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Methods of Conjugate Gradients for Solving
Linear Systems’

Magnus R. Hestenes ? and Eduard Stiefel *

An iterative algorithm is given for solving a system Ar==Fk of n linear equations in n

unknowns.

The solution iz given in n steps.
case of a vervy general method which also includes Gaussian elimination.

It is shown that this method is a special
These general

algorithms are essentially algorithms for finding an n dimensional ellipsoid. Connections
are made with the theory of orthogonal polynomials and continued fractions.

1. Introduction

One of the major problems in machine computa-
tions is to find an effective method of solving a
syvstem of n simultaneous equations in n unknowns,
particularly if n is large. There is, of course, no
best method for all problems because the goodness
of a method depends to some extent upon the
particular system to be solved. In judging the
goodness of a method for machine computations, one
should bear in mind that criteria for a good machine
method may be different from those for a hand
method. By a hand method, we shall mean one
in which a desk calculator may be used. By a
machine method, we shall mean one in which
sequence-controlled machines are used.

A machine method should have the following
properties:

(1) The method should be simple, composed of a
repetition of elementary routines requiring a mini-
mum of storage space.

(2) The method should insure rapid convergence
if the number of steps required for the solution is
infinite. A method which—if no rounding-off errors
occur—will vield the solution in a finite number of
steps is to be preferred.

(3) The procedure should be stable with respect
to rounding-off errors. If needed, a subroutine
should be available to insure this stability. It
should be possible to diminish rounding-off errors
by a repetition of the same routine, starting with
the previous result as the new estimate of the
solution.

(4) Each step should give information about the
solution and should yield a new and better estimate
than the previous one.

(5) As many of the original data as possible should
be used during each step of the routine. Special
properties of the given linear system-—such as having
many vanishing coefficients—should be preserved.
(For example, in the Gauss elimination special
propertics of this type may be destroyed.)

In our opinion there are two methods that best fit
these criteria, namely, (a) the Gauss climination
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method; (b) the conjugate gradient method. presented
in the present monograph.

There are many variations of the elimination
method, just as there are many variations of the
conjugate gradient method here presented. In the
present paper it will be shown that both methods
are special cases of a method that we call the method
of conjugate directions. This enables one to com-
pare the two methods from a theoretical point of
view.

In our opinion, the conjugate gradient method is
superior to the elimination method as a machine
method. Our reasons can be stated as follows:

(a) Like the Gauss elimination method, the method
of conjugate gradients gives the solution in n steps if
no rounding-off error occurs.

(b) The conjugate gradient method is simpler to
code and requires less storage space.

(¢) The given matrix is unaltered during the proc-
ess, so that a maximum of the original data is used.
The advantage of having many zeros in the matrix
is preserved. The method is, therefore, especially
suited to handle linear systems arising from difference
equations approximating boundary value problems.

(d) At each step an estimate of the solution is
given, which is an improvement over the one given in
the preceding step.

(e) At any step one can start anew by a very
simple device, keeping the estimate last obtained as
the initial estimate.

In the present paper, the conjugate gradient rou-
tines are developed for the symmetric and non-
symmetric cases. The prineipal results are described
in section 3. For most of the theoretical considera-
tions, we restrict ourselves to the positive definite
symmetric case. No generality is lost thereby. We
deal only with real matrices. The extension to
complex matrices is simple.

The method of conjugate gradients was developed
independently by E. Stiefel of the Instituteof Applied
Mathematies at Zurich and by M. R. Hestenes with
the cooperation ot J. B. Rosser. G. Forsythe, and
.. Paige of the Institute for Numerical Analysis.
National Bureau of Standards. The present account
was prepared jointly by M. R. Hestenes and E.
Stiefel during the latter’s stay at the National Bureau
of Standards. The first papers on this method were
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given by E.Stiefel fand by MR, Hestenes? Reports
on this method were given by E. Stiefel ® and J. B,
Rosser 7 at a Symposium ® on August 23-25, 1951,
Recently, C. Lanczos® developed a closely related
routine based on his earlier paper on eigenvalue
problem.®  Examples and numerical tests of the
method have been by R. Hayes, U. Hochstrasser,
and M. Stein.

2. Notations and Terminology

Throughout the following pages we shall be con-
cerned with the problem of solving a svstem of lincar

equations
ayrn+apr+

Q9121+ A2aks +
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These equations will be written in the vector form
Adz=k. Here A is the matrix of coefficients (a;)),
x and k are the vectors (zy,. . .,2,) and (k. . .,k.).
It is assumed that A is nonsingular. Its inverse A™!
therefore exists. We denote the transpose of A4 by

A*

Given two vectors x=(r,. . .2, and y=
(y1,- - Ya), their sum z+y 1is the vector
(@ +Y1,. . T2t Ya), and az is the vector (axy,. . .,0x,),
where @ is a scalar. The sum

@y)=ayi Tyt o ALY

is their scalar product. The length of x will be denoted

by

‘ .«‘rrﬁ)*:(x,x)*.

=3+,

The Cauchy-Schwarz inequality states that for all

T,y . o o
(@Y<L @e)(yy) or [(zy) <ixilyl (2:2)

The matrix 4 and its transpose .4* satisfy the

relation

(2, Ay =2Ja,,z.y,=(4"2,y).
i,j=
If a;=ay;, that is, if A=A%* then A is said to be
symmetric. A matrix A is said to be pesitive definite
in case (x,4x)>0 whenever 2#0. If (z,44) =0 for
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all r. then 4 is said to be nomnegatire. H J1is sym-
metrie, then two veetors 1 and y are sard to be eon-
Jugate  or  A-orthogonal i the relation  (rodyy
(<1r,y) =0 holds. This 1s an extension of the ortho-
gonality relation (£,y) =0.

By an eizenralue of a matrix .1 is meant a number
A such that Ady=2xAy has a solution y#0, and ¥y is
called a corresponding eigenrvector.

Unless otherwise expressly stated the matrix A,
with which we are concerned, will be assumed to be
symmetric and positive definite. Clearly no loss of
generality is caused thereby from a theoretical point
of view, because the system Ax=F is equivalent to
the system Br=I[, where B=A*A, I=14*k. From a
numerical point of view, the two systems are differ-
ent, because of rounding-off errors that occur in
joining the product A4*A. Our applications to the
nonsymmetric case do-not involve the computation
of A*A.

In the sequel we shall not have ocecasion to refer to
a particular coordinate of a vector. Accordingly
we may use subseripts to distinguish vectors instead
of components. Thus x, will denote the vector
(o1, + « ., ron) and x; the vector (zy, .. ., ry).  Incase
a symbol is to be interpreted as a component, we shall
call attention to this fact unless the interpretation is
evident from the context.

The solution of the system Ax==k will be denoted by
h;thatis, Ah==k. If xis an estimate of &, the differ-
ence r=k—.dr will be called the residual of z as an
estimate of A. The quantity |72 will be called the
squared residual. The vector h—x will be called the
error vector of x, as an estimate of A.

3. Method of Conjugate Gradients (cg-
Method)

The present section will be devoted to a description
of a method of solving a system of linear equations
Az=Fk. This method will be called the conjugate
gradient method or, more briefly, the cg-method, for
reasons which will unfold from the theory developed
in later sections. For the moment, we shall limit
ourselves to collecting in one place the basic formulas
upon which the method is based and to describing
briefly how thesc formulas are used.

The cg-method is an iterative method which
terminates in at most n steps if no rounding-off
errors arc encountered. Starting with an initial
estimate x, of the solution %, one determines succes-
sively new estimates 2, oy, 2, . of k, the estimate
x, being closer to & than z4,. At each step the
residual r;=k—Ax, is computed. Normally this
vector can be used as a measure of the “goodness”
of the estimate z;. However, this measure is not a
reliable one because, as will be seen in section 18,
it is possible to construct cases in which the squared
residual |r;* increases at cach step (except for the
last) while the length of the error vector h—uz;
decreases monotonically. If no rounding-off error
is encountered, one will reach an estimate z,(m<n)
at which r,=0. This estimate is the desired solu-
tion k. Normally, m=n. However, since rounding-

410



off errors always occur except under very unusual
circumstances, the estimate z, in general will not be
the solution & but will be a good approximation of 4.
If the residual 7, is too large, one may continue
with the iteration to obtain better estimates of A.
Our experience indicates that frequently o,.; 1s
considerably better than z,. One should not con-
tinue too far bevond z, but should start anew
with the last estimate obtained as the initial
estimate, so as to diminish the effects of rounding-
off errors. As a matter of fact one can start anew
at any step one chooses. This flexibility is one of the
principal advantages of the method.

In case the matrix A is symmetric and positive
definite, the following formulas are used in the con-
jugate gradient method:

po=ro=k—.Ar, (x, arbitrary) (3:1a)
irl?
;= iy 3:1b
P:i.Ap)) ( )
rooa=r;+a;p; (3:1¢)
I‘i,31:I’,-—(1,-Ap,~. (3:1(1)
1 '2
T :
b;‘A jri;g ] (310)
Pii=Tint+bip. (3:11)

In place of the formulas (3:1b) and (3-1e) one may
use

_ (pury)

,——(pld’iz’)*l)) (32&)
(ric1,dp)

b,=—" ' 3:2b

@11 (8:20)

Although these formulas are slightly more compli-
cated than those given in (3:1), they have the ad-
vantage that scale factors (introduced to increase
accuracy) are more casily changed during the course
of the computation.

The conjugate gradient method (cg-method) is
given by the following steps:

Initial step: Select an estimate 7, of & and com-
pute the residual 7y and the direction p, by formulas
(3:1a).

General routine: Having determined the estimate
xy of k, the residual r,, and the direction p,, compute
iy, Peey, and p,o by formulas (3:1b), . . ., (3:1f)
suceessively.

As will be seen in section 5, the residuals ry, 7,

. are mutually orthogonal, and the direction vee-
tors pg, py, - . . are mutually conjugate, that is,
(i=£7). (3:3)

(ri, 7,)=0, (py 1p)=0

These relations can be used as checks.

Once one has obtained the set of n mutually |

conjugate vectors p,, Pn-r the solution of

Ax=F’ (3:4)
can be obtained by the formula
n—1 . ’
r= k(pJLE)A Pi. (3:5)

1=0 (Api; Z)I)

It follows that, if we denote by p;; the jth component
of p;, then

U PiuPa
=0 (s, Apy)

is the element in the jth row and kth column of the
inverse A7} of 4.

There are two objections to the use of formula
(3:5). First, contrary to the procedure of the
general routine (3:1), this would require the storage
of the wvectors po, py, . . . . This is impractical,
particularly in large systems. Second, the results
obtained by this method are much more influenced
by rounding-off errors than those obtained by the
step-by-step routine (3:1).

In the cg-method the error vector h—a is diminished
in length at each step. The quantity f(z)=(h—uz.
A (h—a)), called the error function, is also diminished
at cach step. But the squared residual |ri*=|k— Ax?
pormally oscillates and may even increase. There
i1s a modification of the cg-method where all threc
quantities diminish at each step. This modification
is given in section 7. It has an advantage and a
disadvantage. Its disadvantage is that the error
vector in each step is longer than in the original
method. Mloreover, the computation is complicated,
since it is a routine superimposed upon the original
one. However, in the special case where the given
linear equation system arises from a difference
approximation of a bourdary-value problem, it can
be shown that the estimates are smoother in the
modified method than in the original. This may be
an advantage if the desired solutior is to be differ-
entiated afterwards.

Concurrently with the solution of a given lincar
svstem, characteristic roots of its matrix may be
obtained: compute the values of the polynomials
Ry, Ry, . . . and P,. P, . . . at X\ by the iteration

Ry=P;=1
Ri+l:]‘)i'—)\alz)i

P =R.,+b,P,. (3:6)
The last polynomial R,X\) is a factor of the charac-
teristic polynomial of .1 and coincides with 1t when
m=n. The characteristic roots, which are the zeros
of R,(\). can be found by Newton's methods without
actually computing the polynomial R, (\) itself.
One uses the formulas

Rm()‘k)

)\l;-'xz)\k‘_j‘;;()\k)’ (3:7)
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where R, (0D, RLOn) are determined by the iteration
(3:6) and,
R,=DP3=0

/1’:,1211),’—)\011’,/~(lil’i
a=Ri—bP;

with A=X,. In this connection, it is of interest to
observe that if m=n, the determinant of .1 is given
by the formula

1
det L= - as
. n—1

asa, . .

The cg-method can be extended to the case in
which A is a general nonsymmetric and nonsingular

matrix. In this case one replaces eq (3:1) by the set
I’@zk“[l.ﬂ], pn:[l*ro,
LI
a; ="
Aps®
L =2 ap.,
(3:8)
roa=r—adp..
bA-@f_ﬂ‘f
RIS E

Pi+x:i1*1'i+1+bzpz~

This system is discussed in section 10.

4. Method of Conjugate Directions (cd-
Method)!

The cg-method can be considered as a special case
of a general method, which we shall call the method
of conjugate directions or more briefly the ed-method.
Tn this method, the vectors py, py, . . . are selected
to be mutually conjugate but have no further restric-
tions. It consists of the following routine:

Initial step. Select an estimate r, of & (the solu-
tion), compute the residual ro==Fk— .1z, and choose a
direction ps.

General routine. Having obtained the estimate
%; of h, the residual r;=Fk—_Ar; and the direction p,,
compute the new estimate z;;; and its residual r;y,
by the formulas

» (p:ry)
aQ;=——5-"-0» 4:1a
(pi.Apy) ( )
Jd i+1:1'[‘7l“a1‘p1', (41]))
ro=r—aAp. (4:1¢)

1 This method was presented from a different point of view by Fox, Huskey, and
Wilkinson on p. 149 of a paper entitled ** Notes on the solution of algebraic linear
simultaneous equations.” Quarterly Journal of Mechanies and Applied Mathe-
matics ¢. 2, 149-173 (1948).

Next seleet o direetion p, conjugate to o, . . . po
that 1=, such that
(pinp)=0 (J=0.1.. . .1} (4:24

In a sense the ed-method is not preecise. in that no
formulas are given for the computation of the diree-
tions pg, pi. . . . . Various formulas can be given,
each leading to a special method. The formula
(3:10) leads to the cg-method. It will be seen in
section 12 that the case in which the p's are obtained
by an .l-orthogonalization of the basic vectors
(1,0, .. .,0), (0,1,0, . . ), . .. leads essentially to
the Gauss elimination method.

The basic properties of the ed-method are given by
the following theorems.

Theorem 4:1. The direction vectors py, Py, - -
mutually conjugate.
to Dos P1, - -

- are
The residual vector r; is orthogonal
o, Pi-1. The inner produet of p,with each

of the residuals ro, ry, - + -, ryis the same. That is,
(Pudp)=0  ((#)) (4:3a)
(pjro=0 (j=0,1, - - -p—1) (4:3h)
(pora)=(par)= « - - =(pur). (4:3¢)
The scalar a; can be given by the formula
" =

in place of (4:1a).
Equation (4:3a) follows from (4:2). Using (4:1¢),
we find that

(P ree))= (1) —ax(psApe).

If j=k we have, by (4:1a), (ps,rrs)=0. Moreover.
by (4:3) (p,,res1)=(psrx), (j#k). Equations (4:3b)
and (4:3¢) follow from these relations. The formula
(4:4) follows from (4:3c¢) and (4:1a).

As a consequence of (4:4) the estimates 25, - - -
of h can be computed without computing the resid-
uals ro.ry, ., provided that the choice of the
direction vectors pg,py, - - - 1s independent of these
residuals.

Theorem 4:2. The cd-method is an m-step method
(m £n) in the sense that al the mih step the estimate z,,
18 the desired solution h.

For let m be the first integer such that yy;=~—2z/is

in the subspace spanned by po, - - -, pn-i. Clearly.
m £n, since the vectors pg,p;, - - - are linearly inde-
pendent.  We may, accordingly, choose scalars
g, + - . an_y such that
yf):a()p[)+ ot ;amA][)m—l-
Hence,
h=ro+cpo+ P

Moreover,

ro=k—.Arg=Ah—ry)=acAp,— st a1 APnr
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Computing the inner product (p;,r,) we find by (4:3a)
and (4:4) that a;=a;, and hence that h=r,,, as was
to be proved.

The ed-method can be looked upon as a relaxation
method. In order to establish this result, we intro-
duce the function

Clearly, f(x)=0 and f(x)=0 if, and only if, z=Ah.
The function f(x) can be used as a measure "of the
“goodness” of z as an estimate of k. Since it plays
an important role in our considerations, it will be
referred to as the error function. If p is a direction
vector, we have the useful relation
fa+ap)=fa)—2a(p,r)+o(p.4p), (4:6)
where r=k—Ar=A(h—zx), as one readily verifies
by substitution. Considered as a function of a.
the function f(r-+ap) has a minimum value at
a=a, where
{(p,r) -
=B 4:7

This minimum value differs from f(r) by the quantity

J@)—=flr+ap)=a*(p,Ap)= (4:8)

(p,Ap)

Comparing (4:7) with (4:1a), we obtain the first two
sentences of the following result:

Theorem 4:3. The point x; minimizes f(x) on the
line r=x,_+api_y. At the i-th step the error f(o.._)
15 rclaxed by the amount

(pi-1yri-1)?
Ti1)— )= :
f( 1) f(I (pi—1y44pi—])
In fact. the point x; minimizes f(x) on the i-dimensional
plane P, of points
(4:100

|
I=ry+agpet...Fai Py,

where aq, ..., a;_y are parameters. This plane con-
tains the pomfe Xg, Ty, vey Lin

In view of this result the cd-method is a method
of relaxation of the error furction f(x). An iteration
of the routine may accordingly be referred to as
a relaxation.

In order to prove the third sentence of the theorem
observe that at the point (4:10)

i—1
fl@)=f(ro— 21 [2a,(p). 7o) —ai(p;. Ap))].
J=u

At the minimum point we have
Pyrd
(ps-1p,)

and hence a,=a, by (4:4). The minimum point is
accordingly the point r;. as was to be proved.

ay;=

413

(4:9) |

the equation f(r)=const. defines
The point at which

Geometrically,
an ellipsoid of dimension n—1.

f(x) has & minimum is the center of the ellipsoid and

i1s the solution of Ax=*k. The i-dimensional plane
Py, described in the last theorem. cuts the ellipsoid

L f@)=F(x) in an elhpaoxd E, of dimension 7—1,
. unless E; is the point zx, itself.
f@)="h—rAh—r)=(@Ar)=20 )+ ¢ k). 4:5)

| the center of E;. Hence we have the corollary:

(In the cg-method.
E, is never degenerate, unless 2;=Ah.) The point & is

Corollary 1. The point x; is the center of the
(1—1)-dimensional ellipsoid in which the i-dimensional
plane P, infersects the (n—1)-dimensional ellipsoid
f@)=Ff(x).

Although the function f(z) is the fundamental
error function which decreases at each step of the
relaxation, one is unable to compute f(z) without
knowing the solution k we are seeking. In order to
obtain an estimate of the magnitude of f(z) we may
use the following:

Theorem 4:4.  The error vector y=h—z, the residual

r=k—.Ax, and the error function f(z) satisfy the
relations
" fws 4:11
<flr)s—— (4:
s =T = Ly :
where u(2) s the Rayleigh quotient
(~.A z). .
p(z )—" 4:12)

The Rayleigh quotient of the error vector y does not
eaceed that of the residual r, that ix,

w(y) S ulr). (4:13)
Moreover, o o
gy s 4:14
w0 =Y =y i1
The proof of this result is based on the Schwarzian
quotients
(z. A2) (AMAL) Az, A%

(4:13)

(z,2) = (s.A2) =(dz,42)
The first of these follows from the inequality of
Schwarz ’ ’

(. (p.p) e (4:16)
by choosing p==z, ¢g=.1z. The sccond is obtained
by ﬂ.electmﬂ p=B:z, ¢= Bz, where B*=4.

In order to plo\c thecorem 4:4 recall that i we
set y=h—r, then

r=k—dAr=A(h—r)=dy
flr)y=(,Ay)

by (4:5). Using the inequalitics (4:15) with 2=y,
we see that
(=1 LAy A L (Ay Ay
p= (.0 = oy ) Au Au
oA

oy - == pr).



 This vields (4:11) and (4:13). Using (4:16) with |
p=y and ¢g=r we find that ‘
fl)=.Ay)= @, =y} Irl.
Hence o '
f@=p)y2sy! irl,
so that the second inquality in (4:14) holds.  The
first inequality is obtained from the relations

T <ty
#(,‘):f\«’)_—:‘y,.'w

As is to be expected, any ed-method has within |
its routine a determination of the inverse 17! of 4.
We have, in fact, the following:

Theorem 4:5. Let po, . . ., Pn_1 be n mutually con-
jugate nonzero vectors and let p,; be the i-th component
of pi.  The element in the j-th row and k-th column of
AV is given by the sum

n-1

i=0 (Pi;APJ
This result follows from the formula
n—1

h=>

i=0

i dpd

for the solution h of Ar=Fk, obtained by selecting
To:O.

We conclude this section with the following:

Theorem 4:6. Let m; be the (n—1i)-dimensional
plane through x; conjugate to the vectors po. pr. . . .,
pir.  The plane =, contains the points ri, sy, . . .
and intersects the (n—1)-dimensional ellipsoid f(x)=
f(x)) in an ellipsoid E] of dimension (n—i—1).
The center of E! is the solution h of Ax=k. The pount
Tisq i¢ the midpoint of the chord C; of E through r,,
which is parallel to p;. In the cg-method the chord C;
is normal to E; at r; and hence is in the direction of
the gradient of f(x) at z;in =,

The last statement will be established at the end
of section 6. The equations of the plane =, is given
by the system

(Ap;r—1r)=0

(j=0.1.. . .i—1).

. are conjugate to py,. . ..pi_1, 30 also

(k>1).

The points zq2:;.. . =" are accordingly in
and A is the center of E;. The chord ;s defined by
the equation r=xr,—ta;p;, where t is a parameter. As
is easily seen,

Since pipiir.. -
is

Ty—I;=a;Pi=. . Qi1 Pr1

Flrittapo=fle)—2t—=)a;(piAps).

The second endpoint of the chord C; is the point
z;+2ap; at which 1=2. The midpoint corresponds
to t=1, and hence is the point r,; as was to be

f(x) =f(r,) through r, and find its center.
o . =

proved.

In view of theorem 4:6. it is scen that at eachstep

| of the ed-routine the dimensionality of the space =,
| in which we seek the solution & is reduced by unity.

Beginning with r,. we select an arbitrary chord € of
The plane
=, through x; conjugate to €, contains the centers of
all chords parallel to €. In the next step we re-
strict ourselves to m, and select an arbitrary chord
(', of f(ry=f(r)) through z, and find its midpoint
7, and the plane =, in = conjugate to (', (and hence
to (). This process when repeated will yield the
answer in at most n steps. In the ecg-method the
chord C; of f(x)=f(x,) is chosen to be the normal
at x,.

5. Basic Relations in the cg-Method

Recall that in the cg-method the following formulas
are used

Po=roy=h —Ar, (5:1a)

rii® ,

S T (5:1b)
(Puiipi)

S =TIiapy (5:1¢

Fog=r—aAp; (5:1dy

,_leyz LRI

b= =t (5:1¢)

])[+1:l’;;1~¥bip¢. (5: 1f)

One should verify that eq. (5:1e) and (5:1f) hold for

1=0,1.2,. . .if. and only if,
IR i o - o
= rk_-Z;, T k=0,1,2,.. .. (5:2)
Jj= 1 Ji

The present section is devoted to consequences of
these formulas. As a first result, we have

Theorem 5:1. The residuals vy, ry. . . . and the
direction vectors py, p1, . . . generated by (5:1) satisfy
the relations

(5:3a)

(ror;) =0 (15%7)
(podpn=0 (1)) (5:3b)
(pur9=0 (<), (por)=1r* Gz (5:3¢)

(rocAp)=pudAp), Gudp)=0 (I #£ji#j+1) (5:3d

The residuals ry. vy, . . . are mutually orthogonal and
the direction veclcrs py, py, . . . are mutually conju-
gate.

The proof of this result will be made by induction.
The vectors ry. po =7, and 7, satisfy these relations
since .

(ro,r) = (po.ry) = i"og?_a'o("o,vAPo) =1
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by (5:1b). Suppose that (5:3) holds for the vectors
ro, . . . rrand po, . . ., pi_;. To show that p, can
be adjoined to this set it is necessary to show that
(i=k) (5
(1<<k) 6]
(ighkizk—1) (5

(ropoy=r* 14a)

(pi,Ap)=0 :4b)
(rk.:lpﬂ:(])k‘ﬂpi) :4(_’)

Equation (5:4a) follows at once from (5:2) and
(5:3a). To prove (5:4b) we use (5:1d) and find that

(ri+|‘]7k) =(r;.py) —a 1(1117&]7;:) .
By (5:4a) this becomes

(<)

In order to establish

!"k!zz Erk|2—-01(Apzupk)

Since a0, eq (5:4b) holds.
(5:4¢), we use (5:1f) to obtain

z\> = (rk-APt)
(i#k—1)-

(pr.Ap)=(ro.Ap) + b1 (p, 1. A

It follows that (5:4¢) holds and hence that (5:3)
holds for the vectors ro, 7, . . ., rp and po, p1, . . .,
e

It remains to show that r..; can be adjoined to this
set. This will be done by showing that

(rorie)=0 (G=k) (5:5a)
(Apir)=0  (@<k) (5:5b)
(Pore)=0  ((Zk). (5:5¢)
By (5:1d) we have
(rireer) = (ror) —a(rs,Apy) .

If +<k, the terms on the right are zero and (5:5a)
holds. If i=kFk, the right member is zero by (5:1b)
and (5:3d). Using (5:1d) again we have with {<k
0= (Fee,Pie) = (Tiar 1) — @i(Pasr, Ap ) = —ai(r , Apy)
Hence (5:5b) holds. The equation (5:5¢) follows
from (5:5a) and the formula (5:2) for p..

As a consequence of (5:3b) we have the first two
sentences of the following:

Theorem 5:2. The cg-method is a cd-method. It is
the special case of the cd-method in which the p; are
obtained by A-orthogonalization of the residual vectors
ri.  Onthe other hand, a ed-method tn which the resid-
uals ro, 7y, . arc mutually orthogonal (s essentially
a cg-method.

The term “essentiallv’’ is used to designate that
we disregard iterations ‘that terminate in fewer than
n steps, unless one adds the natural assumption that

the formula for p, in the routine depends continu-
To prove this result ¢

ously on the initial estimate .

we accordingly suppose that the routine terminates
at the n-th step. Since the r; is orthogonal to
7o wehave r;x,;, and hence a,#0. It follows that
(pi,r)#0by (4 la). W emayaccordmg]ysuppose the
vectors p, have been normalized so that (p;r)=ir.".
In view of (4:3b) and (4:3c) eq (5:3¢) holds. Select.
numbers a;; such that

n—1
p,=¥ ol ;.
]=

Taking the inner product of p; with r; it is seen by
(5:3c) that

@i= '11I tz1), a;=0

i

(<.

Consequently, (5:2) holds and the theorem is estab-

lished.
Theorem 5:3.

the direction vectors p,, pi, . . .

The residual vectors ro, ry, . . . and
satisfy the further

relations

)"1}2‘1’1‘2 . .
(pi, py)= 2 ) (5:6a)

= b pac (1>>0)
(5:6b)
(r,Ar,)=0 li—j >1 (5:6¢)

(rieAri):(]’i,APz)T"bf—z(l)f—l»APi—x) (t>>0).
(5:6d)

The vector r, is shorter than p;.  The vector p; makes
an acute angle with p;.

The relations (5:6a) and (5:6b) follow readily from
(5:1e), (5:1f), (5:2), and (5:3). Using (5: 1f) and
(5:3d), we sce that
(ri,Ar)y=(r;,Ap)—b; +(r, Ap;_)=0 @<j—1).
Hence (5:6¢) holds. Equation (5:6d) is a conse-
quence of (5: 1f) and (5: 3b). The final statements
are interpretations of formula (5:6b) and (5:6a).

Theorem 5:4. The direction vectors py, p1, . . .
satisfy the relations
(5:7a)

= 15b)po—acApo

(1 >0).

. satisfy the relations

]’z‘—'rl:(1+b:>P;_aiL‘1]’z_bi—1Pt-1 (557}))

Similarly, the residuals ry, 7y, . .

ri=r,—ayAr, (5:8a)
rio=(1+b_ri—aAr,—bl_1rioy, (5:8h)
where
b= by, (5:9)
ai_
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Equation (5:7b) is obtained by eliminating ri,
and r; from the equations

])t+l:ri+l_j"bipi
oo =ri—idp;
])z:"i“%’bi—ll)i—l-

Equation (5:7a) follows similarly. 1In order to prove
(5:8b). climinate Ap; and Ap;_; from the equations

Fig1=r

_(l,’.‘l]),'

Api=Ari+b 1 Ap,

ry=ri—a; Ap .

Equation (a Sa) holds since py=rq.
Theorem 5:5.  The scalars a; and b; are given by the
several formulas

2

I,li.-
(pi.Apy

(pzv 1) e (Pn’"o)
(pz-APL) (PuAPz)

(5:10)

a;=

i e Ap) | Ceepdro
b= T T T o Ap) (5:11)

(pi.Apy)
The scalur a; satisfies the relation

1
"a‘;\—#(ro)ﬁ

(p)< <u(r) (>0), (3:12)
where u(z) 1s the Rayleigh quotient (4:12).  The recip-
rocal of ay lies between the smallest and larjest char-
acteristic roots of A.

The formula (5:10) follows from (5:1b) and (5:3¢),
while (5:11) follows from (5:1e), (5:1f), (5:3b), and
(5:3d). Since

Fop G Ar)> (e Ap)

by (5:6b) and (5:6d), we have

(pi~ Api)<(P,u Api)<(l'i. i‘lgl'f)

pil? it i

The inequalities (5:12) accordingly hold. The last
statement is immediate, since u(2) lies between the
smallest and largest characteristic roots of A.

6. Properties of the Estimates x; of A in the
cg-Method

Let now xg, o1, . . ., rn,=h be the estimates of A

obtained by applving the cg-method. Let r,, r,

., 7»=0 be the corresponding residuals and p,,

Pie « « . Pm—i the direction vectors used. The pres-

ent section will be devoted to the study of the prop-

erties of the points xy, x,, . Tm. As a first result
we have

flr)y=(h—r,A(h—r)

Theorem 6:1.

The estimates ay, ry, - -+, 2 0f h are
distinet.

The point 1, minimizes the errcr function
on the i-dimensional plane P,
passing through the poinls &4, 2y, - - -, r.  In the ith
slep of the cg-method. f(x) 1s diminished by the amount

ey SARCHY

Henee,
<.

(6:2)

'“f(c[z.):”i—l:rz—l}\z:#(pi—l)I'l'i—l_I
where u(z) (s the Rayleigh quotient (4:12).
_f(.l‘ib)-f(fj\):(l,-lnf‘{" ot

C gl
The point r, is given by the formulas

) — flx)

_10+Za,p*r0+2 o L. (6:3)
A

This result is essentially a restatement of theorem
4:3. The formula (6:3) follows from (5:2) and
(6:2). The second equation in (6:1) 1s readily
verified.

Theorem 6:2. Let S; be the convex closure of the
estimates xg, xy, - - -, z;.  The point x; s the point in
S, whose error vector h—zx is the shortest.

For a point 2 #r, in S, is expressible in the form

L=pdg e o oy,
where a, 20, ag+ay+- - - —a,=1.
We have accordingly
ri—r=opyle,—ry)+ - o (y—ri) = PPy

1

= - =Biapey,

where the g's are nonnegative. Inasmuch as all

(p,.pr) >0 it follows that

(x;—r, ry—2) >0 (<.

Using the relation

et P2y, i — ) e — 2t (60

i

we find that
(1<

y—eay <oy

Setting j=m, we obtain theorem 6:2.

Incidentally, we have established the
Corollary.  The point x;1s the point in S, nearest to

the point x; (7>1).
Theorem 6:3. Al each step of the cg-algorithm the

error veetor y;=h—ur; is reduced (n length. In faet

) f(l't)_"‘ f(‘rz 1)
wpi- 1)

I

‘ 0
Yoy T — Y =

(6:3)

where u(z) s the Rayleigh quotient (4:12).
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In order to establish (6:5) observe that, by (5:6a),

(yi-Ti—Ii—]>:(Im_Iiypl—l)ai-—l
=lapi.pi-)+- . -+am—x(pm—1~]71—1)]az’~1
. @D '?
=la;ri*+. . Fam it P
RETST

In view of (6:2) and (5:1b) this becomes

WAL
w(pi-1)

Wi ri—ri)= (6:6)

Setting x=r,, and j=m in (6:4), we obtain (6:5)
by the use of (6:6) and (6:1).

This result establishes the cg-method as a method
of successive approximations and justifies the pro-
cedure of stopping the algorithm before the final-
step is reached. If this is done, the estimate ob-
tained can be improved by using the results given
in the next two theorems.

Theorem 6:4. Let xily. - - -, xl? be the projec-
tions of the points x4, -, Zp=h in the -
dimensional plane P, passing through the points x,
oo -, xp The points x_y, 74 afis, - - -, XY lie
ona ez‘/azth line in the order given by their enumeration.
The point x (k>1) 1s given by the formulas

]'/:’ =J. 1+ Jﬂx 1)“"f%%( i“-l',‘-;), (678)
'I‘k X l+f(ll;)'_lf(JL Pi-1- (GTb)

In order to prove this result, it is sufficient to
establish (6:7). To this end observe first that the
vector
ey Pia (1z1)
rioy;
is orthogonal to cach of the vectors py, .

Pi '1111~ can be seen by forming the inner pmduct
\\'ith i (1<0), and using (5:6a). lee result 1s

r u \2

(Pz,])j)— = (]),, ])1_1)_ £

The pl'ojvcﬁon of the point

ry=1r;_ ~+(1k—ll)k—1

1 Fa o piaapit. .
in P; is accordingly

R (17-1f'f—1:;‘ . ‘f‘h llL—l:
r=riat Ty T

'1 1, - ]’i_].
Using (6:2). we obtain (6:7). The points lie in the
designated order, sinee f{r) > (rep).
Sinee f(r,,)=0, we have the first part of
Theorem 6:5.  The point
o far)

LS

L Pi (6:8)
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is the point in P, whose distance from the solution h is

the least. It lies on the line z,_1x; beyond z,. Moreover,
1 1 1
I - 6.9
RN AR (69
and

FE=G). 610

#(p1 l)

—r

th—ux,; 2=

In order to establish (6: Q) and 6:10) we use the
formula

flr+api_)=f(r) -+t (pirApiy),
w 111(11 holds for all values of a in view of the fact that

z; minimizes f(x) on P, Setting a=f(x)/lri_1"*
we have

flxy)?

zlrz—-;

f(ry)?

f(‘rl— )_ f(l

fa)= 1)+~

= )+

An algebraic reduction yields (6:9). Inasmuch as

e 2 e Y22 f(1'1) \P: 1-2
| B ‘ e 7', 1
— f('rl')? ai_13pi_1‘2
_f(fi—x)—,f(fi) :I‘l_,;'-’ ’

we obtain (6:10) from (6:9) and (5:1b).

As a further result we have

Theorem 6:6. Let 11, C 1 be the projections
of the points xy, . Xpoy ON thf 12nqmnmq /}((’ initial
point 2y to the solution ¥, =h.  The points xo, z;. . . .,
1. rmfh lie in the order of enumeration.

Thus, it is seen that we proceed towards the solu-
tion without oscillation. To prove this fact we neced

only observe that

<'rm—J‘nwri_ft‘—])z(‘l‘m_"‘Ovai-l-Pf—l)
m—1
=ai 20 a(p.pi-n>0
=
by (5:6a). A similar result holds for the line joining
ritox;(1<g).

Let =, be the (n—1i)-dimensional plfme through r;
conjugate 10 po. pry - - - Pior Tt consists of the set
of points r satisfving the equation

(Ap,r—ri=0 (j=01. .. . i—1).

This plane contains the points »,_y. o and hence
the solution k.

Theorem 6:7.  The gradient of the function f(r1 at r,
in the plane m; ix a scalar m u/t/pl( of the vector p..

The wm(hont of f(r) at r;1s the vector —r;. The
or adient q.of 7/(r) at r;in 7, is the orthogonal p) ojec-
tiou of —r;m tlm plzmo ;. Henee ¢; s of the form

([i:—/'i‘“a(>i1]ll.- ~““ax’~!¥1]'1—1,



where a, - .

to Ape. . . ., <py. Sinee
AL L
pe=rdt 20
=0 I

roa=r,—a,p; (j==01.. . .0—1},
it is seen upon elimination of ro. ry, . . .. ri_ succes-
sively that p, is also a linear combination of r,. Ap,.

. . ., Ap,_,. Inasmuch as p,is conjugate to p,, . . .,
pi_y, it s orthogonal to Ap,, . . .. Api_\. The vector

p, accordingly is a scalar multiple of the gradient g,
of f(x) at x; in =, as was to be proved.

In view of the result obtained in theorem 6:7 it is
seen that the name “method of conjugate gradients”
is an appropriate name for the method given in sec-
tion 3. In the first step the relaxation is made in the
direction p, of the gradient of f(x) at r, obtaining
a minimum value of f(x) at z,. Since the solution A
lies in m,, it is sufficient to restrict z to the plane .
Accordingly, in the next step, we relax in the direc-
tion p; of the gradient of f(x) in =, at 21, obtaining the
point r, at which f(r) is least. The problem is then
reduced to relaxing f(z) in the plane m,, conjugate to
po and p;. At the next step the gradient in r, in
is used, and so on. The dimensionality of the space in
which the relaxation is to take place is reduced by
unity at each step. Accordingly, after at most n
steps, the desired solution is attained.

7. Properties of the Estimates x; of h in the
cg-Method

In the cg-method there is a second set of estimates
To==Xo, T1, T2, . . . of h that can be computed, and
that are of significance in application to linear
syvstems arising from difference equations approxi-
mating boundaryv-valve problems. In these applica-
tions, the function defined by 7, is smoother than
that of r;, and from this point of view is a better
approximation of the solution A. The point 7; has
its residual proportional to the conjugate gradient p;.
The points Ty, i, Tz, - - . can be computed by the
iteration (7:2) given in the followine:

Theorem 7:1.  The conjugate gradient p,is expressible
in the form

pi=clk—AT,), (7:1)

where ¢; and T, are defined by the recursion formulas

co=1,¢;.1=1=+bic; (7:2a)
- - T+ b7 -
To= I Tiog=— LA AR R {(7:2b)
Cit
We have the relations
i 1 ;2
('ri:lr1:2 ‘f',,:‘plq (TSﬂ)
j=0"'j - ry

..ai_ are chosen so that ¢, is orthogonal |

Coe g
- z, .
T,=—"-> (7:3b)
Cy j:oll‘,z
- - 1 rotda o -
Fi=k—Ar=—p=""-23 (7:30)
i ¢ =iyt

The sum of the cocfficients of xo, 21, . . . a3t (730
(and henee of rory. . . ., ryin (713¢)) i unity.

The relation (7:1) can be established by induction.
It holds for i=0. If it holds for ¢, then

[71‘»1:7'1'»1":‘1)1[)1: (1 +b1ci)k“"1(f:+l+b1(‘i31)

:(’fJ.—l(k-'A; 1)

The formula (7:3a) follows from (7:2a), (5:1¢) and
(5:6b). Formula (7:3b) is an easy consequence of
(7:2b). To prove (7:3¢) one can use (5:2) or (7:3b).
as one wishes. The final statement is a consequence
of (7:3a).

Theorem 7:2. The point T, given by (7:2) lies in
the conver closure S; of the points xg, xy, - - -, x. [lis
the point r in the 1-dimensional plane P, through r,,
Ly, - - -, ryat which the squared residual (k—Ar® has
its minimum value. This minimum value is given by
the formula
i

o bt i

The squared residuals |ro®, 7{%, - - - diminish mono-
tonically during the cg-method. At the ith step the
squared residual is reduced by the amount
- - Fi?
7'i~1,2—=l’i‘2:*’a_1” .

(7:5

The first statement follows from (7:3b), since ihe
coefficients of xo, »y, - - -, x; are positive and have
unity as their sum. In order to show that the
squared residual has a minimum on P; at I,, observe
that a point r in P, differs from I, by a vector z; of
the form

T o e— !
r—I;=ZzZ;=agPe1 * * TPl

The residual r=k— Az is accordingly given by

":71"—4‘15,'
"1..::1: a04"1p0+ I 011-4:1])[_1.

Inasmuch as, by (7:3¢), 7.=p,’¢c;, we have

— 1. ..

(e App=_ (P Apy)=0 (j<{).
Consequently, (7;,.1z,)=0 and

=T A>T R (r=#71,).
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It follows that Z,; affords a proper minimum to 7 on
P, TUsing (7:3¢) and (7:3a) and the orthogonality
of r,'s, it 1s seen that the minimum value of r{* on
Pis given by (7:4). By (7:4) and (7:2a)

N

12
_ b 1;1) LA S

¢y C;

This completes the proof of theorem 7:1.
Theorem 7:3. The Rayleigh quotients of »o, 7,

.and Ty, Ty, . . . are connected by the formulas
#(ﬁ)_yi@ u{miy) -,
[ZE R (7:6a)
@}:EQL}_FS&}3+ ce(=1) “(rl‘{;. (7:6b)

T

TP )’ ol
The Rayleigh quotient of 7,(i>>0) is smaller than that
of ry, that is, p(7)<p(ry).

In order to prove this result we use (5:6d) and

obtaln

gri! ‘4ri):(piv 44pi>+(pi—lyApi—l)'

\rift fry [rioq?

Since |rt=|p/*7/* and p(p,)=u(7), this relation
vields (7:6a). The eq (7:6b) follows from (7:6a).
The last statement follows from (5:12).

In the applications to linear systems arising from
difference equations approximating boundary value
problems, u(r;) can be taken as a measure of the
smoothness of ;. The smaller u(r;) 1s, the smoother
x;1s. Hence T, is smoother than x;.

Theorem 7:4. At the point Z; the crror function
f(r) has the value

i—1 — f(r.
J@) = fla)+[7r 5y L=

i74

()
and we have

T <f@a<f(Zi).

The sequence f(Ty), (1), fF), . .
tonically. ] o )
In order to prove this result, it is convenient to set

(7:8)

. decreases mono-

=1
T 7P et by -.
b-,...l—_!—.““"'{’,_ - T":’ \}_ T (/.9)
rionT o Gy Ci
By (7:2) we have the relation
Ty=-2y==bi (T —10). (7:10)

Using the formula
Jo)=flr)=@—ri Alr—1)),
which holds for any 2 in Py, we see that

f(-;‘ll *_f("‘l\' :b;:—l(;LAI —J 4’1{71‘—1—"'1’ Iy

the propagation of the rounding-off errors.

that is,

@) —fr)=b [ F) —f@d]. (711
By (7:9) it is seen that this result can be put in the
form

RAED)

Tyt

f(IQ:f(Ix-—l)_'f(r i)

[ =T

5'"1;1‘4

_{._

i
iri-1i

Since Ty=1r, thi_s formula vields the desired relation
(7:7). Since b,_,<{1, it follows from (7:11) and
(7:7) that (7:8) holds. This proves the theorem.

Theorem 7:5. The error vector y;=h—mx, is shorter
than the error vector Y,=h—7;. Moreover, y, is shorter
than y,_;. '

The first statement follows from (7:2). It also
follows from theorem 6:2, since ¥ is in S,. By
(7:2) the point Z; lies in the line segment joining
T, to T;_;. The distance from h to 7, exceeds the
distance from A to 7;. It follows that as we move
from Z, to T,_, the distance from % is increased, as
was to be proved.

8. Propagation of Rounding-Off Errors in
the cg-Method

In this section we take as basic relations between

the vectors 7y, 7, - - - and po, pi, - - - in the cg-
method the following:
Po=To, (8]8)
|re|?

qQ;= UGN Slb
B0 A7) (B
rio=r—a;Ap, (8:1c)

Tl :
b= =t (8:1d)
Pi+1:7'i+1+bipi- (8:1e)

As a consequence, we have

g the orthogonality
relations

(7’,‘,/'};‘):0, (4’1pi.])k):0 (fl#k) (82)

Because of rounding-oftf errors during a numerical
calculation (routine), these relations will not he
satisfied exactly.  As the difference 'k —7' increases,
the error in (8:2) may increase so rapidly that o,
will not be as good an estimate of £ as desired.  Tlis
error can be lessened in two wavs: first, by intro-
ducing a subsidiary calculation to reduce rounding-
off errors; and second, by repeating the iteration so
as to obtain a new estimate.  This section will he
concerned with the first of these and with a study of
To thix
end 1t 1= convenient to divide the section in four parts,
the first of which ix the following:
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8.1. Basic propagation formulas

In this part we derive simple formulas showing
how errors in scalar products of the type

('li——hri)y (Ilpi—l,vpl') (83)

are propagated during the next step of the computa-
tion. From (8:1e) follows

(”t;"i+1)= (piyrid-l)—bi—l(pi—lvrifl)'
Inserting (8:1¢) in both terms on the right yields

(roric)=@urd)—a(puaAp) —bi(piyrd)
+bia. (Apipo).
Applying (8:le) to the first and third terms gives
(rare)=(rar) —a(poApd+binadpeipy), (8:4)
which by (8:1b) becomes
(rorg)=b._a.(Api1,pi). (8:5)

This is our first propagation formula.
Using (8:le) again,

(Apyp i) =Ap,ria)+b.(Ap,p.).

Inserting (7:1c) in the first term,

1 1 .
(APiypH—l): -4 }fi+1{2+af (royriz) -+ bi(APz-Pi)-

1

(8:6)
But in view of (8:1b) and (8:1d)
lroi|2=ad . (Ap:;p,). (8:7)
Therefore,
1
(Apf,PiH):E: (reyrigy)- (8:8)

This is our second propagation formula.
Putting (8:5) and (8:8) together]vields the third
and fourth propagation formulas

bi+lai

(rorip)=— (ri—y,rs) (8:9a)
a;y
(Apopi)=bi(Ap _p), (8:9b)
which can be written in the alternate form
Q‘:;J’.f:l\:ﬂ# ({'1—17(':) \ (8:10a)
Ty iy Ti-1”
(Api,pu_l)n__(i (Api1,p) (3:10b)

(Aps,ps) _ai-l (Api_,pi_y)

by virtue of (8:1b) and (8:1d). Each of these propa-
gation formulas, and in particular the simple formu-
las (8:9), can be used to check whether nonvanishing
products (8:3) are due to normal rounding-off errors
or to errors of the computer. The formulas (8:10)
have the following meaning. If we build the sym-
metric matrix P having the elements (Ap.py). the
left side of (8:10b) is the ratio of two consecutive
elements in the same line, one located in the main
diagonal and one on ite right hand side. - The
formula (8:10b) gives the change of this ratio as we
go down the main diagonal.

8.2. A Stability Condition

Even if the scalar products (8:2) are not all zero.
so that the vectors pq, py, -+, Pn—1 are not exactly
conjugate, we may use these vectors for solving
Az=Fk in the following way. The solution A may be
written in the form

h=xo+aspo+aipi+- - -+a, \pa . (8:11)

Taking the scalar product with .4p;, we obtain
(@0, Ap) +22 (Apipai= (b, Ap)) = (Ah,p;) = (k.p))

or

23 Apop)a= (ro.po). (8:12)

The system Ar=*%k may be replaced by this linear
system for @, - -,a.-,. Therefore, because of
rounding-off errors we have certainly not solved
the given system exactly, but we have reached a
more modest goal, namely, we have transformed the
given system into the system (8:12), which has a
dominating main diagonal if rounding-off errors have
not accumulated too fast. The cg-algorithm gives
an approximate solution

h,=1'0+a0p0+‘ . -+an_1pn_1. (8'13)
A comparison of (8:11) and (8:13) shows that the
number a; computed during the cg-process 1s an
approximate value of a;.

In order to have a dominating main diagonal in
the matrix of the system (8:12) the quotients

(Api,pr)

L Z ke
(Ap.p) (k)

(8:14)

must be small. In particular this must be true for
k=1i+1. In this special case we learn from (8:10b)
that increasing numbers @,, a,,- - - during the cg-
process lead to accumulation of rounding-off errors,
because then these quotients increase also. We
have accordingly the following stability condition.

The larger the ratios aja;.,, the more rapidiy the
rounding-off errors accumulate.

A more elaborate discussion of the general quotient
(8:14) gives essentially the same result.
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By theorem 5:5, the scalars ¢, lie on the range

<a<

)\mat ln

where Amin, Amax are the least and the largest eigen-
values of A.  Accordingly, the ratio p = Amnss/Amin 1S an
upper bound of the critical ratio a,/a,_;, which deter-
mines the stability of the process. When p is near
one, that is, when A is near a multiple of the identity,
the cg-method is relatively stable. It will be shown
in section 18 that examples can be constructed in
which the ratios a;a._, (=1, - . n—1) are any
set of preassigned positive numbers. Thus the
stability may be low. However, this instability can
be compensated to a certain extent by starting the
cg-process with a vector z, whose residual vector r,
is near to the eigenvector of A corresponding to Ampy.
In this event a, is near to the upper bound 1;Apm of
the a;. This result is brought out in the following
theorem:

For a given symmetric and positive definite matrix A,
which has distinct eigenvalues, there exists always an
initial residual vector ry such that (a./a;_;) <1 and hence
such that the algorithm is stable with respect to the
propagation of rounding-off errors.

In order to prove this we introduce the eigenvalues

)‘mln:)‘0<)‘l<)\2< o . <)\n—1:)\nu

of A, and we take the corresponding normalized
eigenvectors as a coordinate svstem. Let a, a, ...,
an—1 be real numbers not equal to zero and e a small
quantity. Then we start with a residual vector

ro="(ag,0n€,0:€% . . . ,0n_1€" 7). (8:14a)
| Expanding everything in a power series, one finds
that

ai=£-+ei(*). (8:14b)
1

Hence

= em<a

if € 1s small enough.

As a by-product of such a choice of ry we get by
(8:14b) approximations of the eigenvalues of A.
Morcover, it turns out that in this case the successive
residual-vectors rg, 74, ..., 7,_, are approximations of
the eigenvectors.

These results suggest the following rule:

The cg-process should start with a smooth residual
distribution, that is, one for which p(ry) is close to .
If needed, the first estimate can be smoothed by some
relaxation process.

Of course, we may use for this preparing relaxation
the cg-process itself, computing the cestimates 7,
given in section 7. A simpler method is to modify
the cg-process by setting b,=0 so that p,=r, and
seleeting a; of the form a;=a 'u(r), where a is a
small constant in the range 0 a<{1.

421

8.3. The End-Correction

The system (8:12) can be solved by ordinary re-
laxation processes. Introducing the numbers a, as
approximations of the solutions a;, we get the resid-

uals
Z(Apupk)ak (8:15)

rprz

Inasmuch as ro=r;,+acdp,+. .
we have

Aa;Ap; by (8:1¢),

avo(Api,po){ cFaApip). (8:16)

It follows that the residual (8:15) isTeduced to

(re,p)=01,p)+

(4‘1P1-Pi+1)0 1 (Apivp1+-z)(11+2'—‘ R
(8:17)

(7'1+1~pf)'—
- ("1p1vpn—-l)an—1-

This leads to the correction of a;

1
Aa= (Ap.p) {(rigy,p)—(Apa,pis )iz,

_(Api~pi+2)ai+2_ T (A’ll’i,l)n—l)an—1 (8: 18)

A first approximation of ¢; is accordingly
a; ~a;+Aa,.
In order to discuss this result, suppose that the

numbers a; have been computed accordingly to
the formula

(pi,ry)
a;=—""— (8:19)
(p:,Ap0)
(theorem 5:5). From (8:1¢) it follows that

(riz1po=0. and therefore this term drops out in
(8:18). In this case the correction Aa; depends
only on the products (Ap.py) with ¢<k. That is
to sav, that this correction is influenced only by the
rounding-off errors after the -th step. If, for
instance, the rounding-off errors in the last 10 steps
of a cg-process are small enough to be neglected.
the last 10 values a; need not to be corrected. Hence,
generally, the Aa; decrease rather rapidly.

From (8:18) we learn that in order to have a good
rounding-off behavior, it is not only necessary to
keep the products (pk.;lp,) (1 k) small, but also to
satisfy (r.p)=0 as well as possible. Therefore.
it may be better to compute the a; from the formulas
(8:19) rather than from (8:1b). We see this im-
mediately. if we compare (8:19) with (8:1b): by
(8:19) and (S:1e) we have

1 ‘ ,
i ,
qi=—=-——-— - rs b'_, (r'.l")"
1 (1)1_'[1])1){.1,’*— i 1\171 1/
For ill-conditioned matrices, where a, and b; may
become considerably larger than 1, the omitting
of the second summand may cause additional errors.
For the same reason, it is at least as important in



these cases to use formula (3:2b) rather than (8:1d)
for determining b, since by (3:2b) and (8:1¢)

1 . |
bi= {1 =Py
i ai(])t'-fipi)k‘ P41, ( i+1y 1))

Here the second summand is not directly made
zero by any of the two sets of formulas for a; and
b, The only orthogonality relations. which are
directly fulfilled in the scope of exactitude of the
numerical computation by the choice of a; and b,,
are the following:

(repu,p) =0, (Pir,Ap)=0.

Therefore, we have to represent (ryq,r;) in terms

of these scalar products:

(7'1'+1,~"i)= ("i+1,Pi)—bf—x("ivpt-l)+a:bi—1(Piy4‘1pz—1)'

From this expression we see that for large b; and a,
the second and third terms may cause considerable
rounding-off errors, which affect also the relation
(Pis1,Ap:) =0, if we use formula (8:1d) for b.. This
is confirmed by our numerical experiments (sec-
tion 19).

From a practical point of view, the following
formula is more advantageous because it avoids the
computation of all the products (Apyps). F¥rom
(8:1¢) follows

rn:rt+1'—ai+1APt+l—at+2Ap(+2— cee = Apay

(ra,po) = (Te1,p4) — a1 (ApiPin1)
e e '”avn+1<4‘1p;,pn._1).
and we have the result

— (rnapi) .
(Api)pl)
This formula gives corrections of the a, if, because

of rounding-off errors, the residual 7, is not small
enough.

Aa; (8:20)

8.4. Refinement of the cg—algorithm

In order to diminish rounding-off errors in the
orthogonality of the residuals r; we refine our general
routine (8:1). After the ith step in the routine we
compute (Ap;_;,p:), which should be small. Going
then to the (141)st step we replace a; by a slightly
different quantity @, chosen so that (r;r.)=0. In
order to perform this, we may use (8:4), which now
must be written

(roripn) =g —@:(Apip)+bi1a:(Api_,p) =0

vielding
Ik .
(Api,p)—bii(Api_1.py)

E,=

Introducing the correction factor

N (4‘1171‘:_&@
di=1=biy (Apip)

(S:21)

and taking into account the old value (8:1b) of a,,
this can be written in the form

- a;
a;=-" 822

=, (8:22)
Continuing in the general routine of the (t+1)st step
we replace b; by a number b, in such a way that
(Apipis)=0. We use (8:6), which now must be
written in the form

- 1"(+1§2+ (ror i) ’JT_Eizi("lpi)pi) =0.

The term (r;ry.) vanishes by virtue of our choice
of @;. Using (8:7), we see that a;b,=a.b, and from
(8:22) _
b,=bd.. (8:23)

Since rounding-off errors occur again, this sub-
routine can be used in the same way to improve the
results in the (14 1)th step.

The corrections just described can be incorporated
automatically in the general routine by replacing the
formulas (3:1) by the following refinement:

po=ro=k—Ax,, do=1
p it 1
F(py, Apo) s
Ty =2x;+ap;
Feo=ri—a;Ap; (8:24)
b="t1" g
=
Pisi=rintbips
(Apis1, P9

d + :1“b1
= (APiyy, Pis1)

Another quite obvious, but numerically more
laborious method of refinement goes along the
following lines. After finishing the ith step, compute
a product of the type (Ap;py) with £<i. Then
replace p; by

- (Apup) ]
i—Pi— < Pk- S:25)

P (A pi, pi) ¢ (
The vector p; is exactly conjugate to p,. This
method may be used in place of (8:24) in case
k=i—1. It has the disadvantage that a vector must
be corrected and not just numbers, as in (8:24).
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9. Modifications of the cg-Process

, In the cg-method given by (3:1), the lengths of the
vectors pg, p1, . . . are at our disposal. In order to
preserve significant figures in computations, it is
desirable to have all the p, of about the same magni-
tude. In order to aim at this goal, we normalized
the p’s by the formulas

(1>0)-

However other normalizations can be made. In
order to see how this normalization appears, we
replace p; by dip; in eq (3:1), where d; is a scalar
factor. This factor d, is not the same as that given
in section 8 but plays a similar role. The result is

DPo="Ty, pi:ri+bi—1pi~l

7
ro=k—Aur,, pozd—o
0
-Ti+1:l“1+azpi
7',;+1=7'1;—a1‘[1pi
Tt bips
pi+1:“—+:i_ 2P (9:1)
i+1
IriP __(payry)

" Apid T @y Ap)
b :!’”wllzdi:_("wnAPi).
! l Tii2 (pi:Api)

The connections between a,, b, d; are given by the
equation

dy
#(’"o)—ao"‘
e iy i di : :
#(”)—ai‘—ai—l_]rz—llz ai ('L>O); (92)
where () 1s the Rayleigh quotient (4:12). In order

to establish these relations we use the fact that 7,
and r,, are orthogonal. This yields

iril2:ai(rt‘)11pi)
(+20)
[7'1'+1l2: —ai(r1+1)‘4pi)

by virtue of the formula ro,=r,—a;Ap,. From the

connection between p; and r;, we find that

d
5‘{_ [rilf=d(r,Apy)
:(rz‘,Ari)'Jrbx‘-l("i;APi-l)

=(r1~,Ar,-)—% r

Ip |2
ira
i~-1
This yields (9:2) in case 1>>0. The formula, when
1=0, follows similarly.
In the formulas (9:1) the scalar factor d; is an

arbitrary positive number determining the length of
py. The case dy=1 is discussed in sections 3 and 5. |
The following cases are of interest.

2274100 52 5

1. The vector p; can .be chosen 1o be the residual
veelor 74 described in section 7.
In this event we select

d():l, di+1:1+bi. (9'3)
The formula (7:2b) for 7,4, becomes
51+1=1£~1+bixi_ (9:4)

1+ b,
II. The vector p; can be chosen so that the formula

Ty

|7f2

i
D=2,

j=0
holds.
In this event the basic formulas (9:1) take the
simple form

ro=k— Az, P0=W§
Ii+x=11+(p Zj‘iip)
4 (9:5)
7'1+1=7't—‘—“‘(p‘ g;):)
r
p,_l_l:pz._}_Ir:-lllz.

This result is obtained from (9:1) by choosing
dt:}7'1]2.

In this case the formulas (9:5) are very simple and
are particularly adaptable to computation. It hag
the disadvantage that the vectors p; may grow con-
siderably in length, as can be seen from the relations

1
lpf+l|2=fpi}2+**;r 2
17 i4+1

However, if ‘““floating” operations are used, this
should present no difficulty.

III. The vector p; can be chosen to be the correction
to be added to x, in the (1-+1)st relazation.

In this event, a;=1 and the formulas (9:1) take
the form

ro=hk—Ar Do=—"0
0 [1}] Do do
$t+1=1i+pt
Tt+1=7'i—'APi
(9:6)
Y =Ti+1+br]7i
i+l di-H
do=pulry), disy=p0ris)— b,
. 12
b‘: ,l"}l.,l* d[.
.rl,-
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These relations are oblained from (9:1y and (9:2) by
setting a;=1.

IV, The rector p,can be chosen so that a;is the recip-
roeal of the Rayleigh quotient of r,.

The formulas for a;, b; and ; in (9:1) then become

a=—
Co(ry )
21“;
bz_’il"‘_) [L
i
b.a;
do=1, di+1:1’“*';l*lj~1'
i

This is sufficient to indicate the variety of choices
that can be made for the scalar factor ., d,
For purposes of computation the choice d, =1 appears
to be the simplest, all things considered.

10. Extensions of the cg-Method

In the preceding pages we have assumed that the
matrix .1 i1s a positive definite symmetric matrix.
The algorithm (3:1) still holds when .1 is nonnegative
and symmetric. The routine will terminate when
one of the following situations is met:

(1) The residual r, is zero. In thisevent r, is
a solution of Aa=1k, and the problem i3 solved.

(2) The residual », is different ifrom zero but
(Apnupn)=0, and henece Ap,=0. Since py=ci7y.
it follows that .17, =0, where 7, is the restdual of the
vector £, defined in section 7. The point Zz, is
accordingly a point at which £—.1r? attains its

minimum. In other words, 7, is a least-square
solution. One should observe that p,#0 (and hence

7n#=0). Otherwise, we would have r,=—b,_,pn_1,
contrary to the fact that r, is orthogonal to p, ..
The point &, fails to minimize the function
g(l‘): (.1',441)“2(]{}.1'),
for in this event
J@ o+ 1t0n)=9(xn)—2tr, %

In fact, g(a) fails to have a minimum value.

It remains to consider the case when .1 is a general
nonsingular matrix. In this event we observe that
the matrix A*A4 is symmetric and that the system
Ar=Fk is equivalent to the svstem

A*Ar=A*k. (10:1)

Applying the eq (3:1) to this last system, we obtain
the following iteration,

ro=k— Axr,, Po= A*r,

a.-—lA*r",i?
tolApst

Tip =X a.p;

(10:2)
7’i+1:7“i—aiflpi
b:'ﬁlﬁmti

i 1A*ril2

Pini=A%ri+bip.

If one does not wish to use any properties of the
cg-method in the computation of a; and b, besides
the defining relations, since they mayv be disturbed
by rounding-off errors, one should use the formulas

o)

(; Ty

Ap?

_Cpy A ),
| pe?

b=

In this case the ervor function f(2) i1s the function

flr)= k—.1r? and hence is the squared residual,

It is a simple matter to interpret the results given
above for this new system.

Tt should be emphasized that, even though the use
of the svstem (10:2) is equivalent from a theoretical
point of view to applving the cg-algorithm to the
system (10:1), the two methods are not equivalent
from a numerical point of view. This follows because
rounding-off errors in the two methods are not the
same. The system (10:2) is the better of the two,
beeause at all times one uses the original matrix .1
instead of the computed matrix A*1, which will
contain rounding-oft errors.

There is a slight generalization of the system (10:2)
that is worthy of note. This generalization consists
of selecting a matrix B such that B is positive defi-
nite and symmetric. The matrix B is necessarily of
the form A*H, where H is positive definite and
svimmetric. We can apply the eg-algorithm to the
system

BAr=DBk. (10:3)
In place of (10:2) one obtains the algorithm
ro=k—.Aur,, po=Bry,
g Bt
L—(PnBAPi)’
T =1I;+apy,
(10:4)
rig=r;—a;Ap;,
IBr,.|?

pi+1:B"i+1+ bipi~

Again the formulas for @, and b,;, which are given
directly by the defining relations, are

g — Lo Br)
" (py, BApy)

p— (Brie, BAp)
! (pi,BAp))

When B=_.4%* this system reduces to (10:2). If .1
is symmetric and positive definite, the choict B=1
gives the original cg-algorithm.
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There is a generalization of the cd-algorithm con-

cerning which a few remarks should be made. In

this method we select vectors py, . . ., Pn_1 and
4o, +*. ., ¢n_: such that

(qi)‘4pj):0 (l;é.])r .

(10:53)

(qi.’"i])j)>o'

The solution can be obtained by the recursion for-
mulas
ro=k—.Axr,

__(qiv_ri) . (qivr())

ai—(‘li;ﬂlpi)—(%,ﬂpij’

Tip1=;1a;py,

(10:6)

7'1'_;_1:7’1'—(1,4‘1171'.

The problem is then reduced to finding the vectors
P g such that (10:5) holds. We shall show in a
moment that g, is of the form

g.=B*p,, (10:7)
where B has the property that BA is symmetric and
positive definite. The algorithm (10:6) is accordingly
equivalent to applying the cd-algorithm to (10:3).
To sce that ¢; 1s of the form (10:7), let P be the
maltrix whose column vectors are py, . . ., p,-, and )
be the matrix whose column vectors are g, . . ., Gn_1.
The condition (10:5) is equivalent to the statement
that the matrix D=0*4P is a diagonal matrix whose
diagonal terms are positive. Select B so that
(=B*P. Then D=P*B.AP from which we conclude
that B.lis a positive definite symmetric matrix, as
was to be proved.

In view of the results just obtained, we sce that
the algorithm (10:4) is the most general cg-alyorithm
Jor any linear system. Similarly, the most general
cd-algorithm is obtained: by (i) selecting a matrix
B such that BA is symmetric and positive definite,
(i1) sclecting nonzero vectors po, . . ., p._, such that

(i)

and (ii1), using the recursion formulas

(pi,BAp;) =0,

7‘0211”—‘4.)”0

— (Pz:»B"o)

Y (00 BAp) " (o BAp)

ria=r;4+ap;

rig=ri—a;Ap,.

11.  Construction of Mutually Conjugate

Systems

As was remarked in section 4 the ed-method is not |
complete until a method of constructing a set of !
mutually conjugate veetors p,. py, has been |

given. In the cg-method the choice of the vector
p: depended on the result obtained in the previous
step. The vectors p,, p1, . . . are accordingly deter-
mined by the starting point z, and vary with the
point z,.

Assume again that A is a positive definite, sym-
metric matrix. In a cd-method the vectors Do,
Pu, - . . can be chosen to be independent of the
starting point. This can be done, for example, by
starting with a set of n linearly independent vectors
Ug, U, . . ., U1 and constructing conjugate vectors
by a successive A-orthogeonalization process. For
example, we may use the formulas

])0:u01
Di=

Uy — ajo Py,

p2=u3—a20p0—a31p], (11 .])

PDi=ui—appy—agpr—. .

s Qi

The coefficient a;;(i>>]) is to be chosen so that pils
conjugate to p,. The formula for a,; is evidently

(e Apy) > N
S dpy IS (11:2)
Observe that
(pa,cluy) =0 (j<<1)
woAu)=(p,Ap). (11:3)
Using (11:3) we sce that alternately
(Au,p,)
a= g 11:4
s (Auy,p)) ( )

As deseribed in section 4, the successive estimates
the solution are given by the recursion formula

of

Zo=0, Tipr=aiHap,, (11:5)
where
(p:i, k)
= 11:
oA p) (11:6)

There is a second method of computing the
vectors po, pi, . . ., pacy, given by the recursion

formulas
U =u, (11:7a)
pi=u", (11:7b)
wH = —aypy, (=Jj+1. .. .m0 (11:7¢)
A N ~
a""_‘@,,xl.u) (> (11:7d)
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We have the relations (11:3) and,

(u® Aup)=0  (G<k) (11:8a)
(w?,Ap;))=0 (G<k) (11:8b)

u® =u—agpo—. . .—aimiPi-1 (2>7) (11:8¢)
(puAp)=0  ({#)). (11:8d)

The eq (11:8a) hold when k=j41 by virtue of
(11:7¢) and (11:7d). That they hold for other
values of j<k follows by induction. KEquation
(11:8¢) follows from (11:7¢).

If one selects successively wuy=ry, w=ry, . . .,
Un-1=Ta_1, the procedure just described is equivalent
to the cg-method deseribed in section 3, in the sense
that the same estimates ro, a, . . . and the same
direction vectors po, pi, . . . are obtained. If
one selects wug=Fk, wy=Ak, . . ., Uy_;=A""'k, one
again obtains the same estimates o, 2, . . . a8 in
the cg-method with 2,=0. However in this event
the vectors po, pi, . . . are multiplied by nonzero
scalar factors. Op the other hand if one selects
'IIO:(l,O,. . .,O), 1[1:(0,1, PR .,0), o ey 'u,,_1:(0,
.. .,0,1) the cd-method is equivalent to the Gauss
elimination method. This case will be discussed in
the next section.

12. Connections With the Gauss Elimina-
tion Method 2

In the present section it will be convenient to
use the range 1, . . ., nin place of 0, 1, . . ., n—1
used heretofore, except for the notations xo, 7, . . .,
z, describing the successive estimates of the solution.

Let e, . . ., e, be the unit vectors (1,0, .. .,0),
0,1,0,. . .0), .. . (0. . .0,1). These vectors
will play the role of the vectors up, . . ., U,y of

section 11. The eq (11:7), together with (11:4) and
(11:5), yield the recursion formulas

uP=e¢, (i=1,...n) (12:1a)

pi=u® (12:1b)

uf Y =u® —ayp; (i=7+1,. . ,n) (12:1c)
(Auf,e))

=S 12:1d

o (Aphej) ( )

7,=0, Ty=T4e1+C:P: (12:1e)

— (pek) (12:1f)

ai_(APi;ei)

These formulas generate mutually conjugate vectors
D1, - - . Pn and corresponding estimates x;, . . ., Za
of the solution of Az=k. In particular r, is the
desired solution. The advantage of this method
lies in the ease with which the inrer products appear-

L 2 ¢f. Fox, Huskey, and Wilkinson, loc. cit.

ing in (12:1d) and (12:1f) can be computed. A
systematic scheme for carrying out the computations
will now be given. The scheme is that commonly
used in elimination. In the presentation that we
now give, extrancous entries will be kept so as to
give the reader a clear picture of the results obtained.

We begin by writing the matrices A, I and the
vector k as a single matrix

ay dy dg ayn 1 00 . 0 Kk
Ay Gp dxn @G, 010 ... 0 k
a3 Q32 A3 a, 0 01
(12:2)
0
ni Qnz An3 s 0 ... 0 1 k,

The vector p; is the vector (1,0,...,0), and a,=
ky/ay; is defined by (12:1f). Hence,

)

Observe also that

ky
n=ap=({— 0,..
! . (au ’
is our first estimate.

—_

a“=au
Multiplying the first row by a; and subtracting the
result from the ith row (=2, - - - ,n), we obtain the
new matrix

Ay Q2 Ay Ayn P Din ky
2) () 2 L (@
0 a% sy asy) P2t Pon kE®
@ () 2) 2 @ .
0 af ap ... af, ugy Ugy k%
@ @ @ @ 2 (2
0 a n2 a n3 ann unl /U/:m) A (n>
(12:3)

One should observe that (0,k?,...,k?) is the residual
of . By the procedure just described the ith row
(i>1) of the identity matrix has been replaced by
u®, the second row yielding the vector p,=u%. Ob-
serve also that

af =(Au?,e)

afy =(Apael), kG =(py,k).

Hence,
2

2
Iy=1T1+ 5P
@ 22

is the next estimate of the solution. Moreover,
a? .
a,-2=—~('2, (?/:3, .,’n).
. a3y
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Next multiply the 2nd row of (12:3) by a, and sub-

tract the result from the ith row (:=3,.--,n). We ob-
tam
r'd
an a2 Gz Qyn Pn Din ks
0 a? ap ag? P Dan k®
0 0 af as) Pa Dian kg
3) 3} (3) 3) . ‘30
0 0 af . a; us us k3
3) 3). 3) (3) . (3
0 O al ... af® w3 u® ke,

The vector (0,0,k%,...,k®) is the residual of z..
The elements ©%,. .. 4 form the vector u® (1=3)
and p;=u¥. We have

af=Au?, e) (1=3,.. LT

3 2 (3) o
a's(:z = ‘41)3) eS)r ]‘ 3 ”‘(pB: A’)
We have accordingly
k(S}
I3= 12"{”% P,
33
and
aly .
a3 ".3\ (2:4, . .,71)
as

Proceeding in this manner, we finally obtain a matrix
of the form

a;; Q2 dyg A1n Pu Prn ki
0 az; ai g D2 DPan k&
3) 3 !
0 0 as; as Par - Pan k®
. { .

0 O O a,i"f pnl pnn kén)
(12:4)

The elements py, + - -, pix define a vector p;. The

-, pn are the mutually conjugate

vectors py, N l
t cach

vectors defined by the iteration (12:1).
stage

ai(::):(pi;//lpi)y ki«):(piy k):(pirri)'

Moreover the estimate 2; of the solution & is given
by the formula

k_\i)

1
T;‘:Ir-l""*—(,, D
a;

The vector 0, - + -, 0, a7, - - -, @ defined by the

first 7 elements in the ¢th row of (12:4) 1s the vector :
If we denote by P the matrix whose column |

Apa

‘, Pa, then the matrix (12:4)
P*E||.

vectors are pi, ps, - -
is the matrix
IP*4 P*

The matrices P*A and P are triangular matrices
with zeros below the diagonal. The matrix D=P*AP
is the diagonal matrix whose diagonal elements are
ai, a3, . . ., a). The determinant of Pisunity and
the determinant of A is the product

auaég?.‘ . e G,E’;‘).
As was seen in section 4, if we let

.f(x) = (h—x7‘4(h_1))1

the sequence

.f<:(:0)vf(xl): [ '1.f(Tn—l)7j(In)=0

decreases monotonically. No general statement
can be made for the sequence
!yOE:!ylly .o ')}yn—l}sl!ynlzo

of lengths of the error vectors yy=h—z,. In fact,
we shall show that this sequence can increase mono-
tonically, except for the last step. A situation of
this type cannot arise when the cg-process is used.

If A is nonsymmetric, the interpretation given
above must be modified somewhat. An analysis of
the method will show that one finds implicitly two
triangular matrices P and @ such that Q*4P is a
diagonal matrix. To carry out this process, it may
be necessary to interchange rows of 4. By virtue
of the remarks in section 10, the matrix @* 1s of the
form B*P. The general procedure is therefore equiv-
alent to application of the above process to the sys-
tem (10:3).

13. An Example

In the cg-method the estimates 4,2, . . . of the solu-
tion k of Ar=Fk have the property that the error
veetors Yo=h—a,, y1=h—ux;, . . . are decreased in
length at ecach step. This property i1s not enjoved
by every cd-method. In this section we construct
an example such that, for the estimates 2,=0,7,, . .
of the climination method,

}}4—11'—11<[h_1'i:

"y

(
If the order of elimination is changed, this property
may not be preserved.

The example we shall give is geometrical instead
of numerical. Start with an (n—1)-dimensional
ellipsoid E, with center #,=h and with axes of un-
equal length. Draw a chord €, through z2,. which
is not orthogonal to an axis of £,. Seclect a point
Saoy#r, on this chord inside I, and pass a hyper-
plane P,_; through r,_, conjugate to C,. that is,
parallel to the plane determined by the midpoints
of the chords of I, parallel to €,.  Let ¢, be a unit
vector normal to .-, It i1s elear that e, is not

1, ...n—1).
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parallel to (. The plane P,_; can be shown to cut
E, in an (n—2)-dimensional ellipsoid F,_; with cen-
ter at 2,-, and with axes of unequal length.

Next draw a chord (', of F,_, through.,_; which
is not orthogonal to an axis of F,_;, and which is not
perpendicular to A—r,_1. One can then select a
point x£,_; on (',_; which is nearer to A thanr,_,. et
P._, be the hyperplane through r,_, conjugate to
(', . Tt intersects If,_; in an (n—3)-dimensional
ellipsoid F,_, with center at r,_». The axes of £, _.
can be shown to be of unequal lengths.  Let ¢, be
a unit veetor in P,_, perpendicular to P,_,.

We now repeat the construction made in the last
paragraph. Seleet a chord -, of FE,_, through
r._» that is not orthogonal to an axis of F,_, and that
is not perpendicular to h—rx,_». Select r,_3 0on (',
nearer to A than r,_,, and let P,_; be a plane through
r,_3 conjugate to (", It cuts E,» in an (n—4)-
dimensional ellipsoid E,_; with center at r,_; with
axes of unequal lengths.  Let e,_, be a unit veetor in
P._. and P,_, perpendicular to P,_;. Clearly, ¢,
€u-1, €n-» are mutually perpendicular.

Proceeding in this manner, we can construct

(1) Chords (', C_y, . . ., €, which are mutually
conjugate.

(2) Planes P,_,, . . .. P, such that P, is conjugate
to ( z=;. The chords (', . . ., (; lie in Py.

(3) The intersection of the planes P,_,. . . .. Py,
which cuts E, in a (k—1)-dimensional ellipsoid £
with center ry.

(4) The point r;, which is closer to A than r.,,
i<n—1.

(5) The unit vectors e,. . . ., €, ¢, (with ¢; 1 the
direction of (), which are mutually orthogonal.

Let r be an arbitrary point on ¢ that is neaver to
h than r,;. Sclect a coordinate system with x, as the
origin and with ¢,, . . ., ¢, as the axes. In this co-
ordinate system the elimination method described
in the last section will yield as successive estimates
the points x;, . . ., r, described above. These esti-
mates have the property that r; is closer to x,=h
than r;, if i<n—1.

As a consequence of the construction just made we
see that, given a set of mutually conjugate vectors
P, . - ., pn and a starting point x,. one can always
choose a coordinate system such that the elimination
method will generate the vectors py, . . ., p, (apart
from scalar factors) and will generate the same esti-
matesax, . . ., r,of b as the ed-method determined by
these data. One needs only to select the origin at
r,, the vector e, parallel to p;, the vector e; in the
plane of p, and p, and perpendicular to ey, the vector
e; in the plane of py. ps, ps and perpendicular to ¢,
and e,, and so on. This result may have no practi-
cale value, but it does serve to clarify the relation-
ship between the elimination method and the eod-
method, and also the relationship between the
elimination method and the cg-method.

14. A Duality Between Orthogonal Poly-
nomials and n-Dimensional Geometry

The method of conjugate gradients is related to
the theory of orthogonal polynomials and to con-
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tinued fraction expansions.  To develop this. we
first study connections between orthogonal poly-
nomials and n-dimensional geometry. ’

Let m(\) be a nonnegative and nondecreasing
funetion on the interval 0N The (Riemann)
Sticeltjes integral

3y
J FN)dm(N)
0

then exists for any continuous function f(\) on
0< ALl We call m(N) a mass distribution on the
positive -axis. The following two cases must he
distinguished.

(a) The function m(\) has infinitely many points
of increase on 0< AL

(b) There are only a finite number n of points of
increase. In both cases we may construct by
orthogonalization of the successive powers 1, X, N2,

., A a set of n+1 orthogonal polynomials 3

Ry(\).Ri(N), - - - R.(N) (14:1)
with respect to the mass distribution. One has
]
ﬁ) ROVBONAmMO)=0  (ik)  (14:2)

The polynomial R,(\) is of degree ¢. In case (b)),
R.,(\) is a polyvnomial of degree n having its zeros at
the n points of increase of m(\). In both cases the
zeros of cach of the polynomials (14:1) are real and

distinct and located inside the interval (0,0). Hence
we may normalize the polynomials so that
R,(0)=1 (1=1, . ). (14:3)

The polynomials (14:1) are then uniquely determined
by the mass distribution.

During the following investigations we use the
Gauss mechanical quadrature as a basic tool. It can
be deseribed as follows: If Ay, -\, denote the
zeros of R,(\), there exist positive weight coefficients
my, Ma, ..m, such that,

(Ol[?()\)(lm()\): miBON) - m R\ +. . . +m,R(N\,)
- (14:4)

whenever BR(\) is a polvnomial of degree at most
2n—1. In the special case b) the A, are the abscissas
where m(\) jumps and the m; the corresponding
jump.

In order to establish the duality mentioned in the
title of this section, we construct a positive definite
matrix .1 having A, A, .. A\, as cigenvalues (for

instance, the diagonal matrix having A, - - -, \, in
the main diagonal and zeros elsewhere). Further-
more, if ¢, €, - - -, e, are the normalized eigen-

vectors of A, we introduce the vector

I‘0=a1€1+a262+ e TRy, (145)

13 The various properties of orthogonal polynomials used in this chapter may be
found in (. Szegd, Orthogonal Polynomials, American Mathematical Society
Colloquium Publications 23 (1939).




where
al=in, (i=1, - . ). (14:6)
_We then have
Afry=ahFe +aNFe -+ - - +a, N\t e, (14:7)

for k=0,1, - - -, n—1. The vectors ro,Ary, - - ;
A" g are linearly independent and will be used as a
coordinate system. Indeed their determinant is up
to the factor eyas - - - a, Van der Monde’s determi-
nant of A, - - - \,. By the correspondence
M=k, k=0,1, - + - n—1) (14:8)

every polynomial of marimal degree n—1 is mapped
onto a vector of the n-dimensional space and a one-
one correspondence between these polynomials and
vectors is established. The correspondence has the
following properties:

Theorem 14:1. Let the space of polynomials R(N)
of degree <n—1 be metrized by the norm

'R :[.f;ll? (\2dm (k)] .

Then the corvespondence described above is isometrie,
that is,

i

!
f ROVE N dm (N =(r, 7).
JO

where (N), I7(N) are the polynomials corresponding
lorand .

Tt is sufficient to prove this for the powers 1, A
N, L, AL Let M, M be two of these powers,
From Gauss’ formula (14:4) follows

1 2
[ MNEdm ()\):j; NI m ()
Jo

=N MmN T L L fm Nt
But (14:5), (14:6), and (14:7) show that this is
exactly the scalar product (A% of the cor-
responding vectors.

Theorem 14:2.  Let the space of polynomials )
of degree <n—1 be metrized by the norm

1

[. ﬁ ‘IO (x)]g.

Then for polynomials RN, I’ (N) correxpiuding o
rp’ one has

1
f ROV (N Ndm (N=(Ar, 1), (14:9)
JO

that is, the corvespondence is isomitric with respeet to
the weight funetion Nim(N) and the metrice, determined
by the matrie A.

Again we may restrict ourselves to the powers

1, A, . AL That is, we must show that
:
f NEIN D m (N = (A4 g, A¥rg) (G, k<n—1).
0
(14:10)
If j<<n—1, this has already been verified. The

remaining case

l
f NN ()= (A, AMr) (R <n—1) (14:11)
¢

follows in the same manner from Gauss’ integration
formula, since n+k<2n—1.

Theorem 14:3. Let A be a positive definite sym-
metric matrir with distinet eigenvalues and let ry be a
vector that is not perpendicular to an eigenvector of A.
There is a mass distribution m(\) related {0 A as
described abore.

In order to prove this result let ¢, . . . €, be
the normalized eigenvectors of A and lot A, .,
A, be the corresponding (positive) eigenvalues, The
vector ry1s expressible in the form (14:5). According
to our assumption no e, vanishes. The desired mass
distribution can be constructed as a step function
that is constant on each of the intervals 0NN <
<+« <M<, and having a jump at X, of the amount
my=a; >0, the number I being any number greater
than \,.

We want to emphasize the following property of
our correspondence. If A and r, are given, we are
able to establish the corredence without computing
eigenvalues of A, This follows immediately from the
basic relation (14:8). Moreover, we are able to com-
pute integrals of the type

f ROV ) dm V), f’n ) B O M (V).
0 0

(14:12)

where R, R’ are polynomials of maximal degree
n—1 without constructing the mass distribution.
Indeed. the integrals are equal to the corresponding
scalar products (r,r"), (Ar,7’") of the corresponding
vectors, by virtue of theorems 14:1 and 14:2. Finally,
the same 1s true for the construction of the orthog-
onal polyvnomials 22,(\), R,(\), . . ., R,(\) because
the construction only involves the computation of
integrals of the type (14:12). The corresponding
veetors ro, ryyoo. Py budld an orthogonal basis in
the Euelidian n-space.

15.  An Algorithm for Orthogonalization

In order to obtain the orthogonalization of poly-
nomials, the following method can be used.  For
any three consecutive orthogonal polynomials the
recurrence relation holds:

Il)(+1(x): (f/f*(lix) Il),()\) _(',Il)j,l(x) ll)(): 1, (’():0,

(15:1)
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where a;, ¢, d; are real numbers and a,#0. Taking
into account the normalization (14:3), we have

13111'—(". (13:2)
Hence

RH—I()‘) =(1 +('1_ai)\)Ri()‘) —c i (M),
This relation can be written

Ry —R;
a,-)\

Rl Rz 1

‘_—R1+-— x

From this equation it is seen by induction that

NN R —Ry ..
P;()\)'——" avik (10.3)
are polynomials of degree 7. Introducing the num-
bers
bt-1=ciai‘-l> b_,=0 (15:4)
we have
P.N)=R:M\-+b,_,P:_i(N) (15:5a)
RN =ER:\)—aP;(\). (15:5b)

Beginning with Ry=1, we are able to compute by
(15:5) Succeaswel\ the polynomials Po=R,=1, R,
P, R,, P, . . ., provided that we know the numbers
a;, b;. In order to compute them, observe first the
relation

J:P,()\)Pk()\‘)xdm()\)zo (k). (15:6)

Indeed this integral is up to a constant factor
1
f (II)H.I—RJPk([mr(X).
Q
For k<7 this is zero, because the second factor is of
degree k<i.

Using (15:5a) and (15:6), we obtain

f RPN f PNNmO).

Combining this result with the orthogonality of
R, and R, we see, by (15: 5b), that

f RO m(N)
f POVNImON

Using (15:6) and (15:5a),

o !
o:ﬁ R,-()\)Pi_l(X))\dm()\)-%—bi_lj; P (0Adm(N).

Applying (15:3) to the first term vields
1

1
: L NN = by, f POV (),
i—-1

Combmmg this result with (15:7), we obtain
[ R,(N)dm(N)

(15:8)
f R, (Ndm(N)

The formulas (15:5), (15:7), (15:8), together with
Ry=1,b_,=0, complotel\’ determine the pol\nommls
Ro Ry, .. R

tne1.

16. A New Approach to the cg-Method,
Eigenvalues

In order to solve the system Az==%, we compute the
residual vector ro=k—Ax, of an initial estimate 2, of
the solution A and establish the correspondence based
on A, ry described in Theorem 14:3. Without com-
puting the mass distribution, the orthogonalization
process of the last section may be carried out by
(15:5), (15:7) and (15:8) with Ry=1, b_,=0. The
vectors r; p; corresponding to the polvnominals
R;, P, arc therefore determined by the recurrence
relations

pi:]’i—{—bi—ll)i—h 7'1‘.1.1:/'1"‘"(1[“11)1‘. (16.1)
Multiplication by M in the domain of polynomin:ls
is mapped by our correspondence into applying .1
in the vector space according to (14:11). In fact,

Riy(A)ro

The numbers a;, b; are computed by (15:7) and (15:8).
Using the isometric properties described in theorems
14:1 and 14:2, we find that

p,=P¢<[1>f0, ry= (l=0, 1, . ,n—l).

L i2 1, 2

ii” b i
_ s —=. .
(Ap:i,py) [rioyl?

The vectors r; are orthogonal, and the p, are con-
jugate; the latter result follows from (15:6). Hence
the basic formulas and properties of the eg-method
listed in sections 3 and 5 are established. Tt remains
to prove that the method gives the exact solution
after n steps. If we set x,,,=x;4a;p;, the corre-
sponding residual is r,; as follows by induction:

a;=

l("—flfi+]: (k_iil'l) —(liApi:r,-—a,A])i:I‘iH.

For the last residual r, we have (¢=0,1,. . . . n—1)
(Payr ) = (Poei?s) — Qnoy (Apy_y,ry)

=f}?n_lRidm—a,,_,fP,l_lRi)\dm

:fR,LRidm:O.
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Our basic method reestablishes also the methods
of C. Lanczos for computing the characteristic poly-
nomial of a given matrix 4. Indeed the polynomials
R, computed by the recurrence relation (15:5), lead
finally to the polynomial R, (\), which, by the basic
definition of the correspondence in section 14, is the
characteristic pclynomial of .4, provided that r, satis-
fies the conditions given in theorem 14:3. Tt mayv
be remembered that orthogonal polynomials build a
Sturmian sequerce. Therefore, the polynomials
Ro. Ry, ... R, build a Sturmian sequence for the
eigenvalues of the given matrie A.

Our correspondence allows us to translate every
method or result in the vector-space into an anal-
ogous method or result for polynomials and vice
versa. Let us take as an example the smoothing
process in section 7. It is easy to show that the
vector 7, introduced in that section corresponds to a
polynomial R;(\) characterized by the following
property: R,(\) is the polynomial of degree 7 with
Ri(0)=1 having the least-square integral on 0.0)-
In other words, if ry is given by (14:5), then

R (N 3R, (W)Y .. 4 &2 Ri(\,) =minimum.

This result may be used to cstimate a single eigen-
value of A. In order to compute, for instance, the
lowest eigenvalue A, we sclect 7, near to the corres-
ponding eigenvector. The first term in the expan-
sion being dominant, the smallest root of B;(\) will
be a good approximation of A, provided that 7 is not
too small. Hence the last residual vanishes, being
orthogonal to ry, ry. . . It follows that z, is
the desired sclution.

o Tper.

17. Example, Legendre Polynomials

Any known set of orthogonal polynomials vields
an cxample of a cg-algorithm. Take, for instance,
the Legendre polynomials.  Adapted to the interval
(0,1), they satisfv the recurrence relation

This gives the following result, let .1 be a svmmetric
matrix having the roots of the Legendre polynomial
R,(\) as eigenvalues, and let
ro=aue; et . . .Faue,,
where ¢;, . . ., ¢, are the normalized eigenvectors of
A, and myi=a}, my=of, ... m,=a® are the
weight-coefficients for the Gauss’ mechanical quad-
rature with respect to R,. The cg-algorithm applied
to Ay yields the numbers a,, b; given by (17:1).
Moreover,

ar)=bisbics « . blnrd =5 (o) (<.

Hence the residuals decrease during the alogrithm.
It may be worth noting that the Rayleigh quotient
of r; is

(roAr;) 1

[ri]? _a'i+
All residual vectors have the same Rayvleigh quotient.
This shows that, unlike many other relaxation
methods, the cg-process does not necessarily have
the tendency of smoothing residuals.

The Chebyshev polynomials vield an example
where a., b, are constant for i >0.

18. Continued Fractions

Suppose that we have given a mass distribution of
type (b) as described in section 14. The function
m()) is a step function with jumps at 0< A< N\<. . .
<A<!, the values of the jumps being my, m,, . . .,
My, respectively. It is well known that the orthog-
onal polynominals By(N), R/(N), . . .. R,(\), corre-
sponding to this mass distribution, can be constructed
by expanding the rational function

2i+1 ) , . m, m, .
i = o —2 AN)— +—— i | i =1. ES e — S:
RiaN=""11 A=20R0N= 5 R, Ri0)=1 FOV=g T - 18:1)
From (15:1) and (15:4) in a continued fraction. The polvnominal R,(\) is
. . the denominator of the ith convergent. For our
g =Tt2, e b. _2i1—1 (17:1) | purposes it 13 convenient to write the continued
iR R STy : fraction in the form
FN = —1 -
Cy
- dog— aoh——
di—aN— S
' ! (13—(1_‘)\—“

HHL S0 Wall, Analytic Theory of Continued {ractions, Vau Norstrand (1048,
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The denominators of the convergents ave given by
the recursion formulas
/a’i,li (1/‘h”,x’)/l’i¥(’LIl)i,|. =1, ¢, =0, (18:3)
This coincides with (15:1). However. in order to
satisfy (14:3), the expansion must be earried out
so that d;=¢,+ 1, by virtue of (15:2).  The numbers
b, are then given by (15:4). It is elear that

Q " ,:L( )‘)
1 ‘) n ()‘)

FON=

where

(2n—1()‘):§7l: M ITN—=N)).

i=1 J=i

Let us translate these results into the n-dimensional
space given by our correspondence. As before, we
construct a positive definite svmmetric matrix .t
with eigenvalues )\, .+ A.. Let e, . €, be
corresponding eigenveetors of unit length and choose,
as before,

ro= o€+ +aue,, ai=m
The eigenvalues are the reciprocals of the squares of
the semiaxis of the (n—1)-dimensional ellipsoid
(r.Ary=1. The byperplane, (r,,r)=0, cuts this
ellipsoid in an (n—2)-dimensional cliipsoid, £,_,, the
squares of whose semiaxis are given by the reciprocals
of the zeros of the numerator 1),_,(\) of F(\).

This follows from the fact that if A, is a number
such that there is a vector r,0 orthogonal to r,
having the property that (Awy, r)=X(ro, r) whenever

(ro.x)=0, then A, is the square of the reciprocal of

the semiaxis of £,_, whose direction is given by .

If the coordinate system is chosen so that the axes .

are given by e,

. ., €y, respectively, then A=),
satisfies the equation

NM=N 0 0 ... 0
0 A—x 0 0
0 0
S AR
0 0 MmN
ay o a, 0

as was to be proved.

Let us call the zeros of Q,_;(N\) the eigenvalues of A
with respect to ry and the polynomial ¢,_,(\) the
characteristic polynomial of A with respect to ro. The
rational function F(\) is aceordingly the quotient of
this polynomial and the characteristic polynomial of
A. Hence we have, ‘

Theorem 18:1. The numbers a,, b; connected with
the cg-process of @ matrir A and a vector x, can be com-

puted by crpanding into a continued fraction the quo-
tient built by the characteristic polynowmial of A\ with
respect to vy and the ordinary charactoristic polynomial
Qf R

This is the simoplest form of the relation between a
matrix .1, a vector r and the numbers a,, b, of the
corresponding cg-process. The theorem may be used
to investigate the behavior of the a,, b, if the eigen-
values of .1 and those with respect to ry are given,
The following special case is worth recording.  If
my=m,= =m,=1, the rational function is the
logarithmie derivative of the characteristic poly-
nomial. From theorem (18:1) follows )

Theorem 18:2. If the vector ry of a cg-process is the
sum of the normalized eigenvectors of A, the numbers
a;, by may be computed by expanding the logarithmic
derivative of the characteristic polynomial of A into «
continued fraction.

Finally, we are able to prove

Theorem 18:3.  There is no restriction whaterer on
the positive constants a,, b, in the cg-process, that i,
given two sequences of positice numbers a,, a,, o
a,_y and by, by, Wby there (s @ symmetric positire
definite matrir .\ and a rvector ry such that the cg-
algorithm applied to A, rq yield the given numbers.

The demonstration goes along the following lines:
From (15:2)and (15:4), we compute the numbers ¢,
d,, the ¢; being again positive. Then we use the con-
tinued fraction (18:2) to compute F(A) which we
decompose into partial fractions to obtain (18:1).
We show next that the numbers X, m; appearing in
(18:1) are positive. After this has been established,
our correspondence finishes the proof.

In order to prove that A,>>0, m, >0 we observe that
the ratio F,.,/R;is a decreasing function of X, as can
be seen from (18:3) by induction. Using this result,
it is not too difficult to show that the polynomials
Ey(\), By(N), . . .. R,(\) build a Sturmian sequence
in the following sense. The number of zeros of B,(\)
in any interval e <A< b is equal to the increase of the
number of variations in sign in going from a to b.
At the point A there are no variations in sign since

R (0)=11foreveryi. AtA=-+L o, there are exactly n
variations because the coefficient of the highest power
of xin R;(N) is (—1)aga, . . . a;,_,. Therefore. the

roots A\, s, . A of B, (N) are real and positive.
That the function F(A) is itself a decreasing fune-
tion of X follows directly from (18:2). Therefore, its
residues my, m,, . m, are positive.
In view of theorem 18:3 the numbers a, in a cg-
process can increase as fast as desired. This result
was used 1n section 8.2, Furthermore, the formula

r 12
i1
bi: x+‘ _

.12
Tl

shows that there is no restriction at all on the be-
havior of the length of the residual vector during the
cg-process.  Hence. there are certainly examples
where the residual vectors inerease in length during
the computation, as was stated earlier. This holds
in spite of the fact that the ervor vector h—ur decreases
in length at each step.
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19. Numerical Illustrations

A number of numerical experiments have been
made with the processes described in the preceding
sections. A preliminary report on these experiments
will be given in this section. In carrying out these
experiments, no attempt was made to select those
which favored the method. Normally, we selected
those which might lead to difficulties.

In carrying out these experiments three sets of
formulas for a;, b; were used in the symmetric case,
namely,

(pi,ri) (I'n],Apf)
=, =B (19
¢ (pi,Apy) ' (P, Apy) ( )
e rd? Fi? :
ai_q(PnAPi)’ irsl? ’ (19:2)
ril? Irigil? (pi_1, 4p))
i— . ) bi: +.l‘di, dizl—bi_ LA AL s 5L
T o Ap)d, raf? ' (ps,Ap))
. (19:3)

In the nonsymmetric case, we have used only the
formulas

g
bl Apy?

(19:4)

Our experience thus far indicates that the best
results are obtained by the use of (19:1). Formulas
(19:2) were about as good as (19:1) except for very
ill conditioned matrices. Most of our experiments
were carried out with the use of (19:2) because they
are somewhat simpler than (19:1). Formulas (19:3)
were designed to improve the relations

(r‘.,vri+l):0.~ (pi:‘_lpH-l):Oy (195)
which they did. Unfortunately, they disturbed the
first of the relations

(Pari) =0, (PivcApir) =0. (19:6)
A reflection of the geometrical interpretation of the
method will convince one that one should strive to
satisfy the relations (19:6) rather than (19:5). It is
for this reason that (19:1) appears to be considerably
superior to (19:3). In place of (19:2), one can use
the formulas
eyl | r2

‘T, dp)

(19:2)

to correct rounding off errors. A preliminary
experiment indicates that this choice is better than
(19:2) and is perhaps as good as (19:1).
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A sufficient number of experiments have not been
carried out as yet so as to determine the “best”
formulas to be used. Our experiments do indicate
that floating operations should be used whenever
possible. . We have also observed that the results
in the (n+1)st and (n+2)nd iterations are normally
far superior to those obtained in the nth iteration.

Example 1. This example was selected to illus-
trate the method of conjugate gradients in case
there are no rounding off errors. The matrix A4
was chosen to be the matrix

12 —1 1

25 0 9
A=

-1 0 6 o0

| |

12 0 3

If we select & to be the vector (0,2, —1,1), the
computation is simple. The results at each step
are given in table 1.

Normally, the computation is not as simple as in-
dicated in thc preceding case. For example, if one
selects the solution A to be the vector (1,1,1,1), then
k is the vector (3,9,5,6). The results with (0,0,0,0)
as the initial estimate is given by table 2.

TaBLE 1,

Compaonents of the vector

. Step Veetor ‘ a; biay i
i 1 L2 3 14 ' |
To 1 0 0 0 ! ‘
|
ro -1 0 0 0 |
0 1 \
po -1 0 0 0 !
tpe 1 =1 -2 i -1 o
B 3
; : |
I 0 [ R T 0
i r : 0 2 -1 1 t
1! ;
om . -6 2 - 1
| . i
{ b : H
ioApy 0 o 1 0 o 6
| |
=36 +12 —6 6 |
r 0 2 -1 -5 5
2
pe —30 12 -6 0
i
1p : 0 0 -6 -6 56 |
I -61 22 ~11 6 |
s 0 2 4 0 lo2g
3 i
P -2 10 0 0 i i
1 0 10 20 0 15|
R |
4 14 —65 24 - | 6 i




TaBLE 2.

| a times components of vector

Step ! Vector T - a
} 1 2 i 3 4
P 0 0 0 0 1
ro | 3 9 50 6 1
0 ; 1 ;
P | 3 9 5 6 1
! Apo | 22 53 2 39 1
— \
. n 153 1359 755 906 B
| nol =316 —195 933 | 123 B
. i 1
! po| -1 —2799 6461 | 140 | Bim
: !
Ap |o—12854 —15385 0701 | —4113 Bimt
) f | |
! re 0 131702 419553 | 298277 304149 | Bs
‘ | j | !
I ~34360 | —27345 3483 1 B
pr | —1i6022 | 1684085 | 381080 | 3066641 -
DoApr | —BGATL  —25T0IST . 2140158 | 5683731 ( Brv
: ‘ !
Iz ovsse $1520651 62344884 | TBL0OBSL3 | B |
! i |
Ly Lo 542343 —188185 ! 92350 | 68019 . S - -
©opy | 4liesmi2 —15212135 | 6969632 | 3788907 “ Bivs
| Aps 1 542343 ~188185 | 92550 —6019 | fim
— : i 1
: o ! 1 1 1 1
4 : ;
; oy " 0 0 0 1
Fi1=1002, £:=326123, Py=69314516,

Y1=81/151, :=B/8149, v3=Bs899615

=17,

a=v1/vz,

=y, ®G=73

bo=8140,8], £, =80061581v1/B2, b1=38068982v2/8%

TABLE 3.

1I., zi 1)'.-1

| N

12-11° 1 0 00 3 | 3E0;

25 02 0 1 00 9 0 3

-10 60t 0 0 10! 5 0! 3
12 03 0 0 011 6 0l 3

- .

12-11_ 1 0 00| 3| ~3 |0

01 20 —2 1 o0 3 310

02 51 1 0 108 0| 2

00 12 —1 0 01 3 0|3

12-11, 1 0 00 3 700

01 20 -2 1t 00| 3 | ~1.| 0

00 11 5-2 10 2 240

00 12 -1 0 01,3 01

1211, 1 0 ool 3 1o

01 20 -2 1 00 3 110

. 00 11! 52 10 2 1o
‘ 00 01 —8§ 2—11%1‘ 1|0

The systemn just described is particularly well
suited for eclimination. In case k is tho vector
(3,9, 5, 6) the procedure described in section 12 yields
the results given in table 3. In this table, we start
with the matrices A4 and I. These matrices are
transformed into the matrices P*.1 and P* given at
the bottom of the table.

It is of interest to compare the error vectors
1:=h—z; obtained by the two methods just described
with k=3, 9, 5, 6). The crror |y, is given in the
following table.

lyi! i cg-method | Elimination method :
(o] ; 2.0 2.00
w0 0.7 2. 65 ‘
wl L .67 4. 69
sl ‘ .65 6. 48 ’
el .0 0. 00

In the cg-method |y;| decreases monotonically, while
in the elimination method |y;| increases except for
the last step.

Erample 2. 1In this case the matrix .4 was chosen
to be the matrix

.263879 014799 . 016836 L079773  —. 020052 L011463
—.014799  .249379  .028764 L057TET —. 056648 —. 134493
. 016336 028764 .26373¢ —. 033628 —.012128 . 084932
L0V9773 057757 —. 033628 . 213331 . 090696 —. 037489
—.020052 —.056648 —.012128 .090696 324486 —.022484
.011463 —. 134493 .084932 —. 037489 —. 022484 . 339271

This matrix is a well-conditioned matrix, its eigen-
values lying on the range N =.6035 X = X\s=4.7357.
The computations were carried out on an IBM
card programmed calculator with about seven sig-
nificant figures. The results for the case in which
xo is the origin and h the wvector (1,1,1,1,1,1) are
given in table 4.

Example 3. A good illustration of the effects of
rounding can be obtained by study of an ill-con-
ditioned system of three equations with three un-
knowns, namely, the system

6x-+13y—17z=1
132429y —38z=2
—17x—38y+50z=—3,

whose solution is z=1, y=—3, z=—2. The system
was constructed by E. Stiefel. The eigenvalues of
A are given by the set

M =.0388, \=.2007, A =84.7405.
The ratio of the largest to the smallest eigenvalue
is very large: N/\=1441. The formulas (19:1),
(19:2), and (19:3) were used to compute the solution,
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TABLE 4.

Starting vector k=(3.371, 1.2004, 3.4851, 3.7244, 3.0387, 2.412)

1
\ Step
|

: i ri f s ai, by
. 1 !
‘ 1 0 3.37100 | 3.37100 |
‘ | 0 L 129960 1. 29960 | ao=3.002387
0 L 348510 3. 48310
0 .
} 0 3. 72440 3.72440 ba=0. 02360156
" 0 3.03570 3.03870 ;
; 0 2. 41200 2. 41200
| i
‘ 1 !
1042444 —0.3176047 | —0.02380454 |
! w ; !
3018866 1011922 1042504 | a;=3.487517
f | !
1077728 . 2164351 .03016875 | |
1 !
©oLsiie —. 02054774 005835219 ! bi=0. 1411714 |
[ .9396836 —.3190108 —. 02181041 \ |
| i
| rassssr 05016107 008708692 i
| .9591250 | —0.009951160 | —0.1331168 f
i 7651931 (004267407 | 1808594 | ay=5.448507 |
.2 1. 1820418 —.01781102 | — 1355206 |
‘ LIZZ0W0 | — 00918703 | — ONGH035 | 0o=0.3097728 |
18531255 .01514192 | 1163813 | |
TT762554 -03244676 (3367617 | !
| 8568953 1476560 . 0094143967 | r
| 8639395 11042265 [01801278 | ag=4. 580482
3 0 11091023 | —. 1643885 —Qz1ssn | |
[ 11265069 | —. 0091902 =.004262730 | b5=0.3769145 |
[ 0163367 0633472 -01098733 !
| lesgra2r | —.0wor2s) 1004390484 | ¢
. ————,
L 93015 . 08593514 1215308 | j
b esdr - 00050406 J0R%30666 | ai=5. 464033 |
[ —1,008989 05108757 —.n3120307 | |
4| —1106982 ~. 12107954 ~137ide j
P opesed —. 03445640 “006956427 | he=0.2541540 |
P loress3 £03607911 1 0526277% 1
S 906369 — . 0023A5634 .007231114 | |
058825 -000616167 |02353492 03=4.742589 |
L legisst 002508661 J01713337 |
5. 1032082 J003267702 | — 06753326 i
U 470666 - 006006834 06183634 b3=0
L Loonele J0U3155791 | —. 01818237 |
[ 999908 —~.00000252 |
o oeeg01 ~.0000008% |
6 1000013 ~. 00002271 ;
1. 000004 - 00000645 ‘ |
999992 £ 00001636

L999991 . 00000825

keeping five significant figures at all times. For
comparison, the computation was carried out also
with 10 digits, using (19:2). The results are given
m table 5. In the third iteration, formula (19:1)
gave the better result. In the fourth iteration,
formulas (19:1) and (19:2) were equally good, and
superior to (19:3), The solution was also carried out
by the elimination method using only five significant
figures. The results are

cg-method (19:1) | Elimination

| ‘

. 99424 1.06603 |

—2.99518 —3. 00506 ;

z —1. 99328 | —2.00180
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TABLE 5
70=(1, 0, 0)

J

Case.

| 1
. Formula (19:2)

2 I 3
Formula (19:3) ! Formula (19:1)

© 1 with 10 digits

|
|

i 5 5 5 5
o | 1 1 11 11
r | —14 -4 —14 -14
co 011804 . 011804 . 011804 01180409347
| . 94098 . 94008 . ©4008 . 9409795326
7 —. 12984 —. 12084 —. 12984 —. 1298450282
.16526 .16526 .16526 . 1652573086
.14856 . 14856 . 14856 . 1485175838
n L 18754 .18754 18754 . 1874503815
. 20021 . 20021 . 20021 22003244444
ol ,097325 (097325 | 097325 .09732500125
bo . 00028458 00028455 i 00027639 | 0002845760270
L .14998 14998 | L14994 . 1499404639
i 1
pvo| 19067 . 19067 .19058 . 1905807178
|‘ .19623 .19623 . 19634 . 1963103800
@ | 7.0058 7.0303 7.0059 | 7.006740263
—.10975 — 1477 | —10048 ¢ — 1096143529
72, —1.46564 —1.47202 | —1.46502 ) —1.4651946170
—1.20949 —1. 21606 —1.21028 | —L2104357372
_—t
| ~15045 —.15188 — 12747 | — 1273876043
r2 1 . 030400 . 029648 . 081611 . 0814215368
| .085455 084906 . 018197 . 0184025802
; i
r? 1030682 . 031156 . 023240 . 02324671838
b ; .31710 . 31860 . 23870 L2388565047 |
I~ 10289 —.10387 —. 091679 —. 0917733357
pr | 000861 . 090655 .12710 . 1269420081
| .14768 14772 . 065039 . 0652997745
ar | . .047688 . 047713 12.039 12. 09069093
D 10484 —.05079 . 99424 . 9999556593
73 | —1.46997 ~L3651 | —2.9951§ | —3.00003170
i —1.21653 —1.38827 —1.99328 —~1.999908135 |
i
[ —.057616 —. 058572 —. 086092 —. 0009108898
sl 23615 . 23643 —. 19036 —.0020300857 '
L —.18543 —.18733 . 25063 .0026663150
| ;
rst ! .093471 . 004422 . 10646 000012060204
b2 ‘ 3.0287 3.0306 4. 5804 . 000515791676 |
| - 3692 —.37336 —. 50602 —. 0009585010
ps | 51134 L 51126 . 39181 —. 0019642287
] . 26185 - 26035 . 54853 - 0027001920
e | 2.9923 2.9762 SOLI854 | 0118007358
1. 00004 1. 06040 1.0002¢ | 1.0000000003 |
20 | —3.00005 —2. 86812 —2.99982  —2.9999999997
—2.00006 —2.16322 —1.99978 —1. 9999999993
. 00064408 . 00014843 . 00005181 0 :
r . 0014340 —. 00035647 . 0000152 - 00000000005 |
—. 0018823 . 00094441 . 0000364 . 00000000002 |




In this case the results by the eg-method and elimin-
ation method appear to. be equally effective. The
ce-method has the advantage that an improvement
can be made by taking one additional step.

This example is also a good illustration for the
fact that the size of the residuals is not a reliable
criterton for how close one is to the solution. In
step 3 the residuals in case 1 are smaller than those
of case 3, although the estimate in case 1is very far
from the right solution, whereas in case 3 we are
close to it.

Further eramples.  The largest system that has
been solved by the eg-method is a linear. symmetric
system of 106 difference equations. The computa-
tion was done on the Zuse relay-computer at the
Institute for Applied Mathematies in Zurich,  The
estimate obtained in the 90th step was of sufficient
accuracy to beacceptable.

i3 2ee U, Hochstrasser, " Die Anwendung der Methede der konjugierten Gradi-

enten und ihrer Modifikationen auf die Losung linearer Randwertprobleme,”
Thesizs E. T, H., Zurich, Switzerland, in manuseript.

Several symmetrie systems, somwe involving as
many as twelve unknowns, have been solved on the
1BM  card programed caleulator. In one ease,
where the ratio of the largest to the smallest eigen-
value was 4.9, a satisfactory solution has been
obtained already in the third step; in another ease,
where this ratio was 100, one had to carry out fifteen
steps in order to get an estimate with six correct
digits.  In these computations Hloating operations
were not used. .\t all times an attempt was made
to keep six or seven significant figures.

The cg-method has also been applied to the
solution of small nonsymmetric systems on  the
swac. The results indicate that the method is
very suitable for high speed machines.

A\ report on these experiments is being prepared
at the National Bureau of Standards, Los Angeles.

Los AxgEeLEs, May 8, 1952,
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