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STEVEN P. LALLEY & DIMITRIOS GATZOURAS

ABSTRACT. The Hausdorff-Besicovich and Bouligand—Minkowski
(box) dimensions §y and 65 are computed for a class of self-affine
sets. Necessary and sufficient conditions are given for §g = ép; it
is found that typically 6y # 6. The methods are largely proba-
bilistic, with certain exponential families of probability measures
playing a prominent role.

1. Introduction. Let S;,53,...,5, be contractions of R?, i.e., each §; :
R? — R? has Lipschitz constant < 1, the Lipschitz constant being defined as
Lip(S;) = sup{|Siz — S;y|/|x —y| : ¢ # y}. A result of Hutchinson [Hu| states
that there exists a unique nonempty compact subset A of R? such that

T
A= U Si(A);
=1
we will refer to A as the limit set of the semigroup generated by S1,S52,...,S.
Many interesting “fractal” sets arise in this manner, and questions concerning
the Hausdorff-Besicovich and Bouligand-Minkowski (box) dimensions §y and
6p of A are of considerable interest (see [Ma] for definitions). We shall discuss
a number of such questions in the case where the contractions S; are affine
mappings of a certain special type. (Note: For similarities S;, 6y = 6p and 6y
is the “similarity dimension”: see [Hu).)
Our interest stems from papers of Bedford [Be], McMullen [Mc], and Fal-
coner [Fa]. McMullen studied the special case in which each S; has the form

o= (3 ) (41)

where 1 <m < n,0 < k; <n,and 0 < ¥¢; < m (k; and ¢; are integers); thus
each S; maps the unit square onto an n~! x m~! rectangle R; contained in the
unit square. He found formulas for § and ég and discovered that 6 = 6p only
in exceptional circumstances, namely, when all “rows” that contain at least one
R;, contain the same number of R; (i.e., if ¢y is the number of ¢ with £; = £, for
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each £ € {0,1,...,m — 1}, then the t;, take on only one value other than zero).
Bedford found similar formulas (by entirely different methods) when the maps
S; have the form

so= (" )6 ) ()

with certain other restrictions, so that A is the graph of a continuous function on
[0,1] taking values in [0,1]. Again, 6y = 6p only in exceptional circumstances.
Thus, the results of Bedford and McMullen, in addition to providing explicit
calculations of the HB and BM dimensions, suggest that in such constructions
it is atypical for the two dimensions to be equal.

Falconer considers a far more general setup, in which

Sz(:l,‘) =Tz +a;

where T; is an arbitrary invertible matrix of norm < % He does not, however,
obtain a formula for 5 in each such case; instead, he shows that there is a
constant § depending on T1,T5,...,T, (but not a;,as,...,a,) such that for almost
every choice of a;,as,...,a, one has § = §g = 6. This runs counter to the spirit
of the Bedford-McMullen results, in that it suggests 6y = §p is typical rather
than exceptional for self-affine fractals.

We shall consider a class of self-affine sets more general than those of Mc-
Mullen but less general than those of Falconer. Specifically, we will study the
limit set A of the semigroup generated by the mappings A;; given by

Aij(z) = (“61' I?i)x+ (3’) (i,j) € J.

Here J = {(4,j) : 1 i <mand 1 < j < n;}is afinite index set. We assume 0 <
a;j < b; < 1, for each pair (3,5), > ;o, b <1, and 2;‘;1 aij <1 for each i. Also,
0<di1<ds <...<dy, <1lwithd;4+; —d; >b; and 1 —d,,, > b, and, for each i,
0<ci1<cig<...<cip <1with ¢ij41) —¢ij = ai; and 1 — ¢, > @ipn,. These

hypotheses guarantee that the open rectangles
Ri; = A;;((0,1) x (0,1))

are pairwise disjoint subsets of (0,1) x (0,1) with edges parallel to the z- and
y-axes, are arranged in “rows” of height b;, and have height > width (see Figure
1). (We remark that the conditions given above do not guarantee that the limit
set A will have a nonempty interior.)

We shall assume throughout the paper that |J| > 1 to avoid the trivial case
in which A consists of just a single point.

Our results about the limit set A are as follows:
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FIGURE 1

(1) We determine the value of the Bouligand-Minkowski (box) dimension ép
from the parameters a;j, b;. Specifically, if p € R is the unique real such
that ;- b7 = 1, then 65 = § is the unique real such that

m n;

33w -

i=1j=1

(2) We determine the Hausdorff-Besicovich dimension 6y from the parameters
aij, b;. Specifically, we prove that

Z me log Dij 1

g =max{ ==———"+ log g;
Z Epz] log a;j zi:(h 8 Z(h IOg b; Z szy log 27

where the maximum is over all probability distributions {pi,-} on the set
J={(,4):i=12,....m; j=1,2,...,m;} and ¢; = ijij. The expression
in braces is the Hausdorff dimension of the “iid” probability measure u on
A determined by {p;;} (Sec. 3).

(3) We characterize those sets of parameters a;;, b; for which 6 = 6p. In fact,
we prove that the following three conditions are equivalent:



536 S. P. LALLEY & D. GATZOURAS

(a) 6g = 6B;
(b) 0 < Hp, (A) < o0
(c) ?aff’_r =1,Vi=1,...,m.

Here r is the unique real number such that Ei b; = 1. This shows that g = ép is
highly atypical. Moreover, it answers a problem posed in [Mc] (even in the special
case considered there): when is 0 < Hs, (A) < co? Observe that the collection
of sets A considered by Bedford and McMullen is countable; our results provide
a smoothly parameterized family of self-affine sets A with 6y # 5.

Finally, observe that A is a repelling invariant set for a certain expansive
(noninvertible) map T : R? — RZ2. T is any mapping which maps each R;;
onto the square (0,1) x (0,1) in such a way that T|R;; = A{jl. Our formula
for the HB dimension 6y shows that 6y is the maximum HB dimension of a
T—-invariant probability measure supported by A (see, e.g., [Yo] for the defini-
tion). This leads one to wonder whether it is generally true that the HB dimen-
sion of (say) a repelling, invariant, hyperbolic set in a smooth dynamical system
is the maximum HB dimension of an invariant probability measure. (This is not
generally true for basic sets of Axiom A diffeomorphisms, however—see [MMc].)

While revising this paper the authors learned of [BU], which overlaps to
some extent with this paper. Their results are stated only for graphs of self-
affine functions, and their results on the Hausdorff dimension of such sets have
a rather different character, but put Theorem 4.6 below in an interesting light.

Definitions and notation. If the closed rectangles R;; are nonoverlap-
ping, then A is a Cantor set homeomorphic in a natural way to the sequence
space 2 = JN. If, however, some of the R;; have nonempty intersection, then
A and € are no longer homeomorphic, but as will be seen there is a natural
continuous projection m : 2 — A which is at most 4 to 1. We will repeatedly
pass back and forth between Q2 and A; the reader should beware that there are
occasional subtleties in this when 7 is not 1 to 1.

We shall use the following notational conventions. Elements of Q will always
be represented by a small w, possibly with primes w’ or superscripts, and

w = (w1,w2,...), Wn = (in,Jn) € T ;
w' = (w],ws,...), wy, = (in,Jn) € T;
w® = (w£u)’w§u),.”), w7(1u) = (igu)»jgu)) €eJg.
Let
o0
z=U J*
k=1

be the set of finite sequences; elements of Z will always be represented by a
small z, possibly with primes or a superscript. The same convention regarding
the entries of z will be followed: e.g.,

20 = (2,24, 2), 2 = (,5) e T
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Given w € Q and k = 1,2,..., define
A(w;k) = A j, 0 Aigj, 0000 Ajjes
Aw; k) = A(w; k)(A),
R(w;k) = A(w; k)((0,1) % (0,1)),
R(w;k) = closure R(w;k),
Similarly, if z € Z is of length £ = £(z), define
A(z) = A j, 0 Aiyjp 0...0 Aijjy,s
A(z) = A(2)(A),
R(z) = A(2)((0,1) x (0,1)),
R(z) = closure (R(2)),
Q2)={weQ:w, =2, V1 <n <t}

Note that if w € Q(2) then A(w;£(z)) = A(z), A(w;£(2)) = A(z), etc. Also, each
R(z), R(w;k) is an open rectangle, and

R(w;k)NA C A(w;k) C R(w;k)NA,
Aw;k +1) C Aw; k),
R(w;k+1) C R(w;k),

height (R(w;k)) = Hb“,

width (R(w;k)) = Ha,,,,],,

Since b; < 1 and a;; < 1, the diameter of R(w;k) shrinks to zero as k — oo,
for any w € Q. Consequently, Yw € Q,

A Rlwib) = {x(w)

consists of a single point m(w) € A. This defines a map = : @ — A. It is easily
seen that 7 is continuous, surjective, and at most 4 to 1 (see [Hu]).

Essential to the arguments of this paper will be certain sets which we will
call approzimate squares. Analogous sets were defined in [Mc]. They will be
used repeatedly in calculations involving Hausdorff and box dimensions. Given
w € Q and k € N, define

k n
(1.1) Lig(w) = max{n >0: H b;, < H ai.,i.,},

v=1 v=1
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(0,1) (1,1)

i

(0,0) ” (1,0)

FIGURE 2: In this example by = b2 = .5, a11 = .4, a12 = a21 = .2; ¢11 =0, c12 = .8,
c21 = .3; d1 =0, d2 = .5. The shaded rectangles are the various R(z), z € J* (third
generation); A is contained in their union. The rectangles surrounded by thick lines
are the various B3(w); observe that each of ABCD, AEFD, DHIG, and DFJG is a
Ba(w).

where H3=1 a;,j, = 1 (convention); observe that as k — 0o, k — Ly — oo because
a;; < b; for all ¢, j. Define the approrimate square

(1.2) By(w)={w"€Q:i,=i,, v=1,....kand j, = j,, v =1,...,L(w)}.

Observe that each approximate square B (w) is a finite union of cylinder sets
Q(z), and that approximate squares are “nested”: i.e., for any two, say By(w)
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and By (w'), either Bx(w) N By (w') = @ or By(w) C By (w') or By (w') C Bg(w).
In addition,
Bi(w)NA C m(Bk(w)) C AN closure (Bg(w))

where By (w) is an open rectangle in R? with sides parallel to the z- and y-axes,
height Hf,:lbi,,, and width HL"(“') a;,j,. (The rectangle By(w) is the intersec-

v=1

tion of the rectangle R(w;Li(w)) with the horizontal strip of height Hf,:lb,-,,
containing R(w;k). See Figure 2.) By (1.1),

Li(w)
IT awi

v=1 -1
(1.3) 1< ——— <max g,
I1¢.
v=1

so the width/height ratios of the rectangles By (w) are bounded away from 0
and co—hence the term “approximate square”. Furthermore, observe that since
7(Bk(w)) contains A(w;k), its diameter is at least the height of A(w;k)), which
is equal to height(A) x H’,f=1 b;,. It follows that there are constants 0 < C; <
C3y < oo such that Vw € Q, Vk > 1,

k
diam (7(Bg(w))) H bi,

(1'4) Cl S < v=1 Cz.

Because of their nesting property, approximate squares and their m-images
are easier to work with than balls in A. Observe that for any x € A and
any 7 > 0 there is an approximate square By (w) such that z € 7(Bg(w)) and
such that both the height and width of the rectangle By (w) are between r and

r(max a;}l)(max b7 1). (Just take w € 7~1({z}) and k = max{k* : H,’f;l b;, >
r}, and refer to (1.3).) Consequently, for any z € A and r > 0 the ball B(r,z) N A
is contained in the union of (at most) four m(Bg(w)), each with height and width

between 7 and r(max aml)(max b;'). Therefore, for any covering of A by balls
B(r,z) there is a covering by sets m(Bj(w)) which is essentially just as efficient.

2. The Bouligand-Minkowski (box) dimension. In this section we
calculate the Bouligand-Minkowski dimension ég of A. This is defined as follows:

. log N(¢)
6p = lim sup ————,
B €0 P loge—1
where N(¢) is the minimum number of squares of side ¢ needed to cover A (here
and throughout this section the term square means square with sides parallel to
the coordinate axes). We will begin by showing how to reduce the calculation of
6p to a counting problem concerning approximate squares.
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For € > 0 define

o k k+1
Fo= U {Buw):weQand [, >e> ]t}
k=0 v=1 v=1

Lemma 2.1.

1
ép = lim supﬁlfill.
e—0 loge~

Note: Here |- | denotes cardinality.

Proof. Clearly F. is a covering of ) by approximate squares for each € > 0,
because for every w € ) there is a k > 0 so that [[*_,b;, > e > [[*t1b,,
(recall that 0 < b; < 1). Moreover, for each Bg(w) € F. the correspond-
ing rectangle Bj(w) in R? has sides [[*_, b;, and [[2*“)a;,;, between ¢ and
e(max b;')(max ai_jl). Hence F. determines a covering of A by squares of
side e(ma,xbi'l)(maxai_jl) (for each Bg(w) € F., blow up Bi(w) to a square).

Therefore, |F¢| > N(e(maxb; 1)(ma,xai_j1)), which shows that

1
ép < limsup —%.
e—0 loge~

To prove the reverse inequality it suffices to show that there is a constant
C < 00, not depending on ¢, such that

|]:e|SCN(5) Ve>0.

For this we will show that for each £ > 0 there is a subset F, of Fe such that .7:'E
is a covering of Q by pairwise disjoint approximate squares, and such that

C* = sup|f€|/|.7-'5| < 00.

It will then follow that any square in R? of side ¢ can intersect at most four
7(By(w)) with Bg(w) € F. (since the sets m(By(w)) are (essentially) the inter-
sections of A with nonoverlapping rectangles with sides > ¢), and hence that
| Fe| < 4N(e) and |F.| < 4C*N(e).

Let F. consist of those By(w) € F. such that By (w) is not properly contained
in any other By (w') € F.. The elements of F, are pairwise disjoint, because
if two approximate squares overlap then one is properly contained in the other.
Moreover, since F. is a covering of €2, so is Fo: every @ € () is an element of
some By(w) € Fe, so it must be an element of a maximal By (w).

Each element of F,. is either contained in F., or is properly contained in
exactly one element of F,. Consider By(w) € Fv; if By (w') C Bg(w) for some
By (w') € Fe then k < k', Lg(w) < Lg'(w'), 4y = i, for each n = 1,2,...,k,
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and j, = j}, for each n =1,2,..., Lix(w). But since both Byx(w) and By (w') are
elements of F,
k+1

Hbz., >e> ]:[bz.,a

k'+1

Hbzl >e> Hbzl

£+1

£
Ilais. 2 wa > [l
v=1

£'+1

Ha"ﬂ' > Hb,' > Ha@/] ,

where £ = Li(w) and ¢’ = Ly (w'). Consequently,
kl
H bi;, > min;b;,
v=k+1
el
H ai! g, > (min,;jaij)(minibi)
v=_£+1
which implies
(K —k)+( -0 <K
for a suitable K < oo (independent of By (w), By (w'), and € > 0). Since By (w')
was obtained from By (w) by tacking on no more than K entries to (i1,%2,...,%)
and (j1,42,--., je), it follows that there are no more than |J|¥ elements of F.
contained in any By(w) € F.. This proves that |F.| < |J|¥|F.|. O
The set F. is a collection of approximate squares, each of which is uniquely
specified by a pair of finite sequences (i1,42,...,ik+1; J1,J2,---,Je+1) Subject to

certain restrictions. It will be easier to work with a modification F} of F,
defined by

Fe= {(il,iz,m,ikﬂ; J1sJ2ye-esdes1)

(Goydu) €T VISV <L+1; 43, €{l,....m}VU+2<v<k+1;

k+1 £+1

wa 2e> Hbm Hamu €> Haim}
v=1 v=1
Lemma 2.2.
log | 72|

bp =i
B H?_.S(}lp loge—1
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Proof. Define
F.= {(il,iz,-~-,ik+1§jl,j2,~~-,je+1) :

(fvyf) ETVI<v<L+1;i, €{l,....m} V+2<v<k+1;

k k+1 ¢ k 241

Hbi., >e> Hbz'.,; Hai.,j,, > Hbi,, > Hai.,j,,}~
v=1 v=1 v=1 v=1 v=1

Clearly, F. is in one-to-one correspondence with F.. Moreover, for each f € F}
there is a unique f' € F! such that f' < f, ie, k' =k, ¢ < ¢, 4, = 1,
Yv=1,2,...,k+1, and j, = j, Vv = 1,2,...,£ + 1. On the other hand, for each
f’ € F. there is at least one f € F such that f’ < f. Hence, |Fc| < |FZ|.

Suppose f’ < f for some f' € F. and f € FZ. Then

¢
3 .
H Biyj, 2 % Zmiln bs,

v=£'+2
I1e.
v=1

s0
£—¢' < K = max{n: (max a;;)" > min b;}.
Consequently, there are at most |J|X elements f' € F satisfying f' < f for
any f € F.. Hence |F¥| < |J|¥ |Fc| for all € > 0. The result now follows from
Lemma 1.2.1. O
For € > 0 and t € R define
0(z)—1 ()
ge = {Z ez H ai,j, >e> Hai,,j_,};
v=1 v=1

k k+1
He = {(i1,i2,~-~,ik+1) : Hbi., >e> Hbi,,};
v=1 v=1
H(t) = [He-¢[;
£(2)
F(t)= Y H(t+ logh,).
2€G, 1t v=1

Recall that Z is the set of (nonempty) finite sequences with entries in J; for
z € Z, {(z) is the length of z and 2, = (4,,J,) for v = 1,2,...,£(2z). Observe that
(2.1) F(t) = [Fo-el,

because elements of F; are obtained from elements of G, by tacking on
t44+1,%6+2,---,0k+1 SO that the appropriate inequalities are satisfied. Note that
H(t)=0Vt<O.
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Lemma 2.3. Letr > 0 be the unique real number such that Y .~ bl = 1.
Then there ezist constants 0 < Cy < Cy < 00 such that

Cre™ < H(t) < Cye™ vt > 0.
Proof. For 0 < £ < 1 every element (i1,%2,...,%+1) of He, has at least one

entry 4;. Decomposing H. into m disjoint subsets, one for each possible initial
letter i1, yields the functional equation

m
H(t) =) H(t+logb)+R(t), t>0,
i=1
where
R(t)=[{i € {1,2,...,m} : t+1logh; < 0}
Observe that R(t) is bounded, piecewise continuous with finitely many discon-
tinuities, and has compact support in [0,00). Also, R is strictly positive on the
interval [0, max;log b;1).
The functional equation for H may be transformed into a renewal equation
([Fe2], Ch. 11). Define H(t) = e "t H(t) and R(t) = e "*R(t); then

H(t) = ib{ﬁ(t +log b;) + R(t)

i=1

= / H(t — s)u(ds) + R(t), t>0,
3€[0,1]

where p is the probability distribution on (0,00) which puts mass b} at —log b;.
There are now two cases to consider: the arithmetic case, where log bl_l, log by Y
..., logb;.! are contained in a discrete additive subgroup of R, and the nonar-
ithmetic case. In the nonarithmetic case, the Renewal Theorem ([Fe2], Ch. 11)

implies that
[o0)
/ R(s)ds
0

[onas)

since R is, clearly, directly Riemann—integrable (recall that R has compact sup-
port and only finitely many discontinuities). In the arithmetic case, the Renewal
Theorem ([Fe|;, Sec. XIII.10) implies that

> R(ny)

n=0

[ stas

where 7Z is the additive subgroup of R generated by {logb;' : i = 1,2,...,m}
(and v > 0). Since H(t) is nondecreasing in ¢ and is strictly positive on [0,00),
the result follows. O

lim H(t) = v >0
t—o0

lim H(ny) = >0
n—oo
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Theorem 2.4. Letr > 0 be the unique real number such that Y ;- b7 =1,
and let § > 0 be the unique real number such that > ;- , Z;" 1bia fJ " =1. Then
op =9.

Proof. By (2.1) and Lemma 2.2 it suffices to prove that

t—oo0 t
Define
0 ift <0,
£(z)
G(t) =
(®) Z exp{rt} H b;, ift >0
Zege—z v=1

then by Lemma 2.3 and the definition of F(t), there exist constants 0 < C; <
C3 < oo such that

C1G(t) < F(t) < C2G(2) V0 <t < o0.

G(t) is a sum over a collection of finite sequences z, each with a first entry
z1 = (i1,51). Breaking this sum into |J| disjoint sums, one for each possible
value of (41,51), gives the functional equation

G(t)= Y bla;7G(t+logai;)+R(?), t>0,

(4.9)eT
where R(t) is piecewise continuous with only finitely many discontinuities, R(t) >
0 for all t € [0, max;;log a;; 1), and R(t) = 0 for all ¢ > max log a;; 1. Define

G(t) = e7%G(t) and R(t) = e % R(t); then the functional equation transcribes
to

G(t) = G(t—s)u(ds) + R(t), t>0,
(0,2]
where p is the probability measure on (0,00) which puts mass bz ” at —log a;;.
By the same arguments as in the proof of Lemma 2.3, it follows that there exist
constants 0 < C;] < C} < oo such that C] < G(t) < Cj Vt > 0, and hence that
Cleft < G(t) < C4e®. By the preceding paragraph, therefore,

C1C, el < F(t) < CyChe®,
from which it follows that t~!log F(t) — 6 as t — oo.

Note: The fact that § > 0 follows from our standing assumption that |J | >
2. Since 0 < b; < 1 and m > 1, we must have r > 0 in order that Y ;- b’" =

z—l 1
Since 0 < a;; < b; we must have bja;;" > 1, so we can only have S el =1
with 6 > 0. a

zzy
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3. The Volume Lemma. In this section we obtain a lower bound for
the Hausdorff-Besicovich dimension g of A, using the auxiliary notion of the
Hausdorff dimension of a measure supported by A. Recall ([Ma]) that for a Borel
subset K of R™, the §-dimensional Hausdorff measure of K is defined by

T . . F)
Hs(K) = lim ué’éfe) %(dlam U)

where C(¢) is the set of all open covers U of K whose elements U have diameters
< e. The Hausdorff-Besicovich dimension of K is defined to be inf{§ > 0 :
H§(K) < oo}

Let p be a finite Borel measure on R*. The Hausdorff dimension of u is
defined by

HD(p) = inf{HD(Y) : Y Borel and u(R*\Y) = 0}.

The following lemma, is useful in determining H D(p). Its proof may be found in
[Yo].

Lemma 3.1 (The Volume Lemma). If u is a Borel probability measure on
a Euclidean space and if there exists &6 > 0 such that

o o8 H(B(r,2))

= or u—a.e. T
L R Py ; for p )

then HD(u) = 6. Here B(r,z) denotes the ball of radius r centered at x.

Recall the mapping 7 : Q — A defined in Section 1. Since 7 is continuous,
it is measurable with respect to the Borel o-fields on A and €2 respectively, and
hence, given a Borel probability measure x4 on £, the set function defined by

(3.1) [,L?r_l(E) = /J'(ﬂ-_l(E))v E € B(A),

defines a Borel probability measure on A. (B(A) are the Borel subsets of A.)
Let ¥ be the simplex defined by

m n;

i=1j=1

If p € ¥, then p defines a probability distribution on the set of indices J.
For each p € X, define a probability measure pp on the Borel subsets of 2 by

requiring that for any z € Z, the pp-measure of the cylinder set Q(z) be given
by

£(z)

(3.2) po (2)) = [ pii.
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where £(z) is the length of z. Note that (3.2) uniquely determines a Borel
probability measure on 2, by Kolmogorov’s existence theorem (see [Bi]); up
is the distribution of a sequence of i.i.d., J-valued random vectors X, Xo,...,
each of which has distribution p. For each p € ¥ the measure pp induces (by
(3.1)) a Borel probability measure on A, which we will denote by fip (thus,
fip = ppom1). Define, for any p € %,

D(p) = HD(jip);

observe that sup{D(p) : p € X} is a lower bound for the Hausdorff dimension
6y of A. We will ultimately prove (Section 5) that this supremum in fact equals
6.

In Proposition 3.3 below we will use the Volume Lemma to derive an explicit
formula for D(p). In doing so, we will need to replace the Euclidean balls B(r,x)
by w-images of approximate squares. To this end we now prove:

Lemma 3.2. Let Gj, be the event

G = {w € Q: B(egrg,m(w)) NA C n(Bg(w))},

where Ty, = H,’f=1 bi, and e = eVE. Let P € X be any probability vector such
that fip s not supported by a line segment. Then

pp(Gg i.0.) = 0.

Note: It is possible for fi, to be supported by a line segment, e.g., if p
attaches all its mass to indices (1,7). In fact, fip will be supported by a horizontal
line segmant iff for some 4., p;; > 0 only if ¢ = ¢,. Similarly, fi, will be supported
by a vertical segment L only if p;; > 0 implies that the rectangle R;; intersects
L.

Proof. Recall that By(w) C m(Bg(w)). Consequently it suffices to show that
pp(distance (m(w),dBy(w)) < exry i.0.) = 0.

Recall that By(w) is a rectangle whose sidelengths are both comparable to ry.
Consider the distance from m(w) to the bottom side of By (w); this distance is less
than exry only if the (k+1)*, (k+2)t ... (k+ Cvk)* coordinates (i,j) of w
all have ¢ = 1. Since p does not attach all of its mass to the set of indices (1,7),
the probability of this is less than e~C'V¥ for some C' > 0. As >k e~ C'VE < 0,
the Borel-Cantelli Lemma implies that the distance from 7(w) to the bottom

side of By (w) is < egry for only finitely many k. Similar arguments apply for
each of the other three sides. O
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Proposition 3.3. For everyp € X,

m N, m m
21 }:1 ij 108 Dij Y qilog b; Y. gilog g;

=1j= i=1 =1

(3.3) D(p) T +|1-— : ™ zm
> Y pijlogai; > Y pijlogai; | Y qilogb;

i=1j=1 i=15=1 i=1

(with the convention 0-log 0 = 0), where

ng
qi = sz’j~
j=1

Proof. Fix p € ¥ and let d denote the right hand side of (3.3). Write p = pp
and i = fip = ponw~!. By the Volume Lemma it suffices to prove that for ji-a.e.
T €A,

lim [BABMD) _
r—0 log r

There are two cases: (i) when fip is concentrated on a line segment; and (ii)
when it is not. The first case is essentially known, and is simpler than case (ii),
because in this case the affine transformations A;; may be replaced by similarity
transformations of a line segment. The proof for this case may be found in [St].
Therefore, we shall consider only the second case in detail. By Lemma 3.2, balls
may be bracketed from inside and outside by w-images of approximate squares
of comparable diameters. Consequently, it suffices to prove that

k—oo %" . log b;,
for p—a.e. (w).

But (3.4) is an elementary consequence of Kolmogorov’s strong law of large
numbers (SLLN). For any £ > 1 and w € Q,

Ly (w) k
(3.5) (B (w ( H Pmu)( Ll_(I)qu',)-
v=L(w

By (1.3),

Li(w)

(ilog b;, — Z log aiyj,,) —0
v=1 v=1

| =

and by SLLN,
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1 k m
z 2108 b;, — Zlqz‘log b;,
v= =

L (w) m n;

- Z an log Qg

i=1j=1

and

Li(w) m n;
Lk( ) Z lngz,,J., — Zzpm Ingm

i=1j=1

for p—a.e. (w). It follows from the first three of these convergences that

m
i log b;
Lk(w) Eqi g (3

k
2 Z Pij log azy

i=1lj=

p—a.e. (w),

and now, by another (double) application of SLLN,

k

1 m
k— Li(w) Z log ¢i;, — Zqz‘ log qi, p—a.e. (w).
B L)1 Pt

Taking logs in (3.5) and applying the last three listed convergences one obtains
(3.4). d

Proposition 3.4. There ezists a p* = (p:j)(i,j)ej € ¥, such that

(3.6) D(p*) = max D(p).

Furthermore any p* satisfying (3.6) must be an interior point of ¥ and have the
form

o p_l o« e
(3.7) Py = Cafp} (Y al)" (irj) € 7,
=1

for some constants C, ¥, A and p. The constants 9, A, p satisfy

m N

> pilogpl; - Zqz log ¢;

(3.8) 9= ==t

m n; ?

ZZP:} log a;;

i=1j=1
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m
> qflogg;

- m
> g logh;
=1

m
> "} logb;
_ i=1
p= m n; ’

Z prj log a;;

i=1j=1

where ¢} = Z;.’;lp;‘j, i=1,...,m.

Remark 1. Comparing the equations (3.8) for 4 and A with the formula
(3.3) for D(p) shows that

= D(p).
J+A max (p)

Remark 2. In certain special cases the maximum value of D(p), p € %,
can be characterized more explicitly. For example, if there exists n € (0,1) such
that a?j = b; for every (i,j) € J, then maxy D(p) is the unique § > 0 such that

This is proved in Lemma 5.1 below. Observe that the cases considered in [Mc]
are subsumed by this.

Proof. First observe that by (3.3), the function D : ¥ — [0,2], given by
p — D(p), is continuous. Since ¥ is compact, the function D has a maximum.
Let p* be a point in ¥ at which D attains its maximum. We claim that

(3.9) p* € int X

Once (3.9) has been proved a routine use of the Lagrange multipliers method
shows that p* must satisfy (3.7) for some constants C, 9, A and p and that 9,
A, p must satisfy (3.8).

To complete the proof it remains to show (3.9). So assume p* ¢ int ¥ and
suppose that pj ; = 0. Assume first that ¢ = 0. Choose pj ; > 0. Such a
(e)

10Jo

p;,j, always exists since p* € ¥. For 0 < e < pj ; define p®) by p

pgle =p;,j, — € and pg?) = pj; for all other ¢, j. Then p(®) is certainly in . We

will show that for some € > 0, D(p®)) > D(p*).

=E’
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Let
m N
P*=3"> pilogni;,
=1 j=1
m 7n;
A* =) "pijlog aij,
i=1j=1
m  n;
P(e) =Y p$ 1o,
i=1j=1
and
m n;
Ale) = ZZPE;) log a;;.
i=1j=1
Then, as ¢ | 0,
P(e) . P
A(e) A*’
On the other hand,
d (P(e)
£(A(€))——>oo, ase ] 0.

Hence the function ¢ — P(g)/A(e), is increasing in some interval (0,¢1) and so

P() _ P*

A(E)>x_4—:’ 0<e<e;.

Next, let

m
Q* =) qlogq},

=1

B* = Zq;‘ log b;,
i=1

m
Qe) =Y ¢V log ¢,
=1
and

m
B(e) = qu) log b;,
=1
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where q(e) ZJ lps), i = 1,...,m. Then as above there exists e > 0 such
that

Q(e)[B(s) 71%5_)]>Q*[3}—;_%]’ 0<e<es.

However, then we have that

o P(O) 1
Dip ())‘A<)+Q“[B<e> m]

P~ [1 1
>z te [E_*“F]

= D(p"), 0 < e < min{ey,e2},

by (3.3) and this contradicts the fact that D(p*) = maxpes D(p).

Now assume that g;, > 0. Then there exists j so that p;; > 0. Define p®

as follows: pfzo =g, pf;:; = Diyj — €, and p;; = pz(.;) for all other i, j. Then

g_PlE)-Q @
PO =G B

and, since D(p(®)) — D(p) and £ D(p¥) — oo as ¢ — 0, it follows that
D(p®)) > D(p) for all small ¢ > 0. ]

Define p(9,),p) € X, by defining p;;(9,A,p) to be the right-hand side of
(3.7). Then by the previous proposition, maxpex D(p) may be found by maxi-
mizing the function d(d, A, p) = D(p(¥, A, p)), for (¥, A, p) in some compact subset
of R3. (The compact set over which d(¥,),p) is to be maximized is determined
by (3.8).) Proposition 3.3 provides a formula for d(, ), p) and so maxpex D(p)
is computable. As will be seen in Section 5, this number is in fact the Haus-
dorff dimension of A. Observe that we already have shown that the Hausdorff
dimension of A satisfies

6y > max D(p) = max d(9,,p).
pES

9,2,p

4. Comparison of 6y with 6. In this section we show that 0 <
Hs, (A) < oo iff ég = 6B, and give an easily checked necessary and sufficient
condition for 67 = 6p in terms of the parameters a;; and b;. Throughout this
section we will write § rather than 6y for the HB dimension of A. For s > 0 we
will write H, for s-dimensional Hausdorff measure.
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Lemma 4.1. For any two distinct z, 2/ € J*, k € N,
(4.1) Hs(A(z)NA(')) = 0.

Note. It follows that if 2z, 2’ € Z are distinct finite sequences such that
Zn # 2}, for some n < min(#(z),£(z')), then
(4.2) Hs(A(z)NA(2")) =0.
For suppose £(z) < £(z'). Define 2" = (21,23,...,2y,)); then A(z") C A(z"). But
Lemma 4.1 implies that Hs(A(2) NA(2")) = 0, since z # 2".

Proof. Let S = [0,1] x [0,1] and let &S be the boundary of S. Let Fy, Fy,
F3, Fy be the sides of 8S. We shall assume that there is no F; such that each
Ry j intersects F;. (If this were so, then A C F; and every nonempty intersection
A(2)NA(2"), where 2z, 2/ € J*, would consist of a single point, in which case
(4.1) would reduce to a triviality.)

Now assume that A(z)NA(2') # @ for distinct 2, 2/ € J*. Since z #
2', the open rectangles R(z) and R(z') do not intersect; since A(z) and A(z')
are contained in the closed rectangles R(z) and R(2'), respectively, R(z) and
R(2') must meet in a single edge, either vertical or horizontal. In either case
A(z)NA(Z") is contained in this edge. Now the intersection of A(z) with this
edge is precisely A(z)(ANF;) for one of the four sides F; of 85, and (recall)
A(z) is an affine mapping. Consequently, to prove (4.1) it suffices to prove that

Hs(ANF;) =0 Vi=1,2,3,4.

We shall prove this for F; = {(z,0) : 0 < z < 1}; the other three cases are
similar.
Let A* be the limit set of the semigroup of similarity mappings of R gener-
ated by T1,T5,...,T,,, defined by
Tj(z) = a1z + ¢y, z€R

(recall the definitions of A;j, Section 1). Then A* x {0} = ANFy, so Hs(AN
F1) = Hs(A*). Now A* is a self-similar set, so its Hausdorff-Besicovich dimension
is the unique s > 0 such that Z;L;l aj; =1 (see [Hu]).

Consider the probability vector p € ¥ defined by

i = {a;’lj Vi =1,2,...,n,

Y lo vi>g
note that ¢ = 1 and ¢; = 0 for ¢ > 1. Proposition 3.3 implies that D(p) = s.
But p lies on the boundary of ¥, because there is at least one pair (z,5) € J
such that ¢ > 1 (otherwise, every R;; would intersect F;). Proposition 3.4 states

that D attains its maximum only at interior point(s) of ¥, and this maximum is
< 4. Hence s < 6, which shows

0= Hs(A*) = Hs(ANFy). O
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Lemma 4.2. Let p be any probability vector in the interior of ¥, i.e., such
that p;; > 0 for every (i,j) € J. Then for any two distinct z, 2’ € JE, any
k>1,

(43) fip(A(2) NA()) = 0.

Note. Again it follows that if z,2’ € Z are distinct finite sequences such
that 2, # 2,, for some n < min(4(2),£(z')), then

ip(A(z) NA(z)) = 0.
This also implies that Vz € Z,
(4.4) Bp(A(2)) = pp(2(2))-

Proof. Without loss of generality we may assume that z, =z, Y/n < k—1
and z # 2}, since the sets A(2) are nested. There are two possibilities (assuming
A(2)NA(2')) # @): either R(z) and R(z') share a single horizontal edge, or they
share a single vertical edge. We shall only consider the first of these (the second
is quite similar); in this case ix # 4}, and we may assume 4, = i + 1.

Consider @ € 7~ 1(A(z)NA(z’)). It must either be that iz = g, in which
case i, = m Vn > k, or i = i, in which case in = 1VYn > k. Thus
7 1(A(z) N A(2')) consists entirely of sequences & for which the coordinates &,
n > k, are all constrained to lie in one of a finite collection of proper subsets
of J. But p;; > 0 V(i,j) € J; hence the pp-measure of any such constrained
subset of  must be zero (e.g., by Kolmogorov’s SLLN). m]

Proposition 4.3. Let r be the unique real number such that 3.3 b{afj“’ =
1, and let p € ¥ be the probability vector defined by

(4.5) pij = bjaf;" V(i,j) € J.
If
(4.6) 0 < Hs(A) < 00,
then
ng
(4.7) > el =1 Vi=1,2,...,m
i=1
m
(4.8) > obr=1,
1=1

and the restriction Hs|A of §-dimensional Hausdorff measure to 6§ is equivalent
(mutually absolutely continuous) to fip.
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Note. In view of Theorem 2.4 it follows from (4.7)—(4.8) that if 0 < Hs(A) <
oo, then § = 6p.

Proof. The main step will be to show that (4.6) implies that Hs|A is equiv-
alent to fip. It will then follow that D(p) = 6 and hence that p = p*, where p*
is as in (3.7); reconciliation of (4.5) with (3.7)—(3.8) will then require that (4.7)
and (4.8) hold. So assume (4.6).

To show that Hs|A is equivalent to fip, we will show that there exist constants
0 < C; < (Cs < 0o such that

Hy(A(2))/Hs(A)
R INE))

S 02, VZ GZ.

It will then follow that

Hs(AN ((a,b] x (c,d]))

Cufip(AN((a,8] x (c,d])) < Hy(A)

and

Hs(AN((a,b] x (c,d]))
Hs(A)

S CZﬁp(An ((aab] X (C,d]))

for any a, b, ¢ and d with a < b and ¢ < d. (This is true because from the
proofs of Lemmas 4.1 and 4.2 it is apparent that for any z € Z, Hs(ANR(z)) =
Hs(ANR(z)) and fip(ANR(2)) = ip(ANR(z)), p belonging to the interior of
%.) So if we let F consist of the empty set and all finite disjoint unions of sets
of the form A N ((a,b] % (c,d]), then F is an algebra generating the Borel subsets
of A and furthermore, C1jip(F') < Hs(F)/Hs(A) and Hs(F)/Hs(A) < Cafip(F),
for any F € F. It then follows from Halmos’ monotone class theorem (see [Bi],
page 39) that Cyjip(B) < Hs(B)/Hs(A) and Hs(B)/Hs(A) < Cafip(B) for all
Borel subsets B of A and, consequently, that fi, and Hs|A are equivalent, with
the Radon-Nikodym derivative bounded away from 0 and oo.

Consider first the special case considered in [Mc], specifically, a;; = n~
and b; = m~! for all (i,5) € J. In this case p defined by (4.5) is just the
uniform distribution on J. Moreover, for all z, 2/ € J* (and k > 1) the sets
A(z) = A(2)(A) and A(2') = A(2')(A) are congruent, so they have the same
Hs-measure. By Lemma 4.1, if 2 # 2/, then Hs(A(2) NA(2’)) = 0; consequently,
for each z € J¥,

1

Hy(A(2)) = ffl—}(—'ﬁ—)

But by Lemma 4.2 (cf. (4.4))

ip(A(2)) = 1p(Q2(2)) = ﬁ
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since p is the uniform distribution on J. This proves that in this case fip is in
fact equal to the normalized §-dimensional Hausdorff measure on A.
Unfortunately, this argument does not extend to the general case because
in general different A(z)’s will not be congruent. So instead we will use different
A(2z)’s which are approximately similar. For each ¢t > 0 and w € Q define

n(w,t) = mln{n eN: H (al:m) > t}

M = {(wlﬂw%“wwn(w;t)) we Q}

set

Observe that N; is a finite set of finite sequences z. For any two z, 2/ € N; the
sets A(z) and A(2’) are approximately similar (although they may differ greatly
in size) because the y-direction/z-direction contraction ratios for A(z) and A(2’)
are approximately the same (both about t). More precisely, the affine map
A(2')A(2)7! taking A(z) onto A(2’) is approximately a similarity; its z-direction
and y-direction expansion factors are

«(z) (z)
I 1.
v=1 =

w2 and =—,

H @i 5, H b,
v=1

respectively, where £(z) and £(2’) are the lengths of 2z and z’. Since

£(2) b £(z")
[ (z=) = (%)

v=1 \iviy

are both within a bounded factor of ¢, it follows that there are constants 0 <
C; < Cy < 00, independent of ¢, such that Vz, 2’ € N;

£(z)

bzv 31/.71/
o s 1
= Hs(A(?)) f("
Hbl,a

By Lemmas 4.1-4.2 (see the notes following these lemmas) the overlaps A(z)N
A(2') have Hs- and jip-measure zero. Also, A = J, ¢y, A(2), for each ¢ > 0, and
by (4.4), V2" € Z,

£(2")

fip(A(2") = [] biwaliiy-

v=1
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Hence, Vt > 0 and Vz € MV,

Hs(A(2))
= B0 =

But {A(2) : z € U;soMi} = {A(2) : z € Z}. Therefore, the preceding in-
equalities imply that Hs|A and fip are mutually absolutely continuous, with the
Radon-Nikodym derivative bounded away from 0 and oc.

The preceding result implies that D(p)(= HD(fip)) = 6. For if S C A is
any Borel set such that fiy(S) = 1 then 0 < Hs(S) < oo. But Proposition 3.3
also specifies D(p). Comparing (3.3) with the equation D(p) = § shows that

m
(4.9) > biyilogy; =0,
i=1

where
ng
_E : S—r
= a’ij
Jj=1

Moreover, since p maximizes D(-), Proposition 3.4 implies that p = p* where
p* satisfies (3.7)—(3.8). Using (4.9) in Formula (3.8) for ¥ shows that ¥ = 6§ —r
and using (4.9) in Formula (3.8) for A shows that A = r. Consequently, by (3.7),

baly" = Chai """ V(i,j) € T,
so Cvf~ =1wv. Finally, Formula (3.8) for p shows that p < 1, since 0 <
a;; < b; < 1V(i,j) € J, so v; = v is independent of i. Now, by (4.9), v = 1

This proves (4.7), and (4.8) follows because r was chosen so that 3.3 b7al i
=1. O

Proposition 4.5. If there exists a constant ¥ € R such that
n;
> ad=1 Vi=1,2,...,m,

then § = ép and 0 < Hs(A) < 0.

Proof. Let r be the unique real number such that Y ;- b7 = 1. Then
DI afjb,’ =1, so by Theorem 2.3, 9 +r = . Define p € & by

= aj;b, (i) € J.

Recall the approximate square By(w) defined in (1.2), and recall that in

computing Hausdorff measures of A coverings by sets m(By(w)) may be used in
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place of coverings by open balls. By (1.3)—(1.4), there exist constants 0 < C] <
C} < oo such that Vk = 1,2,... and Yw €

diam(m (B (w)))*
L (w)

(11 o) (1)

C; < < Cy,

which implies
diam(7(By(w)))?*" ,
PRETIN %) B

(since jip(m(Bk(w))) = pp(Br(w)) = [1,25 af ;, TIo—1 b7, by (1.2) and (4.4)).

Now consider any covering { F}, F»,...} of A by sets F; of the form 7(Bg(w)).
By the preceding inequality, together with the fact that fi, is a probability
measure on A, 3~ diam(F,)%*" > C{ > 0. Therefore, Hg,(A) > 0.

Next let Fr = {Bi(w) : w € Q} be the collection of all k" generation
approximate squares; observe that each Fj is a (finite) covering of 2. Recall that
distinct approximate squares are either disjoint or one is properly contained in
the other. Let Gy = {B € Fy : B is not properly contained in any other
B’ € Fi}; then Gy is a covering of Q. For any 7(B) € nGy,

Ci <

diam(7(B)) < Cyb*

where b = max(by, b, ...,by) < 1, by (1.4). By taking k large, we can make Cab*
arbitrarily small. But Vk > 1

z diam(m(B))®*" < C} Z fip(m(B)) < C3.
BEGk Begk

Thus
H19+T(A) S Cé < 0. O

Proposition 4.5. Let r be the unique real number such that Y v, b} = 1.
If 6 = 6B, then

ng
(4.10) el =1 Vi=1,2,...,m.

Proof. Since 6 = 6p, Theorem 2.3 implies that >3;2, 57%, bla fJ T = 1.

Define v; = Z]' 1 ” s then Y blv; =1 =) bl. We will show that if y; # 1 for

some %, then for some € > 0,

Hg_s(A) < 00,
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contradicting the fact that § = g is the Hausdorff-Besicovich dimension of A.
So assume that y; # 1 for some i. For ¢ € [0,1], define

m
=D hv
i=1

Observe that ¢(0) = ¢(1) = 1 and that " (9) = 3,677 % (log v;)? > 0, for all
4, since log v; # 0 for at least one 3. Consequently,
0<pW<1 v € (0,1).
Next, define for each ¥ € [0,1] a probability vector py € £ by
bra §—r, —9

9 i zJ % .o
P = ————, 1,]) € J.

N ¢ (9) .4)

Write pg and fig in place of pp, and fip,. The measures py form a one-parameter
exponential family of probability measures on £2; the assumption that «; # 1 for
some % assures that py and pyg are distinct (in fact mutually singular) when
9 # 9. For any approximate square By(w) (see (1.2)),

k Ly (w) (H%")
o8 = ¢ ([T 0.) (1L o W) Eo—
v=1 1:[ Vi,

But by (1.3)—(1.4), there exist constants 0 < C] < C} < oo such that for every
k=1,2,... and every w € (,

S
(1) (i )
hence V¥ € [0,1],
Ly (w)
IT ~.
(4.11) diam(m(By(w)))® < Cyp(9) s (Br(w)) —F=

(ny)

We will use this inequality along with the fact that ¢(d9) < 1 V9 € (0,1) to
produce efficient coverings of A by w-images of approximate squares.
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Recall that the ratios a;;/b; € (0,1) for all (,5) € J. Hence, by (1.3), the
ratios Li(w)/k are bounded away from 0 and 1, at least for large k; i.e., there
exist constants 0 < ¥, < 97 < 1 such that Vw € Q

L
1-9; < limint 264 < lim sup—k(—w) <1-49,.
k—oo k k—00 k
Now for any w € 2, it must be the case that
Ly (w) 1/k
IT .
(4.12) liminf { —2=1 <1
k—oo k 1-9,
(IT)
v=1
or
Li(w) 1/k
II
(4.13) liminf { —2=— <1
—00

k 1-9,
(IT~.)
VH=1 i

This may be seen by taking a sequence k; < k2 < ... of integers such that, with
£y, = Ly, (w),
Ln/ky — 9 €1 —91,1 -],

L k
61 logy, - A< lim supk™'> log 7,

v=1 o0 v=1

K k
k') log i, — lim supk™') log v,

v=1 k—oo v=1
one or the other of (4.12)-(4.13) will hold, depending on whether
lim k! ZLllog v:, is negative or nonnegative.

Since 0 < ¥2 < ¥; < 1 it must be that ¢(91) < 1 and ¢(J2) < 1. Set
b = min;<;<m b;; then 0 < b < 1 and there exists ¢ > 0 such that 6% > ¢(9;) for
¢t =1 and 2. For each k = 1,2,... let G; be the set consisting of those 7 (B (w)),
w € §, for which
Li(w)

II .
v=1
( k )1—191
J__:];'qu

< b—Ek

or
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L (w)

H Yi,
v=1
(1) ™
J;[I’Yz.,

and for which there is no o’ € Q\{w} such that By(w) is properly contained in
By (w') (recall that Yw, o’ € Q, By(w) N Bg(w') = @ or one of Bg(w), Bg(w') is
contained in the other). By (4.12)—(4.13), Up=n G is a covering of A for each
N=12,....

Let 7(By(w)) € Gx; by (1.4), diam(7(By(w)))™¢ < (C1b*)~¢. Consequently,
by (4.11) (recall that ¢(¥9;) < b3¢)

—ck
<b7

diam(m(By(w)))°~® < Cb™* g, (Bi(w))

for i = 1 or 2 and a suitable constant C' < co. Now for any two distinct 7(Bg(w)),
7m(Bk(w")) € Gk, Br(w) N Bi(w') = @; since g, is a probability measure, it follows
that for each k = 1,2,...

> diam(m(Bg(w)))’ ¢ < 2Cb*
Gk

= f: > diam(n(Bg(w)))’ ¢ < 12C~be < o0
k=N Gy a

— Hs_.(A) < 1—2_°;— < 0. o

In summary, we have proved:

Theorem 4.6. The following are equivalent:
0 < Hs(A) < o0
0 =6p;

g
Zagj-r=1 Vi=1,2,...,m.
j=1

(Here r is the unique real number such that Y ;- , b7 =1.)

5. The Hausdorff-Besicovich Dimension. In this section we complete
the computation of the Hausdorff-Besicovich dimension 6z of A. Recall from
Section 3 that

5.1 > .
(51) n > max D(p)
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Here we will show that the reverse inequality is also true. For ease of notation
we will set § = maxpex D(p) throughout this section.

We start by considering a 3-parameter family of probability measures on J.
For 9 € R, A € R and p € (0,1) define a probability vector p(d,A,p) € X, by
defining

(52) pij(ﬂ’)‘ap) C(ﬂ A p)az]b;\ 0(711(19)),)—17 (37]) € \7,
where
(53) 2u(9) = Sa, iz 1m,
and

m n; —1
(5.4) c\p) = [} e (n)Y]

i=1j=1

Write p9,x,p and fig x,, in place of pp(g.x,p) and fip(s,x,p), respectively. We will
construct an efficient cover of A with the aid of the measures jg x ,.

Lemma 5.1. There ezists a real-valued continuous function 9(p),
p € (0,1), such that for every p € (0,1),

(5.5) C(¥(p),8,p) = 1.
Proof. There are two distinct cases, each requiring a separate argument.

Case 1. Assume that there is no 1) € (0,1) such that aj; = b; ¥(i,j) € J.

First, we show that for each p € (0,1), there exist ¥ € R and A < § such
that C(9, A, p) = 1. For this it suffices to show that for each p € (0,1) there exist
9, A € R such that C(9,,p) =1 and D(p(J, ), p)) = A, because then A must be
<é.

Fix p € (0,1) and ¥ € R. The function C(9,],p) is strictly increasing and
continuous in A, with limit +0o as A — +o00 and limit 0 as A — —oo (since
0 < b; < 1). Consequently, by the intermediate value theorem, there is a unique
A = A(9,p) € R such that C(9,,p) = 1. Moreover, A(Y,p) is jointly continuous
in ¥, p since C(9, A, p) is jointly continuous in 9, A, p and strictly increasing in
A

By Proposition 3.3,

_y  JogC(¥,\,p) | 7(9,)p) b(9, ), p)
(56)  DEOAP) == 50 T 50,00 {”_aw,x,p)}
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where

m n;

a(ﬁaAvp) = Zzpij(ﬂ’)‘vp)log Qg
i=1j=1
m n;

b(ﬂ,)\,p) = Zzngw,)\,l’) IOg bia
i=1j=1
m n;

(9, 0) = Zzpw 9, A, p)log i (V).

=1 j=1

Note that each of these is jointly continuous in ¥, X, p; hence, v(d, A(9,p),p) is
jointly continuous in ¥, p. Now (9, ], p) is a weighted average of the functions
~i(9) defined by (5.3), and clearly v;(9) — 0 as 9 — +oo and v;(d) — oo as
¥ — —00, since 0 < a;; < 1. Consequently, for each fixed p € (0,1),

lim (9, A(9,p),p) = —o0,
¥9—00
Sum (9, A(9,p),p) = oo.
By the intermediate value theorem, for each p € (0,1) there exists ¥ € R such that
Y(9,A(9,p),p) = 0, and therefore C(9,A(9,p),p) = 1 and D(9, (9, p),p) = A, by
(5.6). This proves that for each p € (0,1) there exist A < § and ¥ € R such that
C(W,\,p) = 1.
Second, we show that there is a continuous function 9(p) satisfying (5.5).

It is here that we use the assumption that there is no € (0,1) such that
a;'j =b; Y(i,5) € J. Define

F)‘,p('ﬂ) = 19 )‘ap Zb)\ 19'7% &

then

FY ) = i{ -

(9) Yi(9)  vi(9)?

=1

o+ 0] g Eus %‘(19)2] }@—%w
and

ni
Yi(9) = Zafj log aij,

i
= Zafj(log aij)2
j=1
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By the Cauchy-Schwarz inequality, v/'v; — (7/)? > 0 unless log a;; = loga; V3,
and in this case v//v; = log a;, so FY ,(J) > 0 unless ploga;; = logb; V(i,5) €
J. But we have assumed that this is not the case; consequently, for each pair
(A,p) € Rx (0,1) the function F) ,(d) is strictly convex in 9.

Now F) ,(9) is strictly decreasing in A. In the first part of the proof we
showed that for each p there exists A < § such that F) , attains the value 1;
it therefore follows that for each p the function Fs, attains a value < 1. But
Fs,(9) is strictly convex for ¥ € R, so F5,(d) — oo either as ¥ — oo or as
¥ — —00, and hence Fj ,(9) = 1 has either one or two solutions 9. Define ¥(p)
to be the larger of these two solutions; then Fy ,(9(p)) > 0. If Fy ,(9(p)) > 0
then 9J(-) is continuous at p, by the implicit function theorem. If Fy ,(9(p)) = 0
then for each € > 0,

Fsp(9(p) —€) > 1,
Fsp(9(p) +€) > 1,
Fs,(9(p) —¢€) <0,
Fy5,(9(p) +¢€) >0,

since Fyg/, > 0. Since Fj ,(9) and Fy ,(¥9) are continuous in p, it follows that for
p sufficiently near p

Fs55(9(p) —€) > 1,
Fs,5(9(p) +¢) > 1,
F5 ;(9(p) —€) <0,
F{50(0) +€) > 0,

and therefore any solution ¥ of Fs;(9) = 1 must lie between ¥(p) —e and
9(p) + €, by convexity. This proves that J(-) is continuous at p. ]

Case 2. Assume that there exists n € (0,1) such that a?j = b; for all
(1,j) € J.

The argument used in Case 1 fails here because F) ,(?) is no longer strictly
convex in 9 when p = 7. In fact, the family {p(dJ, A, p)} of probability measures
on J is overparametrized in this case: in particular, p(4,\,n) = p(0,A,n) for all
9, X € R, because

alb) =0y (9)"71 = 57620 (nab? )1 = bdnl Tt = b2y (0)7 7,

and so F) ,(9) = C(¥,\,n)~! is constant in ¥.

Consider a probability vector p* which maximizes D(p). By Proposition
3.4, p* = p(9,A+9,p) for some triple (9, ], p) satisfying (3.8). But the equa-
tions (3.8) imply that p = n (since a?j = b;) and A+9 = § (this is always
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the case—compare (3.8) with (3.3)). Consequently, by the previous paragraph,
p* = p(0,6,n). Now (5.6) implies that

log C(0,6,n)
b(0,6,7)
because b(J, A, p)/a(9, A, p) =n. Therefore, C(0,6,n) =1, i.e.,

6 = D(p(0,6,m)) =6+

m
(5.7) > obind =1.
i=1

This implies that Fj,(9) =1 for all ¥ € R.
Since 0 < b; < 1 for each i = 1,...,m, there exists, for each p # 7, a unique
¥ = 9(p) such that

Foy(9) = 380001 — 1,
i=1

moreover, (5.7) guarantees that 9(1 — p/n) — 0 as p — 7. The implicit function
theorem implies that ¥ = ¥(p) is continuous and differentiable at each p # 7, so it
remains only to prove that 9(p) is continuous at p = 7. Set ¢¥(p) = ¥(p)(1 — p/n).

Then ,
dy _ Z(log ni)bi"”(p)nf
dp 3 (1og bi)b; ¥ Pnf |

Since 1(p) — 0 as p — 7, it follows that ¢’(p) converges to a constant as p — 1.
Consequently,

Y(p) ~ C(1—-p/n)
as p — 7. By definition of v, it now follows that ¥(p) has a finite limit at
p=n. o

Lemma 5.2. For each w € Q, there exists a triple (9,),p) € Rx R x (0,1)
such that

. _ 1/k
(5.8) tim sup {(b, .-bs,) S o p(Be() " > 1,
where § = maxpex D(p) and By(w) is defined by (1.2).

Proof. Fix w € Q. Then for any (J,),p) € RxR x (0,1) and k € N,

L (w) 9
(59 horp(Be(@) = (€O IT @s.)

u=: p
(Mw®) «

X oo (I_Ilb')
IT v
v=1
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Set A = §. By Lemma 5.1, for each p € (0,1) there exists 9 = ¥(p) varying
continuously with p such that C(49,6,p) = 1. For any such pair p, ¥, equation
(5.9) may be rewritten as follows:

{(b, . bi,) " po,6,0(Br(w)) }l/k

Ly (w) o/k

H a’iuju 1 Lk(w)

= | 5| e p-Zlog i, (0) = = Z log i, (¥)
H biu v=1
v=1

Since by (1.3)

Ly (w) 1/k
I1 @i
. =1
lim | &=&— =1
k—o0 k ’

[T
v=1

it suffices to show that there exists p € (0,1) such that for ¥ = 9¥(p),

1 k 1 Lj(w)
: i - L (9)— = ‘ >1.
(5.10)  lim supexp{ p EIIOg %, (9) — 2 ,;1 log i, (9) p > 1

Define
po = lim infy_, oo Ly (w)/k,
p1 = lim sup_o () /k-

Observe that 0 < pg < p1 < 1. Recall (Lemma 5.1) that 9 = 9(p) is a continuous
function of p, hence so is v;(¥(p)) for each i = 1,...,m, and therefore also are

lim sup — Zlog %, (9(p))

n—o0o
V_

and
NS RS
liminf 23 _log . (9(p)-

Consequently, by the intermediate value theorem, at least one of the following
must be true:

(i) lim sup — Zlog i, (9(p1)) > 0
n—0oo l/_
(ii) liminf — Zlog %, (9(po)) <

n—oo
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1 n
(iii) lim sup ~ Elog vi, (9(p«)) = 0 for some po < ps < p3.
nooo Bymy
In case (i), (5.10) holds with p = p; and ¥ = ¥(p;); in case (ii); (5.10) holds with
p = po and 9 = 9(pp); and in case (iii), (5.10) holds with p = p, and ¥ = I(p4).
For instance, consider case (i) (the other two cases are similar). Set p = p; and
¥ = J(p1), and choose a sequence k; < ke < ... such that

k]
lim — Zlog v, (9) = hm sup Zlog 7, () >0

j—oo k ki
and such that both {k™!Lg(w)} and {(Lg(w))™ EL’“(“’) log v;,(9)} converge
along the subsequence {k;}. Set £; = Ly, (w), j = 1,2,...; then

,liff,‘o {p—zlog Y, (9) — ZIOg Yi, (9 } >0,

Bt

since p = lim sup,_, oo k™' Li(w) > limj_oo kj_lfj. This implies (5.10). ]

Theorem 5.3.
g =10 D
n =56 (=max D(p)).
Proof. By (5.1) we need only show that 6g < 6. Fix e > 0 and n > 0. We
will construct a covering U = U, of A consisting of 7-images of approximate
squares Bg(w) such that each element of U has diameter < n and

> (diam U)*+3 < C,
Ueu

for a constant C. < oo depending on ¢ but not 7. This will imply that Hsy3:(A) <
o0 Ve > 0, which in turn will prove that g < 8.

Let F1 C F3 C ... be a sequence of compact subsets of R x R x (0,1) such
that (J,—; F, = Rx R x (0,1). For each k = 1,2,... let G, be the collection of all
m(Bg(w)), w € Q, such that Bg(w) is not properly contained in any other By(w')
and such that

(5.11) (H i) o p(Belw)) > (max b

for some (9,X,p) € Fy. (Recall that for distinct w, w’ € Q either By(w) and
By (w') are disjoint or one is contained in the other.) By Lemma 5.2, Ux =
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Urex Gk is a covering of A for each K = 1,2,.... By (1.4) there is a constant
C < 0o such that for any approximate square By (w),

k
(5.12) diam(n(By(w))) < C [] bi.-
v=1
Since max; b; < 1, it follows that for sufficiently large K all elements of Uk

have diameter < 7. Thus, to complete the proof it suffices to show that for some
choice of the sets Fy

(5.13) 33" diam(n(By(w)))*T* < co.
k=1 Gi
Choose F; C F5 C ... so that Jge; Fx = R xR x (0,1) and so that each Fj
has a finite subset Ey = {(¥;,Ai,p:) : ¢ = 1,2,...,k} of cardinality k¥ with the
following property: For each (9,,p) € Fy, there exists (9;,A;,p;) € Ef, such that
Yw € Q,
porp(Br®)) _

——br 222 < (maxb;

B Baw)) = (Y
That this is possible follows from the continuity of the functions C(¥9, ), p), and
~i(¥), together with the formula

)—ek.

k
) (H 'yiv(ﬁ))p
o B = oo (TT0) ™ (11 &) E—

Y Y IT %
v=1

valid Yw € Q and V(9,A,p) € RXxR x (0,1). It now follows from (5.11)—(5.12)
that for every m(Bg(w)) € G there exists (9;, s, p;) € Ex, such that

diam(m(By(w)))**% < Opig, xi,p0 (Br(w)) (max; b;)°*.

Recall that each pg x, is a probability measure on €2 and that distinct sets
m(Bk(w)) in Gk are disjoint. Therefore,

S diam(r(By())*+*

Gk
k
< C(max; )Y ") o, x 00 (Br(w))
i=1 Gy
S Ck(maxz- bi)ek;

since (max; b;) < 1, this proves (5.13). O
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