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Outline

1. Calderdon problem and Coupled-Physics (Hybrid) Inverse Problems
2. Photo-acoustic Tomography

3. Elastography

4. Other HIP & Elliptic Theory

5. HIP with Large Redundancies

6. Qualitative properties, CGOs, Runge approximation
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Optical Constrast in medical imaging

Hematoma  IVentricles (CSF) | Skin

CSF

Sagital Sinus
{Blood Vessel)

Skuli | Gray Matter | White Matter

Segmented MRI data for a human brain.

Anatomy of a human brain based on MRI data.
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Optical properties of a healthy brain

= Reconstruction
Original MRI data init. guess D =1 cm2ins)

Sources & Detectors

(60 iterations ~ 70 min)

Brain with clear ventricle in neonate. (A.H.Hielscher, Columbia biomed.)
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Scattering for blood-filled ventricle

5 22 Reconstruction
Original MRI data (init. guess D =1 cm2/ns)

D [cmAns]

blood filled ventricles Sources & Detectors
(occurs in 15-30% of : : .
all preterm infants) (60 iterations ~ 70 min)

Brain with blood-filled ventricle in neonate. (A.H. Hielscher, Columbia biomed.)
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Mathematical model: Calderon problem
Optical Tomography (neglecting absorption to simplify) is modeled by:
—V - -v(x)Vu=0 in X and u=f on 0X.
Calderon problem: Reconstruction of v(x) from knowledge of the Dirichlet-

to-Neumann map A, where f— A, f = v - Vugx on the boundary 9X.

The Calderon problem is injective: Ay = Ay = v =7.

[Sylvester-Uhlmann 87, Nachman 88, Brown-Uhlmann 97, Astala-Paivarinta 06, Haberman-Tataru 11].

The Calderon problem is unstable: The modulus of continuity is loga-
rithmic [Alessandrini 88], Which results in low resolution:

~ —d
Iy = Fllx < ClIn[Ay = Asllg|
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Complex Geometrical Optics solutions

Injectivity of the Calderdon problem is proved by showing that g1 = ¢»
when (A —qg;))u; =0 and /X(ql — go) ujus dx = 0.
Statement on the density of products of (almost-) harmonic solutions.

CGO solutions are of the form

up = e’ (1 +p(x)) p=k+ik-eC” |kl=I|k"|, k-k-=0.

Property: |p||¢p| is bounded (v, is small as |p| — c0).
Choosing p; and py such that p; 4+ po = £ € R™ and |p1], |p2| — oc:

im [ (a1~ @upupsds = [ (a1 - a)e7dz =0
lp1l,lp2|—00 /X X

However, |ui|,|us| ~ €lél to determine g(¢): the Calderén problem is a
severely ill-posed inverse problem with low resolution capabilities.

Guillaume Bal Hybrid Inverse Problems



Hybrid Inverse Problems 2019

High resolution Ultrasound

Ultrasound Imaging (ultrasonography) is an imaging modality that pro-
vides high resolution. However, it may display low contrast in soft

tissues.
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High resolution MRI

Hematoma ventricies (CSF) | Skin

CSF

Sagital Sinus
{Blood Vessel)

Skuli | Gray Matter | White Matter

Segmented MRI data for a human brain.

2019

MRI also provides high resolution and may also display low contrast in

soft tissues.
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High Contrast and High Resolution

High-contrast low-resolution modalities: OT, EIT, Elastography. Based
on elliptic models that do not propagate singularities (well).

High-resolution low-contrast (soft tissues): M.R.I, Ultrasound, (X-ray
CT). Singularities propagate: WF(data) determines WF(parameters).

High-contrast & High-resolution:
Hybrid Inverse Problems (HIP): Physical
Coupling between one modality in each
category.

HIP are typically Low Signal.
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T he Photo-acoustics Effect

\ Ultrasonic

Laser/
RF pulse

‘\.\;[' A | ‘ #/‘J \

v

emission

oy s L Ultrasonic
'ﬁ"d_ == ” - f .
T detection
f -
; | Thermal| | Acoustic| |Ultrasonic Image
Absorption — : —p L §
expansion waves detection formation

Coupling between (Near-Infra-Red) Radiation and Ultrasound.
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Experimental results in Photoacoustics

Reconstruction of Ultrasound generated by Photo-Acoustic effect.

From Paul Beard’s Lab, University College London, UK.
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Experimental results in Photoacoustics

Reconstruction of Ultrasound generated by Photo-Acoustic effect.

From Lihong Wang's Lab (Washington University)
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Elastography and Magnetic Resonance

Elastogram

Anatom

Y
o
=
£ . o
Sshear Stiffness (kPa)

P

® L >
Shear Stiffness (kPa)

Ia

Ascites

Patient with Ascites Patient with Obesity
i , g + -| =
E Du!.placeﬂent {pm) P g Disp!ue?mnl {umy)

=

Assessment of Hepatic Fibrosis by Liver Stiffness

Coupling between Elastic Waves and Magnetic Resonance Imaging

From Richard L. Ehman’s Lab (Mayo Clinic, Rochester, MN)
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Elastography and Ultrasound

A High frame rate B Displacement estimation C Motion matching
acquisition

Displacement
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| ciné-loop D Reconstruction

Strain estimation %
and segmentation

Electromechanical Wave Imaging (EWI) of the heart

Coupling between Transient Elastic Waves and Ultrasound
From Elisa Konofagou's Lab ( University)
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Current Density Imaging (CDI or MREIT)

(A

r—

—/

(A) An experimental setup using a cylindrical shaped phantom filled with a conductive
agar/gelatine. Electrical current is passed through the gelatine using a current amplifier.

(B) The measured results of the experiment. MR isosurface data is shown in blue and CDI
streamline data, showing the flow of electrical current, is shown in red. The black lines indicate
the electrical circuit schematic and the locations of the electrodes in contact with the gelatine.

Generated current with H, measured by MRI where Vx H = ~v(x)E (=:J).
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Ultrasound Modulation
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Smaill vibration of scatters

Optical tissue properties Modulated by Ultrasound.

Coupling between Optical or Electromagnetic Waves and Ultrasound

From Biomedical Photonic Imaging Lab (University of Twente).
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Hybrid inverse problems and internal functionals

e Hybrid (Multi-Physics) Inverse Problems (HIP) typically involve two-
steps.

e [ he first step solves a high resolution inverse boundary problem, for
instance by inverting Ultrasound Measurements or Magnetic Resonance
Measurements.

e [ he outcome of the first step is the availability of Internal Functionals
of the parameters of interest. HIP theory aims to address:

e Which parameters can be uniquely determined
e With which stability (resolution)

e Under which illumination (boundary probing) mechanism.
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Photo-Acoustic Tomography

High Contrast: Optical (or Electromagnetic) properties

High Resolution : Ultrasound
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T he Photo-acoustics Effect

\ Ultrasonic

Laser/
RF pulse
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Absorption — : —p L §
expansion waves detection formation

Coupling between (Near-Infra-Red) Radiation and Ultrasound.
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Acoustic Modeling of PAT

Ultrasound propagation is modeled by:
1 9%p
c2 Ot2

with I the Gruneisen coefficient and o the absorption coefficient.

= Ap in RT x R™ p(0,2) = N(z)o(z)u(z),| 9p(0,z) = 0 in R,

The PAT measurement operator (with v additional optimal parameters):

(v(2),0(2), T (2)) = {p(t,z)|t > 0,z € DX} |

The First Step in PAT: reconstruct p(0,x) from data. For X = B(0,1):

o _ 1 190 p(t,y)
H(xz) :=p(0,z) = @Vx : /|y|:1 v(y) (;({% . )t:\y—x\dsy.
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Experimental results in Photoacoustics

Reconstruction of H(x). From Lihong Wang’s Lab

Extensive theoretical literature by Finch, Rakesh, Patch; Kuchment, Kunyansky, Hris-

tova, Lin; Stefanov, Uhlmann (non-constant cs); Scherzer et al.; Natterer.
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Median fissure

Cerebrospinal
fluid

Corpus
callosum

Artifacts caused by resonant cavity (SKU”) showing some outstanding problems
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Quantitative step of PAT: light modeling

(i) Light modeling as a boundary value radiative transfer problem:

v-Vzeu~+ o(x)u — /Sn_l k(xz, v, v)u(x,v)dv' =0, (z,v) € X x S*1

w(x,v) = ¢(x,v) (z,v) € T_ = {(z,v) € 0X xS" 1, v.v(z) <0},
for all illuminations ¢ and consider the data acquisition operator
bz, v) — H(z) = (2)o(z) /Snu(lx,fu)dv; o(z) = oy(z) — /Snk(lx,vl,v)d:c’.

What is reconstructed in (ot,k) (IF known): B. Jollivet Jugnon IP09; Ren 15.
(ii) Light modeling in diffusive regime: optical radiation is modeled by:

~V - y(x)Vu; + o(x)u; =0 in X; u = f; on 0X  Illumination,

with a data acquisition operator f;(z) — H(xz) = I'(z)o(z)u,;(x).
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QPAT with two measurements (illuminations)

—V -vy(x)Vuj +o(z)u; =0 in X, u; = f; on 90X, Hi(z) =T (z)o(x)u;(z).
Let (f1, f») providing (H1, Ho). Define 3 = vag—f. IF:0 £ 8 € WLoo(X):

Theorem|[B.-Uhimann 10, B.-Ren 11]
(i) (Hq, H>) uniquely determine

'—ﬂx xT '———A\ﬁ g xT
@ =@ @ = (T4 )@.

(ii) (H1, H>) uniquely determine the whole data acquisition operator:

fe HZ(0X) — H(f) = H € HL(X).

e Two well-chosen measurements suffice to reconstruct (x,q) and
thus (v,0,N) up to transformations leaving (y, ¢) invariant.
e If [ is known, then (~,0) is uniquely reconstructed.

Guillaume Bal Hybrid Inverse Problems



Hybrid Inverse Problems 2019

Quantitative PAT, transport, and diffusion

The proof is based on the elimination of o to get

H
—V-XQIHfVH—] =0in X, x known on 0X.
1
Ay o A(xH
VY oo xH1

Then we verify that

The IF (8 # 0) implies that the vector field g = va;‘j—f # 0 a.e. This
is a qualitative statement on the absence of (too many) critical points
of elliptic solutions.

Theorem [B.-Ren 11] When one coefficient in (v,0,IN) is known, then
the other two are uniquely determined by the two functionals (Hq, H»).
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Reconstructions for constant I

Theorem|[B.-Ren’11] When one coefficient in (v,0,) is known, then the
other two are uniquely determined by the two measurements (H1, H»).

For instance, assuming I known, we first solve

H
~V. (XQ [H%VH—QD =0 in X, x° = hy on 8X.
1

Then, with ¢g(x) as before, we solve the elliptic equation

(A-I-q)ﬁ—l-E:OinX, /7 = hp on 9X.
X

We thus need to solve a transport equation and an elliptic equation.
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Stability of the reconstruction (r known)

e Case of 2 measurements: H = (Hy,Hy). IF |B] > ¢g > 0, then [B.
Uhlmann IP 10], we find that for k£ > 3:

||(%U> - (’7’5)HC”€—1(X) < CHH o ﬁ”(ck—l—l(X))Q-
Using CGO solutions, |B| > ¢g > 0 for (f1, f2) in an open set.

We thus observe a loss of two derivatives (sub-elliptic estimate).

e Case of n+ 1 measurements: H = (Hy,...,H,41). Under appropriate
assumptions [B. Uhlmann IP 10, CPAM 13], we find for k > 3:

v = Allgrxy + llo = Gllor+1xy < CIH — Hll (o1 xyynt1-
We thus observe a loss of one derivative for v and none for o.
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Why is n + 1 significantly better than 2 ?

—V -vy(x)Vuj +o(z)u; =0 in X, u; = f; on 90X, Hi(z) =T (x)o(x)uj(z).

The elimination of o provides the transport equation
H.
—v.[XQH%]vH—9=0inX, 2<ji<n+4+1.
1

Let B; = Vg—i and ¢ = x?H%. We may recast the above equations as the
over-determined elliptic system

5j'vC+(V°5j)C=O, or V(40 =0

If {B8j}o<j<n+1 fOorms a basis of R" at each point in X for a vector 6.
A redundant (and elliptic) system of transport equations enjoys better stability proper-

ties than a single transport equation.
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Reconstructions in model —V - yVu; + ou; = 0.

T ¥ T T
i i —

¢ 002 00 00 008 C 0 0 00 008

Plot of Internal functionals H;j—=1 2(z) = o(x)uj=12(x).
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Explicit reconstructions —V - yVu,; + ou; = 0.

- - - | -

02 03 001 0 0B 00 00

Explicit Reconstruction of (v,0) from functionals Hj—1 > = ou;j=1 2.
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QPAT reconstructions from two illuminations

H
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QPAT reconstructions from multiple illuminations
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Elastography

High Contrast: Elastic properties
High Resolution Method 1: M.R.I. (Magnetic Resonance Elastography)

High Resolution Method 2: Ultrasound (Ultrasound Elastography)
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Elastography and Magnetic Resonance

Elastogram

Anatom

Y
o
=
£ . o
Sshear Stiffness (kPa)

P

® L >
Shear Stiffness (kPa)

Ia

Ascites

Patient with Ascites Patient with Obesity
i , g + -| =
E Du!.placeﬂent {pm) P g Disp!ue?mnl {umy)

=

Assessment of Hepatic Fibrosis by Liver Stiffness

Coupling between Elastic Waves and Magnetic Resonance Imaging

From Richard L. Ehman’s Lab (Mayo Clinic, Rochester, MN)
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Ultrasound Elastography

=X
=

Passive Driver

Displacement (um)
o KN & o o
Shear Stiffness (kPa)

Elastogram

Acoustic waves at 60Hz
Imaging time: 32s

Active Driver
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Wave Generation, Probing & Reconstruction

Measurement Shear modulus

Shear wave
excitation of shear wave propagation reconstruction
Mechanical Tissue displacement map
or ARFI R

Shear wave <
. 8 bt calculation
¥
Shear modulus
G = pxV?

G : Shear modulus
V; : Shear wave speed
p : Density

Farce

Tx = transmission
Rx = receiver

Multiple M-mode or B-mode images: tissue displacement map
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Physical processes
Propagating waves in body may be separated into two components.

(i) Slowly Propagating Shear Waves (m/s)

Referred to as Elastic Waves

(ii) Rapidly Propagating Compressional Waves (km/s)

Referred to as Sound Waves (ultrasound)

The Slowly Propagating Elastic Waves generate displacements that are
imaged by the probing Rapidly Propagating Sound Waves.

Joint works with Sébastien Imperiale and Pierre-David Létourneau.
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Triangulation and geometry of acquisition

...........

Vi R
Sound propagation in heterogeneous medium in single scattering approximation:
t 6(t —|z|)
u(t,2) = [ | G(s,a—)V ()G (t—s,y=2) (AN (2)dsdy; G(t,2) = .
0./R6 4 |x|

Displacements of random scatterers V(x) by 7(z): V — V(xz + 7(x)).
Phase-space localized measurements:

n

o 2 .
v(tg, zo, k) =/ e~ 2lr—ol e_Zk'(x_xO)u(to,x)das.
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Asymptotic (high frequency) results

Assume a probing wavelength A\ < L the size of the domain. Then

v ~ Vo (|k]0) (AF) (|K|B)

and second measurement after spatial shift to

vr ~ FITWO 0T (1616 (A F) (kD).

AS a consequence, we have the explicit reconstruction procedure

Ur  ilklT(y0)-¢
v

provides an aliased (up to 2« /|k|) estimate for r(yg) - ¢ locally at yp.
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Spatial Resolution

The ratio of measurements provides an aliased version of 7(x) - ¢.
Changing the source/detector geometry allows one to reconstruct vector-
valued displacements 7(x).

The resolution of the method is at best of order /e with ¢ = % Precise

calculations show that the available measurements are of the form

K12 (| I-Eek)y|?
. L aE( 4 N2 —
Ver R Cg/ez‘k|¢'ye 2 (Py)7 ™" 2a (| vo—wol )Vyo(y-i-T(yo +€y))dy-

1
The support of this integral is roughly €72 and so we need |/eVT| < 1
in order for the factor !¥7(%0)-¢ to appear.
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Numerical simulations

Consider a vectorial displacement and yg = (0,—2,0).

(y) = 1oo(cos(7r y1), 2 cos(myy), O) 7(yg) - ¢ = 0.04.

Reconstructions for several realizations of random medium are

I —T(;Jo) 2 |

5x 1077/ |ve]
10 | [ver|/|ve| — 1]
|

1 1 1 1 1 1 1 1
20 30 40 50 60 70 80 90 100

We observe good reconstructions except when v¢ is too small.

Guillaume Bal
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Consider the vectorial displacement

T(y) =

Reconstruction from

Guillaume Bal

0.06

0.04

0.02

-0.02
-0.04
-0.06

-0.08,

2019

Numerical simulations

7(Yo) - €1

-1.8

-1.6

-1.4

-1.2

O(COS(Wyl) 2 cos(myy), O)

Ur o, etlkI7(¥0)-¢ along a line segment
1S}

7(Yo) - €2
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Numerical simulations

Consider the same vectorial displacement

Reconstruction from

Guillaume Bal

T(y) =

Ve

100
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i 4
’W« el M

Reconstruction (blue) and true value (black) of the x-displacement (top)
and y-displacement (bottom) for ¢1 (z) for decreasing e = le=2,5¢ 2, 1e1
(left to right).

The reconstructions fail where the local variations are large.

Limited resolution
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Ultrasound Elastography

=X
=

Passive Driver

Displacement (um)
o KN & o o
Shear Stiffness (kPa)

Elastogram

Acoustic waves at 60Hz
Imaging time: 32s

Active Driver
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Magnetic Resonance Elastography

Anatom

*
o
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Ascites

Patient with Ascites Patient with Obesity
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Elastogram

£ . o
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Shear Stiffness (kPa)
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=

Assessment of Hepatic Fibrosis by Liver Stiffness

Coupling between Elastic Waves and Magnetic Resonance Imaging

From Richard L. Ehman’s Lab (Mayo Clinic, Rochester, MN)
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Elastograms
Elastic displacements are imaged by sonic waves or magnetic resonance.

T he second, quantitative, inverse problem aims to reconstruct the elastic
properties of bodies from such displacements.

In elastography, displacements are solutions to systems of (linear or non-
linear) equations of elasticity.

We first consider scalar second-order equations, joint work with G. Uhlmann
CPAM 2013; and anisotropic systems of elasticity, joint work with F.
Monard and G. Uhlmann 2015.
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Reconstructions from solution measurements

Consider a general scalar elliptic equation

V-aVu+b-Vu—+cu=20 in X, u=f on 0X

with a, b, ¢, V-a of class C%*(X) for a > 0, complex-valued, and ag|¢|? <
£-(Ra)t < a51|§|2. For 7 a non-vanishing function on X, define

ar = Ta, r=7b—aVT, c¢cr=rTcC
and the equivalence class ¢ := (a,b,¢) ~ (ar,br,cr).

Let I € N* and (f;)1<i<s be I boundary conditions. Define § = (f1,..., f1).
The measurement operator E)th IS

Sﬁf: C —> sz(c)z(ul,---,uz),

with H;(z) = u;(x) solution of the above elliptic problem with f = f;.
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Unique reconstruction up to gauge transformation

VCLV’LLJ—FbVUJ—FC”LL]:O in X, ’U,]:fj on 0X, 1 <9< 1
We assume the above elliptic equation well posed for ¢ = (a,b, c).

Theorem [B. Uhimann CPAM 2013]. Let ¢ and ¢ be two classes of co-

efficients with (a,b,c) and V - a of class C"™%(X) for a >0 and m =0 or
m = 1.

For I sufficiently large and an open set of boundary conditions § =
(fj)1<j<r, then My(c) uniquely and stably determines c:

[(a,b+ V- a,¢) = @5+ V3 Dlpmeexy < CIME) = M@yt 200y
[b—Bll ey < ClIMGCE) = MG yyr300 (x5

for m = 0,1 and for an appropriate (a,b,¢) of <.
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Number of internal functionals

V-aVu; +b-Vu; +cu; =0 in X, u; = f; onodX, 1<j<I
Results hold provided that # of internal functionals I is sufficiently large.

When global solutions can be constructed (for instance Complex Geo-
metric Optics solutions), then we can show that

I=1I,=%n(n+3) when ais a tensor

I=1,=n+1 when a IS a scalar.

In both cases, dim(a,b,c) = I, + 1 so I, is optimal # of functionals.

In the general case with a a complex-valued tensor, only local solutions
may be constructed. They are controlled from 0X by a Runge approxi-
mation based on a Unique Continuation principle.
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Boundary controls

The preceding stability estimates hold for an open set of boundary con-
ditions f = (f1,..., fr). What one really requires is that the solution {u;}
satisfy locally linear independence constraints. More precisely, we want
that in the vicinity of a point zg, the gradients {Vu;} and the Hessians
{V ® Vu;} form a family of maximal rank.

This is done as follows. We construct approximate local solution ﬂj in the
vicinity of xg on B(xzqg,r) for » small (think of perturbations of harmonic
polynomials) that satisfy the maximal rank condition.

We then use the Runge approximation (a consequence of the unique con-
tinuation property for our elliptic equation) to obtain the (non-constructive)
existence of boundary conditions § such that the solutions U (and enough
of their derivatives) are sufficiently close to ﬂj and hence also satisfy the
maximal rank condition. This imposes smoothness constraints on (a,b, c).
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Unique reconstruction of the gauge

In some situations (as in Elastography), the gauge 7 in ¢ can be uniquely
and stably determined:

Corollary [B. Uhlmann CPAM 2013] When b = 0O, then 9;(c) uniquely

determines (v, 0,¢). Define v = M9 with Det(M%) = 1. Then we have
the following stability result:

1(v:e) = (3, Ol poo(x) < ClM;(e) = M) [ ppr2.00 -

When MDY is known, then we have the more stable reconstruction:

17 = Tllpreoxy < ClMs(e) = M () [l yp2.00xy-

The reconstruction of the determinant of ~ is more stable than the re-
construction of the anisotropy of the possibly complex valued tensor ~.
This has been observed numerically in different settings.
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Generalization to TE / PAT settings with 6 =0

V-aVu;+cu; =0 in X, u; = f on 90X, 1 <7< J
HJUE = uy, HJPAT = [ cuy, HfAT = [ Scujuj.

Decompose a = B2a with deta = 1. Assume J sufficiently large. Then:

(HY P)1<j<y == (a,c) = any HUF
_Te V-aVB C
(Hf )1<jcs = (a, =+ ?> — any HPAT
R Se V-aVB C
(HI ) 1<j<y = (a, |_|B|2, =T B2> = any HTAT

QPAT: When I known a priori, then (a,c) stably reconstructed.

QTAT: When a real-valued, I always (stably) reconstructed, but not
(B, Re,Sc). When a =1, then (I, Re, Sc) stably reconstructed.
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Anisotropic Elasticity

Consider the reconstruction of anisotropic tensor C = {Cjjki}1<ijki<3

(Cijii = Cjikt = Cijiy = Criij) from knowledge of a finite number of

displacement fields {u(j>}jej, solutions of the linear elasticity equation

V- -(C:(Vu+ (Vo) =0 (X), ulgxy =g (prescribed).

There are 21 unknown components.

Define ¢ = %(Vu—l— (vu)T). When a sufficiently large number of ¢U) are
known, then C can be uniquely and stably reconstructed.
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Assumptions of independence

Assume the existence of 6 solutions such that for 2 C X

ing2 d&t(e(l)(:c), . ,5(6)(93)) > co >0, for some constant cg.
re

Assume also that there exists N additional solutions u®+?1, ... u®t¥ giv-
ing rise to a family M of 3N matrices whose expressions are explicit in
terms of {e(),9,e), 1 <a <3, 1<j <6+ N} such that

ing‘2 > N(M") : N(M") > ¢ >0, for some constant cq,
TEX N M, #M!'=20
My :m Mi : mp;
i1 . 1 : E
for N generalizing cross product N(M) = gty | ) 5 7 | for
ml “ .. m21

mi<j<o1 a@ basis of Sg(R).
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Reconstruction results

Theorem [B. Monard Uhlmann-2015] Assuming the above assumptions
hold for {u(ﬂ)}6+N and {u'(J)}6+N corresponding to elasticity tensors C
and C’. Then C and C’ can each be uniquely reconstructed over 2 from
knowledge of their corresponding solutions, with the following stability
estimate for every integer p > 0

N+6
IC = C'llwpooa) + I1AIVE — divC|lyppoei) < K X (€9 — € Dl pp1 000y

J=1
If C = rC for C known, then
N+6 .
/
||7' — T ||Wp+1aoo(§2) S K Zl ||6(J) — € (])||Wp+1,OO(Q)
J:
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2d Reconstructions in isotropic elasticity

(a) [ur(z)] (b) |uz(z)] (¢) det &(z)

Amplitude and determinant of two elastic displacements u; and u»,.
This and next pictures from B. Bellis Imperiale Monard IP 2014.
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2d Reconstructions in isotropic elasticity

| i A1 2
|1 T 1 B

B
©

e ] s (=) [+5]

13.73
12.5

6] =MW" k= (@) § =107,k =5

Figure 6: (a) Exact values of a(x) (top) and B(x) (bottom); Corresponding
reconstructions with (b) no noise nor regularization, (c¢) with noise but no regularization,
(d) with noise and regularization.

Reconstruction of two Lamé parameters from displacements u; and us.
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2d Reconstructions in isotropic elasticity

(a) (o), B(z)) j ; | (e) 8 =105 &=1 (d) §=10"%%=5§

Figure 7: (a) Exact values of «(x) (top) and p(x) (bottom); Corresponding
reconstructions with (b) no noise nor regularization, (¢) with noise but no regularization,
(d) with noise and regularization.

Reconstruction of more heterogeneous Lamé parameters.
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Other Hybrid Inverse Problems and Elliptic Theory

High Contrast: Electrical, Elastic, or Optical

High Resolution: MRI or Ultrasound.
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Examples of Hybrid Inverse Problems

e Examples of PDE models for High-contrast coefficients:

—V -v(x)Vu+ o(x)u=0 in X, u= f on 90X
—VXVXE+n(2)k?E+ic(x)E=0 in X, vx E=fonodX
—V-C:(Vu+ (Vu)?) =0 in X, u=g on 60X

e In Step 1, High-Resolution modality provides Internal functionals :

H(z) = T§(z)o(x)u(x) Photo-acoustics

H(x) = wu(z) or u(x) Elastography

H(z) = o(x)|ul?(z) or o(z)|E]?(x) Thermo-acoustics
H(x) = ~(z)Vu(z)- - Vu(x) Ultrasound Modulation
H(x) = ~(z)Vu(x) or v(z)|Vu(x)| CDII, MREIT

e One or several illuminations f = f; (and thus H = H;) for 1 <j < J.

Guillaume Bal Hybrid Inverse Problems



Hybrid Inverse Problems 2019

T heoretical analyses of HIP

Can we find general theories for stability/uniqueness of (many) HIPs?
Can we understand role of number of measurements J, of B.C. f;7

Consider as an example the UMT problem

—V -v(z)Vu1 =0 in X, uqp = f1 on 0X
—V -~v(x)Vur, =0 in X, us> = fo on 90X
Hyi(z) = v(z)Vui(z) - Vui(z) in X
Hy(z) = v(2)Vua(x) - Vua(x) in X
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T heoretical analyses of HIP

Can we find general theories for stability/uniqueness of (many) HIPs?
Can we understand role of number of measurements J, of B.C. f;7

Consider as an example the UMT problem

—V -v(z)Vu1 =0 in X, uqp = f1 on 0X
—V -~v(x)Vur, =0 in X, us> = fo on 90X
Y(z)Vui(z) - Vui(z) = Hi(z) in X
Y(x)Vus(z) - Vus(z) = Ha(z) in X
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T heoretical analyses of HIP

Can we find general theories for stability/uniqueness of (many) HIPs?
Can we understand role of number of measurements J, of B.C. f;7

Consider an Ultrasound Modulation Tomography (UMT) problem

—V -v(z)Vu1 =0 in X, uqp = f1 on 0X
—V -~v(x)Vur, =0 in X, us> = fo on 90X
Y(z)Vui(z) - Vui(z) = Hi(z) in X
v(x)Vus(x) - Vuo(x) = Ho(x) in X.

The left-hand side is a polynomial of ~, U and their derivatives. This
forms a 4 x 3 redundant system of nonlinear PDEs in X.
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Systems of coupled nonlinear equations

Hybrid inverse problems may be recast as the system of PDE:

F(v,{ujhi<j<g) = H, (1)
where ~ are unknown parameters and u; are PDE solutions.

For UMEIT, we have

. ' _ —V-’YVUJ' _ 0] .
F(’Y,{uj}lgggj) = ( 7|Vuj|2 ) , H = (HJ) , 2J rows .

(1) is a possibly redundant 2J x (J+m) system of nonlinear equations
with J + m unknowns (m = 1 if ~ is scalar).

HIP theory concerns uniqueness, stability, reconstruction procedures for
typically redundant (over-determined) systems of the form (1) with ap-
propriate boundary conditions.
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The O—Laplacian with J =1

—V - ~v(x)Vu =0, 7(90)|Vu|2(w) — H(z) =0 v = f on 0X.

The elimination of ~ yields the O-Laplacian
H(x)
V|2

The above equation with Cauchy data may be transformed as

—V Vu=0 in X, u=f on 0X.
. 5 , ou
([ —2Vu®@Vu) : Vu+VINH-Vu=0 in X, uwu=/f and 5, = on 0X.
14

Here Vu = @—Zr This is a quasilinear strictly hyperbolic equation with

@(:p) a ‘“time-like” direction. Cauchy data generate stable solutions on
“space-like'" part of X for the Lorentzian metric (I — 2Vu ® Vu).
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Stability on domain of influence

Let v and u be two solutions of the hyperbolic equation and v = u — u.
IF (appropriate) Lorentzian metric is uniformly strictly hyperbolic, then:

Theorem [B. Anal&PDE 13]. Let 37 C X, space-like component of 9X
and O domain of influence of 21. For 06 distance of O to boundary of
domain of influence of 24, we have the local stability result:

2 2 N2 1% > .2 5
/O|’U| + [V 4+ (v —7) deQQ(/Zl 10 f|< 4+ |67] da—l—/O|V(5H| da:),

~

where ~v = ﬁ and 5 = IVLﬂIQ' We observe the loss of one derivative

from 6H to 6+ (sub-elliptic estimate).
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Domain of Influence

Domain of influence (blue) for metric ¢ = I — 2e; ® e, on sphere (red).
Null-like vectors (surface of cone) generate instabilities. Right: Sphere
(red), domains of uniqueness (blue) and with controlled stability (green).
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Elliptic Theory

Consider the system

—V y(@)Vu; =0, ~(@)|Vy|?(x) = Hj(x), wujlox=1F, 1<j<J.

e With J =1, the system is hyperbolic.
e With J > 2, the redundant system 2J x (J + 1) may be elliptic.

e After linearization, we obtain the system:

V-oyVu; +V - -4Véu; = 0 (2)
5v|Vu;|? + 29Vu; - Véu; = &H;. (3)
With v = (6v, duq,...,0uy), we recast the above system for v as

Av:=P;j+Ry))v=S_S

where Py is the principal part and R is lower order.
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Let us define F; = Vu;. The symbol of P;, a 2J x (J + 1) system is:

(|F1|? 2vFy-i€ ... 0 )
Fy-ie  —ylg)? .. 0
]JJ(.CE,S): E 5 5
|Fy|? 0 ... 2vF;y-i€
\Fy-i¢ 0 ... —¢?)

e System said elliptic when p ;(z,¢) maximal rank (J41) for all ¢ e SP—1.
(i) Redundant concatenation of hyperbolic systems (J = 1) may be elliptic.

(ii) ps elliptic IF we choose f; s.t. the following qualitative statement on
quadratic forms holds: {|g|2 —2(F;-€)2=0,1<j5< J} implies £ = 0.

For ellipticity, we thus want the light cones generated by the directions
F; to intersect to {0}. (shown to hold for appropriate boundary conditions f; for

instance using the method of CGO solutions.)
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Theory of Redundant elliptic systems

e [ he system is elliptic in the sense of Douglis and Nirenberg.
Each row and column is given an index s; and t; and the principal term is the homogeneous differential

operator of order s; +t;. For the above system, we choose sop+1 =0, sop, =1, t1 =0, t>2 = 1.

e We need boundary conditions that satisfy the Lopatinskii condition.
Dirichlet conditions on ou; and no condition on oy satisfy the LC.
Indeed, we need to show that v(z) = (6v(z),...,d0u;s(z)) = 0 is the only solution to
6uj(0) =0, F;- N30y + v0%5u; =0, |F;|?6y+ 2vF;- NO,du; =0, z >0
vanishing as z — oo for N = v(z) at x € 9X and z coordinate along —N. We observe that this is the case

if |12 —2(F;-N)?# 0 for some j. This is the condition for joint ellipticity.

e [ heory of Agmon-Douglis-Nirenberg extended to over-determined sys-
tems by Solonnikov shows that Av = S (including boundary conditions)
admits a left-parametrix R so that RA =1 — T with T compact.
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Elliptic stability estimates

From the ADN-Sol. theory results the Stability estimates

J+1
> ol < cznanz w00 +02 3 Ieliac,
J=

For the UMEIT example (H; = v|Vu,|?), this is:

107 ey + 22 0wl g xy < C D NOH l guexey + C2 2 19wl L2 xy:
j J J

e No loss of derivatives from §H to év: Optimal Stability (unlike J =1).

e We do not have injectivity of the system (C, # 0): A can be inverted
up to a finite dimensional kernel with RA Fredholm of index O.
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Injectivity: Holmgren, Carleman, and Calderon

e Assume A is elliptic in the regular sense, i.e., t; =t and s; = 0. Consider, with
t = 2, the two problems

Av =25, v|gx =0, and Al Av = A'S,  v|gx = dwvlgx = 0.

The second system is (J+1) x (J+ 1)- determined even if the first one is
2J x (J+ 1) redundant. It provides an explicit reconstruction procedure.
Moreover, injectivity of the second one implies injectivity of the redundant
(both in X and on 9X) system:

.AU:O, U|8X :8Vv|@X = 0.

e Injectivity for such a system can be proved by Holmgren’'s theorem
when A has analytic coefficients and by Carleman estimates, as obtained
for systems in Calderon’s theorem, for a restricted class of operators A.
Details in: B. Contemp. Math. 2014.
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Holmgren and local results

Holmgren's theorem used for A with analytic coefficients and constant
coefficient PDE theory used for A on a sufficiently small domain X.

When A = A4 has analytic coefficients and A4v = 0O, then an application of Hormander’s
theorem shows that WF4(v) C WF4(det(AYA4)v) so that v is analytic. With vanishing

Cauchy data, v = 0 and injectivity follows.

This provides genericity for hybrid inverse problems (invertibility of linear
and nonlinear IP on open, dense, set).

When the spatial domain X is small, write A = Ag + (A — Ap) with
Ag the operator with coefficients frozen at x = 0. We then apply the
elliptic theory for constant coefficient operators to Ag and then to A by
perturbation on a small domain.
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Carleman estimates and Calderon’s theorem

When A is not analytic and X is not small, proving injectivity is signifi-
cantly more difficult and may rely on Unique Continuation Principles.

Recalling that A = P 4+ R with P leading term, we seek injectivity results depending on
leading term P and not R. This essentially forces p(é4+7N) for € € S* 1 and N € S* ! to
be a diagonal (diagonalized) symbol with diagonal terms that are polynomials in 7 with
at most simple real roots and at most double complex roots. When these assumptions

do not hold, then UCP depends on the structure of lower-order terms.

Applies to modified form of ultrasound modulation problem and systems of
the form (lgl 52) u = 0 with P; satisfying UCP, P> elliptic with simple complex roots

(saving one to control C; all operators of order m here).

Details in: B. arXiv:1210.0265.
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Invertibility and Local Uniqueness for Nonlinear I1.P.

Recast original nonlinear I.P. as

F(vg+v) =H, Ho := F(vg), A = F'(vg).

IF A admits a bounded left inverse (F')~1(vg), then:

v =G(v) == (F) 1 (vo) (H—Ho) — (F) ™1 (v0) (F(vo+v) = F(v0) = F'(vo)v).

G(v) contraction when H — Hg small:

L.ocal uniqueness result for nonlinear HIP.
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UMT reconstructions

sl 1. 1.

Reconstruction (Newton iterations based on system A'Av = A'S) with:
(i) one H; (ii) two H without ellipticity; (iii) two H with ellipticity;
(iv) true conductivity.

Calculations by Kristoffer Hoffmann (DTU).
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Constraints for ellipticity and beyond

e For J small, problem may (or may not) be injective with sub-elliptic estimates.

e For J larger, problem often is elliptic with optimal stability estimates.

e Ellipticity follows from qualitative properties of H; and u;, which hold for open set
of boundary conditions {f;} (results proved using Complex Geometric Optics (CGO)

solutions or Runge approximations).

e Method successfully applied to reconstruction in UMEIT (as above), UMOT :optical
parameters (v,0) (B. Moskow), Thermo-acoustic tomography (electromagnetic coef-
ficients) (B. Zhou); Photo-acoustic tomography; see also Kuchment-Steinhauer
2012 for a similar elliptic theory for pseudo-differential operators.

e For J even larger, more redundant functionals sometimes provide invertible

systems by local algebraic manipulations.
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Hybrid Problems with very-redundant information

What is to be gained by still increasing J beyond guaranteed ellipticity.
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Redundant Internal Functionals with large J

1
UMEIT functionals are H;; = S; - S;j(z) with S;(z) = ~v2 Vu;(z). Then:

1 L b b . _

Strategy: (i) Eliminate F and find closed-form equation for S = (S1]|...|Sn).

(ii) Solve a redundant system of ODEs for S.

Step (i) involves algebraic manipulations (independent at every point z € X).
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Elimination and system of ODEs in UMEIT

Lemma [B.-Bonnetier-Monard-Triki 12; Monard-B. 12].
IF inf cx det(S1(x),...,Sn(x)) > cog > 0, then with D(z) = \/det H(z),

F@) == (VDHY) - $i(0))S;(2), B = (HY).

i,j=1
Moreover, V ® S; = Y g1.m H* (S - VS;) - S H™S; @ Sy with
Q(Sz : VSJ) : Sk — S@ : Vij — Sj : VHZk —|— Sk : VHZ'j — 2F - SkHl‘j —I— 2F - SjHZk

e By algebraic manipulations (only), we obtain |VS = F(z,S)|.

Theorem [idem; Capdeboscq et al. SIIS 09 in n = 2]. There exists open
set of f; for J = n in even dimension and J = n + 1 in odd dimension
such that we have the global (elliptic) stability result:

|7 — ’Y/HWl,oo()Q < C|H — H/||W1>OO(X)'
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Elimination of FF = V(log~)

Recall V - Sj —_— —F-Sj and dS? — FbASE. Then we introduce

X?z(_1)n+J*(S§/\.../\Sg/\.../\%) and find
V- Xj=xdx X} = (=1)Jd(S{A...ASSA .. AS) = (n—1)F - X,

.. 1
Now, X, -5 =0, detS so X;, = DHYS; with D =det H2 =detS. Thus

VX, V(DHY) - S;+ DH"YV - S; V(DHY)-S;— DHYF - S;
(n—1)F - (DHYS,) (n—1)DHYF .S,

so that [B.-Bonnetier-Monard-Triki'll & Monard-B.'11]

B 1 B
F=(HYF.S;)S; = —D(V(DH”) - 5;)S;.
n

This eliminates F' to get a closed form equation for S = (S1|...|Snh).
Note that this requires that S form a frame (invertible matrix).
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System for frame S

We have H = ST'S and dS? — Fb(S)ASE. Not needed:
Can we get V® S; = F;(S) from symmetric and anti-symmetric info.?
This is then a (redundant) system of ODEs.

In Euclidean geometry, the exterior derivative of one forms is

dS(S;,Sk) = S; - V(S Sp) — Sk - V(S; - Sp) + [Si, 5] - Sk,

which gives an expression for the commutator [S;, S;] = S;-VS,; —S;-VS,;.
Also standard expressions for Christoffel symbols give:

2(X-VY) Z=X-V(Y - 2)+Y - V(X -2)-Z-V( - X)-Y - [X,Z]-Z-[YV,X]+ X -[Z,Y].
Thus we find for V.® S; in the basis of the vectors Sj:

Q(SZ' . VS]') : Sk — SZ' . Vij; — Sj : VHZ'].C -|— Sk : VHZ'j — 2F - Squ;j —|— 2F - SjHik.
Finally

VesS; = S H*(S, VS, S H™S; @ Sm = F;(S).

1,k,lm
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Anisotropic conductivities and Calderon problem

Let ¢ be a (sufficiently smooth) diffeomorphism of R"™. Then u solves
V-(wVu) =0

if and only if the function v = wo ¢~ 1 = ¢,u solves

1
V(@ V'0) =0, dy(@)) = ———=D¢'(2) y(x) De(x) .
(1) r=¢"1(a')
If  maps X to X and preserves each x € 0X, then the Dirichlet to

Neumann map (boundary measurements) satisfies

M(y) = M(Px)-

In other words, we cannot reconstruct v uniquely from 2M;M(vy). In n = 2,
this is the only obstruction. In n > 3, the same holds in the analytic case.
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Reconstruction of Anisotropic coefficients

V”)/Vuz'zo X, uZ:fZ 8X, Hij:'Yvui’vuja 1§’i,j§].
Define v = A2 and A = |A|A4 with det(A) = 1. Then for n = 2:

Theorem [Monard B. 12] The internal functionals H = {Hij}?jzl uniquely
determine the tensor A via explicit algebraic equations. Moreover, we
have the (still-elliptic) stability estimate

IA = Al poo(xy < CIH — H' 100

Theorem [Monard B. 12] Let A be known. Then |A]| is uniquely deter-
mined by {H;;}1<; j<2 € Wi°°. Moreover, we have the (elliptic) estimate

HA] = 1A 1o 0y < CIHH = H'l| 1,000

e [ heory applies to higher dimensions and as we saw, to other problems.
Monard-B. arXiv 1208.6029; B-Uhlmann CPAM 2013; B-Guo-Monard, 2013.
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Anisotropic coefficients in MR-EIT.

Consider Current Density Imaging (MR-EIT combination).
—V - v(x)Vu; =0 in X, wu; = f; on 90X, Hi(z) = v(x)Vuj(z), 1<j<J

Define v = 85 with 8 = det~. Then VIogp and v can be reconstructed
locally from algebraic manipulations of Hj provided that J is sufficiently
large and {H;} are “sufficiently independent”.

More precisely, assume (i) (u1,...,un) solution in Xg CcC X' cCc X C R"
s.t. det(Vuq,...,Vup) > cg > 0; (ii) Define

7
—
det(Hq,.. S Hp ks - -,Hn)_

det(Hl,...,Hn) ’

n
Viptr = >, upVu;, 1<k<m, pp=—
i=1

Zr=|Zpal | Zkp|, where  Zy;:=Vpi, 1<k<m

and assume that span {(ZkHTQ)Sym, Qe Ap(R), 1 <k < m} has codimen-
sion one in Sp(R) throughout X’ with H = [H|--- |Hy].

Guillaume Bal Hybrid Inverse Problems



Then ~ is uniquely determined by the constraints:
dety=1 and (3, (Z,H Q)%™ = 0; (A, B) = Tr(A'B).

Then g is reconstructed using

Vlog f = (11> V(51 H1) — (Hy-Hp) V(5 ' Hz)) (FH1, 7H2)5 ' Hy
D|Hq|?
1
— V(3 'H1)(3H1,)), = € Xo,
| H 1|2

where D := |H{|?|Ho|%2—(H71-H2)? > ¢g # 0. This needs to be augmented
with knowledge of g at a point x € 0.X.

This allows us to obtain optimal estimates (consistent with elliptic es-
timates). The reconstructions are purely algebraic for ¥ and Vlog 3.
B.-Guo-Monard, 2013
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T wo-dimensional reconstruction

Start with 4 boundary conditions (g1, 92, 93,94) and current densities

H; =~vVu;, 1<10<4,
Assume |det(Vuqi, Vup)| > c¢1 > 0. Then
Vuz = p1Vug 4+ pupVuo Vug = A Vug + ApVuo,
where the coefficients (uq, o) can be computed by Cramer’s rule as

( ) = det(Vusz, Vus) det(Vuq, Vus) . det(Hs, H>) det(Hq, H3)
PLE2) = \ Get(Vuy, Vo) det(Vuy, Vuo) )  \det(Hy, Hy) det(Hy, Ho) )’
and similarly for (A1, X\>). Define the known matrices

Zy = [Vu1|Vuo] and  Zp = [VA1[VA3].

Define H = [H1|H>s] and J = [? —01], we construct,

M, = (Z HT )SY™,  for k=1,2.

Guillaume Bal Hybrid Inverse Problems



Hybrid Inverse Problems 2019

Reconstruction of g

Define v = B4 with dety = 1. Curl operator is defined as JV-. Recast
measurements as %ﬁ—lHi = Vu,; for ¢ = 1,2 and apply curl operator:
Viogg- (Jy 'H;)) = —JV - (77 1H)).
Considering both 3 = 1,2, simple calculations lead to
N JV - (371Hy)
log 8 = —Jy(H T ! .

This is an elliptic overdetermined system for log s uniquely determining
B when B(xg) is known. Note Vlog g is determined point-wise from local
information.
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Reconstruction of ~

Recall Vuz = u1Vui + uo>Vuo, Vug = AVui + XoVuo, and apply JV-
using that Vu; =~ 1H, is curl free to get

Vit J3 YHy 4+ Vpo - J3 1 Hy =0, VAy-J5 1Hy 4+ VAx - J5 1Hy = 0.
Using that J3—1 = 7J (since dety = 1), we get
0=75:2ZH'J=5:(Z,H' )Y =5: M, k=1,2.

Assuming {M1, M} are of codimension 1 in Sy(R), then ¥ must be parallel
to the matrix,

B— 2M]§2M12 . 2M12M22 M]]1‘1M22 . M122M211
o\ MitMms? - MEMAY 2MiPMSt —2Mit M2

Here, M,ij denotes the i3 element of the symmetric matrix M. Since
dety =1 and ~ is positive, we obtain the explicit local reconstruction

1
5 = sign(B'1)(det B)"2B.
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Reconstructions from (4) MR-EIT data

——true p
2fi < B(0=0%)
-~ Blo=4%)

=1 -05 0 0.5 1

-
o
[N
-
N
-
o
o
o)
N

——true
<= {(a=0%)
---Ya=4%)

-05 0 0.5 -1 205 0 05 1

Anisotropy NO noise 4% noise + TV Cross section
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Reconstructions from (4) MR-EIT

data

2019

22

1.8

1.6

1.4

1.2

——true
-o- E(0=0%)

51— -E(a=4%)|

1 1.2 1.4 1.6 1.8 2 1 1.2 1.4 1.6 1.8 2 =

o
o
[N
-
N
—
o
o
o)
N

Determinant No noise 4% noise + TV

-0.5

0 0.5

1

Cross section
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Reconstructions from (4) bottom illuminations

-0.5 0 0.5 1

-

1.2 1.4 1.6 1.8

N
N
-
(M)
N
»
-
)
-
o
N
N

1.2 1.4 1.6 1.8

n
=

Coefficient NO noise 4% noise + TV Determinant
Independence of Vu; not valid close to boundary were u; = 0 is imposed.
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Qualitative Properties of Elliptic Solutions
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The IFs and the CGOs

Several HIPs require to verify qualitative properties of elliptic solutions:

e the absence of critical points in Photo-acoustics and Elastography

e the hyperbolicity of a given Lorentzian metric in UMOT

e the linear independence of gradients of elliptic solutions in UMOT
e the joint ellipticity of quadratic forms in UMEIT

(i) Use CGO solutions whenever available: verify the property on unperturbed
CGOs (for constant-coefficient equation), by continuity on perturbed CGOs, and then

for close-by illuminations f; on 0X.

(ii) When CGO solutions are not available (anisotropic or complex valued coef-
ficients), construct local solutions (by freezing coefficients) that satisfy such conditions.
Then use UCP and the Runge approximation to control such solutions from 0X.

When qualitative properties fail to hold, stability degrades (Alessandrini et al. QPAT)
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Vector fields and complex geometrical optics

o Take p = (pr +ip;) € C* with p-p = 0. Then Ae’* = 0. Let
u1 = ReP? and up, = JeP* so that Vup = ePT‘ZU(cos(pZ- -xpr) — Sin(p; - :I:pi)>
and Vup = epr'x(sin(pi -xpr) + cos(p; - xpz)) We thus find that

|IVuq| > 0, |IVus| > 0, Vui - Vur = 0.

1
o Let uyp(z) = 7_5610"”(1 + wp(ac)) solution of —V - yVu, + ou, = 0.
Theorem[B.-Uhlmann 10]. For ¢ sufficiently smooth and k£ > 0, we have

|P|||¢p||Hg+k+e(X) + ||¢p||Hg+k+1+s(X) < C||Q||H%+k+a(X)-

Thus the perturbed gradient directions 61 = V/El and 6>, = V/EQ still
satisfy |61] > O, |02] > 0, and |61 - 05| < 1 locally so that (61,05) are
linearly independent on the bounded domain X of interest.
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Existence of critical points

ARMA 2017

Joint with Giovanni Alberti and Michele Di Cristo

Guillaume Bal Hybrid Inverse Problems



Hybrid Inverse Problems 2019

Main T heorem

Theorem: Let X C R3 be a bounded Lipschitz domain. Take ¢ €

1
C(0X)NH2(0X). Then there exists a nonempty open set of conductivities
o € C®(X), o >1/2, such that the solution v € H1(X) to

—V:-oVu=0 in X, u=g9g on 90X

has a critical point in X, namely Vu(x) = 0 for some x € X (depending
on o).

In spatial dimension n = 2, it is known that the number of critical points
(where Vu = 0) is related to the number of oscillations of the boundary
condition independently of the (positive) coefficient o. The situation is
thus very different in dimension n > 3.
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Generalization of Main Result

Considering multiple boundary conditions does not guarantee the absence
of critical points for at least one of the corresponding solutions. More
precisely, we have the following result.

Theorem: Let X C R3 be a bounded Lipschitz domain. Take g1, ... g1, €
C(0X) N HY/2(8X). Then there exists a nonempty open set of conduc-
tivities 0 € C*°(X), o > 1/2 such that for every Il = 1,..., L, the solution
ul e HY(X) to

—V-oVul=0 in X, ulzgl on 0X

has at least one critical point in X, namely Vu!(z!)) = 0 for some z! € X
(depending on o).
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Main Idea I

We first construct a critical point in a case where ¢ = 4o is allowed.

Let xg = 0 be a point in X and S the surface of a subdomain Z C X
enclosing xg. VWe separate S into two disjoint subsets S; U S, such that
the harmonic solution in Z equal to ¢ on §; has a critical point at x;
see figure with §71 the “circular” part of the boundary of a cylinder Z
while S5 is the “flat” part of that boundary.

Consider the case when g takes at least two values, say, 1 and 2 after
proper rescaling. For i = 1,2, let now X* be two handles (open domains)
joining S; to points z(;y on 9X where g(a:(z-)) — 4. For appropriate choices
of S;, the handles X* may be shown not to intersect in dimension n > 3,
whereas they clearly have to intersect in dimension n = 2. Let us now
assume that o is set to +oc0 in both handles and equal to 1 otherwise.
This forces the solution u to equal « on S;, to be harmonic in Z, and
hence to have a critical point at xq.
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We can make sense of the constructed solution as solution of a Zaremba
problem: a mixed boundary value problem for the Laplacian.
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Main Idea 11

It remains to show that the topology of the vector field Vu is not modi-
fied in the vicinity of xg when o is replaced by a sufficiently high-contrast
(and possibly smooth) conductivity.

We generalize results in [Caloz, G., Dauge, M., Peron, V.. Uniform es-
timates for transmission problems with high contrast in heat conduction
and electromagnetism. J. Math. Anal. Appl., 2010] to handle asymp-
totic expansions of the solution when oy = % in @ subdomain and o =1
elsewhere.

Then we consider the vector field RVup(xzg) with R = Diag(—1,1,1) cho-
sen so that RVug is 'pointing out’, i.e., v- (RVug) > 2u > 0 on 0B(0,r)
for an appropriate r > 0.

Since uy is close to ug, then RVuy(xzg) > > 0 on dB(0,r) for n suffi-
ciently small. By topological constraint (and Brouwer's fixed point), we

obtain that Vu,(z) for some x € B(0,7). QED.
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Other boundary conditions, same results

Theorem: Let X C R3 be a connected bounded Lipschitz domain. Take
g € C(0X) such that [5y gds = 0. Then there exists a nonempty open set
of conductivities 0 € C®(X), o > 1/2 such that the solution v € H1(X)/R
to

—V-ocVu=0 in X, cOyu=g¢9g on 90X

has a critical point in X, namely Vu(z) = 0 for some z € X (depending
on o).

So result is obtained for Dirichlet and Neumann boundary conditions
as well as for any finite number of prescribed boundary conditions. In
order to avoid critical points, any finite number of prescribed choices
of boundary conditions will have to be tailored for a specific class of
conductivities ¢ one wishes to reconstruct in an imaging problem.
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Conclusions for Elliptic Hybrid Inverse Problems

e Hybrid imaging modalities provide stable inverse problems combining
high resolution with high contrast (though they are Low Signal).

e T hey often form systems of nonlinear PDE, with optimal stability
estimate obtained for elliptic (often redundant) systems.

e Additional redundancy may provide algebraic/explicit reconstructions.

e Tensors and Complex-valued coefficients can be reconstructed to ac-
count for anisotropy and dispersion effects.

e CGO solutions and unique continuation properties useful to show ex-
istence of well-chosen boundary conditions. Such BCs are necessarily
somewhat dependent on the (unknown) elliptic coefficients.

Guillaume Bal Hybrid Inverse Problems



