Gerschgorin Wednesday, October 05, 2005

From last time, the idea behind the
Gerschgorin theorem is that if we have a
matrix A, with

= 5 la

Make a set of disks in the complex plane

Dﬁ"i ’a-- 'f\/\(‘/,;

LA

The eigenvalues must lie in UDA

Example:
A (7@9 7) “‘”7%@’\(7
CORAVAR SRR

Taking the transpose of A doesn't change
anything

Example:
<1M 1} 109! <1
- ) IN-2

CME302.10.05.05 Page 1

11:02 AM



(’l 1@Lw the eigenvalues are M"Nl"/\

7. 1 but the theorem just says
BN €7ﬁﬁf which isn't useful
So, let's replace A with DAD!

where D is diagonal, e.q.

e

¢
1 10 f,>
This gives DAD! = g 1
So the 10° term can be made arbitrarily
small

Upcoming homework: sequence of diagonal
transformations on a bidiagonal matrix

There exist fancier methods such as "ovals of cassini"
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Singular Value Decomposition Wednesday, October 05, 2002

A is an m x n with m=2n matrix; its SVD is

A=UZV
1) U'U=1In  (poth orthogonal)
2) V'V =1I,
3) Z. = |0, Y
\ (almost diagonal)
Q O_;q XA

g are "singular values"
L

Say ZRP-p >@ , and g-a“.--,i,,l:@

This is different from eigenvalues, for
A‘( N ) has n zero eigenvalues
N\
4,
but g~ A Sor it nt, 5 -0

"Rank" is not very well-defined; what is the
rank of

10 ) 7
2 10"
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It depends on the application -- maybe
machine precision makes 10° = 1

We wrote

A=UZVT oAV = UX

Partition the vectors: V =/[vi,..,Va]
AU; = 0;:_6({ ’(’;1}-“; “
/\’U;:@ {':fﬂl)_,.,ﬂ

This tells us that the singular values form
a basis?

If we redefine

ﬁ:[a’w""“’f] \7 :[Vﬂ;--'ﬂfr/]

then
~ NT A
A< 2 \V with (A: m~”
%: e d
O,-'V]KV
Suppose

A =usy’

P

0.0 (meaning all strictly positive)
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0,70 (meaning all strictly positive)

A A1 ] 1
AT U 2 U
Easy to compute

Recall the 2-norm of a matrix

ax X ARE
(/A“;’ ;EM;/Q ,,J)‘C?C = AWM[ATA)

Now,
AR s uluzv'= g5 U
AR /\
/T
ot iy
Therefore,

e () = 20 (AA)
= Al = o, (A

Also, note that

”)?-”1 = Qm”g{ @\TQ =3

Not hard to show that

Al = Tus Vs <[l = o

Example:
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I7a permutation matrix
“(—FAHQ\ : H/ﬂ/l,)\ ‘ 5’1

Which isn't true for eigenvalues; we would
require 77AI1" for that
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Wednesday, October 05, 2005
Example 11:32 AM

A mxn, b: mx1

Wmm+ Mi”“b’%x//g\
mon i b= (/{ZV"},NQ\

Since that whole expression is a vector, we can
multiply it by orthogonal transformation

: w‘rw” Mle_ ZV7;C/[Z

say ulh=c, |/ x:y

r 2 %k
cmin | 20 (CL"U?;?Q;) + é e
a L0

The only thing we can vary is the yi's

Set %’L C/ go } r !

rhe o for {:;Vfllju,lm(w—!) don't matter

“%
(Cf'm C’M )

o |12
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Remember

VTY_”( , S0 k- l/?/

We want to choose yr+3,...,¥n SO that
Ni /(’1 is minimized

Choose yry1=... =ypn=0

We have = \/q‘ = |/ ZJFC/

Where

nx p

this gives £ = A'|, where
+ boT
Az !

Call At the "pseudoinverse"
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H Wed day, October 05, 2005
Pseudoinverse Sy e s A

Say A is m x n; want X satisfying
1) (AX)T = AX
2) (XA)T = XA
3) AXA=A
4) XAX =X

Such an X is called a "pseudo-inverse"
If such an X exists, it is unique; in fact, it always

exists

Moore-Penrose

If we take the singular value decomposition,

VAR A
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Wednesday, October 05, 2005
Cool theorem WYY

Letj@ = Z?: ( [[b,-/lx”')\:w;ng

X ¢ & such that

[|Z My 2w

_{ﬁ-\' ]
z - A
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. . i Wed day, October 05, 2005
Projection Matrices DAy e

Let |y = B, +¥,; write

b= AR b (T -AAT)S
What's A7 TS

RAY= U VT 5 (T

:(AIV@ MT‘::W
g @

Observe that P2 = P and
I-AA* =1-P=(I-P)2=:p!
By this property, (AA*)2 = AATAA*

if we write A* = X then the above is
(AXA)X = AX = (AX)T

S0, to get a "projection matrix" we really only
require 2 of the pseudoinverse axioms to be satisfied

Another way to solve the minimal least squares
problem is to make a projection matrix

)
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r= b- AY is called the "residual vector”

< h- AT = (T-AE)) /Q“L;
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Quadratic Forms
A=AT =UAUT, 112 .. 2 ] 20

Wednesday, October 05, 2005

r X T T YU
(I

Note that kf/

In HW, will consider

T
7 <GS
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il Wednesday, October 05, 2005
Bilinear Forms Ly lo3 P

A:mxn

look at r A - { OT'/UZ !/-;f(
’_______ — NV UL

“U\” I Vl

"2 4 | o 0y sl iyl

Ul

__”;_”1 ”r,{l[{f)\ ~ ;— ({7&/[7\((7 if

by using Cauchy-Schwarz

,-T
pmax [T AVl =0
w0 (e 1
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Wednesday, October 05, 2005
Proof of SVD 12:06 PM

Begin with a matrix A, look at

o

/Z\ N @T A>
A g

Since /2\’ is symmetric, it can be decomposed

f=2,/A2"

K20 05 e)

The eigenvalues E\(jz\l) = U’Z(A) are

equal to the singular values squared

Important useful theorem:

The eigs of AB are the eigs of BA

e.g. a = uu’
u’u is only a number, both have only one eigenvalue

Anyway, take

/0. A\ - 3
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= -5

This tells us
Yz -4'f ‘@
X ATy

TZ? .
% = V2
= )
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