STAT 280: OPTIMIZATION
 SPRING 2022
 PROBLEM SET 2

1. (a) Show that for any $X \in \mathbb{R}^{n \times n}$, the series

$$
I+X+\frac{X^{2}}{2}+\cdots+\frac{X^{k}}{k!}+\cdots
$$

is always convergent. The limit of this series is usually denoted as $\exp (X)$ and called matrix exponential of X.
(b) Show that the set of invertible matrices

$$
\operatorname{GL}(n):=\left\{X \in \mathbb{R}^{n \times n}: \operatorname{det}(X) \neq 0\right\}
$$

is an open set in $\mathbb{R}^{n \times n}$.
(c) Show that the set of nilpotent matrices $\left\{X \in \mathbb{R}^{n \times n}: X^{k}=0\right.$ for some $\left.k \in \mathbb{N} \cup\{0\}\right\}$ is a closed set in $\mathbb{R}^{n \times n}$.
(d) Show that the set of orthogonal matrices

$$
\mathrm{O}(n):=\left\{X \in \mathbb{R}^{n \times n}: X^{\top} X=I\right\}
$$

is a compact set in $\mathbb{R}^{n \times n}$.
(e) Show that the set of symmetric positive definite matrices

$$
\mathbb{S}_{++}^{n}:=\left\{X \in \mathbb{S}^{n}: \mathbf{y}^{\top} X \mathbf{y}>0 \text { for all } \mathbf{0} \neq \mathbf{y} \in \mathbb{R}^{n}\right\}
$$

is an open set in $\mathbb{S}^{n}:=\left\{X \in \mathbb{R}^{n \times n}: X^{\top}=X\right\}$ and that its closure is the set of symmetric positive semidefinite matrices

$$
\mathbb{S}_{+}^{n}:=\left\{X \in \mathbb{S}^{n}: \mathbf{y}^{\top} X \mathbf{y} \geq 0 \text { for all } \mathbf{y} \in \mathbb{R}^{n}\right\}
$$

2. (a) Let $f: \Omega \rightarrow \mathbb{R}$ where $\Omega \subseteq \mathbb{R}^{m \times n}$ is unbounded. Show that all sublevel sets of f are bounded if and only if

$$
\lim _{k \rightarrow \infty}\left\|X_{k}\right\|=+\infty \quad \Longrightarrow \quad \lim _{k \rightarrow \infty} f\left(X_{k}\right)=+\infty
$$

assuming $X_{k} \in \Omega$ for all $k \in \mathbb{N}$. Deduce that if such an f is continuous and Ω is closed, then f has a global minimizer $X_{*} \in \Omega$.
(b) Let $f: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}$ be in $C^{1}\left(\mathbb{R}^{m \times n}\right)$. Suppose f satisfies

$$
\left|\frac{\partial f}{\partial x_{i j}}(X)\right| \leq K, \quad i=1, \ldots, m, j=1, \ldots, n,
$$

for all $X \in \mathbb{R}^{m \times n}$ where $K>0$ is a constant. Show that

$$
|f(X)-f(Y)| \leq \sqrt{m n} K\|X-Y\|
$$

for all $X, Y \in \mathbb{R}^{m \times n}$ (Hint: Apply the univariate mean-value theorem $m n$ times).
(c) Define $f: \mathbb{R}^{2 \times 2} \rightarrow \mathbb{R}$ by

$$
f\left(\begin{array}{ll}
x & y \\
z & t
\end{array}\right)= \begin{cases}{\left[1-\cos \left(\frac{x^{2}+y^{2}+z^{2}}{t}\right)\right] \sqrt{x^{2}+y^{2}+z^{2}+t^{2}}} & \text { if } t \neq 0 \\
0 & \text { if } t=0\end{cases}
$$

Show that f is continuous but not differentiable at $\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$. For which $V \in \mathbb{R}^{2 \times 2}$ does the directional derivative $\partial_{V} f\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$ exist?
3. Let $A: \mathbb{R} \rightarrow \mathbb{R}^{n \times n}$ be the matrix-valued function

$$
A(x)=\left[\begin{array}{ccc}
a_{11}(x) & \cdots & a_{1 n}(x) \\
\vdots & & \vdots \\
a_{n 1}(x) & \cdots & a_{n n}(x)
\end{array}\right]
$$

where the functions $a_{i j}: \mathbb{R} \rightarrow \mathbb{R}$ are all in $C^{1}(\mathbb{R})$ for all $i, j=1, \ldots, n$.
(a) Show that the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=\operatorname{tr}\left(A(x)^{3}\right)$ is differentiable and that

$$
f^{\prime}(x)=3 \operatorname{tr}\left(A(x)^{2} A^{\prime}(x)\right)
$$

where

$$
A^{\prime}(x)=\left[\begin{array}{ccc}
a_{11}^{\prime}(x) & \cdots & a_{1 n}^{\prime}(x) \\
\vdots & & \vdots \\
a_{n 1}^{\prime}(x) & \cdots & a_{n n}^{\prime}(x)
\end{array}\right]
$$

(b) Let $n=2$. Suppose $A(x) \in \mathbb{S}_{++}^{2}$ for all $x \in \mathbb{R}$ and define $B: \mathbb{R} \rightarrow \mathbb{S}^{2 \times 2}$ by $B(x)=A(x)^{-1}$. Show that

$$
\frac{d}{d x} \log \operatorname{det} A(x)=\sum_{i, j=1}^{2} a_{i j}^{\prime}(x) b_{i j}(x)
$$

This is actually true for arbitrary n. For $n=1$, it reduces to $(\log a(x))^{\prime}=a^{\prime}(x) / a(x)$.
4. Find the gradients of the following functions without calculating a single partial derivative.
(a) $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined by

$$
f(\mathbf{x})=\|\mathbf{x}\| .
$$

Find the set of points where f is not differentiable.
(b) $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined by

$$
f(\mathbf{x})=\frac{\mathbf{x}^{\top} A \mathbf{x}}{\mathbf{x}^{\top} B \mathbf{x}}
$$

where $A, B \in \mathbb{S}_{++}^{n}$.
(c) $f: \mathbb{S}_{++}^{n} \rightarrow \mathbb{R}$ defined by

$$
f(X)=\operatorname{det}(X) .
$$

(d) $f: \mathbb{S}_{++}^{n} \rightarrow \mathbb{R}$ defined by

$$
f(X)=\frac{\operatorname{det}(X)}{\operatorname{tr}(X)}
$$

(e) $f: \mathbb{R}^{n} \times \mathbb{S}_{++}^{n} \rightarrow \mathbb{R}$ defined by

$$
f(\mathbf{x}, Y)=\mathbf{x}^{\top} Y^{-1} \mathbf{x} .
$$

(f) $f: \Omega \rightarrow \mathbb{R}$ defined by

$$
\Omega=\left\{X \in \mathbb{R}^{m \times n}: X^{\top} A X+B^{\top} X+X^{\top} B+C \succ 0\right\}
$$

with $A \in \mathbb{S}^{m}, B \in \mathbb{R}^{m \times n}, C \in \mathbb{S}^{n}$ arbitrary; and

$$
f(X)=\log \operatorname{det}\left(X^{\top} A X+B^{\top} X+X^{\top} B+C\right) .
$$

5. Find the derivatives of the following functions without calculating a single partial derivative.
(a) $f: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2 \times 2}$ defined by

$$
f(x, y, z, w)=\left[\begin{array}{cc}
x & y \\
z & w
\end{array}\right]^{2}+\left[\begin{array}{cc}
x & y \\
z & w
\end{array}\right]^{\top}=X^{2}+X^{\top} .
$$

(b) $f: \mathbb{R}^{n} \backslash\{0\} \rightarrow \mathbb{R}^{n} \backslash\{0\}$ defined by

$$
f(\mathrm{x})=\frac{\mathrm{x}}{\|\mathrm{x}\|}
$$

(c) $f: \mathbb{R}^{m \times n} \backslash\{0\} \rightarrow \mathbb{R}^{m \times n} \backslash\{0\}$ defined by

$$
f(X)=\frac{X}{\|X\|}
$$

(d) $f: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{n \times n}$ defined by

$$
f(X)=X^{4}
$$

(e) $f: \mathrm{GL}(n) \rightarrow \mathrm{GL}(n)$ defined by

$$
f(X)=X^{-1}
$$

(f) $f: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{n \times n}$ defined by

$$
f(X)=\exp (X)
$$ as in Problem 1(a).

