1. Chebyshev Iteration

Consider the iterative method

\[x^{(k+1)} = x^{(k)} + \alpha_{k+1} r^{(k)} \]

for solving \(Ax = b \). If we define \(e^{(k)} = x - x^{(k)} \), then

\[e^{(k)} = P_k(A)e^{(0)} \]

where

\[P_k(A) = (I - \alpha_k A)(I - \alpha_{k-1} A) \cdots (I - \alpha_1 A). \]

Therefore

\[\|e^{(k)}\|_2 \leq \|P_k(A)\|_2 \leq \max_{1 \leq i \leq N} |P_k(\lambda_i)| \leq \max_{a \leq \lambda_i \leq b} |P_k(\lambda)| \]

where \(P_k(0) = I \) and \(b = \lambda_1 \geq \cdots \geq \lambda_N = a \) are the eigenvalues of \(A \).

Recall that a good choice for the polynomial \(P_k \) arises from the Chebyshev polynomials

\[C_k(\cos \theta) = \cos k\theta, \quad \theta = \cos^{-1} x. \]

If we fix \(k \), then we have

\[\alpha_j^{(k)} = \left[\frac{b + a}{2} - \left(\frac{b - a}{2} \right) \cos \left(\frac{2j + 1}{2k} \pi \right) \right]^{-1} \]

\[j = 0, \ldots, k - 1. \]

Note that

\[\alpha_0^{(1)} = \frac{2}{b + a}, \]

which is the same optimal parameter obtained using a different analysis.

Therefore, we can select \(k \) and then use the parameters \(\alpha_0^{(k)}, \ldots, \alpha_{k-1}^{(k)} \). If \(\|r^{(k)}\|/\|r^{(0)}\| \leq \epsilon \), we can stop; otherwise, we simply recycle these parameters. The process should not be stopped before the full cycle, because a partial polynomial may not be small on the interval \([a, b]\). Also, using the parameters in an arbitrary order may lead to numerical instabilities even though mathematically the order does not matter. For a long time, the determination of a suitable ordering was an open problem, but it has now been solved. It has been shown that when solving Laplace’s equation using 128 parameters, a simple left-to-right ordering results in \(\|e^{(128)}\| \approx 10^{-35} \), while the optimal ordering yields \(\|e^{(128)}\| \approx 10^{-7} \).

In the absence of roundoff error, using Chebyshev polynomials yields

\[\frac{\|e^{(k)}\|_2}{\|e^{(0)}\|_2} \leq \frac{2}{\left(\frac{\sqrt{\kappa} + 1}{\sqrt{\kappa} - 1} \right)^k + \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1} \right)^k} \approx \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1} \right)^k \]

Date: November 30, 2005, version 1.0.

Notes originally due to James Lambers. Minor editing by Lek-Heng Lim.
whereas, with steepest descent,
\[\|e^{(k)}\|_2 \approx \left(\frac{\kappa - 1}{\kappa + 1} \right)^k. \]

2. CONVERGENCE ACCELERATION

Consider the iteration
\[Mx^{(k+1)} = Nx^{(k)} + b, \]
where \(A = M - N \) is symmetric positive definite. This iteration can be rewritten as
\[x^{(k+1)} = Bx^{(k)} + c \]
where \(B = M^{-1}N \) and \(c = M^{-1}b \). Therefore \(e^{(k+1)} = Be^{(k)} \) where \(e^{(k)} = x - x^{(k)} \). In an attempt to accelerate convergence, we define
\[y^{(k)} = \sum_{\ell=0}^{k} a_{k\ell} x^{(\ell)}, \quad \sum_{\ell=0}^{k} a_{k\ell} = 1. \]
Then
\[x - y^{(k)} = \sum_{\ell=0}^{k} a_{k\ell} (x - x^{(\ell)}) = \sum_{\ell=0}^{k} a_{k\ell} B^\ell e^{(0)} \]
which yields
\[\hat{e}^{(k)} = P_k(B)e^{(0)} \]
where \(\hat{e}^{(k)} = x - y^{(k)} \) and
\[P_k(\lambda) = \sum_{\ell=0}^{k} a_{k\ell} \lambda^\ell, \quad P_k(1) = 1. \]
It follows that
\[\frac{\|\hat{e}^{(k)}\|_2}{\|e^{(0)}\|_2} \leq \|P_k(B)\|_2. \]
If \(B \) is symmetric, then we can write \(B = QAQ^T \) and obtain
\[\|P_k(B)\|_2 = \|P_k(\Lambda)\|_2 = \max_{\lambda=\lambda_i} |P_k(\lambda)| \leq \max_{a \leq \lambda \leq b} |P_k(\lambda)|. \]
Recall that the Chebyshev polynomials \(C_k(x) \) satisfy the three-term recurrence relation
\[C_{k+1}(x) = 2xC_k(x) - C_{k-1}(x). \]
If we let \(B = I - \alpha A \) where \(\alpha = \frac{2}{a + b} \), then \(B \) is symmetric and we can use the iteration
\[y^{(\ell+1)} = \omega_{\ell+1} (By^{(\ell)} + c - y^{(\ell-1)}) + y^{(\ell-1)} \]
with initial vectors
\[y^{(0)} = x^{(0)}, \quad y^{(1)} = By^{(0)} + c. \]
The parameters \(\omega_{\ell+1} \) are defined by
\[\omega_{\ell+1} = \left(1 - \frac{\rho^2 \omega_{\ell}}{4} \right)^{-1}, \quad \ell \geq 1, \quad \rho = \frac{b - a}{b + a}. \]
It follows that
\[\omega_2 \geq \omega_3 \geq \cdots \geq \omega^* > 1 \]
where
\[\omega_* = \lim_{\ell \to \infty} \omega_{\ell}. \]
What is the limit \(\omega^* \)? This limit satisfies
\[\omega^* = \left(1 - \frac{\rho^2 \omega^*}{4} \right)^{-1}. \]
which is a quadratic equation with solutions
\[\omega^* = \frac{1 \pm \sqrt{1 - \rho^2}}{\rho^2/2}. \]
Choosing the plus sign, we have
\[1 < \omega^* = \frac{2}{1 + \sqrt{1 - \rho^2}} < 2. \]
Recall that for solving Poisson’s equation, \(\rho = 1 - ch^2 + O(h^4) \) for the Jacobi method, while \(\rho = 1 - c'h + O(h^2) \) for the Chebyshev method.

3. Convergence for Positive Definite Systems

Let \(A = M - N \), where \(A = A^* \) and \(M \) is invertible, and define \(Q = M + M^* - A \). If \(Q \) and \(A \) are both positive definite, then \(\rho(M^{-1}N) < 1 \). To prove this, we define \(B = M^{-1}N = I - M^{-1}A \).

It follows that if \(Bu = \lambda u \), then
\[Au = (1 - \lambda)Mu, \]
where \(\lambda \neq 1 \) since \(A \) is invertible. Taking the inner product of both sides with \(u \) yields
\[u^*Au = (1 - \lambda)u^*Mu, \]
but since \(A \) is symmetric positive definite, we also have
\[u^*Au = (1 - \lambda)u^*M^*u. \]

Adding these relations yields
\[u^*(M + M^*)u = \left(\frac{1}{1 - \lambda} + \frac{1}{1 - \lambda} \right) u^*Au \]
\[= 2 Re \left(\frac{1}{1 - \lambda} \right) u^*Au \]
which can be rewritten as
\[\frac{u^*(Q + A)u}{u^*Au} = 1 + \frac{u^*Qu}{u^*Au} = 2 Re \left(\frac{1}{1 - \lambda} \right). \]
Since both \(Q \) and \(A \) are positive definite, we must have
\[2 Re \left(\frac{1}{1 - \lambda} \right) > 1. \]
If we write \(\lambda = \alpha + i\beta \), then it follows that
\[\frac{2(1 - \alpha)}{(1 - \alpha)^2 + \beta^2} > 1 \]
which yields \(\alpha^2 + \beta^2 = |\lambda|^2 < 1. \)

4. Successive Overrelaxation with Positive Definite Systems

Let \(A = D + L + U \) be positive definite with \(D = I \). Then the iteration matrix for SOR is
\[\mathcal{L}_\omega = \left(\frac{1}{\omega} I + L \right)^{-1} \left(\left(\frac{1}{\omega} - 1 \right) I - U \right). \]
Then \(Q = M + M^* - A \) is
\[Q = \left(\frac{1}{\omega} I + L \right) + \left(\frac{1}{\omega} I + U \right) - (I + L + U) = \left(\frac{2}{\omega} - 1 \right) I. \]
For convergence, we want Q to be positive definite, so we must have $2/\omega - 1 > 0$ or $0 < \omega < 2$. It follows that SOR will converge for all $0 < \omega < 2$ when A is positive definite.

Department of Computer Science, Gates Building 2B, Room 280, Stanford, CA 94305-9025

E-mail address: golub@stanford.edu