
1
Introduction

1.1. Basic Notation

In this course we will refer frequently to matrices, vectors, and scalars. A
matrix will be denoted by an upper case letter such as A, and its (i, j)th
element will be denoted by aij . If the matrix is given by an expression such
as A + B, we will write (A + B)ij . In detailed algorithmic descriptions we
will sometimes write A(i, j) or use the Matlab [182] notation A(i : j, k : l) to
denote the submatrix of A lying in rows i through j and columns k through
l. A lower-case letter like x will denote a vector, and its ith element will
be written xi. Vectors will almost always be column vectors, which are the
same as matrices with one column. Lower-case Greek letters (and occasionally
lower-case letters) will denote scalars. R will denote the set of real numbers;
Rn, the set of n-dimensional real vectors; and Rm×n, the set of m-by-n real
matrices. C, Cn, and Cm×n denote complex numbers, vectors, and matrices,
respectively. Occasionally we will use the shorthand Am×n to indicate that A is
an m-by-n matrix. AT will denote the transpose of the matrix A: (AT)ij = aji.
For complex matrices we will also use the conjugate transpose A∗: (A∗)ij = āji.
<z and =z will denote the real and imaginary parts of the complex number
z, respectively. If A is m-by-n, then |A| is the m-by-n matrix of absolute
values of entries of A: (|A|)ij = |aij |. Inequalities like |A| ≤ |B| are meant
componentwise: |aij | ≤ |bij | for all i and j. We will also use this absolute value
notation for vectors: (|x|)i = |xi|. Ends of proofs will be marked by 2, and
ends of examples by ¦. Other notation will be introduced as needed.

1.2. Standard Problems of Numerical Linear Algebra

We will consider the following standard problems:

• Linear systems of equations: Solve Ax = b. Here A is a given n-by-n
nonsingular real or complex matrix, b is a given column vector with n
entries, and x is a column vector with n entries that we wish to compute.

1

2 Applied Numerical Linear Algebra

• Least squares problems: Compute the x that minimizes ‖Ax− b‖2. Here
A is m-by-n, b is m-by-1, x is n-by-1, and ‖y‖2 ≡

√∑
|yi|2 is called

the two-norm of the vector y. If m > n so that we have more equations
than unknowns, the system is called overdetermined. In this case we
cannot generally solve Ax = b exactly. If m < n, the system is called
underdetermined, and we will have infinitely many solutions.

• Eigenvalue problems: Given an n-by-n matrix A, find an n-by-1 nonzero
vector x and a scalar λ so that Ax = λx.

• Singular value problems: Given an m-by-n matrix A, find an n-by-1
nonzero vector x and scalar λ so that ATAx = λx. We will see that this
special kind of eigenvalue problem is important enough to merit separate
consideration and algorithms.

We choose to emphasize these standard problems because they arise so
often in engineering and scientific practice. We will illustrate them throughout
the book with simple examples drawn from engineering, statistics, and other
fields. There are also many variations of these standard problems that we will
consider, such as generalized eigenvalue problems Ax = λBx (section 4.5) and
“rank-deficient” least squares problems minx ‖Ax − b‖2, whose solutions are
nonunique because the columns of A are linearly dependent (section 3.5).

We will learn the importance of exploiting any special structure our problem
may have. For example, solving an n-by-n linear system costs 2/3n3 floating
point operations if we use the most general form of Gaussian elimination. If we
add the information that the system is symmetric and positive definite, we can
save half the work by using another algorithm called Cholesky. If we further
know the matrix is banded with semibandwidth

√
n (i.e., aij = 0 if |i−j| > √n),

then we can reduce the cost further to O(n2) by using band Cholesky. If we
say quite explicitly that we are trying to solve Poisson’s equation on a square
using a 5-point difference approximation, which determines the matrix nearly
uniquely, then by using the multigrid algorithm we can reduce the cost to O(n),
which is nearly as fast as possible, in the sense that we use just a constant
amount of work per solution component (section 6.4).

1.3. General Techniques

There are several general concepts and techniques that we will use repeatedly:

1. matrix factorizations;

2. perturbation theory and condition numbers;

3. effects of roundoff error on algorithms, including properties of floating
point arithmetic;

Introduction 3

4. analysis of the speed of an algorithm;

5. engineering numerical software.

We discuss each of these briefly below.

1.3.1. Matrix Factorizations

A factorization of the matrix A is a representation of A as a product of several
“simpler” matrices, which make the problem at hand easier to solve. We give
two examples.

Example 1.1. Suppose that we want to solve Ax = b. If A is a lower trian-
gular matrix, 

a11
a21 a22
...

...
. . .

an1 an2 . . . ann



x1
x2
...
xn

 =


b1
b2
...
bn


is easy to solve using forward substitution:

for i = 1 to n
xi = (bi −

∑i−1
k=1 aikxk)/aii

end for

An analogous idea, back substitution, works if A is upper triangular. To
use this to solve a general system Ax = b we need the following matrix factor-
ization, which is just a restatement of Gaussian elimination.

Theorem 1.1. If the n-by-n matrix A is nonsingular, there exists a permu-
tation matrix P (the identity matrix with its rows permuted), a nonsingular
lower triangular matrix L, and a nonsingular upper triangular matrix U such
that A = P ·L · U. To solve Ax = b, we solve the equivalent system PLUx = b
as follows:

LUx = P−1b = P T b (permute entries of b),
Ux = L−1(P T b) (forward substitution),
x = U−1(L−1P T b) (back substitution).

We will prove this theorem in section 2.3. ¦

Example 1.2. The Jordan canonical factorization A = V JV −1 exhibits the
eigenvalues and eigenvectors of A. Here V is a nonsingular matrix, whose
columns include the eigenvectors, and J is the Jordan canonical form of A,
a special triangular matrix with the eigenvalues of A on its diagonal. We
will learn that it is numerically superior to compute the Schur factorization
A = UTU∗, where U is a unitary matrix (i.e., U ’s columns are orthonormal),
and T is upper triangular with A’s eigenvalues on its diagonal. The Schur form
T can be computed faster and more accurately than the Jordan form J . We
discuss the Jordan and Schur factorizations in section 4.2. ¦

4 Applied Numerical Linear Algebra

1.3.2. Perturbation Theory and Condition Numbers

The answers produced by numerical algorithms are seldom exactly correct.
There are two sources of error. First, there may be errors in the input data
to the algorithm, caused by prior calculations or perhaps measurement errors.
Second, there are errors caused by the algorithm itself, due to approximations
made within the algorithm. In order to estimate the errors in the computed
answers from both these sources, we need to understand how much the solution
of a problem is changed (or perturbed) if the input data is slightly perturbed.

Example 1.3. Let f(x) be a real-valued continuous function of a real variable
x. We want to compute f (x), but we do not know x exactly. Suppose instead
that we are given x+δx and a bound on δx. The best that we can do (without
more information) is to compute f(x + δx) and to try to bound the absolute
error |f (x+ δx)−f(x)|. We may use a simple linear approximation to f to get
the error bound f (x + δx) ≈ f (x) + δxf ′(x), and so the error is |f (x + δx) −
f(x)| ≈ |δx| · |f ′(x)|. We call |f ′(x)| the absolute condition number of f at x.
If |f ′(x)| is large enough, then the error may be large even if δx is small; in
this case we call f ill-conditioned at x. ¦

We say absolute condition number because it provides a bound on the
absolute error |f(x+ δx)− f (x)| given a bound on the absolute change |δx| in
the input. We will also often use the following essentially equivalent expression
to bound the error:

|f(x+ δx)− f (x)|
|f(x)| ≈ |δx||x| ·

|f ′(x)| · |x|
|f(x)| .

This expression bounds the relative error |f(x+ δx)− f (x)|/|f (x)| as a multi-
ple of the relative change |δx|/|x| in the input. The multiplier, |f ′(x)| · |x|/|f(x)|,
is called the relative condition number, or often just condition number for short.

The condition number is all that we need to understand how error in the
input data affects the computed answer: we simply multiply the condition
number by a bound on the input error to bound the error in the computed
solution.

For each problem we consider, we will derive its corresponding condition
number.

1.3.3. Effects of Roundoff Error on Algorithms

To continue our analysis of the error caused by the algorithm itself, we need
to study the effect of roundoff error in the arithmetic, or simply roundoff for
short. We will do so by using a property possessed by most good algorithms:
backward stability. We define it as follows.

If alg(x) is our algorithm for f (x), including the effects of roundoff,
we call alg(x) a backward stable algorithm for f(x) if for all x there

Introduction 5

is a “small” δx such that alg(x) = f(x + δx). δx is called the
backward error. Informally, we say that we get the exact answer
(f(x+ δx)) for a slightly wrong problem (x + δx).

This implies that we may bound the error as

error = |alg(x)− f(x)| = |f(x+ δx)− f(x)| ≈ |f ′(x)| · |δx|,

the product of the absolute condition number |f ′(x)| and the magnitude of
the backward error |δx|. Thus, if alg(·) is backward stable, |δx| is always
small, so the error will be small unless the absolute condition number is large.
Thus, backward stability is a desirable property for an algorithm, and most
of the algorithms that we present will be backward stable. Combined with
the corresponding condition numbers, we will have error bounds for all our
computed solutions.

Proving that an algorithm is backward stable requires knowledge of the
roundoff error of the basic floating point operations of the machine and how
these errors propagate through an algorithm. This is discussed in section 1.5.

1.3.4. Analyzing the Speed of Algorithms

In choosing an algorithm to solve a problem, one must of course consider
its speed (which is also called performance) as well as its backward stability.
There are several ways to estimate speed. Given a particular problem instance,
a particular implementation of an algorithm, and a particular computer, one
can of course simply run the algorithm and see how long it takes. This may
be difficult or time consuming, so we often want simpler estimates. Indeed, we
typically want to estimate how long a particular algorithm would take before
implementing it.

The traditional way to estimate the time an algorithm takes is to count
the flops, or floating point operations, that it performs. We will do this for
all the algorithms we present. However, this is often a misleading time es-
timate on modern computer architectures, because it can take significantly
more time to move the data inside the computer to the place where it is to
be multiplied, say, than it does to actually perform the multiplication. This
is especially true on parallel computers but also is true on conventional ma-
chines such as workstations and PCs. For example, matrix multiplication on
the IBM RS6000/590 workstation can be sped up from 65 Mflops (millions of
floating point operations per second) to 240 Mflops, nearly four times faster,
by judiciously reordering the operations of the standard algorithm (and using
the correct compiler optimizations). We discuss this further in section 2.6.

If an algorithm is iterative, i.e., produces a series of approximations con-
verging to the answer rather than stopping after a fixed number of steps, then
we must ask how many steps are needed to decrease the error to a toler-
able level. To do this, we need to decide if the convergence is linear (i.e.,

6 Applied Numerical Linear Algebra

the error decreases by a constant factor 0 < c < 1 at each step so that
|errori| ≤ c · |errori−1|) or faster, such as quadratic (|errori| ≤ c · |errori−1|2). If
two algorithms are both linear, we can ask which has the smaller constant c.
Iterative linear equation solvers and their convergence analysis are the subject
of Chapter 6.

1.3.5. Engineering Numerical Software

Three main issues in designing or choosing a piece of numerical software are
ease of use, reliability, and speed. Most of the algorithms covered in this course
have already been carefully programmed with these three issues in mind. If
some of this existing software can solve your problem, its ease of use may well
outweigh any other considerations such as speed. Indeed, if you need only to
solve your problem once or a few times, it is often easier to use general purpose
software written by experts than to write your own more specialized program.

There are three programming paradigms for exploiting other experts’ soft-
ware. The first paradigm is the traditional software library, consisting of a
collection of subroutines for solving a fixed set of problems, such as solving
linear systems, finding eigenvalues, and so on. In particular, we will discuss
the LAPACK library [10], a state-of-the-art collection of routines available in
Fortran and C. This library, and many others like it, are freely available in
the public domain; see NETLIB on the World Wide Web.1 LAPACK provides
reliability and high speed (for example, making careful use of matrix multipli-
cation, as described above) but requires careful attention to data structures
and calling sequences on the part of the user. We will provide pointers to such
software throughout the text.

The second programming paradigm provides a much easier-to-use environ-
ment than libraries like LAPACK, but at the cost of some performance. This
paradigm is provided by the commercial system Matlab [182], among others.
Matlab provides a simple interactive programming environment where all vari-
ables represent matrices (scalars are just 1-by-1 matrices), and most linear al-
gebra operations are available as built-in functions. For example, “C = A∗B”
stores the product of matrices A and B in C, and “A = inv(B)” stores the
inverse of matrix B in A. It is easy to quickly prototype algorithms in Matlab
and to see how they work. But since Matlab makes a number of algorith-
mic decisions automatically for the user, it may perform more slowly than a
carefully chosen library routine.

The third programming paradigm is that of templates, or recipes for as-
sembling complicated algorithms out of simpler building blocks. Templates are
useful when there are a large number of ways to construct an algorithm but no
simple rule for choosing the best construction for a particular input problem;
therefore, much of the construction must be left to the user. An example of
this may be found in Templates for the Solution of Linear Systems: Building

1Recall that we abbreviate the URL prefix http://www.netlib.org to NETLIB in the text.

Introduction 7

Blocks for Iterative Methods [24]; a similar set of templates for eigenproblems
is currently under construction.

1.4. Example: Polynomial Evaluation

We illustrate the ideas of perturbation theory, condition numbers, backward
stability, and roundoff error analysis with the example of polynomial evaluation:

p(x) =
d∑
i=0

aix
i.

Horner’s rule for polynomial evaluation is

p = ad
for i = d− 1 down to 0

p = x ∗ p+ ai
end for

Let us apply this to p(x) = (x−2)9 = x9−18x8 +144x7−672x6 +2016x5−
4032x4 + 5376x3 − 4608x2 + 2304x− 512. In the bottom of Figure 1.1, we see
that near the zero x = 2 the value of p(x) computed by Horner’s rule is quite
unpredictable and may justifiably be called “noise.” The top of Figure 1.1
shows an accurate plot.

To understand the implications of this figure, let us see what would happen
if we tried to find a zero of p(x) using a simple zero finder based on Bisection,
shown below in Algorithm 1.1.

Bisection starts with an interval [xlow, xhigh] in which p(x) changes sign
(p(xlow) · p(xhigh) < 0) so that p(x) must have a zero in the interval. Then the
algorithm computes p(xmid) at the interval midpoint xmid = (xlow + xhigh)/2
and asks whether p(x) changes sign in the bottom half interval [xlow, xmid]
or top half interval [xmid, xhigh]. Either way, we find an interval of half the
original length containing a zero of p(x). We can continue bisecting until the
interval is as short as desired.

So the decision between choosing the top half interval or bottom half inter-
val depends on the sign of p(xmid). Examining the graph of p(x) in the bottom
half of Figure 1.1, we see that this sign varies rapidly from plus to minus as
x varies. So changing xlow or xhigh just slightly could completely change the
sequence of sign decisions and also the final interval. Indeed, depending on the
initial choices of xlow and xhigh, the algorithm could converge anywhere inside
the “noisy region” from 1.95 to 2.05 (see Question 1.21).

To explain this fully, we return to properties of floating point arithmetic.

Algorithm 1.1. Finding zeros of p(x) using Bisection.

8 Applied Numerical Linear Algebra

-1.5

-1

-0.5

0

0.5

1

1.5
x10-10

1.92 1.94 1.96 1.98 2 2.02 2.04 2.06 2.08

1.92 1.94 1.96 1.98 2 2.02 2.04 2.06 2.08
−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−10

Fig. 1.1. Plot of y = (x − 2)9 = x9 − 18x8 + 144x7 − 672x6 + 2016x5 − 4032x4 +
5376x3− 4608x2 + 2304x− 512 evaluated at 8000 equispaced points, using y = (x− 2)9

(top) and using Horner’s rule (bottom).

Introduction 9

proc bisect (p, xlow, xhigh, tol)
/* find a root of p(x) = 0 in [xlow, xhigh]

assuming p(xlow) · p(xhigh) < 0 ∗ /
/* stop if zero found to within ±tol ∗ /
plow = p(xlow)
phigh = p(xhigh)
while xhigh − xlow > 2 · tol

xmid = (xlow + xhigh)/2
pmid = p(xmid)
if plow · pmid < 0 then /* there is a root in [xlow, xmid] */

xhigh = xmid
phigh = pmid

else if pmid · phigh < 0 then /* there is a root in [xmid, xhigh] */
xlow = xmid
plow = pmid

else /* xmid is a root */
xlow = xmid
xhigh = xmid

end if
end while
root = (xlow + xhigh)/2

1.5. Floating Point Arithmetic

The number −3.1416 may be expressed in scientific notation as follows:

- .31416 x 10
1

sign fraction base exponent

Computers use a similar representation called floating point, but gener-
ally the base is 2 (with exceptions, such as 16 for IBM 370 and 10 for some
spreadsheets and most calculators). For example, .101012 × 23 = 5.2510.

A floating point number is called normalized if the leading digit of the
fraction is nonzero. For example, .101012×23 is normalized, but .0101012×24 is
not. Floating point numbers are usually normalized, which has two advantages:
each nonzero floating point value has a unique representation as a bit string,
and in binary the leading 1 in the fraction need not be stored explicitly (because
it is always 1), leaving one extra bit for a longer, more accurate fraction.

The most important parameters describing floating point numbers are the
base; the number of digits (bits) in the fraction, which determines the precision;
and the number of digits (bits) in the exponent, which determines the expo-
nent range and thus the largest and smallest representable numbers. Different

10 Applied Numerical Linear Algebra

floating point arithmetics also differ in how they round computed results, what
they do about numbers that are too near zero (underflow) or too big (over-
flow), whether ±∞ is allowed, and whether useful nonnumbers are provided
(sometimes called NaNs, indefinites, or reserved operands) are provided. We
discuss each of these below.

First we consider the precision with which numbers can be represented.
For example, .31416× 101 has five decimal digits, so any information less than
.5 × 10−4 may have been lost. This means that if x is a real number whose
best five-digit approximation is .31416 × 101, then the relative representation
error in .31416 × 101 is

|x− .31416 × 101|
.31416 × 101 ≤ .5× 10−4

.31416 × 101 ≈ .16 × 10−4.

The maximum relative representation error in a normalized number occurs for
.10000×101, which is the most accurate five-digit approximation of all numbers
in the interval from .999995 to 1.00005. Its relative error is therefore bounded
by .5 · 10−4. More generally, the maximum relative representation error in a
floating point arithmetic with p digits and base β is .5×β1−p. This is also half
the distance between 1 and the next larger floating point number, 1 + β1−p.

Computers have historically used many different choices of base, number
of digits, and range, but fortunately the IEEE standard for binary arithmetic
is now most common. It is used on SUN, DEC, HP, and IBM workstations
and all PCs. IEEE arithmetic includes two kinds of floating point numbers:
single precision (32 bits long) and double precision (64 bits long).

IEEE single precision 1 8

sign fractionexponent
binary point

23

If s, e, and f < 1 are the 1-bit sign, 8-bit exponent, and 23-bit fraction in
the IEEE single precision format, respectively, then the number represented is
(−1)s · 2e−127 · (1 + f). The maximum relative representation error is 2−24 ≈
6 · 10−8, and the range of positive normalized numbers is from 2−126 (the
underflow threshold) to 2127 · (2 − 2−23) ≈ 2128 (the overflow threshold), or
about 10−38 to 1038. The positions of these floating point numbers on the real
number line are shown in Figure 1.2 (where we use a 3-bit fraction for ease of
presentation).

1

sign fractionexponent
binary point

IEEE double precision 11 52

If s, e, and f < 1 are the 1-bit sign, 11-bit exponent, and 52-bit fraction
in IEEE double precision format, respectively, then the number represented is
(−1)s · 2e−1023 · (1 + f). The maximum relative representation error is 2−53 ≈
10−16, and the exponent range is 2−1022 (the underflow threshold) to 21023 ·

Introduction 11

-2
-124

-2
-125

-2
-126

-0 and +0

subnormal
numbers

underflow
threshold

2
-125

2
-124

2
128

overflow
threshold

normalized
positive

normalized
negative
numbers numbers

2
-126

=

-2
128

127
=2 * (2 - 2)

-23

Fig. 1.2. Real number line with floating point numbers indicated by solid tick marks.
The range shown is correct for IEEE single precision, but a 3-bit fraction is assumed
for ease of presentation so that there are only 23 − 1 = 7 floating point numbers
between consecutive powers of 2, not 223 − 1. The distance between consecutive tick
marks is constant between powers of 2 and doubles/halves across powers of 2 (among
the normalized floating point numbers). +2128 and −2128, which are one unit in the
last place larger in magnitude than the overflow threshold (the largest finite floating
point number, 2127·(2−2−23)), are shown as dotted tick marks. The figure is symmetric
about 0; +0 and −0 are distinct floating point bit strings but compare as numerically
equal. Division by zero is the only binary operation that gives different results, +∞
and −∞, for different signed zero arguments.

(2− 2−52) ≈ 21024 (the overflow threshold), or about 10−308 to 10308.
When the true value of a computation a ¯ b (where ¯ is one of the four

binary operations +, −, ∗, and /) cannot be represented exactly as a floating
point number, it must be approximated by a nearby floating point number
before it can be stored in memory or a register. We denote this approximation
by fl(a¯b). The difference (a¯b)−fl(a¯b) is called the roundoff error. If fl(a¯b)
is a nearest floating point number to a¯ b, we say that the arithmetic rounds
correctly (or just rounds). IEEE arithmetic has this attractive property. (IEEE
arithmetic breaks ties, when a ¯ b is exactly halfway between two adjacent
floating point numbers, by choosing fl(a ¯ b) to have its least significant bit
zero; this is called rounding to nearest even.) When rounding correctly, if a¯ b
is within the exponent range (otherwise we get overflow or underflow), then
we can write

fl(a¯ b) = (a¯ b)(1 + δ), (1.1)

where |δ| is bounded by ε, which is called variously machine epsilon, machine
precision, or macheps. Since we are rounding as accurately as possible, ε is
equal to the maximum relative representation error .5 · β1−p. IEEE arithmetic
also guarantees that fl(

√
a) =

√
a(1 + δ), with |δ| ≤ ε. This is the most

common model for roundoff error analysis and the one we will use in this
book. A nearly identical formula applies to complex floating point arithmetic;
see Question 1.12. However, formula (1.1) does ignore some interesting details.

IEEE arithmetic also includes subnormal numbers, i.e., unnormalized float-

12 Applied Numerical Linear Algebra

ing point numbers with the minimum possible exponent. These represent tiny
numbers between zero and the smallest normalized floating point number; see
Figure 1.2. Their presence means that a difference fl(x− y) can never be zero
because of underflow, yielding the attractive property that the predicate x = y

is true if and only if fl(x− y) = 0. To incorporate errors caused by underflow
into formula (1.1) one would change it to

fl(a¯ b) = (a¯ b)(1 + δ) + η,

where |δ| ≤ ε as before, and |η| is bounded by a tiny number equal to the
largest error caused by underflow (2−150 ≈ 10−45 in IEEE single precision and
2−1075 ≈ 10−324 in IEEE double precision).

IEEE arithmetic includes the symbols ±∞ and NaN (Not a Number).±∞ is
returned when an operation overflows, and behaves according to the following
arithmetic rules: x/±∞ = 0 for any finite floating point number x, x/0 = ±∞
for any nonzero floating point number x, +∞ +∞ = +∞, etc. An NaN is
returned by any operation with no well-defined finite or infinite result, such as
∞−∞, ∞∞ , 0

0 ,
√
−1, NaN¯ x, etc.

Whenever an arithmetic operation is invalid and so produces an NaN, or
overflows or divides by zero to produce ±∞, or underflows, an exception flag is
set and can later be tested by the user’s program. These features permit one
to write both more reliable programs (because the program can detect and
correct its own exceptions, instead of simply aborting execution) and faster
programs (by avoiding “paranoid” programming with many tests and branches
to avoid possible but unlikely exceptions). For examples, see Question 1.19,
the comments following Lemma 5.3, and [80].

The most expensive error known to have been caused by an improperly
handled floating point exception is the crash of the Ariane 5 rocket of the
European Space Agency on June 4, 1996. See HOME/ariane5rep.html for
details.

Not all machines use IEEE arithmetic or round carefully, although nearly
all do. The most important modern exceptions are those machines produced
by Cray Research,2 although future generations of Cray machines may use
IEEE arithmetic.3 Since the difference between fl(a¯ b) computed on a Cray
and fl(a ¯ b) computed on an IEEE machine usually lies in the 14th decimal
place or beyond, the reader may wonder whether the difference is important.
Indeed, most algorithms in numerical linear algebra are insensitive to details
in the way roundoff is handled. But it turns out that some algorithms are
easier to design, or more reliable, when rounding is done properly. Here are
two examples.

2We include machines such as the NEC SX-4, which has a “Cray mode” in which it
performs arithmetic the same way. We exclude the Cray T3D and T3E, which are par-
allel computers built from DEC Alpha processors, which use IEEE arithmetic very nearly
(underflows are flushed to zero for speed’s sake).

3Cray Research was purchased by Silicon Graphics in 1996.

Introduction 13

When the Cray C90 subtracts 1 from the next smaller floating point num-
ber, it gets −2−47, which is twice the correct answer, −2−48. Getting even
tiny differences to high relative accuracy is essential for the correctness of the
divide-and-conquer algorithm for finding eigenvalues and eigenvectors of sym-
metric matrices, currently the fastest algorithm available for the problem. This
algorithm requires a rather nonintuitive modification to guarantee correctness
on Cray machines (see section 5.3.3).

The Cray may also yield an error when computing arccos(x/
√
x2 + y2)

because excessive roundoff causes the argument of arccos to be larger than 1.
This cannot happen in IEEE arithmetic (see Question 1.17).

To accommodate error analysis on a Cray C90 or other Cray machines we
may instead use the model fl(a±b) = a(1+δ1)±b(1+δ2), fl(a∗b) = (a∗b)(1+δ3),
and fl(a/b) = (a/b)(1 + δ3), with |δi| ≤ ε, where ε is a small multiple of the
maximum relative representation error.

Briefly, we can say that correct rounding and other features of IEEE arith-
metic are designed to preserve as many mathematical relationships used to
derive formulas as possible. It is easier to design algorithms knowing that
(barring over/underflow) fl(a− b) is computed with a small relative error (oth-
erwise divide-and-conquer can fail), and that −1 ≤ c ≡ fl(x/

√
x2 + y2) ≤ 1

(otherwise arccos(c) can fail). There are many other such mathematical rela-
tionships that one relies on (often unwittingly) to design algorithms. For more
details about IEEE arithmetic and its relationship to numerical analysis, see
[157, 156, 80].

Given the variability in floating point across machines, how does one write
portable software that depends on the arithmetic? For example, iterative al-
gorithms that we will study in later chapters frequently have loops such as

repeat
. . .
update e

until “e is negligible compared to f ,”

where e ≥ 0 is some error measure, and f > 0 is some comparison value (see
section 4.4.5 for an example). By negligible we mean “is e ≤ c · ε · f?,” where
c ≥ 1 is some modest constant, chosen to trade off accuracy and speed of con-
vergence. Since this test requires the machine-dependent constant ε, this test
has in the past often been replaced by the apparently machine-independent
test “is e + f = f?” The idea here is that adding e to f and rounding will
yield f again if e < εf or perhaps a little smaller. But this test can fail
(by requiring e to be much smaller than necessary, or than attainable), de-
pending on the machine and compiler used (see the next paragraph). So the
best test indeed uses ε explicitly. It turns out that with sufficient care one
can compute ε in a machine-independent way, and software for this is avail-
able in the LAPACK subroutines slamch (for single precision) and dlamch

(for double precision). These routines also compute or estimate the overflow

14 Applied Numerical Linear Algebra

threshold (without overflowing!), the underflow threshold, and other parame-
ters. Another portable program that uses these explicit machine parameters
is discussed in Question 1.19.

Sometimes one needs higher precision than is available from IEEE single
or double precision. For example, higher precision is of use in algorithms such
as iterative refinement for improving the accuracy of a computed solution of
Ax = b (see section 2.5.1). So IEEE defines another, higher precision called
double extended. For example, all arithmetic operations on an Intel Pentium
(or its predecessors going back to the Intel 8086/8087) are performed in 80-bit
double extended registers, providing 64-bit fractions and 15-bit exponents. Un-
fortunately, not all languages and compilers permit one to declare and compute
with double-extended precision variables.

Few machines offer anything beyond double-extended arithmetic in hard-
ware, but there are several ways in which more accurate arithmetic may be
simulated in software. Some compilers on DEC Vax and DEC Alpha, SUN
Sparc, and IBM RS6000 machines permit the user to declare quadruple preci-
sion (or real*16 or double double precision) variables and to perform computa-
tions with them. Since this arithmetic is simulated using shorter precision, it
may run several times slower than double. Cray’s single precision is similar in
precision to IEEE double, and so Cray double precision is about twice IEEE
double; it too is simulated in software and runs relatively slowly. There are also
algorithms and packages available for simulating much higher precision float-
ing point arithmetic, using either integer arithmetic [20, 21] or the underlying
floating point (see Question 1.18) [202, 216].

Finally, we mention interval arithmetic, a style of computation that au-
tomatically provides guaranteed error bounds. Each variable in an interval
computation is represented by a pair of floating point numbers, one a lower
bound and one an upper bound. Computation proceeds by rounding in such a
way that lower bounds and upper bounds are propagated in a guaranteed fash-
ion. For example, to add the intervals a = [al, au] and b = [bl, bu], one rounds
al + bl down to the nearest floating point number, cl, and rounds au + bu
up to the nearest floating point number, cu. This guarantees that the inter-
val c = [cl, cu] contains the sum of any pair of variables from a and from b.
Unfortunately, if one naively takes a program and converts all floating point
variables and operations to interval variables and operations, it is most likely
that the intervals computed by the program will quickly grow so wide (such as
[−∞,+∞]) that they provide no useful information at all. (A simple example
is to repeatedly compute x = x − x when x is an interval; instead of getting
x = 0, the width xu − xl of x doubles at each subtraction.) It is possible to
modify old algorithms or design new ones that do provide useful guaranteed
error bounds [4, 138, 160, 188], but these are often several times as expensive
as the algorithms discussed in this book. The error bounds that we present
in this book are not guaranteed in the same mathematical sense that interval
bounds are, but they are reliable enough in almost all situations. (We discuss

Introduction 15

this in more detail later.) We will not discuss interval arithmetic further in
this book.

1.6. Polynomial Evaluation Revisited

Let us now apply roundoff model (1.1) to evaluating a polynomial with Horner’s
rule. We take the original program,

p = ad
for i = d− 1 down to 0

p = x · p+ ai
end for

Then we add subscripts to the intermediate results so that we have a unique
symbol for each one (p0 is the final result):

pd = ad
for i = d− 1 down to 0

pi = x · pi+1 + ai
end for

Then we insert a roundoff term (1 + δi) at each floating point operation to get

pd = ad
for i = d− 1 down to 0

pi = ((x · pi+1)(1 + δi) + ai)(1 + δ′i), where |δi|, |δ′i| ≤ ε
end for

Expanding, we get the following expression for the final computed value of the
polynomial:

p0 =
d−1∑
i=0

(1 + δ′i)
i−1∏
j=0

(1 + δj)(1 + δ′j)

 aixi +

d−1∏
j=0

(1 + δj)(1 + δ′j)

 adxd .
This is messy, a typical result when we try to keep track of every rounding error
in an algorithm. We simplify it using the following upper and lower bounds:

(1 + δ1) · · · (1 + δj) ≤ (1 + ε)j ≤ 1
1− jε = 1 + jε+O(ε2),

(1 + δ1) · · · (1 + δj) ≥ (1 − ε)j ≥ 1− jε.

These bounds are correct, provided that jε < 1. Typically, we make the
reasonable assumption that jε ¿ 1 (j ¿ 107 in IEEE single precision) and
make the approximations

1− jε ≤ (1 + δ1) · · · (1 + δj) ≤ 1 + jε.

16 Applied Numerical Linear Algebra

This lets us write

p0 =
d∑
i=0

(1 + δi)aixi, where |δi| ≤ 2dε

=
d∑
i=0

aix
i

So the computed value p0 of p(x) is the exact value of a slightly different
polynomial with coefficients ai. This means that evaluating p(x) is “backward
stable,” and the “backward error” is 2dε measured as the maximum relation
change of any coefficient of p(x).

Using this backward error bound, we bound the error in the computed
polynomial:

|p0 − p(x)| =

∣∣∣∣∣
d∑
i=0

(1 + δi)aixi −
d∑
i=0

aix
i

∣∣∣∣∣
=

∣∣∣∣∣
d∑
i=0

δiaix
i

∣∣∣∣∣ ≤
d∑
i=0

ε2d|ai · xi|

≤ 2dε
d∑
i=0

|ai · xi|.

Note that
∑

i |aixi| bounds the largest value that we could compute if there
were no cancellation from adding positive and negative numbers, and the error
bound is 2dε times smaller. This is also the case for computing dot products
and many other polynomial-like expressions.

By choosing δi = ε · sign(aixi), we see that the error bound is attainable to
within the modest factor 2d. This means that we may use∑d

i=0 |aixi|
|
∑d

i=0 aix
i|

as the relative condition number for polynomial evaluation.
We can easily compute this error bound, at the cost of doubling the number

of operations:

p = ad, bp = |ad|
for i = d− 1 down to 0

p = x · p+ ai
bp = |x| · bp+ |ai|

end for
error bound = bp = 2d · ε · bp

so the true value of the polynomial is in the interval [p − bp, p + bp], and the
number of guaranteed correct decimal digits is − log10(| bpp |). These bounds are

Introduction 17

plotted in the top of Figure 1.3 for the polynomial discussed earlier, (x− 2)9.
(The reader may wonder whether roundoff errors could make this computed
error bound inaccurate. This turns out not to be a problem and is left to the
reader as an exercise.)

The graph of − log10 | bpp | in the bottom of Figure 1.3, a lower bound on
the number of correct decimal digits, indicates that we expect difficulty com-
puting p(x) to high relative accuracy when p(x) is near 0. What is special
about p(x) = 0? An arbitrarily small error ε in computing p(x) = 0 causes
an infinite relative error ε

p(x) = ε
0 . In other words, our relative error bound

2dε
∑d

i=0 |aixi|/|
∑d

i=0 aix
i| is infinite.

Definition 1.1. A problem whose condition number is infinite is called ill-
posed. Otherwise it is called well-posed.4

There is a simple geometric interpretation of the condition number: it tells
us how far p(x) is from a polynomial which is ill-posed.

Definition 1.2. Let p(z) =
∑d

i=0 aiz
i and q(z) =

∑d
i=0 biz

i. Define the rel-
ative distance d(p, q) from p to q as the smallest value satisfying |ai − bi| ≤
d(p, q) · |ai| for 0 ≤ i ≤ d. (If all ai = 0, then we can more simply write
d(p, q) = max0≤i≤d |ai−biai

|.)

Note that if ai = 0, then bi must also be zero for d(p, q) to be finite.

Theorem 1.2. Suppose that p(z) =
∑d

i=0 aiz
i is not identically zero.

min{d(p, q) such that q(x) = 0} =
|
∑d

i=0 aix
i|∑d

i=0 |aixi|
.

In other words, the distance from p to the nearest polynomial q whose condition
number at x is infinite is the reciprocal of the condition number of p(x).

Proof. Write q(z) =
∑
biz

i =
∑

(1 + εi)aizi so that d(p, q) = maxi |εi|. Then
q(x) = 0 implies |p(x)| = |q(x) − p(x)| = |

∑d
i=0 εiaix

i| ≤
∑d

i=0 |εiaixi| ≤
maxi |εi|

∑
i |aixi|, which in turn implies d(p, q) = max |εi| ≥ |p(x)|/

∑
i |aixi|.

To see that there is a q this close to p, choose

εi =
−p(x)∑
|aixi|

· sign(aixi). 2

4This definition is slightly nonstandard, because ill-posed problems include those whose
solutions are continuous as long as they are nondifferentiable. Examples include multiple
roots of polynomials and multiple eigenvalues of matrices (section 4.3). Another way to
describe an ill-posed problem is one in which the number of correct digits in the solution is
not always within a constant of the number of digits used in the arithmetic in the solution.
For example, multiple roots of polynomials tend to lose half or more of the precision of the
arithmetic.

18 Applied Numerical Linear Algebra

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
x10-8

1.85 1.9 1.95 2 2.05 2.1 2.15

upper bound

lower bound
(x-2)^9

−2 −1 0 1 2 3 4 5 6
0

2

4

6

8

10

12

14

16
actual number of

correct digits

lower bound on number of

correct digits

Fig. 1.3. Plot of error bounds on the value of y = (x− 2)9 evaluated using Horner’s
rule.

Introduction 19

This simple reciprocal relationship between condition number and distance
to the nearest ill-posed problem is very common in numerical analysis, and we
shall encounter it again later.

At the beginning of the introduction we said that we would use canonical
forms of matrices to help solve linear algebra problems. For example, knowing
the exact Jordan canonical form makes computing exact eigenvalues trivial.
There is an analogous canonical form for polynomials, which makes accurate
polynomial evaluation easy: p(x) = ad

∏d
i=1(x − ri). In other words, we rep-

resent the polynomial by its leading coefficient ad and its roots r1, . . . rn. To
evaluate p(x) we use the obvious algorithm

p = ad
for i = 1 to d

p = p · (x− ri)
end for

It is easy to show the computed p = p(x) · (1 + δ), where |δ| ≤ 2dε; i.e., we
always get p(x) with high relative accuracy. But we need the roots of the
polynomial to do this!

1.7. Vector and Matrix Norms

Norms are used to measure errors in matrix computations, so we need to
understand how to compute and manipulate them.

Missing proofs are left as problems at the end of the chapter.

Definition 1.3. Let B be a real (complex) linear space Rn (or Cn). It is
normed if there is a function ‖ · ‖ : B → R, which we call a norm, satisfying
all of the following :

1) ‖x‖ ≥ 0, and ‖x‖ = 0 if and only if x = 0 (positive definiteness),
2) ‖αx‖ = |α| · ‖x‖ for any real (or complex) scalar α (homogene-
ity),
3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (the triangle inequality).

Example 1.4. The most common norms are ‖x‖p = (
∑

i |xi|p)1/p for 1 ≤ p <
∞, which we call p-norms, as well as ‖x‖∞ = maxi |xi|, which we call the
∞-norm or infinity-norm. Also, if ‖x‖ is any norm and C is any nonsingular
matrix, then ‖Cx‖ is also a norm. ¦

We see that there are many norms that we could use to measure errors; it
is important to choose an appropriate one. For example, let x1 = [1, 2, 3]T in
meters and x2 = [1.01, 2.01, 2.99]T in meters. Then x2 is a good approximation
to x1 because the relative error ‖x1−x2‖∞

‖x1‖∞ ≈ .0033, and x3 = [10, 2.01, 2.99]T is

a bad approximation because ‖x1−x3‖∞
‖x1‖∞ = 3. But suppose the first component

20 Applied Numerical Linear Algebra

is measured in kilometers instead of meters. Then in this norm x̂1 and x̂3 look
close:

x̂1 =

 .001
2
3

 , x̂3 =

 .01
2.01
2.99

 , and
‖x̂1 − x̂3‖∞
‖x̂1‖∞

≈ .0033 .

To compare x̂1 and x̂3, we should use

‖x̂‖s ≡

∥∥∥∥∥∥
 1000

1
1

 x̂
∥∥∥∥∥∥
∞

to make the units the same or so that equally important errors make the norm
equally large.

Now we define inner products, which are a generalization of the standard
dot product

∑
i xiyi, and arise frequently in linear algebra.

Definition 1.4. Let B be a real (complex) linear space. 〈·, ·〉 : B ×B → R(C)
is an inner product if all of the following apply :

1) 〈x, y〉 = 〈y, x〉 (or 〈y, x〉),
2) 〈x, y + z〉 = 〈x, y〉+ 〈x, z〉,
3) 〈αx, y〉 = α〈x, y〉 for any real (or complex) scalar α,
4) 〈x, x〉 ≥ 0, and 〈x, x〉 = 0 if and only if x = 0.

Example 1.5. Over R, 〈x, y〉 = yTx =
∑

i xiyi, and over C, 〈x, y〉 = y∗x =∑
i xiȳi are inner products. (Recall that y∗ = ȳT is the conjugate transpose of

y.) ¦

Definition 1.5. x and y are orthogonal if 〈x, y〉 = 0.

The most important property of an inner product is that it satisfies the
Cauchy–Schwartz inequality. This can be used in turn to show that

√
〈x, x〉 is

a norm, one that we will frequently use.

Lemma 1.1. Cauchy–Schwartz inequality. |〈x, y〉| ≤
√
〈x, x〉 · 〈y, y〉.

Lemma 1.2.

√
〈x, x〉 is a norm.

There is a one-to-one correspondence between inner-products and symmet-
ric (Hermitian) positive definite matrices, as defined below. These matrices
arise frequently in applications.

Definition 1.6. A real symmetric (complex Hermitian) matrix A is positive
definite if xTAx > 0 (x∗Ax > 0) for all x = 0. We abbreviate symmetric
positive definite to s.p.d., and Hermitian positive to h.p.d..

Introduction 21

Lemma 1.3. Let B = Rn (or Cn) and 〈·, ·〉 be an inner product. Then there
is an n-by-n s.p.d. (h.p.d.) matrix A such that 〈x, y〉 = yTAx (y∗Ax). Con-
versely, if A is s.p.d (h.p.d.), then yTAx (y∗Ax) is an inner product.

The following two lemmas are useful in converting error bounds in terms
of one norm to error bounds in terms of another.

Lemma 1.4. Let ‖ · ‖α and ‖ · ‖β be two norms on Rn (or Cn). There are
constants c1, c2 > 0 such that, for all x, c1‖x‖α ≤ ‖x‖β ≤ c2‖x‖α. We also
say that norms ‖ · ‖α and ‖ · ‖β are equivalent with respect to constants c1 and
c2.

Lemma 1.5.

‖x‖2 ≤ ‖x‖1 ≤
√
n‖x‖2,

‖x‖∞ ≤ ‖x‖2 ≤
√
n‖x‖∞,

‖x‖∞ ≤ ‖x‖1 ≤ n‖x‖∞.

In addition to vector norms, we will also need matrix norms to measure
errors in matrices.

Definition 1.7. ‖ · ‖ is a matrix norm on m-by-n matrices if it is a vector
norm on m · n dimensional space:

1) ‖A‖ ≥ 0 and ‖A‖ = 0 if and only if A = 0,
2) ‖αA‖ = |α| · ‖A‖,
3) ‖A+B‖ ≤ ‖A‖+ ‖B‖.

Example 1.6. maxij |aij | is called the max norm, and (
∑
|aij |2)1/2 = ‖A‖F

is called the Frobenius norm. ¦

The following definition is useful for bounding the norm of a product of
matrices, something we often need to do when deriving error bounds.

Definition 1.8. Let ‖ · ‖m×n be a matrix norm on m-by-n matrices, ‖ · ‖n×p
be a matrix norm on n-by-p matrices, and ‖ · ‖m×p be a matrix norm on m-
by-p matrices. These norms are called mutually consistent if ‖A · B‖m×p ≤
‖A‖m×n · ‖B‖n×p, where A is m-by-n and B is n-by-p.

Definition 1.9. Let A be m-by-n, ‖ · ‖m̂ be a vector norm on Rm, and ‖ · ‖n̂
be a vector norm on Rn. Then

‖A‖m̂n̂ ≡ max
x=0
x∈Rn

‖Ax‖m̂
‖x‖n̂

is called an operator norm or induced norm or subordinate matrix norm.

22 Applied Numerical Linear Algebra

The next lemma provides a large source of matrix norms, ones that we will
use for bounding errors.

Lemma 1.6. An operator norm is a matrix norm.

Orthogonal and unitary matrices, defined next, are essential ingredients of
nearly all our algorithms for least squares problems and eigenvalue problems.

Definition 1.10. A real square matrix Q is orthogonal if Q−1 = QT . A
complex square matrix is unitary if Q−1 = Q∗.

All rows (or columns) of orthogonal (or unitary) matrices have unit 2-norms
and are orthogonal to one another, since QQT = QTQ = I (QQ∗ = Q∗Q = I).

The next lemma summarizes the essential properties of the norms and
matrices we have introduced so far. We will use these properties later in the
book.

Lemma 1.7. 1. ‖Ax‖ ≤ ‖A‖ · ‖x‖ for a vector norm and its corresponding
operator norm, or the vector two-norm and matrix Frobenius norm.

2. ‖AB‖ ≤ ‖A‖ · ‖B‖ for any operator norm or for the Frobenius norm.
In other words, any operator norm (or the Frobenius norm) is mutually
consistent with itself.

3. The max norm and Frobenius norm are not operator norms.

4. ‖QAZ‖ = ‖A‖ if Q and Z are orthogonal or unitary for the Frobenius
norm and for the operator norm induced by ‖ · ‖2. This is really just the
Pythagorean theorem.

5. ‖A‖∞ ≡ maxx=0
‖Ax‖∞
‖x‖∞ = maxi

∑
j |aij | = maximum absolute row sum.

6. ‖A‖1 ≡ maxx=0
‖Ax‖1
‖x‖1 = ‖AT ‖∞ = maxj

∑
i |aij | = maximum absolute

column sum.

7. ‖A‖2 ≡ maxx=0
‖Ax‖2
‖x‖2 =

√
λmax(A∗A), where λmax denotes the largest

eigenvalue.

8. ‖A‖2 = ‖AT ‖2.

9. ‖A‖2 = maxi |λi(A)| if A is normal, i.e., AA∗ = A∗A.

10. If A is n-by-n, then n−1/2‖A‖2 ≤ ‖A‖1 ≤ n1/2‖A‖2.

11. If A is n-by-n, then n−1/2‖A‖2 ≤ ‖A‖∞ ≤ n1/2‖A‖2.

12. If A is n-by-n, then n−1‖A‖∞ ≤ ‖A‖1 ≤ n‖A‖∞.

13. If A is n-by-n, then ‖A‖1 ≤ ‖A‖F ≤ n1/2‖A‖2.

Introduction 23

Proof. We prove part 7 only and leave the rest to the reader.
Since A∗A is Hermitian, there exists an eigendecomposition A∗A = QΛQ∗,

with Q a unitary matrix (the columns are eigenvectors), and Λ = diag(λ1, . . . ,
λn), a diagonal matrix containing the eigenvalues, which must all be real.
Note that all λi ≥ 0 since if one, say λ, were negative, we would take q as
its eigenvector and get the contradiction 0 ≤ ‖Aq‖22 = qTATAq = qTλq =
λ‖q‖22 < 0. Therefore

‖A‖2 = max
x=0

‖Ax‖2
‖x‖2

= max
x=0

(x∗A∗Ax)1/2

‖x‖2
= max

x=0

(x∗QΛQ∗x)1/2

‖x‖2

= max
x=0

((Q∗x)∗ΛQ∗x)1/2

‖Q∗x)‖2
= max

y=0

(y∗Λy)1/2

‖y‖2
= max

y=0

√∑
λiy2

i∑
y2
i

≤ max
y=0

√
λmax

√∑
y2
i∑
y2
i

=
√
λmax,

which is attainable by choosing y to be the appropriate column of the identity
matrix. 2

1.8. References and Other Topics for Chapter 1

At the end of each chapter we will list the references most relevant to that
chapter. They are also listed alphabetically in the bibliography at the end. In
addition we will give pointers to related topics not discussed in the main text.

The most modern comprehensive work in this area is by G. Golub and C.
Van Loan [119], which also has an extensive bibliography. A recent undergrad-
uate level or beginning graduate text in this material is by D. Watkins [250].
Another good graduate text is by L. Trefethen and D. Bau [241]. A classic
work that is somewhat dated but still an excellent reference is by J. Wilkinson
[260]. An older but still excellent book at the same level as Watkins is by G.
Stewart [233].

More detailed information on error analysis can be found in the recent book
by N. Higham [147]. Older but still good general references are by J. Wilkinson
[259] and W. Kahan [155].

“What every computer scientist should know about floating point arith-
metic” by D. Goldberg is a good recent survey [117]. IEEE arithmetic is de-
scribed formally in [11, 12, 157] as well as in the reference manuals published
by computer manufacturers. Discussion of error analysis with IEEE arithmetic
may be found in [53, 69, 157, 156] and the references cited therein.

A more general discussion of condition numbers and the distance to the
nearest ill-posed problem is given by the author in [70] as well as in a series
of papers by S. Smale and M. Shub [217, 218, 219, 220]. Vector and matrix
norms are discussed at length in [119, sects. 2.2, 2.3].

24 Applied Numerical Linear Algebra

1.9. Questions for Chapter 1

Question 1.1. (Easy; Z. Bai) Let A be an orthogonal matrix. Show that
det(A) = ±1. Show that if B also is orthogonal and det(A) = −det(B), then
A+B is singular.

Question 1.2. (Easy; Z. Bai) The rank of a matrix is the dimension of the
space spanned by its columns. Show that A has rank one if and only if A = abT

for some column vectors a and b.

Question 1.3. (Easy; Z. Bai) Show that if a matrix is orthogonal and trian-
gular, then it is diagonal. What are its diagonal elements?

Question 1.4. (Easy; Z. Bai) A matrix is strictly upper triangular if it is
upper triangular with zero diagonal elements. Show that if A is strictly upper
triangular and n-by-n, then An = 0.

Question 1.5. (Easy; Z. Bai) Let ‖ · ‖ be a vector norm on Rm and assume
that C ∈ Rm×n. Show that if rank(A) = n, then ‖x‖C ≡ ‖Cx‖ is a vector
norm.

Question 1.6. (Easy; Z. Bai) Show that if 0 = s ∈ Rn and E ∈ Rn×n, then∥∥∥∥E(I − ssT

sT s

)∥∥∥∥2

F

= ‖E‖2F −
‖Es‖22
sT s

.

Question 1.7. (Easy; Z. Bai) Verify that ‖xyH‖F = ‖xyH‖2 = ‖x‖2‖y‖2 for
any x, y ∈ Cn.

Question 1.8. (Medium) One can identify the degree d polynomials p(x) =∑d
i=0 aix

i with Rd+1 via the vector of coefficients. Let x be fixed. Let Sx be
the set of polynomials with an infinite relative condition number with respect
to evaluating them at x (i.e., they are zero at x). In a few words, describe Sx
geometrically as a subset of Rd+1. Let Sx(κ) be the set of polynomials whose
relative condition number is κ or greater. Describe Sx(κ) geometrically in a
few words. Describe how Sx(κ) changes geometrically as κ→∞.

Question 1.9. (Medium; from the 1995 final exam) Consider the figure be-
low. It plots the function y = log(1 + x)/x computed in two different ways.
Mathematically, y is a smooth function of x near x = 0, equaling 1 at 0. But
if we compute y using this formula, we get the plots on the left (shown in the
ranges x ∈ [−1, 1] on the top left and x ∈ [−10−15, 10−15] on the bottom left).
This formula is clearly unstable near x = 0. On the other hand, if we use the
algorithm

Introduction 25

d = 1 + x
if d = 1 then

y = 1
else

y = log(d)/(d− 1)
end if

we get the two plots on the right, which are correct near x = 0. Explain this
phenomenon, proving that the second algorithm must compute an accurate
answer in floating point arithmetic. Assume that the log function returns an
accurate answer for any argument. (This is true of any reasonable implemen-
tation of logarithm.) Assume IEEE floating point arithmetic if that makes
your argument easier. (Both algorithms can malfunction on a Cray machine.)

−1 −0.5 0 0.5 1
−1

0

1

2

3
y = log(1+x)/x

−0.8−0.6−0.4−0.2 0 0.2 0.4 0.6 0.8

x 10
−15

−1

0

1

2

3
y = log(1+x)/x

−1 −0.5 0 0.5 1
−1

0

1

2

3
y = log(1+x)/[(1+x)−1]

−0.8−0.6−0.4−0.2 0 0.2 0.4 0.6 0.8

x 10
−15

−1

0

1

2

3
y = log(1+x)/[(1+x)−1]

Question 1.10. (Medium) Show that, barring overflow or underflow,
fl(
∑d

i=1 xiyi) =
∑d

i=1 xiyi(1 + δi), where |δi| ≤ dε. Use this to prove the
following fact. Let Am×n and Bn×p be matrices, and compute their product
in the usual way. Barring overflow or underflow show that |fl(A ·B)−A ·B| ≤
n · ε · |A| · |B|. Here the absolute value of a matrix |A| means the matrix with
entries (|A|)ij = |aij |, and the inequality is meant componentwise.

The result of this question will be used in section 2.4.2, where we analyze
the roundoff errors in Gaussian elimination.

26 Applied Numerical Linear Algebra

Question 1.11. (Medium) Let L be a lower triangular matrix and solve Lx =
b by forward substitution. Show that barring overflow or underflow, the com-
puted solution x̂ satisfies (L + δL)x̂ = b, where |δlij | ≤ nε|lij |, where ε is the
machine precision. This means that forward substitution is backward stable.
Argue that backward substitution for solving upper triangular systems satisfies
the same bound.

The result of this question will be used in section 2.4.2, where we analyze
the roundoff errors in Gaussian elimination.

Question 1.12. (Medium) In order to analyze the effects of rounding errors,
we have used the following model (see equation (1.1)):

fl(a¯ b) = (a¯ b)(1 + δ),

where ¯ is one of the four basic operations +, −, ∗, and /, and |δ| ≤ ε. To show
that our analyses also work for complex data, we need to prove an analogous
formula for the four basic complex operations. Now δ will be a tiny complex
number bounded in absolute value by a small multiple of ε. Prove that this
is true for complex addition, subtraction, multiplication, and division. Your
algorithm for complex division should successfully compute a/a ≈ 1, where
|a| is either very large (larger than the square root of the overflow threshold)
or very small (smaller than the square root of the underflow threshold). Is it
true that both the real and imaginary parts of the complex product are always
computed to high relative accuracy?

Question 1.13. (Medium) Prove Lemma 1.3.

Question 1.14. (Medium) Prove Lemma 1.5.

Question 1.15. (Medium) Prove Lemma 1.6.

Question 1.16. (Medium) Prove all parts except 7 of Lemma 1.7. Hint for
part 8: Use the fact that if X and Y are both n-by-n, then XY and Y X have
the same eigenvalues. Hint for part 9: Use the fact that a matrix is normal if
and only if it has a complete set of orthonormal eigenvectors.

Question 1.17. (Hard; W. Kahan) We mentioned that on a Cray machine
the expression arccos(x/

√
x2 + y2) caused an error, because roundoff caused

(x/
√
x2 + y2) to exceed 1. Show that this is impossible using IEEE arithmetic,

barring overflow or underflow. Hint: You will need to use more than the simple
model fl(a ¯ b) = (a ¯ b)(1 + δ) with |δ| small. Think about evaluating

√
x2,

and show that, barring overflow or underflow, fl(
√
x2) = x exactly; in numerical

experiments done by A. Liu, this failed about 5% of the time on a Cray YMP.
You might try some numerical experiments and explain them. Extra credit:
Prove the same result using correctly rounded decimal arithmetic. (The proof
is different.) This question is due to W. Kahan, who was inspired by a bug in
a Cray program of J. Sethian.

Introduction 27

Question 1.18. (Hard) Suppose a and b are normalized IEEE double pre-
cision floating point numbers, and consider the following algorithm, running
with IEEE arithmetic:

if (|a| < |b|), swap a and b
s1 = a+ b
s2 = (a− s1) + b

Prove the following facts:

1. Barring overflow or underflow, the only roundoff error committed in run-
ning the algorithm is computing s1 = fl(a + b). In other words, both
subtractions s1 − a and (s1 − a)− b are computed exactly.

2. s1 +s2 = a+ b, exactly. This means that s2 is actually the roundoff error
committed when rounding the exact value of a+ b to get s1.

Thus, this program in effect simulates quadruple precision arithmetic, repre-
senting the true sum a + b as the higher-order bits (s1) and the lower-order
bits (s2).

Using this and similar tricks in a systematic way, it is possible to effi-
ciently simulate all four basic floating point operations in arbitrary precision
arithmetic, using only the underlying floating point instructions and no “bit-
fiddling” [202]. 128-bit arithmetic is implemented this way on the IBM RS6000
and Cray (but much less efficiently on the Cray, which does not have IEEE
arithmetic).

Question 1.19. (Hard; Programming) This question illustrates the challenges
in engineering highly reliable numerical software. Your job is to write a pro-
gram to compute the two-norm s ≡ ‖x‖2 = (

∑n
i=1 x

2
i)

1/2 given x1, ldots, xn.
The most obvious (and inadequate) algorithm is

s = 0
for i = 1 to n

s = s+ x2
i

endfor
s = sqrt(s)

This algorithm is inadequate because it does not have the following desirable
properties:

1. It must compute the answer accurately (i.e., nearly all the computed
digits must be correct) unless ‖x‖2 is (nearly) outside the range of nor-
malized floating point numbers.

2. It must be nearly as fast as the obvious program above in most cases.

28 Applied Numerical Linear Algebra

3. It must work on any “reasonable” machine, possibly including ones not
running IEEE arithmetic. This means it may not cause an error condi-
tion, unless ‖x‖2 is (nearly) larger than the largest floating point number.

To illustrate the difficulties, note that the obvious algorithm fails when n = 1
and x1 is larger than the square root of the largest floating point number (in
which case x2

1 overflows, and the program returns +∞ in IEEE arithmetic and
halts in most non-IEEE arithmetics) or when n = 1 and x1 is smaller than the
square root of the smallest normalized floating point number (in which case
x2

1 underflows, possibly to zero, and the algorithm may return zero). Scaling
the xi by dividing them all by maxi |xi| does not have property 2), because
division is usually many times more expensive than either multiplication or
addition. Multiplying by c = 1/maxi |xi| risks overflow in computing c, even
when maxi |xi| > 0.

This routine is important enough that it has been standardized as a Basic
Linear Algebra Subroutine, or BLAS, which should be available on all machines
[167]. We discuss the BLAS at length in section 2.6.1, and documentation
and sample implementations may be found at NETLIB/blas. In particular,
see NETLIB/cgi-bin/netlibget.pl/blas/snrm2.f for a sample implementation
that has properties 1) and 3) but not 2). These sample implementations are
intended to be starting points for implementations specialized to particular
architectures (an easier problem than producing a completely portable one, as
requested in this problem). Thus, when writing your own numerical software,
you should think of computing ‖x‖2 as a building block that should be available
in a numerical library on each machine.

For another careful implementation of ‖x‖2, see [34].
You can extract test code from NETLIB/blas/sblat1 to see if your imple-

mentation is correct; all implementations turned in must be thoroughly tested
as well as timed, with times compared to the obvious algorithm above on those
cases where both run. See how close to satisfying the three conditions you can
come; the frequent use of the word “nearly” in conditions (1), (2) and (3)
shows where you may compromise in attaining one condition in order to more
nearly attain another. In particular, you might want to see how much easier
the problem is if you limit yourself to machines running IEEE arithmetic.

Hint: Assume that the values of the overflow and underflow thresholds are
available for your algorithm. Portable software for computing these values is
available (see NETLIB/cgi-bin/netlibget.pl/lapack/util/slamch.f).

Question 1.20. (Easy; Medium) We will use a Matlab program to illustrate
how sensitive the roots of polynomial can be to small perturbations in the
coefficients. The program is available5 at HOMEPAGE/Matlab/polyplot.m.

5Recall that we abbreviate the URL prefix of the class homepage to HOMEPAGE in the
text.

Introduction 29

Polyplot takes an input polynomial specified by its roots r and then adds
random perturbations to the polynomial coefficients, computes the perturbed
roots, and plots them. The inputs are

r = vector of roots of the polynomial,
e = maximum relative perturbation to make to each coefficient of
the polynomial,
m = number of random polynomials to generate, whose roots are
plotted.

1. (Easy) The first part of your assignment is to run this program for the
following inputs. In all cases choose m high enough that you get a fairly
dense plot but don’t have to wait too long. m = a few hundred or perhaps
1000 is enough. You may want to change the axes of the plot if the graph
is too small or too large.
• r=(1:10); e = 1e-3, 1e-4, 1e-5, 1e-6, 1e-7, 1e-8,

• r=(1:20); e = 1e-9, 1e-11, 1e-13, 1e-15,

• r=[2,4,8,16,. . . , 1024]; e=1e-1, 1e-2, 1e-3, 1e-4 (in this case, use
axis([.1,1e4,-4,4]) and semilogx(real(r1),imag(r1),’.’))

Also try your own example with complex conjugate roots. Which roots
are most sensitive?

2. (Medium) The second part of your assignment is to modify the program
to compute the condition number c(i) for each root. In other words, a
relative perturbation of e in each coefficient should change root r(i) by
at most about e*c(i). Modify the program to plot circles centered at r(i)
with radii e*c(i), and confirm that these circles enclose the perturbed
roots (at least when e is small enough that the linearization used to
derive the condition number is accurate). You should turn in a few plots
with circles and perturbed eigenvalues, and some explanation of what
you observe.

3. (Medium) In the last part, notice that your formula for c(i) “blows up” if
p′(r(i)) = 0. This condition means that r(i) is a multiple root of p(x) = 0.
We can still expect some accuracy in the computed value of a multiple
root, however, and in this part of the question, we will ask how sensitive
a multiple root can be: First, write p(x) = q(x) · (x − r(i))m, where
q(r(i)) = 0 and m is the multiplicity of the root r(i). Then compute the
m roots nearest r(i) of the slightly perturbed polynomial p(x) − q(x)ε,
and show that they differ from r(i) by |ε|1/m. So that if m = 2, for
instance, the root r(i) is perturbed by ε1/2, which is much larger than
ε if |ε| ¿ 1. Higher values of m yield even larger perturbations. If ε is
around machine epsilon and represents rounding errors in computing the
root, this means an m-tuple root can lose all but 1/m-th of its significant
digits.

30 Applied Numerical Linear Algebra

Question 1.21. (Medium) Apply Algorithm 1.1, Bisection, to find the roots
of p(x) = (x − 2)9 = 0, where p(x) is evaluated using Horner’s rule. Use the
Matlab implementation in HOMEPAGE/Matlab/bisect.m, or else write your
own. Confirm that changing the input interval slightly changes the computed
root drastically. Modify the algorithm to use the error bound discussed in the
text to stop bisecting when the roundoff error in the computed value of p(x)
gets so large that its sign cannot be determined.

