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Outline

1. Calderón problem and Coupled-Physics (Hybrid) Inverse Problems

2. Photo-acoustic Tomography

3. Elastography

4. Other HIP & Elliptic Theory

5. HIP with Large Redundancies

6. Qualitative properties, CGOs, Runge approximation
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Optical Constrast in medical imaging

Anatomy of a human brain based on MRI data.
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Optical properties of a healthy brain

Brain with clear ventricle in neonate. (A.H.Hielscher, Columbia biomed.)
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Scattering for blood-filled ventricle

Brain with blood-filled ventricle in neonate. (A.H. Hielscher, Columbia biomed.)
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Mathematical model: Calderón problem

Optical Tomography (neglecting absorption to simplify) is modeled by:

−∇ · γ(x)∇u = 0 in X and u = f on ∂X.

Calderón problem: Reconstruction of γ(x) from knowledge of the Dirichlet-

to-Neumann map Λγ, where f 7→ Λγf = γν · ∇u|∂X on the boundary ∂X.

The Calderón problem is injective: Λγ = Λγ̃ =⇒ γ = γ̃.

[Sylvester-Uhlmann 87, Nachman 88, Brown-Uhlmann 97, Astala-Päivärinta 06, Haberman-Tataru 11].

The Calderón problem is unstable: The modulus of continuity is loga-

rithmic [Alessandrini 88], which results in low resolution:

‖γ − γ̃‖X ≤ C
∣∣∣ ln ‖Λγ − Λγ̃‖Y

∣∣∣
−δ
.
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Complex Geometrical Optics solutions

Injectivity of the Calderón problem is proved by showing that q1 = q2

when (∆− qi)ui = 0 and
∫

X
(q1 − q2)u1u2 dx = 0.

Statement on the density of products of (almost-) harmonic solutions.

CGO solutions are of the form

uρ = eρ·x
(
1 + ψρ(x)

)
ρ = k + ik⊥ ∈ Cn, |k| = |k⊥|, k · k⊥ = 0.

Property: |ρ||ψρ| is bounded (ψρ is small as |ρ| → ∞).

Choosing ρ1 and ρ2 such that ρ1 + ρ2 = iξ ∈ Rn and |ρ1|, |ρ2| → ∞:

lim
|ρ1|,|ρ2|→∞

∫

X
(q1 − q2)uρ1uρ2dx =

∫

X
(q1 − q2)eiξ·xdx = 0.

However, |u1|, |u2| ∼ e|ξ| to determine q̂(ξ): the Calderón problem is a

severely ill-posed inverse problem with low resolution capabilities.
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High resolution Ultrasound

Ultrasound Imaging (ultrasonography) is an imaging modality that pro-

vides high resolution. However, it may display low contrast in soft

tissues.
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High resolution MRI

MRI also provides high resolution and may also display low contrast in

soft tissues.
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High Contrast and High Resolution

High-contrast low-resolution modalities: OT, EIT, Elastography. Based

on elliptic models that do not propagate singularities (well).

High-resolution low-contrast (soft tissues): M.R.I, Ultrasound, (X-ray

CT). Singularities propagate: WF(data) determines WF(parameters).

High-contrast & High-resolution:

Hybrid Inverse Problems (HIP): Physical

Coupling between one modality in each

category.

HIP are typically Low Signal.
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The Photo-acoustics Effect

Coupling between (Near-Infra-Red) Radiation and Ultrasound.
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Experimental results in Photoacoustics

Reconstruction of Ultrasound generated by Photo-Acoustic effect.

From Paul Beard’s Lab, University College London, UK.
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Experimental results in Photoacoustics

Reconstruction of Ultrasound generated by Photo-Acoustic effect.

From Lihong Wang’s Lab (Washington University)
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Elastography and Magnetic Resonance

Assessment of Hepatic Fibrosis by Liver Stiffness

Coupling between Elastic Waves and Magnetic Resonance Imaging

From Richard L. Ehman’s Lab (Mayo Clinic, Rochester, MN)
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Elastography and Ultrasound

Electromechanical Wave Imaging (EWI) of the heart

Coupling between Transient Elastic Waves and Ultrasound

From Elisa Konofagou’s Lab ( University)
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Current Density Imaging (CDI or MREIT)

Generated current with Hz measured by MRI where ∇×H = γ(x)E (=:J).
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Ultrasound Modulation

Optical tissue properties Modulated by Ultrasound.

Coupling between Optical or Electromagnetic Waves and Ultrasound

From Biomedical Photonic Imaging Lab (University of Twente).

Guillaume Bal Hybrid Inverse ProblemsGuillaume Bal Hybrid Inverse ProblemsGuillaume Bal Hybrid Inverse Problems



Hybrid Inverse Problems 2019Hybrid Inverse Problems 2019Hybrid Inverse Problems 2019

Hybrid inverse problems and internal functionals

• Hybrid (Multi-Physics) Inverse Problems (HIP) typically involve two-

steps.

• The first step solves a high resolution inverse boundary problem, for

instance by inverting Ultrasound Measurements or Magnetic Resonance

Measurements.

• The outcome of the first step is the availability of Internal Functionals

of the parameters of interest. HIP theory aims to address:

• Which parameters can be uniquely determined

• With which stability (resolution)

• Under which illumination (boundary probing) mechanism.
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Photo-Acoustic Tomography

High Contrast: Optical (or Electromagnetic) properties

High Resolution : Ultrasound
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The Photo-acoustics Effect

Coupling between (Near-Infra-Red) Radiation and Ultrasound.
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Acoustic Modeling of PAT

Ultrasound propagation is modeled by:

1

c2s

∂2p

∂t2
= ∆p in R+ × Rn; p(0, x) = Γ(x)σ(x)u(x), ∂tp(0, x) = 0 in Rn,

with Γ the Grüneisen coefficient and σ the absorption coefficient.

The PAT measurement operator (with γ additional optimal parameters):

(γ(x), σ(x),Γ(x)) 7→
{
p(t, x)| t > 0, x ∈ ∂X

}
.

The First Step in PAT: reconstruct p(0, x) from data. For X = B(0,1):

H(x) := p(0, x) =
1

8π2
∇x ·

∫

|y|=1
ν(y)

(
1

t

∂

∂t

p(t, y)

t

)

t=|y−x|
dSy.
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Experimental results in Photoacoustics

Reconstruction of H(x). From Lihong Wang’s Lab

Extensive theoretical literature by Finch, Rakesh, Patch; Kuchment, Kunyansky, Hris-

tova, Lin; Stefanov, Uhlmann (non-constant cs); Scherzer et al.; Natterer.
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Artifacts caused by resonant cavity (skull) showing some outstanding problems
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Quantitative step of PAT: light modeling

(i) Light modeling as a boundary value radiative transfer problem:

v · ∇xu+ σt(x)u−
∫

Sn−1
k(x, v′, v)u(x, v′)dv′ = 0, (x, v) ∈ X × Sn−1

u(x, v) = φ(x, v) (x, v) ∈ Γ− = {(x, v) ∈ ∂X × Sn−1, v · ν(x) < 0},
for all illuminations φ and consider the data acquisition operator

φ(x, v) 7→ H(x) := Γ(x)σ(x)
∫

Sn−1
u(x, v)dv; σ(x) = σt(x)−

∫

Sn−1
k(x, v′, v)dx′.

What is reconstructed in (σt, k) (Γ known): B. Jollivet Jugnon IP09; Ren 15.

(ii) Light modeling in diffusive regime: optical radiation is modeled by:

−∇ · γ(x)∇uj + σ(x)uj = 0 in X; u = fj on ∂X Illumination,

with a data acquisition operator fj(x) 7→ H(x) = Γ(x)σ(x)uj(x).
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QPAT with two measurements (illuminations)

−∇ · γ(x)∇uj + σ(x)uj = 0 in X, uj = fj on ∂X; Hj(x) = Γ(x)σ(x)uj(x).

Let (f1, f2) providing (H1, H2). Define β = H2
1∇

H2
H1

. IF:0 6≡ β ∈W1,∞(X):

Theorem[B.-Uhlmann 10, B.-Ren 11]

(i) (H1, H2) uniquely determine

χ(x) :=
√
γ

Γσ
(x), q(x) := −

(
∆
√
γ

√
γ

+
σ

γ

)
(x).

(ii) (H1, H2) uniquely determine the whole data acquisition operator:

f ∈ H
1
2(∂X) 7→ H(f) = H ∈ H1(X).

• Two well-chosen measurements suffice to reconstruct (χ, q) and

thus (γ, σ,Γ) up to transformations leaving (χ, q) invariant.

• If Γ is known, then (γ, σ) is uniquely reconstructed.
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Quantitative PAT, transport, and diffusion

The proof is based on the elimination of σ to get

−∇ · χ2
[
H2

1∇
H

H1

]
= 0 in X, χ known on ∂X.

Then we verify that q := −
(

∆
√
γ

√
γ

+
σ

γ

)
(x) = −

∆(χH1)

χH1
.

The IF (β 6≡ 0) implies that the vector field β = H2
1∇

u2
u1
6= 0 a.e. This

is a qualitative statement on the absence of (too many) critical points

of elliptic solutions.

Theorem [B.-Ren 11] When one coefficient in (γ, σ,Γ) is known, then

the other two are uniquely determined by the two functionals (H1, H2).
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Reconstructions for constant Γ

Theorem[B.-Ren’11] When one coefficient in (γ, σ,Γ) is known, then the

other two are uniquely determined by the two measurements (H1, H2).

For instance, assuming Γ known, we first solve

−∇ ·
(
χ2
[
H2

1∇
H2

H1

])
= 0 in X, χ2 = h1 on ∂X.

Then, with q(x) as before, we solve the elliptic equation

(∆ + q)
√
γ +

Γ

χ
= 0 in X,

√
γ = h2 on ∂X.

We thus need to solve a transport equation and an elliptic equation.
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Stability of the reconstruction (Γ known)

• Case of 2 measurements: H = (H1, H2). IF |β| ≥ c0 > 0, then [B.

Uhlmann IP 10], we find that for k ≥ 3:

‖(γ, σ)− (γ̃, σ̃)‖Ck−1(X) ≤ C‖H − H̃‖(Ck+1(X))2.

Using CGO solutions, |β| ≥ c0 > 0 for (f1, f2) in an open set.

We thus observe a loss of two derivatives (sub-elliptic estimate).

• Case of n + 1 measurements: H = (H1, . . . , Hn+1). Under appropriate

assumptions [B. Uhlmann IP 10, CPAM 13], we find for k ≥ 3:

‖γ − γ̃‖Ck(X) + ‖σ − σ̃‖Ck+1(X) ≤ C‖H − H̃‖(Ck+1(X))n+1.

We thus observe a loss of one derivative for γ and none for σ.
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Why is n+ 1 significantly better than 2 ?

−∇ · γ(x)∇uj + σ(x)uj = 0 in X, uj = fj on ∂X; Hj(x) = Γ(x)σ(x)uj(x).

The elimination of σ provides the transport equation

−∇ · [χ2H2
1]∇

Hj

H1
= 0 in X, 2 ≤ j ≤ n+ 1.

Let βj = ∇Hj
H1

and ζ = χ2H2
1. We may recast the above equations as the

over-determined elliptic system

βj · ∇ζ + (∇ · βj)ζ = 0, or ∇ζ + θζ = 0

if {βj}2≤j≤n+1 forms a basis of Rn at each point in X for a vector θ.

A redundant (and elliptic) system of transport equations enjoys better stability proper-

ties than a single transport equation.
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Reconstructions in model −∇ · γ∇uj + σuj = 0.

Plot of Internal functionals Hj=1,2(x) = σ(x)uj=1,2(x).
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Explicit reconstructions −∇ · γ∇uj + σuj = 0.

Explicit Reconstruction of (γ, σ) from functionals Hj=1,2 = σuj=1,2.
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QPAT reconstructions from two illuminations
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QPAT reconstructions from multiple illuminations
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Elastography

High Contrast: Elastic properties

High Resolution Method 1: M.R.I. (Magnetic Resonance Elastography)

High Resolution Method 2: Ultrasound (Ultrasound Elastography)
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Elastography and Magnetic Resonance

Assessment of Hepatic Fibrosis by Liver Stiffness

Coupling between Elastic Waves and Magnetic Resonance Imaging

From Richard L. Ehman’s Lab (Mayo Clinic, Rochester, MN)
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Ultrasound Elastography
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Wave Generation, Probing & Reconstruction
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Physical processes

Propagating waves in body may be separated into two components.

(i) Slowly Propagating Shear Waves (m/s)

Referred to as Elastic Waves

(ii) Rapidly Propagating Compressional Waves (km/s)

Referred to as Sound Waves (ultrasound)

The Slowly Propagating Elastic Waves generate displacements that are

imaged by the probing Rapidly Propagating Sound Waves.

Joint works with Sébastien Imperiale and Pierre-David Létourneau.
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Triangulation and geometry of acquisition

z0

x0

y0V (x)

k̂

 ̂

�

Sound propagation in heterogeneous medium in single scattering approximation:

u(t, x) =
∫ t

0

∫

R6
G(s, x−y)V (y)G(t−s, y−z)(∆f)(z)dsdy; G(t, x) =

δ(t− |x|)
4π|x|

.

Displacements of random scatterers V (x) by τ(x): V → V (x+ τ(x)).

Phase-space localized measurements:

v(t0, x0, k) =
∫

Rn
e−

α
2 |x−x0|2e−ik·(x−x0)u(t0, x)dx.
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Asymptotic (high frequency) results

Assume a probing wavelength λ� L the size of the domain. Then

v ∼ V̂y0(|k|φ)(̂∆f)(|k|ψ̂)

and second measurement after spatial shift to

vτ ∼ ei|k|τ(y0)·φV̂y0(|k|φ)(̂∆f)(|k|ψ̂).

As a consequence, we have the explicit reconstruction procedure

vτ

v
∼ ei|k|τ(y0)·φ

provides an aliased (up to 2π/|k|) estimate for τ(y0) · φ locally at y0.
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Spatial Resolution

The ratio of measurements provides an aliased version of τ(x) · φ.

Changing the source/detector geometry allows one to reconstruct vector-

valued displacements τ(x).

The resolution of the method is at best of order
√
ε with ε = λ

L. Precise

calculations show that the available measurements are of the form

vετ ≈ Cε
∫
ei|k|φ·ye−

αε
2 (φ·y)2

e
−ε|k|

2

2α

(∣∣∣(I−k̂⊗k̂)y
|y0−x0|

∣∣∣
2)

Vy0

(
y + τ(y0 + εy)

)
dy.

The support of this integral is roughly ε−
1
2 and so we need |

√
ε∇τ | � 1

in order for the factor ei|k|τ(y0)·φ to appear.
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Numerical simulations

Consider a vectorial displacement and y0 = (0,−2,0).

τ(y) =
ε

100

(
cos(π y1), 2 cos(π y1), 0

)
, τ(y0) · φ = 0.04.

Reconstructions for several realizations of random medium are
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We observe good reconstructions except when vε is too small.
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Numerical simulations

Consider the vectorial displacement

τ(y) =
ε

100

(
cos(π y1), 2 cos(π y1), 0

)
.

Reconstruction from vετ
vε
∼ ei|k|τ(y0)·φ along a line segment
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Numerical simulations

Consider the same vectorial displacement

τ(y) =
ε

100

(
cos(π y1), 2 cos(π y1), 0

)
.

Reconstruction from vετ
vε
∼ ei|k|τ(y0)·φ selecting |vε| “large”.
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Limited resolution

Reconstruction (blue) and true value (black) of the x-displacement (top)

and y-displacement (bottom) for φ1(x) for decreasing ε = 1e−2,5e−2,1e−1

(left to right).

The reconstructions fail where the local variations are large.
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Ultrasound Elastography
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Magnetic Resonance Elastography

Assessment of Hepatic Fibrosis by Liver Stiffness

Coupling between Elastic Waves and Magnetic Resonance Imaging

From Richard L. Ehman’s Lab (Mayo Clinic, Rochester, MN)
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Elastograms

Elastic displacements are imaged by sonic waves or magnetic resonance.

The second, quantitative, inverse problem aims to reconstruct the elastic

properties of bodies from such displacements.

In elastography, displacements are solutions to systems of (linear or non-

linear) equations of elasticity.

We first consider scalar second-order equations, joint work with G. Uhlmann

CPAM 2013; and anisotropic systems of elasticity, joint work with F.

Monard and G. Uhlmann 2015.
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Reconstructions from solution measurements

Consider a general scalar elliptic equation

∇ · a∇u+ b · ∇u+ cu = 0 in X, u = f on ∂X

with a, b, c, ∇·a of class C0,α(X̄) for α > 0, complex-valued, and α0|ξ|2 ≤
ξ · (<a)ξ ≤ α−1

0 |ξ|
2. For τ a non-vanishing function on X, define

aτ = τa, bτ = τb− a∇τ, cτ = τc

and the equivalence class c := (a, b, c) ∼ (aτ , bτ , cτ).

Let I ∈ N∗ and (fi)1≤i≤I be I boundary conditions. Define f = (f1, . . . , fI).

The measurement operator Mf is

Mf : c 7→ Mf(c) = (u1, . . . , uI),

with Hj(x) = uj(x) solution of the above elliptic problem with f = fj.
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Unique reconstruction up to gauge transformation

∇ · a∇uj + b · ∇uj + cuj = 0 in X, uj = fj on ∂X, 1 ≤ j ≤ I.

We assume the above elliptic equation well posed for c = (a, b, c).

Theorem [B. Uhlmann CPAM 2013]. Let c and c̃ be two classes of co-

efficients with (a, b, c) and ∇ · a of class Cm,α(X̄) for α > 0 and m = 0 or

m = 1.

For I sufficiently large and an open set of boundary conditions f =

(fj)1≤j≤I, then Mf(c) uniquely and stably determines c:

‖(a, b+∇ · a, c)− (ã, b̃+∇ · ã, c̃)‖Wm,∞(X) ≤ C‖Mf(c)−Mf(̃c)‖Wm+2,∞(X),

‖b− b̃‖L∞(X) ≤ C‖Mf(c)−Mf(̃c)‖W3,∞(X),

for m = 0,1 and for an appropriate (ã, b̃, c̃) of c̃.
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Number of internal functionals

∇ · a∇uj + b · ∇uj + cuj = 0 in X, uj = fj on ∂X, 1 ≤ j ≤ I.

Results hold provided that # of internal functionals I is sufficiently large.

When global solutions can be constructed (for instance Complex Geo-

metric Optics solutions), then we can show that

I = In = 1
2n(n+ 3) when a is a tensor

I = In = n+ 1 when a is a scalar.

In both cases, dim(a, b, c) = In + 1 so In is optimal # of functionals.

In the general case with a a complex-valued tensor, only local solutions

may be constructed. They are controlled from ∂X by a Runge approxi-

mation based on a Unique Continuation principle.
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Boundary controls

The preceding stability estimates hold for an open set of boundary con-

ditions f = (f1, . . . , fI). What one really requires is that the solution {ui}
satisfy locally linear independence constraints. More precisely, we want

that in the vicinity of a point x0, the gradients {∇ui} and the Hessians

{∇ ⊗∇ui} form a family of maximal rank.

This is done as follows. We construct approximate local solution ũj in the

vicinity of x0 on B(x0, r) for r small (think of perturbations of harmonic

polynomials) that satisfy the maximal rank condition.

We then use the Runge approximation (a consequence of the unique con-

tinuation property for our elliptic equation) to obtain the (non-constructive)

existence of boundary conditions f such that the solutions uj (and enough

of their derivatives) are sufficiently close to ũj and hence also satisfy the

maximal rank condition. This imposes smoothness constraints on (a, b, c).
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Unique reconstruction of the gauge

In some situations (as in Elastography), the gauge τ in c can be uniquely

and stably determined:

Corollary [B. Uhlmann CPAM 2013] When b = 0, then Mf(c) uniquely

determines (γ,0, c). Define γ = τM0 with Det(M0) = 1. Then we have

the following stability result:

‖(γ, c)− (γ̃, c̃)‖L∞(X) ≤ C‖Mf(c)−Mf(̃c)‖W2,∞(X).

When M0 is known, then we have the more stable reconstruction:

‖τ − τ̃‖W1,∞(X) ≤ C‖Mf(c)−Mf(̃c)‖W2,∞(X).

The reconstruction of the determinant of γ is more stable than the re-

construction of the anisotropy of the possibly complex valued tensor γ.

This has been observed numerically in different settings.
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Generalization to TE / PAT settings with b = 0

∇ · a∇uj + cuj = 0 in X, uj = f on ∂X, 1 ≤ j ≤ J.

HUE
j = uj, HPAT

j = Γ c uj, HTAT
j = Γ=c uju∗1.

Decompose a = B2â with det â = 1. Assume J sufficiently large. Then:

(HUE
j )1≤j≤J =⇒ (a, c) =⇒ any HUE

(HPAT
j )1≤j≤J =⇒

(
â,

Γc

B
,
∇ · â∇B

B
+

c

B2

)
=⇒ any HPAT

(HTAT
j )1≤j≤J =⇒

(
â, Γ

=c
|B|2

,
∇ · â∇B

B
+

c

B2

)
=⇒ any HTAT

QPAT: When Γ known a priori, then (a, c) stably reconstructed.

QTAT: When a real-valued, Γ always (stably) reconstructed, but not

(B,<c,=c). When a = I, then (Γ,<c,=c) stably reconstructed.
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Anisotropic Elasticity

Consider the reconstruction of anisotropic tensor C = {Cijkl}1≤i,j,k,l≤3

(Cijkl = Cjikl = Cijlk = Cklij) from knowledge of a finite number of

displacement fields {u(j)}j∈J, solutions of the linear elasticity equation

∇ · (C : (∇u + (∇u)T )) = 0 (X), u|∂X = g (prescribed).

There are 21 unknown components.

Define ε = 1
2(∇u + (∇u)T ). When a sufficiently large number of ε(j) are

known, then C can be uniquely and stably reconstructed.
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Assumptions of independence

Assume the existence of 6 solutions such that for Ω ⊂ X

inf
x∈Ω

det
V

(ε(1)(x), . . . , ε(6)(x)) ≥ c0 > 0, for some constant c0.

Assume also that there exists N additional solutions u6+1, . . . ,u6+N giv-

ing rise to a family M of 3N matrices whose expressions are explicit in

terms of {ε(j), ∂αε(j), 1 ≤ α ≤ 3, 1 ≤ j ≤ 6 +N} such that

inf
x∈Ω

∑

M ′⊂M, #M ′=20

N(M ′) : N(M ′) ≥ c1 > 0, for some constant c1,

for N generalizing cross product N(M) := 1
det(m1,··· ,m21)

∣∣∣∣∣∣

M1 : m1 · · · M1 : m21
... . . . ...

M20 : m1 · · · M20 : m21
m1 · · · m21

∣∣∣∣∣∣
for

m1≤j≤21 a basis of S6(R).
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Reconstruction results

Theorem [B. Monard Uhlmann-2015] Assuming the above assumptions

hold for {u(j)}6+N
j=1 and {u′(j)}6+N

j=1 corresponding to elasticity tensors C

and C′. Then C and C′ can each be uniquely reconstructed over Ω from

knowledge of their corresponding solutions, with the following stability

estimate for every integer p ≥ 0

‖C − C′‖W p,∞(Ω) + ‖divC − divC′‖W p,∞(Ω) ≤ K
N+6∑

j=1

‖ε(j) − ε
′(j)‖W p+1,∞(Ω)

If C = τC̃ for C̃ known, then

‖τ − τ ′‖W p+1,∞(Ω) ≤ K
N+6∑

j=1

‖ε(j) − ε
′(j)‖W p+1,∞(Ω).
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2d Reconstructions in isotropic elasticity

Amplitude and determinant of two elastic displacements u1 and u2.

This and next pictures from B. Bellis Imperiale Monard IP 2014.
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2d Reconstructions in isotropic elasticity

Reconstruction of two Lamé parameters from displacements u1 and u2.
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2d Reconstructions in isotropic elasticity

Reconstruction of more heterogeneous Lamé parameters.
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Other Hybrid Inverse Problems and Elliptic Theory

High Contrast: Electrical, Elastic, or Optical

High Resolution: MRI or Ultrasound.
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Examples of Hybrid Inverse Problems

• Examples of PDE models for High-contrast coefficients:

−∇ · γ(x)∇u+ σ(x)u = 0 in X, u = f on ∂X

−∇×∇× E + n(x)k2E + iσ(x)E = 0 in X, ν × E = f on ∂X

−∇ · C : (∇u + (∇u)T) = 0 in X, u = g on ∂X

• In Step 1, High-Resolution modality provides Internal functionals :

H(x) = Γ(x)σ(x)u(x) Photo-acoustics

H(x) = u(x) or u(x) Elastography

H(x) = σ(x) |u|2(x) or σ(x)|E|2(x) Thermo-acoustics

H(x) = γ(x)∇u(x) · ∇u(x) Ultrasound Modulation

H(x) = γ(x)∇u(x) or γ(x) |∇u(x)| CDII, MREIT

• One or several illuminations f = fj (and thus H = Hj) for 1 ≤ j ≤ J.
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Theoretical analyses of HIP

Can we find general theories for stability/uniqueness of (many) HIPs?

Can we understand role of number of measurements J, of B.C. fj?

Consider as an example the UMT problem

−∇ · γ(x)∇u1 = 0 in X, u1 = f1 on ∂X

−∇ · γ(x)∇u2 = 0 in X, u2 = f2 on ∂X

H1(x) = γ(x)∇u1(x) · ∇u1(x) in X

H2(x) = γ(x)∇u2(x) · ∇u2(x) in X

The left-hand side is a polynomial of γ, uj and their derivatives. This

forms a 4× 3 redundant system of nonlinear PDEs.
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Theoretical analyses of HIP

Can we find general theories for stability/uniqueness of (many) HIPs?

Can we understand role of number of measurements J, of B.C. fj?

Consider as an example the UMT problem

−∇ · γ(x)∇u1 = 0 in X, u1 = f1 on ∂X

−∇ · γ(x)∇u2 = 0 in X, u2 = f2 on ∂X

γ(x)∇u1(x) · ∇u1(x) = H1(x) in X

γ(x)∇u2(x) · ∇u2(x) = H2(x) in X

The left-hand side is a polynomial of γ, uj and their derivatives. This

forms a 4× 3 redundant system of nonlinear PDEs.
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Theoretical analyses of HIP

Can we find general theories for stability/uniqueness of (many) HIPs?

Can we understand role of number of measurements J, of B.C. fj?

Consider an Ultrasound Modulation Tomography (UMT) problem

−∇ · γ(x)∇u1 = 0 in X, u1 = f1 on ∂X

−∇ · γ(x)∇u2 = 0 in X, u2 = f2 on ∂X

γ(x)∇u1(x) · ∇u1(x) = H1(x) in X

γ(x)∇u2(x) · ∇u2(x) = H2(x) in X.

The left-hand side is a polynomial of γ, uj and their derivatives. This

forms a 4× 3 redundant system of nonlinear PDEs in X.
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Systems of coupled nonlinear equations

Hybrid inverse problems may be recast as the system of PDE:

F(γ, {uj}1≤j≤J) = H, (1)

where γ are unknown parameters and uj are PDE solutions.

For UMEIT, we have

F(γ, {uj}1≤j≤J) =

(
−∇ · γ∇uj
γ|∇uj|2

)
, H =

(
0
Hj

)
, 2J − rows .

(1) is a possibly redundant 2J×(J+m) system of nonlinear equations

with J +m unknowns (m = 1 if γ is scalar).

HIP theory concerns uniqueness, stability, reconstruction procedures for

typically redundant (over-determined) systems of the form (1) with ap-

propriate boundary conditions.
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The 0−Laplacian with J = 1

−∇ · γ(x)∇u = 0, γ(x)|∇u|2(x)−H(x) = 0 u = f on ∂X.

The elimination of γ yields the 0-Laplacian

−∇ ·
H(x)

|∇u|2
∇u = 0 in X, u = f on ∂X.

The above equation with Cauchy data may be transformed as

(I − 2∇̂u⊗ ∇̂u) : ∇2u+∇ lnH·∇u = 0 in X, u = f and
∂u

∂ν
= j on ∂X.

Here ∇̂u = ∇u
|∇u|. This is a quasilinear strictly hyperbolic equation with

∇̂u(x) a “time-like” direction. Cauchy data generate stable solutions on

“space-like” part of ∂X for the Lorentzian metric (I − 2∇̂u⊗ ∇̂u).

Guillaume Bal Hybrid Inverse ProblemsGuillaume Bal Hybrid Inverse ProblemsGuillaume Bal Hybrid Inverse Problems



Hybrid Inverse Problems 2019Hybrid Inverse Problems 2019Hybrid Inverse Problems 2019

Stability on domain of influence

Let u and ũ be two solutions of the hyperbolic equation and v = u− ũ.

IF (appropriate) Lorentzian metric is uniformly strictly hyperbolic, then:

Theorem [B. Anal&PDE 13]. Let Σ1 ⊂ Σg space-like component of ∂X

and O domain of influence of Σ1. For θ distance of O to boundary of

domain of influence of Σg, we have the local stability result:

∫

O
|v|2 + |∇v|2 + (γ − γ̃)2 dx ≤

C

θ2

( ∫

Σ1

|δf |2 + |δj|2 dσ +
∫

O
|∇δH|2 dx

)
,

where γ = H
|∇u|2 and γ̃ = H̃

|∇ũ|2. We observe the loss of one derivative

from δH to δγ (sub-elliptic estimate).
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Domain of Influence

Domain of influence (blue) for metric g = I − 2ez ⊗ ez on sphere (red).

Null-like vectors (surface of cone) generate instabilities. Right: Sphere

(red), domains of uniqueness (blue) and with controlled stability (green).
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Elliptic Theory

Consider the system

−∇ · γ(x)∇uj = 0, γ(x)|∇uj|2(x) = Hj(x), uj|∂X = fj, 1 ≤ j ≤ J.

• With J = 1, the system is hyperbolic.

• With J ≥ 2, the redundant system 2J × (J + 1) may be elliptic.

• After linearization, we obtain the system:

∇ · δγ∇uj +∇ · γ∇δuj = 0 (2)

δγ|∇uj|2 + 2γ∇uj · ∇δuj = δHj. (3)

With v = (δγ, δu1, . . . , δuJ), we recast the above system for v as

Av := (PJ +RJ)v = S

where PJ is the principal part and RJ is lower order.
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Let us define Fj = ∇uj. The symbol of PJ, a 2J × (J + 1) system is:

pJ(x, ξ) =




|F1|2 2γF1 · iξ . . . 0
F1 · iξ −γ|ξ|2 . . . 0

... ... . . . ...
|FJ |2 0 . . . 2γFJ · iξ
FJ · iξ 0 . . . −γ|ξ|2



.

• System said elliptic when pJ(x, ξ) maximal rank (J+1) for all ξ ∈ Sn−1.

(i) Redundant concatenation of hyperbolic systems (J = 1) may be elliptic.

(ii) pJ elliptic IF we choose fj s.t. the following qualitative statement on

quadratic forms holds:
{
|ξ|2 − 2(F̂j · ξ)2 = 0, 1 ≤ j ≤ J

}
implies ξ = 0.

For ellipticity, we thus want the light cones generated by the directions

F̂j to intersect to {0}. (shown to hold for appropriate boundary conditions fj for

instance using the method of CGO solutions.)
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Theory of Redundant elliptic systems

• The system is elliptic in the sense of Douglis and Nirenberg.

Each row and column is given an index si and tj and the principal term is the homogeneous differential

operator of order si + tj. For the above system, we choose s2k+1 = 0, s2k = 1, t1 = 0, tk≥2 = 1.

• We need boundary conditions that satisfy the Lopatinskii condition.

Dirichlet conditions on δuj and no condition on δγ satisfy the LC.

Indeed, we need to show that v(z) = (δγ(z), . . . , δuJ(z)) ≡ 0 is the only solution to

δuj(0) = 0, Fj ·N∂zδγ + γ∂2
z δuj = 0, |Fj|2δγ + 2γFj ·N∂zδuj = 0, z > 0

vanishing as z →∞ for N = ν(x) at x ∈ ∂X and z coordinate along −N . We observe that this is the case

if |Fj|2 − 2(Fj ·N)2 6= 0 for some j. This is the condition for joint ellipticity.

• Theory of Agmon-Douglis-Nirenberg extended to over-determined sys-

tems by Solonnikov shows that Av = S (including boundary conditions)

admits a left-parametrix R so that RA = I − T with T compact.
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Elliptic stability estimates

From the ADN-Sol. theory results the Stability estimates

J+1∑

j=1

‖vj‖Hl+tj(X)
≤ C

2J∑

i=1

‖Si‖Hl−si(X)
+ C2

∑

tj>0

‖vj‖L2(X).

For the UMEIT example (Hj = γ|∇uj|2), this is:

‖δγ‖Hl(X) +
∑

j

‖δuj‖Hl+1(X) ≤ C
∑

j

‖δHj‖Hl(X) + C2
∑

j

‖δuj‖L2(X).

• No loss of derivatives from δH to δγ: Optimal Stability (unlike J = 1).

• We do not have injectivity of the system (C2 6= 0): A can be inverted

up to a finite dimensional kernel with RA Fredholm of index 0.
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Injectivity: Holmgren, Carleman, and Calderón

• Assume A is elliptic in the regular sense, i.e., tj = t and si = 0. Consider, with

t = 2, the two problems

Av = S, v|∂X = 0, and AtAv = AtS, v|∂X = ∂νv|∂X = 0.

The second system is (J+1)×(J+1)- determined even if the first one is

2J × (J + 1) redundant. It provides an explicit reconstruction procedure.

Moreover, injectivity of the second one implies injectivity of the redundant

(both in X and on ∂X) system:

Av = 0, v|∂X = ∂νv|∂X = 0.

• Injectivity for such a system can be proved by Holmgren’s theorem

when A has analytic coefficients and by Carleman estimates, as obtained

for systems in Calderón’s theorem, for a restricted class of operators A.

Details in: B. Contemp. Math. 2014.
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Holmgren and local results

Holmgren’s theorem used for A with analytic coefficients and constant

coefficient PDE theory used for A on a sufficiently small domain X.

When A = AA has analytic coefficients and AAv = 0, then an application of Hörmander’s

theorem shows that WFA(v) ⊂WFA(det(AtAAA)v) so that v is analytic. With vanishing

Cauchy data, v = 0 and injectivity follows.

This provides genericity for hybrid inverse problems (invertibility of linear

and nonlinear IP on open, dense, set).

When the spatial domain X is small, write A = A0 + (A − A0) with

A0 the operator with coefficients frozen at x = 0. We then apply the

elliptic theory for constant coefficient operators to A0 and then to A by

perturbation on a small domain.
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Carleman estimates and Calderón’s theorem

When A is not analytic and X is not small, proving injectivity is signifi-

cantly more difficult and may rely on Unique Continuation Principles.

Recalling that A = P+R with P leading term, we seek injectivity results depending on

leading term P and not R. This essentially forces p(ξ+τN) for ξ ∈ Sn−1 and N ∈ Sn−1 to

be a diagonal (diagonalized) symbol with diagonal terms that are polynomials in τ with

at most simple real roots and at most double complex roots. When these assumptions

do not hold, then UCP depends on the structure of lower-order terms.

Applies to modified form of ultrasound modulation problem and systems of

the form

(
P1 C
0 P2

)
u = 0 with P1 satisfying UCP, P2 elliptic with simple complex roots

(saving one to control C; all operators of order m here).

Details in: B. arXiv:1210.0265.

Guillaume Bal Hybrid Inverse ProblemsGuillaume Bal Hybrid Inverse ProblemsGuillaume Bal Hybrid Inverse Problems



Hybrid Inverse Problems 2019Hybrid Inverse Problems 2019Hybrid Inverse Problems 2019

Invertibility and Local Uniqueness for Nonlinear I.P.

Recast original nonlinear I.P. as

F(v0 + v) = H, H0 := F(v0), A = F ′(v0).

IF A admits a bounded left inverse (F ′)−1(v0), then:

v = G(v) := (F ′)−1(v0)(H−H0)−(F ′)−1(v0)
(
F(v0+v)−F(v0)−F ′(v0)v

)
.

G(v) contraction when H−H0 small:

Local uniqueness result for nonlinear HIP.
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UMT reconstructions

Reconstruction (Newton iterations based on system AtAv = AtS) with:

(i) one H; (ii) two H without ellipticity; (iii) two H with ellipticity;

(iv) true conductivity.

Calculations by Kristoffer Hoffmann (DTU).
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Constraints for ellipticity and beyond

• For J small, problem may (or may not) be injective with sub-elliptic estimates.

• For J larger, problem often is elliptic with optimal stability estimates.

• Ellipticity follows from qualitative properties of Hj and uj, which hold for open set

of boundary conditions {fj} (results proved using Complex Geometric Optics (CGO)

solutions or Runge approximations).

• Method successfully applied to reconstruction in UMEIT (as above), UMOT:optical

parameters (γ, σ) (B. Moskow), Thermo-acoustic tomography (electromagnetic coef-

ficients) (B. Zhou); Photo-acoustic tomography; see also Kuchment-Steinhauer

2012 for a similar elliptic theory for pseudo-differential operators.

• For J even larger, more redundant functionals sometimes provide invertible

systems by local algebraic manipulations.
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Hybrid Problems with very-redundant information

What is to be gained by still increasing J beyond guaranteed ellipticity.
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Redundant Internal Functionals with large J

−∇·γ(x)∇uj = 0 X, uj = fj ∂X, Hij(x) = γ(x)∇ui ·∇uj(x), 1 ≤ i, j ≤ J.

UMEIT functionals are Hij = Si · Sj(x) with Si(x) = γ
1
2∇ui(x). Then:

∇ · Sj = −
1

2
F · Sj, dS[j =

1

2
F [ ∧ S[j, 1 ≤ j ≤ J, F = ∇(log γ).

Strategy: (i) Eliminate F and find closed-form equation for S = (S1| . . . |Sn).

(ii) Solve a redundant system of ODEs for S.

Step (i) involves algebraic manipulations (independent at every point x ∈ X).
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Elimination and system of ODEs in UMEIT

Lemma [B.-Bonnetier-Monard-Triki 12; Monard-B. 12].
IF infx∈X det(S1(x), . . . , Sn(x)) ≥ c0 > 0, then with D(x) =

√
detH(x),

F (x) =
2

Dn

n∑

i,j=1

(
∇(DHij) · Si(x)

)
Sj(x), H−1 = (Hij).

Moreover, ∇⊗ Sj =
∑
i,k,l,mH

ik(Sk · ∇Sj) · SlHlmSi ⊗ Sm with

2(Si · ∇Sj) · Sk = Si · ∇Hjk − Sj · ∇Hik + Sk · ∇Hij − 2F · SkHij + 2F · SjHik.

• By algebraic manipulations (only), we obtain ∇S = F(x, S) .

Theorem [idem; Capdeboscq et al. SIIS 09 in n = 2]. There exists open

set of fj for J = n in even dimension and J = n + 1 in odd dimension

such that we have the global (elliptic) stability result:

‖γ − γ′‖W1,∞(X) ≤ C‖H −H
′‖W1,∞(X).
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Elimination of F = ∇(log γ)

Recall ∇ · Sj = −F · Sj and dS[j = F [ ∧ S[j. Then we introduce

X[
j = (−1)n+j ? (S[1 ∧ . . . ∧ Ŝ[j ∧ . . . ∧ S

[
n) and find

∇ ·Xj = ?d ? X[
j = (−1)jd(S[1 ∧ . . . ∧ Ŝ[j ∧ . . . ∧ S

[
n) = (n− 1)F ·Xj.

Now, Xj · Sk = δjk detS so Xj = DHijSi with D = detH
1
2 = detS. Thus

∇ ·Xj = ∇(DHij) · Si +DHij∇ · Si = ∇(DHij) · Si −DHijF · Si
= (n− 1)F · (DHijSi) = (n− 1)DHijF · Si.

so that [B.-Bonnetier-Monard-Triki’11 & Monard-B.’11]

F = (HijF · Si)Sj =
1

nD

(
∇(DHij) · Si

)
Sj.

This eliminates F to get a closed form equation for S = (S1| . . . |Sn).

Note that this requires that S form a frame (invertible matrix).
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System for frame S

We have H = STS and dS[j = F [(S)∧S[j. Not needed: ∇·Sj = −F (S) ·Sj.
Can we get ∇ ⊗ Sj = Fj(S) from symmetric and anti-symmetric info.?

This is then a (redundant) system of ODEs.

In Euclidean geometry, the exterior derivative of one forms is

dS[i(Sj, Sk) = Si · ∇(Sj · Sk)− Sk · ∇(Si · Sk) + [Si, Sj] · Sk,
which gives an expression for the commutator [Si, Sj] = Si ·∇Sj−Sj ·∇Si.
Also standard expressions for Christoffel symbols give:

2(X ·∇Y ) ·Z = X ·∇(Y · Z) +Y ·∇(X · Z)−Z ·∇(Y ·X)−Y · [X,Z]−Z · [Y,X] +X · [Z, Y ].

Thus we find for ∇⊗ Sj in the basis of the vectors Sk:

2(Si · ∇Sj) · Sk = Si · ∇Hjk − Sj · ∇Hik + Sk · ∇Hij − 2F · SkHij + 2F · SjHik.

Finally

∇⊗ Sj =
∑

i,k,l,m

Hik(Sk · ∇Sj) · SlHlmSi ⊗ Sm = Fj(S).
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Anisotropic conductivities and Calderón problem

Let φ be a (sufficiently smooth) diffeomorphism of Rn. Then u solves

∇ · (γ∇u) = 0

if and only if the function v = u ◦ φ−1 = φ?u solves

∇′ · (φ?γ∇′v) = 0, φ?γ(x′) =
1

Jφ(x)
Dφt(x) γ(x) Dφ(x)

∣∣∣∣
x=φ−1(x′)

.

If φ maps X to X and preserves each x ∈ ∂X, then the Dirichlet to

Neumann map (boundary measurements) satisfies

M(γ) = M(φ?γ).

In other words, we cannot reconstruct γ uniquely from M(γ). In n = 2,

this is the only obstruction. In n ≥ 3, the same holds in the analytic case.
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Reconstruction of Anisotropic coefficients

∇ · γ∇ui = 0 X, ui = fi ∂X, Hij = γ∇ui · ∇uj, 1 ≤ i, j ≤ I.

Define γ = A2 and A = |A|Ã with det(Ã) = 1. Then for n = 2:

Theorem [Monard B. 12] The internal functionals H = {Hij}4i,j=1 uniquely

determine the tensor Ã via explicit algebraic equations. Moreover, we

have the (still-elliptic) stability estimate

‖Ã− Ã′‖L∞(X) ≤ C‖H −H
′‖W1,∞.

Theorem [Monard B. 12] Let Ã be known. Then |A| is uniquely deter-

mined by {Hij}1≤i,j≤2 ∈W1,∞. Moreover, we have the (elliptic) estimate

‖|A| − |A′|‖W1,∞(X) ≤ C‖H −H
′‖W1,∞.

• Theory applies to higher dimensions and as we saw, to other problems.

Monard-B. arXiv 1208.6029; B-Uhlmann CPAM 2013; B-Guo-Monard, 2013.
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Anisotropic coefficients in MR-EIT.

Consider Current Density Imaging (MR-EIT combination).

−∇ · γ(x)∇uj = 0 in X, uj = fj on ∂X; Hj(x) = γ(x)∇uj(x), 1 ≤ j ≤ J

Define γ = βγ̃ with β = det γ. Then ∇ logβ and γ̃ can be reconstructed

locally from algebraic manipulations of Hj provided that J is sufficiently

large and {Hj} are “sufficiently independent”.

More precisely, assume (i) (u1, . . . , un) solution in X0 ⊂⊂ X ′ ⊂⊂ X ⊂ Rn

s.t. det(∇u1, . . . ,∇un) ≥ c0 > 0; (ii) Define

∇un+k =
n∑

i=1

µik∇ui, 1 ≤ k ≤ m, µik = −
det(H1, . . . ,

i︷ ︸︸ ︷
Hn+k, . . . , Hn)

det(H1, . . . , Hn)
;

Zk =
[
Zk,1| · · · |Zk,n

]
, where Zk,i := ∇µik, 1 ≤ k ≤ m

and assume that span
{

(ZkH
TΩ)sym, Ω ∈ An(R), 1 ≤ k ≤ m

}
has codimen-

sion one in Sn(R) throughout X ′ with H = [H1| · · · |Hn].
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Then γ̃ is uniquely determined by the constraints:

det γ̃ = 1 and 〈γ̃, (ZkHTΩ)sym〉 = 0; 〈A,B〉 = Tr(ATB).

Then β is reconstructed using

∇ logβ =
1

D|H1|2
(
|H1|2 ∇(γ̃−1H1)− (H1·H2) ∇(γ̃−1H2)

)
(γ̃H1, γ̃H2)γ̃−1H1

−
1

|H1|2
∇(γ̃−1H1)(γ̃H1, ·), x ∈ X0,

where D := |H1|2|H2|2−(H1 ·H2)2 > c0 6= 0. This needs to be augmented

with knowledge of β at a point x ∈ ∂X.

This allows us to obtain optimal estimates (consistent with elliptic es-

timates). The reconstructions are purely algebraic for γ̃ and ∇ logβ.

B.-Guo-Monard, 2013



Hybrid Inverse Problems 2019Hybrid Inverse Problems 2019Hybrid Inverse Problems 2019

Two-dimensional reconstruction

Start with 4 boundary conditions (g1, g2, g3, g4) and current densities

Hi = γ∇ui, 1 ≤ i ≤ 4,

Assume |det(∇u1,∇u2)| ≥ c1 > 0. Then

∇u3 = µ1∇u1 + µ2∇u2 ∇u4 = λ1∇u1 + λ2∇u2,

where the coefficients (µ1, µ2) can be computed by Cramer’s rule as

(µ1, µ2) =

(
det(∇u3,∇u2)

det(∇u1,∇u2)
,
det(∇u1,∇u3)

det(∇u1,∇u2)

)
=

(
det(H3, H2)

det(H1, H2)
,
det(H1, H3)

det(H1, H2)

)
,

and similarly for (λ1, λ2). Define the known matrices

Z1 = [∇µ1|∇µ2] and Z2 = [∇λ1|∇λ2].

Define H = [H1|H2] and J =
[

0 −1
1 0

]
, we construct,

Mk = (ZkH
TJ)sym, for k = 1,2.
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Reconstruction of β

Define γ = βγ̃ with detγ̃ = 1. Curl operator is defined as J∇·. Recast

measurements as 1
β γ̃
−1Hi = ∇ui for i = 1,2 and apply curl operator:

∇ logβ · (Jγ̃−1Hi) = −J∇ · (γ̃−1Hi).

Considering both j = 1,2, simple calculations lead to

∇ logβ = −Jγ̃(H−1)T
(
J∇ · (γ̃−1H1)
J∇ · (γ̃−1H2)

)
.

This is an elliptic overdetermined system for logβ uniquely determining

β when β(x0) is known. Note ∇ logβ is determined point-wise from local

information.
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Reconstruction of γ̃

Recall ∇u3 = µ1∇u1 +µ2∇u2, ∇u4 = λ1∇u1 +λ2∇u2, and apply J∇·
using that ∇ui = γ−1Hi is curl free to get

∇µ1 · Jγ̃−1H1 +∇µ2 · Jγ̃−1H2 = 0, ∇λ1 · Jγ̃−1H1 +∇λ2 · Jγ̃−1H2 = 0.

Using that Jγ̃−1 = γ̃J (since detγ̃ = 1), we get

0 = γ̃ : ZkH
TJ = γ̃ : (ZkH

TJ)sym = γ̃ : Mk, k = 1,2.

Assuming {M1,M2} are of codimension 1 in S2(R), then γ̃ must be parallel

to the matrix,

B =

(
2M22

1 M12
2 − 2M12

1 M22
2 M11

1 M22
2 −M22

1 M11
2

M11
1 M22

2 −M22
1 M11

2 2M12
1 M11

2 − 2M11
1 M12

2

)
.

Here, M ij
k denotes the ij element of the symmetric matrix Mk. Since

det γ̃ = 1 and γ̃ is positive, we obtain the explicit local reconstruction

γ̃ = sign(B11)(detB)−
1
2B.
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Reconstructions from (4) MR-EIT data
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Reconstructions from (4) MR-EIT data
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Reconstructions from (4) bottom illuminations
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Independence of ∇uj not valid close to boundary were uj = 0 is imposed.
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Qualitative Properties of Elliptic Solutions
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The IFs and the CGOs

Several HIPs require to verify qualitative properties of elliptic solutions:

• the absence of critical points in Photo-acoustics and Elastography

• the hyperbolicity of a given Lorentzian metric in UMOT

• the linear independence of gradients of elliptic solutions in UMOT

• the joint ellipticity of quadratic forms in UMEIT

(i) Use CGO solutions whenever available: verify the property on unperturbed

CGOs (for constant-coefficient equation), by continuity on perturbed CGOs, and then

for close-by illuminations fj on ∂X.

(ii) When CGO solutions are not available (anisotropic or complex valued coef-

ficients), construct local solutions (by freezing coefficients) that satisfy such conditions.

Then use UCP and the Runge approximation to control such solutions from ∂X.

When qualitative properties fail to hold, stability degrades (Alessandrini et al. QPAT)
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Vector fields and complex geometrical optics

• Take ρ = (ρr + iρi) ∈ Cn with ρ · ρ = 0. Then ∆eρ·x = 0. Let

u1 = <eρ·x and u2 = =eρ·x so that ∇u1 = eρr·x
(

cos(ρi · xρr)− sin(ρi · xρi)
)

and ∇u2 = eρr·x
(

sin(ρi · xρr) + cos(ρi · xρi)
)
. We thus find that

|∇u1| > 0, |∇u2| > 0, ∇u1 · ∇u2 = 0.

• Let uρ(x) = γ−
1
2eρ·x

(
1 + ψρ(x)

)
solution of −∇ · γ∇uρ + σuρ = 0.

Theorem[B.-Uhlmann 10]. For q sufficiently smooth and k ≥ 0, we have

|ρ|‖ψρ‖
H
n
2+k+ε(X)

+ ‖ψρ‖
H
n
2+k+1+ε(X)

≤ C‖q‖
H
n
2+k+ε(X)

.

Thus the perturbed gradient directions θ1 = ∇̂u1 and θ2 = ∇̂u2 still

satisfy |θ1| > 0, |θ2| > 0, and |θ1 · θ2| � 1 locally so that (θ1, θ2) are

linearly independent on the bounded domain X of interest.
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Existence of critical points

ARMA 2017

Joint with Giovanni Alberti and Michele Di Cristo
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Main Theorem

Theorem: Let X ⊂ R3 be a bounded Lipschitz domain. Take g ∈
C(∂X)∩H

1
2(∂X). Then there exists a nonempty open set of conductivities

σ ∈ C∞(X), σ ≥ 1/2, such that the solution u ∈ H1(X) to

−∇ · σ∇u = 0 in X, u = g on ∂X

has a critical point in X, namely ∇u(x) = 0 for some x ∈ X (depending

on σ).

In spatial dimension n = 2, it is known that the number of critical points

(where ∇u = 0) is related to the number of oscillations of the boundary

condition independently of the (positive) coefficient σ. The situation is

thus very different in dimension n ≥ 3.
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Generalization of Main Result

Considering multiple boundary conditions does not guarantee the absence

of critical points for at least one of the corresponding solutions. More

precisely, we have the following result.

Theorem: Let X ⊂ R3 be a bounded Lipschitz domain. Take g1, . . . , gL ∈
C(∂X) ∩H1/2(∂X). Then there exists a nonempty open set of conduc-

tivities σ ∈ C∞(X), σ ≥ 1/2 such that for every l = 1, . . . , L, the solution

ul ∈ H1(X) to

−∇ · σ∇ul = 0 in X, ul = gl on ∂X

has at least one critical point in X, namely ∇ul(xl) = 0 for some xl ∈ X
(depending on σ).
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Main Idea I

We first construct a critical point in a case where σ = +∞ is allowed.

Let x0 ≡ 0 be a point in X and S the surface of a subdomain Z ⊂ X

enclosing x0. We separate S into two disjoint subsets S1 ∪ S2 such that

the harmonic solution in Z equal to i on Si has a critical point at x0;

see figure with S1 the “circular” part of the boundary of a cylinder Z

while S2 is the “flat” part of that boundary.

Consider the case when g takes at least two values, say, 1 and 2 after

proper rescaling. For i = 1,2, let now Xi be two handles (open domains)

joining Si to points x(i) on ∂X where g(x(i)) = i. For appropriate choices

of Si, the handles Xi may be shown not to intersect in dimension n ≥ 3,

whereas they clearly have to intersect in dimension n = 2. Let us now

assume that σ is set to +∞ in both handles and equal to 1 otherwise.

This forces the solution u to equal i on Si, to be harmonic in Z, and

hence to have a critical point at x0.
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We can make sense of the constructed solution as solution of a Zaremba

problem: a mixed boundary value problem for the Laplacian.
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Main Idea II

It remains to show that the topology of the vector field ∇u is not modi-

fied in the vicinity of x0 when σ is replaced by a sufficiently high-contrast

(and possibly smooth) conductivity.

We generalize results in [Caloz, G., Dauge, M., Peron, V.: Uniform es-

timates for transmission problems with high contrast in heat conduction

and electromagnetism. J. Math. Anal. Appl., 2010] to handle asymp-

totic expansions of the solution when ση = 1
η in a subdomain and ση = 1

elsewhere.

Then we consider the vector field R∇uη(x0) with R = Diag(−1,1,1) cho-

sen so that R∇u0 is ’pointing out’, i.e., ν · (R∇u0) ≥ 2µ > 0 on ∂B(0, r)

for an appropriate r > 0.

Since uη is close to u0, then R∇uη(x0) ≥ µ > 0 on ∂B(0, r) for η suffi-

ciently small. By topological constraint (and Brouwer’s fixed point), we

obtain that ∇uη(x) for some x ∈ B(0, r). QED.
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Other boundary conditions, same results

Theorem: Let X ⊂ R3 be a connected bounded Lipschitz domain. Take

g ∈ C(∂X) such that
∫
∂X g ds = 0. Then there exists a nonempty open set

of conductivities σ ∈ C∞(X), σ ≥ 1/2 such that the solution u ∈ H1(X)/R
to

−∇ · σ∇u = 0 in X, σ∂νu = g on ∂X

has a critical point in X, namely ∇u(x) = 0 for some x ∈ X (depending

on σ).

So result is obtained for Dirichlet and Neumann boundary conditions

as well as for any finite number of prescribed boundary conditions. In

order to avoid critical points, any finite number of prescribed choices

of boundary conditions will have to be tailored for a specific class of

conductivities σ one wishes to reconstruct in an imaging problem.
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Conclusions for Elliptic Hybrid Inverse Problems

• Hybrid imaging modalities provide stable inverse problems combining

high resolution with high contrast (though they are Low Signal).

• They often form systems of nonlinear PDE, with optimal stability

estimate obtained for elliptic (often redundant) systems.

• Additional redundancy may provide algebraic/explicit reconstructions.

• Tensors and Complex-valued coefficients can be reconstructed to ac-

count for anisotropy and dispersion effects.

• CGO solutions and unique continuation properties useful to show ex-

istence of well-chosen boundary conditions. Such BCs are necessarily

somewhat dependent on the (unknown) elliptic coefficients.
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