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Summary. In this paper a Gauss-Jordan algorithm with column interchanges
is presented and analysed. We show that, in contrast with Gaussian elimina-
tion, the Gauss-Jordan algorithm has essentially differing properties when
using column interchanges instead of row interchanges for improving the
numerical stability. For solutions obtained by Gauss-Jordan with column in-
terchanges, a more satisfactory bound for the residual norm can be given.
The analysis gives theoretical evidence that the algorithm yields numerical
solutions as good as those obtained by Gaussian elimination and that, in
most practical situations, the residuals are equally small. This is confirmed by
numerical experiments. Moreover, timing experiments on a Cyber 205 vector
computer show that the algorithm presented has good vectorisation properties.

Subject Classifications: AMS(MOS): 65F05, 65G05, 15A06; CR: G1.3.

1. Introduction

With the advent of vector and parallel computers, the Gauss-Jordan algorithm
has received renewed interest because of its supposedly good properties with
respect to vectorization and parallelization.

The stability of the Gauss-Jordan algorithm with partial pivoting has been
analysed by Peters and Wilkinson [6] who came to the following conclusion:
“in general the absolute error in the solution is strictly comparable with that
corresponding to Gaussian elimination with partial pivoting plus back substitution;
however, when the matrix is ill conditioned, the residual corresponding to the Gauss-
Jordan solution will often be much greater than that corresponding to the Gaussian
elimination solution.” These results hold true for the standard column pivoting
strategy, where at each stage a pivot is selected in a certain column and corre-
spondingly rows are interchanged to bring the pivot in diagonal position.

In this paper we show that Gauss-Jordan with row pivoting, and correspond-
ingly interchanging of columns, is much more satisfactory. In most practical
situations, the residual corresponding to the solution obtained by Gauss-Jordan
with row pivoting is not larger than that corresponding to the Gaussian elimina-
tion solution.

The Gauss-Jordan algorithm with any pivoting strategy is equivalent to
Gaussian elimination — with the same pivoting strategy — followed by a further
reduction of the resulting upper triangular system to a diagonal system. With
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column pivoting this further reduction may yield arbitrarily large elements and,
hence, a large residual, as is shown by Peters and Wilkinson. With row pivoting,
however, the elements of the resulting upper triangular matrix are bounded
by the diagonal elements in the corresponding rows.

For an error analysis it is convenient to consider Gauss-Jordan’s algorithm
with row scaling, i.e. at each stage the equation corresponding to the pivotal
row is divided by the pivot. Then the resulting matrix U is unit upper triangular
and its elements are bounded by 1. It follows that the growth of the elements
in the further reduction to diagonal form is not much larger than the norm
of the inverse of U. Consequently, the residual of the calculated solution is
not much larger than that corresponding to the Gaussian elimination solution,
except in those rare cases where U is ill conditioned.

In Sect. 2 we consider the Gauss-Jordan algorithm in more detail and present
an error analysis. In Sect.3 we give some numerical results, showing that the
error and mostly also the residual are satisfactory, and some results of experi-
ments on a Cyber 205 vector computer, showing that Gauss-Jordan is not slower
than Gaussian elimination for systems of order up to 25, although it requires
about 1.5 times more work.

2. Error Analysis of Gauss-Jordan with Row Pivoting

Let A be a given matrix of order n and b a given right-hand side vector. The
application of the Gauss-Jordan elimination on the given system is equivalent
with performing n successive transformations, starting from the original matrix
AW =4 and right-hand side b'V’=b. The total effect is the transformation of
AW with permuted columns into the identity matrix. This is described in the
following algorithm.

Fork=1 (1) ndo
Determine p such that k<p<n and |A{)|= max |A¥

k=<j<n
P =1—(ec—e,) (ex—ep)’
{permutation matrix for interchanging colums p and k}
5 =A®
D, =I1+(6,—1)ecer {=diag(1,...,1,8,.1,....1)}
g« =6,e,—A%e,
G =gy €k

AHD — (14 G,) D AR P,
b**+ 1 = (14 G,) D' b

enddo

Fig. 1. Gauss-Jordan algorithm with column interchanges
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The application of this algorithm results in A®*Y=[ and b*"*"
=P~ '...P 'x.

Summarizing, with the use of P=P, ... B, the effect of all elimination-steps
is given by:

(I+G)D;'...(I+G,)D; (AP |b)=(I| P ' x).

For our theoretical analysis we introduce the following notation.

Define m, to be equal to the lower part of g, (below the k-th element) and
v, equal to the upper part of g, such that [m,,m,,...,m,] is strictly lower

triangular and [v,, v,, ..., v,] strictly upper triangular.
Furthermore

M :=my el and V=v.el.
Then we have

g=m+v,, Ge=M+V,
and
I+G)=(I+V) (I +M,).
We observe that

(I+M)D7'(I+V)=(I+V)(I+M)D;", for j<i,
so that

(I+G)D,'...(I+G) D' =(I+V,)...Ad+V)I+M,)D,; ' ...(I+M,)D; .
If L and V are defined by
L=[I+M,)D,'...I+M)D;' ] '=D,(I—M,)... D,(I—M,)
=Dy...D,—M,—...— M,),
Vi=1+V,) .. I+ WV)=I+Vi+...+V,,
then the Gauss-Jordan elimination is symbolically given by:
VL Y(AP|b)=(I| P~ " x).

Let the upper triangular matrix U and vector y, which are intermediate results
during the calculation, be defined by

U:=L"1'4P; y:=L'b,

then the error analysis of (standard) Gaussian elimination shows that these
calculated L, U and y satisfy:

LU=AP+E,, with |E,[|S¢,(n)glAl u, (2.1
and

(L+E;) y=b,  with [|E,[|=¢,(n) LIl u, 22

where ¢,(n) and ¢,(n) are low-degree polynomials in n, g is the growth factor
and u is a small, arithmetic-dependent, constant times the machineprecision
(see e.g. [3, 7))
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For the rest of our rounding error analysis we have to examine the remaining
part of the algorithm. This is the part where V is calculated such that

V(U|y)=U|P"'x).

The pivoting strategy and row-scaling in the first part of the algorithm have
ensured that |U;| <1 for j>iand U;=1.

Defining UY=U and y'V=y, the calculation is carried out according to
the following rules. Note that these rules are part of the algorithm described
in Fig. 1.

For k=1 (1) ndo

Vk :=ek—U(k) ek
Vi =V €k
U0 = (14 V) U®
P = (14 V) y

enddo

Fig. 2. Inversion and solution of triangular system

The result of this calculation is U”*V =] and y"*V=P 1 x.
For the calculated quantities we observe that for each k an error matrix
F® exists such that
Uk Y=U®+ KUY+ F®,  with F=0 for j<k and i=k.

A simple rounding error analysis yields:

max |F{P| <3 max [U) 4.
i<k

Since (I + V}) F® = F® for i> k, we obtain
I=UV=(I4V) ...+ V) U+ FVU+F? 4 +F®,
For V this implies
VU+E;=1, with E;=FV4+F®4  +F®, (2.3a)
For an estimate of E; we need a bound for max |UW.

From
UP=(I+V,+...+V_)U
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we find

maxIUi‘j")|§max| |{1+ Zmax| V,,),Jl}
i<k i

h=1 bJ

<{1+(k—1)-max|V,|} < {1+(k—1) [ V]}.
Using [|[F®| <n max (|E{|) we find for | E;|

IEsI< 2 IFOI<3n ) {1+k=1) IV} 4,
k=1 k=1
which gives

IEsll = é3(m) IV u (2.3b)

for a low-degree polynomial ¢5 in n.

With respect to the error in the calculated solution z=P~!x, we notice
that this calculation is numerically equivalent with multiplying y from the left
by ¥, hence

(V+Ey)y=z, with [Es|=¢a(n)(Vilg, (2.4)

for a low-degree polynomial ¢, in n.
The combination of formulae (2.3) and (2.4) yields:

y=U(I—E3+E4 U)—IZ,

which in combination with (2.1) and (2.2) gives

b=(A+E,+E,U)(I—E;+E,U) 'z (2.5)
If we put
=(I—E3;+E,U) 'z, (2.6a)
then this results in
b=(A+E{+E,U)w. (2.6b)

If we furthermore use E for (E;—E,U) then the distance between z and w
satisfies

lz—wll/lzI S | Es|I/(1— || Es|l) provided that | Es|| <1. 2.7
For | Es| we find the following bound

IEsI S NEsll + IE4l 1U =(d3(n)+¢a(m) (U VI 1
Sosm) IViip (2.8)

for a low-degree polynomial ¢s.
Using (2.3a) for a bound on | V|| this can be written as

IEs| < ¢sm) U™ w/{l—¢s(m) [U™| u}, (2.9)

provided that the denominator is positive.
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Summarizing, the calculated solution z=P ! x is close to a vector w, which
is the exact solution of a nearby problem as specified in formulae (2.6a) and
(2.6b).

For the residual r:=b— A z we have according to these formulae

r=(A+E,+E,Uyw—A(I—Es)w,
which can be bounded by
Irll = E I+ IE UL+ 114N ILESI) 12l /(1— [ Es]). (2.10)

In this bound the contribution ||A|| || Es]|/(1—| Es||) creates the essential differ-
ence with the formula for the residual bound for Gaussian elimination.

As long as ||Es| <1, this term has order of magnitude ||A|l ||U Y| p. As
a consequence of our pivoting strategy, U will mostly be well-conditioned, even
in cases where A itself is ill-conditioned, so that the contribution of this term
is harmless. However, a well known example of an ill-conditioned unit triangular
matrix is given in the next section in experiments series d.

3. Numerical Experiments

Experiments on accuracy and timing were carried out on the Cyber 205 com-
puter (one vector pipe) of the Academic computer centre SARA in Amsterdam;
the arithmetic precision of this machine is about 1074,

For a large number of linear systems we compared the solution obtained
via Gauss-Jordan with row pivoting with the solution from Gaussian elimina-
tion. These experiments are described hereafter and listed in Table 1.

For timing results we compared the CP time for our Gauss-Jordan algorithm
with the CP time for LINPACK-routines SGESL and SGEFA [2] and with
the CP time for the NUMVEC implementation of LD ~'U factorization with

Table 1. Overview of experiments on accuracy

Series Order # A x b Cond. nr # correct digits (rel. to x)
Syst.

solution residual

Gauss G.-J. Gauss G.-J.

al 25 200 UZVT random Ax 10! <2 same >12  same
a2 50 1800 UZVT random Ax 10°-10*> <8 same >12  same
a3 50 200 UZVT A" ' random 101° 3-7 same >12  same
a4 50 200 UZVT s Gsolso 10*° 3-7 same >12 same
bl 25 200 upper random Ax >107 <2 same >12  same
b2 25 200 upper A~ 'b random > 107 <2 same >12  same
cl 50 200 W random Ax 1700 04 01 04 0-1
c2 30 200 W random Ax <1700 5-10 5-7 59 5-6
d1 50 200 4 random Ax >1014 04 01 >12 01
d2 30 200 4 random Ax ~101° 5-10 5-7 >12 67
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row pivoting (which is equivalent with Gaussian elimination) followed by for-
ward and backward substitution [4, 5]. An overview of these results is given
in Table 2.

Our implementation of the Gauss-Jordan algorithm is a slight modification
of the algorithm described above. In each step the factor D, ! is omitted so
that the resulting matrix is given by A®*Y=D=diag(é,, ..., d,). In this form
the algorithm is more efficient on the Cyber 205 vector computer, because no
extra updating of the pivotal row in each step is required. The error analysis
remains essentially the same.

Experiments on Accuracy and Residuals

a) In test series al-a4 we use linear systems with prescribed condition. The
matrices are constructed from a given diagonal matrix (the singular values cho-
sen) which is pre- and post-multiplied by random orthogonal matrices. These

left and right orthogonal factors are the product of 1/; random Householder
reflections. The singular values are chosen in various ways; the largest always
+1, the smallest 107° or smaller and the remaining ones either distributed
equally, or clustered on one end of the spectrum, or on the other end.

In series al we use very ill-conditioned matrices of order 25; the right-hand
side vector b is constructed by taking the product of the coéfficiént-matrix A
and a random vector x.

In series a2 we use matrices of order 50 of the same type and with the
same type of right-hand side vector.

In series a3 we use a different type of right-hand side vector. Firstly the
linear system is solved with a random right-hand side vector. With the solution
xo of this system, the vector by=A x,, is calculated. This vector b, serves as
right-hand side vector in the test system. For ill-conditioned matrices the right-
hand side vector constructed in this way is in general “rich” in the least singular
vector of the matrix, so that the solution is very sensitive for perturbations.

In series a4 the left singular vector corresponding to the least singular value
is taken as right-hand side vector.

All these series yield solutions with accuracy as expected in view of the
condition number of the matrix, and small residuals both for Gaussian elimina-
tion and Gauss-Jordan factorization with no significant difference.

b) In series b1-b2 we use upper triangular matrices. The diagonal elements
have the value + 1 except 453 and 4,4, which have the value 10~7. The elements
in the strictly upper triangular part have random values between —1 and +1.
This type of matrices is used by Peters and Wilkinson [6] to show that Gauss-
Jordan with column pivoting can produce larger residual vectors than Gaussian
elimination. The choices for the right-hand sides in bl and b2 are made in
the same way as in series al and a3 respectively. The results of Gauss-Jordan
factorization with row pivoting and Gaussian elimination are fully comparable
and as accurate as can be expected in view of the condition of the matrices.

We also tested Gauss-Jordan with column pivoting on these matrices. The
accuracy of the solution is comparable with the accuracy in the other solutions,
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but the residual is much larger (of the same size as the error in the solution),
which confirms the analysis in [6].

c) In series c1-c2 we use a matrix W for which maximal growth in its
elements is obtained during Gaussian elimination with partial pivoting. For
our situation where row pivoting is performed, this matrix is given by W;;= —1
for j>i; W;;=W,;=1 for all j and W,;=0 elsewhere.

1 —1 .. —1
0 1 -1

w=| :
0 01 —1
1 .. 1 1

For n=50, as used in series c1, the conditionnumber of W roughly equals 1700
and the element growth is 2*°. As right-hand side vector we have chosen the
product Wx for a random vector x.

In series c2 we use the same experiment but now for the order n=30.

The results of Gaussian elimination are for some cases slightly better than
with the Gauss-Jordan factorization.

Note that for this matrix, a result obtained with column pivoting is correct
to almost full working accuracy; this is true for both Gaussian elimination
and Gauss-Jordan factorization. An implementation of a variant of Gaussian
elimination where this dangerous element-growth is detected and can be cured
is given by Hoffmann and Lioen [5]. The technique used is presented in a
paper by Businger [1] and can also be applied to the Gauss-Jordan algorithm.

d) In series d1-d2 we use a unit upper triangular matrix 4 having all ele-
ments in the strictly upper triangular part equal to — 1.

1 -1 ... —1
0 1
A=| : :
1 —1
0 .. 0 1

The least singular value of A is less than 2“"]/3. As right-hand side vector,
we take matrix times random vector. For this type of matrices, which have
an increasing bad condition for growing values of the order n, the Gauss-Jordan
factorization for large values of n produces a solution with a much larger residual
vector than the solution produced by Gaussian elimination.

In all our experiments we calculated the number of correct digits in the
solution and in the residual. For a system with right-hand side b, exact solution
x, and calculated solution x these numbers are given by — °log(||x—x,|l/lxol)
and —'%log(|b—Ax||/|xol]) respectively. In fact the latter quotient between
brackets should also be devided by [|A| for a homogeneous result. However,
for all matrices in series a we have ||4|,=1 and for all other matrices the
norms are of order n, so the omission of this factor is harmless.
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Experiments on Timing

Our implementation of the Gauss-Jordan algorithm with row pivoting (column
interchanges) GJPCF was compared with routines from LINPACK and with

the NUMVEC implementation of Gaussian elimination, CCRPCF [4, 5]. The
timing results are as in the following table.

Table 2. Overview of timing experiments

n=25 50 100 200
LINPACK (SGEFA +SGESL) 0.0028 0.0107 0.0441 0.1965
CCRPCF 0.0014 0.0051 0.0232 0.1154
GJPCF 0.0014 0.0054 0.0256 0.1394

These results show that the Gauss-Jordan algorithm is rather efficiént on
a vector computer and that the processing time is competitive with Gaussian
elimination for order up to 25.

As is well known, the number of floating-point operations equals, apart
from lower order terms, n* for Gauss-Jordan and (2/3) n® for Gaussian elimina-
tion. The time needed for these algorithms, however, is not only determined
by this order n® term, but also by a significant contribution of order n?, needed
for pivot search and interchanges and, on a vector machine, also for the start-up
of the vector iterations. This contribution of order n® is (nearly) equal for
CCRPCF and GJPCEF, as also appears from this table.
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