1. Which one of the following functions is continuous at 0?

\[e(x) = \begin{cases}
1 & \text{if } x \in \mathbb{Q}, \\
0 & \text{if } x \notin \mathbb{Q},
\end{cases} \quad f(x) = \begin{cases}
x & \text{if } x \in \mathbb{Q}, \\
0 & \text{if } x \notin \mathbb{Q},
\end{cases} \quad g(x) = \begin{cases}
|x| & \text{if } x \in \mathbb{Q}, \\
0 & \text{if } x \notin \mathbb{Q},
\end{cases} \quad h(x) = \begin{cases}
q & \text{if } x = p/q, \gcd(p,q) = 1, q > 0, \\
0 & \text{if } x \notin \mathbb{Q},
\end{cases} \]

(A) \(e \) and \(f \) only \quad (B) \(e \) and \(h \) only \quad (C) \(f \) and \(g \) only \quad (D) \(g \) and \(h \) only

Answer: By Examples 3.13, 3.14, and 4.4, \(e \) is discontinuous at 0 while \(f \) is continuous at 0. Since the absolute value function \(|\cdot| \) is continuous at 0, \(g = f \circ |\cdot| \) is continuous at 0 by Theorem 4.3. By Exercise 3.16, \(h \) is unbounded at 0 and is therefore discontinuous at 0 by the Lemma on pp. 72. Hence the answer is (C).

2. \(f, g, h \) are all discontinuous at \(x_0 \). Which of the following could be continuous at \(x_0 \)?

(A) \(f \circ (g + h) \) \quad (B) \(f \cdot (g + h) \) \quad (C) \(f \circ (g \cdot h) \) \quad (D) \(f \circ (g \circ h) \) \quad (E) all of them

Answer: Consider \(x_0 = 0 \). Let \(g : \mathbb{R} \to \mathbb{R} \) be defined by

\[g(x) = \begin{cases}
1 & \text{if } x > 0, \\
0 & \text{if } x \leq 0,
\end{cases} \]

and let \(h = -g \). So \(g + h = 0 \) and \(g \circ h = 0 \). So for any \(f \),

\[f \circ (g + h) = f \cdot (g + h) = f \circ (g \circ h) = 0 \]

and are continuous. Note that \(g \cdot h = h \). So if we pick \(f = g \), then \(f \circ (g \cdot h) = g \circ h = 0 \) and is also continuous. So the answer is (E).

3. \(f \) is continuous on \(\mathbb{R} \) and \([f(x)]^4 = x^4\) for all \(x \in \mathbb{Q} \). A possible value of \(f(\sqrt{2}) \) is:

(A) 4 \quad (B) 2 \quad (C) -2 \quad (D) -\sqrt{2} \quad (E) any value in \(\mathbb{R} \) is possible

Answer: By Exercise 4.13, \([f(x)]^4 = x^4\) for all \(x \in \mathbb{R} \). Note that \([f(x)]^4 = x^4\) implies that \([f(x)]^2 = x^2\). So by Exercise 4.17, the four possibilities of \(f \) are \(-x, x, -|x|, \text{or } |x|\). The only possible answer is (D).

4. What is the value of \(\lim_{n \to \infty} n \sin(2/n) \)?

(A) 0 \quad (B) 1 \quad (C) 2 \quad (D) \infty \quad (E) limit does not exist
Answer: By Exercise 3.29,
\[
\lim_{x \to 0} \frac{\sin x}{x} = 1.
\]

By Theorem 3.6, if we choose \(x_n = \frac{2}{n}\) and note that \(x_n \to 0\), then
\[
\lim_{n \to \infty} \frac{\sin x_n}{x_n} = 1.
\]

Now note that
\[
\lim_{n \to \infty} n \sin \left(\frac{2}{n} \right) = 2 \lim_{n \to \infty} \frac{\sin(2/n)}{2/n} = 2.
\]

Alternatively apply Exercise 3.30(b). So the answer is (C).

5. What is the value of the following?
\[
\lim_{x \to 0} \frac{\tan x + \sqrt{4 + x} - 2}{x}
\]

(A) 1 (B) 1/2 (C) 1/4 (D) 0 (E) limit does not exist

Answer: Note that by Theorem 3.4(b) and Exercise 3.29,
\[
\lim_{x \to 0} \frac{\tan x}{x} = \lim_{x \to 0} \frac{\sin x}{x} \times \lim_{x \to 0} \frac{1}{\cos x} = 1.
\]

Note that as in Exercise 3.23(a),
\[
\lim_{x \to 0} \frac{\sqrt{4 + x} - 2}{x} = \lim_{x \to 0} \frac{(\sqrt{4 + x} - 2)(\sqrt{4 + x} + 2)}{x(\sqrt{4 + x} + 2)} = \lim_{x \to 0} \frac{4 + x - 4}{x(\sqrt{4 + x} + 2)} = \lim_{x \to 0} \frac{1}{\sqrt{4 + x} + 2} = \frac{1}{4}.
\]

Alternatively, use l’hôpital’s rule. Hence by Theorem 3.4(a),
\[
\lim_{x \to 0} \frac{\tan x + \sqrt{4 + x} - 2}{x} = 1 + \frac{1}{4} = \frac{5}{4}.
\]

None of the given answers are correct.

6. What can you say\(^1\) about the following statement: “For any \(\varepsilon \in (0, 2)\), there exists \(\delta > 0\) such that \(|f(x) - 3| < 4\varepsilon\) whenever \(0 < |x - 5| < \delta\).”

(A) This is a necessary but not sufficient condition for \(\lim_{x \to 5} f(x) = 3\).
(B) This is a sufficient but not necessary condition for \(\lim_{x \to 5} f(x) = 3\).
(C) This is both a necessary and a sufficient condition for \(\lim_{x \to 5} f(x) = 3\).
(D) This is neither a necessary nor a sufficient condition for \(\lim_{x \to 5} f(x) = 3\).
(E) This condition contradicts \(\lim_{x \to 5} f(x) = 3\).

Answer: Let \(P_1\) be the statement “For any \(\varepsilon \in (0, 2)\), there exists \(\delta > 0\) such that \(|f(x) - 3| < 4\varepsilon\) whenever \(0 < |x - 5| < \delta\)” and \(P_2\) be the statement “For any \(\varepsilon > 0\), there exists \(\delta > 0\) such that \(|f(x) - 3| < \varepsilon\) whenever \(0 < |x - 5| < \delta\).” We claim that \(P_1 \iff P_2\), i.e. the answer is (C). It is clear that \(P_2 \implies P_1\). Now assuming \(P_1\). Given any \(\varepsilon > 0\), if \(\varepsilon < 8\), then let \(\varepsilon' = \varepsilon/4 \in (0, 2)\) and so there exists \(\delta > 0\) such that \(|f(x) - 3| < 4\varepsilon' = \varepsilon\) whenever \(0 < |x - 5| < \delta\); if \(\varepsilon \geq 8\), then let \(\varepsilon' = 1 \in (0, 2)\) (any other choice of \(\varepsilon' \in (0, 2)\) would work too) and so again so there exists

\(^1\)Recall if \(P \implies Q\), we say ‘\(P\) is a sufficient condition for \(Q\)’ or ‘\(Q\) is a necessary condition for \(P\)’.
7. Suppose for every \(x_0 \in (a, b) \), \(\lim_{x \to x_0} f(x) \) exists and is not \(\pm \infty \). What is the strongest conclusion you may draw?

(A) \(f \) is bounded on \((a, b)\).
(B) \(f \) is continuous on \((a, b)\).
(C) \(f \) attains its supremum and infimum on \((a, b)\).
(D) \(f \) satisfies the intermediate value property on \((a, b)\).
(E) None of the preceding.

Answer: Consider the case \((a, b) = (0, 1)\) and say

\[
f(x) = \begin{cases}
 1/x & \text{if } x \in (0, \frac{1}{2}) \cup (\frac{1}{2}, 1), \\
 -2 & \text{if } x = \frac{1}{2}.
\end{cases}
\]

Note that \(f \) is continuous on \((0, \frac{1}{2}) \cup (\frac{1}{2}, 1)\) with a jump discontinuity at \(x = \frac{1}{2} \). So \(\lim_{x \to x_0} f(x) \) exists for any \(x_0 \in (0, 1) \). However \(f \) is unbounded and is discontinuous on \((0, 1)\). \(\sup_{x \in (0, 1)} = f(x) = +\infty \) and is not attained by any \(x_0 \in (0, 1) \). \(\inf_{x \in (0, 1)} f(x) = -2 < -1 < +\infty = \sup_{x \in (0, 1)} = f(x) \) but there is no \(x_0 \in (0, 1) \) such that \(f(x_0) = -1 \). Hence the answer is (E).

8. Which one of the following statements is correct?

(A) If \(\lim_{x \to x_0} f(x) \geq \lim_{x \to x_0} g(x) \), then there exists \(\delta > 0 \) such that \(f(x) \geq g(x) \) whenever \(0 < |x - x_0| < \delta \).
(B) If \(\lim_{x \to x_0} f(x) > \lim_{x \to x_0} g(x) \), then there exists \(\delta > 0 \) such that \(f(x) > g(x) \) whenever \(0 < |x - x_0| < \delta \).
(C) If there exists \(\delta > 0 \) such that \(f(x) > g(x) \) whenever \(0 < |x - x_0| < \delta \), then \(\lim_{x \to x_0} f(x) \geq \lim_{x \to x_0} g(x) \).
(D) If there exists \(\delta > 0 \) such that \(f(x) > g(x) \) whenever \(0 < |x - x_0| < \delta \) and that both \(\lim_{x \to x_0} f(x) \) and \(\lim_{x \to x_0} g(x) \) exist, then \(\lim_{x \to x_0} f(x) > \lim_{x \to x_0} g(x) \).
(E) None of the above.

Answer: (A) is incorrect in general; e.g. \(f(x) = -x \) and \(g(x) = x \), then \(\lim_{x \to 0} f(x) = 0 \geq 0 = \lim_{x \to 0} g(x) \) but there is no \(\delta > 0 \) such that \(f(x) \geq g(x) \) whenever \(0 < |x - 0| < \delta \). (C) is incorrect in general since \(\lim_{x \to x_0} f(x) \) or \(\lim_{x \to x_0} g(x) \) may not exist; e.g. \(f(x) = 1/x^2 \) and \(g(x) = 1/x \) and \(x_0 = 0 \). (D) is incorrect in general; e.g. \(f(x) = x > x^2 = g(x) \) whenever \(0 < |x - 0| < 1 \) but \(\lim_{x \to 0} f(x) = 0 \neq \lim_{x \to 0} g(x) \). (B) is the correct answer: Write \(\lim_{x \to x_0} f(x) = L \) and \(\lim_{x \to x_0} g(x) = M \) and pick \(\epsilon = (L-M)/2 > 0 \), then there exists \(\delta > 0 \) such that \(f(x) > L - \epsilon \) and \(g(x) < M + \epsilon \) whenever \(0 < |x-x_0| < \delta \). Note that \(f(x) > L - \epsilon = (L+M)/2 = M+\epsilon > g(x) \).

9. Which one of the following statements regarding \(f(x) = 1/(1 + e^{1/x}) \) is correct?

(A) \(f \) has a removable discontinuity at 0.
(B) \(f \) has a jump discontinuity at 0.
(C) \(f \) has a discontinuity of the second kind at 0.
(D) \(f \) has unbounded at 0.
(E) \(f \) is continuous at 0.

Answer: Since

\[
\lim_{x \to 0^-} f(x) = \lim_{y \to -\infty} \frac{1}{1 + e^y} = 1 \quad \text{and} \quad \lim_{x \to 0^+} f(x) = \lim_{y \to +\infty} \frac{1}{1 + e^y} = 0,
\]

the correct answer is (B).
10. Suppose \(f \) is continuous on \((0, \infty)\), \(\lim_{x \to 0^+} f(x) = 0 \), and \(\lim_{x \to \infty} f(x) = 1 \). Which of the following statements is always true?

(A) There exists \(x_0 \in (0, \infty) \) such that \(f(x_0) = \frac{2}{\sqrt{3}} \).

(B) There exists \(x_0 \in (0, \infty) \) such that \(f(x_0) = -\frac{\sqrt{3}}{2} \).

(C) The infimum of \(f \) is 0 and the supremum of \(f \) is 1 on \((0, \infty)\).

(D) \(f \) is bounded on \((0, \infty)\).

(E) \(f \) is always nonnegative on \((0, \infty)\).

Answer: A counter example to (A) and (B) is given by
\[
 f(x) = \frac{x}{1 + x}
\]
since for all \(x > 0 \), \(0 < f(x) < 1 \) and so never takes the values \(\frac{2}{\sqrt{3}} > 1 \) or \(-\frac{\sqrt{3}}{2} < 0 \). Define the function (draw the graph to see what it’s like):
\[
 t(x) = \begin{cases}
 1 - x & \text{if } 1 \leq x \leq 2, \\
 x - 3 & \text{if } 2 \leq x \leq 3, \\
 0 & \text{otherwise.}
\end{cases}
\]

A counter example to (C) and (E) is
\[
 f(x) = \frac{x}{1 + x} + t(x)
\]
since \(f(2) = 1/2 - 1 = -1/2 \). The correct answer is (D): pick \(\varepsilon = 1 \), there exists \(K > 0 \) such that \(|f(x) - 1| < 1 \) (i.e. \(|f(x)| < 2 \)) whenever \(x \in [K, \infty) \) and there exists \(\delta > 0 \) such that \(|f(x) - 0| < 1 \) whenever \(x \in (0, \delta) \). Since \(f \) is continuous on \([\delta, K]\), there exists \(M > 0 \) such that \(|f(x)| < M \) whenever \(x \in [\delta, K] \) by Theorem 4.4. Hence \(|f(x)| < \max(M, 2) \) for all \(x \in [0, \infty) \).

11. Suppose there exists \(\delta > 0 \) such that \(f(x) \leq g(x) \) whenever \(-\delta < x - a < 0\). If \(\lim_{x \to a^-} f(x) \) and \(\lim_{x \to a^-} g(x) \) both exist, prove using \(\varepsilon-\delta \) definition that \(\lim_{x \to a^-} f(x) \leq \lim_{x \to a^-} g(x) \).

Answer: This proof is identical to the proof of Theorem 3.5 with \(N^*_\delta(a) \) replaced by \((a-\delta, a)\).