V denotes a finite dimensional vector space. If \(T \in \text{End}(V) \), we will write \(T^2 = T \circ T, T^3 = T \circ T \circ T \), etc. We let \(O \in \text{End}(V) \) and \(I \in \text{End}(V) \) denote the zero and identity operators, ie. \(O(v) = 0_V \) and \(I(v) = v \) for all \(v \in V \).

1. Let \(V \) be a vector space over \(F \) and \(S, T \in \text{End}(V) \).
 (a) Show that \(I - S \circ T \) is injective iff \(I - T \circ S \) is injective.
 (b) \(T \) is called nilpotent if \(T^n = O \) for some \(n \in \mathbb{N} \). Show that if \(T \) is nilpotent, then \(I - T \) is bijective. What is \((I - T)^{-1} \)?

2. Let \(V \) be a vector space over \(\mathbb{R} \) and \(T \in \text{End}(V) \) be an involution, ie. \(T^2 = I \). Define \(V_+ := \{ v \in V \mid T(v) = v \} \) and \(V_- := \{ v \in V \mid T(v) = -v \} \).
 (a) Show that \(V_+ \) and \(V_- \) are subspaces of \(V \).
 (b) Show that \(V_+ \oplus V_- = V \).

3. Let \(A \in \mathbb{R}^{m \times n} \) and \(b \in \mathbb{R}^m \).
 (a) Show that \(\text{nullsp}(A^\top A) = \text{nullsp}(A) \).
 (b) Show that \(\text{colsp}(A^\top A) = \text{colsp}(A^\top) \).
 (c) Deduce that \(A^\top A x = A^\top b \) always has a solution (even if \(A x = b \) has no solution).
 (d) Show that (a), (b), and (c) are false in general over arbitrary fields, ie. for \(A \in \mathbb{F}^{m \times n} \) and \(b \in \mathbb{F}^m \).

4. Let \(V \) be a vector space over \(\mathbb{R} \) and let \((\cdot, \cdot) : V \times V \rightarrow \mathbb{R} \) be an inner product. Let \(S \) be a subset (not necessarily a subspace) of \(V \). We define the orthogonal annihilator of \(S \), denoted \(S^\perp \), to be the set \(S^\perp = \{ v \in V \mid \langle v, w \rangle = 0 \text{ for all } w \in S \} \).
 (a) Show that \(S^\perp \) is always a subspace of \(V \).
 (b) Show that \(\text{span}(S) \subseteq (S^\perp)^\perp \).
 (c) Show that if \(S_1 \) and \(S_2 \) are subsets of \(V \) and \(S_1 \subseteq S_2 \), then \(S_2^\perp \subseteq S_1^\perp \).
 (d) Show that \(((S^\perp)^\perp)^\perp = S^\perp \).
 (e) Show that either \(S \cap S^\perp \) must be either the empty set \(\emptyset \) or the zero subspace \(\{0_V\} \).
 (f) Show that if \(W \) is a subspace, then \(V = W \oplus W^\perp \). This is called the orthogonal complement of \(W \).
 (g) Show that if \(W \) is a subspace, then \(W = (W^\perp)^\perp \).

Date: April 25, 2008 (Version 2.1); due: May 1, 2008.
5. Let \((V, \langle \cdot, \cdot \rangle)\) be an inner product space over \(\mathbb{R}\). Let \(W\) be a non-trivial subspace of \(V\). By Problem 4(f), we have that
\[V = W \oplus W^\perp. \]
Note that by Homework 2, Problem 3, this means that every \(v \in V\) can be written uniquely as
\[v = w + w' \tag{5.1} \]
where \(w \in W\) and \(w' \in W^\perp\). We will define a function \(P : V \rightarrow V\) by \(P(v) = w\) for every \(v \in V\) according to the decomposition in (5.1). \(P\) is called the orthogonal projection onto \(W\).
(a) Show that \(P \in \text{End}(V)\).
(b) Show that \(P\) is idempotent, i.e. \(P^2 = P\).
(c) Show that \(\langle P(v), v \rangle \geq 0\) for every \(v \in V\).
(d) Show that \(\|P(v)\| \leq \|v\|\) for every \(v \in V\).
(e) Show that \(I - P\) is the orthogonal projection onto \(W^\perp\).
(f) Show that
\[\|v\|^2 = \|P(v)\|^2 + \|(I - P)(v)\|^2. \]