1. Let \(f : \mathbb{R} \to \mathbb{R} \) be continuous and let \((x_n)_{n \in \mathbb{N}}\) be a bounded sequence. We know from Theorem 2.1 in the lectures that if \((x_n)_{n \in \mathbb{N}}\) is convergent, then
\[
\lim_{n \to \infty} f(x_n) = f\left(\lim_{n \to \infty} x_n \right).
\]
But suppose \((x_n)_{n \in \mathbb{N}}\) is not convergent.
(a) Find counterexamples to show that the following equalities do not always hold:
\[
\limsup_{n \to \infty} f(x_n) = f\left(\limsup_{n \to \infty} x_n \right) \quad \text{and} \quad \liminf_{n \to \infty} f(x_n) = f\left(\liminf_{n \to \infty} x_n \right).
\]
Solution. Take \(f(x) = -x\) and \(x_n = (-1)^n\). Then
\[
\liminf_{n \to \infty} f(x_n) = -1 < 1 = f\left(\liminf_{n \to \infty} x_n \right)
\]
and
\[
\limsup_{n \to \infty} f(x_n) = 1 > -1 = f\left(\limsup_{n \to \infty} x_n \right).
\]
(b) Prove that
\[
\limsup_{n \to \infty} f(x_n) \geq f\left(\limsup_{n \to \infty} x_n \right) \quad \text{and} \quad \liminf_{n \to \infty} f(x_n) \leq f\left(\liminf_{n \to \infty} x_n \right).
\]
Solution. Let \(\liminf_{n \to \infty} x_n = a\). By the continuity of \(f\), for every \(\varepsilon > 0\), there exists \(\delta > 0\) such that
\[
|f(x) - f(a)| < \varepsilon \quad \text{for} \quad |x - a| < \delta.
\]
By Homework 5, Problem 1(a), there exists a subsequence \((x_{n_k})_{k \in \mathbb{N}}\) that converges to \(a\) and so there exists \(N \in \mathbb{N}\) such that \(k > N\) implies
\[
|x_{n_k} - a| < \delta.
\]
Now by (1.1) we get
\[
|f(x_{n_k}) - f(a)| < \varepsilon \quad \text{for} \quad k > N.
\]
Hence we have shown that
\[
\lim_{k \to \infty} f(x_{n_k}) = f(a).
\]
In other words, there exists a subsequence \((f(x_{n_k}))_{k \in \mathbb{N}}\) of the sequence \((f(x_n))_{n \in \mathbb{N}}\) that converges to \(f(a)\). By Homework 5, Problem 1(b),
\[
\liminf_{n \to \infty} f(x_n) \leq \lim_{k \to \infty} f(x_{n_k}) = f(a),
\]
and so we obtain
\[
\liminf_{n \to \infty} f(x_n) \leq f\left(\liminf_{n \to \infty} x_n \right).
\]
The proof for limit superior is similar.

2. Let \(f\) and \(g\) be functions such that
\[
\lim_{x \to a} f(x) = b \quad \text{and} \quad \lim_{y \to b} g(y) = c.
\]

Date: April 28, 2009 (Version 1.0).
(a) Show that the following is not necessarily true
\[\lim_{x \to a} g(f(x)) = c. \]

Solution. In fact the limit of the composition need not even exist. Consider the functions
\(f, g : \mathbb{R} \to \mathbb{R} \) defined by
\[
f(x) = \begin{cases} 0 & \text{if } x = \frac{1}{n}, n \in \mathbb{N}, \\ \sin x & \text{otherwise}, \end{cases}
\]
and
\[
g(y) = \begin{cases} 0 & \text{if } y = 0, \\ \frac{\sin y}{y} & \text{otherwise.} \end{cases}
\]
Then
\[
g(f(x)) = \begin{cases} 0 & \text{if } x = \frac{1}{n}, n \in \mathbb{N}, \text{ or } x = k\pi, k \in \mathbb{Z}, \\ \sin(\sin x) & \text{otherwise.} \end{cases}
\]
Note that
\[\lim_{x \to 0} f(x) = 0, \quad \lim_{y \to 0} g(y) = 1, \]
but \(\lim_{x \to 0} g(f(x)) \) does not exist.

(b) Show that it is true if \(f \) is continuous at \(a \) and \(g \) is continuous at \(b \) (which must be equal to \(f(a) \)), i.e.
\[\lim_{x \to a} g(f(x)) = g(f(a)). \]

Solution. Since \(f \) is continuous at \(a \),
\[f(a) = \lim_{x \to a} f(x) = b. \]
Let \(\varepsilon > 0 \) be given. Since \(g \) is continuous at the point \(b = f(a) \), there is an \(\eta > 0 \) such that if \(|y - f(a)| < \eta \) then \(|g(y) - g(f(a))| < \varepsilon \). But since \(f \) is continuous at \(a \), there is a \(\delta > 0 \) such that if \(|x - a| < \delta \) then \(|f(x) - f(a)| < \eta \). Consequently, for each \(x \) satisfying \(|x - a| < \delta \) we have \(|g(f(x)) - g(f(a))| < \varepsilon \). Therefore
\[\lim_{x \to a} g(f(x)) = g(f(a)). \]

3. (a) Let \(f, g : \mathbb{R} \to \mathbb{R} \) be defined by
\[
g(x) = \frac{x + |x|}{2}, \quad f(x) = \begin{cases} x & \text{if } x < 0, \\ x^2 & \text{if } x \geq 0. \end{cases}
\]
For which values of \(x \) are \(f \) and \(g \) continuous? Write down an expression for the composite function \(h(x) = g(f(x)) \) and determine the values of \(x \) for which it is continuous.

Solution. Note that
\[
g(x) = \begin{cases} 0 & \text{if } x < 0, \\ x & \text{if } x \geq 0. \end{cases}
\]
So when \(x < 0 \), \(h(x) = g(f(x)) = g(x) = 0 \) and when \(x \geq 0 \), \(h(x) = g(f(x)) = g(x^2) = x^2 \).
Hence
\[
h(x) = \begin{cases} 0 & \text{if } x < 0, \\ x^2 & \text{if } x \geq 0. \end{cases}
\]
It is easy to see that \(f, g, h \) are continuous everywhere on \(\mathbb{R} \).

(b) Let \(f : [-1, \infty) \to \mathbb{R} \) be defined by
\[
f(x) = \begin{cases} \frac{\sqrt{1 + x} - \sqrt{1 - x}}{x} & \text{if } -1 \leq x < 0, \\ \alpha & \text{if } x = 0, \\ \frac{\log(1 + x)}{x} & \text{if } x > 0. \end{cases}
\]
Find \(\lim_{x \to 0^-} f(x) \) and \(\lim_{x \to 0^+} f(x) \). For which values of \(\alpha \) is \(f \) left- or right-continuous at 0?

Solution. Note that

\[
\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \frac{\sqrt{1+x} - \sqrt{1-x}}{x} \\
= \lim_{x \to 0^-} \frac{(1+x) - (1-x)}{x(\sqrt{1+x} + \sqrt{1-x})} \\
= \lim_{x \to 0^-} \frac{2}{\sqrt{1+x} + \sqrt{1-x}} \\
= 1
\]

and

\[
\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{\log(1+x)}{x} \\
= \lim_{x \to 0^+} \log(1+x)^{1/x} \\
= \log \left(\lim_{x \to 0^+} (1+x)^{1/x} \right) \\
= \log e^1 \\
= 1
\]

where the third equality follows from the continuity of \(\log \) on \((0, \infty)\). Hence setting \(\alpha = 1 \) makes \(f \) a continuous function, i.e. both left- and right-continuous.

4. (a) Prove that the equation \((1-x) \cos x = \sin x\) has at least one solution in \((0, 1)\).

Solution. Consider the continuous function \(f(x) = (1-x) \cos x - \sin x \). Then \(f(0) = 1 > 0 \) and \(f(1) = -\sin 1 < 0 \). Therefore there is \(x_0 \in (0, 1) \) satisfying \(f(x_0) = 0 \) by the intermediate value theorem.

(b) Let \(f, g : [a, b] \to \mathbb{R} \) be continuous functions where \(f(a) < g(a) \) and \(f(b) > g(b) \). Prove that there exists \(c \in (a, b) \) such that

\[
f(c) = g(c).
\]

Hence or otherwise show that a continuous \(f : [0, 1] \to [0, 1] \) must have a fixed point, i.e. \(c \in [0, 1] \) such that \(f(c) = c \).

Solution. Consider the continuous function \(h(x) = f(x) - g(x) \). Observe that \(h(a) < 0 \) and \(h(b) > 0 \). By the intermediate value theorem, there exists \(c \in (a, b) \) such that

\[
f(c) = g(c).
\]

Let \(g(x) = x \). If either \(f(0) = 0 \) or \(f(1) = 1 \), we would have a fixed point. Otherwise \(f(0) > 0 = g(0) \) and \(f(1) < 1 = g(1) \) implies that we have a fixed point \(c \in (0, 1) \) by the earlier part.

(c) Let \(f : [a, b] \to \mathbb{R} \) be a continuous function. Prove that for any \(x_1, x_2, \ldots, x_n \in (a, b) \), there exists \(x_0 \in (a, b) \) such that

\[
f(x_0) = \frac{f(x_1) + f(x_2) + \cdots + f(x_n)}{n}.
\]

Hence or otherwise show that there exists \(0 < \theta < \pi/2 \) such that

\[
\sin \theta = \frac{1 + \sqrt{2} + \sqrt{3} + \sqrt{6}}{10}.
\]

Solution. By the extreme value theorem there exists \(x_{\min}, x_{\max} \in [a, b] \) such that \(f(x_{\min}) = m := \min \{f(x) \mid x \in [a, b]\} \) and \(f(x_{\max}) = M := \max \{f(x) \mid x \in [a, b]\} \). If \(f \) is constant,
then we are done. Assume \(f \) is nonconstant. Then \(x_{\min} \neq x_{\max} \). Clearly,

\[
m \leq \frac{f(x_1) + f(x_2) + \cdots + f(x_n)}{n} \leq M.
\]

By the intermediate value theorem, \(f \) assumes every value between \(m \) and \(M \), so there exists \(x_0 \in (x_{\min}, x_{\max}) \) or \((x_{\max}, x_{\min})\) (depending on whether \(x_{\min} < x_{\max} \) or \(x_{\max} < x_{\min} \)) such that

\[
f(x_0) = \frac{f(x_1) + f(x_2) + \cdots + f(x_n)}{n},
\]

Let \(f(x) = \sin x \) and let \(x_k = k\pi/12 \in (0, \pi/2), \ k = 1, 2, 3, 4, 5 \). Since

\[
\sin \frac{\pi}{12} = \sin \left(\frac{\pi}{4} - \frac{\pi}{6} \right) = \frac{1}{\sqrt{2}} \frac{\sqrt{3}}{2} - \frac{1}{\sqrt{2}} \frac{1}{2} = \frac{1}{2\sqrt{2}} (\sqrt{3} - 1),
\]

\[
\sin \frac{5\pi}{12} = \sin \left(\frac{\pi}{4} + \frac{\pi}{6} \right) = \frac{1}{\sqrt{2}} \frac{\sqrt{3}}{2} + \frac{1}{\sqrt{2}} \frac{1}{2} = \frac{1}{2\sqrt{2}} (\sqrt{3} + 1),
\]

we have

\[
\frac{1}{5} \left(\sin \frac{\pi}{12} + \sin \frac{\pi}{6} + \sin \frac{\pi}{4} + \sin \frac{\pi}{3} + \sin \frac{5\pi}{12} \right) = \frac{1 + \sqrt{2} + \sqrt{3} + \sqrt{6}}{10}.
\]

The existence of the required \(\theta \in (0, \pi/2) \) then follows from the earlier part.