In the following, we write $\mathbb{R}_+ = [0, \infty)$ and $\mathbb{R}_{++} = (0, \infty)$. So $\mathbb{R}_n^+ = \{(x_1, \ldots, x_n) \in \mathbb{R}^n : x_i \geq 0\}$ and $\mathbb{R}_n^{++} = \{(x_1, \ldots, x_n) \in \mathbb{R}^n : x_i > 0\}$.

As usual, no taking partial derivative, no quoting nonsense like Jacobi formula; everything here requires nothing more than definition and chain rule. You may freely quote results from previous homework and lecture notes.

1. Let $A_0, A_1, \ldots, A_n \in S^m$ and $\Omega = \{x \in \mathbb{R}^n : A_0 + x_1 A_1 + \cdots + x_n A_n \succ 0\}$.
 (a) Find the gradient of $f: \Omega \to \mathbb{R}$,
 $$f(x) = \det(A_0 + x_1 A_1 + \cdots + x_n A_n).$$
 (b) Find the Hessian of $f: \Omega \to \mathbb{R}$,
 $$f(x) = \log \det(A_0 + x_1 A_1 + \cdots + x_n A_n).$$
 Recall that we have already found the gradient of this function in the lectures.
 (c) Find the gradient and Hessian of $f: \Omega \to \mathbb{R}$,
 $$f(x) = \text{tr}((A_0 + x_1 A_1 + \cdots + x_n A_n)^{-1}).$$
 (d) Find the gradient of $f: \Omega \to \mathbb{R}$,
 $$f(x) = (Bx + c)^\top(A_0 + x_1 A_1 + \cdots + x_n A_n)^{-1}(Bx + c)$$
 where $B \in \mathbb{R}^{m \times n}$ and $c \in \mathbb{R}^m$.

2. Decide which of the following sets are convex. Prove your answers.
 - $\text{GL}(n) = \{X \in \mathbb{R}^{n \times n} : \det(X) \neq 0\}$,
 - $S_n^+ = \{X \in S^n : X \succ 0\}$,
 - $\Omega_1 = \{x \in \mathbb{R}^n : A_0 + x_1 A_1 + \cdots + x_n A_n \succ 0\}$,
 - $\Omega_2 = \{X \in \mathbb{R}^{m \times n} : X^\top A X + B^\top X + X^\top B + C \succ 0\}$,
 where Ω_1 is as defined in Problem 1 and Ω_2 is as defined in Homework 2, Problem 4(f).

3. Compute the Hessians of the following functions and decide if they are convex, concave, or neither on their respective domains.
 (a) $f: \mathbb{R} \times \mathbb{R}_{++} \to \mathbb{R}$ defined by
 $$f(x, y) = \frac{x^2}{y}.$$
 (Hint: Write $\nabla^2 f(x, y)$ as a rank-1 matrix).
 (b) $f: \mathbb{R}^n \times \mathbb{R}_{++} \to \mathbb{R}$ defined by
 $$f(x, y) = \frac{x^\top x}{y}.$$
 (c) $f: \mathbb{R}^n \times S_n^+ \to \mathbb{R}$ defined by
 $$f(x, Y) = x^\top Y^{-1} x.$$
(d) $f : \mathbb{S}_{++}^n \rightarrow \mathbb{R}$ defined by
\[
f(X) = \log \det(X) - \log \text{tr}(X).
\]

(e) $f : \Omega \rightarrow \mathbb{R}$ defined by
\[
f(x) = \|Ax + b\|^2_{c^T x + d}
\]
where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $c \in \mathbb{R}^n$, $d \in \mathbb{R}$, and $\Omega = \{x \in \mathbb{R}^n : c^T x + d > 0\}$.

4. (a) Find the Hessian of the function $f : \mathbb{R}^n \rightarrow \mathbb{R}$ defined by $f(x) = \log(e^{x_1} + \cdots + e^{x_n})$. Show that for any $v \in \mathbb{R}^n$,
\[
v^T \nabla^2 f(x)v = \frac{1}{(e^{x_1} + \cdots + e^{x_n})^2} \left[\sum_{i=1}^n e^{x_i} \left(\sum_{i=1}^n v_i^2 e^{x_i} \right) - \left(\sum_{i=1}^n v_i e^{x_i} \right)^2 \right].
\]
Hence or otherwise, deduce that f is a convex function.

(b) Find the Hessian of the function $g : \mathbb{R}_{++}^n \rightarrow \mathbb{R}$ defined by $g(x) = (x_1 \cdots x_n)^{1/n}$. Show that for any $v \in \mathbb{R}^n$,
\[
v^T \nabla^2 g(x)v = -\frac{g(x)}{n^2} \left[n \sum_{i=1}^n \frac{v_i^2}{x_i} - \left(\sum_{i=1}^n \frac{v_i}{x_i} \right)^2 \right]
\]
Hence or otherwise, deduce that g is a concave function.

(c) Find the Hessian of the function $h : \mathbb{R}_{++}^n \rightarrow \mathbb{R}$ defined by
\[
h(x) = \frac{1}{1/x_1 + \cdots + 1/x_n}.
\]
By emulating what we did in the previous two parts or otherwise, decide if h is convex, concave, or neither on \mathbb{R}_{++}^n.

(d) Find the Hessian of the function $\varphi : \mathbb{R}_{++}^n \rightarrow \mathbb{R}$ defined by $\varphi(x) = \log h(x)$. Decide if φ is convex, concave, or neither on \mathbb{R}_{++}^n.

5. (a) Show that the negative log function $-\log : \mathbb{R}_{++} \rightarrow \mathbb{R}$ is strictly convex, i.e.,
\[
\log(t x + (1 - t) y) > t \log x + (1 - t) \log y
\]
for any $x, y \in \mathbb{R}_{++}$ and any $t \in (0, 1)$.

(b) Prove the generalized arithmetic-geometric mean inequality
\[
a^t b^{1-t} \leq t a + (1 - t) b
\]
for any $a, b \in \mathbb{R}_+$ and $t \in [0, 1]$ (note that $t = 1/2$ gives us the usual arithmetic-geometric mean inequality). Deduce the Hölder inequality: for $p > 1$ and $1/p + 1/q = 1$,
\[
\sum_{i=1}^n |x_i y_i| \leq \left(\sum_{i=1}^n |x_i|^p \right)^{1/p} \left(\sum_{i=1}^n |y_i|^q \right)^{1/q}
\]
for any $x, y \in \mathbb{R}^n$ (note that $p = q = 2$ gives us the Cauchy–Schwartz inequality).

(c) Show that $(\sin \theta)^{\sin \theta} < (\cos \theta)^{\cos \theta}$ for all $\theta \in (0, \pi/4)$.