CONVERGENCE RATES OF MARKOV CHAINS ON SPACES OF PARTITIONS

HARRY CRANE AND STEVEN P. LALLEY

ABSTRACT. We study the convergence rate to stationarity for a class of exchangeable partition-valued Markov chains called cut-and-paste chains. The law governing the transitions of a cut-and-paste chain are determined by products of i.i.d. stochastic matrices, which describe the chain induced on the simplex by taking asymptotic frequencies. Using this representation, we establish upper bounds for the mixing times of ergodic cut-and-paste chains, and under certain conditions on the distribution of the governing random matrices we show that the “cutoff phenomenon” holds.

1. INTRODUCTION

A Markov chain \{X_t\}_{t=0,1,2,...} on the space \([k]^N\) of \(k\)-colorings of the positive integers \(\mathbb{N}\) is said to be exchangeable if its transition law is equivariant with respect to finite permutations of \(\mathbb{N}\) (that is, permutations that fix all but finitely many elements of \(\mathbb{N}\)). Exchangeability does not imply that the Markov chain has the Feller property (relative to the product topology on \([k]^N\)), but if a Markov chain is both exchangeable and Feller then it has a simple paintbox representation, as proved by Crane \[3\]. In particular, there exists a sequence \{S_t\}_{t\geq 1}\ of i.i.d. \(k\times k\) random column-stochastic matrices (the paintbox sequence) such that conditional on the entire sequence \{S_t\}_{t\geq 1} and on \(X_0, X_1, \ldots, X_m\), the coordinate random variables \(X_{m+1}^i\) are independent, and \(X_{m+1}^i\) has the multinomial distribution specified by the \(X_m^i\) column of \(S_{m+1}\). Equivalently (see Proposition \[3.3\] in section \[3.3\]), conditional on the paintbox sequence, the coordinate sequences \(X_{m+1}^i\) are independent, time-inhomogeneous Markov chains on the state space \([k]\) with one-step transition probability matrices \(S_1, S_2, \ldots\). This implies that for any integer \(n \geq 1\) the restriction \(X_t^{[n]}\) of \(X_t\) to the space \([k]^{[n]}\) is itself a Markov chain. We shall refer to such Markov chains \(X_t\) and \(X_t^{[n]}\) as exchangeable Feller cut-and-paste chains, or EFCP chains for short. Under mild hypotheses on the paintbox distribution (see the discussion in section \[5\]) the restrictions of EFCP chains \(X_t^{[n]}\) to the finite configuration spaces \([k]^{[n]}\) are ergodic. The main results of this paper, theorems \[1.1-1.2\] relate the convergence rates of these chains to properties of the paintbox process \(S_1, S_2, \ldots\).

Theorem 1.1. Assume that for some \(m \geq 1\) there is positive probability that all entries of the matrix product \(S_m S_{m-1} \cdots S_1\) are nonzero. Then the EFCP chain \(X_t^{[n]}\) is ergodic, and it mixes in \(O(\log n)\) steps.

Date: September 21, 2012.

1991 Mathematics Subject Classification. Primary 60J05, secondary 60B10 60B20.

Key words and phrases. cut-and-paste chain, mixing time, exchangeability, cutoff phenomenon, Lyapunov exponent.

Second author supported by NSF grant DMS - 0805755.
Theorem 1.2. Assume that the distribution of S_1 is absolutely continuous relative to Lebesgue measure on the space of $k \times k$ column-stochastic matrices, with density of class L^p for some $p > 1$. Then the associated EFCP chains X^n exhibit the cutoff phenomenon: there exists a positive constant θ such that for all sufficiently small $\delta, \varepsilon > 0$ the (total variation) mixing times satisfy

$$ (\theta - \delta) \log n \leq t^{(n)}_{\text{mix}}(\varepsilon) \leq t^{(n)}_{\text{mix}}(1 - \varepsilon) \leq (\theta + \delta) \log n $$

for all sufficiently large n.

Formal statements of these theorems will be given in due course (see Theorems 5.4 and 5.7 in section 5), and less stringent hypotheses for the $O(\log n)$ convergence rate will be given. In the special case $k = 2$ the results are related to some classical results for random walks on the hypercube, e.g. the Ehrenfest chain on $\{0, 1\}^n$: see example 5.9.

The key to both results is that the relative frequencies of the different colors are determined by the random matrix products $S_t S_{t-1} \cdots S_1$ (see Proposition 3.3). The hypotheses of Theorem 1.1 ensure that these matrix products contract the k-simplex to a point at least exponentially rapidly. The stronger hypotheses of Theorem 1.2 prevent the simplex from collapsing at a faster than exponential rate.

The paper is organized as follows. In section 2 we record some simple and elementary facts about total variation distance, and in section 3 we define cut-and-paste Markov chains formally and establish the basic relation with the paintbox sequence (Proposition 3.3). In section 4 we discuss the contractivity properties of products of random stochastic matrices. In section 5 we prove the main results concerning ergodicity and mixing rates of cut-and-paste chains, and in section 5.3 we discuss some examples of cut-and-paste chains not covered by our main theorems. Finally, in section 6 we deduce mixing rate and cutoff for projections of the cut-and-paste chain into the space of ordinary set partitions.

2. Preliminaries: Total Variation Distance

Since the state spaces of interest in our main results are finite, it is natural to use the total variation metric to measure the distance between the law $D(X_m)$ of the chain X at time $m \geq 1$ and its stationary distribution π. The total variation distance $\|\mu - \nu\|_{TV}$ between two probability measures μ, ν on a finite or countable set X is defined by

$$ \|\mu - \nu\|_{TV} = \frac{1}{2} \sum_{x \in X} |\mu(x) - \nu(x)| = \max_{B \subseteq X} (\nu(B) - \mu(B)). $$

The maximum is attained at $B^* = \{x : \nu(x) \geq \mu(x)\}$ and, since the indicator 1_B is a function only of the likelihood ratio $d\nu/d\mu$, the total variation distance $\|\mu - \nu\|_{TV}$ is the same as the total variation distance between the μ- and ν-distributions of any sufficient statistic. In particular, if $Y = Y(x)$ is a random variable such that $d\nu/d\mu$ is a function of Y, then

$$ \|\mu - \nu\|_{TV} = \frac{1}{2} \sum_{y} |\nu(Y = y) - \mu(Y = y)|, $$

where the sum is over all possible values of $Y(x)$.

Likelihood ratios provide a useful means for showing that two probability measures are close in total variation distance.

Lemma 2.1. Fix $\varepsilon > 0$, and define

$$ B_\varepsilon = \left\{ x : \left| \frac{\mu(x)}{\nu(x)} - 1 \right| > \varepsilon \right\}. $$
If \(\nu(B_\varepsilon) < \varepsilon \), then \(\|\mu - \nu\|_{TV} < 2\varepsilon \).

Proof. By definition of \(B_\varepsilon, B_\varepsilon^c := \{ x : |\mu(x) - \nu(x)| \leq \varepsilon \nu(x) \} \) and so \((1 - \varepsilon)\nu(x) \leq \mu(x) \leq (1 + \varepsilon)\nu(x) \) for every \(x \in B_\varepsilon^c \) and

\[
\mu(B_\varepsilon^c) \geq (1 - \varepsilon)\nu(B_\varepsilon^c).
\]

By assumption \(\nu(B_\varepsilon) < \varepsilon \), it follows that \(\mu(B_\varepsilon^c) \geq (1 - \varepsilon)^2 \) and

\[
\|\mu - \nu\|_{TV} \leq \frac{1}{2} \left[\sum_{x \in B_\varepsilon} |\mu(x) - \nu(x)| + \sum_{x \in B_\varepsilon^c} |\mu(x) - \nu(x)| \right]
\leq \frac{1}{2} \left[\sum_{x \in B_\varepsilon} \mu(x) + \sum_{x \in B_\varepsilon^c} \nu(x) + \sum_{x \in B_\varepsilon^c} |\mu(x) - \nu(x)| \right]
< 2\varepsilon.
\]

The convergence rates of EFCP chains will be (in the ergodic cases) determined by the contractivity properties of products of random stochastic \(k \times k \) matrices on the \((k - 1)\)-dimensional simplex

\[
\Delta_k := \left\{ (s_1, \ldots, s_k)^T : s_i \geq 0 \text{ and } \sum_i s_i = 1 \right\}.
\]

We now record some preliminary lemmas about convergence of probability measures on \(\Delta_k \) that we will need later. For each \(n \in \mathbb{N} \) and each element \(s \in \Delta_k \) define a probability measure \(\phi^n_s \), the product multinomial-s measure on \([k]^n\) by

\[
\phi^n_s(x) := \prod_{j=1}^n s_{x_j} \quad \text{for } x = x^1 x^2 \cdots x^n \in [k]^n.
\]

Observe that the vector \(m(x) := (m_1, \ldots, m_k) \) of cell counts defined by \(m_j := \sum_{i=1}^n 1_j(x^i) \) is sufficient for the likelihood ratio \(\phi^n_s(x) / \phi^n_{s'}(x) \) of any two product-multinomial measures \(\phi^n_s \) and \(\phi^n_{s'} \).

Corollary 2.2. Fix \(\delta, \varepsilon > 0 \). If \(s_n, s'_n \) are two sequences in \(\Delta_k \) such that all coordinates of \(s_n, s'_n \) are in the interval \([\delta, 1 - \delta]\) for every \(n \), and if \(\|s_n - s'_n\|_\infty < n^{-1/2-\varepsilon} \), then

\[
\lim_{n \to \infty} \|\phi^n_s - \phi^n_{s'}\|_{TV} = 0.
\]

Proof. This is a routine consequence of Lemma 2.1, as the hypotheses ensure that the likelihood ratio \(d\phi^n_s / d\phi^n_{s'} \) is uniformly close to 1 with probability approaching 1 as \(n \to \infty \).

A similar argument can be used to establish the following generalization, which is needed in the case of partitions with \(k \geq 3 \) classes. For \(s_1, \ldots, s_k \in \Delta_k \), let \(\phi^{(1)} \circ \cdots \circ \phi^{(k)} \) denote the product measure on \([k]^{n_1 + \cdots + n_k}\) where the first \(n_1 \) coordinates are i.i.d. multinomial-\(s_1 \), the next \(n_2 \) are i.i.d. multinomial-\(s_2 \), and so on.

Corollary 2.3. Fix \(\delta, \varepsilon > 0 \). For each \(i \in [k] \) let \(s^i_n \) and \(t^i_n \) be sequences in \(\Delta_k \) all of whose entries are in the interval \([\delta, 1 - \delta]\), and let \(K^i_n \) be sequences of nonnegative integers such that \(\sum_i K^i_n = n \). If \(\sum_{i=1}^k \|s^i_n - t^i_n\|_\infty < n^{-1/2-\varepsilon} \), then
\[
\lim_{n \to \infty} \left\| \rho_{s_n}^{K_1} \otimes \cdots \otimes \rho_{s_n}^{K_n} - \rho_{t_n}^{K_1} \otimes \cdots \otimes \rho_{t_n}^{K_n} \right\|_{TV} = 0.
\]

In dealing with probability measures that are defined as mixtures, the following simple tool for bounding total variation distance is useful.

Lemma 2.4. Let \(\mu, \nu \) be probability measures on a finite or countable space \(X \) that are both mixtures with respect to a common mixing probability measure \(\lambda(d\theta) \), that is, such that there are probability measures \(\mu_\theta \) and \(\nu_\theta \) for which

\[
\mu = \int \mu_\theta \, d\lambda(\theta) \quad \text{and} \quad \nu = \int \nu_\theta \, d\lambda(\theta).
\]

If \(\|\mu_\theta - \nu_\theta\|_{TV} < \varepsilon \) for all \(\theta \) in a set of \(\lambda \)-probability \(> 1 - \varepsilon \) then

\[
\|\mu - \nu\|_{TV} < 2\varepsilon.
\]

Lower bounds on total variation distance between two probabilities \(\mu, \nu \) are often easier to establish than upper bounds, because for this one only need find a particular set \(B \) such that \(\mu(B) - \nu(B) \) is large. By (3), it suffices to look at sets of the form \(B = \{ Y \in F \} \), where \(Y \) is a sufficient statistic. The following lemma for product Bernoulli measures illustrates this strategy. For \(\alpha \in [0, 1] \), we write \(\gamma^m_\alpha : \rho^m_s \), where \(s = (\alpha, 1 - \alpha) \in \Delta_2 \), to denote the product Bernoulli measure determined by \(\alpha \).

Lemma 2.5. Fix \(\varepsilon > 0 \). If \(\alpha_m, \beta_m \) are sequences in \([0, 1]\) such that \(|\alpha_m - \beta_m| > m^{-1/2+\varepsilon} \), then

\[
\lim_{m \to \infty} \|\gamma^m_\alpha - \gamma^m_\beta\|_{TV} = 1.
\]

Proof. Without loss of generality, assume that \(\alpha_m < \beta_m \) and let \(\gamma_m = (\alpha_m + \beta_m)/2 \). Denote by \(S_m \) the sum of the coordinate variables. Then by Chebyshev’s inequality,

\[
\lim_{m \to \infty} \alpha_m \, \mathbb{P}(S_m < m\gamma_m) = 1 \quad \text{and} \quad \lim_{m \to \infty} \beta_m \, \mathbb{P}(S_m < m\gamma_m) = 0.
\]

\(\square \)

Remark 2.6. Similar results holds for multinomial and product-multinomial sampling. (A) If \(s_n, s'_n \in \Delta_k \) are distinct sequences of probability distributions on \([k]\) such that for some coordinate \(i \in [k] \) the \(i \)th entries of \(s_n \) and \(s'_n \) differ by at least \(n^{-1/2+\varepsilon} \), then

\[
\lim_{n \to \infty} \|\rho_{s_n}^{K_i} - \rho_{s'_n}^{K_i}\|_{TV} = 1.
\]

(B) If \(s^j_n, t^j_n \in \Delta_k \) are distinct sequences of probability distributions on \([k]\) such that for some pair \(i, j \in [k] \) the \(j \)th entries of \(s^j_n \) and \(t^j_n \) differ by at least \(n^{-1/2+\varepsilon} \), then for any sequences \(K^i_n \) of nonnegative integers such that \(\sum_j K^i_n = n \),

\[
\lim_{n \to \infty} \lim_{n \to \infty} \left\| \rho_{s^j_n}^{K^i_n} \otimes \cdots \otimes \rho_{s^j_n}^{K^i_n} - \rho_{t^j_n}^{K^i_n} \otimes \cdots \otimes \rho_{t^j_n}^{K^i_n} \right\|_{TV} = 1.
\]

These statements follow directly from Lemma 2.5 by projection on the appropriate coordinate variable.
3. Preliminaries: CP chains and Paintbox Representation

3.1. Labeled and unlabeled partitions. For $k, n \in \mathbb{N} = \{1, 2, \ldots \}$, a labeled k-ary partition L of $[n]$ is an ordered collection $L := (L_1, \ldots, L_k)$ of disjoint subsets for which $\bigcup_{i=1}^{k} L_i = [n]$. An unlabeled k-ary partition of $[n]$ is an unordered collection $L := \{L_1, \ldots, L_r\}$, where $r \leq k$, of nonempty, disjoint subsets whose union is $[n]$. The set $\mathcal{L}_{[n]:k}$ of labeled k-ary partitions of $[n]$ can be naturally identified with the set $[k]^n$ of k-colorings of the set $[n]$, via the map

$$L \mapsto l^1 l^2 \ldots l^n$$

where $l^i = j \leftrightarrow i \in L_j$.

Thus, the multinomial-s measure γ^n_k defined in the previous section induces a measure on $\mathcal{L}_{[n]:k}$, which we will also denote by γ^n_k. There is an obvious and natural projection $\Pi_n : \mathcal{L}_{[n]:k} \to \mathcal{P}_{[n]:k}$ from the set $\mathcal{L}_{[n]:k}$ of labeled partitions to the set $\mathcal{P}_{[n]:k}$ of unlabeled partitions given by

$$\Pi_n(L) := [L_1, \ldots, L_k] \{\emptyset\}.$$

This mapping coincides with the natural projection

$$\Pi_n : [k]^n \to [k]^n / \sim$$

where \sim is the equivalence relation $l^1 l^2 \ldots l^n \sim l'^1 l'^2 \ldots l'^n$ if and only if there exists a permutation σ of $[k]$ such that $l^i = \sigma(l'^i)$ for each $i \in [n]$. Some of the Markov chains on $\mathcal{L}_{[n]:k}$ considered below have transition laws invariant under such permutations σ of the labels $[k]$, and in such cases the Markov chain projects via Π_n to a Markov chain on the state space $\mathcal{P}_{[n]:k}$. This is discussed further in section 6 below.

3.2. Matrix operations on $\mathcal{L}_{[n]:k}$. The cut-and-paste Markov chain on $\mathcal{L}_{[n]:k}$ can be described by a product of i.i.d. random set-valued matrices with a special structural property.

Definition 3.1. For any subset $S \subset \mathbb{N}$, define a k-ary (or $k \times k$) partition matrix over S to be a $k \times k$ matrix M whose entries M_{ij} are subsets of S such that every column M^i is a labeled k-ary partition of S. For any two k-ary partition matrices M, M', define the product $M \ast M' = MM'$ by

$$(M \ast M')_{ij} \equiv (MM')_{ij} := \bigcup_{1 \leq s \leq k} (M_{ij} \cap M'_{ij}), \quad \text{for all } 1 \leq i, j \leq k.$$

We write $\mathcal{M}_{[n]:k}$ to denote the space of $k \times k$ partition matrices of $[n]$. Observe that the matrix product defined by (7) makes sense for matrices with entries in any distributive lattice, provided \cup, \cap are replaced by the lattice operations.

As each column of any $M \in \mathcal{M}_{[n]:k}$ is a k-ary partition of $[n]$, the set $\mathcal{M}_{[n]:k}$ of k-ary partition matrices over $[n]$ can be identified with $\mathcal{L}_{[n]:k}$. Furthermore, a k-ary partition matrix M induces a mapping $M : \mathcal{L}_{[n]:k} \to \mathcal{L}_{[n]:k}$ by

$$(ML)_i = \bigcup_j M_{ij} L_j.$$

Lemma 3.2. Let $k, n \in \mathbb{N}$. Then

(i) for each $L \in \mathcal{L}_{[n]:k}$, $ML \in \mathcal{L}_{[n]:k}$ for all $M \in \mathcal{M}_{[n]:k}$;
(ii) for any $L, L' \in \mathcal{L}_{[n]:k}$, there exists $M \in \mathcal{M}_{[n]:k}$ such that $ML = L'$;
(iii) the pair $(\mathcal{M}_{[n]:k}, \ast)$ is a monoid (i.e., semigroup with identity) for every $n \in \mathbb{N}$.
The proof is elementary and follows mostly from the definition (7) (the semigroup identity is the matrix whose diagonal entries are all [n] and whose off-diagonal entries are 0). We now describe the role of the semigroup \((M_{[n]k}^*)\) in describing the transitions of the cut-and-paste Markov chain.

3.3. Cut-and-paste Markov chains

Fix \(n, k \in \mathbb{N}\), let \(\mu\) be a probability measure on \(M_{[n]k}\) and let \(\varrho_0\) be a probability measure on \(L_{[n]k}\). The cut-and-paste Markov chain \(X = (X_m)_{m \geq 0}\) on \(L_{[n]k}\) with initial distribution \(\varrho_0\) and directing measure \(\mu\) is constructed as follows. Let \(X_0 \sim \varrho_0\) and, independently of \(X_0\), let \(M_1, M_2, \ldots\) be i.i.d. according to \(\mu\). Define

\[
X_m = M_mX_{m-1} = M_mM_{m-1} \cdots M_1X_0, \quad \text{for } m \geq 1.
\]

We call any Markov chain with the above dynamics a CP\(_n\) chain, or simply a CP\(_n\) chain if the initial distribution is unspecified. Henceforth we will use the notation \(M_{[n]k}\) chain, or simply a CP\(_n\) chain if the initial distribution is unspecified. Henceforth we will use the notation \(X_m^i\) to denote the \(i\)th coordinate variable in \(X_m\) (that is, \(X_m^i\) is the color of the site \(i \in [n]\) when \(X_m\) is viewed as an element of \([k]^{[n]}\)).

Our main results concern the class of cut-and-paste chains whose directing measures \(\mu = \mu_\Sigma\) are mixtures of product multinomial measures \(\mu_\Sigma\), where \(S\) ranges over the set \(\Delta_k^k\) of \(k \times k\) column-stochastic matrices. For any \(S \in \Delta_k^k\), the product multinomial measure \(\mu_\Sigma\) is defined by

\[
\mu_\Sigma(M) := \prod_{i=1}^k \prod_{j=1}^n S(M^i(j), j) \quad \text{for } M \in M_{[n]k},
\]

where \(M^i(j) = \sum_r r \mathbb{1}[i \in M_{rj}]\) denotes the index \(r\) of the row such that \(i\) is an element of \(M_{rj}\). (In other words, the columns of \(M \sim \mu_\Sigma\) are independent labeled \(k\)-ary partitions, and in each column \(M^i\) the elements \(i \in [n]\) are independently assigned to rows \(r \in [k]\) according to draws from the multinomial distribution \(S^i\) determined by the \(j\)th column of \(S\).) For any Borel probability measure \(\Sigma\) on \(\Delta_k^k\), we write \(\mu_\Sigma\) to denote the \(\Sigma\)-mixture of the measures \(\mu_\Sigma\) on \(M_{[n]k}\), that is,

\[
\mu_\Sigma() := \int_{\Delta_k^k} \mu_\Sigma() \Sigma(dS).
\]

Crane [3] has shown that every exchangeable, Feller Markov chain on the the space \([k]^{[n]}\) of \(k\)-colorings of the positive integers is a cut-and-paste chain with directing measure of the form (10), and so henceforth, we shall refer to such chains as exchangeable Feller cut-and-paste chains, or EFPC chains for short.

An EFPC chain on \([k]^{[n]}\) (or \([k]^{[N]}\)) with directing measure \(\mu = \mu_\Sigma\) can be constructed in two steps, as follows. First, choose i.i.d. stochastic matrices \(S_1, S_2, \ldots\) with law \(\Sigma\), all independent of \(X_0\); second, given \(X_0, S_1, S_2, \ldots\), let \(M_1, M_2, \ldots\) be conditionally independent \(k\)-ary partition matrices with laws \(M_i \sim \mu_{S_i}\) for each \(i = 1, 2, \ldots\), and define the cut-and-paste chain \(X_m\) by equation (8). This construction is fundamental to our arguments, and so henceforth, when considering an EFPC chain with directing measure \(\mu_\Sigma\), we shall assume that it is defined on a probability space together with a paintbox sequence \(S_1, S_2, \ldots\).

For each \(m \in \mathbb{N}\), set

\[
Q_m := S_m S_{m-1} \cdots S_1.
\]
Note that Q_n is itself a stochastic matrix. Denote by S the σ-algebra generated by the paintbox sequence S_1, S_2, \ldots.

Proposition 3.3. Given $G := \sigma(X_0) \vee S$, the n coordinate sequences $(X^i_n)_{m \geq 0}$, where $i \in [n]$, are conditionally independent versions of a time-inhomogeneous Markov chain on $[k]$ with one-step transition probability matrices S_1, S_2, \ldots. Thus, in particular, for each $m \geq 1$,

\[(12) \quad P(X^i_m = x^i_m \text{ for each } i \in [n] | G) = \prod_{i=1}^{n} Q_m(x^i_m, X^i_0).\]

Proof. We prove that the Markov property holds by induction on m. The case $m = 1$ follows directly by (9), as this implies that, conditional on G, the coordinate random variables X^i_1 are independent, with multinomial marginal conditional distributions given by the columns of S_1. Assume, then, that the assertion is true for some $m \geq 1$. Let F_m be the σ-algebra generated by G and the random matrices M_1, M_2, \ldots, M_m. Since the specification (8) expresses X_m as a function of $X_0, M_1, M_2, \ldots, M_m$, the random variables X^i_t, where $t \leq m$, are measurable with respect to F_m. Moreover, given G the random matrix M^i_{m+1} is conditionally independent of F_m, with conditional distribution (9), where $S = S_{m+1}$. Equation (9) implies that, conditional on G the columns M^i_{m+1} of M_{m+1} are independent k-ary partitions obtained by independent multinomial–S^c sampling. Consequently,

\begin{align*}
P(X^i_{m+1} = x^i_{m+1} \forall i \in [n] | F_m) &= P((M_{m+1}X_m)^i = x^i_{m+1} \forall i \in [n] | F_m) \\
&= P((M_{m+1}X_m)^i = x^i_{m+1} \forall i \in [n] | G \vee \sigma(X_m)) \\
&= \prod_{i=1}^{n} S^c_m(x^i_{m+1}, X^i_m),
\end{align*}

the second equality by the induction hypothesis and the third by definition of the probability measure $\mu_{S_{m+1}}$. This proves the first assertion of the proposition. The equation (12) follows directly. \hfill \Box

Proposition 3.3 shows that for any $n \geq 1$ a version of the EFCP on $[k]^{[n]}$ can be constructed by first generating a paintbox sequence S_m and then, conditional on S, running independent, time-inhomogeneous Markov chains X^i_m with one-step transition probability matrices S_m. From this construction it is evident that a version of the EFCP on the infinite state space $[k]^\mathbb{N}$ can be constructed by running countably many conditionally independent Markov chains X^i_m, and that for any $n \in \mathbb{N}$ the projection of this chain to the first n coordinates is a version of the EFCP on $[k]^{[n]}$.

4. RANDOM STOCHASTIC MATRIX PRODUCTS

For any EFCP chain $(X_m)_{m \geq 0}$, Proposition 3.3 directly relates the conditional distribution of X_m to the product $Q_m = S_m S_{m-1} \cdots S_1$ of i.i.d. random stochastic matrices. Thus, the rates of convergence of these chains are at least implicitly determined by the contractivity properties of the random matrix products Q_m. The asymptotic behavior of i.i.d. random matrix products has been thoroughly investigated, beginning with the seminal paper of Furstenberg and Kesten [4]: see [1] and [5] for extensive reviews. However, the random matrices S_i that occur in the paintbox representation of the CP$_n(\mu_{S})$ chain are not necessarily invertible, so much of the theory developed in [1] and [5] doesn’t apply. On the other hand, the random matrices S_i are column-stochastic, and so the deeper results of [1] and [5]
are not needed here. In this section we collect the results concerning the contraction rates of the products Q_m needed for the study of the EFCP chains, and give elementary proofs of these results.

Throughout this section assume that $\{S_i\}_{i \geq 1}$ is a sequence of independent, identically distributed $k \times k$ random column-stochastic matrices, with common distribution Σ, and let

$$Q_m = S_m S_{m-1} \cdots S_1.$$

4.1. Asymptotic Collapse of the Simplex. In the theory of random matrix products, a central role is played by the induced action on projective space. In the theory of products of random stochastic matrices an analogous role is played by the action of the matrices on the simplex Δ_k. By definition, the simplex Δ_k consists of all convex combinations of the unit vectors e_1, e_2, \ldots, e_k of \mathbb{R}^k; since each column of a $k \times k$ column-stochastic matrix $S \in \Delta_k^k$ lies in Δ_k, the mapping $v \mapsto Sv$ preserves Δ_k. This mapping is contractive in the sense that it is Lipschitz (relative to the usual Euclidean metric on \mathbb{R}^k) with Lipschitz constant ≤ 1.

The simplex Δ_k is contained in a translate of the $(k-1)$-dimensional vector subspace $V = V_k$ of \mathbb{R}^k consisting of all vectors orthogonal to the vector $1 = (1, 1, \ldots, 1)^T$ (equivalently, the subspace with basis $e_i - e_{i+1}$ where $1 \leq i \leq k - 1$). Any stochastic matrix A leaves the subspace V invariant, and hence induces a linear transformation $A|V : V \to V$. Since this transformation is contractive, its singular values are all between 0 and 1. (Recall that the singular values of a $d \times d$ matrix S are the square roots of the eigenvalues of the nonnegative definite matrix $S^T S$. Equivalently, they are the lengths of the principal axes of the ellipsoid $S(S^{d-1})$, where S^{d-1} is the unite sphere in \mathbb{R}^d.) Denote the singular values of the restriction $Q_m|V$ by

$$1 \geq \lambda_{n,1} \geq \lambda_{n,2} \geq \cdots \geq \lambda_{n,k-1} \geq 0.$$

Because the induced mapping $Q_n : \Delta_k \to \Delta_k$ is affine, its Lipschitz constant is just the largest singular value $\lambda_{n,1}$.

Proposition 4.1. Let $\{S_i\}_{i \geq 1}$ be independent, identically distributed $k \times k$ column-stochastic random matrices, and let $Q_m = S_m S_{m-1} \cdots S_1$. Then

$$\lim_{m \to \infty} \text{diameter}(Q_m(\Delta_k)) = 0.$$

if and only if there exists $m \geq 1$ such that with positive probability the largest singular value $\lambda_{m,1}$ of $Q_m|V$ is strictly less than 1. In this case,

$$\limsup_{m \to \infty} \text{diameter}(Q_m(\Delta_k))^{1/m} < 1 \quad \text{almost surely}.$$

Proof. In order that the asymptotic collapse property (14) holds it is necessary that for some m the largest singular value of $Q_m|V$ be less than one. (If not then for each m there would exist points $u_m, v_m \in \Delta_k$ such that the length of $Q_m(u_m - v_m)$ is at least the length of $u_m - v_m$, but this would contradict (14).) Conversely, if for some $\varepsilon > 0$ the largest singular of $Q_m|V$ is less than $1 - \varepsilon$ with positive probability then with probability 1 infinitely many of the matrix products $S_{mn+m} S_{mn+m-1} \cdots S_{mn+1}$ have largest singular value less than $1 - \varepsilon$. Hence, the Lipschitz constant of the mapping on Δ_k induced by Q_m must converge to 0 as $n \to \infty$. In fact even more is true: the asymptotic fraction as $n \to \infty$ of blocks where $S_{mn+m} S_{mn+m-1} \cdots S_{mn+1}$ has largest singular value $< 1 - \varepsilon$ is positive, by strong law of large numbers, and so the Lipschitz constant of $Q_m : \Delta_k \to \Delta_k$ decays exponentially. \hfill \Box
Hypothesis 4.2. For some integer \(m \geq 1 \) the event that all entries of \(Q_m \) are positive has positive probability.

Corollary 4.3. Hypothesis 4.2 implies the asymptotic collapse property (14).

Proof. It is well known that if a stochastic matrix has all entries strictly positive then its only eigenvalue of modulus 1 is 1, and this eigenvalue is simple (see, for instance, the discussion of the Perron-Frobenius theorem in the appendix of [7]). Consequently, if \(Q_m \) has all entries positive then \(\lambda_{m,1} < 1 \).

4.2. The induced Markov chain on the simplex. The sequence of random matrix products \((Q_m)_{m \geq 1} \) induce a Markov chain on the simplex \(\Delta_k \) in the obvious way: for any initial vector \(Y_0 \in \Delta_k \) independent of the sequence \((S_m)_{m \geq 0} \), put

\[
Y_m = Q_m Y_0.
\]

(16)

That the sequence \(\{Y_m\}_{m \geq 0} \) is a Markov chain follows from the assumption that the matrices \(S_i \) are i.i.d. Since matrix multiplication is continuous, the induced Markov chain is Feller (relative to the usual topology on \(\Delta_k \)). Consequently, since \(\Delta_k \) is compact, the induced chain has a stationary distribution, by the usual Bogoliubov-Krylov argument (see, e.g., [10]).

Proposition 4.4. The stationary distribution of the induced Markov chain on the simplex is unique if and only if the asymptotic collapse property (14) holds.

Proof of sufficiency. Let \(\pi \) be a stationary distribution, and let \(Y_0 \sim \pi \) and \(\tilde{Y}_0 \) be random elements of \(\Delta_k \) that are independent of the sequence \(\{Q_m\}_{m \geq 1} \). Define \(Y_m = Q_m Y_0 \) and \(\tilde{Y}_m = Q_m \tilde{Y}_0 \). Both sequences \(\{Y_m\}_{m \geq 0} \) and \(\{\tilde{Y}_m\}_{m \geq 0} \) are versions of the induced chain, and since the distribution of \(Y_0 \) is stationary, \(Y_m \sim \pi \) for every \(m \geq 0 \). But the asymptotic collapse property (14) implies that as \(m \to \infty \),

\[
d(Y_m, \tilde{Y}_m) \to 0,
\]

so the distribution of \(\tilde{Y}_m \) approaches \(\pi \) weakly as \(m \to \infty \). \(\square \)

The converse is somewhat more subtle. Recall that the linear subspace \(V = V_k \) orthogonal to the vector \(1 \) is invariant under multiplication by any stochastic matrix. Define \(U \subset V \) to be the set of unit vectors \(u \) in \(V \) such that \(\|Q_m u\| = \|u\| \) almost surely for every \(m \geq 1 \).

Clearly, the set \(U \) is a closed subset of the unit sphere in \(V \), and it is also invariant, that is, \(Q_m(U) \subset U \) almost surely.

Lemma 4.5. The set \(U \) is empty if and only if the asymptotic collapse property (14) holds.

Proof. If (14) holds then \(\lim_{m \to \infty} \lambda_{m,1} = 0 \), and so \(\|Q_m u\| \to 0 \) a.s. for every unit vector \(u \in V \). Thus, \(U = \emptyset \).

To prove the converse statement, assume that the asymptotic collapse property (14) fails. Then by Proposition 4.1 for each \(m \geq 1 \) the largest singular value of \(Q_m |V \) is \(\lambda_{m,1} = 1 \), and consequently there exist (possibly random) unit vectors \(v_m \in V \) such that \(\|Q_m v_m\| = 1 \).

Since each matrix \(S_i \) is contractive, it follows that \(\|Q_m v_{m+n}\| \leq 1 \) for all \(m,n \geq 1 \). Hence, by the compactness of the unit sphere and the continuity of the maps \(Q_m |V \), there exists a possibly random unit vector \(u \) such that \(\|Q_m u\| = 1 \) for every \(m \geq 1 \).

We will now show that there exists a non-random unit vector \(u \) such that \(\|Q_m u\| = 1 \) for every \(m \), almost surely. Suppose to the contrary that there were no such \(u \). For each unit vector \(u \), let \(p_m(u) \) be the probability that \(\|Q_m u\| < 1 \). Since the matrices \(S_m \) are weakly contractive, for any unit vector \(u \) the events \(\|Q_m u\| = 1 \) are decreasing in \(m \), and so \(p_m(u) \) is
non-decreasing. Hence, by a subsequence argument, if for every \(m \geq 1 \) there were a unit vector \(u_m \) such that \(p_m(u_m) = 0 \), then there would be a unit vector \(u \) such that \(p_m(u) = 0 \) for every \(m \). But by assumption there is no such \(u \); consequently, there must be some finite \(m \geq 1 \) such that \(p_m(u) > 0 \) for every unit vector.

For each fixed \(m \), the function \(p_m(u) \) is lower semi-continuous (by the continuity of matrix multiplication), and therefore attains a minimum on the unit sphere of \(V \). Since \(p_m \) is strictly positive, it follows that there exists \(\delta > 0 \) such that \(p_m(u) \geq \delta \) for every unit vector \(u \). But if this is the case then there can be no random unit vector \(u \) such that \(\|Q_m u\| = 1 \) for every \(m \geq 1 \), because for each \(m \) the event that \(\|Q_{m+1} u\| < \|Q_m u\| \) would have conditional probability (given \(S_1, S_2, \ldots, S_m \)) at least \(\delta \).

Proof of necessity in Proposition 4.4. If the asymptotic collapse property (14) fails, then by Lemma 4.5 there exists a unit vector \(u \in V \) such that \(\|Q_m u\| = 1 \) for all \(m \geq 1 \), almost surely. Hence, since \(A_k \) is contained in a translate of \(V \), there exist distinct \(\mu, \nu \in A_k \) such that \(\|Q_m(\mu - \nu)\| = \|\mu - \nu\| \) for all \(m \geq 1 \), a.s. By compactness, there exists such a pair \((\mu, \nu)\in A_k^2\) for which \(\|\mu - \nu\| \) is maximal. Fix such a pair \((\mu, \nu)\), and let \(A \subset A_k^2 \) be the set of all pairs \((y, z)\) such that

\[
\|S_1 y - S_1 z\| = \|\mu - \nu\| \quad \text{a.s.}
\]

Note that the set \(A \) is closed, and consequently compact. Furthermore, because \(\mu, \nu \) have been chosen so that \(\|\mu - \nu\| \) is maximal, for any pair \((y, z)\in A\) the points \(y \) and \(z \) must both lie in the boundary \(\partial A_k \) of the simplex.

Define \(Y_m = Q_m \mu, Z_m = Q_m \nu, \) and \(R_m = (Y_m + Z_m)/2 \). By construction, for each \(m \geq 0 \) the pair \((Y_m, Z_m)\) lies in the set \(A \). The sequence \((Y_m, Z_m, R_m)\) is a \(A_k^3 \)-valued Markov chain, each of whose projections on \(A_k \) is a version of the induced chain. Since \(A_k^3 \) is compact, the Bogoliubov-Krylov argument implies that the Markov chain \((Y_m, Z_m, R_m)\) has a stationary distribution \(\lambda \) whose projection \(\lambda_{YZ} \) on the first two coordinates is supported by \(A \). Each of the marginal distributions \(\lambda_Y, \lambda_z, \) and \(\lambda_R \) is obviously stationary for the induced chain on the simplex, and both \(\lambda_Y \) and \(\lambda_Z \) have supports contained in \(\partial A_k \). Clearly, if \((Y, Z, R) \sim \lambda \) then \(R = (Y + Z)/2 \).

We may assume that \(\lambda_Y = \lambda_Z \), for otherwise there is nothing to prove. We claim that \(\lambda_R \neq \lambda_Y \). To see this, let \(D \) be the minimal integer such that \(\lambda_Y \) is supported by the union \(\partial D \) of the \(D \)-dimensional faces of \(A_k \). If \((Y, Z, R) \sim \lambda \), then \(Y \neq Z \), since \(\lambda_{YZ} \) has support in \(A \). Consequently, \((Y + Z)/2 \) is contained in the interior of a \((D + 1)\)-dimensional face of \(A_k \). It follows that \(\lambda_R \neq \lambda_Y \).

Remark 4.6. Recurrence Times. Assume that the asymptotic collapse property (14) holds, and let \(\nu \) be the unique stationary distribution for the induced chain on the simplex. Say that a point \(v \) of the simplex is a support point of \(\nu \) if \(\nu \) gives positive probability to every open neighborhood of \(v \). Fix such a neighborhood \(U \), and let \(\tau \) be the first time \(m \geq 1 \) that \(Y_m \in U \). Then there exists \(0 < r = \tau_U < 1 \) such that for all \(m \geq 1 \),

\[
P(\tau > m) \leq r^m,
\]

regardless of the initial state \(Y_0 \) of the induced chain. To see this, observe that because \(\nu(U) > 0 \) there exists \(m \) such that the event \(Q_m(\Delta_k) \subset U \) has positive probability. Consequently, because the matrices \(S_i \) are i.i.d., the probability that \(Q_{mn}(\Delta_k) \subset U \) for all \(n = 1, 2, \ldots, N \) is exponentially decaying in \(N \).
The volume of this (quently, the conditional probability that it is a linear combination of the other positive, with probability 1. Thus, Hypothesis 4.8 implies Hypothesis 4.2.

The distribution coincides with the limit frequencies of colors in X_0 in a Markov chain on the simplex m is the vector of limiting color frequencies in the mth column of the stochastic matrix S_m. Consequently, by the strong law of large numbers, if the initial state X_0 has the property that the limiting frequencies of all colors $r \in [k]$ exist with probability one (as would be the case if the initial distribution is exchangeable), then this property persists for all times $m \geq 1$. In this case, the sequence $\{Y_m\}_{m \geq 1}$, where Y_m is the vector of limiting color frequencies in the mth generation, is a version of the induced Markov chain on the simplex Δ_k. Moreover, the jth column of the stochastic matrix S_m coincides with the limit frequencies of colors in X_m among those indices $i \in \mathbb{N}$ such that $X_{m-1}^i = j$. Thus, the paintbox sequence can be recovered (as a measurable function) from the EFCP.

4.3. Asymptotic Decay Rates. Lebesgue measure on Δ_k is obtained by translating Lebesgue measure on V (the choice of Lebesgue measure depends on the choice of basis for V, but for any two choices the corresponding Lebesgue measures differ only by a scalar multiple). The k–fold product of Lebesgue measure on Δ_k will be referred to as Lebesgue measure on Δ_k^k.

Hypothesis 4.8. The distribution Σ of the random stochastic matrix S_1 is absolutely continuous with respect to Lebesgue measure on S_k and has a density of class L^p for some $p > 1$.

Hypothesis 4.8 implies that the conditional distribution of the ith column of S_1, given the other $k - 1$ columns, is absolutely continuous relative to Lebesgue measure on Δ_k. Consequently, the conditional probability that it is a linear combination of the other $k - 1$ columns is 0. Therefore, the matrices S_1 are almost surely nonsingular, and so the Furstenberg theory ([1], chapters 3–4) applies. Furthermore, under Hypothesis 4.8 the entries of S_1 are positive, with probability 1. Thus, Hypothesis 4.8 implies Hypothesis 4.2.

Proposition 4.9. Under Hypothesis 4.8

\begin{equation}
E \log | \det S_1 | < \infty,
\end{equation}

and consequently

\begin{equation}
\lim_{n \to \infty} (\det(Q_n |V))^{1/n} = e^{\kappa} \quad \text{where} \quad \kappa = E \log \det S_1.
\end{equation}

Note 4.10. The determinant of S_1 is the volume of the polyhedron $S_1[0,1]^k$, which is \sqrt{k} times the volume of the $(k - 1)$-dimensional polyhedron with vertices S_1e_i, where $1 \leq i \leq k$. The volume of this $(k - 1)$–dimensional polyhedron is the determinant of the restriction $S_1 |V$. Consequently,

\[\det S_1 |V = \prod_{i=1}^{k-1} \lambda_{1,i}. \]

Proof. The assertion (18) follows from (17), by the strong law of large numbers, since the determinant is multiplicative. It remains to prove (17). Fix $\varepsilon > 0$, and consider the event $\det S_1 < \varepsilon$. This event can occur only if the smallest singular value of S_1 is less than $\varepsilon^{1/k}$, and this can happen only if one of the vectors S_1e_i lies within distance $\varepsilon^{1/k}$ (or so) of a convex linear combination of the remaining S_1e_j.

\[\det S_1 |V = \prod_{i=1}^{k-1} \lambda_{1,i}. \]
The vectors $S_1 e_i$, where $i \in [k]$, are the columns of S_1, whose distribution is assumed to have a L^p density $f(M)$ with respect to Lebesgue measure dM on S_k. Fix an integer $m \geq 1$, and consider the subset B_m of S_k consisting of all $k \times k$ stochastic matrices M such that the ith column Me_i lies within distance e^{-m} of the set of all convex combinations of the remaining columns Me_j. Elementary geometry shows that the set B_m has Lebesgue measure $\leq C e^{-m}$, for some constant $C = C_k$ depending on the dimension but not on m or i. Consequently, by the Hölder inequality, for a suitable constant $C' = C_k' < \infty$,

$$E|\log |\det S_1|| \leq C' \sum_{m=0}^{\infty} (m + 1) \left\{ \int_{B_m} f(M) \, dM \right\}^{1/q} \left\{ \int_{B_m} f(M)^p \, dM \right\}^{1/p}$$

$$\leq C' \sum_{m=0}^{\infty} (m + 1) e^{-m/q} \left\{ \int_{B_m} f(M)^p \, dM \right\}^{1/p} < \infty$$

where $1/p + 1/q = 1$. In fact, this also shows that $\log |\det S_1|$ has finite moments of all orders, and even a finite moment generating function in a neighborhood of 0. \square

Proposition 4.11. Under hypotheses 4.8

$$\lim_{n \to \infty} \lambda_{n,1}^{1/n} : = \lambda_1 \quad \text{exists a.s.}$$

Moreover, the limit λ_1 is constant and satisfies $0 < \lambda_1 < 1$.

Remark 4.12. It can be shown that the Lyapunov exponents of the sequence Q_m are the same as those of $Q_m | V$, but with one additional Lyapunov exponent 0. Thus, $\log \lambda_1$ is the second Lyapunov exponent of the sequence Q_m.

Remark 4.13. Hypothesis 4.8 implies that the distribution of S_1 is strongly irreducible (cf. [11], ch. 3), and so a theorem of Furstenberg implies that the top two Lyapunov exponents of the sequence Q_m are distinct. However, additional hypotheses are needed to guarantee that $\lambda_1 > 0$. This is the main point of Propositions 4.9, 4.11.

Proof of Proposition 4.11. The almost sure convergence follows from the Furstenberg-Kesten theorem [4] (or alternatively, Kingman’s subadditive ergodic theorem [8]), because the largest singular value of $Q_n | V$ is the matrix norm of $Q_n | V$, and the matrix norm is sub-multiplicative. That the limit λ_1 is constant follows from the Kolmogorov 0–1 law, because if the matrices S_j are nonsingular (as they are under the hypotheses on the distribution of S_1) the value of λ_1 will not depend on any initial segment $S_m S_{m-1} \cdots S_1$ of the matrix products.

That $\lambda_1 < 1$ follows from assertion 15 of Proposition 4.1 because Hypothesis 4.2 implies that there is a positive probability $\eta > 0$ that all entries of S_1 are at least $\varepsilon > 0$, in which case S_1 is strictly contractive on Δ_k – and hence also on V – with contraction factor $\theta = \theta(\varepsilon) < 1$ (6, proposition 1.3).

Finally, the assertion that $\lambda_1 > 0$ follows from Proposition 4.9 because for any stochastic matrix each singular value is bounded below by the determinant. \square

Corollary 4.14. Under hypotheses 4.8

$$\lim_{n \to \infty} \max_{i \neq j} \|Q_n e_i - Q_n e_j\|^{1/n} = \lambda_1 \quad \text{almost surely.}$$
Proof. The lim sup of the maximum cannot be greater than λ_1, because for each n the singular value $\lambda_{n,1}$ of $Q_n|V$ is just the matrix norm $\|Q_n\|$. To prove the reverse inequality, assume the contrary. Then there is a subsequence $n = n_m \to \infty$ along which

$$\limsup_{m \to \infty} \max_{i \neq j} \frac{\|Q_n e_i - Q_n e_j\|}{n} < \lambda_1 - \varepsilon$$

for some $\varepsilon > 0$. Denote by $u = u_n \in V$ the unit vector that maximizes $\|Q_n u\|$. Because the vectors $e_i - e_{i+1}$ form a basis of V, for each n the vector u_n is a linear combination $u_n = \sum a_{ni} (e_i - e_{i+1})$, and because each u_n is a unit vector, the coefficients a_{ni} are uniformly bounded by (say) C in magnitude. Consequently,

$$\|Q_n u_n\| \leq C \sum_i \|Q_n (e_i - e_{i+1})\|.$$

This implies that along the subsequence $n = n_m$ we have

$$\limsup_{m \to \infty} \frac{\|Q_n u_n\|}{n} < \lambda_1 - \varepsilon.$$

But this contradicts the fact that $\|Q_n|V\|^{1/n} \to \lambda_1$ from proposition 4.11.

Remark 4.15. It can be also be shown that

$$\lim_{n \to \infty} \min_{i \neq j} \frac{\|Q_n e_i - Q_n e_j\|}{n} = \lambda_1.$$

This, however, will not be needed for the results of section 5.

Remark 4.16. The argument used to prove that $\lambda_1 < 1$ in the proof of Proposition 4.11 also proves that even if Hypothesis 4.8 fails, if the distribution of S_1 puts positive weight on the set of stochastic matrices with all entries at least ε, for some $\varepsilon > 0$ then

$$\limsup_{n \to \infty} \max_{i \neq j} \frac{\|Q_n e_i - Q_n e_j\|}{n} < 1.$$

Hypothesis 4.8 guarantees that the sequence $\|Q_n e_i - Q_n e_j\|^{1/n}$ has a limit, and that the limit is positive. When Hypothesis 4.8 fails, the convergence in (20) can be super-exponential (i.e., the limsup in (20) can be 0). For instance, this is the case if for some rank-1 stochastic matrix A with all entries positive there is positive probability that $S_1 = A$.

5. Convergence to stationarity of EFCP chains

Assume throughout this section that $\{X_n\}_{m \geq 1}$ is an EFCP on $[k][n]$ or $[k]^N$ with directing measure μ_Σ, as defined by (10). Let S_1, S_2, \ldots be the associated paintbox sequence: these are i.i.d. random column-stochastic matrices with distribution Σ. Proposition 3.3 shows that the joint distribution of the coordinate variables X_m' of an EFCP chain with paintbox sequence $\{S_i\}_{i \geq 1}$ is controlled by the random matrix products $Q_m = S_m S_{m-1} \cdots S_1$. In this section we use this fact together with the results concerning random matrix products recounted in section 3 to determine the mixing rates of the restrictions $\{X'_m\}_{m \geq 1}$ of EFCP chains to the finite configuration spaces $[k][n]$.
5.1. Ergodicity. An EFCP chain need not be ergodic: for instance, if each S_i is the identity matrix then every state is absorbing and $X_m = X_0$ for every $m \geq 1$ and every $i \in \mathbb{N}$. More generally, if the random matrices S_i are all permutation matrices then the unlabeled partitions of \mathbb{N} induced by the labeled partitions X_m do not change with m, and so the restrictions $X_m^{[n]}$ cannot be ergodic. The failure of ergodicity in these examples stems from the fact that the matrix products Q_m do not contract the simplex Δ_k.

Proposition 5.1. Let λ be any stationary distribution for the induced Markov chain on the simplex. Then for each $n \in \mathbb{N} \cup \{\infty\}$ the $\lambda-$mixture ϱ^n_λ of the product multinomial measures on $[k]^{[n]}$ is stationary for the EFCP chain on $[k]^{[n]}$.

Note 5.2. Recall that the product-multinomial measures ϱ^n_s are defined by equation (5); the $\lambda-$mixture is defined to be the average $\varrho^n_\lambda = \int_{\Delta_k} \varrho^n_s \lambda(ds)$.

Thus, a random configuration $X \in [k]^{[n]}$ with distribution ϱ^n_λ can be obtained by first choosing $s \sim \lambda$, then, conditional on s, independently assigning colors to the coordinates $i \in [n]$ by sampling from the ϱ^n_s distribution.

Proof. This is an immediate consequence of Proposition 5.1. □

Proposition 5.3. Assume that with probability one the random matrix products Q_m asymptotically collapse the simplex Δ_k, that is,

\begin{equation}
\lim_{m \to \infty} \text{diameter}(Q_m(\Delta_k)) = 0.
\end{equation}

Then for each $n \in \mathbb{N}$ the corresponding ECFP chain $\{X_m^{[n]}\}_{m \geq 0}$ on $[k]^{[n]}$ is ergodic, i.e., has a unique stationary distribution. Conversely, if for some $n \geq 1$ the EFCP chain $\{X_m^{[n]}\}_{m \geq 0}$ is ergodic then the asymptotic collapse property (21) must hold.

Proof. Fix $n \geq 1$. By Propositions 4.4 and 5.1 there exists at least one stationary distribution π. Let $\{X_m\}_{m \geq 0}$ and \tilde{X}_m be conditionally independent versions of the EFCP given the (same) paintbox sequence $(S_i)_{i \geq 1}$, with $\tilde{X}_0 \sim \pi$ and $X_0 \sim \nu$ arbitrary. Then for any time $m \geq 1$ the conditional distributions of X_m and \tilde{X}_m given the paintbox sequence can be recovered from the formula (12) by integrating out over the distributions of X_0 and \tilde{X}_0, respectively. But under the hypothesis (21), for large m the columns of Q_m are, with high probability, nearly identical, and so for large m the products

$$\prod_{i=1}^n Q_m(x^i_m, X_0^i) \quad \text{and} \quad \prod_{i=1}^n Q_m(x^i_m, \tilde{X}_0^i)$$

will be very nearly the same. It follows, by integrating over all paintbox sequences, that the unconditional distributions of X_m and \tilde{X}_m will be nearly the same when m is large. This proves that the stationary distribution π is unique and that as $m \to \infty$ the distribution of X_m converges to π.

By proposition 4.4 if the asymptotic collapse property (21) fails then the induced Markov chain on the simplex has at least two distinct stationary distributions μ, ν. By Proposition 5.1 these correspond to different stationary distributions for the EFCP.

□
5.2. Mixing rate and cutoff for EFCP chains. We measure distance to stationarity using the total variation metric (2). Write $\mathcal{D}(X_n)$ to denote the distribution of X_n. In general, the distance $\|\mathcal{D}(X_n) - \pi\|_{TV}$ will depend on the distribution of the initial state X_0. The $\varepsilon-$mixing time is defined to be the number of steps needed to bring the total variation distance between $\mathcal{D}(X_n)$ and π below ε for all initial states x_0:

$$t_{\text{mix}}(\varepsilon) = t_{\text{mix}}^{(n)}(\varepsilon) = \min\{m \geq 1 : \max_{x_0} \|\mathcal{D}(X_n) - \pi\|_{TV} < \varepsilon\}.$$

Theorem 5.4. Assume that with probability one the random matrix products $Q_m = S_m S_{m-1} \cdots S_1$ asymptotically collapse the simplex Δ_k, that is, relation (14) holds. Then for a suitable constant $K = K_\Sigma < \infty$ depending only on the distribution Σ of S_1, the mixing times of the corresponding EFCP chains on the finite state spaces $[k]^{[n]}$ satisfy

$$t_{\text{mix}}^{(n)}(\varepsilon) \leq K \log n.$$

Remark 5.5. In some cases the mixing times will be of smaller order of magnitude than $\log n$. Suppose, for instance, that for some $m \geq 1$ the event that the matrix Q_m is of rank 1 has positive probability. (This would be the case, for instance, if the columns of S_1 are independently chosen from a probability distribution on Δ_k with an atom.) Let T be the least m for which this is the case; then $T < \infty$ almost surely, since matrix rank is submultiplicative, and $Q_m(\Delta_k)$ is a singleton for any $m \geq T$. Consequently, for any elements $a, b, c \in [k]$,

$$Q_m(a, b) = Q_m(a, c) \quad \text{if} \quad T \leq m.$$

Hence, if $\{X_m\}_{m \geq 0}$ and $\{\tilde{X}_m\}_{m \geq 0}$ are versions of the EFCP with different initial conditions X_0 and \tilde{X}_0, but with the same paintbox sequence S_m, then by Proposition 3.3, X_m and \tilde{X}_m have the same conditional distribution, given $\sigma(S_i)_{i \geq 1}$, on the event $T \leq m$. It follows that the total variation distance between the unconditional distributions of X_m and \tilde{X}_m is no greater than $P(T > m)$. Thus, for any $n \in \mathbb{N}$, the EFCP mixes in $O(1)$ steps, that is, for any $\varepsilon > 0$ there exists $K_\varepsilon < \infty$ such that for all n,

$$t_{\text{mix}}^{(n)}(\varepsilon) \leq K_\varepsilon.$$

Proof of Theorem 5.4 (A) Consider first the special case where for some $\delta > 0$ every entry of S_1 is at least δ, with probability one. It then follows that no entry of Q_m is smaller than δ. By Proposition 4.1 if (14) holds then the diameters of the sets $Q_m(\Delta_k)$ shrink exponentially fast: in particular, for some (nonrandom) $\varrho < 1$,

$$\text{diameter}(Q_m(\Delta_k)) < \varrho^n$$

eventually, with probability 1.

Let $\{X_m\}_{m \geq 0}$ and $\{\tilde{X}_m\}_{m \geq 0}$ be versions of the EFCP on $[k]^{[n]}$ with different initial conditions X_0 and \tilde{X}_0, but with the same paintbox sequence S_m. By Proposition 3.3, the conditional distributions of X_m and \tilde{X}_m given the paintbox sequence are product-multinomials:

$$P(X_m^i = x^i \mid \sigma) = \prod_{i=1}^{n} Q_m(x_m^i, X_0^i) \quad \text{and} \quad P(\tilde{X}_m^i = x^i \mid \sigma) = \prod_{i=1}^{n} Q_m(x_m^i, \tilde{X}_0^i).$$

Since the multinomial distributions $Q_m(\cdot, \cdot)$ assign probability at least $\delta > 0$ to every color $j \in [k]$, Corollary 2.3 implies that for any $\varepsilon > 0$, if $m = K \log n$, where $K > -1/(2 \log \varrho)$, then
for all sufficiently large n the total variation distance between the conditional distributions of X_m and \hat{X}_m will differ by ε on the event (24) holds. Since (24) holds eventually, with probability one, the inequality (23) now follows by Lemma 2.4.

(B) The general case requires a bit more care, because if the entries of the matrices Q_m are not bounded below then the product-multinomial distributions (25) will not be bounded away from $\partial \Delta_k$, as required by Corollary 2.3.

Assume first that for some $m \geq 1$ there is positive probability that $Q_m(\Delta_k)$ is contained in the interior of Δ_k. Then for some $\delta > 0$ there is probability at least δ that every entry of Q_m is at least δ. Consequently, for any $\alpha > 0$ and any $K > 0$, with probability converging to one as $n \to \infty$, there will exist $m \in [K \log n, K(1 + \alpha) \log n]$ (possibly random) such that every entry of Q_m is at least δ. By (24) the probability that the diameter of $Q_m(\Delta_k)$ is less than ϱ^m converges to 1 as $m \to \infty$. It then follows from Corollary 2.3 by the same argument as in (A), that if $K > -1/(2 \log \varrho)$ then the total variation distance between the conditional distributions of X_m and \hat{X}_m will differ by a vanishingly small amount. Since total variation distance decreases with time, it follows that the total variation distance between the conditional distributions of X_{K+K^a} and \hat{X}_{K+K^a} are also vanishingly small. Consequently, the distance between the unconditional distributions is also small, and so (23) follows, by Lemma 2.4.

(C) Finally, consider the case where $Q_m(\Delta_k)$ intersects $\partial \Delta_k$ for every m, with probability one. Recall (Proposition 5.1) that if the asymptotic collapse property (14) holds then the induced Markov chain Y_m on the simplex has a unique stationary distribution ν. If there is no $m \in \mathbb{N}$ such that $Q_m(\Delta_k)$ is contained in the interior of Δ_k, then the support of ν must be contained in the boundary $\partial \Delta_k$. Fix a support point v, and let m be sufficiently large that (24) holds. Since $Q_m(\Delta_k)$ must intersect $\partial \Delta_k$, it follows that for any coordinate $a \in [k]$ such that $v_a = 0$ (note that there must be at least one such a, because $v \in \partial \Delta_k$), the ath coordinate $(Q_m y)_a$ of any point in the image $Q_m(\Delta_k)$ must be smaller than ϱ^m. If K is chosen sufficiently large and $m \geq K \log n$, then $\varrho^m < n^{-2}$; hence, by Proposition 3.3

$$P(X_m^i = a \text{ for some } i \in [m] | \sigma(S_i)_{i \geq 1}) \leq n \cdot n^{-2} = n^{-1} \to 0,$$

and similarly for \hat{X}_m. Therefore, the contribution to the total variation distance between the conditional distributions of X_m and \hat{X}_m from states $x^1 x^2 \cdots x^m$ in which the color a appears at least once is vanishingly small. But for those states for which no such color appears, the factors $Q_m(a, b)$ in (25) will be bounded below by the minimum nonzero entry of ν, and the result will follow by a routine modification of the argument in (B) above.

Parts (A)-(B) of the foregoing proof provide an explicit bound in the special case where $Q_m(\Delta_k)$ is contained in the interior of Δ_k with positive probability.

Corollary 5.6. Assume that with probability one the random matrix products $Q_m = S_m S_{m-1} \cdots S_1$ asymptotically collapse the simplex Δ_k, so that for some $0 < \varrho < 1$,

$$\text{diameter}(Q_m(\Delta_k)) < \varrho^m$$

for all sufficiently large m, with probability 1. Assume also that with positive probability $Q_m(\Delta_k)$ is contained in the interior of Δ_k, for some $m \geq 1$. Then for any $K > -1/(2 \log \varrho)$ the bound (23) holds for all sufficiently large n.
Theorem 5.7. Assume that the paintbox distribution Σ satisfies hypothesis 4.8. Then the corresponding EFCP chains exhibit the cutoff phenomenon, that is, for all $\epsilon, \delta \in (0, 1/2)$, if n is sufficiently large, then

\[(\theta - \delta) \log n \leq t_{\text{mix}}^{(n)}(1 - \epsilon) \leq t_{\text{mix}}^{(n)}(\epsilon) \leq (\theta + \delta) \log n,\]

where

\[\theta = -1/(2\log \lambda_1)\]

and λ_1 is the second Lyapunov exponent of the sequence Q_m, that is, as in proposition 4.11.

Proof of the Upper Bound $t_{\text{mix}}^{(n)}(\epsilon) \leq (\theta + \delta) \log n$. Because the distribution of S_1 is absolutely continuous with respect to Lebesgue measure, there is positive probability that all entries of $S_1 = Q_1$ are positive, and so there is positive probability that $Q_1(\Delta_k)$ is contained in the interior of Δ_k. Therefore, Corollary 5.6 applies. But Proposition 4.11 and Corollary 4.14 implies that, under Hypothesis 4.8, that $\varrho = \lambda_1$.

Proof of the Lower Bound $t_{\text{mix}}^{(n)}(\epsilon) \geq (\theta - \delta) \log n$. It suffices to show that there exist initial states x_0, \tilde{x}_0 such that if $[X_t]_{t \geq 0}$ and $[\tilde{X}_t]_{t \geq 0}$ are versions of the EFCP with initial states $X_0 = x_0$ and $\tilde{X}_0 = \tilde{x}_0$, respectively, then the distributions of X_m and \tilde{X}_m have total variation distance near 1 when $m \leq (\theta - \delta) \log n$. The proof will rely on Corollary 4.14 according to which there is a possibly random pair of indices $i \neq j$ for which

\[\lim_{m \to \infty} \|Q_m e_i - Q_m e_j\|^{1/m} = \lambda_1.\]

Consider first, to fix ideas, the special case $k = 2$. In this case (28) holds with $i = 1$ and $j = 2$. Assume that $n = 2n'$ is even (if n is odd, project unto the first $n - 1$ coordinates), and let $x_0 = 11 \cdots 111 \cdots 1$ and $\tilde{x}_0 = 111 \cdots 122 \cdots 2$ be the elements of $[k]^n$ such that x_0 has all coordinates colored 1, while \tilde{x}_0 has its first n' colored 1 but its second n' colored 2. We will show that the distributions of X_m and \tilde{X}_m remain at large total variation distance at time $m = (\theta - \alpha) \log n$. Without loss of generality, assume that both of the chains $[X_t]_{t \geq 0}$ and $[\tilde{X}_t]_{t \geq 0}$ have the same paintbox sequence S_1, S_2, \ldots. Then by Proposition 3.3 the conditional distributions of X_m and \tilde{X}_m given $S = \sigma(S_t)_{t \geq 1}$ are product-multinomials; in particular, for any state $x' \in [k]^{n'}$,

\[P(X_m^l = x^l \text{ for all } l \in [n] | \sigma(S_t)_{t \geq 1}) = \prod_{l=1}^{n} Q_m(x^l, 1)\]

and

\[P(\tilde{X}_m^l = x^l \text{ for all } l \in [n] | \sigma(S_t)_{t \geq 1}) = \prod_{l=1}^{n'} Q_m(x^l, 1) \prod_{l=n'+1}^{2n'} Q_m(x^l, 2).\]

But relation (28) implies that, for some $\alpha = \alpha(\delta) > 0$, if $m = (\theta - \delta) \log n$ then the ℓ^∞-distance between the ith and jth columns of Q_m is at least $n^{-1/2 + \alpha}$, with probability approaching 1 as $n \to \infty$. Consequently, the first n' and second n' coordinates of \tilde{X}_m are (conditional on S) independent samples from Bernoulli distributions whose parameters differ by at least $n^{-1/2 + \alpha}$, but the $2n'$ coordinates of X_m are (conditional on S) a single sample from the same Bernoulli distribution. It follows, by Lemma 2.5 (see Remark 2.6 statement (B)), that the unconditional distributions of X_m and \tilde{X}_m are at large total variation distance, because in \tilde{X}_m
the first and second blocks of \(n' \) coordinates are distinguishable whereas in \(X_m \) they are not. Thus, if \(m = (\theta - \delta) \log n \) then as \(n \to \infty \),
\[
\|D(X_m) - D(\tilde{X}_m)\|_{TV} \to 1.
\]

The general case is proved by a similar argument. Let \(n = 2(k-1)n' \) be an integer multiple of \(2(k-1) \). Break the coordinate set \([n]\) into \(k(k-1) \) non-overlapping blocks of size \(2n' \), one for each ordered pair \((i, j)\) of distinct colors. In the block indexed by \((i, j)\) let \(x_0 \) take the value \(i \), and let \(\tilde{x}_0 \) take the value \(i \) in the first half of the block and the value \(j \) in the second half. Let \([X_t]_{t \geq 0}\) and \([\tilde{X}_t]_{t \geq 0}\) be versions of the EFCP with initial states \(x_0 \) and \(\tilde{x}_0 \), respectively. Then by an argument similar to that used in the binary case \(k = 2 \), if \(m = (\theta - \delta) \log n \) then for large \(n \), in some block \((i, j)\) of \(\tilde{X}_m \) the first \(n' \) and second \(n' \) coordinates of \(\tilde{X}_m \) will be distinguishable, but in \(X_m \) they will not. Therefore, the unconditional distributions of \(X_m \) and \(\tilde{X}_m \) will be at total variation distance near 1.

\[\Box\]

Example 5.8 (Self-similar cut-and-paste chains). Selfsimilar cut-and-paste chains were introduced in [2]. These are EFCP chains for which the paintbox measure \(\Sigma = \Sigma_\nu \), is such that if \(S_1 \sim \Sigma \) then the columns of \(S_1 \) are i.i.d. with common distribution \(\nu \), for some probability distribution \(\nu \) on \(\Lambda_k \). If \(S_1, S_2, \ldots \) are i.i.d. with distribution \(\Sigma_\nu \) then the random matrix products \(Q_m = S_m S_{m-1} \cdots S_1 \) asymptotically collapse the simplex provided the measure \(\nu \) is nontrivial (i.e., not a point mass), and so Theorem 5.4 applies. If in addition the measure \(\nu \) has a density of class \(L^p \) relative to Lebesgue measure on \(\Lambda_k \), then Theorem 5.7 applies.

5.3. Examples

We now discuss some examples of Markov chains on \(L_{[n],k} \) whose transitions are governed by an i.i.d. sequence of random partition matrices \(M_1, M_2, \ldots \) with law \(\mu \), but are not EFCP chains because \(\mu \) does not coincide with \(\mu_\Sigma \) for some probability measure \(\Sigma \) on \(\Lambda^k_k \). As a result, the examples we show are not covered by theorems 5.4 or 5.7. None of the examples are EFCP chains. We are, however, able to establish upper bounds and, in some cases, cutoff using different techniques. All of the chains in these examples are reversible and ergodic relative to the uniform distribution on \([k]^{[n]}\).

Example 5.9 (Ehrenfest chain on the hypercube). For \(k = 2 \), any \(L \in L_{[n],k} \) can be regarded as an element in \([2]^n\), or equivalently \([0, 1]^n\). For each \(i = 1, \ldots, n \) and \(a \in \{1, 2\} \), we define \(M_{a,i} \) as the \(2 \times 2 \) partition matrix with entries
\[
M_{1,i} := \begin{pmatrix} [n] \setminus \{i\} & \emptyset \\ \{i\} & [n] \end{pmatrix} \quad \text{or} \quad M_{2,i} := \begin{pmatrix} [n] & \{i\} \\ \emptyset & [n] \setminus \{i\} \end{pmatrix}.
\]
Let \(x_0 \in L_{[n],k} \) be an initial state and first choose \(a_1, a_2, \ldots \) i.i.d. Bernoulli(1/2) and, independently of \((a_m) \), choose \(i_1, i_2, \ldots \) i.i.d. from the uniform distribution on \([n]\). Then the chain \(X = (X_m, m \geq 0) \) is constructed by \(X_0 = x_0 \) and, for \(m = 1, 2, \ldots, X_m = M_{a_m+1,i_m} X_{m-1} \). This corresponds to the usual Ehrenfest chain on the hypercube, which is known to exhibit the cutoff phenomenon at \((1/2)n \log n\); for example, see [9], example 18.2.2.

Example 5.10 (General Ehrenfest chain). A more general form of the Ehrenfest chain in the previous example is described as follows. Fix \(n \in \mathbb{N} \), take \(a \in \{0, 1\} \) and choose a random subset \(A \subset [n] \) uniformly among all subsets of \([n]\) with cardinality \([a n] := \max\{ r \in \mathbb{N} : r \leq an \} \), the floor of \(an \). For \(i \in [2] \) and \(A \subset [n] \), we define the partition matrix \(M(A, i) \) by either
\[
M(A, 1) := \begin{pmatrix} [n] \setminus A & \emptyset \\ A & [n] \end{pmatrix} \quad \text{or} \quad M(A, 2) := \begin{pmatrix} [n] & A \\ \emptyset & [n] \setminus A \end{pmatrix}.
\]
Let $A = (A_1, A_2, \ldots)$ be an i.i.d. sequence of uniform subsets of size $\lceil an \rceil$, let $I = (I_1, I_2, \ldots)$ be i.i.d. from the uniform distribution on $[1, 2]$ and let $x_0 \in [2]^n$. Conditional on A and I, we construct $X = (X_m, m \geq 0)$ by putting $X_0 = x_0$ and, for each $m \geq 1$,

$$X_m := M(A_m, I_m) \cdots M(A_1, I_1)X_0.$$

We call X an Ehrenfest(α) chain.

Define the coupling time T by

$$T := \min \left\{ t \geq 1 : \bigcup_{j=1}^t A_j = \{n\} \right\}.$$

Any two chains X and X' constructed from the same sequence A will be coupled by time T.

An upper bound on the distance to stationarity of the general Ehrenfest(α) chain is obtained by standard properties of the hypergeometric distribution. In particular, let $R_t := \#(\{n\} \setminus \bigcup_{j=1}^t A_j)$ be the number of indices that have not appeared in one of A_1, \ldots, A_t. By definition, $\{T \leq t\} = \{R_t = 0\}$ and standard calculations give

$$\mathbb{P}(R_{t+1} = j|R_t = r) = \binom{r}{j} \binom{n-r}{n - \lceil an \rceil}^{-1}, j = 0, 1, \ldots, r,$$

$$\mathbb{E}(R_t) = n \left(1 - \frac{\lceil an \rceil}{n}\right)^t.$$

For fixed $\alpha \in (0, 1)$, the ϵ-mixing time is bounded above by

$$\|D(X_t) - \pi\|_{TV} \leq n \left(1 - \frac{\lceil an \rceil}{n}\right)^t \leq n \exp\{-\lceil an \rceil t/n\} \leq n \exp\{-\lceil an \rceil t/n\}$$

and it immediately follows, for $\beta > 0$ and $t = \left(\frac{n}{2\lceil an \rceil} \log n + \beta \frac{n}{\lceil an \rceil}\right)$, that

$$\|D(X_t) - \pi\|_{TV} \leq n^{-1/2} \exp(-\beta) \to 0 \text{ as } \beta \to \infty.$$

When $\alpha \in (0, 1/2]$, we can use proposition 7.8 from [9] and some standard theory for coupon collecting to obtain the lower bound

$$\|D(X_t) - \pi\|_{TV} \geq 1 - 8 \exp(-2\beta + 1),$$

when $t = \left(\frac{n}{2\lceil an \rceil} \log n - \beta \frac{n}{\lceil an \rceil}\right)$. Hence, these chains exhibit cutoff at $n/(2\lceil an \rceil) \log n$.

Note that the standard Ehrenfest chain (example 5.9) corresponds to $\alpha = 1/n$.

Example 5.11 (A log log n upper bound on mixing time). For the general Ehrenfest chains described above, the upper bound (29) on mixing time can be applied more generally to sequences $\alpha := (\alpha_1, \alpha_2, \ldots)$ in $(0, 1)$. For each $n \in \mathbb{N}$, let $\alpha_n = 1 - \exp(-\log n/\log \log n)$ and let X^n be an Ehrenfest(α_n) chain. By (29), for $t \geq (1 + \beta) \log \log n$, $\beta > 0$, we have

$$\|D(X^n_t) - \pi\|_{TV} \leq n^{-\beta},$$

which converges to 0 as $n \to \infty$.

In general, we can obtain an upper bound of $(1 + \beta)f(n)$, where $f(n)$ is a function of $n \in \mathbb{N}$, by the relation

$$\alpha_n = 1 - \exp\left\{-\frac{\log n}{f(n)}\right\}.$$
The space $[k]^n$ is a group under addition modulo k defined by
\[x + x' = x + x' - 2 \pmod{k} + 1. \]
Write \mathbb{N}_k^n to denote the group $[k]^n$ together with the operation $+$, which we define by componentwise addition modulo k of the coordinates of $x \in [k]^n$. That is, for any $x, x' \in [k]^n$, we have
\[(x + x')' = x' + x'' - 2 \pmod{k} + 1. \]
This action makes the space $\mathcal{L}_{[n]:k}$ into a group with a corresponding action \bullet that can also be represented by left action of a partition matrix as follows. If we regard $L, L' \in \mathcal{L}_{[n]:k}$ as elements of the group $(\mathbb{N}_k^n, +)$, then we define the group action $L \bullet L' \equiv L + L'$ in the obvious way. Alternatively, for each $L \in \mathcal{L}_{[n]:k}$, define $M_L \in M_{[n]:k}$ as the $k \times k$ matrix whose jth column is the jth cyclic shift of the classes of L; that is,
\[
M_L := \begin{pmatrix}
L_1 & L_k & L_{k-1} & \cdots & L_2 \\
L_2 & L_1 & L_k & \cdots & L_3 \\
L_3 & L_2 & L_1 & \cdots & L_4 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
L_k & L_{k-1} & L_{k-2} & \cdots & L_1
\end{pmatrix}.
\]
Then, for every $L, L' \in \mathcal{L}_{[\infty]:k}$, we have
\[
L \bullet L' := M_L L'.
\]

Example 5.12. For $n \in \mathbb{N}$, let ϱ_n be a probability measure on $\mathcal{L}_{[n]:k}$ and let $L_0 \in \mathcal{L}_{[n]:k}$. A CP$_n(\varrho_n)$ chain X with initial state $X_0 = L_0$ can be constructed as follows. First, generate L_1, L_2, \ldots i.i.d. from ϱ_n. Conditional on L_1, L_2, \ldots, put $X_m = L_m \bullet \cdots L_1 \bullet X_0$. Under the definition (30) this is a cut-and-paste chain; however, the columns of each matrix are a deterministic function of one another and are not conditionally independent (as in previous examples).
Consider the case where ϱ_n is a product measure of a probability measure λ on $[k]$ which is symmetric, i.e.
\[
\lambda(j) = \lambda(k-j+1) > 0, \quad j = 1, \ldots, k.
\]
In this case, it is easy to see that the CP$_n(\varrho_n)$ chain is reversible and hence has the uniform distribution as its unique stationary distribution.
For this construction of X, the directing measure μ on $M_{[n]:k}$ induced by λ is neither row-column exchangeable (RCE) nor can it be represented as μ_Σ for some measure Σ on S_k. Nonetheless, the mixing time of X is bounded above by $K \log n$ for some constant $K \leq 2/\min_j \lambda(j) < \infty$.

6. **Projected cut-and-paste chains**

Recall that there is a natural projection $\Pi_n : \mathcal{L}_{[n]:k} \rightarrow \mathcal{P}_{[n]:k}$ from the set $\mathcal{L}_{[n]:k}$ of labeled partitions of $[k]$ to the set $\mathcal{P}_{[n]:k}$ of unlabeled partitions. If $\{X_m\}_{m \geq 0}$ is a Markov chain on the set $[k]^n \equiv \mathcal{L}_{[n]:k}$ whose transition probability matrix is invariant under permutations of the labels $[k]$, then the projection $\{\Pi_n(X_m)\}_{m \geq 0}$ is also a Markov chain. Assume henceforth that this is the case.
Following is a simple sufficient condition for the law of an EFCP chain to be invariant under permutations of the label set $[k]$. Say that a probability measure Σ on the space Λ_k^k of column-stochastic matrices is row-column exchangeable if the distribution of $S_1 \sim \Sigma$ is invariant under permutations of the rows or the columns.
Lemma 6.1. If $\{X_m\}_{m \geq 0}$ is an EFCP chain on the set $[k]^n \cong L_{[n]:k}$ whose paintbox measure Σ is row-column exchangeable then its transition probability matrix is invariant under permutations of the labels $[k]$.

Proof. Let γ be a permutation of $[k]$ and define $\Gamma \in M_{[n]:k}$ as the partition matrix with entries

$$
\Gamma_{ij} = \begin{cases} [n], & \gamma(i) = j \\ \emptyset, & \text{otherwise}. \end{cases}
$$

For $L, L' \in L_{[n]:k}$, let $P(L, L')$ denote the transition probability from L to L' under the operation \bullet with directing measure μ_Σ. By row-column exchangeability of Σ, we have, for all permutations γ, γ' of $[k]$,

$$
P(L, L') = P(L, \Gamma L') = P(\Gamma L, L') = P(\Gamma L, \Gamma' L')$$

for every $L, L' \in L_{[n]:k}$. It follows immediately that the transition probability $Q = P\Pi_n^{-1}$ of the projected chain $\Pi_n (X)$ is given by

$$
Q(\Pi_n (L), \Pi_n (L')) = k^{1\#\Pi_n (L')} P(L, L'), \quad \text{for every } L, L' \in L_{[n]:k}.
$$

Following Crane [3], we call the induced chain $\Pi := \Pi_\infty (X)$ of an EFCP chain with RCE directing measure Σ a homogeneous cut-and-paste chain.

If the chain $\{X_m\}_{m \geq 0}$ is ergodic, then its unique stationary distribution is invariant under permutations of $[k]$, since its transition probability matrix is, and therefore projects via Π_n to a stationary distribution for the projected chain $\{\Pi_n (X_m)\}_{m \geq 0}$. The sufficiency principle (equation (5)) for total variation distance (see also Lemma 7.9 of [3]) implies that the rate of convergence of the projected chain $\{\Pi_n (X_m)\}_{m \geq 0}$ is bounded by that of the original chain $\{X_m\}_{m \geq 0}$. Theorem 5.4 provides a bound for this convergence when the chain $\{X_m\}_{m \geq 0}$ is an EFCP.

Corollary 6.2. Assume that $\{X_m = X_m^{[n]}\}_{m \geq 0}$ is an EFCP chain on $[k]^n$ whose paintbox measure Σ is RCE and satisfies the hypothesis of Theorem 5.4 (in particular, the random matrix products Q_m asymptotically collapse the simplex Δ_k). Then for a suitable constant $K = K_{\Sigma} < \infty$ depending only on the distribution Σ of S_1, and for any $\varepsilon > 0$, the mixing times $t_{\text{mix}}^{(n)}(\varepsilon)$ of the projected chain $\{\Pi_n (X_m)\}_{m \geq 0}$ satisfy

$$
t_{\text{mix}}^{(n)}(\varepsilon) \leq K \log n
$$

for all sufficiently large n.

Theorem 6.3. Suppose Σ is a row-column exchangeable probability measure on S_k. Let X be a $\text{CP}_{n(\mu_\Sigma)}$ chain and let $Y = \Pi_n (X)$ be its projection into $P_{[n]:k}$. Let $t_X(\varepsilon)$ and $t_Y(\varepsilon)$ denote the ε-mixing times of X and Y respectively. Then

$$
t_X(\varepsilon) = t_Y(\varepsilon).
$$

In particular, if $l(\varepsilon, n) \leq t_X(\varepsilon) \leq L(\varepsilon, n)$ are upper and lower bounds on the ε-mixing times of X, then

$$
l(\varepsilon, n) \leq t_Y(\varepsilon) \leq L(\varepsilon, n),
$$

and vice versa. Moreover, X exhibits the cutoff phenomenon if and only if Y exhibits the cutoff phenomenon.
Proof. If \(\pi \) is the stationary distribution for \(X \), then \(\pi \Pi_n^{-1} \) is the stationary distribution of \(Y \). The rest follows by the proceeding discussion regarding sufficiency of \(\Pi_n(X) \) and the sufficiency principle [3]. \(\square \)

Corollary 6.4. Assume that the paintbox measure \(\Sigma \) is row-column exchangeable and satisfies hypothesis [4.8] and let \(\{X_m\}_{m \geq 0} \) be the EFCP on \([k]^{[n]} \) with associated paintbox measure \(\Sigma \). Then the projected CP\(_n(\mu_{\Sigma})\) chain \(\Pi_n(X) \) exhibits the cutoff phenomenon at time \(\theta \log n \), where \(\theta = -1/(2 \log \lambda_1) \).

REFERENCES

Rutgers University, Department of Statistics and Biostatistics, 110 Frelinghuysen Road, Piscataway, NJ 08854

E-mail address: hcrane@stat.rutgers.edu

Department of Statistics, University of Chicago, 5734 University Avenue, Chicago, IL 60637

E-mail address: lalley@galton.uchicago.edu

URL: www.statistics.uchicago.edu/~lalley