1. Let \(A, B \in \mathbb{F}^{n \times n} \). Define the function \(T : \mathbb{F}^{n \times n} \to \mathbb{F}^{n \times n} \) by
\[
T(X) = AXB
\]
for all \(X \in \mathbb{F}^{n \times n} \).
(a) Show that \(T \in \text{End}(\mathbb{F}^{n \times n}) \).
SOLUTION. Let \(\alpha_1, \alpha_2 \in \mathbb{F} \) and \(X_1, X_2 \in \mathbb{F}^{n \times n} \). Then by the distributive property of matrix multiplication,
\[
T(\alpha_1X_1 + \alpha_2X_2) = \alpha_1AX_1B + \alpha_2AX_2B
\]
Hence \(T \) is linear.

(b) Show that \(T \) is invertible if and only if \(A \) and \(B \) are nonsingular matrices.
SOLUTION. Suppose \(A \) and \(B \) are nonsingular. Define the map \(S : \mathbb{F}^{n \times n} \to \mathbb{F}^{n \times n} \) by
\[
S(X) = A^{-1}X(AB)^{-1}
\]
for all \(X \in \mathbb{F}^{n \times n} \). By the associativity of matrix multiplication, we have
\[
S(T(X)) = A^{-1}(AXB)B^{-1} = (A^{-1}A)(B^{-1}B) = IXI = X,
\]
\[
T(S(X)) = A(A^{-1}X(AB)^{-1})B = (AA^{-1})X(B^{-1}B) = IXI = X
\]
for all \(X \in \mathbb{F}^{n \times n} \). So \(S \circ T = I = T \circ S \) and so \(T^{-1} = S \). Suppose \(T \) is invertible, then \(\ker(T) = \{O\} \). We will prove by contradiction. Suppose \(A \) or \(B \) is singular. Without loss of generality, we may assume that \(A \) is singular (the argument for singular \(B \) is similarly). Then there exists a non-zero \(x \in \text{nullsp}(A) \), ie. \(Ax = 0 \) but \(x \neq 0 \). Define the matrix \(X \in \mathbb{F}^{n \times n} \) all of whose columns are \(x \), ie.
\[
X = [x, \ldots, x].
\]
Then \(X \neq O \) but
\[
T(X) = AXB = A[x, \ldots, x]B = [Ax, \ldots, Ax]B = [0, \ldots, 0]B = OB = O.
\]
So \(\ker(T) \neq \{O\} \) and so \(T \) is not invertible.

2. Let \(V \) be a finite dimensional vector space and \(T \in \text{End}(V) \). Let \(\dim(V) = n \). Let \(v \in V \) be such that
\[
T^{n-1}(v) \neq 0 \quad \text{and} \quad T^n(v) = 0.
\]
(a) Show that the vectors \(v, T(v), T^2(v), \ldots, T^{n-1}(v) \) form a basis for \(V \).
SOLUTION. Let \(\alpha_0, \ldots, \alpha_{n-1} \in \mathbb{F} \) be such that
\[
\alpha_0v + \alpha_1T(v) + \alpha_2T^2(v) + \cdots + \alpha_{n-1}T^{n-1}(v) = 0.
\]
(2.1)
Applying T^{n-1} to both sides of (2.1), we obtain
\[T^{n-1}(\alpha_0 v + \alpha_1 T(v) + \alpha_2 T^2(v) + \cdots + \alpha_{n-1} T^{n-1}(v)) = T^{n-1}(0), \]
\[\alpha_0 T^{n-1}(v) + \alpha_1 T^n(v) + \alpha_2 T^{n+1}(v) + \cdots + \alpha_{n-1} T^{2n-2}(v) = 0. \]
Note that for all $m \geq n$, $T^m(v) = T^{m-n}(T^n(v)) = T^{m-n}(0) = 0$. So the last equation becomes
\[\alpha_0 T^{n-1}(v) = 0. \]
Since $T^{n-1}(v) \neq 0$, we must have $\alpha_0 = 0$. Now, (2.1) becomes
\[\alpha_1 T(v) + \alpha_2 T^2(v) + \cdots + \alpha_{n-1} T^{n-1}(v) = 0 \]
and we apply T^{n-2} to both sides and use the same argument above to conclude that $\alpha_1 = 0$. Repeating this argument n times gives
\[\alpha_0 = \alpha_1 = \cdots = \alpha_{n-1} = 0. \]
Hence $\{v, T(v), T^2(v), \ldots, T^{n-1}(v)\}$ is linearly independent and since $\dim(V) = n$, it forms a basis of V.

(b) Let B be the basis in (a). What is the matrix representation $[T]_{B,B}$?

SOLUTION. We apply T to each vector of B in turn to get
\[T(v) = 0v + 1T(v) + 0T^2(v) + \cdots + 0T^{n-1}(v), \]
\[T(T(v)) = 0v + 0T(v) + 1T^2(v) + \cdots + 0T^{n-1}(v), \]
\[\vdots \]
\[T(T^{n-2}(v)) = 0v + 0T(v) + 0T^2(v) + \cdots + 1T^{n-1}(v), \]
\[T(T^{n-1}(v)) = 0v + 0T(v) + 0T^2(v) + \cdots + 0T^{n-1}(v). \]
Hence writing the coefficients as *columns* yield the required matrix representation
\[
[T]_{B,B} = \begin{bmatrix}
0 & 1 & 0 & 0 & \cdots & \cdots & 0 \\
0 & 0 & 1 & 0 & \cdots & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & \cdots & 0 & 1 & 0 \\
0 & 0 & \cdots & \cdots & 0 & 0 & 1 \\
0 & 0 & \cdots & \cdots & 0 & 0 & 0
\end{bmatrix},
\]
a matrix with 1’s on the super-diagonal the 0’s everywhere else.

3. Let V and W be finite-dimensional vector spaces over F.

(a) Let $T \in \text{Hom}(V,W)$. Prove the following.
 (i) If T is injective, then $\dim(V) \leq \dim(W)$.
 (ii) If T is surjective, then $\dim(V) \geq \dim(W)$.
 (iii) If T is bijective, then $\dim(V) = \dim(W)$.

SOLUTION. Since $\text{im}(T)$ is a subspace of W, we must have
\[\dim(W) \geq \dim(\text{im}(T)) = \text{rank}(T) = \dim(V) - \text{nullity}(T). \quad (3.2) \]
If T is injective, then $\text{nullity}(T) = 0$ and so
\[\dim(W) \geq \dim(V). \]
If T is surjective, then $W = \text{im}(T)$ and equality holds in (3.2), ie.
\[\dim(W) = \dim(V) - \text{nullity}(T). \]
Hence
\[\dim(V) = \dim(W) + \text{nullity}(T) \geq \dim(W). \]

If \(T \) is bijective, then being both injective and surjective, we have \(\dim(V) \leq \dim(W) \) and \(\dim(V) \geq \dim(W) \) and so
\[\dim(V) = \dim(W). \]

(b) Show that if \(\dim(V) = \dim(W) \), then there exists a bijective \(T \in \text{Hom}(V,W) \). [Together with (iii), this shows that ‘V and W are isomorphic if and only if \(\dim(V) = \dim(W) \).’]

SOLUTION. Let \(n = \dim(V) = \dim(W) \). Let \(\{v_1, \ldots, v_n\} \) and \(\{w_1, \ldots, w_n\} \) be bases of \(V \) and \(W \) respectively. We define \(T : V \to W \) by
\[T(\alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_n v_n) = \alpha_1 w_1 + \alpha_2 w_2 + \cdots + \alpha_n w_n \]
for all \(\alpha_1, \alpha_2, \ldots, \alpha_n \in \mathbb{F} \) (note that every \(v \in V \) may be written in this form). \(T \) is linear since for \(\lambda, \mu \in \mathbb{F} \) and \(\alpha_1 v_1 + \cdots + \alpha_n v_n, \beta_1 v_1 + \cdots + \beta_n v_n \in V \),
\begin{align*}
T(\lambda(\alpha_1 v_1 + \cdots + \alpha_n v_n) + \mu(\beta_1 v_1 + \cdots + \beta_n v_n)) &= T((\lambda \alpha_1 + \mu \beta_1) v_1 + \cdots + (\lambda \alpha_n + \mu \beta_n) v_n) \\
&= (\lambda \alpha_1 + \mu \beta_1) w_1 + \cdots + (\lambda \alpha_n + \mu \beta_n) w_n \\
&= \lambda(\alpha_1 w_1 + \cdots + \alpha_n w_n) + \mu(\beta_1 w_1 + \cdots + \beta_n w_n) \\
&= \lambda T(\alpha_1 v_1 + \cdots + \alpha_n v_n) + \mu T(\beta_1 v_1 + \cdots + \beta_n v_n).
\end{align*}

Let \(\alpha_1 v_1 + \cdots + \alpha_n v_n \in \ker(T) \). Then
\[0_V = T(\alpha_1 v_1 + \cdots + \alpha_n v_n) = \alpha_1 w_1 + \cdots + \alpha_n w_n. \]

Since \(w_1, \ldots, w_n \) are linearly independent, we get \(\alpha_1 = \cdots = \alpha_n = 0 \) and so
\[\alpha_1 v_1 + \cdots + \alpha_n v_n = 0 v_1 + \cdots + 0 v_n = 0_V. \]

Hence \(\ker(T) = \{0_V\} \) and so \(T \) is injective.

(c) Let \(\dim(V) = \dim(W) \). Let \(T \in \text{Hom}(V,W) \) and \(S \in \text{Hom}(W,V) \). Show that
\[S \circ T = \mathcal{I}_V \quad (3.3) \]
if and only if
\[T \circ S = \mathcal{I}_W. \]

SOLUTION. Let \(S \circ T = \mathcal{I}_V \). Then \(T \) is injective since if \(T(v) = 0_W \), then \(v = \mathcal{I}_V(v) = S(T(v)) = S(0_W) = 0_V \) (ie. \(\ker(T) = \{0_V\} \)). Since \(V \) is finite-dimensional, we may apply Theorem 4.12 to conclude that \(T \) is invertible. Let \(T^{-1} \) be the inverse of \(T \). Then composing \(T^{-1} \) on the right of (3.3), we get
\begin{align*}
(S \circ T) \circ T^{-1} &= \mathcal{I}_V \circ T^{-1} = T^{-1}, \\
S \circ (T \circ T^{-1}) &= T^{-1}, \\
S \circ \mathcal{I}_V &= T^{-1}, \\
S &= T^{-1}.
\end{align*}

Hence
\[T \circ S = \mathcal{I}_W \]
as required. For the converse, just swap the roles of \(T \) and \(S \).

(d) Show that (b) and (c) are false if \(\dim(V) \neq \dim(W) \).

SOLUTION. If \(\dim(V) \neq \dim(W) \) and there exists a bijective \(T \), then this would contradict (iii) in (a).
4. Let \(\mathbb{P} \) be the vector space of all polynomials over \(\mathbb{R} \). Define the functions \(D : \mathbb{P} \to \mathbb{P} \) and \(M : \mathbb{P} \to \mathbb{P} \) by

\[
D(p)(x) = p'(x) \quad \text{and} \quad M(p)(x) = xp(x)
\]

for all \(p \in \mathbb{P} \), i.e. the ‘differentiation with respect to \(x \)’ and ‘multiplication by \(x \)’ functions. Explicitly, if \(p(x) = a_0 + a_1 x + a_2 x^2 + \cdots + a_d x^d \) with \(a_0, a_1, a_2, \ldots, a_d \in \mathbb{R} \), then

\[
D(p)(x) = a_1 + 2a_2 x + \cdots + da_dx^{d-1},
\]

\[
M(p)(x) = a_0 x + a_1 x^2 + \cdots + a_d x^{d+1}.
\]

(a) Show that \(D \in \text{End}(\mathbb{P}) \) and \(M \in \text{End}(\mathbb{P}) \).

SOLUTION. Let \(\lambda, \mu \in \mathbb{F} \) and \(p(x) = a_0 + a_1 x + \cdots + a_d x^d, q(x) = b_0 + b_1 x + \cdots + b_d x^d \in \mathbb{P} \) where \(d = \max\{\deg(p(x)), \deg(q(x))\} \). Then

\[
D(\lambda p + \mu q)(x) = (\lambda a_1 + \mu b_1) + 2(\lambda a_2 + \mu b_2)x + \cdots + d(\lambda a_d + \mu b_d)x^{d-1}
\]

\[
= \lambda(a_1 + 2a_2 x + \cdots + da_dx^{d-1}) + \mu(b_1 + 2b_2 x + \cdots + db_dx^{d-1})
\]

\[
= \lambda D(p)(x) + \mu D(q)(x)
\]

and

\[
M(\lambda p + \mu q)(x) = (\lambda a_0 + \mu b_0)x + (\lambda a_1 + \mu b_1)x^2 + \cdots + (\lambda a_d + \mu b_d)x^{d+1}
\]

\[
= \lambda(a_0 x + a_1 x^2 + \cdots + a_dx^{d+1}) + \mu(b_0 x + b_1 x^2 + \cdots + b_dx^{d+1})
\]

\[
= \lambda M(p)(x) + \mu M(q)(x).
\]

So \(D \) and \(M \) are linear.

(b) Show that

\[
\text{im}(D) = \mathbb{P}, \quad \ker(D) \neq \{0(x)\}, \quad \text{im}(M) \neq \mathbb{P}, \quad \ker(M) = \{0(x)\},
\]

where \(0(x) \) denotes the zero polynomial.

SOLUTION. Let \(p(x) = a_0 + a_1 x + a_2 x^2 + \cdots + a_d x^d \in \mathbb{P} \). If we let

\[
q(x) = a_0 x + \frac{a_1}{2} x^2 + \frac{a_2}{3} x^3 + \cdots + \frac{a_d}{d+1} x^{d+1},
\]

we see that

\[
D(q)(x) = p(x).
\]

So \(D \) is surjective and \(\text{im}(D) = \mathbb{P} \). Let \(c(x) = 1 \). Then \(D(c)(x) = 0(x) \) and so \(c(x) \in \ker(D) \). Since \(c(x) \neq 0(x) \), \(\ker(D) \neq \{0(x)\} \). Let \(p(x) \in \ker(M) \), then \(M(p)(x) = 0(x) \), i.e.

\[
a_0 x + a_1 x^2 + \cdots + a_d x^{d+1} = 0x + 0x^2 + \cdots + 0x^{d+1}.
\]

So \(a_0 = a_1 = \cdots = a_d = 0 \) and so \(p(x) = 0(x) \). Note that \(c(x) \notin \text{im}(M) \) since if

\[
M(p)(x) = c(x),
\]

then \(\deg(M(p)(x)) = \deg(c(x)) = 1 \), which is only possible of \(p(x) = 0(x) \) but clearly \(M(0)(x) = 0(x) \neq c(x) \).

(c) Are \(D \) and \(M \) surjective, injective, or bijective? Why would these observations not contradict Theorem 4.12 from the lectures?

SOLUTION. Theorem 4.12 applies only to finite-dimensional vector spaces whereas \(\mathbb{P} \) is infinite-dimensional.

(d) Show that

\[
D \circ M - M \circ D = I_\mathbb{P}
\]

and more generally

\[
D^n \circ M - M \circ D^n = nD^{n-1}
\]

for all \(n \in \mathbb{N} \).
SOLUTION. Let \(p(x) = a_0 + a_1 x + a_2 x^2 + \cdots + a_d x^d \in \mathbb{P} \). Note that
\[
\mathcal{M}(\mathcal{D}(p))(x) = a_1 x + 2a_2 x^2 + \cdots + d a_d x^d, \\
\mathcal{D}(\mathcal{M}(p))(x) = a_0 + 2a_1 x + \cdots + (d+1) a_d x^d,
\]
and so
\[
(\mathcal{D} \circ \mathcal{M} - \mathcal{M} \circ \mathcal{D})(p)(x) = \mathcal{D}(\mathcal{M}(p))(x) - \mathcal{M}(\mathcal{D}(p))(x) \\
= a_0 + a_1 x + a_2 x^2 + \cdots + a_d x^d \\
= p(x).
\]
Hence \(\mathcal{D} \circ \mathcal{M} - \mathcal{M} \circ \mathcal{D} = I_\mathbb{P} \). For the general case, we will use induction. We have already shown that it is true for \(n = 1 \). Suppose it is true for all \(n = 1, \ldots, k \), we will use this to deduce that it is also true for \(n = k+1 \),
\[
\mathcal{D}^{k+1} \circ \mathcal{M} - \mathcal{M} \circ \mathcal{D}^{k+1} = \mathcal{D} \circ (\mathcal{D}^k \circ \mathcal{M}) - \mathcal{M} \circ \mathcal{D}^{k+1} \\
= \mathcal{D} \circ (k \mathcal{D}^{k-1} + \mathcal{M} \circ \mathcal{D}^k) - \mathcal{M} \circ \mathcal{D}^{k+1} \\
= k \mathcal{D}^k + \mathcal{D} \circ \mathcal{M} \circ \mathcal{D}^k - \mathcal{M} \circ \mathcal{D}^{k+1} \\
= k \mathcal{D}^k + (\mathcal{D} \circ \mathcal{M} - \mathcal{M} \circ \mathcal{D}) \circ \mathcal{D}^k \\
= k \mathcal{D}^k + I_\mathbb{P} \circ \mathcal{D}^k \\
= k \mathcal{D}^k + \mathcal{D}^k \\
= (k + 1) \mathcal{D}^k
\]
as required.