5.2: Let \(f(x) = |x| \); show that

\[
f''(x) = \begin{cases}
2 & \text{if } x > 0, \\
-2 & \text{if } x < 0,
\end{cases}
\]

and that 0 is not in the domain of \(f''(x) \).

Solution. By Example 5.1, \(f'(x) = 2|x| \) for all \(x \in \mathbb{R} \). Let \(a > 0 \). Then \(f'(a) = 2a \) and \(f'(x) = 2x \) for all \(x \in \mathbb{N}^\delta(a) \) for some \(\delta > 0 \) (e.g. \(\delta = a/2 \)). So

\[
f''(a) = \lim_{x \to a} \frac{f'(x) - f'(a)}{x - a} = \lim_{x \to a} \frac{2x - 2a}{x - a} = \lim_{x \to a} 2 = 2.
\]

Let \(a < 0 \). Then \(f'(a) = -2a \) and \(f'(x) = -2x \) for all \(x \in \mathbb{N}^\delta(a) \) for some \(\delta > 0 \) (e.g. \(\delta = -a/2 \)). So

\[
f''(a) = \lim_{x \to a} \frac{f'(x) - f'(a)}{x - a} = \lim_{x \to a} \frac{-2x + 2a}{x - a} = \lim_{x \to a} -2 = -2.
\]

Since these are true for arbitrary \(a > 0 \) and \(a < 0 \), we have

\[
f''(x) = \begin{cases}
2 & \text{if } x > 0, \\
-2 & \text{if } x < 0.
\end{cases}
\]

Note that

\[
\lim_{x \to 0^+} \frac{f'(x) - f'(0)}{x - 0} = \lim_{x \to 0^+} \frac{2x - 0}{x - 0} = 2,
\]

\[
\lim_{x \to 0^-} \frac{f'(x) - f'(0)}{x - 0} = \lim_{x \to 0^-} \frac{-2x - 0}{x - 0} = -2,
\]

and so

\[
f''(0) = \lim_{x \to 0} \frac{f'(x) - f'(0)}{x - 0}
\]

does not exist.

5.5: Show that the following function is continuous at \(x = 0 \) but \(f'(0) \) does not exist. Find \(f'(x) \) for \(x \neq 0 \).

\[
f(x) = \begin{cases}
x \sin \frac{1}{x} & \text{if } x \neq 0, \\
0 & \text{if } x = 0.
\end{cases}
\]

Solution. Recall that \(f \) is continuous by Example 4.6 everywhere on \(\mathbb{R} \). However

\[
f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{x \sin(1/x) - 0}{x - 0} = \lim_{x \to 0} \frac{\sin(1/x)}{x}
\]

\[= \text{undefined.} \]
does not exist by Example 4.5. For any \(a \neq 0 \), \(f(x) = x \sin(1/x) \) for all \(x \in N_\delta^*(a) \) for some \(\delta > 0 \) (e.g. \(\delta = |a|/2 \)). So by product rule and chain rule,

\[
f'(a) = \frac{d}{dx} \left(x \sin \left(\frac{1}{x} \right) \right) \bigg|_{x=a} = \sin \frac{1}{x} - x \cos \frac{1}{x} \left(\frac{-1}{x^2} \right) \bigg|_{x=a} = \sin \frac{1}{a} - \frac{1}{a} \cos \frac{1}{a}.
\]

5.6: Show that the following function is differentiable for every \(x \in \mathbb{R} \) but \(f' \) is not continuous at \(x = 0 \).

\[
f(x) = \begin{cases}
 x^2 \sin \frac{1}{x} & \text{if } x \neq 0, \\
 0 & \text{if } x = 0.
\end{cases}
\]

Solution. For any \(a \neq 0 \), the functions \(x^2 \), \(\sin x \), \(1/x \) are all differentiable at \(x = a \) and so \(f \) is differentiable by product rule and chain rule. In fact,

\[
f'(a) = \frac{d}{dx} \left(x^2 \sin \frac{1}{x} \right) \bigg|_{x=a} = 2x \sin \frac{1}{x} - x^2 \cos \frac{1}{x} \left(\frac{-1}{x^2} \right) \bigg|_{x=a} = 2a \sin \frac{1}{a} - \cos \frac{1}{a}.
\]

For \(a = 0 \),

\[
f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{x^2 \sin(1/x) - 0}{x - 0} = \lim_{x \to 0} x \sin \frac{1}{x} = 0.
\]

However

\[
\lim_{x \to 0} f'(x) = \lim_{x \to 0} \left[2x \sin \frac{1}{x} - \cos \frac{1}{x} \right]
\]

does not exist by Theorem 3.4 since \(\lim_{x \to 0} \cos(1/x) \) does not exist but \(\lim_{x \to 0} 2x \sin(1/x) \) does exist.

5.7: Show that the following function is differentiable for every \(x \in \mathbb{R} \) but \(f' \) is not unbounded at \(x = 0 \).

\[
f(x) = \begin{cases}
 x^2 \sin \frac{1}{x^2} & \text{if } x \neq 0, \\
 0 & \text{if } x = 0.
\end{cases}
\]

Solution. For any \(a \neq 0 \), the functions \(x^2 \), \(\sin x \), \(1/x^2 \) are all differentiable at \(x = a \) and so \(f \) is differentiable by product rule and chain rule. In fact,

\[
f'(a) = \frac{d}{dx} \left(x^2 \sin \frac{1}{x^2} \right) \bigg|_{x=a} = 2x \sin \frac{1}{x^2} - x^2 \cos \frac{1}{x^2} \left(\frac{-2}{x^3} \right) \bigg|_{x=a} = 2a \sin \frac{1}{a^2} - \frac{1}{a} \cos \frac{1}{a^2}.
\]

Let \(x_n = 1/\sqrt{2n\pi} \). Then \(\lim_{n \to \infty} x_n = 0 \) and

\[
\lim_{n \to \infty} f'(x_n) = \lim_{n \to \infty} \left[\frac{2}{\sqrt{2n\pi}} \sin 2n\pi - \frac{1}{\sqrt{2n\pi}} \cos 2n\pi \right] = -\lim_{n \to \infty} \frac{1}{\sqrt{2n\pi}} = -\infty.
\]

So \(f' \) is unbounded at \(0 \).

5.9: Let \(f(x) = e^{-|x|} \) for every \(x \in \mathbb{R} \). Is \(f \) continuous at \(x = 0? \) Differentiable at \(x = 0? \)

Solution. \(f \) is clearly continuous at \(x = 0 \) since \(\exp(-x) \) and \(|x| \) are both continuous at \(x = 0 \). However

\[
f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{e^{-|x|} - 0}{x - 0}
\]

does not exist since

\[
\lim_{x \to 0^+} \frac{e^{-|x|}}{x} = \lim_{x \to 0^+} \frac{e^{-x}}{x} = \infty.
\]
5.11: (a) Define

\[
f(x) = \begin{cases}
\frac{1}{4^n} & \text{if } x = \frac{1}{2^n}, \ n = 1, 2, 3, \ldots, \\
0 & \text{otherwise.}
\end{cases}
\]

Is \(f \) differentiable at \(x = 0 \)? Verify.

Solution. We claim that \(f'(0) = 0 \). Let \((x_n)_{n\in\mathbb{N}}\) be a sequence such that \(\lim_{n\to\infty} x_n = 0 \) and \(x_n \neq 0 \) for all \(n \in \mathbb{N} \). Then

\[
\lim_{x\to0} \frac{f(x) - f(0)}{x - 0} = \begin{cases}
\frac{1/4^n - 0}{1/2^n - 0} & \text{if } x_n = \frac{1}{2^n} \text{ for some } n \in \mathbb{N}, \\
\frac{0 - 0}{1/2^n - 0} & \text{otherwise,}
\end{cases}
\]

\[
= \begin{cases}
\frac{1}{2^n} & \text{if } x_n = \frac{1}{2^n} \text{ for some } n \in \mathbb{N}, \\
0 & \text{otherwise,}
\end{cases}
\]

\[
\leq \frac{1}{2^n} \to 0
\]
as \(n \to \infty \). So by Exercise 3.26 and Theorem 3.6,

\[
\lim_{x\to0} \frac{f(x) - f(0)}{x - 0} = 0.
\]

(b) Define

\[
g(x) = \begin{cases}
\frac{1}{2^n+1} & \text{if } x = \frac{1}{2^n}, \ n = 1, 2, 3, \ldots, \\
0 & \text{otherwise.}
\end{cases}
\]

Is \(g \) differentiable at \(x = 0 \)? Verify.

Solution. Note that

\[
\lim_{n\to\infty} \frac{g(1/2^n) - g(0)}{1/2^n - 0} = \lim_{n\to\infty} \frac{1/2^{n+1} - 0}{1/2^n - 0} = \lim_{n\to\infty} \frac{1}{2} = \frac{1}{2}
\]

but

\[
\lim_{n\to\infty} \frac{g(1/3^n) - g(0)}{1/3^n - 0} = \lim_{n\to\infty} \frac{0 - 0}{1/2^n - 0} = \lim_{n\to\infty} 0 = 0.
\]

By Theorem 3.6 and Theorem 3.6, the limit

\[
\lim_{x\to0} \frac{g(x) - g(0)}{x - 0}
\]

does not exist. So \(g \) is not differentiable at \(x = 0 \).

5.12: Prove that if \(x = g(t) \), \(y = f(t) \) are differentiable in some neighborhood of \(t_0 \), \(g'(t_0) \neq 0 \) and \(x_0 = g(t_0) \), \(y_0 = f(t_0) \) and if \(y = H(x) \) in some neighborhood of \(x_0 \) then

\[
\frac{dy}{dx}_{x_0} = \frac{f'(t_0)}{g'(t_0)} = \left. \frac{dy}{dt} \right|_{t_0} / \left. \frac{dx}{dt} \right|_{t_0}.
\]

Solution. Note that \(y = f(t) = H(g(t)) \) in some neighborhood of \(x_0 \). So by chain rule,

\[
f'(t_0) = H'(g(t_0))g'(t_0) = H'(x_0)g'(t_0).
\]

Since \(g'(t_0) \neq 0 \), we may write

\[
H'(x_0) = \frac{f'(t_0)}{g'(t_0)}.
\]
In other words,

\[
\frac{dy}{dx}\bigg|_{x_0} = \frac{dy/dt|_{t_0}}{dx/dt|_{t_0}}.
\]

5.14: Prove that if \(f \) is differentiable on \((a,b)\) and \(f'(x) \leq 0 \) for every \(x \in (a,b) \) then \(f \) is monotone decreasing on \((a,b)\).

SOLUTION. Apply Theorem 5.7 to \(-f\).

5.16: Suppose \(f'(x) = g'(x) \) for all \(x \) in some interval \(I \). Prove that there exists some constant \(k \) such that \(f(x) = g(x) + k \) for all \(x \in I \).

SOLUTION. Apply Exercise 5.15 to \(f - g \).

5.19: Prove that for any real number \(b \) the polynomial \(f(x) = x^3 + x + b \) has exactly one real root; that is, there exists a unique \(x_0 \in \mathbb{R} \) such that \(f(x_0) = 0 \).

SOLUTION. If \(b = 0 \), then clearly \(x_0 = 0 \) is a real root. If \(b \neq 0 \),

\[
f(b)f(-b) = -b^6 - 2b^4 < 0,
\]

and so \(f(b) \) and \(f(-b) \) are of opposite signs. Since \(f \) is continuous, the intermediate value theorem says that there exists at least one \(x_0 \) between \(b \) and \(-b \) such that \(f(x_0) = 0 \). So \(f \) has at least one real root for any \(b \in \mathbb{R} \). If \(x_1 \neq x_0 \) is another root of \(f \). Then \(f(x_0) = 0 = f(x_1) \) and since \(f \) is differentiable, the mean value theorem says that there exists a \(y \) such that \(f'(y) = 0 \). This contradicts

\[
f'(x) = 3x^2 + 1 > 0 \quad \text{for all } x \in \mathbb{R}.
\]