The Packing and
Covering Functions of
Some Self-similar Fractals

STEVEN P. LALLEY

1. Introduction. Self-similar sets in R¢ occur as the limit sets (equivalently,
the minimal closed invariant sets) of certain semigroups of contractive Euclidean
similarity transformations ([4], [7]). The purpose of this note is to describe the
asymptotic behavior as € — 0 of the number N(¢) of points in a maximal e-
separated subset and the number M(g) of e-balls needed to cover a self-similar
set, and to investigate the relationships between maximal packings, minimal
coverings, and Hausdorfl measure. The functions N(¢) and M(e) are used to
define the packing and covering dimensions (often called the capacity and metric
entropy): see below.

A similarity transformation S : R% — RY has the form S = rJ, where
J : R4 — R? is an isometry and r > 0 is a scalar; if 0 < r < 1 then S is called
contractive. Let & = {51,S2,...,Sn} be a finite set of contractive similarity
transformations. Then for any sequence i,is,--- of indices and any z € R4

. A
n]ergoSg‘ Sg, “es S"“z = k,'h.',,,,

exists, and the limit is independent of z ([4], Section 3; two different sequences
t1,82,... and #{,i3,... may yield the same limit). Let

K = {ki,..}

be the set of all possible limit points: this set will be the principal object of
study in this paper.

Most of the fractals in [7], Section 6-8, 14 arise in this manner. Some
examples:

(1) Let Syjz =rz and Sz = rz+1—r, where 0 < r < % If r =1 then K is
the Cantor set; if r = } then K is the unit interval ([7], plate 81).

699
Indiana University Mathematics Journal (¢), Vol. 37, No. 3 (1988)



700 S.P. LALLEY

(2) Let S; : R? — R? be defined by

S1(z1,22) = (ﬂ ’%?')

2
1 1 T2
Sa(zy,22) = (-2- + - ,7)

1 =z \/5 z
Sa(z1,22) = <Z+ '?1 e + —2-2') ;

then K is the “Sierpinski gasket” ([7], p. 142).

(3) Let a3 = (0,0), az = (3,0), a3 = (3,2), a4 = (2,0), and a5 = (1,0).
Let S; (i = 1,2,3,4) be the unique similarity transformation of R? mapping
a1as onto @;a;71 and having positive determinant. Then K is the “Koch
snowflake” ([7], pp. 42-43).

The set K is always compact ([4], Section 3), as are the images

2

K Si,Si,...Si. K.

i1i3..in in
In the examples above the sets K;,K5,...,Ky are either pairwise disjoint or have
“small” overlaps. In the former case the set K is totally disconnected and each
point z € K has a unique representation £ = k;,;,.; in the latter case, some
points have multiple representations and K may be arcwise connected. It is
always the case that K = Uﬁ'__l K;.

Say that S satisfies the open set condition [4] if there exists a nonempty
open subset U of R4 such that S;U C U for each i and S;UNS;U =@ if i # ;.
If U can be chosen so that UNK # @, say that S satisfies the strong open set
condition. Notice that this holds in the examples above.

Write S; = r;J;, where 0 < r; < 1 and J; is an isometry. The similarity
dimension of S ([4],[6]) is the unique D > 0 such that

Let HP(.) be the D-dimensional Hausdorff measure on R? ([4)).

Theorem 0 ([4]). If S satisfies the open set condition then 0 < HP (K) <
oo and HP(K;NK;)=0 for i#j.
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Thus, D is the Hausdorfl dimension of K . Since H? (K; N K;) = 0 it follows
that

HP(Kiyiy. i) = (riyriy--1i )P HP(K).

Therefore, if one chooses indices i,is,... at random from the set {1,2,...,N}
according to the multinomial distribution {r,rP,...,rR}, then the random
point k;,;, . will be “uniformly distributed” on K relative to D-dimensional
Hausdorff measure.

Call a finite subset F' of K e-separated if dist (z,z2’) > € for all z,2’ € F
such that z # z’. Let N(¢) be the maximum cardinality of an e-separated subset
of K; this will be called the packing function. Call a finite subset F of K an
e-covering if for every y € K there exists £ € F such that dist (z,y) < €. Let
M ((€) be the minimum cardinality of an e-covering subset of K; this will be called

the covering function. The packing and covering dimensions Dp and D¢ are
defined by

_ . log N(¢)
Dp = lim loge-1’
D¢ = lim 108 M(€)

e—0 loge-1"’

provided these limits exist. (The covering dimension was introduced in [5], the
packing dimension in [8]. They are usually called the metric entropy and ca-
pacity.) A simple argument shows that N(3¢) < M(¢) < N(¢), so Dp = D¢
whenever either limit exists.

Theorem 1. Assume that the strong open set condition holds.

(a) If the additive group generated by logry,logrs,...,logry is dense in R, then
there ezist constanis C,C' > 0 such that as € — 0

(1.1) N(e) ~Ce™P
and

(1.2) M(e) ~ C'e~D.

(b) If the additive group generated by logry,logrs,...,logr, is hZ(h > 0) then
for each B € [0,h) there exist constants Cp,Cp > 0, uniformly bounded, such
that as n — oo

(1.3) N(e~™*+P) ~ Cgexp{D(—nh+ )}
and
(1.4) M(e~"*F) ~ Chexp{D(-nh+B)}.

Observe that case (b) obtains for the Cantor set, the Koch snowflake, and
the Sierpinski gasket.
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Corollary. If the strong open set condition holds then
D=Dp =Dc¢.

This answers a query in [1]. (After writing this note I learned that this
relation is part of the folklore: see, for example, [9].)

Let F, be an e-separated subset of K having maximum cardinality, and
let G, be an e-covering subset of K having minimum cardinality. Define Borel
probability measures u.(v.) on K by putting mass WIG5 (Hl('ej) at each point of
F.(G,).

Theorem 2. If the strong open set condition holds then as ¢ — 0

p HP
(1.5) He — HD_(K)
and

p HP
(16) Ve — m.

Theorems 1 and 2 help clarify the relations between packings, coverings, and
Hausdorff masures. Maximal e-separated sets and minimal e-separated sets are
usually very difficult to find. In the totally disconnected case (i.e., KiNK; = @
for i # j) one may give an algorithm for obtaining an e-separated set whose
cardinality is within 0(1) of N(¢). In general one may produce an e-separated
set whose cardinality is within 0(e~P*%) of N(e) for some § > 0. The proofs
below should suggest how this may be done.

In proving Theorems 1-2, I shall consider only the packing function N(e).
The same arguments apply to the covering function M(¢).

2. Totally Disconnected K. This case is particularly simple. Assume that
K,,K,,...,KnN are pairwise disjoint; since each K; is compact there exists § > 0
such that if z € K; and 2’ € Kj, i # j, then dist(z,z') > §. Now ife < §
then one may obtain an e-separated subset of maximum cardinality by finding
maximal e-separated subsets of K,K»,...,Kn and taking their union. Since
K; = S;K is similar to K, a maximal e- separated subset of K; is similar to a
maximal er] !-separated subset of K, and therefore its cardinality is N (erf?).

Hence, if € < 6 then N(¢) = TN, N (er71). It follows that

=1

N
(2.1) N() =D N(ery')+L(e)
i=1
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for all € > 0. Since N(¢) is a nonincreasing integer-valued function that equals
1 for all sufficiently large €, L(¢) is a piecewise continuous function with only

finitely many discontinuities that vanishes for 0 < ¢ < §.

Equation (2.1) may be rewritten as a renewal equation ([3], Chapter 11) in
the following manner. Define

Z(a) =e *PN(e~?)

for a > 0; since Ef;l rP =1, it follows from (2.1) that
Z(a) = z(a)+/ Z(a—z)F(dz), a>0,
(0,a]

where F(dz) is the probability measure that puts mass rP at —logr;, i =
1,2,...,N. Because F has finite support and L is piecewise continuous with only
finitely many discontinuities, z is also piecewise continuous with only finitely
many discontinuities. Moreover, z has compact support in [0,00) since L vanishes
in (0,6) . Therefore, z is directly Riemann integrable ([3], Chapter 11).

There are now two cases, the nonlattice case and the lattice case, correspond-

ing to (a) and (b) of Theorem 1. In the nonlattice case the renewal theorem ([3],
Chapter 11) implies that
o0
/ 2(z)dz

: — _Jo

A2 =5
Zr,-D logr;?
i=1

This is equivalent to (1.1). In the lattice case the renewal theorem ([2], Chapter
13) implies that for 0 < B < h

[eo]

Y x(nh+p)

. _ n=1
nangOZ(nh+ﬂ) =5
Z"&D logr;?

i=1

This is equivalent to (1.3). Note that the constants Cs must be uniformly
bounded because N(¢) is nonincreasing.
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3. The General Case. If K;,K,,...,Kx are not pairwise disjoint then the
argument of the preceding section fails because the union of e-separated subsets

of K1,...Kn will not generally be e-separated. Nevertheless, since K = Uf\;l K;,

N
N(e) < ZN(er{l).

=1
Define
N
L(e) = ZN(eri’l) — N(e).
i=1

Proposition 1:  Assume that the strong open set condition holds. Then there
ezist constanis v > 0,6 > 0 such that

L(e) < veb-P,
The proof is deferred to Section 5.
Define, as in Section 2, Z(a) = e"*P? N(e~?), and write

Z(a) = z(a) +/ Z(a—z)F(dz)

0,a

where F(dz) puts mass rP at logr!, i = 1,2,...,N. Observe that for all
sufficiently large a, z(a) = —e~*P L(e~?). Moreover, since N(¢) is a nonincreas-
ing, nonnegative integer valued function and F(dz) has finite support, z(a) is
a piecewise continuous function with only finitely many discontinuities in any
finite interval. Proposition 1 implies that

z(a)| < ye~ %
|z(a)| < v

for all sufficiently large a. It follows that z(a) is directly Riemann integrable.
Therefore, in the nonlattice case
[o.e]
/ 2(z) d=z
lim Z(a) = 5——

0
a—00 N

Zr,p logr{1
i=1

K

and in the lattice case

o]

Y x(nh+B)

. _ n=1
"lergoZ(nh-i-ﬂ) = EN"—
Zr,p logr; !

i=1

for every B8 € [0,h). This proves (1.1) and (1.3). As before, the constants Cg are
uniformly bounded because N(¢) is nonincreasing.
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4. Maximal Packings and Hausdorfl Measure. Recall that g, is the prob-
ability measure that puts mass N%;S at each point of a maximal e-separated
set.

Proposition 2. Assume that the sirong open set condition holds. For
each pair of distinct sequences 1y ,ia,... ity and j1,42,...,9n,

tlm”‘(Kil‘Q‘a n K_“]g]..) = 0'

The proof will be given in Section 5.

Since the support of u, is an e-separated subset of K, and since K; is similar
to K, it follows that

-1
(4.1) ue(K:) < _N—I(V?{.S_) i=12,...N.

For small ¢, Zf;l(N(eri'l)/N(e)) ~ 1 by Theorem 1, and p.(K; N Kj;) = o(1)
for i # j, by Proposition 2. Since u.(K) =1 and K = |JK;, (4.1) implies that

N(er!)
N(e)
p _ HP(Ki)

TTER®)

I‘e(Kt‘) ~

Now the sets Kj;,;, ;. are all similar to K, so by an easy induction argument

HP(Kii,.3.)

}%/‘s(Kixfszn) = HD(K)

for each sequence 1,,is,...,i, . Since
- . . . H .. . . n
K=Kii.so and  diamKiy, . < (max n)" =0,

it follows easily that for any continuous function f : K - R

/ f(2)HP (dz)

lim / fdne = Hpro—

This proves (1.5).
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5. The Key Estimate. Assume that the strong open set condition holds. Let
i, € {1,2,...,N}, i # j. Define Q;;(¢) to be the maximum cardinality of an
e-separated subset F of K; such that for each z € F, dist(z,K;) <e.

Proposition 3. There exists § > 0 such that ase — 0,
(5.1) Qij(€) = O(e*-P).

Proposition 3 implies Proposition 1. To see this observe that one gets an
e-separated subset of K by taking maximal e-separated subsets of K,, i =
1,2,...,N, deleting all points from K; within ¢ of Uj:j# Kj, then taking the
union. Thus,

N
N(e) = D N(er7H) =YD Qij(e),
i=1 i#i
and Proposition 1 follows.

Proposition 3 also implies Proposition 2. First notice that to prove Propo-
sition 2 it suffices, since K;, D K;,i, D ..., to establish that if  # j then

tli_f‘lil)l‘e(Ki,i:..‘i,.i NKijiy..i,5) = 0.

Recall that pu,(G) is N(e)~!x the cardinality of F, NG, where F, is a maximal
e-separated subset of K. Since

Kt‘;ig...inl' N Kl.‘ig...l',,j = S‘.lsiz . ’S‘n(K‘ n KJ)

and since S;, ...S;, is a similarity transformation that contracts distances by a
factor of ry,ry,...7, = p,

Qij(ep™") + Qjiep™") '

be(Kiyiy..ini N Kiyiy. i0j) < O)

Proposition 3 and Theorem 1 imply that this converges to 0 as € — 0.

6. Proof of the Key Estimate. Recall that the open set condition holds if
there is an open set U C R4 such that S;U C U for each i and S;U NnsS;U =90
for i # j. Let Usyi,..i, = Si,Si;...Si, U. If the open set condition holds then
(a’) U> Uin ) U‘x": D
(b) Kiyig.in CUigiy.ins
() Kjijawin NUisis..in = O unless (i1,...,in) = (j1,---jn)

([4], Section 5.2 (3)).
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If the open set U can be chosen so that UN K # @ then the strong open
set condition holds. Assume that this is the case. Then there exists a point
kj,j,... € U. Now the diameters of the sets K;,;,. ;. converge to zero as n — oo,
and kj,j,.. is an element of each; consequently, there exists a finite sequence
jl,jg,...,jp such that

Kjlj2~~-jp cv.

Since Kj,j,..j, is compact there exists o > 0 such that
dist(z,Uc) >a Vz € Kj;jg...j,-

It follows upon applying the similarity transformation S;, S;, ...S;, that for any
sequence iy,is,...,i,

Kiiz. injrjaip C Uiria.in

and that for each z € K i, inj,..j,

(6.1) dist(z,Uf

wiaoin) > 0T Tig o Ti

Let j € {1,2,...,N} and let i4;,i2,...,i, be a finite sequence such that
iy # j and ar,ry,...r, > €. If 2 € Ky, i, and dist(z,K;) < € then the
sequence jj,ja,...,jp cannot occur in iy,ia,...,in, because of (6.1) and the fact
that U,'l,',,.,.'" ﬂKJ' =0.

Now let F be an e-separated subset of K; such that for each z € F,

dist(z,K;) < € (where i # j). Each z € F lies in a set Kj,i,. ;, such that
il =1 and

(6.2) T Tyt diam K <e < v riy--ori | diam K;

since diam K;;, ;. = ri,...r;, diam K < e and F is e-separated, each
z € F has its own unique sequence ij,iy,...,i,, satisfying (6.2). Let r, =
max(r1,rz,...,rx) < 1 and let ¢ > 1 be an integer such that r~! diam K < o;
then (6.2) implies that ary,ri,---ri,_, > €. Consequently, if z € FNK;,;, i,
and (6.2) holds then by the preceding paragraph the sequence j1,j2,...,jp does
not occur in 4y,i3,...,im—q. Therefore, the cardinality of F', and hence Q;;(¢),
is bounded above by the number A(¢) of distinct sequences iy,i,...,i, satisfy-

ing (6.2) such that the sequence jj,ja,...,jp does not occur in iy,iz,...,im—q. It
remains to show that

(6.3) A(e) = O(e5-D)

as € — 0 for some § > 0.
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Define B(e) to be the number of distinct sequences #;15,...,i, such that the
sequence ji,jz,...,jp does not occur in iy,is,...,in and r; 7y -1, > €. Then

() S N'B (3 )s

consequently, to prove (6.3) it suffices to show that for some D* < D
(6.4) B(e) = 0(e™P").

The function B(e) is a nonincreasing, nonnegative integer-valued function
of € > 0. Each sequence 1y,iy,...,i, counted in B(e) begins with some

(ilaiZ’“ ‘vip) # (jl)er'-ajp))
i in )P
provided € < (llsr‘nSnN )P, so
€
65) Bos ¥ p(ter)
(‘ll""")#(j"“"j’) ! 2 r
for all € < (lx<ni<nNr,~)”. Let D* be the unique real number such that
—‘—
(6.6) E (riyrig...mi,)P* = 1.
(i11'°')ir)¢(jl)~~'»jr)

Notice that D* < D because

E (r.',r,',...r;,)D = (Zr,p)p =1.

(31,001ip) f

Define Z(z) = e~*P" B(e~?); then by (6.5)

(67) Z(ZS) < Z Z(2+10g(7‘,'11‘,'2 ...T,',))(ri, ”'r")D‘
(i],...,")#(jlr~~~rj?)

for all sufficiently large £ € R. Moreover, for each a € R, Z(z) is bounded on

(—o00,a], because B(e) = 0 for large €. It now follows from (6.6) and (6.7) that
for all sufficiently large a € R,

sup{Z(z):z < a+('min. )log(r.-,r;,---r;’)'l} <sup{Z(z):z < a}.

$1,..98p

Therefore, Z(z) is bounded on R. This proves (6.4).
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7. Concluding Remarks

(1) The methods used here may also be used to determine the asymptotic be-
havior of various other functions. For example, let z € R4\ K be a point in
the complement of K whose orbit O(z) = {S;,Si,...S;.z} is disjoint from
K; define Q(¢) = #{y € O(z): distance (y,K) > €}. Then Q(¢) satisfies an
asymptotic relation analogous to (1.1)-(1.4).

(2) The methods of this paper rely heavily on the strict self-similarity of K. For
fractals with some approzimate self-similarity, such as limit sets of Kleinian

groups, the analogous problems are considerably harder, but similar results
obtain (cf. [6]).
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