SHISHI LUO
Department of Statistics
University of California, Berkeley

Probabilistic Methods for Pathogen and Copy Number Evolution

WEDNESDAY, February 15, 2017, at 12:00 PM
Math-Stat 112 (Stevanovich Center), 5727 S. University Avenue

ABSTRACT

Biology is becoming increasingly quantitative, with large genomic datasets being curated at a rapid rate. Sound mathematical modeling as well as data science approaches are both needed to take advantage of these newly available datasets. I will describe two projects that span these approaches. The first is a Markov chain model of natural selection acting at two scales, motivated by the virulence-transmission tradeoff from pathogen evolution. This stochastic model, under a natural scaling, converges to a nonlinear deterministic system for which we can analytically derive steady-state behavior. The second project is a bioinformatics pipeline that quantifies gene copy number variants, currently a difficult problem in modern genomics. This quantification of copy number variation in turn generates new mathematical questions that require the type of probabilistic modeling used in the first project.