
CHAPTER 14

Implicit Function Theorems
and Lagrange Multipliers

14.1. The Implicit Function Theorem for
a Single Equation

Suppose we are given a relation in 1R2 of the form

F(x, y) = O. (14.1)

Then to each value of x there may correspond one or more values of y
which satisfy (14.1)-or there may be no values of y which do so. If
I = {x: Xo - h < x < Xo + h} is an interval such that for each x E I there is
exactly one value of y satisfying (14.1), then we say that F(x, y) = 0 defines y
as a function of x implicitly on I. Denoting this function by f, we have
F[x, f(x)] = 0 for x on I .

An Implicit function theorem is one which determines conditions under
which a relation such as (14.1) defines y as a function of x or x as a function
of y. The solution is a local one in the sense that the size of the interval I may
be much smaller than the domain of the relation F. Figure 14.1 shows the
graph of a relation such as (14.1). We see that F defines y as a function of x
in a region about P, but not beyond the point Q. Furthermore, the relation
does not yield y as a function of x in any region containing the point Q in its
interior.

The simplest example of an Implicit function theorem states that if F is
smooth and if P is a point at which F,2 (that is, of/oy) does not vanish, then
it is possible to express y as a function of x in a region containing this point.
More precisely we have the following result.

Theorem 14.1. Suppose that F, F, 1 and F, 2 are continuous on an open set A in
1R2 containing the point P(xo, Yo), and suppose that
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(a) Then there are positive numbers hand k which determine a rectangle R
contained in A (see Figure 14.2) given by

R = {(x, y): [x - xol < h, Iy - Yol < k},

such that for each x in I = {x: [x - xol < h} there is a unique number Y in
J = {y: Iy- Yol < k} which satisfies the equation F(x, y) = O. The totality
of the points (x, y) forms a function f whose domain contains l and whose
range is in J.

(b) The function f and its derivative f' are continuous on I.

We shall give two proofs of Part (a), one which uses the elementary proper-
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ties of continuous functions and the Intermediate-value theorem (Theorem
3.3), and a second which employs the Fixed point theorem in Chapter 13
(Theorem 13.2).

FIRST PROOF OF PART (a). We assume F.2(xo, Yo) > 0; otherwise we replace F
by - F and repeat the argument. Since F. 2 is continuous there is a (sufficiently
small) square S = { (x , y): [x - xol ~ k, Iy - Yol ~ k} which is contained in A
and on which F.2 is positive. For each fixed value of x such that [x - xol < k
we see that F(x, y), considered as a function of Y, is an increasing function.
Since F(x o, Yo) = 0, it is clear that

F(xo, Yo + k) > 0 and F(x o, Yo - k) < O.

Because F is continuous on S, there is a (sufficiently small) number h such that
F(x, Yo + k) > 0 on I = {x: [x - xol < h} and F(x , Yo - k) < 0 on I. We fix a
value of x in I and examine solutions of F(x, y) = 0 in the rectangle R (see
Figure 14.2). Since F(x, Yo - k) is negative and F(x , Yo + k) is positive, there
is a value yin R such that F(x, y) = O. Also, because F.2 > 0, there is precisely
one such value . The correspondence x -+ y is the function we seek, and we
denote it by f 0

(b) To show that f is continuous at X o let s > 0 be given and suppose that
s is smaller than k. Then we may construct a square S. with side 2eand center
at (xo, Yo) as in the proof of Part (a). There is a value h' < h such that f is a
function on l' = {x: [x - xol < h'}. Therefore

If(x) - f(xo)1 < e whenever [x - xol < h',

and f is continuous at X o' At any other point Xl E I, we construct a square S,
with center at (Xl' f(xd) and repeat the above argument.

To show that f' exists and is continuous we use the Fundamental lemma
on differentiation (Theorem 7.2). Let x E I and choose a number p such that
x + p e I . Then

F(x + p, f(x + p)) = 0 and F(x, f(x)) = o.
Writing f(x + p) = f + N and using Theorem 7.2, we obtain

[F. 1(x, f) + e l (p, Af)Jp + [F.2(X,f) + e2(p, Af)JN = 0 (14.2)

where el and e2 tend to zero as p, Af -+ O. From the continuity of f, which we
established, it follows that N --+0 as p -+ O. From (14.2) it is clear that

N f(x + p) - f(x)
p p

F.l (x, f) + el(p , Af)
F.2(X, f) + e2(p, Af)'

Since the right side tends to a limit as p -+ 0, we see that

(14.3)f'(x) = F. l(x, f)
F. 2(x,f)"

By hypothesis the right side of (14.3) is continuous, and so f' is also. 0
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T.
F(x, y)

y=y-
x ~2(XO' Yo)'

which takes a point y in J into !R 1
• We shall show that for hand k sufficiently

small, the mapping takes J into J and has a fixed point. That is, there is a y
such that 1;.,y = y or, in other words, there is a y such that F(x, y) = 0. To
accomplish this, we first write the mapping 1;., in the more complicated form :

F l(XO'Yo)
1;.,y = Yo - F ( )(x - xo)

.2 Xo, Yo

1
F ( ) [F(x, y) - ~ 1(xo, yo)(x - xo) - F.2(XO' yo)(y - Yo)].

.2 xo, Yo

SECOND PROOF OF PART (a). For fixed x in the rectangle R we consider the
mapping

We define

F l(XO'Yo)e - - .'----,--'---'-
- F.2(xo,Yo)'

1
t/J(x, y) = F ( ) [F(x, y) - ~ 1(xo, yo)(x - xo)

.2 xo, Yo

- F.2(xo,yo)(y - Yo)].

Then the mapping 1;.,y can be written

1;.,y = Yo - e(x - xo) - t/J(x, y).

Since F(xo, Yo) = 0, we see that

t/J.1 (xo, Yo) = 0,

Because t/J.1 and t/J.2 are continuous we can take k so small that

1t/J.1(X, y)1 ~ t, It/J.2 (x, y)1 ~ t,
for (x, y) in the square S = {(x, y): [x - xol ~ k, Iy- Yol ~ k}. We now ex
pand t/J(x, y) in a Taylor series in S about the point (xo, Yo) getting

(e, 11) E S.t/J(x, y) = t/J.1(e, l1)(X - xo) + t/J.2(e, l1)(y - Yo),

Hence for h ~ k, we have the esnmate in the rectangle R :

It/J(x, y)1 ~ th + tk.
Next we show that if we reduce h sufficiently, the mapping 1;., takes the interval
(space) J into J. We have

l1;.,y - Yol ~ le(x - xo)1 + It/J(x, y)1

~ leih+ th + tk = (t + lel)h + tk.
We choose h so small that (t + lel)h ~ k. Then TxY maps J into J for each x
in I = {x: [x - xol ~ h}. The mapping 1;., is a contraction map; in fact, by the
Mean-value theorem
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We apply Theorem 13.2and for each fixed x in I, there is a unique y in J such
that F(x, y) = O. That is, y is a function of x for (x , y) E R. 0

The Implicit function theorem has a number of generalizations and applica
tions . If F is a function from jRN+l to jRl, we may consider whether or not the
relation F(x 1 , x 2, ... , x N, y) = 0 defines y as a function from jRNinto jRl. That
is, we state conditions which show that y = f(Xl' X2," " XN)' The proof of the
following theorem is a straightforward extension of the proof of Theorem 14.1
and we leave the details to the reader.

Theorem 14.2. Suppose that F, F,l' F', 2' • .• , F',N+l are continuous on an open set
A in jRN+l containing the point P(x? , x~ , ... , x~, yO). We use the notation
x = (Xl' x 2, . . . , x N), XO = (x?, x~, . .. , x~) and suppose that

(a) Then there are positive numbers hand k which determine a cell R contained
in A given by

R = {(x, y): IXi - x?1 < h, i = 1,2, ... , N, Iy - yOI < k},

such that for each x in the N-dimensional hypercube

IN = {x: IXi - x?1 < h, i = 1,2, . . . , N}

there is a unique number y in the interval

J = {y: Iy - yOI < k}

which satisfies the equation F(x, y) = O. That is, y is a function of x which
may be written y = f(x). The domain of f contains IN and its range is in J.

(b) The function f and its partial derivatives f.l'f.2' .. . , fN are continuous on IN'

A special case of Theorem 14.1 is the Inverse function theorem which was
established in Chapter 4 (Theorems 4.17 and 4.18). Iff is a function from jRl

to jRl, denoted y = f(x), we wish to decide when it is true that x may be
expressed as a function of y. Set

F(x, y) = Y - f(x) = 0

and, in order to apply Theorem 14.1, f' must be continuous and F,l =
-f'(x) '" O. We state the result in the following Corollary to Theorem 14.1.

Corollary (Inverse function theorem). Suppose that f is defined on an open set
A in jRl with values in jRl . Also assume that f' is continuous on A and that
f(xo) = yo, f'(xo) '" O. Then there is an interval I containing yo such that the
inverse function of f, denoted r'. exists on I and has a continuous derivative
there. Furthermore, the derivative (f-l)' is given by the formula

where y = f(x).

-1 I , 1
(f (y)) = f'(x) ' (14.4)
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Since f -1(f(x» = x, we can use the Chain rule to obtain (14.4). However,
(14.4) is also a consequence of Formula (14.3),with F(x, y) = y - f(x), and we
find

(f-l(y»' = _F,2 = __1,_.
F,l -f (x)

Observe that in Theorems 4.17 and 4.18 the inverse mapping is one-to-one
over the entire interval in which I' does not vanish.

EXAMPLE 1. Given the relation

F(x, y) = y3 + 2x 2y - x4 + 2x + 4y = 0, (14.5)

show that this relation defines y as a function of x for all values of x in IR 1.

Solut ion. We have
F,2 = 3y2 + 2x 2 + 4,

and so F,2 > 0 for all x, y. Hence for each fixed x, the function F is an increasing
function of y. Furthermore, from (14.5) it follows that F(x, y) -+ -00 as y -+

-00 and F(x, y) -+ +00 as y -+ +00. Since F is continuous, for each fixed x
there is exactly one value of y such that F(x, y) = O. Applying Theorem 14.1,
we conclude that there is a function f on 1R1 which is continuous and differen
tiable such that F[x, f(x)] = 0 for all x . 0

EXAMPLE 2. Given the relation

F(x, y) = x 3 + y3 - 6xy = 0, (14.6)

find the values of x for which the relation defines y as a function of x (on some
interval) and find the values of y for which the relation defines x as a function
of y (on some interval).

Solution . The graph of the relation is shown in Figure 14.3. We see that

F,l = 3x 2 - 6y, F',2 = 3y2 - 6x,

and both partial derivatives vanish at (0, 0). We also observe that F',2 = 0 when
x = ty2, and substituting this value into the relation (14.6) we get x = 2.y4,
y = 212.The curve has a vertical tangent at this point, denoted P in Figure
14.3. Hence y is expressible as a function of x in a neighborhood of all points
on the curve except P and the origin O. Similarly F,l = 0 yields the point Q
with coordinates (212,2.y4). Then x is expressible as a function of y in a
neighborhood of all points except Q and the origin O. 0

PROBLEMS

In each of Problems 1 through 4 show that the relation F(x, y) = 0 yields y
as a function of x in an interval I about X o where F(xo , Yo) = O. Denote the
function by f and compute 1'.
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1. F(x, y) == y3 + Y - X2 = 0; (XO, Yo) = (0,0).

2. F(x, y) == X2/3 + y2/3 - 4 = 0; (xo, Yo) = (1, 3)3).

3. F(x, y) == xy + 2ln x + 3ln y - 1 = 0; (xo, Yo) = (1, 1).

4. F(x, y) == sin x + 2 cos Y - t = 0; (xo, Yo) = (n/6, 3n/2) .

5. Give an example of a relation F(x, y) = 0 such that F(xo, Yo) = 0 and
F,2(XO' Yo) = 0 at a point 0 = (xo, Yo), and yet y is expressible as a function of x
in an interval about x o.

Ineach of Problems 6 through 9 show that the relation F(x l , x 2 , y) = 0 yields
y as a function of (Xl' X2) in a neighborhood of the given point P(x?, x~, yO).
Denoting this function by f, compute f.1 and f.2 at P.

6. F(x l , X2 ' y) == x: + x~ + y3 - 3XIX2Y - 4 = 0; P(x?, x~ , yO) = (1,1,2).

7. F(x l , x2, y) == eY - y2 - xi - x~ = 0; P(x?, x~, yO) = (1, 0, 0).

8. F(x l , x2, y) == Xl + x2 - Y - cOS(XIX2Y) = 0; P(x?, x~, yO) = (0,0, -1).

10. Prove Theorem 14.2.

11. Suppose that F is a function from 1R2 to IR I which we write y = F(x l , x2). State
hypotheses on F which imply that X2 may be expressed as a function of Xl and y
(extension of the Inverse function theorem). Use Theorem 14.2.
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12. Suppose that F(x , y, z) = 0 is such that the functions z = f(x , y), x = g(y, z), and
y = h(z, x) all exist by the Implicit function theorem. Show that

fl'g,l 'h,1 = -1.

This formula is frequently written

az Jlx .ely = _ 1.
ax ay az

13. Find an example of a relation F(x I' X2' y) = 0 and a point P(x?, x~ , yo) such that
P satisfies the relation, and F',I(X?,x~ , yO) = F',2(X?, x~ , yO) = F',3(X?, x~ , yO) = 0,
yet y is a function of (XI' X2) in a neighborhood of P.

14. Suppose that the Implicit function theorem applies to F(x, y) = 0 so that y = f(x),
Find a formula for f" in terms of F and its partial derivatives.

15. Suppose that the Implicit function theorem applies to F(x l , X2' y) = 0 so that
y = f(x l , X2)' Find formulas for fl,l; fl.2; f2 .2 in terms of F and its partial
derivatives.

14.2. The Implicit Function Theorem for Systems

We shall establish an extension of the Implicit function theorem of Section
14.1 to systems of equations which define functions implicitly. A vector x in
jRm has components denoted (x l ' x 2 , • • • , x m ) and a vector y in jRn will have its
components denoted by (Yl' Y2' ... , Yn)' An element in jRm+n will be written
(x, y). We consider vector functions from jRm+n to jRnand write Fix, y) for such
a function. That is, P will have components

P2(x , y), ... , pn(x, y)

with each pi a function from jRm+n to jRl .

In order to establish the Implicit function theorem for systems we need
several facts from linear algebra and a number of useful inequalities. We
suppose the reader is familiar with the elements of linear algebra and in the
next three lemmas we establish the needed inequalities.

Definition. Let A be an m x n matrix with elements

The norm of A, written IAI, is defined by

[

m n J1/2
IAI= i~j~ (aj)2 .

Observe that for a vector, i.e.,a 1 x n matrix, the norm is the Euclidean length
of the vector.
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Lemma 14.1. Let A be an m x n matrix, and suppose that ( = ((1, (2, . . . , (")
is a column vector (that is, an n x 1 matrix) with n components and that
" = (,,1, ,,2, .. . , tIm) is a column vector with m components such that

n= A(,

or equivalently

Then

""i = L aj(i,
i=1

i = 1,2, ... , m. (14.7)

(14.8)

PROOF. For fixed i in (14.7) we square both sides and apply the Schwarz
inequality (Section 6.1),getting

Then (14.8)follows by summing on i and taking the square root. D

The next lemma shows that with the above norm for matrices (and vectors)
we can obtain an inequality for the estimation of integrals which resembles
the customary one for absolute values.

Lemma 14.2. Let b: IRm -+ IR" be a continuous vector function on a bounded,
closed figure H in IRm

• Suppose that ( is the n x 1 column vector defined by

(= Lssv;
That is,

i = 1,2, . .. , n,

D

where b': IRm -+ 1R1
, i = 1,2, .. . , n are the components of b. Then

PROOF. Define Ai= (i/l(l. Then multiplying by (i and summing on i, we have
LI=1 Ai ( ; = 1(1. Therefore

1'1 = i~ Ai(i = i~ AiLb
i
dVm = Li~ Aib

i
dVm •

We apply Lemma 14.1 and note that since IAI = 1 we obtain

1'1 ~LIAl lbl dVm = LIbl dVm •
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Definitions. Let G be an open set in IRm+n and suppose that F: G -. IRn is a
vector function F(x, y) with continuous first partial derivatives. We define the
n x m and the n x n matri ces VxF and VyF by the formulas

~p1 ~Fi ~Fi
aXi aXm aYi

The Fixed point theorem of Chapter 13will be used to establish the Implicit
function theorem for systems. We note that in proving this theorem for a single
equation we made essential use of the Mean-value theorem. The next lemma
provides an appropriate generalization to systems of the Mean-value theorem.

Lemma 14.3. Let G be an open set in IRm +n and F: G -. IRn a vector function
with continuous first partial derivatives. Suppose that the straight line segment
L joining (x, :n and (x, y) is in G and that there are two positive constants M l'

M 2 such that

IVxFI ~ u, and IVyFI ~ M 2

for all points (x , y) on the segment L. Then

IF(x, y) - F(x, y)1~ M i 'Ix - xl + M2 ' Iy - H

PROOF. Any point on the segment joining (x, y) to (x, y) has coordinates
(x + t(x - x), Y + t(y - y)) for 0 ~ t ~ 1. We define the vector function

f(t) = F(x + t(x - x), Y + t( y - y))

and use the simple fact that

f(l) - f(O) = Ii !'(t) dt.

Since f(l) = F(x, y), f(O) = F(x, y), it follows that

F(x, y) - F(x, y) =r:t F(x + t(x - x), Y + t(y - v» dt.

Carrying out the differentiation with respect to t, and using the Chain rule,
we find for each component r.

Fi(x , y) - Fi(x, y)

f
i { ~ a 0 - f a 0 - }

= L. -a (F')(~ - x) + L. -a (F')( Yk - yd dt.
o j =i Xj k=i Yk
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In matrix notation we write
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F(x, y) - F(x, y) = L[VxF ' (x - x) + VyF' (y - y)] dt.

From Lemma 14.2, it is clear that

IF(x, y) - F(x, y)1 ~ Il [IVxFl 'lx - xl + IVyFI'ly - yl] dt

~Ml 'lx-xl+M2 'IY-H 0

For later use we next prove a simple proposition on nonsingular linear
transformations.

Lemma 14.4. Let B be an n x n matrix and suppose that IBI < 1. Define
A = I - B where I is the n x n identity matrix. Then A is nonsingular.

PROOF. Consider the mapping from JR" to JR" given by y = Ax, where x E JR",
y E JR". We show that the mapping is 1-1 thereby implying that A is non
singular. Let Xl' X2 E JR"; we have

AXl - AX2 = (Xl - X2) - (Bx l - BX2)

and

Therefore

IAxl - AX21 ~ IXl - x21-IBxl - BX21 ~ IXl - x21-IBI 'lxl - x21
~ IX l - x2 1(1 -IBI).

We conclude that if Xl =F X2 then AXl =FAx2 and so the mapping is
one-to-one. 0

The next lemma, a special case of the Implicit function theorem for systems,
contains the principal ingredients for the proof of the main theorem. We
establish the result for functions F: JRm+" -. JR" which have the form

F(x, y) = y - Cx - t/J(x, y)

where C is a constant n x m matrix and t/J is such that it and its first partial
derivatives vanish at the origin. Note the relation of this form of F with the
second proof of the Implicit Function theorem for a single equation given in
Theorem 14.1. Although the proof is lengthy, the reader will see that with the
aid of the fixed point theorem of Chapter 13 and Lemma 14.3 the arguments
proceed in a straightforward manner.

Lemma 14.5. Let G be an open set in JRm+" which contains the origin. Suppose
that t/J: G -. JR" is a continuous function with continuous first partial derivatives
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r/J(O, 0) = 0, Vxr/J(O, 0) = 0, Vyr/J(O, 0) = 0. (14.9)

Suppose that C is a constant n x m matrix, and define the function F: G _ ~n

by the formula
F(x , y) = Y - Cx - r/J(x, y).

For any positive numbers rand s, denoted by Bm(O, r) and Bn(O, s) the balls in
~m and ~n with center at the origin and radii rand s, respectively. Then

(a) There are (sufficiently small) positive numbers hand k with Bm(O, h) x
Bn(O, k) in G and such that for each x E Bm(O, h) there is a unique element
y E Bn(O, k) whereby

F(x, y) = °or, equivalently, y = Cx + r/J(x, y).

(b) If g denotes the function from Bm(O, h) to Bn(O, k) given by these ordered
pairs (x, Y), then g is continuous on Bm(O, h) and all first partial derivatives
of g are continuous on Bm(O, h).

PROOF

(a) Since G is open and r/J is continuous on G, there is a positive number k
such that the closed set B = Bm(O, k) x Bn(O, k) is contained in G with r/J
continuous on B. Also, because of(14.9) and the fact that the partial derivatives
of r/J are continuous, k can be chosen so small that

IVxr/J I ~ ! , IVyr/J I~! on B.

We fix x in Bm(O, k) and define the mapping T from Bn(O, k) into ~n by the
formula!

T(y) = Cx + r/J(x, y). (14.10)

We apply Lemma 14.3 to r/J(x, y), getting for x E Bm(O, k), y E Bn(O, k)

Ir/J(x, y)J = Ir/J(x, y) - r/J(O, 0)1 ~ max IVxr/JI'lx - OJ + max IVyr/JI'ly - 01

~ !Ixl + !!y!.
Therefore, for x E Bm(O, k), y E Bn(O, k) it follows that

IT(y)1 ~ ICI'lxJ + !Ixl + !IYI. (14.11)

Since C is a constant matrix there is a positive number M such that ICI ~ M.
Now choose a positive number h which satisfies the inequality h < k/(2M + 1).
The mapping (14.10) will be restricted to those values of x in the ball Bm(O, h).
Then, from (14.10), for each fixed x E Bm(O, h) and y E Bn(O, k) we have

IT(y)1 ~ (M + ! )h + !k < !k + ! k = k;

1 In the second proof of Theorem 14.1 we denoted this mapping by T" y.
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hence T maps Bn(O, k) into itself. Furthermore, for Yl' Y2 E Bn(O, k) we find

IT(yd - T(Y2)1 = It/J(x, yd - t/J(x, Y2)1 ~ tlYl - Y21,

where Lemma 14.3 is used for the last inequality. Thus the mapping T is
a contraction and the Fixed point theorem of Chapter 13 (Theorem 13.2)
can be applied. For each fixed x E Bm(O, k) there is a unique Y E Bn(O, k)
such that

Y = T(y) or Y = Cx + t/J(x, y).

That is, Y is a function of x which we denote by g. Writing Y = g(x), we
observe that the equation F(x, g(x)) = °holds for all x E Bm(O, h).

(b) We show thatg is continuous. Let Xl,X2 E Bm(O, h) andYl'Y2 E Bn(O, k)
be such that Yl = g(x l), Y2 = g(X2)or

Yl = CXl + t/J(x l, Yl) and Yl = CX2 + t/J(X2' Yl).

Then

We use Lemma 14.3 for the last term on the right , getting

or
IYl - Yd ~ (2M + 1)lx 2 - x.],

Hence
Ig(X2) - g(xdl ~ (2M + 1)lx2 - xli,

and 9 is continuous on Bm(O, h).
We now show that the first partial derivatives of 9 exist and are continuous.

Let the components of 9 be denoted by gl, g2,. .. , q". We shall prove the result
for a typical partial derivative (a/axp)gi where 1 ~ p ~ m. In IRm let eP denote
the unit vector in the p-direction. That is, e" has components (ef, e~, ... , e~)
where e; = 1 and e! = °for j # p. Fix x in Bm(O, h) and choose a positive
number to so small that the points x + te" lie in Bm(O, h) for all t such that
ItI ~ to' Now set x = x + te" and write

g(x) = Cx + t/J(x, g(x)).

The ith component of this equation reads

m
gi(X) = L cjxj + t/Ji(X, g(x))

j=l

where the cj are the components of the matrix C. Let Agi be defined by

Agi = gi(X + teP) - gi(X).

Then from the Fundamental lemma on differentiation (Theorem 7.2),it follows
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" [fJ _. ] fig
k

+ L ~ l/J I(X,g(x» + eic(teP, fig) -,
k=l UYk t

where e;(p, cr) and '61(p, e) are continuous at (0, 0) and vanish there. Taking
the definition of the vector eP into account, we can write the above expression
in the form

fig I m . m fJ . m .

-t- = j~ cJef+ j~ fJXj l/JI(X, g(x»ef + j~ ej(te P, fig)ef

f [fJ . _. ] fig
k

+ c: ~ l/JI(X, g(x» + eic(teP, fig) -
k=l UYk t

(14.12)

where eJ(p, e), j = 1, 2, . . . , m, are continuous at (0,0) and vanish there. We
define the matrices

At (t) = C + V"l/J(x, g(x» + e(teP, fig) ,

A2(t) = Vyl/J(x, g(x» + '6(teP, fig)

where the components of e are eJ and the components of '6 are '61, i, k =
1, 2, . . . , n, j = 1, 2, . . . , m. Then (14.12) can be written as the single vector
equation

fig P fig- = Ale + A 2 - . (14.13)
t t

Define B = I - A2 where I is the n x n unit matrix. Then (14.13) becomes

B
fig

= AteP. (14.14)
t

According to (14.9)we have IA2(0)1 :::; t.Therefore, by Lemma 14.4 the matrix
B(O) is nonsingular. Since g is continuous on Bm(O, h), we know that fig --. 0
as t --. o. Therefore the matrices At (t), A2(t), and B(t) are continuous at t = o.
Consequently B(t) is nonsingular for t sufficiently close to zero. We allow t to
tend to zero in (14.14) and conclude that the limit of fig/t exists; that is,
(fJ/fJxp)g l exists for every i and every p. The formula

lim fig = B-t(O)At(O)eP
''''0 t

shows that the partial derivatives are continuous functions of x. 0

Theorem 14.3(Implicit function theorem for systems). Let G bean open set in
IRm+" containing the point (x, )I). Suppose that F : G --. IR" is continuous and has
continuous first partial derivatives in G. Suppose that

F(x, )I) = 0 and det VyF(x, Y) # O.
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Then positive numbers hand k can be chosen so that: (a) the direct product of
the closed balls Bm(x, h) and Bn(y, k) with centers at X, y and radii hand k,
respectively, is in G; and (b) hand k are such that for each x E Bm(x, h) there is
a unique y E Bn(y, k) satisfying F(x, y) = O. If f is the function from Bm(x, h) to
Bn(y, k) defined by these ordered pairs (x, y), then F(x, f(x)) = 0; furthermore,
f and all its first partial derivatives are continuous on Bm(x, h).

PROOF. We define the matrices

A = VxF(x, y),

and write F in the form

B=VyF(x,Y),

F(x, y) = A . (x - x) + B . (y - y) + rP(x, y), (14.15)

where rP is defined? by Equation (14.15). It is clear that rP has the properties

rP(x, y) = 0, VxrP(x, y) = 0, VyrP(x, y) = O.

By hypothesis, B is a nonsingular matrix. We multiply (14.15)by B-1
, getting

B-1F = B-1A . (x - x) + (y - y) + B- lrP(x, y).

Now we may apply Lemma 14.5 with B-1F in place of F in that lemma, x - x
in place of x; also, y - y in place of y, - B-1A in place of C, and B-l rP in place
of ljJ. It is simple to verify that all the hypotheses of the lemma are fulfilled.
The theorem follows for B-1F. Since B-1 is a constant nonsingular matrix,
the result holds for F. 0

Remarks. The first partial derivatives of the implicitly defined function f
may be found by a direct computation in terms of partial derivatives of F. To
see this suppose that F has components FI, F2

, ... , F" and that f has
components I". f 2

, .. . , fn . We write

(14.16)

i = 1,2, ... , n, p = 1,2, .. . , m. (14.17)

where Yi = P(xl , X2' ••• , xm). To find the partial derivatives ofP,we take the
derivative of Fi with respect to x p in (14.16), getting (by the Chain rule)

aFi n aFi afk
-+ L--=O,
axp k=1 aYk axp

Treating ap/axp (for fixed p) as a set of n unknowns, we see that the above
equations form an algebraic system of n equations in n unknowns in which,
by hypothesis, the determinant of the coefficients does not vanish at (x, y).
Therefore by Cramer's rule the system can always be solved uniquely.

2 In the second proof of Theorem 14.1, the function q> is defined by: F:2(XO, yo)r/!(x, y).
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EXAMPLE 1. Let F(x, y) be a function from [R4 to [R2 given by

Fl(Xl , X2, Yl, Y2) = xi - x~ - Y~ + Y~ + 4,

F2(Xl' X2 , Yl, Y2) = 2X l X2 + x~ - 2YI + 3y~ + 8.

Let P(x, y) = (2, -1,2, 1). It is clear that F(x, y) =O. Verify that
det VyF(x, y) =F 0 and find the first partial derivatives of the function Y = f(x)
defined implicitly by F at the point P.

Solution. We have

OFl
- = -3YI,
°Yl

At P, we find

Also,

OFl
~=2Xl'uXl

oof 7
oX

l
= 16'

Substituting the partial derivatives evaluated at P in (14.17) and solving the
resulting systems of two equations in two unknowns first with p = 1 and then
with p = 2, we get

ofl 13
oXl = 32'

EXAMPLE 2. Given F: IRs -. [R3 defined according to the formulas

Fl(X l, X2, Yl, Y2, Y3) = xi + 2x~ - 3YI + 4YlY2 - Y~ + Y~,

F2(Xl, X2, Yl, Y2, Y3) = Xl + 3X2 - 4XlX2 + 4YI - 2y~ + Y~ ,

F3(Xl, X2 , Yl, Y2, Y3) = x~ - x~ + 4YI + 2Y2 - 3y~ .

Assume that P(x, y) is a point where F(x, y) = o and VyF is nonsingular.
Denoting the implicit function by f, determine oP/OXj at P.

Solution . According to (14.17) a straightforward computation yields

ofl of of3
(-6Yl + 4Y2h- + (4Yl - 2Y2h-- + 3y~~ = -2x l ,

UX l uXl UX l
ofl of of3

8Yl- - 4Y2 - + 2Y3- = 4X2 - 1,
oXl oXl oXl
ofl of of3

8Yl -
O

+ 2 - - 6Y3 - = -3xI ·
Xl OX l OX l

We solve this linear system of three equations in three unknowns by Cramer's
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rule and obtain expressions for of1/0Xl , OP /OX l, of3/ox l . To find the partial
derivatives of f with respect to X 2 we repeat the entire procedure, obtaining
a similar linear system which can be solved by Cramer's rule. We leave the
details to the reader. D

Definition. Let G be an open set in IRm and suppose that F: G -t IRn is a given
vector function. The function F is ofclass Ck on G, where k is a nonnegative
integer if and only if F and all its partial derivatives up to and including those
of order k are continuous on G.

The Inverse function theorem which is a Corollary to Theorem 14.1 has a
natural generalization for vector functions.

Theorem 14.4 (Inverse function theorem). Let G be an open set in IRm conta ining
the point X. Suppose that f: G -t IRm is a function of class C l and that

Y = f(x), det Vxf(x) # O.

Then there are positive numbers hand k such that the ball Bm(x, k) is in G and
for each Y E Bm(y,h) there is a unique point x E Bm(x, k) with f(x) = y. If g is
defined to be the inverse function determined by the ordered pairs (y , x) with the
domain of g consisting of Bm(y,h) and range of gin Bm(x, k), then g is a function
of class C l

. Furthermore, f[g(y)] = y for y E Bm(y, h).

PROOF. This theorem is a corollary of Theorem 14.3 in which

F(y, x) = Y - f(x) . D

Remarks. The Inverse function theorem for functions of one variable
(Corollary to Theorem 14.1) has the property that the function is one-to-one
over the entire domain in which the derivative does not vanish. In Theorem
14.4, the condition det Vxf # 0 does not guarantee that the inverse (vector)
function will be one-to-one over its domain. To see this consider the function
f: 1R2

-t 1R2 given by

i' = xi - x~ , P = 2XlX2 ' (14.18)

with domain the annular ring G == {(Xl' X2): r l < (xi + xnl/2 < r2} where rl ,
rz are positive numbers. A computation shows that

v.r = (2X l -2X2 ) ,
2x 2 2xl

and so det Vxf = 4(xi + xn , which is positive in G. However, setting y = f(x),
we see from (14.18) that there are two distinct values of X for each value of y.
The inverse relation is a function in a sufficiently small ball of G, but if one
considers the entire ring G there are two distinct values of x = (x., x 2 ) in G
which correspond to a given value of y = (Yl' Y2).
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PROBLEMS

In each of Problems 1 through 4 a function F and a point P are given. Verify
that the Implicit function theorem is applicable. Denoting the implicitly
defined function by f, find the values of all the first partial derivatives of f
at P.

1. F = (F', F2), P = (0,0,0,0) where F' = 2x, - 3x2 + Y, - Y2' and F2 =
X, + 2x2 + Y, + 2Y2'

2. F = (F', F2), P = (0, 0, 0, 0) where F' = 2x, - X2 + 2y, - Y2' and F2 =

3x, + 2x 2 + Y, + Y2 '

3. F = (F' , F2), P = (3, -1,2,1) where F' = x, - 2x2 + Y, + Y2 - 8, and F2 =
XI - 2x~ - YI + Y~ - 4.

4. F = (F', F2), P = (2,1, -1,2) where F' = XI - x~ + Y'Y2 - Y~ + 3, and F2 =
X, + x~ + YI + Y'Y2 - 2.

5. Suppose that x = (x, x2),Y = (y" Y2) and F: 1R4 -+ 1R2 are such that F(x, y) = °
and the Implicit function theorem is applicable for all (x, y).Denoting the implicitly
defined function by f, find a formula in terms of the first partial derivatives of F
for af '/ax " a!'/aX2 , ap/ax , , ap/aX2'

6. Suppose that F(x , y) = °where x = (x" . .. , xm ) and Y = (Y" Y2) and that the
Implicit function theorem is applicable. Denoting the implicitly defined function
by f, find afi/axj, i = 1, 2, j = 1, 2, . . . , m, in terms of the partial derivatives of F.

7. Complete Example 2.

8. Given F = (F', F2) where F: 1R2 -+ 1R2 and F' = e2x+
y, F2 = (4x2 + 4xy + y2 +

6x + 3y)2/3 . Show that there is no value of x for which the Implicit function theorem
is applicable. Find a r~ation between F' and F2•

In each of Problems 9 through 12a vector function f: 1R 2 ~ 1R2 is given. Verify
that the Inverse function theorem is applicable and find the inverse function g.

9. Y, = x" Y2 = XI + x2·

10. Y, = 2x, - 3x2, Y2 = x, + 2x2·

11. Y, = x d(l + x, + x2),Y2 = x2/(1 + x, + X2), x, + X2 > -1.

12. Y, = x, COS(nx2 /2), Y2 = x, sin(nx2/2), x, > 0, -1 < X2 < 1.

13. Given the function f : 1R 3 -+ 1R3 where f' = eX,cos x" f2 = eX,sin x" and f3 =
2 - cos x3. Find the points P(x" x2, X3) where the Inverse function theorem
holds .

14. Given the function f: 1R2 -+ 1R2 and suppose that the Inverse function theorem
applies. We write x = g(y) for the inverse function . Find formulas for agi/aYj,
i, j = 1, 2 in terms of partial derivatives of f' and I'. Also find a formula for
a2g '/ay~ .

15. Given F: 1R4
-+ 1R2 and suppose that F(x, y) =°for all x = (x" X2) and Y =
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(Yl' Y2)' State condit ions which guarantee that the equation

aYt aX2 aY2 aX2--+ - - = 0
aXt aYt aXt aY2

holds.

14.3. Change of Variables in a Multiple Integral

For functions of one variable, an integral of the form

ff(x) dx

can be transformed into

359

ff[g(u)Jg'(u) du

by the "change of variable" x = g(u), dx = g'(u) duo Such transformations are
useful in the actual evaluation of many integrals. The corresponding result for
multiple integrals is more complicated and, in order to establish the appro
priate formula for such a change of variables, we employ several results in
linear algebra. In this section we assume the reader is familiar with the basic
facts concerning matrices and linear transformations.

Definition. Let G be an open set in IRm and let f : G -+ IRm be a C1 function .
That is,J has components f 1,J 2 , ... ,Jm and I'. G -+ IR 1 are C1 functions for
i = 1,2, ... , m. The Jacobian of f is the m x m matrix having the first partial
derivative r,as the entry in the ith row and jth column, i, j = 1,2, .. . , m. We
also use the terms Jacobian matrix and gradient, and we denote this matrix
byVf

In the next theorem we restate for vector functions the Fundamental lemma
of differentiation (Part (a)) and the Chain rule (Part (b)). In Part (c) we give
an extension to vector functions of Equation (14.4), the formula for the
derivative of the inverse of a function .

Theorem 14.5.Let Gand G1 be open sets in IRm with xa point in G.Let f: G -+ G1

be a C1 function and denote f = (fl, t'. ..., fm).

(a) We have the formula (Fundamental Lemma of Differentiation)

P(x + h) - P(x) = VP(x)h + ei(h)
m

= L f.~hj + ei(h),
j=1

i = 1,2, .. . , m, (14.19)
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where h=(h1,h2 , ••• ,hm ) and e(h) = (e1(h), . . . , em(h)) are vectors, and
lim 1hl_ oei(h)/Ihl = O.

(b) Let g: G1 --+ ~m be of class C 1 and define F(x) = g[f(x)J for x E G. Then
we have the Chain Rule:

VF(x) = Vg[f(x)]' Vf(x). (14.20)

(c) Suppose that f is one-to-one with det Vf(x) # 0 on G. Then the image
f(G) = Go is open and the inverse function 91 = r: is one-to-one on Go and
of class C 1

• Furthermore,

Vg 1 [f(x)J = [Vf(X)J-l with det([Vf(x)J-l) # 0 for x E G (14.21)

or
U EGo.

PROOF
(a) Formula (14.19) follows directly from the Fundamental lemma of dif

ferentiation for functions in ~m as given in Theorem 7.2.
(b) Formula (14.20) is a consequence of the Chain rule for partial derivatives

as stated in Theorem 7.3. Each component ofVF may be written (according
to Theorem 7.3)

which is (14.20) precisely.
(c) Since f is one-to-one, it is clear that f- 1 is a function. Let y E Go where

Go is the image of G and suppose f(x) = y. From the Inverse function theorem,
which is applicable since Vf(x) # 0, there are positive numbers hand k such
that the ball B(x, k) is in G and also such that for each Y E B(y, h) there is a
unique x E B(x, k) with the property that f(x) = y. We define gl (y) to be the
function given by the pairs (y, x). Then 91 is of class CIon B(y, h) and the
domain of gl contains B(y, h). Hence for each y in Go, there is a ball with y
as center which is also in Go . We conclude that Go is open. Formula (14.21)
follows from (14.20) and the Inverse function theorem. 0

In establishing the change of variables formula we shall see that an essential
step in the proof is the reduction of any C1 function f into the composition
of a sequence of functions which have a somewhat simpler character. This
process can be carried out whenever the Jacobian of f does not vanish.

Definition. Let (iI' i2, .. . , im ) be a permutation of the numbers (1,2, . . . , m).
A linear transformation r from ~m into ~m is simple if r has the form

The next lemma is an immediate consequence of the above definition.
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Lemma 14.6. The product of simple transformations is simple and the inverse
of a simple transformation is simple.

If f1 and f2 are functions on lRm to lRm such that the range of f2 is in the
domain of f1' we use the notation I, 0 f2 for the composition I, [f2(X)] of the
two functions.

The next lemma gives the precise reduction of a function on lRm as the
composition of functions each of which has an essentially simpler character.

Lemma 14.7. Let G be an open set in lRm
, X E G, and let f: G -+ lRm be a C1

function with det Vf(x) =1= O. Then there is an open subset G1 of G containing x
such that f can be written on G1 as the composition of m + 1 functions

f = g og o .. ·ogm+1 m l' (14.22)

The first m functions gl , g2, ... , gm are each defined on an open set G, in lRm

with rangeon an open set in lRm such that gi: G, -+ Gi+1, i = 1,2, . . . , m.Moreover,
the components (gf, ot, ... , gil of gi have the form

g/(X1' x2, ... , xm) = Xj for j =1= i and gt = cpi(X1, X2 , ... , xm) . (14.23)

The functions cpi are determined in terms of f and have the property that cp,ii > 0
on Gi . The function gm+1 is simple.

PROOF. Since all the components except one in the definition of gi given by
(14.23) are coordinate functions, a straightforward computation shows that
the determinant of the matrix Vgi, denoted det Vgi, is equal to cp,ii' We shall
establish that cp,ii is positive and so these determinants will all be positive.

Since the Jacobian Vf(x) is nonsingular, there is a linear transformation 't'1

such that 't'1 0 f has the property that all the principal minors of the Jacobian
V('t'l 0 f) are positive at X. Define fo = 't'1 0 f and denote the components offo
by (fl.Jl, ... .Jt), Next define m functions h1 , h2 , ... , hm as follows:

hi has components (fo1 , f02, ... ,u:Xi+1 , Xi+2 ,'''' xm)

for i = 1, 2, . . . , m - 1. We set hm = fo. Since all the principal minors of Vfo
are positive, it is not difficult to see that each Vhi(x) is nonsingular and, in
fact, det Vh;(x) > 0 for each i. According to Part (c) of Theorem 14.5 and the
manner in which the hi are defined, for each i there is an open set Hi on which
det Vhi(x) > 0, Also, hi is one-to-one from Hi onto an open set. Define

G1 = H 1 ('\ H2 ('\ ••• ('\ Hm •

Now, define sets G2 , G3 , •.. , Gm+1 as follows:

Gi+1 = hi(Gd, i = 1,2, .,., m.

Henceforth we restrict the domain of h1 , ... , hm to be G1 without relabeling
the functions. Define

i = 2, 3, .. . , m. (14.24)
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To define gm+l consider the function inverse to t l , denoted t-
l which, like t l

is a linear function. Define

gm+1 = t - l restricted to Gm+l ·

We observe that each function gj is a one-to-one mapping from G, onto Gi+l'
and that det Vg j(x) "#0 on Gj • Also,

gm+l 0 gm 0 ••• 0 g2 0 gl = t- l
0 hm0 h;;'~l 0 hm-l 0 h;;'~2 0 . .. 0 h2 0 h1l

0 hl

= t - l 0 hm

= t- l
0 t l 0 f = f ,

and so (14.22)holds.
Once we show that each function gjhas the form given by (14.23)the proof

will be complete. Since

gl = hl = (fl, X2' . .. , xm)

it is clear that gl has the proper form. Now g2 = h2 0 h1l and since h1l =
(fo-l, X2' • . • , xm) , h2 = (fol, fl, X3 ' • . . , xm) , we see that

g2 = (xl,fl, X3' .. . , xm) ·

The argument for each gj is similar. Since all the principal minors of Vfo are
positive, we know that u: > 0 and, from the way we selected the vectors h,
and gj we conclude that cp,jj = u, > O. 0

In Lemma 14.7 we express an arbitrary Cl function f as the composition
of functions each of which is the identity in all components except one (plus
a simple function). The one component which is not the identity, for example
the ith, has the property that its partial derivative with respect to x, is positive
on Gj •

The next step (Lemma 14.9) establishes the change of variables formula for
a typical function which appears in such a decomposition.

Lemma 14.8. Let G be a set in IRm and cp: G -+ 1R 1 a bounded function such
that Icp(x) - cp(y)1 ::;; s for all x, Y E G. Define m = inf{cp(x): x E G} and M =
sup {cp(x): x E G}. Then

M-m::;;e.

The proof is left to the reader.

Lemma 14.9.Let Gbe an openset in IRm and supposethat f: G -+ IRm is a one-to
one function of class Cl. We denote the componentsof f by (ul, u2, .. . , um) and
let k be a fixed integer between 1 and m. Suppose the uj have the form

uj(x l , x2, ... , Xm) = Xj, the ith coordinate in IRm for i"# k,

Uk = fk(x) with f.~(x) > 0 on G.
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(a) If F is a figure with Fe G, then the set f(F) is a figure in IRm•

(b) Denote f(G) by G1 and let K : G1 -. 1R 1 be uniformly continuous on G1 • Then
the change of variables formula holds:

f K[f(x)] IJ(x)1 dVm=f K(u) dVm, where J(x) = det Vf(x). (14.25)
F f(F)

PROOF

(a) Let R be a closed cell in G with al ~ Xi ~ b.; i = 1,2, .. . , m (see Section
8.1). Then the set S = f(R) is given by

and

We now employ the Corollary to Theorem 8.13 to conclude not only that S
is a figure in IRm but that its volume, denoted V(S) = V[f(R)], is given by

f
bI.

V(S) = [fk(x1, .•. , Xk-l' bk, Xk+l' .• • , Xm)
Qk

- fk(x l' . .. , Xk-l' ak, Xk+l' .. . , Xm)] dx 1 . .. dXk-ldXk+l .. . dxm·

The symbols a~, b~ mean that the integration with respect to each variable Xl

is between the limits a, and bl . Since the integrand above can be written as

fb

k

f.~ dXk'
Qk

we find

V(S) =Lf.~(x) dVm'

where dVm is the usual element of volume in IRm
• From the way we defined f,

a simple computation shows that IJ(x)1 = f.~(x), and we conclude that

V[f(R)] = LIJ(x)1 dVm·

Part (a) is now established when F is a cell. Next, let F be any figure such that
Fe G. For any positive integer n we may cover F with hypercubes of side
2-n, denoting by Fn- the collection ofinner hypercubes and by Fn+ the collection
of inner and boundary hypercubes. From the Lebesgue lemma (Theorem 3.16
and Theorem 6.27) which is valid in IRm it follows that there is a positive
number p such that all members of Fn+ are entirely in G and, in fact are at least
at distance p from the boundary of G. Since no two hypercubes of Fn+ have
interior points in common, it follows that

V[f(Fn+)] = Lot IJ(x)1 dV,



364 14. Implicit Function Theorems and Lagrange Multipliers

and a similar formula holds for Fn- . Denoting the inner and outer volume of
f(F) by Y- [f(F)] and y+ [f(F)], respectively, we find

L;; IJ(x)1 dY = Y[f(Fn-)] ~ Y-[f(F)]

~ y+ [f(F)] ~ Y[f(Fn+)]

= L.t IJ(x)1 dV. (14.26)

Since f is of class C1
, the function IJ(x)1 is uniformly continuous on Fn+ for all

sufficiently large n and hence bounded by a constant which we denote by M.
Therefore,

L.t-F IJ(x)1 dY ~ MY(Fn+ - F).

(14.28)

Since F is a figure, we let n -+ 00 and these integrals tend to zero. Employing
this fact in (14.26) we conclude that Y-[f(F)] = Y+[f(F)], and so f(F) is a
figure. Moreover,

Y[f(F)] = LIJ(x)1 dV,

that is, in addition to Part (a) we showed that Formula (14.25) holds in the
special case K(x) == 1.

(b) Let F be a figure such that F c G. Since f and IJI are continuous on F,
a closed bounded set, they are uniformly continuous on F. Since, by hypo
thesis, K[f(x)] is uniformly continuous on G1, we see that the function
K[f(x)] ' IJ (x)1is uniformly continuous on F and hence integrable on F. We
shall establish Formula (14.25) by approximating each of the integrals in
(14.25) by a Riemann sum and then by showing that the two Riemann sums
are arbitrarily close if the subdivision is sufficiently fine. Let 8 > 0 be given,
and let d : {F1 , F2 , .. . , Fn} be a subdivision of F. Choose ei E Fi, i = 1, 2, ... ,
n. Then

li~ K[f(ei)] IJ(ei)1Ym(Fj ) - LK[f(x)] IJ(x)1 dYml < i, (14.27)

if the mesh Ildll is sufficiently small, say less than some number ~. Similarly,
if d1 : {Fi, F;, ... , F~} is a subdivision of f(F) with IId1 II < '1 and with e;E F;,
i = 1, 2, . . . , n, then for sufficiently small '1, it follows that

It K(WYm(F[) - f K(u) dYml < -3
8

.
.=1 !(F)

Let M = sUPue!(F) IK(u)/. Because of the uniform continuity of f and IJI, we
may choose ~ so small that for all x', x" E F with [x' - x"l < ~, we have

If(x') - f(x")1 < '1 and IIJ(x')1 - IJ(x")11 < 3M;m(F) (14.29)
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We now assume (j is chosen in this way and that (j is made smaller, if necessary,
so that (14.27) holds. Select ~; = f(~;) and F[ = f(F;), i = 1, 2, . .. , n. Then
d 1 : {F~, ... , F~} is a subdivision of f(F), and from the first inequality in (14.29),
we have IId111 < 1'/. Thus (14.28)holds. Next denote by m;and M; the infimum
and supremum of IJ(x)1 on Fi, respectively . Then from the proof of Part (a)
and the Mean-value theorem for integrals, it follows that

Vm(F[) = f IJ(x)1 dVm= IJ;I Vm(Fi)'
F,

(14.30)

where IJ;Iis a number such that m, ~ IJ;I ~ M; We also have m; ~ IJ(~;)I ~ M,
and so, by Lemma 14.8 and the second inequality in (14.29), we find

We wish to estimate the difference of the Riemann sums

I ;~ K(~;)Vm(F[) - ;~ K[f(OJIJ(OI Vm(Fi)l ·

Using (14.30) and the fact that ~; = f(~;), we obtain for (14.32)

Ii~ K(e;) [IJ;I - IJ(~;)IJ Vm(F;)I·

Inserting (14.31) into this expression, we find that

Combining (14.27), (14.28), and (14.33),we conclude that

If K[f(x)] IJ(x)1 dVm- f K(u) dVml < e.
F f(F)

Since e is arbitrary Formula (14.25) holds.

(14.31)

(14.32)

(14.33)

o

Lemma14.10.Suppose that f: G -. G1 is simple. Then the conclusionsof Lemma
14.9 hold.

PROOF. If f is simple the image of any cell in G is a cell in G1 (perhaps with
the sides arranged in a different order). Also, for f simple, we have IJ(x)1 = 1,
and If(x') - f(x ")1 = [x' - x"l for any two points x' , x" E G. The remaining
details may be filled in by the reader. 0

In Lemma 14.7 we showed how to express a function f as the composition
of essentially simpler functions 91' 92" ' " 9m ' Then, in Lemmas 14.9 and 14.10
we established the change of variables formula for these simpler functions.
Now we show that the change of variables formula, (14.25),holds in general.
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(14.35)

Theorem 14.6 (Change of variables formula) . Let G be an open set in IRmand
suppose that f: G -. IRmis one-to-one and of class C1 with det Vf(x) # 0 on G.
Let F be a closed bounded figure contained in G. Suppose that K : f(F) ~ 1R 1 is
continuous on f(F). Then f(F) is a figure, K[f(x)] is continuous on F, and

f K(u) dVm= f K[f(x)] ' IJ (x)JdVm' where J(x) = det Vf(x). (14.34)
f(F) F

PROOF. Let Xo be any point of G. Then, according to Lemma 14.7, there
is an open set G1 with X o E G1, G1 C G, and such that on G1 we have
f = gm+l 0 gm 0 • •• 0 gl with the gj satisfying all the conditions of Lemma 14.7.
In Lemmas 14.9 and 14.10,we established the change of variables formula for
each gj'

Let F be a closed bounded figure in G1 and suppose K is continuous on
f(F). The set f(F) is given by

f(F) = gm+1 0 gm 0 ... 0 gl (F).

Applying Lemma 14.10 to the simple mapping gm+1' we see that the set
gm 0 gm-l 0 ••• 0 91 (F) is a figure. Define the function

K 1(u) = K[gm+l(u)]·Jdet Vgm+1(u)J.

Then K 1 is continuous on gm 0 gm-l 0 • •• 0 91 (F) and

f K(u) dVm = f K(u) dVm
f(F) gm+1 0 '" og,(F)

= f K 1(u) dVm •
gmo ... og,(F)

Next apply Lemma 14.9 to the mapping gm' We define

K 2(u) = K 1 [gm(u)] -Idet Vgm(u)l,

and we observe that gm-l 0 gm-2 0 ••• 0 gl (F) is a figure with K 2 continuous
on this set. Therefore from Lemma 14.9, we have

f K(u) dVm= f K 1(u) dVm=f K 2(u) dVm·
f(F) gm O ' " og,(F) gm-' 0 '" og,(F)

By substitution, we find

K 2(u)= K 1 [gm(u)] -Idet Vgm(u)1

= K[gm+1 (gm(u))] -Idet Vgm+1 [gm(u)]I'ldet Vgm(u)l·

Set h2(u) = gm+l 0 gm(u) and then the above formula becomes

K 2(u) = K[h2(u)]-Idet Vh2(u)l,

where the Chain rule and the formula for the product of determinants have
been used. We continue this process by defining hp(u) = gm+l 0 gm 0 ••• 0 gm-p+2,
p = 2, 3, .. . , m + 1, and Kp(u) = K[hp(u)] -Idet Vhp(u)l. We arrive at the
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f K(u) dVm= f K[hm(u)] -Idet V'hm(u) IdVm
gm+' 0 ' " o g, (F ) g,(F)

= t K[hm+1 (u)] -ldet V'hm+1 (u)1 dVm

= t K[f(u)] -ldet V'f(u) I dVm'

which is the desired result for a figure F in GI .

To complete the proof, let F beany closed bounded figure in G and suppose
that K is continuous on F. From the Lebesgue lemma (Theorems 3.16 and
6.27), there is a number p such that any ball B(x, p) with center at a point
of F lies in some open set GI . We subdivide F into a finite number of figures
FI , F2 , • • • , F, such that each F, is contained in a single ball B(x , pl. For
i = 1, 2, ... , S, we have

f K(u) dVm= r K[f(v)] [det V'f(v)1 dVm·
f(F) JF;

i

The formula (14.34) follows by addition on i. o

EXAMPLE. Evaluate JFXl dV2(x ) where F is the region bounded by the curves
Xl = -X~, Xl = 2X2 - x~, and Xl = 2 - 2X2 - x~ (see Figure 14.4(a)). Intro
duce new variables (u1 , U2) by

f : Xl = ul - !(UI + U2)2, X2 = !(u1 + U2), (14.36)

and use Theorem 14.6.

Solution. Figure 14.4 shows G, the image of F in the (u l , u2)-plane. Solving
(14.36) for Ut> U2 in terms of Xl' X 2, we get

--+--::l~-+---=:lIok-+-- XI

XI =2 - 2X2 - X~

(a)

o

(b)

Figure 14.4. Changing variables from (Xl> X 2) to (u1 , u2 )·
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and so I is a one-to-one transformation of 1R2 onto itself. The equations of the
bounding curves of G are

The Jacobian of I is

det VI = I~ -!(UI + u2)

Therefore

LXl dV2(x) = L[U I - ~(UI + U2)2J. ~ dV2(u)

= ~LI2-
2U

l [U I - ~(UI + U2)2J dU2 dU I = :8· o

PROBLEMS

In each of Problems 1 through 6 evaluate JFK(xl, X2) dV2(x), where F is
bounded by the curves whose equations are given. Perform the integration by
introducing variables UI, U2 as indicated. Draw a graph of F and the corre
sponding region in the UI' u2-plane. Find the inverse of each transformation.

1. K(x l , x 2) = XIX2. F is bounded by X2 = 3xl , XI = 3x2, and X I + X2 = 4. Map
ping: XI = 3uI + u2, X2 = U I + 3U2.

2. K(xl> x 2) = XI - xi.F is bounded by X2 = 2, XI = xi- X2, XI = 2X2 + xi. Map
ping: XI = 2uI - U2 + (u l + U2)2, X2 = U I + U2 ·

3. K(x l , x 2) = x2.F is bounded by XI + X2 - xi= 0,2x I + X2 - 2xi = I;x, - xi =
o. Mapping: XI = U I + (u2 - UI)2 , X2 = U2.

4. K(x l , X2) = (xi + xi)-3. F is bounded by xi+ xi = 2x l , xi+ xi = 4x l , xi+
xi = 2x 2, xi + xi = 6x 2· Mapping: XI = ud(ui + un, X2 = u2/(ui + un·

5. K(x l , X2) = 4XIX2 . F is bounded by X I = X2' X I = -X2' (XI + X2)2 + XI - X2 
1 = O. Mapping: X I = t(ul + U2),X2 = t( -UI + u2). Assume XI + X2 > o.

6. K (x I' X2) = xi + xi.F is the region in the first quadrant bounded by xi - xi = 1,
xi - xi = 2, XIX2 = 1, XIX2 = 2. The inverse mapping is: UI = xi - xi, U2 =

2XIX 2·

7. Prove Lemma 14.8.

8. Complete the proof of Lemma 14.10.

9. Evaluate the integral

LX 3 dV3(x)

by changing to spherical coordinates: X I = P cos qJ sin 8, X 2 = P sin qJ sin 8, X3 =
P cos 8, where F is the region determined by the inequalities 0~ xi+ xi ~ x~,

o~ xi+ xi+ x~ ~ 1, X3 ~ O.
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10. Write a proof of the Fundamental Lemma of Differentiation for vector functions
(Theorem 14.5, Part (a» .

11. Show that the product of simple transformations is simple and that the inverse of
a simple transformation is simple (Lemma 14.6).

12. Let g = (gt, g2, ... , gm)where gi = x/or j # i; j = 1,2, . .. , m,and gi = <p(x). Show
that Vg = <P,i (see Lemma 14.7).

13. IfI is of class Cion a closed bounded region Gin IRm
, show that det VIis uniformly

continuous on G.

14.4. The Lagrange Multiplier Rule

Let D be a region in IRm and suppose that f: D -+ IR I is a C I function . At any
local maximum or minimum of f(x) = f(X1' ••• , x m), we know that f.i = 0,
j = 1, 2, ... , m. In many applications we wish to find the local maxima and
minima of such a function f subject to certain constraints. These constraints
are usually given by a set of equations such as

(14.37)

Equations (14.37) are called side conditions. Throughout we shall suppose
that k is less than m. Otherwise, if there were say m side conditions, Equa
tions (14.37) when solved simultaneously might yield a unique solution x =
(Xl' ... , xm ) . Then this value when inserted in f would give a solution to the
problem without further calculation. We reject the case k > m since there may
be no solution to the system given by (14.37). We shall suppose that the
functions ({li: D -+ 1R 1, j = 1, 2, "' , k, are C1 functions, and furthermore that
the k x m matrix

(~:~
({l,1

I 1)({l,2' i' ({l,m

k k
({l,2'" ({l,m

is of rank k. That is, we suppose that at least one of the k x k minors of the
above matrix has determinant different from zero in D. Without loss of
generality, we assume that the square matrix consisting of the first k columns
has nonvanishing determinant in D. This may always be achieved by relabel
ing the variables. Then according to the Implicit function theorem, in the
neighborhood of any point xED we may solve for Xl' X2' . , ., X k in terms of
Xk+l' .. " X m • That is, there are functions gt, .. . , gk of class C 1 such that
Equations (14.37) can be written

X I = gl (Xk+l' ••• , x m), X2 = g2(Xk+I' • • • , x m), • • • , X k = gk(Xk+1' •.• , x m).
(14.38)
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A customary way of finding a local maximum or minimum of f subject to
the side Conditions (14.38) consists of the following procedure. First, solve the
system given by (14.37) for Xl" '" Xk and obtain Equations (14.38). We assume
that this is valid throughout D. Second, insert the functions in (14.38) in f,
obtaining a function of the variables Xk+l' •• • , X m given by

H(Xk+l ' . . . , x m) == f[gl(Xk+l"'" xm),

Finally, find the local max ima and minima of H as a function of X k+1 ' ••. , X m

in the ordinary way. That is, compute

k

H . = " f .gi . + f·, I L. , j , I , 0
i=l

i = k + 1, . .. , m, (14.39)

and then find the solutions of the system of m - k equations

u, = O. (14.40)

The values of Xk+l' ... , X m obtained in this way are inserted in (14.38) to yield
values for Xl" ' " x k • In this way we obtain the critical points of f which also
satisfy (14.37). Various second derivative tests may then be used to decide
whether the critical points are local maxima, local minima, or neither.

The method of Lagrange multipliers employs a simpler technique for achiev
ing the same purpose. The method is especially useful when it is difficult or
not possible to solve the system given by (14.37) in order to obtain the
functions s', ...,gk given by (14.38).

The Lagrange multiplier rule is frequently explained but seldom proved.
In Theorem 14.7 below we establish the validity of this rule which we now
describe. We introduce k new variables (or parameters), denoted by A=
(AI' A2 , .. . , Ak ) , and we form the function of m + k variables

k

F(x, A) = F(x l , ••• , X m , AI' . .. , Ak ) == f(x) + L A/ pi (x).
i=l

For this function F we compute the critical points when X is in D and Ain IRk
without side conditions. That is, we find solutions to the m + k equations
formed by all the first derivatives of F(x, A):

F',i = 0,

F',i = 0,

i = 1,2, ... , m,

j= 1,2, .. . ,k. (14.41)

We shall show that the critical points given by solutions of (14.40) are among
the solutions of the system given by (14.41).

Suppose that f takes on its minimum at x", a point in the set Doconsisting
of all points X in D where the side conditions (14.37) hold. Suppose there is a
function 9 = (gt, g2, . .. , gm) from I = {t: -to < t < to} into IRm which is of
class C l and has the properties

g(O) = X O and iPi[g(t)] = 0 for j = 1, 2, ... , k; t e I. (14.42)



14.4. The Lagrange Multiplier Rule

Then the function <1> : I -+ IRm defined by

<I>(t) = f[g(t)]
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(14.43)

(14.44)

takes on its minimum at t = O. Differentiating (14.42) and (14.43) with respect
to t and setting t = 0, we get

f rP!i(XO) dgi(O) = 0 and f f,;(xo) dgi(O) = O.
i = 1 dt ;=1 dt

Now let h = (h1, h2, . . . , hm) be any vector! in Vmwhich is orthogonal to the
k vectors (rP,j1 (XO), rP,j2(XO), . . " rP,jm(xo)), j = 1, 2, .. " k. That is, suppose that

m
L rP,ji(xO)hi = 0 or VrPj(xO) 'h = 0,
i =1

j= 1,2, ... .k.

From the Implicit function theorem, it follows that we may solve (14.37) for
x l ' , . , , Xk in terms of Xk+1 , . , . , xm, getting

i = 1,2, ... , k.

i = 1,2, .. .ck,
i = k + 1, ... , m,

then g = (g1(t)" . . , gm(t)) satisfies Conditions (14.42) and (14.44). We have
thereby proved the following lemma.

Lemma 14.11. Suppose that f , rP 1, rP2,... , rP k are c1 functions on an open set D
in IRm containing a point x", that the vectors VrP 1(XO), .. . , VrPk(XO) are linearly
independent,and that f takes on its minimumamongall points of Do at x", where
Do is the subset of D on which the side conditions (14.37) hold. If h is any vector
in Vmorthogonal to VrP 1(XO), . . . , VrPk(XO), then

Vf(xO) . h = O.

The next lemma, concerning a simple fact about vectors in Vm , is needed in
the proof of the Lagrange multiplier rule.

Lemma 14.12. Let v, b2, ... , bk be linearly independent vectors in the vector
space Vm. Suppose that a is a vector in Vmwith the property that a is orthogonal
to any vector h which is orthogonal to all the b'. Then there are numbers A1, A2'
, . . , Ak such that

k

a = L Aibi.
i= 1

That is, a is in the subspace spanned by b1,b2,.", b".

3 In this argument we assume the reader is familiar with the customary m-dimensional vector
space, denoted Vm• See Appendix 4.
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PROOF. Let B be the subspace of Vm spanned by b'; b", . . . , b': Then there are
vectors Ck+l, Ck+2, • • • , em, such that the set b'; . . . , b", Ck+l , ... , em form a
linearly independent set (basis) of vectors in Vm • Let h be any vector orthogonal
to all the b'; then h will have components hI' . . . , hm in terms of the above
basis with hI = h2 = .. . = hk = O. The vector a with components (aI' , am)
and with the property a' h = 0 for all such h must have ai+l = ai+2 = =
am = O. Therefore, a = L7=1 a.b' , We set a j = Ai to obtain the result. D

Theorem 14.7 (Lagrange multiplier rule). Suppose that f, ,pI, ,p2, . . . , ,pk and XO
satisfy the hypotheses of Lemma 14.11. Define

k

F(x , A) = f(x) - L Ai,pi(X).
i=l

Then there are numbers A?, A~, ... , A~ such that

F",.{xo, AO) = 0, i = 1,2, ... , m,

and

PROOF. The Equations (14.45) are

j = 1,2, ... , k. (14.45)

k

Vf(xo) = L APV,p/(XO)
/=1

and j = 1,2, ... , k.

14
14 = 4A2 '

We set a = Vf(xO) and b! = V,pi(xO). Then Lem~a 14.11 and 14.12 combine
to yield the result. D

Remark. This theorem shows that the minimum (or maximum) of f sub
ject to the side conditions ,pI = ,p2 = .. . = ,pk = 0 is among the minima (or
maxima) of the function F without any constraints.

EXAMPLE. Find the maximum of the function Xl + 3X2 - 2x3 on the sphere
xi + x~ + x~ = 14.

Solution. Let F(x l, X2, X3 ' A) == Xl + 3X2 - 2x3 + A(xi + x~ + x~ - 14).
Then F.l = 1 + 2AX l , F',2 = 3 + 2A.x2, F',3 = -2 + 2AX3, F,4 = xi + x~ +
x~ - 14. Setting F,i = 0, i = 1, ... , 4, we obtain

1 3
Xl = -2A' X2 = -2A'

The solutions are (x. , X2 , X3, A) = (1, 3, -2, -t) or (-1, -3,2, t).The first
solution gives the maximum value of 14. D

PROBLEMS

In each of Problems 1 through 10 find the solution by the Lagrange multiplier
rule.
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1. Find the minimum value of xi + 3x~ + 2x~ subject to the condition 2x I + 3X2 +
4x3 - 15 = O.

2. Find the minimum value of2xi + x~ + 2x~, subject to the condition 2x I + 3X2 
2X3 - 13 = O.

3. Find the minimum value of xi + x~ + x~ subject to the conditions 2x I + 2X2 +
X3 + 9 = 0 and 2x I - X2 - 2X3 - 18 = O.

4. Find the minimum value of 4xi + 2x~ + 3x~ subject to the conditions x I + 2x2+
3X3 - 9 = 0 and 4x I - 2x2 + X3 + 19 = O.

5. Find the minimum value of xi + x~ + x~ + x~ subject to the condition 2xI +
X2 - X3 - 2x4 - 5 = O.

6. Find the minimum value of xi + x~ + x~ + x~ subject to the conditions XI 
X2 + X3 + X4 - 4 = 0 and XI + X2 - X3 + X4 + 6 = O.

7. Find the points on the curve 4xi + 4XIX2 + x~ = 25 which are nearest to the
origin.

8. Find the points on the curve txi + 6XIX2 + 2x~ = 25 which are nearest to the
origin.

9. Find the points on the curve x1 + y1 + 3xIYI = 2 which are farthest from the
origin.

10. Let b., b2 , • • • , b,. be positive numbers. Find the maximum value ofL~=1 b.x, subject
to the side condition D=I xf = 1.

11. (a) Find the maximum of the function xi ,x~ . . .x; subject to the side condition

D=lxf = 1.
(b) If D=I xf = 1, show that (xi x~ · · · x;) II· :s:;; lin.
(c) If ai' a2' "', a. are positive numbers, prove that

[The geometric mean of n numbers is always less than or equal to the arithmetic
mean.]




