If \(K \leq \Omega \) is a field extension and \(\alpha \in \Omega \) is algebraic over \(K \), we will define the \textit{degree} of \(\alpha \) as \(\deg f_K^*(x) \), i.e. the degree of its irreducible polynomial over \(K \).

1. Let \(K \leq \Omega \) be a field extension.
 (a) Let \(a, b \in \Omega \) be algebraic over \(K \). Prove that \(a + b \) is algebraic over \(K \).
 (b) Suppose \(a \in \Omega \) is algebraic over \(K \) of odd degree. Show that \(a^2 \) is also algebraic over \(K \) of odd degree and furthermore \(K(a) = K(a^2) \).

2. Let \(K \leq \Omega \) be a finite extension.
 (a) Prove that if \(D \) is an integral domain and \(K \subseteq D \subseteq \Omega \), then \(D \) is a field.
 (b) Prove that if \([\Omega : K] \in \mathbb{P} \), then \(\Omega = K(a) \) for any \(a \in \Omega \setminus K \).
 (c) Prove that if \(f(x) \in K[x] \) is irreducible over \(K \) and \(\deg f(x) \nmid [\Omega : K] \), then \(f(x) \) has no zeroes in \(\Omega \). Hence or otherwise, show that \(x^2 - 3 \) is irreducible over \(\mathbb{Q}(\sqrt[3]{2}) \).

3. Let \(K \leq L \leq M \) be a tower of field extensions. Theorem 6 in the lectures says that \(M \) is a \textit{finite} extension over \(K \) iff \(M \) is a \textit{finite} extension over \(L \) and \(L \) is a \textit{finite} extension over \(K \). Prove that the statement is still true if we replace \textit{finite} by \textit{algebraic} throughout.

4. Show that for any \(a, b \in \mathbb{Q} \) such that \(\sqrt{a} + \sqrt{b} \neq 0 \), we must have \(\mathbb{Q}(\sqrt{a} + \sqrt{b}) = \mathbb{Q}(\sqrt{a}, \sqrt{b}) \).

5. Let \(\mathbb{Q} \leq K \) and \([K : \mathbb{Q}] = 2 \).
 (a) Prove that there exists a unique square free integer \(m \) such that \(K \cong \mathbb{Q}(\sqrt{m}) \).
 (b) Show that there are infinitely many such fields \(K \) that are pairwise non-isomorphic.