-matrix
Fact 4.11.6, 275
Fact 4.11.8, 276
M-matrix inequality
Fact 4.11.8, 276
matrix exponential Fact 11.19 .1706
minimum eigenvalue Fact 4.11.9, 276
submatrix
Fact 4.11.7. 276
Zassenhaus expansion
time-varying
dynamics
Fact 11.13 .4678
Zassenhaus product formula
matrix exponential
Fact 11.14.18, 685

## zero

blocking
Definition 4.7.10, 251
invariant
Definition 12.10.1, 757

		inertia 1059
invariant and	Proposition 12.10.11,	trace
determinant	764	Fact 2.12.14, 127
Fact 12.22.14, 800	transmission	Fact 2.12.15, 127
invariant and	Definition 4.7.10, 251	zero of a rational
equivalent	Proposition 4.7.12, 251	function
realizations	transmission and	definition
Proposition 12.10.10	invariant	Definition 4.7.1, 249
764	Theorem 12.10.8, 762	
invariant and		zero trace
full-state feedback	zero diagonal	Shoda's theorem
Proposition 12.10.10,	commutator	Fact 5.9.18, 313
764	Fact 3.8.2, 184	
Fact $12.22 .14,800$	zero entry	zeros matrix   maximal null
invariant and observable pair	reducible matrix	Fact 2.12.12, 127
Corollary 12.10.12, 765	Fact 3.20.1, 217	zeta function
invariant and		Euler product
transmission	zero matrix	formula
Theorem 12.10.8, 762	definition, 83	Fact 1.7.8, 19
invariant and unobservable	positive-semidefinite matrix	
eigenvalue	Fact 8.10.10, 457	

