ABSTRACT

Evaluating the norm of a resolvent over a window in the complex plane provides an illuminating generalization of a scatter-plot of eigenvalues and is of obvious interest for analyzing preconditioners. Unfortunately the common perception is that such a computation is embarrassingly parallel, and so little effort has been expended towards reproducing the functionality of the premier tool for pseudospectral computation, EigTool (Wright et al.), for distributed-memory architectures in order to enable the analysis of matrices too large for workstations. This talk introduces several high-performance variations of Lui’s triangularization followed by inverse iteration approach which involve parallel reduction to (quasi-)triangular or Hessenberg form followed by interleaved Implicitly Restarted Arnoldi iterations driven by multi-shift (quasi-)triangular or Hessenberg solves with many right-hand sides. Since multi-shift (quasi-)triangular solves can achieve a very high percentage of peak performance on both sequential and parallel architectures, such an approach both improves the efficiency of sequential pseudospectral computations and provides a high-performance distributed-memory scheme. Results from recent implementations within Elemental (P. et al.) will be presented for a variety of large matrices and practical convergence-monitoring schemes will be discussed.

This is joint work with Greg Henry (Intel).

Organizers:
Lek-Heng Lim, Department of Statistics, lekheng@galton.uchicago.edu,
Ridgway Scott, Departments of Computer Science and Mathematics, ridg@cs.uchicago.edu,
Jonathan Weare, Department of Statistics and The James Franck Institute, weare@uchicago.edu.

If you wish to subscribe to our email list, please visit the following website:
https://lists.uchicago.edu/web/arc/statseminars.