1. Let \(V \) be a vector space over \(F \) and \(S, T \in \text{End}(V) \).
 (a) Show that \(I - S \circ T \) is injective iff \(I - T \circ S \) is injective.

 Solution. The trick is to observe that
 \[
 S \circ (I - T \circ S) = (I - S \circ T) \circ S.
 \]
 Suppose \(I - S \circ T \) is injective. Let \(v \in \ker(I - T \circ S) \). Then \((I - T \circ S)(v) = 0_V \). Hence
 \[
 (I - S \circ T)(S(v)) = S((I - T \circ S)(v)) = S(0_V) = 0_V
 \]
 and since \(I - S \circ T \) is injective, we deduce that
 \[
 S(v) = 0_V.
 \]
 So
 \[
 T \circ S(v) = T(0_V) = 0_V;
 \]
 and so
 \[
 v = v - 0_V = v - T \circ S(v) = (I - T \circ S)(v) = 0_V
 \]
 where the last equality follows from our choice of \(v \in \ker(I - T \circ S) \). Hence \(\ker(I - T \circ S) = \{0_V\} \) and we deduce that \(I - T \circ S \) is injective by Theorem 4.12.
 (b) \(T \) is called **nilpotent** if
 \[
 T^n = O
 \]
 for some \(n \in \mathbb{N} \). Show that if \(T \) is nilpotent, then \(I - T \) is bijective. What is \((I - T)^{-1} \)?

 Solution. Let \(S = I + T + T^2 + \cdots + T^{n-1} \) (by the geometric series heuristic in lecture). Then
 \[
 (I - T) \circ S = (I + T + \cdots + T^{n-1}) - (T + T^2 + \cdots + T^n) = I - T^n = I - O = I
 \]
 and likewise for \(S \circ (I - T) \). Hence
 \[
 (I - T)^{-1} = S
 \]
 and \(I - T \) is bijective.

2. Let \(V \) be a vector space over \(\mathbb{R} \) and \(T \in \text{End}(V) \) be an involution, ie. \(T^2 = I \). Define
 \[
 V_+ := \{v \in V \mid T(v) = v\} \quad \text{and} \quad V_- := \{v \in V \mid T(v) = -v\}.
 \]
 (a) Show that \(V_+ \) and \(V_- \) are subspaces of \(V \).

 Solution. Let \(\alpha_1, \alpha_2 \in \mathbb{R} \) and \(v_1, v_2 \in V_+ \). Then \(T(v_1) = v_1, T(v_2) = v_2 \), and
 \[
 T(\alpha_1 v_1 + \alpha_2 v_2) = \alpha_1 T(v_1) + \alpha_2 T(v_2)
 = \alpha_1 v_1 + \alpha_2 v_2.
 \]
 Hence \(\alpha_1 v_1 + \alpha_2 v_2 \in V_+ \). Likewise for \(V_- \).
(b) Show that

\[V_+ \oplus V_- = V. \]

Solution. Note that

\[\mathbf{v} = \frac{1}{2}(I + T)(\mathbf{v}) + \frac{1}{2}(I - T)(\mathbf{v}). \] \hspace{1cm} (2.1)

Since \(T^2 = I, \)

\[T\left(\frac{1}{2}(I + T)(\mathbf{v})\right) = T\left(\frac{1}{2}\mathbf{v} + \frac{1}{2}T(\mathbf{v})\right) = \frac{1}{2}T(\mathbf{v}) + \frac{1}{2}T^2(\mathbf{v}) = \frac{1}{2}T(\mathbf{v}) + \frac{1}{2}I(\mathbf{v}) = \frac{1}{2}(I + T)(\mathbf{v}) \]

and likewise,

\[T\left(\frac{1}{2}(I - T)(\mathbf{v})\right) = T\left(\frac{1}{2}\mathbf{v} - \frac{1}{2}T(\mathbf{v})\right) = \frac{1}{2}T(\mathbf{v}) - \frac{1}{2}T^2(\mathbf{v}) = \frac{1}{2}T(\mathbf{v}) - \frac{1}{2}I(\mathbf{v}) = -\frac{1}{2}(I - T)(\mathbf{v}). \]

Hence

\[\frac{1}{2}(I + T)(\mathbf{v}) \in V_+, \quad \frac{1}{2}(I - T)(\mathbf{v}) \in V_- , \]

and (2.1) implies that \(V = V_+ + V_- . \) If \(\mathbf{v} \in V_+ \cap V_- , \) then

\[\mathbf{v} = T(\mathbf{v}) = -\mathbf{v} \]

implies that \(\mathbf{v} = 0_V. \) Hence \(V_+ \cap V_- = \{ 0_V \} \) and so \(V = V_+ \oplus V_- . \)

3. Let \(A \in \mathbb{R}^{m \times n} \) and \(b \in \mathbb{R}^m. \)

(a) Show that

\[\text{nullsp}(A^T A) = \text{nullsp}(A). \]

Solution. Let \(\mathbf{x} \in \text{nullsp}(A). \) Then \(A\mathbf{x} = 0. \) Therefore, \(A^T A \mathbf{x} = A^T 0 = 0. \) Therefore \(\mathbf{x} \in \text{nullsp}(A^T A). \) So \(\text{nullsp}(A) \subseteq \text{nullsp}(A^T A). \) Conversely, let \(\mathbf{x} \in \text{nullsp}(A^T A). \) Then \(A^T A \mathbf{x} = 0. \) Multiplying on the left by \(\mathbf{x}^T, \) we get

\[\mathbf{x}^T A^T A \mathbf{x} = \mathbf{x}^T 0 = 0. \]

Observe that the LHS may be written as

\[\mathbf{x}^T A^T A \mathbf{x} = (A \mathbf{x})^T A \mathbf{x} = \langle A \mathbf{x}, A \mathbf{x} \rangle = \| A \mathbf{x} \|^2 \]

and the last term is 0 iff \(A \mathbf{x} = 0 \) by a property of norms. Therefore \(\mathbf{x} \in \text{nullsp}(A). \) So \(\text{nullsp}(A^T A) \subseteq \text{nullsp}(A). \)

(b) Show that

\[\text{colsp}(A^T A) = \text{colsp}(A^T). \]

Solution. By a theorem in the lecture (relating consistency of linear systems to column space), \(A^T A \mathbf{x} = A^T b \) has a solution iff \(A^T b \in \text{colsp}(A^T A). \) Applying the rank-nullity theorem to \(A^T A, \) we get

\[\text{rank}(A^T A) = n - \text{nullity}(A^T A). \] \hspace{1cm} (3.2)

By (a),

\[\text{nullity}(A^T A) = \text{nullity}(A). \] \hspace{1cm} (3.3)

Applying the rank-nullity theorem to \(A \) yields

\[\text{nullity}(A) = n - \text{rank}(A). \] \hspace{1cm} (3.4)

By the equality of row rank and column rank, we have

\[\text{rank}(A) = \text{rank}(A^T). \] \hspace{1cm} (3.5)

Combining (3.2)–(3.5), we get

\[\text{dim}(\text{colsp}(A^T A)) = \text{dim}(\text{colsp}(A^T)). \] \hspace{1cm} (3.6)

Now observe that if \(\mathbf{y} \in \text{colsp}(A^T A), \) then \(\mathbf{y} = A^T \mathbf{Ax} \) for some \(\mathbf{x} \in \mathbb{R}^n \) and so \(\mathbf{y} = A^T \mathbf{w} \) for \(\mathbf{w} = \mathbf{Ax} \in \mathbb{R}^m. \) In other words,

\[\text{colsp}(A^T A) \subseteq \text{colsp}(A^T). \] \hspace{1cm} (3.7)
(3.6) and (3.7) together implies that
\[\text{colsp}(A^T A) = \text{colsp}(A^T). \]

(c) Deduce that
\[A^T A\mathbf{x} = A^T \mathbf{b} \]
always has a solution (even if \(A\mathbf{x} = \mathbf{b} \) has no solution).

SOLUTION. This follows from (b): Since \(A^T \mathbf{b} \in \text{colsp}(A^T) \), so \(A^T \mathbf{b} \in \text{colsp}(A^T A) \). Hence \(A^T A\mathbf{x} = A^T \mathbf{b} \) always have a solution.

(d) Show that (a), (b), and (c) are false in general over arbitrary fields, i.e. for \(A \in \mathbb{F}^{m \times n} \) and \(\mathbf{b} \in \mathbb{F}^m \).

SOLUTION. Let \(\mathbb{F} = \mathbb{Z}/2\mathbb{Z} \). Let
\[A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \in (\mathbb{Z}/2\mathbb{Z})^{2 \times 2} \quad \text{and} \quad \mathbf{b} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \in (\mathbb{Z}/2\mathbb{Z})^2. \]

Note that
\[A^T A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}. \]

Hence
\[\text{nullsp}(A^T A) = (\mathbb{Z}/2\mathbb{Z})^2 \neq \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\} = \text{nullsp}(A) \]
and
\[\text{colsp}(A^T A) = \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\} \neq \left\{ \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\} = \text{colsp}(A^T). \]

Also
\[A^T A\mathbf{x} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \neq \begin{bmatrix} 1 \\ 1 \end{bmatrix} = A^T \mathbf{b} \]
for all \(\mathbf{x} \in (\mathbb{Z}/2\mathbb{Z})^2 \).

4. Let \(V \) be a vector space over \(\mathbb{R} \) and let \(\langle \cdot, \cdot \rangle : V \times V \rightarrow \mathbb{R} \) be an inner product. Let \(S \) be a subset (not necessarily a subspace) of \(V \). We define the orthogonal annihilator of \(S \), denoted \(S^\perp \), to be the set
\[S^\perp = \{ \mathbf{v} \in V \mid \langle \mathbf{v}, \mathbf{w} \rangle = 0 \text{ for all } \mathbf{w} \in S \}. \]

(a) Show that \(S^\perp \) is always a subspace of \(V \).

SOLUTION. Let \(\mathbf{v}_1, \mathbf{v}_2 \in S^\perp \). Then \(\langle \mathbf{v}_1, \mathbf{w} \rangle = 0 \) and \(\langle \mathbf{v}_2, \mathbf{w} \rangle = 0 \) for all \(\mathbf{w} \in S \). So for any \(\alpha, \beta \in \mathbb{R} \),
\[\langle \alpha \mathbf{v}_1 + \beta \mathbf{v}_2, \mathbf{w} \rangle = \alpha \langle \mathbf{v}_1, \mathbf{w} \rangle + \beta \langle \mathbf{v}_2, \mathbf{w} \rangle = 0 \]
for all \(\mathbf{w} \in S \). Hence \(\alpha \mathbf{v}_1 + \beta \mathbf{v}_2 \in S^\perp \).

(b) Show that \(\text{span}(S) \subseteq (S^\perp)^\perp \).

SOLUTION. Let \(\mathbf{w} \in S \). For any \(\mathbf{v} \in S^\perp \), we have \(\langle \mathbf{v}, \mathbf{w} \rangle = 0 \) by definition of \(S^\perp \). Since this is true for all \(\mathbf{v} \in S^\perp \) and \(\langle \mathbf{w}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{w} \rangle \), we see that \(\langle \mathbf{w}, \mathbf{v} \rangle = 0 \) for all \(\mathbf{v} \in S^\perp \), i.e. \(\mathbf{w} \in S^\perp \). Hence \(S \subseteq (S^\perp)^\perp \). Since \((S^\perp)^\perp \) is a subspace by (a) (it is the orthogonal annihilator of \(S^\perp \)), we have that \(\text{span}(S) \subseteq (S^\perp)^\perp \).

(c) Show that if \(S_1 \) and \(S_2 \) are subsets of \(V \) and \(S_1 \subseteq S_2 \), then \(S_2^\perp \subseteq S_1^\perp \).

SOLUTION. Let \(\mathbf{v} \in S_2^\perp \). Then \(\langle \mathbf{v}, \mathbf{w} \rangle = 0 \) for all \(\mathbf{w} \in S_2 \) and so for all \(\mathbf{w} \in S_1 \) (since \(S_1 \subseteq S_2 \)). Hence \(\mathbf{v} \in S_1^\perp \).

(d) Show that \(((S^\perp)^\perp)^\perp = S^\perp \).

SOLUTION. Applying (c) to the inclusion \(S \subseteq (S^\perp)^\perp \) in the proof of (b), we get
\[((S^\perp)^\perp)^\perp \subseteq S^\perp. \]

Apply (b) to \(S^\perp \), we get
\[\text{span}(S^\perp) \subseteq ((S^\perp)^\perp)^\perp. \]
But by (a), \(\text{span}(S^\perp) = S^\perp \). Hence we get equality.

(e) Show that either \(S \cap S^\perp \) must be either the empty set \(\emptyset \) or the zero subspace \(\{0_V\} \).

Solution. If \(S \cap S^\perp \neq \emptyset \), then let \(v \in S \cap S^\perp \). Since \(v \in S^\perp \), we have \(\langle v, w \rangle = 0 \) for all \(w \in S \). Since \(v \in S \), in particular, \(\|v\|^2 = \langle v, v \rangle = 0 \), implying that \(v = 0_V \). In other words, the only vector in \(S \cap S^\perp \) is \(0_V \). So \(S \cap S^\perp = \{0_V\} \). On the other hand, if \(0_V \notin S \), then \(0_V \notin S \cap S^\perp \) and so \(S \cap S^\perp = \emptyset \) (if not, then the previous argument gives a contradiction).

(f) Show that if \(W \) is a subspace, then \(V = W \oplus W^\perp \). This is called the orthogonal complement of \(W \).

Solution. Since \(W \) and \(W^\perp \) are both subspaces (the latter follows from (a)), \(0_V \in W \) and \(0_V \in W^\perp \). So by (e), we have that \(W \cap W^\perp = \{0_V\} \). It remains to show that \(W + W^\perp = V \). Clearly \(W + W^\perp \subseteq V \). For the converse, let \(v \in V \) and let \(\{w_1, \ldots, w_r\} \) be an orthonormal basis of \(W \). Consider
\[
\mathbf{x} := \langle v, w_1 \rangle w_1 + \langle v, w_2 \rangle w_2 + \cdots + \langle v, w_r \rangle w_r.
\]
and
\[
\mathbf{y} := v - \mathbf{x}.
\]
Clearly \(\mathbf{x} \in W \). We claim that \(\mathbf{y} \in W^\perp \). For any \(w \in W \), we could write
\[
w = \langle w, w_1 \rangle w_1 + \langle w, w_2 \rangle w_2 + \cdots + \langle w, w_r \rangle w_r
\]
since \(\{w_1, \ldots, w_r\} \) is an orthonormal basis of \(W \). So
\[
\langle \mathbf{y}, w \rangle = \langle v - \mathbf{x}, w \rangle = \langle v, w \rangle - \langle \mathbf{x}, w \rangle = \langle v, \sum_{i=1}^{r} \langle w, w_i \rangle w_i \rangle - \left(\sum_{i=1}^{r} \langle \mathbf{x}, w_i \rangle w_i, w \right) = \sum_{i=1}^{r} \langle v, w_i \rangle \langle w, w_i \rangle - \sum_{i=1}^{r} \langle \mathbf{x}, w_i \rangle \langle w_i, w \rangle = 0
\]
since \(\langle w, w_i \rangle = \langle w_i, w \rangle \). Hence \(v = x + y \in W + W^\perp \).

(g) Show that if \(W \) is a subspace, then \(W = (W^\perp)^\perp \).

Solution. As in the proof of (b), we have \(W \subseteq (W^\perp)^\perp \). But by (f), we have
\[
W \oplus W^\perp = V = W^\perp \oplus (W^\perp)^\perp
\]
and so
\[
\dim(W) + \dim(W^\perp) = \dim(W^\perp) + \dim((W^\perp)^\perp)
\]
and so
\[
\dim(W) = \dim((W^\perp)^\perp).
\]
Hence \(W = (W^\perp)^\perp \).

5. Let \((V, \langle \cdot, \cdot \rangle) \) be an inner product space over \(\mathbb{R} \). Let \(W \) be a non-trivial subspace of \(V \). By Problem 4(f), we have that
\[
V = W \oplus W^\perp.
\]
Note that by Homework 2, Problem 3, this means that every \(v \in V \) can be written uniquely as
\[
v = w + w',
\]
where \(w \in W \) and \(w' \in W^\perp \). We will define a function \(P : V \rightarrow V \) by \(P(v) = w \) for every \(v \in V \) according to the decomposition in (5.8). \(P \) is called the **orthogonal projection** onto \(W \).
(a) Show that \(P \in \text{End}(V) \).

Solution. Let \(v_1, v_2 \in V \) and let \(v_i = w_i + w'_i \) where \(w_i \in W \) and \(w'_i \in W^\perp \), \(i = 1, 2 \). Let \(\alpha_1, \alpha_2 \in \mathbb{R} \). Then

\[
\alpha_1 v_1 + \alpha_2 v_2 = (\alpha_1 w_1 + \alpha_2 w_2) + (\alpha_1 w'_1 + \alpha_2 w'_2)
\]

where \(\alpha_1 w_1 + \alpha_2 w_2 \in W \) and \(\alpha_1 w'_1 + \alpha_2 w'_2 \in W^\perp \). So

\[
P(\alpha_1 v_1 + \alpha_2 v_2) = P((\alpha_1 w_1 + \alpha_2 w_2) + (\alpha_1 w'_1 + \alpha_2 w'_2))
\]

\[
= \alpha_1 w_1 + \alpha_2 w_2
\]

\[
= \alpha_1 P(v_1) + \alpha_2 P(v_2).
\]

Hence \(P \) is linear.

(b) Show that \(P \) is idempotent, i.e. \(P^2 = P \).

Solution. Let \(v \in V \) and let \(v = w + w' \) where \(w \in W \) and \(w' \in W^\perp \). Then

\[
P^2(v) = P(P(v)) = P(w) = w = P(v).
\]

Since this holds for every \(v \in V \), \(P^2 = P \).

(c) Show that \(\langle P(v), v \rangle \geq 0 \) for every \(v \in V \).

Solution. Let \(v \in V \) and let \(v = w + w' \) where \(w \in W \) and \(w' \in W^\perp \). By the definition of \(W^\perp \), \(\langle w, w' \rangle = 0 \). Hence,

\[
\langle P(v), v \rangle = \langle w, w + w' \rangle = \langle w, w \rangle + \langle w, w' \rangle = \|w\|^2 \geq 0.
\]

(d) Show that \(\|P(v)\| \leq \|v\| \) for every \(v \in V \).

Solution. This follows from (f).

\[
\|v\|^2 = \|P(v)\|^2 + \|(I - P)(v)\|^2 \geq \|P(v)\|^2
\]

since \(\|(I - P)(v)\|^2 \geq 0 \). Taking positive square root yields \(\|v\| \geq \|P(v)\| \).

(e) Show that \(I - P \) is the orthogonal projection onto \(W^\perp \).

Solution. By Problem 4(g), \((W^\perp)^\perp = W \). So

\[
V = W^\perp \oplus (W^\perp)^\perp = W^\perp \oplus W.
\]

If \(v = w + w' \) where \(w \in W = (W^\perp)^\perp \) and \(w' \in W^\perp \), then

\[
w' = v - w = I(v) - P(v) = (I - P)(v).
\]

So \(I - P \) is the projection onto \(W^\perp \).

(f) Show that

\[
\|v\|^2 = \|P(v)\|^2 + \|(I - P)(v)\|^2.
\]

Solution. Let \(v \in V \) and let \(v = w + w' \) where \(w \in W \) and \(w' \in W^\perp \). Note that \(\langle w, w' \rangle = 0 \). So by Pythagoras theorem,

\[
\|v\|^2 = \|w + w'\|^2
\]

\[
= \|w\|^2 + \|w'\|^2
\]

\[
= \|P(v)\|^2 + \|(I - P)(v)\|^2.
\]
