
STAT 280: OPTIMIZATION

SPRING 2022

PROBLEM SET 4

For the parts that require coding, you may use any software or programming languages you like
but please present your source codes and results in a way that is comprehensible to someone who is
unfamiliar with that program (e.g., comment your codes appropriately, present your results using
tables and graphs). I recommend using NumPy, Mathematica, Matlab, R so that you don’t have
to code things from scratch.

1. (a) Find all stationary points of the cubic polynomial

f(x, y) = x3 + y3 − 3x− 12y + 20.

Indicate which are the local maximizers and local minimizers.
(b) Prove that for any x ≥ 0, y ≥ 0, we always have

x2 + y2

4
≤ ex+y−2.

(c) Let A ∈ Sn, b ∈ Rn, and c ∈ R. Show that f : Rn → R,

f(x) =
1

2
xTAx+ bTx+ c

has a unique global minimizer iff A ≻ 0. What is it?
(d) Let A ∈ Rm×n and b ∈ Rm. Show that x∗ is a global minimizer of ∥Ax − b∥2 iff x∗ is a

solution to ATAx = ATb.
(e) Let A ∈ Rm×n be of rank n, b ∈ Rm, c ∈ Rn, d ∈ R, and Ω = {x ∈ Rn : cTx + d > 0}.

Show that the global minimizer of f : Ω → R,

f(x) =
∥Ax+ b∥2

cTx+ d

is given by

x∗ = (ATA)−1(−ATb+ tc)

where t is a solution to a quadratic equation. Find t in terms of A,b, c, d.

2. Consider the function f : R2 → R defined by

f(x, y) =
1

2
(ax2 + by2)

where a, b > 0. We will apply steepest descent with exact line search to f with the initial point
x0 = (x0, y0) = (b, a). (Note: In case it is not clear, you are supposed to do this problem ‘by
hand’. No coding required.)
(a) Show that f is strongly convex on R2. Find the global minimizer x∗ and global minimum

f(x∗).
(b) Show that steepest descent with exact line search will yield step size

αk =
2

a+ b
,

Date: May 15, 2022 (Version 1.0); due: May 27, 2022.

1

2 STAT 280 ASSIGNMENT 4

iterates

xk =

[
xk
yk

]
, xk =

(
b− a

a+ b

)k

b, yk =

(
a− b

a+ b

)k

a,

and function values

f(xk) =
ab2 + ba2

2

(
b− a

a+ b

)2k

for all k ∈ N.
(c) Deduce that

lim
k→∞

∥xk+1 − x∗∥
∥xk − x∗∥

=

∣∣∣∣a− b

a+ b

∣∣∣∣ , lim
k→∞

|f(xk+1)− f(x∗)|
|f(xk)− f(x∗)|

=

∣∣∣∣a− b

a+ b

∣∣∣∣2 .
In other words, in this case the sequence of iterates is linearly convergent both in the usual
sense (limk→∞ xk = x∗ linearly) and the functional sense (limk→∞ f(xk) = f(x∗) linearly).

3. Implement steepest descent method and Newton method, both with backtracking line search,
for minimizing a function of the form

f(x1, . . . , x100) =
∑100

j=1
cjxj −

∑500

i=1
log

(
bi −

∑100

j=1
aijxj

)
.

Your implementation just needs to work for this specific objective function (as opposed to an
arbitrary f) but it should allow for (i) arbitrary input parameters A ∈ R500×100, b ∈ R500,
and c ∈ R100, (ii) arbitrary backtracking line search parameters c ∈ (0, 1) and ρ ∈ (0, 1), (iii)
abitrary starting point x0 and initial step size α0, (iv) arbitrary tolerance ε > 0 for the stopping
conditions (i.e., ∥∇f(xk)∥ ≤ ε for steepest descent, λ2

k/2 ≤ ε for Newton).
(a) Note that this is an unconstrained optimization problem but the domain of this function is

Ω :=
{
x ∈ R100 : bi −

∑100

j=1
aijxj > 0 for all i = 1, . . . , 500

}
.

Generate A and b randomly in a way that ensures Ω ̸= ∅, for example

A = randn(500, 100); b = A*randn(100, 1) + 2*rand(500,1);

in Matlab/Octave/Scilab syntax). Generate c randomly too. Set α0 = 1 and generate x0

randomly so that x0 ∈ Ω.
(b) Let x∗ be the output of your implementation. Let ek := f(xk)− f(x∗) be the error at the

kth iteration. Plot the log of the error log ek against k in a graph, i.e., you want to see how
log ek decreases as k increases. Why did we use a log scale? What if we instead plot the
error ek against k?

(c) Do (b) for both steepest descent and Newton methods over a range of different backtracking
parameters and tolerance:

c = 0.01, 0.05, 0.10, 0.25, 0.50, 0.75, 0.90,

ρ = 0.05, 0.25, 0.50, 0.75, 0.95,

ε = 10−3, 10−5, 10−8.

Do (b) without line search, i.e., omit the line search step from steepest descent and Newton
method.

(d) Comment on your results,1 paying particular attention to (i) the convergence rates of steep-
est decent and Newton methods, (ii) how the two methods depend on on different choices
of c, ρ, ε and whether you do line search or not.

1Since your numerical experiments rely on randomly generated A,b, c, and x0, you should repeat them at least
10 times just to be sure that what you observed is not a fluke. However, just present one set of graphs to support
your conclusions.

STAT 280 ASSIGNMENT 4 3

4. We will apply Newton method to compute the inverse A−1 of an invertible matrix A ∈ Rn×n.
(a) Consider the function g(X) = X−1 defined for invertible n× n matrices X. Show that the

derivative of g at X is given by

[Dg(X)](H) = −X−1HX−1.

(b) Show that Newton method may be applied to an appropriate function to obtain the following
iteration for computing the inverse of an invertible matrix A ∈ Rn×n

Xk+1 = Xk(2I −AXk). (4.1)

(Hint : Emulate the univariate Newton method for computing reciprocal in Homework 1,
Problem 5(c).) Note that like the univariate version this algorithm requires only addition
and multiplication of matrices.

(c) Show that if we define error at step k by Ek = I − AXk (note that this vanishes exactly
when Xk = A−1), then

Ek+1 = E2
k = E4

k−1 = · · · = E2k+1

0 .

In other words, if (4.1) converges, then the convergence is quadratic.
(d) Implement the algorithm in (b) with initialization X0 = αAT, 0 < α < 2/∥A∥2, and with a

simple stopping criteria (e.g., stop when ∥Xk+1 −Xk∥ or ∥Ek∥ is small).
(i) Compare the result X∗ obtained by your implementation for 2 × 2 matrices A with

random integer entries and for a 10 × 10 diagonal matrices A with random rational
entries with the actual A−1, which you know analytically. Check the accuracy of your
implementation by observing the values of ∥X∗−A−1∥ (this is called the forward error,
note that you can compute this only if you already know A−1).

(ii) Compare the result X∗ obtained by your implementation for randomly generated
n×n matrices A with the result Y∗ obtained by calling the matrix inversion function
of the software you use. Do this for n = 10, 102, 103. Check the accuracy of your
implementation by comparing the values of ∥I −AX∗∥ and ∥I −AY∗∥ (this is called
the backward error, note that you can compute this even if you do not know A−1).

Side note: In fact invertibility is not a requirement and you can even have a rectangular matrix
A ∈ Rm×n. Initializing (4.1) by X0 = αAT for any 0 < α < 2/∥A∥2 produces a sequence that
converges to X∗ = A† ∈ Rn×m, the Moore–Penrose inverse of A. I recommend Stat 309 if you’re
interested to find out more.

