1. Let V be a vector space over \mathbb{F}. Let $w \in V$ be a fixed non-zero vector and $\mu \in \mathbb{F}$ be a fixed non-zero scalar.
 (a) Show that the function $f : \mathbb{F} \rightarrow V$ defined by $f(\lambda) = \lambda w$ is injective.
 (b) Show that the function $g : V \rightarrow V$ defined by $g(v) = \mu v$ is bijective.
 (c) Show that the function $h : V \rightarrow V$ defined by $h(v) = v + w$ is bijective.

2. Let W_1 and W_2 be subspaces of a vector space V. The sum of W_1 and W_2 is the subset of V defined by
 \[W_1 + W_2 = \{ w_1 + w_2 \in V \mid w_1 \in W_1, w_2 \in W_2 \}. \]
 (a) Prove that $W_1 + W_2$ is a subspace of V.
 (b) Prove that $W_1 + W_2$ is the smallest subspace of V containing both W_1 and W_2.
 (c) Prove that $W_1 \cap W_2$ is the largest subspace of V contained in both W_1 and W_2.

3. Let W_1 and W_2 be subspaces of a vector space V. Show that the following statements are equivalent.
 (i) $W_1 \cap W_2 = \{0\}$.
 (ii) If $w_1 \in W_1$ and $w_2 \in W_2$ are such that $w_1 + w_2 = 0$, then $w_1 = w_2 = 0$.
 (iii) If $w_1 + w_2 = w'_1 + w'_2$, where $w_1, w'_1 \in W_1$ and $w_2, w'_2 \in W_2$, then $w_1 = w'_1$ and $w_2 = w'_2$.
 If any one of these equivalent conditions holds, then $W_1 + W_2$ is written $W_1 \oplus W_2$ and is called the direct sum of W_1 and W_2.

4. (a) State and prove the analogue of the statements in Problem 2 for the direct sum of three or more subspaces.
 (b) Let W_1, W_2, W_3 be subspaces of a vector space V. Suppose
 \[W_1 \cap W_2 = W_1 \cap W_3 = W_2 \cap W_3 = \{0\}. \]
 Must $W_1 + W_2 + W_3$ be a direct sum?

5. Prove or provide a counter example for the following.
 (a) Let
 \[
 V_1 := \left\{ \begin{bmatrix} a & b \\ -b & a \end{bmatrix} \in \mathbb{R}^{2 \times 2} \mid a, b \in \mathbb{R} \right\}, \\
 V_2 := \left\{ \begin{bmatrix} c & d \\ d & -c \end{bmatrix} \in \mathbb{R}^{2 \times 2} \mid c, d \in \mathbb{R} \right\}.

 Is it true that $\mathbb{R}^{2 \times 2} = V_1 \oplus V_2$?

 (b) Let
 \[
 W_1 := \{ p(x) \in \mathbb{P}_3 \mid p(-x) = p(x) \text{ for all } x \in \mathbb{R} \}, \\
 W_2 := \{ p(x) \in \mathbb{P}_3 \mid p(-x) = -p(x) \text{ for all } x \in \mathbb{R} \}.

 Is it true that $\mathbb{P}_3 = W_1 \oplus W_2$?

Date: February 14, 2008 (Version 1.0); due: February 21, 2008.