High-Performance Scientific Computing for Today and Tomorrow

WEDNESDAY, January 23, 2013, at 2:30 PM
Ryerson 251, 1100 E. 58th Street

ABSTRACT

Computational modeling in science and engineering relies on complex mathematical algorithms. The underlying mathematical models are carefully designed to enable large-scale computer simulations involving disparate scales of space and time. The resulting multiscale challenges frequently arise in representing multiphysical components by partial differential equations.

In this talk, I will illustrate some key ideas and challenges of computational mathematics in the framework of the FLASH code. FLASH is a highly-capable, massively parallel, publicly available open source scientific code with a wide user base in the fields of astrophysics, cosmology, and high-energy-density physics. I will discuss the accurate and stable numerical algorithms in FLASH that use traditional approaches based upon high-order polynomial interpolation. I will then introduce a new class of high-order hydrodynamic/MHD methods based on Gaussian Process modeling. These methods, which constitute an unusual pairing of PDE and statistical/probabilistic techniques, permit the formulation of fast convergent numerical schemes that will be crucial for future high-performance computing architectures.

Organizers:
Lek-Heng Lim, Department of Statistics, lekheng@galton.uchicago.edu,
Ridgway Scott, Departments of Computer Science and Mathematics, ridg@cs.uchicago.edu,
Jonathan Weare, Department of Mathematics, weare@math.uchicago.edu.
SSC Seminar URL: http://www.stat.uchicago.edu/seminars/SSC_seminars.shtml

If you wish to subscribe to our email list, please visit the following website:
https://lists.uchicago.edu/web/arc/statseminars.