1. Let \(f \) be continuous on \([a, b]\) and differentiable on \((a, b)\).
 (a) Suppose \(f(a) = f(b) = 0 \).
 Show that for a given \(\alpha \in \mathbb{R} \), there exists \(x_0 \in (a, b) \) such that
 \[\alpha f(x_0) + f'(x_0) = 0. \]
 (b) Suppose \(f(b)^2 - f(a)^2 = b^2 - a^2 \).
 Show that there exists \(x_0 \in (a, b) \) such that
 \[f'(x_0)f(x_0) = x_0. \]
 (c) Suppose \(a > 0 \) and
 \[\frac{f(a)}{a} = \frac{f(b)}{b}. \]
 Show that there exists \(x_0 \in (a, b) \) such that
 \[x_0f'(x_0) = f(x_0). \]
 (d) Suppose \(a > 0 \). Show that there exists \(x_0 \in (a, b) \) such that
 \[\frac{bf(a) - af(b)}{b - a} = f(x_0) - x_0f'(x_0). \]

2. (a) Show that each of the following equations has exactly one real root.
 \[x^{13} + 7x^3 - 5 = 0, \quad 3^x + 4^x = 5^x. \]
 (b) Let \(a_1, \ldots, a_n \in \mathbb{R} \) be non-zero. Let \(\alpha_1, \ldots, \alpha_n \in \mathbb{R} \) be distinct, i.e. \(\alpha_i \neq \alpha_j \) for \(i \neq j \). Prove that the equation
 \[a_1x^{\alpha_1} + \cdots + a_nx^{\alpha_n} = 0 \]
 has at most \(n - 1 \) roots in \((0, \infty)\). Hence or otherwise, prove that
 \[a_1e^{\alpha_1x} + \cdots + a_ne^{\alpha_nx} = 0 \]
 has at most \(n - 1 \) roots in \(\mathbb{R} \).

3. Let \(f \) be differentiable on \([a, b]\) and twice differentiable on \((a, b)\).
 (a) Suppose \(f(a) = f'(a) = f(b) = 0 \).
 Show that there exists \(x_0 \in (a, b) \) such that
 \[f''(x_0) = 0. \]
 (b) Suppose \(f(a) = f(b) \) and \(f'(a) = 0 = f'(b) \).
 Show that there exists \(x_0, x_1 \in (a, b) \), \(x_0 \neq x_1 \), such that
 \[f''(x_0) = f''(x_1). \]
(c) Suppose $a = 0$, $b = 2$, and
\[
 f(0) = 0, \quad f(1) = 1, \quad f(2) = 2.
\]
Show that there exists $x_0 \in (0, 2)$ such that
\[
 f''(x_0) = 0.
\]

4. (a) Suppose f is differentiable and f' is continuous in a neighborhood of $x = a$. Prove that
\[
 \lim_{h \to 0} \frac{f(a + h/2) - f(a - h/2)}{h} = f'(a).
\]
(b) Suppose f is twice differentiable and f'' is continuous in a neighborhood of $x = a$. Prove that
\[
 \lim_{h \to 0} \frac{f(a + h) - 2f(a) + f(a - h)}{h^2} = f''(a).
\]