STAT 280: OPTIMIZATION
 SPRING 2022
 PROBLEM SET 3

In the following, we write $\mathbb{R}_{+}=[0, \infty)$ and $\mathbb{R}_{++}=(0, \infty)$. So $\mathbb{R}_{+}^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: x_{i} \geq 0\right\}$ and $\mathbb{R}_{++}^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: x_{i}>0\right\}$.

As usual, no taking partial derivative, no quoting nonsense like Jacobi formula; everything here requires nothing more than definition and chain rule. You may freely quote results from previous homework and lecture notes.

1. Let $A_{0}, A_{1}, \ldots, A_{n} \in \mathbb{S}^{m}$ and $\Omega=\left\{\mathbf{x} \in \mathbb{R}^{n}: A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n} \succ 0\right\}$.
(a) Find the gradient of $f: \Omega \rightarrow \mathbb{R}$,

$$
f(\mathbf{x})=\operatorname{det}\left(A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n}\right) .
$$

(b) Find the Hessian of $f: \Omega \rightarrow \mathbb{R}$,

$$
f(\mathbf{x})=\log \operatorname{det}\left(A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n}\right)
$$

Recall that we have already found the gradient of this function in the lectures.
(c) Find the gradient and Hessian of $f: \Omega \rightarrow \mathbb{R}$,

$$
f(\mathbf{x})=\operatorname{tr}\left(\left(A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n}\right)^{-1}\right)
$$

(d) Find the gradient of $f: \Omega \rightarrow \mathbb{R}$,

$$
f(\mathbf{x})=(B \mathbf{x}+\mathbf{c})^{\top}\left(A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n}\right)^{-1}(B \mathbf{x}+\mathbf{c})
$$

where $B \in \mathbb{R}^{m \times n}$ and $\mathbf{c} \in \mathbb{R}^{m}$.
2. Decide which of the following sets are convex. Prove your answers.

$$
\begin{aligned}
\mathrm{GL}(n) & =\left\{X \in \mathbb{R}^{n \times n}: \operatorname{det}(X) \neq 0\right\} \\
\mathbb{S}_{++}^{n} & =\left\{X \in \mathbb{S}^{n}: X \succ 0\right\}, \\
\Omega_{1} & =\left\{\mathbf{x} \in \mathbb{R}^{n}: A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n} \succ 0\right\}, \\
\Omega_{2} & =\left\{X \in \mathbb{R}^{m \times n}: X^{\top} A X+B^{\top} X+X^{\top} B+C \succ 0\right\},
\end{aligned}
$$

where Ω_{1} is as defined in Problem 1 and Ω_{2} is as defined in Homework 2, Problem 4(f).
3. Compute the Hessians of the following functions and decide if they are convex, concave, or neither on their respective domains.
(a) $f: \mathbb{R} \times \mathbb{R}_{++} \rightarrow \mathbb{R}$ defined by

$$
f(x, y)=\frac{x^{2}}{y} .
$$

(Hint: Write $\nabla^{2} f(x, y)$ as a rank-one matrix).
(b) $f: \mathbb{R}^{n} \times \mathbb{R}_{++} \rightarrow \mathbb{R}$ defined by

$$
f(\mathbf{x}, y)=\frac{\mathbf{x}^{\top} \mathbf{x}}{y}
$$

(c) $f: \mathbb{R}^{n} \times \mathbb{S}_{++}^{n} \rightarrow \mathbb{R}$ defined by

$$
f(\mathbf{x}, Y)=\mathbf{x}^{\top} Y^{-1} \mathbf{x}
$$

(d) $f: \mathbb{S}_{++}^{n} \rightarrow \mathbb{R}$ defined by

$$
f(X)=\log \operatorname{det}(X)-\log \operatorname{tr}(X) .
$$

(e) $f: \Omega \rightarrow \mathbb{R}$ defined by

$$
f(\mathbf{x})=\frac{\|A \mathbf{x}+\mathbf{b}\|^{2}}{\mathbf{c}^{\top} \mathbf{x}+d}
$$

where $A \in \mathbb{R}^{m \times n}, \mathbf{b} \in \mathbb{R}^{m}, \mathbf{c} \in \mathbb{R}^{n}, d \in \mathbb{R}$, and $\Omega=\left\{\mathbf{x} \in \mathbb{R}^{n}: \mathbf{c}^{\top} \mathbf{x}+d>0\right\}$.
4. (a) Find the Hessian of the function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined by $f(\mathbf{x})=\log \left(e^{x_{1}}+\cdots+e^{x_{n}}\right)$. Show that for any $\mathbf{v} \in \mathbb{R}^{n}$,

$$
\mathbf{v}^{\top} \nabla^{2} f(\mathbf{x}) \mathbf{v}=\frac{1}{\left(e^{x_{1}}+\cdots+e^{x_{n}}\right)^{2}}\left[\left(\sum_{i=1}^{n} e^{x_{i}}\right)\left(\sum_{i=1}^{n} v_{i}^{2} e^{x_{i}}\right)-\left(\sum_{i=1}^{n} v_{i} e^{x_{i}}\right)^{2}\right] .
$$

Hence or otherwise, deduce that f is a convex function.
(b) Find the Hessian of the function $g: \mathbb{R}_{++}^{n} \rightarrow \mathbb{R}$ defined by $g(\mathbf{x})=\left(x_{1} \cdots x_{n}\right)^{1 / n}$. Show that for any $\mathbf{v} \in \mathbb{R}^{n}$,

$$
\mathbf{v}^{\top} \nabla^{2} g(\mathbf{x}) \mathbf{v}=-\frac{g(\mathbf{x})}{n^{2}}\left[n \sum_{i=1}^{n} \frac{v_{i}^{2}}{x_{i}^{2}}-\left(\sum_{i=1}^{n} \frac{v_{i}}{x_{i}}\right)^{2}\right]
$$

Hence or otherwise, deduce that g is a concave function.
(c) Find the Hessian of the function $h: \mathbb{R}_{++}^{n} \rightarrow \mathbb{R}$ defined by

$$
h(\mathbf{x})=\frac{1}{1 / x_{1}+\cdots+1 / x_{n}} .
$$

By emulating what we did in the previous two parts or otherwise, decide if h is convex, concave, or neither on \mathbb{R}_{++}^{n}.
(d) Find the Hessian of the function $\varphi: \mathbb{R}_{++}^{n} \rightarrow \mathbb{R}$ defined by $\varphi(\mathbf{x})=\log h(\mathbf{x})$. Decide if φ is convex, concave, or neither on \mathbb{R}_{++}^{n}.
5. (a) Show that the negative \log function $-\log : \mathbb{R}_{++} \rightarrow \mathbb{R}$ is strictly convex, i.e.,

$$
\log (t x+(1-t) y)>t \log x+(1-t) \log y
$$

for any $x, y \in \mathbb{R}_{++}$and any $t \in(0,1)$.
(b) Prove the generalized arithmetic-geometric mean inequality

$$
a^{t} b^{1-t} \leq t a+(1-t) b
$$

for any $a, b \in \mathbb{R}_{+}$and $t \in[0,1]$ (note that $t=1 / 2$ gives us the usual arithmetic-geometric mean inequality). Deduce the Hölder inequality: for $p>1$ and $1 / p+1 / q=1$,

$$
\sum_{i=1}^{n}\left|x_{i} y_{i}\right| \leq\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}\left(\sum_{i=1}^{n}\left|y_{i}\right|^{q}\right)^{1 / q}
$$

for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ (note that $p=q=2$ gives us the Cauchy-Schwartz inequality).
(c) Show that $(\sin \theta)^{\sin \theta}<(\cos \theta)^{\cos \theta}$ for all $\theta \in(0, \pi / 4)$.

