ABSTRACT

In this talk I will consider nonparametric estimation of an unknown density function \(g \) under shape constraints from a mixture model perspective. Let \(k \) be a non-negative integer and let \(G \) be a distribution function on \((0, \infty)\). Then

\[
f(x) = \int_0^\infty \frac{k}{y^k} (y-x)^{k-1} 1_{[0,y]}(x) dG(y)
\]

is monotone (decreasing) when \(k = 1 \), \(g \) is convex and decreasing when \(k = 2 \), and higher values of \(k \) correspond to densities which are \(k \) times differentiable with derivatives of alternating sign. I will discuss what is known concerning estimation of \(f \) and the mixing distribution \(G \) when \(k = 1 \) and \(k = 2 \), and then discuss current work connected with the cases \(3 \leq k < \infty \). Splines and a particular Hermite interpolation problem begin to play a role.