From last time, the idea behind the Gerschgorin theorem is that if we have a matrix A, with

Make a set of disks in the complex plane

The eigenvalues must lie in $\bigcup \mathcal{D}_{\lambda}$

Example:

Taking the transpose of A doesn't change anything

Example:

$$\begin{pmatrix} 1 & 10^{\ell} \\ 0 & 1 \end{pmatrix}$$

the eigenvalues are $\lambda_1 : \lambda_2 = 1$ but the theorem just says

$$11-21610$$
 which isn't useful

So, let's replace A with DAD-1

where D is diagonal, e.g.

So the 106 term can be made arbitrarily small

Upcoming homework: sequence of diagonal transformations on a bidiagonal matrix

There exist fancier methods such as "ovals of cassini"

A is an $m \times n$ with $m \ge n$ matrix; its SVD is

$$A = U\Sigma V^T$$
1) $U^TU = I_m$ (both orthogonal)
2) $V^TV = I_n$

$$2) V^T V = I_n$$

 δ_{u}^{-} are "singular values"

Say
$$\sigma_1, \sigma_r > 0$$
, and $\sigma_{r+1}, \sigma_r = 0$

This is different from eigenvalues, for

has n zero eigenvalues
$$\text{but } \sigma_{i} = 1 \quad \text{for } i:1,\dots,n-1, \quad \sigma_{n} = 0$$

"Rank" is not very well-defined; what is the rank of

It depends on the application -- maybe machine precision makes $10^{-6} \approx 1$

We wrote

$$A = U\Sigma V^T \Leftrightarrow AV = U\Sigma$$

Partition the vectors:

$$V = [v_1, ..., v_n]$$

This tells us that the singular values form a basis?

If we redefine

$$\widetilde{\mathbf{A}} = \left[\widetilde{\mathbf{a}}_{1}, \dots, \mathbf{a}_{r} \right] \qquad \widetilde{\mathbf{V}} : \left[\mathbf{v}_{1}, \dots, \mathbf{v}_{r} \right]$$

then

with

Suppose

 $\sigma_m > 0$ (meaning all strictly positive)

 $\sigma_n > 0$ (meaning all strictly positive)

Easy to compute

Recall the 2-norm of a matrix

$$||A||_{2}^{2} = \max_{x \neq 0} \frac{x^{T}A^{T}Ax}{x^{T}x} = \lambda_{max}(A^{T}A)$$

Now,

Therefore,

$$\lambda_{max}(A^{T}A) = \sigma_{max}^{2}(A^{T}A)$$

$$\Rightarrow ||A||_{2} = \sigma_{max}(A)$$

Also, note that

Not hard to show that

Example:

 ${\it \Pi}$ a permutation matrix

Which isn't true for eigenvalues; we would require $\Pi A \Pi^T$ for that

A:
$$m \times n$$
, **b**: $m \times 1$

Since that whole expression is a vector, we can multiply it by orthogonal transformation

:
$$\min \| U^{T}b - \sum V^{T}x \|_{2}$$

Say $U^{T}b = C$; $V^{T}x = 9$

= $\min \| \| c - \sum g \|_{2}$

= $\min \| \int_{i=1}^{\infty} (c_{i} - \sigma_{i}y_{i})^{2} + \sum_{i=1}^{\infty} c_{i}^{2}$

= $\min \int_{i=1}^{\infty} (c_{i} - \sigma_{i}y_{i})^{2} + \sum_{i=1}^{\infty} c_{i}^{2}$

The only thing we can vary is the y_i 's

Set
$$\hat{q}_i = \frac{Ci}{\sigma_n}$$
 for $i=1,2,...,r$
The \hat{q}_i for $i=r+1,...,n$ (m?) don't matter
win $||\hat{c}-\xi q||_2 = \left(\frac{c^2}{c^{r+1}} + ... + \frac{c^2}{c^2}\right)^{1/2}$

Remember

$$V^T x = y$$
, so $x = Vy$

We want to choose $y_{r+1},...,y_n$ so that

$$\|\mathbf{z}\|_{2}$$
 is minimized

Choose
$$y_{r+1} = ... = y_n = 0$$

We have
$$\vec{z} = V\vec{q} = V \vec{z}^{\dagger} c$$

Where

$$z^{+} = \begin{pmatrix} \sigma_{1}^{-1} \\ \sigma_{r}^{-1} \end{pmatrix} \qquad n \times m$$

this gives $\overrightarrow{z} = A^{\dagger}b$ where

Call A+ the "pseudoinverse"

Pseudoinverse

Say A is $m \times n$; want X satisfying

- 1) $(AX)^{T} = AX$ 2) $(XA)^{T} = XA$
- $3) \dot{A}X\dot{A} = A$
- 4) XAX = X

Such an X is called a "pseudo-inverse"

If such an X exists, it is unique; in fact, it always exists

Moore-Penrose

If we take the singular value decomposition,

Cool theorem

Let
$$\mathcal{X} = \{z \mid ||b-Az||_{\lambda} = min \}$$

$$\bar{z} \in \mathcal{X} \qquad \text{such that}$$

Projection Matrices

What's AA47 It's

$$AA^{\dagger} = UZV^{T}VZ^{-1}U^{T}$$

$$= u\left(IrQ\right)U^{T} = P$$

Observe that $P^2 = P$ and $I - AA^+ = I - P = (I - P)^2 =: P^{\perp}$ By this property, $(AA^+)^2 = AA^+AA^+$

if we write $A^+ = X$ then the above is $(AXA)X = AX = (AX)^T$

So, to get a "projection matrix" we really only require 2 of the pseudoinverse axioms to be satisfied

Another way to solve the minimal least squares problem is to make a projection matrix

 $\gamma = b - A\bar{\chi}$ is called the "residual vector"

$$= b - AA^{+}b = (I - AA^{+})b = \rho^{\perp}b$$

Quadratic Forms

$$A = A^T = U \Lambda U^T, \ \lambda_I \geq \dots \geq \lambda_n \geq 0$$

$$\frac{x^{7}Ax}{x^{7}x} = \frac{x^{T}U \wedge u^{T}x}{x^{T}uu^{T}x}$$

$$=: \frac{9}{4} \frac{1}{9} = \frac{2}{2} \frac{1}{4} \frac{1}{9} \frac{1}{4}$$

$$= \frac{2}{2} \frac{1}{4} \frac{1}{9} \frac{1}{4}$$
Note that

In HW, will consider

?
$$\leq \frac{x^{T}Ax}{x^{T}Bx} \leq ?$$

Bilinear Forms

A:
$$m \times n$$

$$\frac{||u||_2 ||v||_2}{||u||_2 ||v||_2} = \frac{||u^{\dagger}u||_2 ||v^{\dagger}v||_2}{||u^{\dagger}v||_2 \cdot ||v^{\dagger}v||_2}$$

$$=: \frac{|x^{T} \leq y|}{||x||_{2} ||y||_{2}} \leq \frac{\sigma_{1} ||x||_{2} ||y||_{2}}{||x||_{2} ||y||_{2}} = \sigma_{1}$$

by using Cauchy-Schwarz

Begin with a matrix A, look at

$$\widetilde{A} : \begin{pmatrix} O & A \\ A^T & O \end{pmatrix}$$

Since $\widetilde{\mathcal{A}}$ is symmetric, it can be decomposed

$$A = Z \Lambda Z^T$$

$$\tilde{A}^{2} = \begin{pmatrix} O & A \\ A^{\dagger} & O \end{pmatrix} \begin{pmatrix} O & A \\ A^{T} & O \end{pmatrix} = \begin{pmatrix} A A^{T} & O \\ O & A^{T} A \end{pmatrix}$$

The eigenvalues $\lambda(A^{\lambda}) = \sigma^{2}(A)$ are equal to the singular values squared

Important useful theorem:

The eigs of AB are the eigs of BA

e.g.
$$a = uu^T$$

 u^Tu is only a number, both have only one eigenvalue

Anyway, take

$$\begin{array}{ccc}
(A' O) \\
\overline{2} & (\overline{2}) \\
(O) & (\overline{2})
\end{array}$$

$$\begin{pmatrix} Q & A \\ A & O \end{pmatrix} \begin{pmatrix} \vec{z} \\ -\vec{q} \end{pmatrix} = \begin{pmatrix} -A & q \\ A^{T} \vec{z} \end{pmatrix} = \begin{pmatrix} -\sigma \vec{z} \\ \sigma q \end{pmatrix} = -\sigma \begin{pmatrix} \vec{z} \\ -q \end{pmatrix}$$

This tells us
$$\vec{z}^T \vec{j} = 0$$