STAT 280: OPTIMIZATION
 SPRING 2022
 PROBLEM SET 1

1. (a) Let $m, n \in \mathbb{N}$, i.e., positive integers. Find all local and global optimizers, if any, of the following functions on \mathbb{R},

$$
f(x)=\left(1+x+\frac{x^{2}}{2}+\cdots+\frac{x^{n}}{n!}\right) e^{-x}, \quad g(x)=x^{m}(1-x)^{n}, \quad h(x)=\sin ^{2 m} x \cdot \cos ^{2 n} x .
$$

(b) Find the local and global optimizers, if any, of f on \mathbb{R} and of g on $[-1,1]$,

$$
f(x)=x^{1 / 3}(1-x)^{2 / 3}, \quad g(x)=x \sin ^{-1} x+\sqrt{1-x^{2}} .
$$

(c) Find the global minimum of the following functions on \mathbb{R},

$$
f(x)=-\frac{1}{1+|x|}-\frac{1}{1+|x-1|}, \quad g(x)= \begin{cases}e^{-\frac{1}{|x|}}\left(\sqrt{2}+\frac{1}{x}\right) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

2. The key to the problems below is to figure out the right x to choose so that you get a univariate optimization problem.
(a) Which number is larger, π^{e} or e^{π} ?
(b) Show that for any $p \geq 1$ and $a, b \in[0,1]$,

$$
\left|a^{p}-b^{p}\right| \leq p|a-b| .
$$

(c) Write down an expression for the area of a rectangle inscribed in the unit circle as a differentiable univariate function $f(x)$. Hence show that the largest inscribed rectangle in a circle must be a square.
(d) Light travels at different speeds in different media (e.g. air and water). Consider the following scenario depicted in Figure 1. Let v_{1} be the speed of light in air and v_{2} be the speed of light in water. Write down an expression for time required for light to travel from a point in air to a point in water. Show that the minimum is attained when

$$
\frac{\sin \theta_{1}}{v_{1}}=\frac{\sin \theta_{2}}{v_{2}} .
$$

3. Let $f \in C^{2}([a, b]), f(a) f(b)<0, f^{\prime}$ and $f^{\prime \prime}$ do not vanish and do not change signs on $[a, b]$.
(a) Show that $f(x)=0$ has a unique solution $x_{*} \in(a, b)$.
(b) Prove if f^{\prime} and $f^{\prime \prime}$ have opposite signs, then Newton method starting at $x_{0}=a$ must converge to x_{*}.
(c) What if f^{\prime} and $f^{\prime \prime}$ have the same sign, which starting point should we choose to guarantee convergence? Draw pictures to illustrate four different cases: (i) $f^{\prime}>0, f^{\prime \prime}<0$, (ii) $f^{\prime}<0$, $f^{\prime \prime}>0$, (iii) $f^{\prime}>0, f^{\prime \prime}>0$, (iv) $f^{\prime}<0, f^{\prime \prime}<0$.
(d) Let $M=\max \left\{\left|f^{\prime \prime}(x)\right|: x \in[a, b]\right\}$ and $m=\min \left\{\left|f^{\prime}(x)\right|: x \in[a, b]\right\}$. Show that the errors $e_{n}=x_{n}-x_{*}, n=0,1,2, \ldots$, satisfy

$$
\left|e_{n+1}\right| \leq \frac{M}{2 m}\left|e_{n}\right|^{2}
$$

Figure 1. Light passing through different media.
4. (a) Let $g \in C^{1}([a, b])$. Suppose $g(x) \in[a, b]$ and $\left|g^{\prime}(x)\right|<1$ for all $x \in[a, b]$. Show that (i) $g(x)=x$ has a unique solution $x_{*} \in[a, b]$, (ii) the iteration $x_{n+1}=g\left(x_{n}\right)$ must converge for any $x_{0} \in[a, b]$, and (iii) $\lim _{n \rightarrow \infty} x_{n}=x_{*}$.
(b) Let $f \in C^{2}([a, b])$ and x_{*} be a simple root of f in (a, b), i.e., $f^{\prime}\left(x_{*}\right) \neq 0$. Apply (a) to show that there is a neighborhood of x_{*} where Newton method must converge if x_{0} is chosen in this neighborhood.
(c) Suppose $g \in C([a, b])$. Show that if the iteration $x_{n+1}=g\left(x_{n}\right)$ converges to $x_{*} \in[a, b]$ for any $x_{0} \in[a, b]$, then we must have $\left|g^{\prime}\left(x_{*}\right)\right| \leq 1$. Find an example where $g^{\prime}\left(x_{*}\right)=1$.
5. In all of the following you will need to justify your answers.
(a) State whether the following sequences converge sublinearly, linearly, superlinearly, or quadratically (give the fastest rate):

$$
\left(\frac{1}{n^{2}}\right)_{n=1}^{\infty}, \quad\left(\frac{1}{2^{2^{n}}}\right)_{n=1}^{\infty}, \quad\left(\frac{1}{\sqrt{n}}\right)_{n=1}^{\infty}, \quad\left(e^{-n}\right)_{n=1}^{\infty}, \quad\left(\frac{1}{n^{n}}\right)_{n=1}^{\infty}
$$

(b) Let $x_{n+1}=x_{n}+x_{n-1}$ with $x_{0}=0$ and $x_{1}=1$. Let $y_{n}:=x_{n} / x_{n-1}$. Is $\left(y_{n}\right)_{n=1}^{\infty}$ convergent? If so, is the convergence sublinear, linear, superlinear, or quadratic?
(c) Design an algorithm for computing reciprocal of a positive real number $a>0$ that requires only addition and multiplication. For what values of x_{0} do the algorithm converges? Apply your algorithm to find the decimal expansion of $1 / 12$ to 10 decimal digits of accuracy starting from $x_{0}=0.1$ and $x_{0}=1$. Discuss your results.
(d) Find the number of roots of $2 x=3 \sin x$ in \mathbb{R} and determine the largest root to three decimal accuracy.

